

Lecture Notes in Artificial Intelligence 4160
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Michael Fisher Wiebe van der Hoek
Boris Konev Alexei Lisitsa (Eds.)

Logics in
Artificial Intelligence

10th European Conference, JELIA 2006
Liverpool, UK, September 13-15, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Michael Fisher
Wiebe van der Hoek
Boris Konev
Alexei Lisitsa

University of Liverpool
Department of Computer Science
Liverpool; L69 3BX, UK
E-mail: {M.Fisher,wiebe,B.Konev,alexei}@csc.liv.ac.uk

Library of Congress Control Number: 2006932041

CR Subject Classification (1998): I.2, F.4.1, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-39625-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39625-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11853886 06/3142 5 4 3 2 1 0

Preface

Logics provide a formal basis, and key descriptive notation, for the study and devel-
opment of applications and systems in Artificial Intelligence (AI). With the depth and
maturity of formalisms, methodologies, and systems today, such logics are increasingly
important. The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle — JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organised biennially, with En-
glish as official language, and with proceedings published in Springer’s Lecture Notes
in Artificial Intelligence. Previous meetings took place in Roscoff, France (1988), Ams-
terdam, Netherlands (1990), Berlin, Germany (1992), York, UK (1994), Évora, Portugal
(1996), Dagstuhl, Germany (1998), Málaga, Spain (2000), Cosenza, Italy (2002), and
Lisbon, Portugal (2004).

The increasing interest in this forum, its international level with growing partici-
pation from researchers outside Europe, and the overall technical quality, has turned
JELIA into a major forum for the discussion of logic-based approaches to AI. JELIA
2006 constituted the Tenth International Conference on Logics in Artificial Intelligence,
and was held in Liverpool (UK) in September 2006. As with previous JELIA confer-
ences, the aim of JELIA 2006 was to bring together active researchers interested in all
aspects concerning the use of logics in AI to discuss current research, results, problems
and applications of both a theoretical and practical nature.

We received a total of 96 submissions, comprising 77 regular papers and 19 tool de-
scriptions. These submissions represented a wide range of topics throughout Artificial
Intelligence and, as well as originating in Europe, we were pleased to receive submis-
sions from a variety of other countries across the world, including Australia, Brazil,
China, Sri Lanka, South Korea and USA. We would like to take this opportunity to
thank all those who submitted papers and whose contributions have helped make such
a strong final programme.

The regular paper submissions were usually evaluated by at least three members
of the Programme Committee (see below) and in many cases further discussion on
the merits of particular papers was entered into. Tool description papers were each
evaluated by two members of the Programme Committee. We would like to thank all
the members of the Programme Committee and the additional referees (see below) for
the professional way in which they carried out their reviewing and selection duties.

The review process was extremely selective and many good papers could not be ac-
cepted for the final program. As a result of the reviewing process 34 regular papers
(44% of submissions) were selected for full presentation at JELIA 2006. In addition,
12 tool descriptions (62% of submissions) were selected for presentation and demon-
stration. The papers appearing in these proceedings cover a range of topics within the
scope of the conference, such as logic programming, description logics, non-monotonic
reasoning, agent theories, automated reasoning, and machine learning. Together with
the programme of technical papers, we are pleased to acknowledge a strong series of

VI Preface

invited talks by leading members of the Logic in AI community: Sašo Džeroski (Jozef
Stefan Institute, Slovenia); Ilkka Niemelä (Helsinki University of Technology, Finland);
and Andrei Voronkov (University of Manchester, UK). We are confident that you will
find the contents of this volume stimulating and enlightening, and that it will provide
an invaluable reference to many current research issues in Logics in AI.

Finally, we are indebted to the members of the JELIA Steering Committee (see be-
low) for selecting Liverpool for the tenth JELIA event, to sponsorship from EPSRC,
AgentcitiesUK and the University of Liverpool, and to Catherine Atherton and Dave
Shield for their invaluable assistance in hosting this conference.

July 2006 Michael Fisher
[Programme Chair]

Wiebe van der Hoek
[General Chair]

Boris Konev
[Tool Session Chair]

Alexei Lisitsa
[Local Organising Chair]

Organization

JELIA Steering Committee:

Gerhard Brewka David Pearce Luı́s Moniz Pereira

JELIA-06 Programme Committee:

José Júlio Alferes
Franz Baader
Chitta Baral
Peter Baumgartner
Salem Benferhat
Alexander Bochman
Rafael Bordini
Gerhard Brewka
Walter Carnielli
Luis Fariñas del Cerro
Mehdi Dastani
James Delgrande
Jürgen Dix
Clare Dixon
Roy Dyckhoff
Thomas Eiter
Patrice Enjalbert

Michael Fisher
Maria Fox
Enrico Franconi
Ulrich Furbach
Sergio Greco
Lluı́s Godo
James Harland
Tomi Janhunen
Peter Jonsson
Boris Konev
Manolis Koubarakis
João Leite
Maurizio Lenzerini
Nicola Leone
Gérard Ligozat
John-Jules Meyer
Angelo Montanari

Bernhard Nebel
Manuel Ojeda-Aciego
David Pearce
Charles Pecheur
Luı́s Moniz Pereira
Henri Prade
Henry Prakken
Francesca Rossi
Ken Satoh
Renate Schmidt
Terry Swift
Francesca Toni
Paolo Torroni
Mirek Truszczynski
Toby Walsh
Mary-Anne Williams
Michael Zakharyaschev

Additional Reviewers

Salvador Abreu
Wolfgang Ahrendt
Alessandro Artale
Pedro Barahona
Bernhard Beckert
Piero Bonatti
Krysia Broda
Diego Calvanese
Iliano Cervesato
Marta Cialdea
Pierangelo Dell’Acqua
Agostino Dovier
Esra Erdem
Michael Fink

Giorgos Flouris
Laura Giordano
Valentin Goranko
Rajeev Goré
Guido Governatori
Gianluigi Greco
Pascal Hitzler
Wiebe van der Hoek
Aaron Hunter
Ullrich Hustadt
Giovambattista Ianni
Wojtek Jamroga
Andrew Jones
Reinhard Kahle

Ralf Küsters
Zhen Li
Thomas Lukasiewicz
Michael Maher
Davide Marchignoli
Wolfgang May
Paola Mello
Thomas Meyer
Maja Milicic
Rafiq Muhammad
Alexander Nittka
Peter Novak
Magdalena Ortiz
Simona Perri

VIII Organization

Gerald Pfeifer
Axel Polleres
Helmut Prendinger
Birna van Riemsdijk
Fabrizio Riguzzi
Jussin Rintanen
Rob Rothenberg
Jordi Sabater-Mir

Mehrnoosh Sadrzadeh
Torsten Schaub
Ute Schmid
Steven Shapiro
Tran Cao Son
Giorgos Stamou
Phiniki Stouppa
Thomas Studer

Aaron Stump
Uwe Waldmann
Kewen Wang
Gregory Wheeler
Frank Wolter
Bozena Wozna
Bruno Zanuttini
Hantao Zhang

Table of Contents

I Invited Talks

From Inductive Logic Programming to Relational Data Mining 1
Sašo Džeroski

Answer Set Programming: A Declarative Approach to Solving Search
Problems . 15

Ilkka Niemelä

Inconsistencies in Ontologies . 19
Andrei Voronkov

II Technical Papers

On Arbitrary Selection Strategies for Basic Superposition 20
Vladimir Aleksic, Anatoli Degtyarev

An Event-Condition-Action Logic Programming Language 29
José Júlio Alferes, Federico Banti, Antonio Brogi

Distance-Based Repairs of Databases . 43
Ofer Arieli, Marc Denecker, Maurice Bruynooghe

Natural Deduction Calculus for Linear-Time Temporal Logic 56
Alexander Bolotov, Artie Basukoski, Oleg Grigoriev,
Vasilyi Shangin

A STIT-Extension of ATL . 69
Jan Broersen, Andreas Herzig, Nicolas Troquard

On the Logic and Computation of Partial Equilibrium Models 82
Pedro Cabalar, Sergei Odintsov, David Pearce, Agust́ın Valverde

Decidable Fragments of Logic Programming with Value Invention 95
Francesco Calimeri, Susanna Cozza, Giovambattista Ianni

On the Issue of Reinstatement in Argumentation . 111
Martin Caminada

X Table of Contents

Comparing Action Descriptions Based on Semantic Preferences 124
Thomas Eiter, Esra Erdem, Michael Fink, Ján Senko

Modal Logics of Negotiation and Preference . 138
Ulle Endriss, Eric Pacuit

Representing Action Domains with Numeric-Valued Fluents 151
Esra Erdem, Alfredo Gabaldon

Model Representation over Finite and Infinite Signatures 164
Christian G. Fermüller, Reinhard Pichler

Deciding Extensions of the Theory of Arrays by Integrating Decision
Procedures and Instantiation Strategies . 177

Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, Daniele Zucchelli

Analytic Tableau Calculi for KLM Rational Logic R 190
Laura Giordano, Valentina Gliozzi, Nicola Olivetti,
Gian Luca Pozzato

On the Semantics of Logic Programs with Preferences 203
Sergio Greco, Irina Trubitsyna, Ester Zumpano

A Modularity Approach for a Fragment of ALC . 216
Andreas Herzig, Ivan Varzinczak

Whatever You Say . 229
Luke Hunsberger

Automatic Deductive Synthesis of Lisp Programs in the System
ALISA . 242

Yulia Korukhova

A Fault-Tolerant Default Logic . 253
Zhangang Lin, Yue Ma, Zuoquan Lin

Reasoning About Actions Using Description Logics with General
TBoxes . 266

Hongkai Liu, Carsten Lutz, Maja Miličić, Frank Wolter

Introducing Attempt in a Modal Logic of Intentional Action 280
Emiliano Lorini, Andreas Herzig, Cristiano Castelfranchi

On Herbrand’s Theorem for Intuitionistic Logic . 293
Alexander Lyaletski, Boris Konev

Table of Contents XI

Ambiguity Propagating Defeasible Logic and the Well-Founded
Semantics . 306

Frederick Maier, Donald Nute

Hierarchical Argumentation . 319
Sanjay Modgil

Anti-prenexing and Prenexing for Modal Logics . 333
Cláudia Nalon, Clare Dixon

A Bottom-Up Method for the Deterministic Horn Fragment
of the Description Logic ALC . 346

Linh Anh Nguyen

Fuzzy Answer Set Programming . 359
Davy Van Nieuwenborgh, Martine De Cock, Dirk Vermeir

Reasoning About an Agent Based on Its Revision History with Missing
Inputs . 373

Alexander Nittka

Knowledge Base Revision in Description Logics . 386
Guilin Qi, Weiru Liu, David A. Bell

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 399
Emad Saad

A Formal Analysis of KGP Agents . 413
Fariba Sadri, Francesca Toni

Irrelevant Updates and Nonmonotonic Assumptions 426
Ján Šefránek

Towards Top-k Query Answering in Description Logics: The Case
of DL-Lite . 439

Umberto Straccia

Representing Causal Information About a Probabilistic Process 452
Joost Vennekens, Marc Denecker, Maurice Bruynooghe

III Tool Descriptions

A Tool to Facilitate Agent Deliberation . 465
Daniel Bryant, Paul Krause, Sotiris Moschoyiannis

XII Table of Contents

An Implementation of a Lightweight Argumentation Engine for Agent
Applications . 469

Daniel Bryant, Paul Krause

A Tool for Answering Queries on Action Descriptions 473
Thomas Eiter, Michael Fink, Ján Senko

An Implementation for Recognizing Rule Replacements in Non-ground
Answer-Set Programs . 477

Thomas Eiter, Patrick Traxler, Stefan Woltran

April – An Inductive Logic Programming System . 481
Nuno A. Fonseca, Fernando Silva, Rui Camacho

optsat: A Tool for Solving SAT Related Optimization Problems 485
Enrico Giunchiglia, Marco Maratea

Automated Reasoning About Metric and Topology . 490
Ullrich Hustadt, Dmitry Tishkovsky, Frank Wolter,
Michael Zakharyaschev

The QBFEVAL Web Portal . 494
Massimo Narizzano, Luca Pulina, Armando Tacchella

A Slicing Tool for Lazy Functional Logic Programs 498
Claudio Ochoa, Josep Silva, Germán Vidal

cc�: A Correspondence-Checking Tool for Logic Programs Under
the Answer-Set Semantics . 502

Johannes Oetsch, Martina Seidl, Hans Tompits, Stefan Woltran

A Logic-Based Tool for Semantic Information Extraction 506
Massimo Ruffolo, Marco Manna, Lorenzo Gallucci, Nicola Leone,
Domenico Saccà

tarfa: Tableaux and Resolution for Finite Abduction 511
Fernando Soler-Toscano, Ángel Nepomuceno-Fernández

Author Index . 515

From Inductive Logic Programming to
Relational Data Mining

Sašo Džeroski

Jozef Stefan Institute, Department of Knowledge Technologies,
Jamova 39, 1000 Ljubljana, Slovenija

Saso.Dzeroski@ijs.si

Abstract. Situated at the intersection of machine learning and logic
programming, inductive logic programming (ILP) has been concerned
with finding patterns expressed as logic programs. While ILP initially
focussed on automated program synthesis from examples, it has recently
expanded its scope to cover a whole range of data analysis tasks (classi-
fication, regression, clustering, association analysis). ILP algorithms can
this be used to find patterns in relational data, i.e., for relational data
mining (RDM). This paper briefly introduces the basic concepts of ILP
and RDM and discusses some recent research trends in these areas.

1 Introduction

Logic programming as a subset of first-order logic is mostly concerned with de-
ductive inference. Inductive logic programming (ILP) [24], on the other hand,
is concerned with inductive inference. It generalizes from individual instan-
ces/observations in the presence of background knowledge, finding regularities /
hypotheses about yet unseen instances.

In its early days, ILP focussed on automated program synthesis from exam-
ples, formulated as a binary classification task. In recent years, however, the
scope of ILP has broadened to cover a variety of data mining tasks, such as clas-
sification, regression, clustering, association analysis. Data mining is concerned
with finding patterns in data, the most common types of patterns encountered
being classification rules, classification and regression trees, and association rules.

ILP approaches can be used to find patterns in relational data, i.e., for re-
lational data mining (RDM) [12]. The types of patterns encountered in data
mining now have relational counterparts, such as relational classification rules,
relational regression trees, relational association rules. The major classes of data
mining algorithms (such as decision tree induction, distance-based clustering and
prediction, etc.) have also been upgraded to relational data mining algorithms.

In this paper we first briefly introduce the task of inductive logic programming.
We assume the reader is familiar with basic logic programming notation. We
start with logical settings for concept learning and continue with discussing the
task of relational rule induction. We next discuss the relational extensions of two
major types of patterns considered in data mining: classification and regression

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 S. Džeroski

trees and association rules. We only discuss the patterns, not the algorithms for
finding such patterns from data. We conclude with a discussion of recent trends
in ILP and RDM.

2 Inductive Logic Programming: Settings and
Approaches

Logic programming as a subset of first-order logic is mostly concerned with de-
ductive inference. Inductive logic programming, on the other hand, is concerned
with inductive inference. It generalizes from individual instances/observations
in the presence of background knowledge, finding regularities/hypotheses about
yet unseen instances.

In this section, we discuss the different ILP settings as well as the different
relational learning tasks, starting with the induction of logic programs (sets of
relational rules). We also discuss the two major approaches to solving relational
learning tasks, namely transforming relational problems to propositional form
and upgrading propositional algorithms to a relational setting.

2.1 Logical Settings for Concept Learning

One of the most basic and most often considered tasks in machine learning
is the task of inductive concept learning. Given U , a universal set of objects
(observations), a concept C is a subset of objects in U , C ⊆ U . For example, if
U is the set of all patients in a given hospital C could be the set of all patients
diagnosed with Hepatitis A. The task of inductive concept learning is defined
as follows: Given instances and non-instances of concept C, find a hypothesis
(classifier) H able to tell whether x ∈ C, for each x ∈ U .

Table 1. The task of inductive concept learning

Given:

– a language of examples LE

– a language of concept descriptions LH

– a covers relation between LH and LE , defining when
an example e is covered by a hypothesisH : covers(H,e)

– sets of positive P and negative N examples described in LE

Find hypothesis H from LH , such that

– completeness: H covers all positive examples p ∈ P
– consistency: H does not cover any negative example n ∈ N

To define the task of inductive concept learning more precisely, we need to
specify U the space of instances (examples), as well as the space of hypotheses
considered. This is done through specifying the languages of examples (LE) and
concept descriptions (LH). In addition, a coverage relation covers(H, e) has to

From Inductive Logic Programming to Relational Data Mining 3

be specified, which tells us when an example e is considered to belong to the
concept represented by hypothesis H . Examples that belong to the target con-
cept are termed positive, those that do not are termed negative. Given positive
and negative examples, we want hypotheses that are complete (cover all positive
examples) and consistent (do not cover negative examples).

Looking at concept learning in a logical framework, De Raedt [9] considers
three settings for concept learning. The key aspect that varies in these settings
is the notion of coverage, but the languages LE and LH vary as well. We char-
acterize these for each of the three settings below.

– In learning from entailment, the coverage relation is defined as covers(H, e)
iff H |= e. The hypothesis logically entails the exampe. Here H is a clausal
theory and e is a clause.

– In learning from interpretations, we have covers(H, e) iff e is model of H .
The example has to be a model of the hypothesis. H is a clausal theory and
e is a Herbrand interpretation.

– In learning from satisfiability, covers(H, e) iff H ∧ e �|=⊥. The example and
the hypothesis taken together have to be satisfiable. Here both H and e are
clausal theories.

The setting of learning from entailment, introduced by Muggleton [24], is the
one that has received the most attention in the field of ILP. The alternative
ILP setting of learning from interpretations was proposed by De Raedt and
Džeroski [10]: this setting is a natural generalization of propositional learning.
Many learning algorithms for propositional learning have been upgraded to the
learning from interpretations ILP setting. Finally, the setting of learning from
satisfiability was introduced by Wrobel and Džeroski [36], but has rarely been
used in practice due to computational complexity problems.

De Raedt [9] also discusses the relationships among the three settings for
concept learning. Learning from finite interpretations reduces to learning from
entailment. Learning from entailment reduces to learning from satisfiability.
Learning from interpretations is thus the easiest and learning from satisfiability
the hardest of the three settings.

As introduced above, the logical settings for concept learning do not take into
account background knowledge, one of the essential ingredients of ILP. However,
the definitions of the settings are easily extended to take it into account. Given
background knowledge B, which in its most general form can be a clausal theory,
the definition of coverage should be modified by replacing H with B ∧H for all
three settings.

2.2 The ILP Task of Relational Rule Induction

The most commonly addressed task in ILP is the task of learning logical defini-
tions of relations [30], where tuples that belong or do not belong to the target
relation are given as examples. From training examples ILP then induces a logic
program (predicate definition) corresponding to a view that defines the target
relation in terms of other relations that are given as background knowledge.

4 S. Džeroski

This classical ILP task is addressed, for instance, by the seminal MIS system
[32] (rightfully considered as one of the most influential ancestors of ILP) and
one of the best known ILP systems FOIL [30].

Given is a set of examples, i.e., tuples that belong to the target relation
p (positive examples) and tuples that do not belong to p (negative examples).
Given are also background relations (or background predicates) qi that constitute
the background knowledge and can be used in the learned definition of p. Finally,
a hypothesis language, specifying syntactic restrictions on the definition of p is
also given (either explicitly or implicitly). The task is to find a definition of the
target relation p that is consistent and complete, i.e., explains all the positive
and none of the negative tuples.

Formally, given is a set of examples E = P∪N , where P contains positive and N
negative examples, and background knowledge B. The task is to find a hypothesis
H such that ∀e ∈ P : B ∧H |= e (H is complete) and ∀e ∈ N : B ∧H �|= e (H
is consistent), where |= stands for logical implication or entailment. This setting,
introduced by Muggleton [24], is thus also called learning from entailment.

In the most general formulation, each e, as well as B and H can be a clausal
theory. In practice, each e is most often a ground example (tuple), B is a rela-
tional database (which may or may not contain views) and H is a definite logic
program. The semantic entailment (|=) is in practice replaced with syntactic en-
tailment (
) or provability, where the resolution inference rule (as implemented
in Prolog) is most often used to prove examples from a hypothesis and the back-
ground knowledge. In learning from entailment, a positive fact is explained if it
can be found among the answer substitutions for h produced by a query ? − b
on database B, where h ← b is a clause in H . In learning from interpretations,
a clause h← b from H is true in the minimal Herbrand model of B if the query
b ∧ ¬h fails on B.

As an illustration, consider the task of defining relation
daughter(X, Y), which states that person X is a daughter of person Y , in terms
of the background knowledge relations female and parent. These relations are
given in Table 2. There are two positive and two negative examples of the target
relation daughter. In the hypothesis language of definite program clauses it is
possible to formulate the following definition of the target relation,

daughter(X, Y)← female(X), parent(Y, X).

which is consistent and complete with respect to the background knowledge and
the training examples.

In general, depending on the background knowledge, the hypothesis language
and the complexity of the target concept, the target predicate definition may
consist of a set of clauses, such as

daughter(X, Y)← female(X), mother(Y, X).
daughter(X, Y)← female(X), father(Y, X).

if the relations mother and father were given in the background knowledge
instead of the parent relation.

From Inductive Logic Programming to Relational Data Mining 5

Table 2. A simple ILP problem: learning the daughter relation. Positive examples are
denoted by ⊕ and negative by �.

Training examples Background knowledge
daughter(mary,ann). ⊕ parent(ann,mary). female(ann).
daughter(eve, tom). ⊕ parent(ann, tom). female(mary).
daughter(tom,ann). � parent(tom,eve). female(eve).
daughter(eve, ann). � parent(tom, ian).

The hypothesis language is typically a subset of the language of program
clauses. As the complexity of learning grows with the expressiveness of the hy-
pothesis language, restrictions have to be imposed on hypothesized clauses. Typ-
ical restrictions are the exclusion of recursion and restrictions on variables that
appear in the body of the clause but not in its head (so-called new variables).

Declarative bias [28] explicitly specifies the language of hypotheses (clauses)
considered by the ILP system at hand. This is input to the learning system
(and not hard-wired in the learning algorithm). Various types of declarative
bias have been used by different ILP systems, such as argument types and in-
put/output modes, parametrized language bias (e.g., maximum number of vari-
ables, literals, depth of variables, arity, etc,), clause templates and grammars. For
example, a suitable clause template for learning family relationships would be
P (X, Y)← Q(X, Z), R(Z, Y). Here P , Q and R are second order variables that
can be replaced by predicates, e.g., grandmother, mother and parent. The same
template can be used to learn the notions of grandmother and a grandfather.

2.3 Other Tasks of Relational Learning

Initial efforts in ILP focussed on relational rule induction, more precisely on
concept learning in first-order logic and synthesis of logic programs, cf. [24]. An
overview of early work is given in the textbook on ILP by Lavrač and Džeroski
[23]. Representative early ILP systems addressing this task are Cigol [26], Foil
[30], Golem [27] and Linus [22]. More recent representative ILP systems are
Progol [25] and Aleph [33].

State-of-the-art ILP approaches now span most of the spectrum of data mining
tasks and use a variety of techniques to address these. The distinguishing features
of using multiple relations directly and discovering patterns expressed in first-
order logic are present throughout: the ILP approaches can thus be viewed as
upgrades of traditional approaches. Van Laer and De Raedt [34] (Chapter 10 of
[12]) present a case study of upgrading a propositional approach to classification
rule induction to first order logic. Note, however, that upgrading to first-order
logic is non-trivial: the expressive power of first-order logic implies computational
costs and much work is needed in balancing the expressive power of the pattern
languages used and the computational complexity of the data mining algorithm
looking for such patterns. This search for a balance between the two has occupied
much of the ILP research in the last ten years.

6 S. Džeroski

Present ILP approaches to multi-class classification involve the induction of
relational classification rules (ICL [34]), as well as first order logical decision trees
in Tilde [1] and S-Cart [21]. ICL upgrades the propositional rule inducer CN2
[6]. Tilde and S-Cart upgrade decision tree induction as implemented in C4.5
[31] and Cart [4]. A nearest-neighbor approach to relational classification is
implemented in Ribl [16] and its successor Ribl2. [18, 20].

Relational regressionapproachesupgradepropositional regression tree and rules
approaches. Tilde and S-Cart, as well as Ribl2 can handle continuous classes.
Fors [19] learns decision lists (ordered sets of rules) for relational regression.

The main non-predictive or descriptive data mining tasks are clustering and
discovery of association rules. These have been also addressed in a first-order
logic setting. The Ribl distance measure has been used to perform hierarchical
agglomerative clustering in Rdbc [20], as well as k-medoids clustering. Section 4
describes a relational approach to the discovery of frequent queries and query
extensions, a first-order version of association rules.

With such a wide arsenal of relational data mining techniques, there is also
a variety of practical applications. ILP has been successfully applied to discover
knowledge from relational data and background knowledge in the areas of molec-
ular biology (including drug design, protein structure prediction and functional
genomics), environmental sciences, traffic control and natural language process-
ing. An overview of applications is given by Džeroski [14] (Chapter 14 in [12]).

haspart(M,X), worn(X)

yes no

irreplaceable(X)

yes no

A=no maintenance

A=send back A=repair in house

Fig. 1. A relational decision tree, predicting the class variable A in the target predicate
maintenance(M, A)

3 Relational Decision Trees

Decision tree induction is one of the major approaches to data mining. Upgrading
this approach to a relational setting has thus been of great importance. In this
section, we look into what relational decision trees are, i.e., how they are defined.
We do not discuss how such trees can be induced from multi-relational data: we
refer the reader to [21], [1] and [12].

Without loss of generality, we can say the task of relational prediction is de-
fined by a two-place target predicate target(ExampleID, ClassV ar), which has
as arguments an example ID and the class variable, and a set of background

From Inductive Logic Programming to Relational Data Mining 7

atom(C, A1, cl)

true false

bond(C, A1, A2, BT), atom(C, A2, n)

true
false

atom(C, A3, o)

true false

LogHLT=7.82 LogHLT=7.51 LogHLT=6.08 LogHLT=6.73

Fig. 2. A relational regression tree for predicting the degradation time LogHLT of a
chemical compound C (target predicate degrades(C,LogHLT))

knowledge predicates/relations. Depending on whether the class variable is dis-
crete or continuous, we talk about relational classification or regression. Rela-
tional decision trees are one approach to solving this task.

An example relational decision tree is given in Figure 1. It predicts the mainte-
nance action A to be taken on machine M (maintenance(M, A)), based on parts
the machine contains (haspart(M, X)), their condition (worn(X)) and ease of re-
placement (irreplaceable(X)). The target predicate here is maintenance(M, A),
the class variable is A, and background knowledge predicates are haspart(M, X),
worn(X) and irreplaceable(X).

Relational decision trees have much the same structure as propositional deci-
sion trees. Internal nodes contain tests, while leaves contain predictions for the
class value. If the class variable is discrete/continuous, we talk about relational
classification/regression trees. For regression, linear equations may be allowed in
the leaves instead of constant class-value predictions: in this case we talk about
relational model trees.

The tree in Figure 1 is a relational classification tree, while the tree in Figure 2
is a relational regression tree. The latter predicts the degradation time (the log-
arithm of the mean half-life time in water [13]) of a chemical compound from its
chemical structure, where the latter is represented by the atoms in the compound
and the bonds between them. The target predicate is degrades(C, LogHLT), the
class variable LogHLT , and the background knowledge predicates are atom(C,
AtomID, Element) and bond(C, A1, A2, BondType). The test at the root of the
tree atom(C, A1, cl) asks if the compound C has a chlorine atom A1 and the
test along the left branch checks whether the chlorine atom A1 is connected to
a nitrogen atom A2.

As can be seen from the above examples, the major difference between propo-
sitional and relational decision trees is in the tests that can appear in internal
nodes. In the relational case, tests are queries, i.e., conjunctions of literals with
existentially quantified variables, e.g., haspart(M, X), worn(X). Relational trees
are binary: each internal node has a left (yes) and a right (no) branch. If the
query succeeds, i.e., if there exists an answer substitution that makes it true, the
yes branch is taken.

8 S. Džeroski

It is important to note that variables can be shared among nodes, i.e., a
variable introduced in a node can be referred to in the left (yes) subtree of
that node. For example, the X in irreplaceable(X) refers to the machine part
X introduced in the root node test haspart(M, X), worn(X). Similarly, the A1
in bond(C, A1, A2, BT) refers to the chlorine atom introduced in the root node
atom(C, A1, cl). One cannot refer to variables introduced in a node in the right
(no) subtree of that node. For example, referring to the chlorine atom A1 in the
right subtree of the tree in Figure 2 makes no sense, as going along the right
(no) branch means that the compound contains no chlorine atoms.

The actual test that has to be executed in a node is the conjunction of the lit-
erals in the node itself and the literals on the path from the root of the tree to
the node in question. For example, the test in the node irreplaceable(X) in Fig-
ure 1 is actually haspart(M, X), worn(X), irreplaceable(X). In other words, we
need to send the machine back to the manufacturer for maintenance only if it
has a part which is both worn and irreplaceable. Similarly, the test in the node
bond(C, A1, A2, BT), atom(C, A2, n) in Figure 2 is in fact atom(C, A1, cl), bond
(C, A1, A2, BT), atom(C, A2, n). As a consequence, one cannot transform rela-
tional decision trees to logic programs in the fashion ”one clause per leaf” (unlike
propositional decision trees, where a transformation ”one rule per leaf” is possible).

Table 3. A decision list representation of the relational decision tree in Figure 1

maintenance(M, A)← haspart(M,X), worn(X),
irreplaceable(X) !, A = send back

maintenance(M, A)← haspart(M,X), worn(X), !,
A = repair in house

maintenance(M, A)← A = no maintenance

Relational decision trees can be easily transformed into first-order decision
lists, which are ordered sets of clauses (clauses in logic programs are unordered).
When applying a decision list to an example, we always take the first clause
that applies and return the answer produced. When applying a logic program,
all applicable clauses are used and a set of answers can be produced. First-order
decision lists can be represented by Prolog programs with cuts (!) [3]: cuts ensure
that only the first applicable clause is used.

Table 4. A decision list representation of the relational regression tree for predicting
the biodegradability of a compound, given in Figure 2

degrades(C,LogHLT)← atom(C, A1, cl),
bond(C, A1, A2, BT), atom(C,A2, n), LogHLT = 7.82, !

degrades(C,LogHLT)← atom(C, A1, cl),
LogHLT = 7.51, !

degrades(C,LogHLT)← atom(C, A3, o),
LogHLT = 6.08, !

degrades(C,LogHLT)← LogHLT = 6.73.

From Inductive Logic Programming to Relational Data Mining 9

Table 5. A logic program representation of the relational decision tree in Figure 1

a(M)← haspart(M,X), worn(X), irreplaceable(X)
b(M)← haspart(M,X), worn(X)
maintenance(M, A)← not a(M), A = no aintenance
maintenance(M, A)← b(M), A = repair in house
maintenance(M, A)← a(M), not b(M), A = send back

A decision list is produced by traversing the relational regression tree in a
depth-first fashion, going down left branches first. At each leaf, a clause is output
that contains the prediction of the leaf and all the conditions along the left (yes)
branches leading to that leaf. A decision list obtained from the tree in Figure 1 is
given in Table 3. For the first clause (send back), the conditions in both internal
nodes are output, as the left branches out of both nodes have been followed to
reach the corresponding leaf. For the second clause, only the condition in the
root is output: to reach the repair in house leaf, the left (yes) branch out of the
root has been followed, but the right (no) branch out of the irreplaceable(X)
node has been followed. A decision list produced from the relational regression
tree in Figure 2 is given in Table 4.

Generating a logic program from a relational decision tree is more compli-
cated. It requires the introduction of new predicates. We will not describe the
transformation process in detail, but rather give an example. A logic program,
corresponding to the tree in Figure 1 is given in Table 5.

4 Relational Association Rules

The discovery of frequent patterns and association rules is one of the most com-
monly studied tasks in data mining. Here we first describe frequent relational
patterns (frequent Datalog patterns). We then discuss relational association rules
(query extensions).

Dehaspe and Toivonen [7], [8] (Chapter 8 of [12]) consider patterns in the
form of Datalog queries, which reduce to SQL queries. A Datalog query has the
form ?−A1, A2, . . . An, where the Ai’s are logical atoms.

An example Datalog query is

?− person(X), parent(X, Y), hasPet(Y, Z)

This query on a Prolog database containing predicates person, parent, and
hasPet is equivalent to the SQL query

select Person.Id, Parent.Kid, HasPet.Aid
from Person, Parent, HasPet
where Person.Id = Parent.Pid
and Parent.Kid = HasPet.Pid

10 S. Džeroski

on a database containing relations Person with argument Id, Parent with
arguments Pid and Kid, and HasPet with arguments Pid and Aid. This query
finds triples (x, y, z), where child y of person x has pet z.

Datalog queries can be viewed as a relational version of itemsets (which are
sets of items occurring together). Consider the itemset {person, parent, child,
pet}. The market-basket interpretation of this pattern is that a person, a parent,
a child, and a pet occur together. This is also partly the meaning of the above
query. However, the variables X , Y , and Z add extra information: the person
and the parent are the same, the parent and the child belong to the same family,
and the pet belongs to the child. This illustrates the fact that queries are a more
expressive variant of itemsets.

To discover frequent patterns, we need to have a notion of frequency. Given
that we consider queries as patterns and that queries can have variables, it is not
immediately obvious what the frequency of a given query is. This is resolved by
specifying an additional parameter of the pattern discovery task, called the key.
The key is an atom which has to be present in all queries considered during the
discovery process. It determines what is actually counted. In the above query,
if person(X) is the key, we count persons, if parent(X, Y) is the key, we count
(parent,child) pairs, and if hasPet(Y, Z) is the key, we count (owner,pet) pairs.
This is described more precisely below.

Submitting a query Q =? − A1, A2, . . . An with variables {X1, . . .Xm} to
a Datalog database r corresponds to asking whether a grounding substitution
exists (which replaces each of the variables in Q with a constant), such that
the conjunction A1, A2, . . . An holds in r. The answer to the query produces
answering substitutions θ = {X1/a1, . . . Xm/am} such that Qθ succeeds. The
set of all answering substitutions obtained by submitting a query Q to a Datalog
database r is denoted answerset(Q, r).

The absolute frequency of a query Q is the number of answer substitutions θ
for the variables in the key atom for which the query Qθ succeeds in the given
database, i.e., a(Q, r, key) = |{θ ∈ answerset(key, r)|Qθ succeeds w.r.t. r}|. The
relative frequency (support) can be calculated as f(Q, r, key)=a(Q, r, key)/|{θ∈
answerset(key, r)}|. Assuming the key is person(X), the absolute frequency for
the above example query can be calculated by the following SQL statement:

select count(distinct *)
from select Person.Id

from Person, Parent, HasPet
where Person.Id = Parent.Pid
and Parent.Kid = HasPet.Pid

Association rules have the form A → C and the intuitive market-basket in-
terpretation ”customers that buy A typically also buy C”. If itemsets A and C
have supports fA and fC , respectively, the confidence of the association rule is
defined to be cA→C = fC/fA. The task of association rule discovery is to find

From Inductive Logic Programming to Relational Data Mining 11

all association rules A→ C, where fC and cA→C exceed prespecified thresholds
(minsup and minconf).

Association rules are typically obtained from frequent itemsets. Suppose we
have two frequent itemsets A and C, such that A ⊂ C, where C = A∪B. If the
support of A is fA and the support of C is fC , we can derive an association rule
A → B, which has confidence fC/fA. Treating the arrow as implication, note
that we can derive A→ C from A→ B (A→ A and A→ B implies A→ A∪B,
i.e., A→ C).

Relational association rules can be derived in a similar manner from fre-
quent Datalog queries. From two frequent queries Q1 =? − l1, . . . lm and Q2 =
? − l1, . . . lm, lm+1, . . . ln, where Q2 θ-subsumes Q1, we can derive a relational
association rule Q1 → Q2. Since Q2 extends Q1, such a relational association
rule is named a query extension.

A query extension is thus an existentially quantified implication of the form
?−l1, . . . lm →?−l1, . . . lm, lm+1, . . . ln (since variables in queries are existentially
quantified). A shorthand notation for the above query extension is ?−l1, . . . lm �

lm+1, . . . ln. We call the query ?−l1, . . . lm the body and the sub-query lm+1, . . . ln
the head of the query extension. Note, however, that the head of the query ex-
tension does not correspond to its conclusion (which is ?− l1, . . . lm, lm+1, . . . ln).

Assume the queries Q1 =?−person(X), parent(X, Y) and Q2 =?−person(X),
parent(X, Y), hasPet(Y, Z) are frequent, with absolute frequencies of 40 and 30,
respectively. The query extension E, where E is defined as E =?− person(X),
parent(X, Y) � hasPet(Y, Z), can be considered a relational association rule
with a support of 30 and confidence of 30/40 = 75%. Note the difference in mean-
ing between the query extension E and two obvious, but incorrect, attempts
at defining relational association rules. The clause person(X), parent(X, Y) →
hasPet(Y, Z) (which stands for the formula ∀XY Z :person(X)∧parent(X, Y)→
hasPet(Y, Z)) would be interpreted as follows: ”if a person has a child, then this
child has a pet”. The implication ?−person(X), parent(X, Y)→?−hasPet(Y, Z),
which stands for (∃XY : person(X) ∧ parent(X, Y)) → (∃Y Z : hasPet(Y, Z))
is trivially true if at least one person in the database has a pet. The correct
interpretation of the query extension E is: ”if a person has a child, then this
person also has a child that has a pet.”

5 Recent Trends in ILP and RDM

Hot topics and recent advances in ILP and RDM mirror the hot topics in data
mining and machine learning. These include scalability issues, ensemble meth-
ods, and kernel methods, as well as relational probabilistic representations and
learning methods. The latest developments in ILP and RDM are discussed in a
special issue of SIGKDD Explorations [15].

Scalability issues do indeed deserve a lot of attention when learning in a
relational setting, as the complexity of learning increases with the expressive
power of the hypothesis language. Scalability methods for ILP include classical
ones, such as sampling or turning the loop of hypothesis evaluation inside out

12 S. Džeroski

(going through each example once) in decision tree induction. Methods more
specific to ILP, such as query packs, have also been considered. For an overview,
we refer the reader to the article of Blockeel and Sebag [2] (in [15]).

Boosting was the first ensemble method to be used on top of a relational
learning system [29] (Chapter 11 of [12]). This was followed by bagging [5].
More recently, methods for learning random forests have been adapted to the
relational setting [35].

Kernel methods have become the mainstream of research in machine learn-
ing and data mining in recent years. The development of kernel methods for
learning in a relational setting has thus emerged as as a natural research di-
rection. Significant effort has been devoted to the development of kernels for
structured/relational data, such as graphs and sequences. An overview is given
by Gaertner [17] (in [15]).

Besides the topics mentioned above, the hottest research topic in ILP and
RDM is the study of probabilistic representations and learning methods. A va-
riety of these have been recently considered, e.g., Bayesian logic programs and
probabilistic relational models. A comprehensive survey of such representations
and methods is presented by De Raedt and Kersting [11] (in [15]).

References

1. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101: 285–297, 1998.

2. H. Blockeel and M. Sebag. Scalability and Efficiency in Multi-Relational Data
Mining. SIGKDD Explorations, 5(1):17–30, 2003.

3. I. Bratko. Prolog Programming for Artificial Intelligence, 3rd edition. Addison-
Wesley, Harlow, England, 2001.

4. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, Belmont, 1984.

5. de Castro Dutra, I., D. Page, V. Costa, and J. Shavlik. An Empirical Evalutation
of Bagging in Inductive Logic Programming. In Proceedings of the Twelfth Interna-
tional Conference on Inductive Logic Programming, pages 48–65. Springer, Berlin,
2002.

6. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
Proceedings of the Fifth European Working Session on Learning, pages 151–163.
Springer, Berlin, 1991.

7. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1): 7–36, 1999.

8. L. Dehaspe and H. Toivonen. Discovery of Relational Association Rules. In [12],
pages 189–212, 2001.

9. L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95:
187–201, 1997.

10. L. De Raedt and S. Džeroski. First order jk-clausal theories are PAC-learnable.
Artificial Intelligence, 70: 375–392, 1994.

11. L. De Raedt and K. Kersting. Probabilistic Logic Learning. SIGKDD Explorations,
5(1):31–48, 2003.

12. S. Džeroski and N. Lavrač, editors. Relational Data Mining. Springer, Berlin, 2001.

From Inductive Logic Programming to Relational Data Mining 13

13. S. Džeroski, H. Blockeel, B. Kompare, S. Kramer, B. Pfahringer, and W. Van
Laer. Experiments in Predicting Biodegradability. In Proceedings of the Ninth
International Workshop on Inductive Logic Programming, pages 80–91. Springer,
Berlin, 1999.

14. S. Džeroski. Relational Data Mining Applications: An Overview. In [12], pages
339–364, 2001.

15. S. Džeroski and L. De Raedt, editors. Special Issue on Multi-Relational Data Min-
ing. SIGKDD Explorations, 5(1), 2003.

16. W. Emde and D. Wettschereck. Relational instance-based learning. In Proceedings
of the Thirteenth International Conference on Machine Learning, pages 122–130.
Morgan Kaufmann, San Mateo, CA, 1996.

17. T. Gaertner. Kernel-based Learning in Multi-Relational Data Mining. SIGKDD
Explorations, 5(1):49–58, 2003.

18. T. Horváth, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with
lists and terms. Machine Learning, 43(1-2):53–80, 2001.

19. A. Karalič and I. Bratko. First order regression. Machine Learning 26: 147-176,
1997.

20. M. Kirsten, S. Wrobel, and T. Horváth. Distance Based Approaches to Relational
Learning and Clustering. In [12], pages 213–232, 2001.

21. S. Kramer. Structural regression trees. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 812–819. MIT Press, Cambridge, MA,
1996.

22. N. Lavrač, S. Džeroski, and M. Grobelnik. Learning nonrecursive definitions of
relations with LINUS. In Proceedings of the Fifth European Working Session on
Learning, pages 265–281. Springer, Berlin, 1991.

23. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, Chichester, 1994. Freely available at
http://www-ai.ijs.si/SasoDzeroski/ILPBook/.

24. S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):
295–318, 1991.

25. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:
245–286, 1995.

26. S. Muggleton and W. Buntine. Machine invention of first-order predicates by in-
verting resolution. In Proceedings of the Fifth International Conference on Machine
Learning, pages 339–352. Morgan Kaufmann, San Mateo, CA, 1988.

27. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings
of the First Conference on Algorithmic Learning Theory, pages 368–381. Ohmsha,
Tokyo, 1990.

28. C. Nedellec, C. Rouveirol, H. Ade, F. Bergadano, and B. Tausend. Declarative bias
in inductive logic programming. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 82–103. IOS Press, Amsterdam, 1996.

29. R. Quinlan. Relational Learning and Boosting. In [12], pages 292–306, 2001.
30. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):

239–266, 1990.
31. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.
32. E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
33. A. Srinivasan. The Aleph Manual. Technical Report, Computing Laboratory, Ox-

ford University, 2000. Available at
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

14 S. Džeroski

34. V. Van Laer and L. De Raedt. How to Upgrade Propositional Learners to First
Order Logic: A Case Study. In [12], pages 235–261, 2001.

35. C. Vens, A. Van Assche, H. Blockeel, and S. Dzeroski. First order random forests
with complex aggregates. In Proceedings of the Fourteenth International Conference
on Inductive Logic Programming, pages 323–340. Springer, Berlin, 2004.

36. S. Wrobel and S. Džeroski. The ILP description learning problem: towards a general
model-level definition of data mining in ILP. In Proceedings Fachgruppentreffen
Maschinelles Lernen. University of Dortmund, Germany, 1995.

Answer Set Programming:
A Declarative Approach to Solving Search

Problems

Ilkka Niemelä

Helsinki University of Technology, Laboratory for Theoretical Computer Science,
P.O. Box 5400, FI-02015 TKK, Finland

Ilkka.Niemela@tkk.fi
http://www.tcs.hut.fi/∼ini/

The term answer set programming (ASP) was coined by Vladimir Lifschitz to
name a new declarative programming paradigm that has its roots in stable
model (answer set) semantics of logic programs [16] and implementations of
this semantics developed in the late 90’s. When working with the implementa-
tions it became evident that they are instantiations of a different programming
paradigm [5, 8, 21, 23, 24] than that of standard logic programming. This new
ASP paradigm can be characterized as follows. In ASP programs are theories of
some formal system with a semantics that assigns to a theory a collection of sets
(models) referred to as answer sets of the program. In order to solve a problem
using ASP a program is devised such that the solutions of the problem can be
retrieved from the answer sets of the program. An ASP solver is a system that
takes as input a program and computes answer sets for it.

While ASP has its roots in logic programming, it can be based on other formal
systems such as propositional or first-order logic, too. In fact, the basic idea
of ASP is similar to, e.g., SAT-based planning [19] or constraint satisfaction
problems. However, these approaches are basically propositional but in ASP
the goal is to provide a more powerful knowledge representation language for
effective problem encoding. Typically ASP systems are based on logic program
type rules with variables and default negation. In order to address advanced
knowledge representation issues rules have been extended with, e.g., disjunctions,
cardinality constraints, weight constraints, aggregates, built-in functions and
predicates, optimization, and preferences.

Current implementations of ASP systems are typically based on a two-level
architecture where the problem of computing answer sets for a program with
variables is first reduced to an answer set computation problem for a program
without variables using logic programming and (deductive) database techniques.
This problem is then solved employing model computation techniques similar to
those used in propositional SAT solvers. A number of successful ASP systems
have been developed [25, 26, 9, 22, 20] (see the list below for some available im-
plementations).

For an excellent introduction to problem solving using the ASP paradigm
see [4]. A number of interesting applications have been developed including
planning [6, 21, 24], decision support for the flight controllers of space shut-

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 15–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 I. Niemelä

tles [3], web-based product configuration [29], configuration of a Linux system
distribution [28], computer aided verification [17, 13, 18], VLSI routing [10, 7, 12],
network management [27], security protocol analysis [1], network inhibition anal-
ysis [2], linguistics [11], data and information integration [14], and diagnosis [15].
See also the WASP Showcase Collection (http://www.kr.tuwien.ac.at/
projects/WASP/showcase.html) compiled by the EU funded Working group
on Answer Set Programming (IST project IST-FET-2001-37004).

Available ASP Systems

Smodels http://www.tcs.hut.fi/Software/smodels/
dlv http://www.dbai.tuwien.ac.at/proj/dlv/
GnT http://www.tcs.hut.fi/Software/gnt/
CMODELS http://www.cs.utexas.edu/users/tag/cmodels.html
ASSAT http://assat.cs.ust.hk/
nomore++ http://www.cs.uni-potsdam.de/nomore/
XASP distributed with XSB v2.6 http://xsb.sourceforge.net
pbmodels http://www.cs.engr.uky.edu/ai/pbmodels/
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

Acknowledgements

The financial support of Academy of Finland (project 211025) is gratefully ac-
knowledged.

References

1. L.C. Aiello and F. Massacci. Verifying security protocols as planning in logic
programming. ACM Transactions on Computational Logic, 2(4):542–580, 2001.

2. T. Aura, M. Bishop, and D. Sniegowski. Analyzing single-server network inhibition.
In Proceedings of the IEEE Computer Security Foundations Workshop, pages 108–
117, Cambridge, UK, July 2000. IEEE Computer Society Press.

3. M. Balduccini, M. Barry, M. Gelfond, M. Nogueira, and R. Watson. An A-Prolog
decision support system for the space shuttle. In Proceedings of the Third Interna-
tional Symposium on Practical Aspects of Declarative Languages, pages 169–183,
Las Vegas, Nevada, 2001. Springer-Verlag. Lecture Notes in Computer Science
1990.

4. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

5. F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive
datalog. In Proceedings of the 4th International Conference on Logic Programming
and Non-Monotonic Reasoning, pages 2–17. Springer-Verlag, 1997.

6. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-
monotonic logic programs. In Proceedings of the Fourth European Conference on
Planning, pages 169–181, Toulouse, France, September 1997. Springer-Verlag.

ASP: A Declarative Approach to Solving Search Problems 17

7. D. East and M. Truszczyński. More on wire routing with ASP. In Proceedings of the
AAAI Spring 2001 Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning, pages 39–44, Stanford, USA,
March 2001. AAAI Press.

8. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

9. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
nello. The KR system dlv: Progress report, comparisons and benchmarks. In
Proceedings of the 6th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 406–417, Trento, Italy, June 1998. Morgan Kauf-
mann Publishers.

10. E. Erdem, V. Lifschitz, and M.D.F. Wong. Wire routing and satisfiability plan-
ning. In Proceedings of the First International Conference on Computational Logic,
Automated Deduction: Putting Theory into Practice, pages 822–836, London, U.K.,
July 2000. Springer-Verlag.

11. Esra Erdem, Vladimir Lifschitz, and Don Ringe. Temporal phylogenetic networks
and logic programming. Theory and Practice of Logic Programming. To appear.

12. Esra Erdem and Martin D. F. Wong. Rectilinear Steiner tree construction using
answer set programming. In Proceedings of the 20th International Conference on
Logic Programming, volume 3132 of Lecture Notes in Computer Science, pages
386–399, 2004.

13. J. Esparza and K. Heljanko. Implementing LTL model checking with net unfold-
ings. In Proceedings of the 8th International SPIN Workshop on Model Checking of
Software (SPIN’2001), pages 37–56, Toronto, Canada, May 2001. Springer-Verlag.
Lecture Notes in Computer Science 2057.

14. Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic sets and their appli-
cation to data integration. In Proceedings of the 10th International Conference
on Database Theory, volume 3363 of Lecture Notes in Computer Science, pages
306–320, 2005.

15. M. Gelfond and J. Galloway. Diagnosing dynamic systems in A-Prolog. In Proceed-
ings of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning, pages 160–166,
Stanford, USA, March 2001. AAAI Press.

16. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference on Logic Programming, pages
1070–1080, Seattle, USA, August 1988. The MIT Press.

17. K. Heljanko. Using logic programs with stable model semantics to solve dead-
lock and reachability problems for 1-safe Petri nets. Fundamenta Informaticae,
37(3):247–268, 1999.

18. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming, 3(4&5):519–550, 2003.

19. Henry A. Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the
10th European Conference on Artificial Intelligence, pages 359–363. John Wiley,
1992.

20. Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-based answer set solver en-
hanced to non-tight programs. In Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning, volume 2923 of Lecture Notes
in Computer Science, pages 346–350, 2004.

21. V. Lifschitz. Answer set planning. In Proceedings of the 16th International Con-
ference on Logic Programming, pages 25–37, Las Cruces, New Mexico, December
1999. The MIT Press.

18 I. Niemelä

22. Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic pro-
gram by SAT solvers. In Proceedings of the 18th National Conference on Artificial
Intelligence, pages 112–117, Edmonton, Alberta, Canada, July/August 2002. The
AAAI Press.

23. W. Marek and M. Truszczyński. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages
375–398. Springer-Verlag, 1999.

24. I. Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273,
1999.

25. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable
model semantics. In M. Maher, editor, Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, pages 289–303, Bonn, Germany,
September 1996. The MIT Press.

26. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

27. T.C. Son and J. Lobo. Reasoning about policies using logic programs. In Proceed-
ings of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning, pages 210–216,
Stanford, USA, March 2001. AAAI Press.

28. T. Syrjänen. A rule-based formal model for software configuration. Research Re-
port A55, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Helsinki, Finland, December 1999.

29. J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen. A practical tool for mass-
customising configurable products. In Proceedings of the 14th International Con-
ference on Engineering Design, pages 1290–1299, 2003.

Inconsistencies in Ontologies

Andrei Voronkov

Department of Computer Science, University of Manchester, Manchester, UK
voronkov@cs.man.ac.uk

http://www.cs.man.ac.uk/∼voronkov

Abstract. Traditionally, theorem provers have been used to prove theorems with
relatively small axiomatisations. The recent development of large ontologies poses
a non-trivial challenge of reasoning with axiomatisations consisting of hundreds
of thousands axioms. In the near future much larger ontologies will be available.
These ontologies will be created by large groups of people and by computer pro-
grams and will contain knowledge of varying quality.

In the talk we describe an adaptation of the theorem prover Vampire for rea-
soning with large ontologies using expressive logics. For our experiments we
used SUMO and the terrorism ontology. Based on the analysis of inconsistencies
found in these ontologies we analyse the quality of information in them. Our re-
search reveals interesting problems in studying the evolution and the quality of
formal knowledge.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, p. 19, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Arbitrary Selection Strategies for Basic
Superposition

Vladimir Aleksic and Anatoli Degtyarev

Department of Computer Science, King’s College, Strand, London WC2R 2LS, U.K.
{vladimir, anatoli}@dcs.kcl.ac.uk

Abstract. For first-order Horn clauses without equality, resolution is
complete with an arbitrary selection of a single literal in each clause
[dN 96]. Here we extend this result to the case of clauses with equality
for superposition-based inference systems. Our result is a generalization
of the result given in [BG 01]. We answer their question about the com-
pleteness of a superposition-based system for general clauses with an
arbitrary selection strategy, provided there exists a refutation without
applications of the factoring inference rule.

1 Introduction

Since the appearance of paramodulation as a development of resolution for first-
order logic with equality, there has been a lot of research in the direction of
improving the efficiency of paramodulation-based inference systems. It resulted
in numerous refinements of paramodulation, which all aimed at restricting the
applicability of the paramodulation inference rule. In this paper, we deal with
one such refinement, namely superposition on constrained clauses with constraint
inheritance [NR 95], hence with basic superposition.

It is possible to further reduce the search space by applying selection strate-
gies. The key idea is to restrict the application of inference rules by allowing in-
ference only on selected literals. Some of the known complete selection strategies
for basic superposition are the maximal strategy (where only maximal literals
are selected in each clause) and the positive strategy (where a single negative
literal is selected, whenever there is one in a clause).

There has been a few attempts to generalize the completeness results for
different selection strategies (for example, see [DKV 95]). The latest result is
the one of Bofill and Godoy [BG 01], where they prove that arbitrary selection
strategies are complete for a basic superposition calculus on Horn clauses, if it is
compatible with the positive strategy. Here we strengthen up their result (and
answer a question they posed) by proving that a basic superposition calculus
for general first-order clauses is complete with arbitrary selection strategies,
provided that there exists a refutation without factoring inferences. A similar
result, under the same restriction for factoring inferences, was proved in [dN 96]
(Theorem 6.7.4) for resolution calculi, and our result means its generalization to
basic superposition calculi.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 20–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Arbitrary Selection Strategies for Basic Superposition 21

2 Preliminaries

Here we present only notions and definitions necessary for understanding the
paper. For a more thorough overview, see [NR 01]. It is assumed that the reader
has a basic knowledge in substitution and unification.

All formulae are constructed over a fixed signature Σ containing at least one
constant and a binary predicate symbol ≈. In order to distinguish equality from
identity, we use = to denote the latter. By X we denote a set of variables. The
set of all terms over the signature Σ with variables from X is denoted by TΣ(X)
and the set of ground terms TΣ(∅) by TΣ.

An equation is an expression denoted by t1 ≈ t2 or equivalently t2 ≈ t1. For
dealing with non-equality predicates, atoms P (t1, . . . , tn), where P is a predi-
cate symbol of arity n and t1, . . . , tn are terms, can be expressed by equations
P (t1, . . . , tn) ≈ true, where true is a new symbol. A literal is a positive or a
negative equation.

The expression A[s] indicates that an expression A contains s as a subexpres-
sion. A[t] is a result of replacing the occurrence of s in A by t. An instance Aσ
of A is the result of applying the substitution σ to A.

A clause is a disjunction of literals, denoted by a formula L1, L2, . . . , Lm. This
definition allows for multiple occurrences of identical literals, i.e. for treating a
clause as a multiset of literals. Sometimes, especially in examples, to improve
readability we use the sequent notation by which a clause ¬A1, . . . ,¬Ak, B1, . . . Bl

is represented as A1, . . . , Ak → B1, . . . , Bl. A Horn clause is a clause that con-
tains only one positive literal.

A constraint is a possibly empty conjunction of atomic equality constraints
s = t or atomic ordering constraints s � t or s � t. The empty constraint is
denoted by �.

A constrained clause is a pair consisting of a clause C and a constraint T ,
written as C | T . The part C will be referred to as the clause part and T the
constraint part of C | T . A constrained clause C | � will be identified with the
unconstrained clause C.

A substitution σ is said to be a solution of an atomic equality constraint s = t,
if sσ and tσ are syntactically equivalent. It is a solution of an ordering constraint
s � t (with respect to a reduction ordering > which is total on ground terms),
if sσ > tσ, and a solution of s � t if it is a solution of s � t or s = t. Generally,
a substitution σ is a solution of a constraint T , if it is a simultaneous solution
to all its atomic constraints. A constraint is satisfiable if it has a solution.

A ground instance of a constrained clause C | T is any ground clause Cσ,
such that σ is a ground substitution and σ is a solution to T .

A contradiction is a constrained clause � | T , with the empty clause part
such that the constraint T is satisfiable. A constrained clause is called void if its
constraint is unsatisfiable. Void clauses have no ground instances and therefore
are redundant.

A set of constrained clauses is satisfiable if the set of all its ground instances
is satisfiable.

22 V. Aleksic and A. Degtyarev

A derivation of a constrained clause C from a set of constrained clauses S is
a sequence of constrained clauses C1, . . . , Cm such that C = Cm and each con-
strained clause Ci is either an element of S or else the conclusion by an inference
rule applied to constrained clauses from premises C1, . . . , Ci−1. A derivation of
the contradiction is called a refutation.

A selection strategy is a function from a set of clauses, that maps each clause to
one of its sub-multisets. If a clause is non-empty, then the selected sub-multiset
is non-empty too. A derivation is compatible with a selection strategy if all the
inferences are performed on the selected literals, i.e. all the literals involved in
the inferences are selected.

We will often just write “clause” instead of “constrained clause” if it is clear
from the context.

3 Completeness for Refutations Without Factoring

In this section we prove that basic superposition is complete with arbitrary
selection strategies, provided that there exists a refutation without factoring in-
ferences. Our result is given for the following system BS for constrained clauses,
which is motivated by strict superposition given in [NR 95]. We drop their fac-
toring inference rule and, for left and right superposition inferences, the literal
ordering requirements.

Left superposition

Γ1, l ≈ r | T1 Γ2, s[l′] �≈ t | T2

Γ1, Γ2, s[r] �≈ t | T1 ∧ T2 ∧ l′ = l ∧ l � r ∧ s � t

where l′ is not a variable.

Right superposition

Γ1, l ≈ r | T1 Γ2, s[l′] ≈ t | T2

Γ1, Γ2, s[r] ≈ t | T1 ∧ T2 ∧ l′ = l ∧ l � r ∧ s � t

where l′ is not a variable.

Equality solution
Γ, s �≈ t | T

Γ | T ∧ s = t

Further in the paper we assume that derivations are tree-like, that is, no clause
is used more than once as an premise for an inference rule; we may make copies
of the clauses in the derivation in order to make it tree-like.

We prove our result by applying so called permutation rules to transform
derivation trees. A similar approach is used in [dN 96], but for derivations by
resolution. For basic superposition calculi, in [BG 01] the authors use a trans-
formation method to prove their result on arbitrary selection on Horn clauses.

On Arbitrary Selection Strategies for Basic Superposition 23

However, our transformation is essentially different from the one used in [BG 01],
for two reasons. First, we address derivations from general clauses, whereas they
restrict themselves to the Horn case. Secondly, their transformation method is
constrained by the condition that a superposition-based calculus is complete with
the positive selection strategy, while we don’t assume any such requirement.

The permutation rules are applied to derivation trees, and their effect is in-
verting the order of two consecutive inferences. Depending on the inferences
involved, they fall into three categories. The permutations we define apply to:

– two superposition inferences,
– two equality solutions,
– a superposition inference and an equality solution.

More in detail, the permutation rules are defined as follows. Wherever the symbol
� is used, it can represent either ≈ or �≈.

s-es rule – Superposition followed by equality solution

Γ1, l1 ≈ r1 | T1 Γ2, s �≈ t, l2[l′] � r2 | T2

Γ1, Γ2, s �≈ t, l2[r1] � r2 | T3
(s)

Γ1, Γ2, l2[r1] � r2 | T3 ∧ s = t
(es)

where T3 stands for T1 ∧ T2 ∧ l′ = l1 ∧ l1 � r1 ∧ l2 � r2. This sequence of
applications of inference rules permutes into:

Γ1, l1 ≈ r1 | T1

Γ2, s �≈ t, l2[l′] � r2 | T2

Γ2, l2[l′] � r2 | T2 ∧ s = t
(es)

Γ1, Γ2, l2[r1] � r2 | T1 ∧ T2 ∧ s = t ∧ l′ = l1 ∧ l1 � r1 ∧ l2 � r2
(s)

Note that, in order for the permutation to be possible, it is essential that the
literals s �≈ t and l2 � r2 are distinct (in the multiset context). In case they
were not, the equality solution in the original derivation would be possible
only after the superposition, and therefore the two inferences would never
be possible to swap.

es-s rule – Equality solution followed by superposition. This rule is defined as
the converse of s-es, and its application is always possible.

es-es rule – Two equality solution inferences occur immediately after one
another

Γ, s1 �≈ t1, s2 �≈ t2 | T
Γ, s1 �≈ t1 | T ∧ s2 = t2

(es)

Γ | T ∧ s2 = t2 ∧ s1 = t1
(es)

Since they take place on different literals, they trivially swap.

Γ, s1 �≈ t1, s2 �≈ t2 | T
Γ, s2 �≈ t2 | T ∧ s1 = t1

(es)

Γ | T ∧ s1 = t1 ∧ s2 = t2
(es)

24 V. Aleksic and A. Degtyarev

s-s rule – Two superposition inferences appear one immediately after another

Γ1, l1 ≈ r1 | T1 Γ2, s2[l′] � t2, l2 ≈ r2 | T2

Γ1, Γ2, s2[r1] � t2, l2 ≈ r2 | T4
(s)

Γ3, s3[l′′] � t3 | T3

Γ1, Γ2, Γ3, s2[r1] � t2, s3[r2] � t3 | T3 ∧ T4 ∧ l′′ = l2 ∧ l2 � r2 ∧ s3 � t3
(s)

where T4 represents T1 ∧ T2 ∧ l1 = l′ ∧ l1 � r1 ∧ s2 � t2. Permutation can be
done resulting in:

Γ1, l1 ≈ r1 | T1

Γ2, s2[l′] �≈ t2, l2 ≈ r2 | T2 Γ3, s3[l′′] �≈ t3 | T3

Γ2, Γ3, s2[l′] �≈ t2, s3[r2] �≈ t3 | T ′
4

(s)

Γ1, Γ2, Γ3, s2[r1] �≈ t2, s3[r2] �≈ t3 | T1 ∧ T4 ∧ l′ = l1 ∧ l1 � r1 ∧ s2 � t2
(s)

where T ′
4 is stands for T2 ∧ T3 ∧ l′′ = l2 ∧ l2 � r2 ∧ s3 � t3.

Note that in the above definition of the rule, the conclusion of the first super-
position appears as the “from” premise of the superposition inference which
follows. This does not restrict the rule, and we assume a definition of its
other instance in which the conclusion of the first superposition appears as
the “to” premise of the subsequent inference.

Similarly like at the s-es rule, it is important to point out scenarios in which
this rule can not be applied. A problem would appear if the literal s2 � t2
from the negative premise of the top superposition was used later as the
”from” literal, instead of l2 ≈ r2. Luckily, in the consideration below this
case will never be met, and we can neglect it at this point.

It could seem that it is necessary to introduce another rule of the type s-s,
where the superposition inferences to be swapped inferences take place into
the same occurence of a literal, but into different positions. However this
rule would be redundant in our proof of completeness.

Lemma 1. The above permutation rules modify BS derivations into BS deriva-
tions.

Proof. Every permutation rule defines a way of inverting the order of two adja-
cent inference rules in a derivation tree. After changing positions, the inferences
still take place with the same literals at the same positions in terms as it was
in the original derivation. Also, all ordering constraints are kept. Therefore, the
resulting derivation is a valid BS derivation.

Before proving our main result (see the theorem below), we show by an example
the way a refutation can be modified, using the permutation rules, so that it
becomes compatible with a chosen selection strategy.

On Arbitrary Selection Strategies for Basic Superposition 25

Example 1. Consider the following refutation:

a ≈ b a �≈ b, b ≈ c

b �≈ b, b ≈ c
(s1)

b �≈ c

b �≈ b, c �≈ c
(s2)

b �≈ b
(es1)

� (es2)

Assume that a reduction ordering is defined by a � b � c. Lets now “apply” an
arbitrary selection strategy to the clauses in the refutation. The selected clauses
are underlined, while the framed ones are actually used in the inferences. Note
that in unit clauses no literal is boxed nor framed, because by our definition of
selection, they are selected by default.

a ≈ b a �≈ b , b ≈ c

b �≈ b, b ≈ c
(s1)

b �≈ c

b �≈ b, c �≈ c
(s2)

b �≈ b
(es1)

� (es2)

We modify the proof by “making” the clauses take part in inferences with the
selected literals, and we do it from the leaves of the refutation towards the root
of the derivation tree. As the first step, we apply the rule s-s to the inferences
s1 and s2.

a ≈ b

a �≈ b, b ≈ c b �≈ c

a �≈ b , c �≈ c
(s′2)

b �≈ b, c �≈ c
(s′1)

b �≈ b
(es1)

� (es2)

Working further down the refutation tree, we apply the rule s-es to the inferences
s′1 and es1.

a ≈ b

a �≈ b, b ≈ c b �≈ c

a �≈ b, c �≈ c
(s′2)

a �≈ b
(es′1)

b �≈ b
(s′′1)

� (es2)

At this point, it is not necessary to apply permutation rules any further. The
refutation is compatible with the chosen selection function.

Theorem 1. Let S be a set of constrained first-order clauses that has a refuta-
tion by BS, which not necessarily employs a selection strategy. Then there exists
a refutation compatible with any selection strategy.

26 V. Aleksic and A. Degtyarev

Proof. Let Ω be a refutation from S. Note that, further in the proof, the con-
struction

Ω
C

denotes that the derivation Ω is rooted by the clause C. Consider now a given
arbitrary selection, and mark the literals of the clauses of the derivation Ω that
are selected. We call misused any clause in which the literal that takes part in an
inference is not the one selected by the selection function. A clause C is well-used
if it is not misused and there are no misused clauses in the sub-derivation of Ω
rooted by C. We use induction on the number of well-used clauses.

Assume that Ω contains misused clauses and that it is of the form:

Ω5
C5

Ω1
C1

Ω2
C2

C3
(s1)

....
C4

C6
(s2)

....
�

such that C1 is misused and there are no misused clauses in Ω1. This is without
a loss of generality, and represents only one of a number of essentially similar
scenarios in which misused clauses can appear. Assume that the clause C1 is
Γ1, s1[l′] �≈ t1, l1 ≈ r1 | T1, such that the selected literal is s1[l′] �≈ t1 and the
one used in the inference is l1 ≈ r1. Also assume that the clause C5 be of the
form Γ5, l2 ≈ r2 | T5. Let the inference s2 take place with the literal s1[l′] �≈ t1
and assume that there are no other inferences with the same literal between
s1 and s2 (therefore there are no inferences into different positions of the same
literal). The last assumption makes it possible to apply the permutation rules
from the inference s2 towards the inference s1, each time moving the application
of the clause C5 one inference up the derivation tree. This way, the derivation
Ω transforms to Ω′:

Ω5
C5

Ω1
C1

C′
3

(s′1) Ω2
C2

C′
4

(s′2)
....

C′
6....

�

where C6 and C′
6 are variants.

Since no permutation rule is applied to an inference that has a well-used clause as
its conclusion, the transformation has not changed the property to be well-used

On Arbitrary Selection Strategies for Basic Superposition 27

of any clause from Ω. In addition it has made the clause C1 well-used. Finally,
the transformation has not added to the number of clauses in the refutation and
therefore the induction hypothesis applies.

Since in the case of derivations with Horn clauses the factoring inference never
appears, the following statement easily follows from the previous theorem.

Corollary 1. Basic superposition with equality and ordering constraints for Horn
clauses is complete with arbitrary selection.

This result can not be generalized for arbitrary clauses. In the case where all
refutations involve factoring, incompleteness for arbitrary selection strategies
already appears in the propositional case (see [Ly 97]).

4 Conclusion and Future Work

Our transformations, the same as the transformations in [BG 01], are based on
the use of an inference system with inherited constrains. However, there is an-
other representation of the basic strategy introduced in [BGLS 95], which uses
closure substitutions instead of constraints. Clauses with closure substitutions are
called closures. The main difference is that the systems of constrained clauses
allow for ordering constraints inheritance, but the system of closures do not. In-
stead of ordering constraints inheritance the rules of left and right superposition
are restricted by the ordering condition lσ � rσ for some ground substitution
σ which is a solution of the equality constraint in the conclusion.

In [Ly 97] the completeness of arbitrary selection strategy for Horn clauses
with closure substitutions was proved using the model generation technique. Un-
fortunately, as it was noticed in [BG 01], some severe flaws in this completeness
proof were discovered. The example below shows that under the weaker ordering
inheritance strategy determined by closures, our transformation technique can
not be applied, and Theorem 1 does not hold.

Example 2. Let BS denote a basic superposition inference system over closures,
s and es denote superposition and equality solution inference rules, respectively.

Consider the following BS-derivation over closures: This is a correct BS-
derivation

u ≈ g(v) · [u �→ h(u1)] p(x, y) �≈ p(g(z), h(z)), h(x) �≈ g(y) · [x �→ g(y1), y �→ h(x1)]
p(x, y) �≈ p(g(z), h(z)), g(v) �≈ g(y) · [x �→ g(y1), y �→ h(x1)]

(s)

p(x, y) �≈ p(g(z), h(z)) · [x �→ g(y1), y �→ h(x1)]
(es)

� · ε (es)

for every reduction ordering �.
Let f(x, y) �≈ f(g(z), h(z)) be a selected literal. If we transform this deriva-

tions in the style suggested in the previous section, the following derivation is
obtained: This is a BS-derivation iff h(g(z) � g(h(z)). If we define � to be the

28 V. Aleksic and A. Degtyarev

u ≈ g(v) · [u �→ h(u1)]
p(x, y) �≈ p(g(z), h(z)), h(x) �≈ g(y) · [x �→ g(y1), y �→ h(x1)]

h(x) �≈ g(y) · [x �→ g(z), y �→ h(z)]
(es)

g(v) �≈ g(y) · [y �→ h(z)]
(s)

� · ε (es)

lexicographic path ordering where the precedence is g > h, this derivation is not
a BS-derivation because of the violation of the ordering conditions. However
this example is not a counterexample to Lynch’s result because we start from
closures with non empty substitutions.

References

[BGLS 95] L.Bachmair, H.Ganzinger, C.Lynch and W.Snyder. Basic paramodulation.
Information and Computation, vol.121, No.2,172–192, 1995.

[BG 01] L. Bofill and G. Godoy. On the completeness of arbitrary selection strate-
gies for paramodulation. In Proceedings ICALP 2001, pages 951–962, 2001.

[DKV 95] A. Degtyarev, Y. Koval and A. Voronkov. Handling Equality in Logic
Programming via Basic Folding. Technical report 101, Uppsala University,
Computing Science Department, 1995.

[dN 96] H. de Nivelle. Ordering refinements of resolution. Dissertation, Technische
Universiteit Delft, Delft, 1996.

[Ly 97] C. Lynch. Oriented Equational Logic Programming is Complete. Journal
of Symbolic Computations, 23(1):23–45, 1997.

[NR 95] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equal-
ity constrained clauses. Journal of Symbolic Computations, 19:321–351,
1995.

[NR 01] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
pages 3–73, 2001. Elsevier Science Publishers B.V.

An Event-Condition-Action Logic Programming
Language�

J.J. Alferes1, F. Banti1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal
{jja, banti}@di.fct.unl.pt

2 Dipartimento di Informatica, Università di Pisa, Italy
brogi@di.unipi.it

Abstract. Event-Condition-Action (ECA) languages are an intuitive and power-
ful paradigm for programming reactive systems. Usually, important features for
an ECA language are reactive and reasoning capabilities, the possibility to ex-
press complex actions and events, and a declarative semantics. In this paper, we
introduce ERA, an ECA language based on, and extending the framework of logic
programs updates that, together with these features, also exhibits capabilities to
integrate external updates and perform self updates to its knowledge (data and
classical rules) and behaviour (reactive rules).

1 Introduction

Event Condition Action (ECA) languages are an intuitive and powerful paradigm for
programming reactive systems. The fundamental construct of ECA languages are re-
active rules of the form On Event If Condition Do Action which mean: when
Event occurs, if Condition is verified, then execute Action. ECA systems receive
inputs (mainly in the form of events) from the external environment and react by per-
forming actions that change the stored information (internal actions) or influence the
environment itself (external actions). There are many potential and existing areas of
applications for ECA languages such as active and distributed database systems [26, 6],
Semantic Web applications [21, 24], distributed systems [13], Real-Time Enterprize and
Business Activity Management and agents [11].

To be useful in a wide spectrum of applications an ECA language has to satisfy sev-
eral properties. First of all, events occurring in a reactive rule can be complex, resulting
from the occurrence of several basic ones. A widely used way for defining complex
events is to rely on some event algebra [10, 1], i.e. to introduce operators that define
complex events as the result of compositions of more basic ones that occur at the same
or at different instants. Actions that are triggered by reactive rules may also be complex
operations involving several (basic) actions that have to be performed concurrently or in
a given order and under certain conditions. The possibility to define events and actions
in a compositional way (in terms of sub-events and sub-actions), permits a simpler and

� This work has been partly funded by the European Commission under project Rewerse
(http://rewerse.net). Thanks are due to Wolfgang May for his comments on previous versions.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 29–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

30 J.J. Alferes, F. Banti, and A. Brogi

more elegant programming style by breaking complex definitions into simpler ones and
by allowing to use the definition of the same entity in different fragments of code.

An ECA language would also benefit from a declarative semantics taking advantage
of the simplicity of its the basic concepts. Moreover, an ECA language must in general
be coupled with a knowledge base, which, in our opinion, should be richer than a simple
set of facts, and allow for the specification of both relational data and classical rules, i.e.
rules that specify knowledge about the environment, besides the ECA rules that specify
reactions to events. Together with the richer knowledge base, an ECA language should
exhibit inference capabilities in order to extract knowledge from such data and rules.

Clearly ECA languages deal with systems that evolve. However, in existing ECA lan-
guages this evolution is mostly limited to the evolution of the (extensional) knowledge
base. But in a truly evolving system, that is able to adapt to changes in the considered
domain, there can be evolution of more than the extensional knowledge base: derivation
rules of the knowledge base (intensional knowledge), as well as the reactive rules them-
selves may change over time. We believe another capability that should be considered is
that of evolving in this broader sense. Here, by evolving capability we mean that a pro-
gram should be able to automatically integrate external updates and to autonomously
perform self updates. The language should allow updates of both the knowledge (data
and classical rules) and the behaviour (reactive rules) of the considered ECA program,
due to external and internal changes.

To the best of our knowledge no existing ECA language provides all the above men-
tioned features (for a detailed discussion see section 5). In particular, none provides the
evolving capability, nor it is immediately clear how to incorporate such capability to
these languages. The purpose of this paper is to define an ECA language based on logic
programming that satisfies all these features. Logic programming (LP) is a flexible and
widely studied paradigm for knowledge representation and reasoning based on rules.
In the last years, in the area of LP, an amount of effort has been deployed to provide a
meaning to updates of logic programs by other logic programs. The output of this re-
search are frameworks that provide meaning to sequence of logic programs, also called
Dynamic Logic Programs (DyLPs) [2, 17, 5, 12], and update languages [3, 12, 17, 4] that
conjugate a declarative semantics and reasoning capabilities with the possibility to spec-
ify (self) evolutions of the program. However, unlike ECA paradigms, these languages
do not provide mechanisms for specifying the execution of external actions nor do they
provide mechanism for specifying complex events or actions.

To overcome the limitations of both ECA and LP update languages, we present here
an ECA language, defined by starting from DyLPs, called ERA (after Evolving Reac-
tive Algebraic programs). This language builds on previous work on the update lan-
guage Evolp [3], inheriting from it the evolving capabilities, and extending it with the
possibility of defining and dealing with complex events and actions, and also consider-
ing external actions. The semantics of ERA is defined by means of an inference system
(specifying what conclusions are derived by a program) and of an operational seman-
tics (specifying the effects of actions). The former is derived from the refined semantics
for DyLPs [2]. The latter is defined by a transition system inspired by existing work on
process algebras. [22, 15].

An Event-Condition-Action Logic Programming Language 31

The rest of the paper is structured as follows: we start in section 2 with an infor-
mal introduction to the language introducing its constructs and highlighting its main
features. In section 3 we briefly introduce the syntax and semantics of DyLPs, and
establish general notation. Section 4 is dedicated to the definition of the syntax and se-
mantics of ERA. The main goals of the paper are the motivation for the language and its
formal definition. A study of its properties and formal relation to other systems, cannot
be presented here for lack of space. We nevertheless present some comparisons with
related work in section 5, where we also draw conclusions and sketch future work.

2 Outline of the Language

Before the formal definition of ERA, which is given in section 4, we start here by infor-
mally introducing the various constructs of the language. As stated in the introduction,
we aim at defining a language exhibiting both the advantages of ECA languages (with
reactive rules, complex events and actions) and of LP updates (with inference rules,
possibility of declaratively specifying self-updates). As such, expressions in an ERA
program are divided in rules (themselves divided into active, inference and inhibition
rules) and definitions (themselves divided into event and action definitions).

Reactive rules are as usual in ECA languages, and have the form (1), where: Event
is a basic or a complex event expressed in an algebra similar to the Snoop algebra [1];
Condition is a conjunction of (positive or negative) literals and Action is a basic or
a complex action. Inference rules are LP rules with default negation, where default
negated heads are allowed [19]. Finally, ERA also includes inhibition rules of the form:

When B Do not Action

where B is a conjunction of literals and events. Such an expression intuitively means:
when B is true, do not execute Action. Inhibition rules are useful for updating the
behaviour of reactive rules. If the inhibition rule above is asserted all the rules with
Action in the head are updated with the extra condition that B must not be satisfied in
order to execute Action.

ERA allows to combine basic events to obtain complex ones by an event algebra.
The operators we use are:� | � | A | not . Intuitively, e1� e2 occurs at an instant i iff
both e1 and e2 occur at i; e1 � e2 occurs at instant i iff either e1 or e2 occur at instant
i; not e occurs at instant i iff e does not occur i.A(e1, e2, e3) occurs at the same instant
of e3, in case e1 occurred before, and e2 in the middle. This operator is very important
since it allows to combine (and reason with) events occurring at different time points.

Actions can also be basic or complex, and they may affect both the stored knowl-
edge (internal actions) or the external environment. Basic external actions are related
to the specific application of the language. Basic internal actions are for adding or re-
tracting facts and rules (inference, reactive or inhibition rules), of the form assert(τ)
and retract(τ) respectively, for raising basic events, of the form raise(e). There is
also an internal action define(d) for adding new definitions of actions and events (see
more on these definitions below). Complex actions are obtained by applying algebraic
operators on basic actions. Such operators are: �| ‖ | IF , the first for executing actions
sequentially, and the second for executing them concurrently. Executing IF (C, a1, a2)
amounts to execute a1 in case C is true, or to execute a2 otherwise.

32 J.J. Alferes, F. Banti, and A. Brogi

For allowing for modularity on the definition of both complex actions and events,
ERA allows for event and action definition expressions. These are of the form, respec-
tively, edef is e and adef is a where edef (resp. adef) is an atom representing a new
event and e (resp. a) is an event (resp. an action) obtained by the event (resp. action)
algebra above. It is also possible to use defined events (resp. actions) in the definition
of other events (resp. actions).

To better motivate and illustrate these various constructs of the language ERA, in-
cluding how they concur with the features mentioned in the introduction, we present
now an example from the domain of monitoring systems.

Example 1. Consider an (ECA) system for managing electronic devices in a building,
viz. the phone lines and the fire security system. The system receives inputs such as
signals of sensors and messages from employees and administrators, and can activate
devices like electric doors or fireplugs, redirect phone calls and send emails. Sensors
alert the system whenever an abnormal quantity of smoke is found. If a (basic) event
(alE(S))1, signaling a warning from sensor S occurs, the system opens all the fireplugs
Pl in the floor Fl where S is located. This behaviour is encoded by the reactive rule

On alE(S) If flr(S, F l), f irepl(Pl), f lr(Pl, F l) Do openA(Pl)

The situation is different when the signals are given by several sensors. If two signals
from sensors located in different rooms occur without a stop alertE event occurring
in the meanwhile, the system starts the complex action fire alarmA, which applies a
security protocol: All the doors are unlocked (by the basic action opendoorsA) to allow
people to leave the building; At the same time, a phone call is sent to a firemen station
(by the action firecallA); Then the system cuts the electricity in the building (by action
turnA(elect, off)). opendoorsA and firecallA can be executed simultaneously, but
turnA(elect, off) has to be executed after the electric doors have been opened. This
behaviour is encoded by following definitions and rules

alert2E(S1, S2) is A(alE(S1), alE(S2), stop alertE)� (alE(S1)� alE(S2)).
f ire alarmA is (opendoorsA � turnA(elect, off))||firecallA.
On alert2E(S1, S2) If not same room(S1, S2) Do fire alarmA.
same room(S1, S2)← room(S1, R1), room(S2, R1).

The last rule is already a simple example of an inference rule. For another example,
suppose that we want to allow the system to be able to notify (by email) all members of
a working group in some particular situation. Moreover suppose that working groups are
hierarchically defined. Representing in ERA that if an employee belongs to a subgroup
she also belongs to its supergroups, can be done by the inference rule2:

ingroup(Emp,G)← ingroup(Emp, S), sub(S,G)

We provide now an example of evolution. Suppose the administrators decide to update
the behaviour of the system such that from then onwards, when a sensor S raises an

1 In the sequel, we use names of atoms ending in E to represent events, and ending in A to
represent actions.

2 The rules above uses recursion, on the predicate ingroup/2, a feature that is beyond the ca-
pabilities of many ECA commercial systems, like e.g. SQL-triggers [26].

An Event-Condition-Action Logic Programming Language 33

alarm, only the fireplugs in the room R where S is located is opened. Moreover, each
employee can from then onwards command the system to start redirecting phone calls to
him (and to stop the previous behaviour of the systems regarding indirections, whatever
they were. This behaviour is obtained by updating the system, asserting the following
rules and definitions:

R1 : When alE(S), room(S,R), not room(Pl,R) Do not openA(Pl).
R2 : On redirectE(Emp,Num) If true Do redirectA(Emp,Num).
R3 : On stop redirectE(Emp,Num) If true Do stop redirectA(Emp).
d1 : redirectA(Emp,Num) is assert(τ1) � assert(τ2).
d2 : stop redirectA(Emp,Num) is retract(τ1)‖retract(τ2).

where τ1 and τ2 are the following rules:

τ1 : When phonE(Call), dest(Call, Emp) Do not forwA(Call,N).
τ2 : On p honE(Call) If dest(Call, Emp) Do forwA(Call,Num).

The formal details of how to update an ERA system are given in section 4.2. Here,
when R1 is asserted, if alE(S) occurs in room R, any fire plug Pl which is not in R
is not opened, even if Pl and S are on the same floor. Reactive rules R2-R3 encode
the new behaviour of the system when an employee Emp commands the system to
start (resp. to stop) redirecting to the phone numberNum any phone call Call to him.
This is achieved by sequentially asserting (resp. retracting) rules τ1, τ2. The former is
an inhibition rule that inhibits any previous rule reacting to a phone call for Emp (i.e.
to the occurrence of event phonE(Call)) by forwarding the call to a number N . The
latter is a reactive rule forwarding the call to number Num. Note that τ1, τ2 have to
be asserted sequentially in order to prevent mutual conflicts. To revert to the previous
behaviour it is sufficient to retract τ1, τ2 as done by action stop redirectA.

Such (evolution) changes could alternatively be done by handily modifying the pre-
vious rules ie, by retracting them and then asserting new rules. As with LP updates, also
ERA offers the possibility to update reactive rules instead of rewriting. This possibility
offered by ERA can be very useful in large systems developed and modified by several
programmers and administrators, especially if updates are performed by users that are
not aware of the existing rules governing the system, as in the previous example.

Having informally introduced the language, it is now time to start formalizing it. Before
that some background on LP updates and notation is required.

3 Background and Notation

In what follows, we use the standard LP notation and, for the knowledge base, general-
ized logic programs (GLP) [19]. Arguments of predicates (here also called atoms) are
enclosed within parentheses and separated by commas. Names of arguments with capi-
talized initials stand for variables, names with uncapitalized initials stand for constants.

A GLP over an alphabet (a set of propositional atoms) L is a set of rules of the form
L← B, where L (called the head of the rule) is a literal over L, andB (called the body

34 J.J. Alferes, F. Banti, and A. Brogi

of the rule) is a set of literals over L. As usual, a literal over L is either an atom A of L
or the negation of an atom not A. In the sequel we also use the symbol not to denote
complementary default literals, i.e. if L = not A, by not L we denote the atom A.

A (two-valued) interpretation I over L is any set of literals in L such that, for each
atom A, either A ∈ I or not A ∈ I . A set of literals S is true in an interpretation I (or
that I satisfies S) iff S ⊆ I . In this paper we will use programs containing variables.
As usual in these cases a program with variables stands for the propositional program
obtained as the set of all possible ground instantiations of its rules. Two rules τ and η
are conflicting (denoted by τ �� η) iff the head of τ is the atom A and the head of η is
not A, or vice versa.

A Dynamic Logic Program P over an alphabet L is a sequence P1, . . . , Pm where
the Pis are GLPs defined over L. Given a DyLP P1 . . . Pn and a set of rules R we
denote by P \R the sequence P1 \R, . . . , Pn \R where Pi \R is the program obtained
by removing all the rules in R from Pi. The refined stable model semantics of a DyLP,
defined in [2], assigns to each sequenceP a set of refined models (that is proven there to
coincide with the set of stable models when the sequence is formed by a single normal
or generalized program [19]). The rationale for the definition of a refined model M of
a DyLP is made according with the causal rejection principle [12, 17]: If the body of a
rule in a given update is true in M , then that rule rejects all rules in previous updates
that are conflicting with it. Such rejected rules are ignored in the computation of the
stable model. In the refined semantics for DyLPs a rule may also reject conflicting rules
that belong to the same update. Formally the set of rejected rules of a DyLP P given an
interpretationM is: RejS(P ,M) = {τ ∈ Pi : ∃ η ∈ Pj i ≤ j, τ �� η ∧ B(η) ⊆M}.

An atomA is false by default if there is no rule, in none of the programs in the DyLP,
with head A and a true body in the interpretation M . Formally: Default(P ,M) =
{not A : � ∃ A← B ∈ ⋃Pi ∧B ⊆ M}. If P is clear from the context, we omit it as
first argument of the above functions.

Definition 1. Let P be a DyLP over the alphabet L and M an interpretation. M
is a refined stable model of P iff M = least

((⋃
Pi \RejS(M)

) ∪Default(M)
)
,

where least(P) denotes the least Herbrand model of the definite program obtained by
considering each negative literal not A in P as a new atom.

In the following, a conclusion over an alphabet L is any set of literals over L. An
inference relation
 is a relation between a DyLP and a conclusion. Given a DyLP P
with a unique refined modelM and a conclusion B, it is natural to define an inference
relation
 as follows: PS
 B ⇔ B ⊆ M (B is derived iff B is a subset of the unique
refined model). However, in the general case of programs with several refined models,
there could be several reasonable ways to define such a relation. A possible choice is to
derive a conclusionB iffB is a subset of the intersection of all the refined models of the
considered program ie, PS
 B ⇔ B ⊆ M ∀M ∈ M(P) whereM(P) is the set of
all refined models of P . This choice is called cautious reasoning. Another possibility is
to select one modelM (by a selecting function Se) and to derive all the conclusions that
are subsets of that model ie, P
 B ⇔ B ⊆ Se(M(P)). This choice is called brave
reasoning. In the following, in the context of DyLPs, whenever an inference relation

is mentioned , we assume that
 is one of the relations defined above.

An Event-Condition-Action Logic Programming Language 35

Let ES be a sequence of programs (ie, a DyLP) and Ei a GLP, by Ei.ES we denote
the sequence with head Ei and tail ES . If ES has length n, by ES ..En+1 we denote
the sequence whose first nth elements are those of ES and whose (n + 1)th element
is En+1. For simplicity, we use the notation Ei.Ei+1.ES and ES ..Ei..Ei+1 in place of
Ei.(Ei+1.ES) and (ES ..Ei)..Ei+1 whenever this creates no confusion. Symbol null
denotes the empty sequence. Let ES be a sequence of n GLPs and i ≤ n a natural
number, by Ei

S we denote the sequence of the first ith elements of ES . Let P = P ′..Pi

be a DyLP and Ei a GLP, by P �Ei we denote the DyLP P ′..(Pi ∪Ei).

4 Formal Definition of ERA

4.1 Syntax of ERA Programs

We start the formal presentation of ERA by defining the syntax introduced in section 2.

Definition 2. Let L, EB , Edef , AX andAdef be sets of atoms respectively called: con-
dition alphabet, set of basic events, of event names, of external actions, and of action
names. Let L, eb, edef , ax and adef be generic elements of, respectively, L, EB , Edef ,
AX and Adef . The set of positive events E over EB , and Edef is the set of atoms ep of
the form:

ep ::= eb | e1� e2 | e1� e2 | A(e1, e2, e3) | edef

where e1, e2, e3 are generic elements of E . An event over E is any literal over E . A
negative event over E is any literal of the form not ep.

A basic action ab over E ,L, AX ,Adef is any atom of the form:

ab ::= ax | raise(eb) | assert(τ) | retract(τ) | define(d)
where τ (resp. d) is any ERA rule (resp. definition) over LERA.

The set of actionsA over E , C,AX ,Adef is the set of atoms a of the form:

a ::= ab | a1 � a2 | a1‖a2 | IF (C, a1, a2) | adef

where a1 and a2 are arbitrary elements of A and C is any literal over E ∪ L.
The ERA alphabet LERA over L, EB , Edef , AX and Adef is the triple E ,L,A. Let

e and a be arbitrary elements of, respectively, E andA, B any set of literals over E ∪L
and Cond any set of literals over L. An ERA expression is either an ERA definition or
an ERA rule. An ERA definition is either an event definition or and action definition. An
event definition over LERA is any expression of the form edef is e. An action definition
over LERA is any expression of the form adef is a. An ERA rule is either an inference,
active or inhibition rule over LERA. An inference rule over LERA is any rule of the
form L ← B. A reactive rule over LERA is any rule of the form On e If Cond Do a.
An inhibition rule over LERA is any rule of the form When B Do not a. An ERA
program over LERA is any set of ERA expressions over LERA.

As in DyLPs, ERA considers sequences of programs, each representing an update (with
asserted rules or definitions) of the previous ones. Such a sequence is called an ERA
dynamic program, and determines, at each instant, the behaviour of the system. For this
reason the semantics of ERA is given by ERA dynamic programs.

36 J.J. Alferes, F. Banti, and A. Brogi

4.2 ERA Systems

The defined syntax allows to program reactive systems, hereafter called ERA systems.
An ERA system has, at each moment, an ERA dynamic program describing and de-
termining its behaviour, receives input (called input program) from the outside, and
acts. The actions determine both the evolution of the system (by e.g. adding a new
ERA program to the running sequence) and the execution in the external environment.
Formally, an input program Ei, over an alphabet LERA, is any set of either ERA ex-
pressions over LERA or facts of the form eb where eb is an element of EB (i.e. a basic
event). At any instant i, an ERA systems receives a, possibly empty, input program3

Ei. The sequence of programs E1, . . . En denotes the sequence of input programs re-
ceived at instants 1, . . . , n. A basic event eb occurs at instant i iff the fact eb belongs
to Ei. We further assume that every input program contains event truE. This allows
for defining reactive rules that are always triggered (reacting on event truE), or for
expressing commands of updates to ERA systems, by having in the input program
reactive rules reacting to truE and with empty true condition. For instance, updat-
ing the system of example 1 with rule R1 is done by adding to the input program
On truE If true Do assert(R1).

Since a complex event is obtained by composing basic events that occurred in distinct
time instants (viz. when using operator A), for detecting the occurrence of complex
events it is necessary to store the sequence of all the received input programs. Formally,
an ERA system S is a triple of the form (P , EP , Ei.EF) where P is an ERA dynamic
program,EP is the sequence of all the previously received input programs andEi.EF is
the sequence of the current (Ei) and the future (EF) input programs. As it will be clear
from sections 4.3 and 4.4, the sequence EF does not influence the system at instant i
and hence no “look ahead” capability is required. However, since a system is capable
(via action raise) of autonomously raising events in the future, future input programs
are included as “passive” elements that are modified as effects of actions (see rule (2)).

The semantics of an ERA system specifies, at each instant, which conclusions are
derived, which actions are executed, and what are the effects of those actions. Given a
conclusionB, and an ERA system S, notation S
e B denotes that S derivesB (or that
B is inferred by S). The definition of
e is to be found in section 4.3.

At each instant, an ERA system S concurrently executes all the actions ak such that
S
e ak. As a result of these actions an ERA system transits into another ERA system.
While the execution of basic actions is “instantaneous”, complex actions may involve
the execution of several basic actions in a given order and hence require several transi-
tions to be executed. For this reason, the effects of actions are defined by transitions of
the form 〈S, A〉 �→G 〈S′, A′〉 where S,S′ are ERA systems, A,A′ are sets of actions
and G is a set of basic actions. The basic actions in G are the first step of the execution
of a set of actions A, while the set of actions A′ represents the remaining steps to com-
plete the execution of A. For this reason A′ is also called the set of residual actions of
A. The transition relation �→ is defined by a transition system in section 4.4. At each
instant an ERA system receives an input program, derives a new set of actions AN and

3 ERA adopts a discrete concept of time, any input program is indexed by a natural number
representing the instant at which the input program occurs.

An Event-Condition-Action Logic Programming Language 37

starts to execute these actions together with the residual actions not yet executed. As a
result, the system evolves according to the transition relation 4 →. Formally:

AN = {ak ∈ A : S
e ak} ∧ 〈S, (A ∪AN)〉 �→G 〈S′, A′〉
〈S, A〉 →G 〈S′, A′〉 (1)

4.3 Inferring Conclusions

The inference mechanism of ERA is derived from the inference mechanism for DyLPs.
In section 3, we provide two distinct ways (called resp. cautious and brave reasoning)
to define an inference relation
 between a DyLP and a conclusion on the basis of the
refined semantics. From the inference relation
, in the following we derive a relation

e that infers conclusions from an ERA system.

Let S = (P , EP , Ei.EF) be an ERA system over LERA : (E ,L,A), with EP =
E1, . . . Ei−1. For any m < i, let Sm be the ERA system (P , Em−1, Em.null). Se-
quence EF represents future input programs and is irrelevant for the purpose of infer-
ring conclusions in the present, and sequence EP stores previous events, and is only
used for detecting complex events. The relevant expressions, hence, are those in P
and Ei. As a first step we reduce the expressions of these programs to LP rules. An
event definition, associates an event e to a new atom edef . This is encoded by the rule
edef ← e. Action definitions, instead, specify what are the effects of actions and hence
are not relevant for inferring conclusions. Within ERA, actions are executed iff they are
inferred as conclusions. Hence, reactive (resp. inhibition) rules are replaced by LP rules
whose heads are actions (resp. negation of actions) and whose bodies are the events and
conditions of the rules. Formally: let PR and ER

i be the DyLP and GLP obtained by P
and Ei by deleting every action definition and by replacing:

every rule On e If Condition Do Action. with Action← Condition, e.
every rule When B Do not Action with not Action← B.
every definition edef is e. with edef ← e.

Basically events are reduced to ordinary literals. Since events are meant to have special
meanings, we encode these meanings by extra rules. Intuitively, operators � and �
stands for the logic operators ∧ and ∨. This is encoded by the following set of rules

ER(E) : �(e1, e2)← e1, e2. � (e1, e2)← e1. � (e1, e2)← e2. ∀ e1, e2, e3 ∈ E
Event A(e1, e2, e3) occurs at instant i iff e2 occurs at instant i and some conditions on
the occurrence of e1, e2 and e3 where satisfied in the previous instants. This is formally
encoded by the set of rules AR(S) defined as follows5: AR(S) ={∀ e1, e2, e3 ∈ E A(e1, e2, e3)← e2 : ∃m < i s.t.
Sm
e e1 and Sm �
e e3 and (∀ j : m < j < i : Sj �
e e2 and Sj �
e e3)

}
4 Transition relation �→ defines the effect of the execution of a set of actions, while→ defines

the global evolution of the system.
5 The definition of AR(S) involves relation �e which is defined in terms of AR(S) itself . This

mutual recursion is well-defined since, at each recursion, AR(S) and �e are applied on pre-
vious instants until eventually reaching the initial instant (i.e. the basic step of the recursion).

38 J.J. Alferes, F. Banti, and A. Brogi

The sets of rules ER
i , ER(E) and AR(S) are added to PR and conclusions are derived

by the inference relation
 applied on the obtained DyLP6. Formally:

Definition 3. Let
 be an inference relation defined as in Section 3, and S, PR, ER
i ,

ER(E), AR(S) be as above andK be any conclusion over E ∪ L ∪ A. Then:

(P , EP , Ei.EF)
e K ⇔ PR � (ER
i ∪ ER(E) ∪D(P) ∪AR(S))
 K

We specified no rules for operator not . These rules are not needed since event (literal)
not ep is inferred by default negation whenever there is no proof for ep. The following
theorem formalizes the intuitive meanings the various operators provided in section 4.1.

Proposition 1. Let S be as above, eb, a basic event, ep a positive event, edef an event
name and e1, e2, e3 three events, the following double implications hold:

S
e e1� e2 ⇔ S
e e1 ∧ S
e e2. S
e eb ⇔ eb ∈ Ei

S
e e1� e2 ⇔ S
e e1 ∨ S
e e2. S
e not ep ⇔ S �
e ep.
S
e A(e1, e2, e3)⇔ ∃m < i s.t. Sm
e e1 ∧ Sm �
e e3 ∧ ∀j s.t.

m < j < i : Sj �
e e2 ∧ Sj �
e e3 ∧ S
e e2.
S
e edef ⇔ S
e e ∧ edef is e ∈ P

4.4 Execution of Actions

We are left with the goal of defining what are the effects of actions. This is accomplished
by providing a transition system for the relation �→ that completes, together with tran-
sition (1) and the definition of
e, the semantics of ERA. As mentioned above, these
transitions have the form: 〈S, A〉 �→G 〈S′, A′〉.

The effects of basic actions on the current ERA program are defined by the updating
function up/2. LetP be an ERA dynamic programA a set of, either internal or external,
basic actions. The output of function up/2 is the updated program up(P,A) obtained in
the following way: First delete from P all the rules retracted according to A, and all the
(event or action) definitions ddef is dold such that action define(ddef is dnew) belongs
to A; then update the obtained ERA dynamic program with the program consisting of
all the rules asserted according to A and all the new definitions in A. Formally:

DR(A) = {d : define(d) ∈ A} ∪ {τ : assert(τ) ∈ A} ∪D(A)
R(P , A) = {τ : retract(τ) ∈ A} ∪ {ddef is dold ∈ P : ddef is dnew ∈ D(A)}
up(P , A) = (P \R(P , A))..DR(A)

Let eb be any basic event and ai an external action or an internal action of one of the fol-
lowing forms: assert(τ), retract(τ), define(d). On the basis of function up/2 above,
we define the effects of (internal and external) basic actions. At each transition, the cur-
rent input program Ei is evaluated and stored in the sequence of past events and the
subsequent input program in the sequence EF becomes the current input program (see

6 The program transformation above is functional for defining a declarative semantics for ERA,
rather than providing an efficient tool for an implementation. Here specific algorithms for
event-detection clearly seem to provide a more efficient alternative.

An Event-Condition-Action Logic Programming Language 39

1st and 3rd rules below). The only exception involves action raise(eb) that adds eb in
the subsequent input programEi+1. When a set of actionsA is completely executed its
set of residual actions is ∅. Basic actions (unlike complex ones) are completely executed
in one step, hence they have no residual actions. Formally:

〈(P , EP , Ei.EF), ∅〉 �→∅ 〈(P , EP ..Ei, EF), ∅〉
〈(P , EP , Ei.Ei+1.ES), {raise(eb)}〉 �→∅ 〈(P , EP ..Ei, (Ei+1 ∪ {eb}).EF), ∅〉

〈(P , EP , Ei.EF), {ai}〉 �→{ai} 〈(up(P , {ai}), EP ..Ei, EF), ∅〉
Note that, although external actions do not affect the ERA system, as they do not affect
the result of up/2, they are nevertheless observable, since they are registered in the set
of performed actions (cf. 3rd rule above). Unlike basic actions, generally the execution
of a complex action involves several transitions. Action a1 � a2, consists into first ex-
ecuting all basic actions for a1, until the set residual actions is ∅, then to execute all
the basic actions for a2. We use the notation A1 � a2, where A1 is a set of actions, to
denote that action a2 is executed after all the actions in the set A1 have no residual ac-
tions. Action a1‖a2, instead, consists into concurrently executing all the basic actions
forming both actions, until there are no more of residual actions to execute. Similarly,
the execution of a set of actions A = {a1, . . . , an} consists in the concurrent execution
of all its actions ak until the set of residual actions is empty.

The execution of IF (C, a1, a2) amounts to the execution of a1 if the system infers
C, or to the execution of e2 otherwise. Given an ERA system S = (P , EP , Ei.EF)
with P : P1 . . . Pn, letD(S) be the set of all the action definitions d such that, for some
j, d ∈ Pj or d ∈ Ei. The execution of action adef , where adef is defined by one or
more action definitions, corresponds to the concurrent executions of all the actions aks
such that adef is ak belongs to D(S). Formally:

〈S , {a1, a2}〉 �→G 〈S ′, A′〉
〈S , {a1‖a2}〉 �→G 〈S ′, A′〉

〈S , {a1}〉 �→G1 〈S ′, A′
1〉

〈S , {a1 � a2}〉 �→G1 〈S ′, {A′
1 � a2}〉

〈S ,A1〉 �→G1 〈S ′, A′
1〉

〈S , {A1 � a2}〉 �→G1 〈S ′, {A′
1 � a2}〉

〈S , {a2}〉 �→G2 〈S ′′, A′′
2 〉

〈S , {∅ � a2}〉 �→G2 〈S ′′, A′′
2 〉

S �e C ∧ 〈S , {a1}〉 �→G1 〈S ′, A′〉
〈S , {IF (C,a1, a2)}〉 �→G1 〈S ′, A′

1〉
S ��e C ∧ 〈S , {a2}〉 �→G2 〈S ′′, A′′

2 〉
〈S , {IF (C,a1, a2)}〉 �→G2 〈S ′′, A′′

2 〉
A = {ak : adef is ak. ∈ D(S)} ∧ 〈S ,A〉 �→G 〈S ′, A′〉

〈S , {adef}〉 �→G 〈S ′, A′〉
A = {a1, .., an} 〈(P , EP , Ei.Ei+1.EF), {ak}〉 �→Gk 〈(Pk, EP ..Ei, E

k
i+1.EF), A′

k}〉
〈(P , EP , Ei.Ei+1.EF), A〉 �→

⋃
Gk 〈(up(P ,

⋃
Gk), EP ..Ei,

⋃
Ek

i+1.EF),
⋃

A′
k〉

As it is clear from this last rule, the definition of concurrent execution of actions in
ERA does not rely on any concept of serialization. Actions may have, three different
effects. Namely: to update the system, to rise new events, or to modify the external
environment (by external actions). Semantically, internal updates are defined by func-
tion up/2 (see section 4.4) which is defined over an ERA dynamic program and a set
of basic actions, while the raised events are added to the next input program and are
then processed concurrently. No serialization is then needed for this kind of actions. Fi-
nally, the description and execution of external actions do not belong to the semantics of

40 J.J. Alferes, F. Banti, and A. Brogi

ERA, since the meaning and effects of these actions depend on the application domains.
Singular applications may require some notion of serialization for external actions (for
instance, messages sent over the same communication channel are sent one by one.)

5 Conclusions and Related Work

We identified desirable features for an ECA language, namely: a declarative semantics,
the capability to express complex events and actions in a compositional way, and that
of receiving external updates, and performing self updates to data, inference rules and
reactive rules. For this purpose we defined the logic programming ECA language ERA,
and provided it with a declarative semantics based on the refined semantics of DyLPs
(for inferring conclusions) and a transition system (for the execution of actions). This
new language is close in spirit to LP update languages like EPI [12], LUPS [4], Kabul
[17] and, most significantly, Evolp [3]. All these languages have the possibility to update
rules (though in EPI and LUPS only derivation rules can be updated). However, none of
these supports external nor complex actions or complex events. In [16] Evolp has been
extended to consider simple external actions, in the context of an agent architecture.
The ERA language goes much beyond in the definition of complex actions and events.
A formal comparison with Evolp, clearly showing how ERA is a proper extension of it,
cannot be shown here for lack of space.

There exist several alternative proposals of ECA formalisms. Most of these ap-
proaches are mainly procedural like, for instance, AMIT [25] and JEDI [13] or at least
not fully declarative [26]. A declarative situation calculus-like characterizations of ac-
tive database systems is given in [6], although the subject of complex actions is not
treated there. An example of a Semantic Web-oriented ECA languages is XChange [9],
which also has a LP-like semantics, and allows to define reactive rules with complex
actions and events. However, it does not support a construct similar to action definitions
for defining actions, nor does it consider updates of rules. Updates of rules are also
not part of the general framework for reactivity on the semantic web defined in [21].
Defining actions is a possibility allowed by the Agent-Oriented Language DALI [11],
which in turn does not support complex events. Another related work is [23] which ap-
plies DyLPs to the agent language 3APL. Since 3APL is a language and architecture
for programming BDI agents, this work is not directly relatable to ECA paradigms,
although future comparisons with ERA could be interesting given the similarity of the
semantics for KR. The ideas and methodology for defining complex actions are inspired
by works on process algebras like CCS [22] and CSP [15] Rather then proposing high
level ECA languages, these works design abstract models for defining programming
languages for parallel execution of processes. Other related frameworks are Dynamic
Prolog [8] and Transaction Logic Programming (TLP) [7]. These focus on the problem
of updating a deductive database by performing transactions. In particular, TLP shares
with ERA the possibilities to specify complex (trans)actions in terms of other, sim-
pler, ones. However, TLP (and Dynamic Prolog) does not support complex events, nor
does it cope with the possibility of receiving external inputs during the computation of
complex actions. Finally, none of these ECA languages show update capabilities anal-
ogous to the ones of LP update languages, and that are also in ERA. As such, it is not

An Event-Condition-Action Logic Programming Language 41

obvious how to provide a meaning to inhibition rules or exceptions to rules in those
ECA languages.

The language ERA still deserves a significant amount of research. Preliminary in-
vestigations evidenced interesting properties of the operators of the action algebra like
associativity, commutativity etc, and deserve further study. In this paper we opted for
an inference system based on the refined semantics for DyLPs. With limited efforts, it
would be possible to define an inference system on the basis of another semantics for
DyLPs such as [17, 5, 12]. In particular, we intend to develop a version of ERA based on
the well founded semantics of DyLPs [5]. Well founded semantics [14] is a polynomial
approximation to the answer set semantics that and is suitable for applications requir-
ing the capability to quickly process vast amount of information. Implementations of
the language are subject of ongoing research, where intend to take advantage of existing
event-detection algorithms. For simplicity, here we presented a minimal set of operators
for the event and action algebras. Specific application domains and confrontations with
related languages may suggest eventual extensions of the language. For instance, the
language GOLOG [18] presents an operator ∨, representing non deterministic choice
between two actions which is not expressible in the current definition of ERA. We also
plan to provide the possibility to execute ACID transactions in ERA and explore possi-
ble relations with Statelog [20].

References

1. Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based event specification
and detection for active databases. In ADBIS, pages 190–204, 2003.

2. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle for semantics
of dynamic logic programming. Studia Logica, 79(1), 2005.

3. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, JELIA’02, LNAI, 2002.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language for
updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

5. F. Banti, J. J. Alferes, and A. Brogi. The well founded semantics for dynamic logic programs.
In Christian Lemaı̂tre, editor, IBERAMIA-9, LNAI, 2004.

6. Chitta Baral and Jorge Lobo. Formal characterization of active databases. In Logic in
Databases, pages 175–195, 1996.

7. A. J. Bonner and M. Kifer. Transaction logic programming. In David S. Warren, editor,
ICLP-93, pages 257–279, Budapest, Hungary, 1993. The MIT Press.

8. Anthony J. Bonner. A logical semantics for hypothetical rulebases with deletion. Journal of
Logic Programming, 32(2), 1997.

9. F. Bry, P. Patranjan, and S. Schaffert. Xcerpt and xchange - logic programming languages
for querying and evolution on the web. In ICLP, pages 450–451, 2004.

10. Jan Carlson and Björn Lisper. An interval-based algebra for restricted event detection. In
FORMATS, pages 121–133, 2003.

11. Stefania Costantini and Arianna Tocchio. The DALI logic programming agent-oriented lan-
guage. In JELIA, pages 685–688, 2004.

12. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics based on causal
rejection. Theory and Practice of Logic Programming, 2:711–767, 2002.

13. G.Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems. In 20th Int. Conf. on Software Enginieering, 1998.

42 J.J. Alferes, F. Banti, and A. Brogi

14. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

15. C.A.R. Hoare. Communication and Concurrency. Prentice-Hall, 1985.
16. J. Leite and L. Soares. Enhancing a multi-agent system with evolving logic programs. In

K. Satoh K. Inoue and F. Toni, editors, CLIMA-VII, 2006.
17. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intelligence and

Applications. IOS Press, 2003.
18. Hector J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic

programming language for dynamic domains. Journal of Logic Programming, 1997.
19. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary

report). In B. Nebel, C. Rich, and W. Swartout, editors, KR-92, 1992.
20. B. Ludäscher, W. May, and G. Lausen. Nested transactions in a logical language for active

rules. In D. Pedreschi and C. Zaniolo, editors, Logic in Databases, pages 197–222, 1996.
21. W. May, J. Alferes, and R. Amador. Active rules in the Semantic Web: Dealing with language

heterogeneity. In RuleML, pages 30–44. Springer, 2005.
22. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
23. V. Nigam and J. Leite. Incorporating knowledge updates in 3APL - preliminary report. In

R. Bordini, M. Dastani, J. Dix, and A. El F. Seghrouchni, editors, ProMAS’06, 2006.
24. S.Abiteboul, C.Culet, L. Mignet, B.Amann, T.Milo, and A. Eyal. Active views for electronic

commerce. In 25th Very Large Data Bases Coference Proceedings, 1999.
25. Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Amit - the situation manager. The

International Journal on Very Large Data Bases archive, 13, 2004.
26. J. Widom and S. Ceri, editors. Active Database Systems – Triggers and Rules For Advanced

Database Processing. Morgan Kaufmann Publishers, 1996.

Distance-Based Repairs of Databases

Ofer Arieli1, Marc Denecker2, and Maurice Bruynooghe2

1 Department of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

2 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{marcd, maurice}@cs.kuleuven.ac.be

Abstract. We introduce a general framework for repairing inconsistent
databases by distance-based considerations. The uniform way of repre-
senting repairs and their semantics clarifies the essence behind various
approaches to consistency restoration in database systems, helps to com-
pare the underlying formalisms, and relates them to existing methods of
defining belief revision operators, merging data sets, and integrating in-
formation systems.

1 Introduction and Motivation

Inconsistency of constraint data-sources is a widespread phenomenon. Restoring
information consistency (or repairing the database) is usually closely related to
the principle of minimal change, which is the aspiration to reach consistency
by a minimal amount of modifications in the ‘spoiled’ data. To illustrate this,
consider the following simple example:

Example 1. Consider a database with two data facts D = {p, r}, and an integrity
constraint IC = p → q. Under the closed world assumption [33], stating that
each atomic formula that does not appear in D is false, this database is clearly
inconsistent, as IC is violated. Two ways of restoring consistency in this case
are by inserting q to D or deleting p from D. Moreover, assuming that integrity
constraints cannot be altered, these are the most compact ways of repairing
this database, in the sense that any other solution requires a larger amount of
changes (i.e., insertions or retractions) in D.

Consistency restoration by minimal change may be traced back to [12] and [35].
In the context of database systems, this notion was introduced by [1], and then
considered by many others, including [2, 3, 4, 6, 7, 13, 22, 21, 29, 34]. Some imple-
mentations of these methods are reported in [3, 18, 19, 28]. Despite their syntac-
tic and semantic differences, as well as the different notions of repair used by
different consistency maintenance formalisms, the rationality behind all these
methods is of keeping the ‘recovered’ data ‘as close as possible’ to the origi-
nal (inconsistent) data. This implies that database repairing can be specified in
terms of distance semantics, using appropriate metrics.

In this paper, we identify distance-based semantics at the heart of a vast
amount of repairing methods, and introduce a corresponding framework for data

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 43–55, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 O. Arieli, M. Denecker, and M. Bruynooghe

repair. In this respect, we follow Bertossi’s remark [5], that “identifying general
properties of the reasonable repair semantics [. . .] is a very important research
direction. Unifying principles seem to be necessary at this stage in order to have a
better understanding of consistent query answering”. Indeed, the representation
of different repairing methods as distance-based formalisms provides a common
ground for relating them. Moreover, we show that the same distance-based con-
siderations are not only the essence of database repairing and consistent query
answering, but are also the nucleus of many approaches for belief revision and
data integration. In this respect, this work is not restricted to databases only.

The rest of this paper is organized as follows: in Section 2 we give a general
representation of consistency restoration in database systems as a distance min-
imization problem. In Section 3 we consider different distance-based approaches
to database repairing, and incorporate the notion of optimal matching (between
the spoiled and the recovered data) for generalizing existing repairing methods
and defining some new ones. In Section 4 we relate database repairing to different
methods of merging independent data-sources. In Section 5 we conclude.

2 Database Repair as a Distance Minimization Problem

Let L be a first-order language with P its underlying set of predicates.

Definition 1. A database DB is a pair (D, IC), where D is a finite set of ground
atomic facts (i.e., atomic formulas without variables) whose predicate names are
in P , and IC is a finite and consistent set of formulae in L.

The set D in the definition above is called database instance and its elements are
called facts. The meaning of D is usually determined by the conjunction of its
facts augmented with Reiter’s closed world assumption [33]. The formulas in IC
are called integrity constraints . These formulas specify conditions that should
be satisfied, with respect to some underlying semantics S, by all the database
facts. We denote this by D |=S IC. Common definitions for S are the standard
two-valued semantics, the minimal Herbrand model semantics, the stable model
semantics [20], Kleene’s three-valued semantics [24], or any other multiple-valued
semantics [23]. A semantics S defines, for a set Γ of formulas in L, the S-models
of Γ , i.e., a set modS(Γ) of valuations that satisfy all the formulas in Γ . In this
respect D |=S IC means that every element of modS(D) is also an S-model of
every integrity constraint in IC.
Definition 2. A database (D, IC) is consistent with respect to a semantics S
(S-consistent, for short), if D |=S IC.
When a database is not consistent, one or more integrity constraints are violated,
and so it is usually required to ‘repair’ the database, i.e., restore its consistency.
For this, given a database DB = (D, IC), we denote by HU(DB) the ground
terms in the Herbrand universe of DB, θi denotes substitutions of variables by
elements in HU(DB), and Atoms(DB) denotes the atomic formulas that appear
in the formulas of D ∪ IC. For each P (c1, . . . , cn) ∈ Atoms(DB), let

Distance-Based Repairs of Databases 45

Upd
(
P (c1, . . . , cn)

)
=
{
P (d1, . . . , dn) | ∃1≤j≤n dj ∈ HU(DB) and

∃ θ1, θ2 such that θ1
(
P (d1, . . . , dn)

)
= θ2

(
P (c1, . . . , cn)

)}
.

An update U of D is a set that consists of zero or more elements from Upd(A)
for each A∈Atoms(DB). The set of all the updates of D is denoted by Upd(D).

The intuition behind this definition is simple: the predicates in Atoms(DB) are
those that are ‘known’ to the database, thus they are the relations that poten-
tially appear in a repaired database. Now, the elements in Upd

(
P (c1, . . . , cn)

)
represent the possible updates of P (c1, . . . , cn). Note that {ci} and {di} are
atomic terms (constants or variables), so the role of the substitutions in the def-
inition of Upd is twofold: to introduce constants instead of variables in predicate
tuples (in case that the values are known) and to replace constants by variables
(in case that there are wrong values in a tuple and the correct values are un-
known. Here, variables may be intuitively regarded as missing (null) values).
By this, only erroneous fragments of tuples are modified.1 The condition that
in every tuple at least one component belongs to HU(DB) is meant to exclude
degenerated cases, in which a tuple consists of null values only.

Note 1. Unless all the arguments of an atom A are variables, A ∈ Upd(A). Thus,
if for some A ∈ D and an update U , U ∩ Upd(A) = {A}, A remains unchanged.
Also, if U ∩Upd(A) = ∅, A is deleted from D, and if U ∩Upd(A) = {A1, . . . , An},
A is replaced by n≥1 new facts Ai. Insertions to the database also occur when
U ∩ Upd(A) is not empty for some atom A not in the database instance.

A potential repair R of DB is an update of D that preserves IC with respect to
S (R |=S IC). The set of all the potential repairs of DB is denoted by Rep(DB).

Example 2. [4] Given the following database instance{
employee(Alice), salary(Alice, 1000), director(Alice)
employee(Bob), salary(Bob, 1000),

}
,

and two integrity constraints: one says that every employee has a salary, and
the other constraint specifies that a director should earn more money than any
other employee. Now, applying here the closed world assumption, we conclude
that Bob is not a director. On the other hand, Bob earns the same amount of
money as Alice, who is a director, so the second integrity constraint is violated.
In this case (using some abbreviations with obvious meanings), we have that the
updates of the ground facts in the database are the following:

Upd(emp(Alice)) = {emp(Alice)},
Upd(emp(Bob)) = {emp(Bob)},
Upd(dir(Alice)) = {dir(Alice)},
Upd(sal(Alice, 1000)) = {sal(Alice, 1000), sal(xA, 1000), sal(Alice, val1)},
Upd(sal(Bob, 1000)) = {sal(Bob, 1000), sal(xB, 1000), sal(Bob, val2)}. 2

1 See also Wijsen’s notion of homomorphisms of tableaux [34].
2 For the other atoms in Atoms(DB) we have that Upd(emp(x)) = Upd(emp(Alice))∪

Upd(emp(Bob)) and Upd(sal(x, y)) = Upd(sal(Alice,1000)) ∪ Upd(sal(Bob, 1000)).

46 O. Arieli, M. Denecker, and M. Bruynooghe

Among the possible updates of D we therefore have the following sets:

U1 = {emp(Alice), emp(Bob), sal(Alice, 1000), sal(Bob, 1000)},
U2 = {emp(Alice), emp(Bob), dir(Alice), sal(Alice, val1), sal(Bob, 1000)},
U3 = {emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1000), sal(Bob, val2)}.

Note that U1 is obtained by retracting the fact that Alice is a director (so in
this case Upd(dir(Alice)) has no representatives), while U2 and U3 cause modi-
fications in the salary of Alice and Bob (respectively). Note also that all these
updates are also potential repairs, provided that val1>1000 and val2<1000.

For selecting the best potential repairs we require that the repaired information
should be ‘as close as possible’ to the original one. Implicitly, then, this criterion
involves distance-based considerations and a corresponding metric.

Definition 3. A total function d : U×U → R+ is called pseudo distance on
U if it is symmetric (∀u, v∈U d(u, v) = d(v, u)) and preserves identity (∀u, v∈
U d(u, v) = 0 iff u = v). A distance function on U is a pseudo distance on U
that satisfies the triangular inequality (∀u, v, w∈U d(u, v) ≤ d(u,w) + d(w, v)).

Definition 4. A repair context for a language L is a pair R = 〈|=S , d〉, where
|=S is the entailment relation induced by the underlying semantics S and d is a
pseudo distance on the power set 2L of the well-formed formulae in L.

Repair contexts are parametrized descriptions on how to repair databases. Given
a repair context R = 〈|=S , d〉, the repairs of a database DB = (D, IC) are the
instances that S-satisfy IC and that are d-closest to D. Formally:

Definition 5. The repairs of a database DB = (D, IC) with respect to a repair
context R = 〈|=S , d〉, are the elements of the following set:

ΔR(DB) =
{R ∈ Rep(DB) | ∀R′ ∈ Rep(DB) d(R,D) ≤ d(R′,D)

}
.

Database repairs induce corresponding notions of query answering:

Definition 6. A query Q(x1, . . . , xn) is a first-order formula with free variables
x1, . . . , xn. Denote by Q[c1/x1, . . . , cn/xn] the simultaneous substitution in Q
of the variables xi by the constants ci (i=1, . . . , n), respectively. Now, let R =
〈|=S , d〉 be a repair context, and Q(x1, . . . , xn) a query on DB.

– A tuple 〈c1, . . . , cn〉 is a credulous answer for Q if there exists an element
R ∈ ΔR(DB) s.t. R |=S Q[c1/x1, . . . , cn/xn]).

– A tuple 〈c1, . . . , cn〉 is a conservative answer (or a consistent query answer)
for Q if R |=S Q[c1/x1, . . . , cn/xn]) for every R ∈ ΔR(DB).

3 Distance Semantics for Database Repair

3.1 Distance Functions

The choice of the distance function (and so the metric at hand) plays a crucial
role in the repairing process. There are many possibilities to measure distances
between the spoiled database instance and its potential repairs. Below we recall
two common definitions of such distances:

Distance-Based Repairs of Databases 47

Definition 7. Let d be a distance function on L. For A,B ∈ 2L, define:

– The Hausdorff distance [15]:

d(A,B) = max
(

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)
)
.

– Eiter and Mannila’s distance [17]:

d(A,B) =
1
2

(∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(a, b)
)
.

The following proposition recalls some known facts about these distances:

Proposition 1. The Hausdorff distance is a distance function on 2L and Eiter–
Mannila’s distance is a pseudo distance on 2L.

In what follows we consider pseudo distances that are defined by matching func-
tions (between the elements of the original database instance and the elements
of a potential repair) and by aggregation functions that evaluate the quality of
those matchings.

Definition 8. A numeric aggregation function f is a total function that accepts
multisets of real numbers and returns a real number. Also, f is non-decreasing
in the values of its argument,3 f({x1, . . . , xn}) = 0 if x1 = . . . = xn = 0, and
∀x ∈ R f({x}) = x.

Definition 9. Let DB be a database, A,B ⊆ Atoms(DB), d a (pseudo) distance
on the formulae of L, and f a numeric aggregation function.

a) A matching m between A and B is a maximal subset of A×B such that for
every (a1, b1), (a2, b2) ∈ m, a1 = a2 iff b1 = b2.

b) For a matching m between A and B, let m(A) = {b | (a, b) ∈ m} and
m−1(B) = {a | (a, b) ∈ m}. Denote:

df (m,A,B) = f

({
d(a, b) | (a, b) ∈ m

} ⋃
{
d(a,B) | a ∈ A\m−1(B)

} ⋃ {
d(b, A) | b ∈ B\m(A)

})
,

where, for every set S, d(x, S) = 1
2 max{d(y, z) | y, z ∈ Atoms(DB)}.

Thus, df is obtained by applying f on the distances among matched elements
and on the distances among non-matched elements and the other set.

c) A matchingm between A andB is called {d, f}-optimal if for every matching
m′ between A and B, df (m,A,B) ≤ df (m′, A,B).

d) Denote df (A,B) = df (m,A,B), where m is a {d, f}-optimal matching be-
tween A and B.4

3 That is, the function value is non-decreasing when an element in the multiset is
replaced by a larger element.

4 As all the optimal matchings have the same df -value, df (A, B) is well-defined.

48 O. Arieli, M. Denecker, and M. Bruynooghe

The aggregation function in Definition 8 may be, e.g., a summation or the average
of the distances, the maximum value among those distances (which yields a
worst case analysis), a median value (for mean case analysis), and so forth. Such
functions are common in data integration systems (see also Section 4 below).

Proposition 2. The function df in Definition 9(d) is a pseudo distance on 2L.5

3.2 Aggregation-Based Repairs

Definition 10. An aggregation-based repair context is a triple R = 〈|=S , d, f〉,
where |=S is the entailment relation induced by S, d is a pseudo distance on L,
and f is a numeric aggregation function.

Note 2. If R = 〈|=S , d, f〉 is an aggregation-based repair context in the sense
of Definition 10, then R = 〈|=S , df 〉, where df is obtained from d and f by
Definition 9(d), is a repair context in the sense of Definition 4. This is so, since
df is a pseudo distance on 2L (by Proposition 2).

Definition 11. The repairs of a database DB = (D, IC) with respect to an
aggregation-based repair context R = 〈|=S , d, f〉 are the elements of the set

ΔR(DB) =
{R ∈ Rep(DB) | ∀R′ ∈ Rep(DB) df (R,D) ≤ df (R′,D)

}
.

By Note 2, Definition 11 is a particular case of Definition 5 for aggregation-based
distance functions (and aggregation-based repair contexts).

Example 3. Consider again the database DB = ({p, r}, {p→ q}) of Example 1,
and let R = 〈|=, du, Σ〉 be an aggregation-based repair context, where du is
a distance function on the atomic formulas of L, defined by du(s1, s2) = 0 if
s1 = s2, and du(s1, s2) = 1 otherwise. The six potential repairs of DB and their
distances from D = {p, r} are given in the table below.

No. Potential Repair du
Σ(·,D) Actions

1 {p, q, r} 1
2 insert q

2 {p, q} 1 insert q, delete r
3 {q, r} 1 insert q, delete p
4 {q} 1 1

2 insert q, delete p and r
5 {r} 1

2 delete p
6 {} 1 delete p and r

It follows, then, that the repairs in this case are R1 = {p, q, r} and R5 =
{r}. Among the potential repairs, these repairs require a minimal amount of
modifications in D.6 Thus, e.g., r conservatively (and so credulously) follows
from DB, and q credulously (but not conservatively) follows from DB.
5 Due to lack of space proofs are omitted. Full proofs will appear in an extended

version of this paper.
6 As Proposition 4 below shows, this is not a coincidence.

Distance-Based Repairs of Databases 49

Definition 12. An aggregation function f such that f({x1, . . . , xn}) = 0 only
if x1 = . . . = xn = 0, is called strict . An aggregation-based repair context
R = 〈|=S , d, f〉 is strict if f is strict.

Note that as distances are non-negative, all the aggregation functions on sets of
distances considered above (summation, maximum, median, etc.) are strict.7

The next proposition shows that, as expected, there is nothing to repair in
consistent databases.

Proposition 3. For every strict aggregation-based repair context R, if DB is a
consistent database, then ΔR(DB) = {D}.

3.3 Domain Independent Repairs

A common definition of an aggregation-based repair context is R = 〈|=, du, Σ〉,
where the underlying distance-aggregation function, du

Σ , is obtained by a summa-
tion of the drastic distances du between matched elements (see also Example 3).

Definition 13. The drastic distance is du(x, y) = 0 if x = y, else du(x, y) = 1.

It is easy to verify that du and du
Σ are distance functions, and both of them

are ‘blind’ to the domain of discourse at hand. Next we show that the metric
obtained by du

Σ corresponds to the Hamming distance between sets of formulae.8

Proposition 4. Let |S| be the size of S. Then du
Σ(A,B) = 1

2 (|A \B|+ |B \A|).
The repair context R = 〈|=, du, Σ〉 corresponds to the repair method introduced
in [1], which inspires many other works on (domain independent) database repair
(see, e.g., [2, 4, 6, 7, 22, 21, 28]).

Definition 14. [1] A pairwise9 repair ofDB = (D, IC) is a pair (Insert,Retract),
such that: 1. Insert∩D=∅, 2. Retract ⊆ D, 3. (D∪ Insert\Retract, IC) is a consis-
tent database, 4. (Insert,Retract) is minimal:10 there is no pair (Insert′,Retract′)
that satisfies conditions 1–3 and for which |Insert′ ∪Retract′| < |Insert∪Retract|.
Proposition 5. Consider a database DB = (D, IC) and the repair context
R = 〈|=, du, Σ〉. Then (Insert,Retract) is a pairwise repair of DB iff there is a
repair R ∈ ΔR(DB) s.t. Insert = R \ D and Retract = D \ R.

It is also interesting to check the distance-based functions of Definition 7 when
the domain independent du is taken as the basic distance function. In this case
the Hausdorff distance is reduced to 0 if A = B and 1 otherwise. While this
is still a distance function, it is clearly useless for making subtle preferences
among potential repairs. The Eiter–Mannila’s distance, on the other hand, is
7 The minimum function is not strict, but it is not useful for repair contexts.
8 Also known as the symmetric distance, or the Dalal distance [12].
9 This adjective is added to distinguish this kind of repairs from repairs in our sense.

10 A different condition may be defined by set inclusion instead of minimal cardinality.

50 O. Arieli, M. Denecker, and M. Bruynooghe

more appropriate in this case, and as in Proposition 5, is it related to pairwise
repairing. Indeed, given du, the Eiter–Mannila’s distance between the original
database D and its repair R = D∪ Insert \Retract is equal to 1

2 (Insert+Retract).
In this case we get the Ramon–Bruynooghe matching-based distance [32], which
is a distance function (and not only a pseudo distance, cf. Proposition 1).

3.4 Domain-Dependent Repairs

Consider again the database of Example 2. There are several potential repairs
in this case. Let’s consider two of them:

R1: remove all the information about Bob from the database,
R2: change the information about the salary of Bob.

Note that if we use a domain independent repair context with e.g. du as the
underlying distance function, each potential repair above is as good as the other
one, since the cost of the optimal matching between the original database and the
repaired database that is obtained byR1 is the cost of the two retracted elements
(employee(Bob) and salary(Bob, 1000)) that cannot be matched to an element
in the repaired database, which is 1

2 + 1
2 = 1. Likewise, the optimal matching

between the original database and the repaired database that is obtained by R2
links employee(Alice), employee(Bob), salary(Alice, 1000) and director(Alice)
to the same facts in the repaired database, and relates salary(Bob, 1000) to
salary(Bob, x) (for some x < 1000). The resulting distance is therefore 0 + 0 +
0+0+1 = 1. According to the repair context R = 〈|=, du, Σ〉, then, both potential
repairs have the same priority. However, in this case, the second repair (salary
changes) seems more plausible than the first one (employee removal), as it is more
realistic here to assume that the problem is due to a typographic error in the
salary information. Moreover, R1 is more drastic, as it causes information loss
(Bob is no longer a reported employee). It is clear, then, that simple cardinality
considerations are not useful here, and more delicate considerations, that would
yield the preference of R2 over R1, are required. 11

A more subtle preference criterion is obtained by the distance function in [30]:

d1
(
P (t1, . . . , tm), Q(s1, . . . , sn)

)
=

⎧⎪⎨
⎪⎩

1 if P �= Q,

1
2n

n∑
i=1

du(ti, si) otherwise.

For different predicate symbols the distance d1 is maximal; however, when the
predicate symbols are the same, the distance linearly increases with the number
of arguments that have different values, and is at most 1

2 . The intuition behind
this is that longer tuples are more error-prone and that multiple errors in the
same tuple are less likely.
11 The need to rectify an error within a tuple without deleting the whole tuple has been

acknowledged in [4] (see Example 6.2 of that paper), and is also the main motivation
behind the work of Wijsen on database repairing by updates [34].

Distance-Based Repairs of Databases 51

Proposition 6. d1 is a distance function (Definition 3), which is bounded by 1.

According to d1, the distance between the database instance D of Example 2 and
R1 is still 1, while the distance between D and R2 is the same as the distance
between salary(Bob, 1000) and salary(Bob, x), which is 1

4 (0+1) = 1
4 . It follows,

then, that now R2 is preferred over R1, as intuitively expected.
Nienhuys-Cheng’s distance d1 can be further refined to reveal other considera-

tions. For instance, under the assumption that primary keys are less error-prone,
one may consider the following variation of d1:

Definition 15. Below we denote primary key values by underscores, and as-
sume, without loss of generality, that they precede the non-key values. Define:

d2
(
P (t1, . . . , tk, tk+1, . . . , tm), Q(s1, . . . , sl, tl+1, . . . , tn)

)
=⎧⎪⎨

⎪⎩
1 if P �= Q or ∃1 ≤ i ≤ k s.t. ti �= si,

1
2(m−k)

m∑
i=k+1

du(ti, si) otherwise.

Example 4. As noted in Example 2,
Upd(sal(Alice, 1000)) = {sal(Alice, 1000), sal(x, 1000), sal(Alice, y)},

which means that there are four options regarding the fact salary(Alice, 1000):
keeping it unchanged, changing the first argument (employee-name), changing
the second argument (salary), or deleting it altogether. Assuming that employee-
name is the primary key for the salary relation, according to d2, the costs of these
options are 0, 1, 1

2 and 1, respectively. Note, also, that in this case, according to
the repair context R = 〈|=, d2, Σ〉, the two repairs of the database are:
{emp(Alice), emp(Bob), dir(Alice), sal(Alice, v1), sal(Bob, 1000)} for v1>1000,
{emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1000), sal(Bob, v2)} for v2<1000.
That is, consistency restoration is obtained here by salary corrections.

3.5 Linking Instead of Matching

The notion of (optimal) matching between the elements of a database instance
and its repair may be weakened. Instead of relating each database fact with at
most one atomic formula of a repair and vice versa, it is possible to associate
a database fact with several atoms of a repair. This is called linking. Optimal
linking and the induced distance between sets are defined just as in Definition 9.

Example 5. Consider a database instance D = {teaches(John,DB)} and in-
tegrity constraints that no-one teaches DB (since, e.g., this course is cancelled),
and that a lecturer must give at least two courses. A repair in this case would
be R = {teaches(John, x1), teaches(John, x2)} for some x1 �= x2 �= DB. Each
one of the two optimal matchings in this case relates the database fact to one of
the two elements of R, leaving the other one unmatched. In the notations of the
previous section, then, d1Σ(D,R) = 1

2 + 1
4 . If linking is used instead of matching,

there is only one optimal linking between D and R, which associates the two
new facts in R with the old one in D, hence in this case d1Σ(D,R) = 1

4 + 1
4 .

52 O. Arieli, M. Denecker, and M. Bruynooghe

3.6 Complexity

Computing all the repairs of a given database is not tractable, as even for propo-
sitional databases the number of repairs of a database could be exponential in the
database’s size. Indeed, the database ({p1, . . . , pn}, {pi → qi}ni=1) has 2n repairs
with respect to R = 〈|=, du, Σ〉. These repairs correspond to all the combinations
of inserting qi or removing pi, for i = 1, . . . , n. In an attempt to overcome this
problem, most of the existing algorithms for query answering do not compute
the repairs themselves, but make inferences using rewriting techniques [1], logic
programming paradigms [2, 16, 19, 21, 22], (hyper-)graph computations [10, 11],
and proof theoretic methods, such as analytic tableaux [7]. Tractability in such
cases is usually reached only for restricted syntactical forms of the integrity
constraints. For instance, the technique in [11] is polynomial only for denial in-
tegrity constraints12, and the rewriting technique in [1], which is also tractable,
is limited to binary universal constraints. Computational considerations regard-
ing database repairs is beyond the scope of this paper, which is concentrated on
the representational aspects of the problem. We note, however, that generally,
the distance functions themselves do not add extra computational complexity to
the problem. This is demonstrated, for instance, by the following results:

Proposition 7. [32] Computing du
Σ(A,B) is polynomial in the size of A and B.

Proposition 8. Computing d1Σ(A,B) and d2Σ(A,B) is polynomial in the sizes
of A, B, and the maximal arity of the predicates in A and B.

The main computational difficulty remains, therefore, the large amount of po-
tential repairs at hand. Extensive surveys on the computational complexity of
existing approaches to database repair and consistent query answering appear
in [8, 9, 10] (see also [34] for complexity results regarding update-based repair-
ing).

4 Integration of Constraint Data-Sources

Integration of autonomous data-sources under global integrity constraints (see
[26]) is closely related to database repair. The main differences between the two
problems is that in contrast to database instances, data-sources may contain
negative facts and not only positive ones. Also, the closed world assumption is
no longer assumed. In this section we show how our framework may be used for
defining operators for the merging problem as well.

Example 6. [26] Four flat co-owners discuss the construction of a swimming pool
(s), a tennis-court (t) and a private car-park (p). Building two or more items
will increase the rent (r), otherwise the rent will not be changed.

The opinions of the owners are represented by the following four data-sources:
D1 = D2 = {s, t, p}, D3 = {¬s,¬t,¬p,¬r}, D4 = {t, p,¬r}. The impact on the
12 That is, closed formulae of the form ∀x1 . . . xn¬

(
R1(x1)∧. . .∧Rn(xn)∧φ(x1 . . . xn)

)
,

where φ is a Boolean expression consisting of atomic formulas and built-in predicates.

Distance-Based Repairs of Databases 53

rent may be represented by the constraint IC = {r↔ ((s∧ t)∨(s∧p)∨(t∧p))}.
Note that although the opinion of owner 4 violates the integrity constraint (while
the solution must preserve the constraint), it is still taken into account.

In situations such as that of Example 6 it is often required to find a solution
that will satisfy the global integrity constraints and will be as close as possible
to each data source. This implies that, under the following observations, our
framework is adequate for the merging problem as well.

– Instead of database instances, which are sets of atomic facts, data sources
are sets of literals. Denote by D the set of these sources. So, instead of the
set of atomic formulas, the following set is considered:

Lit(D, IC) =
⋃

Di∈D Atoms(Di, IC) ∪
⋃

Di∈D{¬a | a ∈ Atoms(Di, IC)}.
As before, an update U of D is a consistent set13 that consists of zero or more
elements from Upd(L) for each L∈ Lit(D, IC), and the set Merge(D, IC) of
the potential merging of D under IC consists of the updates that satisfy IC.

– A merging of data-sources D = {D1, . . . ,Dn} with respect to the integrity
constraints IC is a straightforward generalization of the notion of database
repair (cf. Definitions 10 and 11):
• A merging context is a quadruple M = 〈|=S , d, f, g〉, where |=S is the en-

tailment relation induced by the underlying semantics S, d is a pseudo
distance function, and f, g are aggregation functions (referring, respec-
tively, to the distances inside a source and among the sources).
• For a merging context M = 〈|=S , d, f, g〉, a set D = {D1, . . . ,Dn} of

data-sources, and a potential mergingM ∈ Merge(D, IC), let
dg,f (M,D) = g

({df(M,D1), . . . , df (M,Dn)}).
• The mergings of the data-sources in D under IC, and with respect to

the merging context M = 〈|=S , d, f, g〉, are the elements of the set
ΔM(DB) =

{M ∈ Merge(D, IC) |
∀M′ ∈ Merge(D, IC) dg,f (M,D) ≤ dg,f (M′,D)

}
.

Example 7. Consider again Example 6 and two contexts: M1 = 〈|=, du, Σ,Σ〉,
M2 = 〈|=, du, Σ,max〉. According to M1 the summation of the distances to the
source is minimized, and in M2 minimization of maximal distances is used for
choosing optimal solutions. The potential mergings in this case are listed below.
No. Potential merge du

Σ(·,D1) du
Σ(·,D2) du

Σ(·,D3) du
Σ(·,D4) du

Σ,Σ(·, D) du
max,Σ(·, D)

M1 {s, t, p, r} 1
2

1
2 4 1 1

2 6 1
2 4

M2 {s, t,¬p, r} 1 1
2 1 1

2 3 2 1
2 8 1

2 3
M3 {s,¬t, p, r} 1 1

2 1 1
2 3 2 1

2 8 1
2 3

M4 {s,¬t,¬p,¬r} 2 1
2 2 1

2 1 2 1
2 8 1

2 2 1
2

M5 {¬s, t, p, r} 1 1
2 1 1

2 3 1 1
2 7 1

2 3
M6 {¬s, t,¬p,¬r} 2 1

2 2 1
2 1 1 1

2 7 1
2 2 1

2
M7 {¬s,¬t, p,¬r} 2 1

2 2 1
2 1 1 1

2 7 1
2 2 1

2
M8 {¬s,¬t,¬p,¬r} 3 1

2 3 1
2 0 2 1

2 9 1
2 3 1

2

13 I.e., without complementary literals.

54 O. Arieli, M. Denecker, and M. Bruynooghe

According to M1, M1 is the best potential merging, and so the owners decide
to build all the three facilities. As a result, the rent increases. According to M2,
however, M4, M6 and M7 are the optimal mergings, which implies that only
one of the facilities will be built, and so the rent will remain the same.14 Thus,
e.g., r is a consistent answer w.r.t. M1 while ¬r is a consistent answer w.r.t. M2.

5 Conclusion

Data processing by distance considerations is not a new idea, and it has been
used mainly in the context of query answering [1, 2] integration of constraint
belief-sets [25, 26] and operators for belief revision [14, 27, 31]. In this paper we
introduced a uniform framework for representing, comparing and implementing
different approaches for these contexts. Another advantage of our approach is
that it opens the door to many new methods that are induced by known distance
definitions. This is particularly useful in the context of database repairing, where
so far most of the formalisms in the literature that involve distance-based seman-
tics are domain independent while in many practical cases domain dependent
repairs are more adequate. The new forms of repairs offered by our framework
provide intuitive solutions to such cases, mainly as the notion of closeness can
be captured in more subtle ways (most of them are domain dependent), and er-
roneous components of the data can be detected and updated without violating
the valid fragment of the information.

References

1. M. Arenas, L. Bertossi, J. Chomicki. Consistent query answers in inconsistent
databases. Proc. PODS’99, pp.68–79, 1999.

2. M. Arenas, L. Bertossi, J. Chomicki. Answer sets for consistent query answering in
inconsistent databases. Theory and Practice of Log. Prog., 3(4–5):393–424, 2003.

3. O. Arieli, M. Denecker, B. Van Nuffelen, M. Bruynooghe. Coherent integration of
databases by abductive logic programming. Artif. Intell. Res., 21:245–286, 2004.

4. O. Arieli, M. Denecker, B. Van Nuffelen, M. Bruynooghe. Computational methods
for database repair by signed formulae. Annals Math. Artif. Intell., 46:4–37, 2006.

5. L. Bertossi. Some research directions in consistent query answering: a vision. Pre-
proc. of EDBT’06 Workshop on Inconsistency in Databases, pp.109–113, 2006.

6. L. Bertossi, J. Chomicki, A. Cortés, C. Gutierrez. Consistent answers from inte-
grated data sources. Proc. FQAS’2002, LNCS 2522, pp.71–85, 2002.

7. L. Bertossi, C. Schwind. Database repairs and analytic tableau. Annals of Math-
ematics and Artificial Intelligence, 40(1–2):5–35, 2004.

8. A. Cali, D. Lembo, R. Rosati. On the decidability and complexity of query answer-
ing over inconsistent and incomplete databases. Proc. PODS’03, 260–271, 2003.

9. J. Chomicki, J. Marchinkowski. A on the computational complexity of minimal-
change integrity maintenance in relational databases. In L. Bertossi, A. Hunter,
and T. Schaub, editors, Inconsistency Tolerance, LNCS 3300, pp.119–150. 2005.

14 The decision which facility to choose requires further preference criteria. Summation
of distances, e.g., prefers M6 andM7 overM4, thus t and p are preferred over s.

Distance-Based Repairs of Databases 55

10. J. Chomicki, J. Marchinkowski. Minimal-change integrity maintenance using tuple
deletion. Journal of Information and Computation, 197(1–2):90–121, 2005.

11. J. Chomicki, J. Marchinkowski, and S. Staworko. Computing consistent query
answers using conflict hypergraphs. Proc. CIKM’04, pp.417–426, 2004.

12. M. Dalal. Investigations into a theory of knowledge base revision. Proc. AAAI’98,
pp.475–479. AAAI Press, 1988.

13. S. de Amo, W. Carnielli, J. Marcos. A logical framework for integrating inconsistent
information in multiple databases. Proc. FoIKS’02, LNCS 2284, pp.67–84, 2002.

14. J. Delgrande. Preliminary considerations on the modelling of belief change opera-
tors by metric spaces. Proc. NMR’04, pp.118–125, 2004.

15. J. Dieudonné, editor. Foundations of Modern Analysis. Academic Press, 1969.
16. T. Eiter. Data integration and answer set programming. Proc. LPNMR’05,

LNCS 3662, pp.13–25. Springer, 2005.
17. T. Eiter, H. Mannila. Distance measure for point sets and their computation. Acta

Informatica, 34:109–133, 1997.
18. B. Fazzinga, S. Flesca, F. Furfaro, F. Parisi. DART: a data acquisition and repairing

tool. EDBT’06 Workshop on Inconsistency in Databases, pp.2–16, 2006.
19. E. Franconi, A. Palma, N. Leone, D. Perri, F. Scarcello. Census data repair: A chal-

lenging application of disjunctive logic programming. Proc. LPAR’01, LNCS 2250,
pp.561–578. Springer, 2001.

20. N. Gelfond, V. Lifschitz. The stable model semantics for logic programming. Proc.
5th Logic Programming Symposium, pp.1070–1080. MIT Press, 1988.

21. G. Greco, S. Greco, E. Zumpano. A logic programming approach to the integration,
repairing and querying of inconsistent databases. Proc. ICLP’01, LNCS 2237,
pp.348–363. Springer, 2001.

22. S. Greco, E. Zumpano. Querying inconsistent databases. Proc. LPAR’2000,
LNAI 1955, pp.308–325. Springer, 2000.

23. M. Kifer, E. L. Lozinskii. A logic for reasoning with inconsistency. Journal of
Automated Reasoning, 9(2):179–215, 1992.

24. S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1950.
25. S. Konieczny, J. Lang, P. Marquis. Distance-based merging: A general framework

and some complexity results. Proc KR’02, pp.97–108, 2002.
26. S. Konieczny, R. Pino Pérez. Merging information under constraints: a logical

framework. Journal of Logic and Computation, 12(5):773–808, 2002.
27. D. Lehmann, M. Magidor, K. Schlechta. Distance semantics for belief revision.

Journal of Symbolic Logic, 66(1):295–317, 2001.
28. N. Leone, T. Eiter, W. Faber, M. Fink, G. Gottlob, G. Greco. Boosting information

integration: The INFOMIX system. Proc. SEBD’05, pp.55–66, 2005.
29. P. Liberatore, M. Schaerf. BReLS: A system for the integration of knowledge bases.

Proc. KR’2000, pp.145–152. Morgan Kaufmann Publishers, 2000.
30. S.H. Nienhuys-Cheng. Distance between Herbrand interpretations: A measure for

approximations to a target concept. Proc. ILP’97, LNCS 1297, pp.213–226, 1997.
31. P. Peppas, S. Chopra, N. Foo. Distance semantics for relevance-sensitive belief

revision. Proc. KR’04, pp.319–328. AAAI Press, 2004.
32. J. Ramon, M. Bruynooghe. A polynomial time computable metric between point

sets. Acta Informatica, 37(10):765–780, 2001.
33. R. Reiter. On closed world databases. In Logic and Databases, pages 55–76. 1978.
34. J. Wijsen. Database repairing using updates. ACM Transactions on Database

Systems, 30(3):722–768, 2005.
35. M. Winslett. Reasoning about action using a possible models approach. Proc.

AAAI’98, pp.89–93. AAAI press, 1988.

Natural Deduction Calculus for Linear-Time
Temporal Logic

Alexander Bolotov1, Artie Basukoski1, Oleg Grigoriev2,�, and Vasilyi Shangin2

1 Harrow School of Computer Science
University of Westminster

Watford Road, Harrow HA1 3TP, UK
A.Bolotov@wmin.ac.uk

http://www2.wmin.ac.uk/bolotoa/index.html
2 Department of Logic, Faculty of Philosophy, Moscow State University, Moscow,

119899, Russia
{shangin, grig}@philos.msu.ru

Abstract. We present a natural deduction calculus for the propositional
linear-time temporal logic and prove its correctness. The system extends
the natural deduction construction of the classical propositional logic.
This will open the prospect to apply our technique as an automatic
reasoning tool in a deliberative decision making framework across various
AI applications.

1 Introduction

In this paper we present a natural deduction proof system for the propositional
linear-time temporal logic PLTL [7] and establish its correctness. Natural de-
duction calculi (abbreviated in this paper by ‘ND’) originally were developed by
Gentzen [8] and Jaskowski [9]. Jaskowski-style natural deduction was improved
by Fitch [5] and simplified by Quine [14].

It is notable that further development of such systems was controversial. Al-
though there has been an obvious interest in these ND formalisms as representing
a ‘natural’ way of reasoning, ND systems were often considered as inappropriate
for an algorithmic representation [6]. This scepticism is not surprising because
in general we can have in the proof formulae that violate the subformula prop-
erty (often thought as crucial for automated deduction), which requires that in
a proof, any formula which occurs in the conclusion of a rule, is a (negation of)
subformula of its premises.

As a consequence, ND systems have been primarily studied within the frame-
work of philosophical logic, being widely used in teaching (but again, mostly in
the philosophy curriculum) and have been ignored by the automated theorem-
proving community, where research has mostly concentrated on purely analytic
methods such as resolution and tableau based approaches [1].

� This research was partially supported by Russian Foundation for Humanities, grant
No 06-03-00020a.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 56–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Natural Deduction Calculus for Linear-Time Temporal Logic 57

Recently, ND systems have been studied within a wider community. One of
the most recent examples of the interest in natural deduction is the area of logical
frameworks [12], where the notion of hypothetical judgements, i.e.reasoning from
hypothesis, as in natural deduction, is essential. Here, in particular, ND systems
have been developed for intuitionistic linear logic [13].

In this paper we define a natural deduction proof system for the propositional
linear-time temporal logic PLTL [7] and establish its correctness. The particular
approach to build an ND-calculus we are interested in is described in detail
in [2]. It is a modification of Quine’s representation of subordinate proof [14]
developed for classical propositional and first-order logic. The ND technique
initially defined for classical propositional logic was extended to first-order logic
[2, 3]. It has also been extended to the non-classical framework of propositional
intuitionistic logic [10], where the proof-searching strategies are based upon the
proof-searching strategies for classical propositional natural deduction calculus.

We believe that the goal-directed nature of our proof searching technique
opens broad prospects for the application of the method in many AI areas, most
notably, in agent engineering [16].

The paper is organized as follows. In §2 we review the syntax and semantics
of PLTL. In §3 we describe the ND for PLTL henceforth referred to as PLTLND

and give an example of the construction of the proof. Subsequently, in §4, we
provide the correctness argument. Finally, in §5, we provide concluding remarks
and identify future work.

2 Syntax and Semantics of PLTL

We define the language of PLTL using the following symbols.

– a set, Prop, of atomic propositions: p, q, r, . . . , p1, q1, r1, . . . , pn, qn, rn, . . .;
– classical operators: ¬,∧,⇒,∨;
– temporal operators:

– ‘always in the future’;
♦ – ‘at sometime in the future’;
�– ‘at the next moment in time’;
U – ‘until’.

The set of well-formed formulae of PLTL, wffPLTL is defined as follows.

Definition 1 (PLTL syntax).

1. All atomic propositions (members of Prop) are in wffPLTL.
2. If A and B are in wffPLTL, then so are A ∧B, ¬A, A ∨B, and A⇒ B.
3. If A and B are in wffPLTL, then so are A, ♦A, �A, and AU B.

For the semantics of PLTL we utilise the notation of [4]. A model for PLTL
formulae, is a discrete, linear sequence of states

σ = s0, s1, s2, . . .

58 A. Bolotov et al.

which is isomorphic to the natural numbers, N , and where each state, si, 0 ≤ i,
consists of the propositions that are true in it at the i-th moment of time. If
a well-formed formula A is satisfied in the model σ at the moment i then we
abbreviate it by 〈σ, i〉 |= A. Below, in Figure 1, we define the relation |=, where
indices i, j, k ∈ N .

〈σ, i〉 |= p iff p ∈ si, for p ∈ Prop
〈σ, i〉 |= ¬A iff 〈σ, i〉 �|= A
〈σ, i〉 |= A ∧ B iff 〈σ, i〉 |= A and 〈σ, i〉 |= B
〈σ, i〉 |= A ∨ B iff 〈σ, i〉 |= A or 〈σ, i〉 |= B
〈σ, i〉 |= A⇒ B iff 〈σ, i〉 �|= A or 〈σ, i〉 |= B
〈σ, i〉 |= A iff for each j if i ≤ j then 〈σ, j〉 |= A

〈σ, i〉 |=♦A iff there exists j such that i ≤ j and 〈σ, j〉 |= A
〈σ, i〉 |= �A iff 〈σ, i + 1〉 |= A
〈σ, i〉 |= AU B iff there exists j such that i ≤ j and 〈σ, j〉 |= B

and for each k if i ≤ k < j then 〈σ, k〉 |= A

Fig. 1. Semantics for PLTL

Definition 2 (PLTL Satisfiability). A well-formed formula, A, is satisfiable
if, and only if, there exists a model σ such that 〈σ, 0〉 |= A.

Definition 3 (PLTL Validity). A well-formed formula, A, is valid if, and
only if, A is satisfied in every possible model, i.e. for each σ, 〈σ, 0〉 |= A.

3 Natural Deduction System PLTLND

3.1 Extended PLTL Syntax and Semantics

To define the rules of the natural system we extend the syntax of PLTL by
introducing labelled formulae.

Firstly, we define the set of labels, Lab, as a set of variables interpreted over
states of σ:

Lab : {x, y, z, x1, x2, x3, . . .}.
Let g be a function, which maps the set Lab to N .

We then define two binary relations ‘"’ and ‘Next’, and the operation ′ as
follows.

Definition 4 (Relations ≺,$," and Next, operation ′). For x, y ∈ Lab:
(4.1) ≺⊂ Lab2 : x ≺ y ⇔ g(x) < g(y),
(4.2) $⊂ Lab2 : x $ y ⇔ g(x) = g(y),
(4.3) "⊂ Lab2 : x " y ⇔ g(x) ≤ g(y),
(4.4) Next ⊂ Lab2 : Next(x, y) ⇔ g(y) = g(x) + 1, i.e. it is the ‘predecessor-

successor’ relation such that for any i ∈ Lab, there exists j ∈ Lab such
that Next(i, j) (seriality),

Natural Deduction Calculus for Linear-Time Temporal Logic 59

(4.5) Given a label i, the operation ′ applied to i gives us the label i′ such that
Next(i, i′).

The following properties follow straightforwardly from Definition 4.

Lemma 1 (Properties " and Next).

– For any i, j ∈ Lab if Next(i, j) then i " j.
– For any i, j ∈ Lab if i ≺ j then i " j.
– Properties of ":
• For any i ∈ Lab : i " i (reflexivity),
• For any i, j, k ∈ Lab if i " j and j " k then i " k (transitivity).

Following [15], the expressions representing the properties of " and Next are
called ‘relational judgements’.

Now we are ready to introduce the PLTLND syntax.

Definition 5 (PLTLND Syntax).

– If A is a PLTL formula and i ∈ Lab then i :A is a PLTLND formula.
– Any relational judgement of the type Next(i, i′) and i " j is a PLTLND

formula.

PLTLND Semantics. For the interpretation of PLTLND formulae we adapt the
semantical constructions defined in §2 for the logic PLTL. In the rest of the paper
we will use capital letters A,B,C,D, . . . as metasymbols for PLTL formulae, and
calligraphic letters A,B, C,D . . . to abbreviate formulae of PLTLND, i.e. either
labelled formulae or relational judgements. The intuitive meaning of i :A is that
A is satisfied at the world i. Thus, based on our observations above, we simply
need the following statements.

Let Γ be a set of PLTLND formulae, let DΓ = {x|x : A ∈ Γ}, let σ be a
model as defined in §2 and let f be a function which maps elements of DΓ into
N (recall that a PLTL model σ is isomorphic to natural numbers).

Definition 6 (Realisation of PLTLND formulae in a model). Model σ
realises a set, Γ , if there is a mapping, f , which satisfies the following conditions.

(1) For any x ∈ DΓ , and for any A, if x :A ∈ Γ then 〈σ, f(x)〉 |= A,
(2) For any x, y, if x " y ∈ Γ , and f(x) = i, and f(y) = j then i ≤ j,
(3) For any x, y, if Next(x, y) ∈ Γ , and f(x) = i, and f(y) = j then j = i+ 1.

The set Γ in this case is called realisable.

Definition 7 (PLTLND Validity). A well-formed PLTLND formula, A = i :
B, is valid (abbreviated as |=ND A) if, and only if, the set {A} is realisable in
every possible model, for any function f .

It is easy to see that if we ignore the labels then the classes of satisfiable and valid
formulae introduced by definitions 2 and 6, 3 and 7 respectively, are identical.

60 A. Bolotov et al.

3.2 Rules for Boolean Operations

The set of rules is divided into the two classes: elimination and introduction rules.
Rules of the first group allow us to simplify formulae to which they are applied.
These are rules for the ‘elimination’ of logical constants. Rules of the second
group are aimed at ‘building’ formulae, introducing new logical constants.

In Figure 2 we define the sets of elimination and introduction rules, where pre-
fixes ‘el’ and ‘in’ abbreviate an elimination and an introduction rule, respectively.

Elimination Rules :

∧ el1
i :A ∧B

i :A

∧ el2
i :A ∧B

i :B

∨ el
i :A ∨B, i :¬A

i :B

⇒ el
i :A⇒ B, i :A

i :B

¬ el
i :¬¬A

i :A

Introduction Rules :

∧ in
i :A, i :B
i :A ∧ B

∨ in1
i :A

i :A ∨ B

∨ in2
i :B

i :A ∨ B

⇒ in
[i :C], i :B
i :C ⇒ B

¬ in
[j :C], i :B, i :¬B

j :¬C

Fig. 2. PLTLND-rules for Booleans

– In the formulation of the rules ‘⇒ in’ and ‘¬ in’ formulae [i :C] and [j :C]
respectively must be the most recent non discarded [3] assumptions occurring
in the proof. When we apply one of these rules on step n and discard an
assumption on step m, we also discard all formulae from m to n−1. We will
write [m− (n−1)] to indicate this situation.

3.3 Rules for Temporal Logic

In the formulation of the set of elimination and introduction rules for temporal
operators we use the notions of flagged and relatively flagged label with the
meaning similar to the notions of flagged and relatively flagged variable in first
order logic [3]. By saying that the label, j, is flagged, abbreviated as �→ j, we
mean that it is bound to a state and, hence, cannot be rebound to some other
state. By saying that a variable i is relatively flagged (bound) by j, abbreviated
as j �→ i we mean that a bounded variable, j, restricts the set of runs for i that
is linked to it in the relational judgment, for example i " j.

In Figure 3 we define elimination and introduction rules for the temporal logic
operators.

The condition ∀C(j : C �∈ M1) in the rules ♦el, U el1 means that the
label j should not occur in the proof in any formula, C, that is marked
by M1.

Natural Deduction Calculus for Linear-Time Temporal Logic 61

Elimination Rules :

el
i : A, i � j

j : A

♦el
i :♦A

i � j, j : A

∀C(j :C �∈M1)
�→ j, j �→ i

�el�
i : �A

i′ :A
i′ :A ∈M1

U el1
i :AU B, i :¬B

i :A, j :B, i ≺ j
∀C(j :C �∈M1)
�→ j, j �→ i

U ��
el2

i[AB] � j[AB], i[AB] � k, k ≺ j[AB]

k : A

Introduction Rules :

in��� j :A, [i � j]
i : A

j :A �∈M1
�→ j, j �→ i

♦in
j :A, i � j

i :♦A

�in
i′ :A, Next(i, i′)

i : �A

U in1
i :B

i :AU B

U in2
i :A, i′ :B, Next(i, i′)

i :AU B

U in����
3

j :A, l :B, i � l, [i � j], [j � l]
i :AU B

where j :A �∈M1
�→ j, j �→ i, j �→ l

Fig. 3. Temporal ND-rules

The condition j :A �∈M1 in the rules in and U in3 means that j :A is
not marked by M1.

� In �
el the conclusion i′ :A is marked by M1.

�� In U el2 the expression i[AB] is used with the following meaning: a vari-
able i in the proof can be marked with [AB] if it has been introduced in
the proof as a result of the application of the rule U el1 to i : AU B.

� � � In in formula i � j must be the most recent assumption, applying the
rule on the step n of the proof, we discard i � j and all formulae until
the step n.

� � �� Applying the rule U in3 on the step n of the proof, we discard that
assumption, i � j or j � l, which occurs earlier in the proof and all
formulae until the step n.

In addition to these we also require the following Induction Rule:

Induction
i :A [i � j] j :A⇒ �A

i : A

where

– j :A �∈M1 and �→ j, j �→ i.
– i � j must be the most recent assumption, applying the rule on the step n

of the proof, we discard i � j and all formulae until the step n.

62 A. Bolotov et al.

We also need the following obvious rules.

reflexivity

i � i

transitivity
i � j, j � k
i � k

�seriality

Next(i, i′)

�/ �
Next(i, i′)
i � i′

≺ / �
i ≺ j
i � j

Definition 8 (PLTLND proof). An ND proof of a PLTL formula B is a
finite sequence of PLTLND formulae A1,A2, . . . ,An which satisfies the following
conditions:

– every Ai (1 ≤ i ≤ n) is either an assumption, in which case it should have
been discarded, or the conclusion of one of the ND rules, applied to some
foregoing formulae,

– the last formula, An, is x : B, for some label x,
– no variable - world label is flagged twice or relatively binds itself.

When B has a PLTLND proof we will abbreviate it as �ND B.
Now we give an example of the PLTLND proof establishing that the following

formula is a theorem.
(p⇒ �p)⇒ (p⇒ p) (1)

The proof commences by the assumption that the left hand side of the implication
of (1), (p⇒ �p), is satisfied in some arbitrary world corresponding to x.

1. x : (p⇒ �p) assumption
2. x : p assumption
3. x � y assumption
4. y : p⇒ �p el, 1, 3
5. x : p Induction 2, 3, 4, �→ y, y �→ x, [3 − 4]
6. x : p⇒ p ⇒in 5, [2− 5]
7. x : (p⇒ �p)⇒ (p⇒ p) ⇒in, 6, [1− 6]

At steps 2 and 3 we introduce two more assumptions which allows us at step 4
to apply the el rule to formulae 1 and 3. The next step, 5, is the application
of the induction rule to formulae 2-4. Recall that applying the induction rule we
make the variable y flagged, which, in turn, makes x relatively bound. Also, at
this step we discard formulae, 3-4, starting from the most recent assumption, 3.
At the next step, 6, we apply the ⇒in rule to 5 discarding formulae 2-5, and
the application of the same rule at step 7 gives us the desired proof. At this last
step, we discard formulae, this time from the most recent assumption, 1. Since
the last formula has the form x : (p ⇒ �p) ⇒ (p ⇒ p), and the set of
non-discarded assumptions is empty, we have obtained the PLTLND proof for
1. In the next section we give some more examples of PLTLND proofs.

Natural Deduction Calculus for Linear-Time Temporal Logic 63

4 Correctness

In this section we will establish meta-theoretical properties of the PLTLND sys-
tem defined above. Namely, we will show that PLTLND is sound (§4.1) and
complete (§4.2).

4.1 Soundness

Lemma 2. Let Γ = {C1, C2, . . . , Ck} be a set of PLTL formulae such that Γ̂ =
{C1, C2, . . . , Ck}, where each Ci (1 ≤ i ≤ k) is j : Ci, for some label j, is a set
of non-discarded assumptions which are contained in the PLTLND proof for a
PLTL formula B, at some step, m. Let Λ be a set of PLTLND formulae in the
proof at step m such that for any D, D ∈ Λ if it is obtained by an application of
some ND rule, and let Δ be a conclusion of a PLTLND rule which is applied at
step m+1. Let Γ̂ � consist of all assumptions from Γ̂ that have not been discarded
by the application of this rule, the same for a set Λ�. Then if Γ̂ � is realisable in
a model σ then Λ� ∪Δ is also realisable in σ.

Proof. We prove this lemma by induction on the number of PLTLND rules ap-
plied in the proof. Thus, assuming that lemma is correct for the number, n, of
the PLTLND rules, we must show that it is also correct for the n+ 1-th rule.

The proof is quite obvious for the rules for Booleans. We only show the most
interesting case where the rule of ¬in is applied.

Case ¬in. Let x : A be an element of Γ̂ which is the most recent non-discarded
assumption in the proof. An application of the rule ¬in at step m + 1 gives a
PLTLND formula x : ¬A as a conclusion. This means that at some earlier steps
of the proof we have y : C and y : ¬C. Here we should consider several subcases
that depend on the set to which these contradictory PLTLND formulae belong.
We now prove the lemma for some of these cases. Subcase 1. Assume that both
y : C and y : ¬C are in the set Γ̂ � but nor y : C neither y : ¬C coincides with
x : A. Then the statement that the realisability of Γ̂ � implies the realisability
of Λ ∪ {x : ¬A} is true simply because Γ̂ � is not realisable. Subcase 2. Assume
that both y : C and y : ¬C are in the set Λ. Then if the set Γ̂ realisable, the set
Λ should be realisable as well. But, as assumed, it is not. So, Γ̂ also can not be
realisable. Note that Γ̂ = Γ̂ � ∪{x : A}. It should be clear that if Γ̂ � is realisable
then also {x : ¬A} is. If we think of the set Γ̂ as an initial part of the proof,
then the set Λ� is empty after the deletion of the corresponding steps of proof.
In this case we are done.

Cases with the rules for temporal operators that do not require restrictions
on labels can be shown straightforwardly from the semantics. Let us consider
cases with the rules that require restrictions, for example, the rule ♦el.

Case ♦el. Let x : ♦A ∈ Λ. We have to show realisability of Λ� ∪ {j : A}
provided that realisability of Γ̂ � holds. Actually Γ̂ � = Γ̂ and Λ� = Λ in this
case. By induction hypothesis we know that realisability of Γ implies realisability
of Λ. Then for a mapping f(x) = si, we have 〈σ, si〉 |= ♦A. From the latter,
according to the semantics, it follows that there exists a state sk, (i ≤ k),

64 A. Bolotov et al.

such that 〈σ, sk〉 |= A. Now we can define a mapping f ′, the extension of f , as
f ′ = f ∪ {(j, sk)}. This mapping is correct because the variable j was not used
in the proof before, otherwise it should be flagged twice. So, the mapping f is
not defined for j. We can see that 〈σ, f(j)〉 |= A and the pair (i, j) satisfies the
criteria of Definition 6. Therefore, Λ ∪ {j : A} is realisable.
(End)

Theorem 1 (PLTLND Soundness). Let A1,A2, . . . ,Ak be a PLTLND proof
of PLTL formula B and let Γ = {C1, C2, . . . , Cn} be a set of PLTL formulae
such that Γ̂ = {C1, C2, . . . , Cn}, where each Ci (1 ≤ i ≤ n) is j :Ci, for some label
j, is a set of discarded assumptions which occur in the proof. Then |=ND B, i.e.
B is a valid formula.

Proof. Consider the proof A1,A2, . . . ,Ak for some PLTL formula B. According
to Definition 8, Ak has the form x : B, for some label x. In general, x : B belongs
to some set, Λ, of non-discarded PLTLND formulae in the proof. By Lemma 2
we can conclude that realisability of Γ̂ implies realisability of Λ. But Γ̂ is empty
and, therefore, is realisable in any model and for any function f by Definition 6.
So Λ is also realisable in any model and for any function f . That is, any formula
that belongs to Λ is valid. In particular x : B is valid. (End)

4.2 Completeness

We will prove the completeness of PLTLND by showing that every theorem of
the following axiomatics for PLTL [7, 4] is a theorem of PLTLND.

Axioms for PLTL (schemes).

A1. Schemes for classical propositional logic
A2. (A⇒ B) ⇒ (A⇒ B)
A3. �¬A⇒ ¬ �A
A4. ¬ �A⇒ �¬A
A5. �(A⇒ B)⇒ (�A⇒ �B)
A6. A⇒ A ∧ � A
A7. (A⇒ �A) ⇒ (A⇒ A)
A8. (AU B) ⇒♦B
A9. (AU B) ⇒ (B ∨ (A ∧ �(AU B)))
A10. (B ∨ (A ∧ �(AU B))) ⇒ (AU B)

Rules:
� A
� A

� A, � A⇒ B
� B

To prove the completeness of PLTLND we first show that every instance of
the scheme of the above axiomatics is a theorem of PLTLND, and, secondly, that
given that the assumptions of the rules of the axiomatics have a PLTLND proof
then so do their conclusions.

Natural Deduction Calculus for Linear-Time Temporal Logic 65

Lemma 3. Every instance of the scheme of the PLTL axiomatics is a theorem
of PLTLND.

Proof. Since PLTLND extends the natural deduction system for classical propo-
sitional logic, all classical schemes are provable in PLTLND by a simple modifi-
cation of classical proofs introducing a world label, say x, for any formula of a
classical proof [2].

Now we will present proofs for some of the PLTL schemes from Axioms 1-10
above. Note that, demonstrating how the system works, in §3, we have estab-
lished the PLTLND proof for the formula (1) which is an instance of Axiom 7.
Below we will provide proofs for the instances of Axioms 3 and 9.

Proof for an instance of Axiom 3. �¬p⇒ ¬ �p

1. x: �¬p assumption
2. x: �p assumption
3. x′:¬p 1, �

el, M1(x′ :¬p)
4. x′: p 2, �

el, M1(x′ :p)
5. x:¬ �p 3, 4,¬in, [2− 4]
6. x: �¬p⇒ ¬ �p 6,⇒in, [1− 5]

Proof for an instance of Axiom 9. (pU q) ⇒ (q ∨ (p ∧ �(pU q)))

1. x : pU q assumption
2. x : ¬(q ∨ (p ∧ �(pU q))) assumption
3. x : ¬q ∧ (¬p ∨ ¬ �(pU q) classical, 2
4. x : ¬q ∧el 3
5. x : ¬p ∨ ¬ �(pU q) ∧el 3
6. x � y U el1 1, 4, �→ y, y �→ x
7. x : p U el1 1, 4
8. y : q U el1 1, 4
9. y � y reflexivity of �
10. y : pU q U in1, 8
11. x : �(pU q) subproof
12. x : ¬ �(pU q) ∨el, 5, 7
13. x : ¬¬(q ∨ (p ∧ �(pU q))) ¬in, 11, 12, [2− 12]
14. x : q ∨ (p ∧ �(pU q)) ¬el, 13
15. x : (pU q)⇒ (q ∨ (p ∧ �(pU q))) ⇒in, 14, [1− 14]

It is easy to establish the following proposition.

Proposition 1. Let A1,A2, . . . ,An be a PLTLND proof of a PLTL formula B.
Let B′ be obtained from B by substituting a subformula C of B by C′. Then
A′

1,A′
2, . . . ,A′

n, where any occurrence of C is substituted by C′ is a PLTLND

proof of B′.

Hence by Proposition 1 and the proofs of the instances of PLTL axioms we
obtain the proof for Lemma 3.
(End)

66 A. Bolotov et al.

Lemma 4. If A has a PLTLND proof then A also has a PLTLND proof.

Proof. Consider some arbitrarily chosen theorem of PLTLND, A, and let x and
y be the world variables that do not occur in this proof.

Now we start a new proof commencing it with the assumption that ¬ A
(below, to make the proof more transparent, we will scorn the rigorous presen-
tation of PLTLND proof, writing metaformulae instead of the PLTL formulae
which can be justified based upon Proposition 1):

1. x : ¬ A assumption
2. x : ♦¬A 1,¬ transformation
3. x � y 2,♦el, �→ y, y �→ x
4. y : ¬A 2,♦el

At this stage we are coming back to the proof of A noticing that at the last step
of this proof we have a formula z : A (recall that z �= x �= y). In this proof of A
we do the following: change every occurrence of z to y. Obviously, we still have
a proof for A. Take this newly generated proof (say it has n steps) and write it
continuing steps 1-4 of the proof above. Thus, we obtain

1. x : ¬ A assumption
2. x : ♦¬A 1,¬
3. x � y 2,♦el, �→ y, y �→ x
4. y : ¬A 2,♦el

5. (first formula of the proof for A)
. . .
. . .
. . .
n+ 5. y : A (last formula of the proof for A)

Hence we have a contradiction, steps 4 and n+5, which enables us to apply the
¬in rule to obtain ¬¬ A at step n+6 and discard formulae from 1 to n, and
to derive A at the next step.

1. x : ¬ A assumption
2. x : ♦¬A 1,¬
3. x � y 2,♦el, �→ y, y �→ x
4. y : ¬A 2,♦el

5. (first formula of the proof for A)
. . .
. . .
. . .
n+ 5. y : A (last formula of the proof for A)
n+ 6. ¬¬ A 4, n+ 5,¬in, [1− (n+ 5)]
n+ 7. A ¬el, n+ 6

Since steps from 5 to n + 5 satisfy the conditions of the PLTLND proof (for
A) and steps 1-4, n + 6 satisfy these conditions in the proof above, the whole
sequence of formulae from 1 to n+7 represents a proof for A. (End)

Natural Deduction Calculus for Linear-Time Temporal Logic 67

Lemma 5. If A⇒ B and A have PLTLND proofs then B also has an PLTLND

proof.

Proof. Let the proofs for A⇒ B and A have n and m steps respectively. Since
both are PLTLND proofs we can rewrite these proofs such that they would have
completely different sets of the world labels. Let the last formula of the proof
for A⇒ B be x : A⇒ B. We commence constructing the PLTLND proof for B
as follows:

1. (first formula of the proof for A⇒ B)
. . .
. . .
. . .
n. x : A⇒ B (last formula of the proof for A⇒ B)

Now we can change to x the label that occurs at the last step of the proof for A
and continue the construction of the proof for B as follows.

n+ 1. (first formula of the proof for A)
. . .
. . .
. . .
n+m. x : A (last formula of the proof for A)
n+m+ 1. x : B n, n+m,⇒el

It is easy to establish that this proof, by its construction, satisfies the criteria
for the proof. (End)

Now we are ready to prove the completeness of PLTLND.

Theorem 2 (PLTLND Completeness). For any PLTLND formula, A, if
|=ND A then there exists a PLTLND proof of A.

Proof. Consider an arbitrarily chosen theorem, A, of PLTL. By induction on n,
the length of the axiomatic proof for A, we now show that A also has a PLTLND

proof.
Base Case. n = 1. In this case A is one of the schemes of the PLTL axiomat-

ics, and thus, the base case follows from Lemma 3.
Induction step. If Theorem 2 is correct for the proof of the length m, (1 ≤

m ≤ n) then it is correct for the proof of the length m+ 1.
Here the formula at the step m + 1 is either an axiom or is obtained from

some previous formulae either by generalisation or the modus ponens rules. The
proof for these cases follows from Lemma 4 and Lemma 5 respectively.

Therefore, given that A has an axiomatic proof it also has a PLTLND proof.
(End)

5 Discussion

We have presented a natural deduction system for propositional linear time
temporal logic and established its correctness. To the best of our knowledge,

68 A. Bolotov et al.

there is only one other ND construction, in [11] for the full PLTL which is based
upon the developments in [15]. In Marchignoli’s construction, many rules such
as ∨el,⇒in,¬in and rules for U , are formulated in so called ‘indirect’ fashion,
i.e. they allow us to transform some given proofs. From our point of view, these
rules are much more complex than the rules in our system, and thus would be
more difficult for developing a proof-searching procedure.

Although a proof-searching technique for this novel construction is still an
open, and far from being trivial, problem, we expect to incorporate many of the
methods previously defined for classical propositional and first-order logics.

The study of complexity of the method for both classical and temporal frame-
work, in turn, is another component of future research as well as the extension
of the approach to capture the branching-time framework.

References

1. L. Bachmair and H. Ganzinger. A theory of resolution. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 2. Elsevier, 2001.

2. A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov, and V. Shangin. Let Com-
puter Prove It. Logic and Computer. Nauka, Moscow, 2004. (In Russian).

3. A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order
natural deduction. In Proceedings of IICAI, pages 1292–1311, 2005.

4. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions
on Computational Logic (TOCL), 1(2):12–56, 2001.

5. F. Fitch. Symbolic Logic. NY: Roland Press, 1952.
6. M. Fitting. First-Order Logic and Automated Theorem-Proving. Springer-Verlag,

Berlin, 1996.
7. D. Gabbay, A. Phueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.

In Proceedings of 7th ACM Symposium on Principles of Programming Languages,
pages 163–173, Las Vegas, Nevada, 1980.

8. G. Gentzen. Investigation into logical deduction. In The Collected Papers of
Gerhard Gentzen, pages 68–131. Amsterdam: North-Holland, 1969.

9. S. Jaskowski. On the rules of suppositions in formal logic. In Polish Logic 1920-
1939, pages 232–258. Oxford University Press, 1967.

10. V. Makarov. Automatic theorem-proving in intuitionistic propositional logic. In
Modern Logic: Theory, History and Applications. Proceedings of the 5th Russian
Conference, StPetersburg, 1998. (In Russian).

11. D. Marchignoli. Natural Deduction Systems for Temporal Logic. PhD thesis, De-
partment of Informatics, Unviersity of Pisa, 2002.

12. F. Pfenning. Logical frameworks. In J. A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, chapter XXI, pages 1063–1147. Elsevier, 2001.

13. J. Polakow and F. Pfenning. Natural deduction for intuitionistic non-commutative
linear logic. In Proceedings of the 4th International Conference on Typed Lambda
Calculi and Applications (TLCA’99), Springer-Verlag LNCS, 1581, L’Aquila, Italy,
April 1999.

14. W. Quine. On natural deduction. Journal of Symbolic Logic, 15:93–102, 1950.
15. A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD

thesis, College of Science and Engineering, School of Informatics, University of
Edinburgh, 1994.

16. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

A STIT-Extension of ATL

Jan Broersen1, Andreas Herzig2, and Nicolas Troquard2

1 Department of Information and Computing Sciences, Utrecht University
2 Institut de Recherche en Informatique de Toulouse

Abstract. A problem in many formalisms for reasoning about multi-agent sys-
tems, like ATL or PDL, is the inability to express that a certain complex action
(as in PDL), choice or strategy (as in ATL) is performed by an agent. However, in
so called STIT-logics, this is exactly the main operator: seeing to it that a certain
condition is achieved. Here we present an extension of ATL, introducing ideas
from STIT-theory, that can express that a group of agents A perform a certain
strategy. As a demonstration of the applicability of the formalism, we show how
it sheds new light on the problem of modelling ‘uniform strategies’ in epistemic
versions of ATL.

1 Introduction

The present paper introduces a so called ‘strategic STIT-operator’ in the framework of
ATL [1, 2]. For those unfamiliar with the STIT-framework: the characters ‘STIT’ are
an acronym for ‘seeing to it that’. STIT logics [3, 4, 5] originate in philosophy, and can
be described as endogenous logics of agency, that is, logics of agentive action where
actions are not made explicit in the object language. To be more precise, expressions
[A stit :] of STIT-logic stand for ‘agents A see to it that ’, where is a (possibly)
temporal formula. The main virtue of STIT logics is that, unlike most (if not all) other
logical formalisms, they can express that a choice or action is actually performed /
taken / executed by an agent. The aim of the present paper is thus to add this type of
expressivity to the ATL-framework. But not only do we want to add the standard STIT
expressivity, we intend to define a strategic version of STIT as an addition to ATL. This
enables us to express what it means that a group of agents performs / takes / executes a
certain strategy. ATL itself can only talk about the existence or ‘availability’ of certain
strategies, not that they are actually being performed.

We consider the definition of a semantics for a strategic version of STIT within the
ATL-framework as the main contribution of this paper. Indeed, within the community
working on the STIT framework of Belnap [3, 4, 5] and Horty [6], it is perceived as
an open problem how to define a suitable notion of strategic STIT. As a corollary the
semantics shows how we can make the implicit quantifications in the semantics of the
ATL operators explicit in the object language: the two central ATL operators will each
be decomposed into a strategy quantifier and a strategic STIT operator. To demonstrate
the applicability of the formalism, in section 4 we will discuss an extension with epis-
temic notions, and discuss the problem of ‘uniform strategies’. This has also been the
subject of [7], but section 4 adds in some new insights. Also the present paper differs

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 69–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

70 J. Broersen, A. Herzig, and N. Troquard

from [7] in that we introduce epistemic notions in a STIT-extension of the ATL frame-
work, whereas [7] introduces epistemic notions in the STIT framework. Furthermore,
here we deal with general strategies, where [7] only deals with one-step strategies.

Central to our approach will be to evaluate ATL-STIT formulas with respect to strat-
egy / state pairs. Tinkering with the units of evaluation has been suggested before in
the literature on ATL and STIT. Horty [6] indeed already suggests it to define a no-
tion of strategic STIT. Although Horty suggests two possible approaches, he circum-
vents the problem of actually giving definitions for the strategic STIT by syntactically
disallowing this operator to occur without an attached operator quantifying over his-
tories. Müller [8] suggests evaluation with respect to strategies to deal with the notion
of continuous action within the STIT framework, and Jamroga and gnotes [9] suggest
to evaluate with respect to sets of worlds to solve the problem of uniform strategies in
epistemic ATL. We will discuss these related approaches in more detail in section 5.

In earlier work [10] we investigated the similarities between the ATL and STIT
frameworks. The present paper is a demonstration of our opinion that there can be
a fruitful exchange of techniques and ideas between both frameworks. The idea for
investigating strategic versions of STIT operators originates from Belnap (Horty [6]
mentions an unpublished manuscript) and Horty. Here we show how we can success-
fully define this concept in the ATL setting. An ensuing next step would then be to
transfer these ideas back to the STIT framework.

2 The Meaning of ‘Agents a Performing a Strategy’

First we need to explain that we think that ‘strategy’ seems not the best term for the
moment-to-action-functions defined in this paper. We feel it would be more in line with
established general AI terminology to call them ‘tactics’ or ‘conditional plans’. Strate-
gies are usually associated with choices for more abstract (sub-)goals, while tactics are
indeed more concrete (conditional) plans for reaching these goals. Yet, to adhere to es-
tablished terminology in both STIT theory and ATL, we will also refer to the conditional
plans as ‘strategies’.

An important conceptual first question is then what it exactly means to say that ’a
group is performing a strategy’. Is whether or not ‘a group is performing a strategy’
actually a sensible concept amenable to logical truth? For instance, in what sense can
it be true that ‘agent j, who is still at home, presently performs the strategy of going to
the railway station’? A strong intuition is that performing an action / choice is a local
matter concerning the present. The problem then seems to be that at any future point j
may reconsider his strategy. Half way to the railway station he may decide to go to the
cafe and have a beer instead. So how could we ever say that an agent is performing a
certain strategy presently if at any future point he may decide to deviate from it? Is it
not that all we can say is that an agent is committed to a certain strategy, thereby leaving
room for the possibility that an agent reconsiders his strategy?

Our answer is that the notion of commitment to a strategy actually presupposes a
notion of performing a strategy. How can we say that an agent is committed to go-
ing to the railway station (which, one way or the other, expresses a certain preference
for some strategies over others) if we cannot say what it means for the agent to actually

A STIT-Extension of ATL 71

perform going to the railway station? The same holds for strategic contents of epistemic
notions. For instance, if we want to say that we belief that agent A performs a certain
strategy, than first we have to know what it means that A performs a strategy. So, if we
do not accept ‘agent A is performing a strategy for ’ as a meaningful proposition, we
cannot accept ‘agent A is committed to performing a strategy for ’ and ‘agent B be-
liefs that agent A is performing a strategy for ’ as meaningful propositions either. The
conclusion then is that although it is maybe strange to think about the truth of propo-
sitions talking about performance of strategies as such, it is not at all strange to reason
with these propositions within the scope of motivational and epistemic modalities. Hu-
man agents do this all the time. Presently we are committed to performing the strategy
to finish writing this paper (in time), which presupposes that we know what it means
to actually perform this strategy. Also, we believe that president Bush is performing a
strategy of world destruction, which presupposes that it is clear what it means to be
performing such a strategy. So the notion of performing a strategy is not inherently
problematic. We reason with the notion all the time, and the present proposal defines a
semantics for it.

3 ATL-STIT

We present a STIT extension of ATL ([1, 2]) using a non-standard, but concise and
intuitive syntax and semantics.

3.1 Core Syntax, Abbreviations and Intended Meanings

Definition 1. Well-formed formulas of the temporal language ATL-STIT are defined by:

: p A A [A] A
: Uee

where represent arbitrary well-formed formulas, represent temporal
path formulas, the p are elements from an infinite set of propositional symbols , and
A is a subset of a finite set of agent names E (we define A de f E A). We use the su-
perscript ‘ee’ for the until operator to denote that this is the version of ‘the until’ where

is not required to hold for the present, nor for the point where , i.e., the present and
the point where are both excluded. The operators A and A are universal and ex-
istential quantifiers over strategies, respectively. The STIT operators [A] and A are
read as ‘agents A strategically see to it that ’ and ‘agents A strategically allow the pos-
sibility for ’, respectively. The combined operator A[A] is read as ‘Agents A have a
strategy that ensures ’ (this is the ‘classical’ ATL operator, usually written as A),
and the dual A A is read as ‘A have no strategy to avoid that possibly ’. A more
precise explanation of the intended semantics is as follows:

A : there is a strategy (for the set of agents A, from the current state) such that
A : for all strategies (of the set of agents A, from the current state)

The intended interpretations for the new strategic STIT operators are:

72 J. Broersen, A. Herzig, and N. Troquard

[A](Uee) : agents A perform a strategy that, whatever strategy is taken by
agentsA ensures that eventually, at some point m, the condition
will hold, while holds from the next moment until the moment
before m

A (Uee) : Agents A perform a strategy giving agents A the possibility to
perform a strategy such that eventually, at some point m, the
condition will hold, while holds from the next moment until the
moment before m

We use standard propositional abbreviations, and also define the following operators as
abbreviations.

Definition 2.

[A]X de f [A](Uee) A X de f A (Uee)
[A]F de f [A](Uee) A F de f A (Uee)
[A]G de f A F A G de f [A]F
[A](Ue) de f [A](Uee()) A (Ue) de f A (Uee())
[A](Ue

w) de f A (Ue) A (Ue
w) de f [A](Ue)

The informal meanings of the formulas are as follows (the informal meanings in com-
bination with the A operator follow trivially):

[A]X : agents A strategically ensure that at any next moment will hold
[A]F : agents A strategically ensure that eventually will hold
[A]G : agents A strategically ensure that holds henceforth
[A](Ue) : agents A strategically ensure that, eventually, at some point the

condition will hold, while holds from the next moment until then
[A](Ue

w) : agents A strategically ensure that, if eventually will hold, then
holds from the next moment until then, or forever otherwise

Note that all STIT formulas refer strictly to the future. Also, for instance, a formula
like [A]G saying that holds henceforth, does not imply that holds now.

Alternatively, we could have taken [A] Ue and [A]G as the basic operators of
our langauge, which would enable us to define A Ue in terms of them. A similar
choice appears for the definition of related logics like ATL and CTL. However, we
prefer the symmetry of the present setup, and we think the semantics of the new weak
STIT operator A Uee deserves a definition in terms of truth conditions.

3.2 Model Theoretic Semantics

We use alternating transition systems (ATSs) for the semantics. Goranko and Jamroga
[11] argue that to define the semantics of ATL, multi-player game models (MGMs)
provide more intuitive semantic representations in many examples. However, ATSs are
closer to the models used for STIT logics. And actually we do not fully agree that
ATSs are better than MGMs as semantic structures for ATL. We believe it is better not

A STIT-Extension of ATL 73

to decorate semantic structures with superfluous information. For instance, in MGMs
the actions have explicit names. However ATL is an endogenous temporal formalism
where the strategies (which can be seen as conditional plans) are not explicit in the
object language. So, ATL is not, so to say, ‘aware’ of the actions names. We will come
back to this point in section 4.2.

The assumption behind ATSs is that agents have choices, such that the non-
determinism of each choice is only due to the choices other agents have at the same
moment. Thus, the simultaneous choice of al agents together, always brings the system
to a unique follow-up state. In other words, if an agent would know what the choices of
other agents would be, given his own choice, he would know exactly in which state he
arrives.

Definition 3. An ATS (S), consists of a non-empty set S of states, a total
function : E S 22S

yielding for each agent and each state a set of choices
(informally: ‘actions’) under the condition that the intersection of each combination
of choices for separate agents gives a unique next system state (i.e., for each s, the
function RX(s)

a E
Cha Cha (a s) yields a non-empty set of singleton sets

representing the possible follow-up states of s), and, finally, an interpretation function
for propositional atoms.

Note that from the condition on the function it follows that the choices for each
individual agent at a certain moment in time are a partitioning of the set of all choices
possible for the total system of agents, as embodied by the relation sys (s s)
s S and s RX(s) . And, also note that this latter condition does not entail the
former. That is, there can be partitions of the choices for the total system that do not
correspond to the choices of some agent in the system. Now we are ready to define
strategies relative to ATSs.

Definition 4. Given an ATS, a strategy a for an agent a, is a function a : S 2S

with s S : a(s) (a s), assigning choices of the agent a to states of the ATS.

In semantics for ATL, strategies are often defined as mappings a : S 2S , from
finite sequences of states to choices in the final state of a sequence. However, to interpret
ATL, this is not necessary, because ATL is not expressive enough to recognize by which
sequence of previous states a certain state is reached (but ATL* is). More in particular,
without affecting truth of any ATL formula, we can always transform an ATS into one
where sys is tree-like. On tree structures it is clear right away that a mapping from
states to choices in that state suffices, since any state can only be reached by the actions
leading to it. We come back to this point in section 4.

Definition 5. Strategy functions a for individual agents a are straightforwardly com-
bined to system strategy functions E : S E 2S for the full set of agents E. Then

E(s a) yields the choice of agent a in state s determined by the system strategy E.
However, central to our semantics will be partial strategy functions A : S E 2S ,
where A E. These functions are partial in the sense that no choices are defined for
the agents A. For B A we use the notation A B to denote the partial strategy function
that is the restriction of the partial strategy function A to the domain of agents B (note

74 J. Broersen, A. Herzig, and N. Troquard

that A A A). Furthermore, for A B , we use A B to denote the minimal
joined partial strategy function build from A and B such that (A B) A A and
(A B) B B.

As said, if in a given state all agents in the system have fixed their choice, a unique next
state is determined by the intersection of all choices. Analogously, if all agents in the
system have fixed a strategy, from any given point, a unique infinite path into the future
is determined by the intersection of all choices in the strategies. We use this in the next
definition.

Definition 6. Given a system strategy E, we define the follow up function F E : S S
as the intersection of all choices for individual agents, that is, F E (s)

a E
E(s a).

Then, by (F E)n(s) we denote the unique state that results from state s by taking n steps
of the system strategy E

Now we are ready to define the formal semantics of the language ATL-STIT. The
essential new aspect of this semantics is that it evaluates formulas with respect to strat-
egy / state pairs. For a given fixed ATS, the set of all possible strategies for any group
of agents A is well defined. So technically there is no problem with evaluation against
strategy / state pairs. The pairs of an ATS form a two-dimensional modal structure, with
group strategies and (impersonal) moments constituting the two ‘axis’. As is customary
for multi-dimensional possible world structures, we have modal operators interpreted
on individual dimensions only: the strategy quantification operators A and A are
interpreted on the dimension of strategies, relative to a fixed moment, and the temporal
STIT operators [A] Uee and A Uee are interpreted on the moments, relative to a
fixed strategy.

But then the question remains: why should we want to evaluate against strategy /
state pairs? It is clear that we want to give semantics to the strategic STIT operators.
Truth of such operators cannot be determined with respect to states or moments alone,
since in general, at the same moment, agents have a choice between several strategies.
If we really want to give meaning to an operator that enables us to express that it is
true that an agent, or group of agents performs a strategy, we have to take the possible
strategies as units of evaluation. Then, with group strategies as abstract possible worlds,
through evaluation in such worlds we can determine whether or not it is true that a group
of agents strategically see to something.

Definition 7. Validity A s , of an ATL-STIT-formula in a strategy / state pair
(A s) of an ATS (S) is defined as:

A s p s (p)
A s not A s
A s A s and A s
A s B B such that B s
A s B B it holds that B s
A s [B] Uee

A B it holds that n 0 such that
(1) A (F E)n(s) and
(2) i with 0 i n we have A (F E)i(s)
where E is defined as: E A A B A B

A STIT-Extension of ATL 75

A s B Uee
A B and n 0 such that

(1) A (F E)n(s) and
(2) i with 0 i n we have A (F E)i(s)
where E is defined as: E A A B A B

Validity on an ATS is defined as validity in all strategy / state pairs of the ATS. If
is valid on an ATS , we say that is a model for . General validity of a formula
is defined as validity on all possible ATSs. The logic ATL-STIT is the subset of all

general validities of ATL-STIT over the class of ATSs.

Note that due to the constraints on ATSs, if an atomic proposition is evaluated true
on a strategy / state pair, all strategy / state pairs with the same state, will also have to
evaluate to true, because for atomic propositions assignment of truth values is indepen-
dent of the strategy. In Horty and Belnap’s STIT formalisms atomic propositions can
have different valuations at the same moment, depending on what history they are. In
our setting, only formulas referring strictly to the future can evaluate to different values
for the same moment, depending on the strategy with respect to which they are evalu-
ated. We might say that in Horty’s formalisms choices may affect the present, while our
choices may only affect the strict future (both frameworks assume it makes no sense to
account for choices affecting the past).

The most important aspect of the above definition is the truth condition for the STIT
operators. Note that we evaluate the STIT operator [B] for a group of agents B with
respect to a strategy for another group A. The truth condition expresses exactly in what
sense the group B may see to it that in a strategy of group A, namely, exactly if is
guaranteed by the agents in the intersection of both groups. This exploits the intuition
that if a subgroup of agents sees to it that , all supergroups also see to it that . Now
we show that ATL is a fragment of the logic ATL-STIT.

Theorem 1. The logic ATL is the fragment of the logic ATL-STIT determined by the
definitions A de f A[A] and [[A]] de f A A .

Proof. We show that for this fragment, the valuation of formulas becomes ‘moment
determinate’, that is, for all strategy / state pairs with the same state (moment), they
evaluate to the same truth value (see Horty [6] for further explanation of this termi-
nology). First note that the truth condition for the combined (‘fused’, as Horty calls it)
operator A[A] , reduces to the following moment determinate truth condition.

A s A[A] Uee
A such that A it holds that n 0 such that

(1) A (F A A
)n(s) and

(2) i with 0 i n we have A (F A A
)i(s)

This truth condition is completely independent of the strategy A. For similar reasons
the truth condition for the combined operator A A is moment determinate. Now no-
tice that also all other formulas of the sub-language determined by A de f A[A]
and [[A]] de f A A are moment determinate. This means the quantification over all
strategy / state pairs in the definition of validity gives the same result when performed
only with respect to all states (moments). It is not too difficult to see that we thus arrive
at a concise, but correct semantics for ATL.

76 J. Broersen, A. Herzig, and N. Troquard

Proposition 1. The logic of the operators A is S5 for every set A.

This is due to the fact that S5 is sound and complete for equivalence classes. The ac-
cessability relation for the modal operator A is the relation connection alternative A
strategies. For any given model the ‘alternative relation’ forms a fixed equivalence class.
As a consequence we have validities such as

[A] A[A]

saying that if agents A strategically see to it that , indeed they have the ability to do so,
and

A A A

saying that if for all strategies it is the case that agents A may encounter , they cur-
rently perform a strategy where they possibly encounter . It also follows that nesting of
operators A and A is not meaningful, since it is well-known that nested S5 formulas
can be replaced by logically equivalent non-nested formulas.

Proposition 2. The operators A obey the interaction axioms:

A B A

A B A

Below we list only a few more validities. Possible complete axiomatizations for the
present logic are still under investigation.

Proposition 3. Additionally, we have the following validities and non-validities.

[A] [B] for A B
A B for A B

[A]X [B]X [A B]X()
A B X() A X B X

Note that for the third validity, we do not need the condition of sets A and B being
disjoint, as in the axiomatizations of CL [12] and ATL.

4 Epistemic ATL-STIT

As a demonstration of the applicability of the formalism, we extend it with epistemic
modalities. We interpret the epistemic modalities using epistemic indistinguishability
relations over over strategy / state pairs. The resulting fine-grained epistemic structures
enable us to shed new light on the problem of so called ‘uniform strategies’.

4.1 Basic Definitions

First we extend the language of ATL-STIT with an operator Ka for agent a knows ,
an operator EA for agents A all know that , an operator DA for agents A would know
that if they would exchange all their knowledge, and an operator CA for agents A
commonly know that .

A STIT-Extension of ATL 77

Definition 8. Well-formed formulas of the temporal language E-ATL-STIT are defined
by:

: p Ka EA DA CA A A [A] A
: Uee

To accommodate epistemic reasoning, we want to define S5 indistinguishability rela-
tions over the units of evaluation, that is, strategy / state pairs. However, we have to
be careful. As pointed out before, in for instance [13], adding epistemic indistinguisha-
bility relations to arbitrary ATSs leaves room for ambiguity: in particular, what is the
epistemic status of an action leading from one state to another one that is epistemically
indistinguishable? Should we interpret this as the agents not being able to recall the
action? Or do they recall the action, but only do not know the resulting and originating
state? To avoid this ambiguity, we can better add epistemic relations to ATSs that are
trees.

Definition 9. An ATS (S) is an ATS where the function is such that the
system relation sys is a tree.

Now note that on the subclass of tree-ATSs, the definitions of section 3.2 result in
exactly the same logic ATL-STIT. This is because any ordinary ATS can be unravelled
into a tree-ATS that is modally indistinguishable.

Now we can add the epistemic indistinguishability relations for separate agents. This
results in a most general setup for the semantics of E-ATL-STIT, where beforehand
nothing is determined about whether agents recall their actions or not: if there is an
epistemic indistinguishability relation between two subsequent states of a fixed strategy,
the agents cannot recall having done that action, but if there is not such a relation, they
can.

Definition 10. We extend models (S) to models (S A). The
relation a for individual agents a is an equivalence relation over strategy / state pairs
(A s).

We can define any of the multi-agent versions of knowledge, that is, distributed (or
implicit) knowledge, shared knowledge (everybody knows) and common knowledge
(reflexive transitive closure of shared knowledge), in terms of the indistinguishabil-
ity relations over strategy / state pairs for the individual agents. In the standard way,
we extend the truth definitions with the following clauses for the (group) knowledge
operators.

Definition 11.

A s Ka (B t) with (A s) a(B t) it holds that B t
A s EA (B t) with (A s)(

a A
a)(B t) it holds that B t

A s DA (B t) with (A s)(
a A

a)(B t) it holds that B t

A s CA (B t) with (A s)((
a A

a))(B t) it holds that B t

78 J. Broersen, A. Herzig, and N. Troquard

The above proposal for adding the epistemic dimension is very general. Clearly it results
in an S5 logic for individual agent knowledge, while leaving the sub-logic of ATL-STIT
in tact. Of course several intuitive extra relational properties can be considered, leading
to specific interaction properties. However, for our discussion on uniform strategies,
below, the definitions suffice.

4.2 The Problem of Uniform Strategies

The most discussed problem for epistemic additions to ATL discussed in the literature
(ATEL [14]), is the problem of so called ‘uniform strategies’. We briefly recall the
problem by means of the cards example from [13] (which we slightly adapt). There
is a deck of three cards, A, K and Q. There is a somewhat unconventional order on
these cards, where A beats K, K beats Q, but Q beats A. Now consider two gambling
agents a and b who each get a card from the dealer. Before a showdown occurs, agent
a is given the choice to swap his card with the one remaining on the dealers deck.
Apparently due to the incompleteness of his knowledge a does not know a winning
strategy. He does not know the card still in the deck, but depending on what this card
is, he either has to swap or not in order to win. Structures of ATEL equip ATSs with
epistemic indistinguishability relations between states (moments). Now it is perceived
as counterintuitive that in the ATEL structures we can draw for this little game, at the
moment corresponding to the decision point of agent a, it is true that Ka a win. This
holds since the agent cannot distinguish the state where he has the winning card from
the state where he has the loosing card, but whichever state he is in, it has a guaranteed
possibility to win if it chooses the right strategy in the right state. However, the truth
of this formula is perceived as counterintuitive since one is tempted to believe that it
expresses that a has a single ‘uniform strategy’ for winning, that is, a strategy that
guarantees a win irrespective of the state the agent is in.

But it appears to us that if we stay faithful to the intended meaning of the opera-
tors involved, the formula is not counterintuitive: it exactly expresses what is the case,
namely that agent a knows that there is a strategy to win. Indeed that does not imply
that he knows what strategy to apply, which, in this case, is exactly the only reason
why he cannot ensure the win. So, the problem appears to be that one is tempted to
read something in the formula that is not there, namely, that the agent knows a uniform
strategy for winning. Maybe the present formalism, that decomposes the standard ATL
operators in two separate modal operators, enables us to see that more clearly.

However, an ensuing problem is that one indeed would like to have a way of express-
ing that an agent, or group of agents does not know what the current state is, while at
the same time they do know (or do not know) how to win. In the above example, the
agent a did not know how to win. We would like to have a formula corresponding to
that fact. In ATEL [14] we cannot express that. But the present formalism, with its more
fine grained epistemic structures, enables us to express this directly as aKa[a]win,
that is, a has no single strategy for which he knows he is guaranteed to win. We can-
not find an equivalent formula in ATEL, because ATEL’s semantic structures are not
fine-grained enough in two respects. First, because in ATEL, evaluation is only with
respect to states, it cannot give semantics to the decomposition of the ATL operator

A into A[A] , and second, because epistemic indistinguishability relations are

A STIT-Extension of ATL 79

defined over states, it cannot give semantics to the notion of an agent knowing a strat-
egy.

Then the question is, does this solve the problem of so called ‘uniform strategies’
as formulated in the literature? That depends on how one looks at it. Actually it is not
completely clear to us what in the context of ATSs, should be understood by a ‘uni-
form strategy’. The notion of ‘uniform strategy’ comes from game theory [15]. But
game theory is different from logic in that it studies the properties of game structures as
such, that is, independent of a logical language like ATL to be interpreted over them. In
game structures the choices have action names. ATL, and also STIT-ATL are endoge-
nous temporal formalisms that cannot express anything related to the action names of
game structures. And in particular those action names have been associated to the no-
tion of ‘uniform strategies’. Uniform strategies have been described as strategies where
the ’same actions’ are performed from different states to ensure a certain property. If
actions have names, the same actions can be defined as actions having corresponding
names. The present proposal does not solve the problem of uniform strategies inter-
preted in this sense. We believe, solutions would require an exogenous language, where
in one way or the other there is reference to the names of actions in the object lan-
guage. However, in a weaker sense the present proposal does solve the problem. In
ATSs actions are identified with what they bring about. Then, typically, single strate-
gies take different actions from different states. And it is also the other way around:
taking two different strategies in two different states may mean that one performs the
same actions. Now, if ‘knowing a uniform strategy for , without possibly knowing the
current state’ is defined as ’knowingly seeing to it that , without possibly knowing
the current state’, the present proposal does offer a solution to the problem of uniform
strategies.

Generalizing the idea in [7] we can express that there is an A-strategy, where the
agents A commonly know that they ensure as:

ACA[A]

Agents A commonly knowing the existence of a strategy (without knowing whether
they actually perform the strategy) is expressed as:

CA A[A]

Note that in the first of the above formulas, for the concept of ‘a group of agents
A knowingly performing a strategy’, we used that the agents have common knowledge
that they perform the strategy. We thus defined this concept as CA[A] . In our opinion
distributed knowledge or shared knowledge is not enough. For instance, me and a friend
can only knowingly follow a strategy of meeting in Paris someday if I know that he
knows, and I know that he knows that I know, etc.

5 Related Research

Horty ([6] p. 151) explains that it is not that easy to generalize the standard STIT frame-
work where evaluation is with respect to moment / history pairs, to the strategic case.

80 J. Broersen, A. Herzig, and N. Troquard

In general, more than one strategy may be compatible with the same moment / history
pair. Horty’s first suggestion is then to implicitly quantify over all strategies that cor-
respond to a given moment / history pair. His second suggestion is much closer to the
solution proposed in this paper (note that here we assume the close relatedness between
the STIT-framework and the ATL-framework we explored in [10]). Horty suggests to
evaluate formulas with respect to ‘state / history / history-set’ triples (where the history
is an element of the history-set), and to define the semantics of his strategic STIT oper-
ator [A cstit :] (agents A strategically see to it that) as there being a strategy , such
that the history-set equals the histories admitted by the strategy, and being true on
all these histories. Our proposal differs from this proposal on three points. First, for the
present ATL-setting we do not see the need to include the history in the units for evalu-
ation. Second, we think it is better to simply see the strategies themselves as part of the
units of evaluation. We explicitly need this in our discussion of uniform strategies in
section 4.2. Finally, we believe Horty’s definition fails to model the important property
that if a set of agents sees to something, any superset also sees to that same something.
This property follows from our definition as the result of taking the intersections in the
truth conditions for [A] and A .

Using ideas similar to ours Müller [8] defines a semantics for the notion of ‘contin-
uous action’ in the STIT framework. Like us, Müller suggests to take up strategies as
elements in the units over which to evaluate formulas. To be more precise, Müller eval-
uates with respect to ‘context-state / state / history / strategy’ quadruples. His notion
of ISTIT (is seeing to it that), is then defined, roughly, as truth on all histories admit-
ted by the strategy. Although the idea to take up strategies in the units of evaluation
is similar, other aspects of the approach are quite different. That is not too surprising,
since Müller’s aim is an ISTIT operator, while we aim at a strategic STIT operator. Also
Müller does not aim at defining a multi-agent variant of his operator. More in particular,
his strategies are always single agent strategies. In our setting, the problem of dealing
with multi-agent strategies is central.

Finally, also Jamroga and gnotes [9] suggest to change the units of evaluation. Aim-
ing at solving the problem of uniform strategies in ATEL, they suggest to evaluate for-
mulas with respect to sets of states. However, their approach is much further removed
from our approach than Horty’s or Müller’s.

6 Conclusion

This paper extends ATL with strategic STIT operators. We argued that the evaluation
with respect to strategy / state pairs is essential for a logic that aims to reason about
decisions that are fixed for groups of agents. Here the decisions are to take a particular
strategy. Also we discussed the problem of uniform strategies, and explained how our
formalism can be seen as a partial answer to that problem.

There are many possible applications of this extended formalism. We discussed some
preliminary investigations in the epistemic realm. Another route of investigation is the
extension with deontic operators. One of the reasons STIT logics are popular in de-
ontic logic is that they are the best formalism around to model the fourth sentence
of Chisholm’s infamous benchmark scenario for deontic formalizations [16]. To add

A STIT-Extension of ATL 81

deontic expressivity, we may consider several options. For instance, Wansing [17] has
suggested to model personal obligations imposed by one agent onto the other by iden-
tifying this with ‘agent a sees to it that agent b is punished if he does not comply to
his obligations’. This approach can incorporated in the present framework very well.
Another option is simply to define a deontic accessibility relation over strategy / state
pairs, like we did for the epistemic indistinguishability relation.

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: FOCS ’97:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS
’97), IEEE Computer Society (1997) 100–109

2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49(5) (2002) 672–713

3. Belnap, N., Perloff, M.: Seeing to it that: A canonical form for agentives. Theoria 54 (1988)
175–199

4. Belnap, N., Perloff, M.: Seeing to it that: A canonical form for agentives. In Kyburg,
H.E., Loui, R.P., Carlson, G.N., eds.: Knowledge Representation and Defeasible Reasoning.
Kluwer, Boston (1990) 167–190

5. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents and choices in our indeterminist
world. Oxford University Press (2001)

6. Horty, J.: Agency and Deontic Logic. Oxford University Press (2001)
7. Herzig, A., Troquard, N.: Knowing How to Play: Uniform Choices in Logics of Agency.

In Weiss, G., Stone, P., eds.: 5th International Joint Conference on Autonomous Agents &
Multi Agent Systems (AAMAS-06), Hakodate, Japan, ACM Press (2006) 209–216

8. Müller, T.: On the formal structure of continuous action. In Schmidt, R., Pratt-Hartmann,
I., Reynolds, M., Wansing, H., eds.: Advances in Modal Logic. Volume 5., King’s College
Publications (2005) 191–209

9. Jamroga, W., gotnes, T.: Constructive knowledge: what agents can achieve under incomplete
information. Technical Report IfI-05-10, Institute of Computer Science, Clausthal University
of Technology, Clausthal-Zellerfeld (2005)

10. Broersen, J., Herzig, A., Troquard, N.: From coalition logic to stit. In: Proceedings LCMAS
2005. Electronic Notes in Theoretical Computer Science, Elsevier (2005)

11. Goranko, V., Jamroga, W.: Comparing semantics of logics for multi-agent systems. Synthese
139(2) (2004) 241–280

12. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation
12(1) (2002) 149–166

13. Jamroga, W., Hoek, W.v.d.: Agents that know how to play. Fundamenta Informaticae 63(2)
(2004)

14. Hoek, W.v.d., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time tempo-
ral epistemic logic and its applications. Studia Logica 75(1) (2003) 125–157

15. Neumann, J.v., Morgenstern, O.: Theory of games and economic behaviour. Princeton Uni-
versity Press (1944)

16. Chisholm, R.: Contrary-to-duty imperatives and deontic logic. Analysis 24 (1963) 33–36
17. Wansing, H.: Obligations, authorities, and history dependence. In Wansing, H., ed.: Essays

on Non-classical Logic. World Scientific (2001) 247–258

On the Logic and Computation of Partial Equilibrium
Models

Pedro Cabalar1, Sergei Odintsov2, David Pearce3, and Agustı́n Valverde4,�

1 Corunna University (Corunna, Spain)
cabalar@udc.es

2 Sobolev Institute of Mathematics (Novosibirsk, Russia)
odintsov@math.nsc.ru

3 Universidad Rey Juan Carlos (Madrid, Spain)
davidandrew.pearce@urjc.es
4 University of Málaga (Málaga, Spain)
a valverde@ctima.uma.es

Abstract. The nonmonotonic formalism of partial equilibrium logic (PEL) has
recently been proposed as a logical foundation for the partial stable and well-
founded semantics of logic programs [1, 2]. We study certain logical properties
of PEL and some techniques to compute partial equilibrium models.

1 Introduction

The well-founded semantics (WFS) of [16] and the closely related semantics of partial
stable models [12] are among the most established approaches to dealing with default
negation in logic programming. Until recently however their logical foundations re-
mained largely undeveloped. Now in [1, 2] a nonmonotonic formalism called partial
equilibrium logic has been proposed as a foundation for the partial stable (p-stable) and
well-founded semantics. The main idea is to identify a (non-model) logic that is ad-
equate for WFS in the sense that its minimal models (appropriately defined) coincide
with the p-stable models of a program. The logic in question is based on 6-valued truth
matrices and can be considered as a semantic generalisation of the logic HT of here-
and-there that has been used to capture the stable model semantics [8]; accordingly we
denote it by HT 2. Just as equilibrium models correspond to the stable models of pro-
grams, so partial equilibrium models correspond to the p-stable models defined in [12].
While the underlying models of HT and HT 2 are different, in each case the equilib-
rium construction is similar, based on defining certain total models that are minimal.

In previous work, [1, 2], partial equilibrium logic (PEL) was defined and the corre-
spondence between p-equilibrium and p-stable models was established. The logicHT 2

was axiomatised and completeness proved. Analogous to the case of equilibrium logic,
it was shown that the strong equivalence of theories wrt PEL can be captured by equiv-
alence in the logic HT 2. In addition, some properties of nonmonotonic entailment in
PEL and its complexity were studied as well as a method for reducing PEL to ordinary
equilibrium logic. The aim of this paper is to examine further logical and computational

� This research was partially supported by CICyT project TIC-2003-9001-C02.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 82–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Logic and Computation of Partial Equilibrium Models 83

issues associated with p-equilibrium models and their underlying logics: HT 2 and the
logic of total HT 2 models, which we denote by HT ∗. Specifically we provide a proof
theory for PEL by presenting tableau calculi for the logics HT and HT ∗ as well as
for p-equilibrium model checking. The calculus for HT 2 is of independent interest as
a means for checking the strong equivalence of theories. We also axiomatise the logic
HT ∗ and discuss its relation to other logics such as Przymusinski’s Prz3 [13]. Lastly
we consider the method of splitting a logic program, a familiar technique for optimising
computation under the stable model semantics [5, 3]. In particular we derive a splitting
theorem for disjunctive and nested logic programs under PEL.

2 Logical Preliminaries: The Logics HT 2 and PEL

We introduce the logic HT 2 and its semantics, given in terms of HT 2 frames, and we
define partial equilibrium logic (PEL) in terms of minimal HT 2 models. Formulas of
HT 2 are built-up in the usual way using atoms from a given propositional signatureAt
and the standard logical constants: ∧, ∨, →, ¬. We write L(At) to stand for the set of
all well-formed formulae (ie, the language) under signature At. A set ofHT 2 formulae
is called a theory. The axiomatic system forHT 2 is described in two stages. In the first
stage we include the following inference rules:

α, α→ β

β
(Modus Ponens)

α→ β

¬β → ¬α
plus the axiom schemata of positive logic together with:

A1. ¬α ∧ ¬β → ¬(α ∨ β) A2. ¬(α→ α)→ β A3. ¬(α ∧ β)→ ¬α ∨ ¬β

Thus, both De Morgan laws are provable in HT 2. Moreover, axiom A2 allows us to
define intuitionistic negation, ‘−’, in HT 2 as: −α := α→ ¬(p0 → p0).
In a second stage, we further include the rule α∨(β∧¬β)

α and the axioms schemata:

A4. −α ∨ −− α
A5. −α ∨ (α→ (β ∨ (β → (γ ∨ −γ))))
A6.

∧2
i=0((αi →

∨
j
=i αj)→

∨
j
=i αj)→

∨2
i=0 αi

A7. α→ ¬¬α
A8. α ∧ ¬α→ ¬β ∨ ¬¬β
A9. ¬α ∧ ¬(α→ β) → ¬¬α
A10. ¬¬α ∨ ¬¬β ∨ ¬(α→ β) ∨ ¬¬(α→ β)
A11. ¬¬α ∧ ¬¬β → (α→ β) ∨ (β → α)

HT 2 is determined by the above inference rules and the schemata A1-A11.

Definition 1. A (Routley) frame is a triple 〈W,≤, ∗〉, where W is a set, ≤ a partial
order on W and ∗ : W → W is such that x ≤ y iff y∗ ≤ x∗. A (Routley) model is
a Routley frame together with a valuation V ie. a function from At ×W −→ {0, 1}
satisfying (1): V (p, u) = 1 & u ≤ w ⇒ V (p, w) = 1.

84 P. Cabalar et al.

The valuation V is extended to all formulas via the usual rules for intuitionistic (Kripke)
frames for the positive connectives ∧, ∨, → where the latter is interpreted via the ≤
order:

V (ϕ→ ψ,w) = 1 iff for all w′ such that w ≤ w′, V (ϕ,w′) = 1⇒ V (ψ,w′) = 1

The main difference with respect to intuitionistic frames is the presence of the ∗
operator that is used for interpreting negation via the following condition:

V (¬ϕ,w) = 1 iff V (ϕ,w∗) = 0.

A proposition ϕ is said to be true in a modelM = 〈W,≤, ∗, V 〉, if V (ϕ, v) = 1, for all
v ∈ W . A formula ϕ is valid, in symbols |= ϕ, if it is true in every model. It is easy to
prove by induction that condition (1) in Definition 1 above holds for any formula ϕ, ie

V (ϕ, u) = 1 & u ≤ w ⇒ V (ϕ,w) = 1. (1)

Definition 2 (HT 2 model). An HT 2 model is a Routley model M = 〈W,≤, R, V 〉
such that (i) W comprises 4 worlds denoted by h, h′, t, t′, (ii) ≤ is a partial ordering
on W satisfying h ≤ t, h ≤ h′, h′ ≤ t′ and t ≤ t′, (iii) the ∗ operation is determined
by h∗ = t∗ = t′, (h′)∗ = (t′)∗ = t, (iv) V is a-valuation.

The diagram on the right depicts the ≤-ordering among worlds
t′��

����
��

�

t h′��

h

��(a strictly higher location means≥) and the action of the ∗- map-
ping using arrows.

Truth and validity for HT 2 models are defined analogously
to the previous case and from now on we let |= denote the truth
(validity) relation forHT 2 models. We have the following com-
pleteness theorem1:

Theorem 1 ([1]). |= ϕ iff ϕ is a theorem of HT 2.

2.1 HT 2 as a 6-Valued Logic

Now, consider anHT 2 modelM = 〈W,≤,∗ , V 〉 and let us denote byH,H ′, T, T ′ the
four sets of atoms respectively verified at each corresponding point or world h, h′, t, t′.
More succinctly, we can representM as the pair 〈H,T〉 so that we group each pair of
unprimed/primed world as H = (H,H ′) and T = (T, T ′). By construction, each of
these pairs I = (I, I ′) satisfies I ⊆ I ′, so that I can be seen as a 3-valued interpretation.
Given I and an atom p, we use the values {0, 1, 2} to respectively denote p ∈ I , p ∈
I ′ \ I and p �∈ I ′. As we have two pairs like this, 〈H,T〉, the possible “situations” of a
formula in HT 2 can be defined by a pair of values xy with x, y ∈ {0, 1, 2}. Condition
(1) restricts the number of these situations to the following six 00 := ∅, 01 :=
{t′}, 11 := {h′, t′}, 02 := {t, t′}, 12 := {h′, t, t′}, 22 := W where each set shows
the worlds at which the formula is satisfied. Thus, an alternative way of describingHT 2

is by providing its logical matrix in terms of a 6-valued logic. As a result, the above

1 The first stage alone defines a logic complete for the general Routley frames.

On the Logic and Computation of Partial Equilibrium Models 85

setting becomes an algebra of 6 cones:AHT 2
:= 〈{00, 01, 11, 02, 12, 22},∨,∧,→,¬〉

where ∨ and ∧ are set theoretical join and meet, whereas → and ¬ are defined as
follows: x→ y := {w : w ≤ w′ ⇒ (w′ ∈ x⇒ w′ ∈ y)}, ¬ x := {w : w∗ �∈ x}.

The only distinguished element is 22. The lattice structure of this algebra can be
described by the condition xy ≤ zt ⇔ x ≤ z & y ≤ t and is shown in Figure 1,
together with the resulting truth-tables.

22

12

���
� ���

�

11 02

01

���� ����

00

ϕ ¬ϕ

00 22
01 11
11 11
02 00
12 00
22 00

→ 00 01 11 02 12 22
00 22 22 22 22 22 22
01 00 22 22 22 22 22
11 00 02 22 02 22 22
02 00 11 11 22 22 22
12 00 01 11 02 22 22
22 00 01 11 02 12 22

V (φ ∧ ψ) = min{V (φ),V (ψ)}, V (φ ∨ ψ) = max{V (φ), V (ψ)}

Fig. 1. Lattice structure and truth tables for the 6-valued HT 2 description

2.2 Minimal Models and Relation to Logic Programs

The truth-ordering relation among 3-valued interpretations I1 ≤ I2 is defined so that I1
contains less true atoms and more false ones (wrt set inclusion) than I2. Note that by
the semantics, if 〈H,T〉 is a model then necessarily H ≤ T, since it is easy to check
that this condition is equivalent to H ⊆ T and H ′ ⊆ T ′. Moreover, for any theory Π
note that if 〈H,T〉 |= Π then also 〈T,T〉 |= Π .

The ordering ≤ is extended to a partial ordering � among models as follows. We
set 〈H1,T1〉 � 〈H2,T2〉 if (i) T1 = T2; (ii) H1 ≤ H2. A model 〈H,T〉 in which
H = T is said to be total. Note that the term total model does not refer to the absence of
undefined atoms. To represent this, we further say that a total partial equilibrium model
is complete if T has the form (T, T).

We are interested here in a special kind of minimal model that we call a partial
equilibrium (or p-equilibrium) model. LetΠ be a theory.

Definition 3 (Partial equilibrium model). A model M of Π is said to be a partial
equilibrium model of Π if (i) M is total; (ii) M is minimal among models of Π under
the ordering �.

In other words a p-equilibrium model of Π has the form 〈T,T〉 and is such that if
〈H,T〉 is any model of Π with H ≤ T, then H = T. We will sometimes use the
abbreviation T |≈Π to denote that 〈T,T〉 is a p-equilibirum model of theoryΠ . Partial
equilibrium logic (PEL) is the logic determined by truth in all p-equilibrium models of
a theory.

We turn to the relation between PEL and logic programs. A disjunctive logic program
is a set of formulas (also called rules) of the form

a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn → c1 ∨ . . . ∨ ck (2)

86 P. Cabalar et al.

where the a, b, c with subscripts range over atoms andm,n, k ≥ 0; for the definition of
the p-stable models of a disjunctive logic programΠ , see [12].

Theorem 2 ([2]). A totalHT 2 model 〈T,T〉 is a p-equilibrium model of a disjunctive
programΠ iff the 3-valued interpretation T is a p-stable model of Π .

We define a further partial ordering on total models by 〈T1,T1〉 � 〈T2,T2〉 if both
T1 ⊆ T2 and T ′

2 ⊆ T ′
1. Then we say that a total HT 2 model that is �-minimal among

the p-equilibrium models of a theory Γ is a well-founded model of Γ . This terminol-
ogy is justified by the fact that if Π is a normal logic program, the unique �-minimal
p-equilibrium model of Π coincides with the well-founded model of Π in the sense
of [16]. In the general case, however, an arbitrary PEL theory may have several well-
founded models, or even no well-founded model at all.

The notion of strong equivalence for logic programs was introduced in [6] and logi-
cally characterised for the case of programs under stable model semantics. The study of
strong equivalence, its generalisations and computation, has since become a lively re-
search area, with potential for application to program optimisation. Until now there was
no analogous research programme for p-stable and WF semantics. A basis is provided
however by Theorem 3 below and several extensions proved in [2].

Definition 4 ((strongly) equivalent theories). Two theories Π,Π ′ are said to be
(PEL)-equivalent or simply equivalent (resp. strongly equivalent), in symbols Π ≡ Π ′

(resp. Π ≡s Π
′), iff they have the same p-equilibrium models (resp. iff for any Γ ,

Π ∪ Γ ≡ Π ′ ∪ Γ).

Theorem 3 ([1]). Two theoriesΠ,Π ′ are strongly equivalent iff they areHT 2 equiva-
lent, ie have the same HT 2 models.

This provides added interest in computational proof systems forHT 2.

2.3 Complexity of Reasoning in HT 2 and PEL

We denote by SATCL and V ALCL the classes of satisfiable formulas and valid formu-
las respectively in classical logic, and SATHT 2 and V ALHT 2 the classes of satisfiable
formulas and valid formulas respectively in HT 2 logic.

Theorem 4 ([2]). (i) SATHT 2 is NP-complete and V ALHT 2 is coNP-complete; (ii)
the problem of deciding whether a formula in HT 2 has partial equilibrium models is
ΣP

2 -hard.

Corollary 1 ([2]). (i) The problem of checking the strong equivalence of theories is
coNP-complete. (ii) The decision problem for equilibrium entailment isΠP

2 -hard.

3 The Logic of Total Models

Total models play an important role in the definition of PEL since p-equilibrium models
are a special kind of total model. We describe the logic of total models.

On the Logic and Computation of Partial Equilibrium Models 87

First note that total models can be distinguished among all HT 2-models via the
scheme ¬¬ϕ→ ϕ. For an HT 2 modelM = 〈(H,H ′), (T, T ′)〉 = 〈WHT ∈

,V〉, set

ΔM
w := {ϕ : V (ϕ,w) = 1}

for w ∈ WHT 2
. Obviously,H ⊃ ΔM

h , H ′ ⊃ ΔM
h′ , etc. We omit the superscriptM if

it does not lead to confusion.

Proposition 1. The following items are equivalent:

1. 〈H,T〉 |= ¬¬ϕ→ ϕ for any ϕ,
2. H = T,
3. Δh = Δt andΔh′ = Δt′ .

Let us set HT ∗ := HT 2 + {¬¬p → p}. From the last proposition, it follows that
the number of possible situations of a formula in a total HT 2-model is reduced to the
following three, 00 := ∅, 11 := {h′, t′}, 22 := {h, h′, t, t′}, where each set shows
the worlds at which the formula is satisfied. Thus, logic HT ∗ can be characterised
by the three-element algebra: AHT ∗

:= 〈{00, 11, 22},∨,∧,→,¬〉 with the only dis-
tinguished element 22 and operations determined as the restrictions of the respective
operation of the algebra AHT 2

. It is routine to check that the set {00, 11, 22} is closed
underAHT 2

-operations.
At the same time,HT ∗ differs from Przymusinski’s logic Prz3 [13] as well as from

N3 [15, 10], classical explosive logic with strong negation. All these logics are three-
valued and the operations ∨ and ∧ determine the structure of a linearly ordered lattice
on the set of truth-values. If we denote the least truth-value in all these logics by 00,
the greatest by 22, and the intermediate by 11, we see that all the logics have the same
connectives ¬, ∨, ∧, but different implications:

→HT ∗ 00 11 22
00 22 22 22
11 00 22 22
22 00 11 22

→N3 00 11 22
00 22 22 22
11 22 22 22
22 00 11 22

→Prz3 00 11 22
00 22 22 22
11 00 22 22
22 00 00 22

ComparingHT ∗ and N3 we note the following

Proposition 2. HT ∗ � N3, ¬(p→ q) ↔ (p ∧ ¬q) �∈ HT ∗.

For the comparison of HT ∗ and Prz3, recall that the language of Prz3 contains also
the necessity operator l (l22 = 22, lx = 00 otherwise) and →Prz3 can be defined via
¬, ∨, ∧ and l: ϕ→Prz3 ψ := (¬lϕ ∨ lψ) ∧ (¬l¬ψ ∨ l¬ϕ).

At the same time, lϕ can be defined inHT ∗ as ¬(ϕ→HT ∗ ¬ϕ).

Proposition 3. Logic Prz3 is definable inHT ∗. ��

A simple axiomatisation ofHT ∗ modulo the basic logic N∗ is given by the following

Proposition 4. HT ∗ = N∗ + {p ∨ (p→ q) ∨ −q, p↔ ¬¬p, p ∧ ¬p→ q ∨ ¬q}.

Proof. In fact, the proof of these statement is a simplified version of the completeness
proof forHT 2 in [1].

88 P. Cabalar et al.

Thus, we obtain HT ∗ by extending the intuitionistic fragment to HT and adding the
elimination of double negation and the Kleene axiom. Despite the fact that HT ∗ and
HT have the same intuitionistic fragment, they have different negations and HT ∗ �=
HT . We can obtainHT fromHT 2 in the following way.

Proposition 5. The addition toHT 2 of axiom (I) = ¬ϕ ∧ ϕ→ ⊥, is equivalent to the
condition T = T ′. ��

Proposition 6. The addition toHT 2 of De Jongh and Hendrik’s axiom (used to obtain
HT from intuitionistic logic), (dJH) = ϕ∨(ϕ→ ψ)∨−ϕ is equivalent to the condition:
T,H ′ ∈ {H,T ′}.

Proposition 7 (reduction toHT).HT = HT 2 ∪ (I) ∪ (dJH).

4 A Tableau Calculus for PEL

We can describe a tableaux system for HT 2 using the standard methods for finite-
valued logics [4, 10]. The formulas in the tableau nodes are labelled with a set of
truth-values, named signs, and these signs are propagated to the subformulas using the
expansion rules. The family of the signs depends on the logic in question and it is pos-
sible to describe several tableaux systems for the same logic. ForHT 2 we will use the
following signs, where [≥ v] = {w ∈ 6 | w ≥ v}, and [≤ v] = {w ∈ 6 | w ≤ v}:

{00}, {01}, {11}, {02}, {22}, {01, 11}, [≤ 01], [≤ 11], [≤ 12], [≥ 01], [≥ 02], [≥ 12]

The usual notions of closed and terminated tableaux can be used in different ways.
In the following definition we introduce the concept of closed tableau in order to char-
acterise validity inHT 2.

Definition 5. Let ϕ be a formula inHT 2:

1. The Initial tableau to check the validity of ϕ is: T0 = [≤12]:ϕ

2. If T is a tableau and T ′ is the tree obtained from T applying one of the expansion
rules in figure 2, then T ′ is tableau for ϕ.

3. A branchB in a tableau T is called closed if one of the following conditions hold:
(i) it contains the constant⊥; (ii) it contains signed literals, S1:p,. . . ,Sn:p, such that
∩n

i=1Si = ∅. A tableau T is called closed if every branch is closed.

Intuitively, with the initial tableau [≤12]:ϕwe ask if it is possible to find an assignment
for ϕ that evaluates in [≤ 12], in other words a countermodel. The expansion rules
search for ways to evaluate the subformulas so as to define the countermodel.

Theorem 5 (Soundness and completeness of the tableaux system). The formula ϕ is
valid inHT 2 if and only if there exists a closed tableau for it.

On the Logic and Computation of Partial Equilibrium Models 89

{22}:ϕ→ ψ
{00}:ϕ {22}:ψ [≤01]:ϕ [≤12]:ϕ {11}:ϕ {02}:ϕ

[≥01]:ψ [≥12]:ψ {11}:ψ {02}:ψ

{00}:ϕ→ ψ
[≥01]:ϕ
{00}:ψ

[≤01]:ϕ→ ψ
[≥01]:ϕ [≥12]:ϕ
{00}:ψ [≤01]:ψ

[≥01]:ϕ→ ψ
{22}:ϕ [≥01]:ψ

[≤12:ϕ→ ψ
[≥01]:ϕ {11}:ϕ {11}:ϕ {02}:ϕ [≥12]:ϕ [≥12]:ϕ {22}:ϕ
{00}:ψ [≤01]:ψ {02}:ψ {01,11}:ψ [≤11]:ψ {02}:ψ [≤12]:ψ

[≥12]:ϕ→ ψ
{00}:ϕ ≥12:ψ [≤01]:ϕ {11}:ϕ {02}:ϕ

[≥01]:ψ {11}:ψ {02}:ψ

{11}:ϕ→ ψ
{02}:ϕ [≥02]:ϕ

{01,11}:ψ {11}:ψ

{02}:ϕ→ ψ
{11}:ϕ {11}:ϕ [≥12]:ϕ
{01}:ψ {02}:ψ {02}:ψ

{01,11}:ϕ→ ψ
[≥02]:ϕ

{01,11}:ψ

{01}:ϕ→ ψ
[≥12]:ϕ
{01}:ψ

[≤11]:ϕ→ ψ
[≥01]:ϕ [≥02]:ϕ
{00}:ψ [≤11]:ψ

[≥02]:ϕ→ ψ
{22}:ϕ [≥02]:ψ {01,11}:ϕ

{01,11}:ψ
{01}:¬ϕ
⊥

{02}:¬ϕ
⊥

{22}:¬ϕ
{00}:ϕ

[≥12]:¬ϕ
{00}:ϕ

[≥02]:¬ϕ
{00}:ϕ

{00}:¬ϕ
[≥02]:ϕ

[≤01]:¬ϕ
[≥02]:ϕ

[≤11]:¬ϕ
[≥01]:ϕ

[≤12]:¬ϕ
[≥01]:ϕ

[≥01]:¬ϕ
[≤11]:ϕ

{11}:¬ϕ
{01,11}:ϕ

{01,11}:¬ϕ
{01,11}:ϕ

For v ∈ {00, 11, 12}: [≤v]:ϕ ∧ ψ
[≤v]:ϕ [≤v]:ψ

; for v ∈ {01, 02, 12, 22}:
[≥v]:ϕ ∧ ψ

[≥v]:ϕ
[≥v]:ψ

{01}:ϕ ∧ ψ
{01}:ϕ [≥01]:ϕ {11}:ϕ {02}:ϕ
[≥01]:ψ {01}:ψ {02}:ψ {11}:ψ

{11}:ϕ ∧ ψ
{11}:ϕ {11}:ϕ [≥12]:ϕ
{11}:ψ [≥12]:ψ {11}:ψ

{02}:ϕ ∧ ψ
{02}:ϕ [≥02]:ϕ
[≥02]:ψ {02}:ψ

{01,11}:ϕ ∧ ψ
{01,11}:ϕ [≥01]:ϕ
[≥01]:ψ {01,11}:ψ

[≤01]:ϕ ∧ ψ
[≤01]:ϕ [≤01]:ψ {11}:ϕ {02}:ϕ

{02}:ψ {11}:ψ

For v ∈ {00, 01, 11, 12}:
[≤v]:ϕ ∨ ψ

[≤v]:ϕ
[≤v]:ψ

; for v ∈ {01, 02, 22}: [≥v]:ϕ ∨ ψ
[≥v]:ϕ [≥v]:ψ

{01}:ϕ ∨ ψ
[≤01]:ϕ {01}:ϕ
{01}:ψ [≤01]:ψ

{11}:ϕ ∨ ψ
[≤11]:ϕ {11}:ϕ
{11}:ψ [≤11]:ψ

{02}:ϕ ∨ ψ
[≤01]:ϕ {02}:ϕ {02}:ϕ
{02}:ψ [≤01]:ψ {02}:ψ

{01,11}:ϕ ∨ ψ
{01,11}:ϕ [≤11]:ϕ
[≤11]:ψ {01,11}:ψ

[≥12]:ϕ ∨ ψ
[≥12]:ϕ [≥12]:ψ {11}:ϕ {02}:ϕ

{02}:ψ {11}:ψ

Fig. 2. Expansion rules for HT 2

{22}:ϕ→ ψ
{00}:ϕ {22}:ψ [≤11]:ϕ

[≥11]:ψ

[≥11]:ϕ→ ψ
{00}:ϕ [≥11]:ψ

[≤11]:ϕ→ ψ
[≥11]:ϕ {22}:ϕ
{22}:ψ [≤11]:ψ

{00}:ϕ→ ψ
[≥11]:ϕ
{00}:ψ

[≥11]:¬ϕ
[≤11]:ϕ

[≤11]:¬ϕ
[≥11]:ϕ

{00}:¬ϕ
{22}:ϕ

{22}:¬ϕ
{00}:ϕ

For v ∈ {00, 11, 22}:
[≤v]:ϕ ∧ ψ

[≤v]:ϕ [≤v]:ψ

[≥v]:ϕ ∧ ψ
[≥v]:ϕ
[≥v]:ψ

[≤v]:ϕ ∨ ψ
[≤v]:ϕ
[≤v]:ψ

[≥v]:ϕ ∨ ψ
[≥v]:ϕ [≥v]:ψ

Fig. 3. Expansion rules for total models of HT 2, ie. for HT ∗

90 P. Cabalar et al.

4.1 Partial Equilibrium Models

Tableaux systems can also be used to study additional properties and relations [10, 11].
In this section we define a system based on auxiliary tableaux in order to generate the
partial equilibrium models of a theory. We proceed in two phases. First, we generate
the total models of a theory by means of a tableau system in which we search for a
terminated tableau. Then, for every total model, an auxiliary tableau is constructed to
check whether the model in question is in partial equilibrium or not.

The total assignments evaluate formulas in {00, 11, 22} and thus we only need to
work with the following system of signs: [≤ 11] = {00, 11}, [≤ 00] = {00}, [≥ 11] =
{11, 22}, [≥ 11] = {22}.

Definition 6. Let Π = {ϕ1, . . . , ϕn} a theory inHT 2:

1. The Initial tableau to generate total models is a single branch tree containing the
following signed formulas: {22}:ϕ1,. . . ,{22}:ϕn.

2. If T is a tableau and T ′ is the tree obtained from T by applying one of the expansion
rules in figure 3, then T ′ is tableau for ϕ. As usual in tableaux systems for propo-
sitional logics, if a formula can be used to expand the tableau, then the tableau is
expanded in every branch below the formula using the corresponding rule, and the
formula used to expand is marked and is no longer used.

3. A branch in a tableau T is called closed if the signed literals for a variable p,
S1:p,. . . ,Sm:p, verify ∩n

i=1Si = ∅. It is call open otherwise.
4. A branch in a tableau T is called finished if it doesn’t contain non-marked formu-

las.
5. A tableau T is called closed if every branch is closed, and it is terminated if every

branch is either closed or finished.

In this case the tableau begins with formulas signed with 22, since we are looking for
models. The expansion rules guarantee the construction of all possible models in such
a way that when all formulas have been expanded, all the models can be determined on
the basis of open branches.

{22}:(¬p→ q ∨ r)✓

{22}:(p ∨ r)✓

{00}:(¬p)✓

{22}:p

{22}:p {22}:r

{22}:(q ∨ r)✓

{22}:p

{22}:q {22}:r

{22}:p

{22}:q {22}:r

{00,11}:(¬p)✓

{11,22}:(q ∨ r)✓

{22}:p

{11,22}:p

{11,22}:q {11,22}:r

{22}:r

{11,22}:p

{11,22}:q {11,22}:r

Fig. 4.

On the Logic and Computation of Partial Equilibrium Models 91

Theorem 6. LetT be a non-closed terminated tableau forΠ , and let {S1:p1, . . . , Sn:pn}
be the set of signed literals in an open branch. Then every assignment V verifying
V (pi) ∈ Si, for all i, is a total model of ϕ. Moreover, all the total models of Π are
generated from T in this way.

Example: (Taken from [2]) The figure 4 shows the tableau for the theoryΠ = {¬p →
q ∨ r, p ∨ r}

The tableau is finished and allows us to construct the set of total models of Π , as
shown in the following table:

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15

p 22 22 22 22 22 22 22 22 22 11 11 11 00 00 00
q 22 22 22 11 11 11 00 00 00 22 11 00 22 11 00
r 22 11 00 22 11 00 22 11 00 22 22 22 22 22 22

Auxiliary tableau to check the partial equilibrium property. A total model is in
partial equilibrium if there is no other model of the theory less than it under the partial
ordering �. In terms of the many-valued semantics, this ordering is defined between
assignments based on the following relations between truth-values: 01�11, 02�12�22.
To look for such a model we construct an initial tableau specifically for each total model
by applying the expansion rules in figure 2.

Definition 7. Let ϕ be a formula inHT 2 and V a total model of it.

1. The Initial tableau to check the partial equilibrium property of V for ϕ is a single
branch tree containing the following signed formulas: {22}:ϕ, {00}:p for every p
such that V (p) = 00, {01,11}:p for every p such that V (p) = 11, and {02,12,22}:p for
every p such that V (p) = 22.

2. If T is a tableau and T ′ is the tree obtained from T applying one of the expansion
rules in figure 2, then T ′ is ϕ.

3. A branch B in a tableau T is called V -closed if one of the following condition
holds: (i) it contains the constant ⊥; (ii) it contains signed literals, S1:p,. . . , Sn:p,
such that∩n

i=1Si = ∅; (iii) all the formulas in the branch have been expanded and,
for every variable p, it contains signed literals, S1:p,. . . , Sn:p, such that ∩n

i=1Si =
{V (p)}.

4. A tableau T is called V -closed if every branch is V -closed.

Adding literals of the form {01,11}:p, {02,12,22}:p or {00}:p, depending on the initial
tableau, requires that models be evaluated in a particular form; specifically we force
models derived from the tableau to be less than V . Nevertheless, we know that one
model will always be found, V itself, and therefore we include one more condition on
closure: a branch closes if V . is the only model generated.

Theorem 7. Let V be a total model of ϕ. V is a partial equilibrium model ofΠ if and
only if there exists a V -closed tableau for ϕ.

In the figure 5 we show that, for the previous example, the model σ9 is a partial equi-
librium model; observe that the leftmost branch closes because V is the only model

92 P. Cabalar et al.

{02,12,22}:p

{00}:q

{00}:r

{22}:(¬p→ q ∨ r)✓

{22}:(p ∨ r)✓

{00}:(¬p)✓

{02,12,22}:p

{22}:p
✗

{22}:r
✗

{22}:(q ∨ r)✓

{22}:p

{22}:q
✗

{22}:r
✗

{22}:r
✗

{00,01}:(¬p)

{≥01}:(q ∨ r)✓

{22}:p

{≥01}:q
✗

{≥01}:r
✗

{22}:r
✗

{≤12}:(¬p)

{≥12}:(q ∨ r)✓

{22}:p

{≥12}:q
✗

{≥12}:r
✗

{22}:r
✗

{11}:(¬p)✓

{11}:(q ∨ r)✓

{01,11}:p
✗

{02}:(¬p)✓

{02}:(q ∨ r)✓

{}:⊥
✗

{01,11}:p

{00}:q

{02,12,22}:r

{22}:(¬p→ q ∨ r)✓

{22}:(p ∨ r)✓

{00}:(¬p)✓

{02,12,22}:p
✗

{22}:(q ∨ r)✓

{22}:p
✗

{22}:r

{22}:q
✗

{22}:r

{00,01}:(¬p)

{≥01}:(q ∨ r)

{≤12}:(¬p)

{≥12}:(q ∨ r)

{11}:(¬p)

{11}:(q ∨ r)

{02}:(¬p)

{02}:(q ∨ r)

Fig. 5.

generated, while all other branches close due to inconsistencies provoked by the three
signed literals added to the initial tableau. In the second tableau in the same figure we
check that the model σ12 is not a partial equilibrium model.

5 A Splitting Theorem for PEL

The previous tableau calculus offers a general method for satisfiability testing in HT 2

and PEL, given any arbitrary theory. When we restrict the syntax to (some class of)
logic programs, we usually expect, however, that simpler computation methods can
be applied. Consider for instance the case of disjunctive logic programs. As shown
in [2], PEL also coincides with p-stable models for this syntactic class. Maintaining the
same minimisation criterion, we may easily get that a disjunctive program yields several
well-founded models (even no well-founded model at all), and the typical incremental
algorithm for computing WFS for normal programs is not applicable. However, it is

On the Logic and Computation of Partial Equilibrium Models 93

still possible to apply a form of incremental reasoning if we can divide or “split” the
program into blocks without cyclic dependences among them. As an example, consider
the simple programΠ0 = {p∨q}which yields two p-stable models (also well-founded),
making p true and q false in one case, and vice versa. Now, assume we have the enlarged
programΠ1 = Π0 ∪ {¬r ∧ p → r, q ∧ ¬p → s,¬s → s}. It seems natural to use this
second set of formulas to compute atoms r and s, once p and q are still fixed by the rule
inΠ0. This technique is called “splitting” and was first introduced in [5] for the case of
stable models. We now establish a similar result for PEL in the more general syntactic
case where theories are sets of implications.

Given a pair T = (T, T ′) and a set of atoms U , we denote T|U = (T ∩ U, T ′ ∩ U).
We apply a similar notation for theories too. IfΠ is some theory in language L(V), and
U ⊆ V , then we writeΠ |U to stand for set of formulasΠ ∩L(U). We respectively call
bottom and top to the subtheoriesΠ |U andΠ\Π |U .

Definition 8 (Splitting set). Given a set of implications Π on signature V , a subset
U ⊆ V is called a splitting set for Π if for all (ϕ→ ψ) ∈ Π\Π |U , ψ ∈ L(V \U). ��

Theorem 8 (Splitting theorem). Let Π be a set of implications, U a splitting set for
Π and T a pair (T, T ′) of sets of atoms T ⊆ T ′. Then T |≈Π iff both (i) T|U |≈Π |U
and (ii) T |≈Π ′, beingΠ ′ := (Π\Π |U)

∪ (T ∩ U) (3)

∪ {¬p | p ∈ U\T ′} (4)

∪ {p↔ u | p ∈ (T ′\T) ∩ U} (5)

The previous theorem is completed with the following result. Let us denote byΠ [ϕ/p]
the replacement in theoryΠ of any occurrence of atom p by the formula ϕ.

Theorem 9 (Replacement theorem). For any theoryΠ and any modelM:

(i) M |= Π ∪ {p} iff M |= Π [�/p] ∪ {p}
(ii) M |= Π ∪ {¬p} iff M |= Π [⊥/p] ∪ {¬p}
(iii) M |= Π ∪ {p↔ u} iff M |= Π [u/p] ∪ {p↔ u}

Returning to the example program Π1, U = {p, q} is a splitting set dividing Π1 into
the bottom Π0 and the top Π1\Π0. As we saw, Π0 has two p-equilibrium models:
T1 = ({p}, {p}) and T2 = ({q}, {q}). Now, fixing T1, we consider the theory Π ′ =
Π1\Π0 ∪ {p} ∪ {¬q} which, by the replacement theorem, is equivalent to {¬r ∧� →
r,⊥ ∧ ¬� → s,¬s → s, p,¬q}. After some trivial simplifications, this amounts to
{¬r → r,¬s → s, p,¬q} whose unique p-equilibrium model is defined by T3 =
({p}, {p, r, s}). Following similar steps, when fixing T2 we finally get the program
{s,¬s→ s, q,¬p} with the only p-equilibrium model T4 = ({q, s}, {q, s}).

6 Concluding Remarks

Partial equilibrium logic (PEL) provides a foundation and generalisation of the p-stable
semantics of logic programs and hence is arguably also a suitable framework for study-
ing the well-founded semantics of programs. In this paper we have extended previous

94 P. Cabalar et al.

results on PEL by further examining its underlying logics HT 2 and HT ∗, and pre-
senting tableaux proof systems for HT 2, HT ∗ and for PEL itself. As a contribution
to the computation of PEL in the case of disjunctive and nested logic programs, we
have shown how to apply the splitting method of [5, 3]. Further optimisation of these
computational techniques is a topic for future work.

References

1. P. Cabalar, S. Odintsov & D. Pearce. Logical Foundations of Well-Founded Semantics in
Proceedings KR 2006, AAAI, pp. 25-35.

2. P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. Analysing and Extending Well-Founded
and Partial Stable Semantics using Partial Equilibrium Logic. in Proceedings ICLP 06,
Springer LNAI, to appear.

3. S. T. Erdogan & V. Lifschitz. Definitions in Answer Set Programming. V. Lifschitz & I.
Niemela (eds), Proc. ICLP 04, Springer, LNAI 2923, 2004, 114-126.

4. R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International
Series of Monographs on Computer Science. Oxford University Press, 1994.

5. V. Lifschitz & H. Turner. Splitting a Logic Program. in P. van Hentenryck (ed), Proceedings
ICLP 94, MIT Press, 1994, 23-37.

6. V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, October 2001.

7. V. Lifschitz, L.R. Tang, and H. Turner. Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence, 25(3–4):369–389, 1999.

8. D. Pearce. A new logical characterisation of stable models and answer sets. In Proc. of
NMELP 96, LNCS 1216, pp. 57–70. Springer, 1997.

9. D. Pearce. Equilibrium Logic. Ann. Math & Artificial Int., 2006, to appear.
10. D. Pearce, I.P. de Guzmán, and A. Valverde. A tableau calculus for equilibrium entailment.

In Proc. of TABLEAUX 2000, LNAI 1847, pp. 352–367. Springer, 2000.
11. D. Pearce and A. Valverde. Uniform equivalence for equilibrium logic and logic programs.

In Proc. of LPNMR’04, LNAI 2923, pp. 194–206. Springer, 2004.
12. Przymusinski, T. Stable semantics for disjunctive programs. New Generation Computing 9

(1991), 401-424.
13. Przymusinski, T. Well-founded and stationary models of logic programs. Annals of Mathe-

matics and Artificial Intelligence 12:141–187, 1994.
14. R. Routley and V. Routley. The Semantics of First Degree Entailment. Noûs, 6, 335–359,

1972.
15. D. Vakarelov. Notes on constructive logic with strong negation. Studia Logica, 36: 89-107,

1977.
16. A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for

general logic programs. JACM, 38(3):620–650, 1991

Decidable Fragments of Logic Programming
with Value Invention

Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni

Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy
{calimeri, cozza, ianni}@mat.unical.it

Abstract. The issue of value invention in logic programming embraces
many scenarios, such as logic programming with function symbols, ob-
ject oriented logic languages, inter-operability with external sources of
knowledge, set unification. This paper introduces a framework embed-
ding value invention in a general context. The class of programs having
a suitable (but, in general, not decidable) ‘finite grounding property’ is
identified, and the class of ‘value invention restricted’ programs is in-
troduced. Value invention restricted programs have the finite grounding
property and can be decided in polynomial time. They are, in a sense, the
broadest polynomially decidable class having this property, whenever no
assumption can be made about the nature of invented values (while this
latter is the case in the specific literature about logic programming with
function symbols). Relationships with existing formalisms are eventually
discussed; in particular, value invention restricted programs subsume ω-
restricted programs and are incomparable with finitary programs.

1 Introduction

The notion of ‘value invention’ has been formerly adopted in the database field
(see e.g. [1,2]) for denoting those mechanisms aimed at allowing to introduce
new domain elements in a logic based query language. Indeed, applications of
logic programming often need to deal with a universe of symbols which is not
a priori known. We can divide these demands in two main categories: (i) ‘Con-
structivist’ demands: the majority of logic programming languages has indeed
the inherent possibility to build new symbols from pre-existing ones, e.g. by
means of traditional constructs like functional terms. Manipulating and creating
complex data structures other than simple constant symbols, such as sets, lists,
is also a source of value invention. Also, controlled value invention constructs
have been proposed in order to deal with the creation of new object identifiers
in object oriented deductive databases [3]. (ii) ‘Externalist’ demands: in this
setting, non-predictable external sources of knowledge have to be dealt with.
For instance, in the Semantic Web area, rule based languages must explicitly
embrace the case where ontologies and the universe of individuals is external
and not a priori known [4], or is explicitly assumed to be open [5].

Whatever popular semantics is chosen for a rule based logic program (well-
founded, answer set, first order, etc.), both of the above settings are a source of
undecidability difficult to cope with.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 95–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 F. Calimeri, S. Cozza, and G. Ianni

Top down solvers (such as SLD solvers), do not usually address this issue,
and leave to the programmer the burden of ensuring termination. Also, the
programmer needs a good knowledge of the evaluation strategy implemented
in her adopted system, since termination is often algorithm dependent. Bottom
up solvers (such as DLV or Smodels for the Answer Set Semantics [6,7]), and
in general, languages derived from Datalog, are instead conceived for ensuring
algorithm independent decidability and full declarativity.

To this aim, the implementation of such languages relies on the explicit choice
of computing a ground version of a given program. In a context where value
invention is explicitly allowed, grounding a program against an infinite set of
symbols leads to an infinite ground program which cannot be built in practice.

The paper adopts the notion of VI programs, which are logic programs en-
riched with the notion of external predicate [8]. External predicates model the
mechanism of value invention by taking input from a given set of values and
returning (possibly newly invented) values. These latter are computed by means
of an associated evaluation function (called oracle).

In [8] we proved that, although assuming as decidable the external functions
defining oracles, the consistency check of VI programs is, in general, undecidable.

Thus, it is important to investigate on nontrivial sub-classes of decidable
programs. This problem is not addressed satisfactorily in the above paper, which
is mainly focused on the operational and declarative properties of the framework
and its technical realizability. Indeed, a very strict safety condition for granting
decidability of VI programs is therein given.

The contributions of the paper are overviewed next:

– We introduce a safety condition defining the class of ‘value invention restricted’
(VI-restricted, in the following) programs. This class enjoys the finite ground-
ing property, characterizing those programs that can be computed with a finite
ground program. Decidability of consistency checking is thus ensured (Section 4).
– The VI-restrictedness condition is less restraining than previously introduced
syntactic restrictions (such as ω-restricted programs [9] or semi-safe programs
[8]). The programmer is thus relieved from the burden of introducing explicit
syntactic modifications. However, VI-restrictedness can be checked in time poly-
nomial in the size of the non-ground program (Section 5).
– The above condition is generic: no assumption is made on the structure of
new invented symbols. Indeed, VI programs embed settings such as programs
with function symbols, programs with sets (in general logic languages with a
generalized notion of unification), or with external constructs (Section 6).
– VI-restricted programs subsume the class of ω-restricted programs [9]. Finitary
programs [10], a class of programs with answer set semantics and function sym-
bols, are not directly comparable with VI-restricted programs. Also, our former
definition of semi-safe programs [8] is subsumed (Section 7).
– Our framework relies on the traditional notion of ground program. Thus, results
about VI-restricted programs can be be adapted to semantics other than Answer
Set Programming, such as the Well-Founded Semantics.

Decidable Fragments of Logic Programming with Value Invention 97

2 Motivating Example

The Friend of a Friend (FOAF) [11] project is about creating a Web of machine-
readable homepages describing people, the links between them and the things
they create and do. It is an RDF/XML Semantic Web vocabulary. Each person
P stores its FOAF ontology portion at some url U .

In order to reason on this vocabulary, a rule based logic language would need
some special construct for importing this external knowledge. The aim of this
language is anyway to keep decidability and declarativity. So it is important not
to rely on an operational semantics for the language. In this spirit, [4] introduces
a form of external predicates, very similar to ours.

Imagine we want to perform the transitive closure of the relation of knowledge
among people, starting from the homepage of a given person. Let’s suppose to
have an external predicate called “#rdf” which allows us to access a FOAF
ontology located at URL:

#rdf(URL, Object1, Relation,Object2).

We first collect a set of homepages. In order to avoid wrong information we
can accept only a restricted subset of somehow trusted urls. Then we simply
encode the transitive closure as usual, exploiting the knowledge provided by
the collected pages. Let the starting homepage be “myurl”; thus, the following
program implements what described above.

trusted(X,U) ← #rdf(“myurl”, X, “trusts”, U). (1)
url(X, U) ← #rdf(“myurl”, X, “seealso”, U), trusted(X,U). (2)
url(X, U) ← url(, U1), #rdf(U1, X, “seealso”, U), trusted(X,U). (3)
connected(X, Y) ← url(X, U), #rdf(U, X, “knows”, Y). (4)
connected(X, Y) ← connected(X, Z), url(Z, U), #rdf(U, Z, “knows”, Y). (5)

The above program has two sources of new values: trusted urls, and persons.
For instance, in particular the fifth rule may induce a loop, leading to the in-
vention of an infinite number of new symbols. The above program is anyway
VI-restricted and can be solved over a finite ground version of it. Intuitively,
the number of URLs is finite. Although not explicitly bounded, new persons
(coming from the value of Y in the fifth rule) can be extracted only from a
finite set of URLs. Observe that rule 1 invents new values, but these do not
ever propagate through a loop involving an external atom, while this is the case
of the Y variable in the fifth rule. The intuition of VI-restricted programs is
to investigate how new information propagates in a program, and whether it
is bounded in some way. Note that a programmer is not explicitly forced (in
order to ensure decidability) to bound variables explicitly such as in this modi-
fied version of the fifth rule: { connected(X,Y) ← known(Y), connected(X,Z),
url(Z,U),#rdf(U,Z, “knows”, Y). }.

3 Preliminaries

In this section we briefly recall some notions which we introduced in [8]. Our
framework coincides basically with Answer Set Programming, extended with the
notion of external atom.

98 F. Calimeri, S. Cozza, and G. Ianni

Let U , X , E and P be mutually disjoint sets whose elements are called constant
names, variable names, external predicate names, and ordinary predicate names,
respectively. Unless explicitly specified, elements from X (resp., U) are denoted
with first letter in upper case (resp., lower case); elements from E are usually
prefixed with ‘# ’. U constitutes the default Herbrand Universe. We assume that
any constant appearing in a program or generated by external computation is
taken from U , which is possibly infinite1.

Elements from U ∪ X are called terms. An atom is a structure p(t1, . . . , tn),
where t1, . . . , tn are terms and p ∈ P ∪ E ; n ≥ 0 is the arity of the atom. p is
the predicate name. The atom is ordinary, if p ∈ P , otherwise we call it external
atom. A list of terms t1, . . . , tn is succinctly represented by t. A positive literal
is an atom, whereas a negative literal is nota where a is an atom.

Given a predicate p, p[i] is its i-th argument. A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, notβn+1, . . . , notβm, (6)

wherem ≥ 0, k ≥ 1, α1, . . . , αk, are ordinary atoms, and β1, . . . , βm are (ordinary
or external) atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r),
where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. E(r) is the set
of external atoms of r. If H(r) = ∅ and B(r) �= ∅, then r is a constraint, and
if B(r) = ∅ and H(r) �= ∅, then r is a fact; r is ordinary, if it contains only
ordinary atoms. A VI program is a finite set P of rules; it is ordinary, if all rules
are ordinary. We assume P has no constraints2, only ground facts, and that each
rule is safe with respect to negation, i.e. for each rule r, each variable appearing
in some negated atom a ∈ B−(r) or in the head, appears also in some positive
atom b ∈ B+(r). Given a set of atoms A and a predicate p, with small abuse of
notation we say that p ∈ A if there is some atom in A with predicate name p.
An atom having p as predicate name is usually referred as ap.

We denote as Attr(P) the set of all arguments of all the predicates appearing
in the program P . The dependency graph G(P) of P is built in the standard way.

We give the semantics by generalizing the answer-set semantics [12].
In the sequel, we will assume P as a VI program. The Herbrand base of P

with respect to U , denoted HBU (P), is the set of all possible ground versions
of ordinary atoms and external atoms occurring in P obtained by replacing
variables with constants from U . The grounding of a rule r, grndU(r), is defined
accordingly, and the grounding of program P by grndU (P) =

⋃
r∈P grndU(r).

Note that this ground program can be of infinite size.
An interpretation I for P is a pair 〈S, F 〉 where:

– S ⊆ HBU (P) contains only ordinary atoms; I (or, by small abuse of notation,
S) is a model of ordinary atom a∈HBU (P), denoted I |= a (S |= a), if a∈S.

1 Also, we assume that constants are encoded using some finite alphabet Σ, i.e. they
are finite elements of Σ∗.

2 Under Answer Set Programming semantics, a constraint← B(r) can be easily simu-
lated through the introduction of a corresponding standard rule fail ← B(r), not fail,
where fail is a fresh predicate not occurring elsewhere in the program.

Decidable Fragments of Logic Programming with Value Invention 99

– F is a mapping associating with every external predicate name #e ∈ E , a decid-
able n-ary function (which we call oracle) F (#e) assigning each tuple (x1, . . . , xn)
either 0 or 1, where n is the fixed arity of #e, and xi ∈ U . I (or, by small abuse of
notation, F) is a model of a ground external atom a = #e(x1, . . . , xn), denoted
I |= a (F |= a), if F (#e)(x1, . . . , xn) = 1.

A positive literal is satisfied if its atom is satisfied, whereas a negated literal
is satisfied if its corresponding atom is not satisfied.

Let r be a ground rule. We define:

i. I |=H(r) iff there is some a ∈ H(r) such that I |= a;
ii. I |=B(r) iff I |= a for each atom a∈B+(r) and I �|= a for each atom a∈B−(r);

iii. I |= r (i.e., r is satisfied) iff I |=H(r) whenever I |=B(r).

We say that I is a model of a VI program P with respect to a universe U , denoted
I |=UP , iff I |= r for all r∈ grndU (P). For a fixed F , a model M =< S,F > is
minimal if there is no model N =< T,F > such that S ⊂ T .

Given a general ground program P , its Gelfond-Lifschitz reduct [12] w.r.t.
an interpretation I is the positive ground program P I obtained from P by:
(i) deleting all rules having a negated literal not satisfied by I; (ii) deleting
all negated literals from the remaining rules. I ⊆HBU (P) is an answer set for a
program P w.r.t. U iff I is a minimal model for the positive program grndU (P)I .
Let ansU(P) be the set of answer sets of grndU (P). We call P F-satisfiable if
it has some answer set for a fixed function mapping F , i.e. if there is some
interpretation 〈S, F 〉 which is an answer set. We will assume in the following
to deal with a fixed set F of functions mappings for external predicates. F -
satisfiability is undecidable [8].

Given an external predicate name #p, of arity n and its oracle function F (#p),
a pattern is a list of b’s and u’s, where a b represents a placeholder for a constant
(or a bounded variable), and an u is a placeholder for a variable. Given a list of
terms, the corresponding pattern is given by replacing each constant with a b,
and each variable with a u. Positions where u appears are called output positions
whereas those denoted with b are called input positions. For instance, the pattern
related to the list of terms (X, a, Y) is (u, b, u).

Let pat be a pattern of length n having k placeholders b (input positions), and
n−k placeholders of u type (output positions). A functional oracle F (#p)[pat] for
the pattern pat, associated with the external predicate #p, is a partial function
taking k constant arguments from U and returning a finite relation of arity n−k,
and such that d1, ..., dn−k ∈ F (#p)[pat](c1, ..., ck) iff F (#p)(h1, . . . , hn) = 1, where
for each i(1 ≤ i ≤ n), hi = cj if the j-th b value occurs in position i in pat,
otherwise hi = dj if the j-th u value occurs in position i in pat.

An external predicate #p might be associated to one or more functional oracles
‘consistent’ with the originating 2-valued one. For instance, consider a binary
external predicate #sqr, intuitively associating a natural number to its square
value. We can have two functional oracles, F(#sqr)[b, u] and F(#sqr)[u, b]. The

100 F. Calimeri, S. Cozza, and G. Ianni

two functional oracles are such that, e.g. F(#sqr)[b, u](3) = 9 and F(#sqr)[u, b]
(16) = 4, consistently with the fact that F(#sqr)(3, 9) = F(#sqr)(4, 16) = 13.

In the sequel, given an external predicate #e, we will assume that it comes
equipped with its oracle F (#e) (called also base oracle) and one functional oracle
F (#e)[pat#e], having pattern pat#e

4.
We recall now a first condition of safety, which unfortunately does not guar-

antee finiteness and decidability, but will be exploited in the next Section. Given
a rule r, a variable X is weakly safe in r if either (i) X is safe (i.e. it appears
in some positive atom of B+(r) \E(r); or (ii) X appears in some external atom
#e(T) ∈ E(r), the functional oracle of #e is F (#e)[pat], X appears in output
position with respect to pat and each variable Y appearing in input position in
the same atom is weakly safe. A weakly safe variable X is free if it appears in
B+(r) only in output position of some external atom. A rule r is weakly safe if
each variable X appearing in some atom a ∈ B(r) is weakly safe. A program P
is weakly safe if each rule r ∈ P is weakly safe.

Example 1. Assume that #sqr is associated to the functional oracle F (#sqr)[b, u]
defined above. The program { square(Y) ← number(X),#sqr(X,Y) } is weakly safe
(intuitively the value of Y can be computed once the value of X is known). The
same rule is not weakly safe if we consider the functional oracle F (#sqr)[u, b]. �

Definition 1. Let A = 〈I, F 〉 an interpretation. We call ins(r, A) the set of
ground instances rθ of r for which A |= B+(rθ), and such that A |= E(rθ). �

Proposition 1. [8] Given an interpretationA and a weakly safe rule r, ins(r, A)
is finite. �

Weakly safe rules have the important property of producing a finite set of relevant
ground instances provided that we know a priori the domain of positive ordinary
body atoms. Although desirable, weak safety is intuitively not sufficient in order
to guarantee finiteness of answer sets and decidability. For instance, it is easy
to see that the program { square(2) ←; square(Y) ← square(X),#sqr(X,Y); } has
answer set {square(2), square(4), . . . }.

4 Decidable VI Programs

The introduction of new symbols in a logic program by means of external atoms
is a clear source of undecidability. As illustrated in Section 6, value invention is
nonetheless desirable in a variety of contexts.

Our approach investigates which programs can be solved by means of a finite
ground program having a finite set of models of finite size. This class of programs

3 Unlike this example, note that in the general case functional oracles might return a
set of tuples and are not restricted to single output values.

4 In [8] we address explicitly the issue of external predicates equipped with multiple
functional oracles.

Decidable Fragments of Logic Programming with Value Invention 101

(having the finite grounding property) is unluckily not recognizable in finite time.
We assume to deal with functional oracles that might have an infinite co-domain.
Nonetheless, we will assume also to deal with weakly safe programs and with
functional oracles associating to each fixed combination of the values in input
always a finite number of combination of values in output.

Definition 2. A class of VI programs C has the finite grounding property if, for
each P ∈ C there exists a finite set U ⊂ U such that ansU (P) = ansU(P). �

Theorem 1. Recognizing the class of all the VI programs having the finite
grounding property is undecidable.

Proof. (Sketch). Positive logic programs with function symbols can simulate Tur-
ing machines. Also weakly safe VI programs can mimic (see section 6 and [8])
programs with function symbols. Given a Turing machine T and an input string
x we can thus build a suitable VI program PT ,x encoding T and x. T (x) ter-
minates iff PT ,x has the finite grounding property. Indeed, if T (x) terminates,
the content of U can be inferred from the finite number of transitions of T (x).
Viceversa, if U is given, the evolution of T (x) until its termination can be mim-
icked by looking at the answer sets of grndU (PT ,x). �

4.1 VI-Restricted Programs

The intuition leading to our definition of VI-restrictedness, is based on the
idea of controlled propagation of new values throughout a given program. As-
sume the following VI program is given (#b has a functional oracle with pat-
tern [b, u]): { a(k,c) ←; p(X,Y) ← a(X,Y); p(X,Y) ← s(X,Y), a(Z,Y); s(X,Y) ←
p(Z,X),#b(X,Y).}. The last rule of the program generates new symbols by means
of the Y variable, which appears in the second attribute of s(X,Y) and in out-
put position of #b(X,Y). This situation is per se not a problem, but we observe
that values of s[2] are propagated to p[2] by means of the last but one rule, and
p[2] feeds input values to #b(X,Y) in the last rule. This occurs by means of the
binding given by the X variable. The number of ground instances to be consid-
ered for the above program is thus in principle infinite, due to the presence of
this kind of cycles between attributes.

We introduce the notion of dangerous rule for those rules that propagate new
values in recursive cycles, and of dangerous attributes for those attributes (e.g.
s[2]) that carry new information in a cycle.

Actually, the above program can be reconducted to an equivalent finite ground
program: we can observe that p[2] takes values from the second and third rule
above. In both cases, values are given by bindings to a[2] which has, clearly, a
finite domain. So, the number of input values to #b(X,Y) is bounded as well. In
some sense, the ‘poisoning’ effect of the last (dangerous) rule, is canceled by the
fact that p[2] limits the number of symbols that can be created.

In order to formalize this type of scenarios we introduce the notion of savior
and blocked attributes. p[2] is savior since all the rules where p appears in the head

102 F. Calimeri, S. Cozza, and G. Ianni

can be proven to bring values to p[2] from blocked attributes, or from constant
values, or from other savior attributes. Also, s[2] is dangerous but blocked with
respect to the last rule, because of the indirect binding with p[2], which is savior.
Note that an attribute is considered blocked with respect to a given rule. Indeed,
s[2] might not be blocked in other rules where s appears in the head.

We define an attribute dependency graph useful to track how new symbols
propagate from an attribute to another by means of bindings of equal variables.

Definition 3. The attribute dependency graph AG(P) associated to a weakly
safe program P is defined as follows. For each predicate p ∈ P of arity n, there
is a node for each predicate attribute p[i](1 ≤ i ≤ n), and, looking at each rule
r ∈ P , there are the following edges:

– (q[j], p[i]), if p appears in some atom ap ∈ H(r), q appears in some atom
aq ∈ B+(r) \ E(r) and q[j] and p[i] share the same variable.
– (q[j],#p[i]), if q appears in some atom aq ∈ B+(r) \ E(r), #p appears in
some atom a#p ∈ E(r), q[j] and #p[i] share the same variable, and i is an input
position for the functional oracle of #p;
– (#q[j],#p[i]), if #q appears in some atom a#q ∈ E(r), #p in some a#p ∈ E(r),
#q[j] and #p[i] share the same variable, j is an output position for the functional
oracle of #q, i is an input position for the functional oracle of #p;
– (#p[j],#p[i]), if #p appears in some atom a#p ∈ E(r), #p[j] and #p[i] both
have a variable, j is an input position for the functional oracle of #p and i is an
output position for the functional oracle of #p;
– (#q[j], p[i]), if p appears in some atom ap ∈ H(r), #q appears in some atom
a#q ∈ E(r) and #q[j] and p[i] share the same variable, and j is an output posi-
tion for the functional oracle of #q; �

Example 2. The attribute dependency graph induced by the first three rules of
the motivating example in Section 2 is depicted in Figure 1. �

Definition 4. It is given a weakly safe program P . The following definitions are
given (all examples refer to the Motivating Example, Section 2, and we assume
#rdf has functional oracle with pattern [b, u, u, u]):

– A rule r poisons an attribute p[i] if some atom ap ∈ H(r) has a free variable
X in position i. p[i] is said to be poisoned by r. For instance, connected[2] is
poisoned by rule (5).
– A rule r is dangerous if it poisons an attribute p[i] (p ∈ H(r)) appearing in
a cycle in AG(P). Also, we say that p[i] is dangerous. For instance, rule (5) is
dangerous since connected[2] is poisoned and appears in a cycle.
– Given a dangerous rule r, a dangerous attribute p[i] (bounded in H(r) to a
variable name X), is blocked in r if for each atom a#e ∈ E(r) where X appears
in output position, each variable Y appearing in input position in the same atom
is savior. Y is savior if it appears in some predicate q ∈ B+(r) in position i, and
q[i] is savior.

Decidable Fragments of Logic Programming with Value Invention 103

– An attribute p[i] is savior if at least one of the following conditions holds for
each rule r ∈ P where p ∈ H(r).

– p[i] is bound to a ground value in H(r);
– there is some savior attribute q[j], q ∈ B+(r) and p[i] and q[j] are bound to

the same variable in r;
– p[i] is blocked in r.

For instance, the dangerous attribute connected[2] of rule (5) is blocked since
the input variable U is savior (indeed it appears in url[2]).
– A rule is VI-restricted if all its dangerous attributes are blocked. P is said to
be VI-restricted if all its dangerous rules are VI-restricted. �

Fig. 1. Attributes Dependency Graph (Predicate names are shortened to the first letter)

Theorem 2. VI-restricted programs have the finite grounding property.

Proof. (Sketch). Given a VI-restricted program P , we show how to compute a
finite ground program grP such that ansU (P) = ansU (grP), where U is the set
of constants appearing in grP .

Let’s call A the set of active ground atoms, initially containing all atoms
appearing in some fact of P . grP can be constructed by an algorithm A that re-
peatedly updates grP (initially empty) with the output of ins(r, I) (Definition 1)
for each rule r ∈ P , where I = 〈A,F 〉; all atoms belonging to the head of some
rule appearing in grP are then added to A. The iterative process stops when A
is not updated anymore. That is, grP is the least fixed point of the operator

TP (Q) = {
⋃

r∈P ins(r, I) | I = 〈A,F 〉, and A = atoms(Q)}
where atoms(Q) is the set of ordinary atoms appearing in Q. T∞

P (∅) is finite
in case P is VI-restricted. Indeed, grP might not cease to grow only in case an
infinite number of new constants is generated by the presence of external atoms.
This may happen only because of some dangerous rule having some ‘poisoned’
attributes. However, in a VI-restricted program all poisoned attributes are blocked
in dangerous rules where they appear, i.e. they depend from savior attributes. It
can be shown that, for a given savior attribute p[i], the number of symbols that
appear in position i in an atom ap such that ap ∈ T∞

P (∅) is finite. This means
that only a finite number of calls to functional oracles is made by A, each of
which producing a finite output.

Because of the way it has been constructed, it is easy to see that the set
A = atoms(grP) is a splitting set [13], for grndU (P). Based on this, it is pos-
sible to observe that no atom a �∈ A can be in any answer set, and to conclude
that ansU (P) = ansU(P), where U is the set of constants appearing in A. �

104 F. Calimeri, S. Cozza, and G. Ianni

5 Recognizing VI-Restricted Programs

An algorithm recognizing VI-restricted programs is depicted in Figure 2. The
idea is to iterate through all dangerous rules trying to prove that all of them are
VI-restricted. In order to prove VI-restriction for rules, we incrementally build the
set of all savior attributes; this set is initially filled with all attributes which can
be proven to be savior (i.e. they do not depend from any dangerous attribute).
This set is updated with a further attribute p[i] as soon it is proved that each
dangerous attribute which p[i] depends on is blocked. The set RTBC of rules
to be checked initially consists of all dangerous rules, then the rules which are
proven to be VI-restricted are gradually removed from RTBC. If an iteration ends
and nothing new can be proved the algorithm stops. The program is VI-restricted
if RTBC is empty at the last iteration.

The algorithm execution takes polynomial time in the size of a program P : let
m be the total number of rules in P , n the number of different predicates, k the
maximum number of attributes over all predicates, and l the maximum number
of atoms in a single rule. O(n ∗ k) is an upper bound to the total number of
different attributes, while O(l ∗ k) is an upper bound to the number of variables
in a rule. A naive implementation of the isBlocked function has complexity
O(n ∗ l ∗ k2). The recognizer function (Figure 2) iterates O(n ∗ k) times over an
inner cycle which performs at most O(m ∗ k ∗ l) steps: each inner step iterates
over all rules in RTBC, which are at most m; and for each rule all free variables
must be checked (this requires O(k ∗ l) checks, in the worst case).

6 Modeling Semantic Extensions by VI Programs

Several semantic extensions contemplating value invention can be mapped to
VI programs. We show next how programs with function symbols and with sets
can be translated to weakly safe VI programs. When the resulting translation
is VI-restricted as well, these semantic extension can be thus evaluated by an
answer set solver extended with external predicates.

Functional terms. We consider rule based languages allowing functional terms
whose variables appearing in the head appear also in the positive body. A func-
tional term is either a constant, a variable, or f(X1, . . . , Xn), where f is a func-
tion symbol and X1, . . . , Xn are terms.

For each natural number k, we introduce two external predicates #functionk

and #function′k of arity k+2; they are such that f#functionk
(F, f,X1, . . . , Xk) =

f#function′
k
(F, f,X1, . . . , Xk) = true if and only if the term F is f(X1, . . . , Xk).

Each #functionk (#function′k) predicate is associated to a functional oracle
F (#functionk)[u, b, b, . . . , b] (F (#function′k)[b, u, u, . . . , u], respectively).

The two families of external predicates are respectively intended in order to
construct a functional term if all of its arguments are bounded (#functionk

predicates) or if the whole functional term is grounded and we want to take its
arguments (#function′k predicates).

Decidable Fragments of Logic Programming with Value Invention 105

Bool Function recognizer (var SA: Set{ Attr };
% SA is initialized with provable savior attributes
% (i.e. attributes that do not depend from dangerous attributes.

var NSA: Set{ pair〈 Attr, Set{ Attr } 〉 };
% NSA is initialized with attributes which cannot be proven to be
% savior, each of which is associated with the set of dangerous
% attributes that prevent them to be savior

var RTBC : Set{ Rule }) % Set of dangerous rules to be checked.
Bool NSA Updated = true;
While (NSA Updated) do % Try to prove VI-restriction as far as some change occurs.

NSA Updated = false;
For each Rule r ∈ RTBC do % free(r)=the set of free variables appearing in the rule r.

Set{Var} varsTBC = free(r);
Bool allBlocked = true;
For each Var v ∈ varsTBC do

% isBlocked tells if v is blocked in r by means of attributes currently in SA.
If (isBlocked(v, r, SA)) then

% headAttr returns reference to the head attribute of r containing v
Attr p[i] = headAttr(v, r);
% update processes the NSA set, deleting p[i] from each set S
% such that p[i] ∈ S and 〈q[j], S〉 ∈ NSA.
% Then each attribute q[j] such that 〈q[j], S〉 ∈ NSA
% and S = ∅ is moved from NSA to SA.
update(NSA, SA, p[i]);
% A change occurred, so we have to continue cycling.
NSA Updated = true;

Else % At least one free variable can’t be proved as blocked.
allBlocked = false;

EndIf
EndFor
If (allBlocked) then

RTBC.delete(r); %.The rule is VI-restricted, can be deleted from RTBC.
EndIf

EndFor
EndWhile
If (RTBC == ∅) then

Return true
Else % Display the set of rules that can’t be proved as VI-restricted.

printINSAne(RTBC)
Return false

EndIf
EndFunction

Fig. 2. The VI-Restricted Recognizer Algorithm

Basically, this transformation flattens each rule r ∈ P containing some func-
tional term t = f(X1, . . . , Xn), by replacing it with a fresh variable F , and adding
an appropriate atom #functionk(F,X1, . . . , Xn) or #function′k(F,X1, . . . , Xn)
to the body of r. The transformation is continued until a functional term is still
in r. We choose #function′k if t appears in the body of r, whereas an atom using
#functionk is used if t appears in the head of r.

Example 3. The rule { p(s(X)) ← a(X, f(Y, Z)). } contains two function
symbols, s and f. The rewritten rule is { p(F1) ← a(X, F2),#function1(F1, s, X),
#function′

2(F2, f, Y, Z). } �

Proposition 2. Given a logic program with functional terms P , F(P) is the
program obtained by applying the above transformation; it is weakly safe. Also,
there is a 1-to-1 mapping between the answer sets of P and ansU (F(P)). �

106 F. Calimeri, S. Cozza, and G. Ianni

Set unification. The accommodation of sets in logic programming, often at-
tempted, obliges to reconsider the classic notion of term unification to a gener-
alized one. For instance, the set term {X, a, b, c} can be grounded to {a, d, b, c}.
It is possible to embody set constructors and set unification in the context of
VI programs. Roughly speaking, a logic program with sets replaces the classical
notion of term with the notion of set term. A set term is either a (i) classical
term or, (ii) {X1, . . . , Xn} where X1, . . . , Xn are set terms, or (iii) X ∪Y where
X and Y are set terms. Two ground set terms {a1, . . . , an} are equal if they
contain the same set of ground terms. For space reasons, we only outline here a
method, and refer the reader to [14] for a survey on sets in logic programming
and on set unification methods and algorithms.

Remarking that the special symbol {} represents the empty set, the following
set of external predicates are introduced: (i) A pair of external predicates #setk,
#set′

k for each natural number k; each of them has k + 1 arguments such that
f#setk

(X, Y1, . . . , Yk) = f#set′
k
(X, Y1, . . . , Yk) = true if X is the set {Y1, . . . , Yk}.

#setk has the functional oracle F (#setk)[u, b, . . . , b] while #set′
k has the func-

tional oracle F (#setk)[b, u, . . . , u]; (ii) Two ternary external predicate #union and
#union′; they are such that f#union(X,Y, Z) = f#union′(X, Y, Z) = true either
if X = Y ∪ Z, or if X and Y are classical terms, Z = ∅ and X = Y . #union has
the functional oracle F (#union)[u, b, b] while #union′ has the functional oracle
F (#union′)[b, u, u].

A logic program with set terms P is replaced by an equivalent VI program by
modifying each rule r ∈ P this way:

– Replacing each set term {X1, . . . , Xn} appearing in r with a fresh variable T ,
and adding in the body of r the external atom #setn(T,X1, . . . , Xn) if the set
term appears in the head of r , #set′n(T,X1, . . . , Xn) otherwise;
– Replacing each set term X ∪ Y appearing in r with a fresh variable U , and
adding in the body of r the external atom #union(U,X, Y) if the set term
appears in the head of r, #union′(U,X, Y) otherwise. This and step 6 are applied
to r until it contains any set term;
– If a variable X appears in r for m times (m > 1), then each occurrence of X
is replaced with a fresh variable Xi(1 ≤ i ≤ n), and for each pair (Xi, Xj), 1 ≤
i < j < m the atom #union(Xi, Xj , {}) is added to r.
Example 4. Let’s consider the rule: { p(X ∪ Y)← a({a, X}), b({Y}). }; the anal-
ogous VI rule is: { p(S1) ← a(S2), b(S3), #union(S1, X1, Y1), #set′

2(S2, a, X2),
#set′

1(S3, Y 2), #union(X1,X2,{}), #union(Y1,Y2,{}). } �

Proposition 3. Given a logic program with set terms P , we call S(P) the VI

program obtained applying the above transformation. S(P) is weakly safe. There
is a 1-to-1 mapping between the answer sets of P and ansU(S(P)). �

7 Relationships with Other Classes of Programs

ω-restricted programs. In the same spirit of this paper are ω-stratified pro-
grams [9], that allow function symbols under answer set semantics. The intro-
duced restrictions aim at controlling the creation of new functional terms.

Decidable Fragments of Logic Programming with Value Invention 107

Definition 5. [9] An ω-stratification is a traditional stratification extended by
the ω-stratum, which contains all predicates depending negatively on each other.
ω is conventionally assumed to be uppermost layer of the program. A rule r is
ω-restricted iff all variables appearing in r also occur in a positive body literal
belonging to a strictly lower stratum than the head. A program P is ω-restricted
iff all the rules are ω-restricted. �

ω-stratified programs have the finite grounding property: only a finite amount
of functional terms can be created since each variable appearing in a rule’s
head must be bounded to a predicate belonging to a lower layer. VI-restricted
programs do not introduce special restrictions for non-stratified cycles. Also, it
is not necessary to bound each variable to a previous layer explicitly. The class
of VI-restricted programs contains, in a sense, the class of ω-restricted ones.

Theorem 3. Given an ω-restricted program P , F(P) is VI-restricted.

Proof. We are given an ω-restricted program P . We observe that:

–Attributes belonging to predicates which are not in the ω-stratum can be proven
to be savior: the relevant instantiation of these predicates is computable starting
from the lowermost layer, and is finite.
–The rewritten rules in F(P) corresponding to function-free rules cannot be
dangerous, since there is no value invention at all.
–Rules with functional terms are rewritten using external atoms; then, all vari-
ables occurring in these new external atoms already occur in the original rules,
except fresh variables used for substituting functional terms (that we call FTRs,
functional term representations). Thus, the variables appearing in the poisoned
attributes must necessarily appear also in a predicate belonging to a strictly
lower stratum than the head (ω-restrictedness). Let’s consider an FTR appear-
ing in an external atom #function′k(F1, X1, . . . , Xk) in first position. If F1 is
already bound to a positive atom, then there is no value invention; otherwise, it
can be shown that all terms X1, . . . , Xk are bound either to a positive atom or
to another external atom in output position (see Section 6). As stated before,
the attributes where X1, . . . , Xk appear are savior, and so the FTR F1 as well.

�

On the other hand, the opposite does not hold.

Theorem 4. It is possible to find non-ω-restricted programs whose transforma-
tion F outputs a VI-restricted program.

Proof. The program Pnωr = {p(f(X))← q(X), t(X); q(X)← p(X); p(1); t(1)}
is not ω-restricted, while F(Pnωr)={p(F1)← q(X), t(X),#function2(F1, f,X);
q(X)← p(X); p(1); t(1)} is VI-restricted. �

Finitary programs. Finitary programs allow function symbols under answer set
semantics [10]. Although they don’t have the finite grounding property, brave
and cautious ground querying is decidable. A ground program P is finitary iff its

108 F. Calimeri, S. Cozza, and G. Ianni

dependency graph G(P) is such that (i) any atom p appearing as node in G(P)
depends only on a finite set of atoms (through head-body dependency), and (ii)
G(P) has only a finite number of cycles with an odd number of negated arcs.

Theorem 5. The class of finitary programs is not comparable with the class of
VI-restricted programs.

Proof. (sketch) A program having rules with free variables is not finitary (eg.
p(X) ← q(X,Y)): a ground instance p(a) may depend on infinite ground in-
stances of q(X,Y) e.g.(q(a, f(a)), q(a, f(f(a)))...). In general, the same kind of
rules are allowed in VI-restricted programs. Vice versa, the class of programs
{F(P) | P is finitary} is not VI-restricted: for instance the translation of the
finitary program {p(0); p(s(X))← p(X)} is not VI-restricted. �

Other literature. In the above cited literature, infinite domains are obtained
through the introduction of compound functional terms. Thus, the studied the-
oretical insights are often specialized to this notion of term, and take advantage
e.g., of the common unification rules of formal logics over infinite domains. It is,
in this setting, possible to study ascending and descending chains of functional
terms in order to prove decidability. Similar to our approach is the work on
open logic programs, and conceptual logic programs [15]. Such paper addresses
the possibility of grounding a logic program, under Answer Set Semantics, over
an infinite domain, in a way similar to classical logics and/or description log-
ics. Each constant symbol has no predefined compound structure however. Also
similar are [3] and [16], where a special construct, aimed at creating new tuple
identifiers in relational databases is introduced.

In [17] and [4] the authors address the issue of implementing generalized quan-
tifiers under Answer Set Semantics, in order to enable Answer Set Solvers to
communicate, both directions, with external reasoners. This approach is dif-
ferent from the one considered in this paper since the former is inspired from
second order logics and allows bidirectional flow of relational data (to and from
external atoms), whereas, in our setting, the information flow is strictly value
(first order) based, and allows relational output only in one direction. HEX pro-
grams, as defined in [4], do not address explicitly the issue of value invention
(although semantics is given in terms of an infinite set of symbols). VI programs
can simulate external predicates of [4] when relational input is not allowed.

An external predicate à la [4] (HEX predicate) is of the form #g[Y1, . . . ,
Ym](X1, . . . , Xn), where Y1, . . . , Yn are input terms and X1, . . . , Xn are output
terms. Semantics of these atoms is given by means of a base oracle f#g(I, Y1, . . . ,
Ym, X1, . . . , Xm) where I is an interpretation. Note that HEX predicates depend
on a current interpretation, thus enabling to quantify over predicate extensions.
Assuming that for each HEX predicate f#g do not depend on the current inter-
pretation, and that higher order atoms (another special construct featured by
HEX programs) are not allowed we can state the following equivalence theorem.

Theorem 6. An HEX program without higher order atoms is equivalent to
a VI program where each HEX atom #g[Y1, . . . , Ym](X1, . . . , Xn) is replaced

Decidable Fragments of Logic Programming with Value Invention 109

by an atom #g′(Y1, . . . , Ym, X1, . . . , Xn), provided that each evaluation func-
tion f#g′ is such that for each I we have that f#g′(Y1, . . . , Ym, X1, . . . , Xm) =
f#g(I, Y1, . . . , Ym, X1, . . . , Xm). �

VI-restricted programs overcome the notion of semi-safe programs [8]. These
programs have the finite grounding property: a weakly safe program P is semi-
safe if each cycle in G(P) contains only edges whose label corresponds to a
safe rule. Semi-safe programs are strictly contained in the class of VI-restricted
programs.

8 Conclusions

VI programs herein presented accommodate several cases where value invention
is involved in logic programming. VI-restrictions allow to actually evaluate by
means of a finite ground program a variety of programs (such as those with
function symbols or set constructors) in many nontrivial cases.

A topic for future work is to investigate to what extent the notion of VI-
restrictedness can be relaxed although keeping the complexity of recognizing the
class in polynomial time. Intuitively, local analysis techniques can enlarge the
class of programs whose finite grounding property is decidable, but this would
force to renounce to polynomial complexity. Nonetheless, the spirit of restriction
checkers is to keep evaluation times greatly smaller than the overall solving times.

VI programs have been implemented in the DLV system as well as a VI-
restriction checker. Further details on the implementation can be found in [8]. A
complete toolkit for developing custom external predicates is provided. Specific
extensions of the DLV system with function symbols and sets, using VI as under-
lying framework, are in advanced stage of development and will be dealt with in
appropriate papers. The system prototype, examples, manuals and benchmark
results are available at http://www.mat.unical.it/ianni/wiki/dlvex.

References

1. Abiteboul, S., Vianu, V.: Datalog Extensions for Database Queries and Updates.
JCSS 43(1) (1991) 62–124

2. Cabibbo, L.: Expressiveness of Semipositive Logic Programs with Value Invention.
Logic in Databases. (1996) 457–474.

3. Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Object
Identifiers. VLDB 1990. 455–468.

4. Eiter, T., et al.: A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. IJCAI 2005, 90–96.

5. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and
rule-based reasoning with extended conceptual logic programs. ESWC 2005.
392–407.

6. Leone, N., et al.: The DLV System for Knowledge Representation and Reasoning.
ACM TOCL (2006) To appear. http://www.arxiv.org/ps/cs.AI/0211004.

110 F. Calimeri, S. Cozza, and G. Ianni

7. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable
Model Semantics. Artificial Intelligence 138 (2002) 181–234.

8. Calimeri, F., Ianni, G.: External sources of computation for Answer Set Solvers.
LPNMR 2005, LNCS 3662. 105–118.

9. Syrjänen, T.: Omega-restricted logic programs. LPNMR 2001. 267-279.
10. Bonatti, P.A.: Reasoning with Infinite Stable Models. IJCAI 2001. 603–610.
11. The Friend of a Friend (FOAF) Project. http://www.foaf-project.org/.
12. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9 (1991) 365–385.
13. Lifschitz, V., Turner, H.: Splitting a Logic Program. ICLP 1994. 23–37.
14. Dovier, A., Pontelli, E., Rossi, G.: Set unification. TPLP (2006) To appear.
15. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Semantic web reasoning with

conceptual logic programs. RuleML 2004. 113–127.
16. Cabibbo, L.: The Expressive Power of Stratified Logic Programs with Value In-

vention. Inf. and Comp. 147(1) (1998) 22–56.
17. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic

programs: Implementation and experiments. LPAR 2004. 511–527.

On the Issue of Reinstatement in Argumentation

Martin Caminada

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80 089 3508 TB Utrecht, The Netherlands

martinc@cs.uu.nl

Abstract. Dung’s theory of abstract argumentation frameworks [1] led
to the formalization of various argument-based semantics, which are ac-
tually particular forms of dealing with the issue of reinstatement. In this
paper, we re-examine the issue of semantics from the perspective of pos-
tulates. In particular, we ask ourselves the question of which (minimal)
requirements have to be fulfilled by any principle for handling reinstate-
ment, and how this relates to Dung’s standard semantics. Our purpose is
to shed new light on the ongoing discussion on which semantics is most
appropriate.

1 Introduction

Dung’s abstract theory of formal argumentation [1] has been a guide for re-
searchers in the field of formal argumentation and nonmonotonic logic for more
than ten years. During this period, a significant amount of work has been done on
proof procedures for Dung’s various argument-based semantics [2, 3], as well as
on concrete argumentation formalisms (such as [4, 5, 6]) based on Dung’s theory.

One specific issue that has received relatively little attention is the nature of
reinstatement. Although reinstatement as a principle is not totally uncontrover-
sial [7], the current consensus among many researchers in formal argumentation
and nonmonotonic logic is that reinstatement of arguments is an essential fea-
ture of defeasible reasoning (as is for instance expressed in [8]). Dung provides
several approaches for dealing with reinstatement, like stable semantics, pre-
ferred semantics, complete semantics and grounded semantics. Our contribution
is not to criticize Dung’s theory but rather to strengthen it. In particular, we
ask ourselves the question: “Why do these semantics actually make sense?”

In previous work, we have stated a number of postulates which, in our view,
every argumentation formalism should satisfy [9]. In the current paper, we will
follow the same approach and state some simple and intuitive properties for
dealing with the issue of reinstatement We then show how these properties are
satisfied by Dung’s standard semantics and how the differences between the
various semantics could be viewed. We also show that a careful examination of
reinstatement postulates reveals a semantics not currently known. Based on this
discussion, we then share some thoughts on which type of semantics is most
appropriate.

In order to keep things concise, the proofs have been omitted from the current
paper. They can be found in a seperate technical report [10].

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 111–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 M. Caminada

2 Dung’s Standard Semantics

A central notion in Dung’s theory of abstract argumentation [1] is that of an
argumentation framework, which is defined as follows.

Definition 1 (argumentation framework). An argumentation framework is
a pair (Ar , def) where Ar is a set of arguments and def ⊆ Ar ×Ar.

Definition 2 (defense / conflict-free). Let A ∈ Ar and Args ⊆ Ar.
We define A+ as {B | A def B} and Args+ as {B | A def B for some A∈Args}.
We define A− as {B | B def A} and Args− as {B | B def A for some A∈Args}.
Args defends an argument A iff A− ⊆ Args+.
Args is conflict-free iff Args ∩ Args+ = ∅.

In the following definition, F (Args) stands for the set of arguments that are
acceptable (in the sense of [1]) with respect to Args .

Definition 3 (acceptability semantics). Let Args be a conflict-free set of
arguments and F : 2Args → 2Args be a function with F (Args) = {A | A is de-
fended by Args}.
Args is admissible iff Args ⊆ F (Args).
Args is a complete extension iff Args = F (Args).
Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion) com-
plete extension.
Args is a preferred extension iff Args is a maximal (w.r.t. set-inclusion) com-
plete extension.
Args is a stable extension iff Args is a preferred extension that defeats every
argument in Ar\Args.

3 Reinstatement Labellings

The issue of quality postulates, or axioms, has recently received some attention in
the field of formal argumentation and non-monotonic logic [9, 11]. An interesting
question is whether one can also provide quality postulates for dealing with the
reinstatement of arguments. Although the reinstatement has to a great extent
been studied by Dung [1], the issue of which postulates have to be satisfied
in order for a specific criterion for reinstatement to make sense has received
relatively little attention.

One possible approach would be to start labelling the arguments in an ar-
gumentation framework. We distinguish three labels: “in”, “out” and ”undec”
(undecided).

Definition 4. Let (Ar , def) be a Dung-style argumentation framework. An AF-
labelling is a (total) function L : Ar −→ {in, out, undec}. We define in(L) as
{A ∈ Ar | L(A) = in}, out(L) as {A ∈ Ar | L(A) = out} and undec(L) as
{A ∈ Ar | L(A) = undec}.

On the Issue of Reinstatement in Argumentation 113

In a reinstatement labelling, an argument is “in” iff all its defeaters are “out”
and an argument is “out” if it has a defeater that is “in”, as is stated in the
following definition.

Definition 5. Let L be an AF-labelling. We say that L is a reinstatement la-
belling iff it satisfies the following:

– ∀A ∈ Ar : (L(A) = out ≡ ∃B ∈ Ar : (BdefA ∧ L(B) = in)) and
– ∀A ∈ Ar : (L(A) = in ≡ ∀B ∈ Ar : (BdefA ⊃ L(B) = out)).

The above definitions can be illustrated using the argumentation frameworks in
Figure 1. Here, an argumentation framework is depicted as a directed graph, in
which the vertices represent the arguments and the edges represent the defeat re-
lation. In the leftmost argumentation framework, there exists just one reinstate-
ment labelling (L1) with L1(A) = in, L1(B) = out, L1(C) = in. In the middle
argumentation framework, there exist three reinstatement labellings (L2,L3,L4)
with L2(D) = in, L2(E) = out, L3(D) = out, L3(E) = in, L4(D) = undec and
L4(E) = undec. In the rightmost argumentation framework, there exists just
one reinstatement labelling (L5) with L5(F) = undec.

Notice that Definition 5 can actually be seen as a postulate, as it specifies
a restriction on an AF-labelling. It turns out that different kinds of reinstate-
ment labellings correspond with different kinds of Dung-style semantics. This is
explored in the remainder of this paper.

A

B

C

D

E

F

Fig. 1. Three argumentation frameworks

4 Labellings Versus Semantics

We now define two functions that, given an argumentation framework, allow a
set of arguments to be converted to a labelling and vice versa. The function
Ext2Lab(Ar ,def) takes a conflict-free set of arguments (sometimes an extension)
and converts it to a labelling. The function Lab2Ext(Ar ,def) takes an AF-labelling
and converts it to a set of arguments (sometimes an extension). Notice that as an
AF-labelling is defined as a function (Definition 4), which in its turn is essentially
a relation, it is possible to represent the labelling as a set of pairs.

In the following definition, the resulting AF-labelling does not yet need to
satisfy the properties of a reinstatement labelling as stated in Definition 5.

114 M. Caminada

Definition 6. Let (Ar , def) be an argumentation framework, Args ⊆ Ar such
that Args is conflict-free, and L : Ar −→ {in, out, undec} an AF-labelling.
We define Ext2Lab(Ar ,def)(Args) as {(A, in) | A ∈ Args} ∪ {(A, out) | ∃A′ ∈
Args : A′defA} ∪ {(A, undec) | A �∈ Args ∧ ¬∃A′ ∈ Args : A′defA}. We define
LabToExt(Ar ,def)(L) as {A | (A, in) ∈ L}.

The fact that Args is conflict-free in the above definition makes that
Ext2Lab(Ar ,def)(Args) is indeed an AF-labelling. When the associated argu-
mentation framework is clear, we sometimes simply write Ext2Lab and Lab2Ext
instead of Ext2Lab(Ar ,def) and Lab2Ext(Ar ,def).

4.1 Reinstatement Labellings Without Restrictions

It is interesting to notice that a reinstatement labelling coincides with Dung’s
notion of complete semantics.

Theorem 1. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling then Lab2Ext(L) is a complete extension. If Args is a complete
extension then Ext2Lab(Args) is a reinstatement labelling.

It is interesting to observe that, when the domain and range of Lab2Ext is
restricted to reinstatement labellings and complete extensions, and the domain
and range of Ext2Lab is restricted to complete extensions and reinstatement
labellings, then the resulting functions (call them Lab2Extr and Ext2Labr) are
bijective (that is, they are both injective and surjective) and each other’s inverse.

Theorem 2.
Let Lab2Extr

(Ar ,def) : {L | L is a reinstatement labelling of (Ar , def)} −→
{Args | Args is a complete extension of (Ar , def)} be a function defined by
Lab2Extr

(Ar ,def)(L) = Lab2Ext(Ar ,def)(L).
Let Ext2Labr

(Ar ,def) : {Args | Args is a complete extension of (Ar , def)} −→
{L | L is a reinstatement labelling of (Ar , def)} be a function defined by
Ext2Labr

(Ar ,def)(Args) = Ext2Lab(Ar ,def)(Args).
The functions Lab2Extr and Ext2Labr are bijective and are each other’s inverse.

As Lab2Extr and Ext2Labr are each other’s inverse, there exists a strong simi-
larity between complete extensions and reinstatement labellings.

4.2 Reinstatement Labellings with Empty undec

Reinstatement labellings where undec is empty coincide with stable semantics.

Theorem 3. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling with undec(L) = ∅ then Lab2Ext(L) is a stable extension. If Args
be a stable extension then Ext2Lab(Args) is a labelling with undec(L) = ∅.

On the Issue of Reinstatement in Argumentation 115

4.3 Reinstatement Labellings with Maximal in, Maximal out and
Maximal undec

Reinstatement labellings where in is maximal coincide with preferred semantics.

Theorem 4. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling where in(L) is maximal then Lab2Ext(L) is a preferred extension.
If Args is a preferred extension then Ext2Lab(Args) is a labelling where in(L)
is maximal.

It is interesting to notice that, contrary to what one might expect, reinstatement
labellings in which out is maximized coincide with preferred semantics, just like
(as was proved earlier) labellings in which in is maximized. This has to do with
the fact that when in increases, out also increases, and conversely. This is stated
by the following lemma.

Lemma 1. Let L and L′ be two reinstatement labellings. If in(L) � in(L′) then
out(L) � out(L′). If out(L) � out(L′) then in(L) � in(L′).

Theorem 5. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling where out(L) is maximal then Lab2Ext(L) is a preferred exten-
sion. If Args is a preferred extension then Ext2Lab(Args) is a labelling such that
out(L) is maximal.

A reinstatement labelling with maximal undec coincides with grounded semantics.

Theorem 6. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling where undec(L) is maximal then Lab2Ext(L) is the grounded ex-
tension. If Args is the grounded extension then Ext2Lab(Args) is a reinstatement
labelling where undec(L) is maximal.

4.4 Reinstatement Labellings with Minimal in, Minimal out and
Minimal undec

A reinstatement labelling with minimal in coincides with grounded semantics.

Theorem 7. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling where in(L) is minimal then Lab2Ext(L) is the grounded exten-
sion. If Args is the grounded extension then Ext2Lab(Args) is a reinstatement
labelling where in(L) is minimal.

A reinstatement labelling with minimal out coincides with grounded semantics.

Theorem 8. Let (Ar , def) be an argumentation framework. If L is a reinstate-
ment labelling where out(L) is minimal then Lab2Ext(L) is the grounded exten-
sion. If Args is the grounded extension then Ext2Lab(Args) is a reinstatement
labelling where out(L) is minimal.

The last remaining case to be examined is the one of reinstatement labellings
where undec is minimized. We show that this does not coincide with any of
Dung’s standard semantics.

116 M. Caminada

There is a one-way relation between reinstatement labellings with minimal
undec and preferred extensions, as is stated in the following theorem.

Theorem 9. Let (Ar , def) be an argumentation framework and L be a reinstate-
ment labelling such that undec(L) is minimal. Then Lab2Ext(L) is a preferred
extension.

Unfortunately, it does not work the other way around. If Args is a preferred ex-
tension, then it is not necessarily the case that Ext2Lab(Args) is a reinstatement
labelling where undec(L) is minimal. This is shown in the following example.

Example 1. Let Ar = {A,B,C,D,E} and let A defeat B, B defeat A, B defeat
C, C defeat D, D defeat E, and E defeat C (see also Figure 2). Here, there
exists two preferred extensions: E1 = {B,D} and E2 = {A}. As E1 is also a stable
extension, it holds that Ext2Lab(E1) yields a labelling (say L) with undec(L) = ∅.
However, Ext2Lab(E2) yields a labelling (say L′) with undec(L′) = {C,D,E}.
So, even though E2 is a preferred extension, Ext2Lab(E2) is not a reinstatement
labelling in which undec is minimal.

E

A B
C

D

Fig. 2. A preferred extension does not necessarily imply minimal undec

Labellings in which undec is minimized can be seen as produced by an agent that
is eager to take a position (in or out) on as many arguments as possible. It is
not too difficult to specify what these would look like as a Dung-style semantics.

Definition 7. Let (Ar , def) be an argumentation framework and Args ⊆ Ar.
Args is called a semi-stable extension iff Args is a complete extension where
Args ∪ Args+ is maximal.

The following theorem states that semi-stable semantics indeed coincides with
reinstatement labellings in which undec is minimal.

Theorem 10. Let (Ar , def) be an argumentation framework. If L is a rein-
statement labelling where undec(L) is minimal then Lab2Ext(L) is a semi-stable
extension. If Args is a semi-stable extension then Ext2Lab(Args) is a reinstate-
ment labelling where undec(L) is minimal.

An interesting property is that when there exists at least one stable extension,
the semi-stable extensions coincide with the stable extensions. This is because a
stable extension lables every argument in or out, without labelling any argument
undec. As for this stable extension, the set of undec labelled arguments is empty,
every labelling in which undec is minimized must then also have the set of undec
labelled arguments empty, and is therefore also a stable extension.

On the Issue of Reinstatement in Argumentation 117

Theorem 11. Let (Ar , def) be an argumentation framework. If there exists a
stable extension, then the semi-stable extensions coincide with the stable
extensions.

It should be mentioned that Theorem 11 does not hold when semi-stable se-
mantics is replaced by preferred semantics. That is, it is not the case that if
there exists a stable extension, the preferred extensions coincide with the stable
extensions (see Figure 2 for a counterexample). Semi-stable semantics is thus
very close to stable semantics (closer than, for instance, preferred semantics)
without the traditional disadvantage of stable semantics (the potential absence
of extensions).

The idea of semi-stable semantics is not entirely new. It is quite similar to
Verheij’s concept of an admissible stage extension, which fits within Verheij’s
approach of using stages to deal with the reinstatement of arguments [12].

Definition 8 ([12], condensed). An admissible stage extension is a pair
(Args , Args+) where Args is an admissible set of arguments and Args ∪ Args+

is maximal.

Theorem 12. Let (Ar , def) be an argumentation framework and Args ⊆ Ar.
(Args ,Args+) is an admissible stage extension iff Args is a semi-stable
extension.

4.5 Overview

From the previous discussion, it is clear that there exists a connection between
the various forms of reinstatement labellings on one hand and the various Dung-
style semantics on the other hand. This connection is summarized in Table 1.

Table 1. Reinst. labellings versus Dung-style semantics

restriction Dung-style linked by
reinst. labellings semantics Theorem
no restrictions complete semantics 1
empty undec stable semantics 3
maximal in preferred semantics 4
maximal out preferred semantics 5

maximal undec grounded semantics 6
minimal in grounded semantics 7
minimal out grounded semantics 8

minimal undec semi-stable semantics 10

There also exists a partial ordering between the various Dung-style semantics.
Every stable extension is a semi-stable extension, every semi-stable extension is
a preferred extension, every preferred extension is a complete extension, and
every grounded extension is a complete extension. This is graphically depicted
in Figure 3.

118 M. Caminada

preferred

stable

grounded

complete

semi−stable

Fig. 3. An overview of the different semantics

5 Semantics Revisited

In essence, a reinstatement labelling can be seen as a subjective but reasonable
point of view that an agent can take with respect to which arguments are in,
out or undec. Each such position is internally coherent in the sense that, if
questioned, the agent can use its own position to defend itself. It is possible
for the position to be disagreed with, but at least one cannot point out an
internal inconsistency. The set of all reinstatement labellings thus stands for
all possible and reasonable positions an agent can take. This can be seen as a
good reason for applying complete semantics, as reinstatement labellings coincide
with complete extensions (as was explained in section 4.1). In the remainder
of this section, we compare the approach of applying complete semantics with
alternative approaches (in particular with preferred semantics).

When determining the overall justified arguments, two approaches are possi-
ble: the sceptical and the credulous one. Under the credulous approach, an ar-
gument is justified iff there is at least one reasonable position (= reinstatement
labelling) where it is labelled in. Under the sceptical approach, an argument
is justified iff it is in in every reasonable position; that is, a reasonable agent
cannot deny that the argument is in.

A

B

C D

Fig. 4. A floating argument

As an example, consider the argumentation framework of Figure 4. Here there
are three reinstatement labellings, as stated in Figure 5. When all reinstatement
labellings are taken into account (such is the case in complete semantics) then
A, B and D are credulously justified, whereas no arguments are sceptically
justified.

It is interesting to compare this approach with preferred semantics, which has
been the subject of much recent research [2, 13, 14]. As was explained earlier, a
preferred extension coincides with a reinstatement labelling in which the set of

On the Issue of Reinstatement in Argumentation 119

D: in D: undecC: out

B: out

C: undec

B: undecA: in

C: out D: in

A: undec

L1 L2 L3

A: out B: in

Fig. 5. Three reinstatement labellings

arguments labelled in is maximal. In case of Figure 4, for instance, the relevant
labellings are only L1 and L3; thus, L2 is ruled out (see Figure 6).

D: in D: undecC: out

B: out

C: undec

B: undecA: in

D: in

A: undec

C: out

L1 L2 L3

A: out B: in

Fig. 6. Preferred semantics rules out particular labellings

What preferred semantics essentially does is to rule out zero or more re-
instatement labellings before determining which arguments are credulously or
sceptically justified. Under the sceptical approach, this can lead to more con-
clusions becoming justified. In the case of Figure 4, for instance, argument D is
sceptically justified under preferred semantics but not under complete semantics.

The fact that under preferred semantics, reinstatement labelling L2 is ruled
out can be seen as odd. L2, after all, is a perfectly valid reinstatement labelling.
The fact that it is ruled out under preferred semantics means that those who
defend preferred semantics must have some reason to justify this. This reason
should state why L2 is “wrong” or “irrelevant”, thus making it possible to ignore
L2. One such reason could be (Theorem 4) “L2 should be ignored because the
set of in-labelled arguments is not maximal.” This reason does not appear to be
a very strong one.

A more pragmatic reason in favor of preferred semantics is the issue of float-
ing conclusions and floating arguments. Suppose the following information is
available [15]: (1) Lars’s mother is Norwegian, (2) Lars’s father is Dutch, (3)
Norwegians like ice-skating and (4) Dutch like ice-skating. We can now con-
struct two arguments that defeat each other (assuming that double nation-
ality is not possible): (A) Lars likes ice-skating because he’s Norwegian and
(B) Lars likes ice-skating because he’s Dutch. Under sceptical complete seman-
tics, the proposition that Lars likes ice-skating is not justified, despite the fact
that, intuitively, it should be. Under sceptical preferred semantics, on the other
hand, the proposition that Lars likes ice-skating is justified. At a first sight,
this seems to illustrate a clear advantage of preferred semantics to complete
semantics.

If we take a closer look, however, the situation becomes more complex. This
is because the issue of whether or not Lars likes ice-skating depends on whether

120 M. Caminada

or not the principle of excluded middle is regarded as valid. In monotonic logic,
the validity of a statement p ∨ ¬p depends, among other things, on the number
of truth-values. Whereas in a two-valued logic (where each proposition is either
true or false in a given model) the proposition p ∨ ¬p is usually regarded as
valid, it is not regarded as valid in, for instance, three-valued logics [16, 17]. Simi-
larly, for one of the two conflicting argumentsA and B to be regarded as valid (or
justified), one should require that an argument is either in or out, resulting in a
two-valued reinstatement labelling (without undec). In section 4.2, it was shown
that this essentially boils down to stable semantics. Stable semantics, however,
suffers from the problem that for some argumentation frameworks, no stable
extensions exist. Consequently, it is not always possible to have a reinstatement
labelling with only in and out. A third possibility (undec) is needed. Therefore,
the principle of excluded middle, as an absolute criterion, should be rejected.1

For those who nevertheless feel that the principle of the excluded middle should
perhaps not hold at all times, but at least as much as possible (thus not com-
pletely ruling out undec but merely minimizing it), semi-stable semantics would
seem a more appropriate choice than preferred semantics.

Given the observation that the principle of complete semantics can be given a
decent philosophical justification, it is interesting to examine how complete se-
mantics could be implemented. Fortunately, it turns out that both sceptical and
credulous complete semantics have relatively easy and well-documented proof
procedures.

As for sceptical semantics, an argument is in each complete extension iff it is
in the grounded extension.

Theorem 13 ([1]). Let {CE1, . . . , CEn} be the set of complete extensions and
GE be the grounded extension. Let A be an argument. It holds that A ∈ GE iff
A ∈ CE1 ∩ . . . ∩ CEn.

As for credulous semantics, an argument is in some complete extension iff it is
in some admissible set.

Theorem 14. Let CE1, . . . , CEn be the set of complete extensions and
AS1, . . . , ASm be the set of admissible sets. Let A be an argument. It holds that
∃CEi ∈ {CE1, . . . , CEn} : A ∈ CEi iff ∃ASj ∈ {AS1, . . . , ASm} : A ∈ ASj .

The fact that sceptical complete semantics coincides with grounded semantics,
and credulous complete semantics coincides with credulous preferred semantics
is advantageous, as these have relatively straightforward and well-studied proof
procedures. Proof procedures for grounded semantics are given in [4, 18], and
proof procedures for credulous preferred semantics are given in [2, 3].

1 Another issue where the principle of excluded middle does not hold in most for-
malisms for defeasible reasoning is in handling disjunctive information. If {p∨q} ⊆ P
and {p⇒ r; q ⇒ r} ⊆ D then in most formalisms for defeasible reasoning, r is not
justified, although intuitively it should be, if one accepts the principle of excluded
middle.

On the Issue of Reinstatement in Argumentation 121

6 Summary and Discussion

In this paper, we showed it is possible to describe Dung’s standard semantics
in terms of reinstatement labellings, which provide an intuitive and relatively
simple way of dealing with the issue of reinstatement. We also showed how rein-
statement labellings can be used to pinpoint the exact differences between Dung’s
standard semantics. Using a systematic analysis of reinstatement labellings, we
were also able to specify an additional form of semantics (semi-stable semantics)
and showed how this semantics fits into the overall picture (Figure 3). We then
reexamined the various semantical approaches and made a case for grounded se-
mantics for sceptical entailment and credulous preferred semantics for credulous
entailment.2

One of the researchers who has done some work on the relation between
reinstatement labellings (“status assignments”) and Dung’s various semantics
is Prakken [15]. In particular, Prakken proves (in his own terms and particular
formalization) that reinstatement labellings without undec correspond to stable
extensions, and that reinstatement labellings with maximal in correspond to
preferred extensions [15]. It was the work of Prakken that served as an inspiration
for the more thorough analysis in this paper.

Other recent work on reinstatement labellings has been done by Jakobovits
and Vermeir [19]. Their definition of a labelling, however, is different than ours.
First of all, they allow for an argument to be labelled in, out, both in and
out, or neither in or out. Furthermore, their main reinstatement postulate is
different.

Definition 9 ([19], syntax and formulation adjusted). L is a labelling iff:

– ∀A ∈ Ar : (L(A) = out ≡ ∃B ∈ Ar : (BdefA ∧ L(B) = in)) and
– ∀A ∈ Ar : (L(A) = in ⊃ ∀B ∈ Ar : (BdefA ⊃ L(B) = out)).

The difference between Definition 9 and the earlier presented Definition 5 is that
the former does not require an argument of which all defeaters are out to be
labelled in. This is quite strange, since it also means that an argument that has
no defeaters at all is not required to be labelled in. To some extent, this problem
is repaired for complete labellings, in which each argument is labelled either in,
out or both.

The overall aim of Jakobovits and Vermeir is to come up with a semantics
that is different from Dung’s. Jakobovits and Vermeir justify their approach
by discussing a number of small examples. However, the general approach of
using examples in order to justify a particular formalism has some important
downsides. To illustrate our main point, consider the following example provided
in [19].

2 This also implies that we do not support the approach of sceptical preferred seman-
tics, as is for instance examined by [13]. We reject sceptical preferred semantics for
reasons discussed in the previous section. We do, however, support the approach of
credulous preferred semantics, as this coincides with credulous complete semantics.

122 M. Caminada

Example 2.
A: As the bacteria in the patient’s blood is not of type X, it must be of type Y.
B: As the bacteria in the patient’s blood is not of type Y, it must be of type X.
C: As the patient does not have bacterial infection, giving antibiotics to the pa-
tient is superfluous.
D: As it is not superfluous to give the patient antibiotics, the antibiotics should
be prescribed.

Example 2 is represented in the argumentation framework of Figure 4. Jakobovits
and Vermeir argue that the correct outcome should be that argument D is
justified. However, it is quite easy to provide another example, with essentially
the same structure, where the desired outcome is totally different.

Example 3.
A: The suspect killed the victim by stabbing him with a knife, as witness #1
says so.
B: The suspect killed the victim by shooting him with a gun, as witness #2
says so.
C: The suspect is innocent.
D: The suspect should go to jail.

This essentially gives the same argumentation framework as Figure 4. However,
an analysis of this case yields a different outcome. As essentially none of the
witness statements is without doubt, none of them can serve as a good reason to
refute the innocence of the suspect, and the conclusion that suspect should go
to jail is not an intuitive or desired one, at least not from a legal point of view.

The main point here is that some researchers try to justify a particular design
decision by giving an abstract example (like Figure 4) an informal meaning (like
Example 2 or Example 3) and then arguing that the outcome of the abstract
example should be in line with the “intuitive” outcome of the informal example.
Although this approach has been applied by various researchers in the past, it
has also been criticized [20, 18] for its inherent ad-hoc nature.

It is the author’s opinion that a better justification for the design of a particular
logical formalism can be found in postulates, as these have a more general nature
than separate examples. And for reasons explained earlier, we feel that Definition
5 can serve as a more intuitive and acceptable postulate for reinstatement than
Definition 9. It is the author’s firm opinion that Dung’s traditional semantics have
a solid basis and that one should have very good reasons for adjusting them.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77 (1995) 321–357

2. Vreeswijk, G.A.W., Prakken, H.: Credulous and sceptical argument games for
preferred semantics. In: Proceedings of the 7th European Workshop on Logic for
Artificial Intelligence (JELIA-00). Number 1919 in Springer Lecture Notes in AI,
Berlin, Springer Verlag (2000) 239–253

On the Issue of Reinstatement in Argumentation 123

3. Cayrol, C., Doutre, S., Mengin, J.: Dialectical Proof Theories for the Credu-
lous Preferred Semantics of Argumentation Frameworks. In: Proceedings of the
6th European Conference on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQARU-2001). Volume 2143 of LNAI., Springer-Verlag
(2001) 668–679

4. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7 (1997) 25–75

5. Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation seman-
tics for defeasible logic. Journal of Logic and Computation 14 (2004) 675–702

6. ASPIC-consortium: Deliverable D2.5: Draft formal semantics for ASPIC system
(2005)

7. Horty, J.: Argument construction and reinstatement in logics for defeasible rea-
soning. Artificial Intelligence and Law 9 (2001) 1–28

8. Prakken, H.: Intuitions and the modelling of defeasible reasoning: some case stud-
ies. In: Proceedings of the Ninth International Workshop on Nonmonotonic Rea-
soning (NMR-2002), Toulouse, France (2002) 91–99

9. Caminada, M., Amgoud, L.: An axiomatic account of formal argumentation. In:
Proceedings of the AAAI-2005. (2005) 608–613

10. Caminada, M.: On the issue of reinstatement in argumentation. Technical Re-
port UU-CS-2006-023, Institute of Information and Computing Sciences, Utrecht
University (2006)

11. Caminada, M.: Contamination in formal argumentation systems. In: Proceedings
of the 17th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC).
(2005) 59–65

12. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and
argumentation stages. In Meyer, J.J., van der Gaag, L., eds.: Proceedings of the
Eighth Dutch Conference on Artificial Intelligence (NAIC’96), Utrecht, Utrecht
University (1996) 357–368

13. Doutre, S., Mengin, J.: On sceptical versus credulous acceptance for abstract
argument systems. In: Proceedings of the 9th European Conference on Logics in
Artificial Intelligence (JELIA-2004). (2004) 462–473

14. Dimopoulos, Y., Nebel, B., Toni, F.: Finding Admissible and Preferred Arguments
Can be Very Hard. In: Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-2000). (2000) 53–61

15. Prakken, H.: Commonsense reasoning. Technical report, Institute of Information
and Computing Sciences, Utrecht University (2004) Reader.

16. Urquhart, A.: Basic many-valued logic. In Gabbay, D., Günthner, F., eds.: Hand-
book of Philosophical Logic. Volume 2. Second edn. Kluwer Academic Publishers,
Dordrecht/Boston/London (2001) 249–295

17. Hähnle, R.: Advanced many-valued logic. In Gabbay, D., Günthner, F., eds.: Hand-
book of Philosophical Logic. Volume 2. Second edn. Kluwer Academic Publishers,
Dordrecht/Boston/London (2001) 297–395

18. Caminada, M.: For the sake of the Argument. Explorations into argument-based
reasoning. Doctoral dissertation Free University Amsterdam (2004)

19. Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks.
Journal of logic and computation 9(2) (1999) 215–261

20. Vreeswijk, G.A.W.: Studies in defeasible argumentation. PhD thesis at Free Uni-
versity of Amsterdam (1993)

Comparing Action Descriptions Based on
Semantic Preferences�

Thomas Eiter, Esra Erdem, Michael Fink, and Ján Senko

Institute of Information Systems, Vienna University of Technology, Austria
{eiter, esra, michael, jan}@kr.tuwien.ac.at

Abstract. We consider action domain descriptions whose meaning can be rep-
resented by transition diagrams. We introduce several semantic measures to com-
pare such action descriptions, based on preferences over possible states of the
world and preferences over some given conditions (observations, assertions, etc.)
about the domain, as well as the probabilities of possible transitions. This pref-
erence information is used to assemble a weight which is assigned to an action
description. As an application of this approach, we study the problem of updating
action descriptions with respect to some given conditions. With a semantic ap-
proach based on preferences, not only, for some problems, we get more plausible
solutions, but also, for some problems without any solutions due to too strong
conditions, we can identify which conditions to relax to obtain a solution. We
conclude with computational issues, and characterize the complexity of comput-
ing the semantic measures.

1 Introduction

This paper discusses how to compare action descriptions, whose meaning can be rep-
resented by transition diagrams—a directed graph whose nodes correspond to states
and edges correspond to transitions caused by action occurrences and non-occurrences,
with respect to some given conditions. Comparison of action descriptions is important
for applications, when an agent has to prefer one description more than the others. One
such application is the action description update problem [1]: when an agent tries to
update an action description with respect to some given information, she usually ends
up with several possibilities and has to choose one of these action descriptions. Another
application is related to representing an action domain in an elaboration tolerant way
(for a definition of elaboration tolerance see, e.g., [2, 3]): among several action descrip-
tions representing the same action domain, which one is the most elaboration tolerant
one, with respect to some given conditions describing possible elaborations?

The preference of an agent over action descriptions may be based on a syntactic
measure, such as the number of formulas: the less the number of formulas contained
in an action description, the more preferred it is. A syntactic measure can be defined
also in terms of set containment with respect to a given action descriptionD: an action
description is more preferred if it is a maximal set among others that is contained in
D. For instance, according to the syntactic measure used in [1] for updating an action

� Work supported by the Austrian Science Fund (FWF) under grant P16536-N04.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 124–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Comparing Action Descriptions Based on Semantic Preferences 125

{PushPBT V }
PowerON

TvON ¬TvON

¬PowerON

{} {}{PushPBRC} {PushPBRC}

{PushPBT V }
{PushPBT V , PushPBRC}

{PushPBT V , PushPBRC}

Fig. 1. A transition diagram

descriptionD with some new knowledgeQ, an action descriptionD′ is more preferred
ifD′ is a maximal set among others containingD and contained inD∪Q is maximum.

In this paper, we describe the preference of an agent over action descriptions, with
respect to some semantic measure. The idea is to describe a semantic measure by as-
signing weights (i.e., real numbers) to action descriptions, with respect to their transi-
tion diagrams and some given conditions; then, once the weights of action descriptions
are computed, to compare two descriptions by comparing their weights.

We consider action descriptions, in a fragment of the action language C [4], which
consists of “causal laws.” For instance, the causal law

caused PowerON after PushPBTV ∧ ¬PowerON , (1)

expresses that the action PushPBTV causes the value of the fluent PowerON to change
from f to t; such causal laws describe direct effects of actions. The causal law

caused TvON if PowerON , (2)

expresses that if the fluent PowerON is caused to be true, then the fluent TvON is
caused to be true as well; such causal laws describe state constraints. The meaning of
an action description D can be represented by a transition diagram, like in Fig. 1. In
this transition diagram, the nodes of the graph (shown by boxes) denote the states of the
world: (s) one where both the power and the TV is on, and (s′) the other where both the
power and the TV is off. The edges denote action occurrences. For instance, the edge
from s to s′ labeled by the action of pushing the power button on the TV describes that
executing this action at s leads to s′. The edges labeled by the empty set are due to the
law of inertia.

Suppose that we are given another action description D′ describing the domain
above; and that the transition diagram of D′ is almost the same as that of D, ex-
cept that there is no outgoing edge from the state {PowerON ,TvON } with the la-
bel {PushPBRC }. Which action description should be preferred? In answering this
question, we also take given conditions (observations, assertions, etc.) on the action do-
main into account. We describe conditions in an action query language, like in [5], by
“queries.” For instance,

ALWAYS
∨

A∈2A
executable A, (3)

where 2A denotes the set of all actions, expresses that, at every state, there is some
action executable. The query

SOMETIMES evolves PowerON ; {PushPBRC};PowerON (4)

126 T. Eiter et al.

expresses that, at some state when the power is on, pushing the power button on the
remote control does not turn the power off.
The question we consider in this paper is then the following:

Given a set D of action descriptions and a set C of queries, which action
description in D is a most preferred one with respect to C?

Our main contributions are briefly summarized as follows.

• We provide an answer to the above question with respect to mainly four semantically-
oriented approaches, by assigning weights to action descriptions in D, based on their
transition diagrams. The weights express preferences of the agent over possible states
of the world and preferences over conditions, as well as the probabilities of possible
transitions.

A simple weight measure is to count the number of queries in C which an action de-
scriptionD entails. In the example above,D entails according to its transition diagram
(3) and (4), so D has weight 2; D′ entails according to its transition diagram only (3),
soD′ has weight 1. Hence,D is preferred overD′.

• We apply these approaches to the problem of updating an action description, and
observe two benefits. First, if a problem has many solutions with the syntactic approach
of [1], a semantic approach can be used to pick one. Second, if a problem does not
have any solution with any of the approaches due to too strong conditions, a semantic
approach can be used to identify which conditions to relax to find a solution.

• We characterize the computational cost of computing the weight assignments, which
lays the foundations for efficient computation.

For space reasons, we omit the definitions of transition diagrams and action descrip-
tions. They are as in [1] and given in an extended version [6],1 which contains further
explanation of the examples, additional examples, another application, and a detailed
discussion of the complexity results and algorithms.

2 Action Queries

To talk about observations of the world, or assertions about the effects of the execution
of actions, we use an action query language consisting of queries described as follows.
We start with basic queries: (a) static queries of the form

holds F , (5)

where F is a fluent formula; (b) dynamic queries of the form

necessarily Q after A1; . . . ;An, (6)

where Q is a basic query and each Ai is an action; and (c) every propositional combi-
nation of basic queries. An existential query is an expression of the form

SOMETIMESQ, (7)
1 Available at http://www.kr.tuwien.ac.at/research/ad-cmp.pdf.

Comparing Action Descriptions Based on Semantic Preferences 127

whereQ is a basic query; a universal query is of the form

ALWAYSQ, (8)

whereQ is a basic query. A query q is a propositional combination of existential queries
and universal queries.

As for the semantics, let T = 〈S, V,R〉 be a transition diagram, with a set S of states,
a value function V mapping, at each state s, every fluent P to a truth value, and a set R
of transitions. A history of T of length n is a sequence

s0, A1, s1, . . . , sn−1, An, sn (9)

where each 〈si, Ai+1, si+i〉 (0 ≤ i < n) is in R. We say that a state s ∈ S satisfies
a basic query Q′ of form (5) (resp. (6)) relative to T (denoted T, s |= Q′), if the in-
terpretation P �→ V (P, s) satisfies F (resp. if, for every history s = s0, A1, s1, . . . ,
sn−1, An, sn of T of length n, basic query Q is satisfied at state sn). For other forms
of basic queries Q, satisfaction is defined by the truth tables of propositional logic. If
T is described by an action descriptionD, then the satisfaction relation between s and
a basic query Q can be denoted byD, s |= Q as well.

Note that, for every state s and for every fluent formula F , D, s |= holds F iff
D, s |= ¬holds¬F . For every state s, every fluent formulaF , and every action sequence
A1, . . . , An (n ≥ 1), if D, s |= necessarily (holds F) after A1; . . . ;An then D, s |=
¬necessarily (¬holds F) after A1; . . . ;An.

We say thatD entails a query q (denotedD |= q) if one of the following holds:

– q is an existential query (7) andD, s |= Q for some state s ∈ S;
– q is a universal query (8) andD, s |= Q for every state s ∈ S,
– q = ¬q′ andD �|= q′;
– q = q1 ∧ q2 andD |= q1 andD |= q2; or
– q = q1 ∨ q2 andD |= q1 orD |= q2.

For every basic queryQ,D |= SOMETIMESQ iffD |= ¬ALWAYS ¬Q. For a set C
of queries, we say that D entails C (denoted D|=C) if D entails every query in C.
Consider, e.g., the action description consisting of (1), (2), and

caused ¬PowerON after PushPBTV ∧ PowerON
caused ¬TvON if ¬PowerON
inertial PowerON ,¬PowerON ,TvON ,¬TvON

(10)

encoding how a TV system operates; here inertial L1, . . . , Lk stands for the causal laws
caused Li if Li after Li (1 ≤ i ≤ k). It does not entail any set of queries containing

ALWAYS necessarily (holds ¬TvON) after {PushPBRC }

because this query is not satisfied at the state {TvON ,PowerON }; but, it entails the
queries:

ALWAYS holds PowerON ≡ TvON ,

ALWAYS holds PowerON ∧TvON ⊃
¬necessarily (holds TvON) after {PushPBTV }.

(11)

128 T. Eiter et al.

In the rest of the paper, an expression of the form

possibly Q after A1; . . . ;An,

where Q is a basic query and each Ai is an action, stands for the dynamic query
¬necessarily ¬Q after A1; . . . ;An; an expression of the form

evolves F0;A1;F1; . . . ;Fn−1;An;Fn, (12)

where each Fi is a fluent formula, and each Ai is an action, stands for holds F0 ∧
possibly (holds F1 ∧ possibly (holds F2 ∧ ...) after A2) after A1; and

executable A1; . . . ;An,

where each Ai is an action, stands for possibly True after A1; . . . ;An.We sometimes
drop holds from static queries appearing in dynamic queries.

Queries allow us to express various pieces of knowledge about the domain. For in-
stance, we can express the existence of states where a formula F holds by means of
the query SOMETIMES holds F. Similarly, we can express the existence of a transition
from some state where a formula F holds to another state where a formula F ′ holds, by
the execution of an action A:

SOMETIMES holds F ∧ possibly F ′ after A .

In general, the existence of a history (9) such that, for each si of the history, the inter-
pretation P �→ V (P, si) satisfies some formula Fi is expressed by the query:

SOMETIMES evolves F0;A1;F1; . . . ;Fn−1;An;Fn. (13)

For instance, the query

SOMETIMES evolves PowerON ; {PushPBTV };
¬PowerON ; {PushPBTV };PowerON . (14)

describes the presence of the following history in Fig. 1:

{PowerON ,TvON }, {PushPBTV },
{¬PowerON ,¬TvON }, {PushPBTV }, {PowerON ,TvON }. (15)

That at some state where formula F holds no action is possible is expressed by

SOMETIMES holds F ∧
∧

A∈2A
necessarily False after A.

Like in [1], executability of an action sequence A1, . . . , An (n ≥ 1) at every
state can be described by ALWAYS executable A1; . . . ;An; mandatory effects of a se-
quence A1, . . . , An (n ≥ 1) of actions in a given context by ALWAYS holds G ⊃
necessarily F afterA1; . . . ;An; and possible effects of a sequence of actions in a con-
text by ALWAYS holds G ⊃ possibly F after A1; . . . ;An. In the last two queries, F
describes the effects andG the context.

3 Weight Assignments for Action Descriptions

To compare action descriptions with respect to their semantics, we can assign weights to
them, based on their transition diagrams and a given set of conditions. We present below

Comparing Action Descriptions Based on Semantic Preferences 129

four weight assignments, each with a different motivation expressing some appeal of
the action description, however, without an a priori epistemic meaning. They are by
no means exhaustive, i.e., many more are conceivable, but allow to specify preferences
over the main semantic constituents—states, transitions, queries, and a combination
thereof. Corresponding orders are total and, unlike more general preferences (partial
orders), beneficial wrt. discrimination of choices or component-wise comparability.

3.1 Weighted States

We can specify our preference over states of a transition diagram 〈S, V,R〉 by assigning
a weight to each state in S, by a function g. Such a function assigning real numbers to
states of the world can be considered as a utility function, as in decision theory. If one
state of the world is preferred to another state of the world then it has higher utility
for the agent; here “utility” is understood as “the quality of being useful” as in [7].
Alternatively, the function g can be viewed as a reward function: being at a state s will
give a reward of g(s) to the agent.

Given a utility function for a set S of states, the highly preferred states relative to
a given number l are states with a weight greater than l. Then, one way to define the
weight of an action descriptionD relative to g and l is as follows:

weights (D) = |{s : s ∈ S, g(s) > l}|.
With respect to this definition, the more the number of states that are highly preferred

by the agent, the more preferred the action description is.
For instance, consider the transition diagram in Fig. 1 described byD. Take, for each

s ∈ S,

g(s) =
{

2 if PowerON ∈ s
1 otherwise.

(16)

Take l = 1. Then weights (D) = 1.

3.2 Weighted Queries

We can assign weights to queries to specify preferences over conditions they express:
Let C be a set of queries, along with a weight function f mapping each query in C

to a real number. Then one way to define the weight of D (relative to C and f) is by

weightq(D) =
∑

c∈C,D|=c
f(c).

Intuitively, the weight of an action description defined relative to the weights of queries
shows how much the set C of given preferable queries are satisfied. (Note that f can
easily express a threshold function as well.) With this definition, the more the highly
preferred queries are satisfied, the more preferred the action description is.

For instance, suppose that C consists of (14) and

ALWAYS executable {PushPBRC}, (17)

with weights 1 and 2 respectively. For the descriptionD with the transition diagram in
Fig. 1, weightq (D) = 3.

130 T. Eiter et al.

3.3 Weighted Histories

In a transition diagram T = 〈S, V,R〉, we will say that a history (9) of length n is
desired with respect to a given query (13), if, for each i, the interpretationP �→ V (P, si)
satisfies Fi.

Let D be an action description, and T = 〈S, V,R〉 be the transition diagram de-
scribed by D. Let C be a set of queries, along with a weight function f mapping each
condition in C to a number. Let HC be the set of pairs (w, c) such that w is a desired
history in T with respect to the query c of form (13) in C. Let us denote by st(w) the
starting state s0 of a historyw of form (9). We define a function hmapping each desired
history w appearing in HC to a real number, in terms of the utility u(w) of state st(w)
with respect to w:

h(w) = u(w)×
∑

(w,c)∈HC
f(c).

The function u mapping a history w of form (9) to a real number can be defined
in terms of a sequence of functions ui. Given a utility function (or a reward function)
g mapping each state in S to a real number, and a transition model m mapping each
transition 〈s,A, s′〉 inR to a probability (i.e., the probability of reaching s′ from s after
execution of A):

un(w) = g(sn)
ui(w) = g(si) +m(〈si, Ai+1, si+1〉)× ui+1(w) (0 ≤ i < n)
u(w) = u0(w).

These equations are essentially obtained from the equations used for value determina-
tion in the policy-iteration algorithm described in [7, Chapter 17]: take {s0, . . . , sn} as
the set of states, 〈si, Ai+1, si+1〉 as the possible transitions, the mapping si �→ Ai+1 as
the fixed policy,U as u, Ui as ui,R as g, andM asm. Then we can define the weight of
D in terms of the weights of desired histories w1, . . . , wz appearing in HC as follows:

weighth (D) =
∑z

i=1
h(wi).

The more the utilities of desired histories (or trajectories) satisfied by the action de-
scription, the more preferred the action description is.

For instance, suppose thatC consists of query (14), with weight 3. Consider the tran-
sition diagram T = 〈S, V,R〉 in Fig. 1. Let us denote history (15) by w, and query (14)
by c. ThenHC contains (w, c). Take g(s) as in (16). Take l = 1. Suppose that, for each
transition 〈s,A, s′〉 in R,

m(〈s,A, s′〉) =
{

0.5 if s = {PowerON ,TvON } ∧ |A| = 1
1 otherwise.

(18)

Then u(w) is computed as 3.5. and h(w) = u(w)×
∑

(w,c)∈HC
f(c) = 3.5×3 = 10.5.

Hence weighth (D) = 10.5.

3.4 Weighted Queries Relative to Weighted States

The three approaches above can be united by also considering to what extent each uni-
versal query in C is entailed by the action description. The idea is while computing the

Comparing Action Descriptions Based on Semantic Preferences 131

weight of a description relative to weighted queries, to take into account the states at
which these queries are satisfied.

Let D be an action description. Let T = 〈S, V,R〉 be the transition diagram de-
scribed byD, along with a weight function g mapping each state in T to a real number.
Let C be a set of queries such that every query q in C is an existential query, a universal
query, or a disjunction of both.

First, for each state s in S, we compute its new weight g′(s), taking into account
utilities of the desired histories starting with s. Let HC be the set of pairs (w, c) such
that w is a desired history in T with respect to the query c of form (13) in C. Let W
be the set of histories that appear in HC . Let u be a function mapping a history w to
a real number, describing the utility of state s with respect to w. Then the new weight
function g′ is defined as follows:

g′(s) =
{
g(s) if � ∃w(w ∈W ∧ st(w) = s)∑

w∈W,st(w)=s u(w) otherwise.

Next, for each query c in C, we compute its new weight f ′(c). Let f be a function
mapping each condition in C to a real number. We will denote by SD(B) the set of
states s such thatD, s |= B. Then we define f ′ as follows:

f ′(q) =

⎧⎪⎪⎨
⎪⎪⎩
f ′(q′) + f ′(q′′) if q = q′ ∨ q′′
β if q = ALWAYS B
γ if q = SOMETIMES B ∧ |SD(B)| > 0
0 if q = SOMETIMES B ∧ |SD(B)| = 0,

where β = f(q) ×
∑

s∈SD(B) g
′(s) and γ = f(q) × [(

∑
s∈SD(B) g

′(s))/|SD(B)|].
Intuitively, f ′ describes to what extent each preferable query q is satisfied.

Then the weight ofD (relative to C and f ′) is the sum:

weightqs (D) =
∑

q∈C
f ′(q).

Intuitively, weightqs(D) describes how much and to what extent the given preferable
queries are satisfied byD. For instance, suppose C consists of three queries:

ALWAYS executable {PushPBTV }, (19)

SOMETIMES ¬executable {PushPBRC ,PushPBTV }, (20)

and query (14), denoted by c1, c2 and c3 respectively. Consider an action descrip-
tion D, with the transition diagram in Fig. 1. Let us denote history (15) by w; then
HC = {(w, c3)}. Take the utility function g as in (16), and the transition model m as
in (18). Take f(c1) = 1, f(c2) = 2, f(c3) = 3. Then g′({PowerON ,TvON }) = 3.5,
g′({¬PowerON ,¬TvON }) = 1, and f ′(c1) = 4, f ′(c2) = 4, f ′(c3) = 10.5. There-
fore, weightqs (D) = 18.5.

Further discussion and additional examples considering the weight functions in dif-
ferent action domains are given in the extended version [6].

132 T. Eiter et al.

4 Application: Updating an Action Description

Suppose that an action description D consists of two parts: Du (unmodifiable causal
laws) and Dm (modifiable causal laws); and a set C of conditions is partitioned into
two: Cm (must) and Cp (preferable). We define an Action Description Update (ADU)
problem by an action description D = (Du, Dm), a set Q of causal laws, a set C =
(Cm, Cp) of queries, all with the same signature, and a weight function weight map-
ping an action description to a number. The weight function can be defined relative to
a set of queries, a utility function, or a transition model, as seen in the previous sec-
tion. We say that a consistent action description D′ is a solution to the ADU problem
(D,Q,C,weight) if

(i) Q ∪Du ⊆ D′ ⊆ D ∪Q,
(ii)D′ |= Cm,
(iii) there is no other consistent action description D′′ such that Q ∪Du ⊆ D′′ ⊆
D ∪Q,D′′ |= Cm, and weight(D′′) > weight(D′).

The definition of an ADU problem in [1] is different from the one above mainly
in two ways. First, Cp = ∅. Second, instead of (iii) above, the following syntactic
condition is considered: there is no consistent action description D′′ such that D′ ⊂
D′′ ⊆ D ∪Q, andD′′ |= C.

The semantic approach above has mainly two benefits, compared to the syntactic
approach of [1]. First, there may be more than one solution to some ADU problems
with the syntactic approach. In such cases, a semantic approach may be applied to pick
one of those solutions. Example 1 illustrates this benefit. Second, for an ADU prob-
lem, if no consistent action descriptionD′ satisfying (i) satisfies the must queries (Cm),
there is no solution to this problem with either syntactic or semantic approach. In such
a case, we can use the semantic approach with weighted queries, to relax some must
queries in Cm (e.g., move them to Cp). The idea is first to solve the ADU problem
((Du, Dm), Q, (∅, C′

m),weight), where C′
m is obtained from Cm by complementing

each query, and where the weights of queries in C′
m are equal to some very small nega-

tive integer; and then to identify the queries of C′
m satisfied in a solution and add them

Cp, with weights multiplied by -1. This process of relaxing some conditions of Cm to
find a solution is illustrated in Example 2.

Example 1. Consider, for instance, an action descriptionD = (Dm, Du), whereDm =
{(1), (2)} and Du is (10), that describes a TV system with a remote control. Suppose
that, later the following information,Q, is obtained:

caused TvON after PushPBRC ∧ PowerON ∧ ¬TvON
caused ¬TvON after PushPBRC ∧ TvON .

Suppose that we are given the set C = (Cm, Cp) of queries where Cm consists of the
queries (3) and

SOMETIMES evolves ¬TvON ; {PushPBTV };¬TvON , (21)

and Cp consists of the queries (14), (20), (19), (17), (4), denoted by c1, . . . , c5 respec-
tively. WhenQ is added toD, the meaning ofD ∪Q can be represented by a transition

Comparing Action Descriptions Based on Semantic Preferences 133

{PushPBT V , PushPBRC}PowerON

TvON

{}

¬TvON

¬PowerON

{PushPBRC}
{}

{PushPBT V }

{PushPBT V , PushPBRC}

{PushPBT V }

Fig. 2. Transition diagram of D(2) = Du ∪Q ∪ {(2)}

{PushPBT V , PushPBRC}
¬TvON
PowerON

{}

¬PowerON

¬TvON

PowerON

TvON

{}
{PushPBT V , PushPBRC}

{PushPBT V }

{}
{PushPBRC}

{PushPBRC}

{PushPBRC}

{PushPBT V }
{PushPBT V }

Fig. 3. Transition diagram of D(3) = Du ∪Q ∪ {(1)}

diagram almost the same as in that of D (Fig. 1), except that there is no outgoing edge
from the state {PowerON ,TvON } with the label {PushPBRC}; thus only (3), (21),
and (14) in C are entailed by D ∪ Q. The question is how to update D by Q so that
the must conditions, Cm, are satisfied, and the preferable conditions, Cp, are satisfied
as much as possible.

The consistent action descriptions for which (i) holds are D(1) = D ∪ Q, D(2) =
Du ∪ Q ∪ {(2)}, D(3) = Du ∪ Q ∪ {(1)}, D(4) = Du ∪ Q. With the syntactic ap-
proach of [1], we have to choose between D(2) and D(3), since they have more causal
laws. Consider the semantic approach based on weighted histories (i.e., weight =
weighth), with (16) as the utility function g, (18) as the transition modelm, and f(c1) =
3, f(c2) = 1, f(c3) = 4, f(c4) = 3, f(c5) = 2. Let us consider the states s0 =
{PowerON ,TvON }, s1 = {PowerON ,¬TvON }, s2 = {¬PowerON ,¬TvON };
and the histories

w0 = s0, {PushPBRC}, s1, w2 = s0, {PushPBTV }, s2, {PushPBTV }, s1,
w1 = s1, {PushPBRC}, s0, w3 = s1, {PushPBTV }, s2, {PushPBTV }, s1

with utilities u(w0) = 3, u(w1) = 4, u(w2) = 3.5, u(w3) = 5.
For D(2) (Fig. 2), since HCp = ∅, weighth (D(2)) = 0. For D(3) (Fig. 3), since

HCp contains (w0, c5), (w1, c5), (w2, c3), and (w3, c3), weighth (D(3)) = 48. Thus
D(3) is the solution.

Example 2. LetD, Q, Cp, andD(1)–D(4) as in Example 1 and Cm consist of

SOMETIMES ¬
∨

A∈2A
executable A, (22)

ALWAYS ¬evolves ¬TvON ; {PushPBTV };¬TvON , (23)

134 T. Eiter et al.

denoted by c′1 and c′2 respectively. None of the descriptions D(1) – D(4) entails Cm.
Therefore, there is no solution to the ADU problem above with either the syntactic
approach of [1] or any of the semantic approaches above. To identify which queries in
Cm we shall move to Cp, first we obtain C′

m from Cm by negating each query in Cm,
and assigning a very small negative integer, say –100, as their weights. So C′

m consists
of the queries (3) and (21), denoted by c′′1 and c′′2 , with weights -100. With the semantic
approach based on weighted queries (i.e., weight = weight q),

weightq (D(1)) = f(c′′1) = −100,
weightq (D(2)) = weightq (D(3)) = f(c′′1) + f(c′′2) = −200,
weightq (D(4)) = f(c′′1) + f(c′′2) = −200

the description D(1) is the solution to the ADU problem given by ((Du, Dm), Q,
(∅, C′

m), weightq). This suggests relaxing the must query (22) (i.e., adding the query
(22) to Cp with the weight 100) and solving the new ADU problem, ((Du, Dm), Q,
{(23)}, Cp ∪ {(22)},weightq), for which the descriptionDu ∪Q is the solution.

Other semantic approaches to action description updates. Given a consistent action
descriptionE, condition (iii) of an ADU problem (D,Q,C,weight) can be replaced by

(iii)′ there is no other consistentD′′ such thatQ∪Du ⊆ D′′ ⊆ D∪Q,D′′ |= Cm,
and |weight(D′′)− weight(E)| < |weight(D′)− weight(E)|

to express that, among the consistent action descriptionsD′ for which (i) and (ii) hold,
an action description that is “closest” to (or most “similar” to) E is picked. Here, for
instance, E may beD ∪Q, to incorporate as much of the new information as possible,
althoughD ∪Qmay not entail C. What is meant by closeness or similarity is based on
the particular definition of the weight function. For instance, based on the weights of
the states only, with g(s) = 1 if s is a state of E, and 0 otherwise, the closeness of an
action description to E is defined in terms of the common world states.

A further application of weight-based comparison of action descriptions to assess
the elaboration tolerance of different representations of an action domain is considered
in [6].

5 Computational Aspects

We confine here to discuss the complexity, in order to shed light on the cost of com-
puting the weight measures. We assume that the basic functions g(s), f(q), as well as
m(〈s,A, s′〉) are computable in polynomial time. For a background on complexity, we
refer to the literature (see e.g. [8]).2

Apparently, none of the different weights above is polynomially computable from an
input action descriptionD and a set C of queries in general. Indeed, deciding whether S
has any states is NP-complete, thus intractable. Furthermore, evaluating arbitrary queries
q onD (D |= q) is a PSPACE-complete problem. Indeed, q can be evaluated by a sim-
ple recursive procedure in polynomial space. On the other hand, evaluating Quantified
Boolean Formulas, which is PSPACE-complete, can be reduced to decidingD |= q.

2 See also http://qwiki.caltech.edu/wiki/Complexity Zoo

Comparing Action Descriptions Based on Semantic Preferences 135

Table 1. Complexity of computing weights (completeness)

Input / Weight weights weightq weighth weightqs

D, C #P FPSPACE GapP ∗ FPSPACE

D, C, S polynomial

Dpol
∗∗, C in FPNP

‖
∗ #P for non-negative g(s),f(q); ∗∗ |S| is polynomially bounded

Computation givenD and C. As it turns out, all four weights are computable in poly-
nomial space. This is because each weight is a sum of (in some cases exponentially
many) terms, each of which can be easily computed in polynomial space, using exhaus-
tive enumeration. In some cases, the computation is also PSPACE-hard, but in others
supposedly easier:

Theorem 1. Given an action description D, a set C of queries, and polynomial-time
computable basic functions g(s), f(q), andm(〈s,A, s′〉),

(i) Computing weight s(D) relative to g is, #P-complete;
(ii) Computing weight q(D) relative to C and f is FPSPACE-complete;

(iii) Computing weighth(D) relative to C, f , g andm is #P-complete (modulo a nor-
malization, which casts the problem to one on integers), if the range of f and g
are nonnegative numbers, and GapP-complete for arbitrary f and g;

(iv) Computing weight qs(D) relative to C, f , g andm is FPSPACE-complete.

These results are also shown in the first row of Table 1. Here #P [8] is the class of the
problems where the output is an integer that can be obtained as the number of the runs
of an NP Turing machine accepting the input, and GapP [9, 10] is the closure of #P
under subtraction (equivalently, the functions expressible as the number of accepting
computations minus the number of rejecting computations of an NP Turing machine).
These problems are trivially solvable in polynomial time with an oracle #P, and no such
problem is believed to be PSPACE-hard.

Computation given D, C, and states S of D. Informally, a source of complexity is
that D may specify an exponentially large transition diagram T . If T is given, then all
four weights are polynomially computable. In fact, not all of T is needed, but only a
relevant part, denoted TC(D), which comprises all states and all transitions that involve
actions appearing in C.

Now if the state set S is known (e.g., after computation with CCALC [11]) or com-
putable in polynomial time, then TC(D) is constructible in polynomial time. Indeed, for
each statess, s′ ∈ S and each actionAoccurring in some query, we can test in polynomial
time whether 〈s,A, s′〉 is a legal transition with respect to D; the total number of such
triples is polynomial in |S|. Then the following result (the second row of Table 1) holds.

Theorem 2. Given an action description D, the set S of states described by D, a
set C of queries, and polynomial-time computable basic functions g(s), f(q), and
m(〈s,A, s′〉). Then weight s(D) (relative to g), weight q(D) (relative to C and f),

136 T. Eiter et al.

weighth(D) (relative to C, f , g and m), and weight qs(D) (relative to C, f , g and
m), are all computable in polynomial time.

Intuitively, for weight q(D) this holds since we can decide whether a query q from C
holds with respect to TC(D) in polynomial time using standard labeling methods from
model checking [12]. We can compute weighth(D) with similar labeling techniques,
reshuffling the weight and utility functions h(w) and u(w), respectively, such that con-
sidering exponentially many paths in TC(D) explicitly is avoided.

Computation given D and C for polynomial state set S. Finally, if the state space
S is not large, i.e., |S| is polynomially bounded, S is computable with the help of an
NP-oracle in polynomial time; in fact, this is possible with parallel NP oracles queries,
and thus computing S is in the respective class FPNP

‖ . From Theorem 2, we thus obtain
the following results (the third row of Table 1):

Theorem 3. Given an action description D such that |S| is polynomially bounded,
a set C of queries, and polynomial-time computable basic functions g(s), f(q), and
m(〈s,A, s′〉), Then computing each of the weight functions, weight s(D) (relative to
g), weight q(D) (relative to C and f), weighth(D) (relative to C, f , g and m), and
weight qs(D) (relative to C, f , g andm), is in FPNP

‖ .

On the other hand, tractability of any of the weight functions in the case where |S|
is polynomially bounded is unlikely, since solving SAT under the assertion that the
given formula F has at most one model (which is still considered to be intractable) is
reducible to computing weightp(D) for each p ∈ {s, q, h, qs}.

6 Conclusion

We have presented four ways of assigning weights to action descriptions, based on the
preferences over states, preferences over conditions, and probabilities of transitions, so
that one can compare the action descriptions by means of their weights. To the best
of our knowledge, this paper is the first attempt in this direction. Moreover, we have
characterized the computational cost of the weight assignments, providing a basis for
efficient algorithms.

We have illustrated the usefulness of such a semantically-oriented approach of
comparing action descriptions, on the problem of updating an action description, in
comparison with the syntactic approach of [1]. Further examples and applications are
considered in the extended version of this paper [6].

Further work will aim at implementations of the weight measures, based on the com-
plexity characterizations and algorithms obtained (cf. [6]) and to investigate restricted
problem classes. Another issue is to explore further measures.

References

1. Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. In: Proc. IJ-
CAI. (2005) 418–423

2. McCarthy, J.: Elaboration tolerance. In: Proc. CommonSense. (1998)

Comparing Action Descriptions Based on Semantic Preferences 137

3. Amir, E.: Towards a formalization of elaboration tolerance: Adding and deleting axioms. In:
Frontiers of Belief Revision. Kluwer (2000)

4. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proc. AAAI. (1998) 623–630

5. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3 (1998) 195–210
6. Eiter, T., Erdem, E., Fink, M., Senko, J.: Comparing action descrip-

tions based on semantic preferences. Extended manuscript. Available at
http://www.kr.tuwien.ac.at/research/ad-cmp.pdf (2006)

7. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995)
8. Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)
9. Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. Journal of Computer

and System Sciences 48 (1994) 116–148
10. Gupta, S.: Closure properties and witness reduction. Journal of Computer and System Sci-

ences 50 (1995) 412–432
11. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.

AI 153 (2004) 49–104
12. Clark, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

Modal Logics of Negotiation and Preference

Ulle Endriss and Eric Pacuit

Institute for Logic, Language and Computation
University of Amsterdam

Abstract. We develop a dynamic modal logic that can be used to model
scenarios where agents negotiate over the allocation of a finite number of
indivisible resources. The logic includes operators to speak about both
preferences of individual agents and deals regarding the reallocation of
certain resources. We reconstruct a known result regarding the conver-
gence of sequences of mutually beneficial deals to a Pareto optimal allo-
cation of resources, and discuss the relationship between reasoning tasks
in our logic and problems in negotiation. For instance, checking whether
a given restricted class of deals is sufficient to guarantee convergence to
a Pareto optimal allocation for a specific negotiation scenario amounts
to a model checking problem; and the problem of identifying conditions
on preference relations that would guarantee convergence for a restricted
class of deals under all circumstances can be cast as a question in modal
logic correspondence theory.

1 Introduction

Negotiation between autonomous agents over the allocation of resources has
become a central topic in AI. In this paper, we present some first steps towards
using (modal) logic to model negotiation scenarios. We explore to what extent
known results about negotiation can be reconstructed in such a logic and whether
it is possible to derive new insights about a negotiation framework by studying
its formalisation in logic. The particular negotiation framework we are interested
in here, which has recently been studied by several authors [1, 2, 3], involves a
number of autonomous agents negotiating over the reallocation of a number of
indivisible goods amongst themselves. Agents have preferences over the resources
they hold, and they will only agree to take part in a deal if that deal would leave
them with a preferred bundle of goods. That is, negotiation is driven by the
rational interests of the participating agents. At the same time, we can observe
different phenomena at the global level. For instance, it may or may not be the
case that the sequence of deals implemented by the agents converges to a socially
optimal allocation of resources (say, a Pareto optimal allocation).

Our aim in this paper is to show how such a negotiation setting can be for-
malised using modal logic. More specifically, we are developing a logic in the
style of propositional dynamic logic (PDL) that allows us to speak both about
the preferences of individual agents and the aggregated preferences of the soci-
ety as a whole (to model Pareto improvements), as well as deals between agents
involving the reassignment of specific resources to other agents. We show that

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 138–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modal Logics of Negotiation and Preference 139

properties such as guaranteed convergence to a Pareto optimal allocation can
be expressed in this logic, and we discuss how to apply logical reasoning tech-
niques, such as model checking, to decision problems arising in the context of
negotiation.

This work also fits in with the larger project of “social software” first discussed
by Parikh [4]. The main idea of social software is that tools and techniques from
computer science (in particular logic of programs) can be used to reason about
social procedures (see [5] for a survey of the relevant literature). Much of the
work on social software is concerned with developing logics intended to verify
the “correctness” of social procedures [6]. There are often two key features of
these logics. First, they should be expressive enough to capture the relevant
concepts in order to state correctness conditions. Second, the logics should have
well-behaved computational properties (for example, a decidable satisfiability
problem and polynomial time model checking). The present paper will pay close
attention to both of these issues.

The paper is organised as follows. In Section 2 we introduce a PDL-style logic
for reasoning about negotiation settings, prove its decidability, and discuss some
illustrative examples. Then we show in Section 3 how the language of this logic
can express a property known as guaranteed convergence to a Pareto optimal
allocation. Our discussion shows that this can be reduced to a statement about
Pareto improvements alone; and we consequently introduce a second, more basic
logic to reason about Pareto efficiency in Section 4. Section 5 concludes with an
extensive discussion of further possibilities of linking reasoning tasks in our logic
of negotiation spaces and questions arising in the context of negotiation. The
appendix summarises relevant results about PDL and its extensions.

2 The Logic of Negotiation Spaces

In this section, we are going to develop a logic to describe negotiation scenarios
of the following sort. There are a (finite) number of agents and a (finite) number
of resources, which are indivisible and cannot be shared amongst more than
one agent at a time. An allocation is a partitioning of the resources amongst
the agents (each resource has to be assigned to exactly one agent). Agents have
preferences over the bundles of resources they receive (but they are indifferent
to what resources are being received by other agents; that is, we do not want to
model allocative externalities). To improve their situation, agents can agree on
deals to exchange some of the resources currently in their possession. In the most
general case, we allow for any kind of multilateral deal. That is, a single deal
may involve the reassignment of any number of resources amongst any number
of agents. Agents are assumed to be rational in the sense of never accepting a
deal that would leave them with a bundle that they like less than the bundle
they did hold prior to that deal.

As outside observers, we are not actually interested in the preferences of indi-
vidual agents, but we do care about the quality of allocations from a social point
of view. In particular, we are going to be interested in allocations of resources

140 U. Endriss and E. Pacuit

that are Pareto optimal as well as in sequences of deals that lead to such Pareto
optimal allocations. To describe such scenarios, we develop the logic L〈A,R〉,
which is parametrised by a finite set of agents A and a finite set of resources R.

2.1 Preliminaries

An allocation is a total function A : R → A specifying for each resource item
which agent currently holds that item. As we shall see, the set AR of all alloca-
tions will be the “set of worlds” in the (intended) models of our logic. An atomic
deal is of the form (a ← r), for a ∈ A and r ∈ R. It specifies that resource
r is being reassigned to agent a (which agent held r before the deal is left un-
specified). Each of these atomic deals induces a binary relation Ra←r over the
set of allocations AR: given two allocations x and y, we have xRa←ry iff x and
y are identical except possibly for the assignment of resource r which must be
assigned to agent a in allocation y.

Each agent i ∈ A is equipped with a preference relation Ri over alternative
bundles of resources:Ri ⊆ 2R×2R. We require preference relations to be reflexive
and transitive (but not necessarily monotonic, for instance). Each Ri extends to
a preference relation over alternative allocations of resources: for allocations
A,A′ ∈ AR, we have (A,A′) ∈ Ri iff ({r ∈ R | A(r) = i}, {r ∈ R | A′(r) =
i}) ∈ Ri. That is, agent i prefers allocation A′ over allocation A iff they prefer
the bundle they receive in A′ over the bundle they receive in A. While the Ri

are defined in terms of bundles, we are mostly going to use them in this derived
form, as relations over allocations. Union (∪), intersection (∩), complement (R),
converse (R−1), and iteration (R∗) of relations are defined in the usual manner.

2.2 Syntax

Atomic propositions. Let At be a finite or countable set of atomic propositions,
including the special symbols Hij for all i ∈ A and all j ∈ R. The intended
meaning of Hij is that agent i holds resource j.

Relations and formulas. We first define the range of terms that can be used to
index a modal operator, and then the set of formulas itself. We assume there
is a set of atomic relation terms, one for each atomic deal relation and one
for each preference relation. We will use the same symbol to represent both a
relation term and the relation. We trust this abuse of notation will not cause
any confusion. A relation term has the following syntactic form:

R ::= r | R ∪R′ | R ∩R′ | R−1 | R | R∗,

where r is an atomic relation of the formRa←r orRi. Formulas have the following
syntactic form:

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈R〉ϕ,
where p ∈ At and R is a relation term. Further logical operators, such as conjunc-
tion, can be defined in terms of the above in the usual manner. The box-operator,
in particular, is defined as the dual of the diamond: [R]ϕ = ¬〈R〉¬ϕ.

Modal Logics of Negotiation and Preference 141

2.3 Semantics

Frames. A frame F = (A,R, {Ri}i∈A) is a triple consisting of a set of agents A,
a set of resources R, and a set of preference relations Ri over allocations, one for
each agent. This would corresponds to the frame (AR, {Ri}i∈A) in the standard
Kripke semantics for a multi-modal logic; that is, the “worlds” in a frame are
allocations of resources. Note that the deal relations Ra←r are fully specified by
A and R already, so these need not be specified as relations of the frame.

Models. A modelM=(F , V) is a pair consisting of a frame F = (A,R, {Ri}i∈A)
and a valuation function V mapping atomic propositions to subsets of AR. In-
tuitively, V (p) will be the set of allocations at which the proposition p is true.
V has to respect the condition V (Hij) = {A ∈ AR | A(j) = i}. That is, Hij is
true in exactly those allocations where agent i holds resource j.

Truth in a model. Truth of a formula ϕ at a world w (an allocation) in a given
model M is defined as follows:

(1) M, w |= p iff w ∈ V (p) for atomic propositions p;
(2) M, w |= ¬ϕ iff not M, w |= ϕ;
(3) M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ;
(4) M, w |= 〈R〉ϕ iff there is a v ∈ AR such that wRv and M, v |= ϕ.

For instance, 〈Ri〉ϕ means that ϕ is true in some allocation that agent i prefers
over the current allocation. Notions such as validity and satisfiability are defined
in the usual manner [7, 8]. The formula [Ra←r1∪Ra←r2]ϕ, for instance, expresses
that in every allocation that we can reach by giving either item r1 or item r2 to
agent a satisfies ϕ.

2.4 Decidability

Next we are going to show that the logic L〈A,R〉 is decidable. This may seem
surprising at first, given the close connection of our logic to PDL extended with
the complement operator, which is known to be undecidable (see appendix).
In short, the reason why L〈A,R〉 is decidable is that, for this logic, fixing the
language of formulas involves fixing the setA of agents and the setR of resources.
This is turn amounts to fixing the set of possible worlds of our models.

Proposition 1 (Decidability). The logic L〈A,R〉 is decidable.

Proof. A formula ϕ in the language of L〈A,R〉 is valid iff it is true at every world
in every model of L〈A,R〉. The number of frames of L〈A,R〉 is finite: A and R are
fixed and the number of choices for each preference relation Ri is bound above
by the square of the number of bundles of resources fromR. The definition of the
valuation function over atomic propositions not appearing in ϕ is not relevant, so
we only need to consider a finite number of valuation functions, and hence a finite
number of models. Each of these models is itself finite, and checking whether ϕ
is true at a given world in a given model is a decidable problem. Hence, checking
validity amounts to deciding a finite number of decidable problems, so it must
be a decidable problem itself. �

142 U. Endriss and E. Pacuit

2.5 Examples

We are now going to give a couple of examples that demonstrate what can be
expressed in our logic L〈A,R〉 of negotiation spaces.

Describing bundles and allocations. Formulas of the following form completely
specify the bundle held by agent i (there is one such formula for each X ⊆ R):

bunX
i =

∧
j∈X

Hij ∧
∧

j∈R\X

¬Hij (1)

Conjunctions of such bun-formulas (with one conjunct for each i ∈ A) com-
pletely specify an allocation. Let 〈X1, . . . , Xn〉 be a partitioning of the set of
resources R. The following formula identifies the corresponding allocation:

alloc〈X1,...,Xn〉 =
n∧

i=1

bunXi

i (2)

Given our semantics, any such alloc-formula will be true in exactly one world
(by definition); that is, these formulas have a similar role as nominals, familiar
from hybrid logic [7]. In fact, an alternative approach would have been to intro-
duce a nominal for each allocation, and to define the propositions Hij in terms
of these nominals, rather than giving the Hij a special status.

No externalities. In our definition of the preference relations Ri we have stipu-
lated that they should be free of externalities by defining them as being induced
by preferences over bundles. Next we are going to see that this could in fact
also be defined syntactically; that is, we may define the Ri as preference rela-
tions over allocations and additionally impose axioms that exclude the option of
externalities, when this is desired. We first define a modality that allows us to
move to any world in the model from any given starting point. This is possible,
because all worlds (allocations) can be reached by a sequence of atomic deals
(as long as no conditions on the acceptability of a deal are being imposed).

[∗]ϕ = [(
⋃

a∈A,r∈R
Ra←r)∗]ϕ (3)

Since any two states of our model are connected via a finite sequence of deals,
[∗] is a universal modality. That is, [∗]ϕ is true at a state provided ϕ is true at
every state in the model.

Intuitively, the preferences depend only on the bundles if, whenever there is
a situation in which agent i prefers bundle Y over bundle X , then whenever the
agent has bundle X , then the agent prefers a situation in which it has bundle
Y . With the help of the universal modality we can express this as follows:

(bunX
i ∧ 〈Ri〉bunY

i)→ [∗](bunX
i → 〈Ri〉bunY

i) (4)

The conjunction of the above type of implication for all bundlesX,Y ∈ 2R would
then describe the fact that preferences only depend on bundles (no externalities).

Modal Logics of Negotiation and Preference 143

3 Convergence to a Pareto Optimal Allocation

A central question in negotiation concerns convergence [1, 2, 3]: under what cir-
cumstances can we be sure that any sequence of deals negotiated by the agents
will eventually lead to an allocation with certain desirable properties? Such “de-
sirable properties” are usually expressed in terms of an aggregation of the prefer-
ences of the individual agents. A fundamental criterion for economic efficiency is
the concept of Pareto optimality: an allocation of resources is Pareto optimal iff
there is no other alternative that would be strictly better for one agent without
being worse for any of the others [9]. In this paper, we are going to be interested
under what circumstances a sequence of deals can be guaranteed to converge to
a Pareto optimal allocation of resources. More specifically, in this section, we are
going to reconstruct a result of [2], which may be paraphrased as stating that
any sequence of deals that are beneficial for all the agents involved and that are
not subject to any structural restrictions (say, on the number of agents involved
in a single deal), will eventually result in a Pareto optimal allocation.

We are now going to formalise this result as a formula of L〈A,R〉. This formula
will have the following general structure: [Φ∗]〈Φ∗〉opt. Here Φ stands for the
union of all deals that are possible and opt is a formula describing that the
allocation in question is “optimal”. So the formula says that for any initial
allocation, if we implement any sequence of Φ-deals, we can always reach an
optimal allocation by implementing a further such sequence (or we are already
at the optimal allocation).

To instantiate this template to a concrete formula, we first need to say what it
means for a deal (a move to another allocation) to be “beneficial” (or rational)
for everyone involved. For this we use the notion of Pareto improvement. We
first need to define an agent’s strict preference. Given any preference Ri, we can
define its strict version, Rs

i as follows. For allocations w and v, say that wRs
i v if

wRiv and it is not the case that vRiw. Thus,

Rs
i = Ri ∩R−1

i (5)

Thus the intended interpretation of 〈Rs
i 〉ϕ is that ϕ is true at an alternative

which agent i strictly prefers to the current state.
We can now define a relation, denoted par, with intended interpretation of

〈par〉ϕ being that ϕ is true at an alternative which is a Pareto improvement to
the current alternative. Formally, we define par as follows:

par =
⋂
i∈A

Ri ∩
⋃
i∈A

Rs
i (6)

Now ifM, w |= [par]⊥, then w is an “end-state” with respect to the par relation.
Thus, there is no state which is a Pareto improvement over w. In other words,
w is Pareto efficient.

Requiring deals to be rational is one way of restricting the range of possible
deals. Another form of restriction are structural constraints. For instance, a
particular negotiation protocol may only permit agents to negotiate bilateral

144 U. Endriss and E. Pacuit

deals (deals involving only two agents each), or there may be an upper limit on
the number of resources that can be reassigned in a single deal. Let D be the
set of deals licensed by our negotiation protocol. For instance, D could be the
set of all atomic deals:

D =
⋃

a∈A,r∈R
Ra←r (7)

Another option would be to define D as the set of all deals (observe that every
deal can be implemented as a sequence of atomic deals):

D = (
⋃

a∈A,r∈R
Ra←r)∗ (8)

We should note that, of course, not every restriction of interest can be expressed
using our language for describing deals. This is due to the fact that we define
atomic deals in terms of a single resource and the agent receiving that resource,
but we do not specify from which other agent that resource is being taken.

The set of deals that are both rational and subject to the structural constraints
defining D are given by the intersection D∩par. Sequences of such deals belong
to (D ∩ par)∗. We can now state the convergence property:

[(D ∩ par)∗]〈(D ∩ par)∗〉[par]⊥ (9)

This formula expresses that any sequence of deals that are rational and belong
to D will either lead to a Pareto optimal allocation, or to an allocation from
which a Pareto optimal allocation is still reachable by means of such a sequence.
In case we also know that any such sequence is bound to terminate, then this
reduces to every sequence of rational D-deals eventually resulting in a Pareto
optimal allocation of resources. For D being the full set of deals (without any
structural restrictions), this has been proved to hold in [2]. Hence, formula (9)
with D being the full set of deals must be valid in our logic L〈A,R〉.

We can see this also as follows. If D is the full set of deals, i.e. D is defined by
equation (8), then D is a universal relation, linking any two allocations in AR.
Hence the intersection D∩par is actually just the relation par. It is not difficult
to see (and we are going to explain precisely why in the following section), that
par must be a transitive relation. Hence, par∗ is just the reflexive closure of
par. Thus formula (9) reduces to the formula [par∗]〈par∗〉[par]⊥. Observe that
this formula is valid on a given frame iff the following is:

[par]⊥ ∨ 〈par〉[par]⊥ (10)

That is, either we are already at a Pareto efficient state or there is a par-path
that leads to a Pareto efficient state. Thus our convergence theorem reduces to
a statement purely about Pareto improvements, which can be expressed in a
fragment of our logic in which the modalities contain only preference relation
symbols. Since this logic may be of independent interest, we treat it in detail in
the next section.

Modal Logics of Negotiation and Preference 145

4 The Logic of Pareto Efficiency

The goal of this section is to develop a logic of Pareto efficiency. We start with
an arbitrary set of alternatives W and assume each agent has a (reflexive and
transitive) preference over W . This is the setting of a recent paper by van Ben-
them et al. [10]. In fact, studying preferences from a logical perspective has been
studied by a number of different authors (cf. Hansson [11]). Of course, since each
Ri is assumed to be reflexive and transitive, the class of all preference models
is axiomatized by multi-agent S4. Van Benthem et al. [10] show that taking
the above language as a starting point, a number of different game-theoretic
notions, such as the Nash equilibrium and the backward induction solution, can
be expressed and studied from a modal preference logic point of view. To that
end, standard tools from extended modal logic, such as nominals, dynamic epis-
temic operators, and the universal modality, are used. The logic presented in
this section continues this line of thinking.

Let At be a finite or countable set of atomic propositions. The language of the
logic LPareto of Pareto efficiency is defined as follows (with p ∈ At):

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈Ri〉ϕ | 〈Rs
i 〉ϕ | 〈par〉ϕ

The standard boolean connectives and the operators [Ri], [Rs
i] and [par] are

defined as usual. Truth in a model is defined as usual. Here we are working in a
multi-modal language interpreted over standard Kripke structures in which the
accessibility relation for each 〈Rs

i 〉 and the 〈par〉 modal operator are defined in
terms of the Ri relations. This is analogous to working in a multi-agent epistemic
logic with a common knowledge operator (in this case, the accessibility for the
common knowledge operator is defined to be the reflexive transitive closure of
the union of the individual accessibility relations). Recall the definitions of Rs

i

and par from the previous section. Putting everything together, a preference
model is a tuple (W, {Ri}i∈A, V) where each Ri is reflexive and transitive, and
the Rs

i and par relations are defined as above.
For issues of decidability and axiomatization it will be convenient to interpret

the above language as a fragment of PDL with converse, intersection and comple-
ment operators. In this case, each Ri is an atomic program, and the modalities
〈Rs

i 〉 and 〈par〉 can be defined by the appropriate operations on the Ri. See the
appendix for a discussion of the relevant issues. We end this section with two
simple observations.

Observation 1. If each Ri is transitive, then par is transitive.

Proof. Suppose that wparv and vparz. By transitivity of the Ri, it is easy to
see that (w, z) ∈

⋂
iRi. Since vparz, there is some agent i such that vRiz but

not zRiv. Our claim is that not zRiw. Suppose that zRiw. Then by transitivity
of Ri, since zRiw and wRiv, zRiv which contradicts our assumption. �

Consider again formula (10): [par]⊥ ∨ 〈par〉[par]⊥. Intuitively, this formula
will be true at an alternative w provided either w is Pareto efficient or there is

146 U. Endriss and E. Pacuit

a Pareto improvement v that is. That is, M, w |= [par]⊥∨ 〈par〉[par]⊥ just in
case either there is no v such that wparv or wparv and v is an “end state”. Our
last observation is that assuming W is finite, this formula is valid.

Observation 2. Suppose that W is finite and M = (W, {Ri}i∈A, V) is a pref-
erence model. Then for each w ∈W , we have M, w |= [par]⊥ ∨ 〈par〉[par]⊥.

Proof. The proof follows easily from the fact that par is irreflexive and W is
assumed to be finite. Under these assumptions it is easy to see that for each state
w ∈W , if w is not an par end state, then it is par accessible to an par end state.
That is, for each w ∈ W , either there is no state v such that wparv or there is a
state v ∈ W such that wparv and for each v′ ∈ W , it is not the case that vparv′.
This is precisely what it means to say that M, w |= [par]⊥ ∨ 〈par〉[par]⊥. �

From a modal logic perspective, these observations are easy exercises. However,
from the perspective of this paper, they demonstrate that modal logic, and in
particular variants of PDL, can provide an interesting perspective on negotiation.

5 Discussion

In this section we are going to explore further connections between different
types of reasoning tasks in our logic L〈A,R〉 and questions arising in the context
of negotiation.

5.1 Necessity of Complex Deals and Satisfiability

Besides convergence, another important property of negotiation systems that
has been studied in the literature concerns the necessity of specific deals [1, 2]. A
given deal or class of deals, characterised by structural constraints (rather than
rationality conditions), is said to be necessary in view of reaching an allocation
with a certain desired property (such as being Pareto optimal) by means of ra-
tional deals iff there are an initial allocation and individual preference relations
such that any path leading to such a desirable allocation would have to involve
that particular deal. A known result [2] states that if you do not allow all struc-
tural types of deals, but do require rationality, then you cannot guarantee Pareto
optimal outcomes in all cases. In this section, we are going to discuss what this
result corresponds to in our logic L〈A,R〉.

Consider again our convergence formula (9). The claim is that, if the set of
deals D excludes even a single deal, then formula (9) will cease to be valid. In
other words, its negation will become satisfiable:

¬[(D ∩ par)∗]〈(D ∩ par)∗〉[par]⊥ (11)

The proof of the necessity theorem given in [2] amounts to giving a general al-
gorithm for constructing individual preference relations and an initial allocation
such that the one deal not included in D will be the only deal taking us from

Modal Logics of Negotiation and Preference 147

the initial allocation to the (only) allocation that Pareto-dominates the initial
allocation. This constructive element of the proof would correspond to giving a
general method for proving satisfiability of formula (11). Vice versa, the known
necessity theorem shows that formula (11) must be satisfiable for any given set
of deals D that is not the full set of complex deals.

The discussion of necessity theorems highlights the fact that the exact form of
presentation chosen for specifying deals can lead to somewhat different results.
In [2] deals are represented as pairs of allocations, which amounts to a more
fine-grained representation than we have opted for in this paper. For example,
the deal Ra←r does in fact represent n different deals: for any of the n agents
(including a itself), that agent could have owned r before the deal. If the more
fine-grained representation is chosen, then certain deals need to be excluded
from the statement of the theorem: a deal that is independently decomposable
(meaning there are two groups of agents involved in the deal, but not a single
resource is changing group) is not necessary for convergence, but can always be
decomposed into two smaller deals. If deals are specified in terms of reassign-
ments, as in this paper, however, each such deal does in fact correspond to a
class of deals involving both independently decomposable deals and deals that
are not independently decomposable. Hence, excluding that whole class from the
negotiation protocol will always cause a problem, and therefore any such deal
must be necessary.

5.2 Reachability Properties and Model Checking

Recall the formulation of the convergence property as given by formula (9). It
states that any sequence of rational D-deals will eventually result in a Pareto
optimal allocation (or in an allocation from which a Pareto optimal allocation
is still accessible by means of such a sequence). We have seen that the formula
is valid if D is the full set of deals, and that it is not valid if D is any subset of
the full set of deals (that is, every single deal is necessary).

Dunne and colleagues [3, 12] have studied the complexity of deciding whether
a given negotiation scenario allows for convergence to an optimal allocation
by means of a structurally restricted class of (rational) deals. To be precise,
these authors have concentrated on a framework where agent preferences are
represented using utility functions (rather than ordinal preference relations) and
where an allocation is considered optimal if it maximises the sum of individual
utilities (so-called utilitarian social welfare [9]), a notion that is stronger than
Pareto optimality. Nevertheless, conceptually there are interesting parallels to
be explored.

This problem of deciding whether a given negotiation scenario admits conver-
gence for a given restricted class of deals amounts to a model checking problem
in our logic. This is interesting for at least two reasons. Firstly, model check-
ing as a well-developed algorithmic technique may turn out to be a useful tool
for deciding such questions in practice. Secondly, it may be of interest to com-
pare and relate complexity results for negotiation frameworks and PDL model
checking. A discussion of the latter may be found in the appendix. As shown by

148 U. Endriss and E. Pacuit

Lange [13], model checking is PTIME-complete for all conceivable extensions of
PDL (e.g. with intersection). It is important to note, however, that such com-
plexity results must be understood with respect to the number of worlds in a
model. In our case (as in many other applications), this will be an exponential
number. Dunne and Chevaleyre [12] have recently shown that deciding whether a
given negotiation scenario admits convergence by means of rational atomic deals
is PSPACE-complete for the “numerical” version of the problem (with utility
functions). A deeper understanding of the exact relationship between the two
problems may allow us to obtain complexity results for model checking in our
logic expressed in terms of the numbers of agents and resources (rather than the
exponential number of allocations).

5.3 Guaranteed Convergence and Correspondence Theory

While Dunne et al. [3] have concentrated on establishing complexity results for
deciding when convergence is possible, another line of work has attempted to
establish general conditions (on the preferences of individual agents) that would
guarantee that convergence by means of structurally simple deals is always pos-
sible [2, 14]. These results mostly relate to the numerical negotiation framework
(with utility functions, monetary side payments, and maximal utilitarian social
welfare as the chosen notion of optimality). Also, these results are either very
simple (for instance, if all agents use modular utility functions, then convergence
to an optimal allocation can be guaranteed by rational atomic deals alone) or
require an overly complex specification of conditions. Here the logic-based rep-
resentation of the problem promises to offer some real help in identifying further
interesting cases of guaranteed convergence.

This kind of question can be cast as a question in modal logic correspondence
theory [7]. Suppose we want to identify suitable conditions on agent preferences
that would allow us to guarantee convergence by means of rational deals all
belonging to a class of deals D. Then we have to identify a class of frames on
which formula (9) would be valid. Again, this is an issue we put forward for
detailed investigation in the future.

References

1. Sandholm, T.W.: Contract types for satisficing task allocation: I Theoretical re-
sults. In: Proc. AAAI Spring Symposium: Satisficing Models. (1998)

2. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal alloca-
tions of resources. Journal of Artificial Intelligence Research 25 (2006) 315–348

3. Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotia-
tion. Artificial Intelligence 164(1–2) (2005) 23–46

4. Parikh, R.: Social software. Synthese 132 (2002) 187–211
5. Pacuit, E., Parikh, R.: Social interaction, knowledge, and social software. In:

Interactive Computation: The New Paradigm. Springer-Verlag (forthcoming)
6. Pauly, M., Wooldridge, M.: Logic for mechanism design: A manifesto. In: Proc.

5th Workshop on Game-theoretic and Decision-theoretic Agents. (2003)

Modal Logics of Negotiation and Preference 149

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press, Cambridge (2002)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Boston (2000)
9. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,

Cambridge (1988)
10. van Benthem, J., van Otterloo, S., Roy, O.: Preference logic, conditionals and

solution concepts in games. In: Modality Matters: Twenty-Five Essays in Honour
of Krister Segerberg. University of Uppsala (2006)

11. Hansson, S.O.: Preference logic. In: Handbook of Philosophical Logic. 2nd edn.
Kluwer Academic Publishers (2001)

12. Dunne, P.E., Chevaleyre, Y.: Negotiation can be as hard as planning: Deciding
reachability properties of distributed negotiation schemes. Technical Report ULCS-
05-009, Department of Computer Science, University of Liverpool (2005)

13. Lange, M.: Model checking propositional dynamic logic with all extras. Journal of
Applied Logic 4(1) (2005) 39–49

14. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over small bundles
of resources. In: Proc. 4th International Joint Conference on Autonomous Agents
and Multiagent Systems, ACM Press (2005)

15. Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and
Computation 93(2) (1991) 263–332

16. Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: A complete ax-
iomatization. Fundamenta Informaticae 45 (2001) 1–22

17. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18(2) (1979) 194–211

18. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th Annual
Symposium on Foundations of Computer Science, IEEE (1976) 109–121

19. Lutz, C., Walther, D.: PDL with negation of atomic programs. Journal of Applied
Non-Classical Logics 15(2) (2005) 189–214

20. Danecki, R.: Non-deterministic propositional dynamic logic with intersection is
decidable. In: Proc. 5th Workshop on Computation Theory. Springer-Verlag (1985)

21. Lange, M., Lutz, C.: 2-EXPTIME lower bounds for propositional dynamic logics
with intersection. Journal of Symbolic Logic 70(4) (2005) 1072–1086

A PDL and Its Extensions

In this short appendix we list the relevant results surrounding propositional
dynamic logic and its extensions. Much of this information can be found in the
textbook Dynamic Logic by Harel, Kozen and Tiuryn [8]. The reader is also
referred to Passy and Tinchev [15] for more information.

Let At be a set of atomic propositions and Pr a set of atomic programs.
Formulas and programs have the following syntactic form (p ∈ At and r ∈ Pr):

ϕ ::= p |¬ϕ | ϕ ∨ ψ | 〈α〉ϕ

α ::= r | α ∪ β | α ∩ β | α;β | α∗ | α | α−1

Other connectives and operators are defined as usual. For example, ϕ ∧ ψ =
¬(¬ϕ ∨ ¬ψ) and [α]ϕ = ¬〈α〉¬ϕ. Note that for simplicity we do not include
the test-operator. Let LPDL be the set of all such well-formed formulas. Given an

150 U. Endriss and E. Pacuit

arbitrary program α, we define relationsRα as usual [8]. Formulas are interpreted
in Kripke structures M = (W, {Rr}r∈Pr, V) where each Rr ⊆ W × W and
V : At → 2W . Truth in a model is defined as usual (see Section 2.3 and [8]).
A model M is called a PDL model provided M and the relations Rα for any
program α are defined as above. By PDL we mean the set of all formulas which
are valid in any PDL model. We now survey the main results relevant for our
discussion in this paper.

Harel [8] showed that assuming that all atomic programs are deterministic,
PDL with intersection is highly undecidable. However, the result is more posi-
tive if we allow for arbitrary (non-deterministic) atomic programs. Balbiani and
Vakarelov [16] showed that PDL with intersection is axiomatizable with the use
of an infinitary proof rule. Passy and Tinchev [15] prove a similar result using
nominals. Early on it was shown by Fischer and Ladner [17] that the satisfiabil-
ity problem for LPDL with respect to the class of all PDL models is decidable.
Pratt [18] went on to show that it is EXPTIME-complete. It was observed by
Harel [8] that the validity problem with complementation is undecidable. How-
ever, recently it was shown that allowing complementation of atomic programs
only allows us to retain decidability.

Theorem 1 (Lutz & Walther [19]). The satisfiability problem for LPDL with
complement applied only to atomic programs is decidable.

The satisfiability problem for LPDL (with or without complement) interpreted
over PDL models in which the atomic programs are deterministic isΣ1

1 -complete.
If the restriction to deterministic atomic programs is dropped then the situation
becomes much more manageable.

Theorem 2 (Danecki [20]; Lange & Lutz [21]). The satisfiability problem
for LPDL with intersection (but without complement) is 2-EXPSPACE-complete.

Finally, in a recent paper Lange [13] points out that model checking LPDL for-
mulas remains in PTIME,

Theorem 3 (Lange [13]). The model checking problem for LPDL with respect
to PDL models is in PTIME.

Returning to the logics presented in this paper, it is not hard to see that the
language LPareto is a fragment of LPDL. The idea is to interpret each preference
relation Ri as an atomic program. Then the operators 〈par〉 and 〈Rs

i 〉 become
definable in LPDL. Of course, this interpretation uses the converse, complement
and intersection operators. Thus as remarked above, in the presence of the com-
plement operator, the validity problem for LPDL is undecidable. However, we
are working in a fragment in which the complement operator is only applied to
atomic and the converse of atomic programs. The logic L〈A,R〉 is decidable due
to the chosen semantics which fixes the set of possible worlds (cf. Proposition 1).

Representing Action Domains with
Numeric-Valued Fluents�

Esra Erdem1 and Alfredo Gabaldon2,3

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
2 National ICT Australia

3 School of Comp. Sci. and Eng., UNSW, Sydney, Australia

Abstract. We present a general method to formalize action domains with
numeric-valued fluents whose values are incremented or decremented by execu-
tions of actions, and show how it can be applied to the action description language
C+ and to the concurrent situation calculus. This method can handle nonserializ-
able concurrent actions, as well as ramifications on numeric-valued fluents, which
are described in terms of some new causal structures, called contribution rules.

1 Introduction

Numeric-valued fluents are used for describing measurable quantities, such as weight,
money, memory. In many cases, the values of such fluents are incremented/decremented
by the execution of actions, such as adding/removing some weight, depositing/with-
drawing some money, or allocating/deallocating memory. How to compute the value of
a numeric-valued fluent after a concurrent execution of several such actions, possibly
with indirect effects, is the question we study in this paper. We consider true concur-
rency: actions occur at the same time and may not be serializable (i.e., their effect may
not be equivalent to the effect of executing the same actions consecutively in any order).
For instance, consider two boats towing a barge upriver by applying forces via cables
tied to the barge, where the force applied by either boat is not enough to move the barge
against the current of the river; here the concurrent action of two boats applying forces
can not be serialized. True concurrency makes the problem more challenging, because
actions that are individually executable may not be executable concurrently, e.g., due to
conflicting effects, and actions that are individually nonexecutable may be executable
concurrently, e.g., due to synergistic effects, like in the example above.

This question is important for real-world applications that involve reasoning tasks,
like planning or prediction, related to resource allocation. For instance, allocation of
memory storage for use by computer programs is one such application. It is also im-
portant for applications that involve modeling the behavior of physical systems. For in-
stance, how water pressure changes at a piston when some water is pumped from above
and some force is applied from the bottom is important for modeling the behavior of a
hydraulic elevator.

� We thank Selim T. Erdoğan, Joohyung Lee, and Vladimir Lifschitz for helpful comments on
an earlier version of the paper. Esra Erdem was supported in part by the Austrian Science Fund
(FWF) under project P16536-N04.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 151–163, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

152 E. Erdem and A. Gabaldon

There are several planning systems designed to work in concurrent domains with
resources, like [1, 2, 3]. However, they consider a simpler concurrency: they either re-
quire the serializability of actions, or that no concurrent action contain two actions, one
producing and the other consuming the same resource.

Lee and Lifschitz [4] show, in the action language C+ [5], how to formalize action
domains involving additive fluents—numeric-valued fluents on which the effect of a
concurrent action is computed by adding the effects of its primitive actions. However,
since additive fluents range over finite sets, a concurrent action is executable only if its
effect on each additive fluent is in that fluent’s range, and it is not easy to handle indirect
effects of actions (ramifications) on additive fluents (e.g., an indirect effect of adding
too much water into a small container is an increase in the amount of water in a large
container, into which the excess water overflows from the small container). Similarly,
[6] defines the cumulative direct effects of concurrent actions on additive fluents, in an
extension of the action language A [7]; however, it is not easy to handle ramifications
(not only the ones on numeric-valued fluents) in this formalism.

In [8], the authors show, in the concurrent situation calculus [9], how to formalize
action domains containing numeric-valued fluents, that do not require serializability of
actions, and that take into account ramifications caused by too much increase/decrease
of a numeric-valued fluent. However, with this formalization, it is not easy to capture
other forms of ramifications (e.g., whenever the amount of water increases in the large
container, the force towards the bottom of the container increases).

In this paper, we present a general method to formalize action domains with numeric-
valued fluents whose values are incremented/decremented by executions of actions.
This method is applicable to both the concurrent situation calculus and the action lan-
guage C+; and thus can be used with the reasoning systems CCALC and GOLOG. The
idea is to compute the total effect of a concurrent action on a numeric-valued fluent, in
terms of the direct and indirect effects of its primitive actions on that fluent, while also
taking into account the range restrictions (e.g., the capacity of the small container).

To describe direct effects, like in [4, 8], we introduce new constructs and functions
in the original formalisms. To describe ramifications, like in [10, 11, 12], we intro-
duce an explicit notion of causality, specific for numeric-valued fluents. We charac-
terize this notion by contribution rules, motivated by the equation-like causal structures
of [13, 14, 8]. With contribution rules, both forms of ramifications above can be han-
dled. The idea of introducing these new constructs is to be able to represent effects of
actions on numeric-valued fluents concisely. Semantically these constructs are treated
as “macros” on top of the original formalisms; like the constructs introduced in [4] and
in [8], they are compiled into causal laws or formulas in the original formalisms.

The paper consists of three parts. The first two parts describe how action domains
with numeric-valued fluents can be formalized in the action language C+ and in the con-
current situation calculus, using the new constructs; the semantics of these constructs is
defined by showing how to treat them as abbreviations in the original formalims. The
third part includes a comparison of these two formalizations, and a discussion of re-
lated work. We refer the reader to [5] and [9] for descriptions of the action language C+
and the concurrent situation calculus. For the proofs, and the CCALC and GOLOG files
describing our running example, see http://www.kr.tuwien.ac.at/staff/
esra/papers/cr.pdf.

Representing Action Domains with Numeric-Valued Fluents 153

2 Describing Additive Fluents in the Action Language C+

To formalize action domains with additive fluents, we extend the action description
language C+, similar to [4].

Additive fluents. According to this extension, some numeric-valued fluent constants can
be designated as additive. Each additive fluent constant has a finite set of numbers as its
domain. As in [4], we understand numbers as symbols for elements of any set with an
associative and commutative operation + that has a neutral element 0; in particular, we
consider the additive group of integers (since this case can be implemented for CCALC).
We suppose that the domain of each additive fluent constant f is specified as a range
[Lf , Uf], so that, at any state, Lf ≤ f ≤ Uf . We suppose that heads of causal laws do
not contain any additive fluent constants.

Direct effects of actions. Direct effects of a boolean action constant a on an additive
fluent f are expressed by increment laws of [4], expressions of the form

a increments f by n if ψ (1)

where n is an integer and ψ is a fluent formula. We drop the ‘if ψ’ part if ψ ≡ �; we call
f the head of the causal law. Intuitively, an increment law of form (1) expresses that, if
ψ holds, the direct contribution of the action a to the value of the additive fluent f is n.
The idea is then, to compute the cumulative direct contribution of concurrently executed
primitive actions to the value of an additive fluent f , denoted DContr(f), by adding the
direct contributions of those primitive actions to f . Translation of these laws into causal
laws is different from that of [4] (see the definition of DContr in the next section).

Preconditions of actions. We describe preconditions of actions with the nonexecutable
construct of [5]. For instance, the expression

nonexecutable Move(A,B) if ¬Clear(B)

describes that moving Block A onto Block B is not possible if B is not clear.

Ramifications on additive fluents. Ramifications on an additive fluent f are described
by contribution rules, expressions of the form:

f
⊕←− E(h) (2)

where h is one of the additive fluents that f depends on, E is a numeric-valued function,
and⊕ is an element of {+,−,++,+−,−+,−−}; we call f the head of the rule. These
rules allow us to describe both kinds of ramifications mentioned in the introduction. The
first kind of ramifications is expressed with ⊕ = + or ⊕ = −.

The meaning of a rule of form (2) with ⊕ = + (respectively, with ⊕ = −) can
be described as follows: whenever the sum of the direct and indirect contributions of
a concurrent action to h, when added to h, exceeds the upper bound Uh (respectively,
goes beyond its lower bound Lh), that action indirectly contributes to f by the amount
E(DContr(h)+IContr(h)−TContr(h)), where IContr(h) denotes the indirect contribu-
tion of a concurrent action to h, and TContr(h) denotes the total contribution of a con-
current action to h respecting the range restriction [Lh, Uh]. Intuitively, DContr(h) +
IContr(h)− TContr(h) describes the excess amount being contributed to h.

154 E. Erdem and A. Gabaldon

The other form of ramifications is expressed with ⊕ ∈ {++,+−,−+,−−}. A rule
of form (2) with⊕ = ++ (respectively, with⊕ = +−) expresses that whenever there is
an increase (respectively, decrease) n in the value of h, i.e., TContr(h) = n, the value
of f increases (respectively, decreases) by E(n); the rules with ⊕ ∈ {−+,−−} are
similar, but they specify a decrease in the value of f . This form of ramification, unlike
the one above, is not due to the range restrictions imposed on the values of fluents,
although these restrictions must be satisfied at all times.

The indirect contribution of an action to an additive fluent f is the sum of the in-
creases/decreases described by the contribution rules with the head f .

Once the direct and indirect contributions of a concurrent action to an additive fluent
f are computed, we can compute the total contribution of that action to f as follows. If
f appears on the right hand side of a contribution rule of form (2) with ⊕ = +,−, then
we add DContr(f) and IContr(f), considering the range restriction [Lf , Uf]:

TContr(f) =

⎧⎨
⎩
Uf−f if DContr(f)+IContr(f) > Uf−f
Lf−f if DContr(f)+IContr(f) < Lf−f
DContr(f)+IContr(f) otherwise.

Otherwise, we do not need to consider the range restriction, and TContr(f) is defined
as DContr(f)+IContr(f).

We consider action domains only where the causal influence among fluents is acyclic.
Here is an example.

Example 1. Consider three containers, small, medium, and large, for storing water. The
small container is suspended over the medium, and the medium container is suspended
over the large so that, when the small (respectively, medium) container is full of water,
the water poured into the small (respectively, medium) container overflows into the
medium (respectively, large) container. Suppose that there are three taps: one directly
above the small container, by which some water can be added to the containers from
an external source, one on the small container, by which some water can be released
into the medium container, and a third tap on the large container to release water to the
exterior. Suppose also that one unit increase (respectively, decrease) of water in the large
container increases (respectively, decreases) the amount of force applied downwards to
the bottom of the large container by two units. Also assume that some force is exerted
upwards at the bottom of the large container, e.g., by a piston, to lift it up.

A formalization of this action domain in the extended C+ is presented in Figure 1.
Here the additive fluent constants Small, Medium, and Large describe the amount of
water in each container; Force describes the force exerted upwards at the bottom of the
large container. The boolean action constant AddS(n) describes the action of adding
n units of water to the small container by opening the tap over it; ReleaseS(n) and
ReleaseL(n) describe the action of releasing n units of water from the small, respec-
tively large, container by opening its tap; and Exert(n) represents the action of exerting
n amount of force upwards.

Suppose that the range restrictions are specified as follows: LSmall = LMedium =
LLarge = 0, LForce = −8, USmall = 2, UMedium = 3, ULarge = 4, UForce = 8. If initially
Small = Medium = Large = 1, Force = −2, then, after executing the concurrent
action c = {AddS(8),ReleaseS(1),ReleaseL(2),Exert(8)}, the values of fluents are
computed by CCALC as follows: Small = 2,Medium = 3, Large = 4,Force = 0.

Representing Action Domains with Numeric-Valued Fluents 155

Notation: n ranges over {Min, .., Max} and a ranges over action constants.

Action constants: Domains:
AddS(n), ReleaseS(n), ReleaseL(n), Exert(n) Boolean

Additive fluent constants: Domains:
Small {LSmall, .., USmall}
Medium {LMedium, .., UMedium}
Large {LLarge, .., ULarge}
Force {LForce, .., UForce}

Causal laws: AddS(n) increments Small by n
ReleaseS(n) increments Small by − n
ReleaseS(n) increments Medium by n
ReleaseL(n) increments Large by − n
Exert(n) increments Force by n

nonexecutable AddS(n) if AddS(n′) (n �= n′)
nonexecutable ReleaseS(n) if ReleaseS(n′) (n �= n′)
nonexecutable ReleaseL(n) if ReleaseL(n′) (n �= n′)
nonexecutable Exert(n) if Exert(n′) (n �= n′)
exogenous a

Contribution rules:
Medium

+←− Small Large
+←− Medium

Force
+−←− 2× Large Force

−+←− 2× Large

Fig. 1. Containers domain described in the extended C+

Indeed, the direct effect of c on Small is the sum of the direct contributions of its
primitive actions (described by the increment laws with the head Small, in Figure 1):
DContr(Small) = 8− 1 = 7. Since there is no contribution rule with the head Small, in
Figure 1, there is no ramification on it: IContr(Small) = 0. Since Small+DContr(Small)
+ IContr(Small) = 7 exceeds the capacity of the small container, the total contribution
of c to Small is just the amount that fills the small container: TContr(Small) = USmall−
Small = 2− 1 = 1. Then the value of Small after the execution of c is 2.

On the other hand, since the function E in Medium
+←− Small is the identity function,

the indirect contribution of c to Medium is the amount of the excess water overflown into
the medium container: DContr(Small)+IContr(Small)−TContr(Small) = 7+0−1 =
6. Since the direct contribution of c to Medium is 1, the total contribution of c to Medium
is just the amount that fills the medium container: TContr(Medium) = 2. Then, after
the execution of c, Medium = 3.

Similarly, the direct and indirect contributions of c to Large can be computed as
follows: DContr(Large) = −2, IContr(Large) = 5. Since Large does not appear on the
right hand side of a contribution rule of form (2) with ⊕ = +,−, the total contribution
of c to Large is simply the addition of these two: TContr(Large) = 3. Then the value
of Large after the execution of c is 4.

Since the total contribution of c to Large is 3, and since the function E in Force
−+←−

2 × Large is (λx.2 × x), the indirect contribution of c to Force is −(2 × 3) = −6.

156 E. Erdem and A. Gabaldon

Since the direct contribution of c to Force is +8, the total contribution of c to Force is 2.
Therefore, the value of Force after the execution of c is 0.

3 Obtaining an Action Description

To obtain an action description in C+ from a formalization of an action domain like in
Figure 1, we translate increment laws, and contribution rules into causal laws as follows.

1. To describe the direct effects of primitive actions, first we introduce new action
constants, Contr(a, f), of sort integer, where a is an action constant and f is an
additive fluent constant; an atom of the form Contr(a, f) = v expresses that the
action a contributes to f by the amount v. We define Contr(a, f) to be 0 by default:

default Contr(a, f) = 0.

Then we replace every increment law (1) with

caused Contr(a, f) = n if a ∧ ψ.

2. To describe the cumulative effects of concurrent actions, we introduce new action
constants, DContr(f), IContr(f), TContr(f), of sort integer, where f is an addi-
tive fluent constant. Intuitively, an atom of the form DContr(f) = v (respectively,
IContr(f) = v) expresses that the direct (respectively, indirect) contribution of a
concurrent action to f is v. An atom of the form TContr(f) = v expresses that the
total contribution of a concurrent action to f is v.

We define DContr(f) as follows:

caused DContr(f) =
∑

a va if
∧

a Contr(a, f) = va

where Min ≤
∑

a va ≤ Max.

Let us denote by C the set of all contribution rules. We define IContr(f) to be 0 by
default:

default IContr(f) = 0.

Then we translate contribution rules in C into the causal laws:

caused IContr(f) = v if v =∑
f

+←−E(h)∈C
E(IContr(h)+DContr(h)−TContr(h))

−
∑

f
−←−E(h)∈C

E(IContr(h)+DContr(h)−TContr(h))

+
∑

f
++←−E(h)∈C,TContr(h)>0

E(TContr(h))

+
∑

f
+−←−E(h)∈C,TContr(h)<0

E(TContr(h))

−
∑

f
−+←−E(h)∈C,TContr(h)>0

E(TContr(h))

−
∑

f
−−←−E(h)∈C,TContr(h)<0

E(TContr(h)) (Min ≤ v ≤ Max).

For instance, with the contribution rules in Figure 1, for Medium, we add

caused IContr(Medium) = v if
IContr(Small)+DContr(Small)−TContr(Small) = v (Min ≤ v ≤ Max).

Representing Action Domains with Numeric-Valued Fluents 157

If f appears on the right hand side of a contribution rule of form (2), then we define
TContr(f) by adding the direct and indirect contributions of actions, respecting the
range restriction [Lf , Uf]:

caused TContr(f)=v+v′ if DContr(f)=v ∧ IContr(f)=v′

(Lf ≤ v+v′+f ≤ Uf)
caused TContr(f)=Uf−f if DContr(f)=v ∧ IContr(f)=v′ (v+v′+f > Uf)
caused TContr(f)=Lf−f if DContr(f)=v ∧ IContr(f)=v′ (v+v′+f < Lf)

such that the values assigned to TContr(f) are in the range [Min,Max]. Otherwise,
we define TContr(f) simply by adding the direct and indirect contributions of ac-
tions, i.e., by the first set of causal laws above.

3. To determine the value of an additive fluent constant f after an execution of a
concurrent action, we add

caused f = v + v′ if � after f = v ∧ TContr(f) = v′ (Min ≤ v+v′ ≤ Max).

With the translation above, the meaning of an action description D in the extended
C+ can be represented by the transition diagram described by the action descriptionD′

obtained from D as described above (see [7] for a definition of a transition diagram).
Then a queryQ (in a query language, likeR [7]), which describes a planning problem,
a prediction problem, etc., is entailed by D if Q is entailed by D′. This allowed us to
compute the values of additive fluents in Example 1 using CCALC.

4 Describing Additive Fluents in the Concurrent Situation
Calculus

To formalize action domains with additive fluents, we extend the concurrent situation
calculus, as in [8].

Additive fluents. According to this extension, some functional fluents that range over
numbers (not necessarily integers) can be designated as additive. For each additive flu-
ent f , we understand a given range [Lf , Uf] as follows: in every situation s, Lf ≤
f(s) ≤ Uf .

Direct effects of actions. For describing direct effects of actions on additive fluents, we
introduce a function contrf (x, a, s) for each additive fluent f . Intuitively, contrf (x, a, s)
is the amount that the action a contributes to f when executed in situation s. In the
following, free variables are implicitly universally quantified. We describe the direct
effects of primitive actions on additive fluents by axioms of the form:

κf (x, v, a, s) ⊃ contrf (x, a, s) = v (3)

where κf (x, v, a, s) is a first-order formula whose only free variables are x, v, a, s,
doesn’t mention function contrg for any g, and s is its only term of sort situation. If
there is no axiom (3) describing the effect of an action a on an additive fluent f , we
assume that the direct contribution of a to f is zero. This assumption allows us to
derive, for each function contrf , a definitional axiom:

contrf (x, a, s) = v ≡ κf (x, v, a, s) ∨ v = 0 ∧ ¬(∃v′)κf (x, v′, a, s).

158 E. Erdem and A. Gabaldon

Notation: n, n′, v are object (number) variables, s is a situation variable, a, a′ are action
variables, and c is a concurrent variable.

Action functions: addS(n), releaseS(n), releaseL(n), exert(n).

Additive fluent functions: Ranges:
small [Lsmall, Usmall]
medium [Lmedium, Umedium]
large [Llarge, Ularge]
force [Lforce, Uforce]

Direct effect axioms:
(∃n)[a = addS(n) ∧ v = n] ⊃ contrsmall(a, s) = v
(∃n)[a = releaseS(n) ∧ v = −n] ⊃ contrsmall(a, s) = v
(∃n)[a = releaseS(n) ∧ v = n] ⊃ contrmedium(a, s) = v
(∃n)[a = releaseL(n) ∧ v = −n] ⊃ contrlarge(a, s) = v
(∃n)[a = exert(n) ∧ v = n] ⊃ contrforce(a, s) = v

Preconditions of actions:
Poss(a, s)
conflict(c, s) = (∃n, n′).[addS(n) ∈ c ∧ addS(n′) ∈ c ∧ n �= n′]∨

[releaseS(n) ∈ c ∧ releaseS(n′) ∈ c ∧ n �= n′]∨
[releaseL(n) ∈ c ∧ releaseL(n′) ∈ c ∧ n �= n′]∨
[exert(n) ∈ c ∧ exert(n′) ∈ c ∧ n �= n′]

Contribution rules:
medium

+←− small large
+←− medium

force
+−←− 2× large force

−+←− 2× large

Fig. 2. Containers domain described in the extended concurrent situation calculus

Preconditions of actions. We describe preconditions of primitive actions as in [9]. For
preconditions of a concurrent action c, we describe by a formula conflict(c, s) the con-
ditions under which the primitive actions in c conflict with each other. This is required
to handle cases where a set of primitive actions each of which is individually possible
may be impossible when executed concurrently.

Ramifications on additive fluents. As in the language C+, we consider two kinds of
ramifications on numeric-valued fluents, and we express them by acyclic contribution
rules (2), where f and h do not contain a situation term.

For instance, Figure 2 shows a formalization of the containers example in this ex-
tended version of the concurrent situation calculus. With such a formalization, we can
compute the values of fluents, as in Example 1, using GOLOG.

5 Obtaining a Basic Action Theory

From a formalization of an action domain, like in Figure 2, we can obtain a basic action
theory in the concurrent situation calculus as follows. In the following, as in [9], instead
of axiomatizing sets, numbers, and arithmetic operations, we use them assuming their
standard interpretation.

Representing Action Domains with Numeric-Valued Fluents 159

1. We consider the foundational axioms of [9].
2. From the preconditions of primitive actions, conflicts between actions, and range

restrictions on additive fluents, we can formalize preconditions of a concurrent ac-
tion c as in [8], by an axiom of the form

Poss(c, s) ≡
(∃a)(a ∈ c) ∧ (∀a ∈ c)Poss(a, s) ∧ ¬conflict(c, s) ∧R1[RC(do(c, s))].

Denoted by R1[W] is a formula equivalent to the result of applying one step of
Reiter’s regression procedure [9] on W . We use RC(s) to denote the conjunction
of the range constraints on each additive fluent f (i.e.,

∧
f Lf ≤ f(s) ≤ Uf) con-

joined with additional qualification constraints if given. By this way, a concurrent
action is possible if it results in a situation that satisfies the range constraints on
additive fluents. For Example 1,

RC(s) = Lsmall ≤ small(s) ≤ Usmall ∧ Lmedium ≤ medium(s) ≤ Umedium∧
Llarge ≤ large(s) ≤ Ularge ∧ Lforce ≤ force(s) ≤ Uforce.

3. From the direct effect axioms and contribution rules in such a formalization, we
can derive successor state axioms for additive fluents by the same kind of transfor-
mation in [9], which is based on an explanation closure assumption.

First, we express the cumulative effects of actions on f , by adding the direct
and indirect contributions of actions on f , respecting the given range [Lf , Uf]. For
each additive fluent f , we introduce three new functions: dContrf , iContrf , and
tContrf . Intuitively, dContrf (x, c, s) describes the cumulative direct contributions
of primitive actions in c at a situation s:

dContrf (x, c, s) =
∑
a∈c

contrf (x, a, s).

The indirect contribution of a concurrent action c on f at a situation s is described
by iContrf (x, c, s), relative to a set C of contribution rules:

iContrf (x, c, s) =∑
f

+←−E(h)∈C
E(iContrh(y, c, s) + dContrh(y, c, s)− tContrh(y, c, s))

−
∑

f
−←−E(h)∈C

E(iContrh(y, c, s) + dContrh(y, c, s)− tContrh(y, c, s))

+
∑

f
++←−E(h)∈C,tContrh(y,c,s)>0

E(tContrh(y, c, s))

+
∑

f
+−←−E(h)∈C,tContrh(y,c,s)<0

E(tContrh(y, c, s))

−
∑

f
−+←−E(h)∈C,tContrh(y,c,s)>0

E(tContrh(y, c, s))

−
∑

f
−−←−E(h)∈C,tContrh(y,c,s)<0

E(tContrh(y, c, s)).

For instance, relative to the contribution rules in Figure 2:

iContrmedium(c, s) = iContrsmall(c, s) + dContrsmall(c, s)− tContrsmall(c, s).

After defining direct and indirect contributions of actions on an additive fluent f ,
we can define the total contribution of actions as follows. If f appears on the right
hand side of a contribution rule of form (2), then we add the direct and indirect
contributions of actions respecting the range restriction [Lf , Uf]:

160 E. Erdem and A. Gabaldon

tContrf (x, c, s) =

⎧⎨
⎩
Uf−f(x, s) if sumf > Uf−f(x, s)
Lf−f(x, s) if sumf < Lf−f(x, s)
sumf otherwise

where sumf stands for dContrf (x, c, s) + iContrf (x, c, s). Otherwise, the total
contribution of actions is simply the sum of the direct and indirect contributions of
actions, i.e., sumf .

Finally, we define the successor state axiom for an additive fluent f :

f(x, do(c, s)) = f(x, s) + tContrf (x, c, s).

4. From the given action functions, we can obtain unique names axioms, like
addS(n) �= releaseS(n′), etc.

5. We suppose that a description of the initial world is given.

6 Comparing the Two Formalizations

We have described how to formalize an action domain with additive fluents, in two
formalisms: the action language C+ and the concurrent situation calculus. We can see
in Figures 1 and 2 that two such formalizations look similar. In fact, under some con-
ditions, a formalization D of an action domain in the extended version of C+ and a
description I of the initial world can be translated into an action theory sit(D, I) in
the extended version of the concurrent situation calculus, such that, for every additive
fluent f and for every concurrent action c, the value of f after execution of c is the same
according to each formalization.

Suppose that D consists of the following:

– additive fluent constants F1, . . . , Fm, each Fi with the domain {LFi , ..., UFi}
(Min ≤ LFi , UFi ≤ Max); and boolean action constants A1, . . . , Am′ ;

– increment laws of form (1) where a is a boolean action constant, f is an additive
fluent constant, n is an integer, and ψ is true;

– preconditions of actions of the form

nonexecutable a if ψ (4)

where ψ is a conjunction of atoms that does not contain the action constant a.
– acyclic contribution rules of form (2).

Suppose that I consists of the following:

0 : Fi = Ni (0 ≤ i ≤ m)

whereNi is an integer in the given range {LFi , . . . , UFi}, expressing that, at time stamp
0, the value of Fi is Ni.

Then we can obtain sit(D, I) fromD and I as follows:

1. For each additive fluent constant Fi ∈ D, declare a corresponding unary additive
fluent function fi(s) with the range [Lfi, Ufi]. such that LFi = Lfi and UFi =
Ufi . For each boolean action constant Ai ∈ D, declare a corresponding nullary

Representing Action Domains with Numeric-Valued Fluents 161

action function Ai. For instance, for the fluent constant Small with the domain
{LSmall, . . . , USmall} in Figure 1, we declare in Figure 2 the fluent function small
with the range [Lsmall, Usmall].

Schemas are frequently used in C+ to represent a large number of constants or
statements. For example, AddS(n) in the declarations part denotes the action con-
stants AddS(Min), . . . ,AddS(Max). In a situation calculus representation, for such a
set of action constants, we can introduce a single action function (e.g., addS(n)).

2. For each increment law Ai increments Fj by N in D, add the formula

[a = Ai ∧ v = N] ⊃ contrfj (a, s) = v. (5)

With a function Ai(n), we can use a single formula to represent all of the formu-
las (5) for Ai, as seen in Figure 2.

3. LetNEXF be the set of all causal laws (4) inD such that ψ is a fluent formula. Let
ψ(s) be the formula obtained from a fluent formula ψ by replacing every additive
fluent atom Fi = N by fi(s) = N . For each action constantAi inD, add the formula

Poss(Ai, s) ≡
∧

(nonexecutable Ai if ψ)∈NEXF

¬ψ(s).

If for every action constant Ai, the right hand side of the equivalence above is� then
we can simply replace all of the equivalences above by the single formula Poss(a, s)
as in Figure 2 (recall a is implicitly universally quantified.)

4. Let NEXA be the set of all causal laws (4) in D such that ψ is a formula that
contains an action constant. Let ψ(c, s) be the formula obtained from a concurrent
action c and a formula ψ by replacing every fluent atom Fi = N with fi(s) = N ,
and every action atom Aj (respectively, ¬Ak) with Aj ∈ c (respectively, Ak �∈ c).
Then add the following definition:

conflict(c, s) ≡
∨

(nonexecutable Ai if ψ)∈NEXA

[Ai ∈ c ∧ ψ(c, s)].

5. For each contribution rule F
⊕←− E(H) in D, add the contribution rule f ⊕←− E(h).

6. For each expression 0 : Fi = Ni in I , add the fact fi(S0) = Ni.

Suppose that the range [Min,Max] is wide enough that, when compiling D into an
action description as described in Section 3, the auxiliary actions DContrf , IContrf ,
and TContrf are never undefined due to range violation.

Proposition 1. LetC be a set of action constants inD and c be the set of corresponding
action functions in sit(D, I). Then the following hold:

(i) C is executable at time stamp 0 with respect toD and I iff Poss(c, S0) with respect
to sit(D, I);

(ii) for every fluent constant Fi, if C is executable at time stamp 0 and 1 : Fi = N ′
i af-

ter the execution ofC at time stamp 0, with respect toD and I , then fi(do(c, S0))=
N ′

i with respect to sit(D, I).
(iii) for every fluent constant Fi, if Poss(c, S0) and fi(do(c, S0)) = N ′

i with respect to
sit(D, I), then 1 : Fi = N ′

i after the execution of C at time stamp 0, with respect
toD and I .

The assumption above is required for the ‘if’ part of (i), and for (iii).

162 E. Erdem and A. Gabaldon

Although we have incorporated contribution rules into two formalisms in a similar
way, and we have shown that, under some conditions, a formalization of an action do-
main in C+ can be transformed into a formalization in the concurrent situation calculus,
these two formalisms are different in general: C+ action descriptions are nonmonotonic
and propositional, while the situation calculus action theories are monotonic and first-
order. This work can be viewed in part as an attempt to bridge the gap between these
two formalisms, in the spirit of [15].

7 Related Work

There are mainly two lines of work related to ours. The first one, [13] and [14], intro-
duces methods to obtain a causal ordering of variables (denoting numeric-valued flu-
ents) from a set of equation-like causal structures, confluence equations and structural
equations, each describing a mechanism in a device. Such a causal ordering describes
which fluents are directly causally dependent on which other fluents. The goal is, by
this way, to understand the causal behavior of a device.

The other line of work, [16] and [8], explicitly represents causal relations among
variables by equation-like causal structures, structural equations and contribution equa-
tions; so the goal is not to obtain a causal ordering on numeric-valued variables. They
use these equations for various problems of reasoning about actions and change. For
instance, [16] represents each mechanism with a structural equation, and uses them for
modeling counterfactuals. On the other hand, [8] represents each mechanism with a
contribution equation, compiles them into an action theory, allowing one to solve prob-
lems of reasoning about effects of actions, like planning and prediction.

All [14, 16, 8] suppose that the causal influence among fluents is acyclic. The method
of [13] can not in general determine the effects of disturbances by propagation when
the causal influences are cyclic. [14, 16] require each variable to be classified as either
exogenous or endogenous; the others and we do not.

In our approach, each mechanism is described by a set of contribution rules with
the same head. These rules explicitly represent the flow of causal influences among
variables; in this sense it can be considered along the second line of work above. Con-
tribution rules are assumed to be acyclic. As in [8], by compiling contribution rules
into an action theory, we can solve problems of reasoning about effects of actions. On
the other hand, unlike with contribution equations, there is no obvious correspondence
between contribution rules and algebraic equations. For instance, in the containers ex-
ample, with the contribution equations inner(s)=medium(s)+small(s) and total(s)=
inner(s)+ large(s), one can verify that total(s) = small(s)+medium(s)+ large(s). In
our approach, we can verify this equation by introducing an auxiliary fluent total(s)
and contribution rules for it, but there is no direct correspondence between the equation
and the contribution rules. Another difference between contribution equations and con-
tribution rules, is that auxiliary fluents such as total and inner are necessary to write
contribution equations, while they are not required in writing contribution rules. This is
due to the ability of contribution rules to express more directly the causal influence re-
lationships among fluents. Finally, although contribution equations can handle the first
kind of ramifications mentioned in the introduction, we cannot directly express the sec-

Representing Action Domains with Numeric-Valued Fluents 163

ond kind of ramifications by them; there is no direct way to describe these ramifications
by the other causal structures mentioned above.

8 Conclusion

We have described how to formalize an action domain with additive fluents, in two for-
malisms: the action language C+ and the concurrent situation calculus. In both cases,
first we have extended the formalisms, e.g., by introducing some new constructs or func-
tions and by modifying some axioms. Since some ramifications are not easy to describe
in the original formalisms, or using the existing causal structures, we have introduced
contribution rules, which express causal influences between additive fluents. After that
we have formalized an action domain in the extended versions in four parts: specifi-
cation of additive fluents with their domains/ranges and actions affecting them, direct
effects of actions on additive fluents, preconditions of actions, and ramifications on ad-
ditive fluents. The formalizations obtained this way can handle not only nonserializable
actions, but also ramifications on additive fluents. Investigating the application of our
method to other formalisms, such as TAL [17], is a possible future research direction.

References

1. Koehler, J.: Planning under resource constraints. In: Proc. ECAI. (1998) 489–493
2. Kvarnström, J., Doherty, P., Haslum, P.: Extending TALplanner with concurrency and re-

sources. In: Proc. ECAI. (2000) 501–505
3. Bacchus, F., Ady, M.: Planning with resources and concurrency: A forward chaining ap-

proach. In: Proc. IJCAI. (2001) 417–424
4. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Proc. IJCAI.

(2003)
5. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.

AIJ 153 (2004) 49–104
6. Baral, C., Son, T.C., Tuan, L.: A transition function based characterization of actions with

delayed and continuous effects. In: Proc. KR. (2002)
7. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3 (1998) 195–210
8. Erdem, E., Gabaldon, A.: Cumulative effects of concurrent actions on numeric-valued flu-

ents. In: Proc. AAAI. (2005) 627–632
9. Reiter, R.: Knowledge in action: Logical Foundations for specifying and implementing dy-

namical systems. MIT Press (2001)
10. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Proc. IJCAI.

(1995) 1985–1991
11. McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proc. IJCAI.

(1995) 1978–1984
12. Thielscher, M.: Ramification and causality. AIJ 89 (1997) 317–364
13. de Kleer, J., Brown, J.S.: A qualitative physics based on confluences. AIJ 24 (1984) 7–83
14. Iwasaki, Y., Simon, H.: Causality in device behavior. AIJ 29 (1986) 3–32
15. Giunchiglia, E., Lifschitz, V.: Action languages, temporal action logics and the situation

calculus. In: Proc. NRAC. (1999)
16. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach–Part I: Causes.

In: Proc. UAI. (2001) 194–202
17. Doherty, P., Gustafsson, J., Karlsson, L., Kvarnstrom, J.: (TAL) Temporal Action Logics:

Language specification and tutorial. ETAI 2 (1998) 273–306

Model Representation over
Finite and Infinite Signatures

Christian G. Fermüller and Reinhard Pichler

Technische Universität Wien, A-1040 Vienna, Austria
{chrisf, reini}@logic.at

Abstract. Computationally adequate representation of models is a
topic arising in various forms in logic and AI. Two fundamental deci-
sion problems in this area are: (1) to check whether a given clause is
true in a represented model, and (2) to decide whether two representa-
tions of the same type represent the same model. ARMs, contexts and
DIGs are three important examples of model representation formalisms.
The complexity of the mentioned decision problems has been studied for
ARMs only for finite signatures, and for contexts and DIGs only for infi-
nite signatures, so far. We settle the remaining cases. Moreover we show
that, similarly to the case for infinite signatures, contexts and DIGs allow
one to represent the same classes of models also over finite signatures;
however DIGs may be exponentially more succinct than all equivalent
contexts.

1 Introduction

Computing with term models — aka. Herbrand models — is an important topic
in a number of subfields of AI. Apart from general interest in Model Com-
putation1, the subject can be motivated by applications in Automated Model
Building, Logic Programming, Automated Deduction, Machine Learning, and
Non-Monotonic Reasoning (see, e.g., [9, 6, 10, 15, 7, 8]). For instance, in Auto-
mated Model Building, the target of the model building process is usually a
term model. Likewise, the semantics of logic programs is defined by means of
term models. Thus, proving the correctness of program simplifications comes
down to checking that the term model corresponding to a given logic program
remains unchanged, etc.

A term model can be identified with a (generally infinite) set of ground atoms.
The simplest and most natural finite representation of a term model consists in
a set {A1, . . . , An} of general atoms, where the ground instances of the Ai con-
stitute the represented model. Observe that such an atomic representation of a
term model or ARM is unique only with respect to a given signature, i.e., a fixed
set of predicate, constant, and function symbols. Two basic decision problems
arise: Testing Equivalence, where, given two ARMs, one asks whether they rep-
resent the same term model; and Clause-Evaluation, where one wants to know
1 See www.uni-koblenz.de/∼peter/CADE17-WS-MODELS/ and www.uni-koblenz.de/
∼peter/models03/ for proceedings of relevant workshops.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 164–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model Representation over Finite and Infinite Signatures 165

whether a given clause is true in the model represented by a given ARM. The
complexity of these problems has been studied in detail in [12]. However only
finite signatures have been considered there. This is at variance with investiga-
tions of related model representation mechanisms (see below). Moreover, infinite
signatures are used in potential areas of applications: e.g., in [7, 8] infinite sig-
natures facilitate the study of equivalence of program clauses with respect to
arbitrary contexts of datalog programs and answer set programs, respectively.

At a first glance one might be tempted to suppose that it does not make much
difference whether the underlying signature is finite or infinite. However, there
is an essential difference between these two scenarios. This can be highlighted
by considering the closely related problem of atomic H-subsumption [10], where
one asks whether each instance of a given atom is an instance of some element
in a given set of atoms. Note that this amounts to the evaluation of unit-clauses
over ARMs. This decision problem has been shown to be coNP-complete for any
non-trivial finite signature Σ (i.e., Σ contains at least two constant or function
symbols), see [14, 13]. In contrast, for any infinite signature Σ, this problem is
in PTIME, see [15].

Of course, the class of term models that can be represented by an ARM is
rather limited. Moreover, it is not hard to see that this class is not closed under
complementation. Two generalizations of ARMs that enable an explicit repre-
sentation (also) of false ground atoms are of particular interest: disjunctions of
implicit generalisations (DIGs) and so-called contexts as introduced in [1] in con-
nection with the ‘model evolution’ calculus. Motivated mainly by the latter work,
we have investigated in [11] the expressive power and the complexity of Clause-
Evaluation and of deciding Equivalence for DIGs and contexts, respectively. Since
the intended application of model evolution relies on repeated introductions of
new constants we followed [1] in assuming an infinite underlying signature. How-
ever, DIGs and contexts are of interest also for finite signatures (see, e.g., [3]).
In connection with the above mentioned state of knowledge about ARMs (and
atomic H-subsumption), the following open questions naturally arise:

– How is the expressiveness of DIGs and contexts related over finite signatures?
– Does the complexity of Equivalence and Clause-Evaluation increase when we

generalize from ARMs to DIGs and contexts over finite signatures?
– Does the complexity of these decision problems decrease for ARMs when we

move from finite to infinite signatures?

Results. The following table summarizes results of this paper answering the
second and the third question and puts these in the context of directly related
previous results. (The new results are written in bold face.)

finite signature infinite signature
Equivalence Clause-Evaluation Equivalence Clause-Evaluation

ARMs coNP-complete coNP-complete in PTIME coNP-complete
see [12] see [12]

Contexts coNP-complete coNP-complete coNP-complete coNP-complete
and DIGs see [11] see [11]

166 C.G. Fermüller and R. Pichler

Concerning the first question, we will see in Section 3 that, like for infinite
signatures, term models over finite signatures are DIG representable iff they are
context representable, but that DIGs may be exponentially more succinct.

Discussion. One possible way to summarize the complexity results in the
above table is the following. In moving from ARMs to the more expressive DIGs
and contexts there is only one case, where the complexity of the decision problem
moves up in the polynomial hierarchy: Testing Equivalence over infinite signa-
tures is tractable for ARMs. but coNP-complete for DIGs and contexts. All other
cases of Clause-Evaluation and Equivalence are coNP-complete for all model rep-
resentations considered here.

2 Basic Concepts of Model Representation

A model representation is a syntactic structure D associated with a unique
model M over a given signature Σ. Hereafter, we will denote by MΣ(D) a
model M over the signature Σ represented by D. For the intended applications,
any model representation D should satisfy the following properties (cf. [10, 6]):

(1) It can be checked efficiently whether a given ground atom is true inMΣ(D).
(2) Given a clause C, it is decidable whether C is true in MΣ(D).
(3) Given another structure D′ (of the same type as D), it is decidable whether

D and D′ are equivalent, i.e., whether MΣ(D′) = MΣ(D).

For all representation formalisms that are considered in this paper it will be
obvious that (1) is fulfilled via (a properly bounded number of) instance checks.
The decision problems defined in (2) and (3) are called Clause-Evaluation and
Equivalence, respectively, as already mentioned in the introduction.

For a paradigmatic example of model representation, one may think of the
explicit specification of finite models by tables (‘diagrams’). However, we restrict
our attention to term models over some signature Σ. A term model or, more pre-
cisely, Σ-model, is identified with the set of ground atoms, i.e., the variable free
atoms over Σ, that are true in it. To prevent the corresponding set of ground
terms from being empty we assume that Σ contains at least one constant. Σ is
called infinite if it contains infinitely many constants or function symbols; other-
wise it is called finite. The cardinality of the (always non-empty) set of predicate
symbols plays no role in our investigations. In some proofs we will assume that
predicate symbols of any finite arity are available; however, we mention in pass-
ing that standard coding techniques allow to strengthen all results to the case
where Σ contains a single monadic predicate symbol, as long as at least one
non-monadic function symbol is also contained in Σ.

Notation. We use a, b, and c to denote constants; f , g, h will denote func-
tion symbols. Concerning variables, we remind the reader that in introducing
contexts, Baumgartner and Tinelli [1] distinguish between ‘universal variables’
and ‘parameters’. Whereas universal variables can be seen as placeholders for
arbitrary ground terms, parameters indicate that instantiation is potentially re-
stricted. (This distinction will get clearer, below.) Each atom contains either

Model Representation over Finite and Infinite Signatures 167

only universal variables or only parameters, but not both. We will speak of uni-
versal atoms (literals) and parameter atoms (literals), respectively. We use x,
y, z to denote universal variables, and u, v, w to denote parameters. Terms
(s, t, . . .) and atoms (A, B, . . .) are built up from constants, variables, and
parameters, using function and predicate symbols. On some occasions, we will
speak of positions in terms and atoms and their respective depth, all defined as
usual. Literals (denoted by K, L, M) are either atoms, called positive literals,
or negated atoms, called negative literals. We write L for the literal that is dual
to L; i.e., A = ¬A and ¬A = A. The special parameter v is used to denote the
pseudo (parameter) literal ¬v, intended to represent all negative literals whose
dual is not explicitly contained in a context. (What exactly this means will get
clear from Definitions 2 and 3, below.) A clause C = L1∨· · ·∨Lk is a disjunction
of literals.

Substitutions are mappings from variables and parameters to terms that have
fixpoints almost everywhere. A substitution is called a renaming if it is a per-
mutation that maps variables to variables and parameters to parameters. If the
restriction of a substitution σ to parameters is a renaming, then we call σ p-
preserving. We write s � t if s is an instance of t; i.e., if there is a substitution
σ such that s = tσ. If s = tσ is a ground term (over Σ) then s is called a
(Σ-)ground instance of t and σ is called a (Σ-)ground substitution. In case σ is
a renaming, then we call s a variant of t; otherwise s is a proper instance of t. A
literal L is called most specific among literals L1, . . . , Ln if for no i ∈ {1, . . . , n}
Li is a proper instance of L. We assume the reader to be familiar with unifica-
tion. We use mgu(E1, . . . , En) to denote the most general unifier of the terms or
atoms Ei (1 ≤ i ≤ n). For our proofs below, it is important to remember that
when terms and atoms are represented by directed acyclic graphs (rather than
by strings), unification can be carried out in polynomial time and space [16].

Given this notational background, we are ready to define the representation
mechanisms investigated in this paper.

Definition 1. An atomic representation of a term model, or ARM, A over a
signature Σ is a finite set of atoms over Σ. The corresponding represented Σ-
model MΣ(A) is the set of Σ-ground instances of atoms in A.

For ARMs the distinction between parameters and variables is immaterial. For
simplicity, we assume that the elements of an ARM are universal atoms. This
distinction, however, is essential for contexts:

Definition 2. A context Λ is a finite set of literals including the pseudo lit-
eral ¬v. Λ is contradictory iff Lσ = Kσ for some variants L,K of elements in
Λ and a p-preserving substitution σ.

Example 1. The context Λ1 = {¬v, P (x, f(y)),¬P (a, x)} is contradictory, since
P (x, f(y)) and P (a, x′) are unifiable, and the corresponding unifier is p-preser-
ving (since no parameters occur in the atoms). However the context Λ2 = {¬v,
P (x, f(y)),¬P (a, u)} is non-contradictory since, for all substitutions σ such that
P (x, f(y))σ = P (a, u)σ holds, the parameter u has to be instantiated. Likewise
the special parameter v has to be instantiated when unified with P (x, f(y)).

168 C.G. Fermüller and R. Pichler

From now on, we only consider non-contradictory contexts and thus drop the
adjective, unless we want to emphasize this property.

The central notion for defining the model represented by a context Λ is that
of certain ground literals being produced in Λ. Like in [11], we provide a slightly
simplified definition, that is equivalent to the original one given in [1].

Definition 3. A ground literal K is produced by a context Λ iff one of the
following conditions holds:

1. K is an instance of some universal literal L in Λ, or
2. K is an instance of a parameter literal L ∈ Λ, but K is not an instance of a

literal M ∈ Λ, where M is either universal or a proper instance of L.

If L is the most specific literal among all literals in Λ with properties 1 and 2,
then we say that L produces K.

The Σ-model MΣ(Λ) induced by Λ is the set of ground atoms over Σ that
are produced by Λ. We call a model N context representable if N = MΣ(Λ) for
some context Λ.

Example 2. Consider the context Λ = {¬v, P (a, x, y), P (u, b, v), P (u, v, c),
¬P (u, u, c)} and a signature Σ containing only the constants a, b, and c and
no function symbols. The universal atom P (a, x, y) and therefore Λ produces all
atoms of the form P (a, s, t) for s, t ∈ {a, b, c}. P (u, b, v) produces, for instance,
the atom P (b, b, b). On the other hand, ¬P (u, u, c) prevents P (u, v, c) from pro-
ducing P (c, c, c). P (c, c, c) is not produced by Λ at all. Note that ¬P (u, u, c) also
prevents P (u, v, c) from producing P (a, a, c) and P (b, b, c). Nevertheless, both
P (a, a, c) and P (b, b, c) are produced by Λ, namely by P (a, x, y) and P (u, b, v),
respectively. We obtain MΣ(Λ) = {P (r, s, t) | r = a ∨ s = b ∨ (r �= s ∧ t = c)}.

A (general) atom is sometimes called an ‘explicit generalization’ of its ground
instances. Consequently, an ARM can be viewed as a disjunction of explicit gen-
eralizations. Following ideas in [15], these notions have been generalized in [11]
as follows.

Definition 4. An implicit generalization Γ is an expression of the form A/B,
where A is an atom and B is a finite set of atoms. We simply write A for A/{}.
Every ground atom that is an instance of A, but not an instance of any B ∈ B
is said to be contained in A/B.

A disjunction of implicit generalizations Δ (shortly: DIG) is defined as an
expression of the form A1/B1 � . . . � An/Bn, also written as

⊔
1≤i≤nAi/Bi. A

ground atom is said to be contained in Δ if it is contained in Ai/Bi for some
i ∈ {1, . . . , n}.

The Σ-modelMΣ(Δ) represented by a DIG Δ is the set of all Σ-ground atoms
that are contained in Δ. We call a model N DIG representable if N =MΣ(Δ)
for some DIG Δ.

Natural and useful as it is, the concept of DIGs seemingly has been (re)discovered
several times in slightly different syntactic disguises. For more references, exam-
ples and comments on notation, we refer to [11].

Model Representation over Finite and Infinite Signatures 169

Like for ARMs, the difference between universal variables and parameters is, in
principle, irrelevant for DIGs. Staying with the notation of [11], we will assume
that DIGs only contain parameters. Note that for any implicit generalization
A/B, every B ∈ B can be replaced by Bσ, where σ is the most general unifier of
(parameter disjoint copies of) A and B, without affecting the set of contained
ground atoms. If Bσ is a variant of A (i.e., if A is an instance of B) then
MΣ(A/B) is empty. In other words, for any implicit generalization A/B, one
may assume without loss of generality that the atoms in B are proper instances
of A. We call a DIG normalized if, for all implicit generalizations A/B in it, B
consists only of proper instances of A and, moreover, all atoms occurring in the
DIG are pairwise parameter disjoint.

Note that a single normalized implicit generalization can be considered as
a special form of contexts. Indeed, let Γ = A/B be normalized. Then the set
ΛΓ = {¬v} ∪ {A} ∪ {¬B | B ∈ B} is a context with MΣ(ΛΓ) = MΣ(Γ).

3 Expressive Power of DIGs and Contexts

Analogously to the case of an infinite signature Σ, investigated in [11], the fol-
lowing relationship between DIGs and contexts holds:

Theorem 1. Let Σ be a finite signature.

1. Contexts and DIGs have the same expressive power, i.e., a Σ-model N is
context representable iff N is DIG representable.

2. Given a context Λ, a normalized DIG Δ with MΣ(Λ) = MΣ(Δ) can be
computed in polynomial time.

3. If Σ contains at least one function symbol of arity ≥ 2, then there exists a
sequence Δn (n > 1) of DIGs, where the size of Δn is polynomial (in n), but
where all contexts representing the same Σ-model as Δn are of exponential
size (in n).

Proof. The proof of claims 1 and 2 of the theorem can be taken over literally from
the case of an infinite signature Σ: the corresponding constructions presented
in [11] do not depend on the cardinality of the signature.

The case of the last claim is different. We need a new sequence of DIGs. For
n ≥ 1, let Δn =

⊔
1≤i≤n

P (u1, . . . , un)/{P (u1, . . . , ui−1, f(ui, ui), ui+1, . . . , un),
P (u1, . . . , ui−1, g(ui, ui), ui+1, . . . , un)},

where the ui (1 ≤ i ≤ n) are pairwise distinct parameters and f and g are
two distinct function symbols. Observe thatMΣ(Δn) contains all ground atoms
over Σ except those of the form P (ϕ1(t1, t1), . . . , ϕn(tn, tn)), where ϕi ∈ {f, g}
and ti is an arbitrary ground term for 1 ≤ i ≤ n. Let Λn be a context rep-
resenting MΣ(Δn). We show that Λn must contain instances of literals of the
form ¬P (ϕ1(u1, u

′
1), . . . , ϕn(un, u

′
n)) for all choices of ϕi ∈ {f, g}. Since the 2n

different literals of the exhibited form are pairwise non-unifiable it follows that
Λn contains exponentially many literals.

Consider a literal L = P (ϕ1(t, t), . . . , ϕn(t, t)), where ϕi ∈ {f, g} and t is some
ground term in which a constant c occurs at a position π that is deeper than

170 C.G. Fermüller and R. Pichler

any position in any literal in Λn. Moreover let L′ = P (ϕ1(t′, t), . . . , ϕn(t, t)),
where t′ is obtained from t by replacing c at π with another constant d, or
with f(c, c) if Σ contains only one constant. In other words, L′ is exactly as
L except for a tiny difference at a position that is so deep that any literal in
Λn that has L′ as an instance is bound to have also L as an instance. Note
that L is false in MΣ(Δn), whereas L′ is true in MΣ(Δn). To prevent L from
being produced in Δn, there must be some K ∈ Δn which produces ¬L. We
claim that K � ¬P (ϕ1(u1, u

′
1), . . . , ϕn(un, u

′
n)), where the ui, u′i for 1 ≤ i ≤ n,

are different parameters. Suppose, to the contrary, that K is not an instance
of ¬P (ϕ1(u1, u

′
1), . . . , ϕn(un, u

′
n)). Then K is either (1) the pseudo literal ¬v

or (2) of the form ¬P (s1, . . . , sn), where ϕi(ui, u
′
i) is not an instance of si for

at least one i ∈ {1, . . . , n}. ¬L � K implies ϕi(t, t) � si; consequently s is a
parameter. In both cases we have not only ¬L � K but also ¬L′ � K. On the
other hand, since L′ is true in MΣ(Δn) = MΣ(Λn), L′ has to be produced by
some positive literal K ′ ∈ Λn. But we have defined L and L′ in such a way that
if K ′ produces L′, then it also produces L, which contradicts the fact that L is
false in MΣ(Δn) =MΣ(Λn).

We have made use of two binary function symbols f and g. To see that a single
function symbol h of arity ≥ 2 is sufficient for the claim to hold, one simply has
to replace terms of the form f(s, t) everywhere by, e.g., h(s, t, . . . , t) and terms
of the form g(s, t) by, e.g., h(h(s, . . . , s), t, . . . , t). �

The class of DIGs that can be transformed polynomially into equivalent contexts
is strictly increasing when shifting from infinite to finite signatures. To provide a
better understanding of the effect of restricting to finite signatures we re-visit the
sequence of DIGs Δ′

n =
⊔

1≤i≤n

P (u1, . . . , un)/{P (u1, . . . , ui−1, a, ui+1, . . . , un),
P (u1, . . . , ui−1, b, ui+1, . . . , un)},

that are shown in [11] to have no equivalent contexts of polynomial size for any
infinite signature Σ. MΣ(Δ′

n) consists in all ground instances of P (u1, . . . , un)
except those where all the (pairwise different) parameters ui are replaced by
either the constant a or the constant b. Over any finite signatureΣ (that contains
at least a and b) we have MΣ(Δ′

n) = MΣ(Λn) for Λn = {P (t1, . . . , tn) | ti ∈
FΣ, tj �=a ∨ tj �=b for all i and some j ∈ {1, . . . n}}. Here, FΣ is the set of terms
that contains all constants in Σ and for each function symbol f ∈ Σ a term of
the form f(x1, . . . , xm), where the xi are pairwise different variables. Note that
Λn not only is a context if augmented by ¬v, but even is an ARM. Obviously,
the size of Λn is polynomial in n for any fixed Σ.

4 ARMs: Clause Evaluation and Testing Equivalence
over Infinite Signature

In [12], Equivalence and Clause-Evaluation for ARMs were shown to be coNP-
complete for any non-trivial finite signature. In this section, we consider the
case of an infinite signature Σ. The following property (see [15], Proposition 4.1)
plays an important role in this analysis :

Model Representation over Finite and Infinite Signatures 171

Proposition 1. Let A,B1, . . . , Bn be atoms over an infinite signature Σ, where
Bi � A for all i ∈ {1, . . . , n}. Then {A} and {B1, . . . Bn} are equivalent, i.e.,
MΣ({A}) = MΣ({B1, . . . Bn}) iff A is a variant of Bj for some j ∈ {1, . . . , n}.

From this, the tractability of Equivalence for ARMs is an easy consequence:

Theorem 2. Over any infinite signature Σ, Equivalence for ARMs is in PTIME.

Proof. Let A = {A1, . . . , Am} and B = {B1, . . . , Bn} be two ARMs. Obviously,
A and B are equivalent over Σ iff (1) for every i ∈ {1, . . . ,m}, all Σ-ground
instances of Ai are in MΣ(B) and (2) for every j ∈ {1, . . . , n}, all Σ-ground
instances of Bj are in MΣ(A).

Each of thesem+n checks can be reduced in polynomial time (via unification)
to linearly many checks of the form in Proposition 1. More exactly, for any
i ∈ {1, . . . ,m} let B′

i = {Bϑ | ϑ = mgu(Ai, B), B ∈ B}. Then the Σ-ground
instances of Ai are in MΣ(B) iff {Ai} and B′

i are equivalent. (Analogously for
the Bj and A.) �

For finite signatures Σ, the coNP-hardness of Clause-Evaluation for ARMs is
shown in [12] by reducing the Equivalence problem to it. By the above tractability
result for Equivalence for infinite signatures, the question naturally arises whether
Clause-Evaluation also becomes tractable when we consider ARMs over an infinite
signature. We provide a negative answer to this question:

Theorem 3. Over any infinite signature Σ, Clause-Evaluation with respect to
ARMs is coNP-complete.

Proof. As already mentioned, ARMs can be considered as a special case of con-
texts (with no negative literals apart from the pseudo literal ¬v). The member-
ship part of the claim therefore follows immediately from the coNP-membership
of Clause-Evaluation for contexts, shown in [11]. The coNP-hardness is shown by
the following reduction from the 3SAT problem.

Recall that an instance of the 3SAT problem is given through a set X =
{x1, . . . , xk} of propositional variables and a Boolean formula E = (l11 ∨ l12 ∨
l13) ∧ · · · ∧ (ln1 ∨ ln2 ∨ ln3), where the lij are literals over X , i.e., every lij is
either a propositional variable xγ or a negated propositional variable x̄γ for some
γ ∈ {1, . . . , k}.

Let 0 and 1 denote two distinct ground terms over Σ. We define the clause
CE and the ARM AE as follows. By slight abuse of notation, we use the symbols
xγ and x̄γ (γ ∈ {1, . . . , k}) to denote also first-order variables:

CE = ¬P (l11, l12, l13) ∨ · · · ∨ ¬P (ln1, ln2, ln3) ∨ ¬Q(x1, x̄1) ∨ · · · ∨ ¬Q(xk, x̄k)
AE = {P (0, 0, 1), P (0, 1, 0), P (0, 1, 1), P (1, 0, 0), P (1, 0, 1), P (1, 1, 0), P (1, 1, 1),

Q(0, 1), Q(1, 0)}.

This problem reduction is clearly feasible in polynomial time. The underlying
idea is as follows. CE evaluates to false in MΣ(AE) iff there exists a substi-
tution σ such that all literals of CEσ are false. In other words, all dual atoms

172 C.G. Fermüller and R. Pichler

P (li1, li2, li3)σ and Q(xj , x̄j)σ have to be true, i.e., they have to be equal to one
of the (ground) atoms in AE . It is easy to check that such a substitution (which
assigns the terms 0 and 1 to the first-order variables xγ and x̄γ) exists iff the
Boolean formula E has a satisfying truth assignment (which accordingly assigns
values ‘false’ and ‘true’ to the propositional literals xγ and x̄γ). �

In order to better understand the source of complexity in Theorem 3 we consider
the special cases of positive and negative clauses, respectively. (A clause is called
positive if it consists only of positive literals and negative if consists only of
negative literals.)

Proposition 2. Over any infinite signature Σ, Clause-Evaluation over ARMs
restricted to positive clauses is in PTIME. Clause-Evaluation when restricted to
negative clauses is coNP-complete.

Proof. The coNP-completeness in the case of negative clauses is already settled
by the proof of Theorem 3. The target of the problem reduction given there is
in fact a clause with negative literals only. The tractability of Clause-Evaluation
for ARMs in case of positive clauses and infinite signature Σ follows from the
following fact, which is related to Proposition 1:
C = A1 ∨ · · · ∨Ak is true in MΣ(A) iff for some i ∈ {1, . . . , k} the atom Ai is
a Σ-instance of some atom in the ARM A.
The ‘if’-direction is obvious. For the ‘only if’-direction, suppose that C is true in
MΣ(A). Let σ be a ground substitution that assigns a unique new constant to
every variable in C, i.e., the terms σ(x) are pairwise distinct constants that do
not occur in A. By assumption, Cσ evaluates to true in MΣ(A). Hence, there
exists an i ∈ {1, . . . , k} such that Aiσ is an instance of some B ∈ A. But, by the
special form of σ, also Ai is an instance of B. �

5 DIGs and Contexts: Clause Evaluation and Testing
Equivalence over Finite Signatures

In the following we will assume that the underlying signature Σ is finite, but
non-trivial (i.e., Σ contains at least two constant or function symbols). The
coNP-hardness of the four decision problems considered here — Clause-Evaluation
and Equivalence for DIGs and contexts, respectively — follows directly from the
coNP-hardness of Equivalence and Clause-Evaluation for ARMs, which was shown
in [12]. In this section, we show that all of the four problems are in fact coNP-
complete. By the polynomial-time transformation of contexts into DIGs (see
Theorem 1), it suffices to establish the coNP-membership of Equivalence and
Clause-Evaluation for DIGs.

For this purpose, we first recall from [12] how the ‘complement’ of an atom A
(i.e., the ground atoms over Σ which are not instances of A) can be represented
by means of ‘constrained atoms’. Constrained atoms are constructs of the form
[B : X] consisting of an atom B and an equational formula X such that [B : X]

Model Representation over Finite and Infinite Signatures 173

contains precisely those ground instances Bσ of B for which σ is a solution of
X (see [5]). Any atom B can be considered as a constrained atom by adding the
trivially true formula � as a constraint, i.e., B and [B : �] are equivalent.

Then the complement of an atom A can be constructed in the following way.
Consider the tree representation of A, ‘deviate’ from this representation at some
node and close all other branches of A as early as possible with new, pairwise
distinct variables. Depending on the label of a node, this deviation can be done
in two different ways: If a node is labelled by a (constant, function, or predicate)
symbol from Σ, then this node has to be labelled by a different symbol from Σ.
If a node is labelled by a variable which also occurs at some other position, then
the two occurrences of this variable have to be replaced with two fresh variables
z1, z2 and the constraint z1 �= z2 has to be added. However, if a node is labelled
by a variable which occurs nowhere else, then no deviation at all is possible at
this node. This idea is illustrated by the following example:

Example 3. Let Σ = {P,Q, f, g, a} and let A = P (f(x, y), g(x)) be an atom
over Σ. The complement of A can be represented by the set C = {Q(z), P (a, z),
P (g(z1), z2), [P (f(z1, y), g(z2)) : z1 �= z2], P (z, a), P (z1, f(z1, z2))}. In other
words, a ground atom A′ over Σ is not an instance of A iff A′ is an instance of
one of the (constrained) atoms in C.

We only need the following properties of this construction via ‘deviations’ (for
details of this construction and for a proof of these properties, see [12]):

Theorem 4. Let A be an atom over a finite signature Σ. There exists a set of
constrained atoms C = {[B1 : X1], . . . , [Bn : Xn]} with the following properties:

1. C represents the complement of A, i.e., a ground atom A′ over Σ is not an
instance of A iff A′ is an instance of one of the constrained atoms in C.

2. For every i ∈ {1, . . . , n}, Xi is either the trivially true formula � or a
quantifier-free disequation.

3. The size of every constrained atom in C is linearly bounded by the size of A
(assuming compact representations of terms as directed acyclic graphs).

Let compΣ(A) denote the complement of an atom A with respect to signature Σ.
This notion is readily generalized to implicit generalizations I and to DIGs Δ.
We write compΣ(I) and compΣ(Δ) for the respective complements. Note that
the complement compΣ(I) of a single implicit generalization I = B/B coincides
with compΣ(B) ∪MΣ(B). Moreover, compΣ(Δ) is obtained as the intersection
of the complements of the implicit generalizations in Δ. The distinction between
universal variables and parameters is irrelevant here. Thus we will simply speak
of variables also for DIGs.

To obtain a coNP-algorithm for Clause-Evaluation for DIGs we need an efficient
method for testing whether some constrained atoms have at least one ground
instance in common (see [12]):

Theorem 5. Let {[B1 : X1], . . . , [Bm : Xm]} denote a set of constrained atoms,
where the constraints are either � or quantifier-free disequations. Then it can

174 C.G. Fermüller and R. Pichler

be tested in polynomial time whether there exists a ground atom A′ that is an
instance of [Bi : Xi] for every i ∈ {1, . . . ,m}.

Proof. Without loss of generality, assume that the Bi’s are pairwise variable
disjoint. If there exists at least one common ground instance of the constrained
atoms, then all these common ground instances can be represented by the con-
strained atom [B1μ : Z], where μ = mgu(B1, . . . , Bm) and Z is defined as
Z ≡ X1 ∧ · · · ∧ Xm. In order to test whether at least one common ground in-
stance exists, we just have to check whether μ exists and whether Zμ has at
least one solution. Since Zμ is a conjunction of disequations, the latter condi-
tion holds iff Zμ contains no trivial disequation of the form t �= t. (For a proof
of this latter fact, see [4], Lemma 2). �

Lemma 1. Over any non-trivial finite signature Σ, Clause-Evaluation for DIGs
is in coNP.

Proof. Let C = A1 ∨· · ·∨Ak ∨¬A′
1 ∨· · ·∨¬A′

� and Δ =
⊔

1≤i≤n Bi/Bi. In order
to simplify the notation, we assume that all sets Bi have the same cardinality m.
Of course, this can be easily achieved by adding an appropriate number of copies
of some B ∈ Bi to Bi. Thus, Bi is of the form Bi = {B̄i1, . . . , B̄im}. The clause
C is false in MΣ(Δ) iff for some ground instance Cσ all literals of Cσ evaluate
to false. In other words, C evaluates to false in MΣ(Δ) iff there exists a ground
substitution σ such that

(a) for every α ∈ {1, . . . , k}, Aασ is contained in compΣ(Δ) and
(b) for every δ ∈ {1, . . . , �}, A′

δσ is contained in MΣ(Δ).
It remains to show that these conditions can be tested by an NP-algorithm. Our
algorithm first carries out the following non-deterministic guesses:

1. Guess k · n constrained atoms [Eαβ : Xαβ] with α ∈ {1, . . . , k} and β ∈
{1, . . . , n} such that [Eαβ : Xαβ] is a constrained atom from the complement
representation of the implicit generalization Bβ/{B̄β1, . . . , B̄βm}.

2. Guess � indices γ(1), . . . , γ(�) with γ(δ) ∈ {1, . . . , n} for every δ ∈ {1, . . . , �}.
3. Guess � · m constrained atoms [Fδε : Yδε] with δ ∈ {1, . . . , �} and ε ∈
{1, . . . ,m} such that [Fδε : Yδε] is a constrained atom from the complement
representation of the atom B̄γ(δ)ε ∈ Bγ(δ).

Again, we may assume that the clause C and all atoms Bγ(1), . . . , Bγ(�) (i.e.,
the left-hand sides of the implicit generalizations whose indices γ(1), . . . , γ(�)
are guessed in step 2 above) as well as all constrained atoms [Eαβ : Xαβ] and
[Fδε : Yδε] are pairwise variable disjoint. Then we carry out the following checks:

4. Check that the most general unifier μ = mgu(U) of the simultaneous unifi-
cation problem U exists, where U is defined as follows.
U = {A1 = E11 = · · · = E1n, . . . , Ak = Ek1 = · · · = Ekn,

A′
1 = Bγ(1) = F11 = · · · = F1m, . . . , A

′
� = Bγ(�) = F�1 = · · · = F�m}

5. Check that the equational problem Zμ contains no trivial disequation of the
form t �= t where Z ≡

(∧k
α=1
∧n

β=1Xαβ

)
∧
(∧�

δ=1
∧m

ε=1 Yδε

)
.

Model Representation over Finite and Infinite Signatures 175

Obviously, this algorithm works in non-deterministic polynomial time, pro-
vided that an efficient unification algorithm is used (see [16]). The correctness of
this algorithm can be seen as follows. The checks in steps 4 and 5 above corre-
spond to a generalization of Theorem 5 in that we check whether some ground
instance Cσ of C exists such that the resulting ground atoms A1σ, . . . , Akσ,
A′

1σ, . . . , A
′
�σ are contained in the following intersections of constrained atoms:

(a) For every α ∈ {1, . . . , k}, Aασ has to be in compΣ(Δ). For this purpose,
we guess in step 1 the constrained atoms [Eαβ : Xαβ] from the complement
representation of every implicit generalization Bβ/{B̄β1, . . . , B̄βm} with β ∈
{1, . . . , n}. Obviously, Aασ is in compΣ(Δ), iff it is a common instance of these
constrained atoms.

(b) For every δ ∈ {1, . . . , �}, A′
δσ has to be contained in Δ. In other words,

for every δ, there exists an index γ(δ) – which is guessed in step 2 – such that
A′

δσ is contained in Bγ(δ)/{B̄γ(δ)1, . . . , B̄γ(δ)m}. Therefore, A′
δσ is an instance

of Bγ(δ) (for this purpose, the conditions A′
δ = Bγ(δ) are part of the unification

problem U) and A′
δσ is in the complement of every B̄γ(δ)ε. The constrained atoms

[Fδε : Yδε] guessed in step 3 take care of the latter condition. �

In [11], the coNP-membership of Equivalence for DIGs over infinite signatures was
shown by reducing the problem to linearly many instances of Clause-Evaluation
for DIGs. This reduction is completely independent of the underlying signature.
In other words: the same problem reduction works also if we consider a finite
signature. Together with the coNP-membership shown above, we immediately
obtain:

Theorem 6. Over any non-trivial finite signature Σ, the Clause-Evaluation and
the Equivalence problem for contexts and DIGs, respectively, are coNP-complete.

6 Conclusion

We have been motivated by the fact that basic decision problems relating to
ARMs had been investigated previously only for finite signatures, whereas the
same problems for two important generalizations of ARMs — namely, DIGs
and contexts — had been studied for an underlying infinite signature only. In
this paper, we have completed the picture by studying ARMs over an infinite
signature and DIGs and contexts over a finite signature. It has turned out that
— apart from one case (namely Equivalence over an infinite signature) — the
complexity does not increase when we move from ARMs to the much more
expressive contexts and DIGs. Note however that this does not mean that ARMs
are “useless”. In fact, the usefulness of a model representation depends to a
large extent on the existence of a calculus which constructs models via this
representation. And this is clearly the case for ARMs (see [10]).

One may now ask for a more fine grained analysis of the problems considered
here. In particular, a more detailed picture of the borderline between tractable
and intractable cases would be interesting. For instance, what happens to the
complexity if we restrict ourselves to DIGs with only one atom on the right-hand

176 C.G. Fermüller and R. Pichler

side of each implicit generalization or to linear atoms (in the ARMs, DIGs and
contexts)? Proposition 2 already contains an observation along this line.

Another natural topic for future investigations is the effect of integrating
equality literals into model representation formalisms. In fact, Baumgartner and
Tinelli have recently [2] generalized model evolution, including contexts, to clause
logic with equality. It is clear at once that the expressive power, but also the com-
plexity of corresponding decision problems, increases dramatically in presence of
equality literals. We delegate more detailed assertions to future work.

References

1. P. Baumgartner and C. Tinelli. The model evolution calculus. In Proceedings of
CADE-19, LNCS 2741, pages 350–364, Springer, 2003.

2. P. Baumgartner and C. Tinelli. The model evolution calculus with Equality. In
Proceedings of CADE 2005, LNCS 3632, pages 392–408, Springer, 2005.

3. P. Baumgartner, A. Fuchs, and C. Tinelli. Lemma Learning in the Model Evolution
Calculus. Submitted.

4. H. Comon and C. Delor. Equational formulae with membership constraints. In-
formation and Computation, 112(2):167–216, 1994.

5. R. Caferra and N. Zabel. Extending resolution for model construction. In Proceed-
ings of JELIA’90, LNAI 478, pages 153–169, Springer, 1991.

6. R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building, volume 31 of
Applied Logic Series, Kluwer Academic Publishers, 2004.

7. T. Eiter, W. Faber, and P. Traxler. Testing strong equivalence of datalog programs -
implementation and examples. In Proceedings of LPNMR 2005, LNCS 3662, pages
437–441, Springer, 2005.

8. T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran. Replacements in non-
ground answer set programming. In Proc. of WLP 2006, pages 145–153, 2006.

9. C.G. Fermüller and A. Leitsch. Model building by resolution. In Proceedings of
CSL’92, LNCS 702, pages 134–148, Springer, 1993.

10. C.G. Fermüller and A. Leitsch. Hyperresolution and automated model building.
Journal of Logic and Computation, 6(2):173–203, 1996.

11. C.G. Fermüller and R. Pichler. Model representation via contexts and implicit
generalizations. In Proc. of CADE-20, LNCS 3632, pages 409–423, Springer, 2005.

12. G. Gottlob and R. Pichler. Working with ARMs: Complexity results on atomic
representations of Herbrand models. Information and Computation, 165:183–207,
2001.

13. D. Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Sufficient-completeness,
ground-reducibility and their complexity. Acta Informatica, 28(4):311–350, 1991.

14. K. Kunen. Answer sets and negation as failure. In Proceedings of ICLP’87, pages
219–228, MIT Press, 1987.

15. J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter
examples. Journal of Automated Reasoning, 3(3):301–317, 1987.

16. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258–282, 1982.

Deciding Extensions of the Theory of Arrays by
Integrating Decision Procedures and

Instantiation Strategies

Silvio Ghilardi1, Enrica Nicolini2, Silvio Ranise1,3, and Daniele Zucchelli1,3

1 Dipartimento di Informatica, Università degli Studi di Milano (Italia)
2 Dipartimento di Matematica, Università degli Studi di Milano (Italia)

3 LORIA & INRIA-Lorraine, Nancy (France)

Abstract. The theory of arrays, introduced by McCarthy in his sem-
inal paper “Toward a mathematical science of computation”, is central
to Computer Science. Unfortunately, the theory alone is not sufficient
for many important verification applications such as program analy-
sis. Motivated by this observation, we study extensions of the theory
of arrays whose satisfiability problem (i.e. checking the satisfiability of
conjunctions of ground literals) is decidable. In particular, we consider
extensions where the indexes of arrays has the algebraic structure of
Presburger Arithmetic and the theory of arrays is augmented with ax-
ioms characterizing additional symbols such as dimension, sortedness, or
the domain of definition of arrays.

We provide methods for integrating available decision procedures for
the theory of arrays and Presburger Arithmetic with automatic instan-
tiation strategies which allow us to reduce the satisfiability problem for
the extension of the theory of arrays to that of the theories decided by
the available procedures. Our approach aims to reuse as much as pos-
sible existing techniques so to ease the implementation of the proposed
methods. To this end, we show how to use both model-theoretic and
rewriting-based theorem proving (i.e., superposition) techniques to im-
plement the instantiation strategies of the various extensions.

1 Introduction

Since its introduction by McCarthy in [13], the theory of arrays (A) has played a
very important role in Computer Science. Hence, it is not surprising that many
papers [4, 17, 20, 10, 12, 19, 2, 3] have been devoted to its study in the context
of verification and many reasoning techniques, both automatic - e.g., [2] - and
manual [17], have been developed to reason in such a theory.

Unfortunately, as many previous works [20, 10, 12, 3] have already observed,
A alone or even extended with extensional equality between arrays (as in [19, 2])
is not sufficient for many applications of verification. For example, the works in
[20, 10, 12] tried to extend the theory to reason about sorted arrays. More re-
cently, Bradley et al. [3] have shown the decidability of the satisfiability problem
for a restricted class of (possibly quantified) first-order formulae that allows one
to express many important properties about arrays.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 177–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 S. Ghilardi et al.

In this paper, we consider the theory of arrays with extensionality [19, 2] whose
indexes have the algebraic structure of Presburger Arithmetic (P), and extend
it with additional (function or predicate) symbols expressing important features
of arrays (e.g., the dimension of an array or an array being sorted). The main
contribution of the paper is a method to integrate two decision procedures, one
for the theory of arrays without extensionality (A) and one for P , with instantia-
tion strategies that allow us to reduce the satisfiability problem of the extension
of A ∪ P to the satisfiability problems decided by the two available procedures.

Our approach to integrating decision procedures and instantiation strate-
gies is inspired by model-theoretic considerations and by the rewriting-approach
[2, 1, 11]. For the rewriting-based method, we follow the lines of [11], where, fac-
ing the satisfiability problem, it is suggested that the (ground) formulae derived
by the superposition calculus [16] between ground literals and the axioms of a
theory T (extending the theory of equality Eq) can be passed to a decision pro-
cedure for Eq. In this paper, we use superposition to generate enough (ground)
instances of an extension of A so to enable the decision procedures for P and A
to decide its satisfiability problem. An immediate by-product of our approach
is the fact that the various extensions of A can be combined together to decide
the satisfiability of the union of the various extensions.

Related work. The work most closely related to ours is [3]. The main difference
is that we have a semantic approach to extending A since we consider only
the satisfiability of ground formulae and we introduce additional functions and
predicates while in [3], a syntactic characterization of a class of full first-order
formulae, which turns out to be expressive enough to specify many properties
of interest about arrays, is considered. Our approach allows us to get a more
refined characterization of some properties of arrays, yielding the decidability
of the extension of A with injective arrays (see Section 5.1), which is left as an
open problem in [3].

Our instantiation strategy based on superposition (see Section 5.2) has a similar
spirit of the work in [7], where equational reasoning is integrated in instantiation-
based theorem proving. The main difference with [7] is that we solve the state-
explosion problem, due to the recombination of formulae caused by the use of stan-
dard superposition rules, by deriving a new termination result for an extension of
A as recommended by the rewriting approach to satisfiability procedures of [2].

Plan of the paper. Section 2 introduces some formal notions necessary to develop
the results in this paper. Section 3 gives some motivation for the first extension
of A by a dimension function together with its formal definition while Section 4
describe an extensible decision procedure. Section 5 considers two extensions of
the theory defined in Section 3. For lack of space, further extensions of A and
the proofs of the results in this paper are included in a Technical Report [9].

2 Formal Preliminaries

We work in many-sorted first-order logic with equality and we assume the basic
syntactic and semantic concepts as in, e.g., [6]. A signature Σ is a non-empty

Deciding Extensions of the Theory of Arrays 179

set of sort symbols together with a set of function symbols and a set of predicate
symbols (both equipped with suitable lists of sort symbols as arity). The set of
predicate symbols contains a symbol =S for equality for every sort S (we usually
omit its subscript). If Σ is a signature, a simple expansion of Σ is a signature
Σ′ obtained from Σ by adding a set a := {a1, ..., an} of “fresh” constants (each
of them again equipped with a sort), i.e. Σ′ := Σ ∪ a, where a is such that Σ
and a are disjoint. Below, we write Σa as the simple expansion of Σ with a set
a of fresh constant symbols. First-order terms and formulae over a signature Σ
are defined in the usual way, i.e., they must respect the arities of function and
predicate symbols and the variables occurring in them must also be equipped
with sorts (well-sortedness). A Σ-atom is a predicate symbol applied to (well-
sorted) terms. A Σ-literal is a Σ-atom or its negation. A ground literal is a
literal not containing variables. A constraint is a finite conjunction �1 ∧ · · · ∧ �n
of literals, which can also be seen as a finite set {�1, . . . , �n}. A Σ-sentence is a
first-order formula over Σ without free variables.

A Σ-structure M consists of non-empty and pairwise disjoint domains SM

for every sort S, and interprets each function symbol f and predicate symbol P
as functions fM and relations PM, respectively, according to their arities. If t is
a ground term, we also use tM for the element denoted by t in the structure M.
Validity of a formula φ in a Σ-structure M (in symbols, M |= φ), satisfiability,
and logical consequence are defined in the usual way. The Σ-structure M is
a model of the Σ-theory T iff all axioms of T are valid in M. A Σ-theory T
is a (possibly infinite) set of Σ-sentences. Let T be a theory. We refer to the
signature of T as ΣT . If there exists a set Ax (T) of sentences in T such that
every formula φ of T is a logical consequence of Ax(T), then we say that Ax(T)
is a set of axioms of T . A theory T is complete iff, given a sentence φ, we have
that φ is either true or false in all the models of T .

In this paper, we are concerned with the (constraint) satisfiability problem
for a theory T , also called the T -satisfiability problem, which is the problem of
deciding whether a ΣT -constraint is satisfiable in a model of T . Notice that a
constraint may contain variables: since these variables may be equivalently re-
placed by free constants, we can reformulate the constraint satisfiability problem
as the problem of deciding whether a finite conjunction of ground literals in a
simply expanded signature Σa

T is true in a Σa
T -structure whose ΣT -reduct is a

model of T . We say that a ΣT -constraint is T -satisfiable iff there exists a model
of T satisfying it. Two ΣT -constraints φ and ψ are T -equisatisfiable iff there
exists a structure M1 such that M1 |= T ∧ φ iff the following condition holds:
there exists a structure M2 such that M2 |= T ∧ ψ.

Without loss of generality, when considering a set L of ground literals to
be checked for satisfiability, we may assume that each literal � in L is flat,
i.e. � is required to be either of the form a = f(a1, . . . , an), P (a1, . . . , an), or
¬P (a1, . . . , an), where a, a1, . . . , an are (sort-conforming) free constants, f is a
function symbol, and P is a predicate symbol (possibly also equality).

180 S. Ghilardi et al.

3 Finite Arrays with Dimension as a Combined Theory

Given a set A, by Arr(A) we denote the set of finite arrays with natural num-
bers as indexes and whose elements are from A. We model such an array a as
a sequence a : N −→ A ∪ {⊥} which is eventually equal to ⊥ (here ⊥ is an
element not in A denoting an “undefined” or “default” value). In this way, for
every array a ∈ Arr(A) there is a smallest index n ≥ 0, called the dimension of
a, such that the value of a at index j is equal to ⊥ for j ≥ n. Contrary to finite
sequences, we do not require that any value of a at k < n be distinct from ⊥:
this is also the reason to use the word ‘dimension’ rather than ‘length’, as for
sequences. There is just one array whose dimension is zero which we indicate
by ε and call it the empty array. Since many applications of verification require
arithmetic expressions on indexes of arrays, we introduce Presburger arithmetic
P over indexes: any other decidable fragment of Arithmetic would be a good
alternative. Thus the relevant operations on our arrays include addition over
indexes, read, write, and dimension. The resulting theory (to be formally intro-
duced later on) ADP can be seen as a combination of well-known theories such
as P and the theory Ae of arrays with extensionality (see, e.g., [2]), extended
with a function for dimension which takes an array and returns a natural num-
ber. Because of the function for dimension, the combination is non-disjoint and
cannot be handled by classical combination schemas such as Nelson-Oppen [15].
Nevertheless, following [8], it is convenient to see ADP as a combination of P
with a theory of array with dimension Adim : Adim extends Ae (both in the sig-
nature and in the axioms), but is contained in ADP , because indexes are only
endowed with a discrete linear poset structure (the next subsection fixes the de-
tails). In this way, we have that ADP = Adim ∪P and the theories Adim and P
share the well-known complete theory T0 of natural numbers endowed with zero
and successor (see e.g., [5]): this theory admits quantifier elimination, so that
the T0-compatibility hypothesis of [8] needed for the non-disjoint Nelson-Oppen
combination is satisfied. Unfortunately, the combination result in [8] cannot be
applied to ADP for mainly two reasons. First, T0 is not locally finite (see, e.g.,
[8] for details). Secondly, Adim is a proper extension of the theory Ae, hence the
decision procedures for the Ae-satisfiability problem (such as, e.g., the one in
[2]) must be extended. In the rest of the paper, we will show that it is sufficient
to use decision procedures for the P- and Ae-satisfiability problem to solve the
ADP-satisfiability problem provided that a suitable pre-processing of the input
set of literals is performed.

Here, we formally introduce the basic theories of interests for this paper.

T0 has just one sort symbol index, the following function and predicate sym-
bols: 0 : index, s : index → index, and <: index× index. It is axiomatized
by the the following formulae:1

1 Here and in the following, we omit the outermost universal quantification for the
sake of readability.

Deciding Extensions of the Theory of Arrays 181

y �= 0 → ∃z(y = s(z)) (1)
x < s(y)↔ (x < y ∨ x = y) (2)

¬(x < 0) (3)
x < y ∨ x = y ∨ y < x (4)

x < y → ¬(y < x) (5)
x < y → (y < z → x < z) (6)

where x, y and z are variables of sort index. This theory admits elimination
of quantifiers and it is complete, see [5] for details.

P is the well-known Presburger arithmetic, see, e.g., [5], over indexes. The
signature is that of T0 extended with the function symbol for addition + :
index× index→ index, written infix. Since P is not finitely axiomatizable
(see, again [5]), we assume as axioms all valid sentences in the theory. Notice
that T0 ⊂ P .

A is the theory of arrays (see, e.g., [2]) which has the following signature:
– sort symbols: index, elem,array and
– function symbols: select : array× index→ elem and store : array×

index× elem→ array
and it is axiomatized by the following formulae:

select(store(a, i, e), i) = e (7)
i �= j → select(store(a, i, e), j) = select(a, j) (8)

Ae is the theory of arrays with extensionality (see, e.g., [2]) which has the
same signature of A and it is axiomatized by (7), (8), and the axiom of
extensionality:

∀i(select(a, i) = select(b, i))→ a = b (9)

Notice that A ⊂ Ae.
Adim is the simple theory of arrays with dimension whose signature is the union

of the signatures of T0 and Ae extended with the following three symbols:
⊥ : elem, ε : array, and dim : array → index. It is axiomatized by the
axioms in T0, those in Ae, and the following formulae:

dim(a) ≤ i→ select(a, i) = ⊥ (10)
dim(a) = s(i) → select(a, i) �= ⊥ (11)

dim(ε) = 0 (12)

Notice that T0 ⊂ Adim and Ae ⊂ Adim .
ADP is the theory of arrays with dimension whose signature is the union of

the signatures of Adim and P and is axiomatized by the axioms in Adim and
all valid sentences in P .

The theories T0, P , A, and Ae are decidable (see [5] for the first two and [2]
for the last two). This is an important observation for the results of this paper,

182 S. Ghilardi et al.

Flattening

P A

sat/unsat

all sat?

E-inst. G-inst.

Fig. 1. The architecture of the decision procedure for ADP

since the decision procedure for ADP-satisfiability will assume the availability
of two decision procedures for the constraint satisfiability problems of P and A.
The theories Ae, Adim , and ADP admit a particular subclass of models, which
we call the standard ones and are exactly those introduced above in order to
motivate the definition of ADP . Such models are characterized by the fact that
the sort index is always interpreted as the set N of natural numbers, and the
sort array is interpreted as the set of all the sequences of elements from elem
that are eventually equal to ⊥; the dimension of each array is the successor of
the index of the last element different from ⊥. Of course, when investigating
constraint satisfiability we are mainly interested in satisfiability of constraints
in standard models and we shall in fact prove that a constraint is satisfiable
in a model of ADP iff it is satisfiable in a standard model (see Lemma 4.3,
below).

4 A Decision Procedure for Arrays with Dimension

We assume the availability of two decision procedures solving the Ae- and P-
satisfiability problems. The overall schema of the procedure forADP-satisfiability
problems is depicted in Figure 1. The idea is to reduce the ADP-satisfiability
problem to the constraint satisfiability problems for Ae and P . The module
Flatten pre-processes the literals in the input constraint so to make them flat
and easily recognizable as belonging to one theory among those used to de-
fine ADP , i.e. T0, P , A, or Ae. The module E-instantiation produces suitable
instances of the extensionality axiom of arrays, i.e. (9), so that a simple satisfia-
bility procedure for A is assumed available (rather than one for Ae). The mod-
ule G-instantiation is non-deterministic and guesses sufficiently many instances
of the axioms about dim, i.e. (10) and (11), as well as some facts entailed by
the constraints in P . The modules P and A implement the decision procedures
for Presburger arithmetic and the theory of arrays without extensionality. The
module ‘all sat?’ returns ‘sat’ if both decision procedures for P and A returned
‘sat’, and, otherwise, returns ‘unsat’. We are now ready to describe the internal
workings of each module.

Deciding Extensions of the Theory of Arrays 183

4.1 Flattening

It is well-known (see, e.g., [2]) that it is possible to transform a constraint φ
into an equisatisfiable constraint φ′ containing only flat literals in linear time
by introducing sufficiently many fresh constant symbols to name sub-terms. In
our case, we assume that the module Flatten in Figure 1 transforms (in linear
time) a set of arbitrary literals over the signature Σa

ADP , into an equisatisfiable
set of flat literals on the signature Σc

ADP , for some set c ⊇ a of constants (the
constants in c \ a are said to be fresh). Notice that a flattened set of literals L
can be represented as a set-theoretic union L = LA ∪ LP , where LA collects all
the literals from L whose signature is the signature of A and LP collects all the
literals from L whose signature is the signature of P (thus LA ∩ LP contains
precisely the literals from L whose signature is the signature of T0).

4.2 E-Instantiation Closure

The E-instantiation module in Figure 1 is based on the Skolemization of axiom
(9).

Definition 4.1 (E-instantiation closed set of literals). A set L of ground
flat literals is E-instantiation closed iff for every negative literal of the kind a �= b
that belongs to L (with a, b : array), we have that {select(a, i) = e1, select(b, i) =
e2, e1 �= e2} ⊆ L, for some constants i : index, e1, e2 : elem;

The correctness of the module is stated below.

Lemma 4.1. There exists a linear time algorithm which takes a set L of flat
literals over the signature Σa

ADP and returns a E-instantiation closed set LE of
flat literals over the signature Σc

ADP such that (i) L ⊆ LE , (ii) L and LE are
ADP-equisatisfiable, and (iii) a ⊆ c.

4.3 G-Instantiation Closure

The module G-instantiation is non-deterministic and it is responsible to produce
suitable instances of the axioms (10) and (11) as well as to guess (hence the
name of G-instantiation) enough facts of P entailed by the input constraint.

Definition 4.2 (G-instantiation closed set of literals). A set L of ground
flat literals is G-instantiation closed iff the following conditions are satisfied:

1. if ε occurs in L, then dim(ε) = 0 ∈ L.
2. if dim(a) = i ∈ L, with a : array and i : index, then either {i = 0} ⊆ L or
{e �= ⊥, select(a, j) = e, s(j) = i} ⊆ L for some constant j : index;

3. if i, j occur in L, with i, j : index, then either i = j ∈ L or j �= i ∈ L;
4. if i, j occur in L, with i, j : index and i �= j ∈ L, then either i < j ∈ L, or
j < i ∈ L;

5. if {dim(a) = i, i ≤ j} ⊆ L, with a : array and i, j : index, then {select(a, j)
=⊥} ⊆ L (here i ≤ j stands for i < j or i = j).

184 S. Ghilardi et al.

T←− {A,P}
function DPADP (L: set of flat literals)

LE ←− E-instantiation(L)
for each LG ←− G-instantiation(LE) do begin

for each T ∈ T do ρT ←− DPT (LG
T)

if
∧

T∈T(ρT = sat) then return sat
end
return unsat

end

Fig. 2. The (extensible) decision procedure for ADP

It is not difficult to see that, given a set of literals, it is always possible to
compute its G-instantiation in (non-deterministic) polynomial time.

Lemma 4.2. There exists a non-deterministic polynomial time algorithm which
takes as input a set L of ground flat literals over a signature Σa

ADP and returns
a G-instantiation closed set LG of flat literals over the signature Σc

ADP such that
(i) L ⊆ LG, (ii) L and LG are ADP-equisatisfiable, and (iii) a ⊆ c.
For the correctness of our decision procedure, we need sets of literals that are
both E- and G-instantiation closed. To this aim, one can check that the E-
instantiation module has to be invoked first, followed by the G-instantiation
module.

4.4 The Decision Procedure for ADP
Figure 2 gives an algorithmic and non-deterministic description of the decision
procedure to solve the ADP-satisfiability problem. Without loss of generality
(see Section 4.1), we assume that L contains only flat literals. For a theory T
with decidable satisfiability problem, we write DPT for the decision procedure
solving the T -satisfiability problem: DPT takes a set L of ΣT -literals and returns
sat when L is T -satisfiable; unsat , otherwise. If L is a set of flat literals, then

LT := {� | � ∈ L is a ΣT -literal},

where T ∈ {A,P}. So, for example, LG
P is the subset of the ΣP -literals in LG .

The set T in Figure 2 contains the names of the theories for which a decision
procedure is assumed available. It will be used for modularly extending the
procedure in Section 5.

Let L be a set of flat ΣADP -literals to be checked for ADP-satisfiability. The
decision procedure DPADP first computes the E-instantiation LE of L (recall
from Lemma 4.1 that this can be done in linear time). Then, it enumerates all
possible G-instantiations (cf. the for each loop in Figure 2). If it is capable of
finding a G-instantiation LG such that its ΣP -literals are P-satisfiable and its
ΣA-literals are A-satisfiable, then DPADP returns the ADP -satisfiability of the
input set L of literals. Otherwise, if all possible G-instantiations are enumerated
and the test of the conditional in the body of the loop always fails, then DPADP
returns the ADP-unsatisfiability of the input set L of literals.

Deciding Extensions of the Theory of Arrays 185

4.5 Correctness of the Decision Procedure for ADP

The termination of DPADP is immediate, whereas its soundness and completeness
(Theorem 4.1 below) are consequences of the following Combination Lemma.

Lemma 4.3 (Combination). Let L be a E- and G-instantiation closed finite
set of flat literals. Then, the following conditions are equivalent:

(i) L is satisfiable in a standard model of ADP;
(ii) L is ADP-satisfiable;
(iii) LA is A-satisfiable and LP is P-satisfiable.

The soundness and correctness of DPADP is stated in the following

Theorem 4.1. DPADP is a decision procedure for the ADP-satisfiability prob-
lem, i.e. for any set L of flat literals, L is ADP-satisfiable iff DPADP(L) returns
sat. Furthermore, DPADP decides the satisfiability problem in the standard mod-
els of ADP.

5 Extensions of the Theory of Arrays with Dimension

We show the decidability of two interesting extensions of ADP (more extensions
can be found in the Technical Report [9]).

5.1 Injective Arrays

The first extension of ADP is obtained by adding an axiom recognizing injective
arrays which, according to [14], may characterize memory configurations where
pointers satisfy the no-aliasing property. We extend the (empty) set of predicate
symbols ADP by the unary predicate symbol Inj : array which holds for arrays
containing no repeated elements, with the exception of the undefined element
⊥ (the decidability of a similar problem is left open in [3]). To formalize the
intended meaning of Inj, we consider the theory ADP inj obtained by extending
ADP with the following defining axiom:

Inj(a) ↔ ∀i, j(select(a, i) = select(a, j) → i = j ∨ select(a, i) = ⊥) (13)

where a is a variable of sort array. In order to obtain a decision procedure for
ADP inj, it is necessary to find suitable extensions of Definitions 4.1 and 4.2 so
that enough instances of (13) are considered, and the results of the available
decision procedures for A and P are conclusive about the satisfiability of the
original constraint in the extended theory. We formalize the meaning of “enough
instances” for ADP inj in the following two definitions.

Definition 5.1 (Einj-instantiation closed set of literals). A set L of ground
flat literals is Einj-instantiation closed iff (i) L is E-instantiation closed (cf. Def-
inition 4.1) and moreover for every negative literal ¬Inj(a) ∈ L, there are con-
stants e : elem, i, j : array such that {select(a, i) = e, select(a, j) = e, i < j, e �=
⊥} ⊆ L.

186 S. Ghilardi et al.

Definition 5.2 (Ginj-instantiation closed set of literals). A set L of ground
flat literals is Ginj-instantiation closed iff L is G-instantiation closed and the
following conditions are satisfied:

1. if Inj(a) ∈ L then, for each constant i of sort index occurring in L, either
select(a, i) = ⊥ ∈ L or {select(a, i) = e, e �= ⊥} ⊆ L for some constant
e : elem;

2. if {Inj(a), i < j, select(a, i) = e1, select(a, j) = e2, e1 �= ⊥, e2 �= ⊥} ⊆ L, then
e1 �= e2 ∈ L.

Lemmas 4.1 and 4.2 can easily be adapted to the theory ADP inj. Since the
combination Lemma 4.3 continues to hold with Definitions 5.1 and 5.2, we can
show the correctness of the decision procedure DPADP inj for ADP inj, which is
obtained from DPADP by replacing the modules for E- and G-instantiation in
Figure 1 with those taking into account Definitions 5.1 and 5.2.

Theorem 5.1. DPADP inj is a decision procedure for the ADP inj-satisfiability
problem. Furthermore, DPADP inj decides the satisfiability problem in the standard
models of ADP inj.

5.2 Arrays with Domain

The second extension of ADP we consider is again motivated by applications
in program verification. As already observed in [17], it is quite helpful to regard
arrays as functions equipped with an operator to compute their domains. This is
used, for example, to define the semantics of separating connectives (supporting
local reasoning) of Separation Logic [18]. So, we extend ADP with a set of
axioms characterizing a function which, given an array a, returns the domain
dom(a) of a, i.e. dom(a) is the set of indexes i such that select(a, i) �= ⊥.

To formalize this extension of Adim , we need to introduce a very simple theory
of sets of indexes, which is a straightforward extension of that used in [2]. Let S∅

be the theory whose sort symbols are bool and set, whose function symbols are
true, false : bool, ∅ : set, mem : index×set→ bool, ins : index×set→ set,
and whose axioms are the following:

mem(i, ∅) = false (14)
mem(i, ins(i, s)) = true (15)

i1 �= i2 → mem(i1, ins(i2, s)) = mem(i1, s) (16)
true �= false ∧ (∀x : bool x = true ∨ x = false) (17)

where i, i1, i2 (s) are variables of sort index (set, respectively). Intuitively, ∅
denotes the empty set, mem is the test for membership of an index to a set, ins
adds an index to a set if it is not already in the set. It is possible to adapt the
decidability result of [2] to S∅ (see [9] for details). Since we want to be able to
compare sets by using the membership predicate mem, we need to consider the
theory S∅

e obtained from S∅ by adding the following axiom of extensionality for
sets (here s1, s2 are variables of sort set):

Deciding Extensions of the Theory of Arrays 187

∀i(mem(i, s1) = mem(i, s2)) → s1 = s2. (18)

Let ADPdom be the theory obtained by extending the (disjoint) union of ADP
with S∅

e by the function symbol dom : array→ set together with the following
axiom:

select(a, i) = ⊥ ↔ mem(i,dom(a)) = false (19)

where i and a are variables of sort index and array, respectively.
In order to obtain a decision procedure for ADPdom, it is necessary to find

suitable extensions of Definitions 4.1 and 4.2 so that enough instances of axioms
(18) and (19) are considered and the results of the available decision procedures
for A, P , and S∅ are conclusive about the satisfiability of the original constraint
in the extended theory. We formalize the meaning of “enough instances” for
axiom (18) in the following definition.

Definition 5.3 (Eset-instantiation closed set of literals). A set L of ground
flat literals is Eset-instantiation closed iff L is E-instantiation closed (cf. Def-
inition 4.1) and for every literal of the kind s1 �= s2 ∈ L (with s1, s2 con-
stants of sort set), there are constants b1, b2 : bool, i : index such that
{mem(i, s1) = b1,mem(i, s2) = b2, b1 �= b2} ⊆ L.

Instead of using guessing as for ADP inj in Section 5.2, we adopt the rewriting-
approach to satisfiability procedures of [2]. We use the superposition calculus
(from now on denoted by SP) to build a rewriting-based decision procedure for
the satisfiability problem in the union of the theories Ae and S∅

e extended with
axiom (19). Such a procedure is then combined with a decision procedure for
the satisfiability problem in P to build a decision procedure for ADPdom.

In [2], it is shown how to use SP to build decision procedures for theories
axiomatized by a finite set of first-order clauses. The key observation is that,
in order to show that SP is a decision procedure, it is sufficient to prove that
SP terminates on the set of clauses obtained by the union of the axioms of the
theory and an arbitrary set of ground and flat literals. According to [2], SP
terminates also for some of the theories considered in this paper, e.g., A and
S∅
− := S∅ \ {(17)} (when considered in isolation). Modularity results in [1] allow

us to conclude that SP also terminates for the union A ∪ S∅
−. Unfortunately,

this is not enough here since our goal is to build a decision procedure ADPdom

whose set of axioms also contains (17) and (19).
Below, we develop the termination result for SP necessary to replace guessing

as for ADP inj (cf. Section 5.1) with SP . Notice that SP is used in two ways: to
check for unsatisfiability in the theory of equality and to find enough instances
of the axioms of A∪S∅

− together with (17) and (19). A similar approach has also
been investigated in [11] (for the theories already considered in [2]) to enable the
efficient combination of rewriting-based satisfiability procedures with a decision
procedure for P .

188 S. Ghilardi et al.

Let L be a set of ground and flat ΣA∪S∅ -literals; we define IL to be the
following set of (partial) instances of axioms (17) and (19):

select(a, x) �= ⊥ ∨ mem(x,dom(a)) �= true,
select(a, x) = ⊥ ∨ mem(x,dom(a)) = true,

true �= false, and b = true ∨ b = false

for each dom(a) = s in L and for each constant b : bool occurring in L.

Lemma 5.1. SP terminates on A∪S∅
−∪IL∪L for every set L of ΣA∪S∅-literals.

In the following, we denote with DPSP the function taking a set L of Eset-
instantiated ΣA∪S∅ -literals, computing IL, and then invoking SP on the clauses
A ∪ S∅

− ∪ IL ∪ L. If the empty clause is derived by SP , then DPSP returns
unsat ; sat, otherwise. The decision procedure DPADPdom for the theory ADPdom

is obtained from DPADP by replacing the module for E-instantiation in Figure
1 with a module for Eset-instantiation (cf. Definition 5.3) and by calling DPSP
instead of DPA in the loop of Figure 2.

Theorem 5.2. DPADPdom is a decision procedure for the ADPdom-satisfiability
problem.

6 Conclusion

We have considered extensions of the theory of arrays which are relevant for many
important applications such as program verification. These extensions are such
that the indexes of arrays has the algebraic structure of Presburger Arithmetic
and the theory of arrays is augmented with axioms characterizing additional
symbols such as dimension, injectivity, or the domain of definition of arrays. We
have obtained the decidability of all the considered extensions by a combination
of decision procedures for the theories of arrays and Presburger Arithmetic with
various instantiation strategies based both on model-theoretic and rewriting-
based methods.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an experimen-
tal appraisal. In Proc. of 5th Int. Workshop on Frontiers of Combining Systems
(FroCoS’05), volume 3717 of LNCS, 2005.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

3. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
Proc. of 7th Int. Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI’06), volume 3855 of LNCS, 2006.

4. P. J. Downey and R. Sethi. Assignment commands with array references. Journal
of the ACM, 25(4):652–666, 1978.

Deciding Extensions of the Theory of Arrays 189

5. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York-London, 1972.

6. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. Harper & Row, 1986.

7. H. Ganzinger and K. Korovin. Integrating equational reasoning in instantiation-
based theorem proving. In Proc. of Computer Science in Logic (CSL’04), volume
3210 of LNCS, 2004.

8. S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 33(3-4):221–249, 2004.

9. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Deciding extension
of the theory of arrays by integrating decision procedures and instantiation
strategies. Rapporto Interno DSI 309-06, Università degli Studi di Milano,
Milano (Italy), 2006. Available at http://homes.dsi.unimi.it/∼zucchell/
publications/techreport/GhiNiRaZu-RI309-06.pdf.

10. J. Jaffar. Presburger arithmetic with array segments. Information Processing
Letters, 12(2):79–82, 1981.

11. H. Kirchner, S. Ranise, C. Ringeissen, and D.-K. Tran. On superposition-based
satisfiability procedures and their combination. In Proc. of the 2nd Int. Conf. on
Theoretical Aspects of Computing (ICTAC’05), volume 3722 of LNCS, 2005.

12. P. Mateti. A decision procedure for the correctness of a class of programs. Journal
of the ACM, 28(2):215–232, 1981.

13. J. McCarthy. Towards a mathematical theory of computation. In Proceedings of
IFIP Congress, 1962.

14. S. McPeak and G. Necula. Data structures specification via local equality axioms.
In Proc. of 17th Int. Conf. on Computer Aided Verification (CAV’05), volume 3576
of LNCS, 2005.

15. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transaction on Programming Languages and Systems, 1(2):245–257, 1979.

16. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning. 2001.

17. J. C. Reynolds. Reasoning about arrays. Communications of the ACM, 22(5):290–
299, 1979.

18. J. C. Reynolds. Separation logic: a logic for shared mutable data structures, 2002.
19. A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for an

extensional theory of arrays. In Proc. of the 16th IEEE Symposium on Logic in
Computer Science (LICS’01). IEEE Computer Society, 2001.

20. N. Suzuki and D. R. Jefferson. Verification decidability of presburger array pro-
grams. Journal of the ACM, 27(1):191–205, 1980.

Analytic Tableau Calculi for KLM Rational Logic R

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dipartimento di Informatica - Università del Piemonte Orientale A. Avogadro - via Bellini
25/G - 15100 Alessandria, Italy
laura@mfn.unipmn.it

2 Dipartimento di Informatica - Università degli Studi di Torino, corso Svizzera 185 - 10149
Turin - Italy

{gliozzi, pozzato}@di.unito.it
3 LSIS - UMR CNRS 6168 Université Paul Cézanne (Aix-Marseille 3) Avenue Escadrille

Normandie-Niemen 13397 Marseille Cedex 20 - France
nicola.olivetti@univ.u-3mrs.fr, nicola.olivetti@lsis.org

Abstract. In this paper we present a tableau calculus for the rational logic R
of default reasoning, introduced by Kraus, Lehmann and Magidor. Our calculus
is obtained by introducing suitable modalities to interpret conditional assertions,
and makes use of labels to represent possible worlds. We also provide a decision
procedure for R, and study its complexity.

1 Introduction

In [1] Kraus, Lehmann and Magidor (KLM) proposed a formalization of nonmonotonic
reasoning that led to a classification of nonmonotonic consequence relations, determin-
ing a hierarchy of stronger and stronger systems. The so called KLM properties have
been widely accepted as the “conservative core” of default reasoning. The role of KLM
logics is similar to the role of AGM postulates in Belief Revision [2]: they give a set of
postulates for default reasoning that any concrete reasoning mechanism should satisfy.

In the recent literature it is shown that many different approaches to default reason-
ing are characterized by these properties. In particular, a recent work by Halpern and
Friedman [3] has shown that two of these systems, namely preferential logic P and ra-
tional logic R, are natural and general systems: surprisingly enough, the axiom systems
of these logics are complete with respect to a wide spectrum of semantics (including
κ-rankings, parametrized probabilistic structures, ε-semantics and possibilistic struc-
tures). The reason is that all these structures are examples of plausibility structures and
the truth in them is captured by the axioms of preferential or rational logic.

The results presented in [3], and their extensions to the first order setting [4], are
the source of a renewed interest in the KLM framework. A considerable amount of
research in the area has then concentrated in developing concrete mechanisms for plau-
sible reasoning in accordance with KLM systems (P and R mostly). These mechanisms
are defined by exploiting a variety of models of reasoning under uncertainty (ranked
models, belief functions, possibilistic logic, etc. [5, 6, 7, 8, 9, 10]) that provide, as we
remarked, alternative semantics to KLM systems. The mechanisms can be seen as re-
stricting the consideration to preferred classes of models of KLM logics; this is also
the case of Lehmann’s notion of rational closure (not to be confused with the logic R).

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 190–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analytic Tableau Calculi for KLM Rational Logic R 191

More recent research has also explored the integration of KLM framework with para-
consistent logics [11]. Finally, there has been some recent investigation on the relation
between KLM systems and decision-theory [12, 13].

In KLM logics, defeasible knowledge is assumed to be represented by a set of non-
monotonic conditionals or assertions of the formA |∼ B, whose reading is normally (or
typically) the A’s are B’s. The operator ”|∼” is nonmonotonic, in the sense that A |∼ B
does not imply A ∧ C |∼ B.

In this paper we focus on logic R, whose axiom system includes the rule of rational
monotonicity: if A |∼ B and ¬(A |∼ ¬C) hold, then one can infer A ∧ C |∼ B. This
rule allows a conditional to be inferred from a set of conditionals in absence of other
information. More precisely, “it says that an agent should not have to retract any pre-
vious defeasible conclusion when learning about a new fact the negation of which was
not previously derivable” [14].

Consider, for instance, a knowledge base K containing the following set of condi-
tional assertions: adult |∼ worker, adult |∼ taxpayer, student |∼ adult, student |∼
¬worker, student |∼ ¬taxpayer, whose meaning is that adults typically work, adults
typically pay taxes, students are typically adults, but they typically do not work, nor do
they pay taxes. In rational logic R one can infer the following conditional assertions
from the knowledge base K: adult |∼ ¬student (i.e. typical adults are not students),
adult ∧ student |∼ ¬worker (giving preference to more specific information). More-
over, if one further knows that ¬(adult |∼ ¬married) (i.e. it is not the case the adults
are typically unmarried), one can also infer that adult ∧married |∼ worker. Observe
that one cannot infer student |∼ worker.

From a semantic point of view, the models of rational logic are possible-world struc-
tures equipped with a preference relation among worlds. The preference relation (an
irreflexive and transitive relation) on worlds is further assumed to be modular. The
meaning of a conditional assertion A |∼ B is that B holds in the most preferred worlds
where A holds.

In this work we extend the investigation of tableau procedures for propositional KLM
logics developed in [15] by considering the case of R. Our approach is based on a novel
interpretation of R into modal logics. As a difference with previous approaches (e.g.
Crocco et. al [16] and Boutillier [17]), that take S4.3 as the modal counterpart of R, we
consider here an extension of modal logic G, including modularity of the preference
relation. The idea is simply to interpret the preference relation as an accessibility rela-
tion: a conditional A |∼ B holds in a model if B is true in all minimal A-worlds, i.e.
worlds in which A holds, that are minimal w.r.t.<. A world is A-minimal if all smaller
worlds are not A-worlds. The relation with modal logic G is motivated by the fact that
we assume, following KLM, the so-called smoothness condition, which is related to the
well-known limit assumption. This condition ensures that minimal A-worlds exist, by
preventing infinitely descending chains of worlds. This condition is therefore ensured
by the finite-chain condition on the accessibility relation (as in modal logic G). As it has
been done in [15] for preferential logic and loop-cumulative logic, our tableau method
provides a sort of run-time translation of R into the extension of modal logic G. As a
difference with [15], we develop here a labelled tableau system, which seems to be the
most natural approach.

192 L. Giordano et al.

The paper presents a tableau calculus for R which is sound, complete and terminat-
ing. Moreover, it defines a systematic procedure which allows the satisfiability problem
for R to be decided in nondeterministic polynomial time, in accordance with the known
complexity results for this logic.

2 KLM Rational Logic R

In this section we briefly recall the axiomatization and semantics of the rational logic
R. For a complete description of KLM systems, see [1] and [14]. The language of KLM
logics consists just of conditional assertions A |∼ B. We consider a richer language
allowing boolean combinations of conditional and propositional formulas1. Our lan-
guage L is defined from a set of propositional variables ATM , the boolean connectives
and the conditional operator |∼. We use A,B,C, ... to denote propositional formulas,
whereas F,G, ... are used to denote all formulas (even conditionals); Γ,Δ, ... represent
sets of formulas. The formulas of L are defined as follows: if A is a propositional for-
mula, A ∈ L; if A and B are propositional formulas, A |∼ B ∈ L; if F is a boolean
combination of formulas of L, F ∈ L. L corresponds to the fragment of the language
of conditional logics without nested conditionals |∼.

The axiomatization of R consists of all axioms and rules of propositional calculus
together with the following axioms and rules (notice that � denotes provability in the
propositional calculus):

• REF. A |∼ A (reflexivity)
• LLE. If � A↔ B, then � (A |∼ C) → (B |∼ C) (left logical equivalence)
• RW. If � A→ B, then � (C |∼ A) → (C |∼ B) (right weakening)
• AND. ((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C)
• OR. ((A |∼ C) ∧ (B |∼ C)) → (A ∨B |∼ C)
• CM. ((A |∼ B) ∧ (A |∼ C))→ (A ∧B |∼ C) (cautious monotonicity)
• RM. ((A |∼ B) ∧ ¬(A |∼ ¬C)) → (A ∧ C |∼ B) (rational monotonicity)

REF states that A is always a default conclusion of A. LLE states that the syntactic
form of the antecedent of a conditional formula is irrelevant. RW describes a similar
property of the consequent. This allows to combine default and logical reasoning [3].
AND states that it is possible to combine two default conclusions. OR states that it is
allowed to reason by cases: ifC is the default conclusion of two premisesA andB, then
it is also the default conclusion of their disjunction. CM states that if B and C are two
default conclusions of A, then adding one of the two conclusions to A will not cause
the retraction of the other conclusion. As explained in the Introduction, RM captures a
natural form of monotonicity.

The semantics of R is defined by considering possible world structures with a pref-
erence relation (a strict partial order) w < w′ whose meaning is that w is preferred
to w′. Moreover, the preference relation is supposed to be modular, i.e. for all w,w1
and w2, if w1 < w2 then either w1 < w or w < w2. We have that A |∼ B holds in

1 In [14] it is shown that in a language lacking boolean combinations of conditionals, system R
collapses into system P. As shown in [3], the two systems are distinct given a richer language
(as ours) allowing boolean combinations of conditionals.

Analytic Tableau Calculi for KLM Rational Logic R 193

a modelM if B holds in all minimal A-worlds (w.r.t. <). This definition makes sense
provided minimalA-worlds exist (whenever there areA-worlds). This is ensured by the
smoothness condition in the next definition.

Definition 1 (Semantics of R, Definition 14 in [14]). A rational model is a tripleM =
〈W , <, V 〉 where: W is a non-empty set of items called worlds; < is an irreflexive,
transitive and modular relation onW; V is a function V : W �−→ pow(ATM), which
assigns to every world w the set of atoms holding in that world. We define the truth
conditions for a formula F as follows:

• If F is a boolean combination of formulas,M, w |= F is defined as for proposi-
tional logic;
• Let A be a propositional formula; we defineMin<(A) = {w ∈ W | M, w |= A

and ∀w′, w′ < w impliesM, w′ �|= A};
• M, w |= A |∼ B if for all w′, if w′ ∈Min<(A) thenM, w′ |= B.

The relation < satisfies the smoothness condition: if M, w |= A then w ∈ Min<(A)
or ∃w′ ∈Min<(A) such that w′ < w.
We say that a formula F is valid in a model M (M |= F), if M, w |= F for every
w ∈ W . A formula is valid if it is valid in every modelM.

Notice that the truth conditions for conditional formulas are given with respect to single
possible worlds for uniformity sake. Since the truth value of a conditional only depends
on global properties ofM, we have that:M, w |= A |∼ B iffM |= A |∼ B.

By transitivity of the relation<, the smoothness condition is equivalent to the follow-
ing strong smoothness condition: given a formula A and a world w, if there is w′ < w
such that M, w′ |= A, then either w′ ∈ Min<(A) or there exists w′′ < w such that
w′′ ∈ Min<(A). Observe also that by the modularity of < it follows that possible
worlds ofW are clustered into equivalence classes, each class consisting of worlds that
are incomparable to one another; the classes are totally ordered2. In other words the
property of modularity determines a ranking of worlds so that the semantics of R can
be specified equivalently in terms of ranked models [14]. By means of the modularity
condition on the preference relation, we can also prove the following theorem:

Theorem 1 (Small Model Theorem). For any Γ ⊆ L, if Γ is satisfiable in a rational
model, then it is satisfiable in a rational model containing at most n worlds, where n is
the size of Γ , i.e. the length of the string representing Γ .

3 The Tableau Calculus for R

In this section we present T R, a labelled tableau calculus for rational logic R. The
calculus makes use of labels to represent possible worlds. We consider a language LR

and a denumerable alphabet of labels A, whose elements are denoted by x, y, z,
LR extends L by formulas of the form �A, where A is propositional, whose intuitive
meaning is as follows: �A holds in a world w if A holds in all the worlds w′ such that
w′ < w, that is to say:

2 Notice that the worlds themselves may be incomparable since the relation < is not assumed to
be (weakly) connected.

194 L. Giordano et al.

Definition 2 (Truth condition of �). M, w |= �A if for every w′ ∈ W if w′ < w
thenM, w′ |= A.

It is easy to see that � has (among others) the properties of the modal system G, whose
characterizing axiom is �(�A → A) → �A (see for instance [18]). This axiom guar-
antees that the accessibility relation (defined as xRy if y < x) is transitive and does not
have infinite ascending chains. From definition of Min<(A) in Definition 1 above, it
follows that for any formulaA, w ∈Min<(A) iffM, w |= A∧�¬A. As we will see,
TR will only make use of boxed formulas with a negated argument, i.e. with the form
x : �¬A.

Our tableau calculus comprises two kinds of labelled formulas: (i) world formulas
x : F , whose meaning is that F holds in the possible world represented by x; (ii)
relation formulas of the form x < y, where x, y ∈ A, used to represent the relation <.
We denote by α, β . . . a world or a relation formula.

We define ΓM
x→y = {y : ¬A, y : �¬A | x : �¬A ∈ Γ}. The calculus TR is

presented in Figure 1. We call dynamic the rules (|∼−) and (�−) that introduce new
labels in their conclusion; all the other rules are called static.

—————————————————————————————————————–

(AX) Γ, x : P, x : ¬P with P ∈ ATM (¬)
Γ, x : ¬¬F

Γ, x : F

(∧+)
Γ, x : F ∧ G

Γ, x : F, x : G
(∧−)

Γ, x : ¬(F ∧ G)

Γ, x : ¬F Γ, x : ¬G

(|∼+)
Γ, u : A |∼ B

Γ, x : ¬A, u : A |∼ B Γ, x : ¬�¬A, u : A |∼ B Γ, x : B, u : A |∼ B

(|∼−)
Γ, u : ¬(A |∼ B)

x new label
Γ, x : A, x : �¬A, x : ¬B

(�−)
Γ, x : ¬�¬A

y new label
Γ, y < x, Γ M

x→y, y : A, y : �¬A

(<)
Γ, x < y

Γ, x < y, z < y, Γ
M
y→z Γ, x < y, x < z, Γ

M
z→x

z occurs in Γ and {x < z, z < y} ∩ Γ = ∅

—————————————————————————————————————–

Fig. 1. The calculus TR. To save space, rules for→ and ∨ are omitted.

Definition 3 (Truth conditions of formulas of TR). Given a modelM = 〈W , <, V 〉
and a labelled alphabet A, we consider a mapping I : A �→ W . Given a formula α
of the calculus T R, we define M |=I α as follows: M |=I x : F iff M, I(x) |= F ;
M |=I x < y iff I(x) < I(y).

We say that a set Γ of formulas of T R is satisfiable if, for all formulas α ∈ Γ , we
have thatM |=I α, for some modelM and some mapping I .

Analytic Tableau Calculi for KLM Rational Logic R 195

A tableau is a tree whose nodes are sets of formulas Γ . Therefore, a branch is a se-
quence of sets of formulas Γ1, Γ2, . . . , Γn, . . . Each node Γi is obtained by its imme-
diate predecessor Γi−1 by applying a rule of T R, having Γi−1 as the premise and
Γi as one of its conclusions. A branch is closed if one of its nodes is an instance
of (AX), otherwise it is open. We say that a tableau is closed if all its branches are
closed.

In order to verify that a set of formulas Γ is unsatisfiable, we label all the formulas in
Γ with a new label x, and verify that the resulting set of labelled formulas has a closed
tableau. For instance, in order to verify that the set {adult |∼ worker, ¬(adult |∼
¬married), ¬(adult∧married |∼ worker)} is unsatisfiable (thus adult∧married |∼
worker is entailed by {adult |∼ worker, ¬(adult |∼ ¬married)}), we can build the
closed tableau in Figure 2.

Fig. 2. A derivation in T R of {adult |∼ worker, ¬(adult |∼ ¬married), ¬(adult ∧
married |∼ worker)}. To save space, we use a for adult, m for married, and w for worker.

Lemma 1. For any set of formulas Γ and any world formula x : F , there is a closed
tableau for Γ, x : F, x : ¬F .

The calculus TR is sound and complete w.r.t. the semantics.

Theorem 2 (Soundness). If there is a closed tableau for a set of formulas Γ , then Γ is
unsatisfiable.

Proof. By induction on the height of the closed tableau for Γ . If Γ is an axiom, then
x : P ∈ Γ and x : ¬P ∈ Γ , therefore there is no w ∈ W such that M, w |= P
and M, w �|= P , and Γ is unsatisfiable. For the inductive step, we prove the contra-
positive, i.e. we prove for each rule that, if the premise is satisfiable, so is (at least)
one of the conclusions. To save space, we only present the most interesting case of
(�−). Since the premise is satisfiable, then there is a model M and a mapping I
such that M |=I Γ, x : ¬�¬A. Let w ∈ W such that I(x) = w; this means that
M, w �|= �¬A, hence there exists a world w′ < w such that M, w′ |= A. By the

196 L. Giordano et al.

strong smoothness condition, we have that there exists a minimal such world, so we
can assume that w′ ∈ Min<(A), thus M, w′ |= �¬A. In order to prove that the con-
clusion of the rule is satisfiable, we construct a mapping I ′ as follows: let y be a new
label, not occurring in the current branch; we define (1) I ′(u) = I(u) for all u �= y and
(2) I ′(y) = w′. Since y does not occur in Γ , it follows that M |=I′ Γ . By Definition
3, we have thatM |=I′ y < x since w′ < w. Moreover, since I ′(y) = w′, we have that
M |=I′ y : A and M |=I′ y : �¬A. Finally, M |=I′ ΓM

x→y follows from the fact that
I ′(y) < I ′(x) and from the transitivity of <. The only conclusion of the rule is then
satisfiable inM via I ′. �

In order to prove the completeness of the calculus, we introduce the notion of saturated
branch and we show that TR introduces a finite number of labels in a tableau.

Definition 4 (Saturated branch). We say that a branch B = Γ1, Γ2, . . . , Γn, . . . of a
tableau is saturated if the following conditions hold: (1) For the boolean connectives,
the condition of saturation is defined in the usual way. For instance, if x : A ∧B ∈ Γi

in B, then there exists Γj in B such that x : A ∈ Γj and x : B ∈ Γj . (2) If x : A |∼
B ∈ Γi, then for any label y in B, there exists Γj in B such that either y : ¬A ∈ Γj

or y : ¬�¬A ∈ Γj or y : B ∈ Γj . (3) If x : ¬(A |∼ B) ∈ Γi, then there is a Γj

in B such that, for some y, y : A ∈ Γj , y : �¬A ∈ Γj , and y : ¬B ∈ Γj . (4)
If x : ¬�¬A ∈ Γi, then there exists Γj in B such that, for some y, y < x ∈ Γj ,
y : A ∈ Γj and y : �¬A ∈ Γj . (5) If x < y ∈ Γi, then for all labels z in B, there
exists Γj in B such that either z < y ∈ Γj or x < z ∈ Γj .

We can easily show the following Lemma:

Lemma 2. Given a tableau starting with x0 : F , for any saturated branch B =
Γ1, Γ2, . . . , Γn, . . ., we have that:

– if z < y ∈ Γi in B and y < x ∈ Γj in B, then there exists Γk in B such that
z < x ∈ Γk;

– if x : �¬A ∈ Γi in B and y < x ∈ Γj in B, then there exists Γk in B such that
y : ¬A ∈ Γk and y : �¬A ∈ Γk;

– for no Γi in B, x < x ∈ Γi.

Notice that in TR the order of application of the rules is not relevant, since all the rules
are invertible. Hence, no backtracking is required in the calculus, and we can assume
without loss of generality that a given set of formulas Γ has a unique tableau.

In Theorem 3 below we prove that the tableau for a given set of formulas Γ0 contains
a finite number of labels. Indeed, the only rules that can introduce new labels in the
tableau are (|∼−) and (�−). We prove that in the tableau there can be only finitely many
applications of these rules. Intuitively, the rule (|∼−) can be applied only once for each
negated conditional Γ (hence it introduces only a finite number of labels). Furthermore,
the generation of infinite branches due to the interplay between rules (|∼+) and (�−)
cannot occur. Indeed, each application of (�−) to a formula x : ¬�¬A (introduced
by (|∼+)) adds the formula y : �¬A to the conclusion, so that (|∼+) can no longer

Analytic Tableau Calculi for KLM Rational Logic R 197

consistently introduce y : ¬�¬A. This is due to the properties of �, that are similar to
the corresponding modality of modal system G.

In order to prove this result in a rigorous manner, we proceed as follows: first, we
introduce the measure of Definition 6, and the auxiliary Definition 5; then, we prove
that each application of (|∼−) and (�−) reduces this measure, until the two rules are
no longer applicable. We write A |∼ B ∈+ Γ (resp. A |∼ B ∈− Γ) if A |∼ B occurs
positively (resp. negatively) in Γ , where positive and negative occurrences are defined
in the standard way.

Definition 5. Given an initial set of formulas Γ0, we define: (i) the set LΓ0
�+ of boxed

formulas �¬A that can be generated in a tableau for Γ0, i.e. LΓ0
�+ = {�¬A | A |∼

B ∈+ Γ0} ∪ {�¬A | A |∼ B ∈− Γ0}. We let n0 =| LΓ0
�+ |; (ii) the multiset LΓ0

�− of
negated boxed formulas that can be generated in a tableau for Γ0, i.e. LΓ0

�− = [¬�¬A |
A |∼ B ∈+ Γ0]. We let k0 =| LΓ0

�− |.
Given a label x and a set of formulas Γ in the tableau for the initial set Γ0, we de-
fine: (i) the number nx of positive boxed formulas �¬A not labelled by x, i.e. nx =
n0− | {�¬A ∈ LΓ0

�+ | x : �¬A ∈ Γ} |; (ii) the number kx of negated boxed for-
mulas ¬�¬A not yet expanded in a world x, i.e. kx = k0− | [¬�¬A ∈ LΓ0

�− | x :
¬�¬A has been expanded] |.

Definition 6. We define p(Γ) = 〈c1, c2〉 where:

– c1 =| {u : A |∼ B ∈− Γ} |
– c2 is the multiset given by [cx1

2 , c
x2
2 , . . . , c

xn
2], where x1, x2, . . . , xn are the labels

occurring in Γ and, given a label x, cx2 is a pair (nx, kx) in a lexicographic order
(nx and kx are defined as in Definition 5). We consider the integer multiset ordering
given by c2.

We consider the lexicographic order given by p(Γ).

Roughly speaking, c1 is the number of negated conditionals that can still be expanded in
the tableau. c2 keeps track of positive conditionals which can still create a new world.
The application of (|∼−) reduces c1. The application of (�−) reduces c2. Indeed, if
(|∼+) is applied to u : A |∼ B, this application introduces a branch containing x :
¬�¬A; when a new world y is generated by an application of (�−) on x : ¬�¬A,
y : �¬A is added to the current set of formulas. If (|∼+) is applied to u : A |∼ B by
using the new world y, then the conclusion where y : ¬�¬A is introduced is closed, by
the presence of y : �¬A.

Theorem 3. Given a set of formulas Γ , the tableau generated by TR for Γ only con-
tains a finite number of labels.

Proof sketch. First, we can easily prove that each application of (|∼−) and (�−) reduces
p(Γ). This means that a finite number of applications of these rules leads either to a
node containing x : F, x : ¬F (see Lemma 1) or to a node to which the two rules are
no further applicable. In particular, when c1 = 0, (|∼−) is no longer applicable. When

198 L. Giordano et al.

c2 = [(0, 0), (0, 0), . . . , (0, 0)], we can reason as follows: suppose there is x : ¬�¬A ∈
Γ ; since cx2 = (0, 0), it follows that x : �¬A ∈ Γ , and we conclude by Lemma 1. �

Theorem 4 (Completeness). If a set of formulas Γ is unsatisfiable, then it has a closed
tableau.

Proof sketch. We show the contrapositive, i.e. if there is no closed tableau for Γ , then
Γ is satisfiable. Consider the tableau starting with the set of formulas {x : F such that
F ∈ Γ} and any open, saturated branch B = Γ1, Γ2, . . . , Γn in it. Starting from B, we
build a canonical modelM = 〈WB , <, V 〉 satisfying Γ , where:WB is the set of labels
that appear in the branch B; for each x, y ∈ WB , x < y iff there exists Γi in B such that
x < y ∈ Γi; for each x ∈ WB , V (x) = {P ∈ ATM | there is Γi in B such that x :
P ∈ Γi}. We can easily prove that:

(i) by Theorem 3, we have thatWB is finite;
(ii)< is an irreflexive, transitive and modular relation onWB satisfying the smoothness
condition. Irreflexivity, transitivity and modularity are obvious, given Definition 4 and
Lemma 2 above. Since < is irreflexive and transitive, it can be easily shown that it is
also acyclic. This property together with the finiteness ofWB entails that< cannot have
infinite descending chains. In turn this last property together with the transitivity of <
entails the smoothness condition.
(iii) We show that, for all formulas F and for all Γi in B, (i) if x : F ∈ Γi then
M, x |= F and (ii) if x : ¬F ∈ Γi then M, x �|= F . The proof is by induction on
the complexity of the formulas. If F ∈ ATM this immediately follows from defini-
tion of V . For the inductive step, due to space limitations, we only present the case of
F = A |∼ B. The other cases are similar and then left to the reader. Let x : A |∼ B ∈ Γi.
By Definition 4, we have that, for all y, there is Γj in B such that either y : ¬A ∈ Γj

or y : B ∈ Γj or y : ¬�¬A ∈ Γj . We show that for all y ∈ Min<(A), M, y |= B.
Let y ∈Min<(A). This entails thatM, y |= A, hence y : ¬A �∈ Γj . Similarly, we can
show that y : ¬�¬A �∈ Γj . It follows that y : B ∈ Γj , and by inductive hypothesis
M, y |= B. (ii) If x : ¬(A |∼ B) ∈ Γi, since B is saturated, there is a label y in some
Γj such that y : A ∈ Γj , y : �¬A ∈ Γj , and y : ¬B ∈ Γj . By inductive hypothesis we
can easily show thatM, y |= A,M, y |= �¬A, hence y ∈Min<(A), andM, y �|= B,
henceM, x �|= A |∼ B. �

4 Termination of T R and Optimal Proof Search

In this section, we refine TR in order to ensure termination. Moreover, we describe an
optimal decision procedure for R that allows to decide the satisfiability in R in nonde-
terministic polynomial time.

In general, non-termination in tableau calculi can be caused by two different rea-
sons: 1. some rules copy their principal formula in the conclusion, so that they can be
reapplied over the same formula without any control; 2. dynamic rules can generate
infinitely-many worlds, creating infinite branches.

As far as TR is concerned, Theorem 3 excludes the second source of non termination
(point 2). Concerning point 1, the above calculus T R does not ensure a terminating

Analytic Tableau Calculi for KLM Rational Logic R 199

proof search due to (|∼+), which can be applied without any control. We ensure the
termination by putting some constraints on (|∼+) in TR. It is easy to observe that it is
useless to apply the rule on the same conditional formula more than once by using the
same label x. Indeed, all formulas in the premise of (|∼+) are kept in the conclusions,
then we can assume, without loss of generality, that two applications of (|∼+) on x
are consecutive. We observe that the second application is useless, since each of the
conclusions has already been obtained after the first application, and can be removed.
We prevent redundant applications of (|∼+) by keeping track of labels (worlds) in which
a conditional u : A |∼ B has already been applied in the current branch. To this purpose,
we add to each positive conditional a list of used labels; we restrict the application of
(|∼+) only to labels not occurring in the corresponding list. Notice that also the rule (<)
copies its principal formula x < y in the conclusion; however, this rule will be applied
only a finite number of times. This is a consequence of the side condition of the rule
application and the fact that the number of labels in a tableau is finite (Theorem 3).

The terminating calculus T RT is obtained by replacing the (|∼+) rule in Figure 1
with the one presented in Figure 3.

—————————————————————————————————————–

Γ, u : A |∼ BL

(|∼+)
Γ, x : ¬A, u : A |∼ BL,x Γ, x : ¬�¬A, u : A |∼ BL,x Γ, x : B, u : A |∼ BL,x

with x �∈ L
—————————————————————————————————————–

Fig. 3. The rule (|∼+) in the tableau system TRT

Theorem 5 (Soundness and completeness of T RT). The calculus T RT is sound and
complete w.r.t. the semantics.

Theorem 6 (Termination of TRT). Let Γ be a finite set of formulas, then any tableau
generated by TRT is finite.

Let n be the size of the starting set Γ of which we want to verify the satisfiability. The
number of applications of the rules is proportional to the number of labels introduced
in the tableau. In turn, this is O(2n) due to the interplay between the rules (|∼+) and
(�−). Hence, the complexity of the calculus T RT is exponential in n.
In order to obtain a better complexity bound for validity in R we provide the following
procedure. Intuitively, we do not apply (�−) to all negated boxed formulas, but only to
formulas y : ¬�¬A not already expanded, i.e. such that z : A, z : �¬A do not belong
to the current branch. As a result, we build a small model for the initial set of formulas
in accordance with Theorem 1. This is made possible by the modularity of < in R.

Let us define a nondeterministic procedure CHECK(Γ) to decide whether a given set
of formulas Γ is satisfiable. Let EXPAND(Γ) be a procedure that returns one saturated
expansion of Γ w.r.t. all static rules. In case of a branching rule, EXPAND nondetermin-
istically selects (guesses) and applies one conclusion of the rule.

200 L. Giordano et al.

CHECK(Γ)
1. Γ ←− EXPAND(Γ);
2. if Γ contains an axiom then return UNSAT;
3. Γ ←− result of applying (|∼−) to each negated conditional in Γ ;
4. Γ ←− EXPAND(Γ);
5. if Γ contains an axiom then return UNSAT;
while Γ contains a y : ¬�¬A not marked as CONSIDERED do

6. select y : ¬�¬A ∈ Γ not already marked as CONSIDERED;
6a. if there is z in Γ such that z : A ∈ Γ and z : �¬A ∈ Γ

then 6a’. add z < y,Γ M
y→z to Γ ;

else 6a”. Γ ←− result of applying (�−) to y : ¬�¬A;
6b. mark y : ¬�¬A as CONSIDERED;

7. Γ ←− EXPAND(Γ);
8. if Γ contains an axiom then return UNSAT;

endWhile
9. return SAT;

Observe that the addition of the set of formulas z < y, ΓM
y→z in step 6a’ could be

omitted and it has been added mostly to enhance the understanding of the procedure.
Indeed, the rule (<), which is applied at each iteration to assure modularity, already
takes care of adding such formulas. The procedure CHECK nondeterministically builds
an open branch for Γ .

Theorem 7 (Soundness and completeness of the procedure). The above procedure
is sound and complete w.r.t. the semantics.

Proof sketch. (Soundness). We prove that if the initial set of formulas Γ is satisfiable,
then the above procedure returns SAT. More precisely, we prove that each step of the
procedure preserves the satisfiability of Γ . As far as EXPAND is concerned, notice that
it only applies the static rules of TRT and the soundness follows from the fact that
these rules preserve satisfiability (see Theorems 2 and 5). Consider now step 6. Let
y : ¬�¬A the formula selected in this step. If (�−) is applied to y : ¬�¬A (step
6a”) we are done, since (�−) preserves satisfiability (see Theorems 2 and 5). If Γ
already contains z : A, z : �¬A, then step 6a’ is executed, and the relation z < y is
added. In this case we reason as follows. Since Γ is satisfiable, we have that there is a
model M and a mapping I such that (1) M, I(y) |= ¬�¬A and (2) M, I(z) |= A
and M, I(z) |= �¬A. We can observe that I(z) < I(y) in M. Indeed, by the truth
condition of ¬�¬A (see Definitions 2 and 3) and by the strong smoothness condition,
we have that there exists w such that w < I(y) and M, w |= A,�¬A. By modularity
of <, either 1. w < I(z) or 2. I(z) < I(y). 1 is impossible, since otherwise we would
have M, w |= ¬A, which contradicts M, w |= A. Hence, 2 holds. Therefore, we can
conclude that step 6a’ preserves satisfiability.
(Completeness). It can be easily shown that in case the procedure above returns SAT,
then the branch built is saturated (see Definition 4). Therefore, we can build a canonical
model for the initial Γ , as done in the proof of Theorem 4. �

Theorem 8 (Complexity of the CHECK procedure). By means of the procedure
CHECK the satisfiability of a set of formulas of logic R can be decided in nondeter-
ministic polynomial time.

Analytic Tableau Calculi for KLM Rational Logic R 201

Proof. Observe that the procedure generates at most O(n) labels by applying the rule
(|∼−) (step 3) and that the while loop generates at most one new label for each ¬�¬A
formula. Indeed, the rule (�−) is applied to a labelled formula y : ¬�¬A to generate
a new world only if there is not a label z such that z : A ∈ Γ and z : �¬A ∈ Γ are
already on the branch. In essence, the procedure does not add a new minimal A-world
on the branch if there is already one. As the number of different ¬�¬A formulas is
at most O(n), then the while loop can add at most O(n) new labels on the branch.
Moreover, for each different label x, the expansion step can add at mostO(n) formulas
x : ¬�¬A on the branch, one for each positive conditionalA |∼ B occurring in the set
Γ . We can therefore conclude that the while loop can be executed at mostO(n2) times.

As the number of generated labels is at most O(n), by the subformula property,
the number of labelled formulas on the branch is at most O(n2). Hence, the execu-
tion of step 6a has complexityO(n2). The execution of the nondeterministic procedure
EXPAND has complexity O(n2), including a guess of size O(n2), whereas to verify if
Γ contains an axiom has complexityO(n4) (since it requires to check whether, for each
labelled formula x : P ∈ Γ , the formula x : ¬P is also in Γ , and Γ contains at most
O(n2) labelled formulas). We can therefore conclude that the execution of the CHECK
procedure requires at most O(n6) steps. �

By Theorem 8, the validity problem for R is in coNP. coNP-hardness is immediate,
since R includes classical propositional logic. Thus, we can conclude that:

Theorem 9 (Complexity of R). The problem of deciding the validity for rational logic
R is coNP-complete.

5 Conclusions and Future Work

In this paper we have developed an analytic tableau calculus TR for the rational logic
R. To the best of our knowledge, this is the first calculus for R directly based on pref-
erential semantics. We have proved the termination of the calculus and provided a sys-
tematic procedure for deciding the satisfiability of a set of formulas in nondeterministic
polynomial time. The paper is complementary to the work [15], where the other KLM
systems are considered.

We briefly remark on some related work for deductive approaches to KLM logics.
Proof methods for the other KLM logics and for conditional logics related to them

have been presented in [19, 20, 21]. Decidability of P and R has also been obtained by
interpreting them into standard modal logics, as it is done by Boutilier [17]. However,
Boutilier rejects the smoothness condition, which is essential in KLM framework. Fur-
thermore, Boutilier gives a less natural and more complicated mapping into modal logic
S4 and S4.3 for P and R respectively. Our logic and S4.3 are incomparable: finite-chain
condition corresponding to the axiom G does not hold in S4.3, reflexivity and weak con-
nectedness (holding in S4.3) do not hold in our logic. In [15] analytic tableaux calculi
for P and CL are presented. These calculi are based on the same idea of using suitable
modalities to interpret conditional assertions. In [15] authors show that the problem of
deciding validity is co-NP complete for both logics P and CL.

We plan to extend our calculi to the first order case. The starting point will be the
analysis of first order rational logic by Friedman, Halpern and Koller in [4]. In sub-

202 L. Giordano et al.

sequent research we also intend to investigate how to find models in the alternative
semantics of P and R [3] of a set of conditional assertions by using our tableau meth-
ods. This could be a step in order to use our tableau procedures to uniformly implement
a variety of default reasoning mechanisms built upon KLM logics P and R [5, 6, 7, 8].

References

1. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2) (1990) 167–207

2. Gardenförs, P.: Knowledge in Flux. MIT Press (1988)
3. Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal of the

ACM 48(4) (2001) 648–685
4. Friedman, N., Halpern, J.Y., Koller, D.: First-order conditional logic for default reasoning

revisited. ACM TOCL 1(2) (2000) 175–207
5. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and pos-

sibility theory. Artificial Intelligence 92(1-2) (1997) 259–276
6. Benferhat, S., Saffiotti, A., Smets, P.: Belief functions and default reasoning. Artificial

Intelligence 122(1-2) (2000) 1–69
7. Weydert, E.: System jlz - rational default reasoning by minimal ranking constructions. Jour-

nal of Applied Logic 1(3-4) (2003) 273–308
8. Pearl, J.: System z: A natural ordering of defaults with tractable applications to nonmono-

tonic reasoning. In: Proc. of the 3rd Conference on Theoretical Aspects of Reasoning about
Knowledge, Morgan Kaufmann Publishers Inc. (1990) 121–135

9. Makinson, D.: Bridges from Classical to Nonmonotonic logic. London: King’s College
Publications. Series: Texts in Computing, vol 5 (2005)

10. Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal of the
IGPL 11(1) (2003) 69–96

11. Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: From basic entailments
to plausible relations. Logic Journal of the IGPL 8(2) (2000) 119–148

12. Dubois, D., Fargier, H., Perny, P., Prade, H.: Qualitative decision theory: from savages ax-
ioms to nonmonotonic reasoning. Journal of the ACM 49(4) (2002) 455–495

13. Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and
comparative uncertainty: An axiomatic approach. Art. Int. 148(1-2) (2003) 219–260

14. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial
Intelligence 55(1) (1992) 1–60

15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferen-
tial and Cumulative Logics. In: Proc. of LPAR 2005, LNAI 3835, Springer (2005) 666–681

16. Crocco, G., Lamarre, P.: On the connection between non-monotonic inference systems and
conditional logics. In: Proc. of KR 92. (1992) 565–571

17. Boutilier, C.: Conditional logics of normality: a modal approach. Art. Int. 68(1) (1994)
87–154

18. Hughes, G., Cresswell, M.: A Companion to Modal Logic. Methuen (1984)
19. Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning:

Cumulative consequence relations. J. of Logic and Computation 12(6) (2002) 1027–1060
20. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculi for preference-based

conditional logics. In: Proc. of TABLEAUX 2003, LNAI 2796, Springer (2003) 81–101
21. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Extensions of tableau calculi for

preference-based conditional logics. In: Proc. of M4M-4, Informatik-Bericht 194 (2005)
220–234

On the Semantics of Logic Programs with Preferences

Sergio Greco, Irina Trubitsyna, and Ester Zumpano

DEIS, University of Calabria,
87030 Rende, Italy

{greco, irina, zumpano}@deis.unical.it

Abstract. This work is a contribution to realizing prioritized reasoning in logic
programming in the presence of preference relations involving atoms. In more
details, the case of dynamic preferences is investigated and a semantics inter-
preting each preference rule as a tool for representing a choice over alternative
options is proposed. The technique, providing a new interpretation for prioritized
logic programs, is inspired by the one proposed by Sakama and Inoue in [19] and
enriched with the use of structural information of preference rules as proposed
by Brewka et al. in [6]. Specifically, the analysis of the logic program is carried
out together with the analysis of preferences in order to determine the choice or-
der and the sets of comparable models. The proposed approach is compared with
those in [6, 19]. Complexity analysis is also performed showing that the use of
additional information does not increase the complexity of computing preferred
stable models.

1 Introduction

The increased interest in preferences is reflected by an extensive number of proposals
and systems for preference handling [17, 22, 24, 25]. The literature distinguish static
and dynamic preferences. Static preferences are fixed at the time a theory is speci-
fied, i.e. they are “external” to the logic program [19, 26], whereas dynamic preferen-
ces appear within the logic program and are determined “on the fly” [6, 8, 10, 12, 24].
The most common form of preference consists in specifying preference conditions
among rules [2, 3, 4, 5, 10, 11, 12, 16, 20, 21, 23, 27, 28], whereas, some recent proposals
admit the expression of preference relations among atoms [6, 7, 19, 24]. More sophisti-
cated forms of preferences also allow specifying priorities between conjunctive (disjun-
ctive) knowledge with preconditions [6, 10, 19] and numerical penalties for suboptimal
options [7].

This work is a contribution to realizing prioritized reasoning in logic programming
in the presence of preference conditions involving atoms. In more details, the case of
dynamic preferences is investigated and a semantics interpreting each preference rule as
tool for representing a choice over alternative options is proposed. In particular, priori-
ties are applied by following the natural ordering defined by dependencies, as proposed
in [6], and the comparison strategy, proposed in [19], is extended by introducing the
concept of comparable models. Next example describes the intuition at the basis of the
proposed approach.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 203–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 S. Greco, I. Trubitsyna, and E. Zumpano

Example 1. The following prioritized program 〈P1, Φ1〉, inspired by a program pre-
sented in [6], describes different menus and the preferences among drinks and desserts:

fish⊕ beef← 	1 : white > red← fish
red⊕ white← 	2 : red > white← beef
pie⊕ ice-cream← 	3 : pie > ice-cream← red
← fish, white
← beef, pie
← fish, ice-cream

The symbol ⊕ denotes exclusive disjunction, i.e. if the body of the rule is true only
one atom in the head is true, whereas a rule with empty head defines a constraint, i.e.
a rule which is satisfied only if the body is false. The first three rules of P1 select the
main dish, the drink and the dessert; the last three rules are constraints and state that a
feasible solution cannot contain (i) fish and white or (ii) beef and pie or (iii) fish
and ice-cream. Prioritized rules in Φ1 introduce preferences among drinks (�1, �2)
and desserts (�3).

The program P1 has three stable models: M1 = {fish, red, pie}, M2 = {beef,
white, ice-cream} and M3 = {beef, red, ice-cream}. The PLP (Prioritized Logic
Program) technique [19] returnsM1 as unique preferred model; whereas theASO (An-
swer Set Optimization) technique [6], following the natural ordering of preference rules,
derives that M3 is the unique solution. Thus, the two approaches provide different re-
sults. The structure of preference rules suggests that (i) the choice of drink precedes
the choice of dessert and depends on the selected main dish; (ii) fish and beef are
alternative options for main dish. The latter conclusion is based on the observation that
�1 and �2 provide opposite valuation to the drink choice. This is possible if their bodies
define two different classes of models (menus), which should be considered separately.
In other words, the modelM1 (associated to the menu containing fish) should not be
compared with the models M2 and M3 (associated with the menus containing beef).
Consequently, bothM1 andM3 should be preferred. �

Contribution. The paper provides a new semantics for prioritized logic programs
enriching the one proposed in [19] with additional information gained from the struc-
ture of preference rules as proposed in [6]. In particular, the new semantics intro-
duces a natural ordering among preferences that fixes the order of choices, looking
at the stratification of the preference program. Each decision is determined by the
set of choices belonging to the corresponding level and provides the subset of mo-
dels given in input as solution. Once a decision is made, this output subset becomes
the input set of the following decision and so on. The proposed semantics drives the
decision process by catching additional information regarding non comparable sets of
models; the concept of incomparability has not been taken into account by previous
approaches.

The paper also analyzes the complexity of computing preferred answer sets and
shows that, w.r.t. others previous proposals such as the one proposed in [19], the use
of additional information does not increase the complexity of computing preferred sta-
ble models.

On the Semantics of Logic Programs with Preferences 205

2 Preliminaries

We assume familiarity with relational database theory, disjunctive logic programs, di-
sjunctive deductive databases, (disjunctive) stable model semantics and computational
complexity [13, 14, 15, 18].

2.1 Background

A (disjunctive) logic program is a finite set of rules of the form A1 ∨ · · · ∨ Ak ←
B1, ..., Bm, notC1, ..., notCn, k+m+n>0, whereA1, ..., Ak, B1, ..., Bm, C1, ..., Cn

are atoms. The disjunction A1 ∨ · · · ∨ Ak, denoted by head(r), is called the head of
r; while the conjunction B1, ..., Bm, notC1, ..., notCn, denoted by body(r), is called
body of r. The intuitive meaning of previous disjunctive rule is that if body(r) is true,
i.e. B1, ..., Bm are true and C1, ..., Cn are false, then head(r) is true, i.e at least one
of A1, ..., Ak is true (otherwise r is not satisfied). In this paper exclusive disjunction,
denoted by ⊕, is used in the head; the statement head(r) = A1 ⊕ ... ⊕ Ak is true, if
exactly one of A1, ..., Ak is true. Rules with empty head, called denials or constraints,
will be used to define constraints and are satisfied only if the body is false. The solution
of a logic program P is given in term of stable model (answer set) semantics [14, 15].

An interpretation M for P is a model of P if M satisfies all rules in ground(P).
The minimal model semantics, defined for positive P , assigns to P the set of its mini-
mal modelsMM(P), where a modelM for P is minimal, if no proper subset ofM is
a model forP. The more general disjunctive stable model semantics also applies to pro-
grams with (unstratified) negation [15]. Disjunctive stable model semantics generalizes
stable model semantics, previously defined for normal programs [14]. For any interpre-
tation M , denote with PM the ground positive program derived from ground(P) by
(i) removing all rules that contain a negative literal not a in the body and a ∈ M , and
(ii) removing all negative literals from the remaining rules. An interpretation M is a
(disjunctive) stable model ofP if and only ifM ∈MM(PM). For generalP , the stable
model semantics assigns to P the set SM(P) of its stable models. It is well known that
stable models are minimal models (i.e. SM(P) ⊆MM(P)) and that for negation free
programs, minimal and stable model semantics coincide (i.e. SM(P) =MM(P)).

The rest of this section will briefly review the two main approaches for prioritizing
reasoning we refer to, i.e. Prioritized Logic Programs and Answer Set Optimization,
proposed respectively in [19] and [6].

2.2 Prioritized Logic Programs

A (partial) preference relation % among atoms is defined as follows: given two atoms
e1 and e2, the statement e1 % e2 (called priority) means that e1 has higher priority than
e2. Moreover, if e1 % e2 and e2 % e3, then e1 % e3. A priority statement e1 % e2
states that for each a1 instance of e1 and for each a2 instance of e2 it is a1 % a2. The
statement e1 & e2 stands for e1 % e2 and e2 �% e1. Clearly, if e1 & e2, the sets of
ground instantiations of e1 and e2 have an empty intersection.

A prioritized logic program (PLP) is a pair 〈P , Φ〉 where P is a disjunctive program
and Φ is a set of priorities. Φ∗ denotes the set of priorities which can be reflexively or
transitively derived from Φ.

206 S. Greco, I. Trubitsyna, and E. Zumpano

Definition 1. Given a prioritized logic program 〈P, Φ〉, the relation ' is defined over
the stable models of P as follows. For any stable modelsM1,M2 andM3 of P :

1. M1 'M1,
2. M1 ' M2 if ∃e1 ∈ M1 −M2, ∃e2 ∈ M2 −M1 such that (e1 % e2) ∈ Φ∗ and
� ∃e3 ∈M2 −M1 such that (e3 & e1) ∈ Φ∗,

3. ifM1 'M2 andM2 'M3, thenM1 'M3.

IfM1 'M2 thenM1 is preferable to M2. Moreover, if M1 'M2 andM1 �'M2 then
M1 �M2. �

An interpretationM is a preferred stable model of 〈P , Φ〉 if M is a stable model of P
andN 'M impliesM ' N for any stable modelN . The set of preferred stable models
of 〈P, Φ〉 will be denoted by PSM(〈P, Φ〉). Note that the relation Φ1 ⊆ Φ2 between
two PLPs 〈P, Φ1〉 and 〈P, Φ2〉 does not imply PSM(〈P, Φ1〉) ⊆ PSM(〈P, Φ2〉).

In a prioritized logic program 〈P, Φ〉 the basic priority relations are defined over
atoms by means of static preference rules. The priorities over more general forms of
knowledge (conjunctive, disjunctive knowledge, rules, preconditions) can be then ex-
press by a simple rewriting of the preference program. For instance, a dynamic prefe-
rence rule of the form (e1 % e2) ← B is equivalent to e′1 % e′2, where e′1 ← e1, B and
e′2 ← e2, B.

The semantics of prioritized programs proposed by Sakama and Inoue will be de-
noted by PLP semantics. More details can be found in [19] (see also [9, 28] for related
material).

The complexity of answering queries over PLP programs is one level above the
complexity of answering queries over standard programs (without preferences). In par-
ticular, let 〈P , Φ〉 be a prioritized logic program, then (i) deciding the existence of a
preferred stable model isΣ2

P − complete; (ii) deciding whether a literal is true in some
(resp. all) preferable stable model of 〈P, Φ〉 is Σ3

P -complete (resp.Π3
P -complete) [19].

Sakama et al. in [24] propose a sound and complete procedure that allows preferred
answer sets for a prioritized logic program to be computed using a generate and test
algorithm. This algorithm translates a PLP program 〈P , Φ〉 and any answer set S of the
program P into a single logic program T [P, Φ, S], such that its answer sets are answer
sets ofP preferable toS. Dynamic preferences are expressed by a stratified logic program
whose rules have the standard form: head(r) ← body(r), where head(r) can be either
a standard atom or a prioritized fact, and body(r) is a conjunction of ground literals.

2.3 Answer Set Optimization

An answer set optimization program, denoted as ASO program, is a pair 〈P, Φ〉,
where P is called Generation Program and Φ is called Preference Program and
consists of a finite set of rules of the form: C1 > · · · > Ck ← a1, ..., an, not b1, ..., not bm

where ais and bjs are literals and Cis are boolean combinations1 of literals; here a lit-
eral is either an atom A or its negation ¬A. Φ determines a preference ordering on the
answer sets described by the generation program P .

1 A boolean combination is a formula built of atoms by means of disjunctions, conjunctions,
strong and default negation with the restriction that strong negation is allowed to appear only
in front of atoms and default negation only in front of literals.

On the Semantics of Logic Programs with Preferences 207

Definition 2. Let Φ = {r1, ..., rn} be a preference program and S be an answer set,
then S induces a satisfaction vector Vs = (vs(r1), ..., vs(rn)) where:

– vs(rj) = I , if rj is Irrelevant to S, i.e. (i) the body of rj is not satisfied in S or (ii)
the body of rj is satisfied, but none of the Cis is satisfied in S.

– vs(rj) = min{i : S |= Ci}, otherwise. �

In the comparison of models it is assumed that I is equal to 1 (i.e., vSj (ri) = I is
equivalent to vSj (ri) = 1).

Definition 3. Let S1 and S2 be two answer sets, then (i) VS1 ≤ VS2 if vS1(ri) ≤
vS2(ri) for every i ∈ [1..n]; (ii) VS1 < VS2 if VS1 ≤ VS2 and for some i ∈ [1..n]
vS1(ri) < vS2(ri). In these cases S1 ≥ S2 and S1 > S2, respectively.

A set of literals S is an optimal model of an ASO program 〈P, Φ〉 if S is an answer
set of P and there is no answer set S′ of P such then S′ > S. �

The complexity of ASO programs depends on the class of generating programs. For
disjunctive programs we have the same complexity of prioritized programs, while for
disjunction-free programs the complexity is one level lower.

The strategy is further extended by introducing meta-preferences among preference
rules: a ranked ASO program is a sequence 〈P, Φ1, ..., Φn〉 consisting of a generation
program P and a sequence of pairwise disjoint preference programs Φi. The rank of a
rule r ∈ Φ1 ∪ · · · ∪ Φn, denoted rank(r), is the unique integer i for which r ∈ Φi.
S1 ≥rank S2 if for every preference rule r′ such that vS1(r′) ≤ vS2(r′) does not hold,
there is a rule r′′ such that rank(r′′) < rank(r′) and vS1(r′′) < vS2(r′′).

Moreover, a procedure deriving the natural ordering of the preference rules is intro-
duced. Firstly, given a preference program Φ, its dependency graph G(Φ) is defined.
The atoms appearing in Φ form the vertex set of G(Φ). There is a directed edge from a
vertex b to a vertex a in G(Φ) if there is a rule r in Φ such that a appears in the head of
r and b appears in the body of r. If the graphG(Φ) is acyclic, there is a natural ranking
of its atoms which can be defined recursively as follows: rank(a) = 0 for every atom
a that has no predecessors in G(Φ); otherwise rank(a) is the maximum of the ranks of
all predecessors of a in G(Φ) incremented by 1. The rank of a preference rule r is then
defined as the maximum rank of atoms in its head.

The standard semantics of ASO programs, where priorities are examined all together,
will be denoted as ASO semantics. The alternative semantics, where priorities are di-
vided into layers following the natural order, will be denoted by RASO (ranked ASO)
semantics.

3 Well Formed Prioritized Logic Programs

In this paper a syntax similar to the one proposed in [6] is used. Given two atoms A1
and A2, the statement A2 > A1 means that A2 has higher priority than A1. A (partial)
preference relation > among atoms is defined as follows.

Definition 4. A prioritized program is a pair 〈P , Φ〉 where P is a disjunctive program
and Φ is set of preference rules of the form:

208 S. Greco, I. Trubitsyna, and E. Zumpano

A1 > A2 > · · · > Ak ← B1, ..., Bm, notC1, ..., notCn (1)

where k > 1 and A1, ..., Ak, B1, ..., Bm, C1, ..., Cn are atoms.

A ground prioritized program, denoted by ground(〈P, Φ〉) = 〈ground(P), ground(Φ)〉
is a prioritized program, where each rule r ∈ (P ∪ Φ) with variables is replaced with
the set of its ground instances, i.e the set of rules obtained by replacing variables with
constants. �

Intuitively, a preference rule � of the form (1) describes the choice between A1, ..., Ak

(choice options) under the condition specified by the body of �. The head of � introduces
the preference order between choice options: Ai is preferred to Aj , i < j and i, j ∈
[1..k]. As � can be applied only if body(�) is true, the body of � specifies the decisions
which have to precede this choice. For instance, a > c← b states that if b is true, then
a is preferred to c. In the following the short cut of the form a ∨ d > c ← body will
be used, stating for the two preference rules a > c ← body and d > c ← body, whose
meaning is that a and d are preferred to c if body is true.

A preference rule with exactly two atoms in the head will be called binary preference
rule, whereas preference rules with empty bodies will be called preference facts. A
prioritized program is said to be in binary form if all its preference rules are binary.
Preference rules can be rewritten into binary preferences. Thus, a preference rule of the
form A1 > A2 > · · · > Ak ← body is equivalent to k − 1 binary rules of the form
Ai > Ai+1 ← body.

The following example, presenting a classical program borrowed from [6], will be used
as running example.

Example 2. Consider the prioritized program 〈P2, Φ2〉 whose stable models define
menus of a restaurant:

fish⊕ beef← 	1 : white > red > beer← fish
red⊕ white⊕ beer← 	2 : red ∨ beer > white← beef
pie⊕ ice-cream← 	3 : pie > ice-cream← beer
← beef, pie
← fish, ice-cream

The first three rules of P2 select the main dish, the drink and the dessert; the rules in
Φ2 introduce preferences among drinks and desserts. The program P2 has six stable
models:

M1 = {fish, white, pie} M4 = {beef, white, ice-cream}
M2 = {fish, red, pie} M5 = {beef, red, ice-cream}
M3 = {fish, beer, pie} M6 = {beef, beer, ice-cream}

Both techniques proposed in [19] and [6] select the stable models M1 and M5 as pre-
ferred ones. �

Before presenting the formal semantics of programs, some preliminary definitions are
needed. Given a prioritized program 〈P , Φ〉, the (ground) transitive closure ofΦ is Φ∗ =
Φ′ ∪ {a > c← body1, body2 | a > b← body1 ∈ Φ∗ ∧ b > c← body2 ∈ Φ∗ ∧ a �= c},
where Φ′ is the binary form of ground(Φ).
Φ∗ is defined as the set of rules, explicitly representing the preference relations between
choice options. In order to ensure that these relations regard alternative choice options,
the following property is introduced:

On the Semantics of Logic Programs with Preferences 209

Definition 5. Well-formed programs. A prioritized program 〈P, Φ〉 is said to be well-
formed if there is no model M ∈ SM(P) and preference rule a > b ← body in Φ∗,
such that body is true in M and a, b ∈M . �

Observe that in order to guarantee that programs are well formed it is sufficient to add
rules which guarantee that for each preference rule a > b ← body in Φ∗ there is a
constraint← a, b, body in ground(P). All programs considered so far are well-formed
(the constraints which guarantee that programs are well formed are not necessary as
exclusive disjunction has been used).

In the following we consider only well-formed programs.

Definition 6. Contradictory preferences. Two ground (binary) preferences of the form
a > b ← body1 and b > a ← body2 are said to be contradictory. A set of preferences
Φ is said to be contradictory if Φ∗ contains two contradictory preference rules. �

For instance, the preferences �1 : white > red ← fish and �2 : red > white ←
beef of Example 1 are contradictory, whereas the preferences �1 and �′2 : red ∨
white > water← beef are not.

Definition 7. Relevant models. Given a prioritized program 〈P, Φ〉 and a preference
� ∈ Φ, the set of stable models relevant for � is SM(P , �) = {M | M ∈ SM(P) ∧
M |= body(�)}. �

Definition 8. Conflicting preferences. Let 〈P, Φ〉 be a prioritized program, a pair of
contradictory preferences �1 and �2 is conflicting if SM(P, �1) ∩ SM(P, �2) �= ∅. �

Example 3. Considering the preference rules of Example 1, we have that SM(P1,
�1) = {M1} and SM(P1, �2) = {M2,M3}; the contradictory preferences �1 and �2
are not conflicting as SM(P1, �1) ∩ SM(P1, �2) = ∅. For the preferences of Exam-
ple 2 we have that SM(P2, �1) = {M1,M2,M3} and SM(P2, �2) = {M4,M5,M6};
also in this case the two contradictory preference rules are not conflicting. �

Thus, two contradictory preferences �1 and �2 are conflicting if there is a stable model
satisfying the bodies of both �1 and �2.

Definition 9. Stratification. A (ground) preference program Φ is stratified if it is possi-
ble to determine the stratification into 〈Φ[0], Φ[1], ..., Φ[n]〉 such that:

– Every atom A is associated with the least possible level i (denoted A[i]) in such a
way that for each preference rule � ∈ Φ the level of head atoms is greater than the
level of each body atom; the level of body atoms that do not appear in any head is
assumed to be equal to 0;

– Every preference rule � ∈ Φ is associated with a level i (denoted by �[i]) consisting
of the maximum level of the atoms in body(�);

– Φ[i] consists of all preference rules associated with the level i. �

The above definition of stratification of preference rules defines the order in which
preferences are applied. Observe, that the preference program may have only one stra-
tification, or may be not stratified. In the latter case we consider all preference rules
together by introducing the default stratification 〈Φ[0]〉, where Φ[0] = Φ∗.

210 S. Greco, I. Trubitsyna, and E. Zumpano

It should be noticed that the assignment of the level to each atom can be performed
following the first part of the declarative procedure establishing the natural ordering
of preference rules, defined in [6]; whereas the assignment of the level to each rule,
performed on the second step, differs from the one proposed in [6] as it considers body’s
instead of head’s atoms. A more detailed comparison of the two approaches will be
presented in the next section.

Example 4. Consider the prioritized program 〈P2, Φ2〉 of Example 2, where Φ2 =
{�1, �2, �3}. The stratification of Φ2 consists of: Φ2[0] = {�1, �2} and Φ2[1] = {�3}. �

The intuition at the basis of our approach is clarified in this example. Suppose there are
two contradictory preferences �1 : a > b← c and �2 : b > a ← d. Intuitively, the two
contradictory preferences �1 and �2 are meaningful if they are applied to different sets
of models, i.e. models defined by alternative decisions associated respectively, with c
and d (or with atoms on which c and d depend). Thus when defining two contradictory
preferences �1 and �2 the user assumes that their bodies define alternative decisions.
Moreover, once the alternative decisions have been made, the associated solutions are
no longer comparable. In order to capture the previously mentioned intuition, use is
made of the following concept.

Definition 10. Comparable models. Let 〈P, Φ〉 be a prioritized program, M1 and M2
two stable models for P and Φ∗[0], ..., Φ∗[n] be a stratification of Φ∗, then

1. M1 andM2 are comparable on Φ∗[0].
2. M1 andM2 are comparable on Φ∗[i+ 1], if

(a) they are comparable on Φ∗[i], and
(b) there do not exist two contradictory preferences �1, �2 ∈ Φ∗[i] such that

M1 is relevant for �1 andM2 is relevant for �2,
i.e.M1 |= body(�1) andM2 |= body(�2). �

Observe that, the second condition in the previous definition of comparable models
states that given two models M1 and M2 associated with two alternative decisions, if
an alternative decision has been performed in the previous level (i.e. if two contradictory
preferences exist in the previous level), then no further comparison can be made, i.e.M1
and M2 are not comparable in the current and next levels. In other words, if M1 and
M2 are relevant for two contradictory preferences in the previous level, they have to be
considered separately, i.e. they are not comparable.

Example 5. Let’s consider M3 = {fish, beer, pie} and M6 = {beef, beer, ice-
cream} with respect to the preferences Φ2 of Example 2. M3 and M6 are comparable
on Φ∗

2[0] by definition, while they are not comparable on Φ∗
2[1], becauseM3 is relevant

for �1,M6 is relevant for �2, and these contradictory preferences belong to Φ∗
2[0]. �

Fact 1. Let 〈P,Φ〉 be a prioritized program without contradictory preferences and
〈Φ∗[0], Φ∗[1], ..., Φ∗[n]〉 the stratification of Φ∗. Then, each pair of models M1, M2
is comparable on Φ∗[i], i ∈ [0..n]. �

On the Semantics of Logic Programs with Preferences 211

The proof of the fact above follows directly from Definition 10.

On the basis of Definition 10 the declarative semantics of prioritized logic programs
can be now provided. This new semantics, denoted with PAS (Preferred Answer Sets),
is given by preferred answer sets as follows:

Definition 11. Preference between Answer Sets. Given a prioritized program 〈P, Φ〉,
the relation ' is defined over the stable models of P as follows. For any stable models
M1,M2 andM3 of P, let Φ∗[0], Φ∗[1], ..., Φ∗[n] be a stratification of Φ∗, then

– M1 'M1,
– M1 'M2 if ∃i, such thatM1 andM2 are comparable on Φ∗[i] and

• ∃e1 ∈ M1 −M2, ∃e2 ∈ M2 −M1 such that � : (e1 > e2) ← body1 ∈ Φ∗[i],
and both modelsM1,M2 are relevant for �.

• � ∃e3 ∈ M2 −M1 such that � : (e3 > e1) ← body3 ∈ Φ∗[j], j ≤ i, and both
modelsM1,M2 are relevant for �.

– ifM1 'M2 andM2 'M3, thenM1 'M3. �

If M1 ' M2 we say that M1 is preferable to M2. Moreover, we write M1 � M2 if
M1 'M2 andM2 �'M1.

Definition 12. Preferred Answer Sets. An interpretationM is a preferred stable model
for a prioritized program 〈P, Φ〉 if M is a stable model of P and N ' M implies
M ' N for any stable model N . The set of preferred stable models for 〈P, Φ〉 will be
denoted by PAS(〈P, Φ〉). �

Note that Definition 11 extends the PLP semantics. In particular, PAS semantics de-
fines priorities between pairs of models, and can be seen as a PLP semantics enriched
with additional information gained from the structure of preference rules.

Example 6. Consider the prioritized program 〈P2, Φ2〉 of Example 2. We have that

– all models are comparable on Φ∗[0] by definition and
• due to �1, M1 'M2 'M3;
• due to �2, M5 'M4 andM6 'M4;

– as ρ1 and ρ2 are contradictory, models satisfying the body of ρ1 (M1,M2 andM3)
cannot be compared in Φ∗[1] with models satisfying the body of ρ2 (M4,M5,M6).

Therefore, M3 and M6 are not comparable on Φ∗
2[1], as discussed in Example 5. The

preferred models are: M1, M5 and M6. M6 is considered as good as M5 because both
them present beef as main dish, the best choice of drink and the same (unique possible)
dessert.

Observe that bothASO [6] and PLP [19] semantics discardM6. TheASO semantics
deduces that M1 and M5 are preferable to M6 owing to �3, while the PLP semantics
states thatM1 is preferable to M3 andM3 is preferable toM6, owing to �1, �3.

Consider the program 〈P2, Φ̂2〉 where Φ̂2 is derived from Φ2 by replacing �3 with

�′3 : pie > ice-cream←. The new preference program has the unique level Φ̂2[0] =
{�1, �2, �′3}; thus, due to �′3 the following relations hold M3 ' M5 and M3 ' M6.
ThereforeM1 is the unique preferred model. The same result is obtained by both PLP
and ASO semantics. �

212 S. Greco, I. Trubitsyna, and E. Zumpano

Complexity Result

Theorem 2. Let 〈P, Φ〉 be a prioritized program. Then

1. Deciding the existence of a preferred stable model is Σ2
P -complete.

2. Deciding whether a literal is true in some (all) preferred stable models of 〈P, Φ〉 is
Σ3

P -complete (Π3
P -complete).

Proof sketch: The lower bound derives from analogous results presented in [19], in
which static preferences are considered (in our framework static preferences belong
to the same stratum, the first). Concerning the upper bound, the computational com-
plexity does not increase with respect to the semantics proposed in [19]. In fact, the
difference states in the introduction of the stratification of Φ, which can be done in
polynomial time. The comparison of models is carried out by considering the preferen-
ces one stratum at time, instead of considering the preferences all together. The test of
comparability can be also done in a polynomial time. �

Corollary 1. Let 〈P , Φ〉 be a disjunction-free, prioritized program. Then deciding
whether a literal is true in some (all) preferred stable models of 〈P, Φ〉 is Σ2

P -complete
(Π2

P -complete). �

Previous results states that the use of additional information does not increase the com-
putational complexity of the proposed approach with respect to thePLP semantics [19].

4 Analysis and comparison

This section compares the proposed semantics with the PLP and ASO semantics pro-
posed in [6, 19, 24]. We also briefly consider other semantics recently proposed.

The PLP technique is very elegant and simple and compares pairs of models on the
basis of their common preferences and not on the basis of their degree of satisfaction. It
does not consider the natural ordering between preference rules and, in some cases, as
in Example 1 and 2, compares (and consequently discards) models which in the PAS
approach are not comparable.

The ASO technique is a very powerful tool as it determines the preferred models
by evaluating the degree of satisfaction of all preference rules (thus it compares two
models also in the absence of common preferences). In more detail, it considers the
structure of preference rules by associating a degree of satisfaction to choice options
and introduces a natural ordering among preferences. As in the case of PLP semantics,
also the RASO semantics compares and, consequently, discards models which are not
comparable using thePAS technique. For instance, for the program 〈P1, Φ1〉, presented
in the Introduction, it discardsM1, having the second best option of drink, even if this
is the unique possible choice in the presence of fish.

The PAS semantics extends the semantics proposed in [19] by introducing the con-
cept of comparable models and by considering a refinement of the natural order among
preferences so defining the order of choices. This latter aim is modelled by refining
the stratification of preference rules of [6]: levels to rules are assigned on the basis of
the body atoms instead of the head atoms. Moreover, PAS semantics only considers
well-formed programs, i.e. programs in which preferences are defined over alternative

On the Semantics of Logic Programs with Preferences 213

choice options. To better understand the introduction of stratification consider the fol-
lowing example:

Example 7. The problem defined by means of the below prioritized program 〈P7, Φ7〉
consists in selecting the colors of the trouser and the shirt having only black or blue
trousers (r1) and white, yellow or red shirts (r2) available. The fashion consultant
suggests that blue trousers are better than black ones (�1); a white shirt is better than
a yellow shirt (�2); and in the case of black trousers a white shirt is preferred to a
red one (�3). Moreover, blue trousers do not go with a white shirt (c1) and a red shirt
does not go with blue trousers (c2).

r1 : black⊕ blue← 	1 : blue > black←
r2 : white⊕ yellow⊕ red← 	2 : white > yellow←
c1 :← blue, white 	3 : white > red← black
c2 :← red, blue

The program P7 has four stable models: M1 = {black, white}, M2 = {black,
yellow}, M3 = {blue, yellow} and M4 = {black, red}. In order to define the
stratification of preference rules, bothRASO and PAS semantics firstly assign the level
to atoms: first level to blue, black and yellow and second level to white and red.
On the second stepRASO approach, by considering the maximum level of head atoms,
assigns �1 to the first level and �2 and �3 to the second level, whereas PAS defines
the level of preferences on the basis of body atoms and assigns �1 and �2 to the first
level and �3 to the second level. Note that in this case the order of �2 is relevant for
determining the preferred models. In fact, RASO gives only M3, while PAS returns
M1 andM3 as preferred models. �

We point out that the stratification here proposed always assigns static preferences to
the first level because the level of a rule is fixed by looking at the level of body atoms.
Our technique introduces the concept of comparable models in order to avoid to com-
pare models which (in our opinion) should not be compared because are associated to
alternative decisions. Moreover, the presented approach does not increase the compu-
tational complexity with respect to the above mentioned techniques. Basically, in all
approaches the introduction of priorities increases the complexity and expressivity of
the languages by one level in the polynomial hierarchy. However, it should be pointed
out that an advantage of the PAS technique lies in a significant reduction in the number
of models to be examined. In fact, the stratification of the preference program permits
the search space to be cut, because on each level i only the “best” models from the
level i-1 are considered. Moreover, the introduction of non comparable sets of models
reduces the number of preferences which have to be applied.

Other Approaches. Following the approach in [6], in [7, 8] it is proposed an extension
of the ASO semantics. In more details, in [7] a preference description language is pro-
vided, allowing to express complex preferences by combining qualitative and quantita-
tive, penalty based preferences. In [8] a framework to specify problem solutions (out-
comes) and preferences among them is provided. The proposal combines ideas from
answer-set programming, answer-set optimization and CP-nets [1]. The semantics that

214 S. Greco, I. Trubitsyna, and E. Zumpano

we have proposed in this paper is different from both those proposed in [7, 8] as in some
case, returns different results (see Examples 2 and 4).

Besides the approaches managing preferences among atoms, some other works pro-
posed in the literature specify preferences among rules.

Early proposals expressing preferences on rules focus on Default Logic [4, 11],
whereas more recently the emphasis has been given to logic programs and different
proposals have been developed for representing and reasoning about user preferences
such as ordered logic programs [10, 21, 23], preferred answer sets of extended logic
programs [3] and logic programs with ordered disjunction [5]. Most of the approaches
propose an extension of Gelfond and Lifschitz’s extended logic programming by adding
preference information [12, 27, 28], others attempt to extend the well founded semantics
to logic programs with preferences [2, 20] and an extension of van-Gelder’s alternating
fixpoint theory for logic programs with priority is proposed in [27].

In [16] Gelfond and Son a methodology of reasoning with prioritized default in the
language of logic programming under the answer set semantics is investigated. The
approach admits the specification of preferences among rules and allows default rules
which must be strictly obeyed and default rules which may be ignored if reasonable in
a given context.

Delgrande et al. in [10] define an ordered logic program as an extended logic pro-
gram whose rules are subject to a strict partial order with both static and dynamic prefe-
rences. The approach is fully prescriptive as it enforces the ordering information during
the construction of the answer set. The original program is transformed into a second
extended logic program in which preferences are respected in that the answer sets ob-
tained by evaluating the transformed theory correspond to the preferred answer sets of
the original theory.

In [12] it is proposed a methodology in which logic programs containing preferences
on the set of rules can be translated into logic programs under stable model semantics.

5 Conclusions

In this paper the case of dynamic preferences involving atoms in logic programming
has been studied. In particular, the behavior of the technique proposed by Sakama and
Inoue [19] and Brewka et al. [6] has been analyzed and a semantics, interpreting each
preference rule as a tool for representing a choice over alternative options, has been
proposed. Specifically, the proposed approach extends the semantics proposed in [19]
by considering a refinement of the natural order among preferences and introduces the
concept of comparable models. Preferences and logic programs are examined together
in order to determine the choice order and the sets of models which can be compared.
The proposed framework forces user to introduce preferences on alternative choices
so that they can be used to compare stable models on the base of alternative choices.
Complexity analysis has been also performed showing that the use of additional infor-
mation, regarding the preference order and the sets of non comparable models, does not
increase the complexity of computing preferred stable models. Although the approach
here proposed has the same expressivity of other approaches, proposed in the literature,
the benefit relies in the fact it seems to better catch the intuitive meaning of prioritized
programs by also considering structural information of preference rules.

On the Semantics of Logic Programs with Preferences 215

References

1. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D., CP-nets: A tool for represent-
ing and reasoning with conditional ceteris paribus preference statements. JAIR, 21:135191,
2004.

2. Brewka, G., Well-Founded Semantics for Extended Logic Programs with Dynamic Preferen-
ces. JAIR, 4: 19-36, 1996.

3. Brewka, G., Eiter, T., Preferred Answer Sets for Extended Logic Programs. Artificial Intelli-
gence, 109(1-2), 297-356, 1999.

4. Brewka, G., Eiter, T., Prioritizing Default Logic. Intellectics and Computational Logic, 27-
45, 2000.

5. Brewka, G., Logic programming with ordered disjunction. AAAI/IAAI, 100-105, 2002.
6. Brewka, G., Niemela, I., Truszczynski, M., Answer Set Optimization. IJCAI, 867-872, 2003.
7. Brewka, G., Complex Preferences for Answer Set Optimization, KR, 213-223, 2004.
8. Brewka, G., Niemela, I., Truszczynski, M., Prioritized Component Systems. AAAI, 596-601,

2005.
9. Buccafurri, F., Faber, W., Leone, N., Disjunctive deductive databases with inheritance. ICLP,

79-93, 1999.
10. Delgrande, J., P., Schaub, T., Tompits, H., Logic Programs with Compiled Preferences. ECAI,

464-468, 2000.
11. Delgrande, J., P., Schaub, T., Tompits, H., A Compilation of Brewka and Eiter’s Approach to

Prioritization. JELIA, 376-390, 2000.
12. Delgrande, J., P., Schaub, T., Tompits, H., A Framework for Compiling Preferences in Logic

Programs. Theory and Practice of Logic Programming, 3(2), 129-187, 2003.
13. Eiter, T., Gottlob, G., Mannila, H., Disjunctive Datalog. ACM Transaction On Database Sys-

tems, 22(3), 364–418, 1997.
14. Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic Programming, ICLP,

1070–1080, 1988.
15. Gelfond, M., Lifschitz, V., Classical Negation in Logic Programs and Disjunctive Databases,

New Generation Computing, 9:365–385, 1991.
16. Gelfond, M., Son, T.C., Reasoning with prioritized defaults. LPKR, 164-223, 1997.
17. Grell, S., Konczak, K., Torsten Schaub, T., nomore<: A System for Computing Preferred

Answer Sets. LPNMR, 394-398, 2005.
18. Papadimitriou, C. H., Computational Complexity. Addison-Wesley, 1994.
19. Sakama, C., Inoue, K., Priorized logic programming and its application to commonsense

reasoning. Artificial Intelligence, 123, 185-222, 2000.
20. Schaub, T., Wang , K., A Comparative Study of Logic Programs with Preference. IJCAI,

597-602, 2001.
21. Van Nieuwenborgh, D., Vermeir, D., Preferred Answer Sets for Ordered Logic Programs.

JELIA, 432-443, 2002.
22. Van Nieuwenborgh, D., Vermeir, D., Ordered Diagnosis, LPAR, 244-258, 2003.
23. Van Nieuwenborgh, D., Heymans, S., Vermeir, D., On Programs with Linearly Ordered Mul-

tiple Preferences. ICLP, 180-194, 2004.
24. Wakaki, T., Inoue, K., Sakama, C., Nitta, K., Computing Preferred Answer Sets in Answer

Set Programming. LPAR, 259-273, 2003.
25. Wakaki, T., Inoue, K., Sakama, C., Nitta, K., The PLP System. JELIA, 706-709, 2004.
26. Wang, X., You, J. H., Yuan, L. Y., Nonmonotonic reasoning by monotonic inferences with

priority conditions. NMELP, 91-109, 1996.
27. Wang, K., Zhou, L., Lin, F., Alternating Fixpoint Theory for Logic Programs with Priority.

Computational Logic, 164-178, 2000.
28. Zhang, Y., Foo, N., Answer sets for prioritized logic programs. ILPS, 69-83, 1997.

A Modularity Approach for a Fragment of ALC

Andreas Herzig and Ivan Varzinczak

IRIT – 118 route de Narbonne
31062 Toulouse Cedex – France
{herzig,ivan}@irit.fr

http://www.irit.fr/LILaC

Abstract. In this paper we address the principle of modularity of on-
tologies in description logics. It turns out that with existing accounts
of modularity of ontologies we do not completely avoid unforeseen in-
teractions between module components, and modules designed in those
ways may be as complex as whole theories. We here give a more fine-
grained paradigm for modularizing descriptions. We propose algorithms
that check whether a given terminology is modular and that also help
the designer making it modular, if needed. Completeness, correctness
and termination results are demonstrated for a fragment of ALC. We
also present the properties that ontologies that are modular in our sense
satisfy w.r.t. reasoning services.

Keywords: Knowledge representation, description logics, modularity.

1 Motivation

Imagine an automatic passport control system in an airport such that all passen-
gers must be controlled. Besides other software components, such a system is built
on a passenger ontology. Suppose that the ontology is made up of statements like
“a passenger has a passport”, “EU citizens have EU passports”, and “foreigners
have non-EU passports”. Such a knowledge can be encoded in description logics
like ALC [1] by the following terminological axioms: Passenger (∃passport.�,
EUcitizen ≡ ∀passport.EU, and Foreigner ≡ ∀passport.¬EU. Moreover, let the ax-
iom DoubleCitizen ≡ Foreigner � EUcitizen define a foreigner that also has got a
second citizenship of some EU country. It is not that hard to see that this de-
scription is consistent. Now, from such an ontology it follows DoubleCitizen ≡
∀passport.⊥, and from this and the axiom Passenger (∃passport.� we conclude
DoubleCitizen (¬Passenger, i.e., a person with double citizenship is not a pas-
senger. Hence, if we have the assertion DoubleCitizen(BINLADEN), regarding the
system behavior, this means that the concerned individual does not necessarily
need to be controlled!

Despite the simplicity of such a scenario, problems like this are very likely
to happen, especially if the knowledge base gets huge and hence more difficult
to control. An alternative to ease maintainability of large ontologies is decom-
posing it into modules. Starting with [6], where modularity is assessed in logical
theories in general, this issue has been investigated for ontologies in the recent

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 216–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Modularity Approach for a Fragment of ALC 217

literature on the subject [15, 5]. Nevertheless, it turns out that these methods
for modularizing descriptions, i.e., creating independent partitions of a knowl-
edge base, do not take into account internal interactions of components of the
description that can lead to unintuitive conclusions like the one above, even if
the ontology is consistent. Here we go further and propose a more fine-grained
modularity principle with which we get a decomposition of the ontology so that
interactions between and inside their components are limited and controlled.

Ontologies are usually represented by DL knowledge bases containing multiple
roles R1,R2, . . . Such roles are used to formalize attributes of a concept. Then
we naturally have modularity whenever a given ontology description Σ can be
partitioned into sub-descriptions relative to each role:

Σ = Σ∅ ∪ΣR1 ∪ΣR2 ∪ . . .

such that

– Σ∅ contains no role references, and
– the only role of ΣRi is Ri.

We call these sub-descriptions modules (some modules might be empty). Examples
of such modules can easily be found in design of DL ontologies, where each ΣRi

contains axioms involving only the role Ri, and Σ∅ is the sub-description whose
axioms mention no role at all, i.e., contains only boolean combinations of
concepts.

For example, for our passport control system we have the description:

Σpassport =

⎧⎨
⎩

Passenger (∃passport.�,
EUcitizen ≡ ∀passport.EU,
Foreigner ≡ ∀passport.¬EU

⎫⎬
⎭

Σ∅ = {DoubleCitizen ≡ Foreigner � EUcitizen}

Such a description is composed of two sub-descriptions, one for expressing the
attributive part of the theory, Σpassport, and one to formalize the role-free con-
straints of the domain, Σ∅. Σpassport formalizes the restrictions on the attributes
of the concepts of the domain, in this case that a passenger must have a passport,
that an EU citizen has an EU passport, and so on. Σ∅ establishes the boolean
constraint according to which a double citizen is a foreigner and an EU citizen,
with no regard to his attributes.

A similar partitioning of descriptions can be found in reasoning about ac-
tions, where each Σa contains descriptions of the atomic action a in terms of
preconditions and effects, and Σ∅ is the set of static laws (alias domain con-
straints), i.e., those formulas that hold in every possible state of a dynamic
system, and are thus global axioms. Another example is when mental atti-
tudes such as knowledge, beliefs or goals of several independent agents are
represented: then each module Σα contains the respective mental attitudes of
agent α.

218 A. Herzig and I. Varzinczak

Let Σ denote a description logic ontology and suppose we want to know
whether Σ |=C (D, i.e., whether an axiom C (D follows from the description
in Σ . Then it is natural to expect that we only have to consider those modules
of Σ which concern the alphabet of C (D, more specifically the roles occurring
in C (D. For instance, deductions concerning the role passport should not
involve axioms for role hasDisease; querying the ontology of the passport control
system should not require bothering with that of the fast-food in the airport
hall. This is the problem we address in this paper.

The present work is structured as follows: in Section 2 we recall some logical
definitions that we will use throughout this paper. In Section 3 we present a role-
based decomposition of ontologies, which will serve as guideline for the definition
of modularity in description logics we give in Section 4. We then define a fragment
of ALC for which we have a sound and complete modularity test (Section 5).
Before concluding, we show some of the benefits we get from ontologies that are
modular in our sense (Section 6).

2 Description Logic ALC

Here we briefly present the basic definitions of the description logic ALC. For
more details, see [1].

The basic syntactic building blocks of ALC as of any other description logics
are atomic concepts, atomic roles, and individuals. We call atomic concepts and
atomic roles elementary descriptions. Complex descriptions are built from them
with concept constructors. We use A to denote atomic concepts, R for atomic
roles, and C,D, . . . for complex concept descriptions.

Complex concept descriptions are recursively defined in the following way:

C ::= A | (an atomic concept)
� | (universal concept)
⊥ | (contradiction concept)
¬C | (complement)
C � C | (conjunction)
C � C | (disjunction)
∀R.C | (value restriction)
∃R.C | (existential restriction)

where A ranges over atomic concepts, R over atomic roles, and C over complex
concepts. Recalling our running example, the statements Foreigner � EUcitizen,
∃passport.�, ∀passport.EU, and ∀passport.¬EU are complex concepts in ALC.

We use individuals to describe a specific state of affairs in terms of con-
cepts and roles. We use a, b, . . . to denote individuals. In our example, JAN
and POLAND are individuals of which we can assert, respectively, the proper-
ties EUcitizen and EU. The intended meaning of such assertions is that JAN
has EU citizenship and POLAND is a member of the European community.
Individuals and assertions about them allow us to give a description of the
world.

A Modularity Approach for a Fragment of ALC 219

Definition 1. An interpretation I is a tuple 〈ΔI , ·I〉 such thatΔI is a nonempty
set and ·I a function mapping:

– every concept to a subset of ΔI

– every role to a subset of ΔI ×ΔI

– every individual to an element of ΔI

Given an interpretation I = 〈ΔI , ·I〉, ΔI is the interpretation domain, and ·I
the associated interpretation function. If a is an individual name, A an atomic
concept, R an atomic role, and C, D concepts, we have:

aI ∈ ΔI

AI ⊆ ΔI

RI ⊆ ΔI ×ΔI

�I = ΔI

⊥I = ∅
(¬C)I = ΔI \ CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∀R.C)I = {a ∈ ΔI : ∀b.(a, b) ∈ RI implies b ∈ CI}
(∃R.C)I = {a ∈ ΔI : ∃b.(a, b) ∈ RI and b ∈ CI}

In ALC we also have terminological axioms (axioms, for short). These are
statements of the form C ≡ D and C (D. Axioms of the first kind are called
concept definitions (alias equalities). Those of the second kind are called concept
inclusion axioms (alias inclusions or subsumptions). If C andD are both complex
concepts, then C (D is called a general concept inclusion axiom (GCI).

An interpretation I satisfies a concept definition C ≡ D (noted |=I C ≡
D) if CI = DI . Intuitively, C ≡ D establishes a definition for concept C in
terms of D. In our example, we have DoubleCitizen ≡ Foreigner � EUcitizen,
which gives both necessary and sufficient conditions to be a person with double
citizenship.

An interpretation I satisfies a subsumption C (D (noted |=I C (D) if
CI ⊆ DI . Intuitively, C (D means that concept C is more specific than
concept D. In our example we have DoubleCitizen (EUcitizen, which says that
a person with double citizenship is a specialization of a European citizen. We
also have Passenger (∃passport.�, saying that a necessary condition to be a
passenger is having a passport. Concept inclusion axioms are used when one is
not able to completely define a concept: in the last example, a passenger may
have many other properties of which the knowledge engineer was not necessarily
aware when modeling the description.

We call a (finite) set of terminological axioms a terminology, alias TBox. We
denote TBoxes by T . An interpretation I is a model of a TBox T (noted |=I T)
if |=I C (D for all C (D ∈ T . An axiom C (D is a consequence of a TBox T
(noted T |=C (D) if for every interpretation I, |=I T implies |=I C (D.

220 A. Herzig and I. Varzinczak

Henceforth we can suppose w.l.o.g. that TBoxes are linearized, i.e., T only
contains inclusion axioms (no concept definitions), and see C ≡ D as just as an
abbreviation for C (D and D (C.

A concept assertion is a statement about an individual with respect to some
concept. We denote by C(a) the fact that a belongs to (the interpretation of)
concept C. In our example, the assertion Foreigner(JOHN) says that JOHN is a
non-European citizen, and that all properties a foreigner has (e.g. possessing a
non-EU passport) apply to JOHN as well.

A role assertion establishes a relationship between two individuals. If a, b are
individuals and R is a role name, then R(a, b) asserts that b is a filler of the
role R for a. In our example, the role assertion refund(JOHN,VAT) states that
JOHN can claim the refund of the value added tax when leaving the airport.

An interpretation I satisfies a concept assertion C(a) (noted |=I C(a)) if
aI ∈ CI , and a role assertion R(a, b) (noted |=I R(a, b)) if (aI , bI) ∈ RI .

A (finite) set of concept and role assertions define an ABox. We denote ABoxes
by A. An interpretation I is a model of an ABox A (noted |=I A) if I satisfies
every assertion in A. A concept assertion C(a) (resp. a role assertion R(a, b)) is
a consequence of an ABox A, noted A |=C(a) (resp. A |=R(a, b)), if for every

interpretation I, |=I A implies |=I C(a) (resp. |=I R(a, b)).
A knowledge base is a tuple Σ = 〈T ,A〉, where T is a TBox and A an

ABox. An interpretation I is a model of Σ = 〈T ,A〉 if |=I T and |=I A. Logical
consequence of an axiom C (D, of a concept assertion C(a) and of a role
assertion R(a, b) from a knowledge base Σ is defined in the standard way.

In the rest of this paper we are going to restrict ourselves only to the TBox
component of knowledge bases.

3 Role-Based Decomposition

Here we give a novel way of decomposing ontologies. Let Roles = {R1,R2, . . .}
be the set of all role names of a domain. Let roles(C (D) return the set of role
names occurring in an axiom C (D. For instance roles(C ≡ ∃R1.D � ∀R2.E) =
{R1,R2}. Moreover, for a TBox T , let roles(T) =

⋃
C�D∈T roles(C (D).

With that we define a role-based classification of axioms.

Definition 2. A boolean axiom is an axiom C (D such that roles(C (D) = ∅.
If roles(C (D) �= ∅, C (D is a non-boolean axiom.

If R ⊆ Roles, R �= ∅, then we define

T R = {C (D ∈ T : roles(C (D) ∩R �= ∅}

Hence, T R contains all non-boolean axioms of the terminology T whose roles
appear in R. For R = ∅, T ∅ = {C (D ∈ T : roles(C (D) = ∅} is the set of
all boolean axioms of a knowledge base.

A Modularity Approach for a Fragment of ALC 221

For example, if

T =

⎧⎪⎨
⎪⎩

Passenger (∃passport.�, EUcitizen ≡ ∀passport.EU,

Foreigner ≡ ∀passport.¬EU, Foreigner (∃refund.Tax,

DoubleCitizen ≡ Foreigner � EUcitizen

⎫⎪⎬
⎪⎭

then we have
T {refund} = {Foreigner (∃refund.Tax}

and
T ∅ = {DoubleCitizen ≡ Foreigner � EUcitizen}

For parsimony’s sake, we write T R instead of T {R}.
Given these fundamental concepts, we are able to formally define modularity

for ontologies in description logics.

4 Modular TBoxes

We can suppose from now on that T is partitioned, in the sense that {T ∅} ∪
{T Ri : Ri ∈ Roles} is a partition1 of T . We thus exclude T Ri containing more
than one role name, which means that complex concepts with nested roles are
not allowed. We thus make it a hypothesis:

{T ∅} ∪ {T Ri : Ri ∈ Roles} partitions T (H)

We are interested in the following principle of modularity:

Definition 3. A terminology T is modular if and only if for every C (D,

T |=C (D implies T roles(C�D) ∪ T ∅ |=C (D.

Modularity means that when investigating whether C (D is a consequence
of T , the only axioms in T that are relevant are those whose role names occur
in C (D and the boolean axioms in T ∅.

This is reminiscent of interpolation [4], which for the case of roles says:

Definition 4. A terminology T has the interpolation property if and only if for
every axiom C (D, if T |=C (D, then there is a terminology TC�D such that

– roles(TC�D) ⊆ roles(T) ∩ roles(C (D)
– T |=C′ (D′ for every C′ (D′ ∈ TC�D

– TC�D |=C (D

1 Remembering, {T ∅} ∪ {T Ri : Ri ∈ Roles} partitions T if and only if T = T ∅ ∪⋃
Ri∈Roles T

Ri , and T ∅ ∩ T Ri = ∅, and T Ri ∩ T Rj = ∅, if i �= j. Note that T ∅ and
T Ri might be empty.

222 A. Herzig and I. Varzinczak

Our definition of modularity is a strengthening of interpolation because it re-
quires TC�D to be a subset of T .

Contrary to interpolation however, modularity does not generally hold. Clearly
if the Hypothesis (H) is not satisfied, then modularity fails. To witness, consider

T = {C ≡ ∀R1.∀R2.C
′, ∀R1.∀R2.C

′ ≡ D}

Then T |=C ≡ D, but T ∅ �|=C ≡ D.
Nevertheless even under our hypothesis modularity may fail to hold. For ex-

ample, let
T = {C � ∀R.⊥ ≡ �, C � ∃R.� ≡ �}

Then T ∅ = ∅, and T R = T . Now T |=C, but clearly T ∅ �|=C.
How can we know whether a given TBox T is modular? The following criterion

is simpler:

Definition 5. A terminology T is boolean-modular if and only if for every
boolean axiom C (D,

T |=C (D implies T ∅ |=C (D.

With that we guarantee modularity:

Theorem 1 ([12]). Let T be a partitioned terminology. If T is boolean-modular,
then T is modular.

In the rest of the paper we investigate how it can be automatically checked
whether a given terminology T is modular and how to make it modular, if
needed. We do this for a version of ALC with a restriction on the form of the
axioms we can state in a TBox.

5 Soundness and Completeness for a Fragment of ALC

Definition 6. A concept C is a boolean concept if roles(C) = ∅.

We here make a syntactical restriction on the form of non-boolean axioms in our
TBoxes.

Definition 7. If C is a boolean concept, then ∀R.C is a boolean value restric-
tion, and ∃R.C is a boolean existential restriction.

In this section we suppose that:

All value/existential restrictions in a knowledge base
are boolean value/existential restrictions. (H2)

Our fragment differs from ALC just in the sense that only boolean concepts
are allowed in the scope of a quantification over a role. We observe however
that we could allow for axioms with nested roles like C ≡ ∀R1.∀R2.D and GCIs

A Modularity Approach for a Fragment of ALC 223

like ∀R3.E (∀R4.F . For that it would suffice to adapt an existing technique
of subformula renaming [17] in the literature on classical logic [14, 2, 3] to recur-
sively replace complex concepts with some new concepts, stating definitions for
these as global axioms. For instance, C ≡ ∀R1.∀R2.D should then be rewrit-
ten as C ≡ ∀R1.C

′ and C′ ≡ ∀R2.D, and ∀R3.E (∀R4.F could be replaced
by E′ (∀R4.F and E′ ≡ ∀R4.E, where C′, E′ are new concept names. It is
known that subformula renaming is satisfiability preserving and can be com-
puted in polynomial time [13]. However it remains to assess the impact the
introduction of new concept names can have on the intuition about the original
ontology.

Our central hypothesis here is that the different types of axioms in a given
terminology should be neatly separated and only interfere in one sense: boolean
axioms together with non-boolean axioms for role R may have consequences
that do not follow from the non-boolean axioms for R alone. The other way
round, non-boolean axioms should not allow to infer new boolean axioms. That
is what we expect modularity of TBoxes to establish and we develop it in the
sequel.

Definition 8. A boolean inclusion axiom C (D is an implicit boolean inclusion
axiom of a terminology T if and only if T |=C (D and T ∅ �|=C (D.

In our running example, DoubleCitizen (¬Passenger is an example of an implicit
boolean inclusion axiom.

With Algorithm 1 below we can check whether a TBox has such implicit ax-
ioms. The idea is as follows: for each pair of axioms C (∃R.D and E (∀R.F
in T such that F conflicts with D, i.e., T |=D � F (⊥, if T ∅ ∪ {C � E} is
satisfiable and T ∅ �|=C (¬E, mark C (¬E as an implicit boolean inclusion
axiom.

Algorithm 1. Deciding existence of implicit boolean inclusion axioms
input: a TBox T
output: a set of implicit boolean inclusion axioms T ∅

imp

T ∅
imp:= ∅

for all R ∈ Roles do
for all {C1 � ∃R.D1, . . . , Cn � ∃R.Dn} ⊆ T do

for all {E1 � ∀R.F1, . . . , Em � ∀R.Fm} ⊆ T do

if T ∅ �|=
�

1≤i≤n Ci �
�

1≤j≤m Ei � ⊥ and
T ∅ |=

�
1≤i≤n Di �

�
1≤j≤m Fi � ⊥ then

T ∅
imp:= T ∅

imp ∪ {
�

1≤i≤n Ci �
⊔

1≤j≤m ¬Ei}

Theorem 2. Algorithm 1 terminates.

Proof. Straightforward from finiteness of T .

224 A. Herzig and I. Varzinczak

Lemma 1. Let T ∅
imp* be the output of Algorithm 2 on input T . Then every

C (D ∈ T ∅
imp is an implicit boolean inclusion axiom of T .

Converse of Lemma 1 does not hold. Indeed, consider the quite simple TBox:

T =

⎧⎨
⎩

Cn (⊥,
Ci−1 (∀R.Ci, 1 ≤ i ≤ n,

� (∃R.�

⎫⎬
⎭

Thus, T |= Ci (⊥, for 0 ≤ i ≤ n, but running Algorithm 1 returns only
T ∅
imp = {Cn−1 (⊥}. This suggests that it is necessary to iterate the algorithm

in order to find all implicit boolean inclusion axioms. Before doing that we
observe that:

Theorem 3. A terminology T is modular if and only if T ∅
imp = ∅.

Considering the example just above, we can see that running Algorithm 1 on
T ∪ {Cn−1 (⊥} will give us T ∅

imp = {Cn−2 (⊥}. This means that some of the
implicit boolean inclusion axioms of a terminology may be needed in order to
derive others. Hence, Algorithm 1 must be iterated to get T modular. This is
achieved with the following algorithm, which iteratively feeds the set of boolean
axioms considered into the if-test of Algorithm 1:

Algorithm 2. Finding all implicit boolean inclusion axioms

input: a TBox T
output: T ∅

imp*, the set of all implicit boolean inclusion axioms of T

T ∅
imp*:= ∅

repeat
T ∅
imp:= find imp bia(T ∪ T ∅

imp*) {a call to Algorithm 1}
T ∅
imp*:= T ∅

imp* ∪ T ∅
imp

until T ∅
imp = ∅

Theorem 4. Algorithm 2 terminates.

Theorem 5. Let T ∅
imp* be the output of Algorithm 2 on input T . Then

1. T ∪ {T ∅
imp*} is modular;

2. T |=
�
{T ∅

imp*}.

Corollary 1. For all boolean inclusion axioms C (D, T |=C (D if and only
if T ∪ {T ∅

imp*} |=C (D.

A Modularity Approach for a Fragment of ALC 225

This establishes that Algorithm 2 finds all implicit boolean inclusion axioms of
a given terminology T . Hence, adding such axioms to the original set of boolean
axioms T ∅ guarantees modularity of T .

We want to point out, however, that the algorithm only catches implicit
boolean inclusion axioms. Deciding whether they are intuitive remains the knowl-
edge engineer’s task, and only she can carry out changes in the knowledge base
in order to accommodate them in or discard them from the description. In our
running example, the inclusion DoubleCitizen (¬Passenger is not intuitive and
should then be contracted from the terminology.

Algorithms 1 and 2 are generalizations/extensions of the method for PDL
given in [12] where (in terms of description logics) only existential restrictions
of the form C (∃R.� were allowed.

6 The Role of Modularity in Reasoning Services

The following result is important in the ontology building phase:

Theorem 6. Let T and C (D be such that T �|=� (⊥. If T is modular, then
T ∪ {C (D} |=� (⊥ if and only if T ∅ ∪ T roles(C�D) ∪ {C (D} |=� (⊥.

This theorem says that under modularity consistency of a new learned axiom
C (D w.r.t. a consistent TBox reduces to consistency check of the axioms that
are relevant to C (D.

Theorem 7. If T is modular, then T |=� (⊥ if and only if T ∅ |=� (⊥.

Hence, if there are no implicit boolean inclusion axioms, then consistency of the
whole terminology can be checked by just checking consistency of T ∅.

It turns out that checking whether a concept C is the least common sub-
sumer (lcs) of a set of concepts, i.e., the minimal concept that subsumes all
other concepts in question [1], is also optimized under modularity:

Theorem 8. Let Γ be a set of concepts. If T is modular, then C is the lcs of
Γ w.r.t. T if and only if C is the lcs of Γ w.r.t. T ∅ ∪ T roles(C).

For T a TBox, we define T R
∀ = {C (∀R.D : C (∀R.D ∈ T }, i.e., T R

∀ contains
all non-boolean axioms in the TBox T with value restrictions for role R.

Theorem 9. If T is modular, then

T |=C (∀R.D if and only if T ∅ ∪ T R
∀ |=C (∀R.D.

This means that under our modularity principle we have modularity inside the
module for non-boolean axioms, too: when deducing an axiom with value re-
strictions we do not need to consider axioms with existential restrictions.

The existential restriction counterpart of Theorem 9, however, does not hold.
To witness, from the modular description {∀R.C�D, ∃R.¬C} we conclude ∃R.D,
but {∃R.¬C} �|=∃R.D. Nevertheless, we can establish a result if only the universal
concept (�) is allowed in the scope of existential restrictions. For that we define
T R
∃ = {C (∃R.� : C (∃R.� ∈ T }.

226 A. Herzig and I. Varzinczak

Theorem 10. If T is modular, then

T |=C (∃R.� if and only if T ∅ ∪ T R
∃ |=C (∃R.�.

Let T R1,...,Rn

∀ =
⋃

1≤i≤n T
Ri

∀ . The following theorem shows that under modular-
ity deduction of an axiom based on nested value restrictions does not need the
axioms based on existential restrictions:

Theorem 11. If T is modular, then T |= C (∀R1 . . .∀Rn.D if and only if
T ∅ ∪ T R1,...,Rn

∀ |=C (∀R.D.

The same result holds for deductions of axioms based on existential restrictions
under the assumption that only � is allowed in the scope of ∃. Let T R1,...,Rn

∃ =⋃
1≤i≤n T

Ri

∃ .

Theorem 12. If T is modular, then T |= C (∃R1 . . . ∃Rn.� if and only if
T ∅ ∪ T R1,...,Rn

∃ |=C (∃R.�.

7 Concluding Remarks

We defined here a modularity paradigm for ontologies in description logics and
pointed out some of the problems that arise if it is not satisfied, even if the
ontology is consistent. In particular we have argued that the boolean part of a
description could influence but should not be influenced by the role-based one.

We have seen that the presence of implicit boolean inclusion axioms is a
sign that we possibly have slipped up in designing the ontology in question. We
showed how to detect this problem in a fragment of ALC with a syntactical
restriction on its formulas. With Algorithm 2 we have a sound and complete
decision procedure for such a task. Moreover, the output of the algorithm gives
us guidelines that can help correcting the ontology.

We could also use full ALC, in this case our method is sound but not complete.
As an example, let T = {C ≡ ∀R1.∀R2.D,C

′ ≡ ∀R1.∃R2.¬D,� ≡ ∃R1.�}. We
have T |=C (¬C′, but running Algorithm 2 on T gives T ∅

imp* = ∅.
It could be argued that unintuitive consequences in ontologies are mainly due

to badly written axioms and not to lack of modularity. True enough, but what
we presented here is the case that making an ontology modular gives us a tool
to detect some of such problems and correct it. (But note that we do not claim
to correct badly written axioms automatically and once for all.) Besides this,
having separate entities in the ontology and controlling their interaction help us
to localize where the problems are, which is crucial for real world applications.

As our theorems show (proofs were omitted due to lack of space), being mod-
ular is a useful feature of terminologies w.r.t. reasoning: beyond being a reason-
able principle of design that helps structuring data, it clearly restricts the search
space, and thus makes reasoning easier.

The first work on formalizing modularity in logical systems in general seems to
be due to Garson [6]. Modularity of theories in reasoning about actions was orig-
inally defined in [10] and extensively developed in [12, 9]. A different viewpoint

A Modularity Approach for a Fragment of ALC 227

of that can be found in [11], where modularity of action theories is assessed from
a more software engineering oriented perspective. The present work has been
inspired by ideas in the referred approaches. Following [6], a modularization
technique for ontologies in DL different from ours is addressed in [5].

Our notion of modularity is related to uniform interpolation for TBoxes [7].
Let concepts(T) denote the concept names occurring in a TBox T . Given T
and a signature S ⊆ concepts(T) ∪ roles(T), a TBox T S over (concepts(T) ∪
roles(T)) \ S is a uniform interpolant of T outside S if and only if:

– T |=T S ;
– T S |=C (D for every C (D that has no occurrences of symbols from S.

It is not difficult to see that a partition {T ∅} ∪ {T Ri : Ri ∈ Roles} is modular
if and only if every T Ri is a uniform interpolant of T outside roles(T) \ {Ri}.
In [16] there are complexity results for computing uniform interpolants in ALC.

In [7] a notion of conservative extension is defined that is similar to our
modularity. There, T1 ∪ T2 is a conservative extension of T1 if and only if for
all concepts C,D built from concepts(T1) ∪ roles(T1), T1 ∪ T2 |=C (D implies
T1 |=C (D.

Given our Theorem 1, we can show that checking for modularity can be
reduced to checking for conservative extensions of T ∅. Indeed, supposing that
the signature of T ∅ is the set of all concept names, we have that T is modular
if and only if for every role Ri, T Ri ∪ T ∅ is a conservative extension of T ∅.

We plan to pursue further work on extensions of our method to more ex-
pressive description logics. Another extension that we foresee is generalizing
modularity to also take into account ABoxes. In this case our algorithms should
be adapted so that implicit interactions between terminologies and assertions
can be caught.

Because interactions between TBoxes and ABoxes may lead to inconsistency,
ontology update and revision should be considered, too. We are currently in-
vestigating update of terminologies based on the method given in [8], for which
satisfaction of modularity shows to be fruitful.

Acknowledgments

We are grateful to the anonymous referees for useful comments on an earlier
version of this paper. Thanks to Bernardo Cuenca Grau for useful and interesting
discussions about the topic of this work. We also would like to thank Meghyn
Bienvenu for comments about DL terminology and notation.

Ivan Varzinczak has been supported by a fellowship from the government of
the Federative Republic of Brazil. Grant: CAPES BEX 1389/01-7.

References

1. F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, Description Logic
Handbook, chapter 2, pages 47–100. Cambridge University Press, 2003.

228 A. Herzig and I. Varzinczak

2. T. Boy de la Tour. Minimizing the number of clauses by renaming. In M.E. Stickel,
editor, Proc. 10th International Conference on Automated Deduction (CADE’90),
pages 558–572, London, 1990. Springer-Verlag. LNCS, vol. 449.

3. T. Boy de la Tour. An optimality result for clause form translation. J. of Symbolic
Computation, 14(4):283–301, 1992.

4. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. of
Symbolic Logic, 22:250–268, 1957.

5. B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web
ontologies. In Proc. 10th Intl. Conf. on Knowledge Representation and Reasoning
(KR’2006), pages 198–208, Lake District, 2006. Morgan Kaufmann Publishers.

6. J. Garson. Modularity and relevant logic. Notre Dame J. of Formal Logic,
30(2):207–223, 1989.

7. S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? a case for conser-
vative extensions in description logic. In Proc. 10th Intl. Conf. on Knowledge Rep-
resentation and Reasoning (KR’2006), pages 187–197, Lake District, 2006. Morgan
Kaufmann Publishers.

8. A. Herzig, L. Perrussel, and I. Varzinczak. Elaborating domain descriptions. In
Proc. 17th Eur. Conf. on Artificial Intelligence (ECAI’06), Riva del Garda, 2006.
IOS Press.

9. A. Herzig and I. Varzinczak. Metatheory of actions: beyond consistency. To appear.
10. A. Herzig and I. Varzinczak. Domain descriptions should be modular. In

R. López de Mántaras and L. Saitta, editors, Proc. 16th Eur. Conf. on Artificial
Intelligence (ECAI’04), pages 348–352, Valencia, 2004. IOS Press.

11. A. Herzig and I. Varzinczak. Cohesion, coupling and the meta-theory of actions.
In L. Kaelbling and A. Saffiotti, editors, Proc. 19th Intl. Joint Conf. on Artifi-
cial Intelligence (IJCAI’05), pages 442–447, Edinburgh, 2005. Morgan Kaufmann
Publishers.

12. A. Herzig and I. Varzinczak. On the modularity of theories. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic, volume 5, pages 93–109. King’s College Publications, 2005. Selected papers
of AiML 2004 (also available at http://www.aiml.net/volumes/volume5).

13. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
A. Robinson and A. Voronkov, editors, Handbook of automated reasoning, pages
335–367. 2001.

14. D. Plaisted and S. Greenbaum. A structure-preserving clause form translation. J.
of Symbolic Computation, 2(3):293–304, 1986.

15. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies.
In V. Sorge, S. Colton, M. Fisher, and J. Gow, editors, Proc. 18th Intl. Joint
Conf. on Artificial Intelligence (IJCAI’03), pages 900–908, Acapulco, 2003. Morgan
Kaufmann Publishers.

16. B. ten Cat, W. Conradie, M. Marx, and Y. Venema. Definitorially complete descrip-
tion logics. In Proc. 10th Intl. Conf. on Knowledge Representation and Reasoning
(KR’2006), pages 79–89, Lake District, 2006. Morgan Kaufmann Publishers.

17. G.S. Tseitin. On the complexity of derivation in propositional calculus. In A.
Slisenko, ed., Studies in Constructive Mathematics and Mathematical Logics, Part
II, 1968.

Whatever You Say

Luke Hunsberger

Vassar College
Poughkeepsie, NY 12604-0444, USA

hunsberg@cs.vassar.edu

Abstract. This paper addresses an important problem in multi-agent
coordination: the formal representation of parameters in the content of
agent intentions that are only partially specified (e.g., when the intended
action has not yet been executed and values for the parameters have not
yet been chosen or the authority for choosing such values has been dele-
gated to others). For example, Abe might intend to rent “whatever car
Zoe tells him to”, in which case the problem is how to formally represent
the quoted clause (i.e., the “whatever” content). The paper presents a
two-pronged approach. First, it uses the event calculus to model declar-
ative speech-acts which agents use to establish facts about parameters in
a social context. Second, it partitions the content of agent intentions into
(1) a condition that the agent should refrain from determining and (2) a
goal that the agent should strive to achieve. The satisfaction conditions
of such intentions treat these types of content differently; however they
can share variables and, thus, are linked in a restricted sense.

1 Introduction

Since people have limited computational resources, they cannot, at each mo-
ment, instantaneously compute their optimal action for that moment; instead,
they must plan ahead [3]. Thus, they adopt plans and intentions concerning their
future activity which are only partially specified and which they subsequently
elaborate over time [4, 10]. One common way for plans to be only partially spec-
ified is that their parameters may not be fully determined. For example, while
having no particular car in mind, Abe might intend to rent a car. Later on,
Abe might select a car—say, Car39—to rent. However, before he makes such a
selection, there is no car about which we can say Abe intends to rent that car.

In addition to frequently being only partially specified, the plans and activi-
ties of different people are frequently interdependent, thus motivating people to
coordinate their future-directed planning activity [9]. As a result, they must fre-
quently negotiate about objects, such as the car mentioned above, that may be
only partially specified. For example, suppose that Abe decides to let the rental
agent Zoe select the car that he is going to rent. Abe must update his intention
to reflect this delegation of parameter-binding authority; he now intends to rent
whatever car Zoe selects for him. In this paper, intentions concerning this kind
of partially specified content are called intentions with “whatever” content. For

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 229–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

230 L. Hunsberger

computer agents to participate effectively in these kinds of commonplace, multi-
agent planning and coordination scenarios, they must be able to represent and
reason about intentions with “whatever” content.

An intention is satisfied [17] if it successfully motivates the intending agent to
eventually do the action or achieve the state of affairs stipulated in its content.
Whereas Abe’s original intention “to rent a car” might be satisfied by his renting
any of perhaps a hundred different cars, his updated intention “to rent whatever
car Zoe selects” can only be satisfied by his renting whatever car Zoe happens
to eventually select for him. Thus, the satisfaction of Abe’s updated intention
depends on how its “whatever” content is eventually determined—by Zoe.

This paper presents an approach to modeling intentions with “whatever” con-
tent that is based on public names (or identifiers) that agents mutually agree
to use. For example, Abe and Zoe might agree to use the name C1 to refer to
the context of their rental-car interaction.1 Similarly, they might agree to use
the name Car to represent whatever car Zoe eventually selects for him. In this
paper, C1 is called a social context and CAR is called a parameter within a social
context (or, a social parameter). Linking parameters to social contexts helps to
disambiguate scenarios in which different contexts might have identically named
parameters. For example, Zoe might be selecting rental cars for several people
in different contexts.

The first part of this paper formally models the processes whereby agents as-
sign names to social contexts and parameters associated with those contexts. The
assignment of names is established by group declarations—that is, declarations
attributable to groups. Agents also use group declarations to bind parameters to
values and to delegate to other agents the authority for binding parameters. In
this paper, a group declaration is modeled as an abstract event that “happens”
when a group of agents make a decision, as a group, to make such a declaration.
The formal definitions are given in terms of the existing GDMM framework for
formally specifying group decision-making mechanisms [11, 12] that is recast, in
this paper, in terms of the event calculus [14]. The event calculus facilitates the
expression of axioms governing propositions (e.g., those established by declara-
tions) that hold only over certain temporal intervals.

The second part of the paper addresses the syntax and satisfaction conditions
for intentions with “whatever” content. It is formulated in terms of the stit
theory of Belnap et al. [1]. The content of intentions is augmented to include
not just a goal that the intending agent is committed to achieving, but also a
proposition that the agent refrains from determining (e.g., Abe might intend to
rent whatever car Zoe selects, while refraining from determining which car she
selects).

The rest of this paper is organized as follows. Section 2 recasts the pre-existing
GDMM framework in terms of the event calculus. Section 3 models group dec-
larations that agents can use to manage social contexts and social parameters.
Section 4 presents the syntax and satisfaction conditions for intentions with
“whatever” content. Section 5 discusses related work and presents conclusions.

1 Grosz [8] highlights the importance of context in collaborative, multi-agent scenarios.

Whatever You Say 231

2 The GDMM Framework in the Event Calculus

The GDMM framework [11, 12] is a framework for formally specifying group
decision-making mechanisms (GDMMs). In that framework, a GDMM (or inter-
action protocol) is defined in terms of declarative speech-acts and the incremental
accumulation of authority. In a typical GDMM, each agent might be authorized
(by the group) to initiate a GDMM instance (i.e., a run of a protocol) by mak-
ing an appropriate declaration. Such a declaration authorizes other agents to
make further declarations, thereby establishing facts that in certain combina-
tions authorize other agents to make still more declarations, and so on, until, in
successful instances, some agent is eventually authorized to declare, on behalf
of the group, that they have made a decision. That final, authorized declara-
tion establishes the group decision as a mutually believed fact among the group
members—an example of what Searle calls institutional facts [18].

The GDMM framework was originally presented using a dynamic, deontic,
temporal logic that enabled various properties to be formally proven. However,
that logic can be somewhat cumbersome when dealing with propositions—like
those established or terminated by declarative speech-acts—that hold only over
certain temporal intervals. Thus, this section recasts the original GDMM frame-
work in terms of the event calculus [14]. In the recast framework, declarative
speech-acts are represented by events; authorization conditions by fluents (i.e.,
reified propositions); and an authorized speech-act establishing the truth of its
propositional content is represented by a speech-act event initiating an appro-
priate fluent. In addition, protocol-specific axioms specify a protocol’s method
of incrementally accumulating authority. For example, an axiom might stipulate
that certain combinations of fluents authorize certain speech-acts; or that cer-
tain speech-acts initiate or terminate certain fluents. The recast GDMM frame-
work is demonstrated on a sample propose-accept-reject (PAR) protocol [11, 12];
the formal definitions were tested using Shanahan’s abductive event-calculus
planner [19].

2.1 A Quick Summary of the Event Calculus

The event calculus [14] is based on events, fluents and time-points. Events include
actions such as buying a book or making a declarative speech-act. Fluents are
reified propositional terms that are initiated or terminated by events. Time-points
mark the occurrence of events and the initiation or termination of fluents. The
most important event-calculus predicates are listed in Fig. 1. In the figure, E
represents an arbitrary event, F an arbitrary fluent, and T, T1 and T2 arbitrary
time-points. The predicates are governed by axioms such as SC1 and SC2 listed
below. SC1 states that if F holds at time 0 and is not subsequently clipped, then
it continues to hold. SC2 states that if F is initiated by E at time T1, and is not
clipped between T1 and some later time T2, then F continues to hold at T2.

(SC1) [initially(F) ∧ ¬clip(0,F,T)] ⇒ holds(F,T)

(SC2) [happens(E,T1) ∧ inits(E,F,T1) ∧ (T1<T2) ∧ ¬clip(T1,F,T2)]
⇒ holds(F,T2)

232 L. Hunsberger

happens(E,T) – event E happens at time T.
holds(F,T) – fluent F holds at time T.
initially(F) – fluent F holds from time 0 onward (until clipped).
inits(E,F,T) – if E happens at time T, then F is initiated at time T.
terms(E,F,T) – if E happens at time T, then F is terminated at time T.
clip(T1,F,T2) – F is terminated sometime between times T1 and T2.
declip(T1,F,T2) – F is initiated sometime between times T1 and T2.

Fig. 1. Predicates used in the event calculus

2.2 Declarative Speech-Acts and Authorization Conditions

A declarative speech-act is represented by an event term of the form

decl(G,Hs,Content), abbreviated as δ

where G is an agent (the speaker), Hs is a group of agents (the hearers), and
Content is a fluent representing the propositional content of the declaration.
Authorization for such a speech-act is represented by a fluent of the form

auth(Gr, decl(G,Hs,Content)), abbreviated as auth(Gr,δ)

That is, agent G is authorized by the group Gr to make a declaration with con-
tent Content to a set of hearers Hs ⊆ Gr. Axiom A1, below, is the main axiom
governing declarative speech-acts. It stipulates that any suitably authorized dec-
laration establishes the truth of its propositional content.2

holds(auth(Gr,δ),T) ⇒ inits(δ,Content,T) (A1)

2.3 The PAR Protocol in the Recast Framework

In the sample PAR protocol [11, 12], agents use declarative speech-acts to make
proposals, vote on proposals, and announce group decisions. Such speech-acts are
represented by the event terms listed in Fig. 2. Axioms governing the incremental
accumulation of authority in the PAR protocol are listed in Fig. 3.

Axiom E1 stipulates that each agent G in a group Gr is initially authorized
to make proposals to Gr. In this axiom, the authorizing group and the set of
hearers are the same (Gr); the content of the declarative speech-act, δMP, is the
fluent, madeProp(G,Gr,Prop); and the predicate proposable(Prop) is used to
restrict the range of allowable content for proposals. Axioms SC1, A1 and E1
together entail that any agent G is authorized to make a PAR proposal to any
group Gr as long as: (1) G is a member of Gr; (2) the content of the proposal
is “proposable”; and (3) the agent’s authorization to make such proposals has
not been “clipped” by an intervening event (e.g., a group decision to revoke
it). To make a proposal, G simply declares that it has done so, whereupon (by
Axiom A1) a fluent of the form, madeProp(G,Gr,Prop), is initiated. Axiom E2
2 In all axioms in this paper, all free variables are implicitly universally quantified.

Whatever You Say 233

• decl(G,Gr,made(G,Gr,Prop)), abbreviated δMP:

“G declares to the group Gr that it has made a proposal Prop.”

• decl(G2,{G,G2},voted(G2,G,Gr,Prop,Vote)), abbreviated δV:

“G2 declares to G that it has made a vote concerning the proposal Prop,
where Vote ∈ {accept,reject}.”

• decl(G2,{G,G2},voted(G2,G,Gr,Prop,accept)), abbreviated δVA:

“G2 declares to G that it has voted to accept the proposal Prop.”

• decl(G,Gr,grAcc(Gr,Prop)), abbreviated δGA:

“G declares to the group Gr that they have accepted Prop.”

Fig. 2. Event terms representing declarations in the PAR protocol

[(G ∈ Gr) ∧ proposable(Prop)] ⇒ initially(auth(Gr,δMP)) (E1)

[(G2 ∈ Gr) ∧ (G2 �= G) ∧ holds(auth(Gr,δMP),T)] (E2)
⇒ inits(δMP,auth(Gr,δV),T)

holds(auth(Gr,δMP),T) ⇒ inits(δMP,accepters(G,Gr,Prop,∅),T) (E3)

[holds(accepters(G,Gr,Prop,Others),T) ∧ holds(auth(Gr,δVA),T)] (E4)
⇒ inits(δVA,accepters(G,Gr,Prop,{G2} ∪ Others),T)

[(Gr = {G} ∪ Others) ∧ holds(accepters(G,Gr,Prop,Others),T)] (E5)
⇒ inits(δGA,grAcc(Gr,Prop),T)

Fig. 3. Axioms governing incremental accumulation of authority in the PAR protocol

stipulates that the making of a proposal authorizes each of the other agents in
the group to vote on it—either to accept or reject it.

In the PAR protocol, if every agent votes to accept a proposal, then the
originator of that proposal—here, G—becomes authorized to declare, on behalf
of the group, that they have made a decision—namely, to accept the proposal.
G’s authorization to make such a declaration is accumulated incrementally, over
time, as each agent declares its own acceptance of the proposal, as governed
by axioms E3, E4 and E5. Axiom E3 stipulates that the making of a proposal
initiates a fluent of the form, accepters(G,Gr,Prop,∅), representing that no
one in the group has (yet) voted to accept G’s proposal. Axiom E4 stipulates that
an agent G2’s authorized vote to accept a proposal incrementally updates the list
of “accepters” (by adding G2). Axiom E5 stipulates that if all of the other agents
(Others) have voted to accept G’s proposal, then G becomes authorized to declare

234 L. Hunsberger

on behalf of the group that they have accepted the proposal. If so authorized,
then, by Axiom A1, G’s declaration establishes the fluent, grAcc(Gr,Prop).

These axioms were encoded in Prolog and fed as input to Shanahan’s abduc-
tive event-calculus planner [19] which was able to come up with valid sequences
of speech-acts to yield various group decisions under the PAR protocol. For ex-
ample, the following sequence was generated in response to a query about how
a group of agents {g,h,i} might decide to accept a proposal prop:

happens(decl(g,[g,h,i],madeProp(g,[g,h,i],prop)),t51)
happens(decl(i,[g,i],voted(i,g,[g,h,i],prop,accept)),t52)
happens(decl(h,[g,h],voted(h,g,[g,h,i],prop,accept)),t50)
happens(decl(g,[g,h,i],grAcc([g,h,i],prop)),t48)

where the time-points were subject to the constraints: t51 < t52 < t50 < t48.
Although the PAR protocol is quite simple, the same approach can be used to
specify arbitrarily complex protocols based on declarative speech-acts and the
incremental accumulation of authority in the GDMM framework.

3 Group Declarations for Contexts and Parameters

For this paper, the most important types of group decisions are those that es-
tablish names for social contexts or parameters within those contexts, and those
that bind parameters to values or delegate authority for binding parameters.
Such decisions can be made using any GDMM; thus, it is convenient to ab-
stract away the GDMM used to generate the group decision and focus instead
on the proposition established by that decision. Toward that end, this section
uses the GDMM framework to model group declarations—that is, declarations
attributable to groups of agents. It then addresses the use of group declarations
to manage social contexts and parameters within those contexts.

In the single-agent case, an agent might establish the binding of a param-
eter thusly: “I hereby declare that the parameter P in the context C shall be
bound to the value 67.” By analogy, a group can establish such facts by making
group declarations. In particular, a group declaration, if suitably authorized, has
the power to establish the truth of its propositional content. However, a group
declaration is not uttered; instead it “happens”, by convention, when, at the
successful culmination of a GDMM instance, one of the agents announces, on
behalf of the group, that they have decided to make a declaration. For example,
at the end of a complex group decision-making procedure, a member of Congress
might announce that the Congress has decided, as a group, to declare war against
some other country. In such a case, the declaration of war is attributed to the
Congress as a whole, not to the individual making the announcement.

It is important to distinguish two kinds of authorization associated with group
declarations: internal and external. Internal authorization is that which is incre-
mentally accumulated during a run of whatever GDMM is being used to generate
the group declaration. For example, the member of Congress announcing their
decision to declare war must be suitably authorized by the Congress; otherwise,

Whatever You Say 235

no group declaration takes place. In contrast, the external authorization for a
group declaration is independent of the GDMM used to generate it. Instead, ex-
ternal authorization, which frequently comes from outside the group making the
declaration, is that which gives the group’s declaration the power to establish the
truth of its propositional content. In other words, the external authorization for
group declarations is analogous to the authorization conditions for single-agent
declarations. For example, a declaration of war by the Congress has the power
to establish a state of war only because the people, via the Constitution, have
authorized Congress to make such declarations.

A group declaration is represented by an event term of the form

grDecl(Gr,Hs,Content), abbreviated as Δ

where Gr represents the group making the declaration, Hs represents the set of
hearers, and Content is a fluent representing the content of the declaration.3 A
group declaration is not an action that is directly “executable” by the group.
Instead, a group declaration “happens”, by convention, when a group makes a
group decision whose content has the form

done(grDecl(Gr,Hs,Content)), abbreviated as done(Δ).

In such a case, the group decision initiates (e.g., by Axiom E5) a fluent

grAcc(Gr,done(Δ))

which can be glossed as “Gr has decided to make a group declaration to Hs that
Content holds.” Axiom A2, below, stipulates that such a fluent “counts as” [18]
a group having made the indicated group declaration.

holds(grAcc(Gr,done(Δ)),T) ⇒ happens(Δ,T) (A2)

Then, in direct analogy with Axiom A1, Axiom A3 below stipulates that an
authorized group declaration establishes the truth of its propositional content.

holds(auth(AuthGr,Δ),T) ⇒ inits(Δ,Content,T) (A3)

In this axiom, AuthGr represents the (external) authorizing group.

The rest of this section focuses on how agents can use group declarations to
establish names for social contexts and social parameters, and to bind such pa-
rameters or delegate the authority for binding them. In what follows, all contexts
and parameters are presumed to be under the sole control of the group Gr—that
is, Gr is its own “external” authorizing group. In addition, the set of hearers
is presumed to be the entire group. Thus, Gr = AuthGr = Hs. In addition, for
convenience, repeated arguments are omitted. Thus, a group declaration is rep-
resented by a term of the form, grDecl(Gr,Content)—abbreviated as Δ—and
the corresponding authorization condition is represented by a fluent of the form,
3 Δ denotes a group declaration; δ denotes a single-agent declaration.

236 L. Hunsberger

• grDecl(Gr,sContext(Gr,C)), abbreviated ΔC:

“Group Gr declares a new social context named C.”

• grDecl(Gr,sParam(Gr,C,P)), abbreviated ΔP:

“Group Gr declares a new parameter named P associated with context C.”

• grDecl(Gr,sBindParam(Gr,C,P,V)), abbreviated ΔBP:

“Group Gr declares that parameter P in context C is bound to value V.”

• grDecl(Gr,sDelegParam(G,Gr,C,P)), abbreviated ΔDP:

“Group Gr declares that the authority for binding the parameter P in the
context C is delegated to the agent G.”

• decl(G,Gr,sBindParam(Gr,C,P,V)), abbreviated δBP:
“Agent G declares that parameter P in context C is bound to value V.”

Fig. 4. Event terms representing declarations for social contexts and parameters

initially(auth(ΔC)) (E6)

holds(auth(ΔC),T) ⇒ inits(ΔC,auth(ΔP),T) (E7)

holds(auth(ΔP),T) ⇒ inits(ΔP,auth(ΔBP),T) (E8)

holds(auth(ΔP),T) ⇒ inits(ΔP,auth(ΔDP),T) (E9)

holds(auth(ΔDP),T) ⇒ inits(ΔDP,auth(Gr,δBP),T) (E10)

Fig. 5. Axioms pertaining to the declarations in Fig. 4

auth(grDecl(Gr,Content))—abbreviated as auth(Δ). Fig. 4 lists the types of
group declarations (and one single-agent declaration) to be discussed. Fig. 5 lists
the axioms pertaining to the declarations in Fig. 4.

A group Gr creates a social context named C by making a declaration of the
formΔC in Fig. 4. By Axiom E6 in Fig. 5, any group is initially authorized to cre-
ate arbitrary social contexts for itself. Thus, by Axiom A3, a group declaration,
ΔC, establishes a fluent of the form, sContext(Gr,C).

A group Gr creates a social parameter named P, linked to a social context
C, by making a declaration of the form ΔP in Fig. 4. By Axiom E7, a group’s
creation of a social context (Gr,C) automatically authorizes that group to create
social parameters within that context. Similarly, a group’s creation of a social
parameter (Gr,C,P) automatically authorizes that group to bind that parameter
to some value (Axiom E8) or delegate the authority for binding that parameter
to some other agent (Axiom E9).

A group Gr binds a parameter P in the context C to the value V by making a
declaration of the form ΔBP in Fig. 4. If suitably authorized, then, by Axiom A3,

Whatever You Say 237

such a declaration would initiate a fluent of the form sBindParam(Gr,C,P,V).4

Alternatively, a group might decide to delegate the authority for binding that
parameter to some agent, say G, by making a declaration of the formΔDP in Fig. 4.
By Axiom E10, such a declaration authorizes G to bind P to any value V by making
a declaration of the form δBP in Fig. 4.5 Should G make such a declaration, it
would, by Axiom A1, initiate the fluent, sBindParam(Gr,C,P,V). Thus, whether
the group Gr binds P directly using a group decision or indirectly via the delegate
G, the end result is the initiation of the same fluent: sBindParam(Gr,C,P,V).

Example. Abe (a) intends to rent whatever car Zoe (z) selects for him. In this
case, they make group declarations that initiate the following fluents:

sContext({a,z},c) – c is a social context for them.
sParam({a,z},c,p) – p is a social parameter for them in that context.
sDelegParam(z,{a,z},c,p) – they have delegated the binding of p to Zoe.

By Axiom E10, the last fluent in the above list initiates the following fluent,
which represents that Zoe is authorized to bind p to any value V.

auth({a,z},decl(z,{a,z},sBindParam({a,z},c,p,V)))

4 Intentions with “Whatever” Content

This section presents a novel representation for intentions with “whatever” con-
tent. The satisfaction conditions for such intentions clearly distinguish conditions
that the intending agent seeks to achieve and those that it actively refrains from
determining. The representation is expressed in terms of the “sees to it that”
(stit) operator defined by Belnap et al. [1], which is briefly summarized below.
Afterward, intentions with “whatever” content and their satisfaction conditions
are defined and the definitions are illustrated with examples.

4.1 Seeing to It That

Belnap et al. [1] present a theory of “agents and choices in branching time”
within which they formally define a modal “sees to it that” (stit) operator, which
they use to represent agentive expressions. They argue that “[a proposition]
Q is agentive for [an agent] α just in case Q may be usefully paraphrased as
[α stit : Q].” For example, the sentence, “Abe sees to it that a car is rented”, is
agentive for Abe since it has the form, [A stit : φ], where A denotes Abe and φ
denotes the proposition, “a car is rented”.
4 The binding of a parameter should also terminate that group’s authority to subse-

quently bind that same parameter or to delegate the binding of that parameter. For
space reasons, providing such axioms is left to the reader.

5 A decision to delegate parameter-binding authority to an agent G would also entail
an obligation on G to eventually bind that parameter; however, this paper focuses on
authorization conditions, not obligations. Grosz and Hunsberger [9] address some of
the obligations entailed by various kinds of group decision.

238 L. Hunsberger

The semantics of the stit operator stipulate that [α stit : Q] holds now if and
only if: (1) Q holds now due to a prior choice (or sequence of choices) made by
α; and (2) α’s choice was real in the sense that some other choice open to α
might have resulted in Q not holding. For example, I might see to it that my
office gets cold by opening a window, where my alternative, leaving the window
closed, might have resulted in my office staying warm.

In their “Restricted Complement Thesis”, Belnap et al. argue that “a variety
of constructions concerned with agents and agency—including deontic state-
ments, imperatives, and statements of intention, among others—must take agen-
tives as their complements.” For example, the expression, Int : [α stit : Q], would
represent that the agent α intends to see to it that the proposition Q holds.

Belnap et al. define active refraining in terms of the stit operator, as follows:

refrain(α, ψ) ≡ [α stit : ¬[α stit : ψ]]

That is, an agent α actively refrains from bringing about ψ if α sees to it that α
does not see to it that ψ holds. In other words, some choice made by α, perhaps
even a choice to do nothing, must guarantee that ¬ψ remains an option—at
least insofar as α’s choices are concerned. Of course, the choice(s) of some other
agent(s) might nonetheless establish ψ, despite α’s refraining.

The following abbreviation will be useful later in this section:

refrain(α,±ψ) ≡ refrain(α, ψ) ∧ refrain(α,¬ψ)

That is, α both refrains from ψ and refrains from ¬ψ. Such an expression holds if
some prior choice(s) made by α guarantee that both ψ and ¬ψ remain options.

4.2 Intentions with “Whatever” Content

Definition 1. An intention with “whatever” content is an expression of the
form: Intw(G, x, ψ(x), φ(x)), where G is a term, x is a variable, and ψ(x) and
φ(x) are arbitrary propositions that may contain free occurrences of x.

The intended interpretation of such an expression is that the agent G intends
to see to it that the proposition φ(x) holds for whatever (unique) value of x the
proposition ψ(x) holds, while refraining from determining the choice of x for
which ψ(x) holds. The formal interpretation is given in Definition 2.

Definition 2. Intw(G, x, ψ(x), φ(x)) is satisfied if:

(1) (∀x)refrain(G,±ψ(x)) holds; and
(2) if there is a unique object d in the semantic domain for which the ex-
pression ψ(cd) holds, where cd is a constant term denoting d and ψ(cd) is
obtained from ψ(x) by substituting cd for each occurrence of the free variable
x in ψ(x), then the expression, stit(G,φ(cd)), also holds.

Condition 1 stipulates that G should refrain from determining ψ(x) or ¬ψ(x) for
any x—that is, choices made by G should guarantee that both ψ(x) and ¬ψ(x)
remain options for any x. Condition 2 stipulates that if there is a unique value
of x for which the expression ψ(x) holds, then the agent G must see to it that
the expression φ(x) holds for that same value of x.

Whatever You Say 239

Example. Recall Abe’s intention to rent whatever car Zoe selects for him. Sup-
pose that Abe (A) and Zoe (Z) have already established a name C for a social
context and a parameter P for the car. Suppose further that they have delegated
the binding of P to Zoe. Abe’s intention can be represented by an intention with
“whatever” content where:

ψ(x) ≡ sBindParam({A,Z}, C, P, x); and
φ(x) ≡ Rents(A, x).

According to Definition 2, for Abe’s intention to be satisfied, he must refrain from
both ψ(x) and ¬ψ(x) for all x. In other words, his choices must not constrain
the possible values for the parameter P . In addition, if the condition ψ(x) holds
for some unique value of x (e.g., should Zoe declare P to have the value Car39),
then Abe must see to it that φ(x) holds for that value of x (e.g., that he rents
Car39). In short, if Abe refrains from determining which car is selected, and Zoe
selects a unique car, then Abe must see to it that he rents that car; however,
if no such car is selected, or more than one is selected, then Abe’s intention is
trivially satisfied.

Intentions with “whatever” content can be defined with multiple partially-
determined objects by substituting (x1, x2, . . . , xn) for x, (∀x1, x2, . . . , xn) for
(∀x), and ψ1(x1) ∧ . . . ∧ ψn(xn) for ψ(x) in Definition 1; and, in addition, sub-
stituting (d1, . . . , dn) for d and (cd1 , . . . , cdn) for c in Definition 2. For example,
Abe’s intention to hammer in a nail using whatever hammer Zoe specifies and
whatever nail Yao (Y) specifies could be represented by

Intw (A, (x1, x2), ψ1(x1) ∧ ψ2(x2), φ(x1, x2))

where ψ1(x1) ≡ sBindParam(Z,C , hamr, x1);
ψ2(x2) ≡ sBindParam(Y,C , nail, x2); and
φ(x1, x2) ≡ Pounds(A, x1, x2).

5 Related Work and Conclusions

Several researchers are actively investigating the use of the event calculus to
model interaction protocols in normative settings. For example, Yolum and
Singh [20] use it to model protocols as commitment machines. In that work,
agents use various kinds of speech-acts to adopt or modify (one-on-one) social
commitments. Pitt et al. [16] use the event calculus to formalize a complex voting
protocol for general-purpose decision-making in virtual organizations. In their
work, events such as proposing, voting, and so forth initiate or terminate various
powers (authorizations), permissions and obligations. These approaches are com-
plementary to the approach taken in this paper where the GDMM framework
is based solely on declarative speech-acts and the incremental accumulation of
authority, and is used to model declarations attributable to groups.

Other researchers are investigating contracts for multi-agent systems in terms
of normative concepts. For example, Farrell et al. [6] define a contract language in

240 L. Hunsberger

terms of obligation, power and permission and present an algorithm for tracking
the normative state of a contract over its entire life-cycle. And Boella and van
der Torre [2] view contracts as legal institutions based on Searle’s construction
of social reality [18]. In their work, mental states such as beliefs, desires and
intentions are attributed not only to agents, but also to normative systems. In
prior work, Grosz and Hunsberger [9] specify the obligations entailed by certain
common types of group decision (e.g., binding a parameter, selecting a recipe
for a complex task, or delegating a task) in the context of multi-agent coordi-
nation scenarios. Ongoing research is aimed at augmenting that work to include
authorizations and permissions, as well as intentions with “whatever” content.

The most related work on delegation is that of Norman and Reed [15]. In their
work, agents use imperative speech-acts to delegate tasks to other agents and to
command others to refrain from further delegating those same tasks. They use a
propositional logic and thus do not address intentions with “whatever” content,
but they employ two stit operators, one for propositions and one for actions.

In the field of linguistics, Dekker and van Rooy [5] formally analyze so-called
Hob-Nob sentences in which “a number of people ... have attitudes with a com-
mon focus, whether or not there actually is something at that focus” which is
a broad category that seems to include intentions with “whatever” content.6

In addition, Kamp and Reyle [13] use Discourse Representation Theory (DRT)
to analyze sentences (or sequences of sentences) that include partially specified
content in the form of indefinite noun phrases and pronouns that subsequently
refer to that content—as in: “Every farmer who owns a donkey beats it” or
“John owns a Porsche. It fascinates him.” An investigation into the potential
application of these methods to intentions with “whatever” content (i.e., par-
tially specified content to which agents need to refer as they coordinate with
others), is the subject of ongoing research.

The research presented in this paper is part of a long-term project aimed at
developing collaboration-capable computer agents [9]. Current work is focused
on providing a comprehensive logical foundation for intentions with “whatever”
content that can accommodate other types of partially specified content (e.g.,
Bea intends to drive whatever car Abe rents) as well as the obligations that are
entailed by group decisions in multi-agent planning and coordination scenarios.

References

1. Nuel Belnap, Michael Perloff, and Ming Xu. Facing the Future. Oxford University
Press, 2001.

2. Guido Boella and Leendert van der Torre. Contracts as legal institutions in orga-
nizations of autonomous agents. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM, 2004.

3. Michael E. Bratman. Intentions, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA, 1997.

4. Michael E. Bratman. Faces of Intention: Selected Essays on Intention and Agency.
Cambridge University Press, 1999.

6 The quotation is from Geach [7], cited in Dekker and Rooy [5].

Whatever You Say 241

5. Paul Dekker and Robert van Rooy. Intentional identity and information exchange.
In R. Cooper and T. Gamkrelidze, editors, Second Tbilisi Symposium on Language,
Logic and Computation, 1997.

6. Andrew D. H. Farrell, Marek Sergot, Mathias Salle, and Claudio Bartolini. Using
the event calculus for tracking the normative state of contracts. International
Journal of Cooperative Information Systems, 14(2–3), June–September 2005.

7. P. Geach. Intentional identity. Journal of Philosophy, 74:309–44, 1967.
8. Barbara J. Grosz. The contexts of collaboration. In E. Sosa K. Korta and X. Ar-

razola, editors, Cognition, Agency and Rationality, pages 175–188. Kluwer Press,
Dordrecht, 1999.

9. Barbara J. Grosz and Luke Hunsberger. The dynamics of intention in collaborative
activity. Journal of Cognitive Systems Research, 7:259–272, 2006.

10. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86:269–357, 1996.

11. Luke Hunsberger. Group Decision Making and Temporal Reasoning. PhD thesis,
Harvard University, 2002. Available as Harvard Technical Report TR-05-02.

12. Luke Hunsberger. A framework for specifying group decision-making mechanisms
(poster). In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS-2005). ACM Press, 2005.

13. Hans Kamp and Uwe Reyle. From Discourse to Logic, volume 42 of Studies in
Linguistics and Philosophy. Kluwer Academic Publishers, 1993.

14. R.A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

15. Timothy J. Norman and Chris Reed. A model of delegation for multi-agent systems.
In M. Fisher M. d’Inverno, M. M. Luck and C. Preist, editors, Foundations and
Applications of Multi-Agent Systems, volume 2403 of Lecture Notes in Artificial
Intelligence, pages 185–204. Springer-Verlag, 2002.

16. Jeremy Pitt, Lloyd Kamara, Marek Sergot, and Alexander Artikis. Formaliza-
tion of a voting protocol for virtual organizations. In Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2005), pages
373–380. ACM, 2005.

17. J. R. Searle. Speech acts: An essay in the philosophy of language. Cambridge
University Press, Cambridge, UK, 1969.

18. J.R. Searle. The Construction of Social Reality. Allen Lane, London, 1995.
19. Murray Shanahan. The Event Calculus Explained, volume 1600 of Lecture Notes

in Computer Science. 1999.
20. Pinar Yolum and Munindar P. Singh. Reasoning about commitments in the event

calculus: An approach for specifying and executing protocols. Annals of Mathe-
matics and Artificial Intelligence (AMAI), 2003.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 242 – 252, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Deductive Synthesis of Lisp Programs in the
System ALISA

Yulia Korukhova*

Lomonosov Moscow State University, Computational Mathematics and Cybernetics Faculty
119992 Russia, Moscow, GSP-2, Leninskie Gory, MSU

yulia@cs.msu.su

Abstract. The work deals with deductive synthesis of functional programs.
During this synthesis formal specification of a program is taken as a mathe-
matical existence theorem and while proving it, we derive a program and prove
that this program corresponds to given specification. Our method of synthesis is
based on the deductive tableau method, that allows to derive three basic
constructions of a functional program. But the full search of possible proof
attempts in the deductive tableau induces a very large search space; the proof is
needed to be guided. For using this method in the automatic mode additional
heuristics are required. Some of such heuristics are proposed in this work. They
consist in proof planning by using rippling and in the use of sorted logic with
type hierarchy that reduces search space and blocks some branches of proof,
corresponding to synthesis of incorrect functions. The proposed techniques are
implemented in the system ALISA1 and used for automatic synthesis of several
functions on Lisp language.

1 Introduction

The problem of automatic program synthesis was treated since 1960s. It consists in
construction of a program code from some description of desired program. Two
approaches were distinguished: inductive synthesis (that assumes program construc-
tion from traces of its work) and deductive synthesis (that assumes program deriva-
tion from a specification that describes a relationship between input and output of a
desired program). Deductive approach is particularly interesting because it allows to
construct programs with proving its correctness with respect to given specification,
so the constructed program does not require verification. If such synthesis is
performed automatically and the correctness of chosen method of synthesis is
proved, the problem of writing a program is reduced to writing a correct
specification. Good specification is readable and clear for a user, because it
describes the goal of a program and may not present a particular method for
computation the required solution. Such specification is taken as a mathematical

* This work is a part of the author's PhD project, which was supervised by Assoc. Prof. Dr.

V.N. Pilschikov. The work has been partially supported by RFBR grant 05-01-00948a.
1 ALISA - Automatic LIsp Synthesizer.

 Automatic Deductive Synthesis of Lisp Programs in the System ALISA 243

existence theorem and we prove the existence of an object that satisfies the
specified conditions. This proof is required to be constructive and each step of a
proof corresponds to a step of synthesis.

There were several methods and realizations of deductive synthesis for some
class of programs. First systems, such as Heuristic Compiler [17], PROW [12] were
used to derive a sequence of operators and condition. For derivation of cycle or
recursion special inference rule, based on using of mathematical induction in the
proof was required. Programs containing cycle operator were derived in the system
PRIZ [19], using the synthesis based on computational model, but the cyclic
structures of a program were incorporated in this model as many other facts about
the domain.

In [13],[14] the deductive tableau method was proposed. It is appropriate for
synthesis of functional programs from formal logic-based specifications. The method
gives the rules that allow to derive three basic constructions of functional program:
function application, conditional term and recursion, but order of these rules
application is not specified. The deductive tableau method was used for interactive
synthesis. This synthesis was guided manually by user, as described in [8]. Also
automated synthesis was implemented by embedding the deductive tableau method as
a higher order logic rules into ISABELLE [15], where proofs were partially
automated by tactics, written by user.

We took the deductive tableau method as a basic method for the automatic
synthesis in the system ALISA. But when the fully automated synthesis in the
deductive tableau (with the full search of possible proof attempts) is performed, the
induced search space is very large even for simple problems. To reduce it, we can
either use some additional heuristics that decrease the number of rules applicable in
every step of the proof, or plan the proof before application of the deductive rules. In
our system for the first goal we use sorted logic with type hierarchy; it allows to
reduce the search space and also to avoid the synthesis of incorrect function branches.
Second, we suggest here to use proof planning by using rippling heuristic [4], [7] for
constructing the proof path corresponding to recursive branch synthesis.

The paper is organized as follows. Section 2 describes the synthesis in the
deductive tableau. Section 3 precise the particular problems that should be resolved
for performing synthesis fully automatically and describes the proposed solutions.
Section 4 reports on practical results and presents some directions of future research.
In the section 5 conclusions are drawn.

2 Synthesis in the Deductive Tableau

Deductive program synthesis begins with a specification which represents a
relationship between input and output of a program. We use a specification language
based on first order logic predicates and constructions. There are also specific
predicates for lists and integers (such as head(a), tail(a), atom(x),
number(x), etc.) For example, a function that calculates the value of integer square
root for an integer number b has the following specification:

244 Y. Korukhova

<sqrt(b)> <= for Number(b) find <z> such that
if (b 0) then (z2≤ b) ∧ (b<(z+1)2)

(1)

After "for" there are type definitions for function parameters (b is an integer), z is
the output variable and the expression after "such that" describes a relationship
between inputs and outputs.

The specification (1) is taken as a mathematical existence theorem

(b)(z)(if (b 0) then (z2 b) (b<(z+1)2))

To synthesize an algorithm for computation of z we are trying to prove the theorem
constructively. The structure of the proof determines the structure of the program we
extract. In particular, a case analysis in the proof corresponds to the formation of a
conditional term in the program; the use of principle of mathematical induction in the
proof coincides with the appearance of recursion.

Suppose, we've found a term t(b) that meets the specified conditions. The
program we produce is then

sqrt(b) = t(b)

For writing such a proof we use special framework called the deductive tableau.
The tableau structure is shown in Table 1. A tableau corresponds to a first order
sentence

if (A1 ∧ A2 ∧ … ∧ An) then (G1 ∨ G2 ∨ … ∨ Gn)

where A1…An are assertions written in the tableau and G1...Gn are goals to be
proved. Each row of a deductive tableau contains either an assertion or a goal. The
table has one or more output columns, corresponding to outputs of functions. The goal
functions appear in the output columns during synthesis. The output columns of one
row are processed in the same manner.

The following properties are useful consequences of the above definition.

Duality. By removing an assertion (a goal) and adding its negation as a goal (an
assertion) we obtain an equivalent tableau.
Variables. All free variables are assumed universally quantified in assertions and
existentially quantified in goals. Free variables in different rows are independent and
can be renamed if necessary. Bound variables are replaced by skolem constants or
functions, using skolemization procedure [9]. During the proof skolem functions can
only be unified with the same skolem function.
Instance. Let be a substitution and G a goal in a row with output s. Then adding or
deleting a row with goal G and output s will produce the equivalent tableau.
Output. A row with no output entry is equivalent to one whose output entry is a new
variable, that doesn't occur free in this row.

The synthesis starts with adding the expression written in the specification as a
new goal in a deductive tableau. For the specification (1) the goal
if (b 0) then (z2 ≤ b) and (b<(z+1)2) is added. Then the deduction rules are
applied. The deduction rules add new rows to a tableau, preserving validity of the

 Automatic Deductive Synthesis of Lisp Programs in the System ALISA 245

logical expression associated with the tableau. Some examples of deduction rules are
the following:

The splitting rule. If a row contains a goal (G1 or G2) it can be decomposed into
two rows with the goal G1 and the goal G2. The output entries are inherited by the
generated rows.

The resolution rule. If a tableau contains rows 1 and 2 (see Table 1), the row 3 can
be added. Logical simplifications (such as, for example, A and true true)
should be done in the new row.

Table 1. The deductive tableau.The resolution rule. Here 1,2 are rows with no free variables
in common (we rename variables to achieve it if necessary), P,Q – quantifier free
subexpressions, such that P =Q . We replace all occurrences of P in G1 with false and all
occurrences of Q in G2 with true and add a new row 3 with the conditional output.

 Assertions Goals Output
1 G1[P] z

2 G2[Q] t
3 G1 [false] ∧ G2 [true] if P then t else z

Remarks about outputs: if one of two rows, say the 2nd, has no output entry,
then the output of the generated row will be z , where z is the output for G1; if
rows 1 and 2 both have no output entries then the generated row will also have no
output.

The equality rule. If the tableau contains rows 1 and 2 (see Table 2), the row 3 can
be added to this table. Remarks about outputs are the same as for the resolution rule.

The analogous equality rule can be applied for rows, containing equal terms. We
take the same rule as in the Table 2, but consider P,Q,R to be terms and take the
equality for terms P=R and P =Q instead of equality for logical expressions.

Table 2. The equality rule. Here 1,2 are rows with no free variables in common (we rename
variables to achieve it if necessary), P,Q,R – quantifier free subexpressions, such that P Q .
We replace all occurrences of (P R) in G1 with false and some occurrences of Q in G2
with R and add a new row 3.

1 G1[P R] z

2 G2[Q] t
3 G1 [false] ∧ G2 <Rλ> if (P R) then t else z

Using these rules and the tableau properties we can derive a non-recursive branch
of the goal function. For the specification (1), we can derive a row N, see Table 3.

246 Y. Korukhova

Table 3. The sqrt example: the nonrecursive branch of the function. Row 1 is obtained by
splitting the initial goal, row 2 represents one of the system axioms, useful for this synthesis.
Row N – the nonrecursive branch of the sqrt function (it means "if we prove that b=0, then
sqrt(b)=0").

 Assertions Goals sqrt(b)
1 (z2≤ b) ∧ (b<(z+1)2) z

2 if x=0 then x2=0
N b=0 0

The induction rule. For introducing a recursive function call to the table we use the
induction rule. For the initial goal of the tableau an induction hypothesis can be
added, see Table 4.

Table 4. The induction rule. Here f(a) is the goal function, the induction is hold on a. The 2nd
row is a general variant of the induction hypothesis, row 3 represents an induction hypothesis
for lists and for the relation tail(a) <wf a determined for nonempty lists. The 4th row shows an
example of induction hypothesis for integers for the relation a-1 <wf a for nonnegative integers.

 Assertions Goals f(a)

1 Q[a,z] z

2 if x <wf a then Q[x,f(x)]

3 if not(a=NIL) then Q[tail(a),f(tail(a))]

4 if (a>0) then Q[a-1,f(a-1)]

We use the Noetherian induction scheme:
x (y y <wf x F(y)) F(x)

 x F(x)

where <wf is a well-founded relation (a relation that can not derive infinite decreasing
sequences for the objects of a current sort). In the proof construction particular variants
of this hypothesis are used, they are formed by instantiating a particular relation instead
of <wf, see examples in Table 4. There are several relations embedded in the system,
they are stored as usual axioms (assertions) of a kind if A then y <wf x, where A
is a logical expression, specifying a particular conditions for x and y to be connected by
<wf relation. Usually while proving these conditions the nonrecursive branch is derived.
Other relations can be easily added by user to the system as an axiom, this facility
allows to construct new hypotheses.

The synthesis is complete when a row with the true goal is derived. In the output
column of this row the computational algorithm for the goal function can be found.

3 Automation of Synthesis in the Deductive Tableau

The deductive tableau method gives a very good instrument for synthesis, but for
performing synthesis automatically the order of application should be determined. If

 Automatic Deductive Synthesis of Lisp Programs in the System ALISA 247

we are simply trying to apply one rule after another for all existing rows of the table
the number of possible proof attempts grows exponentially. Additional heuristics are
needed to limit the number of proof attempts and make the proof search directed. We
are going to look at some of them here.

3.1 The Use of Sorted Logic

We propose to extend our logic by assigning sorts to constants, variables and
assigning the domains for functions and predicates arguments and a sort of functions
ranges. We are working now in the theory of lists and the theory of integers, so there
are two basic sorts of objects in our system. In axiomatizing these theories we need
some way of distinguishing between them; otherwise false inferences could result
from applying axioms to objects of wrong types. The sort of an object is determined
from the context by considering the functions applied to this object and from “for”
section of the formal specification. For example, variable x in the expression
tail(x) is considered to be list, but x is treated as integer in the expression x+1=b,
the predicate Number(b) in “for” section of specification declares, that b should be
treated as integer.

The idea of sorted logic was presented, for example in [18], but we extend it by
specifying the hierarchy of subsorts for each sort. We determine the relation < for
sorts: t1<t2 means that t2 contains all the objects of t1. For example, for
integers we have: positive<not_zero<integer (where positive contains all integers
greater than 0 and not_zero contains all integers except 0), but the types list and
not_zero are not bounded by the hierarchic relation. Particular subsorts are also
determined from the context from the information about known functions (for
example, in the expression 1/a a is considered to be not_zero).

The use of sorted logic with hierarchy has two advantages. First, it allows to reduce
the number of applicable rules by blocking the instantiations of objects of a wrong
sort (instantiation of a list variable by an integer expression and vice versa). Second, it
allows to avoid some incorrectly synthesized functions. By the functions synthesized
correctly we mean functions that meet the given specification, and can be computed
in according to domain restrictions for this function’s subterms. Others are considered
to be incorrect. For example a function

f(a)= (b=3/a) ∧ not(a>0)

can not be computed for a=0, because operation / (division) is undetermined for a=0,
whereas the same function written in the other form

f(a)= if (a>0) then b=3/a

can be computed even for a=0. The difference is in the order of computing, that is
fixed in if-then expression and can be different in ∧ operation, because it is
considered to be commutative.

Let's look at the example in Table 5. From the same initial rows (1, 2 and 3) we can
derive two functions. First, we apply resolution rule to rows 3 and 1 and then for the
result and the 2nd row. The output of the resulted row (see row 4 in the Table 5) can

248 Y. Korukhova

not be computed for a=0. But if we change the order of resolution application (first, to
rows 2 and 1 and then for result row and the 3rd row) we obtain the row 5 with the
output, that can be computed even for a=0.

Table 5. An example of different resolution application. Rows 1-3 are initial rows and rows 4
and 5 are obtained by using the resolution rule in different order.

1 not (b=3/a) ∧ (a>0) 1
2 (b=3/a) 2
3 not(a>0) 3
4 true if (b=3/a) then 2 else (if a>0 then 1 else 3)
5 true if (a>0) then (if b=3/a then 2 else 1) else 3

To avoid the application of rules that derived constructions not appropriate for
computing, we use the information about sorts of objects and their hierarchy. During
resolution, equality or relation replacement rule application we should replace the
expressions with "smaller" types by true (or false) earlier. In our example
the expression b=3/a (where the sort of a is not_zero) should be replaced before the
expression (a>0) (where the sort of a is integer), because not_zero < integer. By
applying this restriction the row 4 (see Table 5) will not be added to the tableau.

The use of sorted logic with hierarchy can resolve the problem only in for
functions, that meets the specification, it does not correct the problems in the
specification if they exist. For example, if a specification is written in such a way that
there are input values, for which the specification value is undetermined or erroneous,
the same problem will nor be resolved by considering sort hierarchy during the
synthesis. If f(a) is specified as

<f(a)><=for number(a) find<z>such that if (a>=0) then 1/a

both the specification and the derived program will have problems with a=0. We’ve
assumed, that the given specification should not allow such incorrect functions
applications.

3.2 Constructing the Proof Plan Using Rippling

The stage of recursion formation is particularly needed to be directed, because of a
large number of rows participating in the proof attempts. We propose, first, to
perform the induction step using rippling technique [4],[6], [7] and save the path of
the proof. Then we perform the proof in the table according to the found proof path
and simultaneously a function is derived in the output column. A strategy of using
general rippling principles for planning the proof has been described in [10].

Rippling is a rewriting, based on the idea, that very often the induction hypothesis
and conclusion are syntactically similar. We rewrite the conclusion in such a way that
we can use the hypothesis. We use only the rules that move the differences through
the induction conclusion in a way that makes progress in minimizing difference with
the induction hypothesis. The minimization of differences will always stop (either
because all differences will be removed, or none of the rules could be applied). We
change the conclusion only, because the hypothesis is assumed to be true.

 Automatic Deductive Synthesis of Lisp Programs in the System ALISA 249

The rules that are used for rippling are called wave rules. They are special
rewriting rules formed from the axioms, known in the system. For example the axiom

(A<B) (A+C<B+C) (2)

produces a following wave rule

(A + C) < (B +C)) ==> (A<B) (3)

Note, that the direction of rewriting is opposite to the logical implication, because we
use backward reasoning (from conclusion to the hypothesis).The underlined parts in (3)
are wave-fronts, that should be removed. The unmarked parts form skeleton, which is
preserved during rewriting. Wave fronts are marked using difference unification
algorithm [3], and these rules should "decrease" the differences in the expression to
which they are applied. Rewrite rules are formed once at the moment then a new axiom
appears in the deductive tableau and then rules are stored in the system.

To perform the induction step we insert the induction hypothesis in the tableau
using the induction rule. To form a concrete induction hypothesis we need a particular
well founded relation. Such relations are stored in the system as axioms, containing
<wf (and also a new well founded relation can be added as an axiom). A particular
well founded relation is chosen from the relations known in the system. The choice is
based on the information about induction parameter type (there are such relations
appropriate for lists and relations for integers). If several well founded relations can
be used they are tried one after another. The induction conclusion is the initial goal
from the table.

When an induction hypothesis and conclusion are written, the differences are
marked as wave fronts and rewriting using wave rules starts. During it we save the
sequence of axioms numbers, corresponding to used wave rules. This sequence is
called proof path. The proof using rippling is considered to be successfully finished if
an instance of hypothesis is obtained in the conclusion, so we can use the fact that
hypothesis is assumed to be true and instantiate it by true. That helps us to prove the
conclusion. In other cases we search for another way of proof using backtracking: we
try to use another annotation or form another hypothesis. If after that the proof still
does not succeed we can continue the full search in the deductive tableau. So we do
not lose a solution while applying rippling heuristic. But it helps us to derive
programs faster in practice: if proof is successfully finished, we return to deductive
tableau and restore the proof by deduction rules according to the found path; it is
necessary for derivation of a function in the output column.

4 Implementation, Results and Future Work

The described techniques were implemented in the system ALISA. The system
performs synthesis in the interactive and in the automatic mode. During interactive
synthesis user can create a deductive tableau, add a row, in particular containing a
goal to prove, and choose an appropriate deductive rule. In the automatic mode the
specification of a function and, possibly, some axioms are given and the proof is
performed by the system. Some of the functions that are derived automatically are the
following:

250 Y. Korukhova

1. Integer square root
Specification: <sqrt(b)> <= for number (b) find <z> such that
 if b 0 then (sqr(z)<=b) ∧ (b<sqr(z+1)) ∧ (z 0)
Derived function:
(DEFUN sqrt(b) (COND((NUMBERP b) (COND((< b 1) 0)
 (T(COND((<= (sqr(+(sqrt (+ b -1)) 1))b)(+(sqrt(+ b -1)) 1))
 (T (sqrt (+ b -1]
Number of rule applications in full search – 31000, in synthesis with heuristics - 76
2. List partitioning into last element and front (all elements, except the last one).
Specification:
<front(a),last(a)> <= for list(a) find <h,t> such that
 if ¬(a =()) then (tail(t)=()) ∧ (a=append(h,t))
Derived functions:
(DEFUN front(a)(COND ((LISTP a)
 (COND ((NULL (CDR a)) NIL)
 (T (CONS (CAR a) (front(CDR a))))))))
(DEFUN last(a)(COND ((LISTP a)
 (COND ((NULL (CDR a)) a)
 (T (last (CDR a)))))))
Number of rule applications in full search – 7200 , in synthesis with heuristics – 28.
When the hierarchy of subsorts was not implemented in the system, it could derive
another version of front-last functions (they immediately return error, for example, for
a list containing one element, which is correctly proceeded by the front-last functions
presented above):
front(s) = if not(tail(last(tail(s)))=NIL) then NIL else
 if not(tail(s)=append(front(tail(s)),last(tail(s)))
 then NIL
 else addfirst(head(s),front(tail(s)))
last(s) = if not(tail(last(tail(s)))=NIL) then s else
 if not(tail(s)=append(front(tail(s)),last(tail(s))))
 then s
 else tail(last(tail(s)))
The use of hierarchy blocked certain rule applications and allowed to avoid of such
synthesis.
3. Sorting program
Specification:
<sort(b)> <= for list(b) find<z> such that
 perm(b,z)∧ord(z)
Derived program:
(DEFUN sort(b) (COND ((LISTP b) (COND ((NULL b) b)
 (T (COND ((NULL (sort (CDR b))) b)
 (T (COND ((<= (CAR (sort (CDR b))) (CAR b)) (CONS (CAR
(sort (CDR b))) (sort (CONS (CAR b) (CDR (sort (CDR b)))))))
 (T (COND ((NULL (CDR b)) b) (T (CONS (CAR b) (sort (CDR
b))))))))))))))
Number of rule applications: full search - greater than 106, with heuristics – 4947.

Rippling was already applied for automatic construction of programs, for example
in [16] it was used for construction of a special tactic for proofs in the sequent
calculus. In our approach we combine rippling with deductive tableau framework.

 Automatic Deductive Synthesis of Lisp Programs in the System ALISA 251

The examples mentioned in [16] (sqrt, quotient-remainder, append, last) were
successfully derived in ALISA.

Also rippling techniques was used in automatic synthesis of logic programs, for
example, in the system Periwinkle [11]. But this system failed to synthesize sorting
and list partitioning programs. The possibility to construct program structure and
induction scheme during synthesis dynamically by choosing a particular well founded
relation (from the templates of given relations) allowed to derive front-last list
partitioning and sorting program in ALISA.

The work in this paper has concentrated on the fully automatic synthesis of
recursive functional programs. The system currently derives several programs, but
does not prefer any one type of recursion to another and the question of the
complexity of derived program is not analyzed. The first derived program is presented
as a result and the synthesis stops. A useful extension to the system would be to
specify additional restrictions as the type of recursion (for example, requiring the
program be tail recursive). The number of resolved tasks can be greater after adding
new sorts to the system, by enlarging the set of know axioms and well founded
relations.

5 Conclusions

In this paper we have investigated the application of proof planning to the automatic
synthesis of functional programs. The work developed out of existing work in
synthesis by the deductive tableau method and in rippling.

The main goal was to develop some techniques that allow to plan the proof
construction in the deductive tableau for performing fully automatic synthesis at a
reasonable time. Our work made the following principal contributions:
• The particular information about sorts and their hierarchy in the theory of integers

and in the theory of lists allowed to avoid incorrectly synthesized programs.

• We have applied rippling heuristic for planning the proof in the deductive tableau.

• The proposed techniques were implemented in the system ALISA, reducing
number of rules applications by several orders.

Although we are still far away from automatically synthesizing complex programs
from their formal specifications, but we have made progress towards that goal by
reducing time required for automatic synthesis of some tasks and rippling heuristic
has played a crucial role in this success.

References

1. Armando A., Smaill A. and Green I. Automatic Synthesis of Recursive Programs: The
Proof-Planning Paradigm. Automated Software Engineering, 6(4): 329-356, 1999.

2. Ayari A., Basin D. A Higher-Order Interpretation of Deductive Tableau. Journal of
symbolic computation, 31(5): 487-520, 2001

3. Basin D., Walsh T. Difference Unification // – Ruzena Bajcsy (Ed.): Proceedings of the
13th IJCAI, Morgan Kaufmann, p. 116-122,1993.

252 Y. Korukhova

4. Basin, D., Walsh, T.: A Calculus for and Termination of Rippling.// Journal of Automated
Reasoning, vol. 16 147-180, 1996

5. Bundy, A., Stevens A., van Harmelen,.F., Ireland, A., Smaill, A. Rippling: A heuristic for
guiding inductive proofs.// Artificial Intelligence, vol 62, 1993

6. Bundy A. The Automation of Proof by Mathematical Induction. Handbook of automated
reasoning, vol.1, Elsevier Science Publishers B.V, 2001

7. Bundy A., Basin D., Hutter D.,Ireland A. Rippling: Meta-level Guidance for Mathematical
Reasoning. Cambridge University Press, 2005

8. Burback R., Manna Z. and Waldinger R. et al. Using the Deductive Tableau System.
MacIntosh Educational Software Collection, Chariot Software Group, 1990

9. Chang C.-L., Lee R. Symbolic Logic and Mechanical Theorem Proving, Academic Press
Inc., New York, San Francisco, London, 1973

10. Korukhova Y. Planning Proof in the Deductive Tableau Using Rippling. Proceedings of
the 5th International Conference RASC, Nottingham Trent University, UK, 384-389, 2004

11. Kraan I., Basin D., Bundy A. Middle-Out Reasoning for Synthesis and Induction. Journal
of Symbolic Computation, 16(1-2): 113-145, 1996.

12. Lee R.C.T., Chang C.L., Waldinger R.J. An Improved program synthesizing algorithm and
its correctness // Communications ACM, 17(4): 211-217, 1974

13. Manna Z. and Waldinger R. A Deductive approach to Program Synthesis, ACM Trans.
Programming Languages and Systems 2 (1): 90-121, 1980

14. Manna Z. and Waldinger R. Fundamentals of Deductive Program Synthesis. IEEE
Transactions on Software Engineering, 18(8): 674-704, 1992

15. Paulson L.C. Isabelle: A generic theorem prover. Lecture Notes in Computer Science
828:xvii-321, 1994.

16. Pientka, B., Kreitz, C. Automating inductive specification proofs. // Fundamenta
Informatica, vol. 39(1-2), IOS Press, p. 189-208, 1999.

17. Simon H.A. Experiments with a Heuristic Compiler // Journal ACM, 10(4):493-506, 1963.
18. Traugott J. Deductive Synthesis of Sorting Programs. Journal of Symbolic Computation, 7:

533-572, 1989.
19. Tyugu E.H. Konceptual'noe programmirovanie (Conceptual programming) – Moscow,

Nauka, 1984 (in Russian)

A Fault-Tolerant Default Logic�

Zhangang Lin, Yue Ma, and Zuoquan Lin

School of Mathematical Sciences
Peking University, Beijing 100871,China
{zglin, mayue, lz}@is.pku.edu.cn

Abstract. Reiter’s default logic can not handle inconsistencies and in-
coherences and thus is not satisfactory enough in commonsense reason-
ing. In the paper we propose a new variant of default logic named FDL in
which the existence of extension is guaranteed and the trivial extension
is avoided. Moreover, Reiter’s default extensions are reserved and can be
identified from the other extensions in FDL. Technically, we develop a
paraconsistent and monotonic reasoning system based on resolution as
the underlying logic of FDL. The definition of extension is also modified
in the manner that conflicts between justifications of the used defaults
and the conclusions of the extension, which we call justification conflicts,
are permitted, so that justifications can not be denied by “subsequent”
defaults and the existence of extension is guaranteed. Then we select
the desired extensions as preferred ones according to the criteria that
justification conflicts should be minimal.

1 Introduction

Reiter’s default logic[1] is a most advocated nonmonotonic reasoning system. It
augments classical logic by defaults that differ from standard inference rules in
sanctioning inferences that rely on given as well as absent information. Knowl-
edge is represented in default logic by a default theory 〈D,W 〉 consisting of a
set of defaults D and a set of formulas W . Formulas in W are the axioms of the
default theory. A default α:β1,···,βn

γ has two types of antecedents: α is called the
prerequisite and is established if α is derivable, and for 1 ≤ i ≤ n, βi is called
a justification and is established if ¬βi can not be derived. If both conditions
hold, the default is applicable and the consequent γ is concluded. An extension
of a default theory which is a fixpoint of the belief revision operator w.r.t. the
default theory can be viewed as a belief set described by the default theory. For
clarity, we use the term default logic to refer to Reiter’s default logic and call
extension in Reiter’s default logic default extension.

Despite its simple syntax and powerful expressivity, Reiter’s default logic is
not satisfactory enough in the following two aspects. On the one hand, a default
theory has only a trivial default extension that includes every formula once the
axioms in the default theory have contradictions (see Proposition 3). That is,
� This work is partially supported by NSFC (grant number 60373002 and 60496322)

and NKBRPC (grant number 2004CB318000).

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 253–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

254 Z. Lin, Y. Ma, and Z. Lin

contradictions in the axioms damage the meaningful information of a default
theory. Such contradictions are called inconsistencies and are represented by
the curve labeled with 1 in Figure 1. A default theory is inconsistent if it has
inconsistencies, otherwise it is consistent.

Jus tfications

Axioms C onsequents

4

2

1 3

Fig. 1. Inconsistencies and Incoherences

On the other hand, some contradictions in a default theory cause the nonex-
istence of extension. We call such contradictions incoherences. A default theory
is incoherent if it has no default extension, otherwise it is coherent. Incoher-
ences may be categorized into three sorts shown in the following three examples
respectively.

Example 1. T = 〈D,W 〉, where D = { :B
¬A} and W = {A}. In T incoherences oc-

cur betweenW and the consequents of applicable defaults, which are represented
by the line labeled with 2 in Figure 1.

Example 2. T = 〈D,W 〉, where D = { :B
C ,

:D
¬C } and W = ∅. In T incoherences

occur in the consequents of applicable defaults, which are represented by the
curve labeled with 3 in Figure 1.

Example 3. T = 〈D,W 〉, where D = { :¬B
A } and W = {A → B}. In T inco-

herences occur between the justifications of used defaults and the consequences
of (W and the consequents of used defaults), which are represented by the line
labeled with 4 in Figure 1.

Some researchers hold the view that triviality and the nonexistence of extension
of a given default theory are not shortcomings of default logic, and sometimes
they are useful when default logic is used as a problem solver. For instance, a
planning problem may be represented by a default theory whose default exten-
sions correspond to the solutions of the problem and the incoherences of this
default theory tell us that the problem has no solution. With this viewpoint,
they have made efforts to find characterizations of default theories that have
default extensions[1, 2, 3, 4].

The above viewpoint is reasonable in some aspects but does not seem to be
sound when it turns to commonsense reasoning, since commonsense is always
inconsistent and incoherent and we expect that some meaningful conclusions
can still be reached even the knowledge is inconsistent or incoherent.

A Fault-Tolerant Default Logic 255

According to the above analysis, some researchers believe that Reiter’s de-
fault logic is not fault-tolerant enough. Some of them refer to paraconsistent
logic[5, 6, 7, 8], multi-valued logic[9, 10, 11, 12] in particular, to overcome incon-
sistencies, such as Bi-default logic[13] and four-valued default logic[14]. To deal
with incoherences, some researchers modify Reiter’s definition of extension to
guarantee the existence of extension, among which are justified default logic[15],
constrained default logic[16] and cumulative default logic[17].

The above five default reasoning systems are good attempts to extract mean-
ingful information from a default theory with inconsistencies or incoherences,
but they fail to handle inconsistencies and incoherences simultaneously. More-
over, justified default logic and constrained default logic can not identify default
extensions from the other extensions and therefore they can not solve some
problems that Reiter’s default logic can, e.g. they are not suitable as problem
solvers.

In the paper we propose a default reasoning system called FDL(shorted for
Fault-tolerant Default Logic) in which every default theory has at least one
extension and the trivial extension is avoided. Thus FDL can extract mean-
ingful information from a default theory with inconsistencies and incoherences,
which indicates that it can perform better than other default reasoning sys-
tems in commonsense reasoning. Besides its fault-tolerance, we also show that
Reiter’s default extensions are reserved and can be identified from the other ex-
tensions, which makes FDL able to solve the problems that Reiter’s default logic
can.

To overcome inconsistencies, it is natural that the underlying logic of FDL
should be paraconsistent. But a paraconsistent logic is not adequate, since if
it is nonmonotonic, the existence of extension can not be ensured—using an
applicable default may make the prerequisite of a used default not derivable
and thus inapplicable. Besides, to reserve Reiter’s default extensions, the
underlying logic should coincide with classical logic as to consistent sets of
formulas. Since most existing paraconsistent logics which coincide with clas-
sical logic as to consistent sets of formulas are nonmonotonic, we need to
develop a paraconsistent and monotonic one. To guarantee the existence of
extension, we have to go further—a paraconsistent and monotonic underlying
logic can only resolve contradictions represented by 1, 2 and 3 in Figure 1.
To resolve contradictions represented by 4 in Figure 1, the definition of ex-
tension needs to be modified. In FDL, the modification is in the manner that
justifications of the used defaults should be most consistent with the conclu-
sions of the default theory, i.e. justification conflicts which are minimized are
permitted.

To sum up, our work may be divided into the following steps:

1. Develop a paraconsistent and monotonic reasoning system as the underlying
logic to handle inconsistencies.

2. Modify the definition of default extension so that FDL can tolerate incoher-
ences and the existence of extension is guaranteed.

3. Select desired extensions.

256 Z. Lin, Y. Ma, and Z. Lin

Step 1 and 2 make FDL able to tolerate inconsistencies and incoherences, but
at the cost that some counter-intuitive extensions may appear. With Step 3, these
counter-intuitive extensions are excluded and desired ones are reserved. The
trick—first guarantee the existence, then select desired ones—is also involved in
preferred models[18, 19, 11] of multi-valued logic.

The rest of the paper is structured as follows. In Section 2 we briefly review
Reiter’s default logic. In Section 3 we introduce the paraconsistent and mono-
tonic underlying reasoning system of FDL. Our system is represented in Section
4. Some properties of FDL are also studied in this section. We compare our work
with others in Section 5 and conclude the paper in Section 6.

2 Default Logic

We start by completing our initial introduction to Reiter’s default logic.
Throughout this paper, let L be a propositional language. We use Greek and

uppercase letters to represent the formulas and the atoms in L respectively.
Each atom A and its negation ¬A are called literals which are represented by
lowercase letters. The connectives in L are defined in the canonical manner. We
write � for the provability relation in classical logic. The set of consequences of
S is defined as Cn(S) = {α ∈ L |S � α}, where S is a set of formulas in L.

A default is normal if it is of the form α:β
β . LetD be a set of defaults. ByPre(D),

Just(D) and Con(D), we denote the sets of prerequisites, justifications and con-
sequents of the defaults inD respectively. A set of defaultsD and a set of formulas
W form a default theory 〈D,W 〉, which is normal if all defaults in D are normal.
For simplicity, we assume that W and D are both finite. A default theory may
induce one, multiple or even no default extensions in the following way.

Definition 1 ([1]). Let T = 〈D,W 〉 be a default theory. For any set of formulas
S, Γ (S) is the smallest set of formulas such that

1. Γ (S) = Cn(Γ (S)).
2. W ⊆ Γ (S).
3. If α:β1,···,βn

γ ∈ D, α ∈ Γ (s), and ¬β1 �∈ S, · · ·, ¬βn �∈ S, then γ ∈ Γ (S).

A set of formulas E is a default extension of 〈D,W 〉 if Γ (E) = E.

The set of generating defaults for E w.r.t. default theory T is defined as

GD(E, T) =
{
α : β1, · · · , βn

γ
∈ D |α ∈ E,¬β1 �∈ E, · · · ,¬βn �∈ E

}

Proposition 1 ([1]). If E is a default extension of default theory T = 〈D,W 〉,
then E = Cn(W ∪ Con(GD(E, T))).

Proposition 2 ([1]). Let T = 〈D,W 〉 be a default theory. For any set of for-
mulas E, define E0 = W and for each i ≥ 0

A Fault-Tolerant Default Logic 257

Ei+1 =Cn(Ei)∪
{
γ

∣∣∣∣α : β1, · · · , βn

γ
∈ D, where α ∈ Ei,¬β1 �∈ E, · · · ,¬βn �∈ E

}

Then E is a default extension of T iff E =
⋃∞

i=0Ei.

Proposition 3 ([1]). Default theory T = 〈D,W 〉 has only a trivial default
extension iff W is inconsistent.

Proposition 4 ([1]). Each normal default theory has at least one default ex-
tension.

3 The Underlying Logic

Since we base the underlying logic on resolution, we have to convert formulas
into clauses. If a formula contains inconsistencies, there would be more than one
set of clauses corresponding to it and the result of resolution is different. Hence
a “normal” form of clauses is necessary.

Definition 2. Let α be a formula which is not a tautology in L and P1, · · · , Pn be
all atoms occurring in α. We say formula β = (l11∨· · ·∨l1n)∧· · ·∧(lm1∨· · ·∨lmn)
is a principal conjunctive normal form of α if

1. α is equivalent to β.
2. lij is Pj or ¬Pj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

If α is a tautology, define the principal conjunctive normal form of α to be t.

Definition 3. Let α be a formula in L. The set of principal clauses of α is
defined as C(α) = {{l1, · · · , ln}|l1∨· · ·∨ln is a conjunct of a principal conjunctive
normal form of α}. Let S be a set of formulas in L. The set of principal clauses
of S is C(S) =

⋃
α∈S C(α).

Lemma 1. Each set of formulas has exactly one set of principal clauses.

Definition 4. A set of clauses S is resolution closed if {A} ∪ C1 ∈ S and
{¬A} ∪C2 ∈ S imply C1 ∪C2 ∈ S, provided that C1 ∪C2 is not empty and A is
an atom. The smallest set that includes S and is resolution closed is called the
resolution closure of S written as RC(S).

Definition 5. A set of clauses S is appending closed if

1. {t} ∈ S.
2. If C1 ∈ S and C1 ⊆ C2, then C2 ∈ S.

The appending closure of S written as AC(S) is the smallest set that includes
S and is appending closed.

Definition 6. Let α be a formula and S be a set of formulas in L. If C(α) ⊆
AC(RC(C(S))), we say that α is monotonically derivable from S written as
S �mc α. The monotonic closure of S is defined as MC(S) = {α ∈ L|S �mc α}.

258 Z. Lin, Y. Ma, and Z. Lin

Example 4. Assume S={A,A→ B}. Then C(S)={{A}, {¬A, B}}, RC(C(S))=
{{A}, {¬A,B}, {B}}, AC(RC(C(S))) ={{t}, {A}, {¬A,B}, {B}, · · ·}. Since
C(A∧B)={{A, B}, {A, ¬B}, {¬A, B}} ⊆ AC(RC(C(S))), S �mc A∧B. It can
be verified that MC(S)=Cn(S). Now let S′ = S ∪ {¬A}. Then C(S′)={{¬A},
{A}, {¬A, B}}, RC(C(S′))={{¬A}, {A}, {¬A, B}, {B}}, AC(RC(C(S′)))=
{{t}, {¬A}, {A}, {¬A, B}, {B}, · · ·}. Therefore MC(S′)={¬A, A, A → B, B,
A ∨ B, ¬A ∨ B, A ∧ ¬A, · · ·}. It is readily to verify that MC(S) ⊆ MC(S′).
Also S′ ��mc C for any atom C not occurring in S′, which indicates that MC is
paraconsistent.

From the above example, we notice that inconsistencies can be conquered with
MC. Moreover, MC is monotonic, as stated by the following proposition.

Proposition 5 (Monotonicity of MC). If S ⊆ S′, then MC(S) ⊆MC(S′).

Proposition 6. If S is classically consistent, then MC(S) ≡ Cn(S).

Proposition 6 implies that, although MC is strictly weaker than Cn(since MC
is paraconsistent), they are identical as to consistent sets of formulas.

In [20], Lehmann suggests that the reasoning relation �p in a plausibility logic
should satisfy the following conditions:

1. Inclusion: Γ �p α if α ∈ Γ .
2. Right Monotonicity: If Γ �p α, then Γ �p α ∨ β for any formula β.
3. Cautious Left Monotonicity: If Γ �p α and Γ �p β, then Γ ∪ {α} �p β.
4. Cautious cut: If Γ ∪ {α} �p β and Γ �p α, then Γ �p β.

It can be verified that �mc satisfies all of the above conditions but cautious
cut. It means that a derived formula can not be used as a lemma to infer new
formulas, i.e. cumulativity does not hold as to �mc. Therefore �mc is not a
plausibility logic in the above sense.

4 Fault-Tolerant Default Logic

4.1 Alternative Extension

To this point, we modify the definition of default extension.

Definition 7. Let T = 〈D,W 〉 be a default theory. For the sets of formulas E,
J and E′, we say that default δ = α:β1,···,βn

γ is applicable to E′ w.r.t. E and J
if

1. α ∈ E′.
2. ¬βi �∈ E or there is a formula equivalent to ¬βi in E ∩J for each 1 ≤ i ≤ n.

For sets of formulas E and J , we say pair 〈E, J〉 is smaller than 〈E′, J ′〉 writ-
ten as 〈E, J〉 ≤ 〈E′, J ′〉 if E ⊆ E′ and J ⊆ J ′. 〈E, J〉 is consistent if E is
consistent.

A Fault-Tolerant Default Logic 259

Definition 8. Let T = 〈D,W 〉 be a default theory. Γ (〈E, J〉) is the smallest
pair 〈E′, J ′〉 such that

1. W ⊆ E′

2. E′ = MC(E′)
3. If α:β1,···,βn

γ ∈ D is applicable to E′ w.r.t. E and J , then γ ∈ E′, ¬β1 ∈ J ′,
· · ·, ¬βn ∈ J ′.

A pair 〈E, J〉 is an alternative extension of T = 〈W,D〉 if 〈E, J〉 = Γ (〈E, J〉).
With the similar approach in [21], we can verify that Γ and alternative extension
are well-defined.

Theorem 1. Let T = 〈D,W 〉 be a default theory. For the sets of formulas E
and J , define E0 =MC(W), J0 = ∅, and for i ≥ 0

Ei+1 = MC(Ei) ∪
{
γ

∣∣∣∣α : β1, · · · , βn

γ
∈ D is applicable to Ei w.r.t. E and J

}

Ji+1=Ji∪
{
¬β1, · · · ,¬βn

∣∣∣∣α : β1, · · · , βn

γ
∈D is applicable to Ei w.r.t. E and J

}
Then 〈E, J〉 is an alternative extension of T iff E =

⋃∞
i=0Ei and J =

⋃∞
i=0 Ji.

Definition 9. The set of generating defaults for pair 〈E, J〉 w.r.t. default theory
T written as GD(E, J, T) is

GD(E, J, T) =
{
δ

∣∣∣∣δ =
α : β1, · · · , βn

γ
∈ D is applicable to E w.r.t. E and J

}

Theorem 2. For the sets of formulas E and J , if 〈E, J〉 is an alternative ex-
tension of default theory T = 〈D,W 〉, then E = MC(W ∪ Con(GD(E, J, T)))
and J = {¬β|β ∈ Just(GD(E, J, T))}.
The following two examples indicate that alternative extension could tolerate all
contradictions shown in Figure 1.

Example 5. Consider default theory T = 〈D,W 〉, where D = {B:C
D } and W =

{A,¬A,A → B}. According to Proposition 3, T has only a trivial default ex-
tension. Contrarily, since the underlying logic of FDL is paraconsistent, it has a
nontrivial alternative extension 〈MC({A,¬A,A→ B,D}), {¬C}〉.
Example 6. Consider the default theories in Example 1, 2 and 3. They have
〈MC({A, ¬A}), {¬B}〉, 〈MC({C, ¬C}), {¬B, ¬D}〉 and 〈MC({A, A → B,
B}), {¬¬B}〉 as their alternative extensions respectively.

4.2 Operational Considerations

In [22], an operational semantics is assigned to Reiter’s default logic. We can do
the similar thing to alternative extension. Let T = 〈D,W 〉 be a default theory
and Π = 〈d1, d2, · · ·〉 be a sequence of defaults from D. We denote the initial
segment of Π of length k by Πk, provided that the length of Π is at least k, and
define In(Πi) =MC(W ∪ Con(Πi)), Out(Πi) = {¬β|β ∈ Just(Πi)}.

260 Z. Lin, Y. Ma, and Z. Lin

Definition 10. A default d = α : β1, · · · , βn/γ is applicable to a sequence Π if

1. α ∈ In(Π).
2. ¬βi �∈ In(Π) or there is a formula equivalent to ¬βi in In(Π)∩Out(Π) for

each 1 ≤ i ≤ n.

Definition 11. A sequence Π = 〈d1, d2, · · ·〉 in D is a process if dk is applicable
to Πk−1 for every k ≥ 1. Process Π is closed if every d ∈ D that is applicable
to Π already occurs in Π.

Lemma 2. Each default theory has at least one closed process.

Since justifications of used defaults in a process can not be invalidated by sub-
sequent defaults, we have Lemma 3 and Theorem 3.

Lemma 3. If Π is a closed process of default theory T , then 〈In(Π), Out(Π)〉
is an alternative extension of T .

Theorem 3 (Semimonotonicity). If T = 〈D,W 〉 and T ′ = 〈D′,W 〉 are two
default theories, where D ⊆ D′, and 〈E, J〉 is an alternative extension of T , then
T ′ must have an alternative extension 〈E′, J ′〉 such that 〈E, J〉 ≤ 〈E′, J ′〉.

From Lemma 2 and 3, we immediately have

Theorem 4 (Existence of Alternative Extension). Each default theory has
at least one alternative extension.

For an alternative extension 〈E, J〉, if there is a closed process Π such that
In(Π) = E and Out(Π) = J , we say 〈E, J〉 has Π corresponding to it. Although
Definition 11 and Lemma 3 imply that each closed process corresponds to an
alternative extension, there are some alternative extensions that have no process
corresponding to them, i.e. some alternative extensions are not constructive.

Example 7. Consider default theory T = 〈D,W 〉, where D = { :A
B ,

:¬B
¬A } and

W = ∅. T has just two closed processes: 〈 :AB 〉 and 〈 :¬A
¬B 〉. There is no closed

process corresponding to alternative extension 〈MC({¬A,B}), {¬A,¬¬B}〉.

4.3 The Largest and the Minimal Alternative Extensions

Minimality does not hold as to alternative extension.

Example 8. Let D = { :A
B , :¬B

C } andW = ∅. It can be verified that default theory
T = 〈D, W 〉 has two alternative extensions: 〈E1, J1〉=〈MC({B}), {¬A}〉 and
〈E2, J2〉=〈MC({B, C}), {¬A, ¬¬B}〉. Since E1 ⊂ E2, J1 ⊂ J2, 〈E1, J1〉 <
〈E2, J2〉.

This is not occasional. As a matter of fact, we have

Theorem 5. If 〈Ek, Jk〉 are alternative extensions of default theory T for each
k = 1, 2, · · ·, then there must exist the smallest alternative extension 〈E, J〉 of T

A Fault-Tolerant Default Logic 261

that is bigger than 〈Ek, Jk〉 for each k such that E =
⋃∞

i=0 Fi and J =
⋃∞

i=0Ki,
where F0 =

⋃
k Ek, K0 =

⋃
k Jk, and for i ≥ 0

Fi+1 =MC(Fi) ∪
{
γ

∣∣∣∣α : β1, · · · , βn

γ
is applicable to Fi w.r.t. Fi and Ki

}

Ki+1= Ki∪
{
¬β1, · · · ,¬βn

∣∣∣∣α : β1, · · · , βn

γ
is applicable to Fi w.r.t. Fi and Ki

}
The above theorem indicates that all the alternative extensions of a default
theory form a complete upper semilattice w.r.t. ≤.

Corollary 1 (Existence of the Largest Alternative Extension). Each
default theory T has an alternative extension 〈E, J〉 such that for each alternative
extension 〈E′, J ′〉 of T , 〈E′, J ′〉 ≤ 〈E, J〉.

Definition 12. For an alternative extension 〈E, J〉 of default theory T , if there
is no alternative extension of T that is smaller than 〈E, J〉, then 〈E, J〉 is a
minimal alternative extension of T .

Theorem 6. If 〈E, J〉 is a minimal alternative extension of default theory T ,
then there must be a closed process Π such that E = In(Π) and J = Out(Π).

The above theorem does not hold vice versa. See the following example.

Example 9. Consider default theory T = 〈D,W 〉, whereD = { :A
B ,

:C
¬A} andW =

∅. Sequence 〈 :AB ,
:C
¬A 〉 is a closed process of T . Therefore 〈E, J〉=〈MC({¬A,B}),

{¬A,¬C}〉 is an alternative extension. However, it is not a minimal alternative
extension(alternative extension 〈MC({¬A}), {¬C}〉 is smaller than 〈E, J〉).

4.4 Preferred Extension

In Example 8, we note that some alternative extensions are counter-intuitive. In
this subsection, we exclude those counter-intuitive ones according to the criteria
that the justification conflicts should be minimal.

Definition 13. Let T be a default theory. An alternative extension 〈E′, J ′〉 of
T is called a preferred extension if E′ ∩ J ′ is minimal in {E ∩ J |〈E, J〉 is an
alternative extension of T }.

Example 10. Let T =〈D,W 〉 be a default theory, whereD={ :A
B ,

:¬B
¬A ,

B:C
C , ¬A:B

B }
andW=∅.T has three alternative extensions: 〈E1, J1〉=〈MC({B,C}), {¬A,¬C}〉,
〈E2, J2〉=〈MC({¬A,B,C}), {¬B,¬¬B,¬C}〉 and 〈E3, J3〉=〈MC({¬A,B,C}),
{¬A,¬¬B,¬C}〉. SinceE1∩J1 = ∅,E2∩J2 = {¬¬B} andE3∩J3 = {¬A,¬¬B},
〈E1, J1〉 is a preferred extension of T , while the other two are not.

Example 11. Let T = 〈D,W 〉 be a default theory, where D = { :A
¬A} and W = ∅.

T has only one alternative extension 〈MC({¬A}), {¬A}〉 which is also the only
preferred extension of T .

262 Z. Lin, Y. Ma, and Z. Lin

Theorem 7 (Existence of Preferred Extension). Each default theory has
at least one preferred extension.

Theorem 8. Each preferred extension is a minimal alternative extension.

The above theorem does not hold vice versa, as shown by the following example.

Example 12. LetD = { :A
B ,

B:C
¬A ,

:¬B
¬A∧¬C } andW = ∅. Default theory T = 〈D,W 〉

has 〈E1, J1〉= 〈MC({¬A,B}), {¬A,¬C}〉, 〈E2, J2〉= 〈MC({¬A,¬C}), {¬¬B}〉
and 〈E3, J3〉 = 〈MC({¬A,B,¬C}), {¬A,¬¬B,¬C}〉 as its alternative exten-
sions, where 〈E1, J1〉 and 〈E2, J2〉 are minimal alternative extensions, but
〈E1, J1〉 is not a preferred extension, whereas 〈E2, J2〉 is.

Corollary 2 (Minimality of Preferred Extension). If 〈E, J〉 and 〈E′, J ′〉
are both preferred extensions of default theory T and 〈E, J〉 ≤ 〈E′, J ′〉, then
E = E′ and J = J ′.

Theorem 9. E is a consistent default extension of default theory T iff T has a
consistent preferred extension 〈E, J〉 such that E ∩ J = ∅.

Semimonotonicity does not hold as to preferred extension(see the following ex-
ample). Therefore semimonotonicity implies the existence of extension, but not
vice versa.

Example 13. Let W = ∅ and D = { :A
B , :¬B

¬A }, D′ = { :A
B , :¬B

¬A , B:¬A
¬A }. Default

theory 〈D, W 〉 has two preferred extensions: 〈E1, J1〉 = 〈MC({B}), {¬A}〉
and 〈E2, J2〉 = 〈MC({¬A}), {¬¬B}〉, while 〈D′, W 〉 has only one preferred
extension: 〈E, J〉 = 〈MC({¬A}), {¬¬B}〉. Although D ⊆ D′, 〈D′, W 〉 has no
preferred extension bigger than 〈E1, J1〉.

Definition 14. If 〈E, J〉 and 〈E′, J ′〉 are preferred extensions of default theory
T such that E ∩ J = E′ ∩ J ′ and {α|α ∧ ¬α ∈ E} ⊂ {α|α ∧ ¬α ∈ E′}, we say
〈E, J〉 is more consistent than 〈E′, J ′〉. If T has no preferred extension more
consistent than 〈E, J〉, 〈E, J〉 is a most consistent preferred extension of T .

Theorem 10 (Existence of Most Consistent Preferred Extension).
Each default theory has at least one most consistent preferred extension.

From Theorem 9, we have

Corollary 3. E is a default extension of consistent and coherent default theory
T iff there is a set of formulas J such that 〈E, J〉 is a most consistent preferred
extension of T and E ∩ J = ∅.

To this point, we have discussed a set of extensions, the inclusion relations among
which are shown in Figure 2. The figure also indicates that to compute all the
preferred extensions and most consistent preferred extensions, it suffices to con-
sider only closed processes which are constructive.

A Fault-Tolerant Default Logic 263

Alternative Extens ion

Closed Proc ess

Minim al Alternative Extens ion

Preferred Extens ion

Defau lt Exten s io n

Most Cons is tent

Preferred Extens ion

Fig. 2. Inclusion Relations

Theorem 11. If T = 〈D,W 〉 is a normal default theory where W is consistent,
then E is a default extension of T iff T has a closed process Π such that In(Π) =
E and In(Π) ∩Out(Π) = ∅.

The above theorem implies that as to a consistent normal default theory, closed
processes, minimal alternative extensions, preferred extensions, most consistent
preferred extensions and default extensions are identical. Theorem 9 and Corol-
lary 3 imply that as to a consistent and coherent default theory, default exten-
sions are identical with consistent preferred extensions as well as most consistent
preferred extensions.

5 Related Work

The main idea of the paper is inspired by Reiter’s seminal paper[1], some variants
of it[15, 17, 16] and Linke et al’s work on default logic[4]. The formal definition
of default extension is more delicate than could have been expected. This is due
to the context-sensitive nature of justifications. In fact, a default’s justifications
can be refuted only when all default consequents contributing to a default ex-
tension are known. This is why the non-refutability of a justification is verified
w.r.t. the final default extension. In such an approach, default extensions are
not constructive and one is obliged to inspect the entire set of defaults to decide
whether a default can be applied.

Reiter[1], Lukaszewicz[15] and Linke[4] have tried to reduce this kind of global
checks to local ones to make extensions constructive. In normal default logic,
defaults are restricted to be normal so that local checks are adequate. Linke et al
replace such global checks by the strictly necessary ones. In justified default logic,
a default is applicable only if its prerequisite is derivable and its justifications
and consequent are consistent with used defaults. Therefore global checks are
unnecessary in justified default logic.

By avoiding this kind of global checks, normal default logic and justified
default logic are seminormal and the existence of extension is guaranteed. But
since the underlying logic of the two are not paraconsistent, the trivial extension
can not be avoided.

Taking no account of the existence of extension, bi-default logic[13] adopts
the approach of signed system[8]. It translates a default theory into two related

264 Z. Lin, Y. Ma, and Z. Lin

default theories which are both consistent. The two related default theories com-
prise a bi-default theory. By dividing the inconsistencies into two parts, bi-default
logic overcomes triviality. Compared with bi-default logic, the approach taken
by Yue et al[14] seems to be more natural. They define four-valued models for an
arbitrary default theory. Since four-valued logic is paraconsistent, all four-valued
models are nontrivial. Similar to bi-default logic, a transformation is introduced
to translate the original default theory to a consistent signed one. What is inter-
esting is, it is proved that four-valued models of the original default theory can
be gained by computing the default extensions of the translated default theory.
Unfortunately, the relationship between four-valued models and extension is not
clear.

The paper is an attempt to resolving inconsistencies and incoherences simul-
taneously. Thus it needs to go further than the above default logics. In FDL,
we also try to avoid global checks: the condition of justification establishing is
weaker than in justified default logic and the original default logic, which makes
“subsequent” defaults would never invalidate used defaults. Moreover, since the
syntax is not modified and default extensions are reserved, FDL retains the
simplicity and powerful expressivity of Reiter’s default logic.

6 Conclusion

Our main contribution in the paper is, based on a paraconsistent and monotonic
reasoning system, we generalize Reiter’s default logic, i.e., each default theory has
at least one extension in FDL and Reiter’s default logic coincides with FDL(when
most consistent preferred extension is used) as to a consistent and coherent
default theory.

Although FDL has some nice properties, the computation of alternative ex-
tensions and preferred extensions is under discussion. Besides, the relationship
between FDL and other default reasoning systems is not so clear, and more
research will be devoted to it.

Not only do inconsistencies and incoherences occur in default logic, but also
they exist in other reasoning systems, in which logic programming is a case in
point. In the future work, we will apply the idea of FDL to other reasoning
systems.

References

1. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81–132
2. Papadimitriou, C.H., Sideri, M.: Default theories that always have extensions.

Artificial Intelligence 69(1-2) (1994) 347 – 357
3. Cholewinski, P.: Reasoning with stratified default theories. Logic Programming

and Nonmonotonic Reasoning 928 (1995) 273–286
4. Linke, T., Schaub, T.: Alternative foundations for Reiter’s default logic. Artificial

Intelligence 124(1) (2000) 31–86
5. daCosta, N.: Theory of inconsistent formal systems. Notre Dame Journal of Formal

Logic 15 (1974) 497–510

A Fault-Tolerant Default Logic 265

6. Lin, Z., Li, W.: On logic of paradox. In: Proceedings of the 25th IEEE International
Symposium on Multipl-Valued Logic. (1995) 248–255

7. Lin, Z.: Paraconsistent circumscription. Journal of Pattern Recognition and Arti-
ficial Intelligence (10(6)) 679–686

8. Besnard, P., Schaub, T.: Signed system for paraconsistent reasoning. Journal of
Automated Reasoning 20(1-2) (1998) 191–213

9. Belnap, N.: How computer should think. In: Contemporary Aspects of Philosophy.
(1977) 7–37

10. Belnap, N.: A useful four-valued logic. In: Modern uses of multiple-valued logic.
(1977) 30–56

11. Arieli, O., Avron, A.: The value of the four values. Artificial Intelligence 102(1)
(1998) 97–141

12. Ginsberg, M.L.: Multivalued logics: a uniform approach to reasoning in artificial
intelligence. Computational Intelligence 4 (1988) 265–316

13. Han, Q., Lin, Z.: Paraconsistent default reasoning. In: 10th International Workshop
on Non-Monotonic Reasoning. (2004) 197–203

14. Yue, A., Lin, Z.: Default logic based on four valued semantics. Chinese journal of
computer 28(9) (2005) 1447–1458

15. Lukaszewicz, W.: Considerations on default logic: an alternative approach. Com-
putational Intelligence 4(1) (1988) 1–16

16. Schaub, T.: On constrained default theories. In: ECAI. (1992) 304–308
17. Brewka, G.: Cumulative default logic: in defense of nonmonotonic inference rules.

Artificial Intelligence 50(2) (1991) 183–205
18. Shoham, Y.: A semantical approach to nonmonotonic logics. In Ginsberg, M.L.,

ed.: Readings in Nonmonotonic Reasoning. Kaufmann, Los Altos, CA (1987)
227–250

19. Shoham, Y.: Reasoning about change: time and causation from the standpoint of
artificial intelligence. MIT Press, Cambridge, MA, USA (1988)

20. Lehmann, D.J.: Plausibility logic. In: CSL. (1991) 227–241
21. Marek, W., Truszczyński, M.: Nonmonotonic logic: Context-dependent reasoning.

Springer-Verlag, Berlin (1994) 61–62
22. Antoniou, G., Sperschneider:, V.: Operational concepts of nonmonotonic logics,

part 1: Default logic. Artificial Intelligence 8(1) (1994) 3–16

Reasoning About Actions Using Description
Logics with General TBoxes

Hongkai Liu1, Carsten Lutz1, Maja Miličić1, and Frank Wolter2

1 Institut für Theoretische Informatik
TU Dresden, Germany

lastname@tcs.inf.tu-dresden.de
2 Department of Computer Science

University of Liverpool, UK
frank@csc.liv.ac.uk

Abstract. Action formalisms based on description logics (DLs) have
recently been introduced as decidable fragments of well-established ac-
tion theories such as the Situation Calculus and the Fluent Calculus.
However, existing DL action formalisms fail to include general TBoxes,
which are the standard tool for formalising ontologies in modern descrip-
tion logics. We define a DL action formalism that admits general TBoxes,
propose an approach to addressing the ramification problem that is in-
troduced in this way, show that our formalism is decidable and perform
a detailed investigation of its computational complexity.

1 Introduction

Action theories such as the Situation Calculus (SitCalc) and the Fluent Cal-
culus aim at describing actions in a semantically adequate way [10, 12]. They
are usually formulated in first- or higher-order logic and do not admit decidable
reasoning. For reasoning about actions in practical applications, such theories
are thus not directly suited. There are two obvious ways around this problem:
the first one is to accept undecidability and replace reasoning by programming.
This route is taken by the inventors of action-oriented programming languages
such as Golog [5] and Flux [13], whose semantics is based on the SitCalc and
Fluent Calculus, respectively. The second one is to try to identify fragments of
action theories such as SitCalc that are sufficiently expressive to be useful in
applications, but nevertheless admit decidable reasoning. For example, a simple
such fragment is obtained by allowing only propositional logic for describing the
state of the world and pre- and post-conditions of actions. A much more ex-
pressive formalism was identified in our recent paper [2], where we define action
formalisms that are based on description logics (DLs) [3]. More precisely, we use
DL ABoxes to describe the state of the world and pre- and post-conditions of
actions and prove that reasoning in the resulting formalism is decidable [2]. We
also show in [2] that, in this way, we actually get a decidable fragment of SitCalc.

In description logic, TBoxes are used as an ontology formalism, i.e., to define
concepts and describe relations between them. For example, a TBox may describe

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 266–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reasoning About Actions Using Description Logics with General TBoxes 267

relevant concepts from the domain of universities such as lecturers, students,
courses, and libraries. From the reasoning about actions perspective, TBoxes
correspond to state constraints. For example, a TBox for the university domain
could state that every student that is registered for a course has access to a
university library. If we execute an action that registers the student Dirk for a
computer science course, then after the action Dirk should also have access to
a university library to comply with the state constraint imposed by the TBox.
Thus, general TBoxes as state constraints induce a ramificiation problem.

Regarding TBoxes/state constraints, the DL action formalism defined in [2]
has two major limitations: first, we only admit acyclic TBoxes which are a
much more lightweight ontology formalism than the general TBoxes that can be
found in all state-of-the-art DL reasoners [17]. For example, the DL formulation
of the above ontology statement regarding access to libraries requires a general
concept inclusion (GCIs) as offered by general TBoxes. Second, we allow only
concept names (but no complex concepts) in post-conditions and additionally
stipulate that these concept names are not defined in the TBox. In the present
paper, we present a pragmatic approach to overcoming these limitations while
retaining decidability of reasoning. In particular, we show how to incorporate
general TBoxes into DL action formalisms which also means to drop the second
restriction since there is no clear notion of a concept name “being defined” in a
general TBox.

The main reason for adopting the mentioned restrictions in [2] was that they
disarm the ramification problem that is introduced by more general TBoxes and
post-conditions, c.f. the above example. Attempts to automatically solve the ram-
ificiation problem, e.g. by adopting a Winslett-style PMA semantics [16], lead
to semantic and computational problems: we show in [2] that counter-intuitive
results and undecidability of reasoning are the consequence of adopting such
a semantics. Since there appears to be no general automated solution to the
ramification problem introduced by general TBoxes unless resorting to very in-
expressive DLs [4], we propose to leave it to the designer of an action description
to fine-tune the ramifications of the action. This is similar to the approach taken
in the SitCalc and the Fluent Calculus to address the ramification problem.
There, the designer of an action description can control the ramifications of the
action by specifying causal relationships between predicates [6, 11]. While causal-
ity appears to be a satisfactory approach for addressing the ramification problem
that is induced by Boolean state constraints, it seems not powerful enough for
attacking the ramifications introduced by general TBoxes, which usually involve
complex quantification patterns. We therefore advocate a different approach for
DL action formalisms with general TBoxes: when describing an action, the user
can specify the predicates that can change by executing the action, as well as
those that cannot change. To allow an adequate fine-tuning of ramifications, we
admit rather complex statements about the change of predicates such as “the
concept name A can change from positive to negative only at the individual a,
and from negative to positive only where the complex concept C was satisfied
before the action was executed”.

268 H. Liu et al.

Name Syntax Semantics

inverse role r− (rI)−1

nominal {a} {aI}
negation ¬C ΔI \ CI

conjunction C �D CI ∩DI

disjunction C �D CI ∪DI

at-least restriction (� n r C) {x ∈ ΔI | #{y ∈ CI | (x, y) ∈ rI} ≥ n}
at-most restriction (� n r C) {x ∈ ΔI | #{y ∈ CI | (x, y) ∈ rI} ≤ n}

Fig. 1. Syntax and semantics of ALCQIO

The family of action formalisms introduced in this paper can be parame-
terised with any description logic. We show that, for many standard DLs, the
reasoning problems executability and projection in the corresponding action for-
malism are decidable. We also pinpoint the exact computational complexity of
these reasoning problems. As a rule of thumb, our results show that reasoning in
the action formalism instantiated with a description logic L is of the same com-
plexity as standard reasoning in L extended with nominals (which correspond to
first-order constants [1]). For fine-tuning ramifications, deciding the consistency
of actions is of prime importance. We introduce two notions of consistency (weak
and strong) and show that one of them is of the same complexity as deciding
projection while the other one is undecidable even when the action formalism is
instantiated with the basic DL ALC. Details regarding the technical results can
be found in the report [7].

2 Description Logics

In DLs, concepts are inductively defined with the help of a set of constructors,
starting with a set NC of concept names, a set NR of role names, and (possibly) a
set NI of individual names. In this section, we introduce the DL ALCQIO, whose
concepts are formed using the constructors shown in Figure 1. There, the inverse
constructor is the only role constructor, whereas the remaining six constructors
are concept constructors. In Figure 1 and throughout this paper, we use #S to
denote the cardinality of a set S, a and b to denote individual names, r and s
to denote roles (i.e., role names and inverses thereof), A,B to denote concept
names, and C,D to denote (possibly complex) concepts. As usual, we use �
as abbreviation for an arbitrary (but fixed) propositional tautology, ⊥ for ¬�,
→ and ↔ for the usual Boolean abbreviations, ∃r.C (existential restriction) for
(� 1 r C), and ∀r.C (universal restriction) for (� 0 r ¬C).

The DL that allows only for negation, conjunction, disjunction, and universal
and existential restrictions is called ALC. The availability of additional con-
structors is indicated by concatenation of a corresponding letter: Q stands for
number restrictions; I stands for inverse roles, and O for nominals. This explains

Reasoning About Actions Using Description Logics with General TBoxes 269

the name ALCQIO for our DL, and also allows us to refer to its sublanguages
in a simple way.

The semantics of ALCQIO-concepts is defined in terms of an interpretation
I = (ΔI , ·I). The domain ΔI is a non-empty set of individuals and the in-
terpretation function ·I maps each concept name A ∈ NC to a subset AI of
ΔI , each role name r ∈ NR to a binary relation rI on ΔI , and each individual
name a ∈ NI to an individual aI ∈ ΔI . The extension of ·I to inverse roles
and arbitrary concepts is inductively defined as shown in the third column of
Figure 1.

A general concept inclusion axiom (GCI) is an expression of the form C (D,
where C and D are concepts. A (general) TBox T is a finite set of GCIs. An
ABox is a finite set of concept assertions C(a) and role assertions r(a, b) and
¬r(a, b) (where r may be an inverse role). An interpretation I satisfies a GCI
C (D iff CI ⊆ DI , a concept assertion C(a) iff aI ∈ CI , a role assertion
r(a, b) iff (aI , bI) ∈ rI , and a role assertion ¬r(a, b) iff (aI , bI) /∈ rI . We denote
satisfaction of a GCI C (D by an interpretation I with I |= C (D, and similar
for ABox assertions. An interpretation I is a model of a TBox T (written I |= T)
iff it satisfies all GCIs in T . It is a model of an ABox A (written I |= A) iff it
satisfies all assertions in A.

A concept C is satisfiable w.r.t. a TBox T iff CI �= ∅ for some model I of T .
An ABox A is consistent w.r.t. a TBox T iff A and T have a common model.

3 Describing Actions

The action formalism proposed in this paper is not restricted to a particular
DL. However, for our complexity results we consider the DL ALCQIO and its
sublogics. In the following, we use LO to denote the result of extending the DL
L with nominals. A concept literal is a concept name or the negation thereof,
and a role literal is defined analogously.

Definition 1 (Action). Let L be a description logic. An L-action α = (pre,
occ, post) consists of

– a finite set pre of L ABox assertions, the pre-conditions;
– the occlusion pattern occ which is a set of mappings {occϕ1 , . . . , occϕn} in-

dexed by L ABox assertions ϕ1, . . . , ϕn such that each occϕi assigns
• to every concept literal B an LO-concept occϕi(B),
• to every role literal s a finite set occϕi(s) of pairs of LO-concepts.

– a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ
and ψ are L ABox assertions.

Intuitively, the pre-conditions specify under which conditions the action is ap-
plicable. The post-condition ϕ/ψ says that, if ϕ is true before executing the
action, then ψ should be true afterwards. The purpose of the occlusion pattern
is to control ramifications: they provide a description of where concept and role
names may change during the execution of an action. More precisely, suppose

270 H. Liu et al.

occ = {occϕ1 , . . . , occϕn} and ϕi1 , . . . , ϕim are the assertions which are true
before the action was executed. If A is a concept name, then instances of the
concept

occϕi1
(A) � · · · � occϕim

(A)

may change from A to ¬A during the execution of the action provided, but
instances of ¬(occϕi1

(A) � · · · � occϕim
(A)) may not. Likewise, instances of

occϕi1
(¬A) � · · · � occϕim

(¬A)

may change from ¬A to A. For role names, (C,D) ∈ occϕik
(r) means that pairs

from CI × DI that have been connected by r before the action may lose this
connection through the execution of the action, and similarly for the occlusion of
negated role names. Before giving more details on how occlusions relate to ramifi-
cations, we introduce the semantics of actions. To this end, it is convenient to intro-
duce the following abbreviation. For an action α with occ = {occϕ1 , . . . , occϕn},
an interpretation I, a concept literal B, and a role literal s, we set

occ(B)I :=
⋃

I|=ϕi

(occϕi(B))I occ(s)I :=
⋃

(C,D)∈occϕi
(s),I|=ϕi

(CI ×DI).

Definition 2 (Action semantics). Let α = (pre, occ, post) be an action and
I, I′ interpretations sharing the same domain and interpretation of all individual
names. We say that α may transform I to I ′ w.r.t. a TBox T (I ⇒T

α I ′) iff the
following holds:

– I, I′ are models of T ;
– for all ϕ/ψ ∈ post: I |= ϕ implies I′ |= ψ (written I, I ′ |= post);
– for each A ∈ NC and r ∈ NR, we have

AI \AI′
⊆ (occ(A))I ¬AI \ ¬AI′

⊆ (occ(¬A))I

rI \ rI′ ⊆ (occ(r))I ¬rI \ ¬rI′ ⊆ (occ(¬r))I

Let us explain how occlusions provide a way to control the ramifications induced
by general TBoxes by reconsidering the example from the introduction. The
TBox T contains the following GCIs which say that everybody registered for a
course has access to a university library, and that every university has a library:

∃registered for.Course (∃access to.Library

University (∃has facility.Library

This GCI cannot be expressed in terms of an acyclic TBox and is thus outside
the scope of the formalism in [2]. The ABox A which describes the current state
of the world says that computer science is a course held at TU Dresden, SLUB
is the library of TU Dresden, and Dirk is neither registered for a course nor has
access to a library:

Course(cs) held at(cs, tud) ¬∃registered for.Course(dirk)
University(tud) has facility(tud, slub) ¬∃access to.Library(dirk)
Library(slub)

Reasoning About Actions Using Description Logics with General TBoxes 271

The action
α := (∅, occ, {taut/registered for(dirk, cs)})

describes the registration of Dirk for the computer science course. For simplicity,
the set of pre-conditions is empty and taut is some ABox assertion that is trivially
satisfied, say �(cs). To obtain occ, we may start by strictly following the law of
inertia, i.e., requiring that the only changes are those that are explicitly stated
in the post-condition. Thus, occ consists of just one mapping occtaut such that

occtaut(¬registered for) := {({dirk}, {cs})}

and all concept and role literals except ¬registered for are mapped to ⊥ and
{(⊥,⊥)}, respectively. This achieves the desired effect that only the pair (dirk, cs)
can be added to “registered for” and nothing else can be changed.

It is not hard to see that this attempt to specify occlusions for α is too strict.
Intuitively, not allowing any changes is appropriate for Course, Library, University,
held at, has facility and their negations since the action should have no impact
on these predicates. However, not letting ¬access to change leads to a problem
with the ramifications induced by the TBox: as Dirk has no access to a library
before the action and ¬access to is not allowed to change, he cannot have access
to a library after execution of the action as required by the TBox. Thus, the
action is inconsistent in the following sense: there is no model I of A and T and
model I ′ of T such that I ⇒T

α I ′. To take care of the TBox ramifications and
regain consistency, we can modify occ. One option is to set

occtaut(¬access to) := {({dirk}, Library)}

and thus allow Dirk to have access to a library after the action. Another option
is to set

occtaut(¬access to) := {({dirk}, slub)}

which allows Dirk to have access to SLUB after the action, but not to any other
library.

Two remarks regarding this example are in order. First, the occlusion occ
consists only of a single mapping occtaut. The reason for this is that there is only
a single post-condition in the action. If we have different post-conditions ϕ/ψ
and ϕ′/ψ such that ϕ and ϕ′ are not equivalent, there will usually be different
occlusion mappings (indexed with ϕ and ϕ′) to deal with the ramifications that
the TBox induces for these post-conditions. Second, the example explains the
need for extending L to LO when describing occlusions (c.f. Definition 1): with-
out nominals, we would not have been able to properly formulate the occlusions
although all other parts of the example are formulated without using nominals
(as a concept-forming operator).

As illustrated by the example, it is important for the action designer to de-
cide consistency of actions to detect ramification problems that are not properly
addressed by the occlusions. In the following, we propose two notions of consis-
tency.

272 H. Liu et al.

Definition 3 (Consistency). Let α be an action, T a TBox, and A an ABox.
We say that

– α is weakly consistent with T and A iff there is a model I of T and A, and
a model I′ of T such that I ⇒T

α I ′.
– α is strongly consistent with T and A iff for all models I of T and A, there

is a model I ′ of T such that I ⇒T
α I ′.

Clearly, weak consistency implies strong consistency but not vice versa. In the
example above, the first attempt to define the occlusions results in an action that
is not even weakly consistent. After each of the two possible modifictions, the
action is strongly consistent. We will see later that weak consistency is decidable
while strong consistency is not.

To check whether an action can be applied in a given situation, the user wants
to know whether it is executable, i.e., whether all pre-conditions are satisfied in
the states of the world considered possible. If the action is executable, he wants
to know whether applying it achieves the desired effect, i.e., whether an assertion
that he wants to make true really holds after executing the action. These two
problems are called executability and projection [10, 2].

Definition 4 (Executability and projection). Let α = (pre, occ, post) be an
action, T a TBox, and A an ABox.

– Executability: α is executable in A w.r.t. T iff I |= pre for all models I of
A and T ;

– Projection: The assertion ϕ is a consequence of applying α in A w.r.t. T iff
for all models I of A and T and for all I′ with I ⇒T

α I ′, we have I ′ |= ϕ.

It is not difficult to see that the action formalism just introduced is a gener-
alisation of the one introduced in [2] when composite actions are disallowed,
for details see [7]. Clearly, executability can be polynomially reduced to ABox
consequence which is defined as follows: given an ABox A and an assertion ϕ,
decide whether I satisfies ϕ in all models I of A. The complexity of this prob-
lem is extensively discussed in [2]. For example, it is NExpTime-complete for
ALCQIO and ExpTime-complete for ALC extended with at most two of Q, I,
and O.

It can also be seen that (i) an action α is weakly consistent with a TBox
T and ABox A iff ⊥(a) is not a consequence of applying α in A w.r.t. T ; (ii)
ϕ is a consequence of applying α = (pre, occ, post) in A w.r.t. T iff the action
(pre, occ, post∪ {�(a)/¬ϕ}) is not weakly consistent with T and A. Thus, weak
consistency can be reduced to (non-)projection and vice versa and complexity
results carry over from one to the other. In this paper, we will concentrate on
projection.

4 Projection in ExpTime

We show that projection and weak consistency are ExpTime-complete for DL
actions formulated in ALC, ALCO, ALCI, ALCIO. Thus, in these DLs reason-
ing about actions is not more difficult than the standard DL reasoning problems

Reasoning About Actions Using Description Logics with General TBoxes 273

such as concept satisfiability and subsumption w.r.t. TBoxes. The complexity
results established in this section are obtained by proving that projection in
ALCIO is in ExpTime. We use a Pratt-style type elimination technique as first
proposed in [8].

In the following, we assume that the set occ of occlusions of an action con-
sists of only one mapping occtaut, where taut is �(a). We will identify occ with
the mapping occtaut and write occ(X) instead of occtaut(X). Proofs are easily
extended to actions containing general occlusions, see [7].

Let α = (pre, occ, post) be an action, T a TBox, A0 an ABox and ϕ0 an
assertion. We want to decide whether ϕ0 is a consequence of applying α in A0
w.r.t. T . In what follows, we call α, T , A0 and ϕ0 the input. W.l.o.g., we make
the following assumptions:

– concepts used in the input are built only from the constructors {a}, ¬, �,
and ∃r.C;

– ϕ0 is of the form ϕ0 = C0(a0), where C0 is a (complex) concept;
– A0 and α contain only concept assertions.

The last two assumptions can be made because every assertion r(a, b) can be
replaced with (∃r.{b})(a), and every ¬r(a, b) with (¬∃r.{b})(a).

Before we can describe the algorithm, we introduce a series of notions and
abbreviations. With Sub, we denote the set of subconcepts of the concepts which
occur in the input. With Ind, we denote the set of individual names used in the
input, and set Nom := {{a} | a ∈ Ind}.

The algorithm for deciding projection checks for the existence of a counter-
model witnessing that ϕ0 is not a consequence of applying α in A0 w.r.t. T . Such
a countermodel consists of interpretations I and I′ such that I |= A0, I ⇒T I ′,
and I ′ �|= ϕ0. To distinguish the extension of concept and role names in I and
I ′, we introduce concept names A′ and role names r′ for every concept name A
and role name r used in the input. For a concept C ∈ Sub that is not a concept
name, we use C′ to denote the concept obtained by replacing all concept names
A and role names r occurring in C by A′ and r′, respectively. We define the set
of concepts Cl as:

Cl = {C,¬C,C′,¬C′ | C ∈ Sub ∪ Nom}.

The notion of a type plays a central role in the projection algorithm to be devised.

Definition 5. A set of concepts t ⊆ Cl is a type for Cl iff it satisfies the follow-
ing conditions:

– for all ¬D ∈ Cl: ¬D ∈ t iff D �∈ t;
– for all D � E ∈ Cl: D � E ∈ t iff {D,E} ⊆ t;
– for all C (D ∈ T , C ∈ t implies D ∈ t and C′ ∈ t implies D′ ∈ t;
– for all concept names A, {A,¬A′} ⊆ t implies that occ(A) ∈ t and {¬A,A′}
⊆ t implies that occ(¬A) ∈ t.

274 H. Liu et al.

A type is anonymous if it does not contain a nominal. Let Tano be the set of all
anonymous types.

Intuitively, a type describes the concept memberships of a domain element in the
interpretations I and I ′. Our algorithm starts with a set containing (almost) all
types, then repeatedly eliminates those types that cannot be realized in a coun-
termodel witnessing that ϕ0 is not a consequence of applying α in A0 w.r.t. T ,
and finally checks whether the surviving types give rise to such a countermodel.
The picture is slightly complicated by the presence of ABoxes and nominals.
These are treated via core type sets to be introduced next.

Definition 6. TS is a core type set iff TS is a minimal set of types such that,
for all a ∈ Ind, there is a t ∈ TS with {a} ∈ TS.
A core type set TS is called proper if the following conditions are satisfied:

1. for all C(a) ∈ A0, {a} ∈ t ∈ TS implies C ∈ t;
2. for all C(a)/D(b) ∈ post: if there is a t ∈ TS with {{a}, C} ⊆ t then there

is a t′ ∈ TS with {{b}, D′} ⊆ t′.

Intuitively, a core type set carries information about the “named” part of the
interpretations I0 and I1, where the named part of an interpretation consists of
those domain elements that are identified by nominals. Let m be the size of the
input. It is not difficult to check that the number of core type sets is exponential
inm. Also, checking whether a core type set is proper can be done in linear time.

The following definition specifies the conditions under which a type is elim-
inated. For a role name r, we set occ(r−) := {(Y,X) | (X,Y) ∈ occ(r)}, and
analogously for occ(¬r−). For role names r, we set Inv(r) := r− and Inv(r−) := r.

Definition 7. Let T be a set of types for Cl. Then a type t ∈ T is good in T
iff the following condition is satisfied for all roles r: if ∃r.C1, . . . ,∃r.Ck and
∃r′.D′

1, . . . ,∃r′.D′
m are all concepts of this form in t, then there exist types

t1, . . . , tn ∈ T and sets ρ1, . . . , ρn ⊆ {0, 1}, n ≤ k +m, such that

– for 1 ≤ j ≤ k, there is an � ∈ {1, . . . , n} such that Cj ∈ t� and 0 ∈ ρ�;
– for 1 ≤ j ≤ m, there is an � ∈ {1, . . . , n} such that D′

j ∈ t� and 1 ∈ ρ�;
– if ¬∃r.C ∈ t and 0 ∈ ρj, then ¬C ∈ tj;
– if ¬∃r′.D′ ∈ t and 1 ∈ ρj, then ¬D′ ∈ tj;
– if ¬∃Inv(r).C ∈ tj and 0 ∈ ρj, then ¬C ∈ t;
– if ¬∃Inv(r′).D′ ∈ tj and 1 ∈ ρj, then ¬D′ ∈ t;
– if 0 ∈ ρj and 1 �∈ ρj then there exists a pair (X,Y) ∈ occ(r) such that X ∈ t

and Y ∈ tj,
– if 0 �∈ ρj and 1 ∈ ρj then there exists a pair (X,Y) ∈ occ(¬r) such that
X ∈ t and Y ∈ tj;

Intuitively, the above definition checks whether there can be any instances of t in
an interpretation in which all domain elements have a type in T. More precisely,
t1, . . . , tn are the types of r-successors that are needed to satisfy the existential
restrictions in t. The sets ρ1, . . . , ρn determine the extension of the role r: if

Reasoning About Actions Using Description Logics with General TBoxes 275

ALCIO-elim(A0, T , α, ϕ0)
for all proper core type sets TS do
i := 0;
T0 := TS ∪ Tano
repeat

Ti+1 := {t ∈ Ti | t is good in Ti};
i := i+ 1;

until Ti = Ti−1;
if TS ⊆ Ti and there is a t ∈ Ti with {{a0},¬C′

0} ⊆ t then
return false

endif
endfor
return true

Fig. 2. The type elimination algorithm

0 ∈ ρj , then the instance of t is connected to the r-successor of type tj in I, and
similarly for 1 ∈ ρj and I ′.

The type elimination algorithm is given in a pseudo-code notation in Figure 2,
where C0 is the concept from the ABox assertion ϕ0 = C0(a0). A proof of the
following lemma can be found in [7].

Lemma 1. ALCIO-elim(A0, T , α, ϕ0) returns true iff ϕ0 is a consequence of
applying α in A0 w.r.t. T .

The algorithm runs in exponential time: first, we have already argued that there
are only exponentially many core type sets. Second, the number of elimination
rounds is bounded by the number of types, of which there are only exponentially
many. And third, it is easily seen that it can be checked in exponential time
whether a type is good in a given type set. Since concept satisfiability w.r.t.
TBoxes is ExpTime-hard in ALC [3] and concept satisfiability can be reduced
to (non-)projection [2], we obtain the following result.

Theorem 1. Projection and weak consistency are ExpTime-complete in ALC,
ALCO, ALCI, and ALCIO.

It is not too difficult to adapt the algorithm given in this section to the DL
ALCQO. Therefore, we conjecture that the reasoning problems from Theorem 1
are also ExpTime-complete for ALCQ and ALCQO.

5 ALCQI and ALCQIO: Beyond ExpTime

In the previous section, we have identified a number of DLs for which both rea-
soning about actions and standard DL reasoning are ExpTime-complete. An-
other candidate for a DL with such a behaviour is ALCQI, in which satisfiability
and subsumption are ExpTime-complete as well [15]. However, it follows from
results in [2] that projection in ALCQI is co-NExpTime-hard. In the following,
we show that it is in fact co-NExpTime-complete, and that the same holds for

276 H. Liu et al.

the DL ALCQIO. Note that, for the latter DL, also concept subsumption is
co-NExpTime-complete.

It is shown in [7] that Lemma 8 of [2] implies the following.

Theorem 2. Projection (weak consistency) in ALCQI is co-NExpTime-hard
(NExpTime-hard) even if occlusions for role literals are restricted to (⊥,⊥) and
occlusions of concept literals are restricted to ⊥ and nominals.

In the following, we establish a co-NExpTime upper bound for projection in
ALCQIO (and thus also ALCQI). The proof proceeds by reducing projection in
ALCQIO to ABox (in)consistency in ALCQIO¬,∪,∩, the extension of ALCQIO
with the Boolean role constructors complement, union, and intersection.

Let α be an action, T a TBox, A0 an ABox and ϕ0 an assertion. We are
interested in deciding whether ϕ0 is a consequence of applying α in A0 w.r.t. T .
We use the same notions and abbreviations as in Section 4. As in that section, we
also assume that ϕ0 is of the form C0(a0) and that occlusions are of a restricted
form.

The idea for the following reduction is to define an ABox Ared and a TBox
Tred such that each model of Ared and Tred encodes interpretations I and I ′ with
I |= A0 and I ⇒T

α I ′, and I ′ �|= ϕ0. The encoding of the two interpretations
I and I ′ into a single model of Ared and Tred is similar to what was done in
the previous section: we introduce a non-primed and a primed version of each
concept and role name to distinguish the extension in I from that in I′. We
start by assembling the reduction ABox Ared. First, introduce abbreviations:

p(C(a)) := ∀U.({a} → C),
p(r(a, b)) := ∀U.({a} → ∃r.{b}),

p(¬r(a, b)) := ∀U.({a} → .∀r.¬{b}),

where U denotes the universal role, i.e. r ∪ ¬r for some r ∈ NR. Now we can
define the components of Ared that take care of post-condition satisfaction. We
define:

Apost := {
(
p(ϕ) → p(ψ′)

)
(a0) | ϕ/ψ ∈ post},

where ψ′ is obtained from ψ by replacing concepts C and role names r in ψ by
C′ and r′ respectively. We assemble Ared as

Ared := A0 ∪ Apost.

We continue by defining the components of the TBox Tred. The first component
ensures that auxiliary role names rDom(C) and rRan(D) are interpreted as C ×�
and � ×D, respectively. For every (C,D) ∈ occ(s) for some role literal s from
the input, the TBox Taux contains the following GCIs :

C (∀¬rDom(C).⊥ � (∀rRan(D).D

¬C (∀rDom(C).⊥ � (∀¬rRan(D).¬D

The following component describes the behaviour of concept names and role
names in parts of the domain where they are not allowed to vary. The TBox Tfix

Reasoning About Actions Using Description Logics with General TBoxes 277

contains for every concept name A in the input,

¬occ(A) �A (A′

¬occ(¬A) � ¬A (¬A′

and for every role name r in the input,

� (∀¬
(⋃

(C,D)∈occ(r)

(rDom(C) ∩ rRan(D))
)
∩ (r ∩ ¬r′).⊥

� (∀¬
(⋃

(C,D)∈occ(¬r)

(rDom(C) ∩ rRan(D))
)
∩ (¬r ∩ r′).⊥

Finally, we can construct Tred as

Tred := Taux ∪ Tfix ∪ T ∪ {C′ (D′ | C (D ∈ T }.

The last two components of Tred ensure that I and I ′ are models of the input
TBox T . It is not difficult to show that the following holds:

Lemma 2. C0(a0) is a consequence of applying α in A0 w.r.t. T iff Ared ∪
{¬C′

0(a0)} is inconsistent w.r.t. Tred.

Since ALCQIO∪,∩,¬ is a fragment of C2 (the 2-variable fragment of first-order
logic with counting), we have that ABox inconsistency in ALCQIO∪,∩,¬ is in
co-NExpTime, even if numbers are coded in binary [9]. Since Ared and Tred are
polynomial in the size of the input ABox A0, TBox T , and action α, Lemma
2 gives us the same upper complexity bound for projection in ALCQIO and
ALCQI. Theorem 2 implies that this is a tight complexity bound:

Theorem 3. In ALCQIO, projection is co-NExpTime-complete and weak con-
sistency is NExpTime-complete.

6 Undecidability of Strong Consistency

We show that strong consistency is undecidable already in ALC. The proof
consists of a reduction of the undecidable semantic consequence problem from
modal logic. Before formulating the DL version of this problem, we need some
preliminaries. We use ALC concepts with only one fixed role name r, which we
call ALCr-concepts. Accordingly, we also assume that interpretations interpret
only concept names and the role name r. A frame is a structure F = (ΔF , rF)
whereΔF is a non-empty set and rF ⊆ ΔF×ΔF . An interpretation I = (ΔI , ·I)
is based on a frame F iff ΔI = ΔF and rI = rF . We say that a concept C is
valid on F (written F |= C) iff CI = ΔI for every interpretation I based
on F .

Definition 8 (Semantic consequence problem). Let D and E be ALCr-
concepts. We say that E is a semantic consequence of D iff for every frame
F = (ΔF , rF) such that F |= D, it holds that F |= E.

278 H. Liu et al.

In [14], it is proved that for ALCr-concepts D and E, the problem “Is E a
semantic consequence of D?” is undecidable. We now show that the semantic
consequence problem can be reduced to strong consistency. For ALCr-concepts
D and E, we define the ABox AE := {¬E(a)} and the atomic action αD =
(∅, {occtaut}, post) with post := {�(a)/(∃u.¬D)(a)} where u is an arbitrary role
name and occtaut maps r and ¬r to {(⊥,⊥)}, all other role literals to {(�,�)},
and all concept literals to �. Then the following holds:

Lemma 3. The action αD is strongly consistent with the empty TBox and the
ABox AE iff E is a semantic consequence of D.

Proof. “⇒” We show the contraposition. Assume that E is not a semantic con-
sequence of D. Then there exists a frame F = (ΔF , rF) such that F |= D and
there is an interpretation I based on F such that EI �= ΔI . We take I based
on F such that aI �∈ EI , thus I |= AE . But every I ′ such that I ⇒∅

αD
I ′

must be based on F (since rI
′

= rI = rF) and must satisfy DI′ �= ΔI′
(by

post-condition of α). Since F |= D, there is no such I′. Thus, αD is not strongly
consistent with the empty TBox and the ABox AE .

“⇐” Assume that E is a semantic consequence of D. Let I |= AE . By def-
inition of AE , we have that aI �∈ EI , and thus I is not based on a frame
F = (ΔF , rF) validating E. Since E is a semantic consequence of D, F is not
validating D either, and there is an interpretation I′ based on F such that
DI′ �= ΔI′

. Take y ∈ ΔI′
such that y �∈ DI′

. Since D is an ALCr- concept,
we may assume that uI

′
= {(aI′

, y)}. Obviously, we have that I ⇒∅
αD
I ′, and,

consequently, αD is strongly consistent with the empty TBox and AE .

As an immediate consequence, we obtain the following theorem.

Theorem 4. Strong consistency of ALC-actions is undecidable, even with the
empty TBox.

7 Discussion

We have introduced an action formalism based on description logics that admits
general TBoxes and complex post-conditions. To deal with ramifications induced
by general TBoxes, the formalism includes powerful occlusion patterns that can
be used to fine-tune the ramifications. We believe that undecidability of strong
consistency is no serious obstacle for the feasibility of our approach in practice.
Although deciding strong consistency would provide valuable support for the
designer of an action, it could not replace manual inspection of the ramifica-
tions. For example, occluding all concept names with � and all role names with
{(�,�)} usually ensures strong consistency but does not lead to an intuitive be-
haviour of the action. With weak consistency, we offer at least some automatic
support to the action designer for detecting ramification problems.

Future work will include developing practical decision procedures. A first step
is carried out in [7], where we show that in the following special (but natural)
case, projection can be reduced to standard reasoning problems in DLs that are

Reasoning About Actions Using Description Logics with General TBoxes 279

implemented in DL reasoners such as RACER and FaCT++: (i) role occlusions
in actions are given by occtaut; (ii) occtaut(r) = occtaut(¬r); and (iii) concepts
used in occtaut(r) are Boolean combinations of nominals,

Acknowledgements. We would like to thank Giuseppe De Giacomo for ideas
and discussions. The second author is partially supported by the EU funded
TONES project.The third author is supported by the DFG Graduiertenkol-
leg 334. The fourth author is partially supported by UK EPSRC grant no.
GR/S63182/01.

References

1. C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. Proc. of CSL-99, number 1683 in LNCS, pages 307–321. Springer, 1999.

2. F. Baader, C. Lutz, M. Milicic, U. Sattler, and F. Wolter. Integrating description
logics and action formalisms: First results. In Proc. of AAAI-05, AAAI Press,
2005.

3. F. Baader, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press, 2003.

4. G. de Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the update of description
logic ontologies at the instance level. Proc. of AAAI-06, AAAI Press, 2006.

5. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59–83, 1997.

6. F. Lin. Embracing causality in specifying the indirect effects of actions. In Proc.
of IJCAI-95, pages 1985–1991, Morgan Kaufmann, 1995.

7. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Description logic actions with general
TBoxes: a pragmatic approach. LTCS-Report 06-03, TU Dresden, Germany, 2006.
See http://lat.inf.tu-dresden.de/research/reports.html.

8. V. R. Pratt. Models of program logics. In Proc. of the Twentieth FoCS, San Juan,
Puerto Rico, 1979.

9. I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quan-
tifiers. Journal of Logic, Language and Information, 14(3):369–395, 2005.

10. R. Reiter. Knowledge in Action. MIT Press, 2001.
11. M. Thielscher. Ramification and causality. Artificial Intelligence Journal, 89(1–

2):317–364, 1997.
12. M. Thielscher. Introduction to the Fluent Calculus. Electronic Transactions on

Artificial Intelligence, 2(3–4):179–192, 1998.
13. M. Thielscher. FLUX: A logic programming method for reasoning agents. TPLP,

5(4-5):533–565, 2005.
14. S. K. Thomason. The logical consequence relation of propositional tense logic. Z.

Math. Logik Grundl. Math., 21:29–40, 1975.
15. S. Tobies. The complexity of reasoning with cardinality restrictions and nominals

in expressive description logics. JAIR, 12:199–217, 2000.
16. M. Winslett. Reasoning about action using a possible models approach. In AAAI-

88, pages 89–93, 1988.
17. A list of DL reasoners: http://www.cs.man.ac.uk/∼sattler/reasoners.html

Introducing Attempt in a Modal Logic of Intentional
Action�

Emiliano Lorini1, Andreas Herzig2, and Cristiano Castelfranchi1

1 Institute of Cognitive Sciences and Technologies-CNR, Rome, Italy
2 Institut de Recherche en Informatique de Toulouse (IRIT), France

Abstract. The main objective of this work is to develop a multi-modal logic of
Intention and Attempt. We call this logic LIA. All formal results are focused on
the notion of attempt. We substitute the dynamic molecular notion action by his
atomic constituent attempt and define the former from the latter. The relations
between attempts, goals, beliefs and present-directed intentions are studied. A
section of the paper is devoted to the analysis of the relations of our modal logic
with a situation calculus-style approach.

1 Introduction

BDI (belief, desire, intention) logics [21, 18, 4, 12] are conceived as explicit formal
models of the intentional pursuit. If this is true then they should be able to take into
account notions such as the notion of attempt and trying. These two notions have been
mainly discussed in the philosophical field and taken into account in some logics of
agency1 but few models exist that are able to integrate in the same formal framework a
precise description of practical reasoning (motivational dynamics and functional prop-
erties of mental states) with a description of its external and physical counterpart: the
executive phase of intentional action. The main objective of this work is to develop a
multi-modal logic which enables us to deal with the notion of attempt inside the more
general framework of Intentional Action theory. We call this logic LIA: Logic of Inten-
tion and Attempt. The main difference between LIA and standard dynamic logic is that
the dynamic primitives are not atomic actions, but atomic attempts. In our view a model
of intentional action should explicitly represent the process of action execution, from
the agent ”triggering” the action to the successful execution of the action (when the
preconditions for action execution hold). The axioms of the logic will be presented and
discussed in Section 3. In section 4 the notions of attempt and action will be compared.
It will be shown how action theories can be specified starting from the primitive notion
of attempt. In section 5 additional properties of attempt will be discussed and the formal
definition of present-directed intention will be introduced.

2 Properties of Attempts and Basic Actions

With “agent i attempts to do an action α”, we mean that “agent i triggers the execution
of action α”, “agent i exerts himself to do action α”. In our view the attempt is the core
element of the causal process which leads from the present-directed intention [1] to the
� We thank the anonymous referees of this paper for their helpful comments.
1 See for example [23] where attempts are defined as ”not necessarily successful actions”.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 280–292, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Introducing Attempt in a Modal Logic of Intentional Action 281

successful execution of the action in the external world. Several authors have empha-
sized the importance of this concept for a theory of Intentional action (see [3], [13],
[19]). The Psycho-Psycho Law proposed by O’Shaughnessy [19] stresses the “bridging
role” of the attempt between the present-directed intention and the execution of the ac-
tion: “if an agent at an instant in time realizes that that instant is an instant at which he
intends to perform action x, then logically necessarily he begins trying to do x at that
very moment of realization”. In our view the property relating attempts with actions
is the following one: an action is effectively performed if and only if the performing
agent triggers the action under the appropriate preconditions for action execution. The
fact that the preconditions for action execution hold, guarantees that the attempt will
be successful: it will succeed in producing the associated action (i.e. in causing the
intrinsic result of the associated action2). In the present analysis we deal with basic
actions of a given agent i and leave aside the issue of complex actions (therefore every
time we use the term action we mean basic action). According to [10, 5] an agent can
perform a basic action α without necessarily performing some other action β and with-
out necessarily believing that β must be performed in order to perform α. On the other
hand a complex action (for example Jack killing Joe) depends on some other action
(Jack shooting Joe) which in turn depends on some other action (Jack pulling the trig-
ger) and so on... Thus we assume that basic actions are precisely those actions which
are always executed when the agent attempts to perform them and the preconditions
for action execution hold. Complex actions do not have this property. There could be
an agent i’s complex action α whose execution also depends on some external event or
some agent j’s action β which must happen after the initiation of action α (for example
Jack can not perform the complex action of killing Joe if Joe does not perform the ac-
tion of drinking the poisoned soda after that Jack has poured some poison into the glass
of soda). Moreover we focus in this paper on “intentional attempts” assuming that an
attempt to do α is always produced by the goal to attempt to do action α (see also [28]
with respect to this hypothesis). Finally let us observe that there are two ways to con-
ceive the notion of attempt (or trying). Some authors [16, 19] conceive the attempt as a
purely mental event. If we adopt this perspective we should postulate that unsuccessful
attempts3 (differently from actions) never change the physical (external) world and are
not perceivable by other agents. Other authors [13] are more prone to accept that attempt
already refers to the physical realization of the basic action. In this analysis we adhere
to the latter view and assume that the category unsuccessful attempt includes all those
cases of “partial” execution of a basic action not producing the intrinsic result of the
action (for example an agent who attempts to raise the hand above the head and only
moves the arm of few millimeters since the arm is blocked). In [10, 5, 13] it is assumed
that basic actions include only bodily movements such as raising the arm, moving the
leg, turning the sensor etc... Thus in the examples given for supporting our analysis we
will often refer to basic actions by using names denoting human bodily movements.

2 According to [26, 29] the intrinsic result of an action is “the result which logically must occur
if the action is to have been done”. For instance the agent cannot have opened his eye unless
his eye is open.

3 With unsuccessful attempt we mean that the action that the attempt should produce is not
performed due to the fact that the preconditions for executing the action do not hold.

282 E. Lorini, A. Herzig, and C. Castelfranchi

Our analysis can be extended to realistic applications where the agent would be a robot
with an artificial body (artificial limbs, rotating wheels, moving sensors etc...).

3 Formal Logic: Syntax, Semantics, Axiom System
LIA is a multi-modal logic of time, attempts, actions, goals and beliefs.4 The logic is
based on a combination of an enhanced version of linear temporal logic where it is
possible to talk about actions and Cohen and Levesque’s logic of goal and intention [4].
The main difference with respect to standard dynamic logic [11] is that the notion of
atomic (basic) action is substituted with the more primitive notion basic attempt. We
will show that the former can be defined from the latter.

The syntactic primitives of the logic are the following: -a set of atomic (basic) actions
ACT = {α, β, ...}; -a set of agents AGT = {i, j, ...}; -a set of propositional atoms
Π = {p, q, ...}. The set of propositional formulas of our language is denoted by PROP
(elements in PROP are denoted byΦ,Ω, Ψ, ...). The set FOR of well formed formulas
ϕ of our modal action language L is defined by the following BNF:

ϕ := p|�|¬ϕ|ϕ ∧ ψ| [[i, α]]ϕ|Gϕ|Xϕ|ϕUntilψ|Beliϕ|Goaliϕ
where p ranges overΠ , i ranges over AGT and α ranges over ACT.

[[i, α]]ϕ is read “ϕ holds after any agent i’s attempt to do α”. Hence [[i, α]]⊥ ex-
presses “agent i does not attempt to do α”. Three abbreviations are used. 〈〈i, α〉〉ϕ
abbreviates ¬ [[i, α]]¬ϕ, Fϕ abbreviates ¬G¬ϕ and ϕBeforeψ abbreviates ¬(¬ϕ
Untilψ). Hence 〈〈i, α〉〉ϕ has to be read “agent i attempts to do α and ϕ holds af-
ter this attempt ” and 〈〈i, α〉〉� has to be read “agent i attempts to do α”. For example
〈〈Bill, raiseArm〉〉� is read “Bill attempts to raise the arm”. We briefly go into the
basic semantics.

A model for LIA is defined by the tuple M = (W , RX , Ratt, B, G, V).

– W is a set of worlds.
– RX is a mapping RX : W −→ 2W associating sets of possible worlds RX(w) to

each possible world w. We suppose that RX is a total function.
– Ratt is a mapping Ratt : AGT × ACT −→ (W −→ 2W) associating sets of

possible worlds Ratt
i:α(w) to each possible world w. We assume that every Ratt

i:α is a
partial function.

– B is a mapping B : AGT −→ (W −→ 2W) associating sets of possible worlds
Bi(w) to each possible world w. We suppose that every Bi is serial, transitive and
euclidean.5

– G is a mapping G : AGT −→ (W −→ 2W) associating sets of possible worlds
Gi(w) to each possible world w. We suppose that also everyGi is serial, transitive
and euclidean.

– V is a mapping V : Π −→ 2W associating sets of possible worlds to propositional
atoms.

4 The logic is described more extensively in [15] where also formal proofs of the theorems are
presented.

5 We use a modal logic KD45 as the logic for Belief and Goals, i.e. an agent does not entertain
inconsistent Beliefs (and inconsistent Goals) and is aware of his Beliefs and disbeliefs (and of
his Goals and non-Goals).

Introducing Attempt in a Modal Logic of Intentional Action 283

After defining R∗
X as the reflexive and transitive closure of RX , we look at truth

conditions.

– M,w |= p iff w ∈ V (p).
– M,w |= ¬ϕ iff notM,w |= ϕ
– M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ
– M,w |= Xϕ iff ∀w′ such that w′ ∈ RX(w) it holds thatM,w′ |= ϕ
– M,w |= Gϕ iff ∀w′ such that w′ ∈ R∗

X(w) it holds thatM,w′ |= ϕ.
– M,w |= ϕUntilψ iff ∃ w′ ∈ R∗

X(w) such that M,w′ |= ψ and ∀w′′ if w′′ ∈
R∗

X(w) and w′ ∈ R∗
X(w′′) and w′′ /∈ R∗

X(w′) thenM,w′′ |= ϕ
– M,w |= [[i, α]]ϕ iff ∀w′ such that w′ ∈ Ratt

i:α(w) it holds thatM, v |= ϕ
– M,w |= Beliϕ iff ∀w′ ∈ Bi(w) it holds thatM,w′ |= ϕ.
– M,w |= Goaliϕ iff ∀w′ ∈ Gi(w) it holds thatM,w′ |= ϕ.

We use a complete axiomatization of linear temporal logic (axioms 0a-7a plus inference
rules R1-R3) [8, 9] and the axioms and inference rules of the basic normal modal logic
for belief modal operator, goal modal operator and attempt modal operator plus axioms
1b-12b (table 1).6

Table 1. Axiom system

0a. All tautologies of propositional calculus 1b.¬(Beliϕ ∧Beli¬ϕ)
1a. G(ϕ→ ψ)→ (Gϕ→ Gψ) 2b. Beliϕ→ BeliBeliϕ
2a. X¬ϕ↔ ¬Xϕ 3b. ¬Beliϕ→ Beli¬Beliϕ
3a. X(ϕ→ ψ)→ (Xϕ→ Xψ) 4b.¬(Goaliϕ ∧Goali¬ϕ)
4a. Gϕ→ ϕ ∧XGϕ 5b. Goaliϕ→ BeliGoaliϕ
5a. G(ϕ→ Xϕ)→ (ϕ→ Gϕ) 6b. ¬Goaliϕ→ Beli¬Goaliϕ
6a. ϕUntilψ → Fψ 7b. Beliϕ→ Goaliϕ
7a. ϕUntilψ ↔ ψ ∨ (ϕ ∧X(ϕUntilψ)) 8b. Beli [[j, α]] ψ ∧ ¬Beli [[j, α]]⊥ → [[j, α]] Beliψ

Inference Rules: 9b. [[j, α]] Beliψ ∧ ¬ [[j, α]]⊥ → Beli [[j, α]] ψ
R1. �ϕ �ϕ→ψ

�ψ
(modus ponens) 10b. Beli(GBeliψ ↔ BeliGψ)

R2. �ϕ
�Gϕ

(G-necessitation) 11b. Goali 〈〈i, α〉〉! ↔ 〈〈i, α〉〉!
R3. �ϕ

�Xϕ
(X-necessitation) 12b. Xϕ→ [[i, α]] ϕ

Semantic characterizations (model correspondence) of the previous axioms and in-
ference rules are given in [15]. In [15] it is also proved that LIA is sound with respect
to the set of LIA models satisfying all the semantic constraints imposed by the previous
axioms and inference rules. With |=LIA ϕ we mean that ϕ is valid in all LIA models
and with �LIA ϕ we mean that ϕ is a theorem of LIA. Moreover we say that a formula
ϕ is a consequence of the set of global assumptions {Φ1, ..., Φn} in the class of models
LIA (noted {Φ1, ..., Φn} |=LIA ϕ) if and only if for all models M ∈ LIA if |=M Φi

for every Φi, then |=M ϕ.
Axiom 11b deserves some comments. This axiom has not been analyzed before in

the literature on modal logic of intentional action. It establishes that an agent attempts

6 Notice that from our axiomatic system (axiom 2a and axiom 12b) it follows that: 〈〈i, α〉〉ϕ→
[[i, α]] ϕ, i.e. action are deterministic.

284 E. Lorini, A. Herzig, and C. Castelfranchi

to do some action α if and only if the agent has the goal to attempt to do action α.
The axiom relates mental attitudes with the executive and behavioral element. 7 In our
view it is relevant for a formal theory of action to account for the role of intention
in producing a given performance. This fundamental issue is not enough stressed in
formal models of intentional action. Axiom 11b has exactly this role. It accounts for the
conditions for passing from a pure mental and motivational level to the executive and
physical reality. We will show later (in section 5) that axiom 11b is central for the notion
of present-directed intention. In this analysis we do not introduce at the formal level
sequential composition of basic actions. We prefer to work with the simplest formal
language for actions, leaving the problem of sequential composition to future work. Let
us only stress that axiom 11b should also be applied to sequences of basic actionsα;β;...
performed by the same agent and which do not involve perception (epistemic actions).
For example consider a football playing robot having the goal to perform the sequence
of basic actions turn-right;advance;shoot. The goal to attempt to perform the sequence
of actions triggers the performance and even if the robot is blocked by another player,
he will attempt to execute the three basic actions in sequence, without realizing that the
first action fails.8

4 Attempts and Action Theories

4.1 Definition of Action and Execution Preconditions9

Our definition of action is built on the special formula Pre(α) denoting the physical
preconditions for executing actionα (execution preconditions). We assume that Pre(α)
is a function returning some classical formula Φ10 that is Pre : ACT → PROP . For
example we might have: FreeLeg = Pre(kickBall).

Definition 1. Action. 〈i, α〉ϕ =def 〈〈i, α〉〉ϕ ∧ Pre(α)

Definition 1 relates the notion of action with the primitive notion of attempt. It says that
action executions are attempts whose execution preconditions hold. An instance of def-
inition 1 is: 〈i, α〉� =def 〈〈i, α〉〉�∧Pre(α). It says that a given action α is executed

7 In [20] a similar axiom is proposed where actions are related with knowledge (the axiom says
that if an agent i can do a certain action α from his repertoire then the agent knows that he can
do it).

8 We are supposing here some kind of persistence in the intentional execution of those sequences
of actions which do not involve perception that is, when an agent has the goal to attempt to
perform a sequence of actions which does not involve perception then the agent attempts to
perform the complete (intended) sequence of actions (the agent cannot stop in the middle of
the sequence and revise his pushing intentions) and when the agent attempts to perform a
complete sequence of actions which does not involve perception then the agent has the goal to
attempt to perform the complete sequence.

9 Given that time is linear in our logic, we use the terms “execution precondition” and “execution
law” instead of the terms “executability precondition” and “executability law”.

10 In realistic applications the function Pre should have an agent argument: the preconditions of
kicking a ball may differ from agent to agent, for example for a lame agent P re(kickBall) =
⊥. Here we make the assumption that execution preconditions of an action are the same for all
agents.

Introducing Attempt in a Modal Logic of Intentional Action 285

by agent i if and only if agent i attempts to do α and the preconditions for executing
action α are holding. This is an explicit way to relate actions with attempts and to ex-
press execution laws. On the basis of definition 1 execution laws are defined by referring
to the attempt notion. This kind of solution is quite different from standard solutions
(see for example [2] and [22]) where execution laws are expressed by taking actions
as primitive elements, without deconstructing them into more elementary constituents
(viz. attempts). Moreover, from definition 1 it follows that a consequence of an attempt
to perform α is also a consequence of the successful performance of basic action α and
if the execution preconditions hold then the consequences of the attempt are equivalent
to the consequences of the associated basic action. Indeed: a) [[i, α]]ϕ → [i, α]ϕ and
b) Pre(α) → ([[i, α]]ϕ↔ [i, α]ϕ) are two valid formulas in our logic. In the next sec-
tions we analyze effect laws by substituting the notion of action with the more primitive
notion of attempt and show that by distinguishing attempts from actions we get some
important conceptual refinements.

4.2 Effect Preconditions

Similarly to Situation Calculus [22] we take for each propositional atom p ∈ Π and
basic action α ∈ ACT a propositional formula γ+(α, p) describing the positive effect
preconditions of the attempt to do α with respect to p and γ−(α, p) describing the
negative effect preconditions of the attempt to do α with respect to p. For example the
following positive effect preconditions can be associated to the attempt to perform the
actions loading, pulling and picking up.11

γ+(load, loadedGun) = freeHand ∧ holdsGun

γ+(pull, wounded) = holdsGun ∧ loadedGun ∧ pointedGun ∧ freeHand

γ+(pull, pulledT rigger) = holdsGun ∧ freeHand

γ+(pull, scared) = holdsGun ∧ pointedGun

γ+(pickUp, holdsGun) = gunOnTable ∧ freeArm ∧ freeHand

Effect laws are specified accordingly in terms of global assumptions in Fitting’s
sense [7] of the form: γ+(α, p) → [[α]] p and γ−(α, p) → [[α]]¬p.

For instance positive effect axioms for the previous actions are specified by the fol-
lowing global assumptions:12

holdsGun ∧ pointedGun→ [[pull]] scared

holdsGun ∧ loadedGun ∧ pointedGun ∧ freeHand→ [[pull]] wounded

freeHand ∧ holdsGun→ [[load]] loadedGun

holdsGun ∧ freeHand→ [[pull]] pulledT rigger

gunOnTable ∧ freeArm ∧ freeHand→ [[pickUp]] holdsGun

We could assume as in [22] that (positive and negative) effects preconditions are
complete. Completeness assumption can be formulated by means of global assumptions
of the form: ¬γ+(α, p) ∧ ¬p→ [[α]]¬p and ¬γ−(α, p) ∧ p→ [[α]] p.

11 To simplify our exposition we suppose in our examples that for each action α and pos-
sible effect p we have γ−(α, p) = ⊥ . Thus we do not need to specify negative effect
preconditions.

12 Notice that in effect laws actions are not indexed by agents. Indeed we assume that effects laws
do not depend on the performing agent.

286 E. Lorini, A. Herzig, and C. Castelfranchi

For instance, given the effect law holdsGun ∧ pointedGun → [[pull]] scared for
the action pulling, we can establish that: ¬(holdsGun ∧ pointedGun) ∧ ¬scared →
[[pull]]¬scared.

We make a Consistency assumption saying that negative effect preconditions and
positive effect preconditions must be consistent that is: γ+(α, p) → ¬γ−(α, p).13

Finally we need to specify execution preconditions for our three actions loading,
pulling and picking-up: Pre(pull) = freeHand, Pre(load) = freeHand,
Pre(pickUp) = freeArm ∧ freeHand.

Given effect preconditions and appropriate assumptions successor state axioms can
be specified as standard Situation Calculus requires.

Indeed suppose that γ−(α, p), γ+(α, p) are given and that the completeness assump-
tion and consistency assumption are made then the following equivalences holds:

[[i, α]] p↔ ¬Goali 〈〈i, α〉〉� ∨ γ+(α, p) ∨ (p ∧ ¬γ−(α, p))

In this paper we do not investigate any modal regression technique for our logic.14

Let us only notice that according to the previous logical equivalence the effects of an
attempt to do some action α are completely specified by positive effect preconditions
(γ+−preconditions), negative effect preconditions (γ−−preconditions) and the goal
to attempt to do α. Execution preconditions are not mentioned in the successor state
axiom. Thus we can argue that under our logical framework every planning task can in
principle be reduced to the task of finding the correct sequence of attempts for reaching
a given result. Given successor state axioms built on the primitive notion of attempt,
for every planning problem there is no need to verify whether execution preconditions
hold. This implies that in LIA the notion of execution precondition is not necessary for
formulating action theories.

4.3 Discussion

Being able to characterize attempts and actions, we can provide a further relevant dis-
tinction: the distinction between stable effects and successful effects of an attempt.

Let us go back to our previous example. We have identified the execution pre-
conditions for pulling with Pre(pull) = freeHand. Moreover we have specified
the following effect laws: holdsGun ∧ loadedGun ∧ pointedGun ∧ freeHand →
[[pull]]wounded and holdsGun ∧ pointedGun→ [[pull]] scared.

Given definition 1 the first effect law can be rewritten as:
holdsGun ∧ loadedGun ∧ pointedGun→ [pull]wounded.
On one side a stable positive effect of an attempt to do some action α is a result that

an attempt to perform α can produce even if the execution preconditions of action α do
not hold. For instance scared is a stable positive effect of the attempt to pull. Indeed I
can scare you simply by pointing a gun toward you and attempting to pull the trigger.15

13 Due to our hypothesis that γ−(α, p) = ⊥ for each action α and possible effect p such consis-
tency is always the case.

14 On the problem of how handling regression in dynamic logic see [6].
15 We are assuming that you become aware of the risk of being killed only if you can perceive

that I am attempting to pull the trigger (fear is not simply triggered by your seeing that I am
pointing the gun toward you).

Introducing Attempt in a Modal Logic of Intentional Action 287

On the other side a successful positive effect of an attempt to do some action α is a result
that an attempt to performα causes only if the execution preconditions of action α hold.
For instance wounded is a successful positive effect of the attempt to pull. Indeed I can
wound you if after pointing the gun toward you and attempting to pull the trigger, I
correctly execute the pulling movement (the execution preconditions of pulling hold)
and the gun is loaded.

Formally:

– p is a successful positive effect of the attempt to perform the basic action α if and
only if |=LIA γ

+(α, p) → Pre(α).16

– p is a stable positive effect of the attempt to perform the basic action α if and
only if there is a model M ∈ LIA such that γ+(α, p) ∧ ¬Pre(α) is satisfiable
inM .17

In our view there is always some stable effects associated with attempts. Even assuming
that the attempt to do a basic action is a mere mental process, we can still identify stable
effects of the attempt. Indeed under some appropriate preconditions attempting to do
something can cause some modification of the mental states of the performing agent
(and these modifications do not depend on the fact that the attempt is successful). For
example if I believe that after raising my arm my arm goes up and I believe that the
preconditions for raising my arm are holding (for instance I believe that my arm is not
blocked) then after attempting to raise my arm I believe that my arm is up. This is made
explicit by the next theorem of our logic: BeliPre(α) ∧Beli [i, α]ϕ→ [[i, α]]Beliϕ.
We can also write plausible effect laws which mention stable effects of attempts at the
level of mental attitudes and dispositions of the performing agent. For example if in
the morning I am still half-awake and I attempt to stand up then I am awake after this
attempt: asleep→ [[stand− up]] awake.

Application to “count as” scenarios. In the context of institutions, actions may “count
as” implementations of others. Many actions in the social world acquire a different
meaning when some institutional fact holds in that world.18

16 Notice that the class of successful positive effects of an attempt to do some basic action α also
includes the intrinsic effect of (basic) action α [29, 26]. Indeed the intrinsic effect of some
(basic) action α is the state of affairs that it is guaranteed to hold when α is attempted and the
execution preconditions of action α hold. For instance the intrinsic effect of the (basic) action
of raising the arm is raised arm, the intrinsic effect of the (basic) action of opening the mouth
is open mouth and so on... Formally: p is a intrinsic effect of some basic action α if and only
if |=LIA γ+(α, p) ↔ P re(α). According to Stoutland also complex actions have intrinsic
results. For instance the (complex) action of opening the door (opening the door is performed
by moving the arm in a certain way) has the door is open as intrinsic effect.

17 From the two definitions it follows that the category stable positive effects and the category
successful positive effects are disjoint. Moreover the same kind of definitions apply to suc-
cessful negative effects and stable negative effects of an attempt, that is: 1) ¬p is a successful
negative effect of some basic action α if and only if |=LIA γ−(α, p) → P re(α); 2) ¬p is a
stable negative effect of some basic action α if and only if it exists a model M ∈ LIA such
that γ−(α, p) ∧ ¬P re(α) is satisfiable in M .

18 See also [14] for a formal approach to institutional actions.

288 E. Lorini, A. Herzig, and C. Castelfranchi

For instance take the action of signing a document (or the action of voting). This
action has the same physical realization of the action writing, but it differentiates from a
simple writing since it is performed under some particular institutional preconditions. It
is not the aim of this paper to investigate the exact institutional preconditions which are
needed in order to make some physical action an institutional action.19 Indeed several
kinds of conditions concerning social roles, norms etc... must be satisfied: for example
the performing agent needs to be entitled to perform the institutional action (he must
play some institutional role)20 and there should be some other agent with institutional
power who verifies the correct execution of the action21 etc... Just consider the following
simple example.

γ+(write, closedHand) = freeHand

γ+(write,written) = hasDoc ∧ holdsP en ∧ freeHand

γ+(write, signed) = hasDoc ∧ holdsP en ∧ lastPage∧ freeHand ∧ director

γ+(write, voted) = election ∧ citizen ∧ holdsP en ∧ V otingPaper ∧ freeHand

According to the previous formulations of positive effect preconditions and negative
effect preconditions, if an agent has the hand free and attempts to write then the hand
gets closed; if the agent has a document in front of him and a pen is in his hand and his
hand is free and he attempts to write then the document gets written on;22 if the agent
is the director of the organization, has the last page of the document in front of him
and a pen in the hand, his hand is free, and attempts to write then the document gets
signed. Finally if it is election day, the agent is a citizen of the country, a pen is in his
hand, his hand is free, has a voting paper in front of him and attempts to write then the
agent gives his vote. We do not specify here the completeness laws (their specification
is straightforward). Finally we formulate the execution preconditions of the writing
action: Pre(write) = freeHand. Let us only use two abbreviations for indicating
the institutional version of the attempt to do action α and the institutional version of
action α:

〈〈Ist− α〉〉ϕ =def 〈〈α〉〉ϕ ∧ Ist(α);
〈Ist− α〉ϕ =def 〈α〉ϕ ∧ Ist(α) which can be rewritten as

〈Ist− α〉ϕ =def 〈〈α〉〉ϕ ∧ Pre(α) ∧ Ist(α)) where Ist(α) denotes all conditions
which make α become an institutional action or to “count as” an institutional action
(we call them institutional preconditions).23

Since the institutional version of a basic action α is physically identical to α we can
safely assume that the execution preconditions of α and the execution preconditions of
the institutional version of α are identical.

19 On this point see [24, 27].
20 In order to marry a couple the agent must be a priest.
21 In signing a contract is not enough to sign the document at the correct place. An institutional

witness (the notary) is needed who verifies the correct execution of the procedure.
22 Notice that in common sense language writing is not a proper basic action. Indeed agent gen-

erally writes by performing a certain movement with the hand. Thus our label “write” denotes
rather the basic action (bodily movement) on which the complex action of writing is based.

23 We assume that Ist(α) is a function returning some classical formula Φ that is: Ist : ACT →
PROP .

Introducing Attempt in a Modal Logic of Intentional Action 289

Notice that basic actions might have more than one institutional version. For instance
the basic action of writing “counts as” the institutional action of signing under some
institutional preconditions whereas it “counts as” the institutional action of voting un-
der some different institutional preconditions. In order to account for different kinds
of institutional actions based on the same basic action, Ist(α) must denote several al-
ternative groups of institutional preconditions. For instance in order to distinguish the
institutional action of signing from the institutional action of voting we must operate
at the level of institutional preconditions and identify different subsets of institutional
preconditions corresponding to each institutional version of the basic action. Let us con-
sider the simple scenario where the action of writing has only two institutional versions
(signing and voting). Ist(α) denotes only two subsets of institutional preconditions:

Ist(write) = (lastPage ∧ director) ∨ (election ∧ citizen∧ V otingPaper).

Having introduced Ist(write), the institutional version of the action writing and the
institutional version of the attempt to write can be specified:

〈〈Ist− write〉〉ϕ =def 〈〈write〉〉ϕ∧(lastPage∧director)∨(election∧citizen∧
V otingPaper);
〈Ist− write〉ϕ =def 〈write〉ϕ ∧ (lastPage∧ director) ∨ (election∧ citizen∧

V otingPaper).

The action signing (the attempt to sign) and the action voting (the attempt to vote)
are specific institutional versions of the action writing (the attempt to write), that is they
are defined as instances of writing under some specific subsets of the set of institutional
preconditions of writing. Indeed:

〈sign〉ϕ =def 〈write〉ϕ ∧ lastPage∧ director;
〈〈sign〉〉ϕ =def 〈〈write〉〉ϕ ∧ lastPage∧ director;
〈vote〉ϕ =def 〈write〉ϕ ∧ election ∧ citizen ∧ V otingPaper
〈〈vote〉〉ϕ =def 〈〈write〉〉ϕ ∧ election ∧ citizen ∧ V otingPaper.
This means that: 1) getting ϕ after my attempt to perform the action of signing (or

after performing the action of signing) means being the director and getting ϕ after the
attempt to write my name (or after the action of writing my name) on the last page of
the document; 2) getting ϕ after my attempt to perform the action of voting (or after
performing the action of voting) means being a citizen of the country on the election day
and gettingϕ after the attempt to write (or after the action of writing) on the voting paper.

The fact that signing and voting are specific institutional versions of the basic action
writing is made explicit by the following four formal consequences of our definitions:
a) 〈sign〉ϕ → 〈Ist− write〉ϕ; b) 〈vote〉ϕ → 〈Ist− write〉ϕ; c) 〈〈sign〉〉ϕ →
〈〈Ist− write〉〉ϕ and d) 〈〈vote〉〉ϕ→ 〈〈Ist− write〉〉ϕ.

Indeed if I attempt to sign (or to vote) and ϕ holds after this attempt then I also
attempt to perform the institutional version of writing and ϕ holds after the attempt,
and if I sign (or vote) and ϕ holds after this action then I also attempt to perform the
institutional version of writing and ϕ holds afterward.

Moreover on the basis of the previous definitions of institutional action and insti-
tutional attempt we get (besides the validity [[i, α]]ϕ → [i, α]ϕ) the following four

290 E. Lorini, A. Herzig, and C. Castelfranchi

validities: a) [[α]]ϕ→ [[Ist− α]]ϕ; b) [α]ϕ→ [Ist− α]ϕ; c) [[α]]ϕ→ [Ist− α]ϕ
and d) [[Ist− α]]ϕ→ [Ist− α]ϕ.

It is evident that the relation among attempt and physical (basic) action is symmet-
rical to the relation among physical (basic) action and institutional action. Indeed if
ϕ is a consequence of the attempt to do action α then ϕ is also a consequence of the
successful execution of the basic action α and if ϕ is a consequence of performing
the basic action α then ϕ is also a consequence of performing the institutional version
of action α (moreover if ϕ is a consequence of the attempt to do action α then ϕ is
also a consequence of the attempt to do the institutional version of action α; if ϕ is a
consequence of the attempt to do the institutional version of action α then ϕ is also a
consequence of doing the institutional version of action α).

Besides the distinction between stable effects and successful effects of an attempt we
can provide the distinction among institutional effects and natural effects of an attempt.
We define institutional positive effects of a given attempt to perform action α all those
positive effects that the attempt to perform α causes only if the institutional precon-
ditions of α hold. We distinguish these effects from natural positive effects of a given
attempt to perform action α which are those positive effects that the attempt to perform
α causes even if the institutional preconditions of α do not hold.

Formally:

– p is a institutional positive effect of the attempt to perform the basic action α if and
only if |=LIA γ

+(α, p) → Ist(α).
– p is a natural positive effect of the attempt to perform the basic action α if and only

if there is a modelM ∈ LIA such that γ+(α, p) ∧ ¬Ist(α) is satisfiable in M .24

To sum up, we can distinguish four different sub-categories of effects of an attempt:

1. Institutional and stable effects of an attempt.
2. Natural and stable effects of an attempt.
3. Institutional and successful effects of an attempt.
4. Natural and successful effects of an attempt.

Going back to our initial example of pulling action, scared is a natural and stable ef-
fect of the attempt to pull, wounded (or dead) is a natural and successful effect of the
attempt to pull. Finally attempted homicide (or attempted capital punishment) is an in-
stitutional and stable effect of the attempt to pull and homicide (or capital punishment)
is an institutional and successful effect of the attempt to pull.25

24 From the definition it follows that the category institutional positive effects and the category
natural positive effects are also disjoint. Again the same kind of definitions apply to natural
negative effects and institutional negative effects of an attempt, that is : 1) ¬p is a institutional
negative effect of some basic action α if and only if |=LIA γ−(α, p) → Ist(α); 2) ¬p is a
natural negative effect of some basic action α if and only if it exists a model M ∈ LIA such
that γ−(α, p) ∧ ¬Ist(α) is satisfiable in M .

25 Attempted homicide and homicide are recognized as violations of the law in every civil society
when a private person kills someone and is not entitled to do so (therefore they are institutional
effects of a given action). On the other hand a firing squad executing a death penalty is entitled
to kill and the effect of its action is recognized by the institution either as a capital execution
or as an attempted capital execution.

Introducing Attempt in a Modal Logic of Intentional Action 291

5 Concluding Remarks: Attempt and Present-Directed Intention

In this final section we discuss additional properties of attempts, introduce the notion of
present-directed intention and present some formal relations between the two concepts.

The formula 〈〈i, α〉〉� ↔ Beli 〈〈i, α〉〉� is valid and establishes that our notion of
attempt is related with agent’s awareness (when agent i attempts to do some action α,
he believes to be attempting and viceversa).

The valid formulaGoali [[i, α]]⊥ → [[i, α]]⊥ establishes that if agent i has the goal
to avoid to attempt to perform action α then action α is not attempted by agent i. We
introduce next the notion of present-directed intention [1, 25].

Definition 2. Present-directed Intention. PDIi(α) =def Goali 〈i, α〉�

The definition of present-directed intention is intimately related with axiom 11b stating
the logical equivalence of the goal to attempt to do action α and attempt itself. Indeed
the present-directed intention stage coincides with the stage at which the agent trig-
gers the motor intentional behaviour. According to the present model when agent has
the present-directed intention to do some action α: 1) he can attempt to do α (he can
send the action to execution); 2) he is aware of this possibility; 3) he has the goal to
attempt to do α, 4) he has the goal that the preconditions for executing action α hold,
5) he cannot believe that the preconditions for executing action α do not hold. 26 The
previous statements are formally expressed by the following valid formulas of our logic:

a) PDIi(α) → 〈〈i, α〉〉�;
b) PDIi(α) → Beli 〈〈i, α〉〉�;
c) PDIi(α) → Goali 〈〈i, α〉〉�;
d) PDIi(α) → GoaliPre(i, α);
e) PDIi(α) → ¬Beli¬Pre(i, α).

Finally just pay attention to the distinction among the goal to attempt to do a certain
action α (Goali 〈〈i, α〉〉�) and the notion of present-directed intention to do a certain
actionα. Notice that the inverse direction of previous formula c) is not a valid statement:
in our logic an agent can have the goal to attempt to do α without having the present-
directed intention to do α.27

References

1. Bratman, M. E. (1987). Intentions, plans and practical reason. Cambridge, MA: Harvard
University Press.

2. Castilho, M. A., Gasquet, O., Herzig, A. (1999). Formalizing action and change in modal
logic I: the frame problem. Journal of Logic and Computation, 9(5), pp. 701-735.

26 Notice that an agent can have the goal to attempt to do α believing that the preconditions for
executing α do not hold (Goali 〈〈i, α〉〉! ∧Beli¬P re(i,α) is satisfiable).

27 Suppose that “Brett promises to pay Belton fifty dollars if Belton attempts to solve a certain
chess problem within five minutes”. Imagine that Brett assures Belton that he need not actually
solve the problem for getting the fifty dollars. According to [17] it is plausible to say that
Belton is motivated to attempt to solve problem even if he does not intend to solve the problem.

292 E. Lorini, A. Herzig, and C. Castelfranchi

3. Chisholm, R. M. (1966). Freedom and Action. In Keith Lehrer (Ed.), Freedom and Deter-
minism, Random House; New York, NY, pp. 105-39.

4. Cohen, P. R. , Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intel-
ligence, 42, pp. 213-261.

5. Danto, A (1965). What we can do. The Journal of Philosophy, 60, pp. 435-445.
6. Demolombe, R., Herzig, A., Varzinczak, I. (2003). Regression in modal logic. Journal of

Applied Non-Classical Logics, 13, pp. 165-185.
7. Fitting, M. (1983). Proof Methods for Modal and Intuitionistic Logics. D. Reidel, Dordrecht.
8. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J. (1980). On the temporal analysis of fairness. In

Proceedings 7th ACM Symposium on Principles of Programming Languages, pp. 163-173.
9. Goldblatt, R. (1992). Logics of Time and Computation, 2nd edition. CSLI Lecture Notes,

Stanford, California.
10. Goldman, A. (1970). A Theory of Human Action. Englewood Cliffs: Prentice-Hall.
11. Harel, D., Kozen D., Tiuryn, J.(2000). Dynamic Logic. Cambridge, MA: MIT Press.
12. Herzig, A., Longin, D. (2004). C&L Intention Revisited. In Proceedings of KR2004, pp.

527-535.
13. Hornsby, J. (1980). Actions. Routledge & Kegan Paul, London.
14. Jones, A., Sergot, M. J. (1996). A formal characterisation of institutionalised power. Journal

of the IGPL, 4(3), pp. 429–445.
15. Lorini, E. (2006). A logic of Intention and Attempt. Technical Report, Institute of Cognitive

Science and Technologies-CNR, Rome.
16. McCann, H. J. (1974). Volition and Basic Action. The Philosophical Review, 83, pp.

451 473.
17. Mele, A. R. (1992). Springs of action. Oxford University Press, New York.
18. Meyer, J.J. Ch., van der Hoek, W., van Linder, B. (1999). A Logical Approach to the Dy-

namics of Commitments. Artificial Intelligence, 113(1-2), pp. 1-40.
19. O’Shaughnessy, B. (1973). Trying (as the Mental Pineal Gland.) The Journal of Philosophy,

70, pp. 365-86.
20. Pacuit, E., Parikh, R., Cogan, E. (2005). The Logic of Knowledge Based Obligation. To

appear in Knowledge, Rationality and Action.
21. Rao, A. S., Georgeff M. P. (1991). Modelling rational agents within a BDI-architecture. In

Proceedings of the Second International Conference on Principles of Knowledge Represen-
tation and Reasoning, Morgan Kaufmann Publishers, San Mateo, CA.

22. Reiter, R. (2001). Knowledge in action: logical foundations for specifying and implementing
dynamical systems. Cambridge, MA: MIT Press.

23. Santos, F., Carmo, J., Jones, A. (1997). Action concepts for describing organised interaction.
In Proceedings Thirtieth Annual Hawai International Conference on System Sciences, pp.
373-382.

24. Searle, J. R. (1995). The construction of social reality. Free Press, New York.
25. Searle, J. R. (1983). Intentionality. Cambridge University Press.
26. Stoutland, F. (1968). Basic Actions and Causality. Journal of Philosophy, 65, pp. 467-475.
27. Tummolini, L., Castelfranchi, C. (in press). The cognitive and behavioral mediation of insti-

tutions: Towards an account of institutional actions. Cognitive Systems Research, 7(2-3).
28. Vanderveken, D. (2003). Attempt and action generation: towards the foundations of the logic

of action. Cahiers d’pistmologie, 293.
29. Von Wright, G. H. (1963). Norm and Action. London: Routledge and Kegan Paul.

On Herbrand’s Theorem for Intuitionistic Logic�

Alexander Lyaletski1 and Boris Konev2

1 Faculty of Cybernetics, Kiev National Taras Shevchenko University, Ukraine
lav@unicyb.kiev.ua

2 Department of Computer Science, University of Liverpool, United Kingdom
B.Konev@csc.liv.ac.uk

Abstract. In this paper we reduce the question of validity of a first-order intu-
itionistic formula without equality to generating ground instances of this formula
and then checking whether the instances are deducible in a propositional intu-
itionistic tableaux calculus, provided that the propositional proof is compatible
with the way how the instances were generated. This result can be seen as a form
of the Herbrand theorem, and so it provides grounds for further theoretical inves-
tigation of computer-oriented intuitionistic calculi.

1 Introduction

In its classical formulation, Herbrand’s theorem [9] relates the question of validity of a
first-order formula in Skolem prenex form, ∀x1 . . .∀xn φ(x1, . . . ,xn), with the question of
validity of one of its Herbrand extensions: The formula ∀x1 . . .∀xn φ(x1, . . . ,xn) is valid
if, and only if,

∧m
i φ(ti,1, . . . ,ti,n) is valid for some m≥ 1 and some collection of ground

Herbrand terms ti, j . Since every classical first-order formula can be reduced preserv-
ing satisfiability, through the Skolemisation, to this Skolem prenex form, Herbrand’s
theorem, essentially, provides a way to reduce the question of validity of first-order
formulae to propositional logic. Even though the required Herbrand extension and the
terms ti, j cannot be computed recursively (for otherwise first-order logic would be de-
cidable), this result is particularly interesting for the automated reasoning community
as it gives birth to a number of highly efficient proof methods such as resolution [21]
and the inverse method [14]. Availability of similar results for other logics would also
be of significant interest.

Yet, there is no general Herbrand-like theorem for intuitionistic logic, where formulae
cannot in general be preprocessed into a prenex normal form, and the construction
of a proof is often sensitive to the order in which the connectives and quantifiers are
analysed. The biggest obstacle is that the Skolemisation does not preserve intuitionis-
tic satisfiability. Consider, for example, formulae ¬∀xP(x) ⊃ ∃y¬P(y) and ∃x¬P(x) ⊃
∃y¬P(y). The first of them is not intuitionistically valid while the other one, obviously,
is; however, the Skolemised forms of the two coincide. These complications lead to the
existence of limited forms of Herbrand’s theorem for particular classes of intuitionistic
formulae only [15, 16, 3].

While classical Herbrand’s theorem is often proved semantically, it can also be ob-
tained as a direct consequence of Gentzen’s cut elimination theorem [7]: The question

� Supported by the Nuffield foundation grant NAL/00841/G.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 293–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

294 A. Lyaletski and B. Konev

of the deducibility of a first-order formulae in Skolem prenex form can be reduced
to the deducibility of a Herbrand extension, and then the necessary Herbrand terms
can be extracted from the cut-free proof. In fact, a similar idea is used in free-variable
tableau methods [8], where quantifiers are dealt with separately from dealing with the
propositional proof skeleton. Since free-variable tableau techniques are also available
for intuitionistic logic [22, 23], one can hope to obtain deductive forms of intuitionistic
Herbrand’s theorem, in which the question of the deducibility of intuitionistic first-order
formulae is reduced to the deducibility of a Herbrand extension.

We base the investigations presented in this paper on our earlier results in [10], where
we introduce a tableau-based calculus without explicit rules dealing with quantifiers.
Prior to proof search, we replace in a given formula bound variables with free variables
and parameters depending on the polarity of the bounding quantifiers. Then, an admis-
sible substitution suggests the correct order of quantifier rule applications, and a ground
tableau proof of the given formula can be reconstructed, making it unnecessary to back-
track over different orders of quantifier rule applications. The soundness of the resulting
calculus is provided by ordering restrictions in the way similar to the one considered
in [20, 13, 22, 23] for calculi with quantifier rules.

The method presented in [10] is similar, to some extent, to the connection method for
intuitionistic logic pioneered by Wallen [25] and developed further in [18, 19, 11, 24].
The key difference is in the way how we define admissibility of substitutions. In [25],
the notion of admissibility is used to model proof search in a particular sequent in-
tuitionistic calculus, and, therefore, this calculus is tightly integrated into the method.
One has to search for an admissible substitution even for propositional intuitionistic
formulae, and it is not easy to replace the chosen sequent calculus with a different proof
system. In our approach, we try to separate dealing with quantifiers, impermutabilities,
and propositional intuitionistic reasoning. To do that, we use admissibility to check
eigenvariable conditions, we use a propositional proof system to check the deducibil-
ity, and, finally, we check that the propositional proof agrees with quantifiers. From the
implementation point of view, some research in this direction was done in [17], where
a tableau-like search for connections is implemented; however, they still use string uni-
fication in admissibility checks. Our admissibility checks are based on much simpler
term unification; the price we have to pay is more complex proof search on the ground
level.

It is this separation of propositional proof search and the search for admissible sub-
stitutions (with further check that the two agree), what allows us to formulate an analog
of Herbrand’s theorem. We reduce the question of the deducibility of an intuitionis-
tic first-order formula to the deducibility of an analog of the Herbrand extension in an
intuitionistic propositional calculus. We solve the problems with impermutabilities by
imposing restrictions on derivations in the propositional calculus.

2 Preliminaries

We use the standard terminology of first-order logic without equality. The first order
language is constructed over a signature Sig containing a finite (possibly empty) set
of functional symbols, and a finite (nonempty) set of predicate symbols, the logical

On Herbrand’s Theorem for Intuitionistic Logic 295

connectives: the universal quantifier symbol ∀, the existential quantifier symbol ∃, and
the propositional connectives for the implication (⊃), disjunction (∨), conjunction (∧),
and negation (¬).

As for the set of variables Vr, we assume that Vr consists of two disjoint countable
sets: mVr (original variables) and iVr (indexed variables) so that Vr = mVr∪ iVr, where
the following holds: for any v ∈ mVr and any positive integer (index) k (k = 1,2, . . .),
iVr contains the indexed variable kv.

Additionally, we extend the signature Sig in the following way: for any natural num-
ber (index) k (k = 1,2, . . .) and any symbol s from Sig, we add the indexed symbol
ks to Sig denoting the constructed extension by eSig. For example, 1∨, 3 ⊃, and 5∀
are symbols of the extended signature. These left upper indices are used to distinguish
connectives in different copies of the same formula, stemming from multiplicities, to
encode impermutabilities.

The notions of terms, atomic formulae, literals, formulae, free and bound variables,
and scopes of quantifiers over both Sig and eSig are defined in the usual way [8] and
assumed to be known to the reader. We assume that no two quantifiers in any formula
have a common variable, which can be achieved by renaming bound variables.

If the formula F ′ is constructed by renaming (some or all) bound variables in a
formula F , we call F ′ a variant of F .

An equation is an unordered pair of terms s and t written as s≈ t. Assume L is a lit-
eral of the form R(t1, . . . ,tn) (or¬R(t1, . . . ,tn)) and M is a literal of the form R(s1, . . . ,sn)
(or ¬R(s1, . . . ,sn), respectively), where R is a predicate symbol and t1, . . . ,tn,s1, . . . ,sn

are terms. Then Σ(L,M) denotes the set of equations {t1 ≈ s1, . . . ,tn ≈ sn}. In this case,
L and M are said to be equal modulo Σ(L,M) (L≈M modulo Σ(L,M)).

A substitution, σ, is a finite mapping from variables to terms denoted by σ = {x1 �→
t1, . . . ,xn �→ tn}, where variables x1, . . . ,xn are pairwise different and xi �= ti for all i =
1 . . .n. For an expression Ex and a substitution σ, the result of the application of σ to
Ex is denoted by Ex ·σ. For any set Ξ of expressions, Ξ ·σ denotes the set obtained by
the application of σ to every expression in Ξ. If Ξ is a set of (at least two) expressions
and Ξ ·σ is a singleton, then σ is called a unifier of Ξ.

Expressions of the form Tφ or Fφ, where φ is a formula, are termed signed formulae,
and T and F are called signs. A sequent is a non-empty multiset of signed formulae
having no common bound variables in pairs. Capital Greek letters Γ, Δ,. . . denote mul-
tisets of signed formulae, and we write TΓ (or FΔ) to express the fact that all formulae
in Γ (in Δ) are of the form Tφ (of the form Fψ, respectively). We denote by sf(Γ) the
multiset of all sign free formulae obtained from the formulae in Γ by deleting signs. For
example, sf({Tp,Fq}) = {p,q}.

We say that an occurrence of a subformula φ in ψ is

– positive if φ is ψ;
– positive (negative) if ψ is of the form (χ∧ξ), (ξ∧χ), (χ∨ξ), (ξ∨χ), (χ⊃ ξ), ∀xξ,

or ∃xξ and φ is positive (negative) in ξ;
– negative (positive) if ψ is of the form (χ ⊃ ξ) or ¬χ and φ is positive (negative)

in χ.

The polarity of an occurrence of a subformula φ in a sequent S = TΓ,FΔ is deter-
mined by the polarity of the corresponding occurrence of φ in the formula (

∧
sf(TΓ))⊃

296 A. Lyaletski and B. Konev

Γ,TA,FA
(Ax)

Γ,TA,TB
Γ,TA∧B

(T∧)
Γ,FA Γ,FB

Γ,FA∧B
(F∧)

Γ,TA Γ,TB
Γ,TA∨B

(T∨)
Γ,FA

Γ,FA∨B
(F∨1)

Γ,FB
Γ,FA∨B

(F∨2)

Γ,TA⊃ B,FA Γ,TB,Fφ
Γ,TA⊃ B,Fφ (T⊃)

Γ,TA,FB
Γ,FA⊃ B

(F⊃)

Γ,T¬A,FA
Γ,T¬A,Fφ (T¬)

Γ,TA
Γ,F¬A

(F¬)

Γ,T∀xA(x),TA(t)
Γ,T∀xA(x)

(T∀)
Γ,FA(y)

Γ,F∀xA(x)
(F∀)

Γ,TA(y)
Γ,T∃xA(x)

(T∃)
Γ,FA(t)

Γ,F∃xA(x)
(F∃)

No sequent contains more than one formula of the form Fξ. In the T⊃ and T¬ rules, the expres-
sion Fφ might be empty (that is, the sequent contains no formula of the form Fψ). In the rule
(Ax), A is an atomic formula. In the rules (F∀) and (T∃) the variable y has no free occurrences in
the conclusions of the rule.

Fig. 1. Tableau calculus T J for intuitionistic logic

(
∨

sf(FΔ)): If a subformula φ occurs positively in sf(FΔ) or negatively in sf(TΓ),
we say that the occurrence of φ is positive in S, otherwise, the occurrence of φ is
negative.

If an occurrence of a subformula∀xψ is positive (or an occurrence of ∃xψ is negative)
in a formula φ (or in a sequent S), we say that the quantifier ∀x (respectively, ∃x) is
strong in the formula φ (in the sequent S); otherwise, the quantifier ∀x (respectively, ∃x)
is weak in the formula φ (in the sequent S). If a quantifier Qx, where Q is ∀ or ∃, is
strong (weak) in a sequent S, the variable x is called strong (weak) in S.

An indexed variable kv can be a free variable or parameter depending on v being
weak or strong, respectively in a sequent S. For technical reasons only, if v is a weak
(strong) variable, then kv (kv) denotes its free variable (parameter) ‘copy’.

A formula φ is intuitionistically valid if, and only if, the sequent Fφ can be derived,
for example, in the calculus TJ adapted from [23], with the sole difference that we use
the tableau notation whereas [23] uses the sequential one.

3 Calculus T J∗

The results of this paper are based on our research published in [10]. In order to
make this paper self-contained, we repeat the necessary notions and definitions in this
section.

Let μ(φ) be the quantifier-free result of removing all quantifiers from φ. Let for a
formula φ fix the one-to-one function ω mapping strong in φ variable x ∈ mVr into the
parameter 1x ∈ iVr and a weak in φ variable x ∈ mVr into the free variable 1x ∈ iVr

On Herbrand’s Theorem for Intuitionistic Logic 297

(mind the left upper indices!). We also assign left upper indices to the occurrences of
logical connectives in ω(φ)—originally, the left upper index of all logical connectives
is 1; in the process of derivation other indices are also assigned, see Convention below.

For example, if φ is ∀x(∃yP(x,y) ⊃ P(x,x)), then μ(φ) = P(x,y) ⊃ P(x,x), ω(φ) =
1∀1x(1∃1yP(1x,1y)1⊃P(1x,1x)), and μ(ω(φ)) = P(1x,1y)1⊃P(1x,1x).

We extend the definition of μ and ω to sequents and arbitrary sets of formulae in the
obvious way. (There is no ambiguity in the definition of ω since all the formulae of any
sequent have no common variables in pairs.)

In any tableaux-style calculus one has to deal with the necessity to apply quantifier
rules. A distinctive feature of our approach is that we remove quantifiers from given
formulae; and multiple quantifier rule applications can be modelled by means of the
(TCopying) rule defined below.

If ψ is a formula, Q is one of ∀ or ∃, and Qxφ is its subformula, we call Qxφ a maximal
Q-subformula of ψ if Qxφ is not an immediate subformula of another Q-subformula of
ψ and we call x a principal variable of Qxφ. In addition, all variables bounded by
quantifiers within Qxφ are called latent in Qxφ.

For example, both φ1 = ∀x¬∀y∀zP(x,y,z) and φ2 = ∀y∀zP(x,y,z) are maximal ∀-
subformulae of ψ = ∀x¬∀y∀zP(x,y,z). The variables x, y, and z are all latent in φ1, but
only y and z are latent variables in φ2. Note that ∀zP(x,y,z) is not a maximal subformula
of ψ.

Convention. If φ is a maximal Q-subformula containing indexed variables, and j is an
index, then jφ denotes the result of replacing the indices of all logical connectives and
the indexes of all latent variables in φ with j. For example, if φ = P(3x,1y) 3∧Q(3x),
j = 5, and both x and y are latent, then 5φ = P(5x,5y) 5∧Q(5x). If, however, only y is
latent in φ, then 5φ = P(3x,5y) 5∧Q(3x).

The notion of a maximal Q-subformula is extended to the case of μω-images of
sequents in the following way: If a formula Qxφ is a maximal Q-subformula of a
(usual) sequent S, then for every j ∈ N, the formula jμ(ω(Qxφ)) is a maximal Q-
subformula of Sμω. Besides, jx is called a principal variable of jμ(ω(Qxφ)). More-
over, if a variable y is latent in Qxφ, then for every j ∈ N, the variable jy is latent in
jμ(ω(Qxφ)).

Assume we are interested in the validity of a closed formula φ. In our calculus TJ∗,
proof search begins with the starting sequent Sμω = Fμ(ω(φ)). The rules of T J∗ are
given in Fig. 2. Note that the quantifier rules became redundant and are absent from the
calculus.

(Quasi)-proof. A sequent is said to be closed if it contains occurrences of both TA and
FA, where A is an atomic formula. A sequent is quasi-closed if it contains occurrences
of both TA and FB, where A and B are atomic formulae and A ≈ B modulo Σ(A,B).
Applying the above-mentioned rules ‘from top to bottom’ to a starting sequent and
afterwards to its ‘consequences’, and so on, we construct a so-called inference tree for
the starting sequent. An inference tree is called a quasi-proof (proof) tree for a starting
sequent if all its leaves are quasi-closed (closed).

298 A. Lyaletski and B. Konev

Γ,TA,TB

Γ,TA k ∧B
(T∧)

Γ,FA Γ,FB

Γ,FA k ∧B
(F∧)

Γ,TA Γ,TB

Γ,TA k ∨B
(T∨)

Γ,FA

Γ,FA k ∨B
(F∨1)

Γ,FB

Γ,FA k ∨B
(F∨2)

Γ,TA k ⊃ B,FA Γ,TB,Fφ
Γ,TA k ⊃ B,Fφ

(T⊃)
Γ,TA,FB

Γ,FA k ⊃ B
(F⊃)

Γ,T k¬A,FA

Γ,T k¬A,Fφ
(T¬)

Γ,TA

Γ,F k¬A
(F¬)

Γ,Tφ,T lφ
Γ,Tφ (TCopying)

No sequent contains more than one formula of the form Fξ. In the (T ⊃) and (T¬) rules,
the expression Fφ might be empty (that is, the sequent contains no formula of the form Fψ).
In the rule (TCopying):

– φ is a maximal ∀-subformula of Sμω;
– l is a new index, that is, lφ does not have common latent variables with other formulae of

the sequent.

Fig. 2. Calculus T J∗

3.1 Main Result for T J∗

Let φ be a formula. By (i,φ) we denote the i-th occurrence of a logical connective
(which could be a propositional connective or a quantifier) in φ when the formula φ is
read from left to right. If (i,φ) is the occurrence of a logical connective+, we also refer
to this occurrence as i+. Moreover, in what follows, any occurrence i+ of a symbol +
in a formula F is treated as a new symbol. Therefore, i+ and j+ are different symbols
which denote the same logical “operation”+. We also refer to a bound variable x bound
by the quantifier iQx as ix.

For a formula φ, we write i+ ≺φ j+′ if, and only if, in φ, the selected occurrence j+′
of the logical connective+′ is in the scope of the selected occurrence i+ of+. For exam-
ple, if φ is (1¬ ψ 2∧ (ξ 3∨ χ)), then 2∧≺φ 1¬ and 2∧≺φ 3∨. We extend the relation≺φ
to bound variables: x≺φ y if the quantifier Qy is in the scope of the quantifier Q′x (recall
that no two quantifiers in any formula have a common variable, which can be achieved
by renaming bound variables). For example, for the formula φ = 1∀x 2∃yP(x,y), we
have: x≺φ y.

We also extend the (transitive and irreflexive) relation ≺φ to the case of indexed
logical connectives in the following way: for any i and j and for any formula φ, we have
k
i+ ≺φ

l
j+′ if, and only if, i+ ≺φ j+′. Similarly for indexed variables, ix ≺φ

jy if, and
only if, x≺φ y.

Let Tr be an inference tree in the calculus T J∗ then the union of the relations ≺φ,
defined for all formulae φ from Tr, is a transitive and irreflexive relation denoted by
≺Tr.

Any substitution σ induces a (possibly empty) relation,σ as follows: y,σ x if, and
only if, there exists x �→ t ∈ σ such that x is a free variable, the term t contains y, and y

On Herbrand’s Theorem for Intuitionistic Logic 299

is a parameter. For example, consider the substitution σ = {1x �→ f (2y,1v,1z)}. Then,
2y,σ

1x and 1z,σ
1x (note that 1x and 1v are not in the relation,σ).

A substitution σ is admissible for a formula φ (for an inference tree Tr) if, and only
if, for every x �→ t ∈ σ, x is a free variable, and the transitive closure �φ,σ of ≺φ ∪ ,σ
(�Tr,σ of ≺Tr ∪,σ) is an irreflexive relation.

Let Tr be an inference tree for a starting sequent Sμω in T J∗. Suppose l1
j1
+1, . . ., lr

jr+r

is the sequence of propositional connectives occurrences in formulae from Sμω, which
are eliminated in Tr by applying inference rules, written in the rules applications order
leading to the construction of Tr. Then the sequence of such rules applications is called
proper for Tr. We denote such sequence by αTr(

l1
j1
+1), . . ., αTr(lr

jr+r). (It must be clear
that there can exist more than one proper sequence for an inference tree Tr.)

Further, an inference tree Tr for Sμω is called compatible with the substitution σ
if, and only if, there exists a proper sequence αTr(

l1
j1
+1), . . ., αTr(lr

jr+r) for Tr such
that for any natural numbers m and n, the property m < n implies that the ordered pair
〈lnjn+n, lm

jm
+m〉 does not belong to �Tr,σ.

The following result can easily be extracted from [10].

Proposition 1. A sequent Fφ is deducible in the calculus T J if, and only if, a quasi-
proof tree Tr for F(μ(ω(φ))) can be constructed in the calculus T J∗, and there exists a
substitution σ such that (i) Tr ·σ is a proof tree, (ii) σ is an admissible substitution for
Tr, and (iii) the tree Tr is compatible with σ.

4 Herbrand’s Theorem

This section develops the ideas suggested in [12]: Given a first-order intuitionistic for-
mula, we generate ground instances of this formula and then check whether the in-
stances are deducible in a propositional intuitionistic tableaux calculus, provided that
the propositional proof is compatible with the way how the instances were generated.

First, we introduce a specialised convolution calculus, which allows one to “gather”
the required multiple occurrences of subformulae. Then, we introduce the notion of a
Herbrand quasi-universe and formulate the main result of this paper.

4.1 The Convolution Calculus

We reduce the deducibility of first-order sequents to the deducibility of quantifier-free
sequents. Let Tr be an inference tree for a starting sequent S (of the form Fφ) in the
calculus T J∗. To every sequent Sq in Tr, we assign the sequent ι(Sq), termed the spur
of Sq, as follows.

– If Sq is a leaf of Tr, having the form TF1, . . . ,TFn,FG, then ι(Sq) is TF1, . . . ,
TFn,FG.

– If Sq is not a leaf node and spurs are assigned to all its successors, we assign ι(Sq)
to Sq in accordance with the rules of the convolution calculus given in Fig. 3: If a
rule R of the calculus TJ∗ is applied to the sequent Sq in Tr, the spur is assigned to
Sq as prescribed by the rule ↑ R of the convolution calculus applied “bottom up”.

300 A. Lyaletski and B. Konev

Γ,Tι(A),Tι(B)
Γ,Tι(A)∧ ι(B)

(↑ T∧)
Γ,Fι(A) Γ,Fι(B)

Γ,Fι(A)∧ ι(B)
(↑ F∧)

Γ,Tι(A) Γ,Tι(B)
Γ,Tι(A)∨ ι(B)

(↑ T∨)
Γ,Fι(A)

Γ,Fι(A)∨ ι(B)
(↑ F∨1)

Γ,Fι(B)
Γ,Fι(A)∨B

(↑ F∨2)

Γ,Tι(A)⊃ ι(B),Fι(A) Γ,Tι(B),Fι(φ)
Γ,T(ι(A)⊃ ι(B))∧ (ι(A)⊃ ι(B)),Fι(φ)

(↑ T⊃)
Γ,Tι(A),Fι(B)
Γ,Fι(A)⊃ ι(B)

(↑ F⊃)

Γ,T¬ι(A),Fι(A)
Γ,T ¬ι(A)∧¬ι(A),Fφ

(↑ T¬)
Γ,Tι(A)

Γ,F¬ι(A)
(↑ F¬)

Γ,Tι(φ),T lι(φ)

Γ,Tι(φ)∧ lι(φ)
(↑ TCopying)

The rule (↑ T¬) assigns the spur Γ,T ¬ι(A)∧¬ι(A),Fφ to the sequent Γ,T k¬A,Fφ.

Fig. 3. Convolution Calculus

The result of the assignment of spurs to all sequents in Tr is called the spurred image
of Tr and is denoted by ι(Tr). The top node of ι(Tr) is denoted by ι(S), where S is a
starting sequent. It should be clear that ι(Tr) consists of quantifier-free formulae only.
Moreover, any formula in ι(Tr) consists of the symbols of the original signature only.

Next, we are going to reduce the deducibility of sequences to the deducibility of
spurs in a tableau propositional calculus. Note that, since all the necessary multiple
occurrences of subformulae are introduced to the spur, the propositional calculus is
contraction free.

Let pTJ be the calculus obtained from TJ by deleting all its quantifier rules and
replacing the rules (T⊃) and (T¬) with

Γ,FA Γ,TB,Fφ
Γ,TA⊃ B,Fφ (pT⊃)

Γ,FA
Γ,T¬A,Fφ (pT¬) ,

respectively. We extend the definitions of admissible substitutions and compatibility of
inference trees and substitutions to the case of pT J.

The following properties of proof trees can be easily proved by induction on the
number of rules applications.

Proposition 2. Let Tr be an inference tree for a starting sequent S in the calculus T J∗

and σ a substitution. Then the following properties hold w.r.t. ι(Tr), ι(S), and σ:
1) ι(Tr) and Tr contain the same variables;
2) ι(Tr) is an inference tree in T J∗ for ι(S) (up to multiple applications of the F∧);
3) ι(Tr) ·σ is an inference tree in the calculus pTJ for the initial sequent ι(S) ·σ;
4) ι(Tr) ·σ is a proof tree in pTJ if, and only if, Tr ·σ is a proof tree in T J∗;
5) σ is admissible for ι(Tr) if, and only if, σ is admissible for Tr;
6) ι(Tr) is compatible with σ if, and only if, Tr is compatible with σ.

Taking this proposition into account, we can reformulate Proposition 1 as follows.

Proposition 3. A sequent Fφ is deducible in the calculus T J if, and only if, a quasi-
proof tree Tr for F(μ(ω(φ))) can be constructed in the calculus T J∗, and there exists a

On Herbrand’s Theorem for Intuitionistic Logic 301

substitution σ such that (i) ι(Tr) ·σ is deducible in pT J, (ii) σ is an admissible substi-
tution for ι(Tr), and (iii) the tree ι(Tr) is compatible with σ.

4.2 Intuitionistic Herbrand Theorem

Now we introduce our modification of the notions of the multiplicity [2, 25] and the
Herbrand quasi-universe [12].

Let φ be a formula and φ1, . . . ,φn its variants. If φ,φ1, . . . ,φn does not have any bound
and latent variables in pairs, then φ1 ∧ . . .∧ φn (n > 0) is called a variant n-fold ∧-
duplication. The formula φ∧ . . .∧φ is called an identical n-fold ∧-duplication of φ.

Herbrand extension. Let ψ be a formula and ξ a ∧-duplication of φ. The result of the
replacement of φ in ψ with ξ is called a one-step Herbrand extension of ψ if one of the
following condition is satisfied:

(i) φ is a maximal negative ∀-subformula of ψ and ξ is a variant duplication of φ, which
has no common bound and latent variables with ψ;

(ii) φ is a negative ⊃-subformula (negative ¬-subformula) of ψ, and ξ is a identical
duplication of φ.

Finally, the result of a finite sequence of one-step extensions consequently applied to a
given formula ψ is called a Herbrand extension of ψ.

The notion of a Herbrand quasi-universe, introduced in [12] and modified here for
the intuitionistic case, plays the same role in our research as the usual Herbrand universe
in the case of classical logic. Unlike the “usual” Herbrand universe, the quasi-universe
also contains parameters in the case where strong variables occur in an initial sequent.

Herbrand quasi-universe. Let S be a sequent. Then HQ(S) denotes the following min-
imal set of terms called a Herbrand quasi-universe: (i) every constant and every pa-
rameter, occurring in S, belong to HQ(S) (if there is no constant in S then the special
constant c0 ∈HQ(S)); (ii) if f is a k-ary functional symbol and terms t1, . . ., tk ∈HQ(S)
then f (t1, . . ., tk) ∈ HQ(S).

Theorem 1. A sequent Fφ is deducible in the calculus T J if, and only if, there exist
a Herbrand extension HE(φ) of φ and a substitution σ of terms from the Herbrand
quasi-universe HQ(Fμ(HE(φ))) for all free variables in μ(HE(φ)) such that (i) σ is an
admissible substitution for μ(HE(φ)) and (ii) there exists a proof tree for Fμ(HE(φ)) ·σ
in pT J, compatible with σ.

Proof. Note that we can assume that σ substitutes terms from a Herbrand quasi-universe
only, which is followed from the subformula property of the calculi given above and
from the fact that we can restrict ourselves with the consideration of substitutions being
simultaneous most general unifiers of certain sets of terms.

Necessity. Let Fφ be deducible in the calculus T J. By Proposition 3, there exist a
quasi-proof tree Tr for the sequent Fμ(ω(φ)) in T J∗ and a substitution σ such that (i)
ι(Tr) ·σ is a proof tree in pT J, (ii) σ is admissible for Tr, and (iii) ι(Tr) is compatible
with σ.

302 A. Lyaletski and B. Konev

Consider the top sequent ι(Fφ) of ι(Tr). By definitions of the convolution calcu-
lus and a Herbrand extension, there exists a sequence of one-step Herbrand exten-
sions such that the sequents ι(Fφ) and Fμ(HE(φ)) coincide. This proves both items (i)
and (ii).

Sufficiency. As in the case on the necessity, it follows from Proposition 3 and the
properties of the convolution calculus and HE(φ).

We demonstrate our approach on a series of examples.

Example 1 (The rôle of admissibility). Let φ be the following formula ∀x∃yP(x,y) ⊃
∃y′∀x′P(x′,y′). All Herbrand extensions ξk (= HE(φ)) of φ are of the form:

(∀ 1x1∃ 1y1P(1x1,
1 y1)∧ . . .∧∀ 1xk∃ 1ykP(1xk,

1 yk))⊃ ∃ 1y′∀ 1x′P(1x′,1 y′).

The Herbrand quasi-universe for this case is QH(HE(μ(φ))) = {c0,
1 y1, . . . ,

1 yk,
1 x′}.

It easy to see that the substitution σi of the form {1xi �→1 x′,1 y′ �→1 yi,
j x �→ c0 : j �= i}

transforms Fμ(ξk) into the sequent

Fμ(ξk) ·σi = F(P(c0,
1 y1)∧ . . .∧P(c0,

1 yi−1)∧P(1x′,1 yi))∧P(c0,
1 yi+1)∧ . . .

∧P(c0,
1 yk))⊃ P(1x′,1 yi),

which is deducible in pTJ.
However, σi is not admissible for ξk since we have 1xi ≺ξk

1yi, 1y′ ≺ξk
1x′, 1x′ ,σi

1xi, and 1yi ,σi
1y′, and therefore, 1xi �ξk,σi

1xi. As a consequence of Theorem 1, Fφ is
not deducible in in T J. Note Fφ is also not classically deducible as shown in [12].

Next, consider the formula φ = ∃y∀xP(x,y) ⊃ ∀x′∃y′P(x′,y′). Then similarly to the
case considered above, HE(φ) = ∃ 1y1∀ 1x1P(1x1,

1 y1) ⊃ ∀ 1x′∃ 1y′P(1x′,1 y′) and the
substitution σ = {1x1 �→1 x′,1 y′ �→1 y1}, is admissible for HE(φ). Moreover, the sequent
Fμ(HE(φ)) ·σ is deducible in pTJ and any its proof tree is compatible with σ. Thus,
the sequent Fφ is deducible in T J, i.e. it is intuitionistically valid.

Example 2 (The rôle of multiplicities). Let φ be the formula ∃y∀xB(x,y)⊃∃z(B(a,z)∧
B(b,z)) and S be the sequent Fφ, where x, y, and z are variables; a and b are constants;
and B is a predicate symbol. We show that φ is an intuitionistically valid formula.

If we do not introduce copies of subformulae, there is no substitution σ of a term
from HQ(μ(S)) = {a,b,y} for the free variable x such that HQ(μ(S)) ·σ is deducible in
pTJ. Therefore, Theorem 1 is not applicable.

If, however, we consider a Herbrand extension of φ,

HE(φ) = ∃y(∀ 1xB(1x,y)∧∀ 2xB(2x,y))⊃ ∃z(B(a,z)∧B(b,z)),

and substitution σ = {1x �→ a,2 x �→ b,z �→ y}, then the sequent FHQ(μ(S)) ·σ is de-
ducible in pT J. Obviously, σ substitutes terms from HQ(μ(HE(φ))) and it is admis-
sible for μ(HE(φ)). Moreover, any proof tree for Fμ(HE(φ)) ·σ in pTJ is compatible
with σ. By Theorem 1, we come to the conclusion that the sequent Fφ is deducible in
T J and, therefore, φ is an intuitionistically valid formula.

On Herbrand’s Theorem for Intuitionistic Logic 303

Example 3 (The rôle of compatibility). Let us consider the formula φ = (¬∀xP(x) ⊃
∃y¬P(y)). There exists no Herbrand extension of φ but φ itself. Therefore, QH(HE(φ))
= {c0,x} and the only possible admissible substitution σ = {y �→ x} transforms Fμ(φ)
into the sequent S = F¬P(x)⊃ ¬P(x), which is deducible in pT J.

The only possible proof tree Tr for S in pT J is as follows.

1. F¬P(x)⊃ ¬P(x) (starting sequent)

2. T¬P(x),F¬P(x) (from (1), by (F⊃)-rule)

3. T¬P(x),TP(x) (from (2), by (F¬)-rule)

4. TP(x),FP(x) (from (3), by (T¬)-rule: Axiom)

Notice that Tr is not compatible with σ: the (F ⊃)-rule application (the 2nd step)
precedes to the (T ⊃)-rule application (the 3rd step), although the compatibility con-
dition requires the inverse order of rule applications. Since there is no other way to
construct a proof tree for S, we conclude that the sequent Fφ is not deducible in TJ, as
implied by Theorem 1, and the formula φ is not intuitionistically valid.

5 Conclusions and Future Work

Herbrand’s theorem in intuitionistic context is inherently complex. The ultimate goal
is to be able to compute given a first-order formula φ a series of its ground Herbrand
extensions φ̂1, φ̂2, . . . in such a way that

φ is intuitionistically valid if, and only if, for some n≥ 1, φ̂n is intuitionistically
valid.

(1)

To our best knowledge, nobody yet succeeded to do that for arbitrary intuitionistic for-
mulae. We are aware of three approaches to this problem.

Classical Herbrand extension for fragments of intuitionistic logic. For certain frag-
ments of intuitionistic logic, (1) still holds for the classical Skolemisation and
Herbrand extensions. The simplest case of intuitionistic formulae in prenex form
is considered in [15, 3] while [15, 16] gives a full characterisation of intuitionistic
formulae for which the classical Skolemisation and Herbrand extensions do the job.
As the example considered in the Introduction shows, the classical Skolemisation
does not work for all intuitionistic formulae.

Reduction to a different language. Alternatively, one can reduce validity of first-order
formulae to validity of formulae in logics “between” propositional and first-order.
This approach was pursued by Fitting through predicate abstractions [5] and by
Baaz&Iemhoff through existence predicates and the eSkolemisation [1]. The main
disadvantage of such an approach for the automated reasoning community is the
necessity to develop specialised provers for these “intermediate” logics.

Constraining proofs. Finally, one can extract an admissible substitution and a
Herbrand extension from a sequent, tableau, or connection method proof

304 A. Lyaletski and B. Konev

[20, 13, 22, 23, 25, 18, 19, 11, 24]. Then a given formula is valid if, and only if, there
exists a sequent, tableau, or connection method (resp.) restricted proof for the Her-
brand extension. Note that the resulting Herbrand extension and the proof search
process are tightly integrated with each other, and it is not possible, say, to use
Herbrand extension from one approach and proof method from the other.

This papers extends further the third approach. Our main contribution is that we
separate the generation of ground instances from checking the propositional deducibil-
ity and these two processes are only connected through compatibility check. We can
formulate the notion of compatibility with a substitution regardless of the particular
set of tableaux inference rules used. For example, one can introduce pLJ, a variant of
Gentzen’s intuitionistic calculus LJ, which differs from LJ, in only that it lacks quan-
tifier rules and the thinning rule. The definition of an inference tree compatible with
a substitution can be easily transferred to LJ. Then, the following proposition can be
proved. (We use tableau form of LJ.)

Proposition 4. A sequent Fφ is deducible in the calculus LJ if, and only if, there exist
a Herbrand extension HE(φ) of φ and a substitution σ of terms from the Herbrand
quasi-universe HQ(Fμ(HE(φ))) for all free variables in μ(HE(φ)) such that (i) σ is an
admissible substitution for μ(HE(φ)) and (ii) there exists a proof tree for Fμ(HE(φ)) ·σ
in pLJ, compatible with σ.

This result suggests the following conjecture.

Conjecture 1. For any propositional tableau intuitionistic calculus pC it is possible to
formulate the notion of compatibility with a substitution such that any formula φ is
intuitionistically valid if, and only if, there are an Herbrand extension HE(φ) of φ and
a substitution σ of terms from the Herbrand quasi-universe HQ(Fμ(HE(φ))) for all
free variables in μ(HE(φ)) such that (i) μ(HE(φ)) · σ is intuitionistically valid as a
propositional formula, (ii) σ is an admissible substitution for μ(HE(φ)), and (iii) for
Fμ(HE(φ)) ·σ, there exists a proof tree in pC compatible with σ.

We are planning to further explore this conjecture especially for contraction-free [4],
multi-succedent [24], and labelled [6] tableau proof systems.

References

1. M. Baaz and R. Iemhoff. On the skolemization of existential quantifiers in intuitionistic
logic. Annals of Pure and Applied Logic, 2006. to appear.

2. W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second edition, 1987.
3. K. A. Bowen. An Herbrand theorem for prenex formulas of LJ. Notre Dame Journal of

Formal Logic, 17(2):263–266, 1976.
4. Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log.,

57(3):795–807, 1992.
5. Melvin Fitting. A modal herbrand theorem. Fundam. Inform., 28(1-2):101–122, 1996.
6. D. Gabbay. Labelled deductive systems. Oxford university press, 1996.
7. G. Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,

39:176–210, 405–433, 1934.

On Herbrand’s Theorem for Intuitionistic Logic 305

8. R. Hähnle. Tableaux and related methods. In A. Robinson and A. Voronkov, editors, Hand-
book of Automated Reasoning, volume I, chapter 3, pages 101–178. Elsevier, 2001.

9. J. Herbrand. Recherches sur la théorie de la démonstration, (thesis). In W. Goldfarb, editor,
Logical writings. Cambridge, 1977.

10. B. Konev and A. Lyaletski. Tableau method with free variables for intuitionistic logic. In
Proceedings of the International IIS: IIPWM’06 Conference, Advances in Soft Computing,
2006. To appear.

11. C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical
logics. J. UCS, 5(3):88–112, 1999.

12. A. Lyaletski. Sequent forms of Herbrand theorem and their applications. Annals of Mathe-
matics and Artificial Intelligence. In press.

13. A. V. Lyaletski. Gentzen calculi and admissible substitutions. In Actes Préliminaieres du
Symposium Franco-Sovietique “Informatika-91”, pages 99–111, Grenoble, France, 1991.

14. S. Y. Maslov. An inverse method for establishing deducibility of nonprenex formulas of
the predicate calculus. In J. Siekmann and G. Wrightson, editors, Automation of Reason-
ing 2: Classical Papers on Computational Logic 1967-1970, pages 48–54. Springer, Berlin,
Heidelberg, 1983.

15. G. Mints. Herbrand theorem. In Mathematical Theory of Logical Inference, pages 311–350.
Nauka, Moscow, 1967.

16. G. Mints. The Skolem method in intuitionistic calculi. In Proc. Steklov Inst. Math., volume
121, pages 73–109. 1972.

17. J. Otten. ileanTAP: An intuitionistic theorem prover. In Proc. TABLEAUX’97, volume 1227
of LNCS, pages 307–312, 1997.

18. J. Otten and C. Kreitz. A connection based proof method for intuitionistic logic. In Proc.
TABLEAUX’95, volume 918 of LNCS, pages 122–137, 1995.

19. J. Otten and C. Kreitz. A uniform proof procedure for classical and non-classical logics. In
KI-96, volume 1137 of LNCS, pages 307–319, 1996.

20. S. Reeves. Semantic tableaux as framework for automated theorem-proving. In C. S. Mellish
and J. Hallam, editors, Proc. AISB-87, pages 125–139, 1987.

21. J. A. Robinson. A machine oriented logic based on the resolution principle. J. Assoc. Comput.
Mach, 12:23–41, 1965.

22. N. Shankar. Proof search in the intuitionistic sequent calculus. In Proc. CADE’92, volume
607 of LNCS, pages 522–536, 1992.

23. A. Voronkov. Proof search in intuitionistic logic based on constraint satisfaction. In Proc.
TABLEAUX’96, volume 1071 of LNCS, pages 312–329, 1996.

24. A. Waaler and L. Wallen. Tableaux for intuitionistic logics. In M. D’Agostino, D. Gabbay,
R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 255–296. Kluwer,
Dordrecht, 1999.

25. L. Wallen. Automated Deduction in Nonclassical Logics. MIT Press: Cambridge, 1990.

Ambiguity Propagating Defeasible Logic and the
Well-Founded Semantics

Frederick Maier and Donald Nute

Department of Computer Science and Artificial Intelligence Center
The University of Georgia

Athens, GA 30602
fmaier@uga.edu dnute@uga.edu

Abstract. The most recent version of defeasible logic (Nute, 1997) is related to
the well-founded semantics by translating defeasible theories into normal logic
programs using a simple scheme proposed in (Brewka, 2001). It is found that
by introducing ambiguity propagation into this logic, the assertions of defeasible
theories coincide with the well-founded models of their logic program transla-
tions. Without this addition, the two formalisms are found to disagree in impor-
tant cases.

A translation in the other direction is also provided. By treating default negated
atoms as presumptions in defeasible logic, normal logic programs can be con-
verted into equivalent defeasible theories.

1 Introduction

This paper relates the most recent version of defeasible logic described in (Nute, 1997)
to the well-founded semantics for normal logic programs via a translation scheme.
After the scheme is presented, it is shown that in important cases the conclusions of
a given defeasible theory do not correspond with the logic program’s well-founded
model. However, by modifying the proof system of defeasible logic, a new ambiguity
propagating variant is created, and for this new variant the correspondence holds.

The translation scheme used here was first proposed in (Brewka, 2001) and was used
to compare logic programs under a prioritized well-founded semantics to a variant of
defeasible logic presented in (Antoniou et al., 2000). For the purposes of this paper,
we will call the defeasible logic presented in (Nute, 1997) NDL to distinguish it from
other variants. The ambiguity propagating variant presented here will be called ADL.
NDL goes beyond the variants presented in (Antoniou et al., 2000) by including a more
extensive treatment of the ways that defeasible rules may conflict and by explicitly
considering failures of proofs due to cycles in rules. Both of these are important im-
provements in defeasible logic, and the impact of these changes are discussed in detail
in (Nute, 2001).

Another translation scheme for NDL is found in (Maier & Nute, 2006). Defeasible
theories are translated into logic programs via the introduction of new literals explicitly
representing rules and conflicts. The scheme has the virtue of allowing one to suc-
cessfully embed defeasible theories of NDL into logic programs, but it does not reveal
any deep connection between defeasible logic and logic programming. The translation

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 306–318, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics 307

there is in turn based upon one found in (Antoniou & Maher, 2002) which uses a nota-
tional variant of an earlier version of defeasible logic described in (Nute 1992, 1994).
Antoniou and Maher show a relationship between this variant and stable models, but
the result is limited to defeasible theories without cycles in their rules. They establish
a more general relationship between all defeasible theories and Kunen’s three-valued
semantics (Kunen, 1987).

The main contribution of this paper is the development of the ambiguity propagating
defeasible logic ADL and a demonstration of a correspondence between the assertions
of ADL theories and the well-founded models of the translations. The well-founded
semantics can thus be viewed as indirectly providing a semantics for ADL. This result
allows us to use the translation method together with a proof method that is sound with
respect to the well-founded semantics as an implementation of ADL.

Furthermore, it is shown here that normal logic programs can be translated into ADL
theories in such a way that the well-founded model of a given logic program corre-
sponds to the assertions of its translation. Each default negated literal ‘not p’ of the
program is treated as a defeasible rule ∅ ⇒ ¬p of the defeasible theory (stating, in
effect, that ¬p presumably holds).

2 The Defeasible Logics NDL and ADL

This section presents the language of NDL and its ambiguity propagating counterpart
ADL as well as proof systems for each. NDL is presented first, and ADL is presented
as a modification of NDL’s proof system. For a fuller discussion of NDL, see (Nute,
2001).

The well-formed formulas in the common language of NDL and ADL are literals
(atomic sentences and their negations). The language also contains strict rules, written
A→ p (where p is a literal and A a finite set of literals), defeasible rules (written A⇒
p), and undercutting defeaters or simply defeaters (written A 	 p). In the following
we will use

� to stand for any rule, whether strict, defeasible, or defeater.

The basic idea behind the proof theory for NDL is that we can derive a literal p from
a defeasible theory just in case p is the head of some strict or undefeated defeasible rule
in the theory and all of the literals in the body of the rule are also derivable. A strict rule
with an empty body is called a fact and the head of such a rule is by definition always
derivable. A defeasible rule with an empty body is called a presumption and may be
defeated by other rules. The role of defeaters is solely to defeat other arguments that
might otherwise establish a literal. E.g., the defeater q 	 ¬p can be used to prevent
proving p, but it cannot be used to directly prove ¬p.

Definition 1. A defeasible theoryD is a triple 〈R,C,≺〉, where R a set of rules, each
with a possibly empty antecedent, C a set of finite sets of literals in the language of D
such that for any literal p in the language of the theory, {p,¬p} ∈ C, and ≺ an acyclic
binary superiority relation over the non-strict rules in R.

Let D = 〈R,C,≺〉 be a defeasible theory. The sets of literals in C are called conflict
sets. Each conflict set cs ∈ C specifies a set of literals that cannot simultaneously
consistently hold. If C only contains sets of the form {p,¬p}, we say D has a minimal

308 F. Maier and D. Nute

conflict set. We say that the conflict set C is closed under strict rules if, for all cs ∈ C,
if A → p is a rule and p ∈ cs, then {A ∪ (cs − {p})} ∈ C. It is not a necessary
condition that a defeasible theory be closed under strict rules, but it is certainly an
attractive condition. We will call a defeasible theory closed if its conflict set is closed
under strict rules.

The proof theory for NDL is based upon argument trees.

Definition 2. Let D be a defeasible theory and p a literal in the language of D. The
expression D |∼ p is called a positive defeasible assertion, while D ∼| p is called a
negative defeasible assertion.

Informally, D |∼ p and D ∼| p are interpreted to mean that a demonstration (respec-
tively, a refutation) exists for p from D. Note that D ∼| p is equivalent to neither
D |∼ ¬p nor D �|∼ p. D ∼| p means that there is a demonstration that there is no
defeasible proof of p fromD.

Definition 3. τ is an argument tree for D iff τ is a finite tree such that every node of τ
is labeled either |∼ p or ∼| p (for some literal p appearing inD).

Definition 4. The depth of a node n is k iff n has k ancestors in τ . The depth of a tree
is taken to be the greatest depth of any of its nodes.

Definition 5. Let A be a set of literals, and n a node of a defeasible argument tree τ :

1. A succeeds at n iff for all q ∈ A, there is a child m of n such that m is labeled
|∼ q.

2. A fails at n iff there is a q ∈ A and a childm of n such thatm is labeled ∼| q.

Definition 6. τ is a defeasible proof in NDL iff τ is an argument tree for D, and for
each node n of τ , one of the following obtains:

1. n is labeled |∼ p and either:

a. there is a strict rule r : A→ p ∈ R such that A succeeds at n, or
b. there is a defeasible rule r : A ⇒ p ∈ R such that A succeeds at n and for

all cs ∈ C, if p ∈ cs, then there is a q ∈ cs − {p} such that for all rules
s : B

� q ∈ R, either B fails at n or else s ≺ r.

2. n is labeled ∼| p and:
a. for all strict rules r : A→ p ∈ R, A fails at n, and
b. for all defeasible rules r : A⇒ p ∈ R, either

i. A fails at n, or
ii. there is a cs ∈ C such that p ∈ cs, and for all q ∈ cs−{p}, there is a rule
s : B

� q ∈ R such that B succeeds at n and s ⊀ r.

3. n is labeled∼| p andm has an ancestorm in τ such thatm is labeled ∼| p and all
nodes between n andm are negative defeasible assertions.

Condition 6.3 is called failure-by-looping. Since conclusions cannot be established by
circular arguments, failure-by-looping can help to show that a literal cannot be derived
from a defeasible theory.

Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics 309

Definition 7. Where D is a defeasible theory and p is a literal in the language of D,
D |∼NDL p iff there is a proof τ in NDL such that the root of τ is labeled |∼ p, and
D ∼|NDL p iff there is a proof tree τ such that the root of τ is labeled ∼| p. If S is a set
of literals in the language of D, D |∼NDL S if and only if for all p ∈ S, D |∼NDL p.
D ∼|NDL S iff for some p ∈ S,D ∼|NDL p.

Some important formal properties of NDL are established in the following theorems.

Theorem 1 (Coherence). IfD is a defeasible theory andD |∼NDL p, thenD �∼|NDL p.

Theorem 2 (Consistency). If D = 〈R,C,≺〉 is a defeasible theory, C is closed under
strict rules, S ∈ C, andD |∼NDL S, then 〈{A→ p : A→ p ∈ R}, C,≺〉 |∼NDL S.

Theorem 3 (Cautious Monotony). IfD = 〈R,C,≺〉 is a defeasible theory,D |∼NDL

p, andD |∼NDL q, then 〈R ∪ {→ p}, C,≺〉 |∼NDL q.

Theorem 1 assures us that we cannot both prove and demonstrate the absence of any
proof for the same literal. Theorem 2 says that when conflict sets are closed under
strict rules, any incompatible set of literals in NDL derivable from a defeasible theory
must be derivable from the strict rules alone. In other words, the defeasible rules of
a theory can never introduce any new incompatibilities. Of course, this interpretation
of Theorem 2 assumes that all possible incompatibilities are captured in the conflict
set of the theory. Cautious Monotony is a principle which many authors working on
nonmonotonic reasoning propose as a necessary feature for any adequate nonmonotonic
formalism.

The advantages of adding failure-by-looping to our proof theory should be obvious.
Consider the simple defeasible theoryD1 below.

Example 1

RD1 : 1) → mammal CD1 : {bat,¬bat} ≺D1 : ∅
2) furry, has wings⇒ bat {furry,¬furry}
3) bat⇒ furry {has wings,¬has wings}
4) bat⇒ has wings {mammal,¬mammal}
5) bat⇒ flies {flies,¬flies}
6) mammal⇒ ¬flies

In earlier versions of defeasible logic that lacked failure-by-looping, although we could
easily see that there was no way to show D1 |∼ bat, we could not demonstrate this in
the proof theory, that is, we could not showD1 ∼| bat. Consequently, neither could we
show D1 |∼ ¬flies. Failure-by-looping provides a mechanism for showing D ∼|NDL

bat, which then allows us to showD1 |∼NDL ¬flies.
When we later define a translation of defeasible theories into standard logic programs

in such a way that the consequences of a theory correspond to the well-founded model
for the logic program, this example will also serve to show that failure-by-looping is
necessary to get this correspondence. Where the theoryD1 above is translated intoΠD1 ,
the literals bat, furry, and has wings are all unfounded, but ¬flies is well-founded.
The corresponding literals are undetermined in versions of defeasible logic without

310 F. Maier and D. Nute

failure-by-looping. Where a defeasible theory has cyclic rules, failure-by-looping is
needed to capture within the proof theory the concept of a literal being unfounded.

Adding explicit conflict sets and closing them under strict rules provides an alter-
native solution to a class of examples that have always seemed odd to the authors.
Consider the defeasible theory

Example 2

D2 = 〈{⇒ p,⇒ q, p⇒ r, q ⇒ r, p→ ¬q, q → ¬p}, C, ∅〉

where C is closed under the strict rules in R. The corresponding default theory is

R2 = 〈{¬(p ∧ q)}, { :p
p ,

:q
q ,

p:r
r ,

q:r
r }〉

The classical part ofR2 containing the sentence ¬(p∧q), acts like the conflict set in the
defeasible theory and ensures that p and q do not both belong to the same extension.R2
has two extensions containing {p, r} and {q, r}, and the intersection of these extensions
contains {r}. r is a “floating conclusion” of R2 because it belongs to every extension
even though there is no sentence that supports it that belongs to every extension.

This seems unintuitive to us. In NDL, the rules⇒ p and⇒ q conflict with each other
since {p, q} is a conflict set in the theory. Neither rule takes precedence over the other;
so neither consequent is defeasibly derivable. Thus neither of the rules to establish r is
satisfied, and r is also not defeasibly derivable. Our proof theory avoids these floating
conclusions in an intuitively reasonable way.

2.1 Ambiguity Propagation and ADL

Consider the defeasible theory below in which conflict sets are minimal (from Brewka
2001).

Example 3

D3 = 〈{⇒ p,⇒ ¬p,⇒ q, p⇒ ¬q}, C, ∅〉

We have D3 ∼|NDL p, D3 ∼|NDL ¬p, D3 ∼|NDL ¬q, and D3 |∼NDL q. This shows
that NDL is ambiguity blocking. An argument exists for p, and hence ¬q, but this does
not prevent us in NDL from concluding q. Many feel that ambiguity propagating sys-
tems, where such conclusions are forbidden, are intuitively more reasonable. An am-
biguity propagating defeasible logic is presented in (Antoniou & Maher, 2002), and it
is this variant that Brewka in (2001) considers for translation into logic programs. He
dismisses an earlier, ambiguity blocking variant.

It turns out that a very minor modification to the proof system of NDL produces an
ambiguity propagating defeasible logic (ADL), and it is precisely this modification that
ensures that the results of a defeasible theory match those of its logic program counter-
part under Brewka’s translation (so that D |∼ADL p if and only if p ∈ wfm(ΠD) and
D ∼|ADL p if and only if ¬p ∈ wfm(ΠD)). The modification creating ADL affects
only part 2.b.ii of Definition 6. It specifies that p is defeated only if every defeasible
rule in support of p fails or else is defeated by a satisfied strict rule or a defeasible rule
of strictly higher precedence for each element q ∈ cs − {p}. In NDL, a rule of equal
precedence can be used. The modification (Definition 8) is shown below.

Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics 311

Definition 8. τ is a defeasible proof in ADL iff τ is an argument tree for D, and for
each node n of τ , one of the following obtains:

1. n is labeled |∼ p and either:

a. there is a strict rule r : A→ p ∈ R such that A succeeds at n, or
b. there is a defeasible rule r : A ⇒ p ∈ R such that A succeeds at n and for

all cs ∈ C, if p ∈ cs, then there is a q ∈ cs − {p} such that for all rules
s : B

� q ∈ R, either B fails at n or else s ≺ r.

2. n is labeled ∼| p and:
a. for all strict rules r : A→ p ∈ R, A fails at n, and
b. for all defeasible rules r : A⇒ p ∈ R, either

i. A fails at n, or
ii. there is a cs ∈ C such that p ∈ cs, and for all q ∈ cs−{p}, there is a rule
s : B

� q ∈ R such that B succeeds at n and s is strict or else r ≺ s.

3. n is labeled∼| p andm has an ancestorm in τ such thatm is labeled ∼| p and all
nodes between n andm are negative defeasible assertions.

Apart from this modification, all other aspects of the proof system are left alone. In
example 3 above in ADL, one sees that since the rules for p and ¬p are of the same
precedence, neitherD3 ∼|ADL p norD3 ∼|ADL ¬p can be shown. BecauseD3 ∼|ADL

p cannot be shown, D3 ∼|ADL ¬q cannot be shown, and so neither can D3 |∼ADL q.
Each of these literals is underdetermined in ADL, neither defeasibly proven nor refuted.

The default theory corresponding to D3 is

R3 = 〈∅, { :p
p ,

:¬p
¬p ,

:q
q ,

p:¬q
¬q }〉

R3 has three default extensions containing {p, q}, {p,¬q}, and {¬p, q}. Notice that the
intersection of these three extensions is “empty”. So the “sceptical” interpretation of
R3 agrees with ADL in this case.

By examining the definition of proof trees for both NDL and ADL, it can be seen
that every valid proof in ADL is a valid proof in NDL.

Theorem 4. IfD is a defeasible theory andD |∼ADL p, thenD |∼NDL p. IfD ∼|ADL

p,D ∼|NDL p.

ADL versions of Theorems 1, 2, and 3 also hold.

3 The Well-Founded Semantics for Normal Logic Programs

A logic programΠ consists of a set of rules having the form

p:- q1, q2, . . . , qn.

where p and each subgoal qi is an atomic formula, or else such a formula preceded by
the symbol not (often called negation-as-failure or negation-by-default). We will call a
subgoal in which not occurs negative. The other subgoals are positive.

312 F. Maier and D. Nute

If a program contains no negative subgoals, then it is called definite and has a unique
Herbrand model (Emden & Kowalski, 1976). This is often taken to be the intended
meaning of the program. Programs in which not appears are called normal programs.
Importantly, normal programs need not have a single least Herbrand model. E.g., the
program p :− not q has two minimal Herbrand models: {p} and {q}. The well-founded
semantics (Gelder, Ross,R) was developed to provide a reasonable interpretation of
logic programs containing negation. For every program, a unique well-founded model
exists. The well-founded model for the previous program is {p,¬q}.

Let Π be a normal logic program containing only ground atoms and BΠ the set of
atoms appearing in Π . An interpretation I of Π is any consistent set of positive and
negative literals whose atoms are taken BΠ . If p appears in I, then p is said to be true
in I. If ¬p appears in I, then p is false in I. If neither p nor ¬p appears in I, then p is
said to be undefined in I.

A set of atoms S ⊆ BΠ is said to be unfounded with respect to an interpretation I iff
for each p ∈ S and for each rule r ofΠ with head p, there exists a positive or negative
subgoal q of r such that

1. q is false in I, or
2. q is positive and q ∈ S.

Unfounded sets are closed under union, and so for anyΠ and I, there exists a great-
est unfounded set ofΠ wrt I, denoted UΠ(I):

UΠ(I) = {
⋃
A | A is an unfounded set ofΠ with respect to I}.

UΠ(I) can be viewed as a monotone operator and is used to derive the negative
consequences of a program. The immediate consequence operator T , defined below, is
used to derive the positive consequences of a program.

TΠ(I) = {p | r is a rule ofΠ with head p, and each qi in the body of r is in I}.

These two operators are combined to form a third:

WΠ(I) = TΠ(I) ∪ ¬ · UΠ(I)

where ¬ · UΠ(I) is the element-wise negation of UΠ(I). UΠ(I), TΠ(I), and WΠ(I)
are all monotonic, and can be used to define the sequence

1. I0 = ∅
2. Ik+1 = WΠ(Ik)

The well-founded model ofΠ , wfm(Π), is the least fixed-point of this sequence.

4 Translating Defeasible Theories into Logic Programs

(Brewka, 2001) provides a simple and natural translation scheme to compare a version
of defeasible logic (Antoniou & Maher, 2002) to logic programs using a prioritized
well-founded semantics. Several examples are presented to demonstrate that the two

Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics 313

systems do not agree, and it is argued there that the results of the defeasible theory are
less reasonable.

We have altered the translation scheme to account for extended conflict sets and will
use it to compare ADL to the WFS for normal programs. Only finite grounded defea-
sible theories and programs are considered. Since conflict sets are sufficient to encode
negation, we will assume all literals appearing in a defeasible theory are positive (¬p is
represented as p′). The translation thus necessarily yields a normal logic program. Fur-
thermore, since (as discussed in the next section) defeaters and the precedence relation
do not add to the expressiveness of defeasible logic, we will assume that no defeaters
occur in the theory and that the precedence relation is empty.

Let D = 〈R,C,≺〉 be a defeasible theory such that no defeaters occur in RD and
≺D= ∅. We define the logic programΠD as follows.

1. If q1, q2, . . . , qn → p ∈ D, then p :−q1, q2, . . . , qn ∈ ΠD.
2. Let cs1, cs2, . . . , csm be the conflict sets of D containing p and (a1, a2, . . . , am)

any tuple in cs1−{p}× cs2−{p}× . . .× csm−{p}. If q1, q2, . . . , qn ⇒ p ∈ D,
then p :− not a1, . . . , not am, q1, q2, . . . , qn ∈ ΠD.

Each ai corresponds to some literal of a conflict set containing p, and in order for a
defeasible rule to succeed at least one literal from each conflict set must fail. Signifi-
cantly, if conflict sets are minimal, then the above translation of defeasible rules reduces
to p :− not p′, q1, q2, . . . , qn.

As the following examples show, the results of NDL are often incorrect with respect
to the well-founded model of the Brewka inspired translation.

Example 4

D4 = 〈{→ p,→ p′}, {p, p′}, ∅〉
ΠD4 = {p :− not p′., p′ :− not p.}

Here, D4 ∼|NDL p and D4 ∼|NDL p
′ but the well founded model of ΠD4 is empty.

According to the WFS, p is undefined.

Example 5

D5 = 〈{p→ p}, {p, p′}, ∅〉
ΠD5 = {p :−p}

Both D5 ∼|NDL p and D5 ∼|ADL p. Without failure-by-looping, neither of these
results could be derived. The well-founded model of the translation is {¬p}.

Example 6

The logic program corresponding toD3 is

ΠD3 = {p :− not p′., p′ :− not p. , q′ :− not q, p., q :− not q′.}

314 F. Maier and D. Nute

P4 and P5 together show that D ∼|NDL p is equivalent to neither ¬p ∈ wfm(ΠD)
nor ¬p undefined. In Example 6, we have D3 ∼|NDL p, D3 ∼|NDL p

′, D3 ∼|NDL q
′,

and D3 |∼NDL q. NDL is ambiguity blocking. However, the well-founded model of
logic program is empty. In general, for a defeasible theory D, D |∼NDL p does not
imply p ∈ wfm(ΠD). In some cases at least, the well-founded semantics is more
conservative than NDL. In contrast, the assertions of ADL are correct with respect to
the well-founded semantics.

Theorem 5. Let D = 〈R,C, ∅〉 be a defeasible theory of ADL without defeaters. Then
D |∼ADL p if and only if p ∈ wfm(ΠD), and D ∼|ADL p if and only if ¬p ∈
wfm(ΠD).

In Example 4, no superior argument exists for either p or p′, and so none ofD4 ∼|ADL

p, D4 ∼|ADL p′, D4 |∼ADL p, or D4 |∼ADL p′ can be shown. In Example 5, in
agreement with both NDL and the WFS, D ∼|ADL p can be shown using failure-by-
looping. In Example 6, arguments exist for both p and p′, but no superior argument
exists for either. They are both ambiguous, and this ambiguity prevents concluding
anything about q or q′.

5 Eliminating Precedence and Defeaters from Defeasible Logic

Theorem 5 assumes that the defeasible theory to be translated does not contain any
defeaters and that the precedence relation is empty. However, eliminating these from
defeasible logic does not lessen its expressiveness.

For any defeasible theoryD = 〈RD, CD,≺D〉 we can construct another,E, lacking
defeaters and with an empty precedence relation, such that D and E agree on all the
literals appearing in D.
The conflict sets inE are minimal and defined using literals fromRE , and≺E is empty.
RE is constructed by explicitly representing the rules ofD, as described below.

1. If r: A → p ∈ D, then ra = A → supported(r), rb = supported(r) → fires(r),
and rc = fires(r) → p appear in RE .

2. If r: A ⇒ p ∈ D, then ra = A → supported(r), rb = supported(r) ⇒ fires(r),
rc = fires(r) → p, appear in RE :

3. If r: A 	 p ∈ D, then ra = A → supported(r) and rb = supported(r) ⇒
fires(r) appear in RE .

4. Let cs = {q1, q2, . . . qn, p} be a conflict set of D, r a defeasible or defeater rule
with head p and s1, s2, . . . , sn rules such that si has head qi and si ⊀ r. If for each
si, si is strict or r ≺ si, the rule supported(s1), . . . supported(sn)→ fires(r)′

occurs in E. Otherwise, the rule supported(s1), . . . supported(sn) ⇒ fires(r)′

occurs in E.

Theorem 6. Let D and E be defeasible theories as defined and p a literal of D. Then
D |∼ p if and only if E |∼ p, andD ∼| p if and only if E ∼| p.

We have added new literals of the form fires(r) and supported(r) which explicitly
encode when a rule r ofD may fire (i.e., the head is derivable) and when it is supported

Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics 315

(ie., its body is derivable). Intuitively, if r is strict, then it may fire if and only if its
body is supported. This is represented in ra, rb, and rc, all of which are strict. If r is
defeasible or a defeater, rb is defeasible, meaning that a rule in E with head fires(r)′

can potentially defeat it. If r is a defeater, ra and rb bear no relation to p and cannot be
used to derive it.

In the item 1.d above, we have explicitly represented when a set of rules s1, . . . , sm
can be used to defeat another r. We need only consider an si if it is not inferior to r, for
inferior rules cannot be used to defeat r.

6 Translating Normal Logic Programs into Defeasible Logic

Here we show that normal logic programs can also be translated into defeasible theories
so that the assertions of the theory match the well-founded model. Let Π be a normal
program and BΠ the set of atoms in Π . For each atom b ∈ BΠ , define b′ to be a new
atom not appearing inΠ . Given these, we define a new program Φ as follows.

1. If p :−a1, . . . , an, not b1, . . . , not bm ∈ Π , then p :−a1, . . . , an, b
′
1, . . . , b

′
m

∈ Φ.
2. For all b′i, b

′
i :− not bi ∈ Φ.

As each new atom b′ has exactly one rule, and the only subgoal of that rule is not b, b′

occurs in the well-founded model of Φ if and only if ¬b does.

Lemma 1. Let Π and Φ be programs as defined above. For any bi ∈ BΠ , b′i ∈
wfm(Φ) iff ¬bi ∈ wfm(Φ). Also, ¬b′i ∈ wfm(Φ) iff bi ∈ wfm(Φ).

We may view b′ as the positive representation of ‘¬b’ (and for normal programs it is
impossible for b′ and b to both be in the well-founded model). Furthermore, with respect
to the original atoms of BΠ , Π and Φ are equivalent under the WFS.

Lemma 2. LetΠ and Φ be programs as defined above. For all p ∈ BΠ , p ∈ wfm(Π)
iff p ∈ wfm(Φ), and ¬p ∈ wfm(Π) iff ¬p ∈ wfm(Φ).

The relationship between Π and Φ makes a translation of Π into a defeasible theory
DΠ apparent. Let r = p :−a1, . . . an, not b1, . . . , not bm be a rule ofΠ . Define rDΠ

to be a1, . . . an, b
′
1 . . . , b

′
m → p. Let Str = {rDΠ | r ∈ Π}, and Pr = {∅ ⇒ p′| not p

occurs in some rule ofΠ}. Given this,DΠ is defined as follows:

RDΠ = 〈Str ∪ Pr, C, ∅〉

where C is minimal. The default literals in the program have become presumptions in
the defeasible theory. The rules of the original program are strict in the defeasible logic
theory.

It is clear given the above definition that translatingDΠ into a logic program yields
Φ. From Lemma 1 and Theorem 5 it follows that p is provable inDΠ if and only if p′ is
refutable, and p′ is provable if and only if p is provable. Furthermore, since according to
Theorem 5 the assertions ofDΠ correspond to the well-founded model ofΦ, by Lemma
2 the assertions ofDΠ agree with the well-founded model ofΠ wrt BΠ .

316 F. Maier and D. Nute

Theorem 7. LetDΠ be defined as above. For any p ∈ BΠ ,DΠ |∼ADL p iffDΠ ∼|ADL

p′, andDΠ |∼ADL p
′ iffDΠ ∼|ADL p.

Theorem 8. Let Π be a normal program and DΠ its defeasible logic translation. For
any atom p ∈ BΠ , DΠ |∼ADL p iff p ∈ wfm(Π), and DΠ ∼|ADL p iff ¬p ∈
wfm(Π).

Example 7

Π= {p :− not q, q :− not p}
Φ= {p :−q′, q :−p′, p′ :− not p, q′ :− not q}
DΠ = 〈{q′ → p, p′ → q, ⇒ p′,⇒ q′}, C,∅〉

Here we have replaced in the rules ofΠ each subgoal not p (alternatively not q) with
p′ (alternatively q′)and added the rules p′ :− not p and q′ :− not q. The explicitly
negative literals p′ and q′ occur nowhere in the original programΠ and so it is safe to
equate, e.g., not p with p′. The well-founded model of bothΠ and Φ is empty. InDΠ ,
the presumption of p′ prevents concluding q′, but there is no superior argument for q,
and so q′ is not refuted, either. The same holds for p′, and because of this nothing can
be determined for p or q. The set of assertions ofDΠ is empty.

In an extended logic program, an explicitly negative literal p′ might already appear
in Π , and so the manoeuver of replacing not p with p′ is no longer acceptable (the
equivalence of Φ andΠ would no longer hold. For instance, if Π = {p :−∅, p′ :−∅, q :
− not p}, then the well-founded model is {p, p′,¬q}. However, Φ = {p :−∅, p′ :−∅, q :
−p′, p′ :− not p}, and the well-founded model of Φ is {p, p′, q}.

If we instead replace not p with some entirely new literal cp, then the equivalence
is restored. However, in the defeasible logic translation, p and p′ do not conflict (the
program rule cp :− not p would be interpreted as a ∅ ⇒ cp and cp and p would
conflict). This at first seems very odd. However, strictly speaking, there really is no
connection between p and p′ in the WFS, either. The literal p′ is just a rather strange
looking atom.

7 Conclusion

The two versions of defeasible logic presented here differ in that one, NDL, blocks
ambiguity while the other, ADL, does not. In a previous paper (Maier and Nute, 2006)
we showed how to translate finite defeasible theories into normal logic programs in such
a way that the consequences of the theory in NDL correspond to the well-founded model
of the logic program. In this paper, we showed a similar result for ADL. Furthermore,
we showed in this paper how to translate finite normal logic programs into defeasible
theories in such a way that the correspondence between the well-founded model of
the program and the consequences of the defeasible theory in ADL are preserved. The
correspondence between logic programs and defeasible theories seems to depend on the
fact that ADL is ambiguity preserving rather than ambiguity blocking. The translation
from defeasible theories to normal logic programs seems to us simpler and more direct
for the case of ADL than NDL. Some might consider this a reason to prefer ADL

Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics 317

over NDL. But different researchers have taken different positions on this issue, and
our intuitions favor ambiguity blocking despite the closer correspondence of ADL with
well-founded semantics.

In Example 3, the two presumptions⇒ p and ⇒ ¬p defeat each other, but in ADL
⇒ p and p ⇒ ¬q are still available to defeat the presumption ⇒ q, creating a “zom-
bie path” (Makinson & Schechta, 1991), an argument path that has been “killed” by
a defeater but that still has the power to defeat or “kill” other arguments. So we get
D1 |∼NDL p andD1 ∼|NDL {p,¬p,¬q}, while we getD1 |∼ADL ∅ andD1 ∼|ADL ∅.
In the corresponding default theory, the intersection of all extensions was empty, agree-
ing with ADL. Nevertheless, we think that lacking overriding reasons for accepting
either p or ¬p, we should take neither into account when considering q, the approach
taken in NDL.

So far as positive consequences are concerned, Example 2 is handled in the same
way by both NDL and ADL: we get neither D2 |∼NDL r nor D2 |∼ADL r. In both
systems, the two presumptions ⇒ p and ⇒ q conflict because {p, q} is a conflict set
in D2. We believe this is the correct result in examples of this sort. However, we get
D2 ∼|NDL {p, q, r}, butD2 ∼|ADL ∅.

Our results for defeasible theories and logic programs assume that the theories and
programs are finite, but they should also hold for theories that do not have infinite chains
of dependency. In a theory like

D = 〈{⇒ p, q1 ⇒ ¬p} ∪ {qi+1 ⇒ qi : i a positive integer }, C, ∅〉

our defeasible logics and well-founded semantics for logic programs diverge. Since
proof trees in either NDL or ADL are finite, not even failure-by-looping will allow us
to show that p is derivable in either system. However, p will be in the well-founded
model for the corresponding logic program. Suppose we admit semi-infinite proofs in
NDL and ADL. A semi-infinite proof would be a tree all of whose infinite branches
have a node n such that all descendants of n in the infinite branch are labeled with
negative defeasible assertions. We think that no additional conditions are needed for
semi-infinite proofs, but we have not investigated this problem further. The question
whether the consequences of an infinite defeasible theory in such a system corresponds
to the well-founded model for the corresponding infinite logic program is interesting in
principal, but finite, constructive proof procedures for such theories and logic programs
would in the general case not exist.

Translating defeasible theories into logic programs offers one way to implement
NDL and ADL. Whether this or some more direct method for computing consequences
is the better method depends in large part on the cost of translating defeasible theories
into logic programs. We have not done a complete analysis of the complexity issues
yet, but at first glance it appears that when conflict sets are closed under strict rules,
translating a defeasible theory into a logic program might require more than polynomial
time. This might not be so bad if the translation only had to be performed once or if the
translation procedure were modular. If new facts are added to a defeasible theory, then
these facts can be translated into an already existing program in linear time. But adding
new rules, and particularly new defeasible rules, looks like it will also require more than
polynomial time. So in applications where new rules will not be added very often, then

318 F. Maier and D. Nute

translation into a logic program seems to be a reasonable approach. The more often
new rules, including new presumptions, are added to a theory, the less attractive this
approach appears.

References

Antoniou, G., and Maher, M. J. 2002. Embedding defeasible logic into logic programs.
In Proceedings of ICLP, 393–404.

Antoniou, G.; Billington, D.; Governatori, G.; Maher, M. J.; and Rock, A. 2000. A
family of defeasible reasoning logics and its implementation. In ECAI, 459–463.

Brewka, G. 2001. On the relationship between defeasible logic and well-founded
semantics. In LPNMR, 121–132.

Emden, M. H. V., and Kowalski, R. 1976. The semantics of predicate logic as a pro-
gramming language. Journal of the ACM 23:733–742.

Gelder, A. V.; Ross, K. A.; and Schlipf, J. 1988. Unfounded sets and well-founded
semantics for general logic programs. In Proceedings 7th ACM Symposium on Prin-
ciples of Database Systems, 221–230.

Gelder, A. V.; Ross, K. A.; and Schlipf, J. 1991. The well-founded semantics for general
logic programs. Journal of the ACM 221–23.

Kunen, K. 1987. Negation in logic programming. Journal of Logic Programming
4:289–308.

Maier, F., and Nute, D. 2006. Relating defeasible logic to the well-founded semantics
for normal logic programs. In Delgrande, J. P., and Schaub, T., eds., NMR.

Makinson, D., and Schechta, K. 1991. Floating conclusions and zombie paths: two
deep difficulties in the ’directly skeptical’ approach to inheritance nets. Artificial
Intelligence 48:199–209.

Nute, D. 1992. Basic defeasible logic. In del Cerro, L. F., and Penttonen, M., eds.,
Intensional Logics for Programming. Oxford University Press. 125–154.

Nute, D. 1994. Defeasible logic. In Gabbay, D., and Hogger, C., eds., Handbook of
Logic for Artificial Intelligence and Logic Programming, Vol. III. Oxford University
Press. 353–395.

Nute, D. 1997. Apparent obligation. In Nute, D., ed., Defeasible Deontic Logic,
Synthese Library. Dordrecht, Netherlands: Kluwer Academic Publishers. 287–315.

Nute, D. 2001. Defeasible logic: Theory, implementation, and applications. In Pro-
ceedings of INAP 2001, 14th International Conference on Applications of Prolog,
87–114. Tokyo: IF Computer Japan.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13:81–132.

Hierarchical Argumentation

S. Modgil

Advanced Computation Lab, CRUK, London WC2A 3PX
sm@acl.icnet.uk

Abstract. In this paper we motivate and formalise a framework that organises
Dung argumentation frameworks into a hierarchy. Argumentation over prefer-
ence information in a level n Dung framework is then used to resolve conflicts
between arguments in a level n-1 framework. We then re-examine the issue of
Dung’s acceptability semantics for arguments from the perspective of hierarchi-
cal argumentation.

1 Introduction

Dung’s influential theory of argumentation [8] evaluates the status of arguments by ap-
plying a ‘calculus of opposition’ to a framework (Args,R). It is the abstract nature
of Dung’s theory that partly accounts for its wide ranging influence. The structure of
arguments Args and definition of the conflict based binary relation R on Args is left
unspecified. This enables different argumentation systems with their own defined lan-
guage, construction of arguments, definition of conflict and relation R, to instantiate a
Dung framework in order to evaluate the status of the system’s constructed arguments.
Furthermore, it has been shown [8] that many of the major species of non-monotonic
and logic programming systems turn out to be special forms of Dung’s theory. More
generally, Dung’s theory has established foundations for formalising and analysing the
handling of uncertainty and conflict in AI based systems. All the above systems require
some notion of preference to resolve conflict. In argumentation terms this means that
the defined R accounts for a preference ordering on arguments based on their relative
strength. However, information relevant to establishing a preference ordering (‘prefer-
ence information’) may itself be incomplete, uncertain or conflicting. Hence, in this
paper we present what we believe to be the first framework for reasoning about, indeed
arguing over, preference information about arguments. Starting with a Dung frame-
work containing argumentsA1 and A2 that conflict with each other, one could in some
meta-logic reason that: 1) A1 is preferred to A2 because of c (= B1), and 2) A2 is
preferred to A1 because of c′ (=B2). Hence, to resolve the conflict betweenA1 andA2
requires ‘meta-argumentation’ to determine which of the conflicting arguments B1 or
B2 is preferred. Of course, one may need to ascend to another level of argumentation
if there are conflicting arguments C1 and C2 respectively justifying a preference for
B1 over B2 and B2 over B1. We therefore propose a hierarchy of Dung frameworks
in which level n arguments refer to level n− 1 arguments, and conflict based relations
and preferences between level n− 1 arguments. The level 1 framework makes no com-
mitment to the system instantiating it, and a minimal set of commitments are made to
first order logic based argumentation systems instantiating frameworks at level n > 1.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 319–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

320 S. Modgil

The requirement for hierarchical argumentation arises from the fact that different
principles and criteria ([1]) may be used to valuate the strength of arguments. For exam-
ple,A1 may be preferred to A2 by the ‘weakest link’ principle (the argument’s strength
is the minimum of the strengths of the argument’s constituent sentences) [1], whereas
A2 may be preferred to A1 based on the ‘last link’ principle (the argument’s strength
is the strength of the sentence used to derive the argument’s claim) [13]. One can then
construct arguments justifying use of one principle in preference to the other. Also, for
any given principle, the valuations of arguments may vary according to context or per-
spective. One perspective or source of information for valuating argument strength may
indicate that A1 is preferred to A2, whereas from another perspective A2 is preferred
to A1. To resolve the conflict requires arguing for a preference between perspectives.
Furthermore, recent works (e.g., [2, 3, 11]) extending theories of argumentation over
beliefs to argumentation over agents’ desires and intentions, illustrate requirements for
a context dependent account of agents’ cognitive processes. For example, an argument
A1 justifying an action is defined as being in conflict with an argument A2 for an al-
ternative action realising the same goal [3, 11]. A1 may be preferred to A2 based on
A1’s action involving less resource use. However,A2’s action may be more efficacious
than A1’s action. Resolving the conflict requires a context specific argument justifying
which of the resource or efficacy criteria is more important [11].

Reasoning about preferences is also explored in [6, 13], in which the object level
language is extended with rules that allow context dependent inference of possibly
conflicting relative prioritisations of rules. Thus, in these works argument strength is
exclusively based on the priorities of their constituent sentences (rules), whereas the
framework proposed here allows for argument strength to be based on any number of
criteria. Furthermore, our framework gives a clean formal separation of meta and ob-
ject level reasoning. This is necessary if one is to reason about strengths of arguments
as opposed to their constituent sentences (e.g., consider argument strength based on the
depth/length of the proof that constitutes the argument, or the value promoted by the
argument [4]).

The remainder of this paper is structured as follows. Section 2 reviews the notion of
an argumentation system and Dung’s theory. We then discuss the semantics of conflict
based argument interactions prior to formalisation of hierarchical argumentation frame-
works. In section 3 we suggest desiderata by which to assess the suitability of argument
acceptability semantics, in domains where hierarchical argumentation over preference
information is used to resolve conflicts in argumentation systems formalising reasoning
in the presence of logical contradiction. Section 4 concludes with a discussion of future
work.

2 Formalising Hierarchical Argumentation

2.1 Preliminaries

Argumentation systems are built around a logical language and associated notion of
logical consequence Γ � α. If Δ ⊆ Γ is the set of premises from which α is inferred,
then an argumentA claiming α can be represented as the tree or sequence of inferences
deriving α fromΔ, or as the pair (Δ,α). Whichever representation, we say:

Hierarchical Argumentation 321

• support(A) = Δ and claim(A) = α.
• A is consistent if support(A) is consistent (support(A) � ⊥)
• A′ is a strict sub-argument of A if support(A′) ⊂ support(A).

The conflict based attack relation is then defined amongst the constructed arguments,
whereupon the defeat relation is defined by additionally accounting for the relative
strength of (preferences between) the attacking arguments. A Dung framework can
then be instantiated by the system’s constructed arguments and their relations. Here,
we define two notions of a Dung framework:

Definition 1. Let Args be a finite set of arguments. An attack argumentation frame-
work AFat is a pair (Args, Rat) where Rat ⊆ (Args × Args). A defeat argumentation
framework AFdf is a pair (Args,Rdf) where Rdf ⊆ (Args × Args)

If (A,A′),(A′, A) ∈ Rat then A and A′ are said to symmetrically attack, denoted by
A � A′. If only (A,A′) ∈ Rat, then A asymmetrically attacks A′, denoted A ⇀ A′.
Where there is no possibility of ambiguity we also use � and ⇀ to denote symmetric
and asymmetric defeats. We also use this notation to denote frameworks, e.g., (A� A′,
A′′) denotes ({A,A′, A′′}, {(A,A′), (A′, A)}).

The acceptable extensions (under different semantics S) of a framework are then
defined [8]. An argument is justified (rejected) if it belongs to all (no) extensions.

Definition 2. Let E be a subset ofArgs in AF = AFat or AFdf , and letR denote either
Rat orRdf . Then:

• E is conflict-free iff � A, A′ ∈ E such that (A,A′) ∈ R
• An argument A is collectively defended by E iff ∀A′ such that (A′, A) ∈ R, ∃ A′′ ∈
E such that (A′′, A′) ∈ R.

Let E be a conflict-free subset of Args, and let F : 2Args → 2Args such that F (E)=
{A ∈ Args | A is collectively defended by E}.
• E is an an admissible extension of AF iff E ⊆ F (E)
• E is a complete extension of AF iff E = F (E)
• E is a preferred extension of AF iff E is a maximal (w.r.t set inclusion) admissible

extension

For S ∈ {complete, preferred}, let {E1, . . . , En} be the set of all S extensions of AF.
Let A ∈ Args. Then A ∈ S-justified(AF) iff A ∈

⋂n
i=1 Ei; A ∈ S-rejected(AF) iff A ∈

Args - (
⋃n

i=1 Ei)1

The following is an example of a concrete argumentation system instantiating an attack
framework.

Example 1. Let L1 be a logical propositional language closed under negation, K a
knowledge base containing a set of named defeasible rules of the form r :φ1 . . . φn−1⇒
φn, where each φi is an element of L1, r is a unique propositional name for the rule, and

1 We omit definition of the stable semantics (a special case of preferred semantics) since for
some argumentation frameworks no stable extensions exist. We also omit the grounded exten-
sion since this is equivalent to the intersection of all the complete extensions [8].

322 S. Modgil

φn is the head and φ1 . . . φn−1 the antecedent of the rule. Note that the antecedent may
be empty, in which case r :⇒ φ represents an assumption. An argument A constructed
from K is a tree in which each node is of the form r :⇒ ϕ, in which case it is a leaf
node, or a rule of the form r : φ1 . . . φn ⇒ ϕ, in which case, for i = 1 . . . n there exists
a child node consisting of a rule with head φi. If r : φ1 . . . φn ⇒ ϕ is the root node of
A then claim(A) = ϕ, and support(A) = {r|r : φ1 . . . φn ⇒ ϕ is a node in A }. In the
following definition of the attack relation we let conflict(φ, φ′) iff φ ≡ ¬φ′.

Definition 3. Let A be an argument with claim α, A′ an argument with claim β. Then
A attacks A′ iff conflict(α, β) or there exists a strict sub-argument A′′ of A′, such that
claim(A′′) = γ and conflict(α, γ)

Consider the following example K, the arguments Args1 shown here as support claim
pairs, and the instantiated attack argumentation framework AFat1 = (Args1, Rat1)
whereRat1 is defined in as in definition 3 :

K = {r1 :⇒ ¬a, r2 :⇒ a, r3 : a⇒ b, r4 :⇒ ¬b}
Args1 = {A1 = ({r1},¬a), A2 = ({r2}, a), A3 = ({r2, r3}, b), A4 = ({r4},¬b)}).

AFat1 = A1 � A2

A3 � A4

The preferred/complete extensions of AFat1 are {A2, A3}, {A1, A4} and {A2, A4}.
No argument is preferred/complete-justified.

2.2 Formalising Hierarchical Argumentation Frameworks

Hierarchical argumentation aims at argumentation over preference information so as to
define the defeat relation on the basis of the attack relation and thus enable resolution
of conflicts between attacking arguments. In general, A defeats A′ if A attacks A′, and
A′ does not ‘individually defend’ itself against A’s attack, ie.:

Rdf =Rat − {(A,A′) | defend(A′, A)}
where A′ individually defends itself against A if A′ is preferred to (and in some cases
may be required to attack)A. Hence, given AFat1 = (Args1,Rat1) instantiated by some
argumentation system, then to obtain AFdf1 = (Args1, Rdf1) we reason in some first
order logic about the strengths and relative preferences of arguments in Args1, in order
to infer wff of the form defend(A′,A) (where A′ and A name arguments A′, A ∈
Args1). For example, suppose AFat1 = (A1 � A2). Neither A1 or A2 are S-justified.
Inferring defend(A1,A2) we obtain AFdf1 = (A1⇀A2). A1 is now S-justified.

However, one might be able to infer that A1 is preferred to and so defends A2’s
attack, and that A2 is preferred to and so defends A1’s attack. Hence the requirement
that the first order logic itself be the basis for an argumentation system instantiating
AFat2 = (Args2, Rat2) (practical systems for first order argumentation are described
in [5]). Arguments B and B′ in Args2, with respective claims defend(A2,A1) and
defend(A1,A2), attack each other. If B is S-justified then A2 asymmetrically defeats
A1, else if B′ is S-justified then A1 asymmetrically defeats A2 in AFdf1 . Of course,

Hierarchical Argumentation 323

to determine which of B and B′ are S-justified requires determining which asymmet-
rically defeats the other in AFdf2 , and so ‘ascending’ to a framework AFat3 . If we can
exclusively construct an AFat3 argumentC for defend(B,B′) (or defend(B′,B)) then
we are done. Otherwise, we may need to ascend to AFat4 , and so on.

Hence, a hierarchical argumentation framework (HAF) is of the form (AFat1 , . . . ,
AFatn). For i > 1, AFati = (Argsi,Rati) is instantiated by a first order logic based
argumentation system where Argsi are constructed from a theory Γi of wff in a first
order language Li. Each Γi contains a set of formulae obtained by a function Mi−1 :
(Argsi−1,Rati−1) � ℘(Li), from which one can construct AFati arguments valuat-
ing the strength of arguments inArgsi−1. Given these arguments one can also construct
AFati arguments with claims of the form preferred(A′,A) and defend(A′,A). The
latter requires that each Γi (i > 1) also axiomatise the notion of individual defense.
There exist two such notions in the argumentation literature:

preferred(A′,A) ∧ attack(A′,A)→ defend(A′,A) (N1)

or, A′ is simply preferred to A:

preferred(A′,A)→ defend(A′,A) (N2)

The choice of axiomatisation only makes a difference in the case of asymmetric attacks.
IfA ⇀ A′, then assuming N1,A asymmetrically defeatsA′ irrespective of their relative
strength (preference), since the latter does not attack the former and so one cannot
infer defend(A′,A). In this case we call A ⇀ A′ a preference independent attack.
Assuming N2,A asymmetrically defeatsA′ only if it is not the case that A′ is preferred
to A. In this case we call A ⇀ A′ a preference dependent attack.

Definition 4. Let AF = (Args,Rat) and Γ, Γ ′ first order theories.

• Let Γ ′ = {N1} ∪ {attack(A,A′)|(A,A′) ∈ Rat}. Then Γ axiomatises preference in-
dependent attacks in AF , if Γ ′ ⊆ Γ and neither predicate attack/2 or defend/2 appear
in Γ − Γ ′2

• Γ axiomatises preference dependent attacks in AF if N2 ∈ Γ

We remark on the conditions under which the alternative axiomatisations of attack are
appropriate. Argumentation systems in which the asymmetricA1⇀A2 arises include:

- logic programming systems (e.g., [13]) where A1 proves (claims) what was assumed
non-provable (negation as failure) by A2. Intuitively, this is formalised as preference
independent;A1 defeats A2 irrespective of their relative preference.

- systems where A1’s claim logically contradicts a premise in A2’s support (e.g.[2]),
or A1 denies the link between support and claim of A2 (e.g.[12]). These are usually
formalised as preference dependent. If A2 is preferred to, and so defends A1’s attack,
then neither defeats the other and both appear in an acceptable extension despiteA1 and
A2 being inherently contradictory! We argue that this anomaly be resolved by either re-
formulating as symmetric attacks, or as preference independent attacks.3

2 This restriction ensures that one can infer defend(A,A′) only if (A,A′) ∈ Rat.
3 In eg. 1, if A1 ⇀ A3 is preference dependent and preferred(A3, A1) then neither defeats the

other and both appear in a conflict free set! If preference independent then A1 defeats A3, and
if preferred(A2, A1) and hence defeat(A2, A1) then A3 will be appropriately reinstated.

324 S. Modgil

- systems in whichA1 responds to a ‘critical question’ andA2 instantiates an argument
scheme [14]. For example, A2 instantiates a presumptive scheme justifying a course
of action [3]. A1 is an argument indicating that A2’s action has an unsafe side-effect.
This asymmetric attack is appropriately modelled as preference dependent since the
arguments do not logically contradict. If preferred(A2,A1) then A1 does not defeat
A2 and so both can coexist in an acceptable extension; the action is justified while
acknowledging that it has an unsafe side-effect.

We now formally define hierarchical argumentation frameworks and the defeat
frameworks obtained from the attack frameworks in a HAF:

Definition 5. A hierarchical argumentation framework is an ordered finite set of argu-
mentation frameworksΔ = ((Args1, Rat1),. . .,(Argsn, Ratn)) such that for i > 1 :

• Li is a first order language whose signature contains the binary predicate symbols
‘preferred’, ‘attack’ and ‘defend’ and a set of constants {A1,. . .,An} naming argu-
ments Argsi−1 = {A1, . . . , An}
• Argsi is the set of consistent arguments constructed from a first order theory Γi in
the language Li, where Γi axiomatises preference dependent or independent attacks in
AFati−1 and Γi contains some setMi−1((Argsi−1,Rati−1)) of Li wff

• {(A,A′)|A,A′ ∈ Argsi, claim(A) = defend(X ,Y), claim(A′) = defend(Y,X)}⊆ Rati .

Definition 6. (AFdf1 ,. . .,AFdfn) is obtained from Δ = (AFat1 ,. . .,AFatn) as follows:

1) For i = 1. . .n, Argsi in AFdfi = Argsi in AFati

2)Rdfn =Ratn

3) For i = 1. . .n-1,Rdfi = Rati − {(A,A′) | defend(A′,A) is the claim of a S-justified
argument of AFdfi+1}
Let S ∈ {complete,preferred}. We say that A ∈ S-justified(Δ) (S-rejected(Δ)) iff A ∈
S-justified(AFdf1) (S-rejected(AFdf1))

From hereon, if Γi (i > 1) axiomatises preference independent attacks in AFati−1 , then
we call the HAF ‘preference independent’. In what follows we give a concrete example
of argumentation systems instantiating a HAF. We will make use of the following defi-
nition [5] of an argument constructed from a first order theory (from hereon we assume
the usual axiomatisation of real numbers in any first order theory):

Definition 7. An argument A constructed from a first order theory Γ is a pair (Δ,α)
such that: i) Δ ⊆ Γ ; ii) Δ �FOL α; iii) Δ is consistent and set inclusion minimal. We
say thatΔ is the support and α the claim of A.

Example 2. Let Δ = (AFat1 , AFat2 , AFat3) be a preference independent HAF, where
AFat1 is the framework in example 1. We describe AFat2 and AFat3 .

AFat2 = (Args2,Rat2)
Args2 are constructed from Γ2 where in addition to N1 and {attack(A,A′|(A,A′) ∈
Rat1}, Γ2 also contains (r s, h r, ll and wl respectively denote ‘rule strength’,
‘head rule’, ‘last link’ and ‘weakest link’):

Hierarchical Argumentation 325

1. the setM1((Args1,Rat1)) =
- {rule(A, R) | A ∈ Args1, R names a rule in A} =
{rule(A1, r1), rule(A2, r2), rule(A3, r2), rule(A3, r3), rule(A4, r4)}

- {h r(A, R) | A ∈ Args1, R names the rule that is the root node of A} =
{h r(A1, r1), h r(A2, r2), h r(A3, r3), h r(A4, r4)}

2. valuations of the strength of rules by agents 1 and 2 (ag1 and ag2) = {r s(ag1, r1,
0.3), r s(ag2, r1, 0.6), r s(ag1, r2, 0.4), r s(ag1, r3, 0.6), r s(ag1, r4, 0.5)}

3. (a) h r(A, R) ∧ r s(Source,R,X)→ val(A, ll, X)
(b) rule(A, R) ∧ r s(Source,R,X) ∧ ∀R′ (R′ �= R ∧ rule(A, R′) ∧

r s(Source′, R′, Y)→ Y ≥ X)→ val(A, wl,X)
(c) val(A, P,X) ∧ val(A′, P, Y) ∧X > Y → preferred(A,A′)

Let Args2 be defined as in definition 7 and letRat2 be defined as in definition 3 where
the conflict relation is defined as follows: conflict(φ, φ′) if:
- φ ≡ ¬φ′
- φ = r s(Source1, R,X), φ′ = r s(Source2, R, Y), X �= Y
- φ = val(A, P,X), φ′ = val(A, P, Y), X �= Y
- φ = defend(A,A′), φ′ = defend(A′,A).
To simplify the presentation we show a subset of the arguments and their attack rela-
tions in (Args2, Rat2) noting that the attacks and arguments not shown do not change
the final outcome when applying hierarchical argumentation:

B1 � B2 B5 � B6

B3 � B4

claim(B1) = r s(ag1, r1, 0.3), claim(B2) = r s(ag2, r1, 0.6)
claim(B3) = defend(A1,A2).B3 is an argument based on the last link principle using
r s(ag2, r1, 0.6). support(B3) also includes r s(ag1, r2, 0.4), 3(a), 3(c) and N1.

claim(B4) = defend(A2,A1).B4 is an argument based on the last link principle using
r s(ag1, r1, 0.3). support(B4) also includes r s(ag1, r2, 0.4), 3(a), 3(c) and N1.

claim(B5) = defend(A3,A4). support(B5) includes the last link valuations of A3 (=
0.6) and A4 (= 0.5), 3(a), 3(c) and N1.

claim(B6) = defend(A4,A3). support(B6) includes the weakest link valuations ofA3
(= 0.4) and A4 (= 0.5), 3(b), 3(c) and N1

AFat3 = (Args3,Rat3)
Args3 are constructed from Γ3 where in addition to N1 and {attack(B,B′|(B,B′) ∈
Rat2}, Γ3 also contains:

1. the setM2((Args2,Rat2)) =
a) {s val(B, Source,R,X)|B ∈ Args2, claim(B) = r s(Source,R,X)} =
{s val(B1, ag1, r1, 0.3), s val(B2, ag2, r1, 0.6)}

b) {p val(B,A,A′, P)|B ∈ Args2, claim(B)=defend(A,A′), (val(A, P,X)∧
val(A′, P, Y) ∧ (X > Y)→ preferred(A,A′)) ∈ support(B)} = {p val(B3,
A1,A2, ll), p val(B4,A2,A1, ll), p val(B5,A3,A4, ll),p val(B6,A4,A3, wl)}

326 S. Modgil

2. a setΠ of named partial orderings4, where if℘ is the name of an ordering inΠ , then
this is represented by the usual first order reflexivity, antisymmetry and transitivity
axioms, and formulae of the form >(℘,J, K) interpreted as source/principle J is
prioritised above source/principle K. In this example we simply have:
Π = {>(ag order1, ag1, ag2) , >(princ order1, ll, wl)}

3. s val(B, Source1, R,X)∧ s val(B′, Source2, R, Y)∧ >(O,Source1, Source2)
→ preferred(B,B′)

4. p val(B,A,A′, P1)∧ p val(B′,A′,A, P2)∧ >(O,P1, P2)→ preferred(B,B′)

Let Args3 be defined as in definition 7 and Rat3 defined as in definition 3 where
conflict(φ, φ′) if φ ≡ ¬φ′ or φ = defend(B,B′), φ′ = defend(B′,B). We show a sub-
set of the arguments and their attack relations in (Args3, Rat3):

C1 C2 � C3 C4
claim(C1) = defend(B1,B2) where support(C1) includes the formulae in 1(a),
>(ag order1, ag1, ag2), rule 3 and N1.
claim(C2) = defend(B3,B4), claim(C3) = defend(B4,B3), claim(C4) = defend
(B5,B6), where the support of each includes the formulae in 1b), rule 4 and N1.C2 and
C3’s supports include >(princ order1, ll, ll) (by reflexivity). C4’s support includes
>(princ order1, ll, wl).

Applying definition 6 to Δ obtains the following defeat frameworks with S-justified
arguments shown in bold (only a subset of AFdf2 and AFdf3 are shown):

C1 C2 � C3 C4 B1 ⇀B2 B5 ⇀B6 A1 ↽ A2

B3 � B4 A3 ⇀ A4

{A2, A3} is now the single preferred/complete extension of AFdf1 and set of preferred/
complete-justified arguments of AFdf1 (and hence Δ). Note that if other orderings
were available, e.g., an ordering ranking agent 2 higher than agent 1, then the re-
sulting mutual attacks amongst AFat3 arguments would require ascending to AFat4

in which some contextual justification for preferring one ranking over another could be
constructed.

We conclude this section by proving some properties of preference independent HAFs
that will be referred to in the following section.

Proposition 1. Let ((Args1,Rdf1),. . .,(Argsn,Rdfn)) be obtained from the preference
independent HAF ((Args1,Rat1),. . .,(Argsn,Ratn)). Then:

a) If (C,B) ∈ Rati and (B,C) /∈ Rati then (C,B) ∈ Rdfi

b) If (B,C),(C,B) ∈ Rati then (B,C) and/or (C,B) ∈ Rdfi

c) If (B,C) ∈ Rdfi then (B,C) ∈ Rati

4 In practice, ordering information may itself be inferred, e.g., an ordering on agents inferred
from data describing the relative positions of the agents in an organisation’s hierarchy.

Hierarchical Argumentation 327

Proof. c) holds since (by def.6-3)Rdfi ⊆Rati . To show a) and b) we first show that:

A ∈ S-justified((Argsi,Rdfi)) and claim(A) = defend(X ,Y), implies (X,Y) ∈
Rati−1 (1)

By def.5, ∀A ∈ Argsi, A is consistent, and so given def.4, if claim(A) =
defend(X ,Y),

then A must be constructed using N1 and only if (X,Y) ∈ Rati−1

a) and b) hold for i = n since (by def.6-1 and def.6-2) AFdfn = AFatn . For i �= n:

• Assume a) does not hold, i.e., (C,B) ∈ Rati , (B,C) /∈ Rati and (C,B) /∈ Rdfi . By
def.6-3, if (C,B) /∈ Rdfi then there must be an S-justified argument of AFdfi+1 with
claim defend(B, C). Hence, by (1), (B,C) ∈ Rati contradicting the assumption.

• Assume b) does not hold, i.e., (B,C),(C,B) ∈ Rati , (B,C),(C,B) /∈ Rdfi and so by
def.6-3, ∃D,D′ ∈ S-justified(AFdfi+1) such that claim(D) = defend(C,B), claim(D′) =
defend(B,C)

1. For i = n - 1: By def.5, (D,D′), (D′,D) ∈ Ratn , and since Rdfn = Ratn , (D,D′),
(D′,D) ∈ Rdfn , contradicting the assumption thatD, D′ ∈ S-justified(AFdfn).

Inductive hypothesis: (b) holds for m > i.
2. For arbitrary i: By def.5, (D,D′), (D′,D) ∈ Rati+1 and by inductive hypothesis,

(D,D′) and/or (D′,D) ∈ Rdfi+1 , contradicting the assumption that D, D′ ∈ S-
justified(AFdfi+1)

Corollary 1. Let (AFdf1 ,. . .,AFdfn) be obtained from the preference independent HAF
(AFat1 ,. . .,AFatn). Then E is a conflict free subset ofArgsi in AFati iff E is a conflict
free subset of Argsi in AFdfi .

3 Assessing Acceptability Semantics from the Perspective of
Hierarchical Argumentation

Comparative assessments of Dung’s acceptability semantics against certain benchmark
example frameworks (e.g., [10]) have been critiqued (e.g., [7]) on the grounds that they
are inherently ad hoc. We suggest an assessment be made against desiderata of a more
general nature than examples. However, it is unrealistic to expect a universal set of
desiderata given the heterogeneity of domain to which argumentation theory has been
applied. For example, in a legal context, burden of proof considerations might warrant
semantics that commit to smaller sets of acceptable arguments. On the other hand, one
would want to maximise - within reason - the number of arguments considered justified
in an argumentation system formalising reasoning in the presence of logical contradic-
tion (analogous to maximising persistence in theories of belief revision). In the latter
case, α is a consequence of an inconsistent knowledge base K iff it is the claim of
a justified argument (e.g., [1]). Applying hierarchical argumentation to such systems
recognises that preference information may well be incomplete, uncertain and conflict-
ing. With this in mind, we informally articulate the notion of maximising within reason
the number of arguments considered justified: A is a justified argument iff it is justi-
fied irrespective of the availability of further preference information. We now assess

328 S. Modgil

Dung’s complete and preferred semantics w.r.t this requirement. In dealing with argu-
mentation systems formalising reasoning in the presence of logical contradiction, we
(as suggested in the previous section) focus on preference independent HAFs. In what
follows we make use of the following concepts.

Definition 8. Let AF = (Args,R) be an attack or defeat framework. AF′ =(Args,R′) is
a partial resolution of AF iff ∀A,A′ ∈ Args:

1. if (A,A′) ∈ R and (A′, A) /∈ R then (A,A′) ∈ R′

2. if (A,A′),(A′, A) ∈ R then (A,A′) and/or (A′, A) ∈ R′

3. if (A,A′) ∈ R′ then (A,A′) ∈ R.

•We say that AF′ =(Args,R′) is a resolution of AF iff it is a partial resolution of AF,
and if (A,A′),(A′, A) ∈ R then it is not the case that (A,A′) and (A′, A) ∈ R′.

• Let AFdf1 be obtained from Δ = (AFat1 , . . . , AFatn). Let AF ′
df1

be obtained from
someΔ′ = (AFat1 , . . . , AF

′
atn

) such that AF ′
df1

is a resolution of AFdf1 . Then we say
thatΔ′ resolvesΔ.

Proposition 1 states that utilising the available preference information in a preference in-
dependent HAF (AFat1 ,. . .,AFatn) results inAFdfi that are partial resolutions ofAFati ,
i.e.,AFdfi differs fromAFati only in that symmetric attacks are replaced by asymmetric
defeats (this is not the case if preference dependent attacks are axiomatised). Intuitively
then, eachΔ′ resolvingΔ represents a case in which the available preference informa-
tion in Δ′ is consistent and complete; in the sense that all symmetric attacks in AFat1

that remain as symmetric defeats in AFdf1 obtained from Δ, are resolved in favour of
asymmetric defeats in the resolution AF ′

df1
(of AFdf1) obtained fromΔ′. We therefore

state the following desideratum requiring that an argument be justified iff justified irre-
spective of how the preference information is consistently completed (recall that A ∈
S-justified(Δ) iff A ∈ S-justified(AFdf1) where AFdf1 is obtained fromΔ by def. 6):

A ∈ S-justified(Δ) iff for allΔ′ such that Δ′ resolvesΔ, A ∈ S-justified(Δ′) (D1)

Abstracting from the specific binary relation (be it attack or defeat), D1 expresses a
relationship between the justified arguments of a framework AF and those justified in
every resolution AF′ of AF. Hence, D1 is satisfied if the following is satisfied:

A ∈ S-justified(AF) iff for all resolutionsAF ′ ofAF ,A ∈ S-justified(AF ′) (D2)

We therefore assess Dung’s preferred and complete semantics w.r.t D2. Theorem 1 im-
plies that the left to right half of D2 holds for the complete semantics. Consider the
following counter-example for the preferred: AF = (A ⇀ B ⇀ C ⇀ A, A � D,
C ⇀ E) - {B,D,E} is the unique preferred extension. However, ∅ is the unique pre-
ferred extension of the resolution AF′ in which A� D is replaced by A ⇀ D.

Theorem 1. Let AF′ = (Args,R′) be a partial resolution of AF = (Args,R). Then
complete-justified(AF)⊆ complete-justified(AF′).

Proof. The complete-justified arguments of an argumentation framework are the same
as in the grounded extension [8]. Hence, we show that the grounded extension of AF is

Hierarchical Argumentation 329

a subset of the grounded extension of AF′. Dung makes use of iterative application of
the operator F (in def.2) - F 0 = ∅, F i+1 = {A ∈ Args|A is collectively defended by
F i} - to show (if Args is finite) that the grounded extension is given by

⋃∞
i=0(F

i).
Let G = F where G applies to AF′ and F to AF. We need to show that if A ∈ F i then
A ∈ Gi:

- i = 1: F 1 = F (F 0) contains arguments A that are not attacked/defeated, and since
(by def.8-3)R′ ⊆ R, then A ∈ G1. (1)

- For i > 1, to show A ∈ Gi we need to show that for any A ∈ F i: (B,A) ∈ R
and (hence, given the definition of ‘collectively defend’ in def.2) ∃C.C ∈ F i−1 and
(C,B) ∈ R, and (B,A) ∈ R′, implies ∃C′.C′ ∈ Gi−1 and (C′, B) ∈ R′ (2)

Assume (B,A) ∈ R, ∃C.C ∈ F i−1 and (C,B) ∈ R, (B,A) ∈ R′:

– i = 2 (F 2 =F (F 1)): We have ∃C.C ∈F 1 and by (1)C ∈G1, and since (C,B) ∈ R
and ¬∃D s.t. (D,C) ∈ R, then by definition 8-1) (C,B) ∈ R′

Inductive hypothesis (IH): (2) holds for A ∈ F j j < i
– i > 2: Suppose (B,C) /∈ R. Then by definition 8-1), (C,B) ∈ R′, and by IH
C ∈ Gi−1. Suppose (B,C) ∈ R and (C,B) /∈ R′. By assumption of (C,B) ∈ R
and definition 8-2), (B,C) ∈ R′. By IH, C ∈ Gi−1 and we can substitute C for A
in (2). We have (B,C) ∈ R and (hence) ∃C′′. C′′ ∈ F i−2 and (C′′, B) ∈ R, and
(B,C) ∈ R′ and so ∃C′. C′ ∈ Gi−2 and (C′, B) ∈ R′.

Theorem 2 states that the right to left half of D2 holds for the preferred semantics. Con-
sider the following counter-example for the complete semantics: AF = (A � B,B ⇀
C,A ⇀ C, C ⇀ D). Then complete-justified(AF) = ∅, and yet D is a complete-
justified argument of both resolutions (A ⇀ B,B ⇀ C,A ⇀ C, C ⇀ D) and
(B ⇀ A,B ⇀ C,A ⇀ C, C ⇀ D). Proof of theorem 2 requires the following
lemma.

Lemma 1. E is an admissible extension of AF iff there exists a resolution AF ′ of AF
such that E is an admissible extension of AF ′.

Proof. Corollary 1 states the equivalence of conflict free subsets of arguments of AFat

in a HAF and the obtained partial resolution AFdf . Hence, E is a conflict free subset
of Args in AF iff there exists a resolution AF ′ of AF s.t. E is a conflict free subset of
Args in AF ′.
Left to right half: let A be any argument in E and {B1, . . . Bn} the set s.t. for i =
1 . . . n, (Bi, A) ∈ R. By definition 2 there exists a {C1, . . . Cn} ⊆ E s.t. for i = 1 . . . n
(Ci, Bi) ∈ R. Let AF ′ be a resolution s.t. for i = 1 . . . n (Ci, Bi) ∈ R′. We have that
E is a conflict free subset of Args in AF ′. By def.8-3), {(B,A)|(B,A) ∈ R′} ⊆
{(B1, A), . . . (Bn, A)}. Hence, ∀B s.t. (B,A) ∈ R′, ∃C s.t. (C,B)∈ R′, i.e., E is an
admissible extension of AF ′.
Right to left half: let A be any argument in E, {B1, . . . Bn} the set s.t. for i = 1 . . . n,
(Bi, A) ∈ R′, and {C1, . . . Cn} ⊆ E s.t. for i = 1 . . . n (Ci, Bi) ∈ R′. We have that E
is a conflict free subset of Args in AF . By def.8-3), for i = 1 . . . n, (Bi, A),(Ci, Bi)
∈ R. Assume a B s.t. (B,A) ∈ R, (B,A) /∈ R′. By def.8-1) it must be the case that
(A,B) ∈ R. Hence, ∀B s.t. (B,A) ∈ R, ∃C s.t. (C,B)∈ R, i.e., E is an admissible
extension of AF .

330 S. Modgil

Theorem 2. If for all resolutions AF ′ of AF , A ∈ preferred-justified(AF ′), then A ∈
preferred-justified(AF)

Proof. Proof is by contraposition. Assume A /∈ preferred-justified(AF), i,e, there exists
a preferred extension E of AF s.t. A /∈ E. Let E′ be any superset of E and A any
argument in (E′−E). By definition of preferred extensions (def.2) and the monotonicity
of F [8] in def.2, ∃ (B,A) ∈R and¬∃C ∈ E′ s.t. (C,B) ∈R. By lemma 1, there exists
a resolution AF ′ of AF s.t. E is an admissible extension of AF ′. It must be the case
that (B,A) ∈ R′. Suppose otherwise. Then by assumption of (B,A) ∈ R and def.8-1),
it must be the case that (A,B) ∈ R contradicting ¬∃C ∈ E′ s.t. (C,B) ∈ R. Since
AF ′ is a resolution then it remains the case that ¬∃C ∈ E′ s.t. (C,B) ∈ R′. Hence E
is a preferred extension of AF ′, i.e., A /∈ preferred-justified(AF ′).

To summarise, the complete semantics will never be ‘in error’ in that if A is justified
in a framework, then it is justified irrespective of how the preference information is
consistently completed (theorem 1). The trade of is that A may not be justified even
though it ‘should’ be (in the sense that it is justified irrespective of how the preference
information is consistently completed). The preferred semantics will accept as justi-
fied all such arguments (theorem 2). However they may be ‘in error’ in that A may
be justified in a framework, but not justified irrespective of how the preference infor-
mation is consistently completed. However, since we are interested in maximising the
number of justified arguments, we suggest opting for the preferred rather than com-
plete semantics. This is because if A is preferred-justified in a framework then every
argument B attacking/defeating A is rejected in the framework and in all consistent
completions. To see why, suppose A ∈ preferred-justified(AF), in which case A is in
every preferred extension of AF . Hence, ∀B (B,A) ∈ R, B is not in any preferred ex-
tension, i.e., B ∈ preferred-rejected(AF). Suppose a resolutionAF ′ s.t. A /∈ preferred-
justified(AF ′). By def. 8-3) R′ ⊆ R. Hence, for any B such that (B,A) ∈ R′, B ∈
preferred-rejected(AF) and by theorem 3 below, B ∈ preferred-rejected(AF ′). Recall
the counter-example preceding theorem 1. AlthoughB,D and E are preferred-justified
in AF but not in a resolution, they are respectively attacked/defeated by A, A and C,
whereA andC are rejected inAF and all resolutions ofAF . That the preferred seman-
tics does not satisfy the left to right half of D2 is related to the fact that A and C belong
to a pathologically problematical odd cycle of attacks/defeats.

Theorem 3. For S ∈ {complete,preferred},A ∈ S-rejected(AF) iff for all resolutions
AF ′ of AF , A ∈ S-rejected(AF ′)

Proof. Left to right half: Proof is by contraposition. Assume a resolution AF ′ s.t. A /∈
S-rejected(AF ′). Hence, there exists a S extension E of AF ′ s.t. A ∈ E. By def.2 E is
admissible. By lemma 1, E is an admissible extension of AF . By def.2, ∃ E′ ⊇ E s.t.
E′ is a S extension of AF . Since A ∈ E′, A /∈ S-rejected(AF).
Right to left half: Proof is by contraposition. AssumeA /∈ S-rejected(AF). Hence, there
exists a S extension E of AF s.t. A ∈ E. E is admissible, and by lemma 1 there exists
a resolution AF ′ s.t. E is an admissible extension of AF ′, and so there exists a S
extension E′ ⊇ E of AF ′ s.t. A ∈ E′, i.e., A /∈ S-rejected(AF ′).

Hierarchical Argumentation 331

4 Conclusions

We have formalised hierarchical argumentation over preference information. Argu-
ments in a level n Dung framework resolve conflicts between arguments in a n − 1
framework. Our approach is applicable to a wide range of argumentation systems given
that no commitments are made to the system instantiating the level 1 Dung framework,
and that the two widely used notions of the relationship between attack and defeat are
axiomatised. Future work will further substantiate the generality of our approach. In
particular we aim to formalise and extend value based argumentation [4] as an instance
of hierarchical argumentation in which preference dependent attacks are formalised.
We believe that hierarchical argumentation can also address challenges raised by appli-
cations of argumentation theory in agent and multi-agent contexts [2, 3, 11, 9] in which
interacting arguments over different epistemological categories will require different
notions of conflict and conflict based interaction, and different principles by which the
relative strengths of arguments are evaluated, all within a single system. For example,
argumentation-based dialogues require that agents justify their preference for one argu-
ment over another, and have this justification itself challenged (e.g.,[9]).

In this paper we also contributed to a general understanding of the relative strengths
and weaknesses of Dung’s preferred and complete semantics, assessing them against
desiderata motivated by application of hierarchical argumentation to argumentation sys-
tems for reasoning in the presence of logical contradiction. While neither semantics
fully satisfy these desiderata, we argued in favour of the preferred semantics. Future
work will also explore related issues raised by the application of hierarchical argu-
mentation to preference information. For example, one could state that an argument is
‘objectively’ justified, if justified independently of a preference over principles by, and
or perspectives from, which argument strength is valuated.

Finally, one of our basic aims has been to put the general idea of meta-argumentation
on the map. We share this aim with [15] in which the focus is on reasoning about the
construction of arguments rather than preference information.

Acknowledgements. This work was funded by the EU FP6-IST-002307 ASPIC project.

References

1. L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based argumentation
frameworks. International Journal of Automated Reasoning, Volume 29 (2):125–169, 2002.

2. L. Amgoud and S. Kaci. On generation of bipolar goals in argumentation-based negotiation.
In I. Rahwan, P. Moraitis, and C. Reed, editors, Proc. 1st Int. Workshop on Argumentation in
Multi-Agent Systems, New York, 2004. Springer.

3. L. Atkinson. What Should We Do?: Computational Representation of Persuasive Argument
in Practical Reasoning. PhD thesis, Dept. Computer Science, University of Liverpool, 2005.

4. T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

5. P. Besnard and A. Hunter. Practical first-order argumentation. In Proc. 20th American Na-
tional Conference on Artificial Intelligence (AAAI’2005), pages 590–595, 2005.

6. G. Brewka. Well-founded semantics for extended logic programs with dynamic preferences.
Journal of Artificial Intelligence Research, 4:19, 1996.

332 S. Modgil

7. M. Caminada. For the sake of the Argument. Explorations into argument-based reasoning.
PhD thesis, Department of Computer Science, Free University Amsterdam, 2004.

8. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

9. D. Hitchcock, P. McBurney, and S. Parsons. A framework for deliberation dialogues. In
H. V. Hansen et.al, editor, Proc. Fourth Biennial Conference of the Ontario Society for the
Study of Argumentation (OSSA 2001), Canada, 2001.

10. H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal of
logic and computation, 9(2):215–261, 1999.

11. S. Modgil. Nested argumentation and its application to decision making over actions. In
Proc. Second Int. Workshop on Argumentation in Multi-Agent Systems, Netherlands, 2005.

12. J. L. Pollock. Defeasible reasoning. Cognitive Science, 11:481–518, 1987.
13. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible

priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.
14. D. N. Walton. Argument Schemes for Presumptive Reasoning. Lawrence Erlbaum Asso-

ciates, Mahwah, NJ, USA, 1996.
15. M. Wooldridge, P. McBurney, and S. Parsons. On the meta-logic of arguments. In AA-

MAS ’05: Proc. Fourth international joint conference on Autonomous agents and multiagent
systems, pages 560–567, NY, USA, 2005. ACM Press.

Anti-prenexing and Prenexing for Modal Logics

Cláudia Nalon1 and Clare Dixon2

1 Departamento de Ciência da Computação, Universidade de Braśılia
Caixa Postal 4466 – CEP:70.910-090 – Braśılia – DF – Brazil

nalon@unb.br
2 Department of Computer Science, University of Liverpool

Liverpool, L69 7ZF – United Kingdom
C.Dixon@csc.liv.ac.uk

Abstract. Efficient proof methods for normal modal logics are highly
desirable, as such logical systems have been widely used in computer
science to represent complex situations. Resolution-based methods are
often designed to deal with formulae in a normal form and the efficiency
of the method (also) relies on how efficient (in the sense of producing
fewer and/or shorter clauses) the translation procedure is. We present
a normal form for normal modal logics and show how the use of sim-
plification, for specific normal logics, together with anti-prenexing and
prenexing techniques help us to produce better sets of clauses.

1 Introduction

Beliefs, knowledge, intentions, desires, and obligations of agents as well as the
behaviour of these (and possibly other) aspects over time are often used to de-
scribe complex situations in computer science. This is the case, for instance, in
the specification of distributed [3] and multi-agent systems [11]. Normal modal
logics are often chosen to model and reason about these situations. Given a log-
ical specification, an automated tool such as, for instance, a theorem prover,
can then be used for verifying properties of the system. However, in order to
model the different aspects of a complex, particular situation, it may be neces-
sary to combine different logical languages. When the combination is given by
the fusion of logical systems, that is, when the components are independently ax-
iomatisable, proofs can be obtained by combining the provers for each language.
Combining those provers may require special care such that all relevant informa-
tion is correctly handled and exchanged between the different tools. Also, this
may require the use of tools which are based on different implementations (e.g.
different input languages) or, worse, on different approaches (e.g. partially based
on translation to first-order language × partially based on the modal language,
resolution × tableau, etc), making this task harder.

We are currently investigating a uniform approach which deals with theorem
proving for a variety of propositional normal modal logics, that is, logics in which
the schema (ϕ⇒ ψ) ⇒ (ϕ⇒ ψ) (the axiom K), where is the modality

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 333–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

334 C. Nalon and C. Dixon

for necessity and ϕ and ψ are well-formed formulae, is valid. We are interested
in multi-modal normal logics based on the following axioms

K : (ϕ⇒ ψ)⇒ (ϕ⇒ ψ)
T : ϕ⇒ ϕ
D : ϕ⇒♦ϕ
4 : ϕ⇒ ϕ
5 : ♦ϕ⇒ ♦ϕ
B : ♦ ϕ⇒ ϕ

where ♦ is the modality for possibility. We formally introduce the weakest of
these logics, K(n), in Section 2. The proof method for each logic is resolution-
based and our approach is clausal: in order to prove that a formula, ϕ, is valid,
we first transform its negation, ¬ϕ, into a clausal normal form. Here we do not
focus on the proof method, which can be found in [8], but on the properties
that a normal form for these logics should have in order to achieve efficiency. We
discuss briefly some aspects that should be considered when designing a normal
form for a family of logics.

In the classical propositional case there is only one resolution rule to apply
to the set of clauses, whilst we often need several rules for the modal case. This
happens because the semantics of modal logics are relative to a set of worlds,
so we often need to perform reasoning tasks which are not local (to the actual
world). Also, if we consider multi-agents contexts, the resolution rules must
consider the different contexts (relative to each agent) in which the reasoning
applies. Separating these contexts may facilitate the reasoning task. Thus, it
should be taken into consideration when designing a normal form for these logics.

Also, we should think of strategies that could be used to reduce the proof
search. Our work is based on that of [1], but the normal form differs slightly
(where li are literals, i.e., propositions or their negations): clauses are separated
into literal clauses (disjunctions of literals), positive modal clauses (an implica-
tion as l1 ⇒ l2), and negative modal clauses (an implication as l1 ⇒ ¬ l2).
This further separation potentially allows a better design of strategies to guide
the selection of clauses to which apply the resolution method. For instance, com-
plete strategies for (purely) propositional logic could be used when the parents
are literal clauses. The set of support strategy could also be used when the par-
ents are modal clauses, taking, for instance, the positive modal clauses in the
usable set and the negative modal clauses in the set of support (or vice-versa).

The new normal form is given in Section 3. Transformation into clausal form is
carried out by performing classical style rewriting, simplification, and renaming
[10], a technique which may avoid combinatorial explosion on the size of the
formula by replacing complex subformulae by new symbols, whose meaning are
linked to the formula that they are replacing.

Efficient translation is crucial for practical use of the resolution method.
By efficient we mean that the translation method produces fewer or shorter
clauses. In first-order logic, it has been shown [2] that the transformation of a
given problem into anti-prenex normal form (i.e. when quantifiers are moved
inwards a formula) results in a better set of clauses. However, to the best of our

Anti-prenexing and Prenexing for Modal Logics 335

knowledge, there has not been a similar investigation for modal logics. We present
an algorithm for anti-prenexing in Section 4. Experimentally, anti-prenexing to-
gether with simplification, given in Section 5, followed by transformation into
the normal form performs better than both the transformation preceded by anti-
prenexing and transformation alone.

We introduce the prenex normal form in Section 6 and show how this can
also be used to reduce the nesting of modal operators after anti-prenexing. Sim-
plification for specific logics is used in both steps, anti-prenexing and prenexing.
Preliminary results show that the set of clauses is usually smaller than that
obtained by translation into the normal form alone.

Experimental results are given in Section 7. We provide concluding remarks
in Section 8.

2 The Basic Normal Logic

The basic normal modal logic that we present here is known as K(n). This is the
weakest of the normal modal systems, where only the distribution axiom (the
axiom K) holds. There is no restriction on the accessibility relation over worlds.
As the subscript in the name of the logic indicates, we consider the multi-agent
version, given by the fusion of several copies of K(1), one for each agent.

Formulae are constructed from a denumerable set of propositional symbols,
P = {p, q, p′, q′, p1, q1, . . .}. The finite set of agents is defined as A = {1, . . . , n}.
In addition to the standard propositional connectives (¬,∨,∧,⇒), we introduce
a set of unary modal operators 1 , . . . , n , where i ϕ is read as “agent i considers
ϕ necessary”. When n = 1, we may omit the index, that is, ϕ = 1 ϕ. We do
not define the operator ♦: the fact that an “agent i considers ϕ possible” is
expressed by ¬ i ¬ϕ. The language of K(n) is defined as follows:

Definition 1. The set of well-formed formulae, WFFK(n)
:

– the propositional symbols are in WFFK(n)
;

– true and false are in WFFK(n)
;

– if ϕ and ψ are in WFFK(n)
, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ψ), (ϕ⇒ ψ), and

i ϕ (∀i ∈ A).

The following definitions will also be used later.

Definition 2. A literal is either a proposition or its negation.

Definition 3. A modal literal is either i l or ¬ i l, where l is a literal and i
is in the set of agents, A = {1, . . . , n}.

Definition 4. A formula χ is disjunctive if, and only if, is of the form (ϕ⇒
ψ), (ϕ ∨ ψ) or ¬(ϕ ∧ ψ). Otherwise, χ is said to be conjunctive.

Polarity of a formula is defined as usual: if a formula is inside the scope of an
even (including zero) number of negation symbols, the formula is said to be of
positive polarity; otherwise, it is of negative polarity.

336 C. Nalon and C. Dixon

Semantics of K(n) is given, as usual, in terms of a Kripke structure.

Definition 5. A Kripke structure M for n agents over P is a tuple M =
〈S, π,R1, . . . ,Rn〉, where S is a set of possible worlds (or states) with a distin-
guished world s0 ; the function π(s) : P → {true, false}, s ∈ S, is an interpreta-
tion that associates with each state in S a truth assignment to propositions; and
Ri is a binary relation on S.

The binary relation Ri is intended to capture the possibility relation according
to agent i. So, a pair (s, t) is in Ri if agent i considers world t possible, given
her information in world s. In K(n), the relations are any subsets of S × S.

Truth is defined in terms of the relation |=. We write (M, s) |= ϕ to express
that ϕ is true at world s in the Kripke structure M .

Definition 6. Truth of a formula is given as follows:

– (M, s) |= true
– (M, s) �|= false
– (M, s) |= p if, and only if, π(s)(p) = true, where p ∈ P
– (M, s) |= ¬ϕ if, and only if, (M, s) �|= ϕ
– (M, s) |= (ϕ ∧ ψ) if, and only if, (M, s) |= ϕ and (M, s) |= ψ
– (M, s) |= (ϕ ∨ ψ) if, and only if, (M, s) |= ϕ or (M, s) |= ψ
– (M, s) |= (ϕ⇒ ψ) if, and only if, (M, s) |= ¬ϕ or (M, s) |= ψ
– (M, s) |= i ϕ if, and only if, for all t, such that (s, t) ∈ Ri, (M, t) |= ϕ.

Formulae are interpreted with respect to the distinguished world s0. Intuitively,
s0 is the world from which we start reasoning. Let M = 〈S, π,R1, . . . ,Rn〉 be a
Kripke structure. Thus, a formula ϕ is said to be satisfiable in M if (M, s0) |= ϕ;
it is said to be satisfiable if there is a model M such that (M, s0) |= ϕ; and it is
said to be valid if for all models M then (M, s0) |= ϕ.

3 A Normal Form for K(n)

Formulae in the language of K(n) can be transformed into a normal form called
Separated Normal Form for Normal Logics (SNFK). We introduce a nullary
connective start, in order to represent the world from which we start reasoning.
Formally, we have that (M, s) |= start if, and only if, s = s0. A formula in SNFK

is represented by a conjunction of clauses, which are true at all states, that is,
they have the general form

∗
∧
i

Ai

where Ai is a clause and ∗, the universal operator, is introduced. Its semantics
is defined as:

(M, s) |= ∗ϕ if, and only if, (M, s) |= ϕ and for all s′ such that (s, s′) ∈
Ri, for some i ∈ A, (M, s′) |= ∗ϕ.

Anti-prenexing and Prenexing for Modal Logics 337

Observe that ϕ holds at the actual world s and at every world reachable from
s, where reachability is defined in the usual way. That is, let M be a model and
u and u′ be worlds in M . Then u′ is reachable from u if, and only if, either
(i) (u, u′) ∈ Ri for some agent i ∈ A; or (ii) there is a world u′′ in M such
that u′′ is reachable from u and u′ is reachable from u′′. The universal operator,
which surrounds all clauses, ensures that the translation of a formula is true at
all worlds. Clauses are in one of the following forms:

– Initial clause start⇒
r∨

b=1

lb

– Literal clause true ⇒
r∨

b=1

lb

– i -clause l⇒ mi

where l and any lb are literals and mi is a modal literal containing a i or a ¬ i

operator. In general, that is, when we do not need to specify a particular agent,
we often say modal clause to refer to a i -clause.

3.1 Transformation into Normal Form

The translation to SNFK uses the renaming technique [10], where complex sub-
formulae are replaced by new propositional symbols and the truth of these new
symbols is linked to the formulae that they replaced in all states. The translation
into SNFK of a given formula ϕ of K(n) is given by the following transformation
functions, τ0 and τ1, where x is a new propositional symbol:

τ0(ϕ) = ∗(start⇒ x) ∧ τ1(∗(x⇒ ϕ))

The function τ0 is used to anchor the meaning of ϕ to the initial world, where the
formula is evaluated. The function τ1 proceeds with the translation, removing
classical operators, by means of classical rewriting operations, and replacing
complex formulae which appear in the scope of the i operator, by means of
renaming. The next rewriting rules deal with classical operators (where A and
B are formulae, and x is the propositional symbol introduced by τ0):

τ1(∗(x⇒ ¬¬A)) = τ1(∗(x⇒ A))
τ1(∗(x⇒ (A ∧B))) = τ1(∗(x⇒ A)) ∧ τ1(∗(x⇒ B))
τ1(∗(x⇒ (A⇒ B))) = τ1(∗(x⇒ ¬A ∨B))
τ1(∗(x⇒ ¬(A ∧B))) = τ1(∗(x⇒ ¬A ∨ ¬B))
τ1(∗(x⇒ ¬(A⇒ B))) = τ1(∗(x⇒ A)) ∧ τ1(∗(x⇒ ¬B))
τ1(∗(x⇒ ¬(A ∨B))) = τ1(∗(x⇒ ¬A)) ∧ τ1(∗(x⇒ ¬B))

338 C. Nalon and C. Dixon

We rename complex subformulae enclosed in a modal operator as follows, where
y is a new proposition and A is not a literal.

τ1(∗(x⇒ i A)) = τ1(∗(x⇒ i y)) ∧ τ1(∗(y ⇒ A))
τ1(∗(x⇒ ¬ i A)) = τ1(∗(x⇒ ¬ i ¬y)) ∧ τ1(∗(y ⇒ ¬A))

Next we use renaming on formulae whose right-hand side has disjunction as its
main operator but may not be in the correct form (where y is a new proposition,
D is a disjunction of formulae, A is not a literal or an implication, and D′ and
D′′ are formulae):

τ1(∗(x⇒ D ∨ (D′ ⇒ D′′))) = τ1(∗(x⇒ D ∨ ¬D′ ∨D′′))
τ1(∗(x⇒ D ∨A)) = τ1(∗(x⇒ D ∨ y)) ∧ τ1(∗(y ⇒ A))

Finally, we rewrite formulae whose right-hand side is a disjunction of literals into
clause form, that is, as an implication. Modal clauses whose right-hand side is
a modal literal are already in the normal form, so no further transformation is
required. Note that each modal clause contains only one modal literal. So, the
different contexts belonging to different agents are already separated at the end
of the translation and we do not require further renaming as in [1].

τ1(∗(x⇒ D)) =
{ ∗(true ⇒ ¬x ∨D) if D is a disjunction of literals

∗(x⇒ D) if D is a modal literal

As an example, the translation of 1 (a⇒ b)⇒ (1 a⇒ 1 b) is given by:

τ0(ϕ) = ∗(start⇒ t1) ∧ τ1(∗(t1 ⇒ 1 (a⇒ b)⇒ (1 a⇒ 1 b)))

where

τ1(∗(t1 ⇒ 1 (a⇒ b)⇒ (1 a⇒ 1 b))) =

= ∗(true ⇒ ¬t1 ∨ t2 ∨ t3 ∨ t4) ∧ ∗(t2 ⇒ ¬ 1 ¬t5) ∧ ∗(t3 ⇒ ¬ 1 a)∧
∗(t4 ⇒ 1 b) ∧ ∗(true⇒ ¬t5 ∨ a) ∧ ∗(true ⇒ ¬t5 ∨ ¬b)

The translation procedure results in 7 clauses: one initial, three literal, and three
modal clauses. Note also that the new propositional symbols ti, (1 ≤ i ≤ 5), were
introduced during renaming of complex formula: either a disjunct which is not
a literal or a complex formula inside the scope of a modal operator.

The translation into normal form is satisfiability preserving, that is, we can
prove the following:

Theorem 1. Let ϕ be a formula in K(n)and M a model. M |= ϕ if, and only
if, there is a model M ′ such that M ′ |= τ0(ϕ).

The proof is similar to that of [4] and can be found in [7].

4 Anti-prenexing

Anti-prenexing has been used in first-order theorem proving as a step applied
before skolemization, in order to achieve a better set of clauses [2]. Similarly to

Anti-prenexing and Prenexing for Modal Logics 339

first-order, anti-prenexing in the modal context means that all modal operators
are moved inwards the formula as far as possible, whilst preserving satisfiability.
In the weakest normal logic, K(n), we can distribute the necessity operator, ,
over conjunctive formulae; and the possibility operator, ¬ ¬, over disjunctive
formulae. The definition of the anti-prenex normal form is given below.

Definition 7. A modal term is a literal or a formula of the form M1 . . .Mkl,
where l is a literal and Mi, 1 ≤ i ≤ k, is j or ¬ j for some j ∈ A.

Note that a literal l, which is not preceded by any modal operator, is also a
modal term.

Definition 8. Let ϕ and ψ be formula in WFFK(n)
. A formula χ is in Anti-

Prenex Normal Form (APNF) if, and only if,

1. χ is a modal term; or
2. χ is of the form ¬ϕ, (ϕ∧ψ), (ϕ∨ψ) or (ϕ⇒ ψ), and ϕ and ψ are in APNF;
3. χ is of the form i ϕ, ϕ is not of the form j ψ or of the form ¬ j ψ, ϕ is

disjunctive, and ϕ is in APNF;
4. χ is of the form ¬ i ϕ, ϕ is not of the form j ψ or of the form ¬ j ψ, ϕ is

conjunctive, and ϕ is in APNF; or
5. χ is of the form i ϕ or i ϕ, ϕ is of the form j ψ or of the form ¬ j ψ,

and ϕ is in APNF; or

The following lemma shows that any formula can be transformed into APNF.

Lemma 1. Let ϕ be a formula in K(n) and M a model in K(n). Then there is a
formula ϕ′ in APNF, such that M |= ϕ if, and only if, M |= ϕ′.

Proof. The following schemata are theorems of K(n):

1. i (ϕ ∧ ψ)⇔ (i ϕ ∧ i ψ)
2. i ¬(ϕ⇒ ψ) ⇔ (i ϕ ∧ i ¬ψ)
3. i ¬(ϕ ∨ ψ) ⇔ (i ¬ϕ ∧ i ¬ψ)
4. ¬ i ¬(ϕ⇒ ψ) ⇔ (i ϕ⇒ ¬ i ¬ψ)
5. ¬ i ¬(ϕ ∨ ψ)⇔ (¬ i ¬ϕ ∨ ¬ i ¬ψ)
6. ¬ i (ϕ ∧ ψ) ⇔ (¬ i ϕ ∨ ¬ i ψ) ��

The transformation into SNFK consists of two steps: transforming the formulae
into anti-prenex, as defined below, and then applying the transformation function
given in Subsection 3.1. Firstly, based on the schemata presented in Lemma 1,
we define a function α(ϕ), where ϕ is a formula, which produces the anti-prenex
normal form of ϕ. The base case occurs when the formula A is already in APNF,
that is, A is a modal term. In this case, α(A) = A. If the main operator is
modal, we only apply the transformation function to formula which satisfies the
equivalences in Lemma 1, that is, in the following cases:

340 C. Nalon and C. Dixon

α(i (A ∧B)) = α(i A ∧ i B)
α(i ¬(A⇒ B)) = α(i A ∧ i ¬B)
α(i ¬(A ∨B)) = α(i ¬A ∧ i ¬B)

α(¬ i ¬(A⇒ B)) = α(i A⇒ ¬ i ¬B)
α(¬ i ¬(A ∨B)) = α(¬ i ¬A ∨ ¬ i ¬B)
α(¬ i (A ∧B)) = α(¬ i A ∨ ¬ i B)

If we have two consecutive modal operators, the function is applied recursively,
where A is of the form j B or ¬ j B, for any j ∈ A:

α(i A) = α(i α(A)) α(¬ i A) = α(¬ i α(A))

If the main operator is a modal operator, but the formula inside its scope is not
one of the above, we apply the anti-prenexing function to this formula, that is:

α(i A) = i α(A) α(¬ i A) = ¬ i α(A)

When the main operator is classical, the transformation function is also applied
recursively. Note that when the polarity of a subformula is negative, we rewrite
the formula in order to make this explicit.

α(¬¬A) = α(A)
α(A⇒ B) = α(¬A) ∨ α(B)
α(A ∧B) = α(A) ∧ α(B)
α(A ∨B) = α(A) ∨ α(B)

α(¬(A⇒ B)) = (α(A) ∧ α(¬B))
α(¬(A ∧B)) = (α(¬A) ∨ α(¬B))
α(¬(A ∨B)) = (α(¬A) ∧ α(¬B))

The proof that this transformation is correct and satisfiability preserving can be
obtained as in [7] for translation into SNFK and will not be presented here.

As an example, the APNF of i (a ∧ i (b ∧ i c)) is i a ∧ i i b ∧ i i i c,
whose transformation into normal form is:

∗(start⇒ x) ∧ ∗(x⇒ i a) ∧ ∗(x⇒ i y) ∧ ∗(y ⇒ i b)∧
∗(x⇒ i z) ∧ ∗(z ⇒ i w) ∧ ∗(w ⇒ i c).

5 Simplification Rules

The anti-prenexing pre-processing of a formula may result in fewer or shorter
clauses. For instance, consider the formula i (a∧ b). Transformation into SNFK

results in four clauses (∗(start ⇒ x), ∗(x ⇒ i y), ∗(true ⇒ ¬y ∨ a),
and ∗(true⇒ ¬y ∨ b)), whilst transformation into the normal form preceded
by anti-prenexing results in three clauses (∗(start⇒ x), ∗(x⇒ i a), and

∗(x ⇒ i b)). Also the size of the second transformation is smaller than the
size of the first. However, this is not always the case. Depending on the nesting
of modal operators in the original formula, the number of clauses as well as the
size of the resulting formula, generated after anti-prenexing and translation into
SNFK can be significantly larger than by applying the transformation into SNFK

Anti-prenexing and Prenexing for Modal Logics 341

alone. The reason is that the modal operator that had appeared only once in
the formula now has several copies distributed over subformulae.

However, when applied together with simplification, anti-prenexing may re-
duce the size of the formula, by collapsing of nested modal operators in the
original formula. Obviously, this depends on the particular normal modal logic
we are considering. We discuss in this section the simplification rules that could
be applied together with anti-prenexing, before transformation into SNFK , in
the case of KTD45(n) and KD45(n). The first normal modal logic, also known
as S5(n) – the logic of knowledge for multiple agents – is axiomatisable by the
schemata K, T, D, 4, and 5 and the rules of inference: modus ponens (from � ϕ
and � (ϕ⇒ ψ) infer � ψ) and modal necessitation (from � ϕ infer � i ϕ). The
logics KD45(n), known as the logic of belief for multiple agents, is axiomatis-
able by the schemata K, D, 4, and 5 and the rules of inference modus ponens
and modal necessitation. As the schemata i i ϕ ⇔ i ϕ, i ¬ i ϕ ⇔ ¬ i ϕ,
¬ i ¬ i ϕ ⇔ i ϕ, ¬ i i ϕ ⇔ ¬ i ϕ are valid in KTD45(n) and in KD45(n), we
extend the anti-prenexing function in the obvious way:

α(i i ϕ) = α(i ϕ)
α(i ¬ i ϕ) = α(¬ i ϕ)

α(¬ i ¬ i ϕ) = α(i ϕ)
α(¬ i i ϕ) = α(¬ i ϕ)

We note that we only apply simplification when the modal operators have the
same index. Other simplification rules could also be introduced, but we chose not
to do this and, instead, preserving some of the structure of the formula. Using
these simplification rules, the anti-prenex normal form of the previous example,
i.e. i (a∧ i (b∧ i c)), is i a∧ i b∧ i c, which has the same size as the original
formula. Table 1 show the three transformations for comparison.

Table 1. Translation (from left to right) without Anti-Prenexing, after Anti-Prenexing,
and after Anti-Prenexing and Simplification

i (a ∧ i (b ∧ i c))

SNFK AP + SNFK AP + SIMP + SNFK

i (a ∧ i (b ∧ i c)) i a ∧ i i b ∧ i i i c i a ∧ i b ∧ i c

1. start ⇒ x
2. x ⇒ i y
3. true ⇒ ¬y ∨ a
4. y ⇒ i z
5. true ⇒ ¬z ∨ b
6. z ⇒ i c

1. start ⇒ x
2. x ⇒ i a
3. x ⇒ i y
4. y ⇒ i b
5. x ⇒ i z
6. z ⇒ i w
7. w ⇒ i c

1. start ⇒ x
2. x ⇒ i a
3. x ⇒ i b
4. y ⇒ i c

Note that no simplification rule could be applied to the original formula. By
moving the modal operators inwards the formula, simplification could be applied,
resulting in fewer and shorter clauses.

342 C. Nalon and C. Dixon

6 Prenexing

Similarly to first-order logic, prenexing in the modal context means to pull modal
operators as far as possible outwards the formula. It is well-known that formulae
in KTD45(1) can be transformed into a formula without nesting of modal opera-
tors (see [6], for instance). As we are interested in a more general form of prenex-
ing than that given for KTD45(1), we say that a formula is in prenex normal form
if it corresponds to the inverse of the transformation into anti-prenexing. Thus,
the transformation is justified by the same equivalences appearing in Lemma 1.
Our definition of the prenexing function is similar to that given in Section 4 and
will not be presented here. Instead, in this section, we give the motivation for
using both techniques together with simplification for KTD45(n) and KD45(n).

When a formula ϕ is transformed into APNF, the nesting of modal operators
is made explicit and can be easily simplified. On the other hand, several copies
of a modal operator may now appear in the formula. By performing the transfor-
mation into prenex normal form, after anti-prenexing and simplification, we try
to remove such copies and make the formula shorter. We note that the order in
which the transformations are applied is important. Consider, for instance, the
formula given in previous examples, that is, i (a∧ i (b∧¬ i ¬c)). This formula
is in prenex normal form, as we cannot apply any of the equivalences given in
Lemma 1 to move the modal operators outwards the formula. However, if we
apply anti-prenexing with simplification, we obtain, as seen before, the formula

i a∧ i b∧ i c. The result of applying the prenex function is i (a∧b∧c), which is
shorter than both the original formula and the one obtained after anti-prenexing
with simplification. In this case, however, the transformation into SNFK results
in one more clause. Table 2 gives an example where the number of clauses is
smaller than that produced by the other methods without prenexing.

Table 2. Example using Anti-Prenexing, Prenexing, and Simplification

Formula ¬ i ¬(a ∨ ¬ i ¬(b ∨ ¬ i ¬c))
↓

Anti-Prenexing ¬ i ¬a ∨ ¬ i ¬¬ i ¬b ∨ ¬ i ¬¬ i ¬¬ i ¬c
↓

Anti-Prenexing + Simplification ¬ i ¬a ∨ ¬ i ¬b ∨ ¬ i ¬c
↓

Prenex ¬ i ¬(a ∨ b ∨ c)
↓

SNFK

1. ∗(start ⇒ x)
2. ∗(true ⇒ ¬ i ¬y)
3. ∗(true ⇒ ¬y ∨ a ∨ b ∨ c)

As a final example, consider the formula ¬ i ¬(i a ∧ i b), which is already
in APNF, as the modal operator ¬ i ¬ cannot be distributed over conjunc-
tions. Also, no simplification rule can be applied to the formula. After applying

Anti-prenexing and Prenexing for Modal Logics 343

prenexing, however, we obtain ¬ i ¬ i (a∧ b), which simplifies to i (a ∧ b). We
do not apply anti-prenexing again, which would result in a shorter translation
into SNFK , as discussed at the beginning of Section 5. Nevertheless, the resulting
formula is half the size of the original one and the set of clauses is also smaller.

7 Experimental Results

The examples given here have only the purpose of illustrating the techniques.
We cannot prove, in general, that by applying those techniques we will obtain
a better set of clauses. In order to have a measure of how anti-prenexing and
prenexing behave in comparison to translation to SNFK alone, we have per-
formed tests using formulae from [5].

The program takes a modal formula and returns its size and number of liter-
als. It also returns the size and number of literals after transforming the formula
into SNFK alone, into SNFK preceded by anti-prenexing, and into SNFK pre-
ceded by anti-prenexing with simplification. We are currently working on the
implementation of prenexing.

Table 3 shows the output from running the program over formulae from the
benchmark s4_45_p.txt, which contains problems in KT4(1) which are provable

Table 3. Results for Transformations of Formulae in the Logic Workbench

SNF After AP SNF After AP and Simp
Initial SNF Only After AP After SNF After AP After SNF

Id Size Lits Size Lits Size Lits Size Lits Size Lits Size Lits
1 119 3 207 27 99 3 189 27 77 3 141 19
2 313 3 531 50 257 3 479 50 213 3 383 44
3 581 3 979 87 473 3 877 87 407 3 733 77
4 923 3 1551 122 747 3 1383 150 659 3 1191 130
5 1339 3 2247 183 1079 3 1997 184 969 3 1757 186
6 1829 3 3067 256 1469 3 2719 296 1337 3 2431 264
7 2393 3 4011 387 1917 3 3549 387 1763 3 3213 349
8 3031 3 5079 489 2423 3 4487 489 2247 3 4103 438
9 3743 3 6271 544 2987 3 5533 604 2789 3 5101 555
10 4529 3 7587 664 3609 3 6687 665 3389 3 6207 667
11 5389 3 9027 797 4289 3 7949 869 4047 3 7421 809
12 6323 3 10591 1020 5027 3 9319 1020 4763 3 8743 954
13 7331 3 12279 1182 5823 3 10797 1182 5537 3 10173 1099
14 8413 3 14091 1265 6677 3 12383 1357 6369 3 11711 1280
15 9569 3 16027 1445 7589 3 14077 1446 7259 3 13357 1448
16 10799 3 18087 1638 8559 3 15879 1742 8207 3 15111 1654
17 12103 3 20271 1953 9587 3 17789 1953 9213 3 16973 1859
18 13481 3 22579 2175 10673 3 19807 2175 10277 3 18943 2060
19 14933 3 25011 2286 11817 3 21933 2410 11399 3 21021 2305
20 16459 3 27567 2526 13019 3 24167 2527 12579 3 23207 2529
21 18059 3 30247 2779 14279 3 26509 2915 13817 3 25501 2799

344 C. Nalon and C. Dixon

in both KT4(1) and KTD45(1). For each problem, identified in the first column,
we present the total size of the formula (Size) and the number of different literals
(Lits). Columns 2 and 3 refer to the original formula. Columns 4 and 5 show the
result for transformation into SNFK alone. Columns 6 to 8 are related to anti-
prenexing without simplification, where the first two columns are the size of the
problem after transforming into anti-prenexing, and the other two columns are
the result of transforming into SNFK . The last four columns contain the result
for anti-prenexing together with simplification: their contents are similar to those
for anti-prenexing without simplification. The table shows that transformation
into SNFK preceded by anti-prenexing with simplification performs better than
the other two methods. On average, the size of a formula decreases 21% and 24%
after anti-prenexing and anti-prenexing with simplification. Also on average, the
size of a formula increases 68%, 47%, and 39% after SNFK only, SNFK after
anti-prenexing, and SNFK after anti-prenexing with simplification, respectively.
Other experimental results can be found in [7].

8 Conclusions

In this paper we have presented an algorithm for transforming any normal modal
formula into a normal form. This can be done because the transformation is
based on valid schemata of the weakest of the normal modal logics, namely
K(n). Also, we investigate how the use of anti-prenexing and prenexing can help
in obtaining a better transformation. Combined with simplification rules, these
methods seem to produce smaller clause sets for problems from some normal
logics.

There is no way of defining which is the best normal form, in general. Here
we focused on the size of the transformed problem as a measure for determining
whether the transformation is good. However, we also intend to investigate other
parameters, as for instance the number of clauses and their sizes, as well as
how efficiently a real theorem-prover responds to those different transformations.
As anti-prenexing with simplification moves the modal operators inwards the
formula, those operators are usually applied to simpler formulae, indicating that
we could have less resolution steps applied to a clause set.

Simplification is an important step in the translation algorithm, but, as dis-
cussed before, it cannot be applied to all normal modal logics. We have shown
the simplification rules for KTD45(n) and KD45(n). The equivalences i ¬ i ϕ⇔
¬ i ϕ and ¬ i ¬ i ϕ⇔ i ϕ are also valid in K45(n) and KT4(n) (also known as
S4(n)), so the formula resulting from anti-prenexing can be simplified, but not at
the same extent as those of KTD45(n) and KD45(n). The other modal logics do
not admit simplification rules for collapsing of nested operators. In these cases,
as our experimental results show, applying anti-prenexing does not seem to be
worthwhile. We are currently working on the complexity of the transformation
in order to determine precisely when anti-prenexing and prenexing of a formula
would result in a better set of clauses. That is, the techniques shown here could
be used selectively in a similar way as renaming is used [9].

Anti-prenexing and Prenexing for Modal Logics 345

We are currently working on the implementation of the prenexing algorithm.
We believe that anti-prenexing together with prenexing and simplification will
give us the best result for formulae in KTD45(n) and KD45(n). We hope that the
same combination will give us better results for the other logics.

Current work also involves the development of the resolution-based methods
for each logic. Our intention is that a uniform approach to deal with those logics
– from the designing of the normal forms up to the whole proof-method – will
facilitate the task of validity checking for combinations of those logics.

Acknowledgements

The first author was supported by CNPq grants CT-INFO 506598/04-7 and
Universal 47171/2004-0.

References

1. C. Dixon and M. Fisher. Resolution-Based Proof for Multi-Modal Temporal Logics
of Knowledge. In S. Goodwin and A. Trudel, editors, Proceedings of the 7th Inter-
national Workshop on Temporal Representation and reasoning (TIME’00), pages
69–78, Cape Breton, Canada, July 2000. IEEE Computer Society Press.

2. U. Egly. On the value of antiprenexing. In F. Pfenning, editor, Proceedings of the
5th International Conference on Logic Programming and Automated Reasoning,
volume 822 of LNAI, pages 69–83, Berlin, July 1994. Springer.

3. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

4. M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Transac-
tions on Computational Logic, 2(1), Jan. 2001.

5. G. Jaeger, P. Balsiger, A. Heuerding, S. Schwendimann, M. Bianchi, K. Gug-
gisberg, G. Janssen, W. Heinle, F. Achermann, A. D. Boroumand, P. Bram-
billa, I. Bucher, and H. Zimmermann. LWB–The Logics Workbench 1.1.
http://www.lwb.unibe.ch/. University of Berne, Switzerland.

6. J. J. C. Meyer and W. van der Hoek. Epistemic Logic for Computer Science and
Artificial Intelligence, volume 41 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1995.

7. C. Nalon and C. Dixon. Anti-prenexing and prenexing for modal logics (ex-
tended version). Technical Report ULCS-06-003, University of Liverpool, April
2006. Available at http://www.csc.liv.ac.uk/research/techreports/tr2006/ulcs-06-
003.pdf.

8. C. Nalon and C. Dixon. Normal modal resolution. Submitted, June 2006.
9. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In

A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science B.V., 2001.

10. D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving Clause Form Trans-
lation. Journal of Logic and Computation, 2:293–304, 1986.

11. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293–342, 1998.

A Bottom-Up Method for the Deterministic
Horn Fragment of the Description Logic ALC

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. We study the deterministic Horn fragment of ALC, which
restricts the general Horn fragment of ALC only in that, the construc-
tor ∀R.C is allowed in bodies of program clauses and queries only in
the form ∀∃R.C, which is defined as ∀R.C � ∃R.C. We present an algo-
rithm that for a deterministic positive logic program P given as a TBox
constructs a finite least pseudo-model I of P such that for every deter-
ministic positive concept C, P |= C iff I validates C (and more strongly,
iff I, τ |= C, where τ is the distinguished object of I and the satisfac-
tion means τ is an instance of C w.r.t. I). Pseudo-interpretations are
very similar to (traditional) interpretations, except that they have two
interpretation functions for roles, one to deal with the constructor ∃R.C
and the other to deal with ∀R.C. They are ordered by comparing the
sets of validated positive concepts. Our algorithm runs in time 2O(n) and
returns a pseudo-interpretation of size 2O(n). Our method is extendable
for instance checking w.r.t. knowledge bases containing also an ABox in
more expressive description logics.

1 Introduction

Description logics (DLs) are logics that represent the domain of interest in terms
of concepts, objects, and roles. They are useful for modeling and reasoning about
structured knowledge. In the recent years, the combination of description logics
and Horn logic has been studied by a considerable number of researchers (see,
e.g., [2, 8, 6, 5, 7, 3]).

In [8], Levy and Rousset developed the CARIN family of representation lan-
guages that combines the expressive power of Horn rules and DLs. CARIN knowl-
edge bases contain a DL terminology and a set of Horn rules defined on the top of
the terminology. CARIN combines the two formalisms by allowing the concepts
and roles, defined in the terminology, to appear as predicates in the antecedents
of the Horn rules. Some works related with this approach are, e.g., [4, 2, 5].

Another approach is to study Horn fragments of DLs [6, 7, 3]. In [6], Grosof et
al. introduced the description Horn logic (DHL), which is a restricted fragment of
DL, and studied it through a transformation to classical Horn logic. A DHL pro-
gram consists of Horn clauses defining (relations between) concepts, (relations
between) roles, and instances of concepts and roles. Inverse roles and transitive

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 346–358, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Bottom-Up Method for the Deterministic Horn Fragment of the DL ALC 347

roles are allowed in DHL programs. In order to make the transformation possi-
ble, the constructor ∀R.C is disallowed in bodies and the constructor ∃R.C is
disallowed in heads of DHL program clauses. In [7], Hustadt et al. introduced
a more relaxed Horn version for the expressive description logic SHIQ, which
is called Horn-SHIQ. In comparison with DHL, Horn-SHIQ also disallows the
constructor ∀R.C in bodies of program clauses and queries, but it allows the
constructor ∃R.C to appear in heads of program clauses. Using a transforma-
tion to Datalog and treating the TBox of a knowledge base as the intensional
part and the ABox as the extensional part, Hustadt et al. [7] proved that the
data complexity of Horn-SHIQ is complete in PTIME. In [3], Calvanese et al.
also studied data complexity of query answering in DLs. To obtain low data
complexity they adopted strong restrictions for the form of Horn clauses.

In this paper, we study the deterministic Horn fragment of the description
logic ALC. It restricts the general Horn fragment only in that, the constructor
∀R.C is allowed in bodies of program clauses and queries only in the form ∀∃R.C,
which is defined as ∀R.C � ∃R.C. That is, in the deterministic Horn fragment
of ALC, the constructors ∃R.C and ∀∃R.C are allowed in bodies of program
clauses and queries, and the constructors ∃R.C and ∀R.C are allowed in heads
of programs clauses. In the current version, we consider only logic programs
which are a TBox and the problem of checking whether P |= C for a program P
and a concept C. With the current setting, our programs do not contain certain
features allowed in [6, 7]. On the other hand, when restricting only to the problem
of checking P |= C for a program P being a TBox in ALC, our deterministic
Horn fragment is more general than the Horn fragments studied by Grosof et
al. [6] and Hustadt et al. [7]. Recall that in both DHL [6] and Horn-SHIQ [7],
the constructor ∀R.C is disallowed in bodies of program clauses and queries.

The deterministic Horn fragment without ABox of ALC maybe not useful
enough for practical applications. However, it shows how we can extend the
results of other authors for more general Horn fragments of DLs. For example,
we can extend Horn-SHIQ to dHorn-SHIQ by allowing the constructor ∀∃R.C
to appear in bodies of program clauses and queries. Then CARIN-like systems
that use dHorn-SHIQ for the terminology layer are very expressive systems for
which we believe that the data complexity is complete in PTIME.

As a computational method for DLs one can apply a transformation to clas-
sical logic and use the existing techniques of resolution, logic programming, or
deductive databases. However, the mostly studied computational method for DLs
is the tableau method (see the overview by Baader and Sattler [1]). The work
[8] by Levy and Rousset on CARIN also uses the tableau method. The tableau
method is essentially different from the bottom-up method (used in deductive
databases) because of the “or” splitting rule.

The motivation of this paper is to develop a bottom-up method for query
answering for Horn fragments of DLs, while staying with the syntax of DLs
and adopting as less as possible restrictions on the form of Horn programs and
queries. In general, the bottom-up method for checking P |=L C for a program
P and a query C in a restricted fragment L′ of a logic L is to build a finite

348 L.A. Nguyen

L-model M (or a similar structure) for a given program P of L′ such that for
every query C of L′, P |=L C iff M |= C. The method is especially useful when
P is a knowledge base that rarely changes, while C is a query and varies. The
problem of constructing such a modelM for P is not trivial at all (see, e.g., [9]).

A deterministic positive logic program is a finite set of non-negative concepts
of the deterministic Horn fragment. Queries to such a program are deterministic
positive concepts, which are positive concepts containing the constructor ∀R.C
only in the form ∀∃R.C. To deal with such logic programs and queries, we use
pseudo-interpretations, which are very similar to (traditional) interpretations,
except that they have two interpretation functions for roles, one to deal with
the constructor ∃R.C and the other to deal with ∀R.C. They are ordered by
comparing the sets of validated positive concepts.

In this paper, we present an algorithm that for a deterministic positive logic
program P given as a TBox constructs a finite least pseudo-model I of P such
that for every deterministic positive concept C, P |= C iff I validates C (and
more strongly, iff I, τ |= C, where τ is the distinguished object of I and the
satisfaction means τ is an instance of C w.r.t. I). Our algorithm runs in time
2O(n) and returns a pseudo-interpretation of size 2O(n).

This work is related to our previous work [9]. In [9] we gave an algorithm
that for a given positive modal logic program P , treated as local assumptions,
and a serial monomodal logic L ∈ {KD, T, KDB, B, KD4, S4, KD5, KD45, S5}
constructs a least L-model of P , which is finite if L /∈ {KDB,B}. The monomodal
logic K is non-serial and there are positive modal logic programs that do not
have any least K -model [9]. ALC is a syntactic variant of the multimodal version
of K and it has a similar problem. From the point of view of [9], the challenge of
dealing with ALC is not the problem of multi-modalities and global assumptions,
but is the problem of non-seriality. To overcome this problem forALC, we restrict
to the deterministic Horn fragment and use pseudo-interpretations.

The rest of this paper is structured as follows. In Section 2, we recall the
notation and semantics of ALC, define the deterministic Horn fragment of ALC,
pseudo-interpretations, the satisfaction relation and an ordering for pseudo-
interpretations. In Section 3, we present our algorithm and prove its correctness.
In Section 4, we prove some characterizations of least pseudo-models. Section 5
contains concluding remarks. Due to the lack of space, some proofs are presented
only in the long version [10] of this paper.

2 Preliminaries

2.1 Notation and Semantics of ALC
Let A denote an atomic concept, C and D arbitrary concepts, and R a role
name. Concepts in ALC are formed with the following syntax:

C,D ::= � | ⊥ | A | ¬C | C �D | C �D | C (D | C .= D | ∀R.C | ∃R.C

An interpretation I = 〈ΔI , ·I〉 consists of a non-empty set ΔI , the domain of
I, and a function ·I , the interpretation function of I, that maps every atomic

A Bottom-Up Method for the Deterministic Horn Fragment of the DL ALC 349

concept to a subset of ΔI and every role name to a subset of ΔI × ΔI . The
interpretation function is extended to interpret every concept as follows:

�I = ΔI , ⊥I = ∅, (¬C)I = ΔI\CI , (C�D)I = CI∩DI , (C�D)I = CI∪DI ,

(C (D)I = (¬C �D)I , (C .= D)I = ((C (D) � (D (C))I ,

(∀R.C)I = {x ∈ ΔI | ∀y.(x, y) ∈ RI implies y ∈ CI}, (∃R.C)I = (¬∀R.¬C)I .

An interpretation I satisfies C if CI �= ∅, and validates C if CI = ΔI .
A TBox Γ (of global axioms) is a finite set of concepts.1 An interpretation

I is a model of Γ if I validates all concepts in Γ . We also use X , Y to denote
finite sets of concepts. We say that I satisfies X if there exists a ∈ ΔI such that
a ∈ CI for all C ∈ X . (Note that satisfaction is defined “locally”, and I satisfies
X does not mean that I is a model of X .)

We say that Γ entails C, written Γ |= C, if every model of Γ validates C.
We say that C is satisfiable w.r.t. Γ if there exists a model of Γ that satisfies

C. Similarly, X is satisfiable w.r.t. (a TBox of global axioms) Γ if there exists a
model of Γ that satisfies X . Observe that Γ |= C iff ¬C is unsatisfiable w.r.t. Γ .

2.2 The Deterministic Horn Fragment of ALC

We extend the primitive language with the concept constructor ∀∃, which creates
a concept ∀∃R.C from a role name R and a concept C. The concept ∀∃R.C is
interpreted as (∀R.C) � (∃R.C).

A positive concept is a concept (in the extended language) without the con-
structors ⊥, ¬, (, .=. A (modal-)deterministic positive concept is a positive con-
cept which does not contain the constructor ∀ (but may contain ∃ and ∀∃).

A deterministic program clause (in ALC) is a concept of one of the forms:

– an atomic concept or �;
– C (D, where C is a deterministic positive concept and D is a deterministic

program clause;
– C �D, where C and D are deterministic program clause;
– ∀R.C or ∃R.C, where C is a deterministic program clause.

A deterministic positive logic program (in ALC) is a finite set of deterministic
program clauses.

Example 1. Given the following deterministic positive logic program P :

∀∃child.(doctor � lawyer) (happy parent
∀child.doctor
∃child.�

we can ask, for example, whether P |= happy parent and P |= ∀∃child.doctor.
The deterministic positive concepts happy parent and ∀∃child.doctor are queries.
1 Traditionally, a TBox is defined to be a finite set of terminological axioms of the

form C
.= D, where C and D are concepts. The two definitions are equivalent.

350 L.A. Nguyen

2.3 Pseudo-interpretations

A pseudo-interpretation is a tuple of the form 〈Δ, τ, C, E ,U〉, where Δ is the
domain, τ is a distinguished element of Δ (like the actual world in a Kripke
model), C is a function that maps every atomic concept to a subset of Δ, and
E and U are functions that map every role name to a subset of Δ×Δ with the
property that E(R) ⊆ U(R) for every role name R. The function E is used to deal
with the (existential) constructor ∃, while U is used to deal with the (universal)
constructor ∀.

A pseudo-interpretation 〈Δ, τ, C, E ,U〉 can be treated as an interpretation if
E = U . Conversely, every interpretation can be treated as a pseudo-interpretation
(with τ being some element of the domain).

Given a pseudo-interpretation I = 〈Δ, τ, C, E ,U〉, an element x ∈ Δ, and a
concept C which is either a positive concept or a deterministic program clause,
define I, x |= C as follows:

I, x |= A iff x ∈ C(A)
I, x |= C �D iff I, x |= C and I, x |= D
I, x |= C �D iff I, x |= C or I, x |= D
I, x |= C (D iff I, x � C or I, x |= D
I, x |= ∃R.C iff ∃y.(E(R)(x, y) ∧ I, y |= C)
I, x |= ∀R.C iff ∀y.(U(R)(x, y) → I, y |= C)
I, x |= ∀∃R.C iff I, x |= (∀R.C) � (∃R.C)

We say that I validates C if I, x |= C for every x ∈ Δ. For Γ being a set of
positive concepts or deterministic program clauses, we write I, x |= Γ to denote
that I, x |= C for every C ∈ Γ . We say that a pseudo-interpretation I is a
pseudo-model of Γ if I, x |= Γ for every x ∈ Δ.

2.4 Ordering Pseudo-interpretations

In [9] we introduced an ordering between Kripke models. In this subsection, we
provide an analogue for ordering pseudo-interpretations in ALC.

A pseudo-interpretation I is said to be (globally) less than or equal to a
pseudo-interpretation I ′, written I ≤ I′, if for every positive concept C, I
validates C implies that I ′ also validates C. This differs from [9] at the aspect
that, the order ≤ given in [9] for comparing Kripke models is “local”, as it
compares only the contents of the actual worlds.

A pseudo-interpretation I is called a least pseudo-model of a deterministic
positive logic program P if it is a pseudo-model of P and is less than or equal
to every pseudo-model of P . Note that I and I ′ are least pseudo-models of P
does not imply I = I ′, as it only states that, for every positive concept C, I
validates C iff I ′ validates C.

Let I = 〈Δ, τ, C, E ,U〉 and I ′ = 〈Δ′, τ ′, C′, E ′,U ′〉 be pseudo-interpretations.
We say that I is locally less than or equal to I′ w.r.t. a binary relation r ⊆ Δ×Δ′,
and write I ≤r I ′, if the following conditions hold for every role name R and
every atomic concept A:

A Bottom-Up Method for the Deterministic Horn Fragment of the DL ALC 351

1. r(τ, τ ′)
2. ∀x, x′, y E(R)(x, y) ∧ r(x, x′)→ ∃y′ E ′(R)(x′, y′) ∧ r(y, y′)
3. ∀x, x′, y′ U ′(R)(x′, y′) ∧ r(x, x′)→ ∃y U(R)(x, y) ∧ r(y, y′)
4. ∀x, x′ r(x, x′)→ (x ∈ C(A)→ x′ ∈ C′(A))

In the above definition, the first three conditions state that r is a forward-
backward bisimulation of the frames of I and I ′, starting from τ and τ ′. Intu-
itively, r(x, x′) states that the set of positive concepts containing x is less than
or equal to the set of positive concepts containing x′.

Lemma 1. Let I = 〈Δ, τ, C, E ,U〉 and I ′ = 〈Δ′, τ ′, C′, E ′,U ′〉 be pseudo-
interpretations. Suppose that I ≤r I ′. Then for every positive concept C and
every x ∈ Δ and x′ ∈ Δ′ such that r(x, x′) holds, I, x |= C implies I ′, x′ |= C.
In particular, for every positive concept C, I, τ |= C implies I′, τ ′ |= C.

The proofs of this lemma and the following corollary are presented in [10].

Corollary 1. LetP be a deterministic positive logic program and I=〈Δ, τ, C, E ,U〉
be a pseudo-model of P . Suppose that for every pseudo-model I′=〈Δ′, τ ′, C′, E ′,U ′〉
of P , there exists r ⊆ Δ×Δ′ such that I ≤r I ′. Then I is a least pseudo-model of
P , and furthermore, for every positive concept C, I validates C iff I, τ |= C.

3 Constructing Finite Least Pseudo-models

In this section, we present an algorithm that, given a deterministic positive logic
program P inALC, constructs a finite least pseudo-model of P . In that algorithm
we use the following data structures:

– Δ is a set forming the domain of the constructed pseudo-interpretation.
– τ ∈ Δ is a distinguished element of Δ.
– C is a map such that for every x ∈ Δ, C(x) is a set of concepts. We will

treat elements of Δ as possible worlds (as in modal logic), and C(x) thus
denotes the “content” of the possible world x.

– E is a map such that for x ∈ Δ and ∃R.C ∈ C(x), E(x,∃R.C) ∈ Δ.
The meaning of E(x,∃R.C) = y is that ∃R.C ∈ C(x), C ∈ C(y), and
the “requirement” ∃R.C is satisfied at x by going to y via R (treating x and
y as possible worlds).

– U is a map such that for x ∈ Δ and a role name R, U(x,R) ∈ Δ. Let us give
the intuition behind the use of this map. If the content of x contains only
∃R.C, then by connecting x to y with C ∈ C(y), ∃R.C will be satisfied at
x, but ∀R.C will also be satisfied at x, which is unexpected. The solution is
that for every x ∈ Δ and every role name R, we connect x via R to some y
with content forced by the content of x (i.e. {D | ∀R.D ∈ C(x)}). However,
this has the undesirable side effect that ∃R.� is satisfied at x. Hence we
need to distinguish the edge R(x, y) from the “normal” edges of R and that
is why we use both the maps E and U.

352 L.A. Nguyen

Function Find(X)

1. if there exists x ∈ Δ with C(x) = X then return x,
2. else add a new element x to Δ with C(x) := X and return x.

Procedure Simulate-Changing-Content(a,X)

1. a∗ := Find(X);
2. for every b, R, C, if E(b,∃R.C) = a then E(b,∃R.C) := a∗;
3. for every b and R, if U(b, R) = a then U(b, R) := a∗;
4. if τ = a then τ := a∗.

(Note that the above procedure causes a be unreachable from τ unless a∗ = a.)

Algorithm 1
Input: A deterministic positive logic program P in ALC.
Output: A least pseudo-model I = 〈Δ, τ, C, E ,U〉 of P .

1. Δ := {τ}; C(τ) := P ; let E and U be empty;
2. for every a ∈ Δ and every C ∈ C(a)

(a) case C = D �D′ :
Simulate-Changing-Content(a,C(a) ∪ {D, D′});

(b) case C = D � D′ : if I, a |=c D then
Simulate-Changing-Content(a,C(a) ∪ {D′});

(c) case C = ∀R.D : for every b ∈ Δ such that U(R)(a, b) holds:
i. b∗ := Find(C(b) ∪ {D});
ii. for every D′, if E(a,∃R.D′) = b then E(a,∃R.D′) := b∗;
iii. if U(a,R) = b then U(a,R) := b∗;

(d) case C = ∃R.D : if E(a,∃R.D) is not defined then
E(a,∃R.D) := Find({D} ∪ P ∪ {D′ | ∀R.D′ ∈ C(a)});

3. for every a ∈ Δ and every role name R,
if U(a,R) is not defined then

U(a,R) := Find(P ∪ {D′ | ∀R.D′ ∈ C(a)});
4. while some change occurred, go to step 2;
5. for every a ∈ Δ, if a is not reachable from τ (i.e. there does not exist a path a0 = τ ,

a1, . . . , ak−1, ak = a with role names R1, . . . , Rk such that U(Ri)(ai−1, ai) holds
for every 1 ≤ i ≤ k) then delete a from Δ and delete the elements of E and U that
are related with a;

Fig. 1. Algorithm for Constructing Least Pseudo-Models

– C(A) = {x | A ∈ C(x)} for every atomic concept A;
– E(R) = {(x, y) | E(x,∃R.C) = y for some C} for every role name R;
– U(R) = E(R) ∪ {(x, y) | U(x,R) = y} for every role name R;
– I = 〈Δ, τ, C, E ,U〉, as a pseudo-interpretation.

In Algorithm 1 given in Fig. 1, our construction of a least pseudo-model of a
deterministic positive logic program P is done using the technique of building
model graphs as in modal logic [9]. The domain Δ of the constructed pseudo-
interpretation plays the role of a set of possible worlds. The content C(x) of

A Bottom-Up Method for the Deterministic Horn Fragment of the DL ALC 353

each x ∈ Δ is a set of concepts containing P . At the beginning Δ contains only
τ with C(τ) = P . Then for each a ∈ Δ and each concept C ∈ C(a), we “ realize
the requirement C at a ” as follows:

– Case C = D � D′ (step 2a) : Normally, we would like to add both D
and D′ to C(a). But if we do so then there may occur the situation in
which C(a) = C(a′) for some a′ �= a. To restrict the size of the con-
structed pseudo-interpretation, we prevent that situation as follows. We do
not change the content of a, but just “ simulate the role of a ” by a∗ with
C(a∗) = C(a)∪ {D,D′}. The simulation is done by the procedure Simulate-
Changing-Content, which replaces the connections to a by connections to a∗
(by modifying the maps E and U) and sets τ := a∗ if τ = a.

– Case C = D (D′ (step 2b) : If D is “certainly satisfied” at a, denoted by
I, a |=c D, then we simulate the role of a by a∗ with C(a∗) = C(a) ∪ {D′}
by calling the procedure Simulate-Changing-Content. Let us explain the sat-
isfaction relation |=c. Consider the case when C(a) = {D (D′, ∃R.A} with
D = ∀∃R.A, E(a, ∃R.A) was defined, but U(a,R) was not. We have that
I, a |= ∀∃R.A, which is undesirable since ∀∃R.A does not follow from ∃R.A.
The problem is that U(a,R) was not yet defined. So, we define the satisfac-
tion relation I, a |=c D for a deterministic positive concept D recursively as
follows:

I, a |=c A iff a ∈ C(A)
I, a |=c D1 �D2 iff I, a |=c D1 and I, a |=c D2
I, a |=c D1 �D2 iff I, a |=c D1 or I, a |=c D2
I, a |=c ∃R.D iff ∃b.(E(R)(a, b) ∧ I, b |=c D)
I, a |=c ∀∃R.D iff ∀b.(U(R)(a, b)→ I, b |=c D) and I, a |=c ∃R.D

and U(a,R) is defined.

– Case C = ∀R.D (step 2c) : For every b ∈ Δ such that U(R)(a, b) holds, we
would like to add D to C(b). However, modifying the content of b has two
drawbacks: First, other possible worlds connected to b will be affected. For
example, if D is added to C(b) and E(R′)(c, b) holds, then ∃R′.D becomes
satisfied at c, while a and c may be independent. Second, modifying C(b)
may cause C(b) = C(b′) for some b′ �= b, which is undesirable. The step 2c
contains our solution for these two problems.

– Case C = ∃R.D (step 2d) : We just connect a via R to the possible world
with content {D}∪P ∪{D′ | ∀R.D′ ∈ C(a)}) by setting E(a, ∃R.D) to that
world, if it was not done earlier (i.e. if E(a, ∃R.D) is not defined). Note that
P is included because it plays the role of global axioms.

In the step 3 of Algorithm 1, we also guarantee that for every a ∈ Δ and
every role name R, a is connected via R to the possible world with content
P ∪ {D′ | ∀R.D′ ∈ C(a)} by setting U(a,R) to that world.

When iteration of the steps 2 and 3 does not modify the model graph anymore,
we delete all possible worlds that are not reachable from the distinguished world
τ (via a path using edges of U). This is necessary because such a possible world

354 L.A. Nguyen

a may contain a concept C which is not satisfied at a (for example, we did not
add D and D′ to C(a) for D �D′ ∈ C(a), but just simulated the task).

Proposition 1. Algorithm 1 terminates in 2O(n) steps and returns a pseudo-
interpretation of size 2O(n), where n is the size of the input program P .

Proof. Before reaching the step 5, no elements of Δ are deleted, and for each
x ∈ Δ, C(x) never changes. Since C(x) is a set of sub-concepts of the clauses of
P , its size is O(n). Since C(x) �= C(x′) for every x �= x′, the size of Δ is 2O(n).
Hence the sizes of the maps E and U are also of rank 2O(n), and the number of
times executing the steps 2d and 3 is 2O(n). For the step 2c, note that b∗ �= b
iff C(b∗) ⊃ C(b). Similarly, for the calls of Simulate-Changing-Content, a∗ �= a
iff C(a∗) ⊃ C(a). Hence the number of times E and U are modified by the
steps 2a - 2c is 2O(n).n = 2O(n). The total number of times modifying E and U
is therefore of rank 2O(n). Hence the time complexity of Algorithm 1 is 2O(n).

Lemma 2. Algorithm 1 has the following properties:

1. During an execution, for every x∈Δ and every concept ∃R.D, if E(x,∃R.D)=
y then ∃R.D ∈ C(x) and D ∈ C(y).

2. At the end, E(x,∃R.D) is defined for every x ∈ Δ and every concept ∃R.D ∈
C(x), and U(x,R) is defined for every x ∈ Δ and every role name R.

Proof. The first assertion clearly holds. For the second assertion, just note that,
before executing the step 5, E(x,∃R.D) is defined for every x ∈ Δ and every
∃R.D ∈ C(x), and U(x,R) is defined for every x ∈ Δ and every role name R.

The following lemma states that the pseudo-interpretation I constructed by
Algorithm 1 for P is a pseudo-model of P .

Lemma 3. Let P be a deterministic positive logic program in ALC and I the
pseudo-interpretation constructed by Algorithm 1 for P . Let Δ and C be the data
structures used by the algorithm. Then for every a ∈ Δ and C ∈ C(a), I, a |= C.
As a consequence, I is a pseudo-model of P (since P ⊆ C(a) for every a ∈ Δ).

Proof. By induction on the construction of C.
Consider the case when C is of the form D (D′. Suppose that I, a |= D.

Since U(x,R) is defined for every x ∈ Δ and every role name R, it follows that
I, a |=c D iff I, a |= D. Hence I, a |=c D. When the step 2b is executed the
last time for a and C, because a is reachable from τ via a path using U (as it
remains after executing the step 5) and no changes are made by the step 2b,
we have that a∗ = a (where a∗ is the element simulating the role of a). Since
D (D′ ∈ C(a) and I, a |=c D, we have that D′ ∈ C(a∗), i.e. D′ ∈ C(a). By the
inductive assumption, I, a |= D′. Therefore, I, a |= D (D′.

The case when C is of the form D�D′ is similar to the above case. The cases
when C is of the form A, ∀R.D, or ∃R.D are straightforward.

We use the following Lemmas 4 and 5 to show that the pseudo-model I of P
constructed by Algorithm 1 is less than or equal to every pseudo-model of P .

A Bottom-Up Method for the Deterministic Horn Fragment of the DL ALC 355

Lemma 4. Let P be a deterministic positive logic program in ALC and I′ =
〈Δ′, τ ′, C′, E ′,U ′〉 be an arbitrary pseudo-model of P . Consider a moment af-
ter executing a numerated step in an execution of Algorithm 1 for P . Let r =
{(x, x′) ∈ Δ×Δ′ | I′, x′ |= C(x)}. Then the following conditions hold:

1. r(τ, τ ′)
2. ∀x, y, x′, y′, R′′, D′′

r(x, x′) ∧ (E(x,∃R′′.D′′) = y) ∧ E ′(R′′)(x′, y′) ∧ (I ′, y′ |= D′′)→ r(y, y′)
3. ∀x, y, x′, y′, R′′ r(x, x′) ∧ (U(x,R′′) = y) ∧ U ′(R′′)(x′, y′) → r(y, y′)

(We use the names R′′ and D′′ because R, D, and D′ occur in Algorithm 1.)
The proof of this lemma is presented in [10].

Lemma 5. Let P be a deterministic positive logic program in ALC, I =
〈Δ, τ, C, E ,U〉 be the pseudo-interpretation constructed by Algorithm 1 for P ,
I′ = 〈Δ′, τ ′, C′, E ′,U ′〉 be an arbitrary pseudo-model of P , and r = {(x, x′) ∈
Δ×Δ′ | I′, x′ |= C(x)}. Then I ≤r I ′.

Proof. By Lemma 4, r(τ, τ ′) holds.
We prove that ∀x, x′, y E(R)(x, y)∧r(x, x′) → ∃y′ E ′(R)(x′, y′)∧r(y, y′). Sup-

pose that E(R)(x, y) and r(x, x′) hold. There must existD such that E(x,∃R.D)=
y. Thus ∃R.D ∈ C(x), and hence I′, x′ |= ∃R.D. Let y′ be an element of Δ′ such
that E ′(R)(x′, y′) holds and I ′, y′ |= D. By Lemma 4, r(y, y′) holds.

We prove that ∀x, x′, y′ U ′(R)(x′, y′) ∧ r(x, x′) → ∃y U(R)(x, y) ∧ r(y, y′).
Suppose that U ′(R)(x′, y′) and r(x, x′) hold. Let U(x,R) = y. By Lemma 4,
r(y, y′) holds.

By the definition of r, we have that r(x, x′) → (x ∈ C(A)→ x′ ∈ C′(A)).

Here is the main result of this section:

Theorem 1. Let P be a deterministic positive logic program in ALC and I =
〈Δ, τ, C, E ,U〉 be the pseudo-interpretation constructed by Algorithm 1 for P .
Then I is a least pseudo-model of P , and for every positive concept C, I validates
C iff I, τ |= C.

Proof. By Lemma 3, I is a pseudo-model of P . Let I ′ = 〈Δ′, τ ′, C′, E ′,U ′〉 be an
arbitrary pseudo-model of P and let r = {(x, x′) ∈ Δ×Δ′ | I′, x′ |= C(x)}. By
Lemma 5, I ≤r I ′. By Corollary 1, it follows that I is a least pseudo-model of
P , and for every positive concept C, I validates C iff I, τ |= C.

4 Characterizations of Least Pseudo-models

In this section, we show that every least pseudo-model I of a deterministic
positive logic program P characterizes P in the sense that, for every deterministic
positive concept C, P |= C iff I validates C. Moreover, if I = 〈Δ, τ, C, E ,U〉 is
the pseudo-model constructed by Algorithm 1 for P then P |= C iff I, τ |= C.

356 L.A. Nguyen

Given a pseudo-interpretation I = 〈Δ, τ, C, E ,U〉, let I′ = 〈Δ, τ, C, E ′,U ′〉 be
the pseudo-interpretation such that, for every role name R,

E ′(R) = E(R) ∪ {(x, y) | U(R)(x, y) and E(R)(x, y′) hold for some y′},
U ′(R) = U(R) \ {(x, y) | y ∈W and E(R)(x, y′) does not hold for any y′}.

Fix a role name R and x ∈ Δ. Recall that E(R) ⊆ U(R). If E(R)(x, y′) holds
for some y′ then for every y ∈ Δ, E ′(R)(x, y) ≡ U(R)(x, y) ≡ U ′(R)(x, y). If
E(R)(x, y′) does not hold for any y′ then for every y ∈ Δ, both E ′(R)(x, y) and
U ′(R)(x, y) do not hold. Thus U ′ = E ′ and I ′ can be treated as an interpretation.
We call I ′ the interpretation corresponding to M .

We need the following auxiliary lemma, which is proved in [10].

Lemma 6. Let P be a deterministic positive logic program in ALC, I the pseudo-
model of P constructed by Algorithm 1, I ′ the interpretation corresponding to I,
and C a deterministic positive concept. Let r = {(x, x′) ∈ Δ×Δ | I, x′ |= C(x)},
where Δ and C are the data structures used by Algorithm 1 for P . Then for every
x, x′ ∈ Δ, if r(x, x′) holds and I ′, x |= C then I, x′ |= C. In particular, since r
is reflexive (by Lemma 3), for every x ∈ Δ, I ′, x |= C implies I, x |= C. As a
consequence, if I ′ validates C then I also validates C.

Theorem 2. Let P be a deterministic positive logic program in ALC, I a least
pseudo-model of P , and C a deterministic positive concept. Then P |= C iff I
validates C.

Proof. Consider the “if” direction. Suppose that I validates C. Let I ′ be an
arbitrary model of P . As I ′ is also a pseudo-model of P , we have that I ≤ I′.
Hence I ′ validates C. Therefore P |= C.

Now consider the “only if” direction. Suppose that P |= C.
Without loss of generality, we can assume that I = 〈Δ, τ, C, E ,U〉 is the

pseudo-model of P constructed by Algorithm 1. Let I ′ = 〈Δ, τ, C, E ′,U ′〉 be
the interpretation corresponding to I. It is sufficient to show that I′ is a model
of P , because this implies that I ′ validates C, and by Lemma 6, I validates C.

Let C be the map used by Algorithm 1 for P . To show that I ′ is a model
of P , we prove by induction on the construction of D that if D ∈ C(x) then
I ′, x |= D. The only non-trivial case is when D is of the form D1 (D2. Consider
this case and suppose that D ∈ C(x) and I ′, x |= D1. We need to show that
I ′, x |= D2. Since I ′, x |= D1, by Lemma 6, I, x |= D1. Since D ∈ C(x), by
Lemma 3, I, x |= D. Hence I, x |= D2. This implies that I ′, x |= D2 (because
E(R) ⊆ E ′(R) and U ′(R) ⊆ U(R) for every role name R).

Theorem 3. Let P be a deterministic positive logic program in ALC, I =
〈Δ, τ, C, E ,U〉 be the pseudo-model of P constructed by Algorithm 1, and I ′ be
the interpretation corresponding to I. Then:

1. For every deterministic positive concept C, the following conditions are equiv-
alent: (a) P |= C; (b) I validates C; (c) I, τ |= C; (d) I ′ validates C; (e)
I ′, τ |= C.

2. For every positive concept C, if I, τ |= C then P |= C.

A Bottom-Up Method for the Deterministic Horn Fragment of the DL ALC 357

Proof. Consider the first assertion. The equivalence (a) ⇔ (b) follows from The-
orem 2. The equivalence (b) ⇔ (c) follows from Theorem 1. As shown in the
proof of Theorem 2, I ′ is a model P . Hence, (a) : P |= C implies that (d) : I ′
validates C, which implies (e) : I ′, τ |= C. For the implication (e) ⇒ (a), sup-
pose that I ′, τ |= C. By Lemma 6, I, τ |= C. By Theorem 1, it follows that I
validates C. Let I ′′ be an arbitrary model of P . Since I is a least pseudo-model
of P , we have that I ≤ I′′, which implies that I ′′ validates C. Hence P |= C.

The previous four sentences also comprise the proof for the second assertion.

5 Further Work and Conclusions

We have given an algorithm that for a deterministic positive logic program P in
ALC treated as a TBox constructs a finite least pseudo-model I = 〈Δ, τ, C, E ,U〉
of P such that for every deterministic positive concept C, P |= C iff I validates C
and iff I, τ |= C. The interpretation I′ corresponding to I also satisfies that
P |= C iff I ′ validates C and iff I ′, τ |= C. Thus I ′ also characterizes P , but the
pseudo-model I has the additional nice property that for every positive concept
C (not necessarily deterministic), if I, τ |= C then P |= C. Our restriction to
the deterministic Horn fragment is to overcome the problem of nondeterminism
caused by non-seriality of the relations interpreting role names.

Apart from the idea of using pseudo-interpretations to deal with non-seriality,
our algorithm given in this paper for ALC differs from our algorithm given in [9]
for basic serial monomodal logics in the aspect that it uses graphs instead of trees
and uses a special caching technique for building model graphs. These techniques
are essential for getting the exponential upper bound for the time complexity and
the size of the constructed pseudo-interpretation. Our technique of simulating
the task of changing contents of nodes is important for the algorithm. Without
it we need to modify the contents of nodes, which may cause that merging
duplicates is necessary and the old nodes will have to be re-created later, and
hence the performance is slowed down and complexity analysis could be difficult.

The exponential time (combined) complexity of our algorithm is not surpris-
ing, because ALC is EXPTIME-complete and in many modal logics, e.g. basic
monomodal logics without axiom 5, the restriction to the Horn fragment does
not reduce the complexity. We believe that: a) there are deterministic positive
logic programs such that their least pseudo-models must have an exponential
size; b) the (combined) complexity of the deterministic Horn fragment of ALC
is EXPTIME-complete.

The main contribution of this work is our bottom-up method for query an-
swering for the deterministic Horn fragment of description logics. By using the
direct approach instead of transformation to classical Horn logic, we can handle
a larger Horn fragment of ALC for TBoxes than DHL studied by Grosof et al.
in [6] and Horn-SHIQ studied by Hustadt et al. in [7].

Our method is extendable for instance checking (i.e. P |= C(a)) w.r.t. logic
programs containing also an ABox and relations between roles of the formQ ⊆ R
or R+ ⊆ R. The extension looks as follows. We incorporate the relations between

358 L.A. Nguyen

roles by using the corresponding axioms ∀R.C (∀Q.C and ∀R.C (∀R.∀R.C as
in modal logic. When building a model graph for P , we start with the minimal
graph that represents the ABox of P and contains additionally the distinguished
node τ (with no edges connecting to or from). Then the algorithm can continue
in a similar way as Algorithm 1. Of course, the resulting pseudo-interpretation
I does not anymore satisfy that, for every positive concept C, I validates C iff
I, τ |= C (because of the ABox). Further investigation is needed for dealing with
inverse roles as in DHL and Horn-SHIQ.

As a further work, we will extend Horn-SHIQ [7] to dHorn-SHIQ by allowing
the constructor ∀∃R.C to appear in bodies of program clauses and queries and
study the CARIN-like system that uses dHorn-SHIQ for the terminology layer.
We believe that such a system has PTIME data complexity.

Acknowledgements. I would like to thank the reviewers for useful comments.

References

1. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5–40, 2001.

2. M. Cadoli, L. Palopoli, and M. Lenzerini. Datalog and description logics: Expres-
sive power. In S. Cluet and R. Hull, editors, DBPL-6, LNCS 1369, pages 281–298.
Springer, 1998.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In I. Horrocks, U. Sattler, and
F. Wolter, editors, Description Logics, 2005.

4. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A hybrid system with Datalog
and concept languages. In E. Ardizzone, S. Gaglio, and F. Sorbello, editors, Trends
in Artificial Intelligence, LNAI 549, pages 88–97. Springer-Verlag, 1991.

5. E. Franconi and S. Tessaris. Rules and queries with ontologies: A unified logical
framework. In H.J. Ohlbach and S. Schaffert, editors, PPSWR 2004, LNCS 3208,
pages 50–60. Springer, 2004.

6. B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
combining logic programs with description logic. In WWW, pages 48–57, 2003.

7. U. Hustadt, B. Motik, and U. Sattler. Data complexity of reasoning in very ex-
pressive description logics. In L.P. Kaelbling and A. Saffiotti, editors, IJCAI, pages
466–471. Professional Book Center, 2005.

8. A.Y. Levy and M.-Ch. Rousset. Combining Horn rules and description logics in
carin. Artificial Intelligence, 104(1-2):165–209, 1998.

9. L.A. Nguyen. Constructing the least models for positive modal logic programs.
Fundamenta Informaticae, 42(1):29–60, 2000.

10. L.A. Nguyen. The long version of this paper. Available at http://www.
mimuw.edu.pl/∼nguyen/nguyen06jelia.pdf , 2006.

Fuzzy Answer Set Programming

Davy Van Nieuwenborgh1,�, Martine De Cock2, and Dirk Vermeir1

1 Vrije Universiteit Brussel, VUB
Dept. of Computer Science

Pleinlaan 2, B-1050 Brussels, Belgium
{dvnieuwe, dvermeir}@vub.ac.be

2 Universiteit Gent, UGent
Dept. of Applied Mathematics and Computer Science

Krijgslaan 281 (S9), B-9000 Ghent, Belgium
martine.decock@ugent.be

Abstract. In this paper we show how the concepts of answer set programming
and fuzzy logic can be succesfully combined into the single framework of fuzzy
answer set programming (FASP). The framework offers the best of both worlds:
from the answer set semantics, it inherits the truly declarative non-monotonic
reasoning capabilities while, on the other hand, the notions from fuzzy logic in
the framework allow it to step away from the sharp principles used in classical
logic, e.g., that something is either completely true or completely false. As fuzzy
logic gives the user great flexibility regarding the choice for the interpretation
of the notions of negation, conjunction, disjunction and implication, the FASP
framework is highly configurable and can, e.g., be tailored to any specific area of
application. Finally, the presented framework turns out to be a proper extension
of classical answer set programming, as we show, in contrast to other proposals
in the literature, that there are only minor restrictions one has to demand on the
fuzzy operations used, in order to be able to retrieve the classical semantics using
FASP.

1 Introduction

The answer set programming (ASP) paradigm [15] has gained a lot of popularity in the
last years, due to its truly declarative non-monotonic semantics, which has been proven
useful in a number of interesting applications, e.g. [21, 12, 19, 16]. The idea behind
the answer set semantics, a generalisation of the stable model semantics [14], is both
intuitive and elegant. Given a program P and a candidate answer set M , one computes
a reduct program PM of a simpler type for which a semantics (PM)�

is known. The
reduct PM is obtained from P by taking into account the consequences of accepting
the proposed truth values of the literals in M . The candidate set M is then an answer
set just when (PM)� = M , i.e.M is “self-producible”.

Although ASP provides a powerful solution for knowledge representation and non-
monotonic reasoning, it has some drawbacks regarding the configureability of the se-
mantics w.r.t. the type of application under consideration, as witnessed by the large
number of extensions, both syntactically and semantically, that have been proposed in

� Supported by the Flemish Fund for Scientific Research (FWO-Vlaanderen).

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 359–372, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

360 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

the literature [7, 10, 5, 2]. E.g., most1 ASP semantics demand that a solution to a pro-
gram satisfies all the rules. Further, the literals available in the program, i.e. the building
blocks of rules, can only be true or false (or unknown when one considers the well-
founded semantics [23]), and classical consistency is mandatory, i.e. a and ¬a cannot
be true at the same time (or not even “a bit” true at the same time). Also the interpre-
tation of negation as failure, the construct that gives ASP its non-monotonicity, is very
sharp: not a is true iff a is not true.

Sometimes however, it is impossible to find a solution that fully satisfies all rules of
the program. In this case, one might still wish to look for a solution satisfying the pro-
gram at least to a reasonably high degree. At other times, it may not even be required to
obtain a solution that satisfies a program fully. That is, one might be more interested in
a solution satisfying the program to a satisfactory high degree, especially if this solution
comes at a lower cost. Consider the following problem based on an example from [2].

Example 1. There are four different kinds of sports that we like to practice to some de-
gree. However, only certain combinations of sports lead to a full-body exercise. Further-
more, some of the sports complement each other, i.e. less practice of one automatically
leads to more practice of the other (rules r1 . . . r4 in the program below).

r1 : lift weights ← not swim
r2 : swim ← not lift weights
r3 : run ← not play ball
r4 : play ball ← not run
r5 : full body exercise ← lift weights , run
r6 : full body exercise ← swim, play ball
r7 : ← not full body exercise

The two classical answer sets of this program are {full body exercise , lift weights ,
run} and {play ball , full body exercise, swim}. Hence, to achieve a full body exer-
cise, one needs to practice either weight lifting and running, or ball playing and swim-
ming to the highest degree. However, in addition, we might be interested to know which
combinations of the four sports we should practice, and to what degree, such that an ac-
ceptable degree, e.g. 0.7, of full-body exercise is obtained.

Fuzzy logic is a suitable framework for dealing with degrees of truth and satisfaction
[26]. In its most general form, fuzzy logic considers a complete lattice L of truth val-
ues on which it redefines the classical operations of negation, conjunction, disjunction
and implication; in such a way that they correspond to the classical ones in the top and
bottom elements of the lattice. One of the strengths of fuzzy logic regarding these op-
erations is that a user can freely choose, depending on the type of application under
consideration, which specific definition she uses for the operations.

A combination with fuzzy logic increases the flexibility and hence the application
potential of ASP. Such flexibility can be introduced at several levels. In the fuzzy answer
set programming (FASP) framework introduced in this paper, we consider fuzzy answer
sets, which means that literals can belong to an answer set to a certain extent, as opposed

1 Some semantics that deal with preferences among rules [13, 6, 24] are more flexible.

Fuzzy Answer Set Programming 361

to either belonging to the answer set or not. In accordance, the literals in a program
can be true to a certain degree. We relax the definition of consistency to allow that,
if desired, both a and ¬a can be true to a certain degree at the same time without
necessarily loosing consistency. Similarly, we allow for a more flexible interpretation
of negation as failure. Crucial to our approach is the notion of a satisfaction function,
as it enables us to compute the extent to which a rule is satisfied under a given fuzzy
interpretation. The satisfaction function is then used to develop the concept of a fuzzy
model. As in traditional ASP, in FASP the fuzzy answer sets of simple programs, i.e.
programs without negation as failure, coincide with the fuzzy minimal models. For
programs containing negation as failure, the idea underlying GL-reduct is extended to
a technique that allows to bring to surface whether a fuzzy model is indeed supported
by a program, in other words whether it deserves the name of fuzzy answer set.

The rest of the paper is organized as follows. In Section 2 we give some preliminaries
on fuzzy logic and answer set programming, while we introduce the combination of
both, i.e. fuzzy answer set programming (FASP), in Section 3. Before giving some
comparison with related work in Section 5, we show in Section 4 how the classical
answer set semantics can be retrieved from FASP. Finally, we conclude and give some
directions for future research in Section 6.

2 Preliminaries

2.1 Truth Lattices

In this paper, we consider a complete truth lattice, i.e. a partially ordered set (L,≤L)
such that every subset of L has an infimum (greatest lower bound) and a supremum
(least upper bound), which we denote by inf and sup respectively [4]. Such a lattice is
often denoted by L, tacitly assuming the ordering ≤L. Furthermore, we use 0L and 1L
to denote respectively the smallest and the greatest element2 of L.

The traditional logical operations of negation, conjunction, disjunction, and implica-
tion can be generalized to logical operators acting on truth values of L (see e.g. [20]).
A negator on L is any decreasing L → L mapping N satisfying N (0L) = 1L and
N (1L) = 0L. It is called involutive if N (N (x)) = x for all x in L. A triangular
norm T on L is any commutative and associative L2 → L mapping T satisfying
T (1L, x) = x, for all x in L. Moreover we require T to be increasing in both of
its components. A triangular norm, or t-norm for short, corresponds to conjunction. A
triangular conorm S on L is any increasing, commutative and associative L2 → L
mapping satisfying S(0L, x) = x, for all x in L. Moreover we require S to be increas-
ing in both of its components. A triangular conorm, t-conorm for short, corresponds to
disjunction. An implicator I on L is any L2 → L–mapping satisfying I(0L, 0L) = 1L,
and I(1L, x) = x, for all x in L. Moreover we require I to be decreasing in its first,
and increasing in its second component.

The dual of a t-norm T w.r.t. a negator N is a t-conorm S defined as S(x, y) =
N (T (N (x),N (y))) for all x and y in L. The mapping IS,N defined by IS,N (x, y) =
S(N (x), y) is an implicator, usually called S-implicator (induced by S andN). On the

2 In the literature one will also find the notation ⊥ and ! to denote 0L and 1L respectively.

362 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

other hand, the mapping IT defined by IT (x, y) = sup{λ|λ ∈ L and T (x, λ) ≤L y}
is an implicator, usually called the residual implicator or R-implicator (of T).

While the framework we will introduce to perform fuzzy answer set programming
in Section 3 can be used in combination with any complete lattice, we will restrict
ourselves for the examples in the current paper to the complete lattice ([0, 1],≤). The
following example presents some fuzzy logical operators on this lattice.

Example 2. The mappingNs defined as Ns(x) = 1 − x for all x in [0, 1] is called the
standard negator. The t-norms TM, TP, and TW and their dual t-conorms SM, SP, and
SW w.r.t. the standard negator, are defined as

TM(x, y) = min(x, y) SM(x, y) = max(x, y)
TP(x, y) = x · y SP(x, y) = x+ y − x · y
TW(x, y) = max(x+ y − 1, 0) SW(x, y) = min(x+ y, 1)

for all x and y in [0, 1]. They induce the following implicators (the mappings on the
right are R-implicators while those on the left are S-implicators; for ease of notation the
inducing negatorNs has been omitted):

ISM(x, y) = max(1 − x, y) ITM(x, y) =

{
1, if x ≤ y
y, else

ISP(x, y) = 1− x+ x · y ITP(x, y) =

{
1, if x ≤ y
y
x , else

ISW(x, y) = min(1 − x+ y, 1) ITW(x, y) = min(1− x+ y, 1)

Every implicator induces a negator by definingN (x) = I(x, 0L). The above mentioned
S-implicators induce the standard negator Ns, while ITM and ITP induce the Gödel
negator3 Ng defined by Ng(x) = 1 if x = 0 and Ng(x) = 0 otherwise.

A fuzzy set in U is a U �→ L mapping. For fuzzy sets A and B in U , A is said to
be included in B, denoted by A �L B, iff A(u) ≤L B(u) for all u in U . As usual, we
have A ≺L B iff A �L B and not B �L A.

2.2 Answer Set Programming

We give some preliminaries concerning the answer set semantics for logic programs [3].
A literal is an atom a or a negated atom ¬a. For a set of literalsX , we use ¬X to denote
{¬l | l ∈ X } where ¬¬a = a. When X ∩ ¬X = ∅ we say that X is consistent. An
extended literal is a literal or a naf-literal of the form not l where l is a literal. The latter
form denotes negation as failure. For a set of extended literals Y , we use Y − to denote
the set of ordinary literals underlying the naf-literals in Y , i.e. Y − = {l | not l ∈ Y }.
Further, we use not X to denote the set {not l | l ∈ X}. An extended literal l is true
w.r.t. X , denotedX |= l if l ∈ X in case l is ordinary, or a �∈ X if l = not a for some
ordinary literal a. As usual,X |= Y iff ∀l ∈ Y ·X |= l.

A rule is of the form α ← β where4 α ∪ β is a finite set of extended literals and
|α| ≤ 1. Thus the head of a rule is either an extended literal or empty. A finite set of

3 This negator is also known in the literature as the Heyting negator.
4 For simplicity, we assume that programs have already been grounded.

Fuzzy Answer Set Programming 363

rules is called a (logic) program. The Herbrand base BP of a program P contains all
atoms appearing in P . The set of all literals that can be formed with the atoms in P ,
denoted by LitP , is defined by LitP = BP ∪ ¬BP . Similarly, we define the set of all
extended literals that can be formed with the atoms in P as ElitP = LitP ∪ not LitP .
Any consistent subset I ⊆ LitP is called an interpretation of P .

A rule r = α ← β is satisfied by an interpretation I , denoted I |= r, if I |= α
and α �= ∅, whenever I |= β, i.e. if r is applicable (I |= β), then it must be applied
(I |= α ∪ β and α �= ∅). Note that this implies that a constraint, i.e. a rule with empty
head (α = ∅), can only be satisfied if it is not applicable (I �|= β). For a program P , an
interpretation I is called a model of P if ∀r ∈ P · I |= r, i.e. I satisfies all rules in P .
It is a minimal model of P if there is no model J of P such that J ⊂ I .

A simple program is a program without negation as failure. For simple programs
P , we define an answer set of P as a minimal model of P . On the other hand, for a
program P , i.e. a program containing negation as failure, we define the GL-reduct [14]
for P w.r.t. I , denoted P I , as the program consisting of those rules5 (α\not α−) ←
(β\not β−) where α ← β is in P , I |= not β− and I |= α−. Note that all rules in
P I are free from negation as failure, i.e. P I is a simple program. An interpretation I is
then an answer set of P iff I is a minimal model of the GL-reduct P I .

Example 3. Consider the program

r1 : a ← not b r2 : b ← not a

Clearly, both {a} and {b} are answer sets of this program as the GL-reducts P {a} =
{a ← } and P {b} = {b ← } have {a} and {b} respectively as their minimal model.
On the other hand, ∅ and {a, b} are not answer sets. For the former interpretation, the
reduct P ∅ = {a ← ; b ← } has {a, b} as its minimal model which differs from ∅,
while the latter has an empty reduct, thus an empty minimal model, which differs from
{a, b}.

3 Fuzzy Answer Set Programming

Classical ASP, as defined in the previous subsection, is in some ways a very strict frame-
work in its semantics. In particular, an answer set is required to satisfy all rules of the
program fully. In a more flexible setting, we wish to be able to deal with interpretations
that satisfy rules possibly only to a certain extent. To this end, we allow literals to be
true to a degree, as opposed to either being true or not true. As such, interpretations,
and hence also answer sets, become fuzzy sets in LitP .

As the high configurability of fuzzy logic can be seen as one of its main strengths, we
will adopt this behavior to the FASP framework presented in this section. Therefore, we
allow a user to choose, in function of the application at hand, how the different classical
operations need to be interpreted. More specifically, a user has to fix a complete lattice
L first. Then, she has to choose two negatorsNc and Nn, which will be used to define
consistency and the semantics of negation as failure respectively. Further, two t-norms

5 As usual, \ denotes set difference.

364 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

Tc and Ta need to be fixed, respectively used for defining consistency and applicability
of rules. Also an implicator I is needed to obtain the degree of satisfaction of a rule.
Finally, an aggregatorA is needed that combines all the degrees of satisfaction of rules
into a single truth value denoting the degree in which a fuzzy interpretation is a fuzzy
model. For the rest of this paper, we assume, without loss of generality, that the above
choices have been made, and we will not repeat them everytime in the definitions, but
just use them.

The first classical notions that need to be tackled are containment and consistency. In
ASP a literal l is either true or false; and thus it is either contained in an interpretation or
not. When both l and ¬l are contained in an interpretation, it is said to be inconsistent.
In a fuzzy context, a literal l can be a bit true, and both l and ¬l can be a bit true in a
consistent way, making a modified notion of consistency necessary.

Definition 1. Let P be a program. A fuzzy interpretation I for P is a fuzzy set in LitP ,
i.e. a I : LitP �→ L mapping. I is called x-consistent, x ∈ L, iff

Nc(sup
a∈BP

Tc(I(a), I(¬a))) ≥L x .

Intuitively, the definition of x-consistency allows a user to choose the point where the
degree of containment of both l and ¬l in a fuzzy interpretation I , makes that inter-
pretation inconsistent. The classical notion of an interpretation emerges from the above
definition for the lattice L = {0L, 1L}. In this particular case, an interpretation I is
called 1L-consistent iff there does not exist an a in BP such that both I(a) = 1L and
I(¬a) = 1L.

As fuzzy interpretations only assign truth values to ordinary literals explicitly, we
need a mechanism to retrieve truth values for naf-literals. While complementary literals
l and ¬l are only weakly related to each other usingNc, Tc, and a certain x-consistency
boundary, naf-literals l and not l need a tighter connection since, intuitively, a naf-literal
not l can only be true to the degree that the underlying ordinary literal l is false, and
vice versa. Hence, we useNn to extend a fuzzy interpretation I to cover naf-literals by
defining I(not l) = Nn(I(l)) for each l ∈ LitP .

Having fuzzy interpretations andx-consistency, we need to redefine the satisfaction of
rules. While a rule in ASP is either satisfied or not, in a more flexible setting we should
allow a rule to be partially (to a certain degree) satisfied. Further, each rule does not have
to be satisfied to the same degree, which is, e.g., useful in applications having preferences
among rules. To obtain these degrees, we useTa andI to induce, for a fuzzy interpretation
I , a satisfaction function I|= that assigns a truth value to the bodies of rules and to the
rules themselves. Later on, this satisfaction function will be used, in combination with the
aggregatorA, to obtain the degree in which a fuzzy interpretation is a model of a program.

Definition 2. Let P be a program and let I be a fuzzy interpretation. The induced
satisfaction function I|= : 2ElitP ∪ P �→ L is defined by

I|=(∅) = 1L
I|=({l} ∪ β) = Ta(I(l), I|=(β))
I|=(← β) = I(I|=(β), 0L)
I|=(l ← β) = I(I|=(β), I(l))

Fuzzy Answer Set Programming 365

Note that I|=({l}) = I(l) and I|=(not l) = Nn(I(l)). Intuitively, I|=(s), with s ∈ P ,
defines to which degree a rule s is satisfied taking into account the truth assignments of
the head and body of s in I . To define a fuzzy model, the different I|=(s), with s ∈ P ,
need to be accumulated in some way. The user defined aggregator A, which takes as
input a program and a satisfaction function, will accomplish this job and result in a truth
value denoting the degree in which the fuzzy interpretation I is a model of P . However,
we demand that an aggregator is increasing whenever the degrees of satisfaction of the
rules increase.

Definition 3. Let P be a program and let I be an x-consistent fuzzy interpretation.
Then, I is an x-consistent fuzzy y-model of P , y ∈ L, iff A(P, I|=) ≥ y.

Example 4. Consider the lattice L = [0, 1] and the program

r1 : a ← not b r2 : b ← not a r3 : c ← a

and consider the fuzzy interpretations6 K = {(a, 0.9), (b, 0.3), (c, 0.2)} and L =
{(a, 0.4), (b, 0.7), (c, 0.8)}. Both of these fuzzy interpretations are 1-consistent, inde-
pendently of the choices forNc and Tc. For negation as failure, we use the negatorNs.
To compute the satisfaction of the rules, we use the implicator ISM . Finally, as an ag-
gregator we use A(P, I|=) = inf{I|=(s) | s ∈ P}, i.e. the weakest rule dominates the
solution.

We have K|=(r1) = max(1 −K(not b),K(a)) = max (1−Ns(K(b)),K(a)) =
max (1− (1− 0.3), 0.9) = 0.9. Similarly, K|=(r2) = max (1− (1 − 0.9), 0.3) = 0.9
and K|=(r3) = max (1− 0.9, 0.2) = 0.2. As a result, K is a 1-consistent 0.2-model of
P . On the other hand, one can verify that L|=(r1) = L|=(r2) = 0.7 and L|=(r3) = 0.8,
yielding that L is a 1-consistent 0.7-model of P .

The above definitions are conservative extensions of classical principles, i.e. the classi-
cal definitions are special cases of the ones presented here. Hence it is not surprising that
the extensions suffer the same difficulties when used to define a fuzzy answer set seman-
tics. For instance, both I = {(a, 0L), (b, 0L)} and J = {(a, 1L), (b, 1L)} are “perfect”
fuzzy interpretations of the program {a ← b ; b ← a} as they both satisfy all rules
to a maximal degree 1L. In traditional ASP, the set {a, b} is called “unfounded”[23]
and answer sets should be free of such sets. This is achieved by imposing a minimality
requirement.

Definition 4. Let P be a program. An x-consistent y-modelM is an x-consistent min-
imal fuzzy y-model iffM is ≺L minimal among all x-consistent fuzzy y-models of P .

Applied to the examples I and J above, this results in I ≺L J , yielding that I is the
single 1L-consistent minimal fuzzy 1L-model of the two rules.

Example 5. Reconsider the program and the choices for logical operators from Exam-
ple 4. One can check that the fuzzy interpretations M = {(a, 0.9), (b, 0.8), (c, 1)}

6 As usual, a fuzzy set I in LitP is denoted as {(l , x) | I (l) = x ∧ l ∈ LitP}, omitting the
literals (l, 0L).

366 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

and N = {(a, 0.9), (b, 0.2), (c, 1)} are both 1-consistent 0.9-models of P . However,
one can verify that N ≺L M , which fits our intuition as the degree in which b is
assumed true is overestimated in M . Still, N is not minimal, as one can verify that
S = {(a, 0.9), (c, 0.9)} is ≺L-minimal7, i.e. a 1-consistent minimal fuzzy 0.9-model
of P .

While the above minimization process is necessary, it does not yet suffice to prevent
unwanted models, as witnessed by the following example.

Example 6. Consider the program

r1 : a ← r2 : b ← a, not c

and the fuzzy interpretationsK = {(a, 0.9), (b, 0.9)} and L = {(a, 0.9), (c, 0.9)}. We
make the same choice for the logical operators as in Example 4. To evaluate the body of
r2 we use Ta = TM. One can verify that K and L are both minimal fuzzy 0.9-models.
However, intuitively L is not acceptable as a good solution as there is no support for
accepting c at degree 0.9, i.e. there is no applicable rule with c in the head.

In traditional ASP, the above problem is solved by taking the GL-reduct which will
remove, for I = {a, c}, the rule r2 from the reduct P I , because r2 is not applicable
due to the not c literal in its body. Now, the minimal model of this reduct does not equal
I , hence, it is rejected as an answer set. Note that the removal of a rule does not mean
that this rule does not have to be satisfied anymore. On the contrary, in the example
above, rule r2 is removed because it is not applicable under interpretation I , hence it is
satisfied by default, independently of the truth value of b.

Note that in traditional ASP, there are two possible scenarios for a model I to satisfy
a rule of the form l ← β. Either it is applicable (I |= β), hence l must assume the truth
value 1L to satisfy the rule, or it is unapplicable (I �|= β), hence the rule is satisfied by
default and l can assume any truth value from the lattice L = {0L, 1L}. In the first case,
the truth value of l is fully determined by the rule, while in the latter case, the rule does
not impose any restrictions on the truth value of l, hence taking it into account does not
influence the result and we can remove the rule.

In FASP, such a removal strategy for naf-literals is not feasible as such literals may
be true only to a certain degree, making the bodies of some rules applicable to a certain
degree, which requires that they also need to be applied to a certain degree. Hence, as
opposed to either fully determining the truth value of the head of a rule (full information),
or leaving it completely arbitrary (no information), in FASP a rule may also carry some
information that delimits the set of possible truth values that can be assumed by the head.

Thus, we define for each rule in the program a subset Y ⊆ L such that none of the
values in Y lowers the degree of satisfaction of the rule. Next, for a literal l ∈ LitP ,
we consider these sets Y for each rule of the form l ← β. By taking the intersection
of these sets, we obtain a range of truth values. Choosing an alternative truth value for
l within this range does not lower the degrees of satisfaction of the rules with l in the
head. However, interpretations that choose the lower values in the range are called better
supported.

7 Note that when another implicator is chosen, S not necessarily remains a minimal fuzzy 0.9-
model of P . E.g., using ITM would make S only a fuzzy 0-model.

Fuzzy Answer Set Programming 367

Definition 5. LetP be a program and let I be a fuzzy interpretation. The supportedness
function Is associated with I is defined by

Is(l) =
⋂

{l}←β∈P

{y ∈ L | I(I|=(β), y) ≥L I|=({l} ← β)} ,

for each l ∈ LitP , where, by definition,
⋂
∅ = {0L}. A minimal x-consistent fuzzy

y-model of P is called an x-consistent fuzzy y-answer set iff we have for each l ∈ LitP

that I(l) = inf(Is(l)).

Example 7. Reconsider Example 6. Clearly,Ls(c) = {0}, yielding thatL is not a fuzzy
0.9-answer set of P . On the other hand, one can verify that Ks(a) = Ks(b) = [0.9, 1]
andKs(c) = {0}, implying thatK is a fuzzy 0.9-answer set of P .

Proposition 1. For a simple program P , I is a minimal x-consistent fuzzy y-model of
P iff I is an x-consistent fuzzy y-answer set of P .

Example 8. Reconsider Example 1 from the introduction. We are interested to know
to what degrees we have to practice the various sports such that an acceptable degree,
e.g. 0.7, of full-body exercise is obtained. Since our main concern is a satisfactory
degree of full-body exercise, we will use an aggregator that gives more importance to
the constraint rule r7. An appropriate choice could be an aggregator that only takes r7
into account. In this case a fuzzy interpretation is a model to the degree to which it
satisfies r7. Of course we also require the model to be minimal and supported, which is
where other rules come into play.

Further, we will also use Ta = TM to evaluate the body of rules, and the implicator
I = ITW to evaluate the satisfaction of the rules. A fuzzy 0.7-answer set K for the
above program must at least satisfy K|=(r7) = 0.7. This yields that

min(1 −K(not full body exercise) + 0, 1) = 0.7 ,

which implies that K (not full body exercise) = 0.3, and thus, using Ns for nega-
tion as failure, that K (full body exercise) = 0.7. To have support for the literal, i.e.
inf(Ks(full body exercise)) = 0.7, one of the two rules r5 or r6 have to be made ap-
plicable to a certain degree, in turn implying that some of the four sports will have to be
exercised in a higher degree than others to achieve that sufficient degree of applicability
of r5 or r68. One can verify that

K = {(lift weights , 0.8), (swim, 0.2), (run, 0.7), (play ball , 0.3),

(full body exercise, 0.7)} ,
is a fuzzy 0.7-answer set of the above program.

Intuitively, this solution is acceptable as it describes a configuration where two sports,
which are together in rule r5, are assigned a higher degree than there complementary

8 Note that this example also illustrates how the proposed framework can be used to do fuzzy
diagnostic reasoning. The constraint r7 can be seen as an encoding of the observations, r5 and
r6 represent the system description, while r1, r2, r3 and r4 provide the explanations.

368 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

variants, and due to this choice we have support for full-body exercise up to a degree
of 0.7.

On the other hand, one can check that for the fuzzy interpretation

L = {(lift weights , 0.8), (swim, 0.2), (run, 0.3), (play ball , 0.7),

(full body exercise, 0.7)} ,
it turns out that Ls(full body exercise) = [0.3, 1] ∩ [0.2, 1] = [0.3, 1]. Hence, L is not
a fuzzy 0.7-answer set of the program, fitting our intuition.

4 Retrieving Classical Answer Sets

The FASP framework presented in the previous section turns out to be a proper gener-
alisation of the classical answer set programming paradigm with the notions of fuzzy
logic. First of all, ASP can be retrieved as a special case of FASP by choosing the truth
lattice L = {0L, 1L}.

Proposition 2. Consider a program P and let L be the lattice {0L, 1L}. Furthermore
let the aggregatorA be such that A(P, I|=) = 1L iff I|=(s) = 1L for every rule s ∈ P .
An interpretationM is an answer set of P iff the fuzzy interpretation fM , with fM (l) =
1L if l ∈M and fM (l) = 0L otherwise, is a 1L-consistent fuzzy 1L-answer set of P .

Note that 1L-consistency is needed to forbid (classical) contradictions, and the restric-
tion to fuzzy 1L-answer sets is mandated by the need to classically satisfy all rules and
have the foundedness property of answer sets.

Example 9. Reconsider the program from Example 3. The empty set is not a 1L-model
of this program as it satisfies neither of the rules to degree 1L. K = {(a, 1L)}, L =
{(b, 1L)}, and M = {(a, 1L), (b, 1L)} are 1L-models, but the latter is obviously not
minimal. One can verify thatKs(a) = {1L} andKs(b) = {0L, 1L}, and similarly that
Ls(a) = {0L, 1L} and Ls(b) = {1L}, in other words both K and L are 1-consistent
fuzzy 1-answer sets.

In the proposition above, no choice forNc,Nn, Tc, Ta, and I is specified as all negators,
t-norms and implicators on {0L, 1L} coincide. However, when we allow for interme-
diate truth values, a choice for logical operators opens up. Below we argue that certain
choices are more “answer set behaved” than others.

Classical answer sets cannot contain both a and ¬a. If one wants to preserve this
behaviour for fuzzy answer sets, i.e. such that a 1L-consistent fuzzy answer set can
not contain a and ¬a simultaneously, not even to some degree, Tc should be cho-
sen with care. E.g., on L = [0, 1], take Tc = TW and consider the fuzzy interpreta-
tion I = {(a, 0.4), (¬a, 0.4)}. Then, Tc(I(a), I(¬a)) = max (0.4 + 0.4− 1, 0) = 0.
For this t-norm it holds, in general, that Tc(I(a), I(¬a)) = 0 iff I(a) + I(¬a) ≤ 1,
which certainly does not correspond to a classical answer set semantics. However,
there exist some stronger versions for Tc that do not suffer from this problem, i.e. for

Fuzzy Answer Set Programming 369

which Tc(I(a), I(¬a)) = 0 iff I(a) = 0 or I(¬a) = 0. Both TM and TP are such
t-norms, and can be used to retrieve fuzzy answer sets with a classical ASP consistency
notion.

Next, we consider the possible choices for the implicator. By definition, an implica-
tor satisfies I(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L and I(1L, 0L) = 0L, which
implies that any choice for I is sufficient to retrieve classical answer sets from the
1L-consistent fuzzy 1L-answer sets. However, when intermediate truth values are con-
sidered, certain choices for I are more answer set alike, as witnessed by the following
example.

Example 10. Reconsider the program from Example 3 and let J = {(a, 0.6), (b, 0.4)}
be a fuzzy interpretation. When using ISM , we get J|=(r1) = max(1 − 0.6, 0.6) = 0.6
and J|=(r2) = max (1− 0.4, 0.4) = 0.6, yielding that J will be at most a 0.6-answer
set. However, in a classical answer set context this looks a bit unintuitive as the heads
of both rules are satisfied to exactly the same degrees as to which their bodies are
applicable, and thus intuitively the rules should be totally satisfied. Applying ITM on
the program yields J|=(r1) = J|=(r2) = 1, which fits that intuition.

The implicator ITM belongs to the class of R-implicators, for which, in general, it holds
that I(x, y) = 1L whenever x ≤L y. All R-implicators in Example 2 satisfy the resid-
uation principle or adjoint condition, i.e. T (x, y) ≤L z iff x ≤ IT (y, z) for all x, y,
and z in L. Note that for such implicators the degree of satisfaction of a rule l ← β
does not go down as long as the truth value of the head is greater than or equal to
T (I|=(l ← β), I|=(β)). In other words, in this case we obtain a more direct expression
for y to be used in Definition 5.

Finally, to preserve classical answer set semantics, an interpretation should be said
to satisfy a program to degree 1L iff it satisfies all rules of the program to degree 1L.
The aggregator A(P, I|=) = inf{I|=(s) | s ∈ P} we introduced before satisfies this
condition and can be used to retrieve classical answer sets.

5 Related Work

Logic programming in the presence of uncertainty or imprecision has received a con-
siderable amount of attention (see e.g. [1, 9] for overviews). It is however interesting to
observe that the well known existing frameworks, including those that consider fuzzy
interpretations, hold on to two valued concepts of rule satisfaction, model, etc. in the
sense that a fuzzy interpretation satisfies a rule or not, it is a model or not, etc. This
clearly sets them apart from the approach introduced in this paper.

The enrichment of ASP with concepts from fuzzy logic as well as from the closely
related possibilistic logic [11] has been studied from various angles already. In an-
notated answer set programming [22], a rule is of the form l{f (z1 , z2 , . . . , zn)} ←
l1{z1}, l2{z2}, . . . , ln{zn} where l, l1, l2, . . . , ln denote literals and z1, z2, . . . , zn are
annotation terms that can be understood as truth degrees. Such a rule asserts that l is
true at least to degree f(z1, z2, . . . , zn) whenever li is true at least to degree zi (for
i = 1 . . . n). Because of this early revertment to the two valued case, no fuzzy logical
operators are needed in this approach.

370 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

The approach in [17] adheres closer to ours. A rule of the form α
z← β is said to be

satisfied by the interpretation iff (in our notation) I|=(α) ≥L T (I|=(β), z). The resid-
uation principle reveals a clear connection with our approach when committing to an
R-implicator IT : namely that I satisfies the rule α

z← β according to [17] iff I satisfies
this rule at least to degree z in our approach. This is also in accordance with [8] where
the use of adjoint pairs (T , IT) is strongly advocated to preserve important theoretical
results. Being able to impose specific satisfaction requirements for individual rules is in
general an interesting feature, e.g., when rules and facts originate from different knowl-
edge bases that are not all equally trusted. Note that this can be easily incorporated in
our approach by choosing a suitable aggregatorA.

In a similar way, [25] can be seen as a special case of the FASP framework presented
in this paper as [25] commits itself, with limited motivation, to very specific choices for
the user-selectable operators on the lattice [0, 1]. Some of these choices are at least
questionable. E.g., using the Gödel negator Ng for interpreting naf yields that a rule
a ← not b will not be applied in any way although b is only true to a small degree, e.g.
0.1. Using the standard negator Ns, as we do in our examples, this would yield a rule
that is applicable to a degree 0.9, and, if a rule satisfaction of at least 0.8 is wanted with
e.g. ISM , we have max(0.1, y) = 0.8, which implies that a will be derived at degree
0.8 in a fuzzy answer set.

A possibilistic definite logic program [18] consists of rules annotated with certainty
degrees. These degrees are used to establish a possibility distribution on the universe
of atom sets, from which a possibilistic model is derived. The authors choose implic-
itly for the Gödel negator, as they first compute the classical answer sets, and after-
wards compute, for an answer set S, the possibility to which each literal l is contained
in S.

6 Conclusions and Future Research

There are many ways to increase the expressive power of answer set programming
(ASP) by enriching it with mechanisms to deal with imprecision and uncertainty. In
this paper we presented a general and elegant fuzzification of ASP, called fuzzy answer
set programming (FASP). The generality is reflected in a high configurability by the
user, which allows the system to be tailored to the application at hand. Among other
things, the ability to choose an aggregator allows for future extensions of the seman-
tics, e.g. incorporating rule preferences on fuzzy programs. The elegance is due to a
close adherence to both the fuzzy logic and the answer set programming paradigm:
as opposed to other approaches, FASP does not revert soon to the two valued case
but instead allows to compute the actual degree to which a fuzzy interpretation is an
answer set. Furthermore we have shown that FASP extends the traditional answer set
semantics.

Clearly, there are a lot of topics that still need to be investigated, e.g. a fixpoint
characterization, the complexity of the semantics, the use of disjunction etc., all
parametrized by the choice of the (lattice) operations. In addition, we intend to ex-
plore natural FASP applications areas such as “web of trust”, diagnosis, and decisision
support.

Fuzzy Answer Set Programming 371

References

[1] T. Alsinet, L. Godo, and S. Sandri. Two formalisms of extended possibilistic logic pro-
gramming with context-dependent fuzzy unification: a comparative description. Electronic
Notes in Theoretical Computer Science, 66(5), 2002.

[2] M. Balduccini and M. Gelfond. Logic programs with consistency-restoring rules. In Pro-
ceedings of the International Symposium on Logical Formalization of Commonsense Rea-
soning, AAAI 2003 Spring Symposium Series, 2003.

[3] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

[4] G. Birkhoff. Lattice theory. American Mathematical Society Colloquium Publications,
25(3), 1967.

[5] G. Brewka. Logic programming with ordered disjunction. In Proceedings of the 18th
National Conference on Artificial Intelligence and Fourteenth Conference on Innovative
Applications of Artificial Intelligence, pages 100–105. AAAI Press, July 2002.

[6] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial
Intelligence, 109(1-2):297–356, April 1999.

[7] F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog.
In Proc. of the 4th Intl. Conf. on Logic Programming (LPNMR ’97), pages 2–17, 1997.

[8] C. Damasio, J. Medina, and M. Ojeda-Aciego. Sorted multi-adjoint logic programs: termi-
nation results and applications. Journal of Applied Logic, page To appear, 2006.

[9] C. V. Damasio and L. M. Pereira. Sorted monotonic logic programs and their embedding.
In Proc. of the 10th Intl. Conf. on Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU-04), pages 807–814, 2004.

[10] M. De Vos and D. Vermeir. On the Role of Negation in Choice Logic Programs. In Logic
Programming and Non-Monotonic Reasoning Conference (LPNMR’99), volume 1730 of
LNAI, pages 236–246. Springer, 1999.

[11] D. Dubois and H. Prade. Possibilistic logic: a retrospective and prospective view. Fuzzy
Sets and Systems, 144(1):3–23, 2004.

[12] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system. AI
Communications, 12(1-2):99–111, 1999.

[13] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical Semantics for Ordered
Logic Programs. In Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning, pages 208–217. Morgan Kaufmann, 1991.

[14] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Logic
Programming, Proceedings of the Fifth International Conference and Symposium, pages
1070–1080, Seattle, Washington, August 1988. The MIT Press.

[15] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3-4):365–386, 1991.

[16] D. N. Juergen Dix, Ugur Kuter. Planning in answer set programming using ordered task
decomposition. In Proc. of the 27th German Annual Conf. on Artificial Intelligence (KI
’03), volume 2821 of LNAI, pages 490–504. Springer, 2003.

[17] C. Mateis. Extending disjunctive logic programming by t-norms. In Proc. of the 5th Intl.
Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR99), volume 1730 of
LNAI, pages 290–304. Springer, 1999.

[18] P. Nicolas, L. Garcia, and I. Stéphan. Possibilistic stable models. In Proc. of the 19th Intl.
Joint Conf. on Artificial Intelligence, pages 248–253, 2005.

[19] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An a-prolog deci-
sion support system for the space shuttle. In Third International Symposium on Practical
Aspects of Declarative Languages, volume 1990 of LNCS, pages 169–183. Springer, 2001.

372 D.V. Nieuwenborgh, M.D. Cock, and D. Vermeir

[20] V. Novák, I. Perfilieva, and J. Moc̆kor̆. Mathematical Principles of Fuzzy Logic. Kluwer
Academic Publishers, 1999.

[21] T. Soininen and I. Niemelä. Developing a declarative rule language for applications in
product configuration. In Proc. of the 1st Intl. Workshop on Practical Aspects of Declarative
Languages (PADL ’99), volume 1551 of LNCS, pages 305–319. Springer, 1999.

[22] U. Straccia. Annotated answer set programming. In Proc. of the 11th Intl. Conf. on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU-06),
2006.

[23] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the Association for Computing Machinery, 38(3):620–650, 1991.

[24] D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for ordered logic programs.
Theory and Practice of Logic Programming, 6(1-2):107–167, 2006.

[25] G. Wagner. A logical reconstruction of fuzzy inference in databases and logic programs. In
Proceedings of the International Fuzzy Set Association World Congress (IFSA’97), 1997.

[26] L. Zadeh. Fuzzy logic and approximate reasoning. Synthese 30, pages 407–428, 1975.

Reasoning About an Agent Based on Its
Revision History with Missing Inputs

Alexander Nittka

Universität Leipzig, Institut für Informatik, Augustusplatz 10-11,
04109 Leipzig, Germany

nittka@informatik.uni-leipzig.de

Abstract. In this paper, we extend on work presented in [1] where we
proposed a method for reconstructing an agent’s initial epistemic state
from an observation on its belief revision behaviour. There, we assumed
that the observation is complete in the sense that all revision inputs
during the time of observation were known to us. Here, we drop this
assumption and investigate the case where there are intermediate inputs
we have no information about. The focus will be on determining the core
belief of the agent — a belief the agent commits to at all times.

1 Introduction

The problem of belief revision, i.e., of how an agent should modify its beliefs
about the world given some new information which possibly contradicts its cur-
rent beliefs, is by now a well-established research area in AI [2]. Reasoning about
other agents is another important capability necessary for successful agents. This
requires investigating them from a third person perspective, rather than a first
person one as is done the traditional work in belief revision. In [1], we proposed
one possible approach to the area.

The general setting is that we are given observations of another agent’s belief
revision behaviour, containing information about what the agent received as
revision inputs, what it believed and did not believe after receiving them. We
are interested in constructing a model of the observed agent in order to be able
to draw conclusions about what it believed before receiving the observed inputs,
what it might believe after receiving a further input and what it believed apart
from what the observation tells us.

In [1], we assumed to be given an observation that is complete in the sense that
all revision inputs received by the agent are known — a very strong assumption.
In the present paper we weaken it to a certain extent by allowing intermediate
inputs. In other words, the given observation is incomplete in the sense that
the agent may have received further revision inputs but we have no information
about them, neither what the input was nor what was and was not believed
upon receiving it. The focus of the paper is on results concerning the core belief
of the agent, the belief it commits to at all times.

We work in a propositional setting. L will always be some finitely generated
propositional language based on variables from {a, b, p, q, . . .}, the constants ⊥

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 373–385, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

374 A. Nittka

and � for contradiction and tautology, and the usual connectives. �, α, β, ϕ, θ,
etc. stand for arbitrary elements of such a language, that is, propositional for-
mulae, D for a (finite) set of formulae, and σ and ρ for sequences of formulae.
σ1 ·σ2 and σ ·ϕ denote the concatenation of two sequences and the concatenation
of a sequence with a single formula. � denotes the classical entailment relation,
Cn the closure under classical consequence, and m |= ϕ that an assignment m
satisfies a formula ϕ.
o will be used to denote observations made on the belief revision behaviour

of an agent A. Formally, an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉 is a
(possibly empty) sequence of triples (ϕi, θi, Di) with the following interpretation.
After A received the revision inputs ϕ1 up to ϕi (in that order), starting in its
initial epistemic state, it believed at least θi but did not believe any element
of Di. We remark that this notation of an observation deviates from that in
[1]. Extended to the case allowing negative information (what the agent did not
believe) which was not treated there, an observation would have been a triple of
sequences. o1 · o2 denotes the concatenation of two observations.

We will first recall the agent model we use as well as main results from [1]
that extend to the case of negative information, although this has only been
hinted at in [3]. We will then turn to intermediate inputs, give a more formal
definition for them and illustrate their impact on explanations of an observation.
In order to provide more specific results, we will then assume that the number
and positions of the intermediate inputs in the observation are given and fixed.

1.1 The Agent Model

We assume a particular belief revision framework for iterated non-prioritised
revision that has been studied in [4]. According to this framework an agent’s
epistemic state is defined by two components: (i) a sequence ρ of sentences
representing the sequence of revision inputs the agent has received thus far,
and (ii) a single sentence � standing for the agent’s set of core beliefs, which
intuitively are those beliefs of the agent it considers “untouchable”. We denote
the agent’s epistemic state by [ρ,�]. The definitions of the revision operator and
the belief set in our agent model are as follows.

Definition 1. Given an epistemic state [ρ,�] and a formula λ, the revision
operator ∗ is defined by

[ρ,�] ∗ λ = [ρ · λ,�]

Definition 2. The set of beliefs Bel([ρ,�]) in the epistemic state [ρ,�] is
Bel([ρ,�]) = Cn(f (ρ ·�)), where

f (βk, . . . , β1) =

⎧⎨
⎩
β1 if k = 1
βk ∧ f (βk−1, . . . , β1) if k > 1 and βk ∧ f (βk−1, . . . , β1) �� ⊥
f (βk−1, . . . , β1) otherwise

The epistemic state of A is revised by simply appending the new formula to the
sequence of formulae received so far. f (σ) for a sequence of formulae σ is almost

Reasoning About an Agent Based on Its Revision History 375

exactly the “linear base-revision operation” of [5], the only difference being that
here the first formula is accepted even if it is inconsistent. This ensures the correct
treatment of our notion of core belief — a belief an agent always commits to. A’s
belief set is calculated by starting with the core belief � and then consistently
adding the received formulae in reversed order, simply leaving out those which
cannot be added consistently closing the result under consequence.

1.2 Problem Definition

The intuitive interpretation of an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉
on the belief revision behaviour of an agent A whose initial epistemic state is
[ρ,�] can be formalised by:

for all i such that 1 ≤ i ≤ n :
f (ρ · (ϕ1, . . . , ϕi) ·�) � θi and
∀δ ∈ Di : f (ρ · (ϕ1, . . . , ϕi) ·�) �� δ

(1)

Definition 3. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. Then [ρ,�] explains o
(or is an explanation for o) iff � �� ⊥ and (1) above holds. We say � is an
o-acceptable core iff [ρ,�] explains o for some ρ.

Here we slightly deviate from the original definition in [1] where an inconsistent
core might have been o-acceptable, as well. We still allow an agent to have an
inconsistent core belief, but we do not call such a core an explanation. Note that
� = ⊥ satisfies (1) iff Di = ∅ for all i, i.e., whenever there is no information
about what the agent did not believe after any revision step. Eliminating this
possibility makes the results more coherent.

For a given observation o the task is to find (a best) initial epistemic state
[ρ,�] satisfying (1), i.e., explaining o. Having this initial state of the agent will
allow us to take justified guesses at what the agent believed at various points in
time and might believe after receiving further revision inputs.

2 The Rational Explanation

In [1], we defined the rational explanation — an algorithm that calculates a best
epistemic state [ρR(o,�∨(o)),�∨(o)] for a given observation o — for the case
where there is no negative information, i.e., Di = ∅ for all i. This algorithm
employs a method known as rational closure [6, 7]. ρR(o,�) denotes its result,
a sequence of formulae calculated from conditional beliefs — in our case con-
structed from the given observation o and a core belief �. In [3] we hinted that
the results from [1] carry over to the general case, where we allow nonempty Di.
In order to achieve this, we use a generalisation of the original rational closure
[8] that also handles information about which formulae should not be entailed.
In addition, Algorithm 1 has been adapted to our notion that inconsistent cores
are not o-acceptable.

The generalisation of a second important result from [1] is Proposition 1. It
expresses that we can weaken two o-acceptable cores and can be sure that the

376 A. Nittka

Algorithm 1. calculation of the rational explanation
Require: observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉
Output: the rational explanation for o

�⇐ !
repeat

ρ⇐ ρR(o, �) {ρ = (αm, . . . , α0)}
�⇐ � ∧ αm

until αm ≡ !
Return [ρ, �] if � �≡ ⊥, “no explanation” otherwise

result will still be o-acceptable. This implies that there is a unique logically
weakest o-acceptable core �∨ that is entailed by every o-acceptable core �. The
rational explanation algorithm, which always terminates, has been shown to
calculate �∨ and hence yield the desired result.

Proposition 1. Let o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉. If �1 and �2 are o-
acceptable then so is �1 ∨�2.

The rational explanation assumes that the given observation is complete in the
sense that all revision inputs are given, i.e., that there is no further input between
ϕi and ϕi+1. In the current paper we want to investigate what happens if this
assumption is dropped, i.e., if we allow for the possibility that A has received
intermediate inputs.

3 Intermediate Inputs

3.1 Introductory Notes

An intermediate input is a revision input about which we have no further infor-
mation. In terms of observations it can and will be represented by φ̌ = 〈(φ,�, ∅)〉
telling us that a revision input was received, but nothing about what is and is not
believed afterwards. It makes a difference whether we use 〈(φ,�, ∅)〉 or 〈(φ, φ, ∅)〉
as the latter would express that the intermediate input was indeed accepted —
but we cannot be sure of that. Note that φ is just a placeholder for some formula,
as we do not know what the intermediate input actually is. Most of our propo-
sitions rely only on the existence of some intermediate inputs φi. In the most
general setting we are given an observation o = 〈(ϕ1, θ1, D1), . . . , (ϕn, θn, Dn)〉
and as there might have been intermediate inputs, the complete observation
would be o′ = o1 · φ̌1 · o2 · . . . · om · φ̌m · om+1, with m+ 1 observations oi such
that o1 · o2 · . . . · om+1 = o and m unknown intermediate inputs φi. Note that an
oi might be empty, that is, successive intermediate inputs are allowed, and that
the oi are not fixed but only constrained. It should be clear that once the in-
termediate inputs and their positions are known, i.e., all φi are instantiated and
the oi fixed, we can simply use the rational explanation to calculate a possible
initial epistemic state which then allows us to answer the questions we had in
the original case where we did not consider intermediate inputs.

Reasoning About an Agent Based on Its Revision History 377

One might wonder whether intermediate inputs and core beliefs are inter-
changeable concepts, that we could replace one with the other while being able
to explain the same observations. However, this is not the case, as the following
examples will illustrate.

Example 1. (i) To explain 〈(p,¬p, ∅)〉 core beliefs are needed, as otherwise p
will be introduced into the belief set. (ii) To explain 〈(p, q, {¬q}), (p,¬q, {q})〉
we need an intermediate input, e.g., p → ¬q, as otherwise A’s change in mind
concerning q cannot be accounted for. (iii) 〈(p,¬p, {q}), (¬p, q, ∅)〉 can only be
explained with both an intermediate input and a core belief. (iv) 〈(p,�, {p,¬p})〉
cannot be explained at all with the current concepts, but this is beyond the scope
of this paper.

We further note that the number and positions of intermediate inputs matter.
The more intermediate inputs we allow, the weaker the necessary core belief may
be. This is no surprise. The core belief does not only allow inputs to be blocked
directly as is necessary for explaining observations like 〈(p,¬p, ∅)〉, where the
input p must be blocked so that ¬p can be consistently believed. It also handles
interaction between revision inputs. To explain 〈(a, a, ∅), (b,¬a, ∅)〉 the core belief
needs to be such that in the calculation of the belief set a is blocked after b has
been received. A core belief entailing b → ¬a does that. However, the same
effect can be achieved by an intermediate input b → ¬a between a and b and
thus allows for a weaker core. And the more such interactions are dealt with by
intermediate inputs, the weaker the core may be.

Example 2. Consider o = 〈(a, a, ∅), (b,¬a, ∅), (c, c, ∅), (d,¬c, ∅)〉. a and c are ac-
cepted by the agent, but after receiving the next input they are discarded. The
weakest core explaining the observation o is �∨(o) = (b→ ¬a)∧ (d→ ¬c). Note
that �∨(〈(a, a, ∅), (b,¬a, ∅)〉) = b→ ¬a and �∨(〈(c, c, ∅), (d,¬c, ∅)〉) = d→ ¬c.

There are three possible positions for a single intermediate input. Between a
and b, between b and c, and between c and d. If we assume the intermediate
input b→ ¬a between a and b, we get the minimal core d→ ¬c for the modified
observation. If we assume the intermediate input d → ¬c between c and d, we
get the minimal core b → ¬a. However, we will not find a single intermediate
input such that (b→ ¬a)∨(d→ ¬c) let alone � will be an acceptable core. This
follows from the monotonicity properties of the minimal core belief [1].

If we allow for two intermediate inputs we might assume b → ¬a between a
and b and d → ¬c between c and d. In this case the core belief � is indeed an
explanation.

Also, successive intermediate inputs cannot be joined into a single one. We post-
pone the proof of this claim, as it is easier with the results of the following
section. In a sense, the rational explanation also calculates intermediate inputs
— usually a non-trivial sequence of unobserved inputs the agent may have re-
ceived before the observation started. Intuitively, if joining them was possible
then a sequence containing a single sentence would always exist, which is not
the case.

378 A. Nittka

3.2 Intermediate Inputs at Fixed Positions

We have seen that varying the number and positions of the intermediate inputs
has a great effect on the (minimal) core belief we can assign to the observed agent.
From now on, we will fix the number and positions of the intermediate inputs in
the observation — in order to give more specific results than just saying there is
an effect. We assume we are given an observation o = o1 · φ̌1 ·o2 · . . . ·on · φ̌n ·on+1,
with n+1 specific observations oi of arbitrary but finite length. Note that o fixes
the positions of n unknown intermediate inputs φi.

A first question that arises is whether an explanation for the observation o
exists at all: Are there instantiations of φi such that there is an o-acceptable
core? The naive way to approach this question is to go through all possible
combinations of intermediate inputs and calculate the rational explanation. But
can we do better? Indeed, we can give a necessary condition for the existence of
an explanation that employs a more systematic and efficient method.

The idea is to use as intermediate inputs new propositional variables that do
not occur in the known part of the observation. We will first show that this
works for the case of a single intermediate input, i.e., n = 1, and then extend
this result to an arbitrary number.

Proposition 2. If [ρ,�] explains o = o1 · (φ,�, ∅) · o2 and x is a propositional
variable not appearing in �, φ, ρ or any formula in o1 or o2 then [ρ,� ∧ (x→ φ)]
explains o′ = o1 · (x,�, ∅) · o2.

In other words, if there is an intermediate input such that o has an explanation,
then we can assume the intermediate input to be x and the observation so
obtained still has an explanation. The contraposition yields that if there is no
consistent explaining core when using a new variable as the intermediate input,
then there cannot be any intermediate input that yields a consistent core.

The result is proved using an induction over the calculation of the belief set
in a particular epistemic state of the agent. This has to be done for all epistemic
states covered by the given observation. The basic idea is that the intermediate
input x together with the additional core belief x → φ behaves exactly like
the intermediate input φ — the same revision inputs and elements from ρ are
collected into the belief set. The only difference is that x or ¬x might be believed
in the case of the modified observation. But this cannot contradict the original
observation as x does not appear there.

The result also implies that when assuming a single intermediate input, an
extension of the language of the known part of the observation by one variable
is enough for finding an explanation. The core belief given in the proposition
does not satisfy that property, of course — there we assume the core to be
� ∧ (x→ φ) and � and φ might indeed contain further variables not appearing
in the known part of o itself. However, the proposition just showed that an
explanation exists which implies that the rational explanation will find one, as
well. As the rational explanation uses only variables contained in the observation,
i.e., x and the variables appearing in o1 and o2, one additional variable is indeed
enough.

Reasoning About an Agent Based on Its Revision History 379

Now we can easily generalise this result to n intermediate inputs. Recall that
φ̌ denotes 〈(φ,�, ∅)〉.

Proposition 3. If [ρ,�] explains o = o1 · φ̌1 ·o2 · . . . ·on · φ̌n ·on+1 and x1, . . . , xn

are n different propositional variables not appearing in �, ρ, any formula in oi,
or any φi, then

[
ρ,� ∧

∧
1≤i≤n(xi → φi)

]
is an explanation for the observation

o′ = o1 · x̌1 · o2 · . . . · on · x̌n · on+1.

Proof. We apply Proposition 2 n times, each time replacing one φi by xi. ��

Proposition 3 provides a powerful tool. We can apply the rational explanation
construction to o′ = o1 · x̌1 · o2 · . . . · on · x̌n · on+1. This will give us the best
explanation for o′ including the weakest possible o′-acceptable core belief. If the
rational explanation construction tells us that there is no explanation, we know
that there are no intermediate inputs such that o can be explained. Note that
the rational explanation will generally not return �∧

∧
1≤i≤n(xi → φi) but some

other (logically weaker) core belief. The proposition did not claim to give the
weakest possible core but only some o′-acceptable one.

The additional variables might still be contained in the core calculated for o′.
We will proceed to prove that all xi can be eliminated from the core by modify-
ing the intermediate inputs. This means there is a core belief whose language is
restricted to that of the known part of the observation, i.e., variables appearing
in some oi. We will further show that there is a single weakest such core belief.
In other words, analogous to the result from [1], there is a core belief �∨ that ex-
plains the observation for a certain instantiation of the intermediate inputs such
that for any core �′ explaining the observation for some (other) intermediate
inputs we have �′ � �∨.

The following proposition plays an essential role in eliminating the additional
variables from the core. It is more general but in its application in the current
context it formalises that it suffices to keep the part of the core that exclusively
talks about the known part of the observation. The rest can be transferred to the
intermediate inputs without effect on the belief set. Think of σ as the sequence of
revision inputs from the observation without ρ, i.e., without the sequence from the
agent’s initial epistemic state. σ′ corresponds to σ where the additional variables
that we put instead of the unknown intermediate inputs are replaced. In fact, they
are strengthened by the part of the original core that also talks about them. � is
such that it already entails all formulae from the language of the known part of the
observation that the actual core entails. The proposition then implies that in the
process of calculating the beliefs of the agent, before processing ρ an equivalent
formula has been constructed. This means that after processing ρ the modified
core and intermediate inputs will still yield the same result.

Proposition 4. Let L be a finitely generated propositional language.
Let x1, . . . xn �∈ L be additional propositional variables.
Let σ = (αm, . . . , α1) be a sequence of formulae such that for all i either αi ∈ L
or αi = xj for some j ∈ {1, . . . n}.

380 A. Nittka

Let � ∧ ψ be a formula such that � ∈ L and Cn(�) = Cn(� ∧ ψ) ∩ L.
Let σ′ = (α′

m, . . . , α
′
1) such that α′

i = αi if αi ∈ L and α′
i = xj ∧ ψ if αi = xj.

Then f (σ ·� ∧ ψ) ≡ f (ψ · σ′ · �).

Proof. The proof shows inductively that both calculations collect the correspond-
ing elements of σ and σ′, i.e., f (σ · � ∧ ψ) accepts αi if and only if f (ψ · σ′ · �)
accepts α′

i. A consequence of this is that the two are indeed equivalent.
The proposition holds trivially for inconsistent �∧ψ, so now we have to show

that it also holds in case �∧ψ is consistent. As L is finitely generated � always
has a finite representation.

� ∧ ψ �� ⊥ implies � �� ⊥. Assume that no xj/xj ∧ ψ has been accepted so
far, by inductive hypothesis both have collected the same sentences from the first
i elements of σ/σ′ so far, let their conjunction be denoted by χ. We want to
compare f ((αm, . . . , αi+1) ·� ∧ ψ ∧ χ) and f

(
ψ · (α′

m, . . . , α
′
i+1) · � ∧ χ

)
– Consider the case that αi+1 = xj , i.e., α′

i+1 = xj ∧ ψ. If xj is rejected this
means that (� ∧ ψ ∧ χ) ∧ xj is inconsistent and hence (� ∧ χ) ∧ (xj ∧ ψ) is
inconsistent, so xj ∧ ψ is also rejected. In this case, we can proceed with the
next inductive step as χ has not changed.
If xj is accepted we know (� ∧ ψ ∧ χ) ∧ xj is consistent and consequently
(�∧χ)∧ (xj ∧ψ) is consistent, so xj ∧ψ also accepted. As a consequence we
have f ((αm, . . . , αi+1) · � ∧ ψ ∧ χ) = f ((αm, . . . , αi+2) ·� ∧ ψ ∧ χ ∧ xj) and
f
(
ψ · (α′

m, . . . , α
′
i+1) · � ∧ χ

)
= f
(
ψ · (α′

m, . . . , α
′
i+2) · � ∧ χ ∧ xj ∧ ψ

)
. Note

that the last element is equivalent, i.e., the two will accept exactly the same
elements of the respective sequences. The difference between xk and xk∧ψ as
well as the ψ appended to the front will be irrelevant as ψ is already entailed.
Hence, in case xj/xj ∧ ψ is accepted the two clearly will be equivalent. Note
that this fully covers all cases where at least one xj/xj∧ψ has been accepted.
If in the end all xj/xj ∧ ψ were rejected, we have f (σ ·� ∧ ψ) = � ∧ ψ ∧ χ
and by our induction f (ψ · σ′ ·�) = f (ψ · � ∧ χ) = � ∧ χ ∧ ψ as that is
obviously consistent. Hence the two are equivalent as claimed.

– We still have to show the case where αi ∈ L implying α′
i+1 = αi+1. As

noted above the only interesting case is when no xj/xj ∧ ψ has been ac-
cepted so far. If f ((αm, . . . , αi+1) · � ∧ ψ ∧ χ) accepts αi+1 we know that
�∧ψ∧χ∧αi+1 is consistent, so �∧χ∧αi+1 is consistent and consequently
f
(
ψ · (α′

m, . . . , α
′
i+1) · � ∧ χ

)
accepts α′

i+1 as claimed.
If f ((αm, . . . , αi+1) · � ∧ ψ ∧ χ) rejects αi+1 we know that �∧ψ∧χ∧αi+1 is
inconsistent. This means � ∧ ψ ∧ χ � ¬αi+1 and hence � ∧ ψ � χ→ ¬αi+1.
We know that no xj/xj ∧ ψ has been accepted so far, which implies that
χ ∈ L and as αi+1 ∈ L we also have χ→ ¬αi+1 ∈ L.
� ∧ ψ � χ → ¬αi+1 together with the condition on � that any conse-
quence of the conjunction that is an element of L must already be entailed
by � now yields � � χ → ¬αi+1. This implies � ∧ χ � ¬αi+1 and hence
f
(
ψ · (α′

m, . . . , α
′
i+1) · � ∧ χ

)
rejects α′

i+1 as claimed. ��

Proposition 5. If [ρ,�] is an explanation for o = o1 · x̌1 · o2 · . . . · x̌n · on+1

then there is a �′ and a ψ such that � � �′ and �′ does not contain any

Reasoning About an Agent Based on Its Revision History 381

xj and [ρ · ψ,�′] is an explanation for o′ = o1 · ǒ1 · o2 · . . . · ǒn · on+1 where
ǒi = 〈(xi ∧ ψ,�, ∅)〉.
Proof. This follows almost immediately from Proposition 4. The revision inputs
of o and o′ fit the requirements for σ, σ′ respectively. It is possible to construct �′

and ψ such that � ≡ �′ ∧ψ and �′ has the properties needed for the application
of Proposition 4. If we represent � in clausal form, construct the set of all its
resolvents, we can construct �′ from those clauses not containing an additional
variable xi and ψ from the remaining ones.

Proposition 4 tells us that f (·) will be equivalent in both cases before process-
ing ρ, so they remain equivalent after then processing ρ. Hence, if [ρ,�] is an
explanation for o then [ρ · ψ,�′] is an explanation for o′. ��

Proposition 5 formalises that we can indeed rid the core of the additional vari-
ables by modifying the intermediate inputs. If we do so for the weakest core
there is for o = o1 · x̌1 · o2 · . . . · x̌n · on+1 we might have found the weakest core
there is for any instantiation of the intermediate inputs. That this is indeed the
case follows from the next two propositions.

Proposition 6. Let [ρ,�] be the rational explanation of o=o1 ·x̌1 ·o2 ·. . .·x̌n ·on+1

and �′ be an o′-acceptable core with o′ = o1 · φ̌1 · o2 · . . . · φ̌n · on+1. Further let
�′′ such that Cn(�′′) = Cn(�)∩L where L is the language of o1 · o2 · . . . · on+1.

Then �′ � �′′

Proof. Note that it does not matter which additional variables we use, so we
can ensure that no xj appears in o′ or �′ without semantically changing the
outcome of the rational explanation. Then �′′ is uniquely determined (semanti-
cally). Proposition 3 tells us that �′ ∧

∧
1≤i≤n(xi → φi) is an explanation for

o = o1 ·x̌1 ·o2 ·. . .·x̌n ·on+1. By Proposition 1 �′∧
∧

1≤i≤n(xi → φi) � � as � is the
weakest explaining core for that observation. Hence �′ ∧

∧
1≤i≤n(xi → φi) � �′′.

Now assume �′ �� �′′, i.e., there is an assignment m such that m |= �′ but
m �|= �′′. No xj appears in �′ or �′′, so we can construct an assignment m′ that
is equivalent to m except for falsifying all xj . Hence m′ |= �′, m′ �|= �′′ but also
m′ |=

∧
1≤i≤n(xi → φi). But this contradicts �′ ∧

∧
1≤i≤n(xi → φi) � �′′. Hence

our assumption was wrong and indeed �′ � �′′. ��

Consider �′ which is an explanation for some observation o with intermediate in-
puts. We replace those inputs with new variables and apply the rational expla-
nation, [ρ,�] being the result. Now, for any ϕ from the language of the known
part of the observation such that � � ϕ we know �′ � ϕ. As a consequence, we
can calculate a formula any agent must at least commit to, no matter what the
intermediate inputs were. This gives us a lower bound to the core belief an agent
must have according to the observation. That there is also an upper bound (which
coincides with the lower bound we gave) is formalised in the following result.

Proposition 7. Let [ρ,�] be the rational explanation of o=o1 ·x̌1 ·o2 ·. . .·x̌n ·on+1

and �′ such that Cn(�′) = Cn(�)∩L where L is the language of o1 ·o2 ·. . .·on+1.
Then �′ is the weakest explaining core for any set of intermediate inputs at

the given positions.

382 A. Nittka

Proof. Proposition 6 yields that any explaining core will entail �′ and (the proof
of) Proposition 5 tells us that �′ is indeed an explaining core. ��

We have thus shown that there is a unique weakest core belief explaining an
observation, given that the number and position of the intermediate inputs is
fixed. Analogous to Proposition 1, we can also show that given two specific cores
�1 and �2 that explain an observation using different intermediate inputs, we
can find intermediate inputs such that �1 ∨ �2 explain the observation thus
obtained.

Proposition 8. If �1 is an explanation for o1 = o1 ·φ̌11 ·o2 ·. . .·φ̌1n ·on+1 and �2
an explanation for o2 = o1·φ̌21·o2·. . .·φ̌2n ·on+1 then there are intermediate inputs
φ1, . . . , φn such that �1 ∨�2 is an explanation for o = o1 · φ̌1 · o2 · . . . · φ̌n · on+1.

Proof. Applying Proposition 3 for o1 and o2 we know that �1∧
∧

1≤i≤n(xi → φ1i)
and �2 ∧

∧
1≤i≤n(xi → φ2i) are explanations for o′ = o1 · x̌1 · o2 · . . . · x̌n · on+1

where all xi are new propositional variables not appearing in any oj, φkl, or �k.
Proposition 1 yields that (�1 ∧

∧
1≤i≤n(xi → φ1i))∨ (�2 ∧

∧
1≤i≤n(xi → φ2i))

is an explanation for o′ = o1 · x̌1 · o2 · . . . · x̌n · on+1.
Note that (�1∧

∧
1≤i≤n(xi → φ1i))∨(�2∧

∧
1≤i≤n(xi → φ2i)) can equivalently

be written as (�1 ∨�2) ∧
∧

1≤i≤n(xi → ψi) for some ψi. We abbreviate �1 ∨�2
with � and

∧
1≤i≤n(xi → ψi) with ψ. Hence [ρ,� ∧ ψ] is an explanation for

o′ = o1 · x̌1 · o2 · . . . · x̌n · on+1 for some sequence ρ.
Proposition 4 can be applied to show that [ρ · ψ,�] is an explanation for o′′ =

o1 ·φ̌1 ·o2 ·. . .·φ̌n ·on+1 where φ̌i = 〈(xi∧ψ,�, ∅)〉, i.e., we replaced all intermediate
inputs xi with xi ∧ ψ.

To see that Proposition 4 is applicable, we have to show that the conditions
are satisfied. The language L of o (neglecting the intermediate inputs) is finitely
generated by definition and it does not contain the additional variables xi. We
apply the proposition to the revision inputs of any prefix of o′ which indeed has
the property that any formula contained is either an element of L or a variable
xi. o′′ is defined as the proposition requires for σ′. We still need to show that
Cn(�) = Cn(� ∧ ψ) ∩L. Cn(�) ⊆ Cn(� ∧ ψ) ∩L is obvious. So let ϕ ∈ L with
ϕ ∈ Cn(� ∧ ψ). Assume � �� ϕ, which implies the existence of an assignment
m with m |= � but m �|= ϕ. As both � and ϕ are elements of L they contain no
xj, hence we can construct an assignment equivalent to m except for falsifying
all xj . m′ |= � and m′ |= ψ (ψ =

∧
1≤i≤n(xi → ψi)). Hence m′ |= � ∧ ψ but

m′ �|= ϕ — contradiction. So � � ϕ showing that Proposition 4 is applicable. ��

3.3 Some Effects of Extending the Language

Before we discuss the use of additional variables, we want to return to the claim
that two consecutive intermediate inputs generally cannot be replaced by a single
one. The following example shows that the number of intermediate inputs re-
ceived in succession cannot be disregarded as having no impact. Even extending
the language cannot compensate for trying to reduce their number by one!

Reasoning About an Agent Based on Its Revision History 383

Example 3. Consider an observation with two known parts o1=〈(a, a, ∅), (c, c, ∅)〉
and o2 = 〈(b,¬a, ∅), (d,¬c, ∅), (a ∧ b ∧ p,¬c, ∅), (c ∧ d ∧ ¬p,¬a, ∅)〉. Using the
intermediate inputs φ1 = a → ¬b and φ2 = c → ¬d it is quite easy to see that
[(),�] is an explanation for o = o1 · φ̌1 · φ̌2 · o2.

Proposition 7 allows us to calculate the weakest core any single intermediate
input will yield. Assume we could combine the two intermediate inputs into a
single one, we would have to get � as there are clearly two intermediate inputs
that yield that explanation. However, the rational explanation calculates the
following core belief for o′ = o1 · x̌ · o2:
� = (¬a∨ ¬b ∨ ¬c∨ ¬d ∨ p)∧ (¬x ∨¬b ∨ ¬c∨ ¬d) ∧ (¬x ∨ ¬a∨ ¬b ∨¬c). Hence
any core with a single intermediate input must entail ¬a ∨ ¬b ∨ ¬c ∨ ¬d ∨ p, as
that formula follows from � and belongs to the language of o1 and o2. So � will
never work.

The message of the previous section was that there is a unique weakest core belief
for a fixed number of intermediate input at fixed positions. We can calculate this
core belief (and intermediate inputs that will yield it), assuming each intermediate
input to be a new variable, employing the rational explanation construction and
then eliminating the new variables from the core. This result comes at a price. We
assumed, that the intermediate inputs may contain propositional variables that
are not present in the known part of the observation. It is indeed the case that
some observations can only be explained when allowing additional variables.

Example 4. Consider o1 = 〈(b, b, ∅), (d, c, ∅), (a, a ∧ b ∧ c ∧ d, ∅), (¬b,¬b, ∅)〉,
o2 = 〈(d, c, ∅), (a, a ∧ b ∧ ¬c ∧ d, ∅), ((a ∧ c ∧ d) ∨ (¬b ∧ ¬c ∧ d), b, ∅)〉, and
o3 = 〈(ϕ1, ϕ1, ∅), . . . (ϕn, ϕn, ∅)〉, where ϕi varies over all (finitely many) se-
mantically different formulae containing the variables a, b, c, d.

The observation o = o1 ·o2 ·o3 does not have an explanation when not allowing
intermediate inputs. In fact, there is no explanation for a prefix of o, already.
〈(b, b, ∅), (d, c, ∅), (a, a∧b∧c∧d, ∅), (¬b,¬b, ∅), (d, c, ∅), (a, a∧b∧¬c∧d, ∅)〉 does not
have an acceptable core. Intuitively, the reason is as follows. What is supposed
to be believed after a is received the first and the second time? In both cases
a ∧ b ∧ d is to be believed, but once c and once ¬c. We can conclude that when
receiving the second a the prior input ¬b needs to be blocked. But no other input
must be blocked as all of the others are to be believed. However, this means there
is no way to distinguish whether the agent has received the first or the second a.
Technically, this observation gives rise to two contradictory conditional beliefs
whose conflict cannot be resolved by modifying the core belief, as except for ¬b
no inputs must be blocked.

An intermediate input is exactly what does the trick — allowing a distinction
between having received the first or the second a. For o′ = o1 ·x̌·o2 ·o3 the rational
explanation gives � = ¬a ∨ b ∨ ¬d ∨ ¬x as the weakest core. Intuitively, when
the first a is seen, the agent believes ¬x, when the second a has been received,
it believes x. And this difference can explain different attitudes towards c.

But why does no intermediate input φ just containing a, b, c and d work? We
note that o3 forces any formula made up of these variables to be accepted upon
receiving it. Hence, the core belief of the agent must be a tautology. We then can

384 A. Nittka

infer the following restrictions on the intermediate input φ. Firstly, φ � a∧d→ b
is required, as otherwise ¬b would not be blocked when considering the second
a. Secondly, φ must be consistent with ((a ∧ c ∧ d) ∨ (¬b ∧ ¬c ∧ d)) ∧ a ∧ d ≡
(a ∧ c ∧ d) ∨ (a ∧ ¬b ∧ ¬c ∧ d). This is because ¬b must still be blocked when
the revision input (a ∧ c ∧ d) ∨ (¬b ∧ ¬c ∧ d) is considered. � = � so both a
and d are accepted which means that φ must be consistent with the conjunction
of these formulae. Thirdly, as a ∧ d → b is inconsistent with (a ∧ ¬b ∧ ¬c ∧ d),
φ must in fact be consistent with a ∧ c ∧ d. So in particular, φ must not entail
a ∧ d → ¬c. But now we can apply a similar argument as for the observation
without intermediate input. The above mentioned restrictions do not allow to
construct an intermediate input that can distinguish between having received
the first and the second a.

This means that the proposed method, which assumes the intermediate inputs
were outside the language of the known part of the observation, might say there
is an explanation, while there is none when restricting the language of the in-
termediate inputs. So, how is the use of additional variables to be evaluated?
Doubtlessly, it is useful for efficiently determining whether an explanation exists
at all, and what a potential core belief must entail. It is not absurd to assume
that in its epistemic evolution the agent has encountered more variables than
are on record in the observation. Even when only considering the observation,
not all variables appear at each point of time and new ones may occur or vanish
later in the observation. So why should a new variable not also appear with an
intermediate input? On the other hand, nothing in the observation tells us that
an input containing a new variable has been received as intermediate input —
and even if there has, we cannot know which variable it is.

We have shown that the additional variables can be eliminated from the core
belief assigned to the agent. In some cases, it is also possible to eliminate them
from the intermediate inputs (and thereby from the explanation in total, as the
rational explanation does not invent variables), but currently we cannot specify
the conditions under which this is possible. That it is not always possible has
been illustrated by the last example.

4 Conclusion and Open Problems

In the present paper, we have generalised work started in [1, 3] for reconstructing
an agent’s epistemic state from an observation on its belief revision behaviour.
We have done so by dropping the assumption that the observation provided is
complete in the sense that all revision inputs received were recorded. By allowing
intermediate inputs to have occurred, more observations can be explained. We
showed that the number and positions of the intermediate inputs have an effect
on the explanation of the observation.

In order to give specific results, we have fixed the number and position of
the intermediate inputs in the observation. We were then able to show that
there is a unique weakest core belief that explains the observation for some
intermediate inputs. This was achieved by assuming the intermediate inputs to

Reasoning About an Agent Based on Its Revision History 385

be propositional variables not contained in the known part of the observation,
applying the rational explanation construction and then eliminating the new
variables from the core calculated.

The conditions under which it is possible to eliminate the additional variables
from the intermediate inputs and thereby from the explanation are not known.
This is an important point for further work. A sufficient condition under which
an explanation from the language of the known part of the observation exists
is also yet to be found. We have focussed on the core belief, i.e., finding some
intermediate inputs yielding the best core there is. Finding the best intermediate
inputs achieving that is an open problem.

Some general questions also remain to be addressed. How to trade off between
a weak core and few intermediate inputs if their number is not known? How to
compare explanations where number and position of the intermediate inputs do
not coincide — can we define a sensible preference relation?

References

1. Booth, R., Nittka, A.: Reconstructing an agent’s epistemic state from observations.
In Kaelbling, L.P., Saffiotti, A., eds.: IJCAI-05, Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July
30-August 5, 2005, Professional Book Center (2005) 394–399

2. Gärdenfors, P.: Knowledge in Flux. MIT Press (1988)
3. Booth, R., Nittka, A.: Beyond the rational explanation. In Delgrande, J., Lang,

J., Rott, H., Tallon, J.M., eds.: Belief Change in Rational Agents: Perspectives
from Artificial Intelligence, Philosophy, and Economics. Number 05321 in Dagstuhl
Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum (IBFI),
Schloss Dagstuhl, Germany (2005)

4. Booth, R.: On the logic of iterated non-prioritised revision. In: Conditionals, In-
formation and Inference – Selected papers from the Workshop on Conditionals,
Information and Inference, 2002, Springer’s LNAI 3301 (2005) 86–107

5. Nebel, B.: Base revision operations and schemes: Semantics, representation and
complexity. In: Proceedings of ECAI’94. (1994) 342–345

6. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Arti-
ficial Intelligence 55(1) (1992) 1–60

7. Freund, M.: On the revision of preferences and rational inference processes. Artificial
Intelligence 152(1) (2004) 105–137

8. Booth, R., Paris, J.B.: A note on the rational closure of knowledge bases with both
positive and negative knowledge. Journal of Logic, Language and Information 7(2)
(1998) 165–190

Knowledge Base Revision in Description Logics

Guilin Qi, Weiru Liu, and David A. Bell

School of Electronics, Electrical Engineering and Computer Science
Queen’s University Belfast, UK

{G.Qi, W.Liu, DA.Bell}@qub.ac.uk

Abstract. Ontology evolution is an important problem in the Seman-
tic Web research. Recently, Alchourrón, Gärdenfors and Markinson’s
(AGM) theory on belief change has been applied to deal with this prob-
lem. However, most of current work only focuses on the feasibility of
the application of AGM postulates on contraction to description logics
(DLs), a family of ontology languages. So the explicit construction of a
revision operator is ignored. In this paper, we first generalize the AGM
postulates on revision to DLs. We then define two revision operators in
DLs. One is the weakening-based revision operator which is defined by
weakening of statements in a DL knowledge base and the other is its re-
finement. We show that both operators capture some notions of minimal
change and satisfy the generalized AGM postulates for revision.

1 Introduction

Ontologies play a crucial role for the success of the Semantic Web [6]. One of
the challenging problems for the development of ontology is ontology evolution,
which is defined as the timely adaptation of an ontology to the arisen changes
and the consistent management of these changes [10]. Ontology evolution is a
very complex process, i.e. it consists of six phases [27]. In this paper, we consider
an important phase called semantics of change phase, which prevents inconsis-
tencies by computing additional changes that guarantee the transition of the
ontology into a consistent state [27]. A center problem in this phase is incon-
sistency handling. There are various forms of inconsistencies, such as structural
inconsistency, logical inconsistency and user-defined inconsistency. Among them,
logical inconsistency in ontology evolution has attached lots of attention in recent
years, where ontologies are represented by logical theories, such as description
logics [21, 1, 8, 11, 10, 14, 19, 25].

AGM’s theory of belief change [9] has been widely used to deal with logical
inconsistency resulting from revising a knowledge base by newly received infor-
mation. There are three types of belief change, i.e. expansion, contraction and
revision. Expansion is simply to add a sentence to a knowledge base; contraction
requires to consistently remove a sentence from a knowledge base and revision is
the problem of accommodating a new sentence to a knowledge base consistently.
Alchourrón, Gardenfors and Markinson proposed a set of postulates to character-
ize each belief change operator. The application of AGM’ theory to description

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 386–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Knowledge Base Revision in Description Logics 387

logics is not trivial because it is based on the assumptions that generally fail for
DLs [7]. For example, a DL is not necessarily closed under the usual operators
such as ¬ and ∧ [8]. In [7, 8], the basic AGM postulates for contraction were
generalized to DLs and the feasibility of applying the generalized AGM theory
of contraction to DLs and OWL was studied. However, no explicit belief change
operators were proposed in their papers. Furthermore, they did not consider the
application of AGM postulates for revision in DLs.

In this paper, we first generalize the AGM postulates for revision to DLs.
Instead of discussing the feasibility of applying the postulates, we propose two
revision operators in DLs. One is the weakening-based revision operator which is
defined by weakening of statements in a DL knowledge base. Since the weakening-
based revision operator may result in counterintuitive results in some cases, we
propose an operator to refine it. We show that both operators capture some no-
tions of minimal change and satisfy the generalized AGM postulates on revision.

This paper is organized as follows. Section 2 gives a brief review of description
logics. In Section 3, we generalize the Gärdenfors postulates on revision to DLs.
We then propose two revision operators and discuss their logical properties in
Section 4. In Section 5, we have a brief discussion on related work. Finally, we
conclude the paper in Section 6 and give some further work.

2 Description Logics

In this section, we will introduce some basic notions of Description Logics (DLs),
a family of well-known knowledge representation formalisms [3]. To make our ap-
proach applicable to a family of interesting DLs, we consider the well-known DL
ALC [26], which is a simple yet relatively expressive DL. Let NC and NR be
pairwise disjoint and countably infinite sets of concept names and role names
respectively. We use the letters A and B for concept names, the letter R for
role names, and the letters C and D for concepts. � and ⊥ denote the universal
concept and the bottom concept respectively. The set of ALC concepts is the
smallest set such that: (1) every concept name is a concept; (2) if C and D are
concepts, R is a role name, then the following expressions are also concepts: ¬C
(full negation), C�D (concept conjunction), C�D (concept disjunction), ∀R.C
(value restriction on role names) and ∃R.C (existential restriction on role names).

An interpretation I = (ΔI , ·I) consists of a set ΔI , called the domain of I,
and a function ·I which maps every concept C to a subset CI of ΔI and every
role R to a subset RI of ΔI ×ΔI such that, for all concepts C, D, role R, the
following properties are satisfied:

(1) �I = ΔI and ⊥I = ∅, (¬C)I = ΔI \ CI ,
(2) (C�D)I = CI∩DI , (C�D)I = CI∪DI ,
(3) (∃R.C)I = {x|∃ y s.t.(x, y)∈RI and y∈CI},
(4) (∀R.C)I = {x|∀y(x, y)∈RI implies y∈CI}.
A DL knowledge base consists of two components, the terminological box

(TBox) and the assertional box (ABox). A TBox is a finite set of terminological

388 G. Qi, W. Liu, and D.A. Bell

axioms of the form C(D (general concept inclusion or GCI for short) or C≡D
(equalities), where C and D are two (possibly complex) ALC concepts. An inter-
pretation I satisfies a GCI C(D iff CI⊆DI , and it satisfies an equality C≡D
iff CI = DI . It is clear that C≡D can be seen as an abbreviation for the two
GCIs C(D and D(C. Therefore, we take a TBox to contain only GCIs. We
can also formulate statements about individuals. We denote individual names as
a, b, c. A concept (role) assertion axiom has the form C(a) (R(a, b)), where C is
a concept description, R is a role name, and a, b are individual names. To give
a semantics to ABoxs, we need to extend interpretations to individual names.
For each individual name a, ·I maps it to an element aI ∈ ΔI . The mapping
·I should satisfy the unique name assumption (UNA), that is, if a and b are
distinct names, then aI �=bI . An interpretation I satisfies a concept axiom C(a)
iff aI∈CI , it satisfies a role axiom R(a, b) iff (aI , bI)∈RI . An ABox contains a
finite set of concept and role axioms. A DL knowledge base K consists of a TBox
and an ABox, i.e. it is a set of GCIs and assertion axioms. An interpretation
I is a model of a DL (TBox or ABox) axiom iff it satisfies this axiom, and it
is a model of a DL knowledge base K if it satisfies every axiom in K. In the
following, we use M(φ) (or M(K)) to denote the set of models of an axiom φ (or
DL knowledge base K). K is consistent iff M(K)�=∅. Two DL knowledge bases
K1 and K2 are said to be element-equivalent iff there is a bijectin f from K1 to
K2 such that for every φ in K1, M(f(φ)) =M(φ). Let K be an inconsistent DL
knowledge base. A set K ′⊆K is a conflict of K if K ′ is inconsistent, and any
sub-knowledge base K ′′⊂K ′ is consistent. Given a DL knowledge base K and a
DL axiom φ, we say K entails φ, denoted as K |= φ, iff M(K)⊆M(φ). We use
KB to denote the set of all possible DL knowledge bases.

3 Generalizing the AGM Postulates for Revision to DLs

Let L be a propositional language constructed from a finite alphabet P of propo-
sitional symbols using the usual operators ¬ (not), ∨ (or) and ∧ (and). An in-
terpretation is a mapping from P to {true, false}. A model of a formula φ is an
interpretation that makes φ true in the usual sense. M(φ) denotes the set of all
the models of φ. A formula φ is satisfiable if M(φ)�=∅. We denote the classical
consequence relation by �. Two formulas φ and ψ are equivalent, denoted as
φ ≡ ψ iff M(φ) = M(ψ). In [17], AGM postulates for revision are rephrased as
follows, where ◦ is a revision operator which is a function from a pair of formulas
ψ and μ to a new formula denoted by ψ◦μ.
(R1) ψ ◦ μ � μ
(R2) If ψ ∧ μ is satisfiable then ψ ◦ μ≡ψ ∧ μ
(R3) If μ is satisfiable then ψ ◦ μ is also satisfiable
(R4) If ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 ◦ μ1 ≡ ψ2 ◦ μ2
(R5) (ψ ◦ μ) ∧ φ implies ψ ◦ (μ ∧ φ)
(R6) If (ψ ◦ μ) ∧ φ is satisfiable then ψ ◦ (μ ∧ φ) implies (ψ ◦ μ) ∧ φ

We first define a revision operator in DLs. Before that, we need to introduce
the notion of a disjunctive DL knowledge base (or DKB) in [19], which is defined

Knowledge Base Revision in Description Logics 389

as a set of DL knowledge bases. In the following, a DL knowledge base is viewed
as a disjunctive DL knowledge base which contains a single DL knowledge base.
In propositional logic, disjunction ∨ is a very important connective used to de-
fine revision operators. For example, the result of Dalal’s revision operator is
(syntactically) in disjunction form [5]. However, DL languages do not allow dis-
junctions of TBox statements with ABox statements. The semantics of DKBs is
defined as follows [19]:

Definition 1. A DKB K is satisfied by an interpretation I (or I is a model of
K) iff ∃K∈K such that I |= K. K entails φ, denoted K |= φ, iff every model of
K is a model of φ.

Let DKB denote a set of (disjunctive) DL knowledge bases. A revision operator
in DLs can be defined as follows.

Definition 2. A knowledge base revision operator (or revision operator for short)
in DLs is a function ◦ : DKB×KB → DKB which satisfies the following condition:
K◦K ′ |= φ, for all φ ∈ K ′.

That is, both the original knowledge base and the resulting knowledge base can
be a DKB, Whist the newly received knowledge base must be an ordinary DL
knowledge base (i.e. it is not a DKB).

We next generalize postulates (R1)-(R6) to DLs. The generalization is not
as trivial as we have thought. The problem is that both the original knowledge
base the result of revision may be a disjunctive DL knowledge base. To generalize
(R1)-(R6), we need to define the conjunction of a disjunctive DL knowledge base
and an ordinary DL knowledge base. A more simple way to generalize AGM
postulates is to define them in a model-theoretic way as follows.

It is clear that (R1)-(R3) can be generalized in the following way. Let K be a
(disjunctive) DL knowledge base and K ′ be a DL knowledge base, we have
(G1) K◦K ′ |= φ for all φ ∈ K ′

(G2) If M(K)∩M(K ′) �= ∅, then M(K◦K ′) = M(K)∩M(K ′)
(G3) If K ′ is consistent, then M(K◦K ′) �= ∅

(G1) guarantees that the new information is inferred from the revised knowl-
edge base. (G2) requires that when there is no conflict between K and K ′, the
result of revision be equivalent to the “union” of K and K ′, i.e. the set of its
models are M(K)∩M(K ′). (G3) is a condition preventing a revision from intro-
ducing unwarranted inconsistency.

The postulate (R4) is the principle of irrelevance of syntax. Its generalization
has the following form:
(G4) If M(K) =M(K1) and M(K ′) = M(K2), then M(K◦K ′) = M(K1◦K2).

(G4) requires that the revised knowledge base be independent of the syntax
of both original knowledge bases and new information. The rule (R4) (and its
generalization (G4)) is (are) very strong condition(s) because many syntax-based
revision operators in propositional logic do not satisfy it. It is interesting to
consider a weakened version of (G4) as follows.
(G4)′ If K1 and K2 are element-equivalent and M(K ′

1) = M(K ′
2), then

M(K1◦K ′
1) = M(K2◦K ′

2).

390 G. Qi, W. Liu, and D.A. Bell

Finally, (R5) and (R6) are generalized as follows.
(G5) M(K◦K ′)∩M(K ′′)⊆M(K◦(K ′∪K ′′))
(G6) If M(K◦K ′)∩M(K ′′) is not empty, then M(K◦(K ′∪K ′′))

⊆M(K◦K ′)∩M(K ′′)
We have the following definition.

Definition 3. A revision operator ◦ is said to be AGM compliant if it satisfies
(G1-G6). It is quasi-AGM compliant if it satisfies (G1)-(G3), (G4)′, (G5-G6).

4 Revision Operators for DLs

4.1 Definition

In this subsection, we propose a revision operator for DLs and provide a semantic
explanation of it.

In this paper, we only consider inconsistencies arising due to objects being
explicitly introduced in the ABox. That is, suppose K and K ′ are the original
knowledge base and the newly received knowledge base respectively, then for
each conflict Kc of K∪K ′, Kc must contain an ABox statement. For example,
we exclude the following case: � (∃R.C ∈ K and � (∀R.¬C ∈ K ′. The
handling of conflicting axioms in the TBox has been discussed recently in [25, 22].
In this paper, we discuss the resolution of conflicting information which contains
assertional axioms in the context of knowledge revision.

In order to define our approach, we need to extend ALC with nominals O
(also called individual names [24]). A nominal has the form {a}, where a is
an individual name. It can be viewed as a powerful generalization of DL ABox
individuals. The semantics of {a} is defined by {a}I = {aI} for an interpretation
I. Nominals are very important expressions and they are included in many
important DLs, such as SHOQ [13].

We give a method to weaken a GCI first.

Definition 4. Let C(D be a GCI. A weakened GCI (C(D)weak of C(D has
the form (C�¬{a1}�...�¬{an})(D, where n is the number of individuals to be
removed from C. We use d((C(D)weak) = n to denote the degree of (C(D)weak.

It is clear that when d((C(D)weak) = 0, (C(D)weak = C(D. The idea of
weakening a GCI is similar to weaken an uncertain rule in [4]. That is, when a
GCI is involved in conflict, instead of dropping it completely, we remove those
individuals which cause the conflict.

The weakening of an assertion is simpler than that of a GCI. The weakened
assertion φweak of an ABox assertion φ = C(a) is of the form φweak = �(a) or
φweak = φ. When φweak = �(a), we have I |= φweak for all I. Therefore, when
φweak = �(a), we simply delete φ. Indeed, we denote φweak by �(a) when φ is to
be deleted for convenience of theoretical analysis. The degree of φweak, denoted
as d(φweak), is defined as d(φweak) = 1 if φweak = �(a) and 0 otherwise.

Definition 5. Let K and K ′ be two DL knowledge bases. Suppose K ′ is consis-
tent and K∪K ′ is inconsistent. A DL knowledge base Kweak,K′ is a weakened
knowledge base of K w.r.t K ′ if it satisfies:

Knowledge Base Revision in Description Logics 391

– Kweak,K′ ∪K ′ is consistent, and
– There is a bijection f from K to Kweak,K′ such that for each φ∈K, f(φ) is

a weakening of φ.

The set of all weakened base of K w.r.t K ′ is denoted by WeakK′(K).

Example 1. Let K = {bird(tweety), bird(flies} and K ′ = {¬flies(tweety)},
where bird and flies are two concepts and tweety is an individual name. It is
easy to check that K ∪ K ′ is inconsistent. Let K1 = {�(tweety), bird(flies},
K2 = {bird(tweety), bird�¬{tweety}(flies}, then both K1 and K2 are weak-
ened bases of K w.r.t K ′.

The degree of a weakened base is defined as follows.

Definition 6. Let Kweak,K′ be a weakened base of a DL knowledge base K w.r.t
K ′. The degree of Kweak,K′ is defined as

d(Kweak,K′) = Σφ∈Kweak,K′d(φ)

In Example 1, we have d(K1) = d(K2) = 1.
We now define a revision operator.

Definition 7. Let K be a (disjunctive) DL knowledge base, and K ′ be a newly
received DL knowledge base. The result of weakening-based revision of K w.r.t
K ′, denoted as K◦wK

′, is defined as follows: If K ′ is inconsistent, then K◦wK
′ =

{K∪K ′ : K∈K}; Otherwise,

K◦wK
′ =

⋃
K∈K

{K ′∪Kweak,K′ : Kweak,K′∈WeakK′(K), and

� ∃Ki∈WeakK′(K), d(Ki) < d(Kweak,K′)}.

If K ′ is inconsistent, the result of revision is an inconsistent disjunctive DL
knowledge base. When K ′ is consistent, the result of revision of K by K ′ is
a disjunctive DL knowledge base consisting of DL knowledge bases which are
unions of K ′ and a weakened base of a DL knowledge base K in K with the
minimal degree. In the following, we assume that the original knowledge bases are
ordinary DL knowledge base. This assumption is used to simply our discussions.

We next consider the semantic aspect of our revision operator.

Definition 8. Let W be a non-empty set of interpretations and I ∈ W, φ a
DL axiom, and K a DL knowledge base. If φ is an assertion, the number of
φ-exceptions eφ(I) is 0 if I satisfies φ and 1 otherwise. If φ is a GCI of the
form C(D, the number of φ-exceptions for I is:

eφ(I) =
{
|CI∩(¬DI)| if CI∩(¬DI) is finite

∞ otherwise. (1)

The number of K-exceptions for I is eK(I) = Σφ∈Ke
φ(I). The ordering �K on

W is: I �K I ′ iff eK(I)≤eK(I ′), for I ′ ∈ W.

392 G. Qi, W. Liu, and D.A. Bell

The definition of φ-exception originates from Definition 6 in [19]. However, in
[19], it is used to define an ordering �π

K on a set of interpretations with the same
pre-interpretation π = (Δπ , dπ), where Δπ is a domain and dπ is a denotation
function which maps every individual name a to a different element in Δπ .

We give a proposition to give a semantic explanation of our weakening-based
revision operator.

Proposition 1. Let K be a consistent DL knowledge base. K ′ is a newly received
DL knowledge base. ◦w is the weakening-based revision operator. We then have

M(K◦wK
′) = min(M(K ′),�K).

Proposition 1 says that the models of the resulting knowledge base of our revision
operator are models of K ′ which are minimal w.r.t the ordering �K induced by
K. So it captures some kind of minimal change. All proofs of this paper can be
found in [23].

Example 2. Let K = {∀hasChild.RichHuman(Bob), hasChild(Bob,Mary),
RichHuman(Mary), hasChild(Bob, T om)}. Suppose we now receive new infor-
mation K ′ = {hasChild (Bob, John),¬RichHuman(John)}. It is clear that
K∪K ′ is inconsistent. Since ∀hasChild. RichHuman(Bob) is the only assertion
axiom involved in conflict with K ′, we only need to delete it to restore consis-
tency, that is, K◦wK

′ = {�(Bob), hasChild(Bob,Mary), RichHuman(Mary),
hasChild(Bob, T om), hasChild(Bob, John),¬RichHuman (John)}.

We have the following proposition.

Proposition 2. Given two DL knowledge bases K and K ′. The weakening-based
revision operator is not AGM-compliant but it is quasi-AGM compliant, that is,
it satisfies postulates (G1), (G2), (G3), (G4′), (G5) and (G6).

4.2 Refined Weakening-Based Revision

In the weakening-based revision, to weaken a conflicting assertion axiom, we sim-
ply delete it. The problem for this method of weakening is that it does not take
the constructors of description languages, such as conjunction (�) and value re-
striction (∀R.C), into account. This may result in counterintuitive conclusions.
In Example 2, after revising K by K ′ using the weakening-based operator, we
cannot infer that RichHuman(Tom) because ∀hasChild.RichHuman(Bob) is
discarded, which is counterintuitive. From hasChild(Bob, T om) and ∀hasChild.
RichHuman(Bob) we should have known thatRichHuman(Tom) and this asser-
tion is not in any conflict ofK∪K ′. The solution for this problem is to treat John
as an exception and that all children of Bob other than John are rich humans.

For an ABox assertion of the form ∀R.C(a), it is weakened by dropping some
individuals which are related to the individual a by the relation R, i.e. its weak-
ening has the form ∀R.(C � {b1, ..., bn})(a), where bi (i = 1, n) are individuals.

We give another example to illustrate the problem of the weakening method.

Knowledge Base Revision in Description Logics 393

Example 3. LetK = {bird�flies(tweety), bird(chirpy)} andK ′ = {¬flies(twee
ty)}. Clearly, bird�flies(tweety) is in conflict with ¬flies(tweety) inK ′. Let φ =
bird�flies(tweety). The weakening of φ is φweak = �(tweety).

In Example 3, to weaken φ, we simply delete it. However, bird(tweety), which
can be inferred from K, is not responsible for any conflict ofK∪K ′. Therefore, it
is counterintuitive to delete it. This intuition is based on the assumption of the
independence of concept names. That is, we take concept names as the “basic
unit of change”.

Before defining the new weakening method, we need to define an atomic con-
cept.

Definition 9. A concept is an atomic concept iff it is either a concept name or
is of one of the forms {a}, ∀R.C or ∃R.C, where a is an individual name and
C is a (complex) concept.

We assume that each concept C occurring in the original DL knowledge base K
is in conjunctive normal form, i.e., C = C1�...�Cn such that Ci = Ci1�...�Cim,
where Cij is either an atomic concept or the negation of a concept name.
Conjunctive normal forms can be generated by the following steps. First, we
transform the concept C into its negation normal form by the following equali-
ties: ¬¬Ci ≡ Ci, ¬(Ci�Di) ≡ ¬Ci�¬Di, ¬(Ci�Di) ≡ ¬Ci � ¬Di, ¬(∃R.Ci) ≡
∀R.¬Ci, ¬(∀R.Ci) ≡ ∃R.¬Ci. Second, we move disjunction inward and conjunc-
tion outward according to De Morgan’s law: C1�(C2�C3)≡(C1 �C2)�(C1�C3).
Suppose C(a) ∈ K, where C is a concept in conjunctive normal form, we as-
sume that each concept assertion C(a) is decomposed into φ1, ..., φn such that
φi = (Ci1�...�Cim)(a). Note that a cannot be moved inside the disjunction
constructor because disjunction of ABox assertions is not allowed in DLs.

We now define a new weakening method. The idea is that we weaken a con-
cept assertion by weakening its atomic concepts. That is, we have the following
definition.

Definition 10. Let φ = R(a, b) be a role assertion. A weakened relation as-
sertion φweak of φ is defined as φweak = �R(a, b) or φweak = φ, where �R is
interpreted as �I

R = ΔI×ΔI for each interpretation I = (ΔI , ·I). Let φ = C(a)
be a concept assertion. A weakened concept assertion φweak of φ is defined re-
cursively as follows:
1) if C = A or ¬A for a concept name A, then φweak = �(a) or φweak = φ,
2) if C = ∃R.D, then φweak = �(a) or φweak = φ,
3) if C = ∀R.D, then φweak = ∀R.(D � {b1, ..., bn})(a) or �(a),
4) if C = {b}, where b is an individual name, then φweak = �(a) or φweak = φ,
5) if C = Ci1�...�Cim, where Cij is either an atomic concept or the negation of
an atomic concept, then φweak = ((Ci1)weak�...�(Cim)weak)(a)1 if (Cij)weak �≡�
for all j and φweak = �(a) otherwise,
1 According to 1), 2), 3), and 4), we have (Cij)weak = ! or Cij if Cij is either a

concept name or the negation of a concept name or of the form ∃R.D or {b}, and
(Cij)weak = ∀R.(D � {b1, ..., bn}) if Cij is of the form ∀R.D.

394 G. Qi, W. Liu, and D.A. Bell

Let us explain the part 5) of Definition 10. Since the concept of φ is in disjunctive
form, if there exists a Cij such that (Cij)weak ≡ �, then C ≡ �. That is,
the weakening of a disjunct concept of φ may influence the weakening of other
disjuncts. When weakening a role assertion, we introduce the top role. However,
in implementation, the top role does not exist in the resulting knowledge base
because the role assertion is simply deleted if the role name is weakened into
the top role. In this paper, we only consider the refinement of the weakening of
ABox assertions. Similarly, we can also refine the weakening of TBox axioms.

We next define the degree of a weakened assertion.

Definition 11. Let φ = R(a, b), then d(φweak) = 1 if φweak = �R(a, b) and 0
otherwise. Let φ = C(a), then d(φ) is defined recursively as follows:
1) if C = A or ¬A for a concept name A, then d(φweak) = 1 if φweak = �(a)
and 0 otherwise,
2) if C = ∃R.C, then d(φweak) = 1 if φweak = �(a) and 0 otherwise,
3) if C = ∀R.D, then d(φweak) = n if φweak = ∀R.(D � {b1, ..., bn})(a) and +∞
otherwise,
4) if C = {b}, where b is an individual name, then d(φweak) = 1 if φweak = �(a)
and 0 otherwise,
5) if C = Ci1�...�Cim, where Cij is either an atomic concept or the negation of
an atomic concept, then d(φweak) = max{d(((Cij)weak)(a)) : j = 1, ...,m},

In part 5) of Definition 11, we use max (instead of sum) to determine the degree
of an assertion in “disjunction” form. This definition agrees with the semantic
interpretations of disjunction in many logics such as fuzzy logic and possibilistic
logic.

We call the weakened base obtained by applying weakening of GCIs in Defi-
nition 4 and weakening of assertions in Definition 10 as a refined weakened base.
We then replace the weakened base by the refined weakened base in Definition 7
and get a new revision operator, which we call a refined weakening-based revision
operator which is denote by ◦rw. Let us go back to Example 2 again. Accord-
ing to our discussion before, ∀hasChild.Rich Human(Bob) is the only assertion
axiom involved in the conflict in K and John is the only exception which makes
∀hasChild.RichHuman(Bob) in conflict with K ′, so K◦rwK

′ = {∀hasChild.
(RichHuman�{John})(Bob), hasChild(Bob,Mary), RichHuman(Mary),
hasChild(Bob, T om), hasChild(Bob, John),¬RichHuman(John)}. We can
then infer that RichHuman(Tom) from K◦rwK

′.
We consider another example. Let K = {((∀R.C)�D)(a), R(a, b)} and K ′ =

{¬D(a),¬C(b)}, where C and D are concept names. Clearly, K∪K ′ is inconsis-
tent. We can either weaken ((∀R.C)�D)(a) or R(a, b) to restore consistency. To
weaken R(a, b), we can simply delete it, i.e. its weakening has the form �R(a, b).
We have d(�R(a, b)) = 1. For φ = ((∀R.C)�D)(a), we should weaken ∀R.C in-
stead of D. This is because if we weakenD to � then (∀R.C)�D also needs to be
weakened to �. In this case, we have d(φweak) = +∞. In contrast, if we weaken
(∀R.C) �D to (∀R.(C�{b}))�D, then D does not need to be weakened. In this
case, we have d((∀R.(C�{b}))�D)(a)) = 1 and d(φweak) = 1. Therefore, there

Knowledge Base Revision in Description Logics 395

are two weakened bases ofK w.r.t K ′, i.e.K1 = {((∀R.(C�{b}))�D)(a), R(a, b)}
and K2 = {((∀R.C)�D)(a)}.

To give a semantic explanation of the refined weakening-based revision oper-
ator, we need to define a new ordering between interpretations.

Definition 12. Let W be a non-empty set of interpretations and I ∈ W, φ a
DL axiom, and K a DL knowledge base. If φ is a concept assertion, then the
number of φ-exceptions for I is defined recursively as follows:
1) if φ = A(a) or ¬A(a) for a concept name A, then eφr (I) = 0 if I |= φ and 1
otherwise,
2) if φ = ∃R.C(a), then eφr (I) = 0 if I |= φ and 1 otherwise,
3) If φ is an assertion of the form ∀R.C(a), the number of φ-exceptions for I
is:

eφr (I) =
{
|RI(aI)∩(¬CI)| if RI(aI)∩(¬CI) is finite

∞ otherwise, (2)

where RI(aI) = {b∈ΔI : (aI , b)∈RI}.
4) If φ = {b}(a), where b is an individual name, then eφr (I) = 0 if I |= φ and 1
otherwise,
5) φ = (Ci1�...�Cim)(a), where Cij is either an atomic concept or the negation
of an atomic concept, then eφr (I) = max{eCij(a)

r (I) : j = 1, ...,m}.
If φ is a role assertion, then eφr (I) = 0 if I |= φ and 1 otherwise.
If φ is a GCI of the form C(D, the number of φ-exceptions for I is:

eφr (I) =
{
|CI∩(¬DI)| if CI∩(¬DI) is finite

∞ otherwise. (3)

The number of K-exceptions for I is eKr (I) = Σφ∈Ke
φ
r (I). The refined ordering

�r,K on W is: I �r,K I ′ iff eKr (I)≤eKr (I ′), for I ′ ∈ W.

The following proposition gives the semantic interpretation of the refined
weakening-based revision operator.

Proposition 3. Let K be a consistent DL knowledge base. K ′ is a newly received
DL knowledge base. ◦rw is the refined weakening-based revision operator. We then
have

M(K◦rwK
′) = min(M(K ′),�r,K).

Proposition 3 says that the refined weakening-based operator can be accom-
plished with minimal change. The proof is similar to that of Proposition 1.

Proposition 4. Let K be a consistent DL knowledge base. K ′ is a newly received
DL knowledge base. We then have

M(K◦rwK
′)⊆M(K◦wK

′).

By Example 3, K◦rwK
′ and K◦wK

′ are not equivalent. Thus, we have shown
that the resulting knowledge base of the refined weakening-based revision con-
tains more information than that of the weakening-based revision. However, the

396 G. Qi, W. Liu, and D.A. Bell

refined weakening-based revision need to convert every ABox assertion to its
conjunctive normal form. In some cases this conversion can lead to an expo-
nential explosion of the size of the ABox assertion. So the sizes of the revised
DL knowledge bases of the refined weakening-based operator are exponentially
larger than those of the weakening-based operator in the worst case.

The refined weakening-based revision operator is still not AGM compliant.

Proposition 5. Given twoDL knowledge basesK andK ′. The refinedweakening-
based revision operator is not AGM-compliant but it is quasi-AGM compliant.

5 Related Work

The importance of applying AGM theory on belief change to terminological sys-
tems has not been fully recognized until recent years. In his book [20], Nebel
considered the revision problem in terminological logics in 1990. He proposed
some revision operators based on several existing approaches on modification of
a terminological knowledge base. When defining his revision operator, he pre-
sumed that the terminological knowledge is more relevant than the assertional
knowledge. Recently, some work has been done to analyze the feasibility of ap-
plying AGM theory on belief change to DLs [16, 7, 8]. However, none of them
considers the explicit construction of a revision operator. Furthermore, they
did not consider the application of AGM postulates for revision in DLs where
knowledge bases instead of knowledge sets are considered. The work in [16, 8] is
based on the coherence model, i.e. both the original and the revised knowledge
bases should be knowledge sets which are knowledge bases closed under logi-
cal consequence. In [7], Fuhrmann’s postulates for knowledge base contraction is
generalized to DLs. One may wonder if we can establish the relationship between
revisions and contractions via the Levi and Harper identities. However, the prob-
lem is that Levi and Harper identities are not applicable in DLs [8]. In [19], some
revision operators were proposed for revising a stratified DL knowledge base. The
semantic aspects of these revision operators are also considered. To define their
operators, an extra expression in DLs, called cardinality restrictions on concepts,
is necessary. In contrast, our operators are based on nominals. Since cardinality
restrictions can be encoded as nominals, our revision operators can be seen as
a refinement of the revision operators in [19]. In [14], a general framework for
reasoning with inconsistent ontologies was given based on concept relevance. A
problem with their framework is that they do not consider the structure of DL
language. For example, when a GCI is in conflict in a DL knowledge base, it is
deleted to restore consistency. Our work is also related to the work in [1], where
Reiter’s default logic is embedded into terminological representation formalisms.
In their paper, conflicting information is also treated as exceptions. To deal with
conflicting default rules, they instantiated each rule using individuals appearing
in the ABox and applied two existing default reasoning methods to compute all
extensions. This instantiation step is not necessary for our revision operators.
Furthermore, in [1], the resolution of conflicting ABox assertions was not consid-
ered. This work is also related to the work on updating DL ABoxes in [15]. They

Knowledge Base Revision in Description Logics 397

showed that in any standard DL in which nominals and the ”@” constructor
are not expressible, updated ABoxes cannot be expressed. They only consider
a simple form of ABox update where the update information contains possibly
negated ABox assertions that involve only atomic concepts and roles.

6 Conclusions and Further Work

In this paper, we have discussed the problem of applying AGM theory of be-
lief revision to DLs. We first generalized the reformulated AGM postulates for
revision to DLs. Then two revision operators were proposed by weakening as-
sertion axioms and GCIs. We showed that both revision operators satisfy the
generalized postulates and capture some notions of minimal change.

Several problems are left as further work. First, none of our revision opera-
tors is AGM compliant, that is, they do not satisfy (G4). We are looking for a
revision operator satisfying all the AGM postulates. Second, to implement our
revision operators, an important problem is to detect GCIs and and assertions
which are responsible for the conflict. Some existing techniques on debugging
of unsatisfiable classes (such as [25, 22]) can be adopted or generalized to deal
with this problem. We will develop tableaux-based algorithms for implement-
ing our revision operators. Based on the results in [25], it is expected that the
computational complexity of our operators may not increase the complexity of
consistency checking in the DL under consideration.

Acknowledgement

We would like to thank the anonymous reviewers for their useful comments which
have helped us to improve the quality of this paper.

References

1. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge
representation formalisms, Journal of Automated Reasoning, 14(1):149-180, 1995.

2. F. Baader, M. Buchheit, and B. Hollander. Cardinality restrictions on concepts.
Artificial Intelligence, 88:195-213, 1996.

3. F. Baader, D.L. McGuiness, D. Nardi, and Peter Patel-Schneider. The Description
Logic Handbook: Theory, implementation and application, Cambridge University
Press, 2003.

4. S. Benferhat, and R.E. Baida. A stratified first order logic approach for access
control. International Journal of Intelligent Systems, 19:817-836, 2004.

5. M. Dalal. Investigations into a theory of knowledge base revision: Preliminary
report, Proc. of AAAI’88, 3-7, 1988.

6. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web, Scientific American,
284(5):3443, 2001.

7. G. Flouris, D. Plexousakis and G. Antoniou. Generalizing the AGM postulates:
preliminary results and applications. In Proc. of NMR’04, 171-179, 2004.

398 G. Qi, W. Liu, and D.A. Bell

8. G. Flouris, D. Plexousakis and G. Antoniou. On applying the AGM theory to DLs
and OWL, In Proc. of ISWC’05, 216-231, 2005.

9. P. Gärdenfors, Knowledge in Flux-Modeling the Dynamic of Epistemic States, The
MIT Press, Cambridge, Mass, 1988.

10. P. Haase and L. Stojanovic. Consistent evolution of OWL ontologies. In Proc. of
2nd European Semantic Web Conference (ESWC’05), 182-197, 2005.

11. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A frame-
work for handling inconsistency in changing ontologies, In Proc. of ISWC’05,
LNCA3729, 353-367, 2005.

12. S.O. Hansson. In denfence of base contraction. Synthese, 91: 239-245, 1992.
13. I. Horrocks, and U. Sattler. Ontology reasoning in the SHOQ(D) description logic,

In Proc. of IJCAI’01, 199-204, 2001.
14. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontolo-

gies, In Proc. of IJCAI’05, 254-259, 2005.
15. H. Liu, C. Lutz, M. Miličić, and F. Wolter. Updating description logic ABoxes. In

Proc. of KR’06, 2006.
16. S.H. Kang and S.K. Lau. Ontology revision using the concept of belief revision. In

Proc. of 8th International Conference on Knowledge-base Intelligent Information
and Engineering Systems (KES’04), 261-267, 2004.

17. H. Katsuno and A.O. Mendelzon. Propositional Knowledge Base Revision and
Minimal Change, Artificial Intelligence, 52(3): 263-294, 1992.

18. C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete
domains, Journal of Artificial Intelligence Research, 23:667-726, 2005.

19. T. Meyer, K. Lee, and R. Booth. Knowledge integration for description logics, In
Proc. of AAAI’05, 645-650, 2005.

20. B. Nebel. Reasoning and Revision in Hybrid Representation Systems, LNAI 422,
Springer Verlag, Berlin, Heidelberg, New York, 1990.

21. B. Nebel. What is Hybrid in Hybrid Representation and Reasoning Systems?, In
F. Gardin and G. Mauri and M. G. Filippini, editors, Computational Intelligence
II: Proc. of the International Symposium Computational Intelligence 1989, North-
Holland, Amsterdam, 217-228, 1990.

22. B. Parsia, E. Sirin and A. Kalyanpur. Debugging OWL ontologies, In Proc. of
WWW’05, 633-640, 2005.

23. G. Qi, W. Liu and D.A. Bell. Knowledge base revision in description logics. Avail-
able at http://www.cs.qub.ac.uk/ G.Qi/qlb06e.pdf

24. A. Schaerf. Reasoning with individuals in concept languages. Data and Knowledge
Engineering, 13(2):141-176, 1994.

25. S. Schlobach, and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies, In Proc. of IJCAI’2003, 355-360, 2003.

26. M. Schmidt-Schauß, and G. Smolka. Attributive Concept descriptions with com-
plements, Artificial Intelligence, 48:1-26, 1991.

27. L. Stojanovic. Methods and Tools for Ontology Evolution, PhD thesis, University
of Karlsruhe, 2004.

Incomplete Knowledge in Hybrid Probabilistic
Logic Programs

Emad Saad

College of Computer Science and Information Technology
Abu Dhabi University

Abu Dhabi, UAE
emad.saad@adu.ac.ae

Abstract. Although negative conclusions are presented implicitly in
Normal Hybrid Probabilistic Programs (NHPP) [26] through the closed
world assumption, representing and reasoning with explicit negation is
needed in NHPP to allow the ability to reason with incomplete knowledge.
In this paper we extend the language of NHPP to explicitly encode clas-
sical negation in addition to non-monotonic negation. The semantics of
the extended language is based on the answer set semantics of traditional
logic programming [9]. We show that the proposed semantics is a natural
extension to the answer set semantics of traditional logic programming
[9]. In addition, the proposed semantics is reduced to stable probabilistic
model semantics of NHPP [26]. The importance of that is computational
methods developed for NHPP can be applied to the proposed language.
Furthermore, we show that some commonsense probabilistic knowledge
can be easily represented in the proposed language.

1 Introduction

Hybrid Probabilistic Programs (HPP) [25] is a probabilistic logic programming
framework that modifies the original Hybrid Probabilistic Programming frame-
work of [5], and generalizes and modifies the probabilistic annotated logic pro-
gramming framework, originally proposed in [17] and further extended in [18].
HPP [25] enables the user to explicitly encode his/her knowledge about the type
of dependencies existing between the probabilistic events being described by the
programs. In addition, it allows the ability to encode the user’s knowledge about
how to combine the probabilities of the same event derived from different rules.
The semantics of HPP [25], intuitively, captures the probabilistic reasoning ac-
cording to how likely are the various events to occur. It was shown that the HPP
[25] framework is more suitable for reasoning and decision making tasks. In ad-
dition, it subsumes Lakshmanan and Sadri’s [12] probabilistic implication-based
framework, as well as, it is a natural extension of traditional logic program-
ming. As a step towards enhancing its reasoning capabilities, the framework
of HPP was extended to cope with non-monotonic negation [26] by introduc-
ing the notion of Normal Hybrid Probabilistic Programs (NHPP) and providing
two different semantics namely; stable probabilistic model semantics and well-
founded probabilistic model semantics. It was shown in [26] that the relationship

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 399–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 E. Saad

between the stable probabilistic model semantics and the well-founded proba-
bilistic model semantics preserves the relationship between the stable model
semantics and the well-founded semantics for normal logic programs [7]. More
importantly, the stable probabilistic models semantics naturally extends the sta-
ble model semantics [8] of normal logic programs as well as the well-founded
probabilistic model semantics naturally extends the well-founded semantics [7]
of normal logic programs. A consequence of that is efficient algorithms and im-
plementations for computing those semantics can be developed by extending
the existing efficient algorithms and implementations for computing the stable
model semantics and the well-found semantics for normal logic programs, e.g.,
SMODELS [21].

An important limitation of the language of NHPP compared to traditional
logic programming [9] is its inability to represent and reason directly in the
presence of classical negation to cope with incomplete knowledge. This is be-
cause HPP [25] and NHPP [26] allow the closed world assumption in defining
their semantics. Therefore, any event represented by a program in either HPP
or NHPP has an associated probability interval (probability interval represents
the bounds on the degree of belief a rational agent has about the truth of an
event.) This means that events that cannot be derived from the facts and rules
in a program are assigned the probability interval [0, 0], by default, which rep-
resent the negative conclusions. Events that can be derived from the program
are assigned probability intervals other than [0, 0], which represent the positive
conclusions. However, a third possibility, which is unknown or undecidable, is
possible which represents information incompleteness. The reason for that is as-
suming that non-derivable events have the probability interval [0, 0] could lead
to serious implications.

Consider a medical doctor who treats his/her patient from a certain disease
(di) by taking specific medication (med) for that disease. The doctor knows
that if the patient took this medication he will be recovered. But the doctor
also knows that the patient is suffering from a heart disease and taking that
medication could affect the function of his heart and lead to death, although the
medication is very effective. So that the doctor can give the medication to the
patient with probability [0.87, 0.95] if there are no side effects of the medication
on the heart with probability [0.85, 0.85]. This situation can be represented as
an NHPP program as follows:

give(di,med) : [0.87, 0.95]← not (effect(med, heart) : [0.15, 0.15]).

If our knowledge regarding the side effects of the medication on the heart is
incomplete because they might have not been yet clinically proven, then the
medication should not be given to this specific patient, otherwise, he would
probably die. The current semantics of NHPP allows us to assume that proba-
bility interval of the side effects of the medication on the heart is [0, 0], which
is strictly less than [0.15, 0.15], and hence, medication is given to the patient,
although, the program has no enough knowledge to assume the contrary.

We propose to overcome this limitation by extending the language of NHPP to
explicitly allow classical negation (or explicit negation) as well as non-monotonic

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 401

negation (negation-as-failure) not, by introducing the notion of Extended Hybrid
Probabilistic Programs (EHPP). The semantics of EHPP is based on the answer
set semantics of traditional logic programming [9] and employs the Open World
Assumption. We show that some commonsense probabilistic knowledge can be
easily represented in the proposed language. We show that the proposed seman-
tics is a natural extension to the answer set semantics [9]. Moreover, we show
that the proposed semantics is reduced to the stable probabilistic model seman-
tics of NHPP [26]. The importance of that is computational methods developed
for NHPP can be applied to the language of EHPP. This paper is organized as
follows. Sections 2 and 3 describe the syntax and declarative semantics of EHPP
respectively. The probabilistic answer set semantics for EHPP is presented in sec-
tion 4. Finally, related work and conclusions with some perspectives are given
in sections 5 and 6 respectively.

2 Syntax

In this section we define the syntax of Extended Hybrid Probabilistic Programs
(EHPP), which are hybrid probabilistic logic programs with classical and non-
monotonic negation. In the following two subsections we review the basic notions
associated with EHPP [5, 26].

2.1 Probabilistic Strategies

Let C[0, 1] denotes the set of all closed intervals in [0, 1]. In the context of EHPP,
probabilities are assigned to primitive events (atoms) and compound events (con-
junctions or disjunctions of atoms) as intervals in C[0, 1]. Let [α1, β1], [α2, β2] ∈
C[0, 1]. Then the truth order asserts that [α1, β1] ≤t [α2, β2] iff α1 ≤ α2 and β1 ≤
β2. The set C[0, 1] and the relation ≤t form a complete lattice. In particular, the
join (⊕t) operation is defined as [α1, β1]⊕t [α2, β2] = [max(α1, α2),max(β1, β2)]
and the meet (⊗t) is defined as [α1, β1] ⊗t [α2, β2] = [min(α1, α2),min(β1, β2)]
w.r.t. ≤t. The type of dependency among the primitive events within a com-
pound event is described by probabilistic strategies [5], which are explicitly se-
lected by the user. We call ρ, a pair of functions 〈c,md〉, a probabilistic strat-
egy (p-strategy), where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic com-
position function, which is commutative, associative, monotonic w.r.t. ≤t, and
meets the following separation criteria: there are two functions c1, c2 such that
c([α1, β1], [α2, β2]) = [c1(α1, α2), c2(β1, β2)]. Whereas, md : C[0, 1] → C[0, 1] is
the maximal interval function. The maximal interval function md of a certain
p-strategy returns an estimate of the probability range of a primitive event, e,
from the probability range of a compound event that contains e. The compo-
sition function c returns the probability range of a conjunction (disjunction)
of two events given the ranges of its constituents. For convenience, given a
multiset of probability intervals M = {{[α1, β1], . . . , [αn, βn]}}, we use cM to
denote c([α1, β1], c([α2, β2], . . . , c([αn−1, βn−1], [αn, βn])) . . .). According to the
type of combination among events, p-strategies are classified into conjunctive

402 E. Saad

p-strategies and disjunctive p-strategies. Conjunctive (disjunctive) p-strategies
are employed to compose events belonging to a conjunctive (disjunctive) formula
(please see [5, 25] for the formal definitions).

2.2 Language Syntax

In this subsection, we describe the syntax of EHPP. Let L be an arbitrary
first-order language with finitely many predicate symbols, constants, and in-
finitely many variables. Function symbols are disallowed. In addition, let S =
Sconj∪Sdisj be an arbitrary set of p-strategies, where Sconj (Sdisj) is the set of
all conjunctive (disjunctive) p-strategies in S. The Herbrand base of L is de-
noted by BL. A literal is either an atom a or the negation of an atom ¬a, where
¬ is the classical negation. We denote the set of all literals in L by Lit. More
formally, Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}. An annotation denotes a probabil-
ity interval and it is represented by [α1, α2], where α1, α2 are called annotation
items. An annotation item is either a constant in [0, 1], a variable (annotation
variable) ranging over [0, 1], or f(α1, . . . , αn) (called annotation function) where
f is a representation of a computable total function f : ([0, 1])n → [0, 1] and
α1, . . . , αn are annotation items. The building blocks of the language of EHPP
are hybrid basic formulae. Let us consider a set of literals l1, . . . , ln and the p-
strategies ρ and ρ′. Then l1∧ρ . . .∧ρ ln and l1∨ρ′ . . .∨ρ′ ln are called hybrid basic
formulae. A hybrid literal is a hybrid basic formula l1∧ρ . . .∧ρ ln(l1∨ρ′ . . .∨ρ′ ln)
or the negation of hybrid basic formula ¬(l1 ∧ρ . . . ∧ρ ln)(¬(l1 ∨ρ′ . . . ∨ρ′ ln)).
bfS(Lit) is the set of all ground hybrid literals formed using distinct literals
from Lit and p-strategies from S. Note that any hybrid basic formula F can
be represented in terms of another hybrid basic formula G such that F = ¬G,
since ¬¬a = a, (a1 ∧ρ a2) = ¬(¬a1 ∨ρ¬a2) and (a1 ∨ρ′ a2) = ¬(¬a1 ∧ρ′ ¬a2) and
∧ρ,∨ρ,∨ρ′ , and ∧ρ′ are associative and commutative. An annotated hybrid basic
formula is an expression of the form F : μ where F is a hybrid basic formula and
μ is an annotation. An annotated hybrid literal is an annotated positive hybrid
basic formula F : μ or an annotated negative hybrid basic formula (¬F) : μ.

Definition 1 (E-rules). An extended hybrid probabilistic rule (E-rule) is an
expression of the form

l : μ← L1 : μ1, . . . , Lm : μm, not (Lm+1 : μm+1), . . . , not (Ln : μn)
where l is a literal, Li (1 ≤ i ≤ n) are hybrid literals, and μ, μi (1 ≤ i ≤ n) are
annotations.

The intuitive meaning of an E-rule is that, if for each Li : μi (1 ≤ i ≤ m), Li

is true with probability interval at least μi and for each not (Lj : μj) (m+ 1 ≤
j ≤ n), it is not known that Lj is true with probability interval at least μj , then
l is true with probability interval at least μ.

Definition 2 (E-programs). An extended hybrid probabilistic program over
S (E-program) is a pair P = 〈R, τ〉, where R is a finite set of E-rules with
p-strategies from S, and τ is a mapping τ : Lit→ Sdisj.

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 403

The mapping τ in the above definition associates to each literal l a disjunctive
p-strategy that will be employed to combine the probability intervals obtained
from different E-rules having l in their heads. An E-program is ground if no
variables appear in any of its rules.

3 Satisfaction and Models

In this section, we define the declarative semantics of EHPP. We define the
notions of interpretations, models, and satisfaction of E-programs. The notion
of a probabilistic model (p-model) is based on hybrid formula function.

Definition 3. A hybrid formula function is a mapping h : bfS(Lit) → C[0, 1]
that satisfies the following conditions:

• Commutativity: h(L1 ∗ρ L2) = h(L2 ∗ρ L1), ∗ ∈ {∧,∨}, ρ ∈ S

• Composition: cρ(h(L1), h(L2)) ≤t h(L1 ∗ρ L2), ∗ ∈ {∧,∨}, ρ ∈ S

• Decomposition. For any hybrid basic formula L, ∗ ∈ {∧,∨}, ρ ∈ S, and
M ∈ bfS(Lit): mdρ(h(L ∗ρ M)) ≤t h(L).

If the probability of an event e is pr(e), then the probability of ¬e is pr(¬e) =
1 − pr(e). This can be generalized to probability intervals as follows. Given
pr(e) = [α1, α2] is the probability interval of an event e then the probability
interval of the event ¬e is given by pr(¬e) = [1, 1] − pr(e) = [1 − α2, 1 − α1].
Note that Definition 3 does not restrict the assignment of probability intervals
to formulae in hybrid formula functions. However, since we allow both an event
and its negation to be defined in hybrid formula functions, more conditions need
to be imposed on hybrid formula functions to ensure their consistency. This can
be characterized by the following definition.

Definition 4. A total (partial) hybrid formula function h is inconsistent if there
exists F,¬F ∈ bfS(Lit) (F,¬F ∈ (dom(h)) such that h(¬F) �= [1, 1]− h(F).

Definition 4 states that a hybrid formula function h is consistent if for any
F,¬F ∈ dom(h) we have h(¬F) = [1, 1]− h(F).

Definition 5. We say a set C, a subset of Lit, is a set of consistent literals if
there is no pair of complementary literals a and ¬a belonging to C. Similarly, a
consistent set of hybrid literals C∗ is a subset of bfS(Lit) such that there is no
pair of complementary hybrid literals F and ¬F belonging to C∗.

Definition 6. A consistent hybrid formula function h is either not inconsistent
or maps a consistent set of hybrid literals C∗ to C[0, 1].

A consistent hybrid formula function is a partial or total hybrid formula function.
The notion of truth order can be employed to hybrid formula functions (partial
or total). Given hybrid formula functions h1 and h2, we say

(h1 ≤o h2) =⇒ (dom(h1) ⊆ dom(h2) and ∀L ∈ dom(h1) h1(L) ≤t h2(L)).

404 E. Saad

The set of all hybrid formula functions, HFF , and the order ≤o form a complete
lattice. The meet ⊗o and the join ⊕o operations are defined respectively as
follows.

Definition 7. Let h1 and h2 be two hybrid formula functions. The meet ⊗o and
join ⊕o operations corresponding to the partial order ≤o are defined respectively
as:
• (h1⊗oh2)(F) = h1(F)⊗th2(F) for all F ∈ (dom(h1)∩dom(h2)), otherwise,
undefined.
• (h1 ⊕o h2)(F) = h1(F)⊕t h2(F) for all F ∈ (dom(h1) ∩ dom(h2)),
(h1 ⊕o h2)(F) = h1(F) for all F ∈ (dom(h1) \ dom(h2)), and
(h1⊕oh2)(F) = h2(F) for all F ∈ (dom(h2)\dom(h1)), otherwise, undefined.

Definition 8. A probabilistic interpretation (p-interpretation) of an E-program
P is a (partial or total) hybrid formula function.

The satisfiability of an E-program is based on the satisfaction of its E-rules.

Definition 9 (Probabilistic Satisfaction). Let P = 〈R, τ〉 be a ground E-
program, h be a p-interpretation, and
r ≡ l : μ ← L1 : μ1, . . . , Lm : μm, not (Lm+1 : μm+1), . . . , not (Ln : μn) ∈ R.
Then
• h satisfies Li : μi (denoted by h |= Li : μi) iff Li ∈ dom(h) and μi ≤t h(Li).
• h satisfies not (Lj : μj) (denoted by h |= not (Lj : μj)) iff Lj ∈ dom(h)
and μj 	t h(Lj) or Lj /∈ dom(h).
• h satisfies Body ≡ L1 : μ1, . . . , Lm : μm, not (Lm+1 : μm+1), . . . , not (Ln :
μn) (denoted by h |= Body) iff ∀(1 ≤ i ≤ m), h |= Li : μi and ∀(m+1 ≤ j ≤
n), h |= not (Lj : μj).
• h satisfies l : μ← Body iff h |= l : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every E-rule in R and for every literal l ∈
dom(h), cτ(l){{μ|l : μ← Body ∈ R and h |= Body}} ≤t h(l).

Definition 10 (Models). Let P be an E-program. A probabilistic model (p-
model) of P is a p-interpretation h of P that satisfies P .

We say that h is a minimal p-model of P if there is no p-model h′ of P such
that h′ <o h. An E-program without non-monotonic negation is simpler and has
exactly one minimal p-model. The following results allow us to characterize the
minimal (least) p-model (we call this least p-model probabilistic answer set) of
an E-program without non-monotonic negation.

Proposition 1. Let P = 〈R, τ〉 be a ground E-program without non-monotonic
negation, i.e. n = m for each E-rule r ∈ R, and h1, h2 be two p-models of P .
Then h1 ⊗o h2 is also a p-model of P .

Corollary 1. Let P be a ground E-program without non-monotonic negation
and let HP be the set of all p-models of P . Then, hP = ⊗o{h|h ∈ HP } is the
probabilistic answer set of P .

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 405

However, it is possible to get the probabilistic answer set of an E-program P
without non-monotonic negation and this probabilistic answer set is inconsistent.
If this is the case, we say P is inconsistent. In other words, P is inconsistent if
it has inconsistent probabilistic answer set. If P is inconsistent then LIT , where
LIT : bfS(Lit) → [1, 1], is the probabilistic answer set of P . In this case every
hybrid literal with probability interval [1, 1] follows from P . We adopt this view
from the answer set semantics of traditional logic programming [9].

Example 1. Consider the following E-programP =〈R, τ〉 without non-monotonic
negation, where R is

c : [0.35, 0.91] ← a : [0, 0.11], b : [0.8, 0.99]
¬c : [0, 0.21] ← a : [0.1, 0.13],¬b : [0.05, 0.08]
d : [0.12, 0.18] ← c : [0.35, 0.65]
¬d : [0.45, 0.55]← a : [0, 0.15],¬b : [0.02, 0.22],¬c : [0, 0.1]
¬b : [0.15, 0.3] ←
a : [0.1, 0.2] ←

and τ is any arbitrary assignment of disjunctive p-strategies. It is easy to verify
that P has unique probabilistic answer set h where h(a) = [0.1, 0.2], h(¬b) =
[0.15, 0.3], h(¬c) = [0, 0.21], h(¬d) = [0.45, 0.55].

Example 2. Consider the following E-program P = 〈R, τ〉 where R is

b : [0.3, 0.4] ← ¬a : [0.7, 0.8]
a : [0.1, 0.22]← b : [0.55, 0.7]
a : [0.2, 0.3] ←
b : [0.4, 0.5] ←

and τ(a) = τ(b) = pcd and τ(¬b) = τ(¬a) = π where π is any arbitrary disjunc-
tive p-strategy. The pcd denotes the disjunctive positive correlation p-strategy
whose composition function is defined as: cpcd([α1, β1], [α2, β2])=[max(α1, α2),
max(β1, β2)]. Then h where h(a) = [0.2, 0.3], h(b) = [0.4, 0.5] is the probabilistic
answer set of P .

Proposition 2. Every E-program P without non-monotonic negation has unique
probabilistic answer set hP .

Associated with each E-program P without non-monotonic negation, is an op-
erator, TP , called the fixpoint operator, which maps a p-interpretation to a p-
interpretation.

Definition 11. Let P = 〈R, τ〉 be a ground E-program without non-monotonic
negation, h be a p-interpretation, and HFF be the set of all hybrid formula
functions. The fixpoint operator TP is a mapping TP : HFF → HFF which is
defined as follows:

1. if l is a literal, TP (h)(l) = cτ(l) Ml where Ml = {{μ|l : μ ← Body ∈ R such
that h |= Body}}.

406 E. Saad

2. TP (h)(L1 ∧ρ L2) = cρ(TP (h)(L1), TP (h)(L2)) where (L1 ∧ρ L2) ∈ bfS(Lit)
and L1, L2,∈ dom(TP (h))

3. TP (h)(L1 ∨ρ′ L2) = cρ′(TP (h)(L1), TP (h)(L2)) where (L1 ∨ρ′ L2) ∈ bfS(Lit)
and L1, L2,∈ dom(TP (h)).

If Ml is empty—i.e., there are no E-rules in P whose heads contain l such that
their bodies are satisfied by h—then no probability interval is assigned to l. This
means the probability interval of l is unknown with respect to h. Let us now
proceed in the construction of the probabilistic answer set as repeated iteration
of the fixpoint operator TP .

Definition 12. Let P be a ground E-program without non-monotonic negation.
Then
• TP ↑ 0 = ∅ where ∅ is the empty set.
• TP ↑ α = TP (TP ↑ (α− 1)) where α is a successor ordinal.
• TP ↑ λ = ⊕o{TP ↑ α|α < λ} where λ is a limit ordinal.

Lemma 1. The TP operator is monotonic.

The properties of the TP operator guarantee the existence of a least fixpoint
and its correspondence to the probabilistic answer set of E-programs without
non-monotonic negation.

Proposition 3. Let P be an E-program without non-monotonic negation and h
be a p-interpretation. Then h is a p-model of P iff TP (h) ≤o h.

Theorem 1. Let P be an E-program without non-monotonic negation. Then,
hP = lfp(TP).

Example 3. Let us reconsider the E-program P , without non-monotonic nega-
tion, described in Example 1. It is easy to see that the lfp(TP) assigns [0.1, 0.2]
to a, [0.15, 0.3] to ¬b, [0, 0.21] to ¬c, and [0.45, 0.55] to ¬d.

4 Probabilistic Answer Set Semantics for E-Programs

In this section we define the probabilistic answer sets of E-programs (with non-
monotonic negation), which extend the notion of answer sets for traditional
logic programming [9]. The semantics is defined in two steps. First, we guess a
probabilistic answer set h for a certain E-program P , then we define the notion
of the probabilistic reduct of P with respect to h. The probabilistic reduct is
an E-program without non-monotonic negation which has a unique probabilistic
answer set. Second, we determine whether h is a probabilistic answer set for P .
This is verified by determining whether h is the probabilistic answer set of the
probabilistic reduct of P w.r.t. h.

Definition 13 (Probabilistic Reduct). Let P =〈R, τ〉 be a ground E-program
and h be a p-interpretation. The probabilistic reduct P h of P w.r.t. h is P h =

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 407

〈Rh, τ〉 where:

Rh=

⎧⎨
⎩ l :μ←L1 :μ1, . . . , Lm :μm

l : μ← L1 : μ1, . . . , Lm : μm,
not (Lm+1 :μm+1), . . . , not (Ln :μn)∈R and

∀(m + 1 ≤ j ≤ n), μj 	t h(Lj) or Lj /∈ dom(h)

⎫⎬
⎭

The probabilistic reduct P h is an E-program without non-monotonic negation.
Therefore, its probabilistic answer set is well-defined. For any not (Lj : μj) in the
body of r ∈ R with μj 	t h(Lj) means that it is not known that the probability
interval of Lj is at least μj given the available knowledge, and not (Lj : μj) is
removed from the body of r. In addition, if Lj /∈ dom(h), i.e., Lj is undefined
in h, then it is completely not known (undecidable) that the probability interval
of Lj is at least μj . In this case, not (Lj : μj) is also removed from the body of
r. Here we distinguish between the case where it is not known the probability
of Lj is at least μj , because we have some but incomplete knowledge about the
probability of Lj (by μj 	t h(Lj)), and the case where we have entirely no
knowledge about the probability interval of Lj (by Lj /∈ dom(h)). If μj ≤t h(Lj)
then we know that the probability interval of Lj is at least μj and the body of
r is not satisfied and r is trivially ignored.

Definition 14. A p-interpretation h is a probabilistic answer set of an E-program
P if h is the probabilistic answer set of P h.

The domain of a probabilistic answer set of an E-program represents an agent set
of beliefs based on the knowledge represented by the E-program. However, the
probability intervals associated to these beliefs represent the agent belief degrees
on these beliefs. Intuitively, the probabilistic answer sets of an E-program are
the possible sets of beliefs with associated beliefs degrees an agent might have.
Note that E-programs without classical negation (normal hybrid probabilistic
programs [26]), i.e., E-programs that contain no negative literals either in head
or in the body of E-rules, have probabilistic answer sets with hybrid literals
consisting of only atoms. In other words, the domain of probabilistic answer set
in this case consists of positive hybrid basic formulae. Moreover, the definition
of probabilistic answer sets coincides with the definition of stable probabilistic
models defined in [26]. This implies that the probabilistic answer sets for a
normal hybrid probabilistic program are equivalent to its stable probabilistic
models. This means that the application of probabilistic answer set semantics
to normal hybrid probabilistic programs is reduced to the stable probabilistic
model semantics for normal hybrid probabilistic programs. However, there are
a couple of main differences between the two semantics. A probabilistic answer
set may be a partial p-interpretation, however, a stable probabilistic model is a
total p-interpretation. In addition, each hybrid basic formula F with probability
interval [0,0]— i.e. there is no proof that F has probability interval different from
[0, 0] or F is false by default— in a stable probabilistic model of a normal hybrid
probabilistic program corresponds to the fact that the probability interval of F
is unknown, and hence undefined, in its equivalent probabilistic answer set.

408 E. Saad

Proposition 4. Let P be an E-program without classical negation. Then h is a
probabilistic answer set for P iff h′ is a stable probabilistic model of P , where
h(F) = h′(F) for h′(F) �= [0, 0] and h(F) is undefined for h′(F) = [0, 0].

Proposition 4 shows that there is a simple reduction from E-programs to normal
hybrid probabilistic programs. The importance of this is that, under the con-
sistency condition, computational methods developed for normal hybrid proba-
bilistic programs can be applied to extended hybrid probabilistic programs.

Example 4. In addition to the intuitive representation, the undesirable conse-
quences due to the use of non-monotonic negation represented by give(di,med) :
[0.87, 0.95] ← not (effect(med, heart) : [0.15, 0.15]), described in the introduc-
tion, can be eliminated by using classical negation instead. Therefore, by using
the classical negation we get

give(di,med) : [0.87, 0.95]← ¬ effect(med, heart) : [0.85, 0.85].

Then, give(di,med) can be concluded with probability interval [0.87, 0.95] if no
side effects of the medication on the heart (¬ effect(med, heart)) is concluded
with probability interval at least [0.85, 0.85].

Example 5. Suppose that we know a bird can fly with probability interval at
least the probability range between 70% and 85% as long as it is not known
that it is incapable of flying with probability interval at least the probability
range from 30% to 35%. However, a bird is incapable of flying with probability
interval at least the probability range from 48% to 65% if it is wounded with
probability interval at least the probability range from 50% to 68%. Nevertheless,
certainly, a bird is incapable of flying if it is a penguin. In addition, we also
know that Tweety and Rocky are birds. Rocky is penguin, and there is a 70% to
100% chance that Tweety is injured. This can be represented by the following
E-program P = 〈R, τ〉 where R is

fly(X) : [0.7, 0.85] ← bird(X) : [1, 1], not(¬fly(X) : [0.3, 0.35])
¬fly(X) : [0.48, 0.65] ← wounded(X) : [0.5, 0.68]
¬fly(X) : [1, 1] ← penguin(X) : [1, 1]
bird(tweety) : [1, 1] ←
wounded(tweety) : [0.7, 1]←
bird(rocky) : [1, 1] ←
penguin(rocky) : [1, 1] ←

and τ is any arbitrary assignment of disjunctive p-strategies. P has only one
probabilistic answer set h where h(bird(tweety))=[1, 1], h(bird(rocky))=[1, 1], h
(wounded(tweety))= [0.7, 1], h(penguin(rocky))=[1, 1], h(¬fly(tweety))= [0.48,
0.65], h(¬fly(rocky)) = [1, 1].

In the following we define the immediate consequence operator of E-programs
and study its relationship to the probabilistic answer sets.

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 409

Definition 15. Let P = 〈R, τ〉 be a ground E-program and h ∈ HFF . The
immediate consequence operator T ′

P is a mapping T ′
P : HFF → HFF defined

as follows:

1. T ′
P (h)(l) = cτ(l) M

′
l where

M ′
l=
{{

μ
l :μ←L1 :μ1, . . . , Lm :μm, not (Lm+1 :μm+1), . . . , not (Ln :μn)∈R and
∀(1 ≤ i ≤ m), h |= Li : μi and ∀(m + 1 ≤ j ≤ n), h |= not (Lj : μj)

}}

2. T ′
P (h)(L1 ∧ρ L2) = cρ(T ′

P (h)(L1), T ′
P (h)(L2)) where (L1 ∧ρ L2) ∈ bfS(Lit)

and L1, L2 ∈ dom(T ′
P (h)).

3. T ′
P (h)(L1 ∨ρ′ L2) = cρ′(T ′

P (h)(L1), T ′
P (h)(L2)) where (L1 ∨ρ′ L2) ∈ bfS(Lit)

and L1, L2 ∈ dom(T ′
P (h)).

It is easy to see that T ′
P extends TP to handle E-rules with non-monotonic

negation, and hence, T ′
P = TP for any E-program P without non-monotonic

negation.

Theorem 2. Let P = 〈R, τ〉 be an E-program such that for every E-rule in R,
n = m. Then T ′

P = TP .

The operator T ′
P is not monotonic w.r.t. ≤o. This can be seen by the following

result.

Proposition 5. T ′
P is not monotonic w.r.t. ≤o.

Example 6. Consider the E-program: a : [0.2, 0.3] ← not (b : [0.6, 0.8]). Let
h1 = ∅ be a p-interpretation. In addition, let h2 be a p-interpretation that
assigns [0.65, 0.9] to b. Hence, h1 ≤o h2. But T ′

P (h1) assigns [0.2, 0.3] to a and
T ′

P (h2) = ∅. Thus, T ′
P (h1) 	o T

′
P (h2)

The following results establish the relationship between the T ′
P operator and the

probabilistic answer set semantics.

Lemma 2. Let P be an E-program and h be a probabilistic answer set of P .
Then T ′

P (h) = h, i.e., h is a fixpoint of T ′
P .

Theorem 3. Let P be an E-program and h be a probabilistic answer set of P .
Then h is a minimal fixpoint of T ′

P .

It is worth noting that not every minimal fixpoint of T ′
P is a probabilistic answer

set for P . Consider the following E-program P .

Example 7. Let P = 〈R, τ〉 where τ is arbitrary and R contains

a : [0.1, 0.33]← not (a : [0.1, 0.33])
a : [0.1, 0.33]← b : [1, 1]

It is easy to verify that the p-interpretation h(a) = [0.1, 0.33] and h(b) = [1, 1]
is a minimal fixpoint of T ′

P . However, P h consists of a : [0.1, 0.33] ← b : [1, 1]
where lfp(TP h) = ∅. Hence, h is not a probabilistic answer set for P .

410 E. Saad

Let us show that the probabilistic answer set semantics generalizes the answer
set semantics of extended logic programs in traditional logic programming [9].
An extended logic program P can be represented as an E-program P ′ = 〈R, τ〉
where each extended rule

l← l1, . . . , lm, not lm+1, . . . , not ln ∈ P

can be encoded, in R, as an E-rule of the form

l : [1, 1]← l1 : [1, 1], . . . , lm : [1, 1], not (lm+1 : [1, 1]), . . . , not (ln : [1, 1]) ∈ R

where l, l1, . . . , lm, lm+1, . . . , ln are literals and [1, 1] represents the truth value
true. τ is any arbitrary assignment of disjunctive p-strategies. We call the class
of E-programs that consists only of E-rules of the above form as EHPP1. The
following result shows that extended logic programs [9] are subsumed by EHPP.

Proposition 6. Let P be an extended logic program. Then S′ is an answer set
of P iff h is a probabilistic answer of P ′ ∈ EHPP1 that corresponds to P where
h(l) = [1, 1] iff l ∈ S′ and h(l′) is undefined iff l′ /∈ S′.

5 Related Work

The problem of extending uncertain logic programming in general and proba-
bilistic logic programming in particular with non-monotonic negation (negation-
as-failure or default negation) has been extensively studied in the literature. A
survey on these various approaches can be found in [26]. However, the main dif-
ference in this work is that we allow classical negation as well as non-monotonic
negation to reason with incomplete knowledge, given the underlying semantics
is the answer set semantics for traditional logic programming [9], which has not
been addressed by the current work in probabilistic logic programming. The
closest to our work is the work presented in [2]. In [2], an elegant way has been
presented to reason with causal Bayesian nets by considering a body of logi-
cal knowledge, by using the answer set semantics of traditional logic program-
ming [9]. Answer set semantics [9] has been used in [2] to emulate the possible
world semantics. Probabilistic logic programs of [2] is expressive and straight-
forward and relaxed some restrictions on the logical knowledge representation
part existed in similar approaches to Bayesian reasoning, e.g., [10, 16, 23, 24, 27].
Since [17, 18, 19, 5] provided a different semantical characterization to probabilis-
tic logic programming, it was not clear that how these proposals relate to [2].
However, the work presented in this paper and [26], which are modification and
generalization of the work presented in [17, 18, 19, 5], are closely related to [2].
The work presented in this paper strictly syntactically and semantically sub-
sumes probabilistic logic programs of [2]. This can be easily argued by the fact
that EHPP naturally extends traditional logic programming with answer set
semantics [9], and probabilistic logic programs of [2] mainly rely on traditional
logic programming with answer set semantics [9] as a knowledge representation

Incomplete Knowledge in Hybrid Probabilistic Logic Programs 411

and inference mechanism for reasoning with causal Bayesian nets. This is true
although EHPP does not allow disjunctions in the head of rules since it is easy
to transform an extended disjunctive logic program into an equivalent extended
logic program via a simple transformation [1]. In this sense, the comparisons
established between [2] and the existing probabilistic logic programming ap-
proaches such as [10, 16, 23, 24, 27, 17, 18, 19, 5, 15, 4] also carry over to EHPP
and these approaches. In addition, unlike [2], EHPP does not put any restriction
on the type of dependency existing among events.

6 Conclusions and Future Work

We presented an extension to the language of normal hybrid probabilistic pro-
grams [26], called extended hybrid probabilistic programs, to allow classical
negation, in addition to, non-monotonic negation. The extension is important
to provide the capability of reasoning with incomplete knowledge. We devel-
oped a semantical characterization of the extended language, which relies on a
probabilistic generalization of the answer set semantics, originally developed for
extended logic programs [9]. We showed that the probabilistic answer set seman-
tics naturally generalizes the answer set semantics for extended logic programs
[9]. Furthermore, we showed that the proposed semantics is reduced to stable
probabilistic model semantics of NHPP proposed in [26]. The importance of that
is computational methods developed for NHPP can be applied to the language
of EHPP. Moreover, we showed that some commonsense probabilistic knowledge
can be easily represented in the proposed language.

A topic of future research is to extend the language of extended hybrid proba-
bilistic programs to allow disjunctions of annotated literals in the heads of rules.
In addition, we intend to investigate the computational aspects of the prob-
abilistic answer set semantics—by developing algorithms and implementations
for computing the proposed semantics. The algorithms and implementations we
will develop will be based on appropriate extensions of the existing technologies
for computing the answer semantics for extended logic programs.

References

1. C. Baral. Knowledge representation, reasoning, and declarative problem solving.
Cambridge University Press, 2003.

2. C. Baral et al. Probabilistic reasoning with answer sets. In 7th International
Conference on Logic Programming and Nonmonotonic Reasoning, Springer Verlag,
2004.

3. C.V. Damasio et al. Coherent well-founded annotated logic programs. LPNMR,
Springer, 1999.

4. A. Dekhtyar and I. Dekhtyar. Possible worlds semantics for probabilistic logic
programs. International Conference on Logic Programming, 137-148, 2004.

5. A. Dekhtyar and V.S. Subrahmanian. Hybrid probabilistic program. Journal of
Logic Programming, 43(3): 187-250, 2000.

412 E. Saad

6. M. Dekhtyar, A. Dekhtyar, and V. S. Subrahmanian. Hybrid Probabilistic Pro-
grams: Algorithms and Complexity. In Proc. of UAI Conference, pages 160-169,
1999.

7. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620-650, 1991.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
ICSLP, 1988, MIT Press.

9. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3-4):363-385, 1991.

10. K. Kersting and L. De Raedt. Bayesian Logic Programs. In Inductive LP, 2000.
11. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic program-

ming and its applications. Journal of Logic Programming, 12:335–367, 1992.
12. L.V.S. Lakshmanan and F. Sadri. On a theory of probabilistic deductive databases.

Journal of Theory and Practice of Logic Programming, 1(1):5-42, January 2001.
13. Y. Loyer and U. Straccia. The well-founded semantics in normal logic programs

with uncertainty. FLOPS, 2002, Springer Verlag.
14. Y. Loyer and U. Straccia. The approximate well-founded semantics for logic pro-

grams with uncertainty. In 28th International Symposium on Mathematical Foun-
dations of Computer Science, 2003.

15. T. Lukasiewicz. Probabilistic logic programming. In 13th European Conference on
Artificial Intelligence, 388–392, 1998.

16. S. Muggleton. Stochastic logic programming. In Proceedings of the 5th Interna-
tional Workshop on Inductive Logic Programming, 1995.

17. R.T. Ng and V.S. Subrahmanian. Probabilistic logic programming. Information
& Computation, 101(2), 1992.

18. R.T. Ng and V.S. Subrahmanian. A semantical framework for supporting subjec-
tive and conditional probabilities in deductive databases. ARJ, 10(2), 1993.

19. R.T. Ng and V.S. Subrahmanian. Stable semantics for probabilistic deductive
databases. Information & Computation, 110(1), 1994.

20. P. Nicolas, L. Garcia , and I. Stphan. Possibilistic stable models. In International
Joint Conference on Artificial Intelligence, 2005.

21. I. Niemela and P. Simons. Efficient implementation of the well-founded and sta-
ble model semantics. In Joint International Conference and Symposium on Logic
Programming, 289-303, 1996.

22. J. Pearl. Causality. Cambridge University Press, 2000.
23. D. Poole. The Independent choice logic for modelling multiple agents under un-

certainty. Artificial Intelligence, 94(1-2), 7-56, 1997.
24. D. Poole. Abducing through negation as failure: stable models within the indepen-

dent choice logic. Journal of Logic Programming, Vol 44, 5-35, 2000.
25. E. Saad and E. Pontelli. Towards a more practical hybrid probabilistic logic pro-

gramming framework.In Practical Aspects of Declarative Languages, 2005.
26. E. Saad and E. Pontelli. Hybrid probabilistic logic programs with non-monotonic

negation. In International Conference on Logic Programming. Springer Verlag,
2005.

27. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. International Conference on Logic Programming, 431-445, 2004.

A Formal Analysis of KGP Agents

F. Sadri and F. Toni

Department of Computing, Imperial College London
{fs, ft}@doc.ic.ac.uk

Abstract. This paper contributes to the identification, formalisation
and analysis of desirable properties of agent models in general and of the
KGP model in particular. This model is specified in computational logic,
and consequently lends itself well to formal analysis. We formalise three
notions of welfare, in terms of goal achievement, progress, and reactive
awareness, and we prove results related to these notions for KGP agents.
These results broadly demonstrate the coherence of some of the design
decisions in the KGP model, the need for some of its components for
effectiveness in goal achievement, the extent to which the welfare of KGP
agents can be shown to improve during their life-time, and the awareness
of the agents of their reactions to changes in the environment.

1 Introduction

The use of logic to formalise and prove formal properties of agent models has
been advocated by several researchers in the filed of agents. The KGP model of
agency [9, 7] was designed with these aims in mind, as well as allowing agents
with proactive and reactive behaviour in a dynamic environment. The KGP
model is modular and allows for design of heterogeneous agents, each equipped
with its own profile. Agents in the KGP model are equipped with knowledge
bases, capabilities and transition rules that allow them to plan for their goals,
make observations in the environment in which they are situated, update their
beliefs, react to changes in their environment, communicate with other KGP
agents, revise their states, and dynamically change their goals. The model has
been described in detail in [9, 7] and compared with other models of agency, for
example IMPACT [1], BDI [16], 3APL [6], AgentSpeak [15] and MINERVA [11].
All the components of the KGP model have been specified using computational
logic. This was done to facilitate formalisation and verification of formal prop-
erties in addition to enabling a verifiable implementation of the model [4, 3].
In this paper we focus on the former, and propose three notions of agent wel-
fare: goal achievement, referring to the achievement of goals held by an agent;
progress, referring to how close an agent may be to achieving its goals; reactive
awareness, referring to how aware an agent is of reactions that are necessary to
its circumstances and environment.

Our notions of welfare amount to assessing how effective an agent is in achiev-
ing its goals, or at least in working towards achieving them, and in reacting to
its decisions and environment. This work, therefore, is significant in allowing us

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 413–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

414 F. Sadri and F. Toni

to analyse the effectiveness of the KGP model. Also, a study of the environmen-
tal or internal conditions that would help, guarantee or hinder improvement of
welfare, could help give guidelines to designers of agents.

In our analysis we mostly adopt a subjective approach to the notion of welfare,
whereby, for example, achievement of a goal is assessed wrt the agent’s beliefs
(knowledge base). We briefly discuss, in sections 4 and 5, objective notions of
welfare, wrt the agent’s actual environment, rather than its perception of it.

The paper is structured as follows. In Section 2 we give the abstract agent
model and its instantiation as the KGP model. In Section 3 we give preliminary
definitions and results, used in the rest of the paper. In Sections 4, 5 and 6
we study the concepts of goal achievement, progress and reactive awareness. In
Section 7 we conclude with some related work.

2 Agent Model

We will assume an agent model, generalising the KGP model, whereby agents
are equipped with the following components:

– an internal (or mental) state, consisting of the agent’s beliefs, goals and plans;
goals and plan components have associated times and temporal constraints,
inducing a partial order;

– a set of reasoning capabilities, reasoning with the information available in
the agent state;

– a Sensing capability, allowing agents to observe their environment and actions
by other agents;

– a set of transition rules, changing the agent’s state; the transition rules are
defined in terms of the capabilities, and their effect is dependent on the
concrete time of their application;

– a set of selection functions to select inputs to transitions from the state;
– a control, for deciding which enabled transition should be next, based on the

selection functions, the current time, and the previous transition.

The application of a transition T at time τ , mapping state S onto S′ given (a
possibly empty) input X , will be represented as T (S,X, S′, τ). We will assume
for simplicity that the application of transitions is instantaneous, namely τ is
also the time when S′ is generated.

The control of the agent is responsible for its behaviour, in that it induces an
operational trace, namely a (typically infinite) sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .

such that S0 is the given initial state, and for each i ≥ 1, τi is given by the clock
of the system and τi < τi+i, (namely time increases).

State in KGP agents: 〈KB,Goals, P lan, TCS〉. The KB component holds the
agent’s beliefs. It includes a dynamic partKB0, updated when the agent observes
the environment (via its Sensing capability) and executes actions in plans. In

A Formal Analysis of KGP Agents 415

particular, the fact that action a[t] has been executed at time τ is recorded by
means of executed(a[t], τ). KB also includes knowledge bases to support the
various reasoning capabilities, as we will discuss later.

The Plan consists of plan-trees whose roots are goals in Goals or simply
actions 1, and whose non-root nodes are actions or sub-goals. In a plan-tree, the
set of all children of a node form a (partial) plan for the node, the set of leaves
of any sub-tree form a (partial) plan for the root of the sub-tree, and actions are
leaves. Each goal in Goals is the root of at most one plan-tree.

The TCS component is a set of (temporal) constraints, built from operators
including <,≤,=, �=. Goals, actions and sub-goals have time parameters con-
strained by TCS. These temporal constraints induce a partial order on actions
and sub-goals in plans.

(Sub-)Goals are timed fluent literals of the form l[t], where l is a fluent literal
(property) of the form p or ¬p and t is its associated time, and actions are timed
action literals of the form a[t], where a is an action operator and t is its associated
time. Implicitly, all time variables are existentially quantified within the agent’s
state. Actions may be “physical”, communicative or sensing, and fluents may be
“mental” (to be brought about by plans) or sensing (to be observed).

Reasoning capabilities in KGP agents. In KGP agents, the main reasoning ca-
pabilities support Planning, Temporal Reasoning, Reactivity, Goal Decision,
and Temporal Constraint Satisfiability. The Planning, Reactivity and Goal De-
cision capabilities all need to incorporate Temporal Constraint Satisfiability
within them. This is to ensure that the agent state is always “consistent” as
it is updated by means of goals, sub-goals and actions generated by these
capabilities.

We will indicate with |=tcs C that the set of temporal constraints C is satis-
fiable by means of the Temporal Constraint Satisfiability capability. Intuitively,
satisfiability amounts to the existence of a concrete instantiation of the variables
in C that render C true wrt the underlying domain for the evaluation of the con-
straint operators. Thus, e.g. for the integers, |=tcs 3 ≤ t but �|=tcs 3 ≤ t ∧ t < 2.

Given a state S = 〈KB,Goals, P lan, TCS〉 and a concrete time point τ , we
will use the notation S, Y |=τ

cap Z to indicate, intuitively, that Z is “generated”
as the result of the application of capability cap at time τ in state S, where
cap is one amongst plan (for Planning), tr (for Temporal Reasoning), react
(for Reactivity) and gd (for Goal Decision). Formally, S, Y |=τ

cap Z stands for
KBcap ∪KB0 ∪X,Y |=τ

cap Z, where:

– for cap = plan, X is Plan, Y is a set of (sub-)goals in Plan to be planned
for, together with TCS, and Z is either a plan for Y (consisting of a set of
actions/sub-goals and a new set of temporal constraints), or ⊥, representing
that no such plan exists;

– for cap = tr, X and Y are empty and Z is a timed fluent literal together
with some temporal constraints including TCS; intuitively, this capability is

1 If an action is the root of a plan-tree, that action is necessarily an outcome of
reacting, using the knowledge base that supports the Reactivity capability.

416 F. Sadri and F. Toni

used to verify whether or not the literal in Z holds, at a time point satisfying
the temporal constraints in Z;

– for cap = react, X is Plan and TCS, Y is empty, and Z is either a set of
actions/goals and a new set of temporal constraints or ⊥, representing that
no such reaction exists;

– for cap = gd, X and Y are empty and Z is a set of timed fluent literals
(representing new goals) and a new set of temporal constraints.

In the sequel, when Y is empty we will simply drop it.
The outcome of the capabilities is affected by the current time τ , e.g., in

the case of Planning and Reactivity, because the generated actions need to be
executable in the future (after τ), or, in the case of Goal Decision, because the
generated goals need to be achievable in the future.

For cap = plan, if Z consists solely of actions, Z is called a full plan for Y .
In every state the KB of the agent, in addition to KB0, includes a modular col-
lection of specialised knowledge bases. These areKBplan,KBgd,KBtr,KBreact,
used, respectively, by the Planning, Goal Decision, Temporal Reasoning and Re-
activity capabilities.KBplan, for example, may contain a plan library or a theory
of action and causality such as the event calculus [10]. Independently of the con-
crete realisation choices for these modules and the corresponding capabilities, we
will assume that KBplan and KBtr in KB in any S = 〈KB,Goals, P lan, TCS〉
are related in such a way that, informally, if S, g[t] |=τ

plan P , for P �= ⊥ and a full
plan, then S′ |=τ ′

tr g[t], where S′ is the state S after having executed all actions
in P at times satisfying TCS and all constraints in P and τ ′ is after τ .

Transition rules in KGP agents. Transitions affect the agent’s state and are
defined in terms of the capabilities, as follows:
– Goal Introduction (GI), changing the Goals and TCS, using Goal Decision,

and changing Plan, by adding one plan-tree (consisting solely of the root)
for each new goal in Goals;

– Plan Introduction (PI), changing the Plan, by adding children to (sub-)goals,
and changing TCS, and using Planning;

– Reactivity (RE), changing Goals, by adding any new “reactive goals”, Plan,
by adding one plan-tree (consisting solely of the root) for each new goal in
Goals and any new ”reactive actions”, and TCS; the new goals, actions and
temporal constraints are obtained by using Reactivity;

– Sensing Introduction (SI), changing Plan and TCS, by introducing new
(temporally constrained) sensing actions, e.g. for checking the preconditions
of actions already in Plan, and using Sensing;

– Passive Observation Introduction (POI), changing KB0 by introducing in-
formation coming from the environment without being actively sought by
the agent, and using Sensing;

– Active Observation Introduction (AOI), changing KB0 by introducing ac-
tively sought information from the environment, and using Sensing; this in-
formation might be needed, for example, to confirm that actions have been
successfully executed;

– Action Execution (AE), executing actions, and changing KB0;

A Formal Analysis of KGP Agents 417

– State Revision (SR), revising Plan, and using Temporal Reasoning and
Temporal Constraint Satisfiability. In particular, SR deletes from Plan all
achieved or timed-out (sub-)goals, as well as all their descendents in the
plan-trees in Plan, and all executed or timed-out actions. It also deletes all
descendents of (sub-)goals with one or more timed-out children, thus elimi-
nating plans which have no chance of success.

The effect of transitions is dependent on the concrete time of their application,
taken into account by the capabilities called therein.

Selection functions in KGP agents. These include cGS and cAS , to select goals
and sub-goals to be planned for and actions to be executed, respectively, and
cFS and cPS , to select fluents to be sensed immediately, by AOI, and fluents
to be sensed eventually, by SI, respectively. These functions provide appropriate
inputs to (some of) the transitions and enable them, as discussed below.

Control in KGP agents. The operational traces are not fixed a priori, as in
conventional agent architectures, but are determined dynamically by reasoning
with declarative cycle theories, giving a form of flexible control. In this paper,
we do not provide details of these cycle theories (see [9, 7, 8, 18]). Here, it suffices
to say that the cycle theory induces an operational trace
T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .
such that Ti is one of the KGP transitions, and Xi is an input as follows

– if Ti is one of GI, RE, POI, SR, then Xi is empty;
– if Ti is PI, then Xi is non-empty and it is the set of all (sub-)goals determined

by cGS ; these are (sub-)goals to be planned for;
– if Ti is AE, then Xi is non-empty and it is the set of all actions determined

by cAS ; these are actions to be executed;
– if Ti is SI, then Xi is non-empty and it is the set of all fluents determined by
cPS ; these are fluents to be actively sensed in the future, e.g. preconditions
of actions;

– if Ti is AOI, the Xi is non-empty and it is the set of all fluents determined
by cFS ; these are fluents to be actively sensed immediately.

We say that the control is fair iff no transition is ever postponed indefinitely.

3 Preliminaries

In this section we show how certain design choices for KGP agents allow to prove
some basic, desirable properties of KGP agents needed to prove later results.

Definition 1. Given a state S=〈KB,Goals, P lan, TCS〉 and a time point τ :

– a goal, action or sub-goal z[t] is timed-out at τ iff �|=tcs t ≥ τ ∧ TCS;
– an action or sub-goal z[t] belongs to a plan for a goal or sub-goal g[t′] iff z[t]

is a descendent of g[t′] in a plan-tree in Plan;
– a goal or sub-goal g[t] is believed to be achieved in S at τ iff S |=τ

tr g[t] ∧
TCS ∧ t ≤ τ ;

418 F. Sadri and F. Toni

– two actions a1[t1] and a2[t2] in any plan-trees in Plan are said to be incom-
patible at τ iff �|=tcs TCS ∧ t1 = τ ∧ t2 = τ ;

– a timed (fluent literal or action) literal x[t] matches a timed (fluent literal
or action) literal x[t′] in S iff |=tcs t = t′ ∧ TCS;

– a timed action literal a[t] is executed in S iff executed(a[t′], τ) ∈ KB0 and
a[t] matches a[t′] in S.

The following is a property of KGP agents that they do not attempt to execute
actions that they believe are infeasible or unnecessary, and do not attempt to
plan for goals if a plan is not needed or if it is too late to plan for them.

Theorem 1

– KGP agents never attempt to execute actions that
• are timed-out, or
• have an ancestor or the child of an ancestor that is timed-out, or
• belong to a sub-tree for a goal that they believe is achieved, or
• have an ancestor that they believe is achieved, or
• have a precondition whose complement they believe is achieved;

– KGP agents never attempt to plan for a goal or a sub-goal that
• already has children in a plan-tree, or
• is timed-out or that they believe is already achieved, or
• belongs to a plan-tree for a goal that is timed-out or that they believe is

achieved, or
• has an ancestor that is timed-out or that they believe is achieved.

This result follows from the definition of action selection and goal selection func-
tions. The following result is another consequence of the definition of action
selection function.

Theorem 2. Incompatible actions are never executed concurrently.

4 Goal Achievement

In this and section 5, to simplify the presentation, we ignore the RE transition.
This section builds upon, in part, some of the work reported in [14].
Given a (possibly infinite) operational trace for an agent:
T1(S0, X1, S1, τ1), . . . , Tj(Sj−1, Xj , Sj , τj), . . . , Tl(Sl−1, Xl, Sl, τl), . . .

with 0 ≤ j < l, we refer to the (possibly infinite) sequence of states:
S0, S1, . . . , Sj−1, Sj , . . . , Sl−1, Sl, . . .

as the state-sequence (of the trace), and to any (possibly infinite) sub-sequence
Sj−1, Sj , . . . , Sl−1, Sl, . . .

of a state-sequence as a portion (of the state-sequence). We also refer to the time
τj at which a state Sj is generated in a trace . . . , Tj(Sj−1, Xj , Sj, τj), . . . giving
a state sequence SS = . . . Sj−1, Sj . . . as time(Sj , SS).

The following definition gives the criterion according to which we judge a
state-sequence or portion as providing successive improvements over states. It is
parametric wrt a notion of preference, between states. Note that this definition
is somewhat naive, as will be explained later.

A Formal Analysis of KGP Agents 419

Definition 2. Let , be any notion of preference between states.

– An infinite state-sequence or portion S0, S1, . . . , Sn, . . . improves welfare wrt
, iff for each j ≥ 0, there exists l > j such that Sj , Sl.

– A finite state-sequence or portion S0, S1, . . . , Sn improves welfare wrt , iff
for each j ≥ 0, j < n, there exists l > j, l ≤ n such that Sj , Sl.

– An agent is ,-improving wrt some initial state iff the state-sequence cor-
responding to any operational trace induced by its control, from the given
initial state, improves welfare wrt ,.

Note that this definition does not impose any condition on intermediate states
between Sj and Sl, and in particular any such state might actually bring the
agent into a worse state than Sj , wrt ,. Stronger notions could be adopted, for
example that for each j ≥ 0, for each l > j, Sj , Sl. However, we believe that
such stronger notions would be too limiting in practice. Note also that we could
define a much weaker notion of ,-improvement for an agent, requiring only for
it to be ,-improving wrt some given class of initial states.

For every concrete notion of preference between states we obtain a concrete
notion of improvement in definition 2. One such notion of preference, that we
will refer to as ,1, sanctions, informally, that S ,1 S

′ iff in S′ at least as many
goals have been achieved as in S. Another such notion, that we will refer to
as ,2, sanctions that S ,2 S

′ iff in S′ strictly more goals have been achieved
than in S. There are clear connections between these notions of achievement
and modelling the preferences of agents using utility functions, as the number
of achieved goals gives a very simple kind of utility function. Formally:

Definition 3. Given a state S = 〈KB,Goals, P lan, TCS〉 and a time τ ,
we define the number of achieved goals in S at τ as
A+(S, τ) = #{l[t] | l[t] ∈ Goals and l[t] is believed to be achieved in S at τ}.

Then, given a (portion of a) state-sequence SS and states S, S′ in SS with
τ = time(S, SS) and τ ′ = time(S′, SS):

– S ,1 S
′ iff A+(S, τ) ≤ A+(S′, τ ′);

– S ,2 S
′ iff A+(S, τ) < A+(S′, τ ′).

Intuitively, (the designer of) an agent adopting ,1 (,2) believes that its wel-
fare can be improved by never decreasing (always increasing) the number of
achieved goals. Note that we take a subjective view of achievement: goals are
achieved if they can be proven subjectively by the agent via its Temporal Rea-
soning capability. There are alternative notions of achievement that we could
have adopted, e.g. a stronger subjective notion, whereby only immediately after
SR the agent can evaluate its achievement, or a fully objective notion, whereby
it is some “external observer”, knowing exactly what holds and does not hold
in the environment, who evaluates whether goals are achieved and when via its
own “temporal reasoning capability” wrt its complete knowledge of the envi-
ronment. Finally, note that other choices of , would have been possible, e.g.
by considering the number of unachievable goals or ratio between achieved and
unachievable goals.

420 F. Sadri and F. Toni

Example 1. Assume g1, g2, g3 are timed fluent literals. The following is a possi-
ble (finite portion of a) state-sequence starting with S0 with KB0 = Goals =
Plan = {}, with the associated values of A+ (but ignoring the time of states).
Here, we indicate with ” ” components that we ignore for simplicity as irrelevant.

S0 = 〈{}, {}, {}, {}〉 A+(S0) = 0
T1 is GI:

S1 = 〈{}, {g1, g2, g3}, {g1, g2, g3}, 〉 A+(S1) = 0
T2 is POI, leading to g1 holding:

S2 = 〈 , {g1, g2, g3}, {g1, g2, g3}, 〉 A+(S2) = 1
T3 is PI for g3, introducing a full plan:

S3 = 〈 , {g1, g2, g3}, , 〉 A+(S3) = 1
T4 is AE, executing all actions for g3 in Plan:

S4 = 〈{}, {g1, g2, g3}, , 〉 A+(S4) = 2
T5 is SR (g1, g3 achieved and g2 timed-out):

S5 = 〈 , {g1, g2, g3}, {}, 〉 A+(S5) = 2

Here, every state is better that any earlier state wrt ,1, thus this trace is ,1-
improving. However, it is not ,2-improving (e.g. S4 cannot be improved upon).

So far we have assumed that any two states in a state-sequence or portion of it
can be compared using,. This is inappropriate when the GI transition modifies
the Goals in a state and after all (sub-)goals have been achieved or become
timed-out, as illustrated by the next example wrt the concrete notion of ,2.

Example 2. Assume the following state-sequence (with associated A+):

S0 = 〈 , {g1}, , 〉 A+(S0) = 0 (g1 not achieved yet)
S1 = 〈 , {g1}, , 〉 A+(S1) = 0 (g1 not achieved yet)
S2 = 〈 , {g3, g4}, , 〉 A+(S2) = 0 (g1 dropped, g3, g4 introduced by GI

and not achieved yet)
S3 = 〈 , {g3, g4}, , 〉 A+(S3) = 1 (g1 achieved)

Here, g1 may be (believed to be) achieved because of a POI. According to defi-
nition 2, S0, . . . , S3 is ,2-improving, which is counter-intuitive, since the agent
should not be better off at achieving goals that it has dropped in favour of newly
adopted goals. Thus, A+(S3) should be the number of goals in {g3, g4} that are
believed to be achieved. Consider now the state-sequence S0, S1, S2 followed by

S′
3 = 〈 , {g3, g4}, , 〉 A+(S′

3) = 1 (g3 achieved)
S4 = 〈 , {g3, g4}, , 〉 A+(S4) = 1 (g3 achieved, g4 timed-out)
S5 = 〈 , {g3, g4}, , 〉 A+(S4) = 1 (g3 achieved, g4 timed-out)
S6 = 〈 , {g3, g4}, , 〉 A+(S4) = 1 (g3, g4 dropped by SR)

S5 might be the outcome of a POI. According to definition 2, S0, . . . , S6 is not
,2-improving, which is counter-intuitive, since the agent has done its best to
achieve as many goals as possible and reach state S4. This is the last state that
should “count” as far as , is concerned.

A Formal Analysis of KGP Agents 421

The notion of ,-improvement can be easily modified to look at portions related
to the same Goals and ignoring states following other states with all goals in
Goals either achieved or timed-out. We omit this definition here for lack of space.

Theorem 3. Any KGP agent is ,1-improving.

This result holds because of the features of the KGP model, according to which
goals, once achieved, can never become ”unachieved”. This is due to the fact
that goals are existentially quantified in the model, and that the agents do not
observe information about the past. If at τ an agent believes that a goal holds
at some time t, then there is an instance τ ′ of t that satisfies the temporal
constraints, τ ′ is before τ and the agent believes the goal held at τ ′. Then, in all
future states the agent will continue to believe that the goal held at τ ′.

The analogous result for ,2 does not hold, e.g. see example 1. However,
we can prove the following results regarding ,2, given a state sequence SS and
states S = 〈KB,Goals, P lan, TCS〉 and S′ = 〈KB′, Goals′, P lan′, TCS′〉 in SS
playing the role of (and satisfying the conditions for) Sj and Sl in definition 2.

Theorem 4. If S ,2 S
′, then KB ⊂ KB′ and, in particular, KB0 ⊂ KB′

0.

This theorem shows the importance of sensing the environment and execut-
ing actions to improve welfare according to ,2. This is made more explicit by
theorem 6. Note that KB0, holding the outcome of the agent’s sensing of the
environment and the recording of any action executed by the agent, is the only
part of the agent KB that is dynamically modified.

Theorem 5. If S ,2 S
′, then there exists a state S′′ such that either S′′ is

in between (but different from) S and S′ in SS or S′′ = S′ and there exists a
(sub-)goal g[t] in S′′ such that g[t] is believed to be achieved in S′′, but not in S.

As a consequence of theorem 5 we can show:

Theorem 6. If S ,2 S
′, there is a state S′′ in between (but different from) S

and S′ in SS such that in S′′ one of POI or AE or PI has been performed.

This theorem shows the importance of the three transitions, POI, AE and PI, in
improving welfare in terms of goal achievement. However, because of time criti-
cality and the dynamism of the environment, these transitions cannot guarantee
achievement of all goals. But they help make progress towards achievement of
goals in a sense that will be formalised in section 5.

In general, we cannot guarantee that all achievable goals will eventually be
achieved, namely that the maximum element of either of the ,1 and ,2 order-
ings can be found. There are three main reasons for this: (i) goal are temporally
constrained and it may not be possible to achieve them by their deadlines, (ii)
the environment can be unpredictable, (iii) the agent may not know of compat-
ible plans for the goals given what it believes about the environment. Goals can
be guaranteed to be achieved under some restrictive conditions, omitted here for
lack of space.

422 F. Sadri and F. Toni

5 Progress

In this section we define a new ordering between states, based on a notion of
“progress” and relate this ordering to the one induced by A+. We also show how
some of the transitions in the KGP model affect progress. For simplicity, here
we will assume that the Planning capability always produces full plans.

Definition 4. A state S=〈KB,Goals, P lan, TCS〉 at time τ potentially achieves
a goal g[t] ∈ Goals with a set of timed actions A = {a1[t1], . . . , an[tn]} iff

– g[t] is not already believed to be achieved in S at τ , and
– A is a set of actions in Plan, and
– no action in A has already been executed in S, and
– there exist concrete times τ ′, τ1, . . . , τn such that

• |=tcs τ < τ1 ≤ τ ′ ∧ . . . ∧ τ < τn ≤ τ ′, and
• |=tcs t1 = τ1 ∧ . . . ∧ tn = τn, and
• KB ∪ {executed(a1[t1], τ1), . . . , executed(an[tn], τn)} |=τ

tr g[τ ′].

Definition 5. Given states S and S′ and times τ, τ ′ and a goal g[t], we say that
S ≺g[t] S

′ iff

– S potentially achieves g[t] with some A and
– S′ potentially achieves g[t] with some A′ and
– A′ ⊂ A and
– S does not potentially achieve g[t] with A′.

Intuitively, if S ≺g[t] S
′ then S′ is a more progressed state than S as far as the

achievement of g[t] is concerned, since there are fewer actions still to be executed
before g[t] is actually achieved (if all goes according to the Plan).

In a state with maximal goal achievement, either all goals are achieved or no
more progress is possible, namely:

Theorem 7. Given a state sequence SS, for any S in SS if there is no state
S′ in SS such that S ,2 S

′, then
either all the goals in S are believed to be achieved at time(S, SS)
or for no goal g[t] in S there exists a state S′′ such that S ≺g[t] S

′′.

Note that S′′ does not need to be in SS.
The following theorem sanctions that AE improves progress towards achieve-

ment. It follows from theorems 1 and 2.

Theorem 8. Let T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), . . . be any trace. If
Ti is AE then

either all the goals in Si are believed to be achieved at τi
or there exists g[t] such that Si−1 ≺g[t] Si.

The following theorem sanctions that PI is needed in order to pave the ground
for progress:

Theorem 9. Let SS be a state sequence and S, S′ be two states in SS such that
time(S, SS) < time(S′, SS). Then, if there exists g[t] such that S ≺g[t] S

′, then
there exists S′′ resulting from a PI such that time(S′′, SS) < time(S′, SS).

A Formal Analysis of KGP Agents 423

6 Reactive Awareness

Reactivity is a major feature of the KGP model. It allows condition-action type
of behaviour and some element of dynamic plan repair. It also allows to gen-
erate dynamically obligations and prohibitions [17]. Next we define R+, which
intuitively gives a measure of how “aware” the agent is of its reactive necessities.

Definition 6. Given a state S = 〈KB,Goals, P lan, TCS〉 and a time τ , let

– Set1(S, τ) = {x[t]|S |=τ
react x[t]}

– Set2(S, τ) = {x[t]|x[t] ∈ Set1(S, τ) and
x[t] matches a (fluent or action) literal in Plan or
x[t] is believed to be achieved in S at τ or
x[t] is executed in S}.

Then, R+(S, τ) =
#Set2(S, τ)
#Set1(S, τ)

.

Intuitively, Set1(S, τ) represents all the actions that have to be executed and all
the goals that have to be achieved in reaction to the circumstances the agent
finds itself in state S at time τ (according to its KBreact). Set2(S, τ) represents
the subset of Set1(S, τ) that the agent is “explicitly aware” of, namely “reactive
actions” that it has already executed or at least included in its Plan to execute,
and “reactive goals” that it has already achieved or included in its Plan to
achieve. Then the ratio R+ gives a measure of reactive awareness.

The Reactivity capability in the KGP model is designed so that, if it is possible
to have mutually consistent reactions, it produces all the necessary reactions (i.e.
R+=1). This is captured by the following theorem.

Theorem 10. Let T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), . . . be any trace. If
Ti is RE, Si−1 |=τi

react Z and Z �= ⊥, then R+(Si, τi) = 1.

Alternative design choices might be suitable, in the case of an inconsistent set
of reactions, to guarantee as high a value of R+ as possible, e.g. by returning a
maximally consistent subset of the set of inconsistent reactions, or by imposing
preferences over reactive rules to eliminate inconsistencies.

The result in theorem 10 cannot be guaranteed after all the transitions, and
in particular, after POI, AOI, GI, PI and SI. Indeed, POI and AOI might intro-
duce new observations into the (KB0 part of the) state, PI and SI will typically
produce new actions and sub-goals and GI might introduce new goals in the
state, and the Reactivity capability might require that some new reactions are
introduced to take into account these extensions to the state. However, it is nat-
ural in general that R+ fluctuates, because it depends heavily on the dynamics
of the environment and the agent.

An agent equipped with a fair control will always reach, at some point, a state
wrt maximal R+, if one such state exists (i.e. in the absence of inconsistencies).

424 F. Sadri and F. Toni

Theorem 11. If the agent control is fair, then, for every operational trace, for
every state S in the trace, there exists a later state S′ in the trace such that

either R+(S′, time(S′)) is not defined
or R+(S′, time(S′)) = 1.

Note that an agent that is maximally achieved wrt A+ can still work towards
reaching an ideal R+. Note also that the notion of R+ above is subjective, in
that it only considers reactions to what the agent believes about its environment
(as well as its Plan and Goals). We can also define an objective notion of R+:

Definition 7. Let E represent complete information about the environment.
Then, given a time τ and a state S = 〈KB,Goals, P lan, TCS〉, let SE be 〈KB−
KB0 ∪ E,Goals, P lan, TCS〉 and let

– Set1(S,E, τ) = {x[t]|SE |=τ
react x[t]}

– Set2(S,E, τ) = {x[t]|x[t] ∈ Set1(S,E, τ) and
x[t] matches a fluent or action literal in S or
x[t] is believed to be achieved in S at τ
x[t] is executed in S}.

Then, R+(S,E, τ) =
#Set2(S,E, τ)
#Set1(S,E, τ)

.

It is possible to design the control of the agent in order to guarantee maximal
values of this new notion of R+, mirroring theorems 10 and 11 above. This
control needs to ensure that any RE transition is immediately preceded by an
AOI transition, sensing fluents that are triggers in reactive rules in KBreact. In
a reactive rule l[t] ⇒ a[t′] ∧ t′ < t + 10 in KBreact l[t] is one such trigger if l is
a sensing fluent.

7 Conclusion

We believe our work on the specific properties addressed in this paper, in par-
ticular that related to improving goal achievement and reactive-awareness, is
novel. However, our work complements the work of others in the field of for-
mal analysis of agent systems. Amongst these are the following. Kacprzak et
al [13] who have explored the use of unbounded model checking for verification
of temporal epistemic properties. Lomuscio and Raimondi [12] have proposed a
model checker called MCMAS that extends verification from temporal modali-
ties to other modalities, such as correctness and cooperation, relevant to agents.
Bordini et al [2] have used model checking for verification of properties of BDI
agents expressed as AgentSpeak programs. Wooldridge et al [19] have presented
a language called MABLE for multi-agent systems, allowing BDI-like agents and
supporting automatic verification of properties via model checking.

We believe that the properties we have identified and discussed in this paper
are interesting in general for all agent frameworks. Part of our future work is to
study them in the context of other agent models.

Dunne et al [5] give computational complexity results for achievement and
maintenance tasks of agents for a variety of environmental properties, for ex-

A Formal Analysis of KGP Agents 425

ample whether or not the environment is deterministic, history dependent or
bounded. It would be interesting to see whether some of our results could be
strengthened for specific kinds of environments.

References

1. K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus.
IMPACT: a platform for collaborating agents. IEEE Intell. Systems, 14(2), 1999.

2. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model checking rational
agents. IEEE Intell. Systems, 19(5), 2004.

3. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, and K. Stathis. Crafting
the mind of prosocs agents. Applied Artificial Intelligence, 20(2–4), 2006.

4. A. Bracciali, N. Demetriou, U. Endriss, A.C. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global comput-
ing: Computational model and prototype implementation. In Global Computing
2004 Workshop, volume 3267 of LNCS. Springer Verlag, 2005.

5. P. E. Dunne, M. Laurence, and M. Woolridge. Complexity results for agent design
problems. Annals of Math., Computing and Teleinformatics, 1(1), 2003.

6. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Agent pro-
gramming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4), 1999.

7. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Deliverable d4: A
logic-based approach to model computees. Technical report, SOCS Consortium,
2003. Avaialble from http://lia.deis.unibo.it/Research/Projects/SOCS/.

8. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative agent
control. In Post-proc. CLIMA V, volume 3487 of LNAI. Springer Verlag, 2005.

9. A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In Proc. ECAI-2004, 2004.

10. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1), 1986.

11. J. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA: A dynamic logic pro-
gramming agent architecture. In Proc. ATAL01, volume 2333 of LNAI. Springer
Verlag, 2002.

12. A. Lomuscio and F. Raimondi. MCMAS: a tool for verifying multi-agent systems.
In Proc. TACAS 2006, volume 3920 of LNCS. Springer Verlag, 2006.

13. W. Penczek M. Kacprzak, A. Lomuscio. Verification of multiagent systems via
unbounded model checking. In Proc. AAMAS04, 2004.

14. P. Mancarella, F. Sadri, K. Stathis, F. Toni, and A. Bracciali. Computees and
welfare. Technical report, SOCS Consortium, 2005.

15. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proc. MAAMAW96, volume 1038 of LNCS. Springer Verlag, 1996.

16. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In Readings in Agents. Morgan Kaufmann Publishers, 1997.

17. F. Sadri, K. Stathis, and F. Toni. Normative KGP agents. Computational and
Mathematical Organization Theory, 2006. To appear.

18. F. Sadri and F. Toni. Variety of behaviours through profiles in logic-based agents.
In Post-proc. CLIMA VI, volume 3900 of LNAI. Springer Verlag, 2006.

19. M. Wooldridge, M.-P. Huget, M. Fisher, and S. Parsons. Model checking multi-
agent systems: the mable language and its applications. International Journal on
Artificial Intelligence Tools, 15(2), 2006.

Irrelevant Updates and Nonmonotonic Assumptions

Ján Šefránek

Comenius University, Bratislava, Slovakia
sefranek@fmph.uniba.sk

Abstract. The second postulate of Katsuno and Mendelzon characterizes irrel-
evant updates. We show that the postulate has to be modified, if nonmonotonic
assumptions are considered. Our characterization of irrelevant updates is based
on a dependency framework, which provides an alternative semantics of multidi-
mensional dynamic logic programming.

Keywords: foundations of logic-based AI systems, nonmonotonic knowledge
bases, updates, logic programming, nonmonotonic reasoning.

1 Introduction

Background. Nonmonotonic knowledge bases (NMKB) represent an important topic
for a logic-based research in artificial intelligence. There are essentially two sources of
nonmonotony in knowledge bases – an evolution of incomplete knowledge and a use of
assumptions which can be overridden (falsified).

We discuss in this paper the second postulate for updates by Katsuno and Mendelzon,
2[KM] hereafter: if an update follows from a knowledge base (KB), then the updated
KB and the original KB should be equivalent according to the postulate [8]. In other
words: if an update follows from a KB, then the update is irrelevant.

Tautological and cyclic updates represent an important problem also for multidi-
mensional dynamic logic programming (MDyLP) research [2, 9, 10, 3]). MDyLP con-
tributed to logic-based knowledge representation research by focusing on dynamic as-
pects of knowledge; it can be considered as a formal model of NMKB with preferences
(also along dimensions different from time). The role of both sources of nonmonotony,
as mentioned above, is taken into account in MDyLP.

Problem. Unwanted generation of new models caused by cyclic or tautological updates
(they should be irrelevant) has been a serious problem of MDyLP for a time. Recently,
the problem has been solved for dynamic logic programs in [3] and for general MDyLP
in [4]. The solution of [3] is based on a principle, called refined extension principle
and its ambition is to express fundamental features enabling to distinguish the “right”
semantics of logic program updates. Unfortunately, the principle has not been extended
to the general case of MDyLP and, moreover, the trivial semantics assigning empty
set of models to each dynamic logic program satisfies the principle, see [4]. Finally, the
principle is expressed in terms too close to the specific conceptual apparatus of MDyLP.
Semantics of MDyLP are based on rejection of rules. They satisfy the causal rejection
principle (CRP): if there is a conflict between heads of rules, the less preferred rule is

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 426–438, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Irrelevant Updates and Nonmonotonic Assumptions 427

rejected. CRP has some drawbacks,1 see [12], which challenges an effort to find a more
general platform for expressing the notion of irrelevant updates.

On the other hand, 2[KM] is not an appropriate one, if (nonmonotonic) assumptions
are considered (see Example 25).

Goal and proposed solution. The main task of this paper is an analysis of the problem
of irrelevant updates. Cyclic and tautological updates do not represent the only source
of unwanted generation of models after an update. We are aiming to extend the horizon
behind CRP and behind cyclic and tautological updates.

We represent an NMKB in terms of a dependency framework, where nonmonotonic
assumptions and dependencies on assumptions are “first class citizens”. Motivations
for the dependency framework and an alternative semantics of MDyLP were presented
in [12]. Each knowledge base consisting of rules (hence, also a logic program and a
MDyLP) can be mapped into the dependency framework. Nonmonotony of a knowl-
edge base is manifested in the framework by (nonmonotonic) assumptions which can be
falsified and by solving of conflicts. We emphasize the role of nonmonotonic assump-
tions for the theory of updates of NMKB. The notion of irrelevant updates proposed in
this paper modifies 2[KM] by focusing on nonmonotonic assumptions.

For a short version of this paper see [13],

Main contributions. of the paper are as follows: analysis and definition of irrelevant
updates, an adaptation of 2[KM] for updates of NMKB, we show that irrelevant updates
do not generate new models and that models of the original program are preserved after
an irrelevant update (Theorem 33 and Consequence 34).

The rest. of the paper is organized as follows: First, an informal explanation of the notion
of nonmonotonic knowledge base is presented. A brief view on semantics of MDyLP
based on CRP is provided in Section 3. The dependency framework is introduced in
Section 4. Irrelevant updates are discussed in Section 5 and defined in Section 6.

2 Nonmonotonic Knowledge Base

In this section we provide a schematic view on a NMKB. We assume an unspecified
language L for knowledge representation. (An example of such language is presented
in Section 3.) Pairs of conflicting expressions are specified for L. A notion of rule is
defined in L. A knowledge base is a set of rules. We assume that a semantics of L is
defined as a mapping from L to a set of models. (An example of such semantics, stable
model semantics, is presented in Section 3.)

We are proceeding to the basic features of L and of its semantics which enable to
speak about nonmonotony of a knowledge base.

– Some expressions of L are considered as assumptions. To each assumptions is as-
signed a conflicting expression. (Negative literals are assumptions of the language
introduced in Section 3.)

1 There are conflicts which cannot be recognized according to CRP. On the other hand, some
conflicts recognized as conflicts between heads of rules should be considered as irrelevant.

428 J. Šefránek

– The semantics of assumptions satisfies the condition as follows: an assumption is
true unless it is known that the conflicting expression is true.

– Some principles for solving conflicts in sets of expressions of L are specified.
– A nonmonotonic consequence operator is specified for L.

MDyLP represent a well understood formalization of NMKBs, see Section 3. Also
sets of formulas in other formalisms can be considered as idealizations of NMKBs. We
are interested in mappings from sets of rules to sets of dependencies (where dependen-
cies on nonmonotonic assumptions are of crucial importance). Comparison of various
formalisms in terms of the dependency framework is a goal of our future research.

MDyLP as a language for NMKBs representation (and its mapping into the depen-
dency framework) is considered in this paper. However, the dependency framework is
independent on MDyLP and our results can be generalized into a form independent on
MDyLP.

3 Multidimensional Dynamic Logic Programs

The language of MDyLP. i.e. a propositional language with default negations also in
heads, is introduced in this section.

Let A be a set of atoms. The set of literals is defined as Lit = A ∪ {not A :
A ∈ A}. Literals of the form not A, where A ∈ A are called negative. Notation:
Ngt = {not A | A ∈ A}. A convention: not not A = A. If X is a set of literals then
not X = {not L | L ∈ X}.

A rule is each expression of the form L← L1, . . . , Lk, where k ≥ 0, L,Li are liter-
als. If r is a rule of the form as above, then L is denoted by head(r) and {L1, . . . , Lk}
by body(r). A finite set of rules is called generalized logic program (program hereafter).

The set of conflicting literals is defined as CON = {(L1, L2) | L1 = not L2}.
Two rules r1, r2 are called conflicting, if head(r1) and head(r2) are conflicting literals.
Notation: r1 � r2. A set of literals S is consistent if it does not contain a pair of
conflicting literals. An interpretation is a consistent set of literals. A total interpretation
is an interpretation I such that for each atom A either A ∈ I or not A ∈ I . Let I be an
interpretation. Then I− = I ∩Ngt . A literal is satisfied in an interpretation I iff L ∈ I .
A set of literals S is satisfied in I iff S ⊆ I . Stable model of generalized logic programs
is defined in [2] as follows.

Definition 1 ([2]). A total interpretation S is a stable model of a program P iff

S = least(P ∪ S−),

where P ∪ S− is considered as a Horn theory and least(P ∪ S−) is the least model of
the theory. �

The set of all stable models of a program P is denoted by SM (P). A program is called
coherent2 iff it has a stable model.

2 We prefer this term over ‘consistent”, see also [5].

Irrelevant Updates and Nonmonotonic Assumptions 429

A literal L (set of literals X) SM-follows from a program P iff it is satisfied in each
S ∈ SM (P) (notation: P |=SM L, P |=SM X). A rule r SM-follows from P iff for
each S ∈ SM (P) holds that head(r) is satisfied in S whenever body(r) is satisfied in
S (P |=SM r). If U is a set of rules then P |=SM U iff ∀r ∈ U P |=SM r.

A multidimensional dynamic logic program (also multiprogram hereafter) is a set
of programs with a preference relation on programs. The relation is specified by an
acyclic directed graph. If the preference relation collapsed to a sequence (to a strict
linear order), the corresponding multiprogram is called dynamic logic program.

There are various different semantics of multiprograms, based on rejection of rules.
For a comparison see [10, 11, 7]. They all can be viewed as instances of the abstract
schema below.

Let a semantics be a mapping Σ from multiprograms to sets of total interpretations.
If P is a multiprogram andM is a total interpretation thenM ∈ Σ(P) holds iff

M = least((P \ Rejected(P ,M)) ∪Assumptions(P ,M). (1)

Various semantics differ in definitions of predicates Rejected and Assumptions. In-
tuitively, Rejected(P ,M) represents the set of all rules rejected from P w.r.t. M and
Assumptions(P ,M) represents the set of all accepted default negations.

In this paper we consider — because of limited space – only the simplest multipro-
grams of the form 〈P,U〉, where U is more preferred than P , notation P ≺ U . U is
called an update of P . However, it is straightforward to generalize the analysis, notions
and results to the case of arbitrary multiprograms.

We will now define the instance of Assumptions(〈P,U〉,M) used in this paper as

{not A | ¬∃r ∈ P ∪ U (A = head(r),M |= body(r))}

Two instances of Rejected – Rej and RejR – are defined as follows. Dynamic sta-
ble model semantics [2] of a multiprogram 〈P,U〉 w.r.t. interpretation M , notation
DSM (〈P,U〉,M), uses Rej :

Rej (〈P,U〉,M) = {r ∈ P | ∃r′ ∈ U (r � r′,M |= body(r′))}

Refined dynamic stable model semantics (RDSM (〈P,U〉,M)) enables also mutual re-
jection of rules in one program, [3]. RejR(P ,M) is defined as the set

{r ∈ P | ∃r′ ∈ P ∪ U
(r � r′,M |= body(r′))} ∪ {r ∈ U | ∃r′ ∈ U (r � r′,M |= body(r′))}

Dynamic stable model semantics of multiprograms suffers from tautological and
cyclic updates.

Example 2 ([3]).

P = {d← not n U = {s← v

n← not d v ← s}
s← n,not c

not s←

430 J. Šefránek

There are two dynamic stable models of 〈P,U〉: M1 = {d, not n,not c,not s,not v}
and M2 = {s, v, n,not d,not c}. However, M2 is a counterintuitive model – truth of
s and v is not supported and rejection of the fact not s ← by a cyclic dependence of s
on s is not a reasonable one. �

Refined semantics solves the problem. It obeys the refined extension principle (REP),
introduced in [3]. However, the principle is expressed in terms too close to the specific
conceptual apparatus of MDyLP. Two (not very intuitive) sequences of logic programs
are considered in the definition of REP and the definition uses predicates Assumptions
and Rejected .

Moreover, refined semantics for the general case of multiprograms is not known. The
well supported semantics for general multiprograms is defined in [4] and it solves the
problem of cyclic updates. The well supported semantics for MDyLP coincides with
the refined one on dynamic logic programs. We focus on the simplest dynamic logic
programs of the form 〈P,U〉 in this paper, therefore the refined semantics is discussed in
examples. However, our arguments are relevant w.r.t. any semantics based on rejection
of rules and satisfying CRP.

The main goal of [3] is to explore the conditions guaranteeing that the addition of
a set of rules to a dynamic logic program does not generate new models. The authors
of REP observed in [4] that REP is too weak. For example, the trivial semantics that
assigns to each dynamic logic program the empty set of models satisfies the principle.
It is noted in [4] that stronger criteria and techniques are needed. We believe that the de-
pendency framework of [12] enables to create such criteria and techniques by providing
a finer analysis of unwanted models of updated logic programs.

4 Dependency Framework

We now introduce the dependency framework of [12] in order to be able to analyze the
problem of irrelevant updates.

Definition 3 (Dependency relation). A dependency relation is a set of pairs {(L,W) |
L ∈ Lit ,W ⊆ Lit , L �∈ W}. �

The notion of dependency relation is rather a general one and it is not connected to a
special logical form (of a knowledge base or logic program). Each knowledge base con-
sisting of a set of rules (with one literal in the head) can be mapped into a dependency
relation. We define now a mapping for the language introduced in Section 3.

Definition 4 (,P). A literal L depends on a set of literalsW , L �∈W , with respect to
a program P (L ,P W) iff there is a sequence of rules 〈r1, . . . , rk〉, k ≥ 1, ri ∈ P
and

– head(rk) = L,
– W |= body(r1),
– for each i, 1 ≤ i < k,W ∪ {head(r1), . . . , head(ri)} |= body(ri+1).

It is said that the dependency relation,P is generated by the program P . �

Notice that a literal cannot depend on itself (also in a context of other literals).

Irrelevant Updates and Nonmonotonic Assumptions 431

Example 5. Let P be {a ← not b; c ← a}. It holds that a ,P {not b}, c ,P {a},
c ,P {not b}. We can see that some dependencies of L on W are of crucial interest,
namely those, where W ⊆ Ngt and W generates (or contributes to a generation) of a
stable model. �

Note that,P does not coincide with the derivability from P .

Definition 6 (Closure property). A closure operator Cl assigns the set of all pairs

{(L,W) | L,W ∨ (∃U (L, U ∧ ∀L′ ∈ U \W (L′ ,W)))}

to a dependency relation,.
A dependency relation, has the closure property iff Cl(,) =,. �

Proposition 7. Let P be a program. Then Cl(,P) =,P .

We have seen in Example 5 that dependencies on negative literals are crucial from the
viewpoint of stable model semantics. Therefore the role of (default) assumptions is
emphasized.

Definition 8 (SSOA, TSSOA). Xs ⊆ Ngt is called a sound set of assumptions (SSOA)
with respect to the dependency relation, iff the set

Cn�(Xs) = {L ∈ Lit | L, Xs} ∪ Xs

is non-empty and consistent.
It is said that Xs, a SSOA, is total (TSSOA) iff for each A ∈ A holds either A ∈

Cn�(Xs) or not A ∈ Cn�(Xs).
The set of all (T)SSOAs w.r.t., is denoted by (T)SSOA(,). �

Example 9. Let P be {a ← not b; b ← not a}. There are two TSSOAs w.r.t. ,P :
Xs1 = {not b} and Xs2 = {not a}. Cn�P (Xs1) = {not b, a} and Cn�P (Xs2) =
{not a, b}. Notice that both TSSOAs generate (all) stable models of P . �

Also an empty set of literals may be a (T)SSOA w.r.t. some,P .

Theorem 10. X is a TSSOA w.r.t.,P iff Cn�P (X) is a stable model of P .
Let S be a stable model of P . Then there is X ⊆ Ngt , a TSSOA w.r..t. ,P s.t.

S = Cn�P (X).3 �

Semantics based on assumptions and dependencies. Consider two mappings Σ, Σ′.
Let Σ assign to each program P the set of all its stable models. Let Σ′ assign to each
program P the set of all TSSOAs w.r.t. ,P . We have seen in Theorem 10 that (the
semantics characterized by)Σ is equivalent to (the semantics characterized by)Σ′. So,
we can speak about a semantics based on assumptions and dependencies.

Dependencies in a multiprogram. We intend to use our framework for handling
conflicting dependencies in a multiprogram. Note that dependencies in a multiprogram
are well defined.

3 Proofs or proof sketches of propositions/theorems can be found in [14].

432 J. Šefránek

Proposition 11. Let 〈P,U〉 be a multiprogram. Then,P∪U is well defined. It holds

(,P ∪ ,U) ⊆,P∪U ,

but the converse inclusion does not hold.

Example 12. Consider a multiprogram 〈P,U〉, where P is as in Example 9 and U is
as follows: {c← a; b← c;not b← not a}.
P ∪ U is a program and it generates a dependency relation. Observe that c ,P∪U

{not b}, but (c, {not b}) �∈ (,P ∪ ,U). �

In general, dependencies on assumptions in a multiprogram can be conflicting. There
are essentially two possible sources of incoherence/inconsistency:4

– two conflicting literals depend on a set of literals,
– or literal L1 depends on a set of literalsW , (L1, L2) ∈ CON and L2 ∈ W .

Definition 13. It is said that, contains a conflictC (whereC ⊆,) iff for someA ∈ A
is C = {(A, Y), (not A, Y) | Y ⊆ Ngt} or C = {(A, Y) | Y ⊆ Ngt ,not A ∈ Y }. �

Definition 13 does not contain a reference w.r..t. a (multi)program. Moreover, it is pos-
sible to replace pairs A,not A by a more general objects – pairs of conflicting literals
containing a (general) nonmonotonic assumption.

Example 14. Dependency relation ,P∪U from Example 12 contains conflicts C1 =
{(b, {not a}), (not b, {not a})} and C2 = {(b, {not b})}. �

It is assumed that the preference relation P ≺ U is preserved also for dependency re-
lations assigned to the programs:,P≺,U . It enables us to prefer some dependencies
according to the preference relation defined for programs when solving conflicts.

We propose to solve a conflict by ignoring some dependencies (taking away from
given dependency relation). Good solutions of a conflict are sets of dependencies, which
are minimal (w.r.t. the set inclusion) and minimally preferred (w.r.t. the given preference
relation).

Definition 15. It is said that a set of dependenciesD is a solution of the conflict C iff
each d ∈ D is of the form L,P W or of the form L,U W and C �⊆ Cl((,P ∪ ,U

) \D).D is called minimal iff there is no proper subset ofD which is a solution of C.
LetD andD′ be minimal solutions of C. It is said thatD is more suitable thanD′ iff

there is an injection κ : D −→ D′ such that ∀d ∈ D (d ∈,P ∧ κ(d) ∈,P ∪ ,U).
If the cardinality of D and D′ is the same then for at least one d ∈ D holds d ∈,P

∧ κ(d) ∈,U . A minimal solution D of a conflict C is called good solution iff there is
no more suitable solution of C. �

Example 16. Consider conflicts from Example 14. D = {(not b, {not a})} is a mini-
mal solution of C1 = {(b, {not a}), (not b, {not a})}. However, D

′
= {(b, {not a})

is a more suitable solution of C1 thanD and it is also the good solution of C1 �

4 (In)coherent dependency relation is defined in Definition 18 and we use (in)coherence as a
technical term in the paper.

Irrelevant Updates and Nonmonotonic Assumptions 433

Definition 17. An assumption not A, where A ∈ A, is falsified in a dependency rela-
tion, iff A, ∅, not A �, ∅ and ∅ is a SSOA w.r.t.,.

A set of assumptions Xs ⊆ Ngt is falsified in , iff it contains a literal falsified in
,. �

The notion of falsified assumption is illustrated in Example 21.

Definition 18 (Coherent dependency relation). A dependency relation, is called
coherent iff there is a TSSOA w.r.t. ,. A dependency relation is called incoherent iff it
is not a coherent one. �

The approach based on the dependency framework is focused on looking for assump-
tions which can serve as TSSOA w.r.t. a subset of given dependency relation ,P∪U .
The goal is to construct all possible dependency (sub)relations which are coherent (w.r.t.
a TSSOA).

Definition 19 (Semantics of multiprograms). Semantics of a multiprogram 〈P,U〉 is
a mappingΣ which assigns to 〈P,U〉 a set of pairs of the form (Z,View), where View
is a coherent subset of,P∪U and Z is a TSSOA w.r.t. View .

Example 20. Recall example 14. Σ(〈P,U〉) = {({not a,not b,not c},View)},
where View =,U .

5 Irrelevant Updates – Intuitions

We motivate the notion of irrelevant updates by an analysis of a set of examples in this
section.5 Afterward a definition of irrelevant updates is given in next section.

Example 21 ([6]).

P = cloudy ← raining

raining ←
U = not raining ← not cloudy

RDSM (〈P,U〉) = {{not raining,not cloudy}, {raining, cloudy}}. The assump-
tion not it is cloudy is falsified in,P∪U because of it is cloudy ,P∪U ∅. Informa-
tion given by U does not override the information of P (which is based on the empty
set of assumptions). The only TSSOA w.r.t.,P∪U is ∅. �

In general, troubles with all semantics based on rejection of rules are caused also by
a too free choice of an interpretation involved in the fixpoint condition (1). We mean
an interpretation containing assumptions (default negations) which are falsified by the
multiprogram. Interpretations generated by falsified assumptions do not provide an ap-
propriate candidate for a semantic characterization of a multiprogram (according to our

5 Multiprograms of the form 〈P, U〉 are used in the examples. However, the dependency frame-
work is used in the analysis and our intuitions apply to an arbitrary NMKB which can be
mapped to the dependency framework.

434 J. Šefránek

view). A remark is in place: conflicts involving assumptions did not attract an adequate
attention until now.

If an update U has only such TSSOAs w.r.t. ,U which are falsified in ,P∪U , we
consider it as irrelevant. However, some further criteria of irrelevant updates are needed.
The first, rather naive, idea how to understand the principle of minimal change for the
case 〈P,U〉 is as follows: if P ∪U is a coherent program, then an update of P specified
by U is irrelevant and the meaning of P ∪ U is retained by inertia.6

Next example shows that that idea is not an appropriate one.

Example 22. Let P be {not a← not b} and U be {a← not b; b← not a}.
P ∪U has only one stable model S = {not a, b}. However, if we respect the prefer-

ence ofU over P then we have to ignore the information of P . The dependence of not a
on not b should be ignored. Hence, also {not b} is a TSSOA w.r.t. the modified depen-
dency relation and interpretation S′ = {not b, a} represents an intended meaning of
〈P,U〉, too.

We emphasize the role of (new) assumptions. Acceptance of new assumptions can
provide a basis for a generation of some alternative belief sets. In general, this obser-
vation may be relevant for investigation of hypothetical reasoning. �

Next step when looking for a formalization of irrelevant updates may be 2[KM]. It can
be expressed in terms of logic program updates as follows: if P |=SM U then update of
P by U is equivalent to P . It means, a (stable-models-like) semantic characterization
of 〈P,U〉 should coincide with stable models of P . It is straightforward to show that a
weaker condition than coherence of P ∪ U is supposed in 2[KM], if P is coherent.

Proposition 23. Let P be coherent. If P |=SM U then P ∪ U is coherent (but not vice
versa).

Note that condition P |=SM U is an important one. If we add seemingly irrelevant
(cyclic) update U to a program P and P �|=SM U , then this may lead to cutting off
some models.

Example 24 ([3]).

P = {friends← not alone U = {depressed← alone

alone← not friends alone← depressed}
happy ← not depressed
depressed← not happy}

P has four models (only first letters are used):{f, d,not a,not h},{f, h,not a,not d},
{a, h,not d,not f}, {a, d,not h,not f}. Notice that P �|=SM U . It is natural to reject
the models of P which do not satisfy the more preferred program U . U eliminates two
of the models of P : {f, d,not a,not h} and {a, h,not d,not f} (if alone is true,
depressed is forced to be true and vice versa). �

6 Consider Example 21. The only stable model of P ∪ U , {it is raining, it is cloudy}, pro-
vides a reasonable semantic characterization of 〈P, U〉.

Irrelevant Updates and Nonmonotonic Assumptions 435

It seems that 2[KM] could be a criterion of irrelevant updates of logic programs. Un-
fortunately, 2[KM] does not work as the criterion.

Example 25.

P = {a1 ← not b1 U = {b2 ← not a2}
b1 ← not a1

a2 ← not b2
not b2 ← not a2}

There are two stable models of P : S1 = {not b1, a1,not b2, a2} and S2 = {not a1, b1,
not b2, a2}. U is satisfied both in S1 and in S2. Note that assumption not b2 holds in
both models.

However, there is no reason to reject an alternative assumption not a2 (which is
false in both stable models of P). The set of assumptions {not a2} is a SSOA w.r.t.
,U and Cn�P ({not a})∪Cn�U ({not a}) is inconsistent. The inconsistency can be
overridden if we prefer b2 ,U {not a2} over not b2 ,P {not a2}.

Hence, it is reasonable to accept also interpretations S3 = {not b1, a1,not a2, b2}
and S4 = {not a1, b1,not a2, b2} as intended meanings of the updated program. U
is really a relevant update: it provides a reasonable alternative assumption not a2.
By “reasonable” we mean that unwanted dependencies on {not a2} are overridden
because of the preference relation. �

If a set of axioms is extended in a monotonic logic then the set of models is reduced or
the same. However, in NMKBs (and in stable model semantics, too) it is not true:

Example 26 ([1]). Let be P = {a← not b; b← not a; c← not a; c ← not c}, U =
{c←}.

While P has the only stable model S = {not a, b, c}, P ∪ U has two stable models
– besides S also S′ = {a,not b, c}. Observe that the only model of P encodes in a
way that the truth of c is dependent on the assumption not a. Hence, the dependence of
beliefs on assumptions is implicit also in the stable model semantics.

Note that P |=SM U , but Cn�U (∅)\Cn�P (∅) �= ∅. Some literals depend on ∅ w.r.t.
,U , but they do not depend on ∅ w.r.t.,P . This could be generalized to a criterion of
a relevant update. �

Example 27.

P = {a← not b} U = {b← not a}

P |=SM U , but U introduces a new assumption, which is false in all stable models of
P and generates a new stable model of P ∪ U . �

In order to summarize: If P �|=SM U , then U is a relevant update of P . Otherwise,
if P |=SM U , then U is a relevant update of P in two (classes of) cases. First, U
introduces assumptions, which contribute to a new TSSOA w.r.t. ,P∪U (see Example
26 or Example 27). Second, U introduces a set of assumptions which is inconsistent

436 J. Šefránek

with P , but a coherent view on,P∪U is possible thanks to the preference relation (see
Example 25).

Let P |=SM U . A set of assumptions Xs ⊆ Ngt of a relevant update U satisfies
the conditions as follows. The conditions 1 - 3 are common to both classes of cases
mentioned above. The condition 4 should be satisfied by the first case (contribution to
a new TSSOA w.r.t.,P∪U). The conditions 5 and 6 should be satisfied by the second
case.

1. Xs is not falsified in,P∪U ,
2. Xs is false in each stable model of P ,
3. Xs ∈ SSOA(,U) and Cn�U (Xs) \Xs �= ∅,
4. there is Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(,P∪U),
5. Cn�P (Xs) ∪ Cn�U (Xs) is inconsistent,
6. there is View ⊂,P∪U and Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(View)

Note that the condition 3 qualifies cyclic updates as irrelevant. Recall Example 2, it
holds that Cn�U (Xs) \Xs = ∅ for each set Xs ⊆ Ngt .

6 Irrelevant Updates – Formal Elaboration

Irrelevant updates are defined in this section for programs of the form 〈P,U〉 and for
corresponding dependency relations ,P∪U . However, we can abstract from programs
– a generalization to arbitrary dependency relation (on which a preference is defined) is
straightforward.

Convention 28. Let 〈P,U〉 be a multiprogram. Then U is an irrelevant update of P iff
TSSOA(P ∪ U) = TSSOA(P).

We are going to specify criteria for TSSOA(P ∪U) = TSSOA(P) in terms of assump-
tions and dependencies. First some trivial implications.

Proposition 29. If P �|=SM U , then TSSOA(P) �⊆ TSSOA(P ∪ U)

Proposition 30. If TSSOA(P ∪ U) = TSSOA(P), then P |=SM U

Proposition 31. If P |=SM U , then TSSOA(P) ⊆ TSSOA(P ∪ U).

Example 27 shows that TSSOA(P ∪ U) ⊆ TSSOA(P) does not hold in general, if
P |=SM U .

The condition P |=SM U is a necessary, but not sufficient condition for irrelevancy
of an update U of P , see Examples 25 and 27.

2[KM] is a very intuitive postulate for updates (an intuition of updates is also in the
background of dynamic logic programming according to [10]). However, 2[KM] can-
not be accepted literally for updates of NMKB. Defeasible (nonmonotonic) assumptions
are not considered by Katsuno and Mendelzon in [8]. A careful treatment of assump-
tions and dependencies on assumptions is required for an appropriate understanding of
updates of NMKB.

We can define now irrelevant update of a program.

Irrelevant Updates and Nonmonotonic Assumptions 437

Definition 32 (Irrelevant update). Let 〈P,U〉 be a multiprogram, P be coherent and
P |=SM U .

It is said that U is an irrelevant update of P iff there is no Xs ⊆ Ngt s.t.

– Xs ∈ SSOA(,U) and Cn�U (Xs) \Xs �= ∅,
– Xs is not falsified in,P∪U ,
– Xs is false in each stable model of P ,
– there is Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(,P∪U) or

• Cn�P (Xs) ∪ Cn�U (Xs) is inconsistent,
• there is View ⊆,P∪U and Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(View)

A nondeterministic algorithm for computation of TSSOAs is presented in [12].

Theorem 33. If U is an irrelevant update of P then TSSOA(,P∪U)=TSSOA(,P).
�

Note that the converse implication does not hold – see Example 25. The following
trivial consequence states that the semantics of an original programP is preserved after
an irrelevant update.

Consequence 34. Let Xs be a TSSOA w.r.t. ,P and U be an irrelevant update of P .
Then Xs is a TSSOA w.r.t.,P∪U .

7 Conclusions

A notion of irrelevant updates based on a dependency framework is introduced in the
paper. The dependency framework provides a general base for discussing updates of
NMKBs. The role of nonmonotonic assumptions in updates (and also in hypothetical,
nonmonotonic reasoning) has been emphasized.

It has been shown that irrelevant updates do not generate new TSSOAs (sets of
assumptions, which generate stable models, Theorem 33) and that TSSOAs correspond-
ing to the original program generate also all stable models of updated program (Con-
sequence 34). The dependency framework solves also troubles caused by tautological
and cyclic updates, [12].

As regards our research concerning conditions of updates of NMKBs, a relevancy
postulate can be added to postulates from [12].

Attention has been frequently focused on MDyLP in this paper. The reason is that
MDyLP is a well understood idealization of NMKB and also because of importance
of the problem of irrelevant updates in MDyLP. Finally, our approach to irrelevant up-
dates is based on the dependency framework, which provides an alternative semantics
of MDyLP [12]. However, our notion of irrelevant updates can be expressed indepen-
dently on MDyLP and it is among our future goals.

A short comment concerning related work: a modified version of 2[KM], [8], which
reflects the role of nonmonotonic assumptions, is presented. A more general view on
irrelevant updates is given as in [3]. The notion of falsified assumptions enables to cover
a more broad range of irrelevant updates. The trivial semantics (which satisfies REP) is
not a problem for our approach.

438 J. Šefránek

References

1. Alferes, J.J., Pereira, L.M.: Reasoning with logic programming. LNAI, Springer 1996
2. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic

logic programming. In: Procs. of KR’98. (1998) 98–109
3. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics

of dynamic logic programming. Studia Logica 1 (2005)
4. Banti, F., Alferes, J.J., Brogi, A., Hitzler, P.: The well supported semantics for multidimen-

sional dynamic logic programs. LPNMR 2005, LNCS 3662, Springer, 356-368
5. Baral, C.: Knowledge representation, reasoning and declarative problem solving. Cambridge

University Press, 2003.
6. Eiter, T., Sabbatini, G., Fink, M., Tompits, H.: On properties of update sequences based on

causal rejection. Theory and Practice of Logic Programming (2002) 711–767
7. Homola, M.: Dynamic Logic Programming: Various Semantics Are Equal on Acyclic Pro-

grams. CLIMA V 2004: 78-95
8. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and

revising it. Proc. of KR’91
9. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic logic programming. In:

Procs. of CLIMA’00. (2000) 17–26
10. Leite, J.A.: Evolving Knowledge Bases: Specification and Semantics. IOS Press (2003)
11. Leite, J. On Some Differences Between Semantics of Logic Program Updates. IBERAMIA

2004: 375-385
12. Šefránek, J.: Rethinking semantics of dynamic logic programming. Accepted for NMR 2006.
13. Šefránek, J.: Irrelevant updates of nonmonotonic knowledge bases. Accepted as a poster for

ECAI 2006.
14. Šefránek, J.: Irrelevant updates and nonmonotonic assumptions. http://www.

ii.fmph.uniba.sk/ sefranek/online/jelia06Full.ps (or pdf)

Towards Top-k Query Answering in Description Logics:
The Case of DL-Lite

Umberto Straccia

ISTI - CNR, Pisa Italy
straccia@isti.cnr.it

Abstract. We address the problem of evaluating ranked top-k queries in descrip-
tion logics. The problem occurs whenever we allow queries such as “find cheap
hotels close to the conference location” in which fuzzy predicates like cheap and
close occur. We show how to efficiently compute the top-k answers of conjunctive
queries with fuzzy predicates over DL-LITE like knowledge bases.

1 Introduction

Description Logics (DLs) [2] provide popular features for the representation of struc-
tured knowledge. Nowadays, DLs have gained even more popularity due to their ap-
plication in the context of the Semantic Web. DLs play a particular role as they are
essentially the theoretical counterpart of state of the art languages to specify ontolo-
gies, such as OWL DL [12]. It becomes also apparent that in these contexts, data are
typically very large and dominate the intentional level of the ontologies. Hence, while
in the above mentioned contexts one could still accept reasoning that is exponential on
the intentional part, it is mandatory that reasoning is polynomial in the data size, i.e. in
data complexity [21]. Only recently efficient management of large amounts of data and
its computational complexity analysis has become a primary concern of research in DLs
and in ontology reasoning systems [1, 4, 5, 7, 11, 13].

In this paper we start addressing a novel issue for DLs with huge data repositories,
namely the problem of evaluating ranked top-k queries. So far, an answer to a query is
a set of tuples that satisfy a query. Each tuple does or does not satisfy the predicates in
the query. However, very often the information need of a user involves so-called fuzzy
predicates [22]. For instance, a user may need:“Find cheap hotels near to the conference
location”. Here, cheap and near are fuzzy predicates. Unlike the classical case, tuples
satisfy now these predicates to a score (usually in [0, 1]). In the former case the score
may depend, e.g., on the price, while in the latter case it may depend e.g. on the distance
between the hotel location and the conference location. Therefore, a major problem we
have to face with in such cases is that now an answer is a set of tuples ranked according
to their score. This poses a new challenge in case we have to deal with a huge amount of
instances. Indeed, virtually every tuple may satisfy a query with a non-zero score and,
thus, has to be ranked. Computing all these scores, ranking them and then selecting the
top-k ones is not feasible in practice, as we may deal with millions of tuples.

Our purpose is to address this problem for a DL-Lite like [4] description logic. DL-
Lite has been specifically tailored to capture some basic ontology language features,
while keeping a low complexity of reasoning. Reasoning means not only computing

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 439–451, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

440 U. Straccia

the subsumption relationships between concepts, and checking satisfiability, but also
answering complex queries (i.e. conjunctive queries) over a huge set of instances.

We extend DL-Lite by allowing fuzzy predicates to appear in the queries (we call
the language DL-Lite) and propose methods to efficiently compute the top-k ranked
answers. Similarly to DL-Lite, we may rely on existing techniques for top-k query
answering developed in the context relational databases [6, 8, 16]. Furthermore, as for
DL-Lite, query answering in DL-Lite is (sub) linear in data complexity, which makes
the language appealing for real world scenarios.

We proceed as follows. In the next section we present DL-Lite. Then, we show how
to efficiently compute the top-k answer set of conjunctive queries.

2 DL-Lite

As usual in DLs, DL-Lite allows for representing the domain of interest in terms of
concepts, denoting sets of objects, and roles, denoting binary relations between objects.
Similarly to DL-Lite 1, in DL-Lite concepts and roles are defined as follows:

B → A | ∃R | B1 �B2 | B1 �B2

C → A | ⊥ | ∃R | C1 � C2

R → P | P −

where A denotes an atomic concept and P denotes an atomic role. A role R can be ei-
ther an atomic role P or its inverse P−. B denotes a basic concept that can be either an
atomic concept, a concept of the form ∃R, i.e. the standard DL construct of unqualified
existential quantification. C denotes a general concept. A DL-Lite knowledge base is
pair K = 〈T ,A〉, where T and A are finite sets of DL-Lite axioms and assertions. T
is the TBox and is used to represent intentional knowledge, while A is the ABox and
is used to represent extensional knowledge. An axiom is of the form B (C (inclusion
axiom) and fun(R) (functionality axiom). A functionality axiom expresses the func-
tionality of a role. Assertions are of the formB(a) (concept assertion) and P (a, b) (role
assertion). Assertions state the membership of an individual (resp. pair of individuals)
to a basic concept (resp. role).

DL-Lite allows for querying the extensional knowledge of a KB by means of con-
junctive queries of arbitrary complexity, where fuzzy predicates may appear. Further-
more, we allow disjunctive queries as well. A conjunctive query q over a knowledge
base K is an expression of the form

q(x, s)← ∃y.conj(x,y) ∧ s = f(p1(z1), . . . , pn(zn))

where

1. x are the distinguished variables;
2. s is the score variable, taking values in [0, 1];
3. y are existentially quantified variables called the non-distinguished variables;
4. conj(x,y) is a conjunction of atoms of the formA(z), or P (z, z′), whereA and P

are respectively an atomic concept and a role (but, not inverse role) in K. z, z′ are
constants in K or variables in x or y;

5. zi are tuples of constants in K or variables in x or y;

1 See [5] for extensions of DL-Lite with their computational complexity analysis.

Towards Top-k Query Answering in Description Logics: The Case of DL-Lite 441

6. pi is an ni-ary fuzzy predicate assigning to each ni-ary tuple ci as score pi(ci) ∈
[0, 1]. We require that an n-ary fuzzy predicate p is safe, i.e. there is not an m-ary
fuzzy predicate p′ such that m < n and p = p′. Informally, all parameters are
needed in the definition of p;

7. f is a scoring function f : [0, 1]n → [0, 1], which combines the scores of the n
fuzzy predicates pi(ci) into an overall query score to be assigned to the score vari-
able s. We assume that f is monotone, i.e., for each v,v′ ∈ [0, 1]n such that v ≤ v′,
f(v) ≤ f(v′) holds, where (v1, . . . , vn) ≤ (v′1, . . . , v′n) iff vi ≤ v′i for all i. 2

A disjunctive query q is a finite set of conjunctive queries in which all the rules have
the same head.

Example 1. Suppose we have information about hotels and conferences. Assume we
have a fuzzy predicate close measuring the closeness degree between hotels and con-
ference locations, depending on the distance, and a fuzzy predicate cheap, which given
the price determines how “cheap” a hotel is. We may ask to find cheap hotels close to
a conference location, i.e. rank the hotels according to their degree of closeness and
cheapness. We may represent the scenario in DL-Lite as follows.

Hotel � ∃HasHLoc.Location
Hotel � ∃HasHPrice.Price

Conference � ∃HasCLoc.Location
Hotel � Conference � ⊥

HasHLoc
HotelID HasLoc
h1 hl1
h2 hl2

.

.

.
.
.
.

HasCLoc
ConfID HasLoc
c1 cl1
c2 cl2

.

.

.
.
.
.

HasHPrice
HotelID Price
h1 150
h2 200

.

.

.
.
.
.

Then we may express our information need using the conjunctive query (c1 is our
conference location)

q(h, s)←HasHLoc(h, hl) ∧ HasHPrice(h, p)∧
HasCLoc(c1, cl) ∧ s = cheap(p) · close(hl, cl) .

where the fuzzy predicates cheap and close are defined as

close(hl, cl) = max(0, 1− distance(hl,cl)
2000)

cheap(price) = max(0, 1− price
300)

The distance function returns the distance between hotels and conferences, obtained
from an external source, e.g. database relation or web page. Note that the scoring func-
tion is the product f(cheap(p), close(hl, cl)) = cheap(p) · close(hl, cl), which is
monotone in its arguments cheap and close.

We want to retrieve the top-k answers according to the score s. Please note that it is
not feasible to compute all scores first and then rank them (there may be a huge amount
of hotels and conference locations).

2 We assume that the computational cost of f and all fuzzy predicates pi is bounded by a con-
stant.

442 U. Straccia

Note also that if we would like to find hotels, which are either cheap or close to the
conference location, then we may use the disjunctive query:

q(h, s)←HasHPrice(h, p) ∧ s = cheap(p)

q(h, s)←HasHLoc(h, hl) ∧ HasCLoc(c1, cl) ∧ s = close(hl, cl)

We point out that the above disjunctive query is different from the conjunctive query

q(h, s)←HasHLoc(h, hl) ∧ HasHPrice(h, p)∧
HasCLoc(c1, cl) ∧ s = max(cheap(p),close(hl, cl))

as in the former we may find hotels, which are close to the conference location, though
the price is unknown. �
Form a semantics point of view, it is similar to the usual semantics for DLs. The ma-
jor difference is that we consider a fixed infinite domain Δ. 3 We assume to have one
object for each constant, denoting exactly that object. In other words, we have standard
names [15], and we will not distinguish between the alphabet of constants and Δ. So,
an interpretation is a first-order structure I = (Δ, ·I) and consists of a fixed infinite
domainΔ with an interpretation function ·I such that:

AI ⊆ Δ P I ⊆ Δ×Δ ⊥I = ∅
(C1 � C2)I = C1

I ∩ C2
I (P −)I = {〈c, c′〉 | 〈c′, c〉 ∈ P I}

(C1 � C2)I = C1
I ∪ C2

I ∃RI = {c | ∃c′.〈c, c′〉 ∈ RI}

An interpretation I is a model of (i) an inclusion axiom B (C iff BI ⊆ CI ; (ii)
a functionality axiom fun(R) iff 〈c, c′〉 ∈ RI ∧ 〈c, c′′〉 ∈ RI ⇒ c′ = c′′; (iiii) an
assertion B(a) (resp. R(a, b)) iff a ∈ CI (resp. (a, b) ∈ P I); and (iv) a KB K iff I
is a model of each axiom and assertion occurring in K. A KB is satisfiable if it has a
model. A KB K entails an assertion (resp. inclusion axiom) iff each model of the KB is
also a model of the assertion (resp. inclusion axiom).

We recall that despite the simplicity of its language, the DL is able to capture the
main notions (though not all, obviously) to represent structured knowledge. In particu-
lar, the axioms allow us to specify that concept A1 is subsumed by concept A2, using
A1 (A2; disjointness, e.g., between concepts A1 and A2, using A1 � A2 (⊥; role-
typing, using ∃P (A1 and ∃P− (A2; participation constraints, using A (∃P and
A (∃P−; non-participation constraints, using A � ∃P (⊥ and A � ∃P− (⊥. Ad-
ditionally, observe that we allow cyclic axioms. Notice that DL-Lite is a strict subset
of OWL Lite and, thus of OWL DL [12], which presents some constructs (e.g., some
kinds of role restrictions) that are non expressible in DL-Lite(and that make reasoning
in OWL Lite non-tractable in general).

Concerning queries, informally a conjunctive query q(x, s) ← ∃y.conj(x,y) ∧ s =
f(p1(z1), . . . , pn(zn)) is interpreted in an interpretation I as the set qI of tuples 〈c, v〉,
such that when we substitute the variables x and s with the constants c ∈ Δ× . . .×Δ
and the real value v ∈ [0, 1], the formula ∃y.conj(x,y) ∧ s = f(p1(z1), . . . , pn(zn))
evaluates to true in I. But, due to the existential quantification ∃y, for a fixed c, there
may be many substitutions c′ for y and, thus, we may have many possible scores for
the tuple c. Among all these scores for c, we select the highest one. Furthermore, if the

3 The domain is infinite as pointed out in [4].

Towards Top-k Query Answering in Description Logics: The Case of DL-Lite 443

query is a disjunctive query q, for each tuple c there may be a score vi computed by each
conjunctive query qi ∈ q. In that case, the overall score for c is the maximum among
the scores vi. Specifically, we assume that the score combination function f and the
fuzzy predicates pi have a given fixed interpretation. Now, let θ = {x/c,y/c′, s/v} be
a substitution of the variables x,y and s with the tuples c, c′ and score value v ∈ [0, 1].
Let ψ(x,y, s) be conj(x,y)∧s = f(p1(z1), . . . , pn(zn)). With ψ(x,y, s)θ we denote
the ground formula obtained by applying to ψ(x,y, s) the substitution θ. We say that an
interpretation I is a model of ψ(x,y, s)θ iff ψ(x,y, s)θ evaluates to true in I. We will
write I |= ψ(x,y, s)θ in this case. Then, the interpretation qI of a disjunctive query
q = {q1, . . . , qm} in I is

qI = {〈c, v〉 ∈ Δ× . . .×Δ× [0, 1] | v = max(v1, . . . , vm),
vi = supc′∈Δ×...×Δ{v′ | I |= ψi(x,y, s)θ′}} ,

where θ′ is as θ, except that y is substituted with c′ and s is substituted with v′, each
conjunctive query qi ∈ q is of the form q(x, s) ← ∃y.ψi(x,y, s), sup ∅ is undefined,
and max(v1, . . . , vn) is undefined iff all its arguments are undefined. Therefore, some
tuples c may not have a score in I and, thus, 〈c, v〉 �∈ qI for no v ∈ [0, 1]. Alternatively
we may define sup ∅ = 0 and, thus, all tuples c have a score in I, i.e. 〈c, v〉 ∈ qI for
some v ∈ [0, 1]. We use the former formulation to distinguish the case where a tuple c
is retrieved, though the score is 0, from the tuples which do not satisfy the query and,
thus, are not retrieved. Finally, for all c ∈ Δ× . . .×Δ and for all v ∈ [0, 1], we say that
I is a model of q(c, v) iff 〈c, v〉 ∈ qI . Also, we say that a satisfiable KB K = 〈T ,A〉
entails q(c, v), written K |= q(c, v) iff any model I of K is also model of q(c, v) (note
that K is required to be satisfiable).

The basic reasoning services that mainly concerns us is the knowledge base satisfia-
bility problem and the top-k retrieval problem, where this latter is defined as:

Top-k retrieval: Given a satisfiable KBK, retrieve the top-k ranked tuples 〈c, v〉 that instantiate
the disjunctive query q and rank them in decreasing order w.r.t. the score, i.e. find the top-k
ranked tuples of the answer set of q, denoted ansk(K, q) = Topk{〈c, v〉 | K |= q(c, v)}.

Some comments are in order on the form of the queries. Overall, our language exten-
sion to classical DLs, such as DL-Lite, concerns only the query language part and not
the data representation language (which remains a classical DLs). This is exactly as it
happens in top-k retrieval in the context of relational databases [6, 8, 16]: the data is
represented as usual in relational tables and the SQL query language is extended to al-
low to express a scoring function as well, which may use the values occurring in the
retrieved records, to compute the score of the record. By referring to Example 1, one
may naturally ask why we do not allow to represent a fuzzy concept such as “cheap ho-
tel” in the language and associate to each instance of it a score, as it happens usually in
fuzzy DLs [17, 19]. Besides a semantical shift from a classical semantics to a fuzzy one
(and, thus, likely changing the kind of inferences allowed), we assume here that queries
are not defined once for ever, but may be issued by users to the systems. This means
that it is not feasible to compute all scores in advance, as the queries are not known a
priory. Furthermore, even the data may be available on query time only, e.g. if it has to
be gathered from the Web (“find a flat with a big living room”). It is thus not surpris-
ing that most work on top-k retrieval in relation databases focusses on minimizing the

444 U. Straccia

number of score function evaluations. What we will show here is that we can enhance
query answering for classical DL-Lite with almost no additional effort.

In the following, for the sake of illustrative purposes, we consider the following
abstract example.

Example 2. Suppose the set of inclusion axioms is T = {∃P−
2 (A,A (∃P1, B (

∃P2}. We also assume that the set of assertions A is stored in the three sets below (P2
is a role, while B and C are basic concepts):

P2 = {〈0, s〉, 〈3, t〉, 〈4, q〉, 〈6, q〉}
B = {〈1〉, 〈2〉, 〈5〉, 〈7〉}
C = {〈5〉, 〈3〉, 〈2〉, 〈4〉}

Assume our disjunctive query is q = {q′, q′′} where q′ is q(x, s) ← ∃y∃z.P2(x, y) ∧
P1(y, z) ∧ s = f(p(x)), q′′ is q(x, s) ← C(x) ∧ s = f(r(x)) , the scoring function
f is the identity f(z) = z (f is monotone, of course), the fuzzy predicate p is p(x) =
max(0, 1−x/10), and the fuzzy predicate r is r(x) = max(0, 1− (x/5)2). Therefore,
we can rewrite the query q as

q(x, s)←∃y∃z.P2(x, y) ∧ P1(y, z) ∧ s = max(0, 1− x/10)

q(x, s)←C(x) ∧ s = max(0, 1− (x/5)2) .

Now, it can be verified that K |= q(3, 0.7), K |= q(2, 0.84) and for any v ∈ [0, 1],
K �|= q(9, v). In the former case, any model I of K satisfies P2(3, t). But, I satisfies
T , so I satisfies ∃P−

2 (∃P1. As I satisfies P2(3, t), I satisfies (∃P−
2)(t) and, thus,

(∃P1)(t). As 0.7 = max(0, 1 − 3/10), it follows that 〈3, 0.7〉 evaluates the body of
q′ true in I. On the other hand, 〈3, 0.64〉 evaluates the body of q′′ true in I. Hence,
the maximal score for 3 is 0.7, i.e., I is a model of q(3, 0.7). The other cases can
be shown similarly. In summary, it can be shown that the top-4 answer set of q is
ans4(K,q) = [〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉, 〈3, 0.7〉]. �

3 Top-k Query Answering

We discuss now how to determine the top-k answers of a disjunctive query over a DL-
Lite knowledge base K. To this end:

1. We have to check if K is satisfiable, as querying a non-satisfiable KB is undefined in our
case.

2. By considering T only, the user query q is reformulated into a set of conjunctive queries
r(q,T). Informally, the basic idea is that the reformulation procedure closely resembles a
top-down resolution procedure for logic programming, where each inclusion axiom B1 �
B2 is seen as a logic programming rule of the form B2(x) ← B1(x). For instance, given
the query q(x, s) ← A(x) ∧ s = f(. . .) and suppose that T contains the inclusion axioms
B1 � A and B2 � A, then we can reformulate the query into two queries q(x, s) ←
B1(x)∧ s = f(. . .) and q(x, s)← B2(x)∧ s = f(. . .), exactly as it happens for top-down
resolution methods in logic programming.

3. The reformulated queries in r(q, T) are evaluated overA only (which is stored in a database),
producing the requested top-k answer set ansk(K, q). For instance, for the previous query,
the answers will be the top-k answers of the union of the answers produced by all three
queries.

Towards Top-k Query Answering in Description Logics: The Case of DL-Lite 445

A feature of DL-Lite is that satisfiability checking and query reformulation is as for DL-
Lite [4] 4, while the top-k evaluation step is novel. For the sake of completeness of the
paper, we start with step 1 and step 2 above. So, we start by preparing our knowledge
base K = 〈T ,A〉 for effective management. That means, we first normalize it into a
suitable form and then store the data in A into a relational database.
KB normalization. The normalization of K = (T ,A) is obtained by transforming K
as follows. A is expanded by adding to A the assertions (∃P)(a) and (∃P−)(b) for
each P (a, b) ∈ A. Concerning T , we split concept conjunctions using the rule: if T
contains B (C1 � C2, then replace it with the two axioms B (C1 and B (C2.
Similarly, we split concept disjunctions: if T contains B1 � B2 (C, then replace it
with the two axioms B1 (C and B2 (C. Furthermore, let (∗ be the reflexive and
transitive closure of the (relation over the roles inclusion axioms in T .

Now T contains role inclusion axioms, functionality axioms and concept inclusion
axioms of the form B (C, according to the syntax rules

B → A | ∃R | B1 �B2

C → A | ⊥ | ∃R .

Then T is expanded by closing it with respect to the following inference rule: if B1 �
C (⊥ occurs in T and B2 (C occurs in T , then add B1 � B2 (⊥ to T (the rule
applies also if B1 is omitted).

It is easy to show that the normalization process transforms K into a model preserv-
ing form. In the following, without loss of generality we assume that every concept
name or role name occurring in A also occurs in T . Now we store A in a relational
database. That is, (i) for each basic concept B occurring in A, we define a relational
table tabB of arity 1, such that 〈a〉 ∈ tabB iff B(a) ∈ A; and (ii) for each role P
occurring in A, we define a relational table tabP of arity 2, such that 〈a, b〉 ∈ tabP iff
P (a, b) ∈ A. We denote with DB(A) the relational database thus constructed.
KB satisfiability. To check the satisfiability of a normalized KBK = (T ,A), we verify
the following conditions, which can easily be derived from [4]: (i) there existsB (⊥∈
T and a constant a such B(a) ∈ A; (ii) there exists B1 �B2 (⊥∈ T and a constant a
such {B1(a), B2(a)} ⊆ A; (iii) there exists an axiom fun(P) (respectively, fun(P−))
in T and three constants a, b, c such that both P (a, b) and P (a, c) (resp., P (b, a) and
P (c, a)) belong to A; If one of the conditions above holds, then K is not satisfiable.
Otherwise,K is satisfiable. Note that the algorithm can verify such conditions by posing
to DB(A) simple SQL queries.
Query reformulation. The query reformulation step is adapted from [4] to our case and
is as follows. We say that a variable in a conjunctive query is bound if it corresponds
to either a distinguished variable or a shared variable, i.e., a variable occurring at least
twice in the query body (inclusive the scoring function), or a constant, while we say that
a variable is unbound if it corresponds to a non-distinguished non-shared variable (as
usual, we use the symbol “ ” to represent non-distinguished non-shared variables). Note
that an atom of the form (∃P)(x) (resp. (∃P−)(x)) has the same meaning as P (x,)
(resp. P (, x)). For ease of exposition, in the following we will use the latter form only.
An axiom τ is applicable to an atom B(x), if τ has B in its right-hand side, and τ is

4 Strictly speaking, DL-Lite does not support disjunctive queries, though it can easily be ex-
tended to that case.

446 U. Straccia

applicable to an atom P (x1, x2), if either (i) x2 = and the right-hand side of τ is ∃P ,
or (ii) x1 = and the right-hand side of τ is ∃P−. We indicate with gr(g; τ) the atom
obtained from the atom g by applying the inclusion axiom τ . Specifically, if g = B1(x)
(resp., g = P1(x,) or g = P1(, x)) and τ = B2 (B1 (resp., τ = B2 (∃P1 or
τ = B2 (∃P−

1), we have:

– gr(g, τ) = A(x), if B2 = A, where A is an atomic concept;
– gr(g, τ) = P2(x,), if B2 = ∃P2;
– gr(g, τ) = P2(, x), if B2 = ∃P −

2 ;
– gr(g, τ) = B3(x) ∧B4(x), if B2 = B3 �B4.

We are now ready to present the query reformulation algorithm. Given a disjunctive
query q and a set of axioms T , the algorithm reformulates q in terms of a set of
conjunctive queries r(q, T), which then can be evaluated over DB(A). In the algo-

Algorithm 1. QueryRef(q, T)
Input: Disjunctive query q, DL-Lite axioms T .
Output: Set of reformulated conjunctive queries r(q,T).
1: r(q,T) := q
2: repeat
3: S = r(q,T)
4: for all q ∈ S do
5: for all g ∈ q do
6: if τ ∈ T is applicable to g then
7: r(q,T) := r(q,T) ∪ {q[g/gr(g, τ)]}
8: for all g1, g2 ∈ q do
9: if g1 and g2 unify then
10: r(q,T) := r(q,T) ∪ {κ(reduce(q, g1, g2))}
11: until S = r(q,T)
12: r(q,T) := removeSubs(r(q, T))
13: return r(q,T)

rithm, q[g/g′] denotes the query obtained from q by replacing the atom g with a new
atom g′. At step 8, for each pair of atoms g1, g2 that unify, the algorithm computes the
query q′ = reduce(q, g1, g2), by applying to q the most general unifier between g1 and
g2

5. Due to the unification, variables that were bound in q may become unbound in q′.
Hence, inclusion axioms that were not applicable to atoms of q, may become applicable
to atoms of q′ (in the next executions of step (5)). Function κ applied to q′ replaces with

each unbound variable in q′. Finally, in step 12 we remove from the set of queries
r(q, T), those which are already subsumed in r(q, T). The notion of query subsump-
tion is similar as for the classical database theory [20]. Given two queries qi (i = 1, 2)
with same head q(x, s) and q1 �= q2, we say that q1 is subsumed by q2, denoted q1 (q2,
iff for any interpretation I, q1I � q2

I , where this latter is defined as: q1I � q2
I iff

for all 〈c, v1〉 ∈ q1I there is 〈c, v2〉 ∈ q2I such that v1 ≤ v2. Essentially, if q1 (q2
and both q1 and q2 belong to r(q, T) then we can remove q1 from r(q, T) as q1 pro-
duces a lower ranked result than q2 with respect to the same tuple c. In order to decide
query subsumption, we can take advantage of the results in [14], related to the query
containment part. A condition for query subsumption is the following. Assume that q1
and q2 do not share any variable. This can be accomplished by renaming all variables
in e.g. q1. Then it can be shown that

5 We say that two atoms g1 = r(x1, . . . , xn) and g2 = r(y1, . . . , yn) unify, if for all i, either
xi = yi or xi = or yi = . If g1 and g2 unify, then the unification of g1 and g2 is the atom
r(z1, . . . , zn), where zi = xi if xi = yi or yi = , otherwise zi = yi [3].

Towards Top-k Query Answering in Description Logics: The Case of DL-Lite 447

Proposition 1. If q1 and q2 share the same score combination function, then q1 (q2
iff there is a variable substitution θ such that for each predicate P (z2) occurring in the
rule body of q2 there is a predicate P (z1) occurring in the rule body of q1 such that
P (z2) = P (z1)θ.

More complicated are cases in which q1 and q2 do not share the same score combination
function. For instance, given

q1 := q(x1, s1) ← P (x1, y1) ∧ s1 = y1

q2 := q(x2, s2) ← P (x2, y2) ∧ s2 = min(1, (x2 + y2)/2)
q3 := q(x, s) ← P (x, y) ∧ s = min(1, x + y)

It can be shown that q2 (q3 is the only subsumption relation among the queries
above. Note that there is a variable substitution θ23 = {x2/x, y2/y, s2/s} such that
P (x, y) = P (x2, y2)θ23 and min(1, (x2 + y2)/2)θ23 ≤ min(1, x + y), for all x, y.
On the other hand, q1 �(q2. Note that we can find θ12 = {x1/x2, y1/y2, s1/s2} such
that P (x2, y2) = P (x1, y1)θ12. However, y1θ12 = y2 	 min(1, (x2 + y2)/2), for
all x2, y2. Similarly, q2 �(q1 and we can find θ21 = {x2/x1, y2/y1, s2/s1} such that
P (x1, y1) = P (x2, y2)θ21 with min(1, (x2 + y2)/2)θ21 = min(1, (x1 + y1)/2) 	 y1,
for all x1, y1. Hence, we can extend the query subsumption condition in Proposition 1
in the following way. Let q1 and q2 be two queries with same head and let σ1 and σ2 be
the scoring component of q1 and q2, respectively. Then it can be shown that

Proposition 2. q1 (q2 iff there is a variable substitution θ such that for each predicate
P (z2) occurring in the rule body of q2 there is a predicate P (z1) occurring in the rule
body of q1 such that P (z2) = P (z1)θ, and σ1θ ≤ σ2 for all variables occurring in σ1θ
and σ2.

Of course, the complexity of checking a condition such as σ1θ ≤ σ2 depends on the
scoring functions and fuzzy predicates involved, and may be computationally expen-
sive. We will not analyze this issue further in this paper and, thus, we assume that
procedure removeSubs removes subsumed queries according to Proposition 1, which
is easy to check and not time consuming (we also could be more specific in the query
subsumption definition, by restricting the interpretations to the models of the knowl-
edge base, but this may lead to a query containment checking algorithm requiring a
non-negligible amount of time). This concludes the query reformulation step.

Example 3. Consider Example 2. At step 1 r(q, T) is initialized with {q′, q′′}. It is
easily verified that both conditions in step 6 and step 9 fail for q′′. So we proceed
with q′. Let σ be s = max(0, 1 − x/10). Then at the first execution of step 7, the
algorithm inserts query q1, q(x, s) ← P2(x, y) ∧ A(y) ∧ σ into r(q, T) using the
axiom A (∃P1. At the second execution of step 7, the algorithm inserts query q2,
q(x, s) ← P2(x, y) ∧ P2(, y) ∧ σ using the axiom ∃P−

2 (A. Since the two atoms of
the second query unify, reduce(q, g1, g2) returns q(x, s) ← P2(x, y)∧σ and since now
y is unbound (y does not occur in σ), after application of κ, step 10 inserts the query
q3, q(x, s) ← P2(x,) ∧ σ. At the third execution of step 7, the algorithm inserts query
q4, q(x, s) ← B(x) ∧ σ using the axiom B (∃P2 and stops.

Note that we need not to evaluate all queries qi. Indeed, it can easily be verified that
for each query qi and all constants c, the scores of q3 and q4 are not lower than all the

448 U. Straccia

other queries qi and q′. That is, we can restrict the evaluation of the set of reformu-
lated queries to r(q, T) = {q′′, q3, q4} only. As a consequence, the top-4 answers to
the original query are [〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉, 〈3, 0.7〉], which are the top-4 ranked
tuples of the union of the answer sets of q′′, q3 and q4. �
Computing top-k answers. The main property of the query reformulation algorithm is
as follows. It can be shown that

ansk(K,q) = Topk{〈c, v〉 | qi ∈ r(q,T),A |= qi(c, v)} .

The above property dictates that the set of reformulated queries qi ∈ r(q, T) can be
used to find the top-k answers, by evaluating them over the set of instances A only,
without referring to the ontology T anymore. In the following, we show how to find the
top-k answers of the union of the answer sets of conjunctive queries qi ∈ r(q, T).

A naive solution to the top-k retrieval problem is as follows: we compute for all
qi ∈ r(q, T) the whole answer set ans(qi,A) = {〈c, v〉 | A |= qi(c, v)}, then we
compute the union,

⋃
qi∈r(q,T) ans(qi,A), of these answer sets, order it in descending

order of the scores and then we take the top-k tuples. We note that each conjunctive
query qi ∈ r(q, T) can easily be transformed into an SQL query expressed over DB(A).
The transformation is conceptually simple. The only non-trivial case concerns binary
atoms with unbound terms: for any atom in a query qi ∈ r(q, T) of the form P (, x),
we introduce a view predicate that represents the union of tabP [2] with tab∃P − , where
tabP [2] is the projection of tabP on its second column (the case P (x,) is similar). A
major drawback of this solution is the fact that there might be too many tuples with non-
zero score and hence for any query qi ∈ r(q, T), all these scores should be computed
and the tuples should be retrieved. This is not feasible in practice, as a there may be
millions of tuples in the knowledge base.

A more effective solution consists in relying on existing top-k query answering algo-
rithms for relational databases (see, e.g. [6, 8, 16]), which support efficient evaluations
of ranking top-k queries in relational database systems. Though there is no work sup-
porting top-k query answering for disjunctive queries, we can still profitably use top-
k query answering methods for relational databases. Indeed, an immediate and much
more efficient method to compute ansk(K,q) is: we compute for all qi ∈ r(q, T), the
top-k answers ansk(A, qi), using e.g. the system RankSQL [16] 6. If both k and the
number, nq = |r(q, T)|, of reformulated queries is reasonable, then we may compute
the union, U(q,K) =

⋃
qi∈r(q,T) ansk(A, qi), of these top-k answer sets, order it in

descending order w.r.t. score and then we take the top-k tuples.
As an alternative, we can avoid to compute the whole union U(q,K), so further

improving the answering procedure, by relying on a disjunctive variant of the so-called
Threshold Algorithm (TA) [9], which we call Disjunctive TA (DTA). We recall that
the TA has been developed to compute the top-k answers of a conjunctive query with
monotone score combination function. In the following we show that we can use the
same principles of the TA to compute the top-k answers of the union of conjunctive
queries, i.e. a disjunctive query.

1. First, we compute for all qi ∈ r(q, T), the top-k answers ansk(A, qi), using top-k rank-
based relational database engine. Now, let us assume that the tuples in the top-k answer set
ansk(A, qi) are sorted in decreasing order with respect to the score.

6 RankSQL will be available in the middle of this year. Personal communication.

Towards Top-k Query Answering in Description Logics: The Case of DL-Lite 449

2. Then we process each top-k answer set ansk(A, qi) (qi ∈ r(q, T)) in parallel or alternating
fashion, and top-down (i.e. the higher scored tuples in ansk(A, qi) are processed before the
lower scored tuples in ansk(A, qi)).
(a) For each tuple c seen, if its score is one of the k highest we have seen, then remember

tuple c and its score s(c) (ties are broken arbitrarily, so that only k tuples and their
scores need to be remembered at any time).

(b) For each answer set ansk(A, qi), let si be the score of the last tuple seen in this set.
Define the threshold value θ to be max(s1, ..., snq). As soon as at least k tuples have
been seen whose score is at least equal to θ, then halt (indeed, any successive retrieved
tuple will have score ≤ θ).

(c) Let Y be the set containing the k tuples that have been seen with the highest scores. The
output is then the set {〈c, s(c)〉 | c ∈ Y }. This set is ansk(K,q).

The following example illustrates the DTA.

Example 4. Consider Example 3. Suppose we are interested in retrieving the top-3 an-
swers of the disjunctive query q = {q′, q′′}. We have seen that it suffices to find the
top-3 answers of the union of the answers to q3, q4 and to q′′. Let us show how the
DTA works. First, we submit q3, q4 and q′′ to a rank-based relational database engine,
to compute the top-3 answers. It can be verified that

ans3(A, q3) = [〈0, 1.0〉, 〈3, 0.7〉, 〈4, 0.6〉]
ans3(A, q4) = [〈1, 0.9〉, 〈2, 0.8〉, 〈5, 0.5〉]
ans3(A, q′′) = [〈2, 0.84〉, 〈3, 0.64〉, 〈4, 0.36〉] .

The lists are in descending order w.r.t. the score from left to right. Now we process
alternatively ansk(A, q3), then ansk(A, q4) and then ansk(A, q′′) in decreasing order
of the score. The table below summaries the execution of our DTA algorithm. The
ranked list column contains the list of tuples processed.

Step Tuple sq3 sq4 sq′′ θ ranked list
1 〈0, 1.0〉 1.0 - - 1.0 〈0, 1.0〉
2 〈1, 0.9〉 1.0 0.9 - 1.0 〈0, 1.0〉, 〈1, 0.9〉
3 〈2, 0.84〉 1.0 0.9 0.84 1.0 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉
4 〈3, 0.7〉 0.7 0.9 0.84 0.9 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉〈3, 0.7〉
5 〈2, 0.8〉 0.7 0.8 0.84 0.84 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉〈3, 0.7〉

At step 5 we stop as the ranked list already contains three tuples above the threshold
θ = 0.84. So, the final output is

ansk(A, q3) = [〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉] .

Note that not all tuples have been processed. �
As computing the top-k answers of each query qi ∈ r(q, T) requires (sub) linear time
w.r.t. the database size (using, e.g. [6]), it is easily verified that the disjunctive TA algo-
rithm is linear in data complexity.

Proposition 3. Given a DL-Lite KB K = 〈T ,A〉 and a disjunctive query q then the
DTA computes ansk(K,q) in (sub) linear time w.r.t. the size of A.

Furthermore, the above method has the non-negligible advantage to be based on exist-
ing technology for answering top-k queries over relational databases, improves signifi-
cantly the naive solution to the top-k retrieval problem, and is rather easy to implement.

450 U. Straccia

4 Conclusions

DLs have been proposed as a mean to describe structured knowledge and find a natural
application in the context of the Semantic Web. We have presented DL-Lite in which
fuzzy predicates are allowed to appear in conjunctive queries. Thus, we may express
queries such as “find cheap hotels”. Such queries are already very common on the Web.
To the best of our knowledge, this is the first time this problem has been addressed
for classical DLs. A major distinction of DL-Lite is that an answer to a query is a set
of tuples ranked according to their score. As a consequence, whenever we deal with a
huge amount of tuples, the ranking of the answer set becomes the major problem that
has to be addressed.

We have shown how to answer disjunctive queries efficiently over a huge set of
instances. The main ingredients of our solution is a simple and effective query reformu-
lation procedure, the use of existing top-k query answering technology over relational
databases and the DTA algorithm. Indeed, a user query is reformulated into a set of
conjunctive queries using the inclusion axioms only and, then, the reformulated queries
can be submitted to the top-k query answering engine over a relational database where
the tuples have been stored. Finally, the DTA algorithm performs the final computa-
tion to retrieve the actual top-k results. We point out that, due to the results described
in [5], it is difficult to extend the language proposed here with additional constructs.
For instance, it is shown that adding qualified role restrictions ∃R.C would lead to a
NLOGSPACE data complexity, which rules out the possibility of using current top-k
relational database technology. Furthermore, the complexity result shows that it is the
same as for DL-Lite and, thus, whenever DL-Lite can be considered as useful, so is
DL-Lite as well.

We note that in [18] we considered the case of top-k query answering within fuzzy
DL-Lite. [18] and this work are orthogonal in the sense that in [18] tuples may have
a score, but no score combination function is allowed in the query language, while
here we consider a classical semantics with score combination function in the query
language. The combination of both features is an open direction for further research.
Additionally, other topics for future research may be: (i) to verify the applicability of
our method to other tractable DLs such as [1]; (ii) to address the problem of top-k
query answering to more expressive DLs than DL-Lite; (iii) to improve the DTA by
using more sophisticated, but better performing TA-based algorithms such as [10]; and
(iv) to improve the core top-k conjunctive query answering technology towards the
management of the disjunctive queries.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence IJCAI-05, pages 364-369, 2005.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

3. Andrea Calı̀, Domenico Lembo, and Riccardo Rosati. Query rewriting and answering un-
der constraints in data integration systems. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-03), pages 16–21, 2003.

Towards Top-k Query Answering in Description Logics: The Case of DL-Lite 451

4. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. DL-Lite: Tractable description logics for ontologies. In Proc. of the 20th Nat.
Conf. on Artificial Intelligence (AAAI 2005), 2005.

5. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in description logics. In Proceedings of
the 2005 International Workshop on Description Logics (DL-05), 2005.

6. Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing: Supporting expensive
predicates for top-k queries. In SIGMOD Conference, 2002.

7. CuiMing Chen, Volker Haarslev, and JiaoYue Wang. Las: Extending racer by a large abox
store. In Ian Horrocks, Ulrike Sattler, and Frank Wolter, editors, Proceedings of the 2005
International Workshop on Description Logics (DL-05), 2005.

8. Ronald Fagin. Combining fuzzy information: an overview. SIGMOD Rec., 31(2):109–118,
2002.

9. Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-
ware. In Symposium on Principles of Database Systems, 2001.

10. Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kiesling. Optimizing multi-feature queries for
image databases. In The VLDB Journal, pages 419–428, 2000.

11. Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store: DL reason-
ing with large numbers of individuals. In Proc. of the 2004 Description Logic Workshop
(DL 2004), pages 31–40, 2004.

12. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

13. Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in very ex-
pressive description logics. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-05), pages 466–471, 2005.

14. Laks V.S. Lakshmanan and Nematollaah Shiri. A parametric approach to deductive databases
with uncertainty. IEEE Transactions on Knowledge and Data Engineering, 13(4):554–570,
2001.

15. Hector J. Levesque and Gerhard Lakemeyer. The Logic of Knowledge Bases. MIT Press,
2001.

16. Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, and Sumin Song. RankSQL: query
algebra and optimization for relational top-k queries. In SIGMOD Conference, pages 131–
142, 2005.

17. Umberto Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelli-
gence Research, 14:137–166, 2001.

18. Umberto Straccia. Answering vague queries in fuzzy dl-lite. In Proceedings of the 11th
International Conference on Information Processing and Managment of Uncertainty in
Knowledge-Based Systems, (IPMU-06), 2006.

19. Umberto Straccia. A fuzzy description logic for the semantic web. In Elie Sanchez, editor,
Fuzzy Logic and the Semantic Web, Capturing Intelligence, chapter 4, pages 73–90. Elsevier,
2006.

20. J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1,2. Computer
Science Press, Potomac, Maryland, 1989.

21. M. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM SIGACT
Sym. on Theory of Computing (STOC-82), pages 137–146, 1982.

22. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

Representing Causal Information About a
Probabilistic Process

Joost Vennekens, Marc Denecker, and Maurice Bruynooghe

Dept. Computerscience, K.U. Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium
{joost, marcd, maurice}@cs.kuleuven.be

Abstract. We study causal information about probabilistic processes,
i.e., information about why events occur. A language is developed in
which such information can be formally represented and we investigate
when this suffices to uniquely characterize the probability distribution
that results from such a process. We examine both detailed representa-
tions of temporal aspects and representations in which time is implicit.
In this last case, our logic turns into a more fine-grained version of Pearl’s
approach to causality. We relate our logic to certain probabilistic logic
programming languages, which leads to a clearer view on the knowl-
edge representation properties of these language. We show that our logic
induces a semantics for disjunctive logic programs, in which these rep-
resent non-deterministic processes. We show that logic programs under
the well-founded semantics can be seen as a language of deterministic
causality, which we relate to McCain & Turner’s causal theories.

1 Introduction

If we want to construct a probabilistic model of some domain, it is often worth-
while to wonder where precisely our uncertainty comes from. Typically, the cur-
rent state of such a domain can be seen as the result of some probabilistic process,
i.e., there has been some sequence of events which has lead us to this state. We
can now be uncertain about the state of the domain, because, for instance, we
might not precisely know the effects of some events, or because some events are
inherently non-deterministic, or because we do not exactly know which events
have happened. There are a number of probabilistic modeling languages that al-
low the dynamic evolution of a domain to be represented in full detail. In these
formalisms, one defines a probability distribution by characterizing the process
that has generated it. An example of this kind of approach is Halpern’s work
on combining knowledge and probability [3]. Often, however, we are not really
interested in such a process itself, but merely want to know the probability dis-
tribution that results from it. In this case, it might suffice to only represent
certain salient properties of this process. We claim that causal information is
particularly useful for this purpose. One of the most popular causal approaches
to probabilistic modeling is that of causal Bayesian networks [6]. Now, such a
Bayesian network can indeed be seen as a highly abstracted representation of a

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 452–464, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Representing Causal Information About a Probabilistic Process 453

probabilistic process, in which the value of every node is determined by some
sequence of events that propagates the values of its parents to the node itself.

In this work, we develop a more flexible and fine-grained representation of
causal information about a probabilistic process, which distinguishes itself from
Bayesian networks by offering an explicit, strucural representation of causal
probabilistic events. In the first part of this paper, we construct a logic that
can represent knowledge about the causes and effects of probabilistic events and
investigate when such information suffices to uniquely characterize a probability
distribution. We also study the role of time in this language and show that,
on the one hand, very detailed encodings of probabilistic processes are possible,
while, on the other hand, temporal information can often also be abstracted
away, leading to more static representations of causal relations.

Our treatment of causality is similar in spirit to the way causality is typically
handled in logical formalisms, such as McCain & Turner’s causal logic [5]. In the
second part of this paper, we formally investigate this relation. This will lead
to a theorem, that shows that our logic almost completely coincides with the
probabilistic logic programming language of Logic Programs with Annotated
Disjunctions [12], which is known to have strong ties to Poole’s Independent
Choice Logic [7]. As such, the previous analysis provides additional motivation
for these languages, showing that they are not only meaningful combinations of
logic programming and probability, but that they also arise naturally out of a
desire to represent causal information about probabilistic processes.

To summarize, the contributions of this paper are the following:

– We investigate how causal information about a probabilistic process can be
used to represent a probability distribution.

– We study the role of time in our logic and show that it allows both detailed
representations of dynamic processes and more static, Bayesian network style
models.

– We relate our logic to logic programming based approaches to probabilistic
modeling. This result provide additional motivation for these approaches and
helps to clarify their knowledge representation methodology.

Proofs of the theorems in this paper can be found in [11].

2 Causal Information About Probabilistic Processes

In this section, we develop a logic that represents causal information about
probabilistic processes in a natural way. We begin by explicating what we mean
by a probabilistic process. Such a process is a sequence of probabilistic events.
Each of these events affects the state of the domain in some way. Which event
happens at any particular time may depend on the state of the domain at that
moment. To formally represent such a process, we assume that we have a logical
vocabulary, which allows us to represent a state of the domain by a Herbrand
interpretation, i.e., a set of ground atoms. We also assume that the effect of an
event on the state of the domain corresponds to either no change at all, or one

454 J. Vennekens, M. Denecker, and M. Bruynooghe

ground atom becoming true. This suffices because we can easily encode other
cases by choosing our vocabulary in an appropriate way. For instance, we can
handle the case in which multiple properties would become true by introducing a
new predicate symbols to represent the conjunction of all of these properties. To
cover the case where we want to consider properties that are initially true and
might become false, we can construct our vocabulary in such a way that there
is an atom that represents the complement of this property. A property whose
truth value might change more than once can be encoded by a set of ground
atoms, one for each time point at which the truth of this property might change.

We write down such an event as (p1 : α1)∨ · · · ∨ (pn : αn), with the pi ground
atoms and the αi probabilities with

∑
αi ≤ 1. Such an expression is read as: “At

most one of the pi will become true as a result of this event and the probability
of each pi becoming true is αi.” Note that an atom pi does not represent an
outcome of one particular event, but rather the effect of this outcome on the
domain, i.e., if different events can have the same effect on the domain, they
might share the same proposition. If an event has a deterministic effect, i.e., it
always causes some atom p with probability 1, we also write p instead of (p : 1).

A probabilistic process now corresponds to a tree structure, where each node s
represents a particular state of the domain, i.e., to each such s there corresponds
a Herbrand interpretation I(s). The interpretation associated to the root of this
tree is {}, i.e., initially all atoms are false. Now, in every non-leaf state s, a single
event (p1 : α1)∨· · ·∨(pn : αn) occurs, i.e., the children of s are nodes s1, . . . , sn+1,
where I(s1) = I(s) ∪ {p1}, . . . , I(sn) = I(s) ∪ {pn}, and I(sn+1) = I(s). Each
such edge can also be labeled with a probability: for 1 ≤ i ≤ n, the probability of
going from s to si is αi, and the probability of going from s to sn+1 is 1−

∑
αi.

Such a probabilistic process generates a probability distribution over its leaves,
namely, the probability of a leaf is the product of the probabilities of all edges
in the path from the root to this leaf. This leads in a straightforward way to a
distribution over Herbrand interpretations: the probability of interpretation I is
the sum of the probabilities of all leaves s for which I(s) = I.

It is of course this last distribution that we are really interested in. A key
observation is now that we do not need to know the entire probabilistic process
in full detail, in order to know this distribution. In particular, the order in
which certain events happen might be completely irrelevant. Our goal is now to
develop a logic which allows one to represent enough properties of such a process
to uniquely characterize this distribution, while ignoring irrelevant details. This
will allow more compact definitions of probability distributions and lead to more
general representations, that are less tailored to specific circumstances.

The fundamental idea behind our approach is that we will not specify when an
event precisely happens, but rather why it happens. Concretely, we represent a
reason for some event E by a propositional formula φ and write “φ causes E” as:
E ← φ. We call such a construct a Causal Probabilistic event (CP-event) or, al-
ternatively, to emphasize that we are referring to a syntactical construct, simply
a rule. Note that, even though each CP-event contains only ground atoms, there
is nothing to prevent us from introducing rules with variables as abbreviations

Representing Causal Information About a Probabilistic Process 455

for sets of CP-events. The formula φ is also allowed to be true, in which case it
may also be omitted; in this case, the event always happens.

The head head(r) of a rule r = E ← φ is the set of all pairs (p, α) appearing
in the event E; the body body(r) of r is the formula φ. By headAt(r) we denote
the set of all atoms p for which there exists an α such that (p, α) ∈ head(r).
The set of all atoms that appear negatively in φ (i.e., within the scope of an odd
number of negations), is denoted as body−(r), while that of all positive atoms
(i.e., the complement of the set of negative atoms) is body+(r).

By a CP-theory we mean a finite set of CP-events. We now need to address
the question of precisely what information such a CP-theory C gives about a
probabilistic process. The following properties are quite obvious:

– An event can only occur if there is a cause for this, i.e., if some event E
occurs in a state s, there should be a rule r ∈ C, such that E = head(r) and
body(r) holds in I(s);

– If, in a state s, there are still CP-events E ← φ in C such that the event E
has not already occurred and φ holds in I(s), then one such event should
happen.

A process that satisfies these two conditions is said to be consistent with C.
This reading of a CP-theory does not yet suffice to characterize a unique prob-
ability distribution, i.e., different consistent processes might generate different
probability distributions. To illustrate this, let us consider the following example.

Example 1. A person enters a dark room. There is button which is supposed
to turn on the light. However, this button is broken and only works half of
the time. The person repeatedly pushes the button until the light goes on. He
tries this at most two times. To model this situation, we consider three time
points 0, 1, 2, and for each time point i, light(i) stands for whether the light is
on at this moment and push(i) stands for whether the button is pushed at time i.

(light(1) : 0.5)← push(1).
(light(2) : 0.5)← push(2).

push(1)← ¬light(0).
push(2)← ¬light(1).

light(2)← light(1).

In the initial state, neither light(0) nor light(1) hold. According to the semantics
we have defined so far, both the event that might cause push(1) and the event
that might cause push(2) could happen. These two options lead to different
probability distributions. Indeed, in the process which causes push(2) before
push(1), the probability of light(2) will (incorrectly) be 0.5, instead of 0.75.

We can resolve this ambiguity, by also taking into account the temporal infor-
mation that is implicit in the rules. Concretely, because causes always happen
before their effects, we can assume that, if an atom appears in the body of a
CP-event, then the part of the process that determines whether or not this atom
holds, takes place before this event. As such, for a rule E ← φ, the event E should
only happen once we are sure that all subprocesses that might affect atoms of
φ are finished. Now, if φ holds, then all positive atoms must have already been
derived and we can therefore assume that the processes concerning these atoms

456 J. Vennekens, M. Denecker, and M. Bruynooghe

are finished. However, for the negative atoms, we cannot make this assumption
based only on the fact that φ holds. Indeed, it is not because an atom has not
yet been derived, that it never will. We will therefore have to ensure that E
does not occur while it is still possible to derive any of these negative atoms. For
Example 1, the fact that push(1) might still cause light(1) allows us to conclude
that the event push(1)← ¬light(0) should happen first.

Mathematically, we can define this as follows. For some state s, let I be I(s)
and letD ⊆ C be the set of all CP-events that have not yet happened. To find out
which atoms might still be caused in s, we need to consider for which r ∈ D the
formula body(r) could still possibly be satisfied. We assume that every body(r)
is in some normal form (e.g., CNF), in which negation appears only directly in
front of atoms. We consider a negative literal ¬p. If p has already been caused,
then it is clearly impossible for this literal to be satisfied; otherwise, this might
still be possible. We therefore denote by CI the result of replacing all negative
literals ¬p with p ∈ I by false and all other negative literals by true. Now,
if we already have some set S such that all atoms in S are possible, then we
know that if, for some r ∈ DI , body(r) holds in S, all atoms p ∈ headAt(r) are
also still possible. As such, we define the set PossC(I) of possible atoms as the
smallest set S such that S contains all h for which ∃r ∈ DI with S |= body(r)
and p ∈ head(r).1

We now define a C-process to be a process that is consistent with C and that
also satisfies the condition that whenever a CP-event r occurs in a node s, none
of the negative body atoms of r is still possible, i.e., body−(r) ∩ PossC(I) = {}.
This now does suffice to characterize a unique probability distribution.

Theorem 1. Let C be a CP-theory. Every C-process generates the same prob-
ability distribution.

If it exists, we denote this unique distribution by πC . Note that there can be CP-
theories C which have no C-processes. If this is the case, then it is impossible to
schedule the events of this theory in such a way that we can exhaust all events that
might cause an atom p, before having to determine whether or not p will hold. We
call a CP-theory C valid iff it has a C-process. In general, it is not easy to decide
whether a given theory C is valid. However, there exist some simple syntactical
criteria, by which it can often be concluded that this is so. For instance, if the
theory does not contain negation or is stratified2, then C is valid.

At this point, the definition of the semantics of CP-logic using the PossC(I)
construct may still seem somewhat arbitrary. In the next section, we study the
role of time in CP-logic and show that our semantics gives correct results when
probabilistic processes are modeled in full temporal detail, while also allowing
representations in which time is abstracted away. Even though we do not have
space to go into this here, the reader could convince himself that any semantics
with these properties will be almost identical to the one defined here.
1 This is similar to the definition of the stable operator of a logic program P , which

maps an interpretation I to the least Herbrand model of the reduct of P by I .
2 A CP-theory C is stratified if there is a mapping λ from ground atoms to N, s.t. for

all r ∈ C, h ∈ headAt(r), p ∈ body+(r), n ∈ body−(r), λ(h) ≥ λ(p) and λ(h) > λ(n).

Representing Causal Information About a Probabilistic Process 457

2.1 The Role of Time in CP-Logic

Suppose we want to model a probabilistic process that lasts n time points. It
is natural to construct the vocabulary of our theory in such a way that, for
each property f that is relevant to this process, we have n ground atoms, say
f(1), . . . , f(n), that refer to the truth of f at the different time points. Indeed,
this is, for instance, precisely what we already did in Example 1. Now, suppose
that in this domain it is the case that some property φ causes an event E =
(f1(i1) : α1) ∨ · · · ∨ (fn(in) : αn). Because causes always precede their effects, it
should then be the case that all atoms belonging to φ refer to time points that
are earlier than all of the time points ij . In other words, for each f(i) appearing
in E and each f ′(i′) appearing in φ, it should be the case that i > i′. Moreover,
if this event actually occurs, this should clearly happen at some time between
the maximal i′ for which f ′(i′) appears in φ and the minimal i for which f(i)
appears in E. It can be shown that our semantics respects this order. To state
this formally, we define the level lvl(r) of a rule r as the minf(i)∈headAt(r) i. We
will show that if, in some process, the events happen according to the order
dictated by lvl, then this process has to be a C-process. We could, alternatively,
choose to define lvl(r) as maxf(i)∈body(r) i and the theorem would still hold.

Theorem 2. Let C be a CP-theory in which every ground atom is of the form
f(i), such that for all r ∈ C, if f(i) ∈ headAt(r) and f ′(i′) ∈ body(r), then
j > i. Let T by a probabilistic process that is consistent with C and for which,
whenever a CP-event r happens in a state s, then for all other CP-events r′ that
could have happened in s, i.e., no ancestor of s executes r′ and I(s) |= body(r′),
it holds that lvl(r) ≤ lvl(r′). Then T is a C-process and, therefore, it defines
precisely the distribution πC .

By choosing our vocabulary in such a way that each ground atom represents the
truth of some property at one particular time, we can represent a probabilistic
process in quite some detail. Often, however, we would prefer to make abstraction
of certain temporal information. Concretely, instead of using propositions f(i)
to refer to the truth of some property at time i, we would sometimes like to
simply use a single atom f to represent the fact that “at some (unspecified)
point in time, f holds”. Formally speaking, we can ask the following question.
Suppose we have a CP-theory C where, as above, all ground atoms are of the
form f(i) for some property f and time point i. Let Cf be the result of replacing
every atom f(i) by a single atom f . Now, is it the case that C and Cf generate
equivalent probability distributions? To be more precise, for an interpretation I
for the vocabulary of C, let us denote by If the result of replacing every atom
f(i) by f . Is it now the case that for all interpretations I ′ for the vocabulary of
Cf , the probability πCf (I ′) is equal to

∑
If =I′ πC(I)? A general, formal answer

to this question falls outside the scope of this paper. We will, however, illustrate
through some examples what kind of properties are relevant to this question.

In Example 1, time plays a crucial role: it matters at which time the light
comes on, because this affects how many times the button is pushed, which in
turn affects if and when the light might come on. Here, we cannot abstract away

458 J. Vennekens, M. Denecker, and M. Bruynooghe

time. In fact, if we try to do so, we get a theory that is not valid. Indeed, we
cannot know whether the light will go on, without knowing whether the button
will be pushed, which in turn depends on whether the light is on. In the following
example, it is possible to make abstraction of time.

Example 2. We consider two persons, a and b. At time 0, both a and b undergo a
blood transfusion, which might cause them to be infected with the HIV virus—
say the probability of this is 0.1. At time 1, a and b engage in sexual intercourse,
during which this virus may be transferred with a probability of 0.6.

(hiv(a, 1) : 0.1).
(hiv(b, 1) : 0.1).

(hiv(a, 2) : 0.6)← hiv(b, 1).
(hiv(b, 2) : 0.6)← hiv(a, 1).

hiv(a, 2)← hiv(a, 1).
hiv(b, 2)← hiv(b, 1).

Example 3. By making abstraction of time, we get:

(hiv(a) : 0.1).
(hiv(b) : 0.1).

(hiv(a) : 0.6)← hiv(b).
(hiv(b) : 0.6)← hiv(a).

hiv(a)← hiv(a).
hiv(b)← hiv(b).

This theory expresses that there are two possible causes for why a might have
HIV: his blood transfusion might have infected him with probability 0.1 and, if
b is infected at any time, then this might also cause hiv(a). Now, this is indeed
equivalent to the more detailed version in Example 2. Crucial for this equivalence
is the fact that the sexual contact between a and b happens at the end of our
time line, meaning that, no matter at which time b gets infected, he will still get
a chance to pass on this infection to a. Also relevant is the fact that having HIV
is a persistent property, which guarantees that if b ever gets infected, he will still
carry the virus at the time of the sexual contact.

2.2 Causality in CP-Logic

One of the most succesful causal approaches to probabilistic modeling is that
of causal Bayesian networks [6]. The intuitive reading of such a network says
that, for every node, there is a causal mechanism through which the values of
the parents of this node determine the value of this node itself. As such, a causal
Bayesian network describes a probabilistic process in which, whenever the values
of all the parents of a node have been determined, a causal event occurs that
propagates these values to the node itself. There are two ways in which these
processes are more restricted than those of CP-logic.

Firstly, in a causal Bayesian network, the value of a node is always determined
by a single event. In CP-logic, on the other hand, many events might be involved
in determining the truth of the same proposition. These events then act according
to what we call the principle of independent causation. This says that every
event affects the state of the world in a probabilistically independent way. For
instance, if b is infected with HIV, then there are two events that might cause
hiv(a), namely a’s blood transfusion and the sexual contact with b. The effect of
the blood transfusion is now probabilistically independent of that of the sexual
contact, i.e., the probability of hiv(a) is 0.1+0.6−0.06 (i.e., noisy-or({0.1, 0.6})).

Representing Causal Information About a Probabilistic Process 459

Secondly, due to the acyclic graph structure, events in a Bayesian network can
only propagate values in a fixed direction. In CP-logic, on the other hand, it is
possible that, e.g., under certain circumstances, hiv(a) propagates to hiv(b),
while, under different circumstances, hiv(b) might propagate to hiv(a). The
meaning of such a causal loop in CP-logic can be characterized by a second
principle, namely that of no deus ex machina effects. This states that nothing
happens without a cause and, moreover, that something cannot cause itself. In-
deed, by itself, the loop between hiv(a) and hiv(b) does not cause anything, i.e.,
if neither a nor b has been infected by a blood transfusion, then neither has HIV.

The more general kind of events allowed by CP-logic offer some knowledge
representation advantages. Firstly, they allow a better representation for effects
that have a number of independent causes. For instance, in a game of Russian
roulette that is being played with two guns, there are two independent causes
for the death of the player. In CP-logic, we can write:

(death : 1/6)← pull trigger(left gun).
(death : 1/6)← pull trigger(right gun).

Here, the independence between these two causes is a structural property of the
theory, instead of a numerical one. This improves the elaboration tolerance of the
representation, since adding or removing a cause simply corresponds to adding
or removing a single CP-event. Moreover, it also makes the reprentation more
compact, as, for n independent causes, only n probabilities are needed instead of
the 2n in a Bayesian network table. A second advantage is that CP-logic allows
cyclic causal relations to be directly represented in the same way as acyclic ones,
whereas Bayesian networks require them to be encoded in a special way. For
instance, to represent the cyclic relation between hiv(a) and hiv(b), one would
introduce new atoms ext(a) and ext(b) to represent the possibility that a and b
are infected by an external cause (i.e., one that is not part of the causal loop):

e(a),e(b) e(a),¬e(b) ¬e(a),e(b) ¬e(a),¬e(b)
hiv(a) 1 1 0.6 0

e(a),e(b) e(a),¬e(b) ¬e(a),e(b) ¬e(a),¬e(b)
hiv(b) 1 0.6 1 0 ext(a)

ext(b)

hiv(a)

hiv(b)

3 Logic Programs with Annotated Disjunctions

Logic Programs with Annotated Disjunctions (LPADs) are a probabilistic logic
programming language, that was conceived in [12] as a straightforward extension
of logic programs with probability. In this section, we relate LPADs to CP-logic.
In this way, we will be able to clarify the position of CP-logic among related work,
such as Poole’s Independent Choice Logic and McCain and Turner’s causal the-
ories. Also, we will gain additional insight into a number of probabilistic logic

460 J. Vennekens, M. Denecker, and M. Bruynooghe

programming languages, by showing that theories in these languages can be seen
as descriptions of causal information about probabilistic processes. Moreover, as
we will discuss in Section 4, this also leads to an interesting way of looking
at normal and disjunctive logic programs. Finally, probabilistic logic program-
ming languages are usually motivated in a bottom-up way, i.e., along the fol-
lowing lines: “Logic programs are a good way of representing knowledge about
relational domains, probability is a good way of representing knowledge about
uncertainty; therefore, a combination of both should be useful for modeling un-
certainty in a relational domain.” Our results provide an additional top-down
motivation, by showing that these languages are the natural way of representing
causal knowledge about probabilistic processes.

We first recall the formal definition of LPADs from [12]. An LPAD is a set of
rules (h1 : α1) ∨ · · · ∨ (hn : αn) ← l1 ∧ · · · ∧ ln, where the hi are atoms and the
lj literals. As such, LPADs are a syntactic sublogic of CP-logic. However, their
semantics is defined quite differently. Every rule of the above form represents a
probability distribution over the set of logic programming rules {“hi ← l1∧· · ·∧
ln”| 1 ≤ i ≤ n}. From these distributions, a probability distribution over logic
programs is then derived. To formally define this distribution, we introduce the
following concept of a selection. In this definition, we use the notation head∗(r)
to denote the set of pairs head(r)∪{(∅, 1−

∑
(h:α)∈head(r) α)}, where ∅ represents

the possibility that none of the hi’s are caused by the rule r.

Definition 1 (C-selection). Let C be an LPAD. A C-selection is a function
σ from C to

⋃
r∈C head

∗(r), such that for all r ∈ C, σ(r) ∈ head∗(r). By σh(r)
and σα(r) we denote, respectively, the first and second element of the pair σ(r).

The probability π(σ) of a selection σ is now defined as
∏

r∈C σ
α(r). By Cσ we

denote the logic program {“σh(r) ← body(r)”| r ∈ C and σh(r) �= ∅}. Such a
Cσ is called an instance of C. These instances are interpreted according to the
well-founded model semantics [10]. In general, the well-founded model wfm(P)
of a program P is a pair (I, J) of interpretations, where I contains all atoms that
are certainly true and J contains atoms that might possibly be true. If I = J ,
the model is said to be two-valued. Intuitively, if wfm(P) is two-valued, then the
truth of all atoms can be decided, i.e., everything that is not false can be derived.
In the semantics of LPADs, we want to ensure that all uncertainty is expressed
by means of the annotated disjunctions. In other words, given a specific selection,
there should no longer be any uncertainty. We impose the following criterion.

Definition 2 (Soundness). An LPAD C is sound iff all instances of C have
a two-valued well-founded model.

For such LPADs, the following semantics can now be defined.

Definition 3 (Instance based semantics μC). Let C be a sound LPAD. For
an interpretation I, we denote by W (I) the set of all C-selections σ for which
wfm(Cσ) = (I, I). The instance based semantics μC of C is the probability dis-
tribution on interpretations, that assigns to each I the probability

∑
σ∈W (I) π(σ).

Representing Causal Information About a Probabilistic Process 461

Now, the key result of this section is that this instance based semantics coincides
with the semantics defined in Section 2.

Theorem 3. Let C be a valid CP-theory. Then C is also a sound LPAD and,
moreover, for each interpretation J , μC(J) = πC(J).

We remark that it is not the case that every sound LPAD is also a valid CP-
theory. In other words, there are some sound LPADs that cannot be seen as
expressing sensible causal information about a probabilistic process.

In [12], LPADs are compared to a number of different probabilistic logic pro-
gramming formalisms. For instance, it was shown that this logic is very closely
related to Poole’s Independent Choice Logic. Because of the above theorem,
these comparisons carry over to CP-logic.

4 CP-Logic and Logic Programming

In this section, we examine some consequences of the results of the previous
section from a logic programming point-of-view.

Disjunctive logic programs. In probabilistic modeling, it is often useful to con-
sider the structure of a theory separately from its probabilistic parameters. In-
deed, for instance, in machine learning, the problems of structure learning and
parameter learning are two very different tasks. If we consider only the structure
of a CP-theory, then, syntactically speaking, we end up with a disjunctive logic
program3, i.e., a set of rules h1 ∨ · · · ∨ hn ← φ. Let us now consider the class of
all CP-theories C that result from adding probabilities αi to each rule, in such a
way that, for every rule,

∑
αi = 1. Every probability distribution πC defined by

such a C induces a possible world semantics, namely the set of interpretations I
for which πC(I) > 0. This set of possible worlds does not depend on the precise
values of the αi, i.e., it is the same for all CP-theories C in this class. As such,
it captures precisely the structural information in such a CP-theory.

From the point of view of disjunctive logic programming, this set of possible
worlds can be seen as an alternative semantics for such a program. Under this se-
mantics, the intuitive reading of a rule should be: “φ causes a non-deterministic
event, that causes precisely one of h1,. . . , hn.” Clearly, this is a different infor-
mal reading than is used in the standard stable model semantics for disjunctive
programs [8]. Indeed, under our reading, a rule corresponds to a causal event,
whereas, under the stable model reading, it is supposed to describe an aspect
of the reasoning behaviour of a rational agent. Consider, for instance, the dis-
junctive program {p ∨ q. p.}. To us, this program describes a set of two non-
deterministic events: One event causes either p or q and another event always
causes p. Formally, this leads to two possible worlds, namely {p} and {p, q}.
Under the stable model semantics, however, this program states that an agent
3 In most of the literature, the bodies of the rules of a disjunctive logic program must

be conjunctions of literals. For our purposes, however, this restriction is not relevant.

462 J. Vennekens, M. Denecker, and M. Bruynooghe

believes either p or q and the agents believes q. In this case, he has no reason to
believe q and the only stable model is {p}.

CP-logic treats disjunction in a fundamentally different way than the stable
semantics. Interestingly, the possible model semantics [9] for disjunctive programs
is very similar to our treatment. Indeed, it consists of the stable models of
instances of a program. Because, as shown in Section 3, the semantics of CP-
logic considers the well-founded models of instances, these two semantics are very
closely related. Indeed, for a large class of programs, they coincide completely.

Normal logic programs. A normal logic program P is a set of rules h← φ, with
h an atom and φ a formula. Syntactically, such a program is also a CP-theory.
Its semantics πP assigns a probability of 1 to a single interpretation and 0 to
all other interpretations. Moreover, the results from Section 3 tell us that the
interpretation with probability 1 will be precisely the well-founded model of P .
As such, a logic program under the well-founded semantics can be viewed as a
description of causal information about a deterministic process. Concretely, we
can read a rule h← φ as: “φ causes a deterministic event, that causes h.”

This observation exposes an interesting connection between logic program-
ming under the well-founded semantics and causality. Such a connection helps
to explain, for instance, the usefulness of this semantics in dealing with recursive
ramifications when reasoning about actions [2]. Moreover, there is also an inter-
esting link here to the language of ID-logic [1]. This is an extension of classical
logic, that uses logic programs under the well-founded semantics to represent
inductive definitions. Inductive definitions are a well-known mathematical con-
struct, which define a relation by describing a derivation process by which it
can be constructed. It turns out that this derivation process is closely tied to
the probabilistic processes described by a CP-theory. Indeed, both can be for-
mally characterized by means of the well-founded semantics. This observation
suggests that an inductive definition is actually nothing more than a represen-
tation of causal information about a process that takes place in the domain of
mathematical objects.

McCain and Turner’s causal theories. We compare the treatment of causality
in CP-logic to McCain and Turner’s causal theories [5]. A causal theory is a
set of rules φ ⇐ ψ, where φ and ψ are propositional formulas. The semantics
of such a theory T is defined as follows. An interpretation I is a model of T
iff I is the unique classical model of the theory T I = {φ | there exists a rule
φ ⇐ ψ in T such that I |= ψ}. This semantics is based on the principle of
universal causation, which states that: “every fact that obtains is caused” [5].
We now compare this language to deterministic CP-logic, i.e., CP-logic in which
every CP-event causes one atom with probability 1. The most obvious difference
concerns the fundamental knowledge representation methodology of these logics.
In CP-logic, a proposition represents a property that is false unless there is a
cause for it to be true. For McCain & Turner, however, truth and falsity are
symmetric, i.e., a property is not true unless there is a cause for it to be true
and a property is also not false unless there is a cause for it to be false. It is up

Representing Causal Information About a Probabilistic Process 463

to the user to make sure there is always a cause for either falsity or truth. For
instance, the CP-theory {p← ¬q} has {p} as its model, while the causal theory
{p⇐ ¬q} has no models, because neither q nor ¬q is caused. The CP-logic view
that falsity is the natural state of atoms can be simulated in causal theories, by
adding rules ¬p ⇐ ¬p, which say that ¬p is in itself reason enough for ¬p. Let
C′ be the result of adding such rules to some original CP-theory C. As shown
in [4], the models of C′ are all interpretations I that consist of all heads of
rules r ∈ C, for which I |= body(r). In logic programming terms, these are the
supported models of C, i.e., fixpoints of the immediate consequence operator TC .

The difference between such a CP-theory C and its corresponding causal
theory C′ is, therefore, precisely the difference between the well-founded model
semantics and supported model semantics. It is well-known that this lies in
the treatment of loops. In our context, it can be traced back to the fundamental
principles of these logics. McCain and Turner’s principle of “universal causation”
states that everything that holds must have a cause. This is a weaker principle
than our principle of no deus ex machina effects, which states that every true
proposition must have a cause and that something cannot cause itself. Indeed,
the CP-theory {p← p} has {} as its model, whereas the causal theory {p⇐ p}
has {p} as its model. In other words, in McCain and Turner’s theories, it can
be stated that a certain atom might be true “on its own”, i.e., without any
additional causal explanation being required. This can be useful to incorporate
exogenous actions into a theory, i.e., actions that can simply happen, without
any part of the model describing why they happen. These currently cannot be
represented in CP-logic. On the other hand, McCain and Turner’s approach to
self-causation does not allow them to directly represent cyclic causal relations of
the kind appearing in Example 3.

5 Conclusions

We have identified causal information about probabilistic processes as a useful
kind of knowledge and constructed the language of CP-logic to represent it. We
studied when such information suffices to characterize a probability distribu-
tion. We have analyzed the role of time in this logic and showed that it can
express probabilistic processes in complete temporal detail, but is also able to
represent causal relations in a more static way. We have shown how the concept
of causality in this logic compares to causal Bayesian networks and McCain &
Turner’s causal theories. We related CP-logic to logic programming, by show-
ing that it basically coincides with the language of LPADs. This result provides
an additional motivation for an existing class of probabilistic logic program-
ming formalisms, since it shows that these are the natural way of representing
causal information about probabilistic processes. We showed that our semantics
induces a possible world semantics for disjunctive programs and discussed the
differences with the standard stable model semantics. Our result also shows that
normal logic programs under the well-founded semantics can be seen as a lan-
guage of deterministic causality, which exposes an interesting relation between
causal processes and inductive definitions as formalized in ID-logic.

464 J. Vennekens, M. Denecker, and M. Bruynooghe

References

1. M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions
and its modularity properties. In Proc. 7th International Conference on Logic
Programming and Non-monotonitc Reasoning (LPNMR), pages 47–60 volume 2923
of LNCS, 2004.

2. M. Denecker, D. Theseider-Dupré, and K. Van Belleghem. An inductive defini-
tion approach to ramifications. Linköping Electronic Articles in Computer and
Information Science, 3(7):1–43, 1998.

3. J. Halpern and M. Tuttle. Knowledge, probability, and adversaries. Journal of the
ACM, 40:917–960, 1993.

4. N. McCain. Causality in Commonsense Reasoning about Actions. PhD thesis,
University of Texas at Austin, 1997.

5. N. McCain and H. Turner. Causal theories of action and change. In Proc. 13th
National Conference on Artificial Intelligence and the 8th Innovative Applications
of Artificial Intelligence Conference (AAAI/IAAI), pages 460–465, 1996.

6. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

7. D. Poole. The Independent Choice Logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1-2):7–56, 1997.

8. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 3/4:401–424, 1991.

9. C. Sakama and K. Inoue. An alternative approach to the semantics of disjunc-
tive logic programs and deductive databases. Journal of Automated Reasoning,
13(1):145–172, 1994.

10. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

11. J. Vennekens, M. Denecker, and M. Bruynooghe. On the equivalence of Logic Pro-
grams with Annotated Disjunctions and CP-logic. Technical report, K.U. Leuven,
2006.

12. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. In Logic Programming, 20th International Conference, ICLP 2004,
Proceedings, pages 431–445, volume 3132 of LNCS. Springer, 2004.

A Tool to Facilitate Agent Deliberation

Daniel Bryant, Paul Krause, and Sotiris Moschoyiannis

Department of Computing, University of Surrey, Guildford, GU2 7XH. UK
{d.bryant, p.krause, s.moschoyiannis}@surrey.ac.uk

Abstract. In this paper we present a prototype of a tool that demon-
strates how existing limitations in ensuring an agent’s compliance to an
argumentation-based dialogue protocol can be overcome. We also present
the implementation of compliance enforcement components for a delib-
eration dialogue protocol, and an application that enables two human
participants to engage in an efficiently moderated dialogue, where all in-
appropriate utterances attempted by an agent are blocked and prevented
from inclusion within the dialogue.

1 Introduction

Autonomous software agents are often cited as a key enabling technology for
the next generation of distributed service provision, such as large-scale elec-
tronic commerce systems [1] and Service-Oriented Computing [2]. Key charac-
teristics of such services are agent heterogeneity, conflicting individual goals,
limited trust and a high probability of non-conformance to specifications [3]. If
this vision of large-scale open multi-agent systems is to be realised then the fun-
damental problem of interoperability (i.e. communication between agents) must
be addressed. As a result, there has been much work on agent communication
languages (ACLs), and an increasing amount of this work has concentrated on
argumentation-based dialogue [4]. However, for an ACL to truly be an enabling
technology, it must rely on a standard or protocol to ensure that different im-
plementations preserve the ACL’s meaning [5], and in order to gain acceptance,
particularly for sensitive applications such as electronic commerce, it must be
possible to determine whether or not any system that claims to conform to an
ACL protocol actually does so [5], [6].

In this paper we present a prototype of a tool that demonstrates how existing
limitations in ensuring an agent’s compliance to an argumentation-based dia-
logue protocol can be overcome. Dialogue protocols are enforced by means of a
series of distributed ”Dialogue Manager” enforcement components, implemented
as a lightweight Java-based agent proxy. Our ultimate goal is to implement a
generic ACL enforcement tool, but in order to keep this paper focused we will
concentrate on the implementation of enforcement for a deliberation dialogue
protocol, as presented in [7]. The remainder of this paper is structured as fol-
lows. First, we present an overview of the deliberation dialogue and dialogue
games. Next, we summarise the implementation of our tool. We conclude the
paper with an overview of the planned future work.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 465–468, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 D. Bryant, P. Krause, and S. Moschoyiannis

2 Deliberation and Dialogue Games

Hitchcock et al [7] state that a deliberation dialogue arises with a need for action
in some circumstance. In general human discourse, this need may be initially
expressed in governing questions which are quite open-ended, as in where shall
we go for dinner this evening? In [7] a formal and implementable model for
deliberation dialogues between autonomous agents is presented, utilising an ACL
with argumentation-based social semantics [5] within a formal dialogue game.
Formal dialogue games are games in which two or more participants ”move”
by uttering locutions, according to certain pre-defined rules (see [7] for a more
detailed presentation). For each locution type in the deliberation dialogue a
series of pre- and post-conditions are specified based on external observable
information such as the previous utterances of each agent and current dialogical
commitments. These conditions are used to axiomatise behaviour in the sense
that they specify when the utterance of each locution would be considered a
legal move in the dialogue.

3 Implementing the Dialogue Manager

There are many examples of existing work for verifying agent specifications and
protocol compliance (which will not be cited due to space restrictions in this
paper). However, many techniques rely on access to an agent’s internal state
(which is considered unacceptable to many researchers), are only capable of
verifying the design level of an agent, or have not been practically implemented.
There has also been several recent approaches to enforcing agent interaction that
seek to overcome these limitations, most notably Artikis el al’s Society Visualiser
[3] and Alberti et al’s SOC-SI [8]. Our work differs from these approaches in
two fundamental ways. Firstly, we focus exclusively on enforcing argumentation-
based dialogue protocols (which naturally contain a form of social semantics [5])
and as such we provide an efficient technique for translating locution pre- and
post-conditions into executable code (based on formal support provided in [9] to
represent locution conditions in a common format). Secondly, our enforcement
mechanism has been distributed across all the participating agents, reducing the
potential performance bottleneck of a monolithic mechanism.

We have implemented our tool in the form of a lightweight Java applica-
tion using Sun’s distributed JavaSpaces technology to act as the communication
medium. At the core of the JavaSpaces system the ”Linda-like” [10] tuples-based
associative black board coordination model is utilised, decoupling the communi-
cating agents both spatially and temporally. We have created a client-side ”Di-
alogue Manager” proxy that acts as a mediator between every agent involved
in a dialogue and the communication medium (based on the Controller in the
LGI model [10]). We have also implemented the rules for the deliberation dia-
logue protocol and the pre- and post- conditions for each locution’s semantics
(as specified in [7]) using a flexible framework which is cleanly separated from
the Dialogue Manager (analogous to the Law in LGI). This enables different di-
alogue protocols to be swapped and enforced at run time, and in future versions

A Tool to Facilitate Agent Deliberation 467

of the tool will allow a variety of dialogue-types to be mediated. A Dialogue
Manager operates essentially as follows: It intercepts all utterances that the as-
sociated agent attempts to make and, based on its own local copy of the dialogue
rules and local control state (previous utterances and dialogical commitments),
determines whether the locution would be appropriate at this time, blocking any
inappropriate utterances from inclusion within the dialogue.

An additional client-side GUI tool has been created (Figure 1) that utilises
the Dialogue Manager component so that a dialogue between two (geograph-
ically distributed) human participants can be undertaken under the protocol,
with each participant taking turns to utter a locution. If a participant attempts
to make an illegal move then they are informed accordingly and given the oppor-
tunity to choose an alternative move. All previous utterances and the current
commitment store are displayed in the GUI and are publicly available to all
agents participating in the dialogue (Figure 1). This facilitates the expedient
resolution of the dialogue by allowing participants to determine which of their
commitments overlap or conflict with those of other participants, and thereby
identify points of agreement or determine which commitments are susceptible to
an attack.

Fig. 1. Screen shot of the GUI tool allowing human participants to engage in a delib-
eration dialogue

4 Conclusion and Future Work

We have presented a prototype tool that demonstrates how existing limitations in
ensuring an agent’s compliance to an argumentation-based deliberation dialogue
protocol can be overcome. Our current application utilises a flexible protocol
enforcement framework, which blocks any inappropriate or illegal utterances,
and does not require central control. We have also presented a GUI application
that enables two human participants to engage in a moderated dialogue. Future
work will focus on enhancing our application to support a dialogue framework

468 D. Bryant, P. Krause, and S. Moschoyiannis

in which more than one kind of dialogue can be carried out (as presented in
[4]). As part of this work we are currently investigating the use of a vector
language (used to model component interaction in [11]) which we believe will
offer a generic representation of argumentation-based dialogues in which it is
possible to capture the dependencies between moves of all the participants at
each step of a dialogue.

This work was partially supported by the EU IST/STReP ASPIC project,
Grant 002307, and an EPSRC PhD Studentship.

References

1. C. Guilfoyle, J. Jeffcoate, and H. Stark. Agents on the Web: Catalyst for E-
Commerce. Ovun Ltd. London, 1997.

2. M. P. Papazoglou. Service-Oriented Computing: Concepts, characteristics and
directions. In WISE ’03: Proceedings of the Fourth International Conference on
Web Information Systems Engineering, page 3, Washington, DC, USA, 2003. IEEE
Computer Society.

3. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In AAMAS ’02: Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 1053–1061, New York, NY, USA,
2002. ACM Press.

4. L. Amgoud, M. Caminada, P. McBurney, H. Prakken, and G. Vreeswijk. Final Re-
view and Report on Argumentation System. Technical Report ASPIC Deliverable
2.6, 2006.

5. M. P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47, 1998.

6. M. Wooldridge. Verifiable Semantics for Agent Communication Languages. In
Y. Demazeau, editor, Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS’98), pages 349–356, Paris, France, 1998. IEEE Press.

7. D. Hitchcock, P. McBurney, and S. Parsons. A Framework for Deliberation Dia-
logues. In Proc. of 4th Biennial Conf. Ontario Society for the Study of Argumen-
tation (OOSA), 2001.

8. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages
72–78, New York, NY, USA, 2004. ACM Press.

9. S. Wells and C. Reed. Formal dialectic specification. In Proceedings of First In-
ternational Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2004),
LNCS, pages 31–43. Springer Berlin, 2004.

10. N. H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and
control mechanism for heterogeneous distributed systems. ACM Transactions on
Software Engineering and Methodology, 9(3):273–305, 2000.

11. S. K. Moschoyiannis. Specification and Analysis of Component-Based Software in
a Concurrent Setting. PhD thesis, University of Surrey, 2005.

An Implementation of a Lightweight
Argumentation Engine for Agent Applications

Daniel Bryant and Paul Krause

Department of Computing, University of Surrey, Guildford, GU2 7XH. UK
{d.bryant, p.krause}@surrey.ac.uk

Abstract. Argumentation is becoming increasingly important in the
design and implementation of autonomous software agents. In this pa-
per we discuss our current work on a prototype lightweight Java-based
argumentation engine that can be used to implement a non-monotonic
reasoning component in Internet or agent-based applications. As far as
possible we are aiming towards implementing a general purpose argu-
mentation engine that can be configured to conform to one of a range of
semantics.

1 Introduction

Argumentation is becoming increasingly important in the design and implemen-
tation of autonomous software agents. In particular, it has been proposed that
argumentation will facilitate agent-based systems that engage in cooperative
problem solving, such as automated negotiation [1] and reasoning over propos-
als for action [2]. In these situations classical logic-based approaches are often
unsuitable. Pertinent information may be insufficient or in contrast there may
be too much relevant, but partially incoherent information, and in the case of
multi-agent systems, conflicts of interest are inevitable [3].

In this paper we discuss our current work on a prototype lightweight Java-
based argumentation engine that can be used to implement a non-monotonic
reasoning component in Internet or agent-based applications. The core engine
has been built using tuProlog [4] [5], an existing open-source Prolog engine, as its
foundation. Although our ultimate goal is to create a general purpose argumen-
tation engine that can be configured to conform to one of a range of semantics,
the current version of the engine implements the argumentation-based framework
presented in [3] (allowing our engine to determine the acceptability of arguments
and construct proofs using an argument game approach to constructing proofs
of acceptance [6]), and also standard Prolog inference (allowing us to prototype
a variety of metainterpretters that support other forms of argumentation). This
paper is structured as follows: In Section 2 we provide motivation for our work
and introduce tuProlog. Section 3 introduces the ASPIC argumentation frame-
work, and in Section 4 we discuss how we have implemented this in our engine.
We conclude the paper with an overview of planned future work.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 469–472, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

470 D. Bryant and P. Krause

2 Laying the Foundations - tuProlog

There has been much recent work on argumentation-based engines, for example,
Vreeswijk’s IACAS [7], and Garćıa and Simari’s DeLP [8] (and later an exten-
sion to this work, P-DeLP, by Chesñevar and colleagues [9]). However, to our
knowledge none of these engines implement support for more than one form of
argumentation semantics. It is our belief that agents engaged in reasoning should
have access to a general purpose argumentation engine that can be configured
to conform to one of a range of semantics.

Our prototype argumentation engine has been built using tuProlog [5] as its
foundation. tuProlog is a Java-based Prolog engine which has been designed
from the ground up as a thin and lightweight engine that is easily deployable,
dynamically configurable and easily integrated into Internet or agent applica-
tions [4]. Utilising the Prolog inference provided by the tuProlog engine we can
implement a series of metainterpretters for a variety of forms of argumentation.
However, this way of implementing an argumentation engine has both a serious
performance overhead and a less than ideal interface. In order to avoid these
problems and produce an argumentation engine that fully conforms to the spirit
of a lightweight Internet enabled tool, we are re-engineering tuProlog by imple-
menting a series of core argumentation algorithms in Java. The first algorithm
we have implemented in our engine is presented in [3].

3 The Acceptability of Arguments

In [3] a framework for argument games is presented that is concerned with es-
tablishing the acceptability of arguments. Argument games between two play-
ers, a proponent (PRO) and opponent (OPP), can be interpreted as construct-
ing proofs of acceptance utilising a dialectical structure [6]. The proponent and
opponent share the same (possibly inconsistent) knowledge base and the pro-
ponent starts with a a main claim to be ”proved”. The proponent attempts to
build an admissible set to support the claim and endeavors to defend any ar-
gument against any attack coming from the opponent. The proponent wins the
game (proving acceptability of the claim) if all the attacking arguments have
been defeated, and the opponent wins if they can find an attacking argument
that cannot be defeated. In [3] a prototype web-based implementation (coded in
RUBY) of the framework algorithms, entitled ”Argumentation System” (AS), is
also presented.

4 The Implementation of Our Engine

As with AS, AtuP accepts formulas in an extended first-order language and re-
turns answers on the basis of the semantics of credulously preferred sets (as defined
in [3]). Facts and beliefs can be expressed in AtuP using standard Prolog syntax
with an additional numerical qualifier e.g. london(raining) 0.8. and rules can
be expressed in a similar way, for example, flies(X) :- bird(X) 0.8. In both

An Implementation of a Lightweight Argumentation Engine 471

of these cases the numerical value is a number in (0,1] that acts as the degree of
belief (DOB), or the credibility, of a proposition [3]. As stated in [3], the DOB
is currently provided to allow experimentation with different methods of argu-
ment evaluation and is not intended to express probabilities or represent values
from other numerical theories to reason with uncertain or incomplete information.
However, in future work we plan to enhance arguments with possibilities as dis-
cussed in, for example, Krause [10], Amgoud [11] or Chesñevar and colleagues [9].
Queries for the support for a claim are expressed using the standard syntax, for
example, ?-flies(tweety).

When AtuP has finished determining the support for a claim the engine gen-
erates a trace of the argument game dialogue, an example of which can be seen
in Figure 1. In addition to providing an application programmers interface (API)
to allow agent developers to utilise our engine, we have also modified the existing
tuProlog graphical user interface to facilitate off-line experimentation with the
engine (see Figure 1).

Fig. 1. Screenshot of ”Argue tuProlog” GUI. (Left window) allows manipulation of the
knowledge base, the (bottom window) allows query entry and displays the results, and
the (right window) shows an argument game trace after a query has been executed.

5 Conclusion and Future Work

In this paper we have presented our current work on a lightweight Java-based ar-
gumentation engine. We have also discussed the integration of an argumentation-
based framework for determining the acceptability of arguments, as presented in
[3], into the engine. The end result is a flexible inference engine that is suitable
for deployment into Internet and agent applications, and can be utilised to facil-
itate automated reasoning and decision-making. As far as possible we are aiming
towards implementing a general purpose argumentation engine that can be con-
figured to conform to one of a range of semantics. Our basic position is that we

472 D. Bryant and P. Krause

have no prior disposition towards any one model of argumentation. Instead, our
plan is to explore a range of models to provide an independent evaluation of
their expressive power, performance and scalability.

Acknowledgements

This work was partially supported by the EU IST/STReP ASPIC project, Grant
002307, and an EPSRC PhD Studentship. We gratefully thank members of the
ASPIC consortium for useful discussions and in particular Gerard Vreeswijk
for his encouragement of our work. We also gratefully thank Mariam Tariq for
use of her early implementation work and the tuProlog team at the University
of Bologna for their enthusiastic support. Finally, we would like to thank the
anonymous reviewers for the insightful and helpful comments.

References

1. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. So-
nenberg. Agent communication languages: Rethinking the principles. The Knowl-
edge Engineering Review, 18(4):343–375, 2003.

2. K. Atkinson, T. K. Bench-Capon, and P. McBurney. A Dialogue Game Protocol for
Multi-Agent Argument Over Proposals for Action. In I. Rahwam, P. Moraitis, and
C. Reed, editors, Argumentation in Multi-Agent Systems, volume 3366 of LNAI,
pages 149–161. Springer, 2004.

3. L. Amgoud, M. Caminada, S. Doutre, H. Prakken, and G. Vreeswijk. Draft formal
semantics for ASPIC system. Technical Report ASPIC Deliverable 2.5, 2005.

4. E. Denti, A. Omicini, and A. Ricci. Multi-paradigm java-prolog integration in
tuProlog. Sci. Comput. Program., 57(2):217–250, 2005.

5. E. Denti, A. Omicini, and A. Ricci. tuProlog: A light-weight prolog for internet
applications and infrastructures. In I. V. Ramakrishnan, editor, PADL, volume
1990 of Lecture Notes in Computer Science, pages 184–198. Springer, 2001.

6. H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks.
In International Conference on Artificial Intelligence and Law, pages 53–62, 1999.

7. G. A. W. Vreeswijk. IACAS: an implementation of Chisholm’s principles of knowl-
edge. In The proceedings of the 2nd Dutch/German Workshop on Nonmonotonic
Reasoning, Utrecht., pages 225–234, 1995.

8. A. J. Garcia and G. R. Simari. Defeasible logic programming: an argumentative
approach. Theory Pract. Log. Program., 4(2):95–138, 2004.

9. C. I. Chesnevar, G. R. Simari, T. Alsinet, and L. Godo. A logic programming
framework for possibilistic argumentation with vague knowledge. In AUAI ’04:
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
76–84, Arlington, Virginia, United States, 2004. AUAI Press.

10. P. Krause, S. Ambler, M. Elvang-Goransson, and J. Fox. A logic of argumentation
for reasoning under uncertainty. Computational Intelligence, 11:113–131, 1995.

11. L. Amgoud and H. Prade. Using arguments for making decisions: a possibilistic
logic approach. In AUAI ’04: Proceedings of the 20th conference on Uncertainty in
artificial intelligence, pages 10–17, Arlington, Virginia, United States, 2004. AUAI
Press.

A Tool for Answering Queries on Action Descriptions�

Thomas Eiter, Michael Fink, and Ján Senko

Institute of Information Systems, Vienna University of Technology, Vienna, Austria
(eiter, michael, jan)@kr.tuwien.ac.at

1 Introduction

Action languages [1] are a formal tool for reasoning about actions, where an agent’s
knowledge about a domain in question is represented by a declarative action description
that consists of logical formulas. For instance, consider a light bulb with a switch. When
the light is off, then toggling the switch turns the light on; this can be expressed in the
action description language C [2] by the dynamic causal law:

caused Light after Toggle ∧ ¬Light . (1)

On the other hand, at every state, if the light bulb is broken then the light is off. This
can be expressed by the static causal law:

caused ¬Light if Broken . (2)

Other pieces of knowledge, like laws of inertia, may be also included:

inertial Light ,¬Light ,Broken ,¬Broken . 1 (3)

The meaning of such an action description, D, can be represented by a transition
diagram, T (D)—a directed graph whose nodes correspond to the states of the world,
S(D), and the edges to the transitions, R(D), describing action occurrences. For in-
stance, the transition diagram of the above action description is shown in Figure 1. 2

We consider the problem of revising action descriptions in the presence of conflicts
between the action description and a set of conditions (axioms or observations) rep-
resented in an action query language [1]. For example, when the light bulb is broken,
toggling the switch may lead to a state where the light is off; this is expressed by:

possibly ¬Light after Toggle if Broken . (4)

Since at the state where the light bulb is broken and the light is off, toggling the light
switch is not possible, There is a conflict between the action description and this condi-
tion. Moreover, under further conditions, like the following query:

necessarily ¬Light after Toggle if Light , (5)

the conflict cannot be resolved just by dropping laws. In general, it is difficult to for-
malize the process of arriving at appealing “repairs”, which often depend on additional
knowledge or intuitions of the designer. We aim at supporting a designer in conflict
and modification analysis and developed a tool that allows a user to issue a number of

� Work supported by the Austrian Science Fund (FWF) under grant P16536-N04.
1 Here inertial L1, ..., Lk stands for the causal laws caused Li if Li after Li for i ∈ {1, ..., k}.
2 The action description is “buggy” (the effects of toggling the switch are improperly described).

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 473–476, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

474 T. Eiter, M. Fink, and J. Senko

¬Broken
Light

Broken
¬Light

¬Broken
¬Light

{} {}{}, {Toggle}

{Toggle}

Fig. 1. Transition diagram of the action description { (1), (2), (3)}

relevant tests on an action description in C and its associated transition diagram in the
presence of conditions. The tool computes answers to these tests by answer-set pro-
gramming, revealing possible causes of conflicts or effects of certain modifications.

2 Tests

The tests a designer can issue by our tool, resemble the questions about a set of queries
(conditions), Q, and D, respectively T (D), as identified in [3] (see also below). Al-
though the formal statement of these questions served as the basis for implementing a
corresponding test library for the system, we confine here to an informal treatment and
refer to [3] for details. As there, focusing on dynamic aspects, S(D) is assumed to be
correct and hence static laws need not be modified.

Tests on queries and causal laws. To better understand the reasons for conflicts, the
designer may want to check whether the given queries Q make sense with respect to
each other, find out which causal laws violate certain queries, or whether repairing
an action description can be done without modifying some causal laws, resp. whether
certain causal laws need to be modified:

D1: Is Q contradictory relative to D?
D2: If D does not satisfy a particular necessarily-query q in Q, which dynamic
causal laws in D violate q?

D3: Can we resolve a conflict between D and Q, without modifying a set D0 of
causal laws in D?

D4: Do we have to modify a set D0 of dynamic causal laws in D to resolve a
conflict betweenD and Q?

Example 1. In our running example, if Q consisted of the query possibly Light ∧
Broken after Toggle if True then, Q would be contradictory relative to D (no state
in S(D) satisfies Light and Broken), while Q = {(4)(5)}, is not contradictory (D1).

Tests on states and transitions. Alternatively, the designer may want to extract informa-
tion from T (D). For instance, information about states, respectively transitions, violat-
ing a query q inQ, or information about candidates for transitions, that do not constitute
transitions due to under-specification (i.e., not every fluent is causally explained):

T1: Which states of T (D) that satisfy a given formula φ, violate q?
T2: Given formulas ψ and φ, which transitions 〈s,A, s′〉 of T (D) such that s sat-
isfies φ and s′ satisfies ψ, violate q?

T3: Given a literal L, for every state s of T (D) such that s satisfies φ, is there some
under-specified transition candidate tc = 〈s,A, s′〉 forD such that s′ satisfies ψ∧L
and L is under-specified relative to tc?

A Tool for Answering Queries on Action Descriptions 475

T4: Which transition candidates tc = 〈s,A, s′〉 forD such that s satisfies φ and s′

satisfies ψ are under-specified?

Example 2. In Ex. 1, if we just consider states where the light is on (i.e., φ = Light).
Then the only state at which a query ofQ is violated is {Light ,¬Broken} (T1).

3 Implementation

To compute test answers, we use disjunctive logic programming (DLP) – disjunction
is actually needed due to Σp

2 -completeness of most of the tests [3]. We translate action
description, queries, and test into a DL program, and call the DLP solver DLV 3 to
compute the models of this program, which encode the answer of the test performed.

data flow control flow

...
...

DLP Translator

DLV

Model parser Test Answer

Queries (Q) Action Description (D)

Translated D+Q

Meta-program T4

Meta-program D1

Fig. 2. Tool Architecture

The translation of an action description and
queries into a logic program is uniform for all
tests, and each test has been encoded in a ‘meta-
program’ which operates on these translations,
i.e., input programs. Figure 2 depicts the archi-
tecture of our tool. It is a command-line ori-
ented Perl script consisting of two main parts:
the DLP Translator and a Model parser. After
pre-processing the input and translation to a DLP,
calls to DLV are executed and their output is
post-processed into human-readable form by the
Model parser. The tool operation is controlled
by the first command-line parameter that speci-
fies the type of test to perform (e.g. -T1). The
remaining parameters are supposed to be input
files, i.e., text files, where each line either starts

with one of the following keywords:

Action/Fluent: declares a new action or fluent literal;
Inertial/Caused: describes an inertia, static or dynamic law;
Possibly/Necessarily: describes a respective type of query;
Initial/Successor: describes a condition on a state (φ and ψ in tests);

or, otherwise, is directly copied to the output (e.g., to add background knowledge).
The DLP Translator compiles the inputD andQ into a DLP representation on a file,

which is combined with the fixed meta-program for the issued test to a single program
on which DLV is invoked. The output of DLV (i.e., the answer sets) is then processed
by the Model parser.

Model parsing is specific for each test: some tests yield yes/no answers by means
of inconsistency (no model). E.g., no model for test D1 means that the queries are not
contradictory, whereas for some tests models encode test results such as violating states
(T1,T3), violating transitions (T2), dynamic causal laws that violate a query (D2), etc.

3 http://www.dlvsystem.com

476 T. Eiter, M. Fink, and J. Senko

While this information is encoded in DLP atoms, the Model parser prints the essential
information in a human-readable format.

For user convenience, our implementation allows for generic statements as short-cuts
in an action description using fluents and rules with parameters (i.e., variables). E.g., to
extend our example to multiple light bulbs, one may re-write (1) as:

caused light(X) after toggle, -light(X) requires bulb(X).

where the keyword requires marks type information for variableX , provided by the
background, e.g.: bulb(green). bulb(yellow). bulb(red).

4 Usage of the System

We now demonstrate a possible session of a designer using our tool. We assume that the
action description consisting of (1), (2), and (3) is provided in a file example.in, and
that the queries (4) and (5) are in files example.pos and example.nec, respectively.

First, the designer wants to check whether a query is violated at all (T1 and T2):
./ad-query -T1 example.in example.pos

VIOLATING STATE: broken. −light.
./ad-query -T2 example.in example.nec

VIOLATING TRANSITION: (−broken. light.), (−broken. light.)
Since both queries are violated, she wonders whether they are contradictory (D1):
./ad-query -D1 example.in example.nec example.pos

The set of queries is not contradictory.
Thus, the action description can be repaired such that both queries are satisfied. How-
ever, is it inevitable to modify the existing causal laws (issue D4 withD0 = D)?

Because the answer is ‘yes’ ((4) is violated at state (broken,−light)), she might ask
whether at least the inertia laws can be kept by running test D3 with D0 = D−{(1)}.
From the answer, ‘yes’, she eventually knows that the dynamic causal law (1) has to be
modified (indeed, this law does not properly reflect the effects when the bulb is broken).

5 Conclusion

Our tool ad-query, which is available at www.kr.tuwien.ac.at/research/
ad-query/, is to our knowledge the first tool to answer queries on action descriptions
in C in the context of revision and design as described. The current version implements
a common fragment of C and queries (heads of laws are literals and other formulas are
conjunctions of literals). Ongoing work will extend the language and consider addi-
tional tests, as well as a methodology for using the tool.

References

1. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial Intelligence
3 (1998) 195–210

2. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proc. AAAI ’98, AAAI Press (1998) 623–630

3. Eiter, T., Erdem, E., Fink, M., Senko, J.: Resolving conflicts in action descriptions. In: Proc.
ECAI 2006. See http://www.kr.tuwien.ac.at/research/ecai06.pdf.

An Implementation for Recognizing Rule Replacements
in Non-ground Answer-Set Programs�

Thomas Eiter, Patrick Traxler, and Stefan Woltran

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, traxler, stefan}@kr.tuwien.ac.at

1 Introduction

Answer-set programming (ASP) has emerged as an important paradigm for declarative
problem solving, and provides a host for many different application domains on the
basis of nonmonotonic logic programs. The increasing popularity in ASP has raised
also the interest in semantic comparisons of programs in ASP [3, 4], which are nowa-
days recognized as a theoretical basis for program optimization, where equivalence-
preserving modifications are of primary interest; in particular, rewriting rules which
allow to perform a local change in a program are important. Many such rules have
been considered in the propositional setting (cf., e.g., [1, 6]) but just recently have been
extended to the practicably important case of non-ground programs [2].

For illustration, consider rules from an encoding of the 3-colorability problem:

b(X) ∨ b(a) ← edge(X, a),node(X), not r(X), not g(a), not g(X) (1)

r(Y) ∨ b(Y) ∨ g(Y) ← node(Y). (2)

Results from [2] show that (i) the first rule is redundant and can be deleted in any pro-
gram which contains the second rule; (ii) the entire program fragment can be rewritten
into a program without disjunctions, which is equivalent for any graph specification.

In this paper, we present theoretical foundations and a practical realization for rec-
ognizing these two particular replacements, which are rule subsumption and local shift-
ing. We describe a tool which scans an input program and indicates which rules can
be deleted (via subsumption) and which rules apply to local shifting. As a back-end
inference engine for these recognition tasks, we make use of ASP-solvers, themselves.
We report first experimental evaluations, showing that our approach is feasible.

2 Replacements in Answer-Set Programming

Our objects of interest are disjunctive logic programs formulated in a language over a
set A of predicate symbols, a set V of variables, and a set C of constants (also called
the domain). Atoms, rules, and programs are defined as usual and we use, for a rule r,
H(r) to denote the set of atoms in the head of r, B(r) to denote the set of literals in
the body of r, and B+(r) (resp., B−(r)) to refer to the set of positive (resp., negative)
atoms in B(r). Let e be an atom, rule, or a program. The set of variables occurring in

� This work was partially supported by the Austrian Science Fund (FWF) under project P18019.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 477–480, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

478 T. Eiter, P. Traxler, and S. Woltran

e is denoted by Ve, and e is called ground iff Ve = ∅. Similarly, we use Ce to refer to
the set of constants occurring in e. Given a rule r and a set of constants C ⊆ C, we
define grd(r, C) as the set of all rules rϑ obtained from r by all possible substitutions
ϑ : Vr → C. The semantics of logic programs is given in terms of answer sets as
usual. AS(P) denotes the set of all answer sets of a program P . Programs P1, P2 are
called strongly (resp., uniformly) equivalent iff, for each set S of rules (resp., facts),
AS(P1 ∪ S) = AS(P2 ∪ S). For further details we refer to [3].

We consider here two forms of replacements, rule subsumption and local shifting,
cf. [2]. The former is based on the following observation, generalizing a result in [5].

Proposition 1. Let P be a program, and r, s be different rules in P , such that there
exists a substitution ϑ : Vs → Vr∪Cr satisfyingH(sϑ) ⊆ H(r)∪B−(r) andB(sϑ) ⊆
B(r). Then, P is strongly equivalent to P \ {r}.

The aim of local shifting is motivated by the elimination of disjunctions. For an arbitrary
program P , a rule r ∈ P is called head-cycle free (HCF) in P iff, for each finite C ⊆ C,
all r′ ∈ grd(r, C) are head-cycle free in grd(P,C); for details, see [2].

Proposition 2. Let P be a program and r ∈ P , such that for each ϑ : Vr → C,
|H(rϑ)| = |H(r)|, and r is HCF in P . Then, P is uniformly equivalent to P \{r}∪r→,
where1 r→ = {h← B(r), not(H(r) \ {h}) | h ∈ H(r)}.

In our example from the introduction, it can be shown that (1) is subsumed by (2) by
setting ϑ(X) = Y . As well, both rules are HCF within the fragment, but (1) does not
apply for local shifting since under ϑ(X) = a, its head reduces to a single element.
Next, we recapitulate the complexity of detecting rules for subsumption or shifting.

Proposition 3. Given a program P and r ∈ P . Deciding whether (i) r is subsumed by
some other rule s ∈ P is NP-complete; (ii) r is HCF in P is PSPACE-complete.

3 The Implemented System

For our implementation we use reductions to ASP itself to decide the problems un-
der consideration (for details, see [7]). In particular, we provide a linear reduction for
subsumption into the conjunctive query problem which is NP-complete, matching the
intrinsic complexity of the encoded task. In the case of local shifting, we map (in
polynomial time) this problem to that of querying a definite Horn program, which is
EXPTIME-complete and thus just mildly harder than the encoded problem.

Encodings. We reduce the test whether a rule r is subsumed by a rule s as a (Boolean)
conjunctive query problem (F, q), i.e., deciding, given a rule q = b ← a1, ..., am

together with a set F of ground facts, whether the unique answer set of F ∪{q} contains
b. Given two rules r, s, we construct a set Fr of facts and a query qs as follows, where
for any rule r, r′ (resp., r′′) denotes the result of replacing each predicate symbol p in

1 For a set S = {s1, . . . , sn} of atoms, not S abbreviates not s1, . . . , not sn.

An Implementation for Recognizing Rule Replacements 479

r by a new symbol p′ (resp., p′′), and the substitution γ : V → C maps each variable V
to a corresponding constant cV , which does not occur in r, s:

Fr = H(rγ) ∪B−(rγ) ∪B+(r′γ) ∪B−(r′′γ);
qs = b← H(s), B+(s′), B−(s′′).

Theorem 1. Rule r is subsumed by rule s iff the query problem (Fr, qs) holds.

Concerning local shifting, let, for a program P , C∗ ⊇ CP be a domain of size |C∗| =
4·|CP |, k be the maximal predicate-arity in P , let h, d, p and q be new predicate symbols
with arities α(d) = 1, α(h) = 2, and α(p) = α(q) = 2k + 2, and let “ ” be a new
constant symbol. Define for two atoms a = a′(t1, . . . , tm) and b = b′(s1, . . . , sl) with
m, l ≤ k, and π ∈ {p, q}, the rule

π[a, b] := π(a′, t1, . . . , tm, , . . . , , b′, s1, . . . , sl, , . . . ,) ← D, (3)

such that b′ appears as the (k + 2)nd argument in π, the ’s fill up π properly, and D
denotes a sequence of d(X)′s, for all variablesX occurring in a or b. For a program P
and a set of rules Q ⊆ P , we define the definite Horn program

P ∗
Q = {d(c) | c ∈ C∗} ∪ {q[a, b] | a, b ∈ H(r), a �= b, r ∈ Q} ∪

{p[a, b] | a ∈ H(s), b ∈ B+(s), s ∈ P,H(s) �= ∅, B+(s) �= ∅} ∪
{p(x, z) ← p(x,y), p(y, z);
h(x,y)← p(x,y), p(y,x), q(x,y); h(x,x)← q(x,x)};

where x (resp., y, z) denotes a sequence of k + 1 distinct variablesXi (resp., Yi, Zi).

Theorem 2. For any program P and Q ⊆ P , each r ∈ Q is HCF in P iff no atom
h(·, ·) is contained in the (unique) answer set of P ∗

Q.

Hence, we are able to test whether a single rule r is HCF in P (via querying P ∗
{r}) or

whether P entirely is HCF (via querying P ∗
P). Moreover, inspecting atoms h(·, ·) in the

answer set of P ∗
Q, indicates which pair of atoms prevent rules in Q from being shifted.

System Description. The system relies on two basic steps, (i) the computation of the
reductions to programs as sketched above, and (ii) the call of an ASP-solver in order to
run these programs. Both reductions together with the invocation of DLV2 are realized
via perl scripts. The input program is required to be in DLV-format. Invoking simplify
program.dl, where the file program.dl contains our example program, yields:

Scanning for Rule Subsumption...

b(X) v b(a):-edge(X,Y),node(X),not r(X),not g(a),not g(X).

[subsumed by r(Y) v b(Y) v g(Y) :- node(Y).]

Scanning for Local Shifting...

r(Y) v b(Y) v g(Y) :- node(Y).

indicating that Rule (1) from the program is subsumed by Rule (2), and that Rule (2)
can faithfully be rewritten to a set of non-disjunctive rules, cf. Proposition 2. All scripts
and further information are available at the system’s homepage (see below).

2 Available under http://www.dlvsystem.com.

480 T. Eiter, P. Traxler, and S. Woltran

Experiments. For first results on our approach, we set up a test series available at

http://www.kr.tuwien.ac.at/research/eq/simpl/

The test for subsumption always involves a pair of rules, while the test for local shifting
has to take an entire program into account. Thus, we encode for the former different NP-
hards problems as pairs of rules such that subsumption holds iff the encoded problem
holds. For the latter we used various application programs (some from the web) and
tested whether disjunction can be eliminated in a uniform-equivalence preserving way.

Concerning subsumption, we encoded (i) graph 3-colorability and (ii) propositional
satisfiability. For (i), consider a graph G = (V,E) and let BE denote the sequence of
atoms e(Xi, Xj), where (vi, vj) ∈ E. Then the rule ← e(r, b), e(b, r), e(r, g), e(g, r),
e(b, g), e(g, b) is subsumed by the rule ← BE iff G is 3-colorable. Our system scales
well showing reasonable response times for problems generated from graphs containing
up to 40 nodes (depending on the number of nodes, but within a few seconds for 30
nodes). For (ii), consider a CNF φ over variablesX1, . . . , Xn and represent each clause
c by a triple p(L1, L2, L3) where Li = X (resp., Li = X̄) if X (resp., ¬X) is the
i-th literal in c. Let pφ be the sequence representing φ in this way plus pairs v(X, X̄)
for all variables X occurring in φ. Then, ← p(1, 1, 1), p(1, 1, 0), p(1, 0, 1), p(1, 0, 0),
p(0, 1, 1), p(0, 1, 0), p(0, 0, 1), v(1, 0), v(0, 1) is subsumed by the rule ← pφ iff φ is
satisfiable. Also in this case, our implementation provides good response times (around
a few seconds) for a suite of uniform random 3-sat formulas taken from SATLIB.

Concerning the test for local shifting, we set up a suite of disjunctive programs col-
lected from different sources, including encodings for problems as Hamiltonian cycle,
strategic companies, or diagnosis. For all programs, our tool recognized all rules appli-
cable to local shifting rather fast (always within a second).

The presented work has to be seen as a starting point for a more general tool consid-
ered as support for programmers in terms of offline simplification of (possibly incom-
plete) programs. To the best of our knowledge, our implementation is the first realization
of such simplification methods working directly on non-ground programs.

References

1. S. Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.
Journal of Logic Programming, 38(3):167–213, 1999.

2. T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran. Replacements in Non-Ground
Answer-Set Programming. In Proc. KR’06, pg. 340–351. AAAI Press, 2006.

3. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Strong and Uniform Equivalence in Answer-Set
Programming: Characterizations and Complexity Results for the Non-Ground Case. In Proc.
AAAI’05, pg. 695–700. AAAI Press, 2005.

4. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

5. F. Lin and Y. Chen. Discovering Classes of Strongly Equivalent Logic Programs. In Proc.
IJCAI’05, pages 516–521, 2005.

6. M. Osorio, J. A. Navarro, and J. Arrazola. Equivalence in Answer Set Programming. In Proc.
LOPSTR’01, Selected Papers, vol. 2372 of LNCS, pg. 57–75. Springer, 2001.

7. P. Traxler. Techniques for Simplifying Disjunctive Datalog Programs with Negation. Master’s
thesis, Technische Universität Wien, Institut für Informationssysteme, 2006.

April – An Inductive Logic Programming System

Nuno A. Fonseca1, Fernando Silva1, and Rui Camacho2

1 DCC-FC & LIACC, Universidade do Porto
{nf, fds}@ncc.up.pt

2 Faculdade de Engenharia & LIACC, Universidade do Porto
rcamacho@fe.up.pt

Abstract. Inductive Logic Programming (ILP) is a Machine Learning
research field that has been quite successful in knowledge discovery in
relational domains. ILP systems use a set of pre-classified examples (pos-
itive and negative) and prior knowledge to learn a theory in which pos-
itive examples succeed and the negative examples fail. In this paper we
present a novel ILP system called April, capable of exploring several
parallel strategies in distributed and shared memory machines.

1 Introduction

There is a strong connection between Inductive Logic Programming (ILP) and
Logic Programming. ILP inherits from Logic Programming its representation
formalism, its semantic orientation, and techniques. It is also common to see ILP
systems implemented in Prolog. The major reason for using Prolog is that the
inference mechanism implemented by the Prolog engine is fundamental to most
ILP learning algorithms. ILP systems can therefore benefit from the extensive
performance improvement work that has taken place for Prolog. On the other
hand, ILP may be seen as challenging Prolog application since it often uses large
sets of ground facts and requires storing a large search tree. Hence, ILP systems
implemented in Prolog challenge the limits of Prolog systems due to their heavy
usage of resources such as database accesses and memory usage.

The expressiveness of first-order logic gives ILP flexibility and understand-
ability of the induced models. However, ILP systems suffer from significant lim-
itations that reduce their applicability. First, most ILP systems execute in main
memory, limiting their ability to process large databases. Second, ILP systems
are computationally expensive, e.g., evaluating individual rules may take con-
siderable time. On complex applications, ILP systems can take several hours, if
not days, to return a model. Therefore, a major obstacle that ILP systems must
overcome is efficiency.

In this paper we succinctly present the April ILP system, a generic purpose
ILP system, implemented in Prolog with a modular design, that aims at being
efficient, scalable, and flexible. April aims to be an efficient system by having
low memory consumption and low response time. To this end it tries to com-
bine and integrate several techniques to maximize efficiency (e.g., query trans-
formations [1], randomized searches [2], coverage caching [3], lazy evaluation of

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 481–484, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

482 N.A. Fonseca, F. Silva, and R. Camacho

examples [4], tabling [5], and parallelism [6, 7]). April’s scalability is achieved by
using relational databases to store the examples and ground background knowl-
edge or by exploiting parallelism. April’s ability to explore several parallelism
approaches is the main difference to other systems. April aims to be flexible by
providing a high level of customizations, for instance, allowing the modification
of search method, heuristic, etc.

2 System Description

April can address predictive and descriptive ILP tasks. It addresses predictive
learning tasks by constructing classification rules (using a MDIE-based algo-
rithm [8]). It can also be applied to find association rules (using an algorithm
similar to the one implemented by the Warmr system [9]). The ILP semantics
used by April is the learning from entailment semantics. Therefore, when used
to learn classification rules April follows the normal semantic of ILP [10]. The
notion of coverage used in both tasks is intensional coverage.

April can be classified as an empirical (non-incremental), non-interactive, sin-
gle predicate learning system, that does not perform predicate invention and is
capable of handling noise.

April receives as input prior knowledge B (the background knowledge) and
examples E, and induces a theory H that describes (explains) the examples. The
examples E are represented as Prolog ground facts and the background knowl-
edge as Prolog programs. The predicates in B can therefore be defined either in-
tensionally or extensionally. The hypothesis language is a subset of the language
of definite clauses. The hypothesis language is constrained through the use of
meta-language declarations. April’s meta-language includes determination dec-
larations [11], mode and type declarations [8], background predicates’ properties,
pruning and constraints declarations, and facilities to change system parameters
that may affect the hypotheses considered and the way that April operates.

April implements a covering algorithm to build a set of classification rules. The
rules are found by performing a search through an ordered space of rules. April
has two search strategies, namely top-down or stochastic, and different search
methods (e.g., breadth-first, beam-search, randomized rapid restarts [2]). Several
metrics are also available to score the rules, namely coverage, accuracy, etc.

A main feature of April is its ability to exploit parallelism in distributed or
shared memory machines. April has several parallel algorithms built-in. The al-
gorithms follow three main strategies: parallel exploration of the search space;
parallel rule evaluation; or data parallelism [7]. One of the algorithms combines
several strategies with pipelining and achieves super-linear speedups in a dis-
tributed memory computer [6]. A summary of the speedups observed in four
applications are presented in the next section on Table 1.

April is implemented in Prolog and runs on top of the YAP Prolog system.
Since April is implemented in Prolog the data is stored on Prolog’s database
(i.e., in memory). However, April has some extensions that allow the system
to learn directly from relational databases. For the communication layer April

April – An Inductive Logic Programming System 483

uses LAM MPI, a high-quality open-source implementation of the Message Pass-
ing Interface (MPI) specification. LAM can be used by applications running in
heterogeneous clusters or in grids, but can also be used in multiple processor
computers.

3 Related Work

Since the initial concept proposal of Inductive Logic Programming, in 1990, many
ILP systems have been developed1. April is specially related to the Aleph [12]
system. Like in Aleph, April’s core algorithm is based on Mode Direct Inverse
Entailment (MDIE), a technique initially used in the Progol [8] system. Besides
the core algorithm, April also implements many features found in Aleph. Due to
this close relation, April attempts to maintain high level of compatibility with
the format of the input files and parameters.

Fig. 1. Average execution time and memory consumption of April and Aleph systems
in four ILP applications

A summary of an empirical comparison with Aleph is presented in Figure 1.
It plots the average execution time and memory usage on four ILP applications
(Carcinogenesis, Mesh, Mutagenesis and Pyrimidines) using a 10-fold cross-
validation methodology. The values presented are the average of ten sequential
runs to find a single rule. Figure 1 shows that sequential April is competitive
against Aleph as the sequential execution time is concerned (the quality of the
rules produced is also comparable). Although both systems are implemented in
YAP Prolog, April’s memory usage is considerably lower than Aleph. There-
fore, for larger applications (number of examples or greater search spaces) April
should behave better.

The main difference between April and other systems, including Aleph, resides
in the ability to run in parallel using different parallel algorithms (see [6, 7]). A

1 Srinivasan pointed out in a presentation at the ILP 2005 conference that around 100
ILP systems have been developed to date.

484 N.A. Fonseca, F. Silva, and R. Camacho

Table 1. Average speedup ob-
served for 2, 4 , 6 and 8 processors
Dataset 2 4 6 8
Carc 1.20 3.04 8.00 11.86
Mesh 1.66 4.58 6.48 7.09
Mut 3.42 6.95 6.75 8.99
Pyr 2.03 4.15 6.49 8.28

detailed survey of parallel ILP systems is
available in [7]. Table 1 shows the speedups
observed on a Beowulf cluster with one of
April’s parallel algorithms, the p2 − mdie
parallel algorithm [6], in four ILP applica-
tions. One can observe that the speedups are
good. It is important to point out that the
improvements in performance obtained using
the p2 − mdie parallel algorithm did not affect significantly the quality of the
theories found.

Acknowledgments. This work has been partially supported by MYDDAS
(POSC/EIA/59154/2004) and funds granted to LIACC through the Programa
de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Pro-
grama POSI.

References
1. Vı́tor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart De-

moen, Gerda Janssens, Jan Struyf, Henk Vandecasteele, and Wim Van Laer. Query
transformations for improving the efficiency of ilp systems. Journal of Machine
Learning Research, 4:465–491, 2003.

2. F. Železný, A. Srinivasan, and D. Page. Lattice-search runtime distributions may
be heavy-tailed. In Proceedings of the 12th International Conference on Inductive
Logic Programming, volume 2583 of LNAI, pages 333–345. Springer-Verlag, 2002.

3. James Cussens. Part-of-speech disambiguation using ilp. Technical Report PRG-
TR-25-96, Oxford University Computing Laboratory, 1996.

4. Rui Camacho. As lazy as it can be. In The Eighth Scandinavian Conference on
Artificial Intelligence (SCAI’03), pages 47–58. Bergen, Norway, November 2003.

5. Ricardo Rocha, Nuno A. Fonseca, and Vitor Santos Costa. On Applying Tabling
to Inductive Logic Programming. In Proceedings of the 16th European Confer-
ence on Machine Learning, ECML-05, volume 3720 of LNAI, pages 707–714, 2005.
Springer-Verlag.

6. Nuno A. Fonseca, Fernando Silva, Vitor Santos Costa, and Rui Camacho. A
pipelined data-parallel algorithm for ILP. In Proceedings of 2005 IEEE Inter-
national Conference on Cluster Computing, 2005. IEEE.

7. Nuno A. Fonseca, Fernando Silva, and Rui Camacho. Strategies to Parallelize ILP
Systems. In Proceedings of the 15th International Conference on Inductive Logic
Programming, volume 3625 of LNAI, pages 136–153, 2005. Springer-Verlag.

8. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

9. Luc Dehaspe and Hannu Toironen. Relational Data Mining, chapter Discovery of
relational association rules, pages 189–208. Springer-Verlag, 2000.

10. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–679, 1994.

11. T. Davies and Stuart Russell. A logical approach to reasoning by analogy. In
Proceedings of the 10th International Joint Conference on Artificial Intelligence,
pages 264–270, Los Altos, California, 1987.

12. Ashwin Srinivasan. The Aleph Manual, 2003.

optsat: A Tool for Solving SAT Related
Optimization Problems

Enrico Giunchiglia and Marco Maratea

STAR-Lab, DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova (Italy)

{enrico, marco}@dist.unige.it

1 Introduction

Propositional satisfiability (SAT) is one of the most important and central prob-
lems in Artificial Intelligence and Computer Science. Basically, most SAT solvers
are based on the well-known Davis-Logemann-Loveland (DLL) procedure. DLL
is a decision procedure: given a SAT formula φ, it can decide if φ is satisfiable
(and it can return a satisfying assignment μ), or not. Often, this is not suffi-
cient, in that we would like μ to be also “optimal”, i.e., that μ has also to min-
imize/maximize a given objective function. max-sat, min-one, distance-sat
and their weighted versions are popular optimization problems. (In the following,
φ is the input formula expressed as a set of clauses). Almost all the systems that
can deal with these problems follow a classical branch&bound schema: whenever
a satisfying assignment μ for φ with a cost cμ is found, the search goes on look-
ing for another satisfying assignment with a lower (or higher, depending on the
problem) cost.

In this paper, we present optsat (OPTimal SATisfiability), a tool for solv-
ing SAT related optimization problems based on the dll algorithm. Here, for
simplicity, we focus on max-sat and min-one problems. max-sat is the prob-
lem of finding an assignment (i.e., a consistent set of literals) satisfying as many
clauses in φ as possible; min-one is the problem of determining an assignment
satisfying φ and with as few as possible variables assigned to true. min-sat and
max-one are defined analogously. Differently from other systems, optsat does
not follow a branch&bound schema, but it solves these optimization problems by
imposing a partial ordering on the literals to branch on. max-sat, min-one but
also distance-sat and other SAT-related optimization problems can be solved
in this way. Moreover, optsat is not limited, like all the other systems, to the
computation of assignments which are optimal with respect to a given numeric
function. optsat can also solve max-sat⊆ and min-one⊆ problems. max-sat⊆
is the problem of finding an assignment satisfying a set S of clauses and such that
there is no assignment satisfying a set S′ of clauses with S ⊂ S′ ⊆ φ. min-one⊆
is defined analogously. Any solution which is “max-sat”-optimal, is also “max-
sat⊆”-optimal: however, in many application domains it may be sufficient to have
a “max-sat⊆”-optimal solution, and this can be much easier. In the following, op-
timality is defined under cardinality (resp. subset inclusion) if we are considering
a max-sat/min-one (resp. max-sat⊆/min-one⊆) or analogous problems.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 485–489, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

486 E. Giunchiglia and M. Maratea

2 The optsat System

optsat algorithm is described in details in [GM06]. Here we highlight its main
points, and we present its input format, the newly implemented encodings, and
report about the results obtained with them and with the integration of Minisat.

The input format. optsat input format is an extension of the well-known
DIMACS format for SAT: in the comment lines (the ones starting with “c”) there
are all the informations that optsat uses to solve the problem, i.e., the type of
the problem (if it is a max-sat, min-sat, max-one, or min-one problem: this
is specified using two flags max/min and SAT/ONE, see Example 1); and the
type of optimality considered, if under cardinality or subset inclusion. The line
starting with “p” is the usual problem line for DIMACS.

Example 1. We specify a min-one⊆ problem with the header

c min ONE
c subset
p cnf n m

The parsing phase. Consider φ having n variables andm clauses. In this phase,
the input file is parsed, and some operations are performed in order to define the
SAT formula φ′ that will be fed to the back-end SAT solver. First, if the problem
is max-sat or min-sat, following a well-known method, φ is modified as follow:
each clause Ci ∈ φ is replaced by C′

i defined as {¬si ∪ Ci}, where si is called
clause selector and is a newly introduced variable. Second, if optimality is by
cardinality, we compute a formula encoding the objective function. We call this
function adder(S), where S is defined depending on the problem we are facing,
i.e. (i) in the case of a min-one or max-one problem, S is the set of variables in
φ or, (ii) in the case of a min-sat or max-sat problem, S is the set {s1, . . . , sm}
of clause selectors. The goal of adder(S) is to define a sequence bv, . . . , b0 of new
variables such that for any assignment μ of the extended signature, the value
of the objective function when considering the assignment μ corresponds to an
assignment of bv, . . . , b0. adder(S) can be realized, in polynomial time, in many
ways. In optsat, adder(S) is implemented in the following ways:

1. Bailleux/Boufkhad (BB) [BB03]. In this encoding a unary representation
of integers is used: an integer x s.t. 0 ≤ x ≤ n is represented using n
propositional variables {x1, . . . , xn} with (the first) “x” variables assigned to
1 (true), and the others to 0 (false). This representation has the property
that when a variable xj has value true, all the variables xk with 1 ≤ k < j,
are true as well; and similarly if xk has value false. The encoding is efficient
wrt unit-propagation but it adds a quadratic number of new clauses.

2. BBmod (BB modified): we modified the BB encoding, in order to enforce that
when bi is assigned to false (resp. true), also bi+1 (resp. bi−1) is assigned
to false (resp. true) by unit propagation.

optsat: A Tool for Solving SAT Related Optimization Problems 487

3. Warners [War98]. Here is used a binary representation of integers, e.g., the
value x of the objective function is represented as x = ΣM

i=02
ixi, where xi

are again propositional variables, and M = 2log2(x)3 for x > 0, and M = 0
otherwise. This is a linear time and space encoding, that relies on sums via
adder circuits and, as presented in the paper, works directly with objective
functions with weights. In optsat, the encoding is optimized for the non
weighted case, and the size of the encoding is approximately halved.

The first two encodings are new for optsat.

Solving algorithm. As we already said, optsat is a modification of the dll
algorithm: it takes as input the SAT formula φ′ = φ ∪ adder(S) (with φ consid-
ered here after the introduction of clause selectors in case of min-sat or max-sat
problem, and adder(S) = ∅ if the optimality is under subset inclusion), an as-
signment μ (initially set to ∅), and a partial order on the set of literals. The
main change that has to be made to the DLL algorithm is in the heuristic.

Consider first the case of an optimization under cardinality problem in which
the sequence bv, . . . , b0 encode the value of the objective function, bv being the
“most significant” variable. Then, the heuristic returns (i) the first not yet as-
signed atom bi (i.e., the variable with the highest index i), if any, or an arbitrary
variable in φ′ (according with the heuristic of the solver); (ii) if a variable in
{bv, . . . , b0} is chosen, the variable is assigned to true in the case of max-sat
or max-one problems, and to false otherwise; if the variable is chosen by the
heuristic of the solver, it is left to the solver the decision about how to assign it.

In the case of an optimization under subset inclusion problem, it returns an
un-assigned atom in S, if any, and assign it to false in the case of min-sat⊆ or
min-one⊆ problems, and to true in the other cases; or an arbitrary atom.

optsat returns an optimal solution if one exists, or that no solution exists
otherwise. In order to see why this is the case, observe that, in the case of
minimality under cardinality, variables are preferentially and in order chosen
from bv to b0, while in the case of minimality for subset inclusions, atom in S
are chosen. Only when all these variables are assigned, the choice is delegated
to the heuristic of the underlying solver. Thus, considering, e.g., a min-one or
min-sat problem, the algorithm first explores (assuming no literal in {bv, . . . , b0}
are assigned by unit) the branches with bv, . . . , b0 assigned by false; if all such
branches fail, then it explores the branches with {bv, . . . , b1} assigned to false
and b0 to true; if also these branches fail b0 and b1 are flipped and the search
goes on until a satisfying assignment μ is found, or the entire search space has
been explored.

One of the main property of the algorithm is that, when the first satisfying
assignment is found, we are guaranteed that it is also “optimal”.

distance-sat and problems with weights. distance-sat(μ) [BM06] is the
problem of determining an assignment which satisfies the input formula and
differing in as few as possible literals from μ. distance-sat⊆ is defined in the
obvious way. In the weighted version of all the problems we presented, the objec-
tive function to minimize is linear function of the variables. All these problems
–but also others– can be solved by optsat, as shown in [GM06].

488 E. Giunchiglia and M. Maratea

3 Experimental Results

In optsat, we can now choose between zChaff ver. of 5.13.20041 and Minisat
ver. 1.142 to be used as back-end: each of them has been modified accordingly
to the consideration made in Section 2. These are the winners of the last two
SAT competitions [LS05, LS06] in the industrial categories (Minisat together
with the SAT/CNF minimizer SatElite).

In [GM06], we showed that optsat is highly competitive on max-sat/max-
sat⊆ and min-one/min-one⊆ problems if compared with a variety of solvers,
both tailored for a specific optimization problem, and with the solvers that
showed the best performances in the PB evaluation [MR06]. To be also no-
ticed that optsat does not use any “problem-dependent” optimization, like the
computation of an upper-bound of the optimal solution, using incomplete SAT
solvers, performed by most of the max-sat solvers. Here we extend the results
in [GM06], by report about the results obtained with the new encodings and
with the integration of Minisat in our system. For lack of space we do not put
any table here: the results can be found as an appendix at the system home page
reported below.

In general, and as expected, because no clauses need to be added, finding
a solution which is optimal under subset inclusion is easier than finding an
optimal solution under cardinality. Considering the CPU times, between the BB
based encodings, BBmod almost always is faster or competitive with BB, and in
general very competitive for objective functions having a relatively low number
of variables. But, when this number is high, it incurs in memory out. The use of
Minisat generally helps in reducing the time to solve a problem. The reduction is
dramatic, up to 3 orders of magnitude, when considering max-sat⊆ problems.
This highlights one of the main features of our approach, i.e., the possibility
of levering on the enhancement that are continuously made in SAT. For this
reason, we expect our system to further improve its performances thanks to the
upcoming SAT race and future competitions.

Availability of the system. The binary of the system, along with benchmarks
in the optsat input format and a parser to the format of the PB evaluation,
are available at: http://www.star.dist.unige.it/∼marco/optsat/.

References

[BB03] Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean
cardinality constraints. In 9th International Conference on Principles and
Practice of Constraint Programming (CP-03), LNCS. Springer, 2003.

[BM06] O. Bailleux and P. Marquis. Some computational aspects of DISTANCE-
SAT. Journal of Automated Reasoning (JAR), To appear, 2006.

1 http://www.princeton.edu/∼chaff/
2 http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

optsat: A Tool for Solving SAT Related Optimization Problems 489

[GM06] E. Giunchiglia and M. Maratea. Solving optimization problems with DLL.
Accepted to ECAI 2006. Available at http://www.star.dist.unige.it/
∼marco/Data/06ecai.pdf.gz, 2006.

[LS05] D. LeBerre and L. Simon. Fifty-five solvers in vancouver: The SAT 2004
competition. In 8th International Conference on Theory an Applications of
Satisfiability Testing. Selected Revised Papers., LNCS 3542. Springer, 2005.

[LS06] D. LeBerre and L. Simon. Preface to the special volume on the sat 2005
competitions and evaluations. Journal of Satisfiability, Boolean Modeling
and Computation (JSAT), 2006.

[MR06] V. M. Manquinho and O. Roussel. The first evaluation of pseudo-boolean
solvers (PB05). Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 2:103–143, 2006.

[War98] J. P. Warners. A linear-time transformation of linear inequalities into CNF.
Information Processing Letters, 68(2):63–69, 1998.

Automated Reasoning About Metric and
Topology

Ullrich Hustadt1, Dmitry Tishkovsky1, Frank Wolter1,
and Michael Zakharyaschev2

1 Department of Computer Science, University of Liverpool
{U.Hustadt, D.Tishkovsky, F.Wolter}@csc.liv.ac.uk

2 School of Computer Science and Information Systems, Birkbeck College
michael@dcs.bbk.ac.uk

1 Introduction

In this paper we compare two approaches to automated reasoning about metric
and topology in the framework of the logicMT introduced in [10].MT -formulas
are built from set variables p1, p2, . . . (for arbitrary subsets of a metric space)
using the Booleans ∧, ∨, →, and ¬, the distance operators ∃<a and ∃≤a, for
a ∈ Q>0, and the topological interior and closure operators I and C. Intended
models for this logic are of the form I = (Δ, d, pI

1 , p
I
2 , . . .) where (Δ, d) is a

metric space and pI
i ⊆ Δ. The extension ϕI ⊆ Δ of an MT -formula ϕ in I

is defined inductively in the usual way, with I and C being interpreted as the
interior and closure operators induced by the metric, and (∃<aϕ)I = {x ∈ Δ |
∃y ∈ ϕI d(x, y) < a}. In other words, (Iϕ)I is the interior of ϕI, (∃<aϕ)I is
the open a-neighbourhood of ϕI, and (∃≤aϕ)I is the closed one. A formula ϕ
is satisfiable if there is a model I such that ϕI �= ∅; ϕ is valid if ¬ϕ is not
satisfiable.

In MT , one can represent various basic facts about metric and topology. For
example, the validity of ∃<ap→ I∃<ap means that the open a-neighbourhood of
any set is open. The non-validity of C∃<ap→ ∃≤ap means that there is a metric
space with a subset X such that the closure of the open a-neighbourhood of X
properly contains the closed a-neighbourhood of X . The logic MT as well as its
metric fragment MS without the topological operators have been suggested as
basic tools for reasoning about distances and similarity [9].

One obvious approach to automated reasoning withMT is to use the standard
ε-definition of the topological interior

IX = {x ∈ X | ∃ε > 0 ∀y(d(x, y) < ε→ y ∈ X}

and translate MT into a two-sorted first-order language, with one sort for the
real numbers and the other one for points of metric spaces. This approach allows
the use of interactive systems supporting a theory of real numbers, like HOL,
Isabelle, or PVS. However, it is unlikely to be a viable basis for efficient automatic
reasoning about MT or MS, which is our focus.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 490–493, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automated Reasoning About Metric and Topology 491

The alternative approach we present here is based on the results obtained
in [10] which show that the intended metric models for MT can be (equiva-
lently) replaced by relational Kripke-style models where the distance operators
are interpreted (like in modal logic) by binary relations and the interior opera-
tor by a quasi-order. More precisely, suppose for simplicity that we are given an
MT -formula ϕ whose numerical parameters (in the operators ∃<a, ∃≤a) are all
natural numbers, and N is the maximal one. A relational ϕ-model is a structure

R = (W,R1, . . . , RN , S1, . . . , SN , R, p
R
1 , p

R
2 , . . .)

where, for 0 < a ≤ N , (i) Ra and Sa are reflexive and symmetric binary relations
on W �= ∅, (ii) R is reflexive and transitive, (iii) R ⊆ Ra ⊆ Sa, (iv) Sa ⊆ Rb for
a < b, (v) xSaySbz implies xSa+bz whenever a + b ≤ N , (vi) xRaySbz implies
xRa+bz whenever a+b ≤ N , (vii) xSayRbz implies xRa+bz whenever a+b ≤ N ,
and (viii) xRayRz implies xRaz. The operator ∃<a is interpreted in R (in the
standard Kripke style) by means of Ra, ∃≤a by Sa, and I by R. Then, according
to [10], we have the following theorem: an MT -formula ϕ is satisfiable in a
metric model iff it is satisfiable in a relational ϕ-model.

2 Reasoning

The relational semantics above enables a variety of reasoning techniques to be
applied to the satisfiability and validity problem in MT . Here we focus on just
two: a tableau calculus, which forms the basis of our MetTeL system, and first-
order translation, which allows the use of a range of existing theorem provers.

2.1 Tableau Calculus

In our tableau calculus we use a modified version of the tableau rules for hybrid
logic (see e.g. [2]) with additional rules for the metric and topology operators
which follow the semantics described in Section 1. For example, we use the
standard tableau rules for modal logic S4 to capture the behaviour of the interior
operator plus the following rules expressing interaction between the topological
and metric operators (where i, j, and k are nominals):

@i∃<aj @jIk
@i∃<ak

@i¬∃<aj

@i¬Ij
@i¬∃<aϕ @iIj

@j¬ϕ
@i¬∃≤aϕ @iIj

@j¬ϕ
Note that nominals are not part of MT and only serve as a technical tool

in the calculus. The part of the tableau calculus related to metric operators
and nominals is actually equivalent to the labelled tableau algorithm in [9].
The MetTeL system implements this tableau calculus and provides a decision
procedure for MT . MetTeL is implemented in Java 1.5.

2.2 First-Order Translation

The intuition behind the first-order encoding is to use the standard relational
translation for modal logics [4] including a representation of the semantic con-
ditions (i)–(viii) presented in Section 1. For example, occurrences of ∃≤aϕ are
translated according to

492 U. Hustadt et al.

πr(∃≤aϕ, x) = ∃y (Sa(x, y) ∧ πr(ϕ, y)),

while conditions (i) and (v), for Sa, are represented by (1) ∀x (Sa(x, x)), (2)
∀x, y (Sa(x, y) → Sa(y, x)), and (3) ∀x, y, z (Sa(x, y) ∧ Sb(y, z) → Sc(x, z)), for
c = a + b ≤ N . Note that the number of formulae of the form (1) and (2)
which we need to include in the translation is linear in N , while for formulae
of the form (3) it is quadratic in N . Our implementation of the translation also
allows for the application of structural transformation and the application of
alternatives to the relational translation, e.g. the axiomatic translation, [6], but
in the following we restrict ourselves to the approach described above.

3 Comparisons

To establish whether the techniques presented in Section 2 provide viable means
for reasoning about metric formulae with topology operators, we have devised
a set of sample formulae, divided into the following groups of formulae (plus
the single formula metric-axioms given by the negated conjunction of all metric
axioms). (a) The formulae in the textbook group generalise the examples of
interaction between the topological and metric operators from Section 1. (b) Let
∀<aϕ = ¬∃<a¬ϕ. Then path-box-p.n and path-box-u.n are parametric series of
formulae of the shape

∀<1 · · · ∀<1︸ ︷︷ ︸
n

p→ ∀<np and ¬(∀<np→ ∀<1 · · · ∀<1︸ ︷︷ ︸
n

p),

respectively, with n = 4, 8, 12, 20, 24, 32, which test the general triangle inequal-
ity while we increase the nesting depth of ∀<1. (c) Groups symm-box-p.n and
symm-box-u.n are parametric series of formulae of the following shape:

p→ ∀<n¬∀<1 · · · ∀<1︸ ︷︷ ︸
n

¬p and ¬(p→ ∀<1 · · · ∀<1︸ ︷︷ ︸
n

¬∀<n¬p),

respectively, with n = 4, 8, 12, 20, 24, 32 which test the interaction of symmetry
and the general triangle inequality while we increase the nesting depth of ∀<1.

For the first-order translation approach we have used a range of state-of-
the-art first-order theorem provers, Darwin 1.1 [1], DCTP 1.31 [3], E 0.91 [7],
SPASS 2.2 [8], Vampire 7.0 [5]. While the last three are based on resolution cal-
culi, Darwin and DCTP are based on the model evolution and the disconnection
calculus, respectively. Each prover was executed on each sample formula with a
timelimit of 1000 CPU seconds. In the case of first-order translation, the time
required to perform the translation has been included. All tests were performed
on a 2.8GHz Pentium 4 PC with 1024MB main memory under RedHat Linux 9.
Figure 1 shows a summary of the results. Time is measured in user CPU sec-
onds. A ‘Timeout’ entry indicates that the CPU timelimit was exceeded while a
‘Fail’ entry indicates that the reasoner failed before the timelimit was reached,
e.g. because it was running out of memory.

Concerning the four parametric series of formulae, we see that increasing
the parameter n increases the time required to solve a formula. The difference

Automated Reasoning About Metric and Topology 493

Sample problem Status MetTeL Darwin DCTP E SPASS Vampire
textbook.00 unsat 0.28 0.14 0.15 0.15 0.12 0.16
textbook.01 sat 0.22 0.16 0.14 0.16 0.13 0.16
textbook.02 unsat 6.63 5.16 0.16 2.34 26.68 33.42
textbook.03 sat 0.22 0.18 0.14 0.15 0.14 0.25
metric-axioms unsat 0.88 32.01 0.68 T/O T/O Fail
path-box-p.04 sat 0.29 0.10 0.14 0.16 0.12 0.17
path-box-p.08 sat 2.86 0.28 0.14 0.20 0.39 48.03
path-box-p.12 sat 17.54 1.11 0.20 0.35 5.74 T/O
path-box-p.20 sat 236.63 17.57 0.55 2.25 312.68 T/O
path-box-p.24 sat 633.02 47.23 0.99 7.59 T/O T/O
path-box-p.32 sat T/O 230.76 3.51 45.05 T/O T/O
path-box-u.04 unsat 0.43 0.15 0.14 0.18 0.13 0.16
path-box-u.08 unsat 2.34 0.20 0.14 1.42 0.23 0.16
path-box-u.12 unsat 14.61 0.92 0.23 14.49 1.85 0.43
path-box-u.20 unsat 194.87 14.14 0.92 977.59 73.53 3.42
path-box-u.24 unsat 575.69 35.54 1.39 T/O 273.85 9.87
path-box-u.32 unsat T/O 171.98 4.14 T/O T/O 408.76
symm-box-p.04 sat 0.15 0.32 0.13 1.32 0.27 0.36
symm-box-p.08 sat 0.18 104.66 0.17 T/O T/O T/O
symm-box-p.12 sat 0.19 T/O 0.19 T/O T/O T/O
symm-box-p.20 sat 0.22 Fail 0.56 T/O T/O T/O
symm-box-p.24 sat 0.20 Fail 1.04 T/O T/O T/O
symm-box-p.32 sat 0.23 Fail 3.50 T/O T/O T/O
symm-box-u.04 unsat 0.30 0.15 0.14 0.16 0.14 0.17
symm-box-u.08 unsat 2.30 0.26 0.17 1.89 0.23 0.18
symm-box-u.12 unsat 12.41 1.06 0.28 18.73 1.89 0.81
symm-box-u.20 unsat 191.92 16.36 1.24 996.37 73.66 4.62
symm-box-u.24 unsat 517.35 42.04 2.67 T/O 272.38 13.99
symm-box-u.32 unsat T/O 191.54 7.02 T/O T/O 480.36

Fig. 1. Performance of various provers on sample metric formulae

between the various approaches and provers is the extent to which it does so.
Overall, DCTP on the relational translation performs best. The three resolution
provers have more difficulty on satisfiable formulae compared to all other provers,
but not uniformly so: on the path-box-p.n series, E performs better than the
tableau system MetTeL. On the other hand, MetTeL performs better than E on
the path-box-u.n and the symm-box-u.n series of unsatisfiable formulae, which
might also be surprising. SPASS and Vampire seem roughly on par.

References

1. P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the model evolution
calculus. International Journal of Artificial Intelligence Tools, 15(1), 2005.

2. P. Blackburn and M. Marx. Tableaux for quantified hybrid logic. In Proc.
TABLEAUX 2002, LNAI 2381, pages 38–52, 2002.

3. R. Letz and G. Stenz. DCTP: A disconnection calculus theorem prover. In Proc.
IJCAR 2001, LNAI 2083, pages 381–385. Springer, 2001.

4. H. J. Ohlbach, A. Nonnengart, M. de Rijke, and D. M. Gabbay. Encoding two-
valued nonclassical logics in classical logic. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 1403–1485. Elsevier, 2001.

5. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI
Comm., 15(2-3):91–110, 2002.

6. R. A. Schmidt and U. Hustadt. A principle for incorporating axioms into the
first-order translation of modal formulae. In Proc. CADE-19, LNAI 2741, pages
412–426. Springer, 2003.

7. S. Schulz. E: A Brainiac theorem prover. AI Comm., 15(2/3):111–126, 2002.
8. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topic.

SPASS version 2.0. In Proc. CADE-18, LNAI 2392, pages 275–279. Springer, 2002.
9. F. Wolter and M. Zakharyaschev. Reasoning about distances. In Proc. of IJCAI

2003, pages 1275–1280. Morgan Kaufmann, 2003.
10. F. Wolter and M. Zakharyaschev. A logic for metric and topology. Journal of

Symbolic Logic, 70:795–828, 2005.

The QBFEVAL Web Portal

Massimo Narizzano, Luca Pulina, and Armando Tacchella�

Laboratory of Systems and Technologies for Automated Reasoning (STAR-Lab)
DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy

{mox, pulina, tac}@dist.unige.it

Abstract. In this paper we describe the QBFEVAL web portal, an on-
line resource supporting the participants and the organizers of the yearly
evaluation of QBF solvers and instances.

1 Introduction

The implementation of effective automated reasoning tools for deciding the sat-
isfiability of Quantified Boolean Formulas (QBFs) is attracting increasing atten-
tion, e.g., in formal verification, planning, and reasoning about knowledge (see,
e.g., [1] for relevant references). In this context, the yearly evaluation of QBF
solvers and instances [1] has been established with the aim of assessing the ad-
vancements in the field of QBF reasoning. The QBFEVAL web portal, integrated
into QBFLIB [2], is motivated by the need of organizing the increasing amount
of data produced by the evaluations and making it available for the community
perusal.

Currently QBFEVAL automates several tasks, ranging from the submission
of solvers and instances, to the generation of hyper-textual reports describing
different views about the QBF evaluations. To offer these features in a flexible
and scalable way, we implemented the portal on top of a three-tier architec-
ture [3] using web services [4] to connect underlying components distributed
across different hardware platforms. Although QBFEVAL is not an automated
reasoning system per se, we believe that it provides an essential tool to improve
the state of the art in QBF research and applications. From this point of view,
the key feature of QBFEVAL is its extensive support to the manual extraction
of information.

QBFEVAL is available for on-line browsing at www.qbflib.org/qbfeval, and
the source code of the portal is downloadable from QBFLIB.

2 Architecture and Implementation

The architecture of QBFEVAL is based on the three-tier paradigm [3], whereby
three separate software layers provide user interface, process logic, and data ma-
nipulation, respectively. Figure 1 presents an overview of the hardware/software
� The authors wish to thank the Italian Ministry of University and Research (MIUR)

for its financial support, and the anonymous reviewers who helped to improve the
original manuscript.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 494–497, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The QBFEVAL Web Portal 495

Fig. 1. QBFEVAL architecture

architecture using the following notation: dashed-outline boxes denote hardware
components, solid-outline boxes denote relevant software modules, and the ar-
rows denote communications occurring between the modules. With reference to
Figure 1, QBFEVAL involves three pieces of hardware:

Client: a user’s PC, i.e., a thin client containing a WebBrowser.
Web server: the front-end server, containing the Gui and a part of the process

logic (ProcessWeb).
Data server: the back-end server of QBFEVAL, containing the bulk of the pro-

cess logic (ProcessData), the data manipulation functionality (DBMS).

The data flow across the modules can be summarized as follows: (i) the user
navigating QBFEVAL with her browser originates HTTP requests that the web
server satisfies using the content dynamically generated by the scripts of the
Gui module; (ii) the presentation offered by the Gui module is supported by
the functions of the process layer, in particular by the set of scripts ProcessWeb
that resides on the web server; (iii) the ProcessWeb module relies on the web
services offered by the module ProcessData to perform heavy computations and
data manipulations: the two process modules communicate using SOAP, whereby
each service is negotiated and data is exchanged using XML; (iv) the ProcessData
scripts are interfaced with the data base through a socket connection whereby
SQL queries and results can be exchanged.

The clear cut interfaces between the layers Gui, Process[Web,Data] and DBMS
allow us to modify extensively the implementation of each one without hurt-
ing the stability of the whole system. Moreover, a distinctive advantage of our
implementation based on web services is that, by paying a small increase in
complexity, we are able to decouple substantially the part of data presentation
(hosted in the web server) and the part of data storage/manipulation (hosted in
the data server). This could allow us, e.g., to transparently distribute the data
part across several remote servers.

3 Interface

Figure 2 shows a hierarchical map of the QBFEVAL interface using the following
notation: solid-outline boxes stand for pages containing tables with specific views

496 M. Narizzano, L. Pulina, and A. Tacchella

Fig. 2. QBFEVAL structure

of QBFEVAL data, dotted-outline boxes represent menus and forms by which
the user can interact with QBFEVAL, and the arrows denote hyper-textual links
between the components. With reference to Figure 2:

Quick Overview. The tables in this section are available according to a cat-
egorization of the instances in two classes: probabilistic structure and fixed
structure (see [1] for more details). With reference to Figure 2, for each class,
we report tables focusing on the relative performance of the solvers (Solver-
centric view) and the relative hardness of the instances (Instance-centric view).
In the SOTA solver section (SOTA-centric view), further details about the
contribution of each solver to the SOTA solver can be dug out (SOTA de-
tail), going from a general overview, down to the data related to each instance
(SOTA detail by instance).

Customized tables. The tables of this section are generated dynamically ac-
cording to the user’s preferences. With reference to Figure 2, the General
purpose form allows the user to extract specific information grouping in-
stances by several parameters. The Family based form offers a specialized
selection centered around family grouping. Finally, the Feature based form is
a (still experimental) section that allows the user to extract data using fea-
tures, i.e., attributes of the instances. The combination of parameters that
can be specified using the Data selection wizard allows the user to obtain
solver-centric, instance-centric and SOTA solver views (Solver view, Instance
view, SOTA solver view).

Miscellanea. This section groups some views that should be particularly useful
for developers. In particular, the Discrepancies form enables to obtain data
about those instances where at least two solvers reported a different satisfi-
ability result; the data can be arranged to give the global picture (Overview)
or to obtain specific information about instances (Overview by instance) or
about solvers (Overview by solver). The Small unsolved instances and the Large
unsolved instances tables report data about small instances that could not
be solved and about large instances that have been solved, respectively.

The QBFEVAL Web Portal 497

4 Conclusions

As far as we know, QBFEVAL is the first system in its genre to be presented in
the context of automated reasoning for QBFs. QBFEVAL builds on and improves
QBFLIB [2] which aims to become to the QBF community what TPTP [5] is for
the automated theorem proving community. Although the work of QBFEVAL
has been inspired by SATEx [6] and the on-line reporting of the SAT competi-
tion [7], we believe that our portal differs substantially from the aforementioned
contributions. SATEx is a framework for continuous experimentation in SAT,
i.e., developers can submit SAT solvers and instances at any time, and such
submissions enter the evaluation process which is constantly summarized on the
web pages. On the other hand, QBFEVAL offers a historical series of in-depth
snapshots about the state of the art in QBF considering specific events; there-
fore, even if QBFEVAL replicates some of the underlying machinery of SATEx,
the kind of reporting available in QBFEVAL is not meant to be available in
SATEx. As for the on-line reporting of the SAT competition, we believe that
our portal offers more customizable report generation tools, and more exten-
sive support of the event. It is also important to notice that QBFEVAL is the
only such portal featuring a complete source-code distribution available for free
download. Although objectivity and reproducibility of the results made available
through QBFEVAL are not its main focus, the open source distribution allows
other researchers to peruse our scripts, customize them, and identify possible
bugs that we could have overlooked, thus contributing to the overall robustness
of the platform.

References

1. M. Narizzano, L. Pulina, and A. Tacchella. The third QBF solvers comparative
evaluation. Journal on Satisfiability, Boolean Modeling and Computation, 2:145–
164, 2006. Available on-line at http://jsat.ewi.tudelft.nl/ [2006-6-2].

2. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas sat-
isfiability library (QBFLIB), 2001. www.qbflib.org.

3. W. W. Eckerson. Three Tier Client/Server Architecture: Achieving Scalability, Per-
formance, and Efficiency in Client Server Applications. Open Information Systems,
3, 1995.

4. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture, February 2004. W3C Working Group Note.

5. G. Sutcliffe and C. Suttner. The tptp problem library for automated theorem prov-
ing. Available from http://www.cs.miami.edu/∼tptp/ [2006-6-19].

6. L. Simon and P. Chatalic. SATEx: a Web-based Framework for SAT Experimenta-
tion. In Workshop on Theory and Applications of Satisfiability Testing, 2001.

7. D. Le Berre and L. Simon. The SAT Competition. http://www.
satcompetition.org [2006-6-2].

A Slicing Tool for
Lazy Functional Logic Programs�

Claudio Ochoa1, Josep Silva2, and Germán Vidal2

1 DIA, Tech. University of Madrid, 28660 Boadilla del Monte, Spain
cochoa@fi.upm.es

2 Technical University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain
{jsilva, gvidal}@dsic.upv.es

Abstract. Program slicing is a well-known technique that has been
widely used for debugging in the context of imperative programming.
Debugging is a particularly difficult task within lazy declarative pro-
gramming. In particular, there exist very few approaches to program
slicing in this context. In this paper, we describe a slicing tool for first-
order lazy functional logic languages. We also illustrate its usefulness by
means of an example.

1 Introduction

Program slicing is a well-known technique to extract a program fragment w.r.t.
some criterion. It was first proposed as a debugging tool [3] to allow a better
understanding of the portion of code which revealed an error; nowadays, it has
been successfully applied to a wide variety of software engineering tasks, such as
program understanding, debugging, testing, specialization, etc. Unfortunately,
there are very few approaches to program slicing in the context of declarative
languages. Basically, a program slice consists of those program statements which
are (potentially) related to the values computed at some program point and/or
variable, referred to as a slicing criterion.

In this work, we describe a slicing tool for first-order lazy functional logic
languages. Our tool is built on top of a tracer based on redex trails [1], which
allows the presentation of computation traces in a way easier to understand for
the programmer. A clear advantage of our approach [2] is that existing tracers can
be extended with slicing capabilities with a modest implementation effort, since
the same data structure—the redex trail—is used for both tracing and slicing.
Furthermore, it can easily be extended to cope with other language features
like built-in functions, higher-order combinators, etc., since all these features are
already covered by state-of-the-art debuggers based on redex trails.

� This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN2005-09207-C03-02, and by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 498–501, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Slicing Tool for Lazy Functional Logic Programs 499

2 The Slicing Tool

In this section, we describe the structure of our slicing tool. It can be used
both for debugging—by automatically extracting the program fragment which
contains an error—and for program specialization—by generating executable
slices w.r.t. a given slicing criterion. The technical details of this slicing technique
can be found in [2].

Tracer. It is introduced in [1]. The tracer executes a program using an in-
strumented interpreter. As a side effect of the execution, the redex trail of the
computation is stored in a file. The tracer is implemented in Haskell and accepts
first-order lazy functional logic programs that can be traced either backwards or
forwards. In our slicer, we only slightly extended the original tracer in order to
also store in the redex trail the location (the so called program position), in the
source program, of every reduced expression.

Viewer. Once the computation terminates (or it is aborted by the user in case of
a looping computation), the viewer reads the file with the redex trail and allows
the user to navigate through the entire computation. The viewer, also introduced
in [1], is implemented in Curry, a conservative extension of Haskell with features
from logic programming including logical variables and non-determinism. The
viewer is useful in our approach to help the user to identify the slicing criterion.

Slicer. Given a redex trail and a slicing criterion, the slicer outputs a set of
program positions that uniquely identify the associated program slice. The slicing
tool is implemented in Curry too, and includes an editor that shows the original
program and, when a slice is computed, it also highlights the expressions that
belong to the computed slice.

Specializer. Similarly to the slicer, the specializer also computes a set of pro-
gram positions—a slice—w.r.t. a slicing criterion. However, rather than using
this information to highlight a fragment of the original program, it is used to ex-
tract an executable slice (possibly simplified) that can be seen as a specialization
of the original program for the given slicing criterion.

More information on the slicing tool (including examples, benchmarks, source
code) is publicly available at: http://www.dsic.upv.es/~jsilva/slicer/.

3 The Slicer in Practice

In order to show the usefulness of our slicer, this section presents a debugging
session that combines tracing and slicing.

We consider the program shown in Fig. 1 (for the time being, the reader can
safely ignore the distinction between gray and black text). In this program, the

500 C. Ochoa, J. Silva, and Germán Vidal

data T = Hits Int Int

main = printMax (minMaxHits webSiteHits)

webSiteHits = [0, 21, 23, 45, 16, 65, 17]

printMin t = case t of (Hits x _) -> show x
printMax t = case t of (Hits _ y) -> show y

fst t = case t of (Hits x _) -> x
snd t = case t of (Hits _ y) -> y

minMaxHits xs = case xs of
(y:ys) -> case ys of

[] -> (Hits y y);
(z:zs) -> let m = minMaxHits (z:zs)

in (Hits (min y (fst m))
(max y (snd m)))

min x y = if (leq x y) then x else y
max x y = if (leq x y) then y else x

leq x y = if x==0 then False
else if y==0 then False else leq (x-1) (y-1)

Fig. 1. Example program minMaxHits

function main returns the maximum number of hits of a given web page in a span
of time. Function main simply calls minMaxHits which traverses a list containing
the daily hits of a given page and returns a data structure with the minimum
and maximum of such a list.

The execution of the program above should return 65, since this is the maxi-
mum number of hits in the given span of time. However, the code is faulty and
prints 0 instead. We can trace this computation in order to find the source of
the error. The tracer initially shows the following top-level trace:

0 = main
0 = printMax (Hits _ 0)
0 = prettyPrint 0
0 = if_then_else True 0 0
0 = 0

Each row in the trace has the form val = exp, where exp is an expression and
val is the computed value for this expression.

By inspecting this trace, it should be clear that the argument of printMax
is erroneous, since it contains 0 as the maximum number of hits. Note that the
minimum (represented by “_” in the trace) has not been computed due to the
laziness of the considered language. Now, if the user selects the argument of
printMax, the following subtrace is shown:

0 = printMax (Hits _ 0)
(Hits _ 0) = minMaxHits (0:_)
(Hits _ 0) = Hits _ 0

A Slicing Tool for Lazy Functional Logic Programs 501

Table 1. Benchmark results

benchmark time orig size slice size reduction (%)

minmax 11 ms. 1.035 bytes 724 bytes 69.95
horseman 19 ms. 625 bytes 246 bytes 39.36
lcc 33 ms. 784 bytes 613 bytes 78.19
colormap 3 ms. 587 bytes 219 bytes 37.31
family_con 4 ms. 1453 bytes 262 bytes 18.03
family_nd 2 ms. 731 bytes 289 bytes 29.53
Average 12 ms. 43.73

From these subtraces, the user can easily conclude that the evaluation of function
minMaxHits (rather than its definition) contains a bug since it returns 0 as the
maximum of a list without evaluating the rest of the list.

At this point, the tracer cannot provide any further information about the
location of the bug. This is where slicing comes into play: the programmer can
use the slicer in order to isolate the slice which is responsible of the wrong result;
in general, it would be much easier to locate the bug in the slice than in the
complete source program. For instance, in this example, the slice would contain
the black text in Fig. 1. Indeed, this slice contains a bug: the first occurrence of
False in function leq (less than or equal to) should be True. Note that, even
though the evaluation of minMaxHits was erroneous, its definition was correct.

4 Benchmarking the Slicer

In order to measure the specialization capabilities of our tool, we conducted
some experiments over a subset of the examples listed in

http://www.informatik.uni-kiel.de/~curry/examples.
Some of the benchmarks are purely functional programs (horseman, family nd),
some of them are purely logic (colormap, family con), and the rest are func-
tional logic programs.

Results are summarized in Table 1. For each benchmark, we show the time
spent to slice it, the sizes of both the benchmark and its slice, and the percentage
of source code reduction after slicing. As shown in the table, an average code
reduction of more than 40% is reached.

References

1. B. Braßel, M. Hanus, F. Huch, and G. Vidal. A Semantics for Tracing Declarative
Multi-Paradigm Programs. In Proc. of PPDP’04, pages 179–190. ACM Press, 2004.

2. C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In Proc.
of PEPM’04, pages 123–134. ACM Press, 2004.

3. M.D. Weiser. Program Slices: Formal, Psychological, and Practical Investigations
of an Automatic Program Abstraction Method. PhD thesis, U. of Michigan, 1979.

cc�: A Correspondence-Checking Tool for Logic
Programs Under the Answer-Set Semantics

Johannes Oetsch1, Martina Seidl2, Hans Tompits1, and Stefan Woltran1

1 Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch, tompits, stefan}@kr.tuwien.ac.at
2 Institut für Softwaretechnik 188/3, Technische Universität Wien,

Favoritenstraße 9-11, A-1040 Vienna, Austria
seidl@big.tuwien.ac.at

Abstract. In recent work, a general framework for specifying correspondences
between logic programs under the answer-set semantics has been defined. The
framework captures different notions of equivalence, including well-known ones
like ordinary, strong, and uniform equivalence, as well as refined ones based on
the projection of answer sets where not all parts of an answer set are of relevance.
In this paper, we describe an implementation to verify program correspondences
in this general framework. The system, called cc!, relies on linear-time con-
structible reductions to quantified propositional logic and uses extant solvers for
the latter language as back-end inference engines.

1 General Information

To support engineering tasks in answer-set programming (ASP) [4], an important is-
sue is to determine the equivalence of different problem encodings, given by two logic
programs. Various notions of equivalence between programs have been studied in the
literature [7, 2, 11] including the recently proposed framework by Eiter et al. [3], which
subsumes most of the previously introduced notions. Within this framework, correspon-
dence between two programs, P and Q, holds iff the answer sets of P ∪ R and Q ∪ R
satisfy certain specified criteria, for any program R in a specified class, called the con-
text. This kind of program correspondence includes the well-known notions of ordinary
equivalence, strong equivalence [7], uniform equivalence [2], relativised variants of the
latter two [11], as well as the practicably important case of program comparison under
projected answer sets as special instances. In the latter setting, not a whole answer set of
a program is of interest, but only its intersection on a subset of all letters, corresponding
to a removal of auxiliary letters in computation.

In this paper, we briefly describe the main features of the system cc� (short for
“correspondence-checking tool”), which implements correspondence problems in the
framework of Eiter et al. [3]. Compared to similar tools which are restricted to the
notions of strong and ordinary equivalence [1, 9], cc� supports the user with more fine-
grained equivalence notions, allowing practical comparisons useful for debugging and
modular programming. Further information about cc� is also available on the Web at

http://www.kr.tuwien.ac.at/research/ccT/.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 502–505, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

cc!: A Correspondence-Checking Tool for Logic Programs 503

2 System Specifics

Theoretical Background. We are concerned here with disjunctive logic programs with
default negation over a universe U of propositional atoms under the answer-set seman-
tics [5]. Given a program P , we denote by AS(P) the collection of its answer sets;
moreover, PA denotes the class of all programs given over a set A ⊆ U of atoms.
Two programs, P and Q, are ordinarily equivalent iff AS(P) = AS(Q). P and Q are
strongly equivalent [7] iff, for any programR,AS(P∪R) = AS(Q∪R). In abstracting
from these equivalence notions, Eiter et al. [3] introduce the notion of a correspondence
problem which allows to specify, on the one hand, a context, i.e., a class of programs
used to be added to the programs under consideration and, on the other hand, the rela-
tion that has to hold between the collections of answer sets of the extended programs.
Following Eiter et al. [3], we focus here on correspondence problems where the context
is parametrised in terms of alphabets and the comparison relation is a projection of the
standard subset or set-equality relation. In formal terms, a correspondence problem,Π ,
(over U) is a quadruple of form (P,Q,PA, ρB), where P,Q ∈ PU , A,B ⊆ U are sets
of atoms, and ρB is either ⊆B or =B , which are defined as follows: for any sets S, S′,
S ⊆B S

′ iff S|B ⊆ S′|B , and S =B S
′ iff S|B = S′|B , where S|B = {I∩B | I ∈ S}.

We say that Π holds iff, for all R ∈ PA, (AS(P ∪ R),AS(Q ∪ R)) ∈ ρB . We call
Π an equivalence problem if ρB is given by =B, and an inclusion problem if ρB is
given by⊆B , for someB ⊆ U . Note that (P,Q,PA,=B) holds iff (P,Q,PA,⊆B) and
(Q,P,PA,⊆B) jointly hold.

Example 1. Consider the following two programs which both express the selection of
exactly one of the atoms a, b (an atom can only be selected if it can be derived together
with the context):

P = { sel(b)← b,not out(b); Q = { fail ← sel(a),not a,not fail ;
sel(a)← a,not out(a); fail ← sel(b),not b,not fail ;
out(a) ∨ out(b)← a, b }. sel(a) ∨ sel(b)← a;

sel(a) ∨ sel(b)← b }.
Both programs use “local” atoms, out(·) and fail , respectively, which are expected
not to appear in the context. We thus may consider Π = (P,Q,PA,=B) as a suit-
able equivalence problem, specifying A = {a, b} (or, more generally, A taking as
any set of atoms not containing the local atoms out(a), out(b), and fail) and B =
{sel(a), sel(b)}. It is a straightforward matter to check that Π , defined in this way,
holds. ��

Implementation Methodology. The overall approach of cc� is (i) to reduce corre-
spondence problems, as introduced above, to the satisfiability problem of quantified
propositional logic, an extension of classical propositional logic characterised by the
condition that its sentences, usually referred to as quantified Boolean formulas (QBFs),
are permitted to contain quantifications over atomic formulas, and (ii) to use extant QBF
solvers as back-end inference engines for evaluating the resulting QBFs. The theoreti-
cal basis of this approach has been developed in previous work [10], where reductions
constructible in linear time and space are provided. The motivation for adopting such a

504 J. Oetsch et al.

reduction approach is due to the fact that correspondence checking is hard [3], lying on
the fourth level of the polynomial hierarchy (thus, QBFs are a suitable target formal-
ism), and since several practicably efficient QBF solvers are available (see, e.g., [6] for
an overview about different QBF solvers).

Concerning the translation step, cc� implements the necessary reductions [10] (to-
gether with some simplifications, see [8] for details) from a given inclusion or equiv-
alence problem Π to a corresponding QBF Φ such that Φ is valid iff Π holds. The
reductions are designed along so-called spoilers [3]: The existence of a spoiler for a
given inclusion problem Π indicates that Π does not hold; equivalence tests are en-
coded by two inclusion tests. In general, the complexity of correspondence checking
is ΠP

4 -complete, leading to QBFs matching this intrinsic complexity, i.e., they possess
up to three quantifier alternations. However, if the specified problem falls into an easier
class, cc� provides an encoding in terms of QBFs which are less involving.

For the evaluation of the resultant QBFs, the user has to employ an off-the-shelf QBF
solver. Several such tools are nowadays available [6], but most of them require the input
to be in a specific normal form. In such a case, the generated QBFs have to be processed
according to the input syntax of the considered solver. Details about the normal-form
translation employed by cc� can be found elsewhere [8].

Applying the System. The system takes as input two programs, P and Q, and two sets
of atoms, A and B, where A specifies the alphabet of the context and B specifies the
set of atoms used for the projection in the chosen correspondence relation. The user
can select (via command-line options) between two kinds of reductions (see [10] for
details), a more naive one or an optimised one, which is also the default option. As
well, it can be selected whether the programs are compared with respect to an inclusion
or an equivalence problem. The syntax of the programs is the basic DLV syntax.1

Let us consider the two programs P and Q from Example 1, and suppose they
are stored in files P.dl and Q.dl, respectively. If we want to use cc� for check-
ing whether P is equivalent to Q with respect to the projection to the output predicate
sel(·), and restricting the context to programs over {a, b}, then we need to specify

– the context set, stored in file A, containing the string “(a, b)”, and
– the projection set stored in file B, containing the string “(sel(a), sel(b))”.

By default, cc�writes the resulting QBF to the standard-output device. The QBF can
then be processed further by QBF solvers. The output can also be piped, e.g., directly
to the BDD-based QBF solver boole.2 Choosing the latter way, invoking cc� on our
example thus looks as follows:

ccT -e P.dl Q.dl A B | boole.

In this case, the output (from boole) is 0 or 1 as answer for the input correspondence
problem. In our example, the correspondence holds and the output is therefore 1.

We developed cc� entirely in ANSI C; hence, it is highly portable. The parser for
the input data was written using LEX and YACC. The complete package in its current
version consists of more than 2000 lines of code.

1 See http://www.dlvsystem.com/ for details about DLV.
2 See http://www.cs.cmu.edu/∼modelcheck/bdd.html.

cc!: A Correspondence-Checking Tool for Logic Programs 505

3 Discussion

In this paper, we presented an implementation for advanced program comparisons in
answer-set programming via encodings into quantified propositional logic. In other
work [8], we reported about initial experimental evaluations of our tool, also contain-
ing a comparison between cc� and the system DLPEQ [9], which computes ordinary
equivalence by means of ASP solvers. We furthermore note that, for the special case of
checking strong equivalence, our system uses reductions to SAT, i.e., to the satisfiabil-
ity problem of (ordinary) propositional logic. This is basically done in the same way as
in the special-purpose strong-equivalence checker SELP [1]. Thus, our system can be
understood as a generalisation of that approach. Compared to these other systems, cc�,
however, processes a much broader range of correspondence problems, which are also
computationally more involving.

We consider our system as a starting point for a tool box to support modular pro-
gramming and offline program simplification. Future work includes an extension of
the system to other classes of logic programs (like, e.g., nested logic programs) and to
further correspondence notions (in particular, ones based on uniform equivalence [2]).

Acknowledgements. This work was partially supported by the Austrian Science Fund
(FWF) under grant P18019; the second author was also supported by the Austrian Fed-
eral Ministry of Transport, Innovation, and Technology (BMVIT) and by the Austrian
Research Promotion Agency (FFG) under grant FIT-IT-810806.

References

1. Y. Chen, F. Lin, and L. Li. SELP - A System for Studying Strong Equivalence between Logic
Programs. In Proc. LPNMR’05, volume 3662 of LNCS, pages 442–446. Springer, 2005.

2. T. Eiter and M. Fink. Uniform Equivalence of Logic Programs under the Stable Model
Semantics. In Proc. ICLP’03, number 2916 in LNCS, pages 224–238. Springer, 2003.

3. T. Eiter, H. Tompits, and S. Woltran. On Solution Correspondences in Answer-Set Program-
ming. In Proc. IJCAI’05, pages 97–102, 2005.

4. M. Gelfond and N. Leone. Logic Programming and Knowledge Representation - The A-
Prolog Perspective. Artificial Intelligence, 138(1-2):3–38, 2002.

5. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

6. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The Second QBF Solvers Compar-
ative Evaluation. In Proc. SAT’04, volume 3542 of LNCS, pages 376–392. Springer, 2005.

7. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Trans-
actions on Computational Logic, 2(4):526–541, 2001.

8. J. Oetsch, M. Seidl, H. Tompits, and S. Woltran. A Tool for Advanced Correspondence
Checking in Answer-Set Programming. In Proc. NMR’06, pages 20–29, 2006.

9. E. Oikarinen and T. Janhunen. Verifying the Equivalence of Logic Programs in the Disjunc-
tive Case. In Proc. LPNMR’04, volume 2923 of LNCS, pages 180–193. Springer, 2004.

10. H. Tompits and S. Woltran. Towards Implementations for Advanced Equivalence Checking
in Answer-Set Programming. In Proc. ICLP’05, volume 3668 of LNCS, pages 189–203.
Springer, 2005.

11. S. Woltran. Characterizations for Relativized Notions of Equivalence in Answer-Set Pro-
gramming. In Proc. JELIA’04, volume 3229 of LNCS, pages 161–173. Springer, 2004.

A Logic-Based Tool
for Semantic Information Extraction

Massimo Ruffolo1,3, Marco Manna4, Lorenzo Gallucci1,
Nicola Leone1,4, and Domenico Saccà1,2,3

1 Exeura s.r.l.
2 DEIS - Department of Electronics, Computer Science and Systems

3 ICAR-CNR - Institute of High Performance Computing and Networking
of the Italian National Research Council

4 Department of Mathematics
University of Calabria, 87036 Arcavacata di Rende (CS), Italy

{ruffolo, sacca}@icar.cnr.it
{leone, manna}@unical.it

gallucci@exeura.it

Abstract. Recognizing and extracting meaningful information from un-
structured Web documents, taking into account their semantics, is an
important problem in information and knowledge management. This pa-
per describes HıLεX, a system implementing a novel logic-based approach
to information extraction from unstructured documents. The approach
adopted in the HıLεX system is founded on a new two-dimensional rep-
resentation of documents, and heavily exploits DLP+ - an extension of
disjunctive logic programming for ontology representation and reasoning,
which has been recently implemented on top of the DLV system. Un-
like previous systems, which are mainly syntactic, HıLεX combines both
semantic and syntactic knowledge for a powerful information extraction.
Ontologies, representing the semantics of the domain of the information
to be extracted, are encoded in DLP+, while the extraction patterns are
encoded by regular expressions in an ad hoc two-dimensional grammar.
These regular expressions are (internally) translated into DLP+ rules,
whose execution yields the actual extraction of information from the in-
put document. HıLεX allows the semantic information extraction from
both HTML pages and flat text documents. The usefulness of Hilex has
been already confirmed also in practice, as the system has been success-
fully employed in two advanced applications in the e-health and e-finance
domains.

1 Introduction

HTML and flat text documents contain a huge amount of information arranged
for human readers according to syntactic, semantic, and presentation rules of a
given language. This information tends to be practically unusable, both for their
vastness, and for the lack of machine readability that makes existing information
extraction systems unable to manage the actual knowledge that the information
conveys.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 506–510, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Logic-Based Tool for Semantic Information Extraction 507

Recognizing and extracting relevant information automatically from web doc-
uments, according to their semantics, is an important problem in the field of web
information extraction.

In the recent literature a number of approaches for information extraction
from unstructured documents have been proposed. An overview of the large
body of existing literature and systems is given in [2, 4, 5]. The currently avail-
able systems are mainly syntactic, and are not aware of the semantics of the
information they are able to extract. They principally use pattern matching
mechanism exploiting the underlying HTML syntactical structure and regular
expressions on textual fragments contained between HTML tags.

In this work we present HıLεX, a logic-based system which combines both
syntactic and semantic knowledge for a powerful information extraction from
unstructured documents. Logic-based approaches for information extraction are
not new [1], however, the approach we propose is original. Its novelty is due to:
• The logic two-dimensional representation of an unstructured document. A doc-
ument is viewed as a Cartesian plane composed by a set of nested rectangular
regions called portions. Each portion, univocally identified through the cartesian
coordinates of two opposite vertices, contains a piece of the input document (el-
ement) annotated w.r.t. an ontology instance.
• The exploitation of a logic-based knowledge representation language called
DLP+, extending DLP with object-oriented features, including classes, (multi-
ple) inheritance, complex objects, types. DLP+is well-suited for representation
and powerful reasoning on ontologies; the language is supported by the DLV +

system [7], implemented on top of DLV [6].
• The use of ontologies, encoded in DLP+, describing the domain of the input
document. A concept of the domain is represented by a DLP+ class; each class
instance is a pattern representing a possible way of writing the concept and is
used to recognize and annotate an element contained in a portion.
• The employment of a new grammar, named HıLεX two-dimensional grammar,
for specifying the (above mentioned) patterns. HıLεX grammar extends regular
expressions for the representation of two-dimensional patterns (like tables, item
lists, etc.), which often occur in web pages and textual tabular data. The pat-
terns are specified through DLP+ rules, whose execution yields the semantic
information extraction, by associating (the part of the document embraced by)
each portion to an element of the domain ontology.

It is worthwhile noting that, besides the domain ontologies, HıLεX system uses
also a core ontology, containing (patterns for the recognition of) general linguistic
elements (such as date, time, numbers, email, words, etc.); presentation elements
(such as font colors, font styles, background colors, etc.); structural elements
(such as table cells, item lists, paragraphs, etc.) which are not bound to a specific
domain but occur generally.
The advantages of the HıLεX system over other existing approaches are mainly
the following:

– The extraction of information according to their semantics and not only on
the basis of their syntactic structure.

508 M. Ruffolo et al.

– The possibility to extract information in the same way from documents in
different formats. The same extraction pattern can be used to extract data
from both flat text and HTML documents. This feature is not due to a pre-
liminary HTML-to-text translation, but it comes from the higher abstraction
obtained from the transformation of the input document in a set of logical
portions.

– The possibility to obtain a “semantic” classification of the input documents
w.r.t. an ontology, which is much more accurate and meaningful than the syn-
tactic classifications provided by existing systems (mainly based on counting
the number of occurrences of some keywords). This feature opens the door
to many relevant applications (e.g., email classification and filtering, skill
classification from curricula, extraction of relevant information from medical
records, etc.).

Distinctive features of the HıLεX system, summarized above, allow for a better
digital contents management and fruition in different application fields such as:
e-health, e-entertainment, e-commerce, e-government, e-business.

2 The HıLεX System

The architecture of the HıLεX system is depicted in Figure 1. The semantic infor-
mation extraction approach can be viewed as a process composed of four main
steps: knowledge representation, document preprocessing, pattern matching, and
pattern extraction. The following subsections illustrate these steps.

Fig. 1. The architecture of the HıLεX System

2.1 Knowledge Base

The Knowledge Base (KB) stores, using the DLV + system persistency layer,
the core and the domain ontologies, the patterns encoding information to be
extracted and the logic two-dimensional representation of unstructured docu-
ments. The KB provides an API supporting ontology querying, and pattern
representation and matching.

A Logic-Based Tool for Semantic Information Extraction 509

2.2 Document Preprocessor

The document preprocessor takes as input an unstructured document, and a
query containing the class-instance names representing the information that the
user wishes to extract. After the execution the document preprocessor returns
the logic two-dimensional document representation and a set of DLP+ rules
constituting the input for the pattern recognizer. The document preprocessing
is performed by the three sub-modules described in the following.

The Query analyzer takes the user query as its input and explores the
ontologies in order to identify patterns for the extraction process. The output
of the query analyzer are two sets of pairs (class-instance name, pattern). The
first set (Os) contains pairs in which instances are characterized by patterns
represented by regular expressions (simple elements), whereas in the second set
(Oc) patterns are expressed using the HıLεX pattern representation grammar
(complex elements). The set Os is the input for the document analyzer and the
set Oc is the input for the rewriter module.

The Document Analyzer gets an unstructured document and the set of
pairs Os. The document analyzer is able to recognize regular expressions, ap-
plying pattern matching mechanisms, to detect simple elements constituting the
document and for each of them generates the relative portion. At the end of the
analysis this module provides the logic document representation Ls which is a
uniform abstract view of different document formats.

The HıLεX Rewriter takes in input the set of pairs Oc containing the ex-
traction patterns expressed by means of the HıLεX grammar. Each pattern is
translated in a set of logical DLP+ rules. Their execution in the DLV + system,
performed by the pattern matcher module, yields the actual semantic informa-
tion extraction from unstructured documents.

2.3 Pattern Matcher

The pattern matcher is founded on the DLV + system. It takes as input the logic
two-dimensional document representation (Ls) and the set of DLP+ rules, re-
sulting from the translation of the HıLεX patterns, which allow to recognize new
complex elements. The output of this step is the augmented logic two-dimensional
representation (Lc) of an unstructured document in which new document re-
gions, containing more complex elements (e.g. tables having a certain structure
and containing certain concepts, phrases having a particular meaning, etc.), are
identified.

2.4 Pattern Extractor

This module takes as its input the augmented logic representation of a document
(Lc) and allows for the acquisition of element instances (semantic wrapping)
and/or the document classification w.r.t. the classes of the ontology.

Acquired instances can be stored in aDLP+ ontology, in a relational database,
or in an XML database. So, extracted information can be used in other appli-
cations, and more powerful query and reasoning tasks can be performed. The

510 M. Ruffolo et al.

extraction process causes the annotation of the documents w.r.t. the concepts
in the ontology. This feature can enable, for example, semantic classification in
document management contexts.

3 Current Applications

Currently two vertical applications of the system have been developed. The first
application concerns the extraction of patients, diseases, therapies and drugs
information from electronic medical records in unstructured format, and their
storage in a structured XML format. This e-health application aids doctors to
better analyze clinical information and hospitals to exchange patient and disease
data.

The second application concerns the extraction of information (sub-item and
the related amount in Euro) of different items contained in an unstructured sec-
tion of balance-sheets. Extracted information is stored into a relational database
and made available for further financial analysis.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Declarative information extraction, web
crawling, and recursive wrapping with lixto. Proc. LPNMR ’01, 2001, pp. 21–41.

2. L. Eikvil. Information extraction from world wide web - a survey. Technical Report
945, Norweigan Computing Center, 1999.

3. D. Giammarresi and A. Restivo. Two-dimensional languages. Handbook of Formal
Languages, vol. 3, Beyond Words, pages 215–267. Springer-Verlag, Berlin, 1997.

4. S. Kuhlins and R. Tredwell. Toolkits for generating wrappers – a survey of software
toolkits for automated data extraction from web sites. Proc. NODe 2002, Germany,
2002.

5. A. Laender, B. Ribeiro-Neto, A. Silva, and J. Teixeira. A brief survey of web data
extraction tools. In SIGMOD Record, volume 31, June 2002.

6. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 2006 (Forth-
coming).

7. F. Ricca, N. Leone, Disjunctive Logic Programming with types and objects: The
DLV+ System Journal of Applied Logic, Elsevier, 2006 (Forthcoming).

tarfa: Tableaux and Resolution for Finite
Abduction

Fernando Soler-Toscano and Ángel Nepomuceno-Fernández

Dept. of Philosophy and Logic. University of Seville, Spain
{fsoler, nepomuce}@us.es

Abstract. n-tableaux [1] and δ-resolution [2], which are based, respec-
tively, on semantic tableaux and resolution, have been properly used for
the resolution of abductive problems. The tool we present is a Prolog
implementation of an abductive solver which combines both calculi to
attack first order abductive problems by reducing them to finite ver-
sions, that is, propositional rewritings of the problems which presuppose
a context representable with finite models with a known cardinality.

1 Introduction

Abductive problems appear in many contexts, in which a way for reasoning with
incomplete information is at call. Informally, given a theory Θ and an observation
φ not entailed by Θ, abduction is the searching for an explanation α such that Θ
and α together entail φ. When tackling first order abduction, the undecidability
problem appears. There are two (not mutually exclusive) possible strategies if
one wants to avoid undecidability. One is to restrict the allowed syntactical form
of the formulae involved in abductive problems. On the other hand, as abduction
is somehow related to the search for models, one can restrict the cardinality of
those models. The tool we present follows this second option.

Our aim is to combine n-tableaux and δ-resolution calculi, which have been
previously used for abduction in [1] and [2], respectively. The result is a more
efficient implementation that those which use only one of the two mentioned
calculi. Anyway, the program is not as efficient as other existing tools which
work with restricted syntactical forms on the abductive problems. The interest
of our tool may be seen in its generality, since it does not impose any of those
habitual restrictions.

2 Formal Apparatus

We take � as the classical consequence relation, and L a first order language,
without equality nor function symbols, with habitual connectives ∧, ∨, ¬, →,
↔ and quantifiers ∀, ∃. Given a finite set Θ ⊂ L and φ ∈ L, we say 〈Θ, φ〉 is
an abductive problem iff Θ � φ and Θ � ¬φ. Then, the set of literals Σ ⊂ L is
an abductive solution of 〈Θ, φ〉 iff Θ ∪ Σ � φ, Θ ∪ Σ � ⊥, Σ � φ and for every
Σ′ ⊂ Σ, Θ ∪ Σ′ � φ. We denote by Abd(Θ, φ) the set of abductive solutions of
an abductive problem 〈Θ, φ〉.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 511–514, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

512 F. Soler-Toscano and Á. Nepomuceno-Fernández

2.1 n-Tableaux

n-tableaux are a modification of classical semantic tableaux, which have been
successfully used by [1, 3] to attack abductive problems that are intractable by
the classical tableaux-based approach to abduction [4], because their theories are
first order formulae which produce infinite branches in tableaux. But, in many
applications of abduction, it makes sense to reduce such problems to proposi-
tional versions which are equivalent to the adaptation of those problems to first
order finite domains. The solutions to the reduced versions, thought in general
not valid in the original first order versions, may be useful in the concrete (finite)
context of the problem.

Given a finite set Γ ⊂ L of formulae, its n-tableau, for a given natural number
n, is constructed with classical rules for closing branches, double negation, α and
β rules, plus the following versions of γ and δ rules:

∀xϕ
ϕ(x/c1)

...
ϕ(x/cn)

∃xϕ
ϕ(x/c1)| . . . |ϕ(x/cn)

¬∃xϕ
¬ϕ(x/c1)

...
¬ϕ(x/cn)

¬∀xϕ
¬ϕ(x/c1)| . . . |¬ϕ(x/cn)

the c1, . . . , cn are n constants of the language, which are the same for all the
construction of the n-tableau and include all the constants of the original set Γ .

At the end of the construction of the n-tableau of Γ if there are m open
branches, each one with the set of literals Θi, i ≤ m, the formula

∨m
i=1
∧

λ∈Θi
λ,

which we call Cn(Γ), is equivalent to Γ in the set of finite models with a universe
of cardinality n and an interpretation function I such that I(ci) �= I(cj) for
1 ≤ i < j ≤ n.

2.2 δ-Resolution

The δ-resolution calculus is used in [2] to produce abductive solutions with some
advantages with respect to the approaches to abduction based on standard res-
olution or semantic tableaux. In the tool we are describing, we use δ-resolution
once first order formulae have been reduced to finite-model versions, equivalent
to propositional formulae. So, we will present some elements of the propositional
version of the δ-resolution calculus. More details can be found in [2].

Definitions and properties of the δ-resolution calculus are dual to those of the
standard resolution. First, a δ-clause is a set of literals, and a δ-clausal form
a set of δ-clauses. Given a boolean valuation v, it satisfies a given δ-clause iff
it satisfies all its literals, and v satisfies a δ-clausal form iff it satisfies at least
one of its δ-clauses. So, the empty δ-clause, ♦, is universally valid, while the
empty δ-clausal form is not satisfiable. With these semantical notions, we can

tarfa: Tableaux and Resolution for Finite Abduction 513

extend the relation |= to δ-clauses and δ-clausal forms. Also, we can transform
any formula to an equivalent δ-clausal form, by constructing its DNF (disjunctive
normal form). Given α =

∨n
i=1
∧m

j=i λ
j
i in DNF, we denote as S(α) the equivalent

δ-clausal form
⋃n

i=1{Σi | Σi =
⋃n

j=1 λ
j
i}.

We say that a δ-clause Σ is provable by δ-resolution from the δ-clausal form
A, represented by A �δ Σ, if Σ ∈ A or it can be obtained from only applications
of the δ-resolution rule (which from δ-clauses Σ1 ∪ {λ} and Σ2 ∪{¬λ} produces
their δ-resolvent Σ1 ∪Σ2) to other δ-clauses probable from A. Given a δ-clausal
form A, we denote by Aδ the saturation by δ-resolution of A, that is, the minimal
set that for every satisfiable Σ, if A �δ Σ, then there is a Σ′ ⊆ Σ such that
Σ′ ∈ Aδ. This set can be algorithmically constructed.

2.3 Abductive Search

To solve abductive problems 〈{θ1, . . . , θn}, ϕ〉 with n-tableaux and δ-resolution,
we proceed in the following way. First, we choose a cardinality n for the n-
tableaux (so also a set of n constants that will be used in all of them), and
then:

Step 1: Theory Analysis. Let NΘ be S(Cn({¬(θ1 ∧ . . . ∧ θn)})). If NΘ = ∅,
then Θ is universally valid1 and the process stops. Else, N δ

Θ is obtained. If
♦ ∈ N δ

Θ, then Θ is not satisfiable. Else,
Step 2: Observation Analysis. Let O be S(Cn({ϕ})). If O = ∅, then ϕ is not

satisfiable, and the process stops. Else, Oδ is obtained. If ♦ ∈ Oδ, then ϕ is
universally valid. Else,

Step 3: Refutation Search. If for any δ-clause Σ ∈ Oδ there is a Σ′ ∈ N δ
Θ

such that Σ′ ⊆ Σ, then Θ |= ¬ϕ and the process stops. Else,
Step 4: Explanations Search. From N δ

Θ and Oδ, the sets (N δ
Θ ∪ Oδ) and

(N δ
Θ ∪ Oδ)δ are obtained. If ♦ ∈ (N δ

Θ ∪ Oδ)δ, then Θ |= ϕ, so the process
stops (there is no abductive problem). In other case, 〈Θ,ϕ〉 is an abductive
problem, and the process returns (N δ

Θ∪Oδ)δ−(N δ
Θ∪Oδ) which is Abd(Θ,ϕ).

3 Description of tarfa

The system tarfa is implemented in SWI-Prolog, and runs in the latest version
5.6.12. It uses PrologScript to work as a Unix script file (but it can be adapted to
work in other platforms). The declarative character of Prolog gives us a natural
way to write the operations involved in the abductive search. SWI-Prolog has
been chosen because it covers a great part of the Edinburgh Prolog standard,
and it has a good compatibility with other compilers. Also, it works on a wide
range of 32 and 64 bit platforms and offers a flexible interface to the C and C++.
Last, but not least, it is licensed under the LGPL.

The program is called from the command line according to the following
syntax:
1 When we say from now that a formula is universally valid or not satisfiable, we refer

to the n-cardinality (propositional) version of the formula.

514 F. Soler-Toscano and Á. Nepomuceno-Fernández

– tarfa -n <depth> <textfile>
– tarfa <textfile>

In both cases, <textfile> is a file which specifies the abductive problem in
its first order version, previous to the finite models (propositional) reduction.
Then, in the first case, the system reduces the problem to the case of models
with cardinality equal to <depth> and attempts to solve it. If no cardinality is
given, that is, when the system is called in the second way, it starts an iterative
search, starting from cardinality 1, and increasing it each time in one unity
until it finds a cardinality such that the original problem remains an abductive
problem when translated to it. Then, it attempts to solve it.

With regard to the syntax of the text files, these comprise a non empty set of
instances of the Prolog unary predicate theory/1 and one instance of fact/1,
all of them containing formulae. In relation to the syntax of the formulae, the
connectives ∧, ∨, ¬, → and ↔ are represented, respectively, by &, v, -, => and
<=>. For quantifiers, all(<V>,<F>) and ex(<V>,<F>) stand, respectively, for the
universal and existential quantification of the variable <V> over the formula <F>.
It should be taken into account that variables must be Prolog variables (starting
with a capital letter) and predicates must start with a small letter. When two
formulae contain the same variable, tarfa interprets it as one different variable
in each case.

This is an example of a simple input file, which codifies the abductive problem
〈Θ, φ〉 when Θ = {∀x(Px→ Qx), ∀x(¬Qx ∨Rx)} and φ = {Qa ∧Rb}:

theory(all(X,p(X) => q(X))).
theory(all(X,-q(X) v r(X))).
fact(q(a) & r(b)).

The main procedure of tarfa is the implementation of the abductive search
explained in subsection 2.3. The construction of the n-tableaux is done by an
adaptation of leanTAP [5]. The δ-resolution calculus is implemented in Prolog
following some of the propositional strategies of the Otter theorem prover.

References

1. Reyes-Cabello, A.L., Aliseda-Llera, A., Nepomuceno-Fernández, A.: Abductive rea-
soning in first order logic. Logic Journal of the IGPL 14(2) (2006) 287–304

2. Soler-Toscano, F., Nepomuceno-Fernández, A., Aliseda-Llera, A.: Model-based ab-
duction via dual resolution. Logic Journal of the IGPL 14(2) (2006) 305–319

3. Nepomuceno, A.: Scientific explanation and modified semantic tableaux. In Mag-
nani, L., Nerssessian, N., Pizzi, C., eds.: Logical and Computational Aspects of
Model-Based Reasoning. Applied Logic Series. Kluwer Academic Publishers (2002)
181–198

4. Cialdea Mayer, M., Pirri, F.: First order abduction via tableau and sequent calculi.
Bulletin of the IGPL 1 (1993) 99–117

5. Beckert, B., Posegga, J.: leanTAP : Lean tableau-based deduction. Journal of Auto-
mated Reasoning 15(3) (1995) 339–358

Author Index

Aleksic, Vladimir 20
Alferes, José Júlio 29
Arieli, Ofer 43

Banti, Federico 29
Basukoski, Artie 56
Bell, David A. 386
Bolotov, Alexander 56
Broersen, Jan 69
Brogi, Antonio 29
Bruynooghe, Maurice 43, 452
Bryant, Daniel 465, 469

Cabalar, Pedro 82
Calimeri, Francesco 95
Camacho, Rui 481
Caminada, Martin 111
Castelfranchi, Cristiano 280
Cozza, Susanna 95

De Cock, Martine 359
Degtyarev, Anatoli 20
Denecker, Marc 43, 452
Dixon, Clare 333
Džeroski, Sašo 1

Eiter, Thomas 124, 473, 477
Endriss, Ulle 138
Erdem, Esra 124, 151

Fermüller, Christian G. 164
Fink, Michael 124, 473
Fonseca, Nuno A. 481

Gabaldon, Alfredo 151
Gallucci, Lorenzo 506
Ghilardi, Silvio 177
Giordano, Laura 190
Giunchiglia, Enrico 485
Gliozzi, Valentina 190
Greco, Sergio 203
Grigoriev, Oleg 56

Herzig, Andreas 69, 216, 280
Hunsberger, Luke 229
Hustadt, Ullrich 490

Ianni, Giovambattista 95

Konev, Boris 293
Korukhova, Yulia 242
Krause, Paul 465, 469

Leone, Nicola 506
Lin, Zhangang 253
Lin, Zuoquan 253
Liu, Hongkai 266
Liu, Weiru 386
Lorini, Emiliano 280
Lutz, Carsten 266
Lyaletski, Alexander 293

Ma, Yue 253
Maier, Frederick 306
Manna, Marco 506
Maratea, Marco 485
Miličić, Maja 266
Modgil, Sanjay 319
Moschoyiannis, Sotiris 465

Nalon, Cláudia 333
Narizzano, Massimo 494
Nepomuceno-Fernández, Ángel 511
Nguyen, Linh Anh 346
Nicolini, Enrica 177
Niemelä, Ilkka 15
Nittka, Alexander 373
Nute, Donald 306

Ochoa, Claudio 498
Odintsov, Sergei 82
Oetsch, Johannes 502
Olivetti, Nicola 190

Pacuit, Eric 138
Pearce, David 82
Pichler, Reinhard 164
Pozzato, Gian Luca 190
Pulina, Luca 494

Qi, Guilin 386

516 Author Index

Ranise, Silvio 177
Ruffolo, Massimo 506

Saad, Emad 399
Saccà, Domenico 506
Sadri, Fariba 413
Šefránek, Ján 426
Seidl, Martina 502
Senko, Ján 124, 473
Shangin, Vasilyi 56
Silva, Fernando 481
Silva, Josep 498
Soler-Toscano, Fernando 511
Straccia, Umberto 439

Tacchella, Armando 494
Tishkovsky, Dmitry 490
Tompits, Hans 502
Toni, Francesca 413

Traxler, Patrick 477
Troquard, Nicolas 69
Trubitsyna, Irina 203

Valverde, Agust́ın 82
Van Nieuwenborgh, Davy 359
Varzinczak, Ivan 216
Vennekens, Joost 452
Vermeir, Dirk 359
Vidal, Germán 498
Voronkov, Andrei 19

Wolter, Frank 266, 490
Woltran, Stefan 477, 502

Zakharyaschev, Michael 490
Zucchelli, Daniele 177
Zumpano, Ester 203

	Frontmatter
	Invited Talks
	From Inductive Logic Programming to Relational Data Mining
	Answer Set Programming: A Declarative Approach to Solving Search Problems
	Inconsistencies in Ontologies

	Technical Papers
	On Arbitrary Selection Strategies for Basic Superposition
	An Event-Condition-Action Logic Programming Language
	Distance-Based Repairs of Databases
	Natural Deduction Calculus for Linear-Time Temporal Logic
	A STIT-Extension of ATL
	On the Logic and Computation of Partial Equilibrium Models
	Decidable Fragments of Logic Programming with Value Invention
	On the Issue of Reinstatement in Argumentation
	Comparing Action Descriptions Based on Semantic Preferences
	Modal Logics of Negotiation and Preference
	Representing Action Domains with Numeric-Valued Fluents
	Model Representation over Finite and Infinite Signatures
	Deciding Extensions of the Theory of Arrays by Integrating Decision Procedures and Instantiation Strategies
	Analytic Tableau Calculi for KLM Rational Logic {\bfseries R}
	On the Semantics of Logic Programs with Preferences
	A Modularity Approach for a Fragment of \mathcal{ALC}
	Whatever You Say
	Automatic Deductive Synthesis of Lisp Programs in the System ALISA
	A Fault-Tolerant Default Logic
	Reasoning About Actions Using Description Logics with General TBoxes
	Introducing {\itshape Attempt} in a Modal Logic of Intentional Action
	On Herbrand's Theorem for Intuitionistic Logic
	Ambiguity Propagating Defeasible Logic and the Well-Founded Semantics
	Hierarchical Argumentation
	Anti-prenexing and Prenexing for Modal Logics
	A Bottom-Up Method for the Deterministic Horn Fragment of the Description Logic \mathcal{ALC}
	Fuzzy Answer Set Programming
	Reasoning About an Agent Based on Its Revision History with Missing Inputs
	Knowledge Base Revision in Description Logics
	Incomplete Knowledge in Hybrid Probabilistic Logic Programs
	A Formal Analysis of KGP Agents
	Irrelevant Updates and Nonmonotonic Assumptions
	Towards Top-k Query Answering in Description Logics: The Case of DL-Lite
	Representing Causal Information About a Probabilistic Process

	Tool Descriptions
	A Tool to Facilitate Agent Deliberation
	An Implementation of a Lightweight Argumentation Engine for Agent Applications
	A Tool for Answering Queries on Action Descriptions
	An Implementation for Recognizing Rule Replacements in Non-ground Answer-Set Programs
	April -- An Inductive Logic Programming System
	{\sc optsat}: A Tool for Solving SAT Related Optimization Problems
	Automated Reasoning About Metric and Topology
	The QBFEVAL Web Portal
	A Slicing Tool for Lazy Functional Logic Programs
	cc\top: A Correspondence-Checking Tool for Logic Programs Under the Answer-Set Semantics
	A Logic-Based Tool for Semantic Information Extraction
	<Literal>tarfa</Literal>: Tableaux and Resolution for Finite Abduction

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

