Michael Fisher
Wiebe van der Hoek
Boris Konev

Alexei Lisitsa (Eds.)

Logics in
Artificial Intelligence

10th European Conference, JELIA 2006
Liverpool, UK, September 2006
Proceedings

LNAI 4160

@ Springer

Lecture Notes in Artificial Intelligence ~ 4160
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Michael Fisher Wiebe van der Hoek
Boris Konev Alexei Lisitsa (Eds.)

Logics in
Artificial Intelligence

10th European Conference, JELIA 2006
Liverpool, UK, September 13-15, 2006
Proceedings

@ Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Michael Fisher
Wiebe van der Hoek
Boris Konev

Alexei Lisitsa

University of Liverpool

Department of Computer Science

Liverpool; L69 3BX, UK

E-mail: {M.Fisher,wiebe,B.Konev,alexei} @csc.liv.ac.uk

Library of Congress Control Number: 2006932041

CR Subject Classification (1998): 1.2, F.4.1, D.1.6
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-39625-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39625-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11853886 06/3142 543210

Preface

Logics provide a formal basis, and key descriptive notation, for the study and devel-
opment of applications and systems in Artificial Intelligence (AI). With the depth and
maturity of formalisms, methodologies, and systems today, such logics are increasingly
important. The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle — JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organised biennially, with En-
glish as official language, and with proceedings published in Springer’s Lecture Notes
in Artificial Intelligence. Previous meetings took place in Roscoff, France (1988), Ams-
terdam, Netherlands (1990), Berlin, Germany (1992), York, UK (1994), Evora, Portugal
(1996), Dagstuhl, Germany (1998), Mdlaga, Spain (2000), Cosenza, Italy (2002), and
Lisbon, Portugal (2004).

The increasing interest in this forum, its international level with growing partici-
pation from researchers outside Europe, and the overall technical quality, has turned
JELIA into a major forum for the discussion of logic-based approaches to Al. JELIA
2006 constituted the Tenth International Conference on Logics in Artificial Intelligence,
and was held in Liverpool (UK) in September 2006. As with previous JELIA confer-
ences, the aim of JELIA 2006 was to bring together active researchers interested in all
aspects concerning the use of logics in Al to discuss current research, results, problems
and applications of both a theoretical and practical nature.

We received a total of 96 submissions, comprising 77 regular papers and 19 tool de-
scriptions. These submissions represented a wide range of topics throughout Artificial
Intelligence and, as well as originating in Europe, we were pleased to receive submis-
sions from a variety of other countries across the world, including Australia, Brazil,
China, Sri Lanka, South Korea and USA. We would like to take this opportunity to
thank all those who submitted papers and whose contributions have helped make such
a strong final programme.

The regular paper submissions were usually evaluated by at least three members
of the Programme Committee (see below) and in many cases further discussion on
the merits of particular papers was entered into. Tool description papers were each
evaluated by two members of the Programme Committee. We would like to thank all
the members of the Programme Committee and the additional referees (see below) for
the professional way in which they carried out their reviewing and selection duties.

The review process was extremely selective and many good papers could not be ac-
cepted for the final program. As a result of the reviewing process 34 regular papers
(44% of submissions) were selected for full presentation at JELIA 2006. In addition,
12 tool descriptions (62% of submissions) were selected for presentation and demon-
stration. The papers appearing in these proceedings cover a range of topics within the
scope of the conference, such as logic programming, description logics, non-monotonic
reasoning, agent theories, automated reasoning, and machine learning. Together with
the programme of technical papers, we are pleased to acknowledge a strong series of

VI Preface

invited talks by leading members of the Logic in Al community: Saso DZeroski (Jozef
Stefan Institute, Slovenia); Ilkka Niemeld (Helsinki University of Technology, Finland);
and Andrei Voronkov (University of Manchester, UK). We are confident that you will
find the contents of this volume stimulating and enlightening, and that it will provide
an invaluable reference to many current research issues in Logics in Al.

Finally, we are indebted to the members of the JELIA Steering Committee (see be-
low) for selecting Liverpool for the tenth JELIA event, to sponsorship from EPSRC,
AgentcitiesUK and the University of Liverpool, and to Catherine Atherton and Dave
Shield for their invaluable assistance in hosting this conference.

July 2006 Michael Fisher
[Programme Chair]
Wiebe van der Hoek
[General Chair]
Boris Konev
[Tool Session Chair]
Alexei Lisitsa
Local Organising Chair
g g

Organization

JELIA Steering Committee:

Gerhard Brewka

David Pearce

JELIA-06 Programme Committee:

José Julio Alferes
Franz Baader

Chitta Baral

Peter Baumgartner
Salem Benferhat
Alexander Bochman
Rafael Bordini
Gerhard Brewka
Walter Carnielli
Luis Farifias del Cerro
Mehdi Dastani
James Delgrande
Jiirgen Dix

Clare Dixon

Roy Dyckhoff
Thomas Eiter
Patrice Enjalbert

Additional Reviewers

Salvador Abreu
Wolfgang Ahrendt
Alessandro Artale
Pedro Barahona
Bernhard Beckert
Piero Bonatti
Krysia Broda
Diego Calvanese
Iliano Cervesato
Marta Cialdea
Pierangelo Dell’ Acqua
Agostino Dovier
Esra Erdem
Michael Fink

Michael Fisher
Maria Fox

Enrico Franconi
Ulrich Furbach
Sergio Greco

Lluis Godo

James Harland
Tomi Janhunen
Peter Jonsson
Boris Konev
Manolis Koubarakis
Jodo Leite
Maurizio Lenzerini
Nicola Leone
Gérard Ligozat
John-Jules Meyer
Angelo Montanari

Giorgos Flouris
Laura Giordano
Valentin Goranko
Rajeev Goré

Guido Governatori
Gianluigi Greco
Pascal Hitzler
Wiebe van der Hoek
Aaron Hunter
Ullrich Hustadt
Giovambattista Ianni
Wojtek Jamroga
Andrew Jones
Reinhard Kahle

Luis Moniz Pereira

Bernhard Nebel
Manuel Ojeda-Aciego
David Pearce

Charles Pecheur

Luis Moniz Pereira
Henri Prade

Henry Prakken
Francesca Rossi

Ken Satoh

Renate Schmidt

Terry Swift
Francesca Toni

Paolo Torroni

Mirek Truszczynski
Toby Walsh
Mary-Anne Williams
Michael Zakharyaschev

Ralf Kiisters

Zhen Li

Thomas Lukasiewicz
Michael Maher
Davide Marchignoli
Wolfgang May
Paola Mello
Thomas Meyer
Maja Milicic

Rafig Muhammad
Alexander Nittka
Peter Novak
Magdalena Ortiz
Simona Perri

VIII Organization

Gerald Pfeifer

Axel Polleres
Helmut Prendinger
Birna van Riemsdijk
Fabrizio Riguzzi
Jussin Rintanen

Rob Rothenberg
Jordi Sabater-Mir

Mehrnoosh Sadrzadeh
Torsten Schaub

Ute Schmid

Steven Shapiro

Tran Cao Son

Giorgos Stamou
Phiniki Stouppa
Thomas Studer

Aaron Stump
Uwe Waldmann
Kewen Wang
Gregory Wheeler
Frank Wolter
Bozena Wozna
Bruno Zanuttini
Hantao Zhang

Table of Contents

I Invited Talks

From Inductive Logic Programming to Relational Data Mining 1
Saso DzZeroski

Answer Set Programming: A Declarative Approach to Solving Search
Problems 15
Ilkka Niemeld

Inconsistencies in Ontologies i i 19
Andrei Voronkov

II Technical Papers

On Arbitrary Selection Strategies for Basic Superposition 20
Viadimir Aleksic, Anatoli Degtyarev

An Event-Condition-Action Logic Programming Language 29
José Julio Alferes, Federico Banti, Antonio Brogi

Distance-Based Repairs of Databases 43
Ofer Arieli, Marc Denecker, Maurice Bruynooghe

Natural Deduction Calculus for Linear-Time Temporal Logic 56
Alexander Bolotov, Artie Basukoski, Oleg Grigoriev,
Vasilyi Shangin

A STIT-Extension of ATL i 69

Jan Broersen, Andreas Herzig, Nicolas Troquard

On the Logic and Computation of Partial Equilibrium Models 82
Pedro Cabalar, Sergei Odintsov, David Pearce, Agustin Valverde

Decidable Fragments of Logic Programming with Value Invention 95
Francesco Calimeri, Susanna Cozza, Giovambattista Ianni

On the Issue of Reinstatement in Argumentation...................... 111
Martin Caminada

X Table of Contents

Comparing Action Descriptions Based on Semantic Preferences 124
Thomas Fiter, Esra Erdem, Michael Fink, Jin Senko

Modal Logics of Negotiation and Preference 138
Ulle Endriss, Eric Pacuit

Representing Action Domains with Numeric-Valued Fluents 151
Esra Erdem, Alfredo Gabaldon

Model Representation over Finite and Infinite Signatures............... 164
Christian G. Fermailler, Reinhard Pichler

Deciding Extensions of the Theory of Arrays by Integrating Decision
Procedures and Instantiation Strategies........... 177
Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, Daniele Zucchelli

Analytic Tableau Calculi for KLM Rational Logic R 190
Laura Ghordano, Valentina Gliozzi, Nicola Olivetti,
Gian Luca Pozzato

On the Semantics of Logic Programs with Preferences 203
Sergio Greco, Irina Trubitsyna, Ester Zumpano

A Modularity Approach for a Fragment of ALC....................... 216
Andreas Herzig, Ivan Varzinczak

Whatever You Say 229
Luke Hunsberger

Automatic Deductive Synthesis of Lisp Programs in the System
AL S A 242
Yulia Korukhova

A Fault-Tolerant Default Logic i i, 253
Zhangang Lin, Yue Ma, Zuoquan Lin

Reasoning About Actions Using Description Logics with General
TBOXES « ottt 266
Hongkai Liu, Carsten Lutz, Maja Mili¢ié, Frank Wolter

Introducing Attempt in a Modal Logic of Intentional Action 280
Emiliano Lorini, Andreas Herzig, Cristiano Castelfranchi

On Herbrand’s Theorem for Intuitionistic Logic....................... 293
Alexander Lyaletski, Boris Konev

Table of Contents

Ambiguity Propagating Defeasible Logic and the Well-Founded
SEMANtICS . . vt
Frederick Maier, Donald Nute

Hierarchical Argumentation
Sanjay Modgil

Anti-prenexing and Prenexing for Modal Logics.......................
Cldudia Nalon, Clare Dizon

A Bottom-Up Method for the Deterministic Horn Fragment
of the Description Logic ALC...... i
Linh Anh Nguyen

Fuzzy Answer Set Programming i
Davy Van Nieuwenborgh, Martine De Cock, Dirk Vermeir

Reasoning About an Agent Based on Its Revision History with Missing
Inputs . o
Alexander Nittka

Knowledge Base Revision in Description Logics
Guilin Qi, Weiru Liu, David A. Bell

Incomplete Knowledge in Hybrid Probabilistic Logic Programs
Emad Saad

A Formal Analysis of KGP Agents i i
Fariba Sadri, Francesca Toni

Irrelevant Updates and Nonmonotonic Assumptions
Jdan Sefranek

Towards Top-k Query Answering in Description Logics: The Case
of DL-Lite ..o

Umberto Straccia

Representing Causal Information About a Probabilistic Process
Joost Vennekens, Marc Denecker, Maurice Bruynooghe

IIT Tool Descriptions

A Tool to Facilitate Agent Deliberation
Daniel Bryant, Paul Krause, Sotiris Moschoyiannis

XI

XII Table of Contents

An Implementation of a Lightweight Argumentation Engine for Agent
Applications. 469
Daniel Bryant, Paul Krause

A Tool for Answering Queries on Action Descriptions 473
Thomas Fiter, Michael Fink, Jin Senko

An Implementation for Recognizing Rule Replacements in Non-ground
Answer-Set Programs. i 477
Thomas Fiter, Patrick Traxler, Stefan Woltran

April — An Inductive Logic Programming System 481
Nuno A. Fonseca, Fernando Silva, Rui Camacho

OPTSAT: A Tool for Solving SAT Related Optimization Problems 485
Enrico Giunchiglia, Marco Maratea

Automated Reasoning About Metric and Topology 490
Ullrich Hustadt, Dmaitry Tishkovsky, Frank Wolter,
Michael Zakharyaschev

The QBFEVAL Web Portal 494
Massimo Narizzano, Luca Pulina, Armando Tacchella

A Slicing Tool for Lazy Functional Logic Programs 498
Claudio Ochoa, Josep Silva, Germdn Vidal

ccT: A Correspondence-Checking Tool for Logic Programs Under
the Answer-Set Semanticsoo .t 502
Johannes Oetsch, Martina Seidl, Hans Tompits, Stefan Woltran

A Logic-Based Tool for Semantic Information Extraction............... 506
Massimo Ruffolo, Marco Manna, Lorenzo Gallucci, Nicola Leone,

Domenico Sacca

tarfa: Tableaux and Resolution for Finite Abduction 511
Fernando Soler-Toscano, Angel Nepomuceno-Ferndndez

Author Index 515

From Inductive Logic Programming to
Relational Data Mining

Saso Dzeroski

Jozef Stefan Institute, Department of Knowledge Technologies,
Jamova 39, 1000 Ljubljana, Slovenija
Saso.Dzeroski@ijs.si

Abstract. Situated at the intersection of machine learning and logic
programming, inductive logic programming (ILP) has been concerned
with finding patterns expressed as logic programs. While ILP initially
focussed on automated program synthesis from examples, it has recently
expanded its scope to cover a whole range of data analysis tasks (classi-
fication, regression, clustering, association analysis). ILP algorithms can
this be used to find patterns in relational data, i.e., for relational data
mining (RDM). This paper briefly introduces the basic concepts of ILP
and RDM and discusses some recent research trends in these areas.

1 Introduction

Logic programming as a subset of first-order logic is mostly concerned with de-
ductive inference. Inductive logic programming (ILP) [24], on the other hand,
is concerned with inductive inference. It generalizes from individual instan-
ces/observations in the presence of background knowledge, finding regularities /
hypotheses about yet unseen instances.

In its early days, ILP focussed on automated program synthesis from exam-
ples, formulated as a binary classification task. In recent years, however, the
scope of ILP has broadened to cover a variety of data mining tasks, such as clas-
sification, regression, clustering, association analysis. Data mining is concerned
with finding patterns in data, the most common types of patterns encountered
being classification rules, classification and regression trees, and association rules.

ILP approaches can be used to find patterns in relational data, i.e., for re-
lational data mining (RDM) [12]. The types of patterns encountered in data
mining now have relational counterparts, such as relational classification rules,
relational regression trees, relational association rules. The major classes of data
mining algorithms (such as decision tree induction, distance-based clustering and
prediction, etc.) have also been upgraded to relational data mining algorithms.

In this paper we first briefly introduce the task of inductive logic programming.
We assume the reader is familiar with basic logic programming notation. We
start with logical settings for concept learning and continue with discussing the
task of relational rule induction. We next discuss the relational extensions of two
major types of patterns considered in data mining: classification and regression

M. Fisher et al. (Eds.): JELIA 2006, LNAT 4160, pp. 1-14, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 S. DZeroski

trees and association rules. We only discuss the patterns, not the algorithms for
finding such patterns from data. We conclude with a discussion of recent trends
in ILP and RDM.

2 Inductive Logic Programming: Settings and
Approaches

Logic programming as a subset of first-order logic is mostly concerned with de-
ductive inference. Inductive logic programming, on the other hand, is concerned
with inductive inference. It generalizes from individual instances/observations
in the presence of background knowledge, finding regularities/hypotheses about
yet unseen instances.

In this section, we discuss the different ILP settings as well as the different
relational learning tasks, starting with the induction of logic programs (sets of
relational rules). We also discuss the two major approaches to solving relational
learning tasks, namely transforming relational problems to propositional form
and upgrading propositional algorithms to a relational setting.

2.1 Logical Settings for Concept Learning

One of the most basic and most often considered tasks in machine learning
is the task of inductive concept learning. Given U, a universal set of objects
(observations), a concept C is a subset of objects in U, C C U. For example, if
U is the set of all patients in a given hospital C could be the set of all patients
diagnosed with Hepatitis A. The task of inductive concept learning is defined
as follows: Given instances and non-instances of concept C, find a hypothesis
(classifier) H able to tell whether x € C, for each x € U.

Table 1. The task of inductive concept learning
Given:

— a language of examples Lg
— a language of concept descriptions L
— a covers relation between Ly and Lg, defining when
an example e is covered by a hypothesisH: covers(H,e)
— sets of positive P and negative N examples described in Lg

Find hypothesis H from Ly, such that

— completeness: H covers all positive examples p € P
— consistency: H does not cover any negative example n € N

To define the task of inductive concept learning more precisely, we need to
specify U the space of instances (examples), as well as the space of hypotheses
considered. This is done through specifying the languages of examples (Lg) and
concept descriptions (Lg). In addition, a coverage relation covers(H,e) has to

From Inductive Logic Programming to Relational Data Mining 3

be specified, which tells us when an example e is considered to belong to the
concept represented by hypothesis H. Examples that belong to the target con-
cept are termed positive, those that do not are termed negative. Given positive
and negative examples, we want hypotheses that are complete (cover all positive
examples) and consistent (do not cover negative examples).

Looking at concept learning in a logical framework, De Raedt [9] considers
three settings for concept learning. The key aspect that varies in these settings
is the notion of coverage, but the languages Lg and Ly vary as well. We char-
acterize these for each of the three settings below.

— In learning from entailment, the coverage relation is defined as covers(H,e)
iff H |=e. The hypothesis logically entails the exampe. Here H is a clausal
theory and e is a clause.

— In learning from interpretations, we have covers(H,e) iff e is model of H.
The example has to be a model of the hypothesis. H is a clausal theory and
e is a Herbrand interpretation.

— In learning from satisfiability, covers(H,e) iff H A e [~1. The example and
the hypothesis taken together have to be satisfiable. Here both H and e are
clausal theories.

The setting of learning from entailment, introduced by Muggleton [24], is the
one that has received the most attention in the field of ILP. The alternative
ILP setting of learning from interpretations was proposed by De Raedt and
Dzeroski [10]: this setting is a natural generalization of propositional learning.
Many learning algorithms for propositional learning have been upgraded to the
learning from interpretations ILP setting. Finally, the setting of learning from
satisfiability was introduced by Wrobel and Dzeroski [36], but has rarely been
used in practice due to computational complexity problems.

De Raedt [9] also discusses the relationships among the three settings for
concept learning. Learning from finite interpretations reduces to learning from
entailment. Learning from entailment reduces to learning from satisfiability.
Learning from interpretations is thus the easiest and learning from satisfiability
the hardest of the three settings.

As introduced above, the logical settings for concept learning do not take into
account background knowledge, one of the essential ingredients of ILP. However,
the definitions of the settings are easily extended to take it into account. Given
background knowledge B, which in its most general form can be a clausal theory,
the definition of coverage should be modified by replacing H with B A H for all
three settings.

2.2 The ILP Task of Relational Rule Induction

The most commonly addressed task in ILP is the task of learning logical defini-
tions of relations [30], where tuples that belong or do not belong to the target
relation are given as examples. From training examples ILP then induces a logic
program (predicate definition) corresponding to a view that defines the target
relation in terms of other relations that are given as background knowledge.

4 S. DZeroski

This classical ILP task is addressed, for instance, by the seminal MIS system
[32] (rightfully considered as one of the most influential ancestors of ILP) and
one of the best known ILP systems FOIL [30].

Given is a set of examples, i.e., tuples that belong to the target relation
p (positive examples) and tuples that do not belong to p (negative examples).
Given are also background relations (or background predicates) ¢; that constitute
the background knowledge and can be used in the learned definition of p. Finally,
a hypothesis language, specifying syntactic restrictions on the definition of p is
also given (either explicitly or implicitly). The task is to find a definition of the
target relation p that is consistent and complete, i.e., explains all the positive
and none of the negative tuples.

Formally, given is a set of examples £ = PUN, where P contains positive and NV
negative examples, and background knowledge B. The task is to find a hypothesis
H such that Ve € P: BA H = e (H is complete) and Ve € N : BAH [~ e (H
is consistent), where |= stands for logical implication or entailment. This setting,
introduced by Muggleton [24], is thus also called learning from entailment.

In the most general formulation, each e, as well as B and H can be a clausal
theory. In practice, each e is most often a ground example (tuple), B is a rela-
tional database (which may or may not contain views) and H is a definite logic
program. The semantic entailment (=) is in practice replaced with syntactic en-
tailment () or provability, where the resolution inference rule (as implemented
in Prolog) is most often used to prove examples from a hypothesis and the back-
ground knowledge. In learning from entailment, a positive fact is explained if it
can be found among the answer substitutions for h produced by a query 7 — b
on database B, where h < b is a clause in H. In learning from interpretations,
a clause h < b from H is true in the minimal Herbrand model of B if the query
b A —h fails on B.

As an illustration, consider the task of defining relation
daughter(X,Y), which states that person X is a daughter of person Y, in terms
of the background knowledge relations female and parent. These relations are
given in Table 2. There are two positive and two negative examples of the target
relation daughter. In the hypothesis language of definite program clauses it is
possible to formulate the following definition of the target relation,

daughter(X,Y) « female(X), parent(Y, X).

which is consistent and complete with respect to the background knowledge and
the training examples.

In general, depending on the background knowledge, the hypothesis language
and the complexity of the target concept, the target predicate definition may
consist of a set of clauses, such as

daughter(X,Y) «— female(X), mother(Y, X).
daughter(X,Y) « female(X), father(Y, X).

if the relations mother and father were given in the background knowledge
instead of the parent relation.

From Inductive Logic Programming to Relational Data Mining 5

Table 2. A simple ILP problem: learning the daughter relation. Positive examples are
denoted by & and negative by ©.

Training examples Background knowledge

daughter(mary,ann).
daughter(eve,tom).
daughter(tom,ann).
daughter(eve,ann).

@ parent(ann, mary). female(ann).
@ parent(ann,tom). female(mary).
o parent(tom,eve). female(eve).
o parent(tom,ian).

The hypothesis language is typically a subset of the language of program
clauses. As the complexity of learning grows with the expressiveness of the hy-
pothesis language, restrictions have to be imposed on hypothesized clauses. Typ-
ical restrictions are the exclusion of recursion and restrictions on variables that
appear in the body of the clause but not in its head (so-called new variables).

Declarative bias [28] explicitly specifies the language of hypotheses (clauses)
considered by the ILP system at hand. This is input to the learning system
(and not hard-wired in the learning algorithm). Various types of declarative
bias have been used by different ILP systems, such as argument types and in-
put/output modes, parametrized language bias (e.g., maximum number of vari-
ables, literals, depth of variables, arity, etc,), clause templates and grammars. For
example, a suitable clause template for learning family relationships would be
P(X,Y)—Q(X,Z),R(Z,Y). Here P, Q and R are second order variables that
can be replaced by predicates, e.g., grandmother, mother and parent. The same
template can be used to learn the notions of grandmother and a grandfather.

2.3 Other Tasks of Relational Learning

Initial efforts in ILP focussed on relational rule induction, more precisely on
concept learning in first-order logic and synthesis of logic programs, cf. [24]. An
overview of early work is given in the textbook on ILP by Lavra¢ and Dzeroski
[23]. Representative early ILP systems addressing this task are C1GoL [26], FOIL
[30], GOLEM [27] and LiNuUs [22]. More recent representative ILP systems are
ProcGoL [25] and ALEPH [33].

State-of-the-art ILP approaches now span most of the spectrum of data mining
tasks and use a variety of techniques to address these. The distinguishing features
of using multiple relations directly and discovering patterns expressed in first-
order logic are present throughout: the ILP approaches can thus be viewed as
upgrades of traditional approaches. Van Laer and De Raedt [34] (Chapter 10 of
[12]) present a case study of upgrading a propositional approach to classification
rule induction to first order logic. Note, however, that upgrading to first-order
logic is non-trivial: the expressive power of first-order logic implies computational
costs and much work is needed in balancing the expressive power of the pattern
languages used and the computational complexity of the data mining algorithm
looking for such patterns. This search for a balance between the two has occupied
much of the ILP research in the last ten years.

6 S. DZeroski

Present ILP approaches to multi-class classification involve the induction of
relational classification rules (ICL [34]), as well as first order logical decision trees
in TILDE [1] and S-CART [21]. ICL upgrades the propositional rule inducer CN2
[6]. TILDE and S-CART upgrade decision tree induction as implemented in C4.5
[31] and CART [4]. A nearest-neighbor approach to relational classification is
implemented in RIBL [16] and its successor RIBL2. [18, 20].

Relational regression approaches upgrade propositional regression tree and rules
approaches. TILDE and S-CART, as well as RIBL2 can handle continuous classes.
FoRrs [19] learns decision lists (ordered sets of rules) for relational regression.

The main non-predictive or descriptive data mining tasks are clustering and
discovery of association rules. These have been also addressed in a first-order
logic setting. The RIBL distance measure has been used to perform hierarchical
agglomerative clustering in RDBC [20], as well as k-medoids clustering. Section 4
describes a relational approach to the discovery of frequent queries and query
extensions, a first-order version of association rules.

With such a wide arsenal of relational data mining techniques, there is also
a variety of practical applications. ILP has been successfully applied to discover
knowledge from relational data and background knowledge in the areas of molec-
ular biology (including drug design, protein structure prediction and functional
genomics), environmental sciences, traffic control and natural language process-
ing. An overview of applications is given by Dzeroski [14] (Chapter 14 in [12]).

‘ haspart(M, X), worn(X) ‘

A=no maintenance

A=send back

Fig. 1. A relational decision tree, predicting the class variable A in the target predicate
maintenance(M, A)

3 Relational Decision Trees

Decision tree induction is one of the major approaches to data mining. Upgrading
this approach to a relational setting has thus been of great importance. In this
section, we look into what relational decision trees are, i.e., how they are defined.
We do not discuss how such trees can be induced from multi-relational data: we
refer the reader to [21], [1] and [12].

Without loss of generality, we can say the task of relational prediction is de-
fined by a two-place target predicate target(Examplel D, ClassVar), which has
as arguments an example ID and the class variable, and a set of background

From Inductive Logic Programming to Relational Data Mining 7

‘ atom(C, Al, cl)

/ \als\i

‘bond(C’7 Al, A2, BT), atom(C, A2,n) ‘ ‘ atom(C, A3, 0) ‘

true false

false
LogHLT=7.82 LogHLT=7.51 LogHLT=6.08 LogHLT=6.73

Fig. 2. A relational regression tree for predicting the degradation time LogH LT of a
chemical compound C' (target predicate degrades(C, LogHLT))

knowledge predicates/relations. Depending on whether the class variable is dis-
crete or continuous, we talk about relational classification or regression. Rela-
tional decision trees are one approach to solving this task.

An example relational decision tree is given in Figure 1. It predicts the mainte-
nance action A to be taken on machine M (maintenance(M, A)), based on parts
the machine contains (haspart(M, X)), their condition (worn(X)) and ease of re-
placement (irreplaceable(X)). The target predicate here is maintenance(M, A),
the class variable is A, and background knowledge predicates are haspart(M, X),
worn(X) and irreplaceable(X).

Relational decision trees have much the same structure as propositional deci-
sion trees. Internal nodes contain tests, while leaves contain predictions for the
class value. If the class variable is discrete/continuous, we talk about relational
classification/regression trees. For regression, linear equations may be allowed in
the leaves instead of constant class-value predictions: in this case we talk about
relational model trees.

The tree in Figure 1 is a relational classification tree, while the tree in Figure 2
is a relational regression tree. The latter predicts the degradation time (the log-
arithm of the mean half-life time in water [13]) of a chemical compound from its
chemical structure, where the latter is represented by the atoms in the compound
and the bonds between them. The target predicate is degrades(C, LogH LT, the
class variable LogH LT, and the background knowledge predicates are atom(C,
AtomID, Element) and bond(C, A1, As, BondType). The test at the root of the
tree atom(C, Al,cl) asks if the compound C' has a chlorine atom Al and the
test along the left branch checks whether the chlorine atom Al is connected to
a nitrogen atom A2.

As can be seen from the above examples, the major difference between propo-
sitional and relational decision trees is in the tests that can appear in internal
nodes. In the relational case, tests are queries, i.e., conjunctions of literals with
existentially quantified variables, e.g., haspart(M, X), worn(X). Relational trees
are binary: each internal node has a left (yes) and a right (no) branch. If the
query succeeds, i.e., if there exists an answer substitution that makes it true, the
yes branch is taken.

8 S. DZeroski

It is important to note that variables can be shared among nodes, i.e., a
variable introduced in a node can be referred to in the left (yes) subtree of
that node. For example, the X in irreplaceable(X) refers to the machine part
X introduced in the root node test haspart(M, X), worn(X). Similarly, the Al
in bond(C, A1, A2, BT') refers to the chlorine atom introduced in the root node
atom(C, A1, cl). One cannot refer to variables introduced in a node in the right
(no) subtree of that node. For example, referring to the chlorine atom Al in the
right subtree of the tree in Figure 2 makes no sense, as going along the right
(no) branch means that the compound contains no chlorine atoms.

The actual test that has to be executed in a node is the conjunction of the lit-
erals in the node itself and the literals on the path from the root of the tree to
the node in question. For example, the test in the node irreplaceable(X) in Fig-
ure 1 is actually haspart(M, X), worn(X), irreplaceable(X). In other words, we
need to send the machine back to the manufacturer for maintenance only if it
has a part which is both worn and irreplaceable. Similarly, the test in the node
bond(C, A1, A2, BT'), atom(C, A2, n) in Figure 2 is in fact atom(C, A1, cl), bond
(C, A1, A2, BT),atom(C, A2,n). As a consequence, one cannot transform rela-
tional decision trees to logic programs in the fashion ”one clause per leaf” (unlike
propositional decision trees, where a transformation ”one rule per leaf” is possible).

Table 3. A decision list representation of the relational decision tree in Figure 1

maintenance(M, A) «— haspart(M, X), worn(X),
irreplaceable(X) !, A = send back

maintenance(M, A) «— haspart(M, X), worn(X), !,
A = repair in house

maintenance(M, A) — A = no maintenance

Relational decision trees can be easily transformed into first-order decision
lists, which are ordered sets of clauses (clauses in logic programs are unordered).
When applying a decision list to an example, we always take the first clause
that applies and return the answer produced. When applying a logic program,
all applicable clauses are used and a set of answers can be produced. First-order
decision lists can be represented by Prolog programs with cuts (!) [3]: cuts ensure
that only the first applicable clause is used.

Table 4. A decision list representation of the relational regression tree for predicting
the biodegradability of a compound, given in Figure 2

degrades(C, LogHLT) <« atom(C, Al, cl),
bond(C, A1, A2, BT),atom(C, A2,n), LogHLT = 7.82,!
degrades(C, LogHLT) «— atom(C, Al, cl),
LogHLT = 17.51,!
degrades(C,LogHLT) «— atom(C, A3, 0),
LogHLT = 6.08,!
degrades(C, LogHLT) « LogHLT = 6.73.

From Inductive Logic Programming to Relational Data Mining 9

Table 5. A logic program representation of the relational decision tree in Figure 1

a(M) «— haspart(M, X), worn(X), irreplaceable(X)
b(M) «— haspart(M, X),worn(X)

maintenance(M, A) — not a(M), A = no aintenance
maintenance(M, A) — b(M), A = repair in house
maintenance(M, A) — a(M),not b(M), A = send back

A decision list is produced by traversing the relational regression tree in a
depth-first fashion, going down left branches first. At each leaf, a clause is output
that contains the prediction of the leaf and all the conditions along the left (yes)
branches leading to that leaf. A decision list obtained from the tree in Figure 1 is
given in Table 3. For the first clause (send back), the conditions in both internal
nodes are output, as the left branches out of both nodes have been followed to
reach the corresponding leaf. For the second clause, only the condition in the
root is output: to reach the repair in house leaf, the left (yes) branch out of the
root has been followed, but the right (no) branch out of the irreplaceable(X)
node has been followed. A decision list produced from the relational regression
tree in Figure 2 is given in Table 4.

Generating a logic program from a relational decision tree is more compli-
cated. It requires the introduction of new predicates. We will not describe the
transformation process in detail, but rather give an example. A logic program,
corresponding to the tree in Figure 1 is given in Table 5.

4 Relational Association Rules

The discovery of frequent patterns and association rules is one of the most com-
monly studied tasks in data mining. Here we first describe frequent relational
patterns (frequent Datalog patterns). We then discuss relational association rules
(query extensions).

Dehaspe and Toivonen [7], [8] (Chapter 8 of [12]) consider patterns in the
form of Datalog queries, which reduce to SQL queries. A Datalog query has the
form ? — Ay, As, ... A, where the A;’s are logical atoms.

An example Datalog query is

? — person(X), parent(X,Y), hasPet(Y, Z)

This query on a Prolog database containing predicates person, parent, and
hasPet is equivalent to the SQL query

SELECT PERSON.ID, PARENT.KID, HASPET.AID
FROM PERSON, PARENT, HASPET
WHERE PERSON.ID = PARENT.PID
AND PARENT.KID = HASPET.PID

10 S. DZeroski

on a database containing relations PERSON with argument ID, PARENT with
arguments P10 and KiD, and HASPET with arguments P1D and A1D. This query
finds triples (x, y, z), where child y of person x has pet z.

Datalog queries can be viewed as a relational version of itemsets (which are
sets of items occurring together). Consider the itemset {person,parent,child,
pet}. The market-basket interpretation of this pattern is that a person, a parent,
a child, and a pet occur together. This is also partly the meaning of the above
query. However, the variables X, Y, and Z add extra information: the person
and the parent are the same, the parent and the child belong to the same family,
and the pet belongs to the child. This illustrates the fact that queries are a more
expressive variant of itemsets.

To discover frequent patterns, we need to have a notion of frequency. Given
that we consider queries as patterns and that queries can have variables, it is not
immediately obvious what the frequency of a given query is. This is resolved by
specifying an additional parameter of the pattern discovery task, called the key.
The key is an atom which has to be present in all queries considered during the
discovery process. It determines what is actually counted. In the above query,
if person(X) is the key, we count persons, if parent(X,Y") is the key, we count
(parent,child) pairs, and if hasPet(Y, Z) is the key, we count (owner,pet) pairs.
This is described more precisely below.

Submitting a query Q@ =? — Ay, As,... A, with variables {X1,...X,,} to
a Datalog database r corresponds to asking whether a grounding substitution
exists (which replaces each of the variables in @) with a constant), such that
the conjunction A, As,... A, holds in r. The answer to the query produces
answering substitutions § = {Xi/a1,... X /am} such that Q0 succeeds. The
set of all answering substitutions obtained by submitting a query @ to a Datalog
database r is denoted answerset(Q,r).

The absolute frequency of a query @ is the number of answer substitutions 6
for the variables in the key atom for which the query Q6 succeeds in the given
database, i.e., a(Q,r, key) = |{0 € answerset(key, r)|Q0 succeeds w.r.t. r}|. The
relative frequency (support) can be calculated as f(Q,r, key) =a(Q, r, key)/|{0€
answerset(key,r)}|. Assuming the key is person(X), the absolute frequency for
the above example query can be calculated by the following SQL statement:

SELECT count(distinct *)

FROM SELECT PERSON.ID
FROM PERSON, PARENT, HASPET
WHERE PERSON.ID = PARENT.PID
AND PARENT.KID = HASPET.PID

Association rules have the form A — C and the intuitive market-basket in-
terpretation ”customers that buy A typically also buy C”. If itemsets A and C'
have supports f4 and fc, respectively, the confidence of the association rule is
defined to be ca—.c = fc/fa. The task of association rule discovery is to find

From Inductive Logic Programming to Relational Data Mining 11

all association rules A — C, where fo and c4_.¢ exceed prespecified thresholds
(minsup and minconf).

Association rules are typically obtained from frequent itemsets. Suppose we
have two frequent itemsets A and C, such that A C C, where C' = AU B. If the
support of A is f4 and the support of C'is fc, we can derive an association rule
A — B, which has confidence fo/fa. Treating the arrow as implication, note
that we can derive A — C from A — B (A — A and A — B implies A — AUB,
ie, A—C).

Relational association rules can be derived in a similar manner from fre-
quent Datalog queries. From two frequent queries Q1 =7 — ly,...l, and Q2 =
? =1, b, Lty - - - Ly, where Qo 6-subsumes)1, we can derive a relational
association rule @1 — (3. Since Q2 extends @)1, such a relational association
rule is named a query extension.

A query extension is thus an existentially quantified implication of the form
7=l o by =711,y Lt - - - Ly (since variables in queries are existentially
quantified). A shorthand notation for the above query extension is ?7—11, ...l ~
lm+1, - - - ln. We call the query 7—11, . ..[,, the body and the sub-query l,;, 41, ...,
the head of the query extension. Note, however, that the head of the query ex-
tension does not correspond to its conclusion (which is ?—11, ... Ly, lnt1, - - - ln)-

Assume the queries Q1 =7—person(X), parent(X,Y) and Q2 =?—person(X),
parent(X,Y), hasPet(Y, Z) are frequent, with absolute frequencies of 40 and 30,
respectively. The query extension E, where F is defined as E =7 — person(X),
parent(X,Y) ~ hasPet(Y,Z), can be considered a relational association rule
with a support of 30 and confidence of 30/40 = 75%. Note the difference in mean-
ing between the query extension E and two obvious, but incorrect, attempts
at defining relational association rules. The clause person(X), parent(X,Y) —
hasPet(Y, Z) (which stands for the formula VXY Z :person(X)Aparent(X,Y)—
hasPet(Y, Z)) would be interpreted as follows: ”if a person has a child, then this
child has a pet”. The implication ?—person(X), parent(X,Y)—?—hasPet(Y, Z),
which stands for (3XY : person(X) A parent(X,Y)) — (Y Z : hasPet(Y, Z))
is trivially true if at least one person in the database has a pet. The correct
interpretation of the query extension E is: ”if a person has a child, then this
person also has a child that has a pet.”

5 Recent Trends in ILP and RDM

Hot topics and recent advances in ILP and RDM mirror the hot topics in data
mining and machine learning. These include scalability issues, ensemble meth-
ods, and kernel methods, as well as relational probabilistic representations and
learning methods. The latest developments in ILP and RDM are discussed in a
special issue of SIGKDD Ezplorations [15].

Scalability issues do indeed deserve a lot of attention when learning in a
relational setting, as the complexity of learning increases with the expressive
power of the hypothesis language. Scalability methods for ILP include classical
ones, such as sampling or turning the loop of hypothesis evaluation inside out

12 S. DZeroski

(going through each example once) in decision tree induction. Methods more
specific to ILP, such as query packs, have also been considered. For an overview,
we refer the reader to the article of Blockeel and Sebag [2] (in [15]).

Boosting was the first ensemble method to be used on top of a relational
learning system [29] (Chapter 11 of [12]). This was followed by bagging [5].
More recently, methods for learning random forests have been adapted to the
relational setting [35].

Kernel methods have become the mainstream of research in machine learn-
ing and data mining in recent years. The development of kernel methods for
learning in a relational setting has thus emerged as as a natural research di-
rection. Significant effort has been devoted to the development of kernels for
structured /relational data, such as graphs and sequences. An overview is given
by Gaertner [17] (in [15]).

Besides the topics mentioned above, the hottest research topic in ILP and
RDM is the study of probabilistic representations and learning methods. A va-
riety of these have been recently considered, e.g., Bayesian logic programs and
probabilistic relational models. A comprehensive survey of such representations
and methods is presented by De Raedt and Kersting [11] (in [15]).

References

1. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101: 285—297, 1998.

2. H. Blockeel and M. Sebag. Scalability and Efficiency in Multi-Relational Data
Mining. SIGKDD Ezplorations, 5(1):17-30, 2003.

3. I. Bratko. Prolog Programming for Artificial Intelligence, 3rd edition. Addison-
Wesley, Harlow, England, 2001.

4. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, Belmont, 1984.

5. de Castro Dutra, I., D. Page, V. Costa, and J. Shavlik. An Empirical Evalutation
of Bagging in Inductive Logic Programming. In Proceedings of the Twelfth Interna-
tional Conference on Inductive Logic Programming, pages 48-65. Springer, Berlin,
2002.

6. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
Proceedings of the Fifth European Working Session on Learning, pages 151-163.
Springer, Berlin, 1991.

7. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1): 7-36, 1999.

8. L. Dehaspe and H. Toivonen. Discovery of Relational Association Rules. In [12],
pages 189-212, 2001.

9. L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95:
187-201, 1997.

10. L. De Raedt and S. Dzeroski. First order jk-clausal theories are PAC-learnable.
Artificial Intelligence, 70: 375-392, 1994.

11. L. De Raedt and K. Kersting. Probabilistic Logic Learning. SIGKDD Ezplorations,
5(1):31-48, 2003.

12. S. Dzeroski and N. Lavrag, editors. Relational Data Mining. Springer, Berlin, 2001.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.

32.
33.

From Inductive Logic Programming to Relational Data Mining 13

S. Dzeroski, H. Blockeel, B. Kompare, S. Kramer, B. Pfahringer, and W. Van
Laer. Experiments in Predicting Biodegradability. In Proceedings of the Ninth
International Workshop on Inductive Logic Programming, pages 80-91. Springer,
Berlin, 1999.

S. Dzeroski. Relational Data Mining Applications: An Overview. In [12], pages
339-364, 2001.

S. Dzeroski and L. De Raedt, editors. Special Issue on Multi-Relational Data Min-
ing. SIGKDD Ezplorations, 5(1), 2003.

W. Emde and D. Wettschereck. Relational instance-based learning. In Proceedings
of the Thirteenth International Conference on Machine Learning, pages 122-130.
Morgan Kaufmann, San Mateo, CA, 1996.

T. Gaertner. Kernel-based Learning in Multi-Relational Data Mining. SIGKDD
Ezplorations, 5(1):49-58, 2003.

T. Horvath, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with
lists and terms. Machine Learning, 43(1-2):53-80, 2001.

A. Karali¢ and I. Bratko. First order regression. Machine Learning 26: 147-176,
1997.

M. Kirsten, S. Wrobel, and T. Horvath. Distance Based Approaches to Relational
Learning and Clustering. In [12], pages 213-232, 2001.

S. Kramer. Structural regression trees. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 812-819. MIT Press, Cambridge, MA,
1996.

N. Lavrag¢, S. Dzeroski, and M. Grobelnik. Learning nonrecursive definitions of
relations with LINUS. In Proceedings of the Fifth European Working Session on
Learning, pages 265-281. Springer, Berlin, 1991.

N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, Chichester, 1994. Freely available at
http://www-ai.ijs.si/SasoDzeroski/ILPBook/.

S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):
295-318, 1991.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:
245-286, 1995.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by in-
verting resolution. In Proceedings of the Fifth International Conference on Machine
Learning, pages 339-352. Morgan Kaufmann, San Mateo, CA, 1988.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings
of the First Conference on Algorithmic Learning Theory, pages 368-381. Ohmsha,
Tokyo, 1990.

C. Nedellec, C. Rouveirol, H. Ade, F. Bergadano, and B. Tausend. Declarative bias
in inductive logic programming. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 82-103. I0S Press, Amsterdam, 1996.

R. Quinlan. Relational Learning and Boosting. In [12], pages 292-306, 2001.

J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):
239-266, 1990.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
A. Srinivasan. The Aleph Manual. Technical Report, Computing Laboratory, Ox-
ford University, 2000. Available at
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

14 S. DZeroski

34. V. Van Laer and L. De Raedt. How to Upgrade Propositional Learners to First
Order Logic: A Case Study. In [12], pages 235-261, 2001.

35. C. Vens, A. Van Assche, H. Blockeel, and S. Dzeroski. First order random forests
with complex aggregates. In Proceedings of the Fourteenth International Conference
on Inductive Logic Programming, pages 323-340. Springer, Berlin, 2004.

36. S. Wrobel and S. Dzeroski. The ILP description learning problem: towards a general
model-level definition of data mining in ILP. In Proceedings Fachgruppentreffen
Maschinelles Lernen. University of Dortmund, Germany, 1995.

Answer Set Programming:
A Declarative Approach to Solving Search
Problems

Ilkka Niemel&d

Helsinki University of Technology, Laboratory for Theoretical Computer Science,
P.O. Box 5400, FI-02015 TKK, Finland
Ilkka.Niemela@tkk.fi
http://www.tcs.hut.fi/~ini/

The term answer set programming (ASP) was coined by Vladimir Lifschitz to
name a new declarative programming paradigm that has its roots in stable
model (answer set) semantics of logic programs [16] and implementations of
this semantics developed in the late 90’s. When working with the implementa-
tions it became evident that they are instantiations of a different programming
paradigm [5,8,21,23,24] than that of standard logic programming. This new
ASP paradigm can be characterized as follows. In ASP programs are theories of
some formal system with a semantics that assigns to a theory a collection of sets
(models) referred to as answer sets of the program. In order to solve a problem
using ASP a program is devised such that the solutions of the problem can be
retrieved from the answer sets of the program. An ASP solver is a system that
takes as input a program and computes answer sets for it.

While ASP has its roots in logic programming, it can be based on other formal
systems such as propositional or first-order logic, too. In fact, the basic idea
of ASP is similar to, e.g., SAT-based planning [19] or constraint satisfaction
problems. However, these approaches are basically propositional but in ASP
the goal is to provide a more powerful knowledge representation language for
effective problem encoding. Typically ASP systems are based on logic program
type rules with variables and default negation. In order to address advanced
knowledge representation issues rules have been extended with, e.g., disjunctions,
cardinality constraints, weight constraints, aggregates, built-in functions and
predicates, optimization, and preferences.

Current implementations of ASP systems are typically based on a two-level
architecture where the problem of computing answer sets for a program with
variables is first reduced to an answer set computation problem for a program
without variables using logic programming and (deductive) database techniques.
This problem is then solved employing model computation techniques similar to
those used in propositional SAT solvers. A number of successful ASP systems
have been developed [25,26,9,22,20] (see the list below for some available im-
plementations).

For an excellent introduction to problem solving using the ASP paradigm
see [4]. A number of interesting applications have been developed including
planning [6,21,24], decision support for the flight controllers of space shut-

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 15-18, 2006.
© Springer-Verlag Berlin Heidelberg 2006

16

tles
dist

1. Niemela

[3], web-based product configuration [29], configuration of a Linux system
ribution [28], computer aided verification [17, 13, 18], VLSI routing [10, 7, 12],

network management [27], security protocol analysis [1], network inhibition anal-

ysis
See
pro

[2], linguistics [11], data and information integration [14], and diagnosis [15].
also the WASP Showcase Collection (http://www.kr.tuwien.ac.at/
jects/WASP/showcase.html) compiled by the EU funded Working group

on Answer Set Programming (IST project IST-FET-2001-37004).

Available ASP Systems

Smo
dlv
GnT
CMO
ASS
nom
XAS
pbm
asp
cca

Ac

dels http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/gnt/

DELS http://www.cs.utexas.edu/users/tag/cmodels.html
AT http://assat.cs.ust.hk/

ore++ http://www.cs.uni-potsdam.de/nomore/

P distributed with XSB v2.6 http://xsb.sourceforge.net
odels http://www.cs.engr.uky.edu/ai/pbmodels/

ps http://www.cs.engr.uky.edu/ai/aspps/

lc http://www.cs.utexas.edu/users/tag/cc/
knowledgements

The financial support of Academy of Finland (project 211025) is gratefully ac-
knowledged.

Re

1.

ferences

L.C. Aiello and F. Massacci. Verifying security protocols as planning in logic
programming. ACM Transactions on Computational Logic, 2(4):542-580, 2001.
T. Aura, M. Bishop, and D. Sniegowski. Analyzing single-server network inhibition.
In Proceedings of the IEEE Computer Security Foundations Workshop, pages 108—
117, Cambridge, UK, July 2000. IEEE Computer Society Press.

M. Balduccini, M. Barry, M. Gelfond, M. Nogueira, and R. Watson. An A-Prolog
decision support system for the space shuttle. In Proceedings of the Third Interna-
tional Symposium on Practical Aspects of Declarative Languages, pages 169183,
Las Vegas, Nevada, 2001. Springer-Verlag. Lecture Notes in Computer Science
1990.

C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive
datalog. In Proceedings of the 4th International Conference on Logic Programming
and Non-Monotonic Reasoning, pages 2—-17. Springer-Verlag, 1997.

Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-
monotonic logic programs. In Proceedings of the Fourth FEuropean Conference on
Planning, pages 169-181, Toulouse, France, September 1997. Springer-Verlag.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ASP: A Declarative Approach to Solving Search Problems 17

. D. East and M. Truszczyriski. More on wire routing with ASP. In Proceedings of the

AAAI Spring 2001 Symposium on Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning, pages 39—44, Stanford, USA,
March 2001. AAAT Press.

. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions on

Database Systems, 22(3):364-418, 1997.

. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-

nello. The KR system dlv: Progress report, comparisons and benchmarks. In
Proceedings of the 6th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 406-417, Trento, Italy, June 1998. Morgan Kauf-
mann Publishers.

E. Erdem, V. Lifschitz, and M.D.F. Wong. Wire routing and satisfiability plan-
ning. In Proceedings of the First International Conference on Computational Logic,
Automated Deduction: Putting Theory into Practice, pages 822-836, London, U.K.,
July 2000. Springer-Verlag.

Esra Erdem, Vladimir Lifschitz, and Don Ringe. Temporal phylogenetic networks
and logic programming. Theory and Practice of Logic Programming. To appear.
Esra Erdem and Martin D. F. Wong. Rectilinear Steiner tree construction using
answer set programming. In Proceedings of the 20th International Conference on
Logic Programming, volume 3132 of Lecture Notes in Computer Science, pages
386-399, 2004.

J. Esparza and K. Heljanko. Implementing LTL model checking with net unfold-
ings. In Proceedings of the 8th International SPIN Workshop on Model Checking of
Software (SPIN’2001), pages 37-56, Toronto, Canada, May 2001. Springer-Verlag.
Lecture Notes in Computer Science 2057.

Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic sets and their appli-
cation to data integration. In Proceedings of the 10th International Conference
on Database Theory, volume 3363 of Lecture Notes in Computer Science, pages
306-320, 2005.

M. Gelfond and J. Galloway. Diagnosing dynamic systems in A-Prolog. In Proceed-
ings of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning, pages 160-166,
Stanford, USA, March 2001. AAAT Press.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference on Logic Programming, pages
1070-1080, Seattle, USA, August 1988. The MIT Press.

K. Heljanko. Using logic programs with stable model semantics to solve dead-
lock and reachability problems for 1-safe Petri nets. Fundamenta Informaticae,
37(3):247-268, 1999.

K. Heljanko and I. Niemeld. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming, 3(4&5):519-550, 2003.

Henry A. Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the
10th European Conference on Artificial Intelligence, pages 359-363. John Wiley,
1992.

Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-based answer set solver en-
hanced to non-tight programs. In Proceedings of the 7th International Conference
on Logic Programming and Nonmonotonic Reasoning, volume 2923 of Lecture Notes
in Computer Science, pages 346-350, 2004.

V. Lifschitz. Answer set planning. In Proceedings of the 16th International Con-
ference on Logic Programming, pages 25-37, Las Cruces, New Mexico, December
1999. The MIT Press.

18

22.

23.

24.

25.

26.

27.

28.

29.

1. Niemela

Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic pro-
gram by SAT solvers. In Proceedings of the 18th National Conference on Artificial
Intelligence, pages 112-117, Edmonton, Alberta, Canada, July/August 2002. The
AAAT Press.

W. Marek and M. Truszczynski. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages
375-398. Springer-Verlag, 1999.

I. Niemeld. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241-273,
1999.

I. Niemela and P. Simons. Efficient implementation of the well-founded and stable
model semantics. In M. Maher, editor, Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, pages 289-303, Bonn, Germany,
September 1996. The MIT Press.

P. Simons, I. Niemeld, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181-234, 2002.

T.C. Son and J. Lobo. Reasoning about policies using logic programs. In Proceed-
ings of the AAAI Spring 2001 Symposium on Answer Set Programming: Towards
Efficient and Scalable Knowledge Representation and Reasoning, pages 210-216,
Stanford, USA, March 2001. AAAI Press.

T. Syrjanen. A rule-based formal model for software configuration. Research Re-
port A55, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Helsinki, Finland, December 1999.

J. Tiihonen, T. Soininen, I. Niemeld, and R. Sulonen. A practical tool for mass-
customising configurable products. In Proceedings of the 14th International Con-
ference on Engineering Design, pages 1290-1299, 2003.

Inconsistencies in Ontologies

Andrei Voronkov

Department of Computer Science, University of Manchester, Manchester, UK
voronkov@cs.man.ac.uk
http://www.cs.man.ac.uk/~voronkov

Abstract. Traditionally, theorem provers have been used to prove theorems with
relatively small axiomatisations. The recent development of large ontologies poses
a non-trivial challenge of reasoning with axiomatisations consisting of hundreds
of thousands axioms. In the near future much larger ontologies will be available.
These ontologies will be created by large groups of people and by computer pro-
grams and will contain knowledge of varying quality.

In the talk we describe an adaptation of the theorem prover Vampire for rea-
soning with large ontologies using expressive logics. For our experiments we
used SUMO and the terrorism ontology. Based on the analysis of inconsistencies
found in these ontologies we analyse the quality of information in them. Our re-
search reveals interesting problems in studying the evolution and the quality of
formal knowledge.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, p. 19, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

On Arbitrary Selection Strategies for Basic
Superposition

Vladimir Aleksic and Anatoli Degtyarev

Department of Computer Science, King’s College, Strand, London WC2R 2LS, U.K.
{vladimir, anatoli}@dcs.kcl.ac.uk

Abstract. For first-order Horn clauses without equality, resolution is
complete with an arbitrary selection of a single literal in each clause
[dN 96]. Here we extend this result to the case of clauses with equality
for superposition-based inference systems. Our result is a generalization
of the result given in [BG 01]. We answer their question about the com-
pleteness of a superposition-based system for general clauses with an
arbitrary selection strategy, provided there exists a refutation without
applications of the factoring inference rule.

1 Introduction

Since the appearance of paramodulation as a development of resolution for first-
order logic with equality, there has been a lot of research in the direction of
improving the efficiency of paramodulation-based inference systems. It resulted
in numerous refinements of paramodulation, which all aimed at restricting the
applicability of the paramodulation inference rule. In this paper, we deal with
one such refinement, namely superposition on constrained clauses with constraint
inheritance [NR 95|, hence with basic superposition.

It is possible to further reduce the search space by applying selection strate-
gies. The key idea is to restrict the application of inference rules by allowing in-
ference only on selected literals. Some of the known complete selection strategies
for basic superposition are the maximal strategy (where only maximal literals
are selected in each clause) and the positive strategy (where a single negative
literal is selected, whenever there is one in a clause).

There has been a few attempts to generalize the completeness results for
different selection strategies (for example, see [DKV 95]). The latest result is
the one of Bofill and Godoy [BG 01], where they prove that arbitrary selection
strategies are complete for a basic superposition calculus on Horn clauses, if it is
compatible with the positive strategy. Here we strengthen up their result (and
answer a question they posed) by proving that a basic superposition calculus
for general first-order clauses is complete with arbitrary selection strategies,
provided that there exists a refutation without factoring inferences. A similar
result, under the same restriction for factoring inferences, was proved in [dN 96]
(Theorem 6.7.4) for resolution calculi, and our result means its generalization to
basic superposition calculi.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 20-28, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On Arbitrary Selection Strategies for Basic Superposition 21

2 Preliminaries

Here we present only notions and definitions necessary for understanding the
paper. For a more thorough overview, see [NR 01]. It is assumed that the reader
has a basic knowledge in substitution and unification.

All formulae are constructed over a fixed signature X' containing at least one
constant and a binary predicate symbol ~. In order to distinguish equality from
identity, we use = to denote the latter. By X we denote a set of variables. The
set of all terms over the signature X' with variables from X is denoted by Tx(X)
and the set of ground terms T () by T's.

An equation is an expression denoted by t; & to or equivalently ¢ =~ ;1. For
dealing with non-equality predicates, atoms P(t1,...,t,), where P is a predi-
cate symbol of arity n and t¢1,...,t%, are terms, can be expressed by equations
P(tq,...,t,) = true, where true is a new symbol. A literal is a positive or a
negative equation.

The expression A[s] indicates that an expression A contains s as a subexpres-
sion. A[t] is a result of replacing the occurrence of s in A by ¢. An instance Ao
of A is the result of applying the substitution o to A.

A clause is a disjunction of literals, denoted by a formula Ly, Lo, ..., L,,. This
definition allows for multiple occurrences of identical literals, i.e. for treating a
clause as a multiset of literals. Sometimes, especially in examples, to improve
readability we use the sequent notation by which a clause = Ay, ..., = Ak, By,... By
is represented as A;,..., Ay — Bi,...,B;. A Horn clause is a clause that con-
tains only one positive literal.

A constraint is a possibly empty conjunction of atomic equality constraints
s = t or atomic ordering constraints s = t or s = t. The empty constraint is
denoted by T.

A constrained clause is a pair consisting of a clause C and a constraint T,
written as C' | T. The part C will be referred to as the clause part and T the
constraint part of C' | T. A constrained clause C' | T will be identified with the
unconstrained clause C.

A substitution o is said to be a solution of an atomic equality constraint s = t,
if so and to are syntactically equivalent. It is a solution of an ordering constraint
s > t (with respect to a reduction ordering > which is total on ground terms),
if so > to, and a solution of s = t if it is a solution of s > t or s = t. Generally,
a substitution ¢ is a solution of a constraint 7', if it is a simultaneous solution
to all its atomic constraints. A constraint is satisfiable if it has a solution.

A ground instance of a constrained clause C' | T is any ground clause Co,
such that ¢ is a ground substitution and o is a solution to T'.

A contradiction is a constrained clause O | T, with the empty clause part
such that the constraint 7" is satisfiable. A constrained clause is called void if its
constraint is unsatisfiable. Void clauses have no ground instances and therefore
are redundant.

A set of constrained clauses is satisfiable if the set of all its ground instances
is satisfiable.

22 V. Aleksic and A. Degtyarev

A derivation of a constrained clause C' from a set of constrained clauses S is
a sequence of constrained clauses C4,...,C,, such that C = C,, and each con-
strained clause C} is either an element of .S or else the conclusion by an inference
rule applied to constrained clauses from premises Cy,...,C;_1. A derivation of
the contradiction is called a refutation.

A selection strategy is a function from a set of clauses, that maps each clause to
one of its sub-multisets. If a clause is non-empty, then the selected sub-multiset
is non-empty too. A derivation is compatible with a selection strategy if all the
inferences are performed on the selected literals, i.e. all the literals involved in
the inferences are selected.

We will often just write “clause” instead of “constrained clause” if it is clear
from the context.

3 Completeness for Refutations Without Factoring

In this section we prove that basic superposition is complete with arbitrary
selection strategies, provided that there exists a refutation without factoring in-
ferences. Our result is given for the following system BS for constrained clauses,
which is motivated by strict superposition given in [NR 95]. We drop their fac-
toring inference rule and, for left and right superposition inferences, the literal
ordering requirements.

Left superposition

Iil=r | Ty In,s[l]#t] T
F17F2,S[T}aét‘TlATQAl/:lAl>‘TAS>‘t

where [’ is not a variable.

Right superposition

Fl,l’R‘JT|T1 F27S[l/}’ri‘ﬁt|T2
Fl,F27S[7’]R‘Jt|T1/\T2/\l/:l/\l>-7’/\s>-t

where !’ is not a variable.

Equality solution
Is#t|T

'Ths=t

Further in the paper we assume that derivations are tree-like, that is, no clause
is used more than once as an premise for an inference rule; we may make copies
of the clauses in the derivation in order to make it tree-like.

We prove our result by applying so called permutation rules to transform
derivation trees. A similar approach is used in [dN 96], but for derivations by
resolution. For basic superposition calculi, in [BG 01] the authors use a trans-
formation method to prove their result on arbitrary selection on Horn clauses.

On Arbitrary Selection Strategies for Basic Superposition 23

However, our transformation is essentially different from the one used in [BG 01],
for two reasons. First, we address derivations from general clauses, whereas they
restrict themselves to the Horn case. Secondly, their transformation method is
constrained by the condition that a superposition-based calculus is complete with
the positive selection strategy, while we don’t assume any such requirement.
The permutation rules are applied to derivation trees, and their effect is in-
verting the order of two consecutive inferences. Depending on the inferences
involved, they fall into three categories. The permutations we define apply to:

— two superposition inferences,
— two equality solutions,
— a superposition inference and an equality solution.

More in detail, the permutation rules are defined as follows. Wherever the symbol
< is used, it can represent either ~ or .

s-es rule — Superposition followed by equality solution
Fl,ll ~ T ‘ T1 FQ,S Eét,lg[l/] = T2 ‘ T2

F17F2,87”ét7l2[7"1] T T2 ‘ T3 (es)
F17F27l2[7"1] Eol &) ‘ TsANs=t

(s)

where T3 stands for Ty ATy Al' =13 Aly = r1 Al = ro. This sequence of
applications of inference rules permutes into:
FQ,S aé t,lg[l/] = T2 ‘ T2
, (es)
Fl,ll =T |T1 Fg,lg[l] = T2 ‘ TQ/\S:t
F17F27l2[7"1] T Ty ‘ TiINToAs=tAl =1 Aly =11 ANlg =179

(s)

Note that, in order for the permutation to be possible, it is essential that the
literals s % ¢t and [y < 79 are distinct (in the multiset context). In case they
were not, the equality solution in the original derivation would be possible
only after the superposition, and therefore the two inferences would never
be possible to swap.

es-s rule — Equality solution followed by superposition. This rule is defined as
the converse of s-es, and its application is always possible.

es-es rule — Two equality solution inferences occur immediately after one
another
F,Sl Eétl,SQ%’/“tQ | T

F,Sl %’/“tl‘T/\SQZtQ
F‘T/\SQZtQ/\S] =11

(es)
(es)

Since they take place on different literals, they trivially swap.

F7517f’ét1782’7\ét2|T
F,SQ%’/“tQ‘T/\Slztl
F‘T/\Slztl/\SQZtQ

(es)
(es)

24

V. Aleksic and A. Degtyarev

s-s rule — Two superposition inferences appear one immediately after another

Fl,ll ~ T ‘ Tl FQ,SQ[ZI] $t27l2 ~ T9 |T2 s
I, Iy, safr] < to,le =re | Ty Iy, s3[l"] < t3 | T3
F17F27F3,82[7’1] $t2,83[7’2] < 13 | T3/\T4/\l//:lg/\l2 =179 N\ 83 > 13

where T} represents Ty ATy Aly =1’ Al = 11 A sg = tg. Permutation can be
done resulting in:

Iy soll'| e to,lomrg | To I, s3[l] #ts | Ts
Ilh~r | Th Iy, I3, so[l'] L2, s3ra] # 83 | Ty
Fl,F27F37$2[T1] %’“fg,Sg[Tz] Eétg ‘ TIANTANU =13 ANl =11 A sa = to

(s)

S

where T} is stands for To AT3 Al =1a Nlg = 19 A 83 > t3.

Note that in the above definition of the rule, the conclusion of the first super-
position appears as the “from” premise of the superposition inference which
follows. This does not restrict the rule, and we assume a definition of its
other instance in which the conclusion of the first superposition appears as
the “to” premise of the subsequent inference.

Similarly like at the s-es rule, it is important to point out scenarios in which
this rule can not be applied. A problem would appear if the literal s < ¢
from the negative premise of the top superposition was used later as the
”from” literal, instead of lo ~ r9. Luckily, in the consideration below this
case will never be met, and we can neglect it at this point.

It could seem that it is necessary to introduce another rule of the type s-s,
where the superposition inferences to be swapped inferences take place into
the same occurence of a literal, but into different positions. However this
rule would be redundant in our proof of completeness.

Lemma 1. The above permutation rules modify BS derivations into BS deriva-
tions.

Proof. Every permutation rule defines a way of inverting the order of two adja-
cent inference rules in a derivation tree. After changing positions, the inferences
still take place with the same literals at the same positions in terms as it was
in the original derivation. Also, all ordering constraints are kept. Therefore, the
resulting derivation is a valid BS derivation.

Before proving our main result (see the theorem below), we show by an example
the way a refutation can be modified, using the permutation rules, so that it
becomes compatible with a chosen selection strategy.

On Arbitrary Selection Strategies for Basic Superposition 25

Example 1. Consider the following refutation:

a~b aséb,b’f:ic()
btbb~e OV bae
bsb,c#c

b aDé b (e52)

(s2)

Assume that a reduction ordering is defined by a > b > c. Lets now “apply” an
arbitrary selection strategy to the clauses in the refutation. The selected clauses
are underlined, while the framed ones are actually used in the inferences. Note
that in unit clauses no literal is boxed nor framed, because by our definition of
selection, they are selected by default.

arb a#b . bxc
(s1)
b b, brc b c
(s2)
b# b, c#c
by (©S1)
0 (es2)

We modify the proof by “making” the clauses take part in inferences with the
selected literals, and we do it from the leaves of the refutation towards the root
of the derivation tree. As the first step, we apply the rule s-s to the inferences
s1 and ss.

a®b bx~c bec

(s2)
a=b ab ,céc

(s1)
baéb,caéc()
es
béb(eSQ)

Working further down the refutation tree, we apply the rule s-es to the inferences
s} and es;.
ab, bxc b#c
(s2)
a®b, c#ec
(es})
a=b asb (&)
b#b
0 (es2)

At this point, it is not necessary to apply permutation rules any further. The
refutation is compatible with the chosen selection function.

Theorem 1. Let S be a set of constrained first-order clauses that has a refuta-
tion by BS, which not necessarily employs a selection strateqy. Then there exists
a refutation compatible with any selection strategy.

26 V. Aleksic and A. Degtyarev

Proof. Let 2 be a refutation from S. Note that, further in the proof, the con-
struction
n

C

denotes that the derivation {2 is rooted by the clause C'. Consider now a given
arbitrary selection, and mark the literals of the clauses of the derivation {2 that
are selected. We call misused any clause in which the literal that takes part in an
inference is not the one selected by the selection function. A clause C' is well-used
if it is not misused and there are no misused clauses in the sub-derivation of {2
rooted by C. We use induction on the number of well-used clauses.

Assume that 2 contains misused clauses and that it is of the form:

such that C; is misused and there are no misused clauses in 2;. This is without
a loss of generality, and represents only one of a number of essentially similar
scenarios in which misused clauses can appear. Assume that the clause Cj is
I, s1[l'] % t1,11 &~ r1 | Ty, such that the selected literal is s1[l'] % t1 and the
one used in the inference is l1 &~ r;1. Also assume that the clause C5 be of the
form Is,lo = ro | Ts. Let the inference so take place with the literal s1[l'] % 1
and assume that there are no other inferences with the same literal between
s1 and so (therefore there are no inferences into different positions of the same
literal). The last assumption makes it possible to apply the permutation rules
from the inference s, towards the inference s, each time moving the application
of the clause C5 one inference up the derivation tree. This way, the derivation
2 transforms to 2’:

25

C’scéC'l (s}) g; "
ch 2
e
-

where Cs and C§ are variants.

Since no permutation rule is applied to an inference that has a well-used clause as
its conclusion, the transformation has not changed the property to be well-used

On Arbitrary Selection Strategies for Basic Superposition 27

of any clause from (2. In addition it has made the clause C; well-used. Finally,
the transformation has not added to the number of clauses in the refutation and
therefore the induction hypothesis applies.

Since in the case of derivations with Horn clauses the factoring inference never
appears, the following statement easily follows from the previous theorem.

Corollary 1. Basic superposition with equality and ordering constraints for Horn
clauses is complete with arbitrary selection.

This result can not be generalized for arbitrary clauses. In the case where all
refutations involve factoring, incompleteness for arbitrary selection strategies
already appears in the propositional case (see [Ly 97]).

4 Conclusion and Future Work

Our transformations, the same as the transformations in [BG 01], are based on
the use of an inference system with inherited constrains. However, there is an-
other representation of the basic strategy introduced in [BGLS 95|, which uses
closure substitutions instead of constraints. Clauses with closure substitutions are
called closures. The main difference is that the systems of constrained clauses
allow for ordering constraints inheritance, but the system of closures do not. In-
stead of ordering constraints inheritance the rules of left and right superposition
are restricted by the ordering condition lo > ro for some ground substitution
o which is a solution of the equality constraint in the conclusion.

In [Ly 97] the completeness of arbitrary selection strategy for Horn clauses
with closure substitutions was proved using the model generation technique. Un-
fortunately, as it was noticed in [BG 01], some severe flaws in this completeness
proof were discovered. The example below shows that under the weaker ordering
inheritance strategy determined by closures, our transformation technique can
not be applied, and Theorem 1 does not hold.

Ezample 2. Let BS denote a basic superposition inference system over closures,
s and es denote superposition and equality solution inference rules, respectively.

Consider the following BS-derivation over closures: This is a correct BS-
derivation

umgv) -[u— h(u)] plx,y) Zpg(2), (2)), h(z) % 9(y) - [z — g(y1),y — h(z1)]
plz,y) #plg (z) h(2)), g(v) # () [z = g(y1),y — h(z1)] (es)

p(z,y) % p(9(2),h(2)) - [x+ g(y1),y — h(z1)]
0.z (es)

(s)

for every reduction ordering >.

Let f(z,y) # f(g(2),h(2)) be a selected literal. If we transform this deriva-
tions in the style suggested in the previous section, the following derivation is
obtained: This is a BS-derivation iff h(g(z) > g(h(z)). If we define > to be the

28 V. Aleksic and A. Degtyarev

Pz, y) % p(g(2), h(2)), hx) # g(y) - [z = g(y1),y — h(z1)]
urg(v) - [ur h(u)] h(x) % g(y) - [z — g(2),y — h(2)] (s)

g(v) Zg(y) - [y h(z)]
O-¢ (es)

(es)

lexicographic path ordering where the precedence is g > h, this derivation is not
a BS-derivation because of the violation of the ordering conditions. However
this example is not a counterexample to Lynch’s result because we start from
closures with non empty substitutions.

References

[BGLS 95] L.Bachmair, H.Ganzinger, C.Lynch and W.Snyder. Basic paramodulation.
Information and Computation, vol.121, No.2,172-192, 1995.

[BG 01] L. Bofill and G. Godoy. On the completeness of arbitrary selection strate-
gies for paramodulation. In Proceedings ICALP 2001, pages 951-962, 2001.

[DKV 95] A. Degtyarev, Y. Koval and A. Voronkov. Handling Equality in Logic
Programming via Basic Folding. Technical report 101, Uppsala University,
Computing Science Department, 1995.

[dN 96] H. de Nivelle. Ordering refinements of resolution. Dissertation, Technische
Universiteit Delft, Delft, 1996.
[Ly 97] C. Lynch. Oriented Equational Logic Programming is Complete. Journal

of Symbolic Computations, 23(1):23-45, 1997.

[NR 95] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equal-
ity constrained clauses. Journal of Symbolic Computations, 19:321-351,
1995.

[NR 01] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
pages 373, 2001. Elsevier Science Publishers B.V.

An Event-Condition-Action Logic Programming
Language*

J.J. Alferes!, F. Banti', and A. Brogi?

L CENTRIA, Universidade Nova de Lisboa, Portugal
{jja, banti}edi.fct.unl.pt
2 Dipartimento di Informatica, Universita di Pisa, Italy
brogi@di.unipi.it

Abstract. Event-Condition-Action (ECA) languages are an intuitive and power-
ful paradigm for programming reactive systems. Usually, important features for
an ECA language are reactive and reasoning capabilities, the possibility to ex-
press complex actions and events, and a declarative semantics. In this paper, we
introduce ERA, an ECA language based on, and extending the framework of logic
programs updates that, together with these features, also exhibits capabilities to
integrate external updates and perform self updates to its knowledge (data and
classical rules) and behaviour (reactive rules).

1 Introduction

Event Condition Action (ECA) languages are an intuitive and powerful paradigm for
programming reactive systems. The fundamental construct of ECA languages are re-
active rules of the form On Event If Condition Do Action which mean: when
FEvent occurs, if Condition is verified, then execute Action. ECA systems receive
inputs (mainly in the form of events) from the external environment and react by per-
forming actions that change the stored information (internal actions) or influence the
environment itself (external actions). There are many potential and existing areas of
applications for ECA languages such as active and distributed database systems [26, 6],
Semantic Web applications [21, 24], distributed systems [13], Real-Time Enterprize and
Business Activity Management and agents [11].

To be useful in a wide spectrum of applications an ECA language has to satisfy sev-
eral properties. First of all, events occurring in a reactive rule can be complex, resulting
from the occurrence of several basic ones. A widely used way for defining complex
events is to rely on some event algebra [10, 1], i.e. to introduce operators that define
complex events as the result of compositions of more basic ones that occur at the same
or at different instants. Actions that are triggered by reactive rules may also be complex
operations involving several (basic) actions that have to be performed concurrently or in
a given order and under certain conditions. The possibility to define events and actions
in a compositional way (in terms of sub-events and sub-actions), permits a simpler and

* This work has been partly funded by the European Commission under project Rewerse
(http://rewerse.net). Thanks are due to Wolfgang May for his comments on previous versions.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 2942, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

30 J.J. Alferes, F. Banti, and A. Brogi

more elegant programming style by breaking complex definitions into simpler ones and
by allowing to use the definition of the same entity in different fragments of code.

An ECA language would also benefit from a declarative semantics taking advantage
of the simplicity of its the basic concepts. Moreover, an ECA language must in general
be coupled with a knowledge base, which, in our opinion, should be richer than a simple
set of facts, and allow for the specification of both relational data and classical rules, i.e.
rules that specify knowledge about the environment, besides the ECA rules that specify
reactions to events. Together with the richer knowledge base, an ECA language should
exhibit inference capabilities in order to extract knowledge from such data and rules.

Clearly ECA languages deal with systems that evolve. However, in existing ECA lan-
guages this evolution is mostly limited to the evolution of the (extensional) knowledge
base. But in a truly evolving system, that is able to adapt to changes in the considered
domain, there can be evolution of more than the extensional knowledge base: derivation
rules of the knowledge base (intensional knowledge), as well as the reactive rules them-
selves may change over time. We believe another capability that should be considered is
that of evolving in this broader sense. Here, by evolving capability we mean that a pro-
gram should be able to automatically integrate external updates and to autonomously
perform self updates. The language should allow updates of both the knowledge (data
and classical rules) and the behaviour (reactive rules) of the considered ECA program,
due to external and internal changes.

To the best of our knowledge no existing ECA language provides all the above men-
tioned features (for a detailed discussion see section 5). In particular, none provides the
evolving capability, nor it is immediately clear how to incorporate such capability to
these languages. The purpose of this paper is to define an ECA language based on logic
programming that satisfies all these features. Logic programming (LP) is a flexible and
widely studied paradigm for knowledge representation and reasoning based on rules.
In the last years, in the area of LP, an amount of effort has been deployed to provide a
meaning to updates of logic programs by other logic programs. The output of this re-
search are frameworks that provide meaning to sequence of logic programs, also called
Dynamic Logic Programs (DyLPs) [2, 17, 5, 12], and update languages [3, 12, 17, 4] that
conjugate a declarative semantics and reasoning capabilities with the possibility to spec-
ify (self) evolutions of the program. However, unlike ECA paradigms, these languages
do not provide mechanisms for specifying the execution of external actions nor do they
provide mechanism for specifying complex events or actions.

To overcome the limitations of both ECA and LP update languages, we present here
an ECA language, defined by starting from DyLPs, called ERA (after Evolving Reac-
tive Algebraic programs). This language builds on previous work on the update lan-
guage Evolp [3], inheriting from it the evolving capabilities, and extending it with the
possibility of defining and dealing with complex events and actions, and also consider-
ing external actions. The semantics of ERA is defined by means of an inference system
(specifying what conclusions are derived by a program) and of an operational seman-
tics (specifying the effects of actions). The former is derived from the refined semantics
for DyLPs [2]. The latter is defined by a transition system inspired by existing work on
process algebras. [22, 15].

An Event-Condition-Action Logic Programming Language 31

The rest of the paper is structured as follows: we start in section 2 with an infor-
mal introduction to the language introducing its constructs and highlighting its main
features. In section 3 we briefly introduce the syntax and semantics of DyLPs, and
establish general notation. Section 4 is dedicated to the definition of the syntax and se-
mantics of ERA. The main goals of the paper are the motivation for the language and its
formal definition. A study of its properties and formal relation to other systems, cannot
be presented here for lack of space. We nevertheless present some comparisons with
related work in section 5, where we also draw conclusions and sketch future work.

2 Outline of the Language

Before the formal definition of ERA, which is given in section 4, we start here by infor-
mally introducing the various constructs of the language. As stated in the introduction,
we aim at defining a language exhibiting both the advantages of ECA languages (with
reactive rules, complex events and actions) and of LP updates (with inference rules,
possibility of declaratively specifying self-updates). As such, expressions in an ERA
program are divided in rules (themselves divided into active, inference and inhibition
rules) and definitions (themselves divided into event and action definitions).

Reactive rules are as usual in ECA languages, and have the form (1), where: Event
is a basic or a complex event expressed in an algebra similar to the Snoop algebra [1];
Condition is a conjunction of (positive or negative) literals and Action is a basic or
a complex action. Inference rules are LP rules with default negation, where default
negated heads are allowed [19]. Finally, ERA also includes inhibition rules of the form:

When B Do not Action

where B is a conjunction of literals and events. Such an expression intuitively means:
when B is true, do not execute Action. Inhibition rules are useful for updating the
behaviour of reactive rules. If the inhibition rule above is asserted all the rules with
Action in the head are updated with the extra condition that B must not be satisfied in
order to execute Action.

ERA allows to combine basic events to obtain complex ones by an event algebra.
The operators we use are: A | 57 | A | not . Intuitively, e; A e occurs at an instant ¢ iff
both e; and es occur at i; e; N/ es occurs at instant ¢ iff either e; or eo occur at instant
i; not e occurs at instant 7 iff e does not occur i. A(eq, e, e3) occurs at the same instant
of es, in case e; occurred before, and es in the middle. This operator is very important
since it allows to combine (and reason with) events occurring at different time points.

Actions can also be basic or complex, and they may affect both the stored knowl-
edge (internal actions) or the external environment. Basic external actions are related
to the specific application of the language. Basic internal actions are for adding or re-
tracting facts and rules (inference, reactive or inhibition rules), of the form assert(r)
and retract(r) respectively, for raising basic events, of the form raise(e). There is
also an internal action de fine(d) for adding new definitions of actions and events (see
more on these definitions below). Complex actions are obtained by applying algebraic
operators on basic actions. Such operators are: >| || | I F', the first for executing actions
sequentially, and the second for executing them concurrently. Executing I F'(C, a1, a2)
amounts to execute ay in case C is true, or to execute as otherwise.

32 J.J. Alferes, F. Banti, and A. Brogi

For allowing for modularity on the definition of both complex actions and events,
ERA allows for event and action definition expressions. These are of the form, respec-
tively, eqer is € and ages is a where eger (resp. aqer) is an atom representing a new
event and e (resp. a) is an event (resp. an action) obtained by the event (resp. action)
algebra above. It is also possible to use defined events (resp. actions) in the definition
of other events (resp. actions).

To better motivate and illustrate these various constructs of the language ERA, in-
cluding how they concur with the features mentioned in the introduction, we present
now an example from the domain of monitoring systems.

Example 1. Consider an (ECA) system for managing electronic devices in a building,
viz. the phone lines and the fire security system. The system receives inputs such as
signals of sensors and messages from employees and administrators, and can activate
devices like electric doors or fireplugs, redirect phone calls and send emails. Sensors
alert the system whenever an abnormal quantity of smoke is found. If a (basic) event
(alE(S))!, signaling a warning from sensor S occurs, the system opens all the fireplugs
Pl in the floor F'l where S is located. This behaviour is encoded by the reactive rule

On alE(S) If flr(S, Fl), firepl(Pl), flr(Pl, Fl) Do openA(Pl)

The situation is different when the signals are given by several sensors. If two signals
from sensors located in different rooms occur without a stop alertE event occurring
in the meanwhile, the system starts the complex action fire alarmA, which applies a
security protocol: All the doors are unlocked (by the basic action opendoorsA) to allow
people to leave the building; At the same time, a phone call is sent to a firemen station
(by the action firecall A); Then the system cuts the electricity in the building (by action
turnA(elect,of f)). opendoorsA and firecall A can be executed simultaneously, but
turnA(elect,of f) has to be executed after the electric doors have been opened. This
behaviour is encoded by following definitions and rules

alert2E(S1,S2) is A(alE(S1),alE(S2), stop alertE) 7 (alE(S1) A alE(S2)).
fire alarmA is (opendoorsA > turnA(elect, of f))|| firecall A.

On alert2E(S1, S2) If not same room(Sy, S2) Do fire alarmA.

same room(Sy, Se) <« room(S1, Ry1),room(Sa, Ry).

The last rule is already a simple example of an inference rule. For another example,
suppose that we want to allow the system to be able to notify (by email) all members of
a working group in some particular situation. Moreover suppose that working groups are
hierarchically defined. Representing in ERA that if an employee belongs to a subgroup
she also belongs to its supergroups, can be done by the inference rule*:

ingroup(Emp, G) «— ingroup(Emp, S), sub(S, G)

We provide now an example of evolution. Suppose the administrators decide to update
the behaviour of the system such that from then onwards, when a sensor S raises an

"'In the sequel, we use names of atoms ending in E to represent events, and ending in A to
represent actions.

2 The rules above uses recursion, on the predicate ingroup/2, a feature that is beyond the ca-
pabilities of many ECA commercial systems, like e.g. SQL-triggers [26].

An Event-Condition-Action Logic Programming Language 33

alarm, only the fireplugs in the room R where S is located is opened. Moreover, each
employee can from then onwards command the system to start redirecting phone calls to
him (and to stop the previous behaviour of the systems regarding indirections, whatever
they were. This behaviour is obtained by updating the system, asserting the following
rules and definitions:

Ry : When alE(S), room(S, R), not room(Pl, R) Do not openA(Pl).

Ry : OnredirectE(Emp, Num) If true Do redirect A(Emp, Num).

Rs : On stop redirectE(Emp, Num) If true Do stop redirect A(Emp).
dy : redirect A(Emp, Num) is assert(r) > assert(rs).

dy : stop redirect A(Emp, Num) is retract(r)||retract(rz).

where 7 and 75 are the following rules:

71 : When phonE(Call), dest(Call, Emp) Do not forwA(Call, N).
To 1 Onp honE(Call) If dest(Call, Emp) Do forwA(Call, Num).

The formal details of how to update an ERA system are given in section 4.2. Here,
when R1 is asserted, if alE'(S) occurs in room R, any fire plug Pl which is not in R
is not opened, even if Pl and S are on the same floor. Reactive rules Rq-R3 encode
the new behaviour of the system when an employee Emp commands the system to
start (resp. to stop) redirecting to the phone number Num any phone call C'all to him.
This is achieved by sequentially asserting (resp. retracting) rules 71, 72. The former is
an inhibition rule that inhibits any previous rule reacting to a phone call for Emp (i.e.
to the occurrence of event phonE(Call)) by forwarding the call to a number N. The
latter is a reactive rule forwarding the call to number Num. Note that 71, 75 have to
be asserted sequentially in order to prevent mutual conflicts. To revert to the previous
behaviour it is sufficient to retract 71, 7o as done by action stop redirectA.

Such (evolution) changes could alternatively be done by handily modifying the pre-
vious rules ie, by retracting them and then asserting new rules. As with LP updates, also
ERA offers the possibility to update reactive rules instead of rewriting. This possibility
offered by ERA can be very useful in large systems developed and modified by several
programmers and administrators, especially if updates are performed by users that are
not aware of the existing rules governing the system, as in the previous example.

Having informally introduced the language, it is now time to start formalizing it. Before
that some background on LP updates and notation is required.

3 Background and Notation

In what follows, we use the standard LP notation and, for the knowledge base, general-
ized logic programs (GLP) [19]. Arguments of predicates (here also called atoms) are
enclosed within parentheses and separated by commas. Names of arguments with capi-
talized initials stand for variables, names with uncapitalized initials stand for constants.

A GLP over an alphabet (a set of propositional atoms) L is a set of rules of the form
L «— B, where L (called the head of the rule) is a literal over £, and B (called the body

34 J.J. Alferes, F. Banti, and A. Brogi

of the rule) is a set of literals over £. As usual, a literal over L is either an atom A of £
or the negation of an atom not A. In the sequel we also use the symbol not to denote
complementary default literals, i.e. if L = not A, by not L we denote the atom A.

A (two-valued) interpretation I over L is any set of literals in £ such that, for each
atom A, either A € [ornot A € I. A setof literals S is true in an interpretation [(or
that [satisfies S) iff S C I. In this paper we will use programs containing variables.
As usual in these cases a program with variables stands for the propositional program
obtained as the set of all possible ground instantiations of its rules. Two rules 7 and 7
are conflicting (denoted by 7 > n) iff the head of 7 is the atom A and the head of 7 is
not A, or vice versa.

A Dynamic Logic Program P over an alphabet £ is a sequence P, ..., P, where
the P;s are GLPs defined over £. Given a DyLP P, ... P, and a set of rules R we
denote by P\ R the sequence P; \ R, ..., P, \ R where P;\ R is the program obtained
by removing all the rules in R from P;. The refined stable model semantics of a DyLP,
defined in [2], assigns to each sequence P a set of refined models (that is proven there to
coincide with the set of stable models when the sequence is formed by a single normal
or generalized program [19]). The rationale for the definition of a refined model M of
a DyLP is made according with the causal rejection principle [12, 17]: If the body of a
rule in a given update is true in M, then that rule rejects all rules in previous updates
that are conflicting with it. Such rejected rules are ignored in the computation of the
stable model. In the refined semantics for DyLPs a rule may also reject conflicting rules
that belong to the same update. Formally the set of rejected rules of a DyLP P given an
interpretation M is: Rej*(P,M)={r € P,:3ne€ Pji<j, vxn A B(n) C M}.

An atom A is false by default if there is no rule, in none of the programs in the DyLP,
with head A and a true body in the interpretation M. Formally: De fault(P, M) =
{not A : AA— Be|JP, NBC M} If P is clear from the context, we omit it as
first argument of the above functions.

Definition 1. Let P be a DyLP over the alphabet L and M an interpretation. M
is a refined stable model of P iff M = least ((J P; \ Rej®(M)) U De fault(M)),
where least(P) denotes the least Herbrand model of the definite program obtained by
considering each negative literal not A in P as a new atom.

In the following, a conclusion over an alphabet £ is any set of literals over £. An
inference relation - is a relation between a DyLP and a conclusion. Given a DyLP P
with a unique refined model M and a conclusion B, it is natural to define an inference
relation I as follows: Ps - B < B C M (B is derived iff B is a subset of the unique
refined model). However, in the general case of programs with several refined models,
there could be several reasonable ways to define such a relation. A possible choice is to
derive a conclusion B iff B is a subset of the intersection of all the refined models of the
considered programie, Ps = B <& B C M Y M € M(P) where M(P) is the set of
all refined models of P. This choice is called cautious reasoning. Another possibility is
to select one model M (by a selecting function Se) and to derive all the conclusions that
are subsets of that model ie, P - B < B C Se(M(P)). This choice is called brave
reasoning. In the following, in the context of DyLPs, whenever an inference relation
is mentioned , we assume that I is one of the relations defined above.

An Event-Condition-Action Logic Programming Language 35

Let E/s be a sequence of programs (ie, a DyLP) and F; a GLP, by E;.Eg we denote
the sequence with head F; and tail Eg. If Eg has length n, by Eg..E,,+1 we denote
the sequence whose first n‘" elements are those of Eg and whose (n + 1) element
is F,,+1. For simplicity, we use the notation F;.F;;1.Fg and Eg..F;..E; 1 in place of
E;.(Ei+1.Eg) and (Es..E;)..E;+1 whenever this creates no confusion. Symbol null
denotes the empty sequence. Let Eg be a sequence of n GLPs and ¢+ < n a natural
number, by Ef we denote the sequence of the first it" elements of Eg. Let P = P’'..P;
be a DyLP and F; a GLP, by P W E; we denote the DyLP P'..(P; U E;).

4 Formal Definition of ERA

4.1 Syntax of ERA Programs

We start the formal presentation of ERA by defining the syntax introduced in section 2.

Definition 2. Let £, £, Egey, Ax and Agey be sets of atoms respectively called: con-
dition alphabet, set of basic events, of event names, of external actions, and of action
names. Let L, ey, €qef, az and aqey be generic elements of, respectively, L, Ep, Eqef,
Ax and Agey. The set of positive events £ over Eg, and Eqey is the set of atoms e, of
the form:

epi=ey|e1 Nealeryea| Aler, e, e3) | eqer

where €1, es, es are generic elements of £. An event over & is any literal over £. A
negative event over £ is any literal of the form not e,,.
A basic action ap over £, L, Ax, Adey is any atom of the form:

ap = ay | raise(ey) | assert(r) | retract(r) | define(d)

where T (resp. d) is any ERA rule (resp. definition) over LZ1A,
The set of actions A over £,C, Ax, Agey is the set of atoms a of the form:

az=ay|ar>az|ailas | IF(C,a1,a2) | ages

where a1 and as are arbitrary elements of A and C is any literal over € U L.

The ERA alphabet LEEA over L, Ep, Eaef, Ax and Agey is the triple £, L, A. Let
e and a be arbitrary elements of, respectively, € and A, B any set of literals over £ U L
and C'ond any set of literals over L. An ERA expression is either an ERA definition or
an ERA rule. An ERA definition is either an event definition or and action definition. An
event definition over LZ14 is any expression of the form eq. 1 is e. An action definition
over LEBA is any expression of the form a g 1 is a. An ERA rule is either an inference,
active or inhibition rule over L¥T4. An inference rule over LER4 is any rule of the
form L «— B. A reactive rule over LER4 is any rule of the form On e If Cond Do a.
An inhibition rule over LFEA is any rule of the form When B Do not a. An ERA
program over LER4 is any set of ERA expressions over LEFA,

As in DyLPs, ERA considers sequences of programs, each representing an update (with
asserted rules or definitions) of the previous ones. Such a sequence is called an ERA
dynamic program, and determines, at each instant, the behaviour of the system. For this
reason the semantics of ERA is given by ERA dynamic programs.

36 J.J. Alferes, F. Banti, and A. Brogi
4.2 ERA Systems

The defined syntax allows to program reactive systems, hereafter called ERA systems.
An ERA system has, at each moment, an ERA dynamic program describing and de-
termining its behaviour, receives input (called input program) from the outside, and
acts. The actions determine both the evolution of the system (by e.g. adding a new
ERA program to the running sequence) and the execution in the external environment.
Formally, an input program F;, over an alphabet LF®4 is any set of either ERA ex-
pressions over LERA or facts of the form e, where e, is an element of £ (i.e. a basic
event). At any instant i, an ERA systems receives a, possibly empty, input program?
FE;. The sequence of programs Fj, ... F,, denotes the sequence of input programs re-
ceived at instants 1,...,n. A basic event e, occurs at instant ¢ iff the fact e; belongs
to E;. We further assume that every input program contains event truF. This allows
for defining reactive rules that are always triggered (reacting on event {ruF), or for
expressing commands of updates to ERA systems, by having in the input program
reactive rules reacting to truF and with empty ¢true condition. For instance, updat-
ing the system of example 1 with rule R; is done by adding to the input program
On truFE If true Do assert(Ry).

Since a complex event is obtained by composing basic events that occurred in distinct
time instants (viz. when using operator A), for detecting the occurrence of complex
events it is necessary to store the sequence of all the received input programs. Formally,
an ERA system S is a triple of the form (P, Ep, E;.Er) where P is an ERA dynamic
program, E'p is the sequence of all the previously received input programs and F;. E'r is
the sequence of the current (£;) and the future (£/r) input programs. As it will be clear
from sections 4.3 and 4.4, the sequence Er does not influence the system at instant ¢
and hence no “look ahead” capability is required. However, since a system is capable
(via action raise) of autonomously raising events in the future, future input programs
are included as “passive” elements that are modified as effects of actions (see rule (2)).

The semantics of an ERA system specifies, at each instant, which conclusions are
derived, which actions are executed, and what are the effects of those actions. Given a
conclusion B, and an ERA system S, notation S -, B denotes that S derives B (or that
B is inferred by S). The definition of I, is to be found in section 4.3.

At each instant, an ERA system S concurrently executes all the actions ay, such that
S ¢ ag. As aresult of these actions an ERA system transits into another ERA system.
While the execution of basic actions is “instantaneous”, complex actions may involve
the execution of several basic actions in a given order and hence require several transi-
tions to be executed. For this reason, the effects of actions are defined by transitions of
the form (S, A) —¢ (S’, A’) where S, S’ are ERA systems, A, A’ are sets of actions
and G is a set of basic actions. The basic actions in G are the first step of the execution
of a set of actions A, while the set of actions A’ represents the remaining steps to com-
plete the execution of A. For this reason A’ is also called the set of residual actions of
A. The transition relation — is defined by a transition system in section 4.4. At each
instant an ERA system receives an input program, derives a new set of actions Ay and

3 ERA adopts a discrete concept of time, any input program is indexed by a natural number
representing the instant at which the input program occurs.

An Event-Condition-Action Logic Programming Language 37

starts to execute these actions together with the residual actions not yet executed. As a
result, the system evolves according to the transition relation * —. Formally:

Ay = {ak cA: S k. ak} N <S, (AUAN)> —C <5/,A/>)
(S,4) =G (5, A)

4.3 Inferring Conclusions

The inference mechanism of ERA is derived from the inference mechanism for DyLPs.
In section 3, we provide two distinct ways (called resp. cautious and brave reasoning)
to define an inference relation - between a DyLP and a conclusion on the basis of the
refined semantics. From the inference relation I-, in the following we derive a relation
I that infers conclusions from an ERA system.

Let S = (P, Ep, E;.Er) be an ERA system over LEFA . (£, £, A), with Ep =
Ei,...E;_1. For any m < i, let S™ be the ERA system (P, E™~ E™.null). Se-
quence Er represents future input programs and is irrelevant for the purpose of infer-
ring conclusions in the present, and sequence Ep stores previous events, and is only
used for detecting complex events. The relevant expressions, hence, are those in P
and F;. As a first step we reduce the expressions of these programs to LP rules. An
event definition, associates an event e to a new atom egq.¢. This is encoded by the rule
€des + €. Action definitions, instead, specify what are the effects of actions and hence
are not relevant for inferring conclusions. Within ERA, actions are executed iff they are
inferred as conclusions. Hence, reactive (resp. inhibition) rules are replaced by LP rules
whose heads are actions (resp. negation of actions) and whose bodies are the events and
conditions of the rules. Formally: let P¥ and E/* be the DyLP and GLP obtained by P
and E; by deleting every action definition and by replacing:

everyrule One If Condition Do Action. with Action < Condition, e.
every rule 'When B Do not Action with not Action «— B.
every definition egey is e. with egep < €.

Basically events are reduced to ordinary literals. Since events are meant to have special
meanings, we encode these meanings by extra rules. Intuitively, operators A and v/
stands for the logic operators A and V. This is encoded by the following set of rules

ER((S) : A(e1,62) —e1,e2. (61,62) —e1. V (61,62) — €39. Veheg,eg €€

Event A(e1, e, e3) occurs at instant 7 iff e occurs at instant ¢ and some conditions on
the occurrence of e;, e and e3 where satisfied in the previous instants. This is formally
encoded by the set of rules AR(S) defined as follows’: AR(S) =

V ey, ez, ez €E A(er,ea,e3) «— ex: Im < is.t.
S™ Feerand 8™ Heezand (Vji:m<j<i:S Heoepand 87 1 e3)

4 Transition relation — defines the effect of the execution of a set of actions, while — defines
the global evolution of the system.

> The definition of AR(S) involves relation F. which is defined in terms of AR(S) itself . This
mutual recursion is well-defined since, at each recursion, AR(S) and | are applied on pre-
vious instants until eventually reaching the initial instant (i.e. the basic step of the recursion).

38 J.J. Alferes, F. Banti, and A. Brogi

The sets of rules E*, ER() and AR(S) are added to P* and conclusions are derived
by the inference relation I applied on the obtained DyLP®. Formally:

Definition 3. Let - be an inference relation defined as in Section 3, and S, PR EZR,
ER(E), AR(S) be as above and K be any conclusion over £ U L U A. Then:

(P,Ep,Ei.Ep) e K < PRW(ERFUER(E)UD(P)UAR(S))F K

We specified no rules for operator not . These rules are not needed since event (literal)
not e, is inferred by default negation whenever there is no proof for e,,. The following
theorem formalizes the intuitive meanings the various operators provided in section 4.1.

Proposition 1. Let S be as above, ey, a basic event, e, a positive event, eq.f an event
name and e1, e, e3 three events, the following double implications hold:

S Foer Aes &S tkoer AS e e S F. e & ey € By
S Feepvves =S tkoer VS e e S Fenotey, s S e ep.
S ke Aler,en,e3) & Am<ist. 8™ Feep ANS™ Hees A Vjs.t.

m<j<i:& Hees ANST Hees A S Feeo.
Sl—eedef &S I—ee/\edefise epP

4.4 Execution of Actions

We are left with the goal of defining what are the effects of actions. This is accomplished
by providing a transition system for the relation — that completes, together with tran-
sition (1) and the definition of |, the semantics of ERA. As mentioned above, these
transitions have the form: (S, A) —¢ (S’ A').

The effects of basic actions on the current ERA program are defined by the updating
Sunction up/2.Let P be an ERA dynamic program A a set of, either internal or external,
basic actions. The output of function up/2 is the updated program up(P, A) obtained in
the following way: First delete from P all the rules retracted according to A, and all the
(event or action) definitions dgc s is doq such that action de fine(dges is dnew) belongs
to A; then update the obtained ERA dynamic program with the program consisting of
all the rules asserted according to A and all the new definitions in A. Formally:

DR(A) ={d:define(d) € A} U {7 : assert(r) € A} UD(A)
R(P,A) ={7: retract(t) € A} U {dger isdoig € P : dacf i dpew € D(A)}
up(P,A) = (P\ R(P,A))..DR(A)

Let e, be any basic event and a; an external action or an internal action of one of the fol-
lowing forms: assert(r), retract(r), de fine(d). On the basis of function up/2 above,
we define the effects of (internal and external) basic actions. At each transition, the cur-
rent input program F; is evaluated and stored in the sequence of past events and the
subsequent input program in the sequence E'r becomes the current input program (see

8 The program transformation above is functional for defining a declarative semantics for ERA,
rather than providing an efficient tool for an implementation. Here specific algorithms for
event-detection clearly seem to provide a more efficient alternative.

An Event-Condition-Action Logic Programming Language 39

Ist and 3rd rules below). The only exception involves action raise(ey) that adds e; in
the subsequent input program F;. 1. When a set of actions A is completely executed its
set of residual actions is (). Basic actions (unlike complex ones) are completely executed
in one step, hence they have no residual actions. Formally:

<(P7EP7Ei.EF)7®> 0 <(P7EP~EZ'7EF)7®>
<(’P,EP,EZ'.EZ‘+1.E5), {mise(eb)}> 0 <('P,Ep..Ei7 (Ei+1 @] {eb}).EF),@>
<(7)’ Ep, Ei'EF)7 {al}> e <(up(7D’ {ai})7 Ep..E;, EF)7 ®>

Note that, although external actions do not affect the ERA system, as they do not affect
the result of up/2, they are nevertheless observable, since they are registered in the set
of performed actions (cf. 3rd rule above). Unlike basic actions, generally the execution
of a complex action involves several transitions. Action a; > ag, consists into first ex-
ecuting all basic actions for a1, until the set residual actions is), then to execute all
the basic actions for ay. We use the notation A; > ao, where Aq is a set of actions, to
denote that action as is executed after all the actions in the set A; have no residual ac-
tions. Action ay ||az, instead, consists into concurrently executing all the basic actions
forming both actions, until there are no more of residual actions to execute. Similarly,
the execution of a set of actions A = {ay, ..., a,} consists in the concurrent execution
of all its actions ay, until the set of residual actions is empty.

The execution of I F'(C, a1, a2) amounts to the execution of a; if the system infers
C, or to the execution of e otherwise. Given an ERA system S = (P, Ep, E;.Er)
with P : Py ... P,, let D(S) be the set of all the action definitions d such that, for some
J>d € Pjord € E;. The execution of action aq.f, where agcy is defined by one or
more action definitions, corresponds to the concurrent executions of all the actions ags
such that .y is aj, belongs to D(S). Formally:

(S, {a1, a2}) = (S, A") (S {ar}) = (8", A1)
(§:{arllaz}) —¢ <5’ A (S {arpaz}) = (S, {A] > as})
(S, A1) =1 (8, AY) (S, {az}) =2 (8", A7)

(8, {A1>az}) —»G (8 {Al b as}) (5, {0p>as}) — (S", AY)

S ke C A (S {ar}) =1 (S A S He O NS, {az}) =92 (S", AY)
<87{IF(O70‘17a2)}> =G <S/7A/1> <87{IF(O70‘17(12)}> G2 <SH7A/2/>
A= {ak D Qdef isap. € D(S)} A <S,A> —G <S/,A/>
(8, {ager}) =9 (S, A)

A = {al, ..,an} <('P,EP,E¢.E¢+1.EF), {ak}> '—>Gk <(77k,EP..Ei,Eerl.EF),A;gD
((77, EP, Ez‘.EiJrl.EF), A> i—>U Gk ((up(P, U Gk), EP..EZ‘, U E,ZCJFI.EF), U A;€>

As it is clear from this last rule, the definition of concurrent execution of actions in
ERA does not rely on any concept of serialization. Actions may have, three different
effects. Namely: to update the system, to rise new events, or to modify the external
environment (by external actions). Semantically, internal updates are defined by func-
tion up/2 (see section 4.4) which is defined over an ERA dynamic program and a set
of basic actions, while the raised events are added to the next input program and are
then processed concurrently. No serialization is then needed for this kind of actions. Fi-
nally, the description and execution of external actions do not belong to the semantics of

40 J.J. Alferes, F. Banti, and A. Brogi

ERA, since the meaning and effects of these actions depend on the application domains.
Singular applications may require some notion of serialization for external actions (for
instance, messages sent over the same communication channel are sent one by one.)

5 Conclusions and Related Work

We identified desirable features for an ECA language, namely: a declarative semantics,
the capability to express complex events and actions in a compositional way, and that
of receiving external updates, and performing self updates to data, inference rules and
reactive rules. For this purpose we defined the logic programming ECA language ERA,
and provided it with a declarative semantics based on the refined semantics of DyLPs
(for inferring conclusions) and a transition system (for the execution of actions). This
new language is close in spirit to LP update languages like EPI [12], LUPS [4], Kabul
[17] and, most significantly, Evolp [3]. All these languages have the possibility to update
rules (though in EPI and LUPS only derivation rules can be updated). However, none of
these supports external nor complex actions or complex events. In [16] Evolp has been
extended to consider simple external actions, in the context of an agent architecture.
The ERA language goes much beyond in the definition of complex actions and events.
A formal comparison with Evolp, clearly showing how ERA is a proper extension of it,
cannot be shown here for lack of space.

There exist several alternative proposals of ECA formalisms. Most of these ap-
proaches are mainly procedural like, for instance, AMIT [25] and JEDI [13] or at least
not fully declarative [26]. A declarative situation calculus-like characterizations of ac-
tive database systems is given in [6], although the subject of complex actions is not
treated there. An example of a Semantic Web-oriented ECA languages is XChange [9],
which also has a LP-like semantics, and allows to define reactive rules with complex
actions and events. However, it does not support a construct similar to action definitions
for defining actions, nor does it consider updates of rules. Updates of rules are also
not part of the general framework for reactivity on the semantic web defined in [21].
Defining actions is a possibility allowed by the Agent-Oriented Language DALI [11],
which in turn does not support complex events. Another related work is [23] which ap-
plies DyLPs to the agent language 3APL. Since 3APL is a language and architecture
for programming BDI agents, this work is not directly relatable to ECA paradigms,
although future comparisons with ERA could be interesting given the similarity of the
semantics for KR. The ideas and methodology for defining complex actions are inspired
by works on process algebras like CCS [22] and CSP [15] Rather then proposing high
level ECA languages, these works design abstract models for defining programming
languages for parallel execution of processes. Other related frameworks are Dynamic
Prolog [8] and Transaction Logic Programming (TLP) [7]. These focus on the problem
of updating a deductive database by performing transactions. In particular, TLP shares
with ERA the possibilities to specify complex (trans)actions in terms of other, sim-
pler, ones. However, TLP (and Dynamic Prolog) does not support complex events, nor
does it cope with the possibility of receiving external inputs during the computation of
complex actions. Finally, none of these ECA languages show update capabilities anal-
ogous to the ones of LP update languages, and that are also in ERA. As such, it is not

An Event-Condition-Action Logic Programming Language 41

obvious how to provide a meaning to inhibition rules or exceptions to rules in those
ECA languages.

The language ERA still deserves a significant amount of research. Preliminary in-
vestigations evidenced interesting properties of the operators of the action algebra like
associativity, commutativity etc, and deserve further study. In this paper we opted for
an inference system based on the refined semantics for DyLPs. With limited efforts, it
would be possible to define an inference system on the basis of another semantics for
DyLPs suchas [17,5, 12]. In particular, we intend to develop a version of ERA based on
the well founded semantics of DyLPs [5]. Well founded semantics [14] is a polynomial
approximation to the answer set semantics that and is suitable for applications requir-
ing the capability to quickly process vast amount of information. Implementations of
the language are subject of ongoing research, where intend to take advantage of existing
event-detection algorithms. For simplicity, here we presented a minimal set of operators
for the event and action algebras. Specific application domains and confrontations with
related languages may suggest eventual extensions of the language. For instance, the
language GOLOG [18] presents an operator V, representing non deterministic choice
between two actions which is not expressible in the current definition of ERA. We also
plan to provide the possibility to execute ACID transactions in ERA and explore possi-
ble relations with Statelog [20].

References

1. Raman Adaikkalavan and Sharma Chakravarthy. Snoopib: Interval-based event specification
and detection for active databases. In ADBIS, pages 190-204, 2003.
2. J.J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle for semantics
of dynamic logic programming. Studia Logica, 79(1), 2005.
3. J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, JELIA’02, LNAI, 2002.
4. J.J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language for
updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.
5. F. Banti, J. J. Alferes, and A. Brogi. The well founded semantics for dynamic logic programs.
In Christian Lemaitre, editor, IBERAMIA-9, LNAI, 2004.
6. Chitta Baral and Jorge Lobo. Formal characterization of active databases. In Logic in
Databases, pages 175-195, 1996.
7. A.J. Bonner and M. Kifer. Transaction logic programming. In David S. Warren, editor,
ICLP-93, pages 257-279, Budapest, Hungary, 1993. The MIT Press.
8. Anthony J. Bonner. A logical semantics for hypothetical rulebases with deletion. Journal of
Logic Programming, 32(2), 1997.
9. F. Bry, P. Patranjan, and S. Schaffert. Xcerpt and xchange - logic programming languages
for querying and evolution on the web. In ICLP, pages 450—451, 2004.
10. Jan Carlson and Bjorn Lisper. An interval-based algebra for restricted event detection. In
FORMATS, pages 121-133, 2003.
11. Stefania Costantini and Arianna Tocchio. The DALI logic programming agent-oriented lan-
guage. In JELIA, pages 685—688, 2004.
12. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics based on causal
rejection. Theory and Practice of Logic Programming, 2:711-767, 2002.
13. G.Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems. In 20¢h Int. Conf. on Software Enginieering, 1998.

42

14

15.
16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

J.J. Alferes, F. Banti, and A. Brogi

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620-650, 1991.

C.A.R. Hoare. Communication and Concurrency. Prentice-Hall, 1985.

J. Leite and L. Soares. Enhancing a multi-agent system with evolving logic programs. In
K. Satoh K. Inoue and F. Toni, editors, CLIMA-VII, 2006.

J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intelligence and
Applications. 108 Press, 2003.

Hector J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming, 1997.

V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (preliminary
report). In B. Nebel, C. Rich, and W. Swartout, editors, KR-92, 1992.

B. Ludédscher, W. May, and G. Lausen. Nested transactions in a logical language for active
rules. In D. Pedreschi and C. Zaniolo, editors, Logic in Databases, pages 197-222, 1996.
W. May, J. Alferes, and R. Amador. Active rules in the Semantic Web: Dealing with language
heterogeneity. In RuleML, pages 30—44. Springer, 2005.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

V. Nigam and J. Leite. Incorporating knowledge updates in 3APL - preliminary report. In
R. Bordini, M. Dastani, J. Dix, and A. El F. Seghrouchni, editors, ProMAS’06, 2006.
S.Abiteboul, C.Culet, L. Mignet, B.Amann, T.Milo, and A. Eyal. Active views for electronic
commerce. In 25th Very Large Data Bases Coference Proceedings, 1999.

Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Amit - the situation manager. The
International Journal on Very Large Data Bases archive, 13, 2004.

J. Widom and S. Ceri, editors. Active Database Systems — Triggers and Rules For Advanced
Database Processing. Morgan Kaufmann Publishers, 1996.

Distance-Based Repairs of Databases

Ofer Arieli!, Marc Denecker?, and Maurice Bruynooghe?

! Department of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il
2 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{marcd, maurice}@cs.kuleuven.ac.be

Abstract. We introduce a general framework for repairing inconsistent
databases by distance-based considerations. The uniform way of repre-
senting repairs and their semantics clarifies the essence behind various
approaches to consistency restoration in database systems, helps to com-
pare the underlying formalisms, and relates them to existing methods of
defining belief revision operators, merging data sets, and integrating in-
formation systems.

1 Introduction and Motivation

Inconsistency of constraint data-sources is a widespread phenomenon. Restoring
information consistency (or repairing the database) is usually closely related to
the principle of minimal change, which is the aspiration to reach consistency
by a minimal amount of modifications in the ‘spoiled’ data. To illustrate this,
consider the following simple example:

Ezample 1. Consider a database with two data facts D = {p,r}, and an integrity
constraint ZC = p — ¢. Under the closed world assumption [33], stating that
each atomic formula that does not appear in D is false, this database is clearly
inconsistent, as ZC is violated. Two ways of restoring consistency in this case
are by inserting ¢ to D or deleting p from D. Moreover, assuming that integrity
constraints cannot be altered, these are the most compact ways of repairing
this database, in the sense that any other solution requires a larger amount of
changes (i.e., insertions or retractions) in D.

Consistency restoration by minimal change may be traced back to [12] and [35].
In the context of database systems, this notion was introduced by [1], and then
considered by many others, including [2, 3,4, 6,7, 13,22, 21,29, 34]. Some imple-
mentations of these methods are reported in [3, 18,19, 28]. Despite their syntac-
tic and semantic differences, as well as the different notions of repair used by
different consistency maintenance formalisms, the rationality behind all these
methods is of keeping the ‘recovered’ data ‘as close as possible’ to the origi-
nal (inconsistent) data. This implies that database repairing can be specified in
terms of distance semantics, using appropriate metrics.

In this paper, we identify distance-based semantics at the heart of a vast
amount of repairing methods, and introduce a corresponding framework for data

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 43-55, 2006.
© Springer-Verlag Berlin Heidelberg 2006

44 O. Arieli, M. Denecker, and M. Bruynooghe

repair. In this respect, we follow Bertossi’s remark [5], that “identifying general
properties of the reasonable repair semantics [...] is a very important research
direction. Unifying principles seem to be necessary at this stage in order to have a
better understanding of consistent query answering’. Indeed, the representation
of different repairing methods as distance-based formalisms provides a common
ground for relating them. Moreover, we show that the same distance-based con-
siderations are not only the essence of database repairing and consistent query
answering, but are also the nucleus of many approaches for belief revision and
data integration. In this respect, this work is not restricted to databases only.
The rest of this paper is organized as follows: in Section 2 we give a general
representation of consistency restoration in database systems as a distance min-
imization problem. In Section 3 we consider different distance-based approaches
to database repairing, and incorporate the notion of optimal matching (between
the spoiled and the recovered data) for generalizing existing repairing methods
and defining some new ones. In Section 4 we relate database repairing to different
methods of merging independent data-sources. In Section 5 we conclude.

2 Database Repair as a Distance Minimization Problem

Let £ be a first-order language with P its underlying set of predicates.

Definition 1. A database DB is a pair (D, ZC), where D is a finite set of ground
atomic facts (i.e., atomic formulas without variables) whose predicate names are
in P, and ZC is a finite and consistent set of formulae in L.

The set D in the definition above is called database instance and its elements are
called facts. The meaning of D is usually determined by the conjunction of its
facts augmented with Reiter’s closed world assumption [33]. The formulas in ZC
are called integrity constraints. These formulas specify conditions that should
be satisfied, with respect to some underlying semantics S, by all the database
facts. We denote this by D =% ZC. Common definitions for S are the standard
two-valued semantics, the minimal Herbrand model semantics, the stable model
semantics [20], Kleene’s three-valued semantics [24], or any other multiple-valued
semantics [23]. A semantics S defines, for a set I" of formulas in £, the S-models
of I', i.e., a set mod®(I") of valuations that satisfy all the formulas in I". In this
respect D =% ZC means that every element of mod® (D) is also an S-model of
every integrity constraint in ZC.

Definition 2. A database (D, ZC) is consistent with respect to a semantics S
(S-consistent, for short), if D = ZC.

When a database is not consistent, one or more integrity constraints are violated,
and so it is usually required to ‘repair’ the database, i.e., restore its consistency.
For this, given a database DB = (D, ZC), we denote by HU(DB) the ground
terms in the Herbrand universe of DB, 0; denotes substitutions of variables by
elements in HU(DB), and Atoms(DB) denotes the atomic formulas that appear
in the formulas of D UZC. For each P(cy,...,c,) € Atoms(DB), let

Distance-Based Repairs of Databases 45

Upd(P(ct, ..., cn)) = {P(dh...,dn) | 31<j<n d; € HU(DB) and
301,05 such that 01 (P(dy, .., d)) = 02(Ple,.,en)) }.

An update U of D is a set that consists of zero or more elements from Upd(A)
for each A€ Atoms(DB). The set of all the updates of D is denoted by Upd(D).

The intuition behind this definition is simple: the predicates in Atoms(DB) are
those that are ‘known’ to the database, thus they are the relations that poten-
tially appear in a repaired database. Now, the elements in Upd (P(cl7 ey cn))
represent the possible updates of P(cq,...,¢,). Note that {¢;} and {d;} are
atomic terms (constants or variables), so the role of the substitutions in the def-
inition of Upd is twofold: to introduce constants instead of variables in predicate
tuples (in case that the values are known) and to replace constants by variables
(in case that there are wrong values in a tuple and the correct values are un-
known. Here, variables may be intuitively regarded as missing (null) values).
By this, only erroneous fragments of tuples are modified.! The condition that
in every tuple at least one component belongs to HU(DB) is meant to exclude
degenerated cases, in which a tuple consists of null values only.

Note 1. Unless all the arguments of an atom A are variables; A € Upd(A). Thus,
if for some A € D and an update U, U N Upd(A4) = {A}, A remains unchanged.
Also, if UNUpd(A) = 0, A is deleted from D, and if UNUpd(A) = {A1, ..., A},
A is replaced by n>1 new facts A;. Insertions to the database also occur when
U NUpd(A) is not empty for some atom A not in the database instance.

A potential repair R of DB is an update of D that preserves ZC with respect to
S (R |£° ZC). The set of all the potential repairs of DB is denoted by Rep(DB).

Ezample 2. [4] Given the following database instance

employee(Alice), salary(Alice,1000), director(Alice)
{ employee(Bob), salary(Bob,1000), }’

and two integrity constraints: one says that every employee has a salary, and
the other constraint specifies that a director should earn more money than any
other employee. Now, applying here the closed world assumption, we conclude
that Bob is not a director. On the other hand, Bob earns the same amount of
money as Alice, who is a director, so the second integrity constraint is violated.
In this case (using some abbreviations with obvious meanings), we have that the
updates of the ground facts in the database are the following:

Upd(emp(Alice)) = {emp(Alice)},

Upd(emp(Bob)) = {emp(Bob)},

Upd(dir(Alice)) = {dir(Alice)},

Upd(sal(Alice,1000)) = {sal(Alice, 1000), sal(x 4,1000), sal(Alice,valy)},
Upd(sal(Bob, 1000)) = {sal(Bob,1000), sal(xp, 1000), sal(Bob, vals)}. 2

! See also Wijsen’s notion of homomorphisms of tableaux [34].

2 For the other atoms in Atoms(DB) we have that Upd(emp(z)) = Upd(emp(Alice)) U
Upd(emp(Bob)) and Upd(sal(z,y)) = Upd(sal(Alice,1000)) U Upd(sal(Bob,1000)).

46 O. Arieli, M. Denecker, and M. Bruynooghe

Among the possible updates of D we therefore have the following sets:

U, = {emp(Alice), emp(Bob), sal(Alice, 1000), sal(Bob, 1000)},
Uz = {emp(Alice), emp(Bob), dir(Alice), sal(Alice, valy), sal(Bob, 1000)},
Us = {emp(Alice), emp(Bob), dir(Alice), sal(Alice, 1000), sal(Bob, vals)}.

Note that U; is obtained by retracting the fact that Alice is a director (so in
this case Upd(dir(Alice)) has no representatives), while Uy and Us cause modi-
fications in the salary of Alice and Bob (respectively). Note also that all these
updates are also potential repairs, provided that val; > 1000 and vals < 1000.

For selecting the best potential repairs we require that the repaired information
should be ‘as close as possible’ to the original one. Implicitly, then, this criterion
involves distance-based considerations and a corresponding metric.

Definition 3. A total function d : U xU — R is called pseudo distance on
U if it is symmetric (Vu,v €U d(u,v) = d(v,u)) and preserves identity (Vu,v €
U d(u,v) = 0iff u = v). A distance function on U is a pseudo distance on U
that satisfies the triangular inequality (Vu,v,weU d(u,v) < d(u,w) + d(w,v)).

Definition 4. A repair contert for a language L is a pair R = (|=5,d), where
=S is the entailment relation induced by the underlying semantics S and d is a
pseudo distance on the power set 2% of the well-formed formulae in £.

Repair contexts are parametrized descriptions on how to repair databases. Given
a repair context R = (=°,d), the repairs of a database DB = (D, ZC) are the
instances that S-satisfy ZC and that are d-closest to D. Formally:

Definition 5. The repairs of a database DB = (D, ZC) with respect to a repair
context R = (|=5,d), are the elements of the following set:

Ax(DB) = {R € Rep(DB) | YR’ € Rep(DB) d(R,D) < d(R’,D)}.
Database repairs induce corresponding notions of query answering:

Definition 6. A query Q(x1,...,x,) is a first-order formula with free variables
Z1,...,Zn. Denote by Qlci/x1,...,cn/xy,] the simultaneous substitution in Q
of the variables x; by the constants ¢; (i=1,...,n), respectively. Now, let R =
(=°,d) be a repair context, and Q(z1,...,r,) a query on DB.
— A tuple (c1,...,¢,) is a credulous answer for Q if there exists an element
R € Ax(DB) s.t. R =° Qler/x1,. .., cn/n)).
— A tuple {c1,...,cp) is a conservative answer (or a consistent query answer)
for Q if R =° Qle1/x1, ..., cn/wy]) for every R € An(DB).

3 Distance Semantics for Database Repair

3.1 Distance Functions

The choice of the distance function (and so the metric at hand) plays a crucial
role in the repairing process. There are many possibilities to measure distances
between the spoiled database instance and its potential repairs. Below we recall
two common definitions of such distances:

Distance-Based Repairs of Databases 47

Definition 7. Let d be a distance function on £. For A, B € 2%, define:
— The Hausdorff distance [15]:

d(A, B) = max (maxmin d(a,b), max min d(a, b))
a€A beB beB acA

— Eiter and Mannila’s distance [17]:

beB
a€A

1 . .
d(A,B) = 5 (mind(a,b) + ég&lﬂ d(a, b))
€

The following proposition recalls some known facts about these distances:

Proposition 1. The Hausdorff distance is a distance function on 2% and Eiter—
Mannila’s distance is a pseudo distance on 2%.

In what follows we consider pseudo distances that are defined by matching func-
tions (between the elements of the original database instance and the elements
of a potential repair) and by aggregation functions that evaluate the quality of
those matchings.

Definition 8. A numeric aggregation function f is a total function that accepts
multisets of real numbers and returns a real number. Also, f is non-decreasing
in the values of its argument,® f({x1,...,2,}) =0if 21 = ... = x, = 0, and

Ve eR f({z}) = z.

Definition 9. Let DB be a database, A, B C Atoms(DB), d a (pseudo) distance
on the formulae of £, and f a numeric aggregation function.

a) A matching m between A and B is a maximal subset of Ax B such that for
every (a17b1)7 (a27b2) cm, a; = ag iff by = bs.

b) For a matching m between A and B, let m(A4) = {b | (a,b) € m} and
m~1(B) ={a| (a,b) € m}. Denote:

dy(m, A, B) = f({d(mb) | (a,b) € m} U

{d(a,B) lae A\m—l(B)} U {d(b, A)|be B\m(A)}),
where, for every set S, d(z,S) = } max{d(y, z) | y, z € Atoms(DB)}.

Thus, dy is obtained by applying f on the distances among matched elements
and on the distances among non-matched elements and the other set.

¢) A matching m between A and B is called {d, f}-optimal if for every matching
m’ between A and B, d¢(m, A, B) < d¢(m/, A, B).

d) Denote d¢(A, B) = df(m, A, B), where m is a {d, f}-optimal matching be-
tween A and B.*

3 That is, the function value is non-decreasing when an element in the multiset is

replaced by a larger element.
* As all the optimal matchings have the same d-value, d;(A, B) is well-defined.

48 O. Arieli, M. Denecker, and M. Bruynooghe

The aggregation function in Definition 8 may be, e.g., a summation or the average
of the distances, the maximum value among those distances (which yields a
worst case analysis), a median value (for mean case analysis), and so forth. Such
functions are common in data integration systems (see also Section 4 below).

Proposition 2. The function dy in Definition 9(d) is a pseudo distance on 2L 5

3.2 Aggregation-Based Repairs

Definition 10. An aggregation-based repair context is a triple | = (=°,d, f),
where |=° is the entailment relation induced by S, d is a pseudo distance on L,
and f is a numeric aggregation function.

Note 2. If R = (E5,d, f) is an aggregation-based repair context in the sense
of Definition 10, then R = (=5,d;), where d; is obtained from d and f by
Definition 9(d), is a repair context in the sense of Definition 4. This is so, since
dy is a pseudo distance on 2¢ (by Proposition 2).

Definition 11. The repairs of a database DB = (D, ZC) with respect to an
aggregation-based repair context R = (=°,d, f) are the elements of the set

An(DB) = {R € Rep(DB) | YR’ € Rep(DB) df(R,D) < ds(R',D)}.

By Note 2, Definition 11 is a particular case of Definition 5 for aggregation-based
distance functions (and aggregation-based repair contexts).

Ezample 3. Consider again the database DB = ({p,r}, {p — ¢}) of Example 1,
and let R = (,d", Y) be an aggregation-based repair context, where d“ is
a distance function on the atomic formulas of £, defined by d“(s1,s2) = 0 if
$1 = s2, and d"(s1, s2) = 1 otherwise. The six potential repairs of DB and their
distances from D = {p,r} are given in the table below.

No. Potential Repair d%(-, D) Actions
1 {p,q,r} 5 insert ¢
2 {p,q} 1 insert ¢, delete r
3 {g,7} 1 insert ¢, delete p
4 {¢} 1] insert g, delete p and r
5 {r} é delete p
6 {} 1 delete p and r

It follows, then, that the repairs in this case are Ry = {p,q,r} and R5 =
{r}. Among the potential repairs, these repairs require a minimal amount of
modifications in D.® Thus, e.g., 7 conservatively (and so credulously) follows
from DB, and ¢ credulously (but not conservatively) follows from DB.

5 Due to lack of space proofs are omitted. Full proofs will appear in an extended
version of this paper.
5 As Proposition 4 below shows, this is not a coincidence.

Distance-Based Repairs of Databases 49

Definition 12. An aggregation function f such that f({zi1,...,2,}) = 0 only
if ey = ... = x, = 0, is called strict. An aggregation-based repair context
R = (=°,d, f) is strict if f is strict.

Note that as distances are non-negative, all the aggregation functions on sets of
distances considered above (summation, maximum, median, etc.) are strict.”

The next proposition shows that, as expected, there is nothing to repair in
consistent databases.

Proposition 3. For every strict aggregation-based repair context R, if DB is a
consistent database, then Ax(DB) = {D}.

3.3 Domain Independent Repairs

A common definition of an aggregation-based repair context is R = (=, d*, X),
where the underlying distance-aggregation function, d%,, is obtained by a summa-
tion of the drastic distances d* between matched elements (see also Example 3).

Definition 13. The drastic distance is d*(x,y) =0 if x = y, else d*(z,y) = 1.

It is easy to verify that d* and df, are distance functions, and both of them
are ‘blind’ to the domain of discourse at hand. Next we show that the metric
obtained by d corresponds to the Hamming distance between sets of formulae.®

Proposition 4. Let |S| be the size of S. Then d%.(A, B) = J(|A\ B|+ |B\ AJ).

The repair context R = (=, d", X) corresponds to the repair method introduced
in [1], which inspires many other works on (domain independent) database repair
(see, e.g., [2,4,6,7,22,21,28]).

Definition 14. [1] A pairwise® repair of DB = (D, IC) is a pair (Insert, Retract),
such that: 1. InsertND =10, 2. Retract C D, 3. (DUlInsert \ Retract, ZC) is a consis-
tent database, 4. (Insert, Retract) is minimal:** there is no pair (Insert’, Retract’)
that satisfies conditions 1-3 and for which |Insert’ U Retract’| < |Insert U Retract|.

Proposition 5. Consider a database DB = (D, ZC) and the repair context
R = (E,d", X). Then (Insert, Retract) is a pairwise repair of DB iff there is a
repair R € Ax(DB) s.t. Insert = R \ D and Retract = D\ R.

It is also interesting to check the distance-based functions of Definition 7 when
the domain independent d“ is taken as the basic distance function. In this case
the Hausdorff distance is reduced to 0 if A = B and 1 otherwise. While this
is still a distance function, it is clearly useless for making subtle preferences
among potential repairs. The Eiter—Mannila’s distance, on the other hand, is

" The minimum function is not strict, but it is not useful for repair contexts.

8 Also known as the symmetric distance, or the Dalal distance [12].

9 This adjective is added to distinguish this kind of repairs from repairs in our sense.
10 A different condition may be defined by set inclusion instead of minimal cardinality.

50 O. Arieli, M. Denecker, and M. Bruynooghe

more appropriate in this case, and as in Proposition 5, is it related to pairwise
repairing. Indeed, given d*, the Eiter—-Mannila’s distance between the original
database D and its repair R = D U Insert \ Retract is equal to }(Insert + Retract).
In this case we get the Ramon—Bruynooghe matching-based distance [32], which
is a distance function (and not only a pseudo distance, cf. Proposition 1).

3.4 Domain-Dependent Repairs

Consider again the database of Example 2. There are several potential repairs
in this case. Let’s consider two of them:

R1: remove all the information about Bob from the database,
Ro: change the information about the salary of Bob.

Note that if we use a domain independent repair context with e.g. d* as the
underlying distance function, each potential repair above is as good as the other
one, since the cost of the optimal matching between the original database and the
repaired database that is obtained by R4 is the cost of the two retracted elements
(employee(Bob) and salary(Bob,1000)) that cannot be matched to an element
in the repaired database, which is } + } = 1. Likewise, the optimal matching
between the original database and the repaired database that is obtained by Ro
links employee(Alice), employee(Bob), salary(Alice,1000) and director(Alice)
to the same facts in the repaired database, and relates salary(Bob,1000) to
salary(Bob, x) (for some x < 1000). The resulting distance is therefore 0 + 0 +
0-+0+1 = 1. According to the repair context R = (=, d", X), then, both potential
repairs have the same priority. However, in this case, the second repair (salary
changes) seems more plausible than the first one (employee removal), as it is more
realistic here to assume that the problem is due to a typographic error in the
salary information. Moreover, Ry is more drastic, as it causes information loss
(Bob is no longer a reported employee). It is clear, then, that simple cardinality
considerations are not useful here, and more delicate considerations, that would
yield the preference of Ry over R, are required. !

A more subtle preference criterion is obtained by the distance function in [30]:

1 if P +#Q,

)8)) 2n2d"(ti,si) otherwise.

i=1

dl(P(t17...7tm)7Q(81,...

For different predicate symbols the distance d' is maximal; however, when the
predicate symbols are the same, the distance linearly increases with the number
of arguments that have different values, and is at most % The intuition behind
this is that longer tuples are more error-prone and that multiple errors in the
same tuple are less likely.

' The need to rectify an error within a tuple without deleting the whole tuple has been
acknowledged in [4] (see Example 6.2 of that paper), and is also the main motivation
behind the work of Wijsen on database repairing by updates [34].

Distance-Based Repairs of Databases 51

Proposition 6. d' is a distance function (Definition 3), which is bounded by 1.

According to d', the distance between the database instance D of Example 2 and
R is still 1, while the distance between D and R is the same as the distance
between salary(Bob,1000) and salary(Bob, z), which is } (0+1) = }. It follows,
then, that now R, is preferred over Ry, as intuitively expected.

Nienhuys-Cheng’s distance d' can be further refined to reveal other considera-
tions. For instance, under the assumption that primary keys are less error-prone,
one may consider the following variation of d*:

Definition 15. Below we denote primary key values by underscores, and as-
sume, without loss of generality, that they precede the non-key values. Define:

dQ(P(tl,...7tk7tk+17...7tm)7Q(51,...7Sl7tl+17...7tn)) =
1 ifP#£Qordl <i<kst. t; #s;,

2(ml_ . i:zk;_l d"(t;,s;) otherwise.
Example 4. As noted in Example 2,

Upd(sal(Alice,1000)) = {sal(Alice, 1000), sal(x, 1000), sal(Alice,y)},
which means that there are four options regarding the fact salary(Alice,1000):
keeping it unchanged, changing the first argument (employee-name), changing
the second argument (salary), or deleting it altogether. Assuming that employee-
name is the primary key for the salary relation, according to d?, the costs of these
options are 0, 1, ; and 1, respectively. Note, also, that in this case, according to
the repair context R = (|=, d?, ¥, the two repairs of the database are:
{emp(Alice),emp(Bob), dir(Alice), sal(Alice,v1), sal(Bob,1000)} for v; >1000,
{emp(Alice),emp(Bobd), dir(Alice), sal(Alice, 1000), sal(Bob, ve)} for va < 1000.
That is, consistency restoration is obtained here by salary corrections.

3.5 Linking Instead of Matching

The notion of (optimal) matching between the elements of a database instance
and its repair may be weakened. Instead of relating each database fact with at
most one atomic formula of a repair and vice versa, it is possible to associate
a database fact with several atoms of a repair. This is called linking. Optimal
linking and the induced distance between sets are defined just as in Definition 9.

Ezample 5. Consider a database instance D = {teaches(John, DB)} and in-
tegrity constraints that no-one teaches DB (since, e.g., this course is cancelled),
and that a lecturer must give at least two courses. A repair in this case would
be R = {teaches(John,x1),teaches(John,z2)} for some 1 # xo # DB. Each
one of the two optimal matchings in this case relates the database fact to one of
the two elements of R, leaving the other one unmatched. In the notations of the
previous section, then, dIE (D,R) = % + }l. If linking is used instead of matching,
there is only one optimal linking between D and R, which associates the two
new facts in R with the old one in D, hence in this case d%(D,R) =} + ;.

52 O. Arieli, M. Denecker, and M. Bruynooghe

3.6 Complexity

Computing all the repairs of a given database is not tractable, as even for propo-
sitional databases the number of repairs of a database could be exponential in the
database’s size. Indeed, the database ({p1,...,pn}, {P: — @:}?,) has 2" repairs
with respect to R = (=, d“, X'). These repairs correspond to all the combinations
of inserting ¢; or removing p;, for ¢ = 1,...,n. In an attempt to overcome this
problem, most of the existing algorithms for query answering do not compute
the repairs themselves, but make inferences using rewriting techniques [1], logic
programming paradigms [2, 16, 19,21, 22], (hyper-)graph computations [10, 11],
and proof theoretic methods, such as analytic tableaux [7]. Tractability in such
cases is usually reached only for restricted syntactical forms of the integrity
constraints. For instance, the technique in [11] is polynomial only for denial in-
tegrity constraints'?, and the rewriting technique in [1], which is also tractable,
is limited to binary universal constraints. Computational considerations regard-
ing database repairs is beyond the scope of this paper, which is concentrated on
the representational aspects of the problem. We note, however, that generally,
the distance functions themselves do not add extra computational complexity to
the problem. This is demonstrated, for instance, by the following results:

Proposition 7. [32] Computing d% (A, B) is polynomial in the size of A and B.

Proposition 8. Computing d%.(A, B) and d3,(A, B) is polynomial in the sizes
of A, B, and the mazximal arity of the predicates in A and B.

The main computational difficulty remains, therefore, the large amount of po-
tential repairs at hand. Extensive surveys on the computational complexity of
existing approaches to database repair and consistent query answering appear
in [8,9,10] (see also [34] for complexity results regarding update-based repair-

ing).

4 Integration of Constraint Data-Sources

Integration of autonomous data-sources under global integrity constraints (see
[26]) is closely related to database repair. The main differences between the two
problems is that in contrast to database instances, data-sources may contain
negative facts and not only positive ones. Also, the closed world assumption is
no longer assumed. In this section we show how our framework may be used for
defining operators for the merging problem as well.

Ezample 6. [26] Four flat co-owners discuss the construction of a swimming pool
(s), a tennis-court (¢) and a private car-park (p). Building two or more items
will increase the rent (), otherwise the rent will not be changed.

The opinions of the owners are represented by the following four data-sources:
Dy =Dy ={s,t,p}, D3 ={-s,-t,—-p,—~r}, D4y={t,p,-r}. The impact on the

12 That is, closed formulae of the form Vz; . .. mnﬂ(Rl (z)AN. . ARn(zn)AP(z1 ... xn)),
where ¢ is a Boolean expression consisting of atomic formulas and built-in predicates.

Distance-Based Repairs of Databases 53

rent may be represented by the constraint ZC = {r < ((sAt)V (sAp)V (tAp))}.
Note that although the opinion of owner 4 violates the integrity constraint (while
the solution must preserve the constraint), it is still taken into account.

In situations such as that of Example 6 it is often required to find a solution
that will satisfy the global integrity constraints and will be as close as possible
to each data source. This implies that, under the following observations, our

framework is adequate for the merging problem as well.

— Instead of database instances, which are sets of atomic facts, data sources
are sets of literals. Denote by ® the set of these sources. So, instead of the

set of atomic formulas, the following set is considered:

Lit(D,ZC) = Up,ep Atoms(D;, IC) UUp cpi{—a | a € Atoms(D;,ZC)}.
As before, an update U of D is a consistent set'® that consists of zero or more
elements from Upd(L) for each L € Lit(®,ZC), and the set Merge(®,ZC) of
the potential merging of © under ZC consists of the updates that satisfy ZC.
., D} with respect to the integrity
constraints ZC is a straightforward generalization of the notion of database

— A merging of data-sources ® = {Dy,..

repair (cf. Definitions 10 and 11):

e A merging context is a quadruple 9 = (=5, d, f, g), where =5 is the en-
tailment relation induced by the underlying semantics S, d is a pseudo
distance function, and f, g are aggregation functions (referring, respec-
tively, to the distances inside a source and among the sources).

e For a merging context M = (=°.d, f,g), a set ® = {Dy,..
data-sources, and a potential merging M € Merge(D,ZC), let

Ayt (M, D) = g({ds(M,Dy),...,ds (M, Dy)}).

., Dp} of

e The mergings of the data-sources in ® under ZC, and with respect to
the merging context 9t = (=°,d, f, g), are the elements of the set

A (DB) = {M € Merge(D,1C)

VM' € Merge(D,ZC) dg (M, D) < dg (M, D) }
Ezample 7. Consider again Example 6 and two contexts: My = (=, d*, X, X)),
My = (=, d*, ¥, max). According to My the summation of the distances to the
source is minimized, and in 9% minimization of maximal distances is used for
choosing optimal solutions. The potential mergings in this case are listed below.

No. Potential merge d%(-,D1) d%(-,D2) d% (-, D3) d% (-, D4)

My {s,t,p,r} % %
My {s,t,—p,r} lé 1%
Ms {s,—t,p,r} 1% 1%
My {s,—t,—p,—r} 2% 2%
Ms {=s,t,p, 1} 1% 1;
Mg {—s,t,—p,—r} 2% 2;
Mz {=s,—t,p,—r} 2% 2%
Mg {—s,—t,—p, —r} 3% 3%

13 T.e., without complementary literals.

4

O = = W W W

}J,Z‘('? ©) ;ax,ﬂ('v @)

54 O. Arieli, M. Denecker, and M. Bruynooghe

According to 9y, M; is the best potential merging, and so the owners decide
to build all the three facilities. As a result, the rent increases. According to Mo,
however, My, Mg and M7 are the optimal mergings, which implies that only
one of the facilities will be built, and so the rent will remain the same.!* Thus,
e.g., r is a consistent answer w.r.t. 91, while —r is a consistent answer w.r.t. MMs.

5 Conclusion

Data processing by distance considerations is not a new idea, and it has been
used mainly in the context of query answering [1,2] integration of constraint
belief-sets [25,26] and operators for belief revision [14,27,31]. In this paper we
introduced a uniform framework for representing, comparing and implementing
different approaches for these contexts. Another advantage of our approach is
that it opens the door to many new methods that are induced by known distance
definitions. This is particularly useful in the context of database repairing, where
so far most of the formalisms in the literature that involve distance-based seman-
tics are domain independent while in many practical cases domain dependent
repairs are more adequate. The new forms of repairs offered by our framework
provide intuitive solutions to such cases, mainly as the notion of closeness can
be captured in more subtle ways (most of them are domain dependent), and er-
roneous components of the data can be detected and updated without violating
the valid fragment of the information.

References

1. M. Arenas, L. Bertossi, J. Chomicki. Consistent query answers in inconsistent
databases. Proc. PODS’99, pp.68-79, 1999.

2. M. Arenas, L. Bertossi, J. Chomicki. Answer sets for consistent query answering in
inconsistent databases. Theory and Practice of Log. Prog., 3(4-5):393-424, 2003.

3. O. Arieli, M. Denecker, B. Van Nuffelen, M. Bruynooghe. Coherent integration of
databases by abductive logic programming. Artif. Intell. Res., 21:245-286, 2004.

4. O. Arieli, M. Denecker, B. Van Nuffelen, M. Bruynooghe. Computational methods
for database repair by signed formulae. Annals Math. Artif. Intell., 46:4-37, 2006.

5. L. Bertossi. Some research directions in consistent query answering: a vision. Pre-
proc. of EDBT’06 Workshop on Inconsistency in Databases, pp.109—113, 2006.

6. L. Bertossi, J. Chomicki, A. Cortés, C. Gutierrez. Consistent answers from inte-
grated data sources. Proc. FQAS’2002, LNCS 2522, pp.71-85, 2002.

7. L. Bertossi, C. Schwind. Database repairs and analytic tableau. Annals of Math-
ematics and Artificial Intelligence, 40(1-2):5-35, 2004.

8. A. Cali, D. Lembo, R. Rosati. On the decidability and complexity of query answer-
ing over inconsistent and incomplete databases. Proc. PODS’03, 260-271, 2003.

9. J. Chomicki, J. Marchinkowski. A on the computational complexity of minimal-
change integrity maintenance in relational databases. In L. Bertossi, A. Hunter,
and T. Schaub, editors, Inconsistency Tolerance, LNCS 3300, pp.119-150. 2005.

14 The decision which facility to choose requires further preference criteria. Summation
of distances, e.g., prefers Mg and M7 over My, thus ¢t and p are preferred over s.

10

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

Distance-Based Repairs of Databases 55

J. Chomicki, J. Marchinkowski. Minimal-change integrity maintenance using tuple
deletion. Journal of Information and Computation, 197(1-2):90-121, 2005.

J. Chomicki, J. Marchinkowski, and S. Staworko. Computing consistent query
answers using conflict hypergraphs. Proc. CIKM’04, pp.417-426, 2004.

M. Dalal. Investigations into a theory of knowledge base revision. Proc. AAAI’98,
pp-475-479. AAAI Press, 1988.

S. de Amo, W. Carnielli, J. Marcos. A logical framework for integrating inconsistent
information in multiple databases. Proc. FoIKS’02, LNCS 2284, pp.67-84, 2002.
J. Delgrande. Preliminary considerations on the modelling of belief change opera-
tors by metric spaces. Proc. NMR’04, pp.118-125, 2004.

J. Dieudonné, editor. Foundations of Modern Analysis. Academic Press, 1969.

T. Eiter. Data integration and answer set programming. Proc. LPNMR’05,
LNCS 3662, pp.13-25. Springer, 2005.

T. Eiter, H. Mannila. Distance measure for point sets and their computation. Acta
Informatica, 34:109-133, 1997.

B. Fazzinga, S. Flesca, F. Furfaro, F. Parisi. DART: a data acquisition and repairing
tool. EDBT’06 Workshop on Inconsistency in Databases, pp.2—-16, 2006.

E. Franconi, A. Palma, N. Leone, D. Perri, F. Scarcello. Census data repair: A chal-
lenging application of disjunctive logic programming. Proc. LPAR’01, LNCS 2250,
pp-561-578. Springer, 2001.

N. Gelfond, V. Lifschitz. The stable model semantics for logic programming. Proc.
5th Logic Programming Symposium, pp.1070-1080. MIT Press, 1988.

G. Greco, S. Greco, E. Zumpano. A logic programming approach to the integration,
repairing and querying of inconsistent databases. Proc. ICLP’01, LNCS 2237,
pp-348-363. Springer, 2001.

S. Greco, E. Zumpano. Querying inconsistent databases. Proc. LPAR’2000,
LNAT 1955, pp.308-325. Springer, 2000.

M. Kifer, E. L. Lozinskii. A logic for reasoning with inconsistency. Journal of
Automated Reasoning, 9(2):179-215, 1992.

S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1950.

S. Konieczny, J. Lang, P. Marquis. Distance-based merging: A general framework
and some complexity results. Proc KR’02, pp.97-108, 2002.

S. Konieczny, R. Pino Pérez. Merging information under constraints: a logical
framework. Journal of Logic and Computation, 12(5):773-808, 2002.

D. Lehmann, M. Magidor, K. Schlechta. Distance semantics for belief revision.
Journal of Symbolic Logic, 66(1):295-317, 2001.

N. Leone, T. Eiter, W. Faber, M. Fink, G. Gottlob, G. Greco. Boosting information
integration: The INFOMIX system. Proc. SEBD’05, pp.55-66, 2005.

P. Liberatore, M. Schaerf. BReL.S: A system for the integration of knowledge bases.
Proc. KR’2000, pp.145-152. Morgan Kaufmann Publishers, 2000.

S.H. Nienhuys-Cheng. Distance between Herbrand interpretations: A measure for
approximations to a target concept. Proc. ILP’97, LNCS 1297, pp.213-226, 1997.
P. Peppas, S. Chopra, N. Foo. Distance semantics for relevance-sensitive belief
revision. Proc. KR’04, pp.319-328. AAAI Press, 2004.

J. Ramon, M. Bruynooghe. A polynomial time computable metric between point
sets. Acta Informatica, 37(10):765-780, 2001.

R. Reiter. On closed world databases. In Logic and Databases, pages 55-76. 1978.
J. Wijsen. Database repairing using updates. ACM Transactions on Database
Systems, 30(3):722-768, 2005.

M. Winslett. Reasoning about action using a possible models approach. Proc.
AAAT’98, pp.89-93. AAAI press, 1988.

Natural Deduction Calculus for Linear-Time
Temporal Logic

Alexander Bolotov!, Artie Basukoski!, Oleg Grigoriev?*, and Vasilyi Shangin?®

! Harrow School of Computer Science
University of Westminster
Watford Road, Harrow HA1 3TP, UK
A.Bolotov@wmin.ac.uk
http://www2.wmin.ac.uk/bolotoa/index.html
2 Department of Logic, Faculty of Philosophy, Moscow State University, Moscow,
119899, Russia
{shangin, grig}@philos.msu.ru

Abstract. We present a natural deduction calculus for the propositional
linear-time temporal logic and prove its correctness. The system extends
the natural deduction construction of the classical propositional logic.
This will open the prospect to apply our technique as an automatic
reasoning tool in a deliberative decision making framework across various
AT applications.

1 Introduction

In this paper we present a natural deduction proof system for the propositional
linear-time temporal logic PLTL [7] and establish its correctness. Natural de-
duction calculi (abbreviated in this paper by ‘ND’) originally were developed by
Gentzen [8] and Jaskowski [9]. Jaskowski-style natural deduction was improved
by Fitch [5] and simplified by Quine [14].

It is notable that further development of such systems was controversial. Al-
though there has been an obvious interest in these ND formalisms as representing
a ‘natural’ way of reasoning, ND systems were often considered as inappropriate
for an algorithmic representation [6]. This scepticism is not surprising because
in general we can have in the proof formulae that violate the subformula prop-
erty (often thought as crucial for automated deduction), which requires that in
a proof, any formula which occurs in the conclusion of a rule, is a (negation of)
subformula of its premises.

As a consequence, ND systems have been primarily studied within the frame-
work of philosophical logic, being widely used in teaching (but again, mostly in
the philosophy curriculum) and have been ignored by the automated theorem-
proving community, where research has mostly concentrated on purely analytic
methods such as resolution and tableau based approaches [1].

* This research was partially supported by Russian Foundation for Humanities, grant
No 06-03-00020a.

M. Fisher et al. (Eds.): JELIA 2006, LNATI 4160, pp. 56-68, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Natural Deduction Calculus for Linear-Time Temporal Logic 57

Recently, ND systems have been studied within a wider community. One of
the most recent examples of the interest in natural deduction is the area of logical
frameworks [12], where the notion of hypothetical judgements, i.e.reasoning from
hypothesis, as in natural deduction, is essential. Here, in particular, ND systems
have been developed for intuitionistic linear logic [13].

In this paper we define a natural deduction proof system for the propositional
linear-time temporal logic PLTL [7] and establish its correctness. The particular
approach to build an ND-calculus we are interested in is described in detail
in [2]. It is a modification of Quine’s representation of subordinate proof [14]
developed for classical propositional and first-order logic. The ND technique
initially defined for classical propositional logic was extended to first-order logic
[2,3]. It has also been extended to the non-classical framework of propositional
intuitionistic logic [10], where the proof-searching strategies are based upon the
proof-searching strategies for classical propositional natural deduction calculus.

We believe that the goal-directed nature of our proof searching technique
opens broad prospects for the application of the method in many Al areas, most
notably, in agent engineering [16].

The paper is organized as follows. In §2 we review the syntax and semantics
of PLTL. In §3 we describe the ND for PLTL henceforth referred to as PLT Ly p
and give an example of the construction of the proof. Subsequently, in §4, we
provide the correctness argument. Finally, in §5, we provide concluding remarks
and identify future work.

2 Syntax and Semantics of PLTL

We define the language of PLTL using the following symbols.

— a set, Prop, of atomic propositions: p, ¢, 7, ..., D1, q1,T1s- -, Pns GnsTns - - -
— classical operators: =, A\, =, V;
— temporal operators:
— ‘always in the future’;
> — ‘at sometime in the future’;
O - ‘at the next moment in time’;
U — ‘until’.

The set of well-formed formulae of PLTL, wffprry is defined as follows.
Definition 1 (PLTL syntax).

1. All atomic propositions (members of Prop) are in wffprrr,-
2. If A and B are in witppryp, then so are ANB, -A, AV B, and A = B.
3. If A and B are in witprrp,, then so are A, A, OA, and AU B.

For the semantics of PLTL we utilise the notation of [4]. A model for PLTL
formulae, is a discrete, linear sequence of states

g = 80,51,52,...

58 A. Bolotov et al.

which is isomorphic to the natural numbers, NV, and where each state, s;, 0 < i,
consists of the propositions that are true in it at the ¢-th moment of time. If
a well-formed formula A is satisfied in the model o at the moment ¢ then we
abbreviate it by (o,7) = A. Below, in Figure 1, we define the relation =, where
indices 1, j,k € N.

(0,1 Ep if pes;, forpe Prop

(o,1) E —A iff (o,i) £ A

(0,iy EAANB iff (o0,i) = Aand (0,i) =B

(o,iy EAVB it (o,i) EAor{o,i)EB

(0,i) EA=B iff (o0,i) = Aor{(o,i) B

(o,iy E A iff for each j if i < j then (0,7) = A

(0,i) £ A iff there exists j such that ¢ < j and (0,j) E A
(0,i) E OA iff (o,i+1)E=A

(0,1 E AUB iff there exists j such that i < j and (0,j) E B

and for each k if ¢ <k < j then (0, k) = A

Fig. 1. Semantics for PLTL

Definition 2 (PLTL Satisfiability). A well-formed formula, A, is satisfiable
if, and only if, there exists a model o such that (o,0) = A.

Definition 3 (PLTL Validity). A well-formed formula, A, is valid if, and
only if, A is satisfied in every possible model, i.e. for each o, (0,0) E A.

3 Natural Deduction System PLT Lnp

3.1 Extended PLTL Syntax and Semantics

To define the rules of the natural system we extend the syntax of PLTL by
introducing labelled formulae.
Firstly, we define the set of labels, Lab, as a set of variables interpreted over
states of o:
Lab: {z,y,z,21,22,23,...}.

Let g be a function, which maps the set Lab to V.
We then define two binary relations ‘<’ and ‘Next’, and the operation ’ as
follows.

Definition 4 (Relations <,~, < and Next, operation). For x, y € Lab:

(4.1) <C Lab®: 2z <y = g(x) < g(y),

(4-2) ~C Lab” 1 x = y & g(z) = g(y),

(4.3) 2C Lab® : x <y < g(z) < g(y),

(4.4) Next C Lab® : Next(z,y) & g(y) = g(z) + 1, i.e. it is the ‘predecessor-
successor’ relation such that for any i € Lab, there exists j € Lab such
that Next(i,j) (seriality),

Natural Deduction Calculus for Linear-Time Temporal Logic 59

(4.5) Given a label i, the operation ' applied to i gives us the label i’ such that
Next(i,i').

The following properties follow straightforwardly from Definition 4.
Lemma 1 (Properties < and Next).

— For any i,j € Lab if Next(i,j) then i < j.
— For any i,j € Lab if i < j then i < j.
— Properties of <:
e For anyi € Lab: i =i (reflexivity),
e For anyi,j,k € Lab if i X j and j < k then i < k (transitivity).

Following [15], the expressions representing the properties of < and Next are
called ‘relational judgements’.
Now we are ready to introduce the PLT Ly p syntax.

Definition 5 (PLTLyp Syntax).

— If A is a PLTL formula and i € Lab then i: A is a PLT Lyp formula.
— Any relational judgement of the type Next(i,i') and i < j is a PLTLnyp
formula.

PLTLyNp Semantics. For the interpretation of PLT Ly p formulae we adapt the
semantical constructions defined in §2 for the logic PLTL. In the rest of the paper
we will use capital letters A, B, C, D, ... as metasymbols for PLTL formulae, and
calligraphic letters A, B,C,D... to abbreviate formulae of PLT Lyp, i.e. either
labelled formulae or relational judgements. The intuitive meaning of i: A is that
A is satisfied at the world . Thus, based on our observations above, we simply
need the following statements.

Let I" be a set of PLTLyp formulae, let Dp = {z|x: A € I'}, let o be a
model as defined in §2 and let f be a function which maps elements of D into
N (recall that a PLTL model ¢ is isomorphic to natural numbers).

Definition 6 (Realisation of PLTLyp formulae in a model). Model o
realises a set, I, if there is a mapping, f, which satisfies the following conditions.

(1) For any x € Dr, and for any A, if x: A € I then (o, f(z)) E A,
(2) For any x,y, if xt <y € ', and f(x) =1, and f(y) = j theni < j,
(3) For any x,y, if Next(xz,y) € I, and f(x) =1, and f(y) =j then j =i+ 1.

The set I' in this case is called realisable.

Definition 7 (PLTLyp Validity). A well-formed PLTLyp formula, A =i:
B, is valid (abbreviated as Enp A) if, and only if, the set { A} is realisable in
every possible model, for any function f.

It is easy to see that if we ignore the labels then the classes of satisfiable and valid
formulae introduced by definitions 2 and 6, 3 and 7 respectively, are identical.

60 A. Bolotov et al.

3.2 Rules for Boolean Operations

The set of rules is divided into the two classes: elimination and introduction rules.
Rules of the first group allow us to simplify formulae to which they are applied.
These are rules for the ‘elimination’ of logical constants. Rules of the second
group are aimed at ‘building’ formulae, introducing new logical constants.

In Figure 2 we define the sets of elimination and introduction rules, where pre-
fixes ‘el’ and ‘in’ abbreviate an elimination and an introduction rule, respectively.

Elimination Rules : Introduction Rules :
A el 1:ANB A 1:A, i:B
e it A m i:ANB
A el i:AANB Vi it A
€2 i:B M AV B
Vel i:AV B, i:0A Vi i:B
€ i:B 2 AVB
el i:A= B, i:A o [i:C], i:B
c i:B o i.Cc=B
i:——A . [7:C), :B, :-B
mel i: A o j:C

Fig.2. PLT Ly p-rules for Booleans

— In the formulation of the rules ‘= in’ and ‘- in’ formulae [i: C] and [j: C]
respectively must be the most recent non discarded [3] assumptions occurring
in the proof. When we apply one of these rules on step n and discard an
assumption on step m, we also discard all formulae from m to n — 1. We will
write [m — (n—1)] to indicate this situation.

3.3 Rules for Temporal Logic

In the formulation of the set of elimination and introduction rules for temporal
operators we use the notions of flagged and relatively flagged label with the
meaning similar to the notions of flagged and relatively flagged variable in first
order logic [3]. By saying that the label, j, is flagged, abbreviated as — j, we
mean that it is bound to a state and, hence, cannot be rebound to some other
state. By saying that a variable i is relatively flagged (bound) by j, abbreviated
as j — ¢ we mean that a bounded variable, j, restricts the set of runs for ¢ that
is linked to it in the relational judgment, for example ¢ < j.

In Figure 3 we define elimination and introduction rules for the temporal logic
operators.

The condition VC(j : C ¢ M1) in the rules .;, U ., means that the
label j should not occur in the proof in any formula, C, that is marked
by M1.

Natural Deduction Calculus for Linear-Time Temporal Logic 61

Elimination Rules :
Introduction Rules :
i: A, i<y
Hel =5 e JiA Li24] jiAE ML
" i LA g, ji
i: QA VC(j:C & M1) , jiA, i<
Ol S A e |9 TRoa
) ' A, Next(i,i')
N Oin L& ZALT)
Oer BOA i s e :04
A .
Uin _uB
' :AUB
U i_z;lAu.]?'é “;f : V(’L(f :Ac.aj\f.l) i i:A, i':B, Next(i,i')
] J:b, J 25] ma ZAZ/{B
.. ilAB) < jIAB) 4IABl < b 4B U inge j:4, U:B, iX1, [=4 =21
el2 T A i:AUB
' where j:A g M1
=g, jri gl
Fig. 3. Temporal ND-rules
The condition j: A ¢ M1 in the rules 4, and U ;,, means that j: A is
not marked by M1.
* In O the conclusion i’: A is marked by Mj.
** In U .5 the expression ilAB] is used with the following meaning: a vari-
able 4 in the proof can be marked with [AB] if it has been introduced in
the proof as a result of the application of the rule U ¢ to i : AU B.
% In 4, formula ¢ < j must be the most recent assumption, applying the
rule on the step n of the proof, we discard ¢ < j and all formulae until
the step n.
* % +x% Applying the rule U ;,3 on the step n of the proof, we discard that

assumption, ¢ = j or j =< [, which occurs earlier in the proof and all
formulae until the step n.

In addition to these we also require the following Induction Rule:

where

Induction A i<] jiA= OA
;. A

— jJ:AE€ M1 and — j, j— i
— 4 = 7 must be the most recent assumption, applying the rule on the step n
of the proof, we discard 7 < j and all formulae until the step n.

62 A. Bolotov et al.

We also need the following obvious rules.

reflexivity transitivity ; O seriality

i< 1<k Next(i,q")

< <
O/ 2 New(i,iy /% i<y
i< i<

Definition 8 (PLTLyp proof). An ND proof of a PLTL formula B is a
finite sequence of PLTLnp formulae Ay, As, ..., A, which satisfies the following
conditions:

— every A; (1 < i< n) is either an assumption, in which case it should have
been discarded, or the conclusion of one of the ND rules, applied to some
foregoing formulae,

— the last formula, A, is x : B, for some label x,

— no variable - world label is flagged twice or relatively binds itself.

When B has a PLTLyp proof we will abbreviate it as Fyp B.
Now we give an example of the PLTL xp proof establishing that the following
formula is a theorem.

(p=Op)= @@= »p) (1)

The proof commences by the assumption that the left hand side of the implication
of (1), (p = Op), is satisfied in some arbitrary world corresponding to x.

l.z: (p= Op) assumption

2.x:p assumption

3.z =y assumption

4. y:p= Op ely 1,3

5.x: p Induction 2,3,4,— y,y — x,[3 — 4]
6.x:p= p =in 5,[2—5]

7.2: (p=0p)={pE= p =n,6,[1—6

At steps 2 and 3 we introduce two more assumptions which allows us at step 4
to apply the ; rule to formulae 1 and 3. The next step, 5, is the application
of the induction rule to formulae 2-4. Recall that applying the induction rule we
make the variable y flagged, which, in turn, makes z relatively bound. Also, at
this step we discard formulae, 3-4, starting from the most recent assumption, 3.
At the next step, 6, we apply the =, rule to 5 discarding formulae 2-5, and
the application of the same rule at step 7 gives us the desired proof. At this last
step, we discard formulae, this time from the most recent assumption, 1. Since
the last formula has the form z : (p = Op) = (p = p), and the set of
non-discarded assumptions is empty, we have obtained the PLT Ly p proof for
1. In the next section we give some more examples of PLT Ly p proofs.

Natural Deduction Calculus for Linear-Time Temporal Logic 63

4 Correctness

In this section we will establish meta-theoretical properties of the PLTLyp sys-
tem defined above. Namely, we will show that PLTLyp is sound (§4.1) and
complete (§4.2).

4.1 Soundness

Lemma 2. Let I' = {C},Cs,...,Cx} be a set of PLTL formulae such that ' =
{C1,Ca,...,Cr}, where each C; (1 < i < k) is j:C;, for some label j, is a set
of non-discarded assumptions which are contained in the PLTLyxp proof for a
PLTL formula B, at some step, m. Let A be a set of PLTLnp formulae in the
proof at step m such that for any D, D € A if it is obtained by an application of
some ND rule, and let A be a conclusion of a PLTLxp rule which is applied at
step m—+1. Let I'* consist of all assumptions from I that have not been discarded
by the application of this rule, the same for a set A*. Then if I'* is realisable in
a model o then A* U A is also realisable in o.

Proof. We prove this lemma by induction on the number of PLTLyp rules ap-
plied in the proof. Thus, assuming that lemma is correct for the number, n, of
the PLTLyp rules, we must show that it is also correct for the n + 1-th rule.

The proof is quite obvious for the rules for Booleans. We only show the most
interesting case where the rule of —;, is applied.

Case —n. Let 2 : A be an element of I” which is the most recent non-discarded
assumption in the proof. An application of the rule —;, at step m + 1 gives a
PLTLyp formula x : =A as a conclusion. This means that at some earlier steps
of the proof we have y : C' and y : =C. Here we should consider several subcases
that depend on the set to which these contradictory PLTLyp formulae belong.
We now prove the lemma for some of these cases. Subcase 1. Assume that both
y: C and y : ~C are in the set I™ but nor y : C' neither 3 : =C' coincides with
x : A. Then the statement that the realisability of I'* implies the realisability
of AU {z : =AY} is true simply because I'* is not realisable. Subcase 2. Assume
that both y : C and y : =C are in the set A. Then if the set I" realisable, the set
A should be realisable as well. But, as assumed, it is not. So, I" also can not be
realisable. Note that "= I U {xz : A}. It should be clear that if ™ is realisable
then also {x : = A} is. If we think of the set I" as an initial part of the proof,
then the set A* is empty after the deletion of the corresponding steps of proof.
In this case we are done.

Cases with the rules for temporal operators that do not require restrictions
on labels can be shown straightforwardly from the semantics. Let us consider
cases with the rules that require restrictions, for example, the rule >,

Case .. Let z: Q)A € A. We have to show realisability of A* U {j : A}
provided that realisability of I'* holds. Actually I = I" and A* = A in this
case. By induction hypothesis we know that realisability of I" implies realisability
of A. Then for a mapping f(z) = s;, we have (0,s;) = {A. From the latter,
according to the semantics, it follows that there exists a state si, (i < k),

64 A. Bolotov et al.

such that (o, si) = A. Now we can define a mapping f’, the extension of f, as
= fU{(J,sk)}. This mapping is correct because the variable j was not used
in the proof before, otherwise it should be flagged twice. So, the mapping f is
not defined for j. We can see that (o, f(j)) E A and the pair (4, j) satisfies the
criteria of Definition 6. Therefore, AU {j : A} is realisable.

(End)

Theorem 1 (PLTLyp Soundness). Let A, As, ..., Ax be a PLTLyp proof
of PLTL formula B and let I' = {C1,C5,...,Cy} be a set of PLTL formulae
such that I' = {C1,Ca,...,Cn}, where each C; (1 < i < n) is j:C;, for some label
J, is a set of discarded assumptions which occur in the proof. Then Enp B, i.e.
B is a valid formula.

Proof. Consider the proof Ay, As, ..., Ai for some PLTL formula B. According
to Definition 8, Ay has the form x : B, for some label x. In general, = : B belongs
to some set, A, of non-discarded PLTLyp formulae in the proof. By Lemma 2
we can conclude that realisability of I" implies realisability of A. But Iis empty
and, therefore, is realisable in any model and for any function f by Definition 6.
So A is also realisable in any model and for any function f. That is, any formula
that belongs to A is valid. In particular « : B is valid. (End)

4.2 Completeness

We will prove the completeness of PLTLyp by showing that every theorem of
the following axiomatics for PLTL [7,4] is a theorem of PLTLyp.

Axioms for PLTL (schemes).

Al. Schemes for classical propositional logic
A2. (A=B)=(A= B)

A3. O-A=-0A

A4, QA= O-A

A5. O(A=B)=(OA= OB)

A6. A=ANO A

AT. (A= 0A)= (A= A

A8. (AUB)= B

A9. (AUB)= (BV(ANO(AUB)))
A10. (BV(ANO(AUB))) = (AU B)

Rules:
FA FA +FA=1H
A B

To prove the completeness of PLTLyp we first show that every instance of
the scheme of the above axiomatics is a theorem of PLTL yp, and, secondly, that
given that the assumptions of the rules of the axiomatics have a PLTL xp proof
then so do their conclusions.

Natural Deduction Calculus for Linear-Time Temporal Logic 65

Lemma 3. FEvery instance of the scheme of the PLTL azxiomatics is a theorem
Of PLTLND .

Proof. Since PLTLyp extends the natural deduction system for classical propo-
sitional logic, all classical schemes are provable in PLTLyp by a simple modifi-
cation of classical proofs introducing a world label, say x, for any formula of a
classical proof [2].

Now we will present proofs for some of the PLTL schemes from Axioms 1-10
above. Note that, demonstrating how the system works, in §3, we have estab-
lished the PLT Ly p proof for the formula (1) which is an instance of Axiom 7.
Below we will provide proofs for the instances of Axioms 3 and 9.

Proof for an instance of Axiom 3. O—-p = —-Op

1.x: O-p assumption

2.2: Op assumption
3.2':—p 1, Oe, M1(2':—p)
4.2":p 2, Oe1, M1(a:p)
5. 2:-0Op 3,4, 7in, [2 — 4]

6.2: O-p=-0Op 6,=n,[1—5]

Proof for an instance of Axiom 9. (pUU q) = (¢V (p A O(pUq)))

l.x:plUq assumption
2.2:-(qV(pANOpUQ))) assumption
3.x:-gA(-pV-OpUq) classical, 2

4. x: ~q Nel 3
5.2:=pV-0O(pUq) Net 3

6.z =y Ueg, 1,4, —y,y—2x
T.x:p Uey 1,4

8.y:q Ue, 1,4

9.y=y reflexivity of =
10. y: pUq U in1,8

11.2: O(pUq) subproof

12. . : =O(pUq) Ver, 5,7
13.z:==(¢V(pANOpUq))) “in, 11,12,[2 — 12]
4. 2:qV(pAO(pUq)) el 13

15.2: (pUq) = (qV(pAO(pUQ))) =in,14,[1 — 14]

It is easy to establish the following proposition.

Proposition 1. Let Ay, Ao, ..., A, be a PLTLyp proof of a PLTL formula B.
Let B’ be obtained from B by substituting a subformula C of B by C'. Then
A, Ao, .. Ay, where any occurrence of C' is substituted by C” is a PLTLyp
proof of B'.

Hence by Proposition 1 and the proofs of the instances of PLTL axioms we
obtain the proof for Lemma 3.

(End)

66 A. Bolotov et al.

Lemma 4. If A has a PLTLyp proof then A also has a PLTLNp proof.

Proof. Consider some arbitrarily chosen theorem of PLTLyp, A, and let x and
y be the world variables that do not occur in this proof.

Now we start a new proof commencing it with the assumption that = A
(below, to make the proof more transparent, we will scorn the rigorous presen-
tation of PLT Lyp proof, writing metaformulae instead of the PLTL formulae
which can be justified based upon Proposition 1):

l.z:= A assumption
2.2:-A 1,- transformation
Smjy 27<>el7'_)yay'_)m

4. Yy _|A 2, Oel

At this stage we are coming back to the proof of A noticing that at the last step
of this proof we have a formula z : A (recall that z # = # y). In this proof of A
we do the following: change every occurrence of z to y. Obviously, we still have
a proof for A. Take this newly generated proof (say it has n steps) and write it
continuing steps 1-4 of the proof above. Thus, we obtain

l.z:= A assumption
2.2: A 1,4
3'7752/ 27<>ela’_)y7y'_>$
4. y: A 2,

5

(first formula of the proof for A)

n+5. y: A (last formula of the proof for A)

Hence we have a contradiction, steps 4 and n + 5, which enables us to apply the
—;n rule to obtain =— A at step n+6 and discard formulae from 1 to n, and
to derive A at the next step.

l.z:= A assumption

2. z: A 1,-

3ij 2v<>el7'_>yay’_)x

4. y: —A 27 <>el

5. (first formula of the proof for A)

n+5 y: A (last formula of the proof for A)
n+6. = A 4,n+5 -, [1—(n+5)
n+7. A —e, M+ 6

Since steps from 5 to n + 5 satisfy the conditions of the PLTLyp proof (for
A) and steps 1-4, n + 6 satisfy these conditions in the proof above, the whole
sequence of formulae from 1 to n+7 represents a proof for A. (End)

Natural Deduction Calculus for Linear-Time Temporal Logic 67

Lemma 5. If A= B and A have PLTLyp proofs then B also has an PLTLyp
proof.

Proof. Let the proofs for A = B and A have n and m steps respectively. Since
both are PLTL xp proofs we can rewrite these proofs such that they would have
completely different sets of the world labels. Let the last formula of the proof

for A= B be x: A= B. We commence constructing the PLTLyp proof for B
as follows:

1. (first formula of the proof for A= B)

n.x: A= B (last formula of the proof for A= B)

Now we can change to x the label that occurs at the last step of the proof for A
and continue the construction of the proof for B as follows.

n+ 1. (first formula of the proof for A)
n+m.z: A (last formula of the proof for A)
n+m+1.x2:B n,m+m, =

It is easy to establish that this proof, by its construction, satisfies the criteria
for the proof. (End)

Now we are ready to prove the completeness of PLTLyp.

Theorem 2 (PLTLyp Completeness). For any PLTLyp formula, A, if
Enp A then there exists a PLTLyp proof of A.

Proof. Consider an arbitrarily chosen theorem, A, of PLTL. By induction on n,
the length of the axiomatic proof for A, we now show that A also has a PLTLyp
proof.

Base Case. n = 1. In this case A is one of the schemes of the PLTL axiomat-
ics, and thus, the base case follows from Lemma 3.

Induction step. If Theorem 2 is correct for the proof of the length m, (1 <
m < n) then it is correct for the proof of the length m + 1.

Here the formula at the step m + 1 is either an axiom or is obtained from
some previous formulae either by generalisation or the modus ponens rules. The
proof for these cases follows from Lemma 4 and Lemma 5 respectively.

Therefore, given that A has an axiomatic proof it also has a PLTLyp proof.

(End)

5 Discussion

We have presented a natural deduction system for propositional linear time
temporal logic and established its correctness. To the best of our knowledge,

68 A. Bolotov et al.

there is only one other ND construction, in [11] for the full PLTL which is based
upon the developments in [15]. In Marchignoli’s construction, many rules such
as Vel, =in, in and rules for U, are formulated in so called ‘indirect’ fashion,
i.e. they allow us to transform some given proofs. From our point of view, these
rules are much more complex than the rules in our system, and thus would be
more difficult for developing a proof-searching procedure.

Although a proof-searching technique for this novel construction is still an
open, and far from being trivial, problem, we expect to incorporate many of the
methods previously defined for classical propositional and first-order logics.

The study of complexity of the method for both classical and temporal frame-
work, in turn, is another component of future research as well as the extension
of the approach to capture the branching-time framework.

References

1. L. Bachmair and H. Ganzinger. A theory of resolution. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 2. Elsevier, 2001.

2. A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov, and V. Shangin. Let Com-

puter Prove It. Logic and Computer. Nauka, Moscow, 2004. (In Russian).

3. A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order

natural deduction. In Proceedings of IICAI, pages 1292-1311, 2005.

4. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions

on Computational Logic (TOCL), 1(2):12-56, 2001.

. F. Fitch. Symbolic Logic. NY: Roland Press, 1952.

6. M. Fitting. First-Order Logic and Automated Theorem-Proving. Springer-Verlag,
Berlin, 1996.

7. D. Gabbay, A. Phueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.
In Proceedings of 7th ACM Symposium on Principles of Programming Languages,
pages 163-173, Las Vegas, Nevada, 1980.

8. G. Gentzen. Investigation into logical deduction. In The Collected Papers of
Gerhard Gentzen, pages 68—131. Amsterdam: North-Holland, 1969.

9. S. Jaskowski. On the rules of suppositions in formal logic. In Polish Logic 1920-
1939, pages 232—-258. Oxford University Press, 1967.

10. V. Makarov. Automatic theorem-proving in intuitionistic propositional logic. In
Modern Logic: Theory, History and Applications. Proceedings of the 5th Russian
Conference, StPetersburg, 1998. (In Russian).

11. D. Marchignoli. Natural Deduction Systems for Temporal Logic. PhD thesis, De-
partment of Informatics, Unviersity of Pisa, 2002.

12. F. Pfenning. Logical frameworks. In J. A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, chapter XXI, pages 1063-1147. Elsevier, 2001.

13. J. Polakow and F. Pfenning. Natural deduction for intuitionistic non-commutative
linear logic. In Proceedings of the 4th International Conference on Typed Lambda
Calculi and Applications (TLCA’99), Springer-Verlag LNCS, 1581, L’ Aquila, Italy,
April 1999.

14. W. Quine. On natural deduction. Journal of Symbolic Logic, 15:93-102, 1950.

15. A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, College of Science and Engineering, School of Informatics, University of
Edinburgh, 1994.

16. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

ot

A STIT-Extension of ATL

Jan Broersen', Andreas Herzig?, and Nicolas Troquard?

! Department of Information and Computing Sciences, Utrecht University
2 Institut de Recherche en Informatique de Toulouse

Abstract. A problem in many formalisms for reasoning about multi-agent sys-
tems, like ATL or PDL, is the inability to express that a certain complex action
(as in PDL), choice or strategy (as in ATL) is performed by an agent. However, in
so called STIT-logics, this is exactly the main operator: seeing to it that a certain
condition is achieved. Here we present an extension of ATL, introducing ideas
from STIT-theory, that can express that a group of agents A perform a certain
strategy. As a demonstration of the applicability of the formalism, we show how
it sheds new light on the problem of modelling ‘uniform strategies’ in epistemic
versions of ATL.

1 Introduction

The present paper introduces a so called ‘strategic STIT-operator’ in the framework of
ATL [1,2]. For those unfamiliar with the STIT-framework: the characters ‘STIT’ are
an acronym for ‘seeing to it that’. STIT logics [3, 4, 5] originate in philosophy, and can
be described as endogenous logics of agency, that is, logics of agentive action where
actions are not made explicit in the object language. To be more precise, expressions
[A stit : ¢] of STIT-logic stand for ‘agents A see to it that ¢’, where ¢ is a (possibly)
temporal formula. The main virtue of STIT logics is that, unlike most (if not all) other
logical formalisms, they can express that a choice or action is actually performed /
taken / executed by an agent. The aim of the present paper is thus to add this type of
expressivity to the ATL-framework. But not only do we want to add the standard STIT
expressivity, we intend to define a strategic version of STIT as an addition to ATL. This
enables us to express what it means that a group of agents performs / takes / executes a
certain strategy. ATL itself can only talk about the existence or ‘availability’ of certain
strategies, not that they are actually being performed.

We consider the definition of a semantics for a strategic version of STIT within the
ATL-framework as the main contribution of this paper. Indeed, within the community
working on the STIT framework of Belnap [3,4,5] and Horty [6], it is perceived as
an open problem how to define a suitable notion of strategic STIT. As a corollary the
semantics shows how we can make the implicit quantifications in the semantics of the
ATL operators explicit in the object language: the two central ATL operators will each
be decomposed into a strategy quantifier and a strategic STIT operator. To demonstrate
the applicability of the formalism, in section 4 we will discuss an extension with epis-
temic notions, and discuss the problem of ‘uniform strategies’. This has also been the
subject of [7], but section 4 adds in some new insights. Also the present paper differs

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 69-81, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

70 J. Broersen, A. Herzig, and N. Troquard

from [7] in that we introduce epistemic notions in a STIT-extension of the ATL frame-
work, whereas [7] introduces epistemic notions in the STIT framework. Furthermore,
here we deal with general strategies, where [7] only deals with one-step strategies.

Central to our approach will be to evaluate ATL-STIT formulas with respect to strat-
egy / state pairs. Tinkering with the units of evaluation has been suggested before in
the literature on ATL and STIT. Horty [6] indeed already suggests it to define a no-
tion of strategic STIT. Although Horty suggests two possible approaches, he circum-
vents the problem of actually giving definitions for the strategic STIT by syntactically
disallowing this operator to occur without an attached operator quantifying over his-
tories. Miiller [8] suggests evaluation with respect to strategies to deal with the notion
of continuous action within the STIT framework, and Jamroga and gnotes [9] suggest
to evaluate with respect to sets of worlds to solve the problem of uniform strategies in
epistemic ATL. We will discuss these related approaches in more detail in section 5.

In earlier work [10] we investigated the similarities between the ATL and STIT
frameworks. The present paper is a demonstration of our opinion that there can be
a fruitful exchange of techniques and ideas between both frameworks. The idea for
investigating strategic versions of STIT operators originates from Belnap (Horty [6]
mentions an unpublished manuscript) and Horty. Here we show how we can success-
fully define this concept in the ATL setting. An ensuing next step would then be to
transfer these ideas back to the STIT framework.

2 The Meaning of ‘Agents a Performing a Strategy’

First we need to explain that we think that ‘strategy’ seems not the best term for the
moment-to-action-functions defined in this paper. We feel it would be more in line with
established general Al terminology to call them ‘tactics’ or ‘conditional plans’. Strate-
gies are usually associated with choices for more abstract (sub-)goals, while tactics are
indeed more concrete (conditional) plans for reaching these goals. Yet, to adhere to es-
tablished terminology in both STIT theory and ATL, we will also refer to the conditional
plans as ‘strategies’.

An important conceptual first question is then what it exactly means to say that ’a
group is performing a strategy’. Is whether or not ‘a group is performing a strategy’
actually a sensible concept amenable to logical truth? For instance, in what sense can
it be true that ‘agent j, who is still at home, presently performs the strategy of going to
the railway station’? A strong intuition is that performing an action / choice is a local
matter concerning the present. The problem then seems to be that at any future point j
may reconsider his strategy. Half way to the railway station he may decide to go to the
cafe and have a beer instead. So how could we ever say that an agent is performing a
certain strategy presently if at any future point he may decide to deviate from it? Is it
not that all we can say is that an agent is committed to a certain strategy, thereby leaving
room for the possibility that an agent reconsiders his strategy?

Our answer is that the notion of commitment to a strategy actually presupposes a
notion of performing a strategy. How can we say that an agent is committed to go-
ing to the railway station (which, one way or the other, expresses a certain preference
for some strategies over others) if we cannot say what it means for the agent to actually

A STIT-Extension of ATL 71

perform going to the railway station? The same holds for strategic contents of epistemic
notions. For instance, if we want to say that we belief that agent A performs a certain
strategy, than first we have to know what it means that A performs a strategy. So, if we
do not accept ‘agent A is performing a strategy for ¢’ as a meaningful proposition, we
cannot accept ‘agent A is committed to performing a strategy for ¢’ and ‘agent B be-
liefs that agent A is performing a strategy for ¢’ as meaningful propositions either. The
conclusion then is that although it is maybe strange to think about the truth of propo-
sitions talking about performance of strategies as such, it is not at all strange to reason
with these propositions within the scope of motivational and epistemic modalities. Hu-
man agents do this all the time. Presently we are committed to performing the strategy
to finish writing this paper (in time), which presupposes that we know what it means
to actually perform this strategy. Also, we believe that president Bush is performing a
strategy of world destruction, which presupposes that it is clear what it means to be
performing such a strategy. So the notion of performing a strategy is not inherently
problematic. We reason with the notion all the time, and the present proposal defines a
semantics for it.

3 ATL-STIT

We present a STIT extension of ATL ([1,2]) using a non-standard, but concise and
intuitive syntax and semantics.

3.1 Core Syntax, Abbreviations and Intended Meanings

Definition 1. Well-formed formulas of the temporal language LTy .sTTare defined by:

e, =plogle Ay | Cap | Oap | [Aln [{(Adn
7,0, =¢U%

where ¢,, represent arbitrary well-formed formulas, 7,6, represent temporal
path formulas, the p are elements from an infinite set of propositional symbols ¥, and
A is a subset of a finite set of agent names E (we define A =4, £ \ A). We use the su-
perscript ‘ee’ for the until operator to denote that this is the version of ‘the until’ where
¢ is not required to hold for the present, nor for the point where ¥, i.e., the present and
the point where ¢ are both excluded. The operators Os¢ and ©4¢ are universal and ex-
istential quantifiers over strategies, respectively. The STIT operators [A]n and (A)n are
read as ‘agents A strategically see to it that 7 and ‘agents A strategically allow the pos-
sibility for 77’, respectively. The combined operator G4[A]n is read as ‘Agents A have a
strategy that ensures 7° (this is the ‘classical’ ATL operator, usually written as ((A))n),
and the dual O4(A)n is read as ‘A have no strategy to avoid that possibly 7°. A more
precise explanation of the intended semantics is as follows:

Oap : there is a strategy (for the set of agents A, from the current state) such that ¢
Oa¢ : for all strategies (of the set of agents A, from the current state) ¢

The intended interpretations for the new strategic STIT operators are:

72 J. Broersen, A. Herzig, and N. Troquard

[Al(@U*y) : agents A perform a strategy that, whatever strategy is taken by
agentsA, ensures that eventually, at some point m, the condition
will hold, while ¢ holds from the next moment until the moment
before m

(A)(@U*Y) : Agents A perform a strategy giving agents A the possibility to
perform a strategy such that eventually, at some point m, the
condition ¢ will hold, while ¢ holds from the next moment until the
moment before m

We use standard propositional abbreviations, and also define the following operators as
abbreviations.

Definition 2.
[A1Xg =4er [AI(LU*) (A)Xp =aer (AN(LU*p)
[AlFp =g.r [AI(TU*p) (AYFp =qer (LANTU*p)
[A1Gp =ger ~(AYF g (A)Gy =4 ~[AlF—¢
[AN@UY) =uer [Al(@U*(p A) AX@UY) Zger {AN@U (@ A)
[AN QU y) =ger ~(AN U —p) AX@UnY) Zgey (AN U —gp)

The informal meanings of the formulas are as follows (the informal meanings in com-
bination with the (A) operator follow trivially):

[AlXp : agents A strategically ensure that at any next moment ¢ will hold
[AlF¢ : agents A strategically ensure that eventually ¢ will hold
[A]Ge : agents A strategically ensure that ¢ holds henceforth

[Al(@eU®) : agents A strategically ensure that, eventually, at some point the
condition ¢ will hold, while ¢ holds from the next moment until then

[Al(@U:y) : agents A strategically ensure that, if eventually will hold, then ¢
holds from the next moment until then, or forever otherwise

Note that all STIT formulas refer strictly to the future. Also, for instance, a formula
like [A]Gy saying that ¢ holds henceforth, does not imply that ¢ holds now.

Alternatively, we could have taken [A]JeU and [A]Gy as the basic operators of
our langauge, which would enable us to define (A)¢U°Y in terms of them. A similar
choice appears for the definition of related logics like ATL and CTL. However, we
prefer the symmetry of the present setup, and we think the semantics of the new weak
STIT operator (A)pU“y deserves a definition in terms of truth conditions.

3.2 Model Theoretic Semantics

We use alternating transition systems (ATSs) for the semantics. Goranko and Jamroga
[11] argue that to define the semantics of ATL, multi-player game models (MGMs)
provide more intuitive semantic representations in many examples. However, ATSs are
closer to the models used for STIT logics. And actually we do not fully agree that
ATSs are better than MGMs as semantic structures for ATL. We believe it is better not

A STIT-Extension of ATL 73

to decorate semantic structures with superfluous information. For instance, in MGMs
the actions have explicit names. However ATL is an endogenous temporal formalism
where the strategies (which can be seen as conditional plans) are not explicit in the
object language. So, ATL is not, so to say, ‘aware’ of the actions names. We will come
back to this point in section 4.2.

The assumption behind ATSs is that agents have choices, such that the non-
determinism of each choice is only due to the choices other agents have at the same
moment. Thus, the simultaneous choice of al agents together, always brings the system
to a unique follow-up state. In other words, if an agent would know what the choices of
other agents would be, given his own choice, he would know exactly in which state he
arrives.

Definition 3. An ATS M = (S,C,n), consists of a non-empty set S of states, a total
function C : EXS 22 yielding for each agent and each state a set of choices
(informally: ‘actions’) under the condition that the intersection of each combination
of choices for separate agents gives a unique next system state (i.e., for each s, the
Sfunction RX(s) = {(\ Ch, | Ch, € C(a, s)} yields a non-empty set of singleton sets

ack
representing the possible follow-up states of s), and, finally, an interpretation function

7 for propositional atoms.

Note that from the condition on the function C it follows that the choices for each
individual agent at a certain moment in time are a partitioning of the set of all choices
possible for the total system of agents, as embodied by the relation R™* = {(s,s") |
s € S and {s"} € RX(s)}. And, also note that this latter condition does not entail the
former. That is, there can be partitions of the choices for the total system that do not
correspond to the choices of some agent in the system. Now we are ready to define
strategies relative to ATSs.

Definition 4. Given an ATS, a strategy a, for an agent a, is a function a, : S +— 25
withVs e S : a,(s) € Cla, s), assigning choices of the agent a to states of the ATS.

In semantics for ATL, strategies are often defined as mappings @, : S* + 25, from
finite sequences of states to choices in the final state of a sequence. However, to interpret
ATL, this is not necessary, because ATL is not expressive enough to recognize by which
sequence of previous states a certain state is reached (but ATL* is). More in particular,
without affecting truth of any ATL formula, we can always transform an ATS into one
where R is tree-like. On tree structures it is clear right away that a mapping from
states to choices in that state suffices, since any state can only be reached by the actions
leading to it. We come back to this point in section 4.

Definition 5. Strategy functions «a, for individual agents a are straightforwardly com-
bined to system strategy functions ag : S X E — 25 for the full set of agents E. Then
ag(s,a) yields the choice of agent a in state s determined by the system strategy ap.
However, central to our semantics will be partial strategy functions ay : S x E + 25,
where A C E. These functions are partial in the sense that no choices are defined for
the agents A. For B C A we use the notation a4 | g to denote the partial strategy function
that is the restriction of the partial strategy function a, to the domain of agents B (note

74 J. Broersen, A. Herzig, and N. Troquard

that ap [a= @a). Furthermore, for AN B = 0, we use au |Bp to denote the minimal
Jjoined partial strategy function build from as and Bp such that (aa|Bp) [a= @4 and

(aa | Br)IB= BB

As said, if in a given state all agents in the system have fixed their choice, a unique next
state is determined by the intersection of all choices. Analogously, if all agents in the
system have fixed a strategy, from any given point, a unique infinite path into the future
is determined by the intersection of all choices in the strategies. We use this in the next
definition.

Definition 6. Given a system strategy ag, we define the follow up function Fo, : S — S

as the intersection of all choices for individual agents, that is, Fo,(s) = () ag(s,a).
acE
Then, by (F,,)"(s) we denote the unique state that results from state s by taking n steps

of the system strategy ag

Now we are ready to define the formal semantics of the language L1y _sTiT- The
essential new aspect of this semantics is that it evaluates formulas with respect to strat-
egy / state pairs. For a given fixed ATS, the set of all possible strategies for any group
of agents A is well defined. So technically there is no problem with evaluation against
strategy / state pairs. The pairs of an ATS form a two-dimensional modal structure, with
group strategies and (impersonal) moments constituting the two ‘axis’. As is customary
for multi-dimensional possible world structures, we have modal operators interpreted
on individual dimensions only: the strategy quantification operators $4¢ and D¢ are
interpreted on the dimension of strategies, relative to a fixed moment, and the temporal
STIT operators [A]pUy and (A)¢pU“y are interpreted on the moments, relative to a
fixed strategy.

But then the question remains: why should we want to evaluate against strategy /
state pairs? It is clear that we want to give semantics to the strategic STIT operators.
Truth of such operators cannot be determined with respect to states or moments alone,
since in general, at the same moment, agents have a choice between several strategies.
If we really want to give meaning to an operator that enables us to express that it is
true that an agent, or group of agents performs a strategy, we have to take the possible
strategies as units of evaluation. Then, with group strategies as abstract possible worlds,
through evaluation in such worlds we can determine whether or not it is true that a group
of agents strategically see to something.

Definition 7. Validity M, aa, s = ¢, of an ATL-STIT-formula ¢ in a strategy / state pair
(aa, s) of an ATS M = (S,C, n) is defined as:

M,aa, sEp o s e n(p)

M, ap, s E - o not M,as, sE ¢

Maag, sE@AY o Mas,sEpand M,ap, s E W

M, aq, s E Opp < ABp such that M, B, s E ¢

M, @, s E Opep & VB it holds that M, Bg, s E ¢

M, aq, s E [BloU“Yy & VB, it holds that An > O such that
(D M, @a, (Fo,)"(s) E ¥ and A
(2) Viwith0 <i<nwehave M,aa,(Fo,) (s) E ¢
where ag is defined as: ap = @alans | Bsng

A STIT-Extension of ATL 75

M, aa, s E(BYPUY < IB,5 and In > 0 such that
(D) M, s, (Fo,)"(s) E ¢ and ,
(2) Viwith0 < i <nwehave M, a4, (Fo,)'(s) E ¢
where ar is defined as: ap = aalans |Banp

Validity on an ATS M is defined as validity in all strategy / state pairs of the ATS. If
@ is valid on an ATS M, we say that M is a model for ¢. General validity of a formula
@ is defined as validity on all possible ATSs. The logic ATL-STIT is the subset of all
general validities of Laty._sTiT 0ver the class of ATSs.

Note that due to the constraints on ATSs, if an atomic proposition is evaluated true
on a strategy / state pair, all strategy / state pairs with the same state, will also have to
evaluate to true, because for atomic propositions assignment of truth values is indepen-
dent of the strategy. In Horty and Belnap’s STIT formalisms atomic propositions can
have different valuations at the same moment, depending on what history they are. In
our setting, only formulas referring strictly to the future can evaluate to different values
for the same moment, depending on the strategy with respect to which they are evalu-
ated. We might say that in Horty’s formalisms choices may affect the present, while our
choices may only affect the strict future (both frameworks assume it makes no sense to
account for choices affecting the past).

The most important aspect of the above definition is the truth condition for the STIT
operators. Note that we evaluate the STIT operator [B]n for a group of agents B with
respect to a strategy for another group A. The truth condition expresses exactly in what
sense the group B may see to it that 77 in a strategy of group A, namely, exactly if 7 is
guaranteed by the agents in the intersection of both groups. This exploits the intuition
that if a subgroup of agents sees to it that 7, all supergroups also see to it that 7. Now
we show that ATL is a fragment of the logic ATL-STIT.

Theorem 1. The logic ATL is the fragment of the logic ATL-STIT determined by the
definitions ((A))1) Zqer GalAln and [[A]]n Zaer Oa(AD.

Proof. We show that for this fragment, the valuation of formulas becomes ‘moment
determinate’, that is, for all strategy / state pairs with the same state (moment), they
evaluate to the same truth value (see Horty [6] for further explanation of this termi-
nology). First note that the truth condition for the combined (‘fused’, as Horty calls it)
operator <4 [A]n, reduces to the following moment determinate truth condition.

M, ay, s = OalAlpU*Y < IB4 such that Yy, it holds that 3n > 0 such that
(D) M. a4, (Fp,),)"(s) = ¢ and '
(2) Viwith 0 < i < n we have M, @a, (Fp,|y,)'(s) E ¢

This truth condition is completely independent of the strategy a4. For similar reasons
the truth condition for the combined operator O4(A)7n is moment determinate. Now no-
tice that also all other formulas of the sub-language determined by ({(A))17 =4.; CalAln
and [[A]]17 =4y Oa(A)n are moment determinate. This means the quantification over all
strategy / state pairs in the definition of validity gives the same result when performed
only with respect to all states (moments). It is not too difficult to see that we thus arrive
at a concise, but correct semantics for ATL.

76 J. Broersen, A. Herzig, and N. Troquard

Proposition 1. The logic of the operators Oag is S5 for every set A.

This is due to the fact that S5 is sound and complete for equivalence classes. The ac-
cessability relation for the modal operator O4 is the relation connection alternative A
strategies. For any given model the ‘alternative relation’ forms a fixed equivalence class.
As a consequence we have validities such as

F [Aln — OalAln

saying that if agents A strategically see to it that 77, indeed they have the ability to do so,
and

F Oa{A)n — (A)n

saying that if for all strategies it is the case that agents A may encounter 7, they cur-
rently perform a strategy where they possibly encounter 7. It also follows that nesting of
operators Oy and 4 is not meaningful, since it is well-known that nested S5 formulas
can be replaced by logically equivalent non-nested formulas.

Proposition 2. The operators Oa¢ obey the interaction axioms:
E Oap — OpOagp

E Oap — Oplag

Below we list only a few more validities. Possible complete axiomatizations for the
present logic are still under investigation.

Proposition 3. Additionally, we have the following validities and non-validities.

E [Aln — [BlnforAC B
E(An — (B)nforA2 B
E [AlXe A [BIXy — [AU BIX(¢ A Y)
E(AUBX(@AY) = (A)Xp V(B)XY

Note that for the third validity, we do not need the condition of sets A and B being
disjoint, as in the axiomatizations of CL [12] and ATL.

4 Epistemic ATL-STIT

As a demonstration of the applicability of the formalism, we extend it with epistemic
modalities. We interpret the epistemic modalities using epistemic indistinguishability
relations over over strategy / state pairs. The resulting fine-grained epistemic structures
enable us to shed new light on the problem of so called ‘uniform strategies’.

4.1 Basic Definitions

First we extend the language of ATL-STIT with an operator K,¢ for agent a knows ¢,
an operator E4¢ for agents A all know that ¢, an operator D4¢ for agents A would know
that ¢ if they would exchange all their knowledge, and an operator C4¢ for agents A
commonly know that ¢.

A STIT-Extension of ATL 77

Definition 8. Well-formed formulas of the temporal language Lg a7y ..STIT are defined
by:

o, =pl@leAY K| Exp | Dag| Cap | Oag | Oag | [Aln | (A)y
777 07 :: ¢Ueel//

To accommodate epistemic reasoning, we want to define S5 indistinguishability rela-
tions over the units of evaluation, that is, strategy / state pairs. However, we have to
be careful. As pointed out before, in for instance [13], adding epistemic indistinguisha-
bility relations to arbitrary ATSs leaves room for ambiguity: in particular, what is the
epistemic status of an action leading from one state to another one that is epistemically
indistinguishable? Should we interpret this as the agents not being able to recall the
action? Or do they recall the action, but only do not know the resulting and originating
state? To avoid this ambiguity, we can better add epistemic relations to ATSs that are
trees.

Definition 9. An ATS M = (S,7,n) is an ATS where the function T is such that the
system relation R™* is a tree.

Now note that on the subclass of tree-ATSs, the definitions of section 3.2 result in
exactly the same logic ATL-STIT. This is because any ordinary ATS can be unravelled
into a tree-ATS that is modally indistinguishable.

Now we can add the epistemic indistinguishability relations for separate agents. This
results in a most general setup for the semantics of E-ATL-STIT, where beforehand
nothing is determined about whether agents recall their actions or not: if there is an
epistemic indistinguishability relation between two subsequent states of a fixed strategy,
the agents cannot recall having done that action, but if there is not such a relation, they
can.

Definition 10. We extend models M = (S,7,n) to models M = (S,Ra, T, 7). The
relation R, for individual agents a is an equivalence relation over strategy / state pairs

(aa, 9).

We can define any of the multi-agent versions of knowledge, that is, distributed (or
implicit) knowledge, shared knowledge (everybody knows) and common knowledge
(reflexive transitive closure of shared knowledge), in terms of the indistinguishabil-
ity relations over strategy / state pairs for the individual agents. In the standard way,
we extend the truth definitions with the following clauses for the (group) knowledge
operators.

Definition 11.

M, aa, s E Kyp © Y(Bp, 1) with (as, $)R.(Bg, t) it holds that M, B, t E ¢
M, aa, s E Exp © Y(Bp, 1) with (a4, s)(U R.)(BB, 1) it holds that M, Bp,t E ¢
M, s, s E Dap © Y(Bp, t) with (aa, s)(ﬂ R.)(Bp, 1) it holds that M, Bp,t E ¢

M, aq, s E Cap © Y(Bp, 1) with (s, s)((U R)*)(Bg, 1) it holds that M, B, t = ¢

78 J. Broersen, A. Herzig, and N. Troquard

The above proposal for adding the epistemic dimension is very general. Clearly it results
in an S5 logic for individual agent knowledge, while leaving the sub-logic of ATL-STIT
in tact. Of course several intuitive extra relational properties can be considered, leading
to specific interaction properties. However, for our discussion on uniform strategies,
below, the definitions suffice.

4.2 The Problem of Uniform Strategies

The most discussed problem for epistemic additions to ATL discussed in the literature
(ATEL [14]), is the problem of so called ‘uniform strategies’. We briefly recall the
problem by means of the cards example from [13] (which we slightly adapt). There
is a deck of three cards, A, K and Q. There is a somewhat unconventional order on
these cards, where A beats K, K beats Q, but Q beats A. Now consider two gambling
agents a and b who each get a card from the dealer. Before a showdown occurs, agent
a is given the choice to swap his card with the one remaining on the dealers deck.
Apparently due to the incompleteness of his knowledge a does not know a winning
strategy. He does not know the card still in the deck, but depending on what this card
is, he either has to swap or not in order to win. Structures of ATEL equip ATSs with
epistemic indistinguishability relations between states (moments). Now it is perceived
as counterintuitive that in the ATEL structures we can draw for this little game, at the
moment corresponding to the decision point of agent a, it is true that K,({a))win. This
holds since the agent cannot distinguish the state where he has the winning card from
the state where he has the loosing card, but whichever state he is in, it has a guaranteed
possibility to win if it chooses the right strategy in the right state. However, the truth
of this formula is perceived as counterintuitive since one is tempted to believe that it
expresses that a has a single ‘uniform strategy’ for winning, that is, a strategy that
guarantees a win irrespective of the state the agent is in.

But it appears to us that if we stay faithful to the intended meaning of the opera-
tors involved, the formula is not counterintuitive: it exactly expresses what is the case,
namely that agent a knows that there is a strategy to win. Indeed that does not imply
that he knows what strategy to apply, which, in this case, is exactly the only reason
why he cannot ensure the win. So, the problem appears to be that one is tempted to
read something in the formula that is not there, namely, that the agent knows a uniform
strategy for winning. Maybe the present formalism, that decomposes the standard ATL
operators in two separate modal operators, enables us to see that more clearly.

However, an ensuing problem is that one indeed would like to have a way of express-
ing that an agent, or group of agents does not know what the current state is, while at
the same time they do know (or do not know) how to win. In the above example, the
agent a did not know how to win. We would like to have a formula corresponding to
that fact. In ATEL [14] we cannot express that. But the present formalism, with its more
fine grained epistemic structures, enables us to express this directly as =<, K, [alwin,
that is, a has no single strategy for which he knows he is guaranteed to win. We can-
not find an equivalent formula in ATEL, because ATEL’s semantic structures are not
fine-grained enough in two respects. First, because in ATEL, evaluation is only with
respect to states, it cannot give semantics to the decomposition of the ATL operator
((A))n into O4[A]n, and second, because epistemic indistinguishability relations are

A STIT-Extension of ATL 79

defined over states, it cannot give semantics to the notion of an agent knowing a strat-
egy.

Then the question is, does this solve the problem of so called ‘uniform strategies’
as formulated in the literature? That depends on how one looks at it. Actually it is not
completely clear to us what in the context of ATSs, should be understood by a ‘uni-
form strategy’. The notion of ‘uniform strategy’ comes from game theory [15]. But
game theory is different from logic in that it studies the properties of game structures as
such, that is, independent of a logical language like ATL to be interpreted over them. In
game structures the choices have action names. ATL, and also STIT-ATL are endoge-
nous temporal formalisms that cannot express anything related to the action names of
game structures. And in particular those action names have been associated to the no-
tion of ‘uniform strategies’. Uniform strategies have been described as strategies where
the ’same actions’ are performed from different states to ensure a certain property. If
actions have names, the same actions can be defined as actions having corresponding
names. The present proposal does not solve the problem of uniform strategies inter-
preted in this sense. We believe, solutions would require an exogenous language, where
in one way or the other there is reference to the names of actions in the object lan-
guage. However, in a weaker sense the present proposal does solve the problem. In
ATSs actions are identified with what they bring about. Then, typically, single strate-
gies take different actions from different states. And it is also the other way around:
taking two different strategies in two different states may mean that one performs the
same actions. Now, if ‘knowing a uniform strategy for ¢, without possibly knowing the
current state’ is defined as "knowingly seeing to it that ¢, without possibly knowing
the current state’, the present proposal does offer a solution to the problem of uniform
strategies.

Generalizing the idea in [7] we can express that there is an A-strategy, where the
agents A commonly know that they ensure 7 as:

OaCalAln

Agents A commonly knowing the existence of a strategy (without knowing whether
they actually perform the strategy) is expressed as:

CaCalAln

Note that in the first of the above formulas, for the concept of ‘a group of agents
A knowingly performing a strategy’, we used that the agents have common knowledge
that they perform the strategy. We thus defined this concept as C4[A]n. In our opinion
distributed knowledge or shared knowledge is not enough. For instance, me and a friend
can only knowingly follow a strategy of meeting in Paris someday if I know that he
knows, and I know that he knows that I know, etc.

5 Related Research

Horty ([6] p. 151) explains that it is not that easy to generalize the standard STIT frame-
work where evaluation is with respect to moment / history pairs, to the strategic case.

80 J. Broersen, A. Herzig, and N. Troquard

In general, more than one strategy may be compatible with the same moment / history
pair. Horty’s first suggestion is then to implicitly quantify over all strategies that cor-
respond to a given moment / history pair. His second suggestion is much closer to the
solution proposed in this paper (note that here we assume the close relatedness between
the STIT-framework and the ATL-framework we explored in [10]). Horty suggests to
evaluate formulas with respect to ‘state / history / history-set’ triples (where the history
is an element of the history-set), and to define the semantics of his strategic STIT oper-
ator [A cstit : ¢] (agents A strategically see to it that ¢) as there being a strategy «, such
that the history-set equals the histories admitted by the strategy, and ¢ being true on
all these histories. Our proposal differs from this proposal on three points. First, for the
present ATL-setting we do not see the need to include the history in the units for evalu-
ation. Second, we think it is better to simply see the strategies themselves as part of the
units of evaluation. We explicitly need this in our discussion of uniform strategies in
section 4.2. Finally, we believe Horty’s definition fails to model the important property
that if a set of agents sees to something, any superset also sees to that same something.
This property follows from our definition as the result of taking the intersections in the
truth conditions for [A]y and (A)e.

Using ideas similar to ours Miiller [8] defines a semantics for the notion of ‘contin-
uous action’ in the STIT framework. Like us, Miiller suggests to take up strategies as
elements in the units over which to evaluate formulas. To be more precise, Miiller eval-
uates with respect to ‘context-state / state / history / strategy’ quadruples. His notion
of ISTIT (is seeing to it that), is then defined, roughly, as truth on all histories admit-
ted by the strategy. Although the idea to take up strategies in the units of evaluation
is similar, other aspects of the approach are quite different. That is not too surprising,
since Miiller’s aim is an ISTIT operator, while we aim at a strategic STIT operator. Also
Miiller does not aim at defining a multi-agent variant of his operator. More in particular,
his strategies are always single agent strategies. In our setting, the problem of dealing
with multi-agent strategies is central.

Finally, also Jamroga and gnotes [9] suggest to change the units of evaluation. Aim-
ing at solving the problem of uniform strategies in ATEL, they suggest to evaluate for-
mulas with respect to sets of states. However, their approach is much further removed
from our approach than Horty’s or Miiller’s.

6 Conclusion

This paper extends ATL with strategic STIT operators. We argued that the evaluation
with respect to strategy / state pairs is essential for a logic that aims to reason about
decisions that are fixed for groups of agents. Here the decisions are to take a particular
strategy. Also we discussed the problem of uniform strategies, and explained how our
formalism can be seen as a partial answer to that problem.

There are many possible applications of this extended formalism. We discussed some
preliminary investigations in the epistemic realm. Another route of investigation is the
extension with deontic operators. One of the reasons STIT logics are popular in de-
ontic logic is that they are the best formalism around to model the fourth sentence
of Chisholm’s infamous benchmark scenario for deontic formalizations [16]. To add

A STIT-Extension of ATL 81

deontic expressivity, we may consider several options. For instance, Wansing [17] has
suggested to model personal obligations imposed by one agent onto the other by iden-
tifying this with ‘agent a sees to it that agent b is punished if he does not comply to
his obligations’. This approach can incorporated in the present framework very well.
Another option is simply to define a deontic accessibility relation over strategy / state
pairs, like we did for the epistemic indistinguishability relation.

References

10.

11.

12.

14.

15.

16.
17.

. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: FOCS ’97:

Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS
’97), IEEE Computer Society (1997) 100-109

. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal of the

ACM 49(5) (2002) 672-713

. Belnap, N., Perloff, M.: Seeing to it that: A canonical form for agentives. Theoria 54 (1988)

175-199

. Belnap, N., Perloff, M.: Seeing to it that: A canonical form for agentives. In Kyburg,

H.E., Loui, R.P,, Carlson, G.N., eds.: Knowledge Representation and Defeasible Reasoning.
Kluwer, Boston (1990) 167-190

. Belnap, N., Perloff, M., Xu, M.: Facing the future: agents and choices in our indeterminist

world. Oxford University Press (2001)

. Horty, J.: Agency and Deontic Logic. Oxford University Press (2001)
. Herzig, A., Troquard, N.: Knowing How to Play: Uniform Choices in Logics of Agency.

In Weiss, G., Stone, P., eds.: 5th International Joint Conference on Autonomous Agents &
Multi Agent Systems (AAMAS-06), Hakodate, Japan, ACM Press (2006) 209-216

. Miiller, T.: On the formal structure of continuous action. In Schmidt, R., Pratt-Hartmann,

I., Reynolds, M., Wansing, H., eds.: Advances in Modal Logic. Volume 5., King’s College
Publications (2005) 191-209

. Jamroga, W., gotnes, T.: Constructive knowledge: what agents can achieve under incomplete

information. Technical Report IfI-05-10, Institute of Computer Science, Clausthal University
of Technology, Clausthal-Zellerfeld (2005)

Broersen, J., Herzig, A., Troquard, N.: From coalition logic to stit. In: Proceedings LCMAS
2005. Electronic Notes in Theoretical Computer Science, Elsevier (2005)

Goranko, V., Jamroga, W.: Comparing semantics of logics for multi-agent systems. Synthese
139(2) (2004) 241-280

Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation
12(1) (2002) 149-166

. Jamroga, W., Hoek, W.v.d.: Agents that know how to play. Fundamenta Informaticae 63(2)

(2004)

Hoek, W.v.d., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time tempo-
ral epistemic logic and its applications. Studia Logica 75(1) (2003) 125-157

Neumann, J.v., Morgenstern, O.: Theory of games and economic behaviour. Princeton Uni-
versity Press (1944)

Chisholm, R.: Contrary-to-duty imperatives and deontic logic. Analysis 24 (1963) 33-36
Wansing, H.: Obligations, authorities, and history dependence. In Wansing, H., ed.: Essays
on Non-classical Logic. World Scientific (2001) 247-258

On the Logic and Computation of Partial Equilibrium
Models

Pedro Cabalar?, Sergei Odintsov?, David Pearce®, and Agustin Valverde® *

! Corunna University (Corunna, Spain)
cabalar@udc.es
2 Sobolev Institute of Mathematics (Novosibirsk, Russia)
odintsov@math.nsc.ru
3 Universidad Rey Juan Carlos (Madrid, Spain)
davidandrew.pearce@urjc.es
4 University of Malaga (Mélaga, Spain)
a valverde@ctima.uma.es

Abstract. The nonmonotonic formalism of partial equilibrium logic (PEL) has
recently been proposed as a logical foundation for the partial stable and well-
founded semantics of logic programs [1,2]. We study certain logical properties
of PEL and some techniques to compute partial equilibrium models.

1 Introduction

The well-founded semantics (WFES) of [16] and the closely related semantics of partial
stable models [12] are among the most established approaches to dealing with default
negation in logic programming. Until recently however their logical foundations re-
mained largely undeveloped. Now in [1,2] a nonmonotonic formalism called partial
equilibrium logic has been proposed as a foundation for the partial stable (p-stable) and
well-founded semantics. The main idea is to identify a (non-model) logic that is ad-
equate for WES in the sense that its minimal models (appropriately defined) coincide
with the p-stable models of a program. The logic in question is based on 6-valued truth
matrices and can be considered as a semantic generalisation of the logic HT' of here-
and-there that has been used to capture the stable model semantics [8]; accordingly we
denote it by HT?2. Just as equilibrium models correspond to the stable models of pro-
grams, so partial equilibrium models correspond to the p-stable models defined in [12].
While the underlying models of HT and HT? are different, in each case the equilib-
rium construction is similar, based on defining certain total models that are minimal.
In previous work, [1, 2], partial equilibrium logic (PEL) was defined and the corre-
spondence between p-equilibrium and p-stable models was established. The logic H T
was axiomatised and completeness proved. Analogous to the case of equilibrium logic,
it was shown that the strong equivalence of theories wrt PEL can be captured by equiv-
alence in the logic HT. In addition, some properties of nonmonotonic entailment in
PEL and its complexity were studied as well as a method for reducing PEL to ordinary
equilibrium logic. The aim of this paper is to examine further logical and computational

* This research was partially supported by CICyT project TIC-2003-9001-C02.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 82-94, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

On the Logic and Computation of Partial Equilibrium Models 83

issues associated with p-equilibrium models and their underlying logics: HT? and the
logic of total HT? models, which we denote by HT*. Specifically we provide a proof
theory for PEL by presenting tableau calculi for the logics HT' and HT™ as well as
for p-equilibrium model checking. The calculus for HT? is of independent interest as
a means for checking the strong equivalence of theories. We also axiomatise the logic
HT™ and discuss its relation to other logics such as Przymusinski’s Przs [13]. Lastly
we consider the method of splitting alogic program, a familiar technique for optimising
computation under the stable model semantics [5, 3]. In particular we derive a splitting
theorem for disjunctive and nested logic programs under PEL.

2 Logical Preliminaries: The Logics HT?2 and PEL

We introduce the logic HT? and its semantics, given in terms of HT? frames, and we
define partial equilibrium logic (PEL) in terms of minimal H7T? models. Formulas of
HT? are built-up in the usual way using atoms from a given propositional signature At
and the standard logical constants: A, \VV, —, =. We write £(At) to stand for the set of
all well-formed formulae (ie, the language) under signature At. A set of HT? formulae
is called a theory. The axiomatic system for HT? is described in two stages. In the first
stage we include the following inference rules:

* a—f (Modus Ponens) «—f3
ﬁ _'/6 — X

plus the axiom schemata of positive logic together with:
Al. ma A =5 — =(aV () A2. (e — a) — A3. =(aAfB) = ~aV -4

Thus, both De Morgan laws are provable in HT?2. Moreover, axiom A2 allows us to
define intuitionistic negation, ‘—’,in HT? as: —a = a — —(py — Po).

O‘V(Bamﬂ) and the axioms schemata:

In a second stage, we further include the rule
A4, —aV——a«
AS. —aV(a— (BV(B—(vV-7)
Ab. /\?:o((ai = V) = V) — \/?:0 @i
A7. a— -«
A8. aA-a— -GV -0
A9. —aN-(a—f) = "«
A10. ——aV =BV a(a— F)V-(a— fF)
All. ——a A0 = (a— B)V (6 — «)

HT? is determined by the above inference rules and the schemata A1-A11.

Definition 1. A (Routley) frame is a triple (W, <,), where W is a set, < a partial
order on W and x : W — W is such that x < y iff y* < x*. A (Routley) model is
a Routley frame together with a valuation V ie. a function from At x W — {0,1}
satisfying (1): V(p,u) =1 & u<w = V(p,w)=1

84 P. Cabalar et al.

The valuation V' is extended to all formulas via the usual rules for intuitionistic (Kripke)
frames for the positive connectives A, V, — where the latter is interpreted via the <
order:

V(e — ¢, w) =1 iff forall w’ such thatw < w’', V(p,w')=1=V(y,w') =1

The main difference with respect to intuitionistic frames is the presence of the
operator that is used for interpreting negation via the following condition:

V(mp,w) =1 iff V(p,w*)=0.

A proposition g is said to be true in a model M = (W, < %, V), if V(p,v) = 1, for all
v € W. A formula ¢ is valid, in symbols |= ¢, if it is true in every model. It is easy to
prove by induction that condition (1) in Definition 1 above holds for any formula ¢, ie

Vie,bu) =1 & u<w=V(p,w) =1. ()

Definition 2 (H7T? model). An HT? model is a Routley model M = (W,<,R,V)
such that (i) W comprises 4 worlds denoted by h,h',t,t', (ii) < is a partial ordering
on W satisfying h < t, h < h', k' <t andt < t, (iii) the x operation is determined
byh* =t*=t, (V) = (') =t (iv) V is a-valuation.

The diagram on the right depicts the <-ordering among worlds

!/
(a strictly higher location means >) and the action of the - map- 2;\
ping using arrows. /
Truth and validity for HT? models are defined analogously t=< h'
to the previous case and from now on we let |= denote the truth
(validity) relation for H7T"? models. We have the following com- h

pleteness theorem!:

Theorem 1 ([1]). = ¢ iff ¢ is a theorem of HT?.

2.1 HT? as a 6-Valued Logic

Now, consider an HT? model M = (W, <.* V) and let us denote by H, H', T, T’ the
four sets of atoms respectively verified at each corresponding point or world i, b’ ¢, t'.
More succinctly, we can represent M as the pair (H, T') so that we group each pair of
unprimed/primed world as H = (H, H') and T = (T,T7"). By construction, each of
these pairs I = (I, I') satisfies I C I’, so that I can be seen as a 3-valued interpretation.
Given I and an atom p, we use the values {0, 1,2} to respectively denote p € I, p €
I'\Tandp & I'. As we have two pairs like this, (H, T, the possible “situations” of a
formula in HT? can be defined by a pair of values zy with z,y € {0, 1,2}. Condition
(1) restricts the number of these situations to the following six 00 := @, 01 :=
{t'}, 11:= {1, t'}, 02:={t,t'}, 12:= {I/,¢,t'}, 22 := W where each set shows
the worlds at which the formula is satisfied. Thus, an alternative way of describing HT?
is by providing its logical matrix in terms of a 6-valued logic. As a result, the above

! The first stage alone defines a logic complete for the general Routley frames.

On the Logic and Computation of Partial Equilibrium Models 85

setting becomes an algebra of 6 cones: AZT” := ({00,01, 11,02, 12,22}, V, A, —, -
where V and A are set theoretical join and meet, whereas — and — are defined as
follows: z —» y:={w:w<w = (W ez=w €y}, -z:={w:w* ¢z}

The only distinguished element is 22. The lattice structure of this algebra can be
described by the condition zy < 2t < x < z & y < t and is shown in Figure 1,
together with the resulting truth-tables.

22 o - — 00 01 11 02 12 22
00 22 00 22 22 22 22 22 22
12 01 11 01 00 22 22 22 22 22
PN 11 11 11 00 02 22 02 22 22
11 02 02 00 02 00 11 11 22 22 22
N S 12 00 12 00 01 11 02 22 22
01 22 00 22 00 01 11 02 12 22

00 V(¢ Ay) =min{V(¢), V() }, V(e V) = max{V(¢),V(¥)}

Fig. 1. Lattice structure and truth tables for the 6-valued H'T? description

2.2 Minimal Models and Relation to Logic Programs

The truth-ordering relation among 3-valued interpretations Iy < I is defined so that I;
contains less true atoms and more false ones (wrt set inclusion) than I. Note that by
the semantics, if (H, T) is a model then necessarily H < T, since it is easy to check
that this condition is equivalent to H C T and H' C T". Moreover, for any theory IT
note that if (H, T) |= IT then also (T, T) = II.

The ordering < is extended to a partial ordering < among models as follows. We
set (Hy, T1) < (Hy, To) if (i) Ty = To; (i) Hy < Hs. A model (H, T) in which
H = T is said to be total. Note that the term fotal model does not refer to the absence of
undefined atoms. To represent this, we further say that a total partial equilibrium model
is complete if T has the form (7, T).

We are interested here in a special kind of minimal model that we call a partial
equilibrium (or p-equilibrium) model. Let II be a theory.

Definition 3 (Partial equilibrium model). A model M of II is said to be a partial
equilibrium model of II if (i) M is total; (ii) M is minimal among models of 11 under
the ordering <.

In other words a p-equilibrium model of IT has the form (T, T) and is such that if
(H,T) is any model of IT with H < T, then H = T. We will sometimes use the
abbreviation T = IT to denote that (T, T) is a p-equilibirum model of theory I1. Partial
equilibrium logic (PEL) is the logic determined by truth in all p-equilibrium models of
a theory.

We turn to the relation between PEL and logic programs. A disjunctive logic program
is a set of formulas (also called rules) of the form

arAN...Naypm A—by A A=b, — 1 V... Ve)

86 P. Cabalar et al.

where the a, b, ¢ with subscripts range over atoms and m, n, k > 0; for the definition of
the p-stable models of a disjunctive logic program 11, see [12].

Theorem 2 ([2]). A total HT? model (T, T) is a p-equilibrium model of a disjunctive
program 11 iff the 3-valued interpretation 'T is a p-stable model of 11.

We define a further partial ordering on total models by (T, Ty) < (T2, Ts) if both
Ty C Ty and Ty C TY. Then we say that a total HT'? model that is <-minimal among
the p-equilibrium models of a theory I is a well-founded model of I'. This terminol-
ogy is justified by the fact that if I7 is a normal logic program, the unique <-minimal
p-equilibrium model of I/ coincides with the well-founded model of I7 in the sense
of [16]. In the general case, however, an arbitrary PEL theory may have several well-
founded models, or even no well-founded model at all.

The notion of strong equivalence for logic programs was introduced in [6] and logi-
cally characterised for the case of programs under stable model semantics. The study of
strong equivalence, its generalisations and computation, has since become a lively re-
search area, with potential for application to program optimisation. Until now there was
no analogous research programme for p-stable and WF semantics. A basis is provided
however by Theorem 3 below and several extensions proved in [2].

Definition 4 ((strongly) equivalent theories). Two theories II,II' are said to be
(PEL)-equivalent or simply equivalent (resp. strongly equivalent), in symbols II = IT'
(resp. II =, II'), iff they have the same p-equilibrium models (resp. iff for any T,
nur=Ii'ur).

Theorem 3 ([1]). Two theories II, II' are strongly equivalent iff they are HT? equiva-
lent, ie have the same HT? models.

This provides added interest in computational proof systems for HT2.

2.3 Complexity of Reasoning in HT? and PEL

We denote by SAT¢p, and V AL¢ the classes of satisfiable formulas and valid formu-
las respectively in classical logic, and S AT 2 and V AL 72 the classes of satisfiable
formulas and valid formulas respectively in HT? logic.

Theorem 4 ([2]). (i) SAT g2 is NP-complete and V AL g2 is coNP-complete; (ii)
the problem of deciding whether a formula in HT? has partial equilibrium models is
XP hard.

Corollary 1 ([2]). (i) The problem of checking the strong equivalence of theories is
coNP-complete. (ii) The decision problem for equilibrium entailment is I1% -hard.

3 The Logic of Total Models

Total models play an important role in the definition of PEL since p-equilibrium models
are a special kind of total model. We describe the logic of total models.

On the Logic and Computation of Partial Equilibrium Models 87

First note that total models can be distinguished among all HT2-models via the
scheme ——p — . Foran HT? model M = ((H, H'), (T, T")) = (WHT® V), set
AY = {p: V(p,w) =1}

for w € WHT”, Obviously, H S AM, H' D AN, etc. We omit the superscript M if
it does not lead to confusion.

Proposition 1. The following items are equivalent:

1. (H,T) |= =—p — ¢ forany ¢,
2. H=T,
3. Ay = Ay and Ay = Ay

Let us set HT* := HT? + {=—p — p}. From the last proposition, it follows that
the number of possible situations of a formula in a total H7?-model is reduced to the
following three, 00 :=), 11 := {h/,¢'}, 22 := {h,h/,t,t'}, where each set shows
the worlds at which the formula is satisfied. Thus, logic HT™ can be characterised
by the three-element algebra: A#7" := ({00,11,22},V, A, —, =) with the only dis-
tinguished element 22 and operations determined as the restrictions of the respective
operation of the algebra A% T* It is routine to check that the set {00, 11,22} is closed
under A#7T” operations.

At the same time, HT™* differs from Przymusinski’s logic Przs [13] as well as from
N3 [15, 10], classical explosive logic with strong negation. All these logics are three-
valued and the operations V and A determine the structure of a linearly ordered lattice
on the set of truth-values. If we denote the least truth-value in all these logics by 00,
the greatest by 22, and the intermediate by 11, we see that all the logics have the same
connectives -, V, A, but different implications:

— g7+ 00 11 22 —nN, 0011 22 — przy 0011 22
00 222222 00 222222 00 222222
11 002222 11 222222 11 002222
22 001122 22 001122 22 000022

Comparing HT™* and N3 we note the following
Proposition 2. HT* S N3, ~(p — q) < (pA—q) ¢ HT™.

For the comparison of HT™ and Przs, recall that the language of Przs contains also
the necessity operator [({22 = 22, [x = 00 otherwise) and — p,.., can be defined via
-, V, Aand [: © = prz; = (Dl VIY) A (Rl V i-p).

At the same time, [y can be defined in HT™ as —(p — g+).

Proposition 3. Logic Przs is definable in HT™. a
A simple axiomatisation of H7T™ modulo the basic logic N* is given by the following
Propositiond. HT™* = N*+{pV (p—q)V —q, p < ==p, pA=p — qV ~q}.

Proof. In fact, the proof of these statement is a simplified version of the completeness
proof for HT? in [1].

88 P. Cabalar et al.

Thus, we obtain HT™ by extending the intuitionistic fragment to /7" and adding the
elimination of double negation and the Kleene axiom. Despite the fact that 7™ and
HT have the same intuitionistic fragment, they have different negations and HT* #
HT. We can obtain HT from HT? in the following way.

Proposition 5. The addition to HT? of axiom (I) = ~p A\ ¢ — L, is equivalent to the
conditionT =T, O

Proposition 6. The addition to HT? of De Jongh and Hendrik’s axiom (used to obtain
HT from intuitionistic logic), (dJH) = oV (¢ —)V — is equivalent to the condition:
T,H € {H,T'}.

Proposition 7 (reductionto HT). HT = HT? U (I)U (dJH).

4 A Tableau Calculus for PEL

We can describe a tableaux system for HT? using the standard methods for finite-
valued logics [4, 10]. The formulas in the tableau nodes are labelled with a set of
truth-values, named signs, and these signs are propagated to the subformulas using the
expansion rules. The family of the signs depends on the logic in question and it is pos-
sible to describe several tableaux systems for the same logic. For HT? we will use the
following signs, where [> v] = {w € 6 | w > v}, and [< v] ={w € 6 | w < v}:

{00}, {01}, {11}, {02}, {22}, {01, 11}, [< 01],[< 11],[< 12], [> 01], [> 02], [> 12]

The usual notions of closed and terminated tableaux can be used in different ways.
In the following definition we introduce the concept of closed tableau in order to char-
acterise validity in HT?.

Definition 5. Let ¢ be a formula in HT?:

1. The Initial tableau to check the validity of p is: Ty = [<12]:¢

2. If T is a tableau and T" is the tree obtained from T applying one of the expansion
rules in figure 2, then T' is tableau for .

3. A branch B in a tableau T is called closed if one of the following conditions hold:
(i) it contains the constant L; (ii) it contains signed literals, s::p,...,S,:p, such that
N?_1S; = @. A tableau T is called closed if every branch is closed.

Intuitively, with the initial tableau [<12]: we ask if it is possible to find an assignment
for ¢ that evaluates in [< 12], in other words a countermodel. The expansion rules
search for ways to evaluate the subformulas so as to define the countermodel.

Theorem 5 (Soundness and completeness of the tableaux system). The formula ¢ is
valid in HT? if and only if there exists a closed tableau for it.

On the Logic and Computation of Partial Equilibrium Models 89

{22}:0p = U {00}:p — [<01]:p —

{00}:¢p {22}:1) [<01]:p [<12]:p {11} {02}:¢p [>01]:¢p [>01):¢0 [>12):¢p
[>01]:%) [>12):9) {11}:2) {02}:9) {o0}:9p {00}:9) [<01):9)
[Zo1l:p — ¥ (<120 =0
2y oy [ZOUP U0 (1139 {0250 (21250 [2126 (22):0
{00}:%) [<01]:9) {02}:2) {01,11}:2) [<11]:0) {02}:4) [<12):
{1y — ¥ {0230 — ¥

[>12]:p —
[2021:0 {11k {11} [>12):¢p

{00}:p >12:1) [<01]:p {11}:¢p {02}:0 {o2}:p
[>01:9) {11} {02}:¢p {0111} {11}:%) {01}:0) {02}:¢) {02}:0)
{or,11kp = {01k — <110 — P [>02):p —
[>02]:¢p [>121:p [>01]:0 [>02]:¢p {22}:p [>02:1) {01,11}:¢
{01,11}:9) {01}:%) {00} [<11]:9) {01,11}:2)
{01}~ {02}:m¢ {22} [>12:7¢p [>02]: ¢ {00}
1 1 {00}:¢p {00}:¢p {00}:¢p [>02]:p
[01:7¢p [S11]:¢ (<127 [>01]:7¢p {11}~ {01,11}: ¢
[>02]:p [>01]:p [>01):¢p [<111:p {o1,11}:¢p {01,11}:¢0
[(>vl:0 At
Forve {00,11,12): S o forn € {01,02,12,22): (v
[Sol:p [0t
[Zv):t)
{01h:0 A {11k AU {02}:0 A
{02}:0 [>02]:0

{11k {1139 [212:p
{1139 [212]:0) {11}:9) [>02):) {02}:%)
[<01l:p A tp

{01}:p [>01:p {11}:0 {02}:¢0
[>01]:) {01}:%) {02}:4) {11}:9)
{01,11}:¢0 A ¢
(01,11} [201):0 [<011:¢p [<011) {11}:¢p {02}:¢p
[(>01):1) {01,11}:0) {02}:0) {11}:)
[<ulp VY
, , . e VY
Forv € {00,01,11,12}: (<ol 5 forwv € {01,02,22}: (elip (3ol

(<o)t
{01}:0 V¥ {11} VY {02}:0 V
[<o1]:p {o1}:p [S11):p {11} [<01):p {02}:0 {02}
{0119 [<o1]:p {1y (<11 {0231 [<01]:1) {0239
{o1,11}:0 V ¥ >12]:0 V

[>12]:p [>12]:) {11}:p {02}:0

{01,11}:¢p [<11]:p
{0219 {11319

<112 {01,11}:9)

Fig. 2. Expansion rules for HT?

[<11):p — P {00}:p —

(225 = ¥ (>11}p — ¥
{00}:0 {22} [<11):¢p (00} [>11)0 [>11]: {22}:¢p [(>11]:p
[>11):9) - {227 [<11):9) {00}:9p
[(>11]:0p (<11} {00}:mp {22}
[<11]:0 [(>11]:0 {22} {00}:¢0

For v € {00, 11, 22}:

>ol:0 A <v]:p V

(<ol A L[lfww L[]fww >0 V 2
<wvl: <v]: =7 =vE >v): >wol:
(<ol (<ol (o) (<o}t (2ol [(2o)9

Fig. 3. Expansion rules for total models of HT?, ie. for HT™*

90

P. Cabalar et al.

4.1 Partial Equilibrium Models

Tableaux systems can also be used to study additional properties and relations [10, 11].

In

this section we define a system based on auxiliary tableaux in order to generate the

partial equilibrium models of a theory. We proceed in two phases. First, we generate
the total models of a theory by means of a tableau system in which we search for a
terminated tableau. Then, for every total model, an auxiliary tableau is constructed to
check whether the model in question is in partial equilibrium or not.

The total assignments evaluate formulas in {00, 11,22} and thus we only need to

work with the following system of signs: [< 11] = {00, 11}, [< 00] = {00}, [> 11] =

{1

1,22}, [> 11] = {22}.

Definition 6. Let IT = {1, ..., ¢, } a theory in HT?:

1.

2.

The Initial tableau fo generate total models is a single branch tree containing the
following signed formulas: {22}:p1,...,{22}:p.

If T is a tableau and T" is the tree obtained from T by applying one of the expansion
rules in figure 3, then T is tableau for ¢. As usual in tableaux systems for propo-
sitional logics, if a formula can be used to expand the tableau, then the tableau is
expanded in every branch below the formula using the corresponding rule, and the
formula used to expand is marked and is no longer used.

. A branch in a tableau T is called closed if the signed literals for a variable p,

51D, .., SmiD, Verify N S; = @. It is call open otherwise.

. A branch in a tableau T is called finished if it doesn’t contain non-marked formu-

las.

. A tableau T is called closed if every branch is closed, and it is terminated if every

branch is either closed or finished.

In this case the tableau begins with formulas signed with 22, since we are looking for

models. The expansion rules guarantee the construction of all possible models in such
a way that when all formulas have been expanded, all the models can be determined on
the basis of open branches.

{22}:(-p — qVr)/
|
223:(pVr)v/
- Y

{o0}: (—p) v 221:(qVr)v/ {00,11}: (—p) v/
{22}:p {22}:p {22}:p {11722}:(q\|/r)/
(221:p {2217 {22 {22h7 {221 {22h7 {22:D {2217

{11,22}:p {11,22}:p

{11,22}:q {11,22}:7 {11,22}:q {11,22}:7T

Fig.4.

On the Logic and Computation of Partial Equilibrium Models 91

Theorem 6. Let T be anon-closed terminated tableau for I, and let {5::p1, . . . , Su:pn }
be the set of signed literals in an open branch. Then every assignment V verifying
V(pi) € Si, for all i, is a total model of . Moreover, all the total models of II are
generated from T in this way.

Example: (Taken from [2]) The figure 4 shows the tableau for the theory IT = {-—p —
qVr,pVr}

The tableau is finished and allows us to construct the set of total models of 17, as
shown in the following table:

010203040506 07 08 09 010 011 012 013 014 015
p222222222222222222 11 11 11 00 00 00
q222222111111000000 22 11 00 22 11 00
r221100221100221100 22 22 22 22 22 22

Auxiliary tableau to check the partial equilibrium property. A total model is in
partial equilibrium if there is no other model of the theory less than it under the partial
ordering <. In terms of the many-valued semantics, this ordering is defined between
assignments based on the following relations between truth-values: 01111, 02<112<122.
To look for such a model we construct an initial tableau specifically for each total model
by applying the expansion rules in figure 2.

Definition 7. Let ¢ be a formula in HT? and V' a total model of it.

1. The Initial tableau fo check the partial equilibrium property of V' for ¢ is a single
branch tree containing the following signed formulas: {22}:p, {00}:p for every p
such that V (p) = 00, {o1,11}:p for every p such that V (p) = 11, and {02,12,22}:p for
every p such that V (p) = 22.

2. If T is a tableau and T' is the tree obtained from T applying one of the expansion
rules in figure 2, then T' is .

3. A branch B in a tableau T is called V-closed if one of the following condition
holds: (i) it contains the constant L; (ii) it contains signed literals, s::p,..., S.:p,
such that N}'_, S; = &; (iii) all the formulas in the branch have been expanded and,
for every variable p, it contains signed literals, s::p,..., S.:p, such that N}_,S; =
{Vip)}

4. A tableauT is called V -closed if every branch is V -closed.

Adding literals of the form {o1,11}:p, {02,12,22}:p or {00}:p, depending on the initial
tableau, requires that models be evaluated in a particular form; specifically we force
models derived from the tableau to be less than V. Nevertheless, we know that one
model will always be found, V' itself, and therefore we include one more condition on
closure: a branch closes if V. is the only model generated.

Theorem 7. Let V be a total model of . V' is a partial equilibrium model of II if and
only if there exists a V-closed tableau for p.

In the figure 5 we show that, for the previous example, the model oy is a partial equi-
librium model; observe that the leftmost branch closes because V' is the only model

92 P. Cabalar et al.

{02,12,22}:p
{00}:q

{00}:7
|
(22:(-p = qV 1)V
\
223:(pVr)/

100}: (mp)v {223:(q V) v {00,01}: (—p) {<12}:(—p) 1y (p)v {02y (—p)V
‘ PN | \ \ I
{02,12,22}: P {223:p{22y:r {>01::(qVr)V {>123:(qVr)/ {113:(qVr)/ {023 (gVr)/
{22}:p {22}:7 {22}:q {22}:7 {22}:p {22}:7 {22}:p {22}:7 {01,11}:D L
X X X X PN X N X X X
(011 {20117 {Z12}:q {>12):T"
X X X X
{01,11}:p
{00}:q
{02,12,22}: T

223:(-p—qVr)/
|
22y:(pVr)v/
_————
{00}: (mp) v {223: (¢ V)V {00,01}: (—p) {<12}:(—p) {11}:(—p) {02}:(—p)
| | | |
{02,12,22}:p {22}:p {22}:7 {>01}:(q V1) {>12}: (¢ V 1) {11}: (¢ V 7) {02}: (¢ V 1)
X X

{22}:q {22}:7
X

Fig.5.

generated, while all other branches close due to inconsistencies provoked by the three
signed literals added to the initial tableau. In the second tableau in the same figure we
check that the model o2 is not a partial equilibrium model.

5 A Splitting Theorem for PEL

The previous tableau calculus offers a general method for satisfiability testing in HT?
and PEL, given any arbitrary theory. When we restrict the syntax to (some class of)
logic programs, we usually expect, however, that simpler computation methods can
be applied. Consider for instance the case of disjunctive logic programs. As shown
in [2], PEL also coincides with p-stable models for this syntactic class. Maintaining the
same minimisation criterion, we may easily get that a disjunctive program yields several
well-founded models (even no well-founded model at all), and the typical incremental
algorithm for computing WFS for normal programs is not applicable. However, it is

On the Logic and Computation of Partial Equilibrium Models 93

still possible to apply a form of incremental reasoning if we can divide or “split” the
program into blocks without cyclic dependences among them. As an example, consider
the simple program I1y = {pVq} which yields two p-stable models (also well-founded),
making p true and ¢ false in one case, and vice versa. Now, assume we have the enlarged
program IT; = ITy U{—r Ap — r,¢ A =p — s,—s — s}. It seems natural to use this
second set of formulas to compute atoms 7 and s, once p and q are still fixed by the rule
in 1. This technique is called “splitting” and was first introduced in [5] for the case of
stable models. We now establish a similar result for PEL in the more general syntactic
case where theories are sets of implications.

Given a pair T = (T',T") and a set of atoms U, we denote T|y = (T'NU, T NU).
We apply a similar notation for theories too. If I7 is some theory in language £(V'), and
U C V, then we write IT|;; to stand for set of formulas I7T N £(U). We respectively call
bottom and top to the subtheories I7 |y and IT\ I |y .

Definition 8 (Splitting set). Given a set of implications II on signature V, a subset
U C V is called a splitting set for II if for all (p — o) € II\II|y, ¢ € £V\U). O

Theorem 8 (Splitting theorem). Let 11 be a set of implications, U a splitting set for
IT and T a pair (T, T") of sets of atoms T C T'. Then T = IT iff both (i) T|y k |y
and (i) T ke IT', being IT" := (II\II|v)

u(TNU) 3)
U{-p|peU\T'} 4)
U{p—ulpe (I'\T)NU} 5)

The previous theorem is completed with the following result. Let us denote by IT[¢/p]
the replacement in theory /7 of any occurrence of atom p by the formula ¢.

Theorem 9 (Replacement theorem). For any theory Il and any model M:

(i) M IIU{p} iff M = I[T /p|U{p}
(i) MEITU{-p} if M H[L/p]U{-p}
(iii) M = 1T U {p < u} iff M = II[u/p] U {p < u}

Returning to the example program IT;, U = {p, q} is a splitting set dividing IT; into
the bottom I1y and the top I1:\Ily. As we saw, Il has two p-equilibrium models:
T, = ({p}, {p}) and T2 = ({¢}, {q}). Now, fixing T, we consider the theory IT" =
IT)\IIp U {p} U {—q} which, by the replacement theorem, is equivalent to {—r A T —
r,L A=T — s,7s — s,p,q}. After some trivial simplifications, this amounts to
{-r — r,ms — s,p,—q} whose unique p-equilibrium model is defined by T3 =
({p}, {p,r, s}). Following similar steps, when fixing T we finally get the program
{s,—s — s, ¢, —p} with the only p-equilibrium model Ty = ({q, s}, {q, s}).

6 Concluding Remarks

Partial equilibrium logic (PEL) provides a foundation and generalisation of the p-stable
semantics of logic programs and hence is arguably also a suitable framework for study-
ing the well-founded semantics of programs. In this paper we have extended previous

94

P. Cabalar et al.

results on PEL by further examining its underlying logics HT? and HT*, and pre-
senting tableaux proof systems for HT?, HT* and for PEL itself. As a contribution
to the computation of PEL in the case of disjunctive and nested logic programs, we
have shown how to apply the splitting method of [5, 3]. Further optimisation of these
computational techniques is a topic for future work.

References

1.

2.

11.

12.

13.

14.

15.

16.

P. Cabalar, S. Odintsov & D. Pearce. Logical Foundations of Well-Founded Semantics in
Proceedings KR 2006, AAAI pp. 25-35.

P. Cabalar, S. Odintsov, D. Pearce & A. Valverde. Analysing and Extending Well-Founded
and Partial Stable Semantics using Partial Equilibrium Logic. in Proceedings ICLP 06,
Springer LNALI to appear.

. S. T. Erdogan & V. Lifschitz. Definitions in Answer Set Programming. V. Lifschitz & 1.

Niemela (eds), Proc. ICLP 04, Springer, LNAI 2923, 2004, 114-126.

. R. Hihnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International

Series of Monographs on Computer Science. Oxford University Press, 1994.

. V. Lifschitz & H. Turner. Splitting a Logic Program. in P. van Hentenryck (ed), Proceedings

ICLP 94, MIT Press, 1994, 23-37.

. V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Trans-

actions on Computational Logic, 2(4):526-541, October 2001.

. V. Lifschitz, L.R. Tang, and H. Turner. Nested expressions in logic programs. Annals of

Mathematics and Artificial Intelligence, 25(3—4):369-389, 1999.

. D. Pearce. A new logical characterisation of stable models and answer sets. In Proc. of

NMELP 96, LNCS 1216, pp. 57-70. Springer, 1997.

. D. Pearce. Equilibrium Logic. Ann. Math & Artificial Int., 2006, to appear.
. D. Pearce, I.P. de Guzman, and A. Valverde. A tableau calculus for equilibrium entailment.

In Proc. of TABLEAUX 2000, LNAI 1847, pp. 352-367. Springer, 2000.

D. Pearce and A. Valverde. Uniform equivalence for equilibrium logic and logic programs.
In Proc. of LPNMR’04, LNAI 2923, pp. 194-206. Springer, 2004.

Przymusinski, T. Stable semantics for disjunctive programs. New Generation Computing 9
(1991), 401-424.

Przymusinski, T. Well-founded and stationary models of logic programs. Annals of Mathe-
matics and Artificial Intelligence 12:141-187, 1994.

R. Routley and V. Routley. The Semantics of First Degree Entailment. Nots, 6, 335-359,
1972.

D. Vakarelov. Notes on constructive logic with strong negation. Studia Logica, 36: 8§9-107,
1977.

A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for
general logic programs. JACM, 38(3):620-650, 1991

Decidable Fragments of Logic Programming
with Value Invention

Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni

Dipartimento di Matematica, Universita della Calabria, I-87036 Rende (CS), Italy
{calimeri, cozza, ianni}@mat.unical.it

Abstract. The issue of value invention in logic programming embraces
many scenarios, such as logic programming with function symbols, ob-
ject oriented logic languages, inter-operability with external sources of
knowledge, set unification. This paper introduces a framework embed-
ding value invention in a general context. The class of programs having
a suitable (but, in general, not decidable) ‘finite grounding property’ is
identified, and the class of ‘value invention restricted’ programs is in-
troduced. Value invention restricted programs have the finite grounding
property and can be decided in polynomial time. They are, in a sense, the
broadest polynomially decidable class having this property, whenever no
assumption can be made about the nature of invented values (while this
latter is the case in the specific literature about logic programming with
function symbols). Relationships with existing formalisms are eventually
discussed; in particular, value invention restricted programs subsume w-
restricted programs and are incomparable with finitary programs.

1 Introduction

The notion of ‘value invention’ has been formerly adopted in the database field
(see e.g. [1,2]) for denoting those mechanisms aimed at allowing to introduce
new domain elements in a logic based query language. Indeed, applications of
logic programming often need to deal with a universe of symbols which is not
a priori known. We can divide these demands in two main categories: (i) ‘Con-
structivist’ demands: the majority of logic programming languages has indeed
the inherent possibility to build new symbols from pre-existing ones, e.g. by
means of traditional constructs like functional terms. Manipulating and creating
complex data structures other than simple constant symbols, such as sets, lists,
is also a source of value invention. Also, controlled value invention constructs
have been proposed in order to deal with the creation of new object identifiers
in object oriented deductive databases [3]. (ii) ‘Externalist’ demands: in this
setting, non-predictable external sources of knowledge have to be dealt with.
For instance, in the Semantic Web area, rule based languages must explicitly
embrace the case where ontologies and the universe of individuals is external
and not a priori known [4], or is explicitly assumed to be open [5].

Whatever popular semantics is chosen for a rule based logic program (well-
founded, answer set, first order, etc.), both of the above settings are a source of
undecidability difficult to cope with.

M. Fisher et al. (Eds.): JELIA 2006, LNAT 4160, pp. 95-110, 2006.
© Springer-Verlag Berlin Heidelberg 2006

96 F. Calimeri, S. Cozza, and G. Ianni

Top down solvers (such as SLD solvers), do not usually address this issue,
and leave to the programmer the burden of ensuring termination. Also, the
programmer needs a good knowledge of the evaluation strategy implemented
in her adopted system, since termination is often algorithm dependent. Bottom
up solvers (such as DLV or Smodels for the Answer Set Semantics [6,7]), and
in general, languages derived from Datalog, are instead conceived for ensuring
algorithm independent decidability and full declarativity.

To this aim, the implementation of such languages relies on the explicit choice
of computing a ground version of a given program. In a context where value
invention is explicitly allowed, grounding a program against an infinite set of
symbols leads to an infinite ground program which cannot be built in practice.

The paper adopts the notion of VI programs, which are logic programs en-
riched with the notion of external predicate [8]. External predicates model the
mechanism of value invention by taking input from a given set of values and
returning (possibly newly invented) values. These latter are computed by means
of an associated evaluation function (called oracle).

In [8] we proved that, although assuming as decidable the external functions
defining oracles, the consistency check of VI programs is, in general, undecidable.

Thus, it is important to investigate on nontrivial sub-classes of decidable
programs. This problem is not addressed satisfactorily in the above paper, which
is mainly focused on the operational and declarative properties of the framework
and its technical realizability. Indeed, a very strict safety condition for granting
decidability of VI programs is therein given.

The contributions of the paper are overviewed next:

— We introduce a safety condition defining the class of ‘value invention restricted’
(VI-restricted, in the following) programs. This class enjoys the finite ground-
ing property, characterizing those programs that can be computed with a finite
ground program. Decidability of consistency checking is thus ensured (Section 4).
— The VI-restrictedness condition is less restraining than previously introduced
syntactic restrictions (such as w-restricted programs [9] or semi-safe programs
[8]). The programmer is thus relieved from the burden of introducing explicit
syntactic modifications. However, VI-restrictedness can be checked in time poly-
nomial in the size of the non-ground program (Section 5).

— The above condition is generic: no assumption is made on the structure of
new invented symbols. Indeed, VI programs embed settings such as programs
with function symbols, programs with sets (in general logic languages with a
generalized notion of unification), or with external constructs (Section 6).

— VI-restricted programs subsume the class of w-restricted programs [9]. Finitary
programs [10], a class of programs with answer set semantics and function sym-
bols, are not directly comparable with VI-restricted programs. Also, our former
definition of semi-safe programs [8] is subsumed (Section 7).

— Our framework relies on the traditional notion of ground program. Thus, results
about VI-restricted programs can be be adapted to semantics other than Answer
Set Programming, such as the Well-Founded Semantics.

Decidable Fragments of Logic Programming with Value Invention 97

2 DMotivating Example

The Friend of a Friend (FOAF) [11] project is about creating a Web of machine-
readable homepages describing people, the links between them and the things
they create and do. It is an RDF/XML Semantic Web vocabulary. Each person
P stores its FOAF ontology portion at some url U.

In order to reason on this vocabulary, a rule based logic language would need
some special construct for importing this external knowledge. The aim of this
language is anyway to keep decidability and declarativity. So it is important not
to rely on an operational semantics for the language. In this spirit, [4] introduces
a form of external predicates, very similar to ours.

Imagine we want to perform the transitive closure of the relation of knowledge
among people, starting from the homepage of a given person. Let’s suppose to
have an external predicate called “#rdf” which allows us to access a FOAF
ontology located at URL:

#rdf (URL, Object1, Relation, Objects).

We first collect a set of homepages. In order to avoid wrong information we
can accept only a restricted subset of somehow trusted urls. Then we simply
encode the transitive closure as usual, exploiting the knowledge provided by
the collected pages. Let the starting homepage be “myurl”; thus, the following
program implements what described above.

trusted(X,U) — #rdf(“myurl”, X, “trusts”,U). (1)
url(X,U) «— #rdf(“myurl”, X, “seealso”,U), trusted(X,U). (2)
url(X,U) «— wrl(,U1), #rdf (U1, X, “seealso”,U), trusted(X,U). (3)
connected(X,Y) — wrl(X,U), #rdf(U, X, “knows”,Y). (4)
connected(X,Y) «— connected(X,Z), url(Z,U), #rdf(U, Z, “knows”,Y). (5)

The above program has two sources of new values: trusted urls, and persons.
For instance, in particular the fifth rule may induce a loop, leading to the in-
vention of an infinite number of new symbols. The above program is anyway
VI-restricted and can be solved over a finite ground version of it. Intuitively,
the number of URLs is finite. Although not explicitly bounded, new persons
(coming from the value of Y in the fifth rule) can be extracted only from a
finite set of URLs. Observe that rule 1 invents new values, but these do not
ever propagate through a loop involving an external atom, while this is the case
of the Y wvariable in the fifth rule. The intuition of VI-restricted programs is
to investigate how new information propagates in a program, and whether it
is bounded in some way. Note that a programmer is not explicitly forced (in
order to ensure decidability) to bound variables explicitly such as in this modi-
fied version of the fifth rule: { connected(X,Y) «— known(Y"), connected(X, Z),
url(Z,0), #rdf (U, Z, “knows”,Y). }.

3 Preliminaries

In this section we briefly recall some notions which we introduced in [8]. Our
framework coincides basically with Answer Set Programming, extended with the
notion of external atom.

98 F. Calimeri, S. Cozza, and G. Ianni

Let U, X, £ and P be mutually disjoint sets whose elements are called constant
names, variable names, external predicate names, and ordinary predicate names,
respectively. Unless explicitly specified, elements from X (resp., i) are denoted
with first letter in upper case (resp., lower case); elements from &£ are usually
prefixed with ‘ # . U constitutes the default Herbrand Universe. We assume that
any constant appearing in a program or generated by external computation is
taken from U, which is possibly infinite®.

Elements from U U X are called terms. An atom is a structure p(t1,...,tn),
where ¢1,...,t, are terms and p € PUE; n > 0 is the arity of the atom. p is
the predicate name. The atom is ordinary, if p € P, otherwise we call it external
atom. A list of terms t1,...,t, is succinctly represented by ¢t. A positive literal
is an atom, whereas a negative literal is not a where a is an atom.

Given a predicate p, p[i] is its i-th argument. A rule r is of the form

a1 V- --Vag < B1,..., 0,00t Bnyi1,...,00t G, (6)

wherem > 0,k > 1, a1, . .., o, are ordinary atoms, and 31, .. ., B, are (ordinary
or external) atoms. We define H(r) = {a1, ..., ax} and B(r) = BT (r) UB (1),
where BY(r) = {f1, ..., Bn} and B~ (r) = {Bn+1, ---, Bm}. E(r) is the set
of external atoms of r. If H(r) = 0 and B(r) # 0, then r is a constraint, and
if B(r) = 0 and H(r) # 0, then r is a fact; r is ordinary, if it contains only
ordinary atoms. A VI program is a finite set P of rules; it is ordinary, if all rules
are ordinary. We assume P has no constraints?, only ground facts, and that each
rule is safe with respect to negation, i.e. for each rule r, each variable appearing
in some negated atom a € B~ (r) or in the head, appears also in some positive
atom b € BT (r). Given a set of atoms A and a predicate p, with small abuse of
notation we say that p € A if there is some atom in A with predicate name p.
An atom having p as predicate name is usually referred as a,.

We denote as Attr(P) the set of all arguments of all the predicates appearing
in the program P. The dependency graph G(P) of P is built in the standard way.

We give the semantics by generalizing the answer-set semantics [12].

In the sequel, we will assume P as a VI program. The Herbrand base of P
with respect to U, denoted HBy/(P), is the set of all possible ground versions
of ordinary atoms and external atoms occurring in P obtained by replacing
variables with constants from Y. The grounding of a rule r, grndy,(r), is defined
accordingly, and the grounding of program P by grndy (P) = J,cp grndy(r).
Note that this ground program can be of infinite size.

An interpretation I for P is a pair (S, F) where:

— S C HBy(P) contains only ordinary atoms; I (or, by small abuse of notation,
S) is a model of ordinary atom a € HBy/(P), denoted I =a (Sk=a), if a€S.

1 Also, we assume that constants are encoded using some finite alphabet X, i.e. they
are finite elements of X*.

? Under Answer Set Programming semantics, a constraint «— B(r) can be easily simu-
lated through the introduction of a corresponding standard rule fail < B(r), not fail,
where fail is a fresh predicate not occurring elsewhere in the program.

Decidable Fragments of Logic Programming with Value Invention 99

— F'is a mapping associating with every external predicate name #e € &£, a decid-
able n-ary function (which we call oracle) F(#e) assigning each tuple (z1,...,zy)
either 0 or 1, where n is the fixed arity of #e, and x; € U. I (or, by small abuse of
notation, F') is a model of a ground external atom a = #e(x1,...,x,), denoted
I'Ea (F Ea),if F(#e)(z1,...,2,) = 1.

A positive literal is satisfied if its atom is satisfied, whereas a negated literal
is satisfied if its corresponding atom is not satisfied.

Let r be a ground rule. We define:

i. I = H(r) iff there is some a € H(r) such that I = aq;
ii. I B(r)iff I =aforeach atom a € BT (r) and I £ a for each atom a € B~ (r);
iii. IEr (ie., ris satisfied) iff I =H (r) whenever I = B(r).

We say that I is a model of a VI program P with respect to a universe U, denoted
I'=yP, iff Il=r for all r € grndy, (P). For a fixed F', a model M =< S, F > is
minimal if there is no model N =< T, F > such that S C T.

Given a general ground program P, its Gelfond-Lifschitz reduct [12] w.r.t.
an interpretation I is the positive ground program P! obtained from P by:
(i) deleting all rules having a negated literal not satisfied by I; (ii) deleting
all negated literals from the remaining rules. I C HBy(P) is an answer set for a
program P w.r.t. U iff I is a minimal model for the positive program grnd,,(P)’.
Let ansy(P) be the set of answer sets of grndy (P). We call P F-satisfiable if
it has some answer set for a fixed function mapping F, i.e. if there is some
interpretation (S, F') which is an answer set. We will assume in the following
to deal with a fixed set F' of functions mappings for external predicates. F-
satisfiability is undecidable [8].

Given an external predicate name #p, of arity n and its oracle function F'(#p),
a pattern is a list of b’s and u’s, where a b represents a placeholder for a constant
(or a bounded variable), and an w is a placeholder for a variable. Given a list of
terms, the corresponding pattern is given by replacing each constant with a b,
and each variable with a u. Positions where u appears are called output positions
whereas those denoted with b are called input positions. For instance, the pattern
related to the list of terms (X, a,Y) is (u, b, u).

Let pat be a pattern of length n having k placeholders b (input positions), and
n—k placeholders of u type (output positions). A functional oracle F(#p)[pat] for
the pattern pat, associated with the external predicate #p, is a partial function
taking k constant arguments from U and returning a finite relation of arity n—k,
and such that di, ..., d,,—x € F(#p)[pat](ci, ..., ck) iff F(#p)(h1,...,h,) =1, where
for each i(1 < ¢ < n), h; = ¢; if the j-th b value occurs in position ¢ in pat,
otherwise h; = d; if the j-th u value occurs in position 7 in pat.

An external predicate #p might be associated to one or more functional oracles
‘consistent’ with the originating 2-valued one. For instance, consider a binary
external predicate #sqr, intuitively associating a natural number to its square
value. We can have two functional oracles, F(#sqr)[b, u] and F(#sqr)[u, b]. The

100 F. Calimeri, S. Cozza, and G. Ianni

two functional oracles are such that, e.g. F(#sqr)[b,u](3) = 9 and F(#sqr)[u, b]
(16) = 4, consistently with the fact that F(#sqr)(3,9) = F(#sqr)(4,16) = 13.

In the sequel, given an external predicate #e, we will assume that it comes
equipped with its oracle F'(#e) (called also base oracle) and one functional oracle
F(#e)[pat 4e], having pattern pat., 4,

We recall now a first condition of safety, which unfortunately does not guar-
antee finiteness and decidability, but will be exploited in the next Section. Given
a rule r, a variable X is weakly safe in r if either (i) X is safe (i.e. it appears
in some positive atom of BT (r)\ E(r); or (ii) X appears in some external atom
#e(T) € E(r), the functional oracle of #e is F(#e)[pat], X appears in output
position with respect to pat and each variable Y appearing in input position in
the same atom is weakly safe. A weakly safe variable X is free if it appears in
BT (r) only in output position of some external atom. A rule r is weakly safe if
each variable X appearing in some atom a € B(r) is weakly safe. A program P
is weakly safe if each rule r € P is weakly safe.

Ezample 1. Assume that #sqr is associated to the functional oracle F(#sqr)[b, u]
defined above. The program { square(Y) < number(X), #sqr(X,Y) } is weakly safe
(intuitively the value of Y can be computed once the value of X is known). The
same rule is not weakly safe if we consider the functional oracle F'(#sqr)[u,b]. O

Definition 1. Let A = (I, F) an interpretation. We call ins(r, A) the set of
ground instances 7y of r for which A = BT (ry), and such that A = E(rg). O

Proposition 1. [8] Given an interpretation A and a weakly safe rule r, ins(r, A)
is finite. O

Weakly safe rules have the important property of producing a finite set of relevant
ground instances provided that we know a priori the domain of positive ordinary
body atoms. Although desirable, weak safety is intuitively not sufficient in order
to guarantee finiteness of answer sets and decidability. For instance, it is easy
to see that the program { square(2) «;square(Y) < square(X), #sqr(X,Y); } has
answer set {square(2), square(4), ... }.

4 Decidable vi Programs

The introduction of new symbols in a logic program by means of external atoms
is a clear source of undecidability. As illustrated in Section 6, value invention is
nonetheless desirable in a variety of contexts.

Our approach investigates which programs can be solved by means of a finite
ground program having a finite set of models of finite size. This class of programs

3 Unlike this example, note that in the general case functional oracles might return a
set of tuples and are not restricted to single output values.

4 In [8] we address explicitly the issue of external predicates equipped with multiple
functional oracles.

Decidable Fragments of Logic Programming with Value Invention 101

(having the finite grounding property) is unluckily not recognizable in finite time.
We assume to deal with functional oracles that might have an infinite co-domain.
Nonetheless, we will assume also to deal with weakly safe programs and with
functional oracles associating to each fixed combination of the values in input
always a finite number of combination of values in output.

Definition 2. A class of VI programs C has the finite grounding property if, for
each P € C there exists a finite set U C U such that ansy(P) = ansy(P). O

Theorem 1. Recognizing the class of all the VI programs having the finite
grounding property is undecidable.

Proof. (Sketch). Positive logic programs with function symbols can simulate Tur-
ing machines. Also weakly safe VI programs can mimic (see section 6 and [8])
programs with function symbols. Given a Turing machine 7" and an input string
x we can thus build a suitable VI program Pr , encoding 7 and z. 7 (z) ter-
minates iff Pr , has the finite grounding property. Indeed, if 7 (z) terminates,
the content of U can be inferred from the finite number of transitions of 7 (z).
Viceversa, if U is given, the evolution of 7 (z) until its termination can be mim-
icked by looking at the answer sets of grndy (Pr). m|

4.1 vI-Restricted Programs

The intuition leading to our definition of VI-restrictedness, is based on the
idea of controlled propagation of new values throughout a given program. As-
sume the following VI program is given (#b has a functional oracle with pat-
tern [b,u]): { a(k,c) —;p(X)Y) «— a(X,Y);p(X,Y) «— s(X,Y),a(Z,Y);s(X,Y) «—
p(Z,X), #b(X,Y).}. The last rule of the program generates new symbols by means
of the Y variable, which appears in the second attribute of s(X,Y’) and in out-
put position of #b(X,Y"). This situation is per se not a problem, but we observe
that values of s[2] are propagated to p[2] by means of the last but one rule, and
p[2] feeds input values to #b(X,Y) in the last rule. This occurs by means of the
binding given by the X variable. The number of ground instances to be consid-
ered for the above program is thus in principle infinite, due to the presence of
this kind of cycles between attributes.

We introduce the notion of dangerous rule for those rules that propagate new
values in recursive cycles, and of dangerous attributes for those attributes (e.g.
s[2]) that carry new information in a cycle.

Actually, the above program can be reconducted to an equivalent finite ground
program: we can observe that p[2] takes values from the second and third rule
above. In both cases, values are given by bindings to a[2] which has, clearly, a
finite domain. So, the number of input values to #b(X,Y) is bounded as well. In
some sense, the ‘poisoning’ effect of the last (dangerous) rule, is canceled by the
fact that p[2] limits the number of symbols that can be created.

In order to formalize this type of scenarios we introduce the notion of savior
and blocked attributes. p[2] is savior since all the rules where p appears in the head

102 F. Calimeri, S. Cozza, and G. Ianni

can be proven to bring values to p[2] from blocked attributes, or from constant
values, or from other savior attributes. Also, s[2] is dangerous but blocked with
respect to the last rule, because of the indirect binding with p[2], which is savior.
Note that an attribute is considered blocked with respect to a given rule. Indeed,
s[2] might not be blocked in other rules where s appears in the head.

We define an attribute dependency graph useful to track how new symbols
propagate from an attribute to another by means of bindings of equal variables.

Definition 3. The attribute dependency graph AG(P) associated to a weakly
safe program P is defined as follows. For each predicate p € P of arity n, there
is a node for each predicate attribute p[i](1 < ¢ < n), and, looking at each rule
r € P, there are the following edges:

— (ql4], p[d]), if p appears in some atom a, € H(r), ¢ appears in some atom
aq € BT(r) \ E(r) and ¢[j] and p[i] share the same variable.

— (qlg), #pli]), if ¢ appears in some atom a, € B (r)\ E(r), #p appears in
some atom ax, € E(r), ¢[j] and #pl[i] share the same variable, and i is an input
position for the functional oracle of #p;

— (#4q[7], #pli]), if #q appears in some atom ax, € E(r), #p in some ay, € E(r),
#q[j] and #p[i] share the same variable, j is an output position for the functional
oracle of #q, i is an input position for the functional oracle of #p;

— (#plj], #pli]), if #p appears in some atom ax, € E(r), #p[j] and #pli] both
have a variable, j is an input position for the functional oracle of #p and ¢ is an
output position for the functional oracle of #p;

— (#4q[j], pli]), if p appears in some atom a, € H(r), #q appears in some atom
axq € E(r) and #q[j] and pi] share the same variable, and j is an output posi-
tion for the functional oracle of #g;]

Example 2. The attribute dependency graph induced by the first three rules of
the motivating example in Section 2 is depicted in Figure 1. O

Definition 4. It is given a weakly safe program P. The following definitions are
given (all examples refer to the Motivating Example, Section 2, and we assume
#1df has functional oracle with pattern [b, u, u, u]):

— A rule r poisons an attribute p[i] if some atom a, € H(r) has a free variable
X in position 4. p[i] is said to be poisoned by r. For instance, connected[2] is
poisoned by rule (5).

— A rule r is dangerous if it poisons an attribute p[i] (p € H(r)) appearing in
a cycle in AG(P). Also, we say that p[i] is dangerous. For instance, rule (5) is
dangerous since connected[2] is poisoned and appears in a cycle.

— Given a dangerous rule r, a dangerous attribute p[i] (bounded in H(r) to a
variable name X), is blocked in r if for each atom ay. € E(r) where X appears
in output position, each variable Y appearing in input position in the same atom
is savior. Y is savior if it appears in some predicate ¢ € B¥ (r) in position 7, and
q[i] is savior.

Decidable Fragments of Logic Programming with Value Invention 103

— An attribute p[i] is savior if at least one of the following conditions holds for
each rule r € P where p € H(r).

— pli] is bound to a ground value in H(r);

— there is some savior attribute g[j], ¢ € B*(r) and p[i] and ¢[j] are bound to
the same variable in r;

— pli] is blocked in 7.

For instance, the dangerous attribute connected|2] of rule (5) is blocked since
the input variable U is savior (indeed it appears in url[2]).

— A rule is VI-restricted if all its dangerous attributes are blocked. P is said to
be VI-restricted if all its dangerous rules are VI-restricted. a

P o #13] /-PU?

t[2] T #[1]—P #1]2]
#r[4] 1]

Fig. 1. Attributes Dependency Graph (Predicate names are shortened to the first letter)

Theorem 2. VI-restricted programs have the finite grounding property.

Proof. (Sketch). Given a VI-restricted program P, we show how to compute a
finite ground program grp such that ansy(P) = ansy(grp), where U is the set
of constants appearing in grp.

Let’s call A the set of active ground atoms, initially containing all atoms
appearing in some fact of P. grp can be constructed by an algorithm A that re-
peatedly updates grp (initially empty) with the output of ins(r, I') (Definition 1)
for each rule r € P, where I = (A, F'); all atoms belonging to the head of some
rule appearing in grp are then added to A. The iterative process stops when A
is not updated anymore. That is, grp is the least fixed point of the operator

Tp(Q) = {U,cpins(r, 1) | I = (A, F), and A = atoms(Q)}

where atoms(Q) is the set of ordinary atoms appearing in Q. T2°(0) is finite
in case P is VI-restricted. Indeed, grp might not cease to grow only in case an
infinite number of new constants is generated by the presence of external atoms.
This may happen only because of some dangerous rule having some ‘poisoned’
attributes. However, in a VI-restricted program all poisoned attributes are blocked
in dangerous rules where they appear, i.e. they depend from savior attributes. It
can be shown that, for a given savior attribute p[i], the number of symbols that
appear in position ¢ in an atom a, such that a, € T8°(0) is finite. This means
that only a finite number of calls to functional oracles is made by A, each of
which producing a finite output.

Because of the way it has been constructed, it is easy to see that the set
A = atoms(grp) is a splitting set [13], for grndy(P). Based on this, it is pos-
sible to observe that no atom a ¢ A can be in any answer set, and to conclude
that ansy(P) = ansy (P), where U is the set of constants appearing in A. O

104 F. Calimeri, S. Cozza, and G. Ianni
5 Recognizing vi-Restricted Programs

An algorithm recognizing VI-restricted programs is depicted in Figure 2. The
idea is to iterate through all dangerous rules trying to prove that all of them are
VI-restricted. In order to prove VI-restriction for rules, we incrementally build the
set of all savior attributes; this set is initially filled with all attributes which can
be proven to be savior (i.e. they do not depend from any dangerous attribute).
This set is updated with a further attribute p[i] as soon it is proved that each
dangerous attribute which p[i] depends on is blocked. The set RTBC of rules
to be checked initially consists of all dangerous rules, then the rules which are
proven to be VI-restricted are gradually removed from RTBC. If an iteration ends
and nothing new can be proved the algorithm stops. The program is VI-restricted
if RTBC is empty at the last iteration.

The algorithm execution takes polynomial time in the size of a program P: let
m be the total number of rules in P, n the number of different predicates, k the
maximum number of attributes over all predicates, and [the maximum number
of atoms in a single rule. O(n x k) is an upper bound to the total number of
different attributes, while O(l x k) is an upper bound to the number of variables
in a rule. A naive implementation of the isBlocked function has complexity
O(n* 1% k?). The recognizer function (Figure 2) iterates O(n * k) times over an
inner cycle which performs at most O(m * k = [) steps: each inner step iterates
over all rules in RT BC', which are at most m; and for each rule all free variables
must be checked (this requires O(k = [) checks, in the worst case).

6 Modeling Semantic Extensions by vi Programs

Several semantic extensions contemplating value invention can be mapped to
VI programs. We show next how programs with function symbols and with sets
can be translated to weakly safe VI programs. When the resulting translation
is VI-restricted as well, these semantic extension can be thus evaluated by an
answer set solver extended with external predicates.

Functional terms. We consider rule based languages allowing functional terms
whose variables appearing in the head appear also in the positive body. A func-
tional term is either a constant, a variable, or f(X7,...,X,), where f is a func-
tion symbol and X3, ..., X, are terms.

For each natural number &, we introduce two external predicates # functiony
and # function, of arity k+2; they are such that fu function, (F, f, X1,..., Xx) =
f#fmction;c(ﬂ fiX1,..., Xk) = true if and only if the term F'is f(Xq,..., Xk).
Each # functiony (# function),) predicate is associated to a functional oracle
F(# functiong)[u,b,b, ..., b] (F(#function},)[b,u,u,...,u], respectively).

The two families of external predicates are respectively intended in order to
construct a functional term if all of its arguments are bounded (# function
predicates) or if the whole functional term is grounded and we want to take its
arguments (# function), predicates).

Decidable Fragments of Logic Programming with Value Invention 105

Bool Function recognizer (var SA: Set{ Attr };
% SA is initialized with provable savior attributes
% (i.e. attributes that do not depend from dangerous attributes.
var NSA: Set{ pair(Attr, Set{ Attr }) };
% NSA is initialized with attributes which cannot be proven to be
% savior, each of which is associated with the set of dangerous
% attributes that prevent them to be savior
var RTBC : Set{ Rule }) % Set of dangerous rules to be checked.
Bool NSA_Updated = true;
‘While (NSA_Updated) do % Try to prove VI-restriction as far as some change occurs.
NS A_Updated = false;
For each Rule r € RTBC do % free(r)=the set of free variables appearing in the rule r.
Set{Var} varsTBC = free(r);
Bool allBlocked = true;
For each Var v € varsTBC do
% isBlocked tells if v is blocked in r by means of attributes currently in SA.
If (isBlocked(v, r, SA)) then
% headAttr returns reference to the head attribute of r containing v
Attr p[i] = headAttr(v, r);
% update processes the NSA set, deleting p[i] from each set S
% such that p[i] € S and (q[j], S) € NSA.
% Then each attribute q[j] such that (q[j], S) € NSA
% and S = 0 is moved from NSA to SA.
update(NSA, SA, pli]);
% A change occurred, so we have to continue cycling.
NSA_Updated = true;
Else % At least one free variable can’t be proved as blocked.
allBlocked = false;
EndIf
EndFor
If (allBlocked) then
RT BC.delete(r); %.The rule is VI-restricted, can be deleted from RTBC.
EndIf
EndFor
EndWhile
If (RTBC == 0) then
Return true
Else % Display the set of rules that can’t be proved as VI-restricted.
printINSAne(RTBC')
Return false
EndIf
EndFunction

Fig. 2. The VI-Restricted Recognizer Algorithm

Basically, this transformation flattens each rule » € P containing some func-
tional term ¢t = f(X1,...,X,), by replacing it with a fresh variable F', and adding
an appropriate atom # functiong(F, X1, ..., X,) or # function) (F, X1,...,X,)
to the body of r. The transformation is continued until a functional term is still
in . We choose # function), if t appears in the body of r, whereas an atom using
functiony is used if t appears in the head of r.

Ezample 3. The rule { p(s(X)) <« a(X, f(Y, Z)). } contains two function
symbols, s and f. The rewritten rule is { p(F1) « a(X, F2), # functioni (F1, s, X),
functions(F2, f,Y, Z). } O

Proposition 2. Given a logic program with functional terms P, F(P) is the
program obtained by applying the above transformation; it is weakly safe. Also,
there is a 1-to-1 mapping between the answer sets of P and ansy (F(P)). O

106 F. Calimeri, S. Cozza, and G. Ianni

Set unification. The accommodation of sets in logic programming, often at-
tempted, obliges to reconsider the classic notion of term unification to a gener-
alized one. For instance, the set term {X, a,b,c} can be grounded to {a,d, b, c}.
It is possible to embody set constructors and set unification in the context of
VI programs. Roughly speaking, a logic program with sets replaces the classical
notion of term with the notion of set term. A set term is either a (i) classical
term or, (4) {X1,...,X,} where X;,..., X,, are set terms, or (iii) X UY where
X and Y are set terms. Two ground set terms {a1,...,a,} are equal if they
contain the same set of ground terms. For space reasons, we only outline here a
method, and refer the reader to [14] for a survey on sets in logic programming
and on set unification methods and algorithms.

Remarking that the special symbol {} represents the empty set, the following
set of external predicates are introduced: (i) A pair of external predicates #sety,
#set;, for each natural number k; each of them has k + 1 arguments such that
faset, (X, Y1,...,.Y%) = f#set% (X,Y1,...,Y%) = true if X is the set {Yl, ceey Yk}
#sety, has the functional oracle F(#sety)[u,b,...,b] while #set;, has the func-
tional oracle F(#sety)[b, u, . ..,u]; (ii) Two ternary external predicate #union and
#union'; they are such that fuunion(X,Y,Z) = faunion (X,Y,Z) = true either
if X=YUZ, orif X and Y are classical terms, Z =0 and X =Y. #union has
the functional oracle F(#union)[u,b,b] while #union’ has the functional oracle
F(#union’)[b, u, u].

A logic program with set terms P is replaced by an equivalent VI program by
modifying each rule r € P this way:

— Replacing each set term {X7, ..., X} appearing in r with a fresh variable T,
and adding in the body of r the external atom #set, (T, X1,...,X,) if the set
term appears in the head of r , #set! (T, X1, ..., X,,) otherwise;

— Replacing each set term X UY appearing in r with a fresh variable U, and
adding in the body of r the external atom #union(U,X,Y) if the set term
appears in the head of r, #union’ (U, X,Y") otherwise. This and step 6 are applied
to 7 until it contains any set term;

— If a variable X appears in r for m times (m > 1), then each occurrence of X
is replaced with a fresh variable X;(1 <4 < n), and for each pair (X;, X;),1 <
i < j < m the atom #union(X,;, X;,{}) is added to r.

Ezample J. Let’s consider the rule: { p(X U Y) < a({a, X}), b({Y}). }; the anal-
ogous VI rule is: { p(S1) « a(52),b(S3), #union(S1, X1, Y1), #set5(S2,a, X2),
#set)(53,Y2), #union(X1,X2,{}), #union(Y1,Y2,{}). } a
Proposition 3. Given a logic program with set terms P, we call S(P) the VI

program obtained applying the above transformation. S(P) is weakly safe. There
is a 1-to-1 mapping between the answer sets of P and ansy (S(P)). O

7 Relationships with Other Classes of Programs

w-restricted programs. In the same spirit of this paper are w-stratified pro-
grams [9], that allow function symbols under answer set semantics. The intro-
duced restrictions aim at controlling the creation of new functional terms.

Decidable Fragments of Logic Programming with Value Invention 107

Definition 5. [9] An w-stratification is a traditional stratification extended by
the w-stratum, which contains all predicates depending negatively on each other.
w is conventionally assumed to be uppermost layer of the program. A rule r is
w-restricted iff all variables appearing in r also occur in a positive body literal
belonging to a strictly lower stratum than the head. A program P is w-restricted
iff all the rules are w-restricted. a

w-stratified programs have the finite grounding property: only a finite amount
of functional terms can be created since each variable appearing in a rule’s
head must be bounded to a predicate belonging to a lower layer. VI-restricted
programs do not introduce special restrictions for non-stratified cycles. Also, it
is not necessary to bound each variable to a previous layer explicitly. The class
of VI-restricted programs contains, in a sense, the class of w-restricted ones.

Theorem 3. Given an w-restricted program P, F(P) is VI-restricted.

Proof. We are given an w-restricted program P. We observe that:

—Attributes belonging to predicates which are not in the w-stratum can be proven
to be savior: the relevant instantiation of these predicates is computable starting
from the lowermost layer, and is finite.
~The rewritten rules in F(P) corresponding to function-free rules cannot be
dangerous, since there is no value invention at all.
—Rules with functional terms are rewritten using external atoms; then, all vari-
ables occurring in these new external atoms already occur in the original rules,
except fresh variables used for substituting functional terms (that we call FTRs,
functional term representations). Thus, the variables appearing in the poisoned
attributes must necessarily appear also in a predicate belonging to a strictly
lower stratum than the head (w-restrictedness). Let’s consider an FTR appear-
ing in an external atom # function) (F1,X1,...,X}) in first position. If F1 is
already bound to a positive atom, then there is no value invention; otherwise, it
can be shown that all terms X1,..., X} are bound either to a positive atom or
to another external atom in output position (see Section 6). As stated before,
the attributes where X1, ..., X appear are savior, and so the FTR F'1 as well.
O

On the other hand, the opposite does not hold.

Theorem 4. It is possible to find non-w-restricted programs whose transforma-
tion F outputs a VI-restricted program.

Proof. The program Prur = {p(f(X)) — ¢(X), t(X); ¢(X) < p(X); p(1); (1)}
is not w-restricted, while F (P,)J={p(F1) « q(X), t(X), # functiona(F1, f, X);
q(X) «— p(X);p(1);t(1)} is VI-restricted. O

Finitary programs. Finitary programs allow function symbols under answer set
semantics [10]. Although they don’t have the finite grounding property, brave
and cautious ground querying is decidable. A ground program P is finitary iff its

108 F. Calimeri, S. Cozza, and G. Ianni

dependency graph G(P) is such that (i) any atom p appearing as node in G(P)
depends only on a finite set of atoms (through head-body dependency), and (i)
G(P) has only a finite number of cycles with an odd number of negated arcs.

Theorem 5. The class of finitary programs is not comparable with the class of
VI-restricted programs.

Proof. (sketch) A program having rules with free variables is not finitary (eg.
p(X) — ¢(X,Y)): a ground instance p(a) may depend on infinite ground in-
stances of ¢(X,Y) e.g.(q(a, f(a)),q(a, f(f(a)))...). In general, the same kind of
rules are allowed in VI-restricted programs. Vice versa, the class of programs
{F(P) | P is finitary} is not VI-restricted: for instance the translation of the
finitary program {p(0); p(s(X)) < p(X)} is not vI-restricted. O

Other literature. In the above cited literature, infinite domains are obtained
through the introduction of compound functional terms. Thus, the studied the-
oretical insights are often specialized to this notion of term, and take advantage
e.g., of the common unification rules of formal logics over infinite domains. It is,
in this setting, possible to study ascending and descending chains of functional
terms in order to prove decidability. Similar to our approach is the work on
open logic programs, and conceptual logic programs [15]. Such paper addresses
the possibility of grounding a logic program, under Answer Set Semantics, over
an infinite domain, in a way similar to classical logics and/or description log-
ics. Each constant symbol has no predefined compound structure however. Also
similar are [3] and [16], where a special construct, aimed at creating new tuple
identifiers in relational databases is introduced.

In [17] and [4] the authors address the issue of implementing generalized quan-
tifiers under Answer Set Semantics, in order to enable Answer Set Solvers to
communicate, both directions, with external reasoners. This approach is dif-
ferent from the one considered in this paper since the former is inspired from
second order logics and allows bidirectional flow of relational data (to and from
external atoms), whereas, in our setting, the information flow is strictly value
(first order) based, and allows relational output only in one direction. HEX pro-
grams, as defined in [4], do not address explicitly the issue of value invention
(although semantics is given in terms of an infinite set of symbols). VI programs
can simulate external predicates of [4] when relational input is not allowed.

An external predicate a la [4] (HEX predicate) is of the form #g[Y,...,
Yi|(X1,..., X,), where Y1,...,Y,, are input terms and X3,..., X, are output
terms. Semantics of these atoms is given by means of a base oracle fu4(I,Y1, ...,
Yin, X1,..., X;nm) where I is an interpretation. Note that HEX predicates depend
on a current interpretation, thus enabling to quantify over predicate extensions.
Assuming that for each HEX predicate fxq do not depend on the current inter-
pretation, and that higher order atoms (another special construct featured by
HEX programs) are not allowed we can state the following equivalence theorem.

Theorem 6. An HEX program without higher order atoms is equivalent to
a VI program where each HEX atom #g[Y1,...,Y,](X1,...,X,) is replaced

Decidable Fragments of Logic Programming with Value Invention 109

by an atom #¢'(Y1,...,Y,, X1,...,X,), provided that each evaluation func-
tion fug is such that for each I we have that fugy (Y1,...,YVm, X1,...,Xm) =
f#g(IaYh"'aYmaXh'”7Xm)- O

VI-restricted programs overcome the notion of semi-safe programs [8]. These
programs have the finite grounding property: a weakly safe program P is semi-
safe if each cycle in G(P) contains only edges whose label corresponds to a
safe rule. Semi-safe programs are strictly contained in the class of VI-restricted
programs.

8 Conclusions

VI programs herein presented accommodate several cases where value invention
is involved in logic programming. VI-restrictions allow to actually evaluate by
means of a finite ground program a variety of programs (such as those with
function symbols or set constructors) in many nontrivial cases.

A topic for future work is to investigate to what extent the notion of VI-
restrictedness can be relaxed although keeping the complexity of recognizing the
class in polynomial time. Intuitively, local analysis techniques can enlarge the
class of programs whose finite grounding property is decidable, but this would
force to renounce to polynomial complexity. Nonetheless, the spirit of restriction
checkers is to keep evaluation times greatly smaller than the overall solving times.

VI programs have been implemented in the DLV system as well as a VI-
restriction checker. Further details on the implementation can be found in [8]. A
complete toolkit for developing custom external predicates is provided. Specific
extensions of the DLV system with function symbols and sets, using VI as under-
lying framework, are in advanced stage of development and will be dealt with in
appropriate papers. The system prototype, examples, manuals and benchmark
results are available at http://www.mat.unical.it/ianni/wiki/dlvex.

References

1. Abiteboul, S., Vianu, V.: Datalog Extensions for Database Queries and Updates.
JCSS 43(1) (1991) 62-124

2. Cabibbo, L.: Expressiveness of Semipositive Logic Programs with Value Invention.
Logic in Databases. (1996) 457—474.

3. Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Object
Identifiers. VLDB 1990. 455-468.

4. Eiter, T., et al.: A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. IJCAT 2005, 90-96.

5. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and
rule-based reasoning with extended conceptual logic programs. ESWC 2005.
392-407.

6. Leone, N., et al.: The DLV System for Knowledge Representation and Reasoning.
ACM TOCL (2006) To appear. http://www.arxiv.org/ps/cs.AI/0211004.

110

7.

8.
10.
11.
12.
13.
14.
15.
16.

17.

F. Calimeri, S. Cozza, and G. Ianni

Simons, P., Niemela, 1., Soininen, T.: Extending and Implementing the Stable
Model Semantics. Artificial Intelligence 138 (2002) 181-234.

Calimeri, F., Ianni, G.: External sources of computation for Answer Set Solvers.
LPNMR 2005, LNCS 3662. 105-118.

. Syrjanen, T.: Omega-restricted logic programs. LPNMR 2001. 267-279.

Bonatti, P.A.: Reasoning with Infinite Stable Models. IJCAI 2001. 603-610.

The Friend of a Friend (FOAF) Project. http://www.foaf-project.org/.
Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365-385.

Lifschitz, V., Turner, H.: Splitting a Logic Program. ICLP 1994. 23-37.

Dovier, A., Pontelli, E., Rossi, G.: Set unification. TPLP (2006) To appear.
Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Semantic web reasoning with
conceptual logic programs. RuleML 2004. 113-127.

Cabibbo, L.: The Expressive Power of Stratified Logic Programs with Value In-
vention. Inf. and Comp. 147(1) (1998) 22-56.

Eiter, T., lanni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic
programs: Implementation and experiments. LPAR 2004. 511-527.

On the Issue of Reinstatement in Argumentation

Martin Caminada

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80 089 3508 TB Utrecht, The Netherlands

martinc@cs.uu.nl

Abstract. Dung’s theory of abstract argumentation frameworks [1] led
to the formalization of various argument-based semantics, which are ac-
tually particular forms of dealing with the issue of reinstatement. In this
paper, we re-examine the issue of semantics from the perspective of pos-
tulates. In particular, we ask ourselves the question of which (minimal)
requirements have to be fulfilled by any principle for handling reinstate-
ment, and how this relates to Dung’s standard semantics. Our purpose is
to shed new light on the ongoing discussion on which semantics is most
appropriate.

1 Introduction

Dung’s abstract theory of formal argumentation [1] has been a guide for re-
searchers in the field of formal argumentation and nonmonotonic logic for more
than ten years. During this period, a significant amount of work has been done on
proof procedures for Dung’s various argument-based semantics [2, 3], as well as
on concrete argumentation formalisms (such as [4, 5, 6]) based on Dung’s theory.

One specific issue that has received relatively little attention is the nature of
reinstatement. Although reinstatement as a principle is not totally uncontrover-
sial [7], the current consensus among many researchers in formal argumentation
and nonmonotonic logic is that reinstatement of arguments is an essential fea-
ture of defeasible reasoning (as is for instance expressed in [8]). Dung provides
several approaches for dealing with reinstatement, like stable semantics, pre-
ferred semantics, complete semantics and grounded semantics. Our contribution
is not to criticize Dung’s theory but rather to strengthen it. In particular, we
ask ourselves the question: “Why do these semantics actually make sense?”

In previous work, we have stated a number of postulates which, in our view,
every argumentation formalism should satisfy [9]. In the current paper, we will
follow the same approach and state some simple and intuitive properties for
dealing with the issue of reinstatement We then show how these properties are
satisfied by Dung’s standard semantics and how the differences between the
various semantics could be viewed. We also show that a careful examination of
reinstatement postulates reveals a semantics not currently known. Based on this
discussion, we then share some thoughts on which type of semantics is most
appropriate.

In order to keep things concise, the proofs have been omitted from the current
paper. They can be found in a seperate technical report [10].

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 111-123, 2006.
© Springer-Verlag Berlin Heidelberg 2006

112 M. Caminada
2 Dung’s Standard Semantics

A central notion in Dung’s theory of abstract argumentation [1] is that of an
argumentation framework, which is defined as follows.

Definition 1 (argumentation framework). An argumentation framework is
a pair (Ar, def) where Ar is a set of arqguments and def C Ar x Ar.

Definition 2 (defense / conflict-free). Let A € Ar and Args C Ar.

We define AT as {B | A def B} and Args™ as{B | A def B for some A€ Args}.
We define A~ as {B | B def A} and Args— as {B | B def A for some A€ Args}.
Args defends an argument A iff A~ C Args™.

Args is conflict-free iff Args N Args™ = 0.

In the following definition, F(Args) stands for the set of arguments that are
acceptable (in the sense of [1]) with respect to Args.

Definition 3 (acceptability semantics). Let Args be a conflict-free set of
arguments and F : 24795 — 24195 pe g function with F(Args) = {A | A is de-
fended by Args}.

Args is admissible iff Args C F(Args).

Args is a complete extension iff Args = F(Args).

Args is a grounded extension iff Args is the minimal (w.r.t. set-inclusion) com-
plete extension.

Args is a preferred extension iff Args is a mazimal (w.r.t. set-inclusion) com-
plete extension.

Args is a stable extension iff Args is a preferred extension that defeats every
argument in Ar\Args.

3 Reinstatement Labellings

The issue of quality postulates, or axioms, has recently received some attention in
the field of formal argumentation and non-monotonic logic [9, 11]. An interesting
question is whether one can also provide quality postulates for dealing with the
reinstatement of arguments. Although the reinstatement has to a great extent
been studied by Dung [1], the issue of which postulates have to be satisfied
in order for a specific criterion for reinstatement to make sense has received
relatively little attention.

One possible approach would be to start labelling the arguments in an ar-

gumentation framework. We distinguish three labels: “in”, “out” and ”undec”
(undecided).

Definition 4. Let (Ar, def) be a Dung-style argumentation framework. An AF-
labelling is a (total) function L : Ar — {in, out,undec}. We define in(L) as
{A € Ar | L(A) = in}, out(L) as {A € Ar | L(A) = out} and undec(L) as
{A € Ar | L(A) = undec}.

On the Issue of Reinstatement in Argumentation 113

In a reinstatement labelling, an argument is “in” iff all its defeaters are “out”
and an argument is “out” if it has a defeater that is “in”, as is stated in the

following definition.

Definition 5. Let £ be an AF-labelling. We say that L is a reinstatement la-
belling iff it satisfies the following:

— VA€ Ar: (L(A) =out = IB € Ar: (Bdef AN L(B) = in)) and
— VA€ Ar: (L(A) =in = VB € Ar: (Bdef A D L(B) = out)).

The above definitions can be illustrated using the argumentation frameworks in
Figure 1. Here, an argumentation framework is depicted as a directed graph, in
which the vertices represent the arguments and the edges represent the defeat re-
lation. In the leftmost argumentation framework, there exists just one reinstate-
ment labelling (£1) with £1(A) = in, £4(B) = out, £1(C) = in. In the middle
argumentation framework, there exist three reinstatement labellings (L2, L3, L4)
with Lo(D) = in, L3(F) = out, L3(D) = out, L3(F) = in, L4(D) = undec and
L4(F) = undec. In the rightmost argumentation framework, there exists just
one reinstatement labelling (Ls5) with £5(F) = undec.

Notice that Definition 5 can actually be seen as a postulate, as it specifies
a restriction on an AF-labelling. It turns out that different kinds of reinstate-
ment labellings correspond with different kinds of Dung-style semantics. This is
explored in the remainder of this paper.

Fig. 1. Three argumentation frameworks

4 Labellings Versus Semantics

We now define two functions that, given an argumentation framework, allow a
set of arguments to be converted to a labelling and vice versa. The function
Ext2Lab(ar, def) takes a conflict-free set of arguments (sometimes an extension)
and converts it to a labelling. The function Lab2Ext 4, qef) takes an AF-labelling
and converts it to a set of arguments (sometimes an extension). Notice that as an
AF-labelling is defined as a function (Definition 4), which in its turn is essentially
a relation, it is possible to represent the labelling as a set of pairs.

In the following definition, the resulting AF-labelling does not yet need to
satisfy the properties of a reinstatement labelling as stated in Definition 5.

114 M. Caminada

Definition 6. Let (Ar, def) be an argumentation framework, Args C Ar such
that Args is conflict-free, and L : Ar — {in,out,undec} an AF-labelling.
We define Ext2Lab 4, qef)(Args) as {(A,in) | A € Args} U {(A,out) | 3A" €
Args : A'def A} U {(A,undec) | A & Args N —3JA’ € Args : A'def A}. We define
LabToExt oy qer)(L) as {A] (A, in) € L}.

The fact that Args is conflict-free in the above definition makes that
Ext2Lab 4, qef)(Args) is indeed an AF-labelling. When the associated argu-
mentation framework is clear, we sometimes simply write Ext2Lab and Lab2Ext
instead of Ext2Lab(a,, def) and Lab2Ext 4, def)-

4.1 Reinstatement Labellings Without Restrictions

It is interesting to notice that a reinstatement labelling coincides with Dung’s
notion of complete semantics.

Theorem 1. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling then Lab2Ext(L) is a complete extension. If Args is a complete
extension then Ext2Lab(Args) is a reinstatement labelling.

It is interesting to observe that, when the domain and range of Lab2Ext is
restricted to reinstatement labellings and complete extensions, and the domain
and range of Ext2Lab is restricted to complete extensions and reinstatement
labellings, then the resulting functions (call them Lab2Ext” and Ext2Lab") are
bijective (that is, they are both injective and surjective) and each other’s inverse.

Theorem 2.

Let Lab2Ext{y, 4.r) @ {L | £ is a reinstatement labelling of (Ar,def)} —
{Args | Args is a complete extension of (Ar,def)} be a function defined by
Lab2Ext(y, ;.1 (£) = Lab2Ext 4y, def)(L)-

Let Ext2Lab{,, ;o0 {Args | Args is a complete extension of (Ar,def)} —
{L | L is a reinstatement labelling of (Ar,def)} be a function defined by
Ext2Labl,, ;. (Args) = Ext2Lab a,, def)(Args).

The functions Lab2Ext"” and Ext2Lab” are bijective and are each other’s inverse.

As Lab2Ext” and Ext2Lab” are each other’s inverse, there exists a strong simi-
larity between complete extensions and reinstatement labellings.

4.2 Reinstatement Labellings with Empty undec

Reinstatement labellings where undec is empty coincide with stable semantics.

Theorem 3. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling with undec(L) = () then Lab2Ext(L) is a stable extension. If Args
be a stable extension then Ext2Lab(Args) is a labelling with undec(L) = (.

On the Issue of Reinstatement in Argumentation 115

4.3 Reinstatement Labellings with Maximal in, Maximal out and
Maximal undec

Reinstatement labellings where in is maximal coincide with preferred semantics.

Theorem 4. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling where in(L) is mazimal then Lab2Ext(L) is a preferred extension.
If Args is a preferred extension then Ext2Lab(Args) is a labelling where in(L)
s mazximal.

It is interesting to notice that, contrary to what one might expect, reinstatement
labellings in which out is maximized coincide with preferred semantics, just like
(as was proved earlier) labellings in which in is maximized. This has to do with
the fact that when in increases, out also increases, and conversely. This is stated
by the following lemma.

Lemma 1. Let £ and L' be two reinstatement labellings. If in(L£) € in(L') then
out(L) C out(L). If out(L) C out(L) then in(L) C in(L').

Theorem 5. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling where out(L) is mazximal then Lab2Ext(L) is a preferred exten-
sion. If Args is a preferred extension then Ext2Lab(Args) is a labelling such that
out(L) is mazimal.

A reinstatement labelling with maximal undec coincides with grounded semantics.

Theorem 6. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling where undec(L) is mazimal then Lab2Ext(L) is the grounded ex-
tension. If Args is the grounded extension then Ext2Lab(Args) is a reinstatement
labelling where undec(L) is mazimal.

4.4 Reinstatement Labellings with Minimal in, Minimal out and
Minimal undec

A reinstatement labelling with minimal in coincides with grounded semantics.

Theorem 7. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling where in(L) is minimal then Lab2Ext(L) is the grounded exten-
sion. If Args is the grounded extension then Ext2Lab(Args) is a reinstatement
labelling where in(L) is minimal.

A reinstatement labelling with minimal out coincides with grounded semantics.

Theorem 8. Let (Ar, def) be an argumentation framework. If L is a reinstate-
ment labelling where out(L) is minimal then Lab2Ext(L) is the grounded exten-
sion. If Args is the grounded extension then Ext2Lab(Args) is a reinstatement
labelling where out(L) is minimal.

The last remaining case to be examined is the one of reinstatement labellings
where undec is minimized. We show that this does not coincide with any of
Dung’s standard semantics.

116 M. Caminada

There is a one-way relation between reinstatement labellings with minimal
undec and preferred extensions, as is stated in the following theorem.

Theorem 9. Let (Ar, def) be an argumentation framework and L be a reinstate-
ment labelling such that undec(L) is minimal. Then Lab2Ext(L) is a preferred
extension.

Unfortunately, it does not work the other way around. If Args is a preferred ex-
tension, then it is not necessarily the case that Ext2Lab(Args) is a reinstatement
labelling where undec(£) is minimal. This is shown in the following example.

Ezample 1. Let Ar ={A, B,C, D, E} and let A defeat B, B defeat A, B defeat
C, C defeat D, D defeat FE, and E defeat C (see also Figure 2). Here, there
exists two preferred extensions: & = {B, D} and & = {A}. As & is also a stable
extension, it holds that Ext2Lab(&;) yields a labelling (say £) with undec(L£) = 0.
However, Ext2Lab(&;) yields a labelling (say £’) with undec(L') = {C, D, E}.
So, even though & is a preferred extension, Ext2Lab(&:) is not a reinstatement
labelling in which undec is minimal.

.D
N
[] .4’.0 >
AY— B
k'e

Fig. 2. A preferred extension does not necessarily imply minimal undec

Labellings in which undec is minimized can be seen as produced by an agent that
is eager to take a position (in or out) on as many arguments as possible. It is
not too difficult to specify what these would look like as a Dung-style semantics.

Definition 7. Let (Ar, def) be an argumentation framework and Args C Ar.
Args is called a semi-stable extension iff Args is a complete extension where
Args U Args™ is mazimal.

The following theorem states that semi-stable semantics indeed coincides with
reinstatement labellings in which undec is minimal.

Theorem 10. Let (Ar,def) be an argumentation framework. If L is a rein-
statement labelling where undec(L) is minimal then Lab2Ext(L) is a semi-stable
extension. If Args is a semi-stable extension then Ext2Lab(Args) is a reinstate-
ment labelling where undec(L) is minimal.

An interesting property is that when there exists at least one stable extension,
the semi-stable extensions coincide with the stable extensions. This is because a
stable extension lables every argument in or out, without labelling any argument
undec. As for this stable extension, the set of undec labelled arguments is empty,
every labelling in which undec is minimized must then also have the set of undec
labelled arguments empty, and is therefore also a stable extension.

On the Issue of Reinstatement in Argumentation 117

Theorem 11. Let (Ar, def) be an argumentation framework. If there exists a
stable extension, then the semi-stable extensions coincide with the stable
extensions.

It should be mentioned that Theorem 11 does not hold when semi-stable se-
mantics is replaced by preferred semantics. That is, it is not the case that if
there exists a stable extension, the preferred extensions coincide with the stable
extensions (see Figure 2 for a counterexample). Semi-stable semantics is thus
very close to stable semantics (closer than, for instance, preferred semantics)
without the traditional disadvantage of stable semantics (the potential absence
of extensions).

The idea of semi-stable semantics is not entirely new. It is quite similar to
Verheij’s concept of an admissible stage extension, which fits within Verheij’s
approach of using stages to deal with the reinstatement of arguments [12].

Definition 8 ([12], condensed). An admissible stage extension is a pair
(Args, Args™) where Args is an admissible set of arguments and Args U Args™
s mazximal.

Theorem 12. Let (Ar, def) be an argumentation framework and Args C Ar.
(Args, Args™) is an admissible stage extension iff Args is a semi-stable
extension.

4.5 Overview

From the previous discussion, it is clear that there exists a connection between
the various forms of reinstatement labellings on one hand and the various Dung-
style semantics on the other hand. This connection is summarized in Table 1.

Table 1. Reinst. labellings versus Dung-style semantics

restriction Dung-style linked by

reinst. labellings semantics Theorem
no restrictions complete semantics 1
empty undec stable semantics 3
maximal in preferred semantics 4
maximal out preferred semantics 5
maximal undec grounded semantics 6
minimal in grounded semantics 7
minimal out grounded semantics 8

minimal undec semi-stable semantics 10

There also exists a partial ordering between the various Dung-style semantics.
Every stable extension is a semi-stable extension, every semi-stable extension is
a preferred extension, every preferred extension is a complete extension, and
every grounded extension is a complete extension. This is graphically depicted
in Figure 3.

118 M. Caminada

stable
T
semi-stable
preferred grounded
complete

Fig. 3. An overview of the different semantics

5 Semantics Revisited

In essence, a reinstatement labelling can be seen as a subjective but reasonable
point of view that an agent can take with respect to which arguments are in,
out or undec. Each such position is internally coherent in the sense that, if
questioned, the agent can use its own position to defend itself. It is possible
for the position to be disagreed with, but at least one cannot point out an
internal inconsistency. The set of all reinstatement labellings thus stands for
all possible and reasonable positions an agent can take. This can be seen as a
good reason for applying complete semantics, as reinstatement labellings coincide
with complete extensions (as was explained in section 4.1). In the remainder
of this section, we compare the approach of applying complete semantics with
alternative approaches (in particular with preferred semantics).

When determining the overall justified arguments, two approaches are possi-
ble: the sceptical and the credulous one. Under the credulous approach, an ar-
gument is justified iff there is at least one reasonable position (= reinstatement
labelling) where it is labelled in. Under the sceptical approach, an argument
is justified iff it is in in every reasonable position; that is, a reasonable agent
cannot deny that the argument is in.

&D;H;

Fig. 4. A floating argument

As an example, consider the argumentation framework of Figure 4. Here there
are three reinstatement labellings, as stated in Figure 5. When all reinstatement
labellings are taken into account (such is the case in complete semantics) then
A, B and D are credulously justified, whereas no arguments are sceptically
justified.

It is interesting to compare this approach with preferred semantics, which has
been the subject of much recent research [2,13,14]. As was explained earlier, a
preferred extension coincides with a reinstatement labelling in which the set of

On the Issue of Reinstatement in Argumentation 119

A:in B:out A:undec B:undec A:out B:in
C: out D:in C:undec D:undec C: out D:in
L1 L2 L3

Fig. 5. Three reinstatement labellings

arguments labelled in is maximal. In case of Figure 4, for instance, the relevant
labellings are only £1 and L3; thus, Lo is ruled out (see Figure 6).

A:in B: out A:out B:in
C: out D:in C: out D:in
L1 L3

Fig. 6. Preferred semantics rules out particular labellings

What preferred semantics essentially does is to rule out zero or more re-
instatement labellings before determining which arguments are credulously or
sceptically justified. Under the sceptical approach, this can lead to more con-
clusions becoming justified. In the case of Figure 4, for instance, argument D is
sceptically justified under preferred semantics but not under complete semantics.

The fact that under preferred semantics, reinstatement labelling Lo is ruled
out can be seen as odd. Lo, after all, is a perfectly valid reinstatement labelling.
The fact that it is ruled out under preferred semantics means that those who
defend preferred semantics must have some reason to justify this. This reason
should state why L, is “wrong” or “irrelevant”, thus making it possible to ignore
L. One such reason could be (Theorem 4) “Lo should be ignored because the
set of in-labelled arguments is not maximal.” This reason does not appear to be
a very strong one.

A more pragmatic reason in favor of preferred semantics is the issue of float-
ing conclusions and floating arguments. Suppose the following information is
available [15]: (1) Lars’s mother is Norwegian, (2) Lars’s father is Dutch, (3)
Norwegians like ice-skating and (4) Dutch like ice-skating. We can now con-
struct two arguments that defeat each other (assuming that double nation-
ality is not possible): (A) Lars likes ice-skating because he’s Norwegian and
(B) Lars likes ice-skating because he’s Dutch. Under sceptical complete seman-
tics, the proposition that Lars likes ice-skating is not justified, despite the fact
that, intuitively, it should be. Under sceptical preferred semantics, on the other
hand, the proposition that Lars likes ice-skating is justified. At a first sight,
this seems to illustrate a clear advantage of preferred semantics to complete
semantics.

If we take a closer look, however, the situation becomes more complex. This
is because the issue of whether or not Lars likes ice-skating depends on whether

120 M. Caminada

or not the principle of excluded middle is regarded as valid. In monotonic logic,
the validity of a statement p V —p depends, among other things, on the number
of truth-values. Whereas in a two-valued logic (where each proposition is either
true or false in a given model) the proposition p V —p is usually regarded as
valid, it is not regarded as valid in, for instance, three-valued logics [16,17]. Simi-
larly, for one of the two conflicting arguments A and B to be regarded as valid (or
justified), one should require that an argument is either in or out, resulting in a
two-valued reinstatement labelling (without undec). In section 4.2, it was shown
that this essentially boils down to stable semantics. Stable semantics, however,
suffers from the problem that for some argumentation frameworks, no stable
extensions exist. Consequently, it is not always possible to have a reinstatement
labelling with only in and out. A third possibility (undec) is needed. Therefore,
the principle of excluded middle, as an absolute criterion, should be rejected.’
For those who nevertheless feel that the principle of the excluded middle should
perhaps not hold at all times, but at least as much as possible (thus not com-
pletely ruling out undec but merely minimizing it), semi-stable semantics would
seem a more appropriate choice than preferred semantics.

Given the observation that the principle of complete semantics can be given a
decent philosophical justification, it is interesting to examine how complete se-
mantics could be implemented. Fortunately, it turns out that both sceptical and
credulous complete semantics have relatively easy and well-documented proof
procedures.

As for sceptical semantics, an argument is in each complete extension iff it is
in the grounded extension.

Theorem 13 ([1]). Let {CEx,...,CE,} be the set of complete extensions and
GFE be the grounded extension. Let A be an argument. It holds that A € GE iff
AeCEiN...NnCE,.

As for credulous semantics, an argument is in some complete extension iff it is
in some admissible set.

Theorem 14. Let CEy,...,CE, be the set of complete extensions and
ASq, ..., AS,, be the set of admissible sets. Let A be an argument. It holds that
dCE; € {CEl, .. ,OEn} A€ CE; Zﬁ HASJ S {ASl, .. .,ASm} tAe ASJ

The fact that sceptical complete semantics coincides with grounded semantics,
and credulous complete semantics coincides with credulous preferred semantics
is advantageous, as these have relatively straightforward and well-studied proof
procedures. Proof procedures for grounded semantics are given in [4, 18], and
proof procedures for credulous preferred semantics are given in [2, 3].

! Another issue where the principle of excluded middle does not hold in most for-
malisms for defeasible reasoning is in handling disjunctive information. If {pVq} C P
and {p = r; ¢ = r} C D then in most formalisms for defeasible reasoning, r is not
justified, although intuitively it should be, if one accepts the principle of excluded
middle.

On the Issue of Reinstatement in Argumentation 121
6 Summary and Discussion

In this paper, we showed it is possible to describe Dung’s standard semantics
in terms of reinstatement labellings, which provide an intuitive and relatively
simple way of dealing with the issue of reinstatement. We also showed how rein-
statement labellings can be used to pinpoint the exact differences between Dung’s
standard semantics. Using a systematic analysis of reinstatement labellings, we
were also able to specify an additional form of semantics (semi-stable semantics)
and showed how this semantics fits into the overall picture (Figure 3). We then
reexamined the various semantical approaches and made a case for grounded se-
mantics for sceptical entailment and credulous preferred semantics for credulous
entailment.?

One of the researchers who has done some work on the relation between
reinstatement labellings (“status assignments”) and Dung’s various semantics
is Prakken [15]. In particular, Prakken proves (in his own terms and particular
formalization) that reinstatement labellings without undec correspond to stable
extensions, and that reinstatement labellings with maximal in correspond to
preferred extensions [15]. It was the work of Prakken that served as an inspiration
for the more thorough analysis in this paper.

Other recent work on reinstatement labellings has been done by Jakobovits
and Vermeir [19]. Their definition of a labelling, however, is different than ours.
First of all, they allow for an argument to be labelled in, out, both in and
out, or neither in or out. Furthermore, their main reinstatement postulate is
different.

Definition 9 ([19], syntax and formulation adjusted). £ is a labelling iff:

—VAec Ar: (L(A) =out =3B € Ar: (Bdef AN L(B) = in)) and
—VAe Ar: (L(A) =in D VB € Ar : (Bdef A D L(B) = out)).

The difference between Definition 9 and the earlier presented Definition 5 is that
the former does not require an argument of which all defeaters are out to be
labelled in. This is quite strange, since it also means that an argument that has
no defeaters at all is not required to be labelled in. To some extent, this problem
is repaired for complete labellings, in which each argument is labelled either in,
out or both.

The overall aim of Jakobovits and Vermeir is to come up with a semantics
that is different from Dung’s. Jakobovits and Vermeir justify their approach
by discussing a number of small examples. However, the general approach of
using examples in order to justify a particular formalism has some important
downsides. To illustrate our main point, consider the following example provided
in [19].

2 This also implies that we do not support the approach of sceptical preferred seman-
tics, as is for instance examined by [13]. We reject sceptical preferred semantics for
reasons discussed in the previous section. We do, however, support the approach of
credulous preferred semantics, as this coincides with credulous complete semantics.

122 M. Caminada

Ezample 2.

A: As the bacteria in the patient’s blood is not of type X, it must be of type Y.
B: As the bacteria in the patient’s blood is not of type Y, it must be of type X.
C: As the patient does not have bacterial infection, giving antibiotics to the pa-
tient is superfluous.

D: As it is not superfluous to give the patient antibiotics, the antibiotics should
be prescribed.

Example 2 is represented in the argumentation framework of Figure 4. Jakobovits
and Vermeir argue that the correct outcome should be that argument D is
justified. However, it is quite easy to provide another example, with essentially
the same structure, where the desired outcome is totally different.

Ezxample 3.

A: The suspect killed the victim by stabbing him with a knife, as witness #1
says so.

B: The suspect killed the victim by shooting him with a gun, as witness #2
says so.

C: The suspect is innocent.
D: The suspect should go to jail.

This essentially gives the same argumentation framework as Figure 4. However,
an analysis of this case yields a different outcome. As essentially none of the
witness statements is without doubt, none of them can serve as a good reason to
refute the innocence of the suspect, and the conclusion that suspect should go
to jail is not an intuitive or desired one, at least not from a legal point of view.

The main point here is that some researchers try to justify a particular design
decision by giving an abstract example (like Figure 4) an informal meaning (like
Example 2 or Example 3) and then arguing that the outcome of the abstract
example should be in line with the “intuitive” outcome of the informal example.
Although this approach has been applied by various researchers in the past, it
has also been criticized [20, 18] for its inherent ad-hoc nature.

It is the author’s opinion that a better justification for the design of a particular
logical formalism can be found in postulates, as these have a more general nature
than separate examples. And for reasons explained earlier, we feel that Definition
5 can serve as a more intuitive and acceptable postulate for reinstatement than
Definition 9. It is the author’s firm opinion that Dung’s traditional semantics have
a solid basis and that one should have very good reasons for adjusting them.

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77 (1995) 321-357

2. Vreeswijk, G.A.W., Prakken, H.: Credulous and sceptical argument games for
preferred semantics. In: Proceedings of the 7th European Workshop on Logic for
Artificial Intelligence (JELIA-00). Number 1919 in Springer Lecture Notes in Al,
Berlin, Springer Verlag (2000) 239-253

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

On the Issue of Reinstatement in Argumentation 123

Cayrol, C., Doutre, S., Mengin, J.: Dialectical Proof Theories for the Credu-
lous Preferred Semantics of Argumentation Frameworks. In: Proceedings of the
6th European Conference on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQARU-2001). Volume 2143 of LNAI., Springer-Verlag
(2001) 668-679

. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-

sible priorities. Journal of Applied Non-Classical Logics 7 (1997) 25-75
Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation seman-
tics for defeasible logic. Journal of Logic and Computation 14 (2004) 675-702
ASPIC-consortium: Deliverable D2.5: Draft formal semantics for ASPIC system
(2005)

Horty, J.: Argument construction and reinstatement in logics for defeasible rea-
soning. Artificial Intelligence and Law 9 (2001) 1-28

Prakken, H.: Intuitions and the modelling of defeasible reasoning: some case stud-
ies. In: Proceedings of the Ninth International Workshop on Nonmonotonic Rea-
soning (NMR-2002), Toulouse, France (2002) 91-99

Caminada, M., Amgoud, L.: An axiomatic account of formal argumentation. In:
Proceedings of the AAAI-2005. (2005) 608—613

Caminada, M.: On the issue of reinstatement in argumentation. Technical Re-
port UU-CS-2006-023, Institute of Information and Computing Sciences, Utrecht
University (2006)

Caminada, M.: Contamination in formal argumentation systems. In: Proceedings
of the 17th Belgium-Netherlands Conference on Artificial Intelligence (BNAIC).
(2005) 59-65

Verheij, B.: Two approaches to dialectical argumentation: admissible sets and
argumentation stages. In Meyer, J.J., van der Gaag, L., eds.: Proceedings of the
Eighth Dutch Conference on Artificial Intelligence (NAIC’96), Utrecht, Utrecht
University (1996) 357-368

Doutre, S., Mengin, J.: On sceptical versus credulous acceptance for abstract
argument systems. In: Proceedings of the 9th European Conference on Logics in
Artificial Intelligence (JELIA-2004). (2004) 462-473

Dimopoulos, Y., Nebel, B., Toni, F.: Finding Admissible and Preferred Arguments
Can be Very Hard. In: Proc. of the 7th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-2000). (2000) 5361

Prakken, H.: Commonsense reasoning. Technical report, Institute of Information
and Computing Sciences, Utrecht University (2004) Reader.

Urquhart, A.: Basic many-valued logic. In Gabbay, D., Glinthner, F., eds.: Hand-
book of Philosophical Logic. Volume 2. Second edn. Kluwer Academic Publishers,
Dordrecht/Boston/London (2001) 249-295

H#hnle, R.: Advanced many-valued logic. In Gabbay, D., Gunthner, F., eds.: Hand-
book of Philosophical Logic. Volume 2. Second edn. Kluwer Academic Publishers,
Dordrecht/Boston/London (2001) 297-395

Caminada, M.: For the sake of the Argument. Explorations into argument-based
reasoning. Doctoral dissertation Free University Amsterdam (2004)

Jakobovits, H., Vermeir, D.: Robust semantics for argumentation frameworks.
Journal of logic and computation 9(2) (1999) 215-261

Vreeswijk, G.A.W.: Studies in defeasible argumentation. PhD thesis at Free Uni-
versity of Amsterdam (1993)

Comparing Action Descriptions Based on
Semantic Preferences™

Thomas Eiter, Esra Erdem, Michael Fink, and Jan Senko

Institute of Information Systems, Vienna University of Technology, Austria
{eiter, esra, michael, jan}@kr.tuwien.ac.at

Abstract. We consider action domain descriptions whose meaning can be rep-
resented by transition diagrams. We introduce several semantic measures to com-
pare such action descriptions, based on preferences over possible states of the
world and preferences over some given conditions (observations, assertions, etc.)
about the domain, as well as the probabilities of possible transitions. This pref-
erence information is used to assemble a weight which is assigned to an action
description. As an application of this approach, we study the problem of updating
action descriptions with respect to some given conditions. With a semantic ap-
proach based on preferences, not only, for some problems, we get more plausible
solutions, but also, for some problems without any solutions due to too strong
conditions, we can identify which conditions to relax to obtain a solution. We
conclude with computational issues, and characterize the complexity of comput-
ing the semantic measures.

1 Introduction

This paper discusses how to compare action descriptions, whose meaning can be rep-
resented by transition diagrams—a directed graph whose nodes correspond to states
and edges correspond to transitions caused by action occurrences and non-occurrences,
with respect to some given conditions. Comparison of action descriptions is important
for applications, when an agent has to prefer one description more than the others. One
such application is the action description update problem [1]: when an agent tries to
update an action description with respect to some given information, she usually ends
up with several possibilities and has to choose one of these action descriptions. Another
application is related to representing an action domain in an elaboration tolerant way
(for a definition of elaboration tolerance see, e.g., [2, 3]): among several action descrip-
tions representing the same action domain, which one is the most elaboration tolerant
one, with respect to some given conditions describing possible elaborations?

The preference of an agent over action descriptions may be based on a syntactic
measure, such as the number of formulas: the less the number of formulas contained
in an action description, the more preferred it is. A syntactic measure can be defined
also in terms of set containment with respect to a given action description D: an action
description is more preferred if it is a maximal set among others that is contained in
D. For instance, according to the syntactic measure used in [1] for updating an action

* Work supported by the Austrian Science Fund (FWF) under grant P16536-N04.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 124-137, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Comparing Action Descriptions Based on Semantic Preferences 125

I8 {PushPBrc} {PushPBrc} 18
{PushPBrv, PushPBgrc}

PowerON {PushPBrv} —~PowerON
W
TvON {PushPBrv} -~TvON

{PushPBrv,PushPBgrc}

Fig. 1. A transition diagram

description D with some new knowledge @, an action description D’ is more preferred
if D’ is a maximal set among others containing D and contained in D U () is maximum.

In this paper, we describe the preference of an agent over action descriptions, with
respect to some semantic measure. The idea is to describe a semantic measure by as-
signing weights (i.e., real numbers) to action descriptions, with respect to their transi-
tion diagrams and some given conditions; then, once the weights of action descriptions
are computed, to compare two descriptions by comparing their weights.

We consider action descriptions, in a fragment of the action language C [4], which
consists of “causal laws.” For instance, the causal law

caused PowerON after PushPBry N ~PowerON, (D

expresses that the action PushPBry causes the value of the fluent PowerON to change
from f to t; such causal laws describe direct effects of actions. The causal law

caused TvON if PowerON, 2)

expresses that if the fluent PowerON is caused to be true, then the fluent TvON is
caused to be true as well; such causal laws describe state constraints. The meaning of
an action description D can be represented by a transition diagram, like in Fig. 1. In
this transition diagram, the nodes of the graph (shown by boxes) denote the states of the
world: (s) one where both the power and the TV is on, and (s’) the other where both the
power and the TV is off. The edges denote action occurrences. For instance, the edge
from s to s’ labeled by the action of pushing the power button on the TV describes that
executing this action at s leads to s’. The edges labeled by the empty set are due to the
law of inertia.

Suppose that we are given another action description D’ describing the domain
above; and that the transition diagram of D’ is almost the same as that of D, ex-
cept that there is no outgoing edge from the state { PowerON, TvON} with the la-
bel { PushPBrc}. Which action description should be preferred? In answering this
question, we also take given conditions (observations, assertions, etc.) on the action do-
main into account. We describe conditions in an action query language, like in [5], by
“queries.” For instance,

ALWAYS \/AezA executable A, 3)

where 22 denotes the set of all actions, expresses that, at every state, there is some
action executable. The query

SOMETIMES evolves PowerON; { PushPBgc }; PowerON 4

126 T. Eiter et al.

expresses that, at some state when the power is on, pushing the power button on the
remote control does not turn the power off.
The question we consider in this paper is then the following:

Given a set D of action descriptions and a set C of queries, which action
description in D is a most preferred one with respect to C'?

Our main contributions are briefly summarized as follows.

e We provide an answer to the above question with respect to mainly four semantically-
oriented approaches, by assigning weights to action descriptions in D, based on their
transition diagrams. The weights express preferences of the agent over possible states
of the world and preferences over conditions, as well as the probabilities of possible
transitions.

A simple weight measure is to count the number of queries in C' which an action de-
scription D entails. In the example above, D entails according to its transition diagram
(3) and (4), so D has weight 2; D’ entails according to its transition diagram only (3),
so D’ has weight 1. Hence, D is preferred over D’.

e We apply these approaches to the problem of updating an action description, and
observe two benefits. First, if a problem has many solutions with the syntactic approach
of [1], a semantic approach can be used to pick one. Second, if a problem does not
have any solution with any of the approaches due to too strong conditions, a semantic
approach can be used to identify which conditions to relax to find a solution.

e We characterize the computational cost of computing the weight assignments, which
lays the foundations for efficient computation.

For space reasons, we omit the definitions of transition diagrams and action descrip-
tions. They are as in [1] and given in an extended version [6]," which contains further
explanation of the examples, additional examples, another application, and a detailed
discussion of the complexity results and algorithms.

2 Action Queries

To talk about observations of the world, or assertions about the effects of the execution
of actions, we use an action query language consisting of queries described as follows.
We start with basic queries: (a) static queries of the form

holds F, &)
where F'is a fluent formula; (b) dynamic queries of the form
necessarily @ after A;;...; A, (6)

where () is a basic query and each A; is an action; and (c) every propositional combi-
nation of basic queries. An existential query is an expression of the form

SOMETIMES Q, @)

! Available at http: / /www.kr.tuwien.ac.at/research/ad-cmp.pdf.

Comparing Action Descriptions Based on Semantic Preferences 127

where () is a basic query; a universal query is of the form
ALWAYS Q, ®)

where (Q is a basic query. A query q is a propositional combination of existential queries
and universal queries.

As for the semantics, let T = (S, V, R) be a transition diagram, with a set S of states,
a value function V mapping, at each state s, every fluent P to a truth value, and a set R
of transitions. A history of T of length n is a sequence

SOaAlaslw--7571—17An75n (9)

where each (s;, Ai+1,si+i) (0 < 4 < n)is in R. We say that a state s € S satisfies
a basic query @’ of form (5) (resp. (6)) relative to T (denoted T', s = @), if the in-
terpretation P — V (P, s) satisfies F' (resp. if, for every history s = sg, 41,81, ...,
Sn—1, An, sp, of T of length n, basic query @ is satisfied at state s,,). For other forms
of basic queries @, satisfaction is defined by the truth tables of propositional logic. If
T is described by an action description D, then the satisfaction relation between s and
a basic query () can be denoted by D, s = @ as well.

Note that, for every state s and for every fluent formula ', D,s [holds F iff
D, s = —holds —F'. For every state s, every fluent formula F', and every action sequence
Ai,..., A, (n > 1),if D, s |= necessarily (holds F') after Ay;...; A, then D,s =
—necessarily (—holds F') after A;;...; A,.

We say that D entails a query ¢ (denoted D |= ¢) if one of the following holds:

q is an existential query (7) and D, s |= @) for some state s € S
— ¢ is a universal query (8) and D, s |= @ for every state s € S,

- ¢=—¢ and D £ ¢;

—qg=q Ngand D |E g and D |= go; or
-g¢=qVgadDEqorD Eq.

For every basic query), D = SOMETIMES Q) iff D = —~ALWAYS —Q. For a set C'
of queries, we say that D entails C (denoted D=C) if D entails every query in C.
Consider, e.g., the action description consisting of (1), (2), and

caused — PowerON after PushPBry A PowerON
caused = TvON if - PowerON (10)
inertial PowerON , = PowerON, TvON,~TvON

encoding how a TV system operates; here inertial L1, ..., L stands for the causal laws
caused L; if L; after L; (1 < i < k). It does not entail any set of queries containing

ALWAYS necessarily (holds ~TvON) after { PushPBrc}

because this query is not satisfied at the state { TvON, PowerON }; but, it entails the
queries:

ALWAYS holds PowerON = TvON,

ALWAYS holds PowerON A TvON D (11
—necessarily (holds TvON) after { PushPBry }.

128 T. Eiter et al.

In the rest of the paper, an expression of the form
possibly @ after A;;...; A,,

where @) is a basic query and each A; is an action, stands for the dynamic query
—necessarily =) after A;;...; A,; an expression of the form

evolves Fo; Ay Fy;. . s By 13 Ans B, (12)

where each F; is a fluent formula, and each A; is an action, stands for holds F; A
possibly (holds F; A possibly (holds F; A ...) after As) after A;; and

executable A;...; A,,

where each A; is an action, stands for possibly True after Ay;...; A,,. We sometimes
drop holds from static queries appearing in dynamic queries.

Queries allow us to express various pieces of knowledge about the domain. For in-
stance, we can express the existence of states where a formula F' holds by means of
the query SOMETIMES holds F. Similarly, we can express the existence of a transition
from some state where a formula F' holds to another state where a formula £ holds, by
the execution of an action A:

SOMETIMES holds F' A possibly F’ after A .
In general, the existence of a history (9) such that, for each s; of the history, the inter-
pretation P — V (P, s;) satisfies some formula F; is expressed by the query:
SOMETIMES evolves Fy; A1; Fi;...; Fp_1; Ap; . (13)
For instance, the query

SOMETIMES evolves PowerON; { PushPBrv };

—PowerON; { PushPBrv }; PowerON. (14)

describes the presence of the following history in Fig. 1:

{PowerON, TvON }, { PushPBry },

{=PowerON,—=TvON }, { PushPBry }, { PowerON, TvON }. (15)

That at some state where formula F" holds no action is possible is expressed by
SOMETIMES holds F' A /\ necessarily Fulse after A.
Ae2h

Like in [1], executability of an action sequence Ai,..., A, (n > 1) at every
state can be described by ALWAYS executable A;;...; A, ; mandatory effects of a se-
quence Aj,..., A, (n > 1) of actions in a given context by ALWAYS holds G D
necessarily F' after A;;...; A,; and possible effects of a sequence of actions in a con-
text by ALWAYS holds G D possibly I after A;;...; A, . In the last two queries, F’
describes the effects and G the context.

3 Weight Assignments for Action Descriptions

To compare action descriptions with respect to their semantics, we can assign weights to
them, based on their transition diagrams and a given set of conditions. We present below

Comparing Action Descriptions Based on Semantic Preferences 129

four weight assignments, each with a different motivation expressing some appeal of
the action description, however, without an a priori epistemic meaning. They are by
no means exhaustive, i.e., many more are conceivable, but allow to specify preferences
over the main semantic constituents—states, transitions, queries, and a combination
thereof. Corresponding orders are total and, unlike more general preferences (partial
orders), beneficial wrt. discrimination of choices or component-wise comparability.

3.1 Weighted States

We can specify our preference over states of a transition diagram (S, V, R) by assigning
a weight to each state in S, by a function g. Such a function assigning real numbers to
states of the world can be considered as a utility function, as in decision theory. If one
state of the world is preferred to another state of the world then it has higher utility
for the agent; here “utility” is understood as “the quality of being useful” as in [7].
Alternatively, the function g can be viewed as a reward function: being at a state s will
give a reward of ¢(s) to the agent.

Given a utility function for a set S of states, the highly preferred states relative to
a given number [are states with a weight greater than [. Then, one way to define the
weight of an action description D relative to g and [is as follows:

weights (D) = |{s: s € S,g(s) > 1}
With respect to this definition, the more the number of states that are highly preferred
by the agent, the more preferred the action description is.

For instance, consider the transition diagram in Fig. 1 described by D. Take, for each

se S,
()_{QifPowerONES

1 otherwise. (16)

Take [= 1. Then weights(D) = 1.

3.2 Weighted Queries

We can assign weights to queries to specify preferences over conditions they express:
Let C be a set of queries, along with a weight function f mapping each query in C'
to a real number. Then one way to define the weight of D (relative to C' and f) is by

weighty (D) = Z f(e).

Intuitively, the weight of an action description defined relative to the weights of queries
shows how much the set C' of given preferable queries are satisfied. (Note that f can
easily express a threshold function as well.) With this definition, the more the highly
preferred queries are satisfied, the more preferred the action description is.

For instance, suppose that C' consists of (14) and

ceC,Di=c

ALWAYS executable { PushPBrc }, a7

with weights 1 and 2 respectively. For the description D with the transition diagram in
Fig. 1, weighty(D) = 3.

130 T. Eiter et al.

3.3 Weighted Histories

In a transition diagram 7" = (S, V, R), we will say that a history (9) of length n is
desired with respect to a given query (13), if, for each 4, the interpretation P — V (P, s;)
satisfies Fj.

Let D be an action description, and T" = (S, V, R) be the transition diagram de-
scribed by D. Let C be a set of queries, along with a weight function f mapping each
condition in C' to a number. Let H¢ be the set of pairs (w, ¢) such that w is a desired
history in 7" with respect to the query ¢ of form (13) in C'. Let us denote by st(w) the
starting state sg of a history w of form (9). We define a function h mapping each desired
history w appearing in H¢ to a real number, in terms of the utility u(w) of state st(w)
with respect to w:

h(w) =w(w) X 3=, eme f(0):

The function v mapping a history w of form (9) to a real number can be defined
in terms of a sequence of functions u;. Given a utility function (or a reward function)
g mapping each state in S to a real number, and a transition model m mapping each
transition (s, A, s’) in R to a probability (i.e., the probability of reaching s’ from s after
execution of A):

un(w) = g(sn)
ui(w) = g(s:) +m((ss, Ait1,8i41)) X uir1(w) (0 < i <n)
u(w) = ug(w).

These equations are essentially obtained from the equations used for value determina-
tion in the policy-iteration algorithm described in [7, Chapter 17]: take {so, ..., S, } as
the set of states, (s;, A;+1, S;+1) as the possible transitions, the mapping s; — A;;1 as
the fixed policy, U as u, U; as u;, R as g, and M as m. Then we can define the weight of
D in terms of the weights of desired histories wy, . . ., w, appearing in H¢ as follows:

weighty, (D) = Z

The more the utilities of desired histories (or trajectories) satisfied by the action de-
scription, the more preferred the action description is.

For instance, suppose that C' consists of query (14), with weight 3. Consider the tran-
sition diagram T' = (S, V| R) in Fig. 1. Let us denote history (15) by w, and query (14)
by c. Then H¢ contains (w, ¢). Take g(s) as in (16). Take [= 1. Suppose that, for each
transition (s, A, s') in R,

i1 h(wl)

ny _ J 0.5if s = {PowerON, TWON} A |A| =1
m({s, 4, 57) = {1 otherwise.

Then u(w) is computed as 3.5. and h(w) = u(w) X 3_, e, f(c) =3.5x3 =10.5.
Hence weightp, (D) = 10.5.

(18)

3.4 Weighted Queries Relative to Weighted States

The three approaches above can be united by also considering to what extent each uni-
versal query in C is entailed by the action description. The idea is while computing the

Comparing Action Descriptions Based on Semantic Preferences 131

weight of a description relative to weighted queries, to take into account the states at
which these queries are satisfied.

Let D be an action description. Let T' = (S, V, R) be the transition diagram de-
scribed by D, along with a weight function g mapping each state in 7" to a real number.
Let C be a set of queries such that every query ¢ in C'is an existential query, a universal
query, or a disjunction of both.

First, for each state s in S, we compute its new weight ¢'(s), taking into account
utilities of the desired histories starting with s. Let H¢ be the set of pairs (w, ¢) such
that w is a desired history in 7" with respect to the query c of form (13) in C. Let W
be the set of histories that appear in H¢. Let u be a function mapping a history w to
a real number, describing the utility of state s with respect to w. Then the new weight
function ¢’ is defined as follows:

i fa(s) if Aw(w e W A st(w) = s)
g (8) N ZwEW,st(w):s U(U}) otherwise.

Next, for each query ¢ in C, we compute its new weight f'(c). Let f be a function
mapping each condition in C' to a real number. We will denote by Sp(B) the set of
states s such that D, s = B. Then we define f’ as follows:

fa)+ @) itg=qvg"

- 3 if ¢ = ALWAYS B
~ if ¢ = SOMETIMES B A |Sp(B)| > 0
0 if ¢ = SOMETIMES B A |Sp(B)| = 0,

where 8 = f(q) X X ses,(m) 9'(s) and v = f(a) X [(Xes,(m) 9'(5)/1Sp(B)]]-
Intuitively, f/ describes to what extent each preferable query q is satisfied.
Then the weight of D (relative to C' and f) is the sum:

' D) = "(q).
weightys (D) Zq o l'@
Intuitively, weightys(D) describes how much and to what extent the given preferable
queries are satisfied by D. For instance, suppose C consists of three queries:

ALWAYS executable { PushPBrv }, (19)
SOMETIMES —executable { PushPBgr ¢, PushPBry }, (20)

and query (14), denoted by c1, co and c3 respectively. Consider an action descrip-
tion D, with the transition diagram in Fig. 1. Let us denote history (15) by wj; then
He = {(w, c3)}. Take the utility function g as in (16), and the transition model m as
in (18). Take f(c1) =1, f(c2) =2, f(c3) = 3. Then ¢'({ PowerON, TvON }) = 3.5,
g ({—~PowerON,—TvON}) =1, and f'(c1) = 4, f'(c2) = 4, f'(e3) = 10.5. There-
fore, weightqs (D) = 18.5.

Further discussion and additional examples considering the weight functions in dif-
ferent action domains are given in the extended version [6].

132 T. Eiter et al.

4 Application: Updating an Action Description

Suppose that an action description D consists of two parts: D,, (unmodifiable causal
laws) and D,, (modifiable causal laws); and a set C' of conditions is partitioned into
two: Cy, (must) and C), (preferable). We define an Action Description Update (ADU)
problem by an action description D = (D, D,,), a set) of causal laws, a set C' =
(Cp, Cp) of queries, all with the same signature, and a weight function weight map-
ping an action description to a number. The weight function can be defined relative to
a set of queries, a utility function, or a transition model, as seen in the previous sec-
tion. We say that a consistent action description D’ is a solution to the ADU problem
(D, Q, C, weight) if

HQUD,CD CDUQ,

(i) D' = Cp,

(iii) there is no other consistent action description D" such that Q U D,, C D" C
DUQ, D" |= Cy,, and weight(D") > weight(D").

The definition of an ADU problem in [1] is different from the one above mainly
in two ways. First, C, = (). Second, instead of (iii) above, the following syntactic
condition is considered: there is no consistent action description D’ such that D’ C
D"CDUQ,and D" = C.

The semantic approach above has mainly two benefits, compared to the syntactic
approach of [1]. First, there may be more than one solution to some ADU problems
with the syntactic approach. In such cases, a semantic approach may be applied to pick
one of those solutions. Example 1 illustrates this benefit. Second, for an ADU prob-
lem, if no consistent action description D’ satisfying (i) satisfies the must queries (C.,),
there is no solution to this problem with either syntactic or semantic approach. In such
a case, we can use the semantic approach with weighted queries, to relax some must
queries in Cy, (e.g., move them to Cp,). The idea is first to solve the ADU problem
((Dy, D), Q, (B, CL.), weight), where C!. is obtained from Cy, by complementing
each query, and where the weights of queries in C?, are equal to some very small nega-
tive integer; and then to identify the queries of C/ satisfied in a solution and add them
Cp, with weights multiplied by -1. This process of relaxing some conditions of C,, to
find a solution is illustrated in Example 2.

Example 1. Consider, for instance, an action description D = (D,,, D,,), where D,,, =
{(1),(2)} and D, is (10), that describes a TV system with a remote control. Suppose
that, later the following information, (), is obtained:

caused TvON after PushPBrc A PowerON N —=TvON
caused = TvON after PushPBrc A TvON.

Suppose that we are given the set C' = (C,,, Cp) of queries where C,,, consists of the
queries (3) and

SOMETIMES evolves = TvON ; { PushPBrvy }; = TvON, 21

and C), consists of the queries (14), (20), (19), (17), (4), denoted by cy, . .., c5 respec-
tively. When () is added to D, the meaning of D U () can be represented by a transition

Comparing Action Descriptions Based on Semantic Preferences 133

{} {PushPBrv, PushPBgrc} }
{PushPBRrc}
{PushPBrv}

PowerON| { PushPBrv, PushPBrc} ["PowerON

TvON {PushPBrv} ~TvON

Fig. 2. Transition diagram of D® = D, UQ U {(2)}

{PushPBRrc}
0 Q 0
{PushPBrv, PushPBRrc}

PowerON {PushPBry} —~PowerON
TvON —~TvON
PushPBRrc}
{PushPBrv}
{PushPBRrc} {PushPBrv}
PowerON|, 1PushPBryv, PushPBRrc}
-~TvON

Q{}

Fig. 3. Transition diagram of D® = D, UQ U {(1)}

diagram almost the same as in that of D (Fig. 1), except that there is no outgoing edge
from the state { PowerON, TvON } with the label { PushPBg¢ }; thus only (3), (21),
and (14) in C' are entailed by D U Q. The question is how to update D by @ so that
the must conditions, C,,,, are satisfied, and the preferable conditions, C, are satisfied
as much as possible.

The consistent action descriptions for which (i) holds are DY) = D U Q, D®) =
D,uQu{(2)}, D® = D,uQuU{(1)}, DY = D, U Q. With the syntactic ap-
proach of [1], we have to choose between D® and D®), since they have more causal
laws. Consider the semantic approach based on weighted histories (i.e., weight =
weight,), with (16) as the utility function g, (18) as the transition model m, and f(¢1) =
3,f(c2) = 1,f(e3) = 4, f(ca) = 3, f(cs) = 2. Let us consider the states sp =
{PowerON, TvON }, s; = {PowerON,—~TvON}, s = {-~PowerON,—~TvON };
and the histories

wo = 8o, { PushPBRrc}, s1, wy = S, { PushPB7v }, s2,{ PushPBrv }, $1,
wy = s1, { PushPBRrc}, so, ws = s1, { PushPBpv }, s2, { PushPBrv }, $1

with utilities u(wp) = 3, u(w1) = 4, u(wz) = 3.5, u(ws) = 5.

For D® (Fig. 2), since He, = 0, weight,(D®) = 0. For D® (Fig. 3), since
He, contains (wo, cs), (w1,cs5), (we,c3), and (w3, c3), weight,(D®)) = 48. Thus
D®) is the solution.

Example 2. Let D, Q, C,, and DY-D™® as in Example 1 and C,,, consist of

SOMETIMES - \/ executable A, (22)
Ae24a
ALWAYS —evolves = TvON; { PushPBry }; = TvON, (23)

134 T. Eiter et al.

denoted by ¢} and ¢, respectively. None of the descriptions DM — D@ entails C,,.
Therefore, there is no solution to the ADU problem above with either the syntactic
approach of [1] or any of the semantic approaches above. To identify which queries in
C', we shall move to C), first we obtain C},, from C,,, by negating each query in C,,
and assigning a very small negative integer, say —100, as their weights. So C? consists
of the queries (3) and (21), denoted by ¢ and ¢}, with weights -100. With the semantic
approach based on weighted queries (i.e., weight = weight),

weight,(DM) = f(c!) = —100,
weight, (D®) = weight,(D®)) = f(c]) + f(c4) = —200,
weighty(DW) = f(cf) + f(c3) = —200

the description DY) is the solution to the ADU problem given by ((D,, Dy,),Q,
(0,Cr,), weight,). This suggests relaxing the must query (22) (i.e., adding the query
(22) to C), with the weight 100) and solving the new ADU problem, ((D,, Dy,), @,
{(23)}, C, U {(22)}, weight,), for which the description D,, U @ is the solution.

Other semantic approaches to action description updates. Given a consistent action
description F, condition (iii) of an ADU problem (D, @, C, weight) can be replaced by

(iii)’ there is no other consistent D" such that QU D,, C D" C DUQ, D" |E Cp,
and |weight(D") — weight(E)| < |weight(D’) — weight (F)]

to express that, among the consistent action descriptions D’ for which (i) and (ii) hold,
an action description that is “closest” to (or most “similar” to) E is picked. Here, for
instance, F may be D U @, to incorporate as much of the new information as possible,
although D U) may not entail C'. What is meant by closeness or similarity is based on
the particular definition of the weight function. For instance, based on the weights of
the states only, with g(s) = 1 if s is a state of E, and 0 otherwise, the closeness of an
action description to F is defined in terms of the common world states.

A further application of weight-based comparison of action descriptions to assess
the elaboration tolerance of different representations of an action domain is considered
in [6].

5 Computational Aspects

We confine here to discuss the complexity, in order to shed light on the cost of com-
puting the weight measures. We assume that the basic functions g(s), f(q), as well as
m((s, A, s'}) are computable in polynomial time. For a background on complexity, we
refer to the literature (see e.g. [8]).2

Apparently, none of the different weights above is polynomially computable from an
input action description D and a set C of queries in general. Indeed, deciding whether .S
has any states is NP-complete, thus intractable. Furthermore, evaluating arbitrary queries
gon D (D [= q) is a PSPACE-complete problem. Indeed, ¢ can be evaluated by a sim-
ple recursive procedure in polynomial space. On the other hand, evaluating Quantified
Boolean Formulas, which is PSPACE-complete, can be reduced to deciding D = g.

2Seealso http://qwiki.caltech.edu/wiki/Complexity Zoo

Comparing Action Descriptions Based on Semantic Preferences 135

Table 1. Complexity of computing weights (completeness)

Input / Weight weights, weight, weightp, weightys
D, C #P FPSPACE GapP * FPSPACE
D, C,S polynomial

Dypot™, C in FP)'”

* #P for non-negative g(s),f(q); ** |S| is polynomially bounded

Computation given D and C. As it turns out, all four weights are computable in poly-
nomial space. This is because each weight is a sum of (in some cases exponentially
many) terms, each of which can be easily computed in polynomial space, using exhaus-
tive enumeration. In some cases, the computation is also PSPACE-hard, but in others
supposedly easier:

Theorem 1. Given an action description D, a set C of queries, and polynomial-time
computable basic functions g(s), f(q), and m({s, A, s")),

(i) Computing weight ,(D) relative to g is, #P-complete;
(ii) Computing weight (D) relative to C and f is FPSPACE-complete;
(iii) Computing weight, (D) relative to C, f, g and m is #P-complete (modulo a nor-
malization, which casts the problem to one on integers), if the range of f and g
are nonnegative numbers, and GapP-complete for arbitrary f and g;
(iv) Computing weight ,,(D) relative to C, f, g and m is FPSPACE-complete.

These results are also shown in the first row of Table 1. Here #P [8] is the class of the
problems where the output is an integer that can be obtained as the number of the runs
of an NP Turing machine accepting the input, and GapP [9, 10] is the closure of #P
under subtraction (equivalently, the functions expressible as the number of accepting
computations minus the number of rejecting computations of an NP Turing machine).
These problems are trivially solvable in polynomial time with an oracle #P, and no such
problem is believed to be PSPACE-hard.

Computation given D, C, and states S of D. Informally, a source of complexity is
that D may specify an exponentially large transition diagram 7. If T" is given, then all
four weights are polynomially computable. In fact, not all of T" is needed, but only a
relevant part, denoted T (D), which comprises all states and all transitions that involve
actions appearing in C.

Now if the state set .S is known (e.g., after computation with CCALC [11]) or com-
putable in polynomial time, then T (D) is constructible in polynomial time. Indeed, for
eachstates s, s’ € S and each action A occurring in some query, we can test in polynomial
time whether (s, A, s’) is a legal transition with respect to D; the total number of such
triples is polynomial in |S|. Then the following result (the second row of Table 1) holds.

Theorem 2. Given an action description D, the set S of states described by D, a
set C' of queries, and polynomial-time computable basic functions g(s), f(q), and
m((s, A, s')). Then weight (D) (relative to g), weight (D) (relative to C' and f),

136 T. Eiter et al.

weight (D) (relative to C, f, g and m), and weight , (D) (relative to C, f, g and
m), are all computable in polynomial time.

Intuitively, for weight (D) this holds since we can decide whether a query ¢ from C
holds with respect to T(D) in polynomial time using standard labeling methods from
model checking [12]. We can compute weight; (D) with similar labeling techniques,
reshuffling the weight and utility functions h(w) and u(w), respectively, such that con-
sidering exponentially many paths in T (D) explicitly is avoided.

Computation given D and C for polynomial state set S. Finally, if the state space
S is not large, i.e., |:S| is polynomially bounded, S is computable with the help of an
NP-oracle in polynomial time; in fact, this is possible with parallel NP oracles queries,
and thus computing S is in the respective class FP|". From Theorem 2, we thus obtain
the following results (the third row of Table 1):

Theorem 3. Given an action description D such that |S| is polynomially bounded,
a set C of queries, and polynomial-time computable basic functions g(s), f(q), and
m((s, A, s'}), Then computing each of the weight functions, weight ,(D) (relative to
g), weight (D) (relative to C and f), weight, (D) (relative to C, f, g and m), and
weighth(D) (relative to C, f, g and m), is in FPﬂIP.

On the other hand, tractability of any of the weight functions in the case where |S]|
is polynomially bounded is unlikely, since solving SAT under the assertion that the
given formula F' has at most one model (which is still considered to be intractable) is
reducible to computing weight,(D) for each p € {s, ¢, h, gs}.

6 Conclusion

We have presented four ways of assigning weights to action descriptions, based on the
preferences over states, preferences over conditions, and probabilities of transitions, so
that one can compare the action descriptions by means of their weights. To the best
of our knowledge, this paper is the first attempt in this direction. Moreover, we have
characterized the computational cost of the weight assignments, providing a basis for
efficient algorithms.

We have illustrated the usefulness of such a semantically-oriented approach of
comparing action descriptions, on the problem of updating an action description, in
comparison with the syntactic approach of [1]. Further examples and applications are
considered in the extended version of this paper [6].

Further work will aim at implementations of the weight measures, based on the com-
plexity characterizations and algorithms obtained (cf. [6]) and to investigate restricted
problem classes. Another issue is to explore further measures.

References

1. Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. In: Proc. 1J-
CAL (2005) 418-423
2. McCarthy, J.: Elaboration tolerance. In: Proc. CommonSense. (1998)

i

10.

11.

12.

Comparing Action Descriptions Based on Semantic Preferences 137

Amir, E.: Towards a formalization of elaboration tolerance: Adding and deleting axioms. In:
Frontiers of Belief Revision. Kluwer (2000)

Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proc. AAAL (1998) 623-630

Gelfond, M., Lifschitz, V.: Action languages. ETAI 3 (1998) 195-210

Eiter, T., Erdem, E., Fink, M., Senko, J.: Comparing action descrip-
tions based on semantic preferences. Extended manuscript. Available at
http://www.kr.tuwien.ac.at/research/ad-cmp.pdf (2006)

Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995)
Papadimitriou, C.: Computational Complexity. Addison-Wesley (1994)

Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. Journal of Computer
and System Sciences 48 (1994) 116-148

Gupta, S.: Closure properties and witness reduction. Journal of Computer and System Sci-
ences 50 (1995) 412432

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
AT 153 (2004) 49-104

Clark, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

Modal Logics of Negotiation and Preference

Ulle Endriss and Eric Pacuit

Institute for Logic, Language and Computation
University of Amsterdam

Abstract. We develop a dynamic modal logic that can be used to model
scenarios where agents negotiate over the allocation of a finite number of
indivisible resources. The logic includes operators to speak about both
preferences of individual agents and deals regarding the reallocation of
certain resources. We reconstruct a known result regarding the conver-
gence of sequences of mutually beneficial deals to a Pareto optimal allo-
cation of resources, and discuss the relationship between reasoning tasks
in our logic and problems in negotiation. For instance, checking whether
a given restricted class of deals is sufficient to guarantee convergence to
a Pareto optimal allocation for a specific negotiation scenario amounts
to a model checking problem; and the problem of identifying conditions
on preference relations that would guarantee convergence for a restricted
class of deals under all circumstances can be cast as a question in modal
logic correspondence theory.

1 Introduction

Negotiation between autonomous agents over the allocation of resources has
become a central topic in AL In this paper, we present some first steps towards
using (modal) logic to model negotiation scenarios. We explore to what extent
known results about negotiation can be reconstructed in such a logic and whether
it is possible to derive new insights about a negotiation framework by studying
its formalisation in logic. The particular negotiation framework we are interested
in here, which has recently been studied by several authors [1,2, 3], involves a
number of autonomous agents negotiating over the reallocation of a number of
indivisible goods amongst themselves. Agents have preferences over the resources
they hold, and they will only agree to take part in a deal if that deal would leave
them with a preferred bundle of goods. That is, negotiation is driven by the
rational interests of the participating agents. At the same time, we can observe
different phenomena at the global level. For instance, it may or may not be the
case that the sequence of deals implemented by the agents converges to a socially
optimal allocation of resources (say, a Pareto optimal allocation).

Our aim in this paper is to show how such a negotiation setting can be for-
malised using modal logic. More specifically, we are developing a logic in the
style of propositional dynamic logic (PDL) that allows us to speak both about
the preferences of individual agents and the aggregated preferences of the soci-
ety as a whole (to model Pareto improvements), as well as deals between agents
involving the reassignment of specific resources to other agents. We show that

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 138-150, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modal Logics of Negotiation and Preference 139

properties such as guaranteed convergence to a Pareto optimal allocation can
be expressed in this logic, and we discuss how to apply logical reasoning tech-
niques, such as model checking, to decision problems arising in the context of
negotiation.

This work also fits in with the larger project of “social software” first discussed
by Parikh [4]. The main idea of social software is that tools and techniques from
computer science (in particular logic of programs) can be used to reason about
social procedures (see [5] for a survey of the relevant literature). Much of the
work on social software is concerned with developing logics intended to verify
the “correctness” of social procedures [6]. There are often two key features of
these logics. First, they should be expressive enough to capture the relevant
concepts in order to state correctness conditions. Second, the logics should have
well-behaved computational properties (for example, a decidable satisfiability
problem and polynomial time model checking). The present paper will pay close
attention to both of these issues.

The paper is organised as follows. In Section 2 we introduce a PDL-style logic
for reasoning about negotiation settings, prove its decidability, and discuss some
illustrative examples. Then we show in Section 3 how the language of this logic
can express a property known as guaranteed convergence to a Pareto optimal
allocation. Our discussion shows that this can be reduced to a statement about
Pareto improvements alone; and we consequently introduce a second, more basic
logic to reason about Pareto efficiency in Section 4. Section 5 concludes with an
extensive discussion of further possibilities of linking reasoning tasks in our logic
of negotiation spaces and questions arising in the context of negotiation. The
appendix summarises relevant results about PDL and its extensions.

2 The Logic of Negotiation Spaces

In this section, we are going to develop a logic to describe negotiation scenarios
of the following sort. There are a (finite) number of agents and a (finite) number
of resources, which are indivisible and cannot be shared amongst more than
one agent at a time. An allocation is a partitioning of the resources amongst
the agents (each resource has to be assigned to exactly one agent). Agents have
preferences over the bundles of resources they receive (but they are indifferent
to what resources are being received by other agents; that is, we do not want to
model allocative externalities). To improve their situation, agents can agree on
deals to exchange some of the resources currently in their possession. In the most
general case, we allow for any kind of multilateral deal. That is, a single deal
may involve the reassignment of any number of resources amongst any number
of agents. Agents are assumed to be rational in the sense of never accepting a
deal that would leave them with a bundle that they like less than the bundle
they did hold prior to that deal.

As outside observers, we are not actually interested in the preferences of indi-
vidual agents, but we do care about the quality of allocations from a social point
of view. In particular, we are going to be interested in allocations of resources

140 U. Endriss and E. Pacuit

that are Pareto optimal as well as in sequences of deals that lead to such Pareto
optimal allocations. To describe such scenarios, we develop the logic £ 4 Ry,
which is parametrised by a finite set of agents A and a finite set of resources R.

2.1 Preliminaries

An allocation is a total function A : R — A specifying for each resource item
which agent currently holds that item. As we shall see, the set AR of all alloca-
tions will be the “set of worlds” in the (intended) models of our logic. An atomic
deal is of the form (a «— r), for a € A and r € R. It specifies that resource
r is being reassigned to agent a (which agent held r before the deal is left un-
specified). Each of these atomic deals induces a binary relation R,., over the
set of allocations A™: given two allocations x and y, we have xR,y iff 2 and
y are identical except possibly for the assignment of resource » which must be
assigned to agent a in allocation y.

Each agent i € A is equipped with a preference relation R; over alternative
bundles of resources: R; C 2% x 27, We require preference relations to be reflezive
and transitive (but not necessarily monotonic, for instance). Each R; extends to
a preference relation over alternative allocations of resources: for allocations
A A € AR we have (A, A') € R; iff {r e R| A(r) =i}, {r e R | A'(r) =
i}) € R;. That is, agent i prefers allocation A’ over allocation A iff they prefer
the bundle they receive in A’ over the bundle they receive in A. While the R;
are defined in terms of bundles, we are mostly going to use them in this derived
form, as relations over allocations. Union (U), intersection (M), complement (R),
converse (R™1), and iteration (R*) of relations are defined in the usual manner.

2.2 Syntax

Atomic propositions. Let At be a finite or countable set of atomic propositions,
including the special symbols H;; for all ¢ € A and all j € R. The intended
meaning of H;; is that agent ¢ holds resource j.

Relations and formulas. We first define the range of terms that can be used to
index a modal operator, and then the set of formulas itself. We assume there
is a set of atomic relation terms, one for each atomic deal relation and one
for each preference relation. We will use the same symbol to represent both a
relation term and the relation. We trust this abuse of notation will not cause
any confusion. A relation term has the following syntactic form:

R :=7r|RUR |RNR |R'|R| R,
where r is an atomic relation of the form R,., or R;. Formulas have the following
syntactic form:
e u=p| e eV [(R,
where p € At and R is a relation term. Further logical operators, such as conjunc-

tion, can be defined in terms of the above in the usual manner. The box-operator,
in particular, is defined as the dual of the diamond: [R]p = —(R)—p.

Modal Logics of Negotiation and Preference 141

2.3 Semantics

Frames. A frame F = (A, R,{R;}icA) is a triple consisting of a set of agents A,
a set of resources R, and a set of preference relations R; over allocations, one for
each agent. This would corresponds to the frame (A®, {R;}ic4) in the standard
Kripke semantics for a multi-modal logic; that is, the “worlds” in a frame are
allocations of resources. Note that the deal relations R,., are fully specified by
A and R already, so these need not be specified as relations of the frame.

Models. A model M= (F,V) is a pair consisting of a frame F = (A4, R, {R; }ica)
and a valuation function V mapping atomic propositions to subsets of A™. In-
tuitively, V(p) will be the set of allocations at which the proposition p is true.
V has to respect the condition V(H;;) = {A € A® | A(j) = i}. That is, H;; is
true in exactly those allocations where agent 4 holds resource j.

Truth in a model. Truth of a formula ¢ at a world w (an allocation) in a given
model M is defined as follows:

(1) M,w k= p iff w € V(p) for atomic propositions p;

(2) M,w =~y iff not M, w = ¢;

(3) My,wkE eV iff M,wE ¢ or M,w = 1;

(4) M,w = (R)y iff there is a v € AR such that wRv and M, v = .

For instance, (R;)e means that ¢ is true in some allocation that agent ¢ prefers
over the current allocation. Notions such as validity and satisfiability are defined
in the usual manner [7,8]. The formula [Ry.r, UR4r,]¢, for instance, expresses
that in every allocation that we can reach by giving either item r; or item ry to
agent a satisfies .

2.4 Decidability

Next we are going to show that the logic £ 4) is decidable. This may seem
surprising at first, given the close connection of our logic to PDL extended with
the complement operator, which is known to be undecidable (see appendix).
In short, the reason why L4) is decidable is that, for this logic, fixing the
language of formulas involves fixing the set .4 of agents and the set R of resources.
This is turn amounts to fixing the set of possible worlds of our models.

Proposition 1 (Decidability). The logic L 4,r) is decidable.

Proof. A formula ¢ in the language of £ 4) is valid iff it is true at every world
in every model of £ 4 z). The number of frames of £ 4) is finite: A and R are
fixed and the number of choices for each preference relation R; is bound above
by the square of the number of bundles of resources from R. The definition of the
valuation function over atomic propositions not appearing in ¢ is not relevant, so
we only need to consider a finite number of valuation functions, and hence a finite
number of models. Each of these models is itself finite, and checking whether ¢
is true at a given world in a given model is a decidable problem. Hence, checking
validity amounts to deciding a finite number of decidable problems, so it must
be a decidable problem itself. O

142 U. Endriss and E. Pacuit

2.5 Examples

We are now going to give a couple of examples that demonstrate what can be
expressed in our logic L4 r) of negotiation spaces.

Describing bundles and allocations. Formulas of the following form completely
specify the bundle held by agent ¢ (there is one such formula for each X C R):

BUNZX = /\ Hij AN /\ —|Hij (].)
jEX JER\X

Conjunctions of such BUN-formulas (with one conjunct for each i € A) com-
pletely specify an allocation. Let (Xi,...,X,) be a partitioning of the set of
resources R. The following formula identifies the corresponding allocation:

n
ALLOC(x,...x,) = /\ BUNS (2)
i=1

Given our semantics, any such ALLOC-formula will be true in exactly one world
(by definition); that is, these formulas have a similar role as nominals, familiar
from hybrid logic [7]. In fact, an alternative approach would have been to intro-
duce a nominal for each allocation, and to define the propositions H;; in terms
of these nominals, rather than giving the H;; a special status.

No externalities. In our definition of the preference relations R; we have stipu-
lated that they should be free of externalities by defining them as being induced
by preferences over bundles. Next we are going to see that this could in fact
also be defined syntactically; that is, we may define the R; as preference rela-
tions over allocations and additionally impose axioms that exclude the option of
externalities, when this is desired. We first define a modality that allows us to
move to any world in the model from any given starting point. This is possible,
because all worlds (allocations) can be reached by a sequence of atomic deals
(as long as no conditions on the acceptability of a deal are being imposed).

[=[(U Ror)lp (3)

acA,reR

Since any two states of our model are connected via a finite sequence of deals,
[+] is a universal modality. That is, [*]¢ is true at a state provided ¢ is true at
every state in the model.

Intuitively, the preferences depend only on the bundles if, whenever there is
a situation in which agent i prefers bundle Y over bundle X, then whenever the
agent has bundle X, then the agent prefers a situation in which it has bundle
Y. With the help of the universal modality we can express this as follows:

(BUNX A (R;)BUNY) — [#](BUN — (R;)BUN)) (4)

The conjunction of the above type of implication for all bundles X,Y € 27 would
then describe the fact that preferences only depend on bundles (no externalities).

Modal Logics of Negotiation and Preference 143

3 Convergence to a Pareto Optimal Allocation

A central question in negotiation concerns convergence [1,2, 3]: under what cir-
cumstances can we be sure that any sequence of deals negotiated by the agents
will eventually lead to an allocation with certain desirable properties? Such “de-
sirable properties” are usually expressed in terms of an aggregation of the prefer-
ences of the individual agents. A fundamental criterion for economic efficiency is
the concept of Pareto optimality: an allocation of resources is Pareto optimal iff
there is no other alternative that would be strictly better for one agent without
being worse for any of the others [9]. In this paper, we are going to be interested
under what circumstances a sequence of deals can be guaranteed to converge to
a Pareto optimal allocation of resources. More specifically, in this section, we are
going to reconstruct a result of [2], which may be paraphrased as stating that
any sequence of deals that are beneficial for all the agents involved and that are
not subject to any structural restrictions (say, on the number of agents involved
in a single deal), will eventually result in a Pareto optimal allocation.

We are now going to formalise this result as a formula of £ 4, 7). This formula
will have the following general structure: [@*](®*)OPT. Here @ stands for the
union of all deals that are possible and OPT is a formula describing that the
allocation in question is “optimal”. So the formula says that for any initial
allocation, if we implement any sequence of ®@-deals, we can always reach an
optimal allocation by implementing a further such sequence (or we are already
at the optimal allocation).

To instantiate this template to a concrete formula, we first need to say what it
means for a deal (a move to another allocation) to be “beneficial” (or rational)
for everyone involved. For this we use the notion of Pareto improvement. We
first need to define an agent’s strict preference. Given any preference R;, we can
define its strict version, R; as follows. For allocations w and v, say that wRjv if
wR;v and it is not the case that vR;w. Thus,

R =R;NR;* (5)

Thus the intended interpretation of (Rf)y is that ¢ is true at an alternative
which agent ¢ strictly prefers to the current state.

We can now define a relation, denoted PAR, with intended interpretation of
(PAR)p being that ¢ is true at an alternative which is a Pareto improvement to
the current alternative. Formally, we define PAR as follows:

PAR = ﬂRZﬂURf (6)

i€ A i€ A

Now if M, w = [PAR]L, then w is an “end-state” with respect to the PAR relation.
Thus, there is no state which is a Pareto improvement over w. In other words,
w is Pareto efficient.

Requiring deals to be rational is one way of restricting the range of possible
deals. Another form of restriction are structural constraints. For instance, a
particular negotiation protocol may only permit agents to negotiate bilateral

144 U. Endriss and E. Pacuit

deals (deals involving only two agents each), or there may be an upper limit on
the number of resources that can be reassigned in a single deal. Let D be the
set of deals licensed by our negotiation protocol. For instance, D could be the
set of all atomic deals:

D= |J Rar (7)

acA,TER

Another option would be to define D as the set of all deals (observe that every
deal can be implemented as a sequence of atomic deals):

D=(|J Ra) (8)

aEA,TER

We should note that, of course, not every restriction of interest can be expressed
using our language for describing deals. This is due to the fact that we define
atomic deals in terms of a single resource and the agent receiving that resource,
but we do not specify from which other agent that resource is being taken.

The set of deals that are both rational and subject to the structural constraints
defining D are given by the intersection D NPAR. Sequences of such deals belong
to (D NPAR)*. We can now state the convergence property:

[(D NPAR)*]{(D N PAR)*)[PAR] L (9)

This formula expresses that any sequence of deals that are rational and belong
to D will either lead to a Pareto optimal allocation, or to an allocation from
which a Pareto optimal allocation is still reachable by means of such a sequence.
In case we also know that any such sequence is bound to terminate, then this
reduces to every sequence of rational D-deals eventually resulting in a Pareto
optimal allocation of resources. For D being the full set of deals (without any
structural restrictions), this has been proved to hold in [2]. Hence, formula (9)
with D being the full set of deals must be valid in our logic £ 4 R)-

We can see this also as follows. If D is the full set of deals, i.e. D is defined by
equation (8), then D is a universal relation, linking any two allocations in A%.
Hence the intersection DNPAR is actually just the relation PAR. It is not difficult
to see (and we are going to explain precisely why in the following section), that
PAR must be a transitive relation. Hence, PAR* is just the reflexive closure of
PAR. Thus formula (9) reduces to the formula PAR*[PAR] L. Observe that
this formula is valid on a given frame iff the following is:

[PAR]L V (PAR)[PAR|L (10)

That is, either we are already at a Pareto efficient state or there is a PAR-path
that leads to a Pareto efficient state. Thus our convergence theorem reduces to
a statement purely about Pareto improvements, which can be expressed in a
fragment of our logic in which the modalities contain only preference relation
symbols. Since this logic may be of independent interest, we treat it in detail in
the next section.

Modal Logics of Negotiation and Preference 145

4 The Logic of Pareto Efficiency

The goal of this section is to develop a logic of Pareto efficiency. We start with
an arbitrary set of alternatives W and assume each agent has a (reflexive and
transitive) preference over W. This is the setting of a recent paper by van Ben-
them et al. [10]. In fact, studying preferences from a logical perspective has been
studied by a number of different authors (cf. Hansson [11]). Of course, since each
R; is assumed to be reflexive and transitive, the class of all preference models
is axiomatized by multi-agent S4. Van Benthem et al. [10] show that taking
the above language as a starting point, a number of different game-theoretic
notions, such as the Nash equilibrium and the backward induction solution, can
be expressed and studied from a modal preference logic point of view. To that
end, standard tools from extended modal logic, such as nominals, dynamic epis-
temic operators, and the universal modality, are used. The logic presented in
this section continues this line of thinking.

Let At be a finite or countable set of atomic propositions. The language of the
logic Lpareto 0f Pareto efficiency is defined as follows (with p € At):

e u=ploe Vel (R)e | (R)e | (PAR)e

The standard boolean connectives and the operators [R;], [R] and [PAR] are
defined as usual. Truth in a model is defined as usual. Here we are working in a
multi-modal language interpreted over standard Kripke structures in which the
accessibility relation for each (Rf) and the (PAR) modal operator are defined in
terms of the R; relations. This is analogous to working in a multi-agent epistemic
logic with a common knowledge operator (in this case, the accessibility for the
common knowledge operator is defined to be the reflexive transitive closure of
the union of the individual accessibility relations). Recall the definitions of R}
and PAR from the previous section. Putting everything together, a preference
model is a tuple (W, {R;}ica,V) where each R; is reflexive and transitive, and
the R; and PAR relations are defined as above.

For issues of decidability and axiomatization it will be convenient to interpret
the above language as a fragment of PDL with converse, intersection and comple-
ment operators. In this case, each R; is an atomic program, and the modalities
(R?) and (PAR) can be defined by the appropriate operations on the R;. See the
appendix for a discussion of the relevant issues. We end this section with two
simple observations.

Observation 1. If each R; is transitive, then PAR is transitive.

Proof. Suppose that wPARv and vPARz. By transitivity of the R;, it is easy to
see that (w, z) €), R;. Since vPARz, there is some agent ¢ such that vR;z but
not zR;v. Our claim is that not zR;w. Suppose that zR;w. Then by transitivity
of R;, since zR;w and wR;v, zR;v which contradicts our assumption. O

Consider again formula (10): [PAR]L V (PAR)[PAR|.L. Intuitively, this formula
will be true at an alternative w provided either w is Pareto efficient or there is

146 U. Endriss and E. Pacuit

a Pareto improvement v that is. That is, M, w = [PAR]L V (PAR)[PAR]L just in
case either there is no v such that wPARv or wPARv and v is an “end state”. Our
last observation is that assuming W is finite, this formula is valid.

Observation 2. Suppose that W is finite and M = (W, {R;}ica,V) is a pref-
erence model. Then for each w € W, we have M, w |= [PAR]L V (PAR)[PAR] L.

Proof. The proof follows easily from the fact that PAR is irreflexive and W is
assumed to be finite. Under these assumptions it is easy to see that for each state
w € W, if w is not an PAR end state, then it is PAR accessible to an PAR end state.
That is, for each w € W, either there is no state v such that wpPARwv or there is a
state v € W such that wPARv and for each v’ € W, it is not the case that vPARY'.
This is precisely what it means to say that M, w = [PAR]L V (PAR)[PAR]L. O

From a modal logic perspective, these observations are easy exercises. However,
from the perspective of this paper, they demonstrate that modal logic, and in
particular variants of PDL, can provide an interesting perspective on negotiation.

5 Discussion

In this section we are going to explore further connections between different
types of reasoning tasks in our logic £ 4 7y and questions arising in the context
of negotiation.

5.1 Necessity of Complex Deals and Satisfiability

Besides convergence, another important property of negotiation systems that
has been studied in the literature concerns the necessity of specific deals [1,2]. A
given deal or class of deals, characterised by structural constraints (rather than
rationality conditions), is said to be necessary in view of reaching an allocation
with a certain desired property (such as being Pareto optimal) by means of ra-
tional deals iff there are an initial allocation and individual preference relations
such that any path leading to such a desirable allocation would have to involve
that particular deal. A known result [2] states that if you do not allow all struc-
tural types of deals, but do require rationality, then you cannot guarantee Pareto
optimal outcomes in all cases. In this section, we are going to discuss what this
result corresponds to in our logic L4 R)-

Consider again our convergence formula (9). The claim is that, if the set of
deals D excludes even a single deal, then formula (9) will cease to be valid. In
other words, its negation will become satisfiable:

=[(D NPAR)*]{(D N PAR)")[PAR] L (11)

The proof of the necessity theorem given in [2] amounts to giving a general al-
gorithm for constructing individual preference relations and an initial allocation
such that the one deal not included in D will be the only deal taking us from

Modal Logics of Negotiation and Preference 147

the initial allocation to the (only) allocation that Pareto-dominates the initial
allocation. This constructive element of the proof would correspond to giving a
general method for proving satisfiability of formula (11). Vice versa, the known
necessity theorem shows that formula (11) must be satisfiable for any given set
of deals D that is not the full set of complex deals.

The discussion of necessity theorems highlights the fact that the exact form of
presentation chosen for specifying deals can lead to somewhat different results.
In [2] deals are represented as pairs of allocations, which amounts to a more
fine-grained representation than we have opted for in this paper. For example,
the deal R, does in fact represent n different deals: for any of the n agents
(including a itself), that agent could have owned r before the deal. If the more
fine-grained representation is chosen, then certain deals need to be excluded
from the statement of the theorem: a deal that is independently decomposable
(meaning there are two groups of agents involved in the deal, but not a single
resource is changing group) is not necessary for convergence, but can always be
decomposed into two smaller deals. If deals are specified in terms of reassign-
ments, as in this paper, however, each such deal does in fact correspond to a
class of deals involving both independently decomposable deals and deals that
are not independently decomposable. Hence, excluding that whole class from the
negotiation protocol will always cause a problem, and therefore any such deal
must be necessary.

5.2 Reachability Properties and Model Checking

Recall the formulation of the convergence property as given by formula (9). It
states that any sequence of rational D-deals will eventually result in a Pareto
optimal allocation (or in an allocation from which a Pareto optimal allocation
is still accessible by means of such a sequence). We have seen that the formula
is valid if D is the full set of deals, and that it is not valid if D is any subset of
the full set of deals (that is, every single deal is necessary).

Dunne and colleagues [3,12] have studied the complexity of deciding whether
a given negotiation scenario allows for convergence to an optimal allocation
by means of a structurally restricted class of (rational) deals. To be precise,
these authors have concentrated on a framework where agent preferences are
represented using utility functions (rather than ordinal preference relations) and
where an allocation is considered optimal if it maximises the sum of individual
utilities (so-called utilitarian social welfare [9]), a notion that is stronger than
Pareto optimality. Nevertheless, conceptually there are interesting parallels to
be explored.

This problem of deciding whether a given negotiation scenario admits conver-
gence for a given restricted class of deals amounts to a model checking problem
in our logic. This is interesting for at least two reasons. Firstly, model check-
ing as a well-developed algorithmic technique may turn out to be a useful tool
for deciding such questions in practice. Secondly, it may be of interest to com-
pare and relate complexity results for negotiation frameworks and PDL model
checking. A discussion of the latter may be found in the appendix. As shown by

148 U. Endriss and E. Pacuit

Lange [13], model checking is PTIME-complete for all conceivable extensions of
PDL (e.g. with intersection). It is important to note, however, that such com-
plexity results must be understood with respect to the number of worlds in a
model. In our case (as in many other applications), this will be an exponential
number. Dunne and Chevaleyre [12] have recently shown that deciding whether a
given negotiation scenario admits convergence by means of rational atomic deals
is PSPACE-complete for the “numerical” version of the problem (with utility
functions). A deeper understanding of the exact relationship between the two
problems may allow us to obtain complexity results for model checking in our
logic expressed in terms of the numbers of agents and resources (rather than the
exponential number of allocations).

5.3 Guaranteed Convergence and Correspondence Theory

While Dunne et al. [3] have concentrated on establishing complexity results for
deciding when convergence is possible, another line of work has attempted to
establish general conditions (on the preferences of individual agents) that would
guarantee that convergence by means of structurally simple deals is always pos-
sible [2, 14]. These results mostly relate to the numerical negotiation framework
(with utility functions, monetary side payments, and maximal utilitarian social
welfare as the chosen notion of optimality). Also, these results are either very
simple (for instance, if all agents use modular utility functions, then convergence
to an optimal allocation can be guaranteed by rational atomic deals alone) or
require an overly complex specification of conditions. Here the logic-based rep-
resentation of the problem promises to offer some real help in identifying further
interesting cases of guaranteed convergence.

This kind of question can be cast as a question in modal logic correspondence
theory [7]. Suppose we want to identify suitable conditions on agent preferences
that would allow us to guarantee convergence by means of rational deals all
belonging to a class of deals D. Then we have to identify a class of frames on
which formula (9) would be valid. Again, this is an issue we put forward for
detailed investigation in the future.

References

1. Sandholm, T.W.: Contract types for satisficing task allocation: I Theoretical re-
sults. In: Proc. AAAI Spring Symposium: Satisficing Models. (1998)

2. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal alloca-
tions of resources. Journal of Artificial Intelligence Research 25 (2006) 315-348

3. Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotia-
tion. Artificial Intelligence 164(1-2) (2005) 23-46

4. Parikh, R.: Social software. Synthese 132 (2002) 187-211

5. Pacuit, E., Parikh, R.: Social interaction, knowledge, and social software. In:
Interactive Computation: The New Paradigm. Springer-Verlag (forthcoming)

6. Pauly, M., Wooldridge, M.: Logic for mechanism design: A manifesto. In: Proc.
5th Workshop on Game-theoretic and Decision-theoretic Agents. (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Modal Logics of Negotiation and Preference 149

. Blackburn, P.; de Rijke, M., Venema, Y.: Modal Logic. Cambridge University

Press, Cambridge (2002)

. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Boston (2000)
. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,

Cambridge (1988)

van Benthem, J., van Otterloo, S., Roy, O.: Preference logic, conditionals and
solution concepts in games. In: Modality Matters: Twenty-Five Essays in Honour
of Krister Segerberg. University of Uppsala (2006)

Hansson, S.O.: Preference logic. In: Handbook of Philosophical Logic. 2nd edn.
Kluwer Academic Publishers (2001)

Dunne, P.E., Chevaleyre, Y.: Negotiation can be as hard as planning: Deciding
reachability properties of distributed negotiation schemes. Technical Report ULCS-
05-009, Department of Computer Science, University of Liverpool (2005)

Lange, M.: Model checking propositional dynamic logic with all extras. Journal of
Applied Logic 4(1) (2005) 39-49

Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over small bundles
of resources. In: Proc. 4th International Joint Conference on Autonomous Agents
and Multiagent Systems, ACM Press (2005)

Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and
Computation 93(2) (1991) 263-332

Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: A complete ax-
iomatization. Fundamenta Informaticae 45 (2001) 1-22

Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18(2) (1979) 194211

Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proc. 17th Annual
Symposium on Foundations of Computer Science, IEEE (1976) 109-121

Lutz, C., Walther, D.: PDL with negation of atomic programs. Journal of Applied
Non-Classical Logics 15(2) (2005) 189-214

Danecki, R.: Non-deterministic propositional dynamic logic with intersection is
decidable. In: Proc. 5th Workshop on Computation Theory. Springer-Verlag (1985)
Lange, M., Lutz, C.: 2-EXPTIME lower bounds for propositional dynamic logics
with intersection. Journal of Symbolic Logic 70(4) (2005) 1072-1086

A PDL and Its Extensions

In this short appendix we list the relevant results surrounding propositional
dynamic logic and its extensions. Much of this information can be found in the
textbook Dynamic Logic by Harel, Kozen and Tiuryn [8]. The reader is also
referred to Passy and Tinchev [15] for more information.

Let At be a set of atomic propositions and Pr a set of atomic programs.

Formulas and programs have the following syntactic form (p € At and r € Pr):

o u=ploe | eVy | ()

ax=rlaUfB|anflafla* |alal

Other connectives and operators are defined as usual. For example, ¢ A ¢ =
=(=p V) and [a]p = —{a)—¢. Note that for simplicity we do not include
the test-operator. Let Lpp. be the set of all such well-formed formulas. Given an

150 U. Endriss and E. Pacuit

arbitrary program o, we define relations R,, as usual [8]. Formulas are interpreted
in Kripke structures M = (W,{R;},cpr, V) where each R, C W x W and
V : At — 2W. Truth in a model is defined as usual (see Section 2.3 and [8]).
A model M is called a PDL model provided M and the relations R, for any
program « are defined as above. By PDL we mean the set of all formulas which
are valid in any PDL model. We now survey the main results relevant for our
discussion in this paper.

Harel [8] showed that assuming that all atomic programs are deterministic,
PDL with intersection is highly undecidable. However, the result is more posi-
tive if we allow for arbitrary (non-deterministic) atomic programs. Balbiani and
Vakarelov [16] showed that PDL with intersection is axiomatizable with the use
of an infinitary proof rule. Passy and Tinchev [15] prove a similar result using
nominals. Early on it was shown by Fischer and Ladner [17] that the satisfiabil-
ity problem for Lpp with respect to the class of all PDL models is decidable.
Pratt [18] went on to show that it is EXPTIME-complete. It was observed by
Harel [8] that the validity problem with complementation is undecidable. How-
ever, recently it was shown that allowing complementation of atomic programs
only allows us to retain decidability.

Theorem 1 (Lutz & Walther [19]). The satisfiability problem for LepL with
complement applied only to atomic programs is decidable.

The satisfiability problem for Lpp. (with or without complement) interpreted
over PDL models in which the atomic programs are deterministic is X}-complete.
If the restriction to deterministic atomic programs is dropped then the situation
becomes much more manageable.

Theorem 2 (Danecki [20]; Lange & Lutz [21]). The satisfiability problem
for LppL with intersection (but without complement) is 2-EXPSPACE-complete.

Finally, in a recent paper Lange [13] points out that model checking Lpp for-
mulas remains in PTIME,

Theorem 3 (Lange [13]). The model checking problem for LppL with respect
to PDL models is in PTIME.

Returning to the logics presented in this paper, it is not hard to see that the
language Lpareto is a fragment of Lppy. The idea is to interpret each preference
relation R; as an atomic program. Then the operators (PAR) and (Rf) become
definable in Lpp.. Of course, this interpretation uses the converse, complement
and intersection operators. Thus as remarked above, in the presence of the com-
plement operator, the validity problem for Lpp, is undecidable. However, we
are working in a fragment in which the complement operator is only applied to
atomic and the converse of atomic programs. The logic £ 4,y is decidable due
to the chosen semantics which fixes the set of possible worlds (cf. Proposition 1).

Representing Action Domains with
Numeric-Valued Fluents*

Esra Erdem! and Alfredo Gabaldon?3

! Institute of Information Systems, Vienna University of Technology, Vienna, Austria
2 National ICT Australia
3 School of Comp. Sci. and Eng., UNSW, Sydney, Australia

Abstract. We present a general method to formalize action domains with
numeric-valued fluents whose values are incremented or decremented by execu-
tions of actions, and show how it can be applied to the action description language
C+ and to the concurrent situation calculus. This method can handle nonserializ-
able concurrent actions, as well as ramifications on numeric-valued fluents, which
are described in terms of some new causal structures, called contribution rules.

1 Introduction

Numeric-valued fluents are used for describing measurable quantities, such as weight,
money, memory. In many cases, the values of such fluents are incremented/decremented
by the execution of actions, such as adding/removing some weight, depositing/with-
drawing some money, or allocating/deallocating memory. How to compute the value of
a numeric-valued fluent after a concurrent execution of several such actions, possibly
with indirect effects, is the question we study in this paper. We consider true concur-
rency: actions occur at the same time and may not be serializable (i.e., their effect may
not be equivalent to the effect of executing the same actions consecutively in any order).
For instance, consider two boats towing a barge upriver by applying forces via cables
tied to the barge, where the force applied by either boat is not enough to move the barge
against the current of the river; here the concurrent action of two boats applying forces
can not be serialized. True concurrency makes the problem more challenging, because
actions that are individually executable may not be executable concurrently, e.g., due to
conflicting effects, and actions that are individually nonexecutable may be executable
concurrently, e.g., due to synergistic effects, like in the example above.

This question is important for real-world applications that involve reasoning tasks,
like planning or prediction, related to resource allocation. For instance, allocation of
memory storage for use by computer programs is one such application. It is also im-
portant for applications that involve modeling the behavior of physical systems. For in-
stance, how water pressure changes at a piston when some water is pumped from above
and some force is applied from the bottom is important for modeling the behavior of a
hydraulic elevator.

* We thank Selim T. Erdogan, Joohyung Lee, and Vladimir Lifschitz for helpful comments on
an earlier version of the paper. Esra Erdem was supported in part by the Austrian Science Fund
(FWF) under project P16536-N04.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 151-163, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

152 E. Erdem and A. Gabaldon

There are several planning systems designed to work in concurrent domains with
resources, like [1,2,3]. However, they consider a simpler concurrency: they either re-
quire the serializability of actions, or that no concurrent action contain two actions, one
producing and the other consuming the same resource.

Lee and Lifschitz [4] show, in the action language C+ [5], how to formalize action
domains involving additive fluents—numeric-valued fluents on which the effect of a
concurrent action is computed by adding the effects of its primitive actions. However,
since additive fluents range over finite sets, a concurrent action is executable only if its
effect on each additive fluent is in that fluent’s range, and it is not easy to handle indirect
effects of actions (ramifications) on additive fluents (e.g., an indirect effect of adding
too much water into a small container is an increase in the amount of water in a large
container, into which the excess water overflows from the small container). Similarly,
[6] defines the cumulative direct effects of concurrent actions on additive fluents, in an
extension of the action language A [7]; however, it is not easy to handle ramifications
(not only the ones on numeric-valued fluents) in this formalism.

In [8], the authors show, in the concurrent situation calculus [9], how to formalize
action domains containing numeric-valued fluents, that do not require serializability of
actions, and that take into account ramifications caused by too much increase/decrease
of a numeric-valued fluent. However, with this formalization, it is not easy to capture
other forms of ramifications (e.g., whenever the amount of water increases in the large
container, the force towards the bottom of the container increases).

In this paper, we present a general method to formalize action domains with numeric-
valued fluents whose values are incremented/decremented by executions of actions.
This method is applicable to both the concurrent situation calculus and the action lan-
guage C+; and thus can be used with the reasoning systems CCALC and GOLOG. The
idea is to compute the total effect of a concurrent action on a numeric-valued fluent, in
terms of the direct and indirect effects of its primitive actions on that fluent, while also
taking into account the range restrictions (e.g., the capacity of the small container).

To describe direct effects, like in [4, 8], we introduce new constructs and functions
in the original formalisms. To describe ramifications, like in [10, 11, 12], we intro-
duce an explicit notion of causality, specific for numeric-valued fluents. We charac-
terize this notion by contribution rules, motivated by the equation-like causal structures
of [13, 14, 8]. With contribution rules, both forms of ramifications above can be han-
dled. The idea of introducing these new constructs is to be able to represent effects of
actions on numeric-valued fluents concisely. Semantically these constructs are treated
as “macros” on top of the original formalisms; like the constructs introduced in [4] and
in [8], they are compiled into causal laws or formulas in the original formalisms.

The paper consists of three parts. The first two parts describe how action domains
with numeric-valued fluents can be formalized in the action language C+ and in the con-
current situation calculus, using the new constructs; the semantics of these constructs is
defined by showing how to treat them as abbreviations in the original formalims. The
third part includes a comparison of these two formalizations, and a discussion of re-
lated work. We refer the reader to [5] and [9] for descriptions of the action language C+
and the concurrent situation calculus. For the proofs, and the CCALC and GOLOG files
describing our running example, see http://www.kr.tuwien.ac.at/staff/
esra/papers/cr.pdf.

Representing Action Domains with Numeric-Valued Fluents 153

2 Describing Additive Fluents in the Action Language C+

To formalize action domains with additive fluents, we extend the action description
language C+, similar to [4].

Additive fluents. According to this extension, some numeric-valued fluent constants can
be designated as additive. Each additive fluent constant has a finite set of numbers as its
domain. As in [4], we understand numbers as symbols for elements of any set with an
associative and commutative operation + that has a neutral element 0; in particular, we
consider the additive group of integers (since this case can be implemented for CCALC).
We suppose that the domain of each additive fluent constant f is specified as a range
[Lf,Uy], so that, at any state, Ly < f < Uy. We suppose that heads of causal laws do
not contain any additive fluent constants.

Direct effects of actions. Direct effects of a boolean action constant a on an additive
fluent f are expressed by increment laws of [4], expressions of the form

a increments f by n if ¢ (1

where n is an integer and v is a fluent formula. We drop the ‘if ¢° partif) = T; we call
f the head of the causal law. Intuitively, an increment law of form (1) expresses that, if
1 holds, the direct contribution of the action « to the value of the additive fluent f is n.
The idea is then, to compute the cumulative direct contribution of concurrently executed
primitive actions to the value of an additive fluent f, denoted DContr(f), by adding the
direct contributions of those primitive actions to f. Translation of these laws into causal
laws is different from that of [4] (see the definition of DContr in the next section).

Preconditions of actions. We describe preconditions of actions with the nonexecutable
construct of [5]. For instance, the expression

nonexecutable Move(A, B) if =Clear(B)

describes that moving Block A onto Block B is not possible if B is not clear.

Ramifications on additive fluents. Ramifications on an additive fluent f are described
by contribution rules, expressions of the form:

f<<gm))

where £ is one of the additive fluents that f depends on, £ is a numeric-valued function,
and @ is an element of {+, —, ++, +—, —+, ——}; we call f the head of the rule. These
rules allow us to describe both kinds of ramifications mentioned in the introduction. The
first kind of ramifications is expressed with & = + or & = —.

The meaning of a rule of form (2) with & = + (respectively, with & = —) can
be described as follows: whenever the sum of the direct and indirect contributions of
a concurrent action to h, when added to &, exceeds the upper bound U, (respectively,
goes beyond its lower bound Ly,), that action indirectly contributes to f by the amount
E(DContr(h)+IContr(h)—TContr(h)), where IContr(h) denotes the indirect contribu-
tion of a concurrent action to h, and TContr(h) denotes the total contribution of a con-
current action to h respecting the range restriction [Ly,, U,]. Intuitively, DContr(h) +
IContr(h) — TContr(h) describes the excess amount being contributed to h.

154 E. Erdem and A. Gabaldon

The other form of ramifications is expressed with @ € {++,+—, —+, ——}. A rule
of form (2) with & = 4+ (respectively, with & = +—) expresses that whenever there is
an increase (respectively, decrease) n in the value of h, i.e., TContr(h) = n, the value
of f increases (respectively, decreases) by £(n); the rules with @& € {—+, ——} are
similar, but they specify a decrease in the value of f. This form of ramification, unlike
the one above, is not due to the range restrictions imposed on the values of fluents,
although these restrictions must be satisfied at all times.

The indirect contribution of an action to an additive fluent f is the sum of the in-
creases/decreases described by the contribution rules with the head f.

Once the direct and indirect contributions of a concurrent action to an additive fluent
f are computed, we can compute the total contribution of that action to f as follows. If
f appears on the right hand side of a contribution rule of form (2) with & = +, —, then
we add DContr(f) and IContr(f), considering the range restriction [L s, Uy]:

Ur—f if DContr(f)+IContr(f) > Us— f
TContr(f) =< Ly—f if DContr(f)+1Contr(f) < Ly—f
DContr(f)+IContr(f) otherwise.

Otherwise, we do not need to consider the range restriction, and TContr(f) is defined
as DContr(f)-+IContr(f).

We consider action domains only where the causal influence among fluents is acyclic.
Here is an example.

Example 1. Consider three containers, small, medium, and large, for storing water. The
small container is suspended over the medium, and the medium container is suspended
over the large so that, when the small (respectively, medium) container is full of water,
the water poured into the small (respectively, medium) container overflows into the
medium (respectively, large) container. Suppose that there are three taps: one directly
above the small container, by which some water can be added to the containers from
an external source, one on the small container, by which some water can be released
into the medium container, and a third tap on the large container to release water to the
exterior. Suppose also that one unit increase (respectively, decrease) of water in the large
container increases (respectively, decreases) the amount of force applied downwards to
the bottom of the large container by two units. Also assume that some force is exerted
upwards at the bottom of the large container, e.g., by a piston, to lift it up.

A formalization of this action domain in the extended C+ is presented in Figure 1.
Here the additive fluent constants Small, Medium, and Large describe the amount of
water in each container; Force describes the force exerted upwards at the bottom of the
large container. The boolean action constant AddS(n) describes the action of adding
n units of water to the small container by opening the tap over it; ReleaseS(n) and
ReleaseL(n) describe the action of releasing n units of water from the small, respec-
tively large, container by opening its tap; and Exert(n) represents the action of exerting
n amount of force upwards.

Suppose that the range restrictions are specified as follows: Lguar = Ltedium =
LLarge = 07 LForce = _8, USmall = 27 UMedium = 3, ULarge = 4, UForce =8.1If lnltlaﬂy
Small = Medium = Large = 1, Force = —2, then, after executing the concurrent
action ¢ = {AddS(8), ReleaseS(1), ReleaseL(2), Exert(8)}, the values of fluents are
computed by CCALC as follows: Small = 2, Medium = 3, Large = 4, Force = 0.

Representing Action Domains with Numeric-Valued Fluents 155

Notation: n ranges over {Min, .., Max} and a ranges over action constants.

Action constants: Domains:
AddS(n), ReleaseS(n), ReleaseL(n), Exert(n) Boolean
Additive fluent constants: Domains:
Small {LSmally oy USmall}
Medium {LMediuma oy UMedium}
Large {Lrarge; > ULarge }
Force {LForcey () UForce}
Causal laws: AddS(n) increments Small by n

ReleaseS(n) increments Small by —n

ReleaseS(n) increments Medium by n

ReleaseL(n) increments Large by —n

Exert(n) increments Force by n

nonexecutable AddS(n) if AddS(n') (n #n')
nonexecutable ReleaseS(n) if ReleaseS(n') (n #n')
nonexecutable ReleaseL(n) if ReleaseL(n') (n #n’)
nonexecutable Exert(n) if Exert(n') (n #n')
exogenous a

Contribution rules:
Medium < Small Large <~ Medium

Force <= 2 x Large Force —+ 2 x Large

Fig. 1. Containers domain described in the extended C+

Indeed, the direct effect of ¢ on Small is the sum of the direct contributions of its
primitive actions (described by the increment laws with the head Small, in Figure 1):
DContr(Small) = 8 — 1 = 7. Since there is no contribution rule with the head Small, in
Figure 1, there is no ramification on it: IContr(Small) = 0. Since Small+DContr(Small)
+ IContr(Small) = 7 exceeds the capacity of the small container, the total contribution
of ¢ to Small is just the amount that fills the small container: TContr(Small) = Usyay —
Small = 2 — 1 = 1. Then the value of Small after the execution of c is 2.

On the other hand, since the function £ in Medium < Smallis the identity function,
the indirect contribution of ¢ to Medium is the amount of the excess water overflown into
the medium container: DContr(Small) +IContr(Small) — TContr(Small) = T+0—1 =
6. Since the direct contribution of ¢ to Medium is 1, the total contribution of ¢ to Medium
is just the amount that fills the medium container: TContr(Medium) = 2. Then, after
the execution of ¢, Medium = 3.

Similarly, the direct and indirect contributions of ¢ to Large can be computed as
follows: DContr(Large) = —2, IContr(Large) = 5. Since Large does not appear on the
right hand side of a contribution rule of form (2) with & = +, —, the total contribution
of ¢ to Large is simply the addition of these two: TContr(Large) = 3. Then the value
of Large after the execution of c is 4.

Since the total contribution of ¢ to Large is 3, and since the function £ in Force -t
2 x Large is (Ax.2 x x), the indirect contribution of ¢ to Force is —(2 x 3) = —6.

156 E. Erdem and A. Gabaldon

Since the direct contribution of ¢ to Force is +8, the total contribution of ¢ to Force is 2.
Therefore, the value of Force after the execution of ¢ is 0.

3 Obtaining an Action Description

To obtain an action description in C+ from a formalization of an action domain like in
Figure 1, we translate increment laws, and contribution rules into causal laws as follows.

1. To describe the direct effects of primitive actions, first we introduce new action
constants, Contr(a, f), of sort integer, where a is an action constant and f is an
additive fluent constant; an atom of the form Contr(a, f) = v expresses that the
action a contributes to f by the amount v. We define Contr(a, f) to be 0 by default:

default Contr(a, f) = 0.
Then we replace every increment law (1) with
caused Contr(a, f) =nifa A .

2. To describe the cumulative effects of concurrent actions, we introduce new action
constants, DContr(f), IContr(f), TContr(f), of sort integer, where f is an addi-
tive fluent constant. Intuitively, an atom of the form DContr(f) = v (respectively,
IContr(f) = v) expresses that the direct (respectively, indirect) contribution of a
concurrent action to f is v. An atom of the form TContr(f) = v expresses that the
total contribution of a concurrent action to f is v.

We define DContr(f) as follows:
caused DContr(f) =Y, va if A\, Contr(a, f) = vq

where Min <) v, < Max.

Let us denote by C' the set of all contribution rules. We define IContr(f) to be 0 by

default:
default /Contr(f) = 0.

Then we translate contribution rules in C' into the causal laws:

caused IContr(f) =vifv =

Z Femec E(IContr(h)+DContr(h)—TContr(h))
‘Z — etnyec EUContr(h)+DContr(h) ~TContr(h)
+Z r&temyec, TContr(h)y>0 &(TContr(h))
+Z I=gmyec, TContr(h)<o E(TContr(h))
_Zﬂ—s(h)ec TContr(h)>0 E(TContr(h))
T pZ=g(hyec, TContr(h)<o E(TContr(h)) (Min < v < Max).

For instance, with the contribution rules in Figure 1, for Medium, we add

caused IContr(Medium) = v if
IContr(Small)+DContr(Small) — TContr(Small) = v (Min < v < Max).

Representing Action Domains with Numeric-Valued Fluents 157

If f appears on the right hand side of a contribution rule of form (2), then we define
TContr(f) by adding the direct and indirect contributions of actions, respecting the
range restriction [L ¢, Uy]:

caused TContr(f)=v+v" if DContr(f)=v A IContr(f)=1v'

(L <v+u'+f <Uy)
caused TContr(f)=Uy— f if DContr(f)=v A IContr(f)=v" (v+v'+f > Uy)
caused TContr(f)=Lys— f if DContr(f)=v A IContr(f)=v" (v+v'+f < Ly)

such that the values assigned to TContr(f) are in the range [Min, Max]. Otherwise,
we define TContr(f) simply by adding the direct and indirect contributions of ac-
tions, i.e., by the first set of causal laws above.

3. To determine the value of an additive fluent constant f after an execution of a
concurrent action, we add

caused f = v+ v if T after f = v A TContr(f) =v' (Min < v+v' < Max).

With the translation above, the meaning of an action description D in the extended
C+ can be represented by the transition diagram described by the action description D’
obtained from D as described above (see [7] for a definition of a transition diagram).
Then a query @ (in a query language, like R [7]), which describes a planning problem,
a prediction problem, etc., is entailed by D if @ is entailed by D’. This allowed us to
compute the values of additive fluents in Example 1 using CCALC.

4 Describing Additive Fluents in the Concurrent Situation
Calculus

To formalize action domains with additive fluents, we extend the concurrent situation
calculus, as in [8].

Additive fluents. According to this extension, some functional fluents that range over
numbers (not necessarily integers) can be designated as additive. For each additive flu-
ent f, we understand a given range [Ls, Uy| as follows: in every situation s, Ly <

f(s) < Uy.

Direct effects of actions. For describing direct effects of actions on additive fluents, we
introduce a function contry (x, a, s) for each additive fluent f. Intuitively, contry(x, a, s)
is the amount that the action @ contributes to f when executed in situation s. In the
following, free variables are implicitly universally quantified. We describe the direct
effects of primitive actions on additive fluents by axioms of the form:

kf(x,v,a,8) D contry(x,a,s) =v 3)

where x¢(x,v,a,s) is a first-order formula whose only free variables are x,v, a, s,
doesn’t mention function contr, for any g, and s is its only term of sort situation. If
there is no axiom (3) describing the effect of an action @ on an additive fluent f, we
assume that the direct contribution of a to f is zero. This assumption allows us to
derive, for each function contry, a definitional axiom:

contrg(x,a,s) =v =ky(x,v,a,8) Vo=0A-(F)ks(x,?,a,s).

158 E. Erdem and A. Gabaldon

Notation: n,n’,v are object (number) variables, s is a situation variable, a,a’ are action
variables, and c is a concurrent variable.

Action functions: addS(n), releaseS(n), releaseL(n), exert(n).

Additive fluent functions: Ranges:
small [Lvmally U?mall]

medium ‘medium medtum]

L
large [Llarge) Ularge]
Ly

force ‘forces Uforce

Direct effect axioms:

(3n)[a = addS(n) Av = n] D contrgy(a,s) =v
(3n)[a = releaseS(n) Av = —n] D contrgqy(a, s) =v
(3n)[a = releaseS(n) A v = n] D contryegiym(a, s) = v
(3n)[a = releaseL(n) A v = —n] D contrigrge(a,s) = v
(3n)[a = exert(n) A v =n] D contrpye.(a,s) =v

Preconditions of actions:
Poss(a, s)
conflict(c, s) = (3n,n’).[addS(n) € c AaddS(n’) € c An # n']V
[releaseS(n) € c A releaseS(n') € cAn # n'|V
[releaseL(n) € c A releaseL(n’) € c An # n'|V
[exert(n) € c Aexert(n') € cAn #n]

Contribution rules:
. + + .
medium «—— small large «—— medium

force = 2 x large force < 2 x large
Fig. 2. Containers domain described in the extended concurrent situation calculus

Preconditions of actions. We describe preconditions of primitive actions as in [9]. For
preconditions of a concurrent action ¢, we describe by a formula conflict(c, s) the con-
ditions under which the primitive actions in ¢ conflict with each other. This is required
to handle cases where a set of primitive actions each of which is individually possible
may be impossible when executed concurrently.

Ramifications on additive fluents. As in the language C+, we consider two kinds of
ramifications on numeric-valued fluents, and we express them by acyclic contribution
rules (2), where f and h do not contain a situation term.

For instance, Figure 2 shows a formalization of the containers example in this ex-
tended version of the concurrent situation calculus. With such a formalization, we can
compute the values of fluents, as in Example 1, using GOLOG.

5 Obtaining a Basic Action Theory

From a formalization of an action domain, like in Figure 2, we can obtain a basic action
theory in the concurrent situation calculus as follows. In the following, as in [9], instead
of axiomatizing sets, numbers, and arithmetic operations, we use them assuming their
standard interpretation.

Representing Action Domains with Numeric-Valued Fluents 159

1. We consider the foundational axioms of [9].

2. From the preconditions of primitive actions, conflicts between actions, and range
restrictions on additive fluents, we can formalize preconditions of a concurrent ac-
tion c as in [8], by an axiom of the form

Poss(c, s) =
(3a)(a € ¢) A (Va € c)Poss(a, s) A —conflict(c, s) A RYRC(do(c, s))].

Denoted by R![W] is a formula equivalent to the result of applying one step of
Reiter’s regression procedure [9] on W. We use RC'(s) to denote the conjunction
of the range constraints on each additive fluent f (i.e., A\ f Ly < f(s) < Uy) con-
joined with additional qualification constraints if given. By this way, a concurrent
action is possible if it results in a situation that satisfies the range constraints on
additive fluents. For Example 1,

RC(S) = Lsmall S Small(s) S Usmall A Lmedium < medlum(s) S Umedium/\

Llarge < large(s) < Ularge A Lforce SfOVC@(S) < Uforce~

3. From the direct effect axioms and contribution rules in such a formalization, we
can derive successor state axioms for additive fluents by the same kind of transfor-
mation in [9], which is based on an explanation closure assumption.

First, we express the cumulative effects of actions on f, by adding the direct
and indirect contributions of actions on f, respecting the given range [L ¢, U]. For
each additive fluent f, we introduce three new functions: dContry, iContry, and
tContry. Intuitively, dContry(x, ¢, s) describes the cumulative direct contributions
of primitive actions in c at a situation s:

dContry(x,c,s) = Z contrg(x, a, s).
acc

The indirect contribution of a concurrent action c on f at a situation s is described
by iContry(x, c, s), relative to a set C' of contribution rules:

iContr¢(x,c,s) =

Zﬁlg(h)ec E(iContrp(y, ¢, s) + dContry(y, ¢, s) — tContry(y, ¢, s))
)

~ 2 emyec E(iContrp(y, ¢, s) + dContrp(y, ¢, s) — tContrp(y, ¢, s))

FEtenyec, tContry, (y,c,s)>0
+2

) (
ri=emyec,tContry, (y,c,s)<0 (
T Lptt enyec tContry (y,e,s)>0 (
f——&n)ec,tContry (y,c,s)<0 (

For instance, relative to the contribution rules in Figure 2:
iCONtr yedium (¢, 8) = iContrgua(c, s) + dContrga(c, s) — tContrgna(c, s).

After defining direct and indirect contributions of actions on an additive fluent f,
we can define the total contribution of actions as follows. If f appears on the right
hand side of a contribution rule of form (2), then we add the direct and indirect
contributions of actions respecting the range restriction [L ¢, Uy]:

160 E. Erdem and A. Gabaldon

Ur—f(x,s) if sumg > Us— f(x, s)
tContry(x,c,s) =4 Ly—f(x,s) if sumy < Ly— f(x, s)
sumy otherwise

where sumy stands for dContr¢(x, ¢, s) + iContr¢(x, c, s). Otherwise, the total
contribution of actions is simply the sum of the direct and indirect contributions of
actions, i.e., sumiy.

Finally, we define the successor state axiom for an additive fluent f:

f(z,do(c, s)) = f(x,s) +tContr¢(x,c,).

4. From the given action functions, we can obtain unique names axioms, like
addS(n) # releaseS(n’), etc.
5. We suppose that a description of the initial world is given.

6 Comparing the Two Formalizations

We have described how to formalize an action domain with additive fluents, in two
formalisms: the action language C+ and the concurrent situation calculus. We can see
in Figures 1 and 2 that two such formalizations look similar. In fact, under some con-
ditions, a formalization D of an action domain in the extended version of C+ and a
description I of the initial world can be translated into an action theory sit(D, I) in
the extended version of the concurrent situation calculus, such that, for every additive
fluent f and for every concurrent action c, the value of f after execution of ¢ is the same
according to each formalization.
Suppose that D consists of the following:

additive fluent constants Fi,..., F,,, each F; with the domain {Lp,,...,Ur,}
(Min < Lp,,Ur, < Max); and boolean action constants A1, ..., Ay,;

increment laws of form (1) where a is a boolean action constant, f is an additive
fluent constant, n is an integer, and 1) is true;

preconditions of actions of the form

nonexecutable ¢ if ¢ 4

where 1 is a conjunction of atoms that does not contain the action constant a.
acyclic contribution rules of form (2).

Suppose that I consists of the following:

where N; is an integer in the given range { L, , . .., Up, }, expressing that, at time stamp
0, the value of F; is N;.
Then we can obtain sit(D, I') from D and I as follows:

1. For each additive fluent constant F; € D, declare a corresponding unary additive
fluent function f;(s) with the range [Ly,,Uy,]. such that Ly, = Ly, and Up, =
Us,. For each boolean action constant A; € D, declare a corresponding nullary

Representing Action Domains with Numeric-Valued Fluents 161

action function A;. For instance, for the fluent constant Small with the domain
{Lsmais - - - s Usman} in Figure 1, we declare in Figure 2 the fluent function small
with the range [Lsmair, Usmait)-

Schemas are frequently used in C+ to represent a large number of constants or
statements. For example, AddS(n) in the declarations part denotes the action con-
stants AddS(Min), . . ., AddS(Max). In a situation calculus representation, for such a
set of action constants, we can introduce a single action function (e.g., addS(n)).

2. For each increment law A; increments F; by NV in D, add the formula

l[a = A; ANv = N] D contr;(a,s) =v. (5)

With a function A;(n), we can use a single formula to represent all of the formu-
las (5) for A;, as seen in Figure 2.

3. Let NE X be the set of all causal laws (4) in D such that ¢ is a fluent formula. Let
¥(s) be the formula obtained from a fluent formula ¢ by replacing every additive
fluentatom F; = N by f;(s) = N. For each action constant 4; in D, add the formula

Poss(A;, s) = /\ —)(s).
(nonexecutable A; if))ENEX
If for every action constant A, the right hand side of the equivalence above is T then
we can simply replace all of the equivalences above by the single formula Poss(a, s)
as in Figure 2 (recall a is implicitly universally quantified.)

4. Let NEX 4 be the set of all causal laws (4) in D such that v is a formula that
contains an action constant. Let ¢(c, s) be the formula obtained from a concurrent
action ¢ and a formula v by replacing every fluent atom F; = N with f;(s) = N,
and every action atom A; (respectively, = Ay) with A; € c (respectively, A & c).
Then add the following definition:

conflict(c, s) = \/ [A; € cAY(e, 9)].
)) (n%wxecutable A; .ifw)EN EX 4)) ®
For each contribution rule F' <— £(H) in D, add the contribution rule f «<— £(h).
6. For each expression 0 : F; = Nj in I, add the fact {;(Sy) = N;.

9,1

Suppose that the range [Min, Max] is wide enough that, when compiling D into an
action description as described in Section 3, the auxiliary actions DContry, IContry,
and TContry are never undefined due to range violation.

Proposition 1. Let C be a set of action constants in D and c be the set of corresponding
action functions in sit(D, I). Then the following hold:
(i) C is executable at time stamp O with respect to D and I iff Poss(c, Sy) with respect

to sit(D, I);

(ii) for every fluent constant F;, if C is executable at time stamp 0 and 1 : F; = N/ af-
ter the execution of C at time stamp 0, with respect to D and I, then £;(do(c, Sp)) =
N/ with respect to sit(D, I).

(iii) for every fluent constant F;, if Poss(c, Sy) and f;(do(c, So)) = N] with respect to
sit(D, I), then 1 : F; = N/ after the execution of C at time stamp 0, with respect
to D and 1.

The assumption above is required for the ‘if” part of (i), and for (iii).

162 E. Erdem and A. Gabaldon

Although we have incorporated contribution rules into two formalisms in a similar
way, and we have shown that, under some conditions, a formalization of an action do-
main in C+ can be transformed into a formalization in the concurrent situation calculus,
these two formalisms are different in general: C+ action descriptions are nonmonotonic
and propositional, while the situation calculus action theories are monotonic and first-
order. This work can be viewed in part as an attempt to bridge the gap between these
two formalisms, in the spirit of [15].

7 Related Work

There are mainly two lines of work related to ours. The first one, [13] and [14], intro-
duces methods to obtain a causal ordering of variables (denoting numeric-valued flu-
ents) from a set of equation-like causal structures, confluence equations and structural
equations, each describing a mechanism in a device. Such a causal ordering describes
which fluents are directly causally dependent on which other fluents. The goal is, by
this way, to understand the causal behavior of a device.

The other line of work, [16] and [8], explicitly represents causal relations among
variables by equation-like causal structures, structural equations and contribution equa-
tions; so the goal is not to obtain a causal ordering on numeric-valued variables. They
use these equations for various problems of reasoning about actions and change. For
instance, [16] represents each mechanism with a structural equation, and uses them for
modeling counterfactuals. On the other hand, [8] represents each mechanism with a
contribution equation, compiles them into an action theory, allowing one to solve prob-
lems of reasoning about effects of actions, like planning and prediction.

All [14, 16, 8] suppose that the causal influence among fluents is acyclic. The method
of [13] can not in general determine the effects of disturbances by propagation when
the causal influences are cyclic. [14, 16] require each variable to be classified as either
exogenous or endogenous; the others and we do not.

In our approach, each mechanism is described by a set of contribution rules with
the same head. These rules explicitly represent the flow of causal influences among
variables; in this sense it can be considered along the second line of work above. Con-
tribution rules are assumed to be acyclic. As in [8], by compiling contribution rules
into an action theory, we can solve problems of reasoning about effects of actions. On
the other hand, unlike with contribution equations, there is no obvious correspondence
between contribution rules and algebraic equations. For instance, in the containers ex-
ample, with the contribution equations inner(s) =medium(s)+small(s) and total(s) =
inner(s)+large(s), one can verify that total(s) = small(s) +medium(s)+large(s). In
our approach, we can verify this equation by introducing an auxiliary fluent roral(s)
and contribution rules for it, but there is no direct correspondence between the equation
and the contribution rules. Another difference between contribution equations and con-
tribution rules, is that auxiliary fluents such as total and inner are necessary to write
contribution equations, while they are not required in writing contribution rules. This is
due to the ability of contribution rules to express more directly the causal influence re-
lationships among fluents. Finally, although contribution equations can handle the first
kind of ramifications mentioned in the introduction, we cannot directly express the sec-

Representing Action Domains with Numeric-Valued Fluents 163

ond kind of ramifications by them; there is no direct way to describe these ramifications
by the other causal structures mentioned above.

8 Conclusion

We have described how to formalize an action domain with additive fluents, in two for-
malisms: the action language C+ and the concurrent situation calculus. In both cases,
first we have extended the formalisms, e.g., by introducing some new constructs or func-
tions and by modifying some axioms. Since some ramifications are not easy to describe
in the original formalisms, or using the existing causal structures, we have introduced
contribution rules, which express causal influences between additive fluents. After that
we have formalized an action domain in the extended versions in four parts: specifi-
cation of additive fluents with their domains/ranges and actions affecting them, direct
effects of actions on additive fluents, preconditions of actions, and ramifications on ad-
ditive fluents. The formalizations obtained this way can handle not only nonserializable
actions, but also ramifications on additive fluents. Investigating the application of our
method to other formalisms, such as TAL [17], is a possible future research direction.

References

1. Koehler, J.: Planning under resource constraints. In: Proc. ECAIL. (1998) 489-493
2. Kvarnstrom, J., Doherty, P., Haslum, P.: Extending TALplanner with concurrency and re-
sources. In: Proc. ECAL (2000) 501-505
3. Bacchus, F., Ady, M.: Planning with resources and concurrency: A forward chaining ap-
proach. In: Proc. IJCAL (2001) 417-424
4. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Proc. IICAIL
(2003)
5. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
AlJ 153 (2004) 49-104
6. Baral, C., Son, T.C., Tuan, L.: A transition function based characterization of actions with
delayed and continuous effects. In: Proc. KR. (2002)
7. Gelfond, M., Lifschitz, V.: Action languages. ETAI 3 (1998) 195-210
8. Erdem, E., Gabaldon, A.: Cumulative effects of concurrent actions on numeric-valued flu-
ents. In: Proc. AAAIL (2005) 627-632
9. Reiter, R.: Knowledge in action: Logical Foundations for specifying and implementing dy-
namical systems. MIT Press (2001)
10. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Proc. IICAL
(1995) 1985-1991
11. McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proc. IICAIL
(1995) 1978-1984
12. Thielscher, M.: Ramification and causality. AIJ 89 (1997) 317-364
13. de Kleer, J., Brown, J.S.: A qualitative physics based on confluences. AlJ 24 (1984) 7-83
14. Iwasaki, Y., Simon, H.: Causality in device behavior. AIJ 29 (1986) 3-32
15. Giunchiglia, E., Lifschitz, V.: Action languages, temporal action logics and the situation
calculus. In: Proc. NRAC. (1999)
16. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach—Part I: Causes.
In: Proc. UAL (2001) 194-202
17. Doherty, P., Gustafsson, J., Karlsson, L., Kvarnstrom, J.: (TAL) Temporal Action Logics:
Language specification and tutorial. ETAI 2 (1998) 273-306

Model Representation over
Finite and Infinite Signatures

Christian G. Fermiiller and Reinhard Pichler

Technische Universitat Wien, A-1040 Vienna, Austria
{chrisf, reini}@logic.at

Abstract. Computationally adequate representation of models is a
topic arising in various forms in logic and AI. Two fundamental deci-
sion problems in this area are: (1) to check whether a given clause is
true in a represented model, and (2) to decide whether two representa-
tions of the same type represent the same model. ARMs, contexts and
DIGs are three important examples of model representation formalisms.
The complexity of the mentioned decision problems has been studied for
ARMs only for finite signatures, and for contexts and DIGs only for infi-
nite signatures, so far. We settle the remaining cases. Moreover we show
that, similarly to the case for infinite signatures, contexts and DIGs allow
one to represent the same classes of models also over finite signatures;
however DIGs may be exponentially more succinct than all equivalent
contexts.

1 Introduction

Computing with term models — aka. Herbrand models — is an important topic
in a number of subfields of AI. Apart from general interest in Model Com-
putation!, the subject can be motivated by applications in Automated Model
Building, Logic Programming, Automated Deduction, Machine Learning, and
Non-Monotonic Reasoning (see, e.g., [9,6,10,15,7,8]). For instance, in Auto-
mated Model Building, the target of the model building process is usually a
term model. Likewise, the semantics of logic programs is defined by means of
term models. Thus, proving the correctness of program simplifications comes
down to checking that the term model corresponding to a given logic program
remains unchanged, etc.

A term model can be identified with a (generally infinite) set of ground atoms.
The simplest and most natural finite representation of a term model consists in
aset {A1,...,Ap} of general atoms, where the ground instances of the A; con-
stitute the represented model. Observe that such an atomic representation of a
term model or ARM is unique only with respect to a given signature, i.e., a fixed
set of predicate, constant, and function symbols. Two basic decision problems
arise: Testing Equivalence, where, given two ARMs, one asks whether they rep-
resent the same term model; and Clause-Evaluation, where one wants to know

! See www.uni-koblenz.de/~peter/CADE17-WS-MODELS/ and www.uni-koblenz.de/
~peter/models03/ for proceedings of relevant workshops.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 164-176, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model Representation over Finite and Infinite Signatures 165

whether a given clause is true in the model represented by a given ARM. The
complexity of these problems has been studied in detail in [12]. However only
finite signatures have been considered there. This is at variance with investiga-
tions of related model representation mechanisms (see below). Moreover, infinite
signatures are used in potential areas of applications: e.g., in [7, 8] infinite sig-
natures facilitate the study of equivalence of program clauses with respect to
arbitrary contexts of datalog programs and answer set programs, respectively.

At a first glance one might be tempted to suppose that it does not make much
difference whether the underlying signature is finite or infinite. However, there
is an essential difference between these two scenarios. This can be highlighted
by considering the closely related problem of atomic H-subsumption [10], where
one asks whether each instance of a given atom is an instance of some element
in a given set of atoms. Note that this amounts to the evaluation of unit-clauses
over ARMs. This decision problem has been shown to be coNP-complete for any
non-trivial finite signature X' (i.e., X' contains at least two constant or function
symbols), see [14,13]. In contrast, for any infinite signature X, this problem is
in PTIME, see [15].

Of course, the class of term models that can be represented by an ARM is
rather limited. Moreover, it is not hard to see that this class is not closed under
complementation. Two generalizations of ARMs that enable an explicit repre-
sentation (also) of false ground atoms are of particular interest: disjunctions of
implicit generalisations (DIGs) and so-called contexts as introduced in [1] in con-
nection with the ‘model evolution’ calculus. Motivated mainly by the latter work,
we have investigated in [11] the expressive power and the complexity of Clause-
Evaluation and of deciding Equivalence for DIGs and contexts, respectively. Since
the intended application of model evolution relies on repeated introductions of
new constants we followed [1] in assuming an infinite underlying signature. How-
ever, DIGs and contexts are of interest also for finite signatures (see, e.g., [3]).
In connection with the above mentioned state of knowledge about ARMs (and
atomic H-subsumption), the following open questions naturally arise:

— How is the expressiveness of DIGs and contexts related over finite signatures?

— Does the complexity of Equivalence and Clause-Evaluation increase when we
generalize from ARMs to DIGs and contexts over finite signatures?

— Does the complexity of these decision problems decrease for ARMs when we
move from finite to infinite signatures?

Results. The following table summarizes results of this paper answering the
second and the third question and puts these in the context of directly related
previous results. (The new results are written in bold face.)

finite signature infinite signature
Equivalence Clause-Evaluation Equivalence Clause-Evaluation
ARMs coNP-complete coNP-complete in PTIME coNP-complete
see [12] see [12]
Contexts coNP-complete coNP-complete coNP-complete coNP-complete
and DIGs see [11] see [11]

166 C.G. Fermiiller and R. Pichler

Concerning the first question, we will see in Section 3 that, like for infinite
signatures, term models over finite signatures are DIG representable iff they are
context representable, but that DIGs may be exponentially more succinct.

Discussion. One possible way to summarize the complexity results in the
above table is the following. In moving from ARMSs to the more expressive DIGs
and contexts there is only one case, where the complexity of the decision problem
moves up in the polynomial hierarchy: Testing Equivalence over infinite signa-
tures is tractable for ARMs. but coNP-complete for DIGs and contexts. All other
cases of Clause-Evaluation and Equivalence are coNP-complete for all model rep-
resentations considered here.

2 Basic Concepts of Model Representation

A model representation is a syntactic structure D associated with a unique
model M over a given signature X. Hereafter, we will denote by Mx(D) a
model M over the signature X’ represented by D. For the intended applications,
any model representation D should satisfy the following properties (cf. [10, 6]):

(1) It can be checked efficiently whether a given ground atom is true in M x(D).

(2) Given a clause C, it is decidable whether C is true in M (D).

(3) Given another structure D’ (of the same type as D), it is decidable whether
D and D’ are equivalent, i.e., whether Mx(D’) = Mx(D).

For all representation formalisms that are considered in this paper it will be
obvious that (1) is fulfilled via (a properly bounded number of) instance checks.
The decision problems defined in (2) and (3) are called Clause-Evaluation and
Equivalence, respectively, as already mentioned in the introduction.

For a paradigmatic example of model representation, one may think of the
explicit specification of finite models by tables (‘diagrams’). However, we restrict
our attention to term models over some signature Y. A term model or, more pre-
cisely, X'-model, is identified with the set of ground atoms, i.e., the variable free
atoms over Y, that are true in it. To prevent the corresponding set of ground
terms from being empty we assume that X' contains at least one constant. X is
called infinite if it contains infinitely many constants or function symbols; other-
wise it is called finite. The cardinality of the (always non-empty) set of predicate
symbols plays no role in our investigations. In some proofs we will assume that
predicate symbols of any finite arity are available; however, we mention in pass-
ing that standard coding techniques allow to strengthen all results to the case
where X' contains a single monadic predicate symbol, as long as at least one
non-monadic function symbol is also contained in X.

Notation. We use a, b, and ¢ to denote constants; f, g, h will denote func-
tion symbols. Concerning variables, we remind the reader that in introducing
contexts, Baumgartner and Tinelli [1] distinguish between ‘universal variables’
and ‘parameters’. Whereas universal variables can be seen as placeholders for
arbitrary ground terms, parameters indicate that instantiation is potentially re-
stricted. (This distinction will get clearer, below.) Each atom contains either

Model Representation over Finite and Infinite Signatures 167

only universal variables or only parameters, but not both. We will speak of uni-
versal atoms (literals) and parameter atoms (literals), respectively. We use z,
Yy, z to denote universal variables, and u, v, w to denote parameters. Terms
(s, t, ...) and atoms (A, B, ...) are built up from constants, variables, and
parameters, using function and predicate symbols. On some occasions, we will
speak of positions in terms and atoms and their respective depth, all defined as
usual. Literals (denoted by K, L, M) are either atoms, called positive literals,
or negated atoms, called negative literals. We write L for the literal that is dual
to L;ie., A= —-A and -A = A. The special parameter v is used to denote the
pseudo (parameter) literal —v, intended to represent all negative literals whose
dual is not explicitly contained in a context. (What exactly this means will get
clear from Definitions 2 and 3, below.) A clause C' = L1V---V Ly, is a disjunction
of literals.

Substitutions are mappings from variables and parameters to terms that have
fixpoints almost everywhere. A substitution is called a renaming if it is a per-
mutation that maps variables to variables and parameters to parameters. If the
restriction of a substitution o to parameters is a renaming, then we call o p-
preserving. We write s 3 ¢ if s is an instance of ¢; i.e., if there is a substitution
o such that s = to. If s = to is a ground term (over X) then s is called a
(X-)ground instance of t and o is called a (X'-)ground substitution. In case o is
a renaming, then we call s a variant of t; otherwise s is a proper instance of t. A
literal L is called most specific among literals Ly, ..., L, if for no i € {1,...,n}
L; is a proper instance of L. We assume the reader to be familiar with unifica-
tion. We use mgu(E1, ..., E,) to denote the most general unifier of the terms or
atoms E; (1 <14 < n). For our proofs below, it is important to remember that
when terms and atoms are represented by directed acyclic graphs (rather than
by strings), unification can be carried out in polynomial time and space [16].

Given this notational background, we are ready to define the representation
mechanisms investigated in this paper.

Definition 1. An atomic representation of a term model, or ARM, A over a
signature X is a finite set of atoms over X. The corresponding represented X-
model M x(A) is the set of X-ground instances of atoms in A.

For ARMs the distinction between parameters and variables is immaterial. For
simplicity, we assume that the elements of an ARM are universal atoms. This
distinction, however, is essential for contexts:

Definition 2. A context A is a finite set of literals including the pseudo lit-
eral —v. A is contradictory iff Lo = Ko for some variants L, K of elements in
A and a p-preserving substitution o.

Ezample 1. The context Ay = {—w, P(x, f(y)), ~P(a,z)} is contradictory, since
P(z, f(y)) and P(a,z’) are unifiable, and the corresponding unifier is p-preser-
ving (since no parameters occur in the atoms). However the context Ay = {-w,
P(z, f(y)), ~P(a,u)} is non-contradictory since, for all substitutions o such that
P(z, f(y))o = P(a,u)o holds, the parameter u has to be instantiated. Likewise
the special parameter v has to be instantiated when unified with P(z, f(y)).

168 C.G. Fermiiller and R. Pichler

From now on, we only consider non-contradictory contexts and thus drop the
adjective, unless we want to emphasize this property.

The central notion for defining the model represented by a context A is that
of certain ground literals being produced in A. Like in [11], we provide a slightly
simplified definition, that is equivalent to the original one given in [1].

Definition 3. A ground literal K is produced by a context A iff one of the
following conditions holds:

1. K is an instance of some universal literal L in A, or
2. K is an instance of a parameter literal L € A, but K is not an instance of a
literal M € A, where M is either universal or a proper instance of L.

If L is the most specific literal among all literals in A with properties 1 and 2,
then we say that L produces K.

The X-model Mx(A) induced by A is the set of ground atoms over X that
are produced by A. We call a model N context representable if N' = M 5 (A) for
some context A.

Ezample 2. Consider the context A = {-w, P(a,z,y), P(u,b,v), P(u,v,c),
—P(u,u,c)} and a signature X containing only the constants a, b, and ¢ and
no function symbols. The universal atom P(a,z,y) and therefore A produces all
atoms of the form P(a,s,t) for s,t € {a,b,c}. P(u,b,v) produces, for instance,
the atom P(b,b,b). On the other hand, =P (u,u, ¢) prevents P(u,v,¢) from pro-
ducing P(c, ¢, c). P(c, ¢, c) is not produced by A at all. Note that =P (u,u, ¢) also
prevents P(u,v,c) from producing P(a,a,c) and P(b,b,c). Nevertheless, both
P(a,a,c) and P(b,b,c) are produced by A, namely by P(a,z,y) and P(u,b,v),
respectively. We obtain M x(A) = {P(r,s,t) |[r=aVs=bV (r#£sAt=c)}.

A (general) atom is sometimes called an ‘explicit generalization’ of its ground
instances. Consequently, an ARM can be viewed as a disjunction of explicit gen-
eralizations. Following ideas in [15], these notions have been generalized in [11]
as follows.

Definition 4. An implicit generalization I" is an expression of the form A/B,
where A is an atom and B is a finite set of atoms. We simply write A for A/{}.
Every ground atom that is an instance of A, but not an instance of any B € B
is said to be contained in A/B.

A disjunction of implicit generalizations A (shortly: DIG) is defined as an
expression of the form Ai/BiU...U A, /By, also written as | |, <;<,, Ai/Bi. A
ground atom is said to be contained in A if it is contained in A;/B; for some
ie{l,...,n}.

The X-model M 5 (A) represented by a DIG A is the set of all X-ground atoms
that are contained in A. We call a model N DIG representable if N' = Mz (A)
for some DIG A.

Natural and useful as it is, the concept of DIGs seemingly has been (re)discovered
several times in slightly different syntactic disguises. For more references, exam-
ples and comments on notation, we refer to [11].

Model Representation over Finite and Infinite Signatures 169

Like for ARMs, the difference between universal variables and parameters is, in
principle, irrelevant for DIGs. Staying with the notation of [11], we will assume
that DIGs only contain parameters. Note that for any implicit generalization
A/B, every B € B can be replaced by Bo, where o is the most general unifier of
(parameter disjoint copies of) A and B, without affecting the set of contained
ground atoms. If Bo is a variant of A (i.e., if A is an instance of B) then
M5 (A/B) is empty. In other words, for any implicit generalization A/B, one
may assume without loss of generality that the atoms in B are proper instances
of A. We call a DIG normalized if, for all implicit generalizations A/B in it, B
consists only of proper instances of A and, moreover, all atoms occurring in the
DIG are pairwise parameter disjoint.

Note that a single normalized implicit generalization can be considered as
a special form of contexts. Indeed, let I' = A/B be normalized. Then the set
Ap ={-w}U{A}U{-B | B € B} is a context with Mx(Ar) = Mx(I').

3 Expressive Power of DIGs and Contexts

Analogously to the case of an infinite signature X, investigated in [11], the fol-
lowing relationship between DIGs and contexts holds:

Theorem 1. Let X be a finite signature.

1. Contexts and DIGs have the same expressive power, i.e., a X-model N is
context representable iff N is DIG representable.

2. Given a context A, a normalized DIG A with Mx(A) = Mx(A) can be
computed in polynomial time.

3. If X contains at least one function symbol of arity > 2, then there exists a
sequence A, (n > 1) of DIGs, where the size of A, is polynomial (inn), but
where all contexts representing the same X -model as A,, are of exponential
size (inn).

Proof. The proof of claims 1 and 2 of the theorem can be taken over literally from
the case of an infinite signature X': the corresponding constructions presented
in [11] do not depend on the cardinality of the signature.

The case of the last claim is different. We need a new sequence of DIGs. For
n>1let A, = || Plut,...,un)/{Put,...,ui—1, f(tsu), Wit1, .-, Un),

1<izn P(ul,...,ui_l,g(ui,ui),qu,...,un)},

where the u; (1 < ¢ < n) are pairwise distinct parameters and f and g are
two distinct function symbols. Observe that M 5 (A4,,) contains all ground atoms
over X except those of the form P(p1(t1,t1),...,¢n(tn,tn)), where ¢; € {f, g}
and t; is an arbitrary ground term for 1 < i < n. Let A,, be a context rep-
resenting M x(A,,). We show that A,, must contain instances of literals of the
form =P (p1(ur,u}),...,on(un,ul,)) for all choices of p; € {f,g}. Since the 2"
different literals of the exhibited form are pairwise non-unifiable it follows that
A, contains exponentially many literals.

Consider a literal L = P(¢1(t,t),. .., ¢n(t,t)), where ¢; € {f, g} and t is some
ground term in which a constant ¢ occurs at a position 7 that is deeper than

170 C.G. Fermiiller and R. Pichler

any position in any literal in A,. Moreover let L' = P(p1(t',t),...,on(t, 1)),
where ¢’ is obtained from ¢ by replacing ¢ at = with another constant d, or
with f(c,¢) if X' contains only one constant. In other words, L’ is exactly as
L except for a tiny difference at a position that is so deep that any literal in
A,, that has L’ as an instance is bound to have also L as an instance. Note
that L is false in M5 (4,,), whereas L’ is true in Mg(A4,,). To prevent L from
being produced in A,,, there must be some K € A, which produces —L. We
claim that K 3 =P (¢1(u1,u}), ..., ¢n(un,ul,)), where the u;, u; for 1 < i < n,
are different parameters. Suppose, to the contrary, that K is not an instance
of =P(p1(u1,u}), ..., on(un,ul)). Then K is either (1) the pseudo literal —v
or (2) of the form —P(sy,...,s,), where ;(u;,u;) is not an instance of s; for
at least one ¢ € {1,...,n}. -L 3 K implies ¢;(¢,t) 3 s;; consequently s is a
parameter. In both cases we have not only =L 3 K but also =L’ X K. On the
other hand, since L’ is true in Mx(A,) = Mx(A,,), L’ has to be produced by
some positive literal K’ € A,. But we have defined L and L’ in such a way that
if K’ produces L', then it also produces L, which contradicts the fact that L is
false in Mx(A4A,) = Mx(4,).

We have made use of two binary function symbols f and g. To see that a single
function symbol h of arity > 2 is sufficient for the claim to hold, one simply has
to replace terms of the form f(s,t) everywhere by, e.g., h(s,t,...,t) and terms
of the form g¢(s,t) by, e.g., h(h(s,...,s),t,...,1). O

The class of DIGs that can be transformed polynomially into equivalent contexts
is strictly increasing when shifting from infinite to finite signatures. To provide a
better understanding of the effect of restricting to finite signatures we re-visit the
sequence of DIGs A, = || Put,..-,un)/{Pu1, .« Wi—1,0,Uit1,. . Up),

1<ign P(uh...7ui,1,b7ui+17...,un)},
that are shown in [11] to have no equivalent contexts of polynomial size for any
infinite signature X. M x(A!) consists in all ground instances of P(us,...,uy)

except those where all the (pairwise different) parameters u; are replaced by
either the constant a or the constant b. Over any finite signature X' (that contains
at least a and b) we have Ms(A!) = Mx(A,) for A, = {P(t1,....tn) | t; €
Fx,tj#a V t;#b for all ¢ and some j € {1,...n}}. Here, Fx is the set of terms
that contains all constants in X' and for each function symbol f € X a term of
the form f(z1,..., %), where the z; are pairwise different variables. Note that
A, not only is a context if augmented by —w, but even is an ARM. Obviously,
the size of A,, is polynomial in n for any fixed X.

4 ARMs: Clause Evaluation and Testing Equivalence
over Infinite Signature

In [12], Equivalence and Clause-Evaluation for ARMs were shown to be coNP-
complete for any non-trivial finite signature. In this section, we consider the
case of an infinite signature X. The following property (see [15], Proposition 4.1)
plays an important role in this analysis :

Model Representation over Finite and Infinite Signatures 171

Proposition 1. Let A, By, ..., B, be atoms over an infinite signature X, where
B; 3 A foralli e {1,...,n}. Then {A} and {Bi,... By} are equivalent, i.e.,
Mx({A}) = Ms({Bn,...Bn}) iff A is a variant of B; for some j € {1,...,n}.

From this, the tractability of Equivalence for ARMs is an easy consequence:
Theorem 2. Owver any infinite signature 3, Equivalence for ARMs is in PTIME.

Proof. Let A={A,...,An} and B={By,...,B,} be two ARMs. Obviously,
A and B are equivalent over X iff (1) for every ¢ € {1,...,m}, all X-ground
instances of A; are in Mx(B) and (2) for every j € {1,...,n}, all X¥-ground
instances of B; are in Mx(A).

Each of these m+n checks can be reduced in polynomial time (via unification)
to linearly many checks of the form in Proposition 1. More exactly, for any
ie{l,....m} let B, = {BY | 9 = mgu(A;, B), B € B}. Then the X-ground
instances of A; are in Mx(B) iff {A;} and B; are equivalent. (Analogously for
the B; and A.) O

For finite signatures X, the coNP-hardness of Clause-Evaluation for ARMs is
shown in [12] by reducing the Equivalence problem to it. By the above tractability
result for Equivalence for infinite signatures, the question naturally arises whether
Clause-Evaluation also becomes tractable when we consider ARMs over an infinite
signature. We provide a negative answer to this question:

Theorem 3. Owver any infinite signature X, Clause-Evaluation with respect to
ARMs is coNP-complete.

Proof. As already mentioned, ARMs can be considered as a special case of con-
texts (with no negative literals apart from the pseudo literal —v). The member-
ship part of the claim therefore follows immediately from the coNP-membership
of Clause-Evaluation for contexts, shown in [11]. The coNP-hardness is shown by
the following reduction from the 3SAT problem.

Recall that an instance of the 3SAT problem is given through a set X =
{z1,...,z} of propositional variables and a Boolean formula E = (I;1 V l12 V
Lig) A -+« A (L1 V ln2 V lp3), where the I;; are literals over X, i.e., every l;; is
either a propositional variable ., or a negated propositional variable z., for some
ve{l,...,k}.

Let 0 and 1 denote two distinct ground terms over X. We define the clause
Cg and the ARM Ap, as follows. By slight abuse of notation, we use the symbols
zy and Z, (v € {1,...,k}) to denote also first-order variables:

Cg =-P(li,liz, i) V- - VP (ln1, ln2, ln3) V 2Q(21,Z1) V - - V =Q(2k, Tk)
Ag ={P(0,0,1), P(0,1,0), P(0,1,1), P(1,0,0), P(1,0,1), P(1,1,0), P(1,1,1),
Q(0,1),Q(1,0)}.
This problem reduction is clearly feasible in polynomial time. The underlying

idea is as follows. Cg evaluates to false in My (Ag) iff there exists a substi-
tution o such that all literals of C'ro are false. In other words, all dual atoms

172 C.G. Fermiiller and R. Pichler

P(li1,li2, liz)o and Q(x;, T;)o have to be true, i.e., they have to be equal to one
of the (ground) atoms in Ag. It is easy to check that such a substitution (which
assigns the terms 0 and 1 to the first-order variables z, and z,) exists iff the
Boolean formula F has a satisfying truth assignment (which accordingly assigns
values ‘false’ and ‘true’ to the propositional literals z- and Z). O

In order to better understand the source of complexity in Theorem 3 we consider
the special cases of positive and negative clauses, respectively. (A clause is called
positive if it consists only of positive literals and negative if consists only of
negative literals.)

Proposition 2. QOver any infinite signature X, Clause-Evaluation over ARMs
restricted to positive clauses is in PTIME. Clause-Evaluation when restricted to
negative clauses is coNP-complete.

Proof. The coNP-completeness in the case of negative clauses is already settled
by the proof of Theorem 3. The target of the problem reduction given there is
in fact a clause with negative literals only. The tractability of Clause-Evaluation
for ARMs in case of positive clauses and infinite signature X' follows from the
following fact, which is related to Proposition 1:

C=A1V--- VA is true in Mx(A) iff for somei € {1,...,k} the atom A; is
a X -instance of some atom in the ARM A.

The ‘if’-direction is obvious. For the ‘only if’-direction, suppose that C' is true in
M5 (A). Let o be a ground substitution that assigns a unique new constant to
every variable in C, i.e., the terms o(z) are pairwise distinct constants that do
not occur in A. By assumption, Co evaluates to true in M x(A). Hence, there
exists an ¢ € {1,...,k} such that 4,0 is an instance of some B € A. But, by the
special form of o, also A; is an instance of B. o

5 DIGs and Contexts: Clause Evaluation and Testing
Equivalence over Finite Signatures

In the following we will assume that the underlying signature Y is finite, but
non-trivial (i.e., X' contains at least two constant or function symbols). The
coNP-hardness of the four decision problems considered here — Clause-Evaluation
and Equivalence for DIGs and contexts, respectively — follows directly from the
coNP-hardness of Equivalence and Clause-Evaluation for ARMs, which was shown
n [12]. In this section, we show that all of the four problems are in fact coNP-
complete. By the polynomial-time transformation of contexts into DIGs (see
Theorem 1), it suffices to establish the coNP-membership of Equivalence and
Clause-Evaluation for DIGs.

For this purpose, we first recall from [12] how the ‘complement’ of an atom A
(i-e., the ground atoms over X which are not instances of A) can be represented
by means of ‘constrained atoms’. Constrained atoms are constructs of the form
[B : X] consisting of an atom B and an equational formula X" such that [B : X

Model Representation over Finite and Infinite Signatures 173

contains precisely those ground instances Bo of B for which ¢ is a solution of
X (see [5]). Any atom B can be considered as a constrained atom by adding the
trivially true formula T as a constraint, i.e., B and [B : T| are equivalent.

Then the complement of an atom A can be constructed in the following way.
Consider the tree representation of A, ‘deviate’ from this representation at some
node and close all other branches of A as early as possible with new, pairwise
distinct variables. Depending on the label of a node, this deviation can be done
in two different ways: If a node is labelled by a (constant, function, or predicate)
symbol from X, then this node has to be labelled by a different symbol from X.
If a node is labelled by a variable which also occurs at some other position, then
the two occurrences of this variable have to be replaced with two fresh variables
z1, 22 and the constraint z; # z5 has to be added. However, if a node is labelled
by a variable which occurs nowhere else, then no deviation at all is possible at
this node. This idea is illustrated by the following example:

Ezample 3. Let X = {P,Q, f,9,a} and let A = P(f(z,y),g(z)) be an atom
over Y. The complement of A can be represented by the set C = {Q(z), P(a, z),
P(g(zl)722)’ [P<f<21’y)7g(z2)) A 7é 22]7P(z’a)7P(Zl’f('th?))}' In other
words, a ground atom A’ over X is not an instance of A iff A’ is an instance of
one of the (constrained) atoms in C.

We only need the following properties of this construction via ‘deviations’ (for
details of this construction and for a proof of these properties, see [12]):

Theorem 4. Let A be an atom over a finite signature X. There exists a set of
constrained atoms C = {[By : X1],...,[By : Xy]} with the following properties:

1. C represents the complement of A, i.e., a ground atom A’ over X is not an
instance of A iff A’ is an instance of one of the constrained atoms in C.

2. For every i € {1,...,n}, X; is either the trivially true formula T or a
quantifier-free disequation.

8. The size of every constrained atom in C is linearly bounded by the size of A
(assuming compact representations of terms as directed acyclic graphs).

Let compy.(A) denote the complement of an atom A with respect to signature X.
This notion is readily generalized to implicit generalizations I and to DIGs A.
We write compx,(I) and comps(A) for the respective complements. Note that
the complement comp,(I) of a single implicit generalization I = B/B coincides
with comps(B) U M x(B). Moreover, comps.(A) is obtained as the intersection
of the complements of the implicit generalizations in A. The distinction between
universal variables and parameters is irrelevant here. Thus we will simply speak
of variables also for DIGs.

To obtain a coNP-algorithm for Clause-Evaluation for DIGs we need an efficient
method for testing whether some constrained atoms have at least one ground
instance in common (see [12]):

Theorem 5. Let {[By : Xi],...,[Bm : Xm]} denote a set of constrained atoms,
where the constraints are either T or quantifier-free disequations. Then it can

174 C.G. Fermiiller and R. Pichler

be tested in polynomial time whether there exists a ground atom A’ that is an
instance of [B; : X;] for every i € {1,...,m}.

Proof. Without loss of generality, assume that the B;’s are pairwise variable
disjoint. If there exists at least one common ground instance of the constrained
atoms, then all these common ground instances can be represented by the con-
strained atom [Byp : Z|, where p = mgu(Bi,...,Bp) and Z is defined as
Z=X1 AN+ AN Xy In order to test whether at least one common ground in-
stance exists, we just have to check whether p exists and whether Zu has at
least one solution. Since Zp is a conjunction of disequations, the latter condi-
tion holds iff Zp contains no trivial disequation of the form ¢ # ¢. (For a proof
of this latter fact, see [4], Lemma 2). O

Lemma 1. Over any non-trivial finite signature X', Clause-Evaluation for DIGs
18 in coNP.

Proof. Let C = A;V---VA,V-A V---V-A, and A =| |,,., Bi/B;. In order
to simplify the notation, we assume that all sets B; have the same cardinality m.
Of course, this can be easily achieved by adding an appropriate number of copies
of some B € B; to B;. Thus, B; is of the form B; = {B;1, ..., Bim}. The clause
C' is false in M5 (A) iff for some ground instance C'o all literals of C'o evaluate
to false. In other words, C' evaluates to false in M5 (A) iff there exists a ground
substitution o such that

(a) for every a € {1,...,k}, Ayo is contained in compy,(A) and

(b) for every 6 € {1,...,£}, Ajo is contained in M (A).
It remains to show that these conditions can be tested by an NP-algorithm. Our
algorithm first carries out the following non-deterministic guesses:

1. Guess k - n constrained atoms [E.g : Xag] with o € {1,...,k} and § €
{1,...,n} such that [Ep : Xag] is a constrained atom from the complement
representation of the implicit generalization Bg/{Bgs1, ..., Bam}-

2. Guess ¢ indices y(1),...,v(¢) with v(6) € {1,...,n} for every 6 € {1,...,¢}.

3. Guess ¢ - m constrained atoms [Fs. : Vs with § € {1,...,¢} and € €
{1,...,m} such that [Fjs. : Vs.] is a constrained atom from the complement
representation of the atom B.y((;)e € B,y (s)-

Again, we may assume that the clause C' and all atoms B, ..., By (i.e.,
the left-hand sides of the implicit generalizations whose indices v(1),...,v(¢)
are guessed in step 2 above) as well as all constrained atoms [Eqp : Xap] and
[Fse : Vs] are pairwise variable disjoint. Then we carry out the following checks:

4. Check that the most general unifier = mgu(U) of the simultaneous unifi-
cation problem U exists, where U is defined as follows.
U={A1=FEn=-=FE,, ..., Ay =En = --- = Ej,,

Al =Byyy=Fu=-=Fipm, ..., Ay=Bypy=Fn=--=Fu}

5. Check that the equational problem Zu contains no trivial disequation of the
form t # t where Z = (/\Z:1 /\g:1 Xag) A (Af;:l A Vse).

Model Representation over Finite and Infinite Signatures 175

Obviously, this algorithm works in non-deterministic polynomial time, pro-
vided that an efficient unification algorithm is used (see [16]). The correctness of
this algorithm can be seen as follows. The checks in steps 4 and 5 above corre-
spond to a generalization of Theorem 5 in that we check whether some ground
instance C'o of C exists such that the resulting ground atoms Ajo,..., Axo,

fo,..., Ayo are contained in the following intersections of constrained atoms:

(a) For every a € {1,...,k}, Ayo has to be in comps(A). For this purpose,
we guess in step 1 the constrained atoms [E,g : Xap] from the complement
representation of every implicit generalization Bg/{Bgsi,..., Bgnm} with 8 €
{1,...,n}. Obviously, Ao is in compy(A), iff it is a common instance of these
constrained atoms.

(b) For every 6 € {1,...,£}, Alo has to be contained in A. In other words,
for every 6, there exists an index v(6) — which is guessed in step 2 — such that
Alo is contained in 37(5)/{37(5)1, .. .7B,Y(6)m}. Therefore, Ajc is an instance
of B, s) (for this purpose, the conditions Ay = B, (s) are part of the unification
problem ¢/) and Ajo is in the complement of every B.(s)c. The constrained atoms
[Fse : Vse] guessed in step 3 take care of the latter condition. O

In [11], the coNP-membership of Equivalence for DIGs over infinite signatures was
shown by reducing the problem to linearly many instances of Clause-Evaluation
for DIGs. This reduction is completely independent of the underlying signature.
In other words: the same problem reduction works also if we consider a finite
signature. Together with the coNP-membership shown above, we immediately
obtain:

Theorem 6. Owver any non-trivial finite signature X, the Clause-Evaluation and
the Equivalence problem for contexts and DIGs, respectively, are coNP-complete.

6 Conclusion

We have been motivated by the fact that basic decision problems relating to
ARMs had been investigated previously only for finite signatures, whereas the
same problems for two important generalizations of ARMs — namely, DIGs
and contexts — had been studied for an underlying infinite signature only. In
this paper, we have completed the picture by studying ARMs over an infinite
signature and DIGs and contexts over a finite signature. It has turned out that
— apart from one case (namely Equivalence over an infinite signature) — the
complexity does not increase when we move from ARMs to the much more
expressive contexts and DIGs. Note however that this does not mean that ARMs
are “useless”. In fact, the usefulness of a model representation depends to a
large extent on the existence of a calculus which constructs models via this
representation. And this is clearly the case for ARMs (see [10]).

One may now ask for a more fine grained analysis of the problems considered
here. In particular, a more detailed picture of the borderline between tractable
and intractable cases would be interesting. For instance, what happens to the
complexity if we restrict ourselves to DIGs with only one atom on the right-hand

176 C.G. Fermiiller and R. Pichler

side of each implicit generalization or to linear atoms (in the ARMs, DIGs and
contexts)? Proposition 2 already contains an observation along this line.

Another natural topic for future investigations is the effect of integrating
equality literals into model representation formalisms. In fact, Baumgartner and
Tinelli have recently [2] generalized model evolution, including contexts, to clause
logic with equality. It is clear at once that the expressive power, but also the com-
plexity of corresponding decision problems, increases dramatically in presence of
equality literals. We delegate more detailed assertions to future work.

References

1. P. Baumgartner and C. Tinelli. The model evolution calculus. In Proceedings of
CADE-19, LNCS 2741, pages 350-364, Springer, 2003.

2. P. Baumgartner and C. Tinelli. The model evolution calculus with Equality. In
Proceedings of CADE 2005, LNCS 3632, pages 392-408, Springer, 2005.

3. P. Baumgartner, A. Fuchs, and C. Tinelli. Lemma Learning in the Model Evolution
Calculus. Submitted.

4. H. Comon and C. Delor. Equational formulae with membership constraints. In-
formation and Computation, 112(2):167-216, 1994.

5. R. Caferra and N. Zabel. Extending resolution for model construction. In Proceed-
ings of JELIA’90, LNAT 478, pages 153-169, Springer, 1991.

6. R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building, volume 31 of
Applied Logic Series, Kluwer Academic Publishers, 2004.

7. T. Eiter, W. Faber, and P. Traxler. Testing strong equivalence of datalog programs -
implementation and examples. In Proceedings of LPNMR 2005, LNCS 3662, pages
437-441, Springer, 2005.

8. T. Eiter, M. Fink, H. Tompits, P. Traxler, and S. Woltran. Replacements in non-
ground answer set programming. In Proc. of WLP 2006, pages 145-153, 2006.

9. C.G. Fermiiller and A. Leitsch. Model building by resolution. In Proceedings of
CSL’92, LNCS 702, pages 134-148, Springer, 1993.

10. C.G. Fermiiller and A. Leitsch. Hyperresolution and automated model building.
Journal of Logic and Computation, 6(2):173-203, 1996.

11. C.G. Fermiiller and R. Pichler. Model representation via contexts and implicit
generalizations. In Proc. of CADE-20, LNCS 3632, pages 409-423, Springer, 2005.

12. G. Gottlob and R. Pichler. Working with ARMs: Complexity results on atomic
representations of Herbrand models. Information and Computation, 165:183-207,
2001.

13. D. Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Sufficient-completeness,
ground-reducibility and their complexity. Acta Informatica, 28(4):311-350, 1991.

14. K. Kunen. Answer sets and negation as failure. In Proceedings of ICLP’87, pages
219-228, MIT Press, 1987.

15. J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter
examples. Journal of Automated Reasoning, 3(3):301-317, 1987.

16. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258-282, 1982.

Deciding Extensions of the Theory of Arrays by
Integrating Decision Procedures and
Instantiation Strategies

Silvio Ghilardi', Enrica Nicolini?, Silvio Ranise'®, and Daniele Zucchelli'»3

! Dipartimento di Informatica, Universita degli Studi di Milano (Italia)
2 Dipartimento di Matematica, Universita degli Studi di Milano (Italia)
3LORIA & INRIA-Lorraine, Nancy (France)

Abstract. The theory of arrays, introduced by McCarthy in his sem-
inal paper “Toward a mathematical science of computation”, is central
to Computer Science. Unfortunately, the theory alone is not sufficient
for many important verification applications such as program analy-
sis. Motivated by this observation, we study extensions of the theory
of arrays whose satisfiability problem (i.e. checking the satisfiability of
conjunctions of ground literals) is decidable. In particular, we consider
extensions where the indexes of arrays has the algebraic structure of
Presburger Arithmetic and the theory of arrays is augmented with ax-
ioms characterizing additional symbols such as dimension, sortedness, or
the domain of definition of arrays.

We provide methods for integrating available decision procedures for
the theory of arrays and Presburger Arithmetic with automatic instan-
tiation strategies which allow us to reduce the satisfiability problem for
the extension of the theory of arrays to that of the theories decided by
the available procedures. Our approach aims to reuse as much as pos-
sible existing techniques so to ease the implementation of the proposed
methods. To this end, we show how to use both model-theoretic and
rewriting-based theorem proving (i.e., superposition) techniques to im-
plement the instantiation strategies of the various extensions.

1 Introduction

Since its introduction by McCarthy in [13], the theory of arrays (A) has played a
very important role in Computer Science. Hence, it is not surprising that many
papers [4,17,20,10,12,19,2, 3] have been devoted to its study in the context
of verification and many reasoning techniques, both automatic - e.g., [2] - and
manual [17], have been developed to reason in such a theory.

Unfortunately, as many previous works [20, 10,12, 3] have already observed,
A alone or even extended with extensional equality between arrays (as in [19, 2])
is not sufficient for many applications of verification. For example, the works in
[20, 10, 12] tried to extend the theory to reason about sorted arrays. More re-
cently, Bradley et al. [3] have shown the decidability of the satisfiability problem
for a restricted class of (possibly quantified) first-order formulae that allows one
to express many important properties about arrays.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 177-189, 2006.
© Springer-Verlag Berlin Heidelberg 2006

178 S. Ghilardi et al.

In this paper, we consider the theory of arrays with extensionality [19, 2] whose
indexes have the algebraic structure of Presburger Arithmetic (P), and extend
it with additional (function or predicate) symbols expressing important features
of arrays (e.g., the dimension of an array or an array being sorted). The main
contribution of the paper is a method to integrate two decision procedures, one
for the theory of arrays without extensionality (A) and one for P, with instantia-
tion strategies that allow us to reduce the satisfiability problem of the extension
of AU P to the satisfiability problems decided by the two available procedures.

Our approach to integrating decision procedures and instantiation strate-
gies is inspired by model-theoretic considerations and by the rewriting-approach
[2,1,11]. For the rewriting-based method, we follow the lines of [11], where, fac-
ing the satisfiability problem, it is suggested that the (ground) formulae derived
by the superposition calculus [16] between ground literals and the axioms of a
theory T (extending the theory of equality Eq) can be passed to a decision pro-
cedure for Fg. In this paper, we use superposition to generate enough (ground)
instances of an extension of 4 so to enable the decision procedures for P and A
to decide its satisfiability problem. An immediate by-product of our approach
is the fact that the various extensions of A can be combined together to decide
the satisfiability of the union of the various extensions.

Related work. The work most closely related to ours is [3]. The main difference
is that we have a semantic approach to extending A since we consider only
the satisfiability of ground formulae and we introduce additional functions and
predicates while in [3], a syntactic characterization of a class of full first-order
formulae, which turns out to be expressive enough to specify many properties
of interest about arrays, is considered. Our approach allows us to get a more
refined characterization of some properties of arrays, yielding the decidability
of the extension of A4 with injective arrays (see Section 5.1), which is left as an
open problem in [3].

Our instantiation strategy based on superposition (see Section 5.2) has a similar
spirit of the work in [7], where equational reasoning is integrated in instantiation-
based theorem proving. The main difference with [7] is that we solve the state-
explosion problem, due to the recombination of formulae caused by the use of stan-
dard superposition rules, by deriving a new termination result for an extension of
A as recommended by the rewriting approach to satisfiability procedures of [2].

Plan of the paper. Section 2 introduces some formal notions necessary to develop
the results in this paper. Section 3 gives some motivation for the first extension
of A by a dimension function together with its formal definition while Section 4
describe an extensible decision procedure. Section 5 considers two extensions of
the theory defined in Section 3. For lack of space, further extensions of A and
the proofs of the results in this paper are included in a Technical Report [9].

2 Formal Preliminaries

We work in many-sorted first-order logic with equality and we assume the basic
syntactic and semantic concepts as in, e.g., [6]. A signature X is a non-empty

Deciding Extensions of the Theory of Arrays 179

set of sort symbols together with a set of function symbols and a set of predicate
symbols (both equipped with suitable lists of sort symbols as arity). The set of
predicate symbols contains a symbol =g for equality for every sort S (we usually
omit its subscript). If X' is a signature, a simple expansion of X is a signature
X’ obtained from X by adding a set a := {ay,...,a,} of “fresh” constants (each
of them again equipped with a sort), i.e. X' := X' U a, where a is such that X
and a are disjoint. Below, we write X* as the simple expansion of X with a set
a of fresh constant symbols. First-order terms and formulae over a signature 3/
are defined in the usual way, i.e., they must respect the arities of function and
predicate symbols and the variables occurring in them must also be equipped
with sorts (well-sortedness). A X'-atom is a predicate symbol applied to (well-
sorted) terms. A X-literal is a X-atom or its negation. A ground literal is a
literal not containing variables. A constraint is a finite conjunction 1 A -+ A £,
of literals, which can also be seen as a finite set {¢1,...,¢,}. A X-sentence is a
first-order formula over X' without free variables.

A X-structure M consists of non-empty and pairwise disjoint domains S™
for every sort S, and interprets each function symbol f and predicate symbol P
as functions f™ and relations PM, respectively, according to their arities. If ¢ is
a ground term, we also use t™ for the element denoted by ¢ in the structure M.
Validity of a formula ¢ in a X-structure M (in symbols, M |= ¢), satisfiability,
and logical consequence are defined in the usual way. The X-structure M is
a model of the Y-theory T iff all axioms of T are valid in M. A X-theory T
is a (possibly infinite) set of Y-sentences. Let T' be a theory. We refer to the
signature of T as Xp. If there exists a set Az(T) of sentences in T such that
every formula ¢ of T is a logical consequence of Az(T), then we say that Az(T)
is a set of axioms of T'. A theory T is complete iff, given a sentence ¢, we have
that ¢ is either true or false in all the models of T'.

In this paper, we are concerned with the (constraint) satisfiability problem
for a theory T, also called the T-satisfiability problem, which is the problem of
deciding whether a Xp-constraint is satisfiable in a model of T'. Notice that a
constraint may contain variables: since these variables may be equivalently re-
placed by free constants, we can reformulate the constraint satisfiability problem
as the problem of deciding whether a finite conjunction of ground literals in a
simply expanded signature X7 is true in a X7-structure whose Xp-reduct is a
model of T'. We say that a Yp-constraint is T-satisfiable iff there exists a model
of T satistying it. Two Xp-constraints ¢ and @ are T-equisatisfiable iff there
exists a structure M such that My, = T A ¢ iff the following condition holds:
there exists a structure My such that My =T A 9.

Without loss of generality, when considering a set L of ground literals to
be checked for satisfiability, we may assume that each literal ¢ in L is flat,
i.e. £ is required to be either of the form a = f(a1,...,a,), Plai,...,ay), or
-P(ai,...,ay), where a,as,...,a, are (sort-conforming) free constants, f is a
function symbol, and P is a predicate symbol (possibly also equality).

180 S. Ghilardi et al.

3 Finite Arrays with Dimension as a Combined Theory

Given a set A, by Arr(A) we denote the set of finite arrays with natural num-
bers as indexes and whose elements are from A. We model such an array a as
a sequence a : N — A U {1} which is eventually equal to L (here L is an
element not in A denoting an “undefined” or “default” value). In this way, for
every array a € Arr(A) there is a smallest index n > 0, called the dimension of
a, such that the value of a at index j is equal to L for j > n. Contrary to finite
sequences, we do not require that any value of a at k¥ < n be distinct from L:
this is also the reason to use the word ‘dimension’ rather than ‘length’, as for
sequences. There is just one array whose dimension is zero which we indicate
by € and call it the empty array. Since many applications of verification require
arithmetic expressions on indexes of arrays, we introduce Presburger arithmetic
P over indexes: any other decidable fragment of Arithmetic would be a good
alternative. Thus the relevant operations on our arrays include addition over
indezxes, read, write, and dimension. The resulting theory (to be formally intro-
duced later on) ADP can be seen as a combination of well-known theories such
as P and the theory A, of arrays with extensionality (see, e.g., [2]), extended
with a function for dimension which takes an array and returns a natural num-
ber. Because of the function for dimension, the combination is non-disjoint and
cannot be handled by classical combination schemas such as Nelson-Oppen [15].
Nevertheless, following [8], it is convenient to see ADP as a combination of P
with a theory of array with dimension Agn,: Agin extends A, (both in the sig-
nature and in the axioms), but is contained in ADP, because indexes are only
endowed with a discrete linear poset structure (the next subsection fixes the de-
tails). In this way, we have that ADP = Ay, UP and the theories A4, and P
share the well-known complete theory 7 of natural numbers endowed with zero
and successor (see e.g., [5]): this theory admits quantifier elimination, so that
the 7p-compatibility hypothesis of [8] needed for the non-disjoint Nelson-Oppen
combination is satisfied. Unfortunately, the combination result in [8] cannot be
applied to ADP for mainly two reasons. First, 7y is not locally finite (see, e.g.,
[8] for details). Secondly, Agim is a proper extension of the theory A., hence the
decision procedures for the A.-satisfiability problem (such as, e.g., the one in
[2]) must be extended. In the rest of the paper, we will show that it is sufficient
to use decision procedures for the P- and A.-satisfiability problem to solve the
ADP-satisfiability problem provided that a suitable pre-processing of the input
set of literals is performed.
Here, we formally introduce the basic theories of interests for this paper.

7o has just one sort symbol INDEX, the following function and predicate sym-
bols: 0 : INDEX, s : INDEX — INDEX, and <: INDEX X INDEX. It is axiomatized
by the the following formulae:!

! Here and in the following, we omit the outermost universal quantification for the
sake of readability.

Deciding Extensions of the Theory of Arrays 181

y #0—3z(y =s(2))
r<s(y) o @<yva=y)
—(x < 0)
r<yVe=yVy<wx

\)

(SN

<y —ly<a)

A~ N~~~
w
D D O —

D

r<y— (y<z—ozx<z)

where z, y and z are variables of sort INDEX. This theory admits elimination
of quantifiers and it is complete, see [5] for details.

P is the well-known Presburger arithmetic, see, e.g., [5], over indexes. The
signature is that of 7y extended with the function symbol for addition + :
INDEX X INDEX — INDEX, written infix. Since P is not finitely axiomatizable
(see, again [5]), we assume as axioms all valid sentences in the theory. Notice
that 7o C P.

A is the theory of arrays (see, e.g., [2]) which has the following signature:

— sort symbols: INDEX, ELEM, ARRAY and
— function symbols: select : ARRAY X INDEX — ELEM and store : ARRAY X
INDEX X ELEM — ARRAY
and it is axiomatized by the following formulae:

select(store(a, i, €),1) =

(7)

e
i # j — select(store(a, i, €), j) = select(a, j) (8)

A, is the theory of arrays with extensionality (see, e.g., [2]) which has the
same signature of A and it is axiomatized by (7), (8), and the axiom of
extensionality:

Vi(select(a, i) = select(b,i)) — a =1 (9)

Notice that A C A..

Agim is the simple theory of arrays with dimension whose signature is the union
of the signatures of 7y and A, extended with the following three symbols:
1 : ELEM, € : ARRAY, and dim : ARRAY — INDEX. It is axiomatized by the
axioms in 7g, those in 4., and the following formulae:

dim(a) <1 — select(a,i) = L (10)
dim(a) = s(i) — select(a,i) # L (11)
dim(e) =0 (12)

Notice that 7y C Agim and A C Agim.

ADP is the theory of arrays with dimension whose signature is the union of
the signatures of Ay, and P and is axiomatized by the axioms in Ay, and
all valid sentences in P.

The theories 7y, P, A, and A, are decidable (see [5] for the first two and [2]
for the last two). This is an important observation for the results of this paper,

182 S. Ghilardi et al.

%FlatteningH E-inst. H G-inst.

>] L

sat/Unsat

Fig. 1. The architecture of the decision procedure for ADP

since the decision procedure for ADP-satisfiability will assume the availability
of two decision procedures for the constraint satisfiability problems of P and .A.
The theories Ae, Agim, and ADP admit a particular subclass of models, which
we call the standard ones and are exactly those introduced above in order to
motivate the definition of ADP. Such models are characterized by the fact that
the sort INDEX is always interpreted as the set N of natural numbers, and the
sort ARRAY is interpreted as the set of all the sequences of elements from ELEM
that are eventually equal to L; the dimension of each array is the successor of
the index of the last element different from L. Of course, when investigating
constraint satisfiability we are mainly interested in satisfiability of constraints
in standard models and we shall in fact prove that a constraint is satisfiable
in a model of ADP iff it is satisfiable in a standard model (see Lemma 4.3,
below).

4 A Decision Procedure for Arrays with Dimension

We assume the availability of two decision procedures solving the A.- and P-
satisfiability problems. The overall schema of the procedure for ADP-satisfiability
problems is depicted in Figure 1. The idea is to reduce the ADP-satisfiability
problem to the constraint satisfiability problems for A, and P. The module
Flatten pre-processes the literals in the input constraint so to make them flat
and easily recognizable as belonging to one theory among those used to de-
fine ADP, ie. Ty, P, A, or A.. The module E-instantiation produces suitable
instances of the extensionality axiom of arrays, i.e. (9), so that a simple satisfia-
bility procedure for A is assumed available (rather than one for A.). The mod-
ule G-instantiation is non-deterministic and guesses sufficiently many instances
of the axioms about dim, i.e. (10) and (11), as well as some facts entailed by
the constraints in P. The modules P and A implement the decision procedures
for Presburger arithmetic and the theory of arrays without extensionality. The
module ‘all sat?’ returns ‘sat’ if both decision procedures for P and A returned
‘sat’, and, otherwise, returns ‘unsat’. We are now ready to describe the internal
workings of each module.

Deciding Extensions of the Theory of Arrays 183

4.1 Flattening

It is well-known (see, e.g., [2]) that it is possible to transform a constraint ¢
into an equisatisfiable constraint ¢’ containing only flat literals in linear time
by introducing sufficiently many fresh constant symbols to name sub-terms. In
our case, we assume that the module Flatten in Figure 1 transforms (in linear
time) a set of arbitrary literals over the signature Z:ZDP, into an equisatisfiable
set of flat literals on the signature X5, for some set ¢ 2 a of constants (the
constants in ¢\ a are said to be fresh). Notice that a flattened set of literals L
can be represented as a set-theoretic union L = L 4 U Lp, where L 4 collects all
the literals from L whose signature is the signature of A and Lp collects all the
literals from L whose signature is the signature of P (thus L4 N Lp contains
precisely the literals from L whose signature is the signature of 7p).

4.2 E-Instantiation Closure

The &E-instantiation module in Figure 1 is based on the Skolemization of axiom
(9).

Definition 4.1 (&-instantiation closed set of literals). 4 set L of ground
flat literals is E-instantiation closed iff for every negative literal of the kind a # b
that belongs to L (with a,b : ARRAY), we have that {select(a,i) = ey, select(b, i) =
ea,e1 # ez} C L, for some constants i : INDEX, e1, €3 : ELEM;

The correctness of the module is stated below.

Lemma 4.1. There exists a linear time algorithm which takes a set L of flat
literals over the signature Eﬁmp and returns a £-instantiation closed set L of
flat literals over the signature Xpp such that (i) L C L, (ii) L and L® are
ADP -equisatisfiable, and (iii) a C c.

4.3 G-Instantiation Closure

The module G-instantiation is non-deterministic and it is responsible to produce
suitable instances of the axioms (10) and (11) as well as to guess (hence the
name of G-instantiation) enough facts of P entailed by the input constraint.

Definition 4.2 (G-instantiation closed set of literals). A set L of ground
flat literals is G-instantiation closed iff the following conditions are satisfied:

1. if € occurs in L, then dim(e) =0 € L.

2. if dim(a) =i € L, with a : ARRAY and i : INDEX, then either {i =0} C L or
{e # L, select(a,j) =e,s(j) =i} C L for some constant j : INDEX;

8. if i,j occur in L, with i,j : INDEX, then eitheri=j € L orj#1i€ L;

4. if i, occur in L, with i,j : INDEX and i # j € L, then either i < j € L, or
j<iel;

5. if {dim(a) = i,i < j} C L, with a : ARRAY and i, j : INDEX, then {select(a, j)
=1} C L (herei < j stands fori < j ori=j).

184 S. Ghilardi et al.

T— {A,P}
function DP app (L: set of flat literals)
L¢ «— E-instantiation (L)
for each LY «—— G-instantiation(L?) do begin
for each T'€ T do pr «— DPT(L%)
if Apcr(pr = sat) then return sat
end
return unsat
end

Fig. 2. The (extensible) decision procedure for ADP

It is not difficult to see that, given a set of literals, it is always possible to
compute its G-instantiation in (non-deterministic) polynomial time.

Lemma 4.2. There exists a non-deterministic polynomial time algorithm which
takes as input a set L of ground flat literals over a signature EZDP and returns
a G-instantiation closed set LY of flat literals over the signature EleP such that
(i) L C LY, (i) L and LY are ADP-equisatisfiable, and (iii) a C c.

For the correctness of our decision procedure, we need sets of literals that are
both £- and G-instantiation closed. To this aim, one can check that the &-
instantiation module has to be invoked first, followed by the G-instantiation
module.

4.4 The Decision Procedure for ADP

Figure 2 gives an algorithmic and non-deterministic description of the decision
procedure to solve the ADP-satisfiability problem. Without loss of generality
(see Section 4.1), we assume that L contains only flat literals. For a theory T
with decidable satisfiability problem, we write DPp for the decision procedure
solving the T-satisfiability problem: DPr takes a set L of Xp-literals and returns
sat when L is T-satisfiable; unsat, otherwise. If L is a set of flat literals, then

Ly :={¢|{ e Lisa Xp-literal},

where T' € {A,P}. So, for example, L% is the subset of the Xp-literals in LY.
The set T in Figure 2 contains the names of the theories for which a decision
procedure is assumed available. It will be used for modularly extending the
procedure in Section 5.

Let L be a set of flat X 4pp-literals to be checked for ADP-satisfiability. The
decision procedure DP 4pp first computes the E-instantiation LE of L (recall
from Lemma 4.1 that this can be done in linear time). Then, it enumerates all
possible G-instantiations (cf. the for each loop in Figure 2). If it is capable of
finding a G-instantiation LY such that its Yp-literals are P-satisfiable and its
X 4-literals are A-satisfiable, then DP_4pp returns the ADP-satisfiability of the
input set L of literals. Otherwise, if all possible G-instantiations are enumerated
and the test of the conditional in the body of the loop always fails, then DP 4pp
returns the ADP-unsatisfiability of the input set L of literals.

Deciding Extensions of the Theory of Arrays 185

4.5 Correctness of the Decision Procedure for ADP

The termination of DP _4pp is immediate, whereas its soundness and completeness
(Theorem 4.1 below) are consequences of the following Combination Lemma.

Lemma 4.3 (Combination). Let L be a £- and G-instantiation closed finite
set of flat literals. Then, the following conditions are equivalent:

(i) L is satisfiable in a standard model of ADP;
(i) L is ADP-satisfiable;
(iii) L4 is A-satisfiable and Lp is P-satisfiable.

The soundness and correctness of DP 4pp is stated in the following

Theorem 4.1. DP spp is a decision procedure for the ADP-satisfiability prob-
lem, i.e. for any set L of flat literals, L is ADP-satisfiable iff DP gopp(L) returns
sat. Furthermore, DP 4pp decides the satisfiability problem in the standard mod-
els of ADP.

5 Extensions of the Theory of Arrays with Dimension

We show the decidability of two interesting extensions of ADP (more extensions
can be found in the Technical Report [9]).

5.1 Injective Arrays

The first extension of ADP is obtained by adding an axiom recognizing injective
arrays which, according to [14], may characterize memory configurations where
pointers satisfy the no-aliasing property. We extend the (empty) set of predicate
symbols ADP by the unary predicate symbol Inj : ARRAY which holds for arrays
containing no repeated elements, with the exception of the undefined element
1 (the decidability of a similar problem is left open in [3]). To formalize the
intended meaning of Inj, we consider the theory ADPi,; obtained by extending
ADP with the following defining axiom:

Inj(a) < Vi, j(select(a, i) = select(a, j) — i = j Vselect(a,i) = L) (13)

where a is a variable of sort ARRAY. In order to obtain a decision procedure for
ADPiyj, it is necessary to find suitable extensions of Definitions 4.1 and 4.2 so
that enough instances of (13) are considered, and the results of the available
decision procedures for A and P are conclusive about the satisfiability of the
original constraint in the extended theory. We formalize the meaning of “enough
instances” for ADPiy; in the following two definitions.

Definition 5.1 (&nj-instantiation closed set of literals). A set L of ground
flat literals is Einj-instantiation closed iff (i) L is E-instantiation closed (cf. Def-
inition 4.1) and moreover for every negative literal —Inj(a) € L, there are con-
stants e : ELEM, 1, j : ARRAY such that {select(a,i) = e, select(a,j) =e,i < j,e #
1} C L.

186 S. Ghilardi et al.

Definition 5.2 (Gisjj-instantiation closed set of literals). A set L of ground
flat literals is Ginj-instantiation closed iff L is G-instantiation closed and the
following conditions are satisfied:

1. if Inj(a) € L then, for each constant i of sort INDEX occurring in L, either
select(a,i) = L € L or {select(a,i) = e,e # L} C L for some constant
e : ELEM;

2. if {Inj(a),i < j, select(a,i) = ey, select(a,j) = ez, e1 # L,ea # L} C L, then
e1 7’5 ey € L.

Lemmas 4.1 and 4.2 can easily be adapted to the theory ADPj,. Since the
combination Lemma 4.3 continues to hold with Definitions 5.1 and 5.2, we can
show the correctness of the decision procedure DP ADP, for ADPiyj, which is
obtained from DP 4pp by replacing the modules for £- and G-instantiation in
Figure 1 with those taking into account Definitions 5.1 and 5.2.

Theorem 5.1. DP 4pp,; is a decision procedure for the ADPinj-satisfiability
problem. Furthermore, DP app,, decides the satisfiability problem in the standard
models of ADPiy;.

5.2 Arrays with Domain

The second extension of ADP we consider is again motivated by applications
in program verification. As already observed in [17], it is quite helpful to regard
arrays as functions equipped with an operator to compute their domains. This is
used, for example, to define the semantics of separating connectives (supporting
local reasoning) of Separation Logic [18]. So, we extend ADP with a set of
axioms characterizing a function which, given an array a, returns the domain
dom(a) of a, i.e. dom(a) is the set of indexes i such that select(a, i) # L.

To formalize this extension of A g, , we need to introduce a very simple theory
of sets of indexes, which is a straightforward extension of that used in [2]. Let S?
be the theory whose sort symbols are BOOL and SET, whose function symbols are
true, false : BOOL, §) : SET, mem : INDEX X SET — BOOL, ins : INDEX X SET — SET,
and whose axioms are the following:

mem(i,) = false (14)

mem (4, ins(4, s)) = true (15)

i1 # 1o — mem(i1,ins(iz, s)) = mem(i1, s) (16)

true # false A (Vz : BOOL z = true V = = false) (17)

where 4,141,429 (s) are variables of sort INDEX (SET, respectively). Intuitively, ()
denotes the empty set, mem is the test for membership of an index to a set, ins
adds an index to a set if it is not already in the set. It is possible to adapt the
decidability result of [2] to S? (see [9] for details). Since we want to be able to
compare sets by using the membership predicate mem, we need to consider the
theory Sg obtained from S? by adding the following axiom of extensionality for
sets (here s1, so are variables of sort SET):

Deciding Extensions of the Theory of Arrays 187
Vi(mem(i, s1) = mem(i, $2)) — $1 = Sa. (18)

Let ADPgom be the theory obtained by extending the (disjoint) union of ADP
with S? by the function symbol dom : ARRAY — SET together with the following
axiom:

select(a,i) = L < mem(i,dom(a)) = false (19)

where 7 and a are variables of sort INDEX and ARRAY, respectively.

In order to obtain a decision procedure for ADPyom, it is necessary to find
suitable extensions of Definitions 4.1 and 4.2 so that enough instances of axioms
(18) and (19) are considered and the results of the available decision procedures
for A, P, and S are conclusive about the satisfiability of the original constraint
in the extended theory. We formalize the meaning of “enough instances” for
axiom (18) in the following definition.

Definition 5.3 (E.t-instantiation closed set of literals). A set L of ground
flat literals is Eset-instantiation closed iff L is E-instantiation closed (cf. Def-
inition 4.1) and for every literal of the kind s1 # so € L (with s1,82 con-
stants of sort SET), there are constants bi,by : BOOL, i : INDEX such that
{mem(i, s1) = by, mem(i, s2) = ba, by #£bs} C L.

Instead of using guessing as for ADP;,; in Section 5.2, we adopt the rewriting-
approach to satisfiability procedures of [2]. We use the superposition calculus
(from now on denoted by SP) to build a rewriting-based decision procedure for
the satisfiability problem in the union of the theories A, and S extended with
axiom (19). Such a procedure is then combined with a decision procedure for
the satisfiability problem in P to build a decision procedure for ADP 4om.

In [2], it is shown how to use SP to build decision procedures for theories
axiomatized by a finite set of first-order clauses. The key observation is that,
in order to show that SP is a decision procedure, it is sufficient to prove that
SP terminates on the set of clauses obtained by the union of the axioms of the
theory and an arbitrary set of ground and flat literals. According to [2], SP
terminates also for some of the theories considered in this paper, e.g., A and
S? := 8%\ {(17)} (when considered in isolation). Modularity results in [1] allow
us to conclude that SP also terminates for the union A U S?. Unfortunately,
this is not enough here since our goal is to build a decision procedure ADP yom
whose set of axioms also contains (17) and (19).

Below, we develop the termination result for SP necessary to replace guessing
as for ADPiy; (cf. Section 5.1) with SP. Notice that SP is used in two ways: to
check for unsatisfiability in the theory of equality and to find enough instances
of the axioms of AUS? together with (17) and (19). A similar approach has also
been investigated in [11] (for the theories already considered in [2]) to enable the
efficient combination of rewriting-based satisfiability procedures with a decision
procedure for P.

188 S. Ghilardi et al.

Let L be a set of ground and flat X 4 go-literals; we define Zy, to be the
following set of (partial) instances of axioms (17) and (19):

select(a,z) # L V mem(z,dom(a)) # true,
select(a,z) = L V mem(z,dom(a)) = true,
true # false, and b = true V b = false

for each dom(a) = s in L and for each constant b : BOOL occurring in L.
Lemma 5.1. SP terminates on AUS? UL, UL for every set L of X ause-literals.

In the following, we denote with DPgsp the function taking a set L of Eget-
instantiated X 4 go-literals, computing Zy,, and then invoking SP on the clauses
AUSY UZ, U L. If the empty clause is derived by SP, then DPsp returns
unsat; sat, otherwise. The decision procedure DP spp,,, for the theory ADPg4om
is obtained from DP 4pp by replacing the module for £-instantiation in Figure
1 with a module for Es-instantiation (cf. Definition 5.3) and by calling DPsp
instead of DP 4 in the loop of Figure 2.

Theorem 5.2. DP spp,,. is a decision procedure for the ADP gom-satisfiability
problem.

6 Conclusion

We have considered extensions of the theory of arrays which are relevant for many
important applications such as program verification. These extensions are such
that the indexes of arrays has the algebraic structure of Presburger Arithmetic
and the theory of arrays is augmented with axioms characterizing additional
symbols such as dimension, injectivity, or the domain of definition of arrays. We
have obtained the decidability of all the considered extensions by a combination
of decision procedures for the theories of arrays and Presburger Arithmetic with
various instantiation strategies based both on model-theoretic and rewriting-
based methods.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an experimen-
tal appraisal. In Proc. of 5th Int. Workshop on Frontiers of Combining Systems
(FroCo0S’05), volume 3717 of LNCS, 2005.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140-164, 2003.

3. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
Proc. of Tth Int. Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI’06), volume 3855 of LNCS, 2006.

4. P. J. Downey and R. Sethi. Assignment commands with array references. Journal
of the ACM, 25(4):652-666, 1978.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Deciding Extensions of the Theory of Arrays 189

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York-London, 1972.

. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem

Proving. Harper & Row, 1986.

. H. Ganzinger and K. Korovin. Integrating equational reasoning in instantiation-

based theorem proving. In Proc. of Computer Science in Logic (CSL’04), volume
3210 of LNCS, 2004.

. S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal

of Automated Reasoning, 33(3-4):221-249, 2004.

. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Deciding extension

of the theory of arrays by integrating decision procedures and instantiation
strategies. Rapporto Interno DSI 309-06, Universita degli Studi di Milano,
Milano (Italy), 2006. Available at http://homes.dsi.unimi.it/~zucchell/
publications/techreport/GhiNiRaZu-RI309-06.pdf.

J. Jaffar. Presburger arithmetic with array segments. Information Processing
Letters, 12(2):79-82, 1981.

H. Kirchner, S. Ranise, C. Ringeissen, and D.-K. Tran. On superposition-based
satisfiability procedures and their combination. In Proc. of the 2nd Int. Conf. on
Theoretical Aspects of Computing (ICTAC’05), volume 3722 of LNCS, 2005.

P. Mateti. A decision procedure for the correctness of a class of programs. Journal
of the ACM, 28(2):215-232, 1981.

J. McCarthy. Towards a mathematical theory of computation. In Proceedings of
IFIP Congress, 1962.

S. McPeak and G. Necula. Data structures specification via local equality axioms.
In Proc. of 17th Int. Conf. on Computer Aided Verification (CAV’05), volume 3576
of LNCS, 2005.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transaction on Programming Languages and Systems, 1(2):245-257, 1979.
R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning. 2001.
J. C. Reynolds. Reasoning about arrays. Communications of the ACM, 22(5):290—
299, 1979.

J. C. Reynolds. Separation logic: a logic for shared mutable data structures, 2002.
A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for an
extensional theory of arrays. In Proc. of the 16th IEEE Symposium on Logic in
Computer Science (LICS’01). IEEE Computer Society, 2001.

N. Suzuki and D. R. Jefferson. Verification decidability of presburger array pro-
grams. Journal of the ACM, 27(1):191-205, 1980.

Analytic Tableau Calculi for KLM Rational Logic R

Laura Giordano!, Valentina Gliozzi2, Nicola Olivetti®, and Gian Luca Pozzato?

! Dipartimento di Informatica - Universita del Piemonte Orientale A. Avogadro - via Bellini
25/G - 15100 Alessandria, Italy
laura@mfn.unipmn.it
2 Dipartimento di Informatica - Universita degli Studi di Torino, corso Svizzera 185 - 10149
Turin - Italy
{gliozzi, pozzato}@di.unito.it
31LSIS - UMR CNRS 6168 Université Paul Cézanne (Aix-Marseille 3) Avenue Escadrille
Normandie-Niemen 13397 Marseille Cedex 20 - France
nicola.olivetti@univ.u-3mrs.fr, nicola.olivetti@lsis.org

Abstract. In this paper we present a tableau calculus for the rational logic R
of default reasoning, introduced by Kraus, Lehmann and Magidor. Our calculus
is obtained by introducing suitable modalities to interpret conditional assertions,
and makes use of labels to represent possible worlds. We also provide a decision
procedure for R, and study its complexity.

1 Introduction

In [1] Kraus, Lehmann and Magidor (KLM) proposed a formalization of nonmonotonic
reasoning that led to a classification of nonmonotonic consequence relations, determin-
ing a hierarchy of stronger and stronger systems. The so called KLM properties have
been widely accepted as the “conservative core” of default reasoning. The role of KLM
logics is similar to the role of AGM postulates in Belief Revision [2]: they give a set of
postulates for default reasoning that any concrete reasoning mechanism should satisfy.

In the recent literature it is shown that many different approaches to default reason-
ing are characterized by these properties. In particular, a recent work by Halpern and
Friedman [3] has shown that two of these systems, namely preferential logic P and ra-
tional logic R, are natural and general systems: surprisingly enough, the axiom systems
of these logics are complete with respect to a wide spectrum of semantics (including
k-rankings, parametrized probabilistic structures, e-semantics and possibilistic struc-
tures). The reason is that all these structures are examples of plausibility structures and
the truth in them is captured by the axioms of preferential or rational logic.

The results presented in [3], and their extensions to the first order setting [4], are
the source of a renewed interest in the KLM framework. A considerable amount of
research in the area has then concentrated in developing concrete mechanisms for plau-
sible reasoning in accordance with KLM systems (P and R mostly). These mechanisms
are defined by exploiting a variety of models of reasoning under uncertainty (ranked
models, belief functions, possibilistic logic, etc. [5,6,7,8,9, 10]) that provide, as we
remarked, alternative semantics to KLM systems. The mechanisms can be seen as re-
stricting the consideration to preferred classes of models of KLM logics; this is also
the case of Lehmann’s notion of rational closure (not to be confused with the logic R).

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 190-202, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Analytic Tableau Calculi for KLM Rational Logic R 191

More recent research has also explored the integration of KLM framework with para-
consistent logics [11]. Finally, there has been some recent investigation on the relation
between KLM systems and decision-theory [12, 13].

In KLM logics, defeasible knowledge is assumed to be represented by a set of non-
monotonic conditionals or assertions of the form A |~ B, whose reading is normally (or
typically) the A’s are B’s. The operator ”|~” is nonmonotonic, in the sense that A ~ B
does not imply A A C' |~ B.

In this paper we focus on logic R, whose axiom system includes the rule of rational
monotonicity: if A ~ B and =(A |~ —C) hold, then one can infer A A C' |~ B. This
rule allows a conditional to be inferred from a set of conditionals in absence of other
information. More precisely, “it says that an agent should not have to retract any pre-
vious defeasible conclusion when learning about a new fact the negation of which was
not previously derivable” [14].

Consider, for instance, a knowledge base K containing the following set of condi-
tional assertions: adult ~ worker, adult \~ taxpayer, student ~ adult, student |~
—worker, student ~ —taxpayer, whose meaning is that adults typically work, adults
typically pay taxes, students are typically adults, but they typically do not work, nor do
they pay taxes. In rational logic R one can infer the following conditional assertions
from the knowledge base K: adult ~ —student (i.e. typical adults are not students),
adult A\ student |~ —worker (giving preference to more specific information). More-
over, if one further knows that —(adult ~ —married) (i.e. it is not the case the adults
are typically unmarried), one can also infer that adult A married ~ worker. Observe
that one cannot infer student |~ worker.

From a semantic point of view, the models of rational logic are possible-world struc-
tures equipped with a preference relation among worlds. The preference relation (an
irreflexive and transitive relation) on worlds is further assumed to be modular. The
meaning of a conditional assertion A |~ B is that B holds in the most preferred worlds
where A holds.

In this work we extend the investigation of tableau procedures for propositional KLM
logics developed in [15] by considering the case of R. Our approach is based on a novel
interpretation of R into modal logics. As a difference with previous approaches (e.g.
Crocco et. al [16] and Boutillier [17]), that take S4.3 as the modal counterpart of R, we
consider here an extension of modal logic G, including modularity of the preference
relation. The idea is simply to interpret the preference relation as an accessibility rela-
tion: a conditional A |~ B holds in a model if B is true in all minimal A-worlds, i.e.
worlds in which A holds, that are minimal w.r.t. <. A world is A-minimal if all smaller
worlds are not A-worlds. The relation with modal logic G is motivated by the fact that
we assume, following KLM, the so-called smoothness condition, which is related to the
well-known limit assumption. This condition ensures that minimal A-worlds exist, by
preventing infinitely descending chains of worlds. This condition is therefore ensured
by the finite-chain condition on the accessibility relation (as in modal logic G). As it has
been done in [15] for preferential logic and loop-cumulative logic, our tableau method
provides a sort of run-time translation of R into the extension of modal logic G. As a
difference with [15], we develop here a labelled tableau system, which seems to be the
most natural approach.

192 L. Giordano et al.

The paper presents a tableau calculus for R which is sound, complete and terminat-
ing. Moreover, it defines a systematic procedure which allows the satisfiability problem
for R to be decided in nondeterministic polynomial time, in accordance with the known
complexity results for this logic.

2 KLM Rational Logic R

In this section we briefly recall the axiomatization and semantics of the rational logic
R. For a complete description of KLM systems, see [1] and [14]. The language of KLM
logics consists just of conditional assertions A |~ B. We consider a richer language
allowing boolean combinations of conditional and propositional formulas'. Our lan-
guage L is defined from a set of propositional variables ATM, the boolean connectives
and the conditional operator |~. We use A, B, C, ... to denote propositional formulas,
whereas F), GG, ... are used to denote all formulas (even conditionals); I', A, ... represent
sets of formulas. The formulas of £ are defined as follows: if A is a propositional for-
mula, A € L; if A and B are propositional formulas, A ~ B € L; if F'is a boolean
combination of formulas of £, F' € L. L corresponds to the fragment of the language
of conditional logics without nested conditionals |~.

The axiomatization of R consists of all axioms and rules of propositional calculus
together with the following axioms and rules (notice that - denotes provability in the
propositional calculus):

REFE. A |~ A (reflexivity)

LLE.IfF A < B, thent (A r C) — (B |~ C) (left logical equivalence)
RW. If - A — B, thent+ (C ~ A) — (C B) (right weakening)

AND. (A B)A(ARC)) = (A~ BACQ)
OR.(ArC)AN(BRC)—(AVBRKC)

CM. (A~ B)A (AR C)) = (AA B |~ C) (cautious monotonicity)
RM. ((A ~ B) A—=(A r =C)) — (A A C |~ B) (rational monotonicity)

REF states that A is always a default conclusion of A. LLE states that the syntactic
form of the antecedent of a conditional formula is irrelevant. RW describes a similar
property of the consequent. This allows to combine default and logical reasoning [3].
AND states that it is possible to combine two default conclusions. OR states that it is
allowed to reason by cases: if C'is the default conclusion of two premises A and B, then
it is also the default conclusion of their disjunction. CM states that if B and C' are two
default conclusions of A, then adding one of the two conclusions to A will not cause
the retraction of the other conclusion. As explained in the Introduction, RM captures a
natural form of monotonicity.

The semantics of R is defined by considering possible world structures with a pref-
erence relation (a strict partial order) w < w’ whose meaning is that w is preferred
to w’. Moreover, the preference relation is supposed to be modular, i.e. for all w,w;
and wo, if w1 < wsq then either w; < w or w < ws. We have that A |~ B holds in

!'In [14] it is shown that in a language lacking boolean combinations of conditionals, system R
collapses into system P. As shown in [3], the two systems are distinct given a richer language
(as ours) allowing boolean combinations of conditionals.

Analytic Tableau Calculi for KLM Rational Logic R 193

a model M if B holds in all minimal A-worlds (w.r.t. <). This definition makes sense
provided minimal A-worlds exist (whenever there are A-worlds). This is ensured by the
smoothness condition in the next definition.

Definition 1 (Semantics of R, Definition 14 in [14]). A rational model is a triple M =
(W, <, V) where: W is a non-empty set of items called worlds; < is an irreflexive,
transitive and modular relation on W; V is a function V : W —— pow(ATM), which
assigns to every world w the set of atoms holding in that world. We define the truth
conditions for a formula F' as follows:

e [If F is a boolean combination of formulas, M,w |= F' is defined as for proposi-
tional logic;
o Let A be a propositional formula; we define Min.(A) ={w e W | M,w = A
and V', w' < w implies M,w' £ A};
e MwkE A Bifforallw, ifw € Minc(A) then M,w' = B.
The relation < satisfies the smoothness condition: if M, w = A then w € Min<(A)
or Jw' € Min.(A) such that w' < w.
We say that a formula F is valid in a model M (M = F), if M,w [F for every
w € W. A formula is valid if it is valid in every model M.

Notice that the truth conditions for conditional formulas are given with respect to single
possible worlds for uniformity sake. Since the truth value of a conditional only depends
on global properties of M, we have that: M,w E A |~ Biff M = A ~ B.

By transitivity of the relation <, the smoothness condition is equivalent to the follow-
ing strong smoothness condition: given a formula A and a world w, if there is w’ < w
such that M, w’ | A, then either w’ € Min.(A) or there exists w” < w such that
w” € Min<(A). Observe also that by the modularity of < it follows that possible
worlds of W are clustered into equivalence classes, each class consisting of worlds that
are incomparable to one another; the classes are totally ordered”. In other words the
property of modularity determines a ranking of worlds so that the semantics of R can
be specified equivalently in terms of ranked models [14]. By means of the modularity
condition on the preference relation, we can also prove the following theorem:

Theorem 1 (Small Model Theorem). For any I' C L, if I is satisfiable in a rational
model, then it is satisfiable in a rational model containing at most n worlds, where n is
the size of I, i.e. the length of the string representing I

3 The Tableau Calculus for R

In this section we present 7 R, a labelled tableau calculus for rational logic R. The
calculus makes use of labels to represent possible worlds. We consider a language Lr
and a denumerable alphabet of labels A, whose elements are denoted by x, y, z,
Lg extends £ by formulas of the form [JA, where A is propositional, whose intuitive
meaning is as follows: [JA holds in a world w if A holds in all the worlds w’ such that
w’ < w, that is to say:

% Notice that the worlds themselves may be incomparable since the relation < is not assumed to
be (weakly) connected.

194 L. Giordano et al.

Definition 2 (Truth condition of [J). M, w | OA if for every w' € W ifw' < w
then M,w' = A.

It is easy to see that [has (among others) the properties of the modal system G, whose
characterizing axiom is O(0A — A) — OA (see for instance [18]). This axiom guar-
antees that the accessibility relation (defined as x Ry if y < x) is transitive and does not
have infinite ascending chains. From definition of Min.(A) in Definition 1 above, it
follows that for any formula A, w € Min<(A) iff M, w = AADO-A. As we will see,
TR will only make use of boxed formulas with a negated argument, i.e. with the form
x: O-A.

Our tableau calculus comprises two kinds of labelled formulas: (i) world formulas
x : F, whose meaning is that £ holds in the possible world represented by z; (i7)
relation formulas of the form x < y, where z,y € A, used to represent the relation <.
We denote by «, 3. .. a world or a relation formula.

We define M, = {y : A,y : O=A | z : O-A € I'}. The calculus TR is
presented in Figure 1. We call dynamic the rules (~~) and (O7) that introduce new
labels in their conclusion; all the other rules are called static.

Iz :—-~F
(AX)I,z:P,z:-P withP € ATM (=)
Iz: F
Iz: FAG Iz : ~(FAG)
(Ah) (A7)
Izx:F,zx:G Iz:-F Iz:-G
u:A|~B

(~")
Iz:—-Au:A~B Iz:-0-Au: AR~ B Iz:B,u:A~B

I'u:—(A~ B) Iz:-[0-A
(~7) x new label (0 M y new label
Iz:A,z:0-Az:-B F,y<m,Fmﬂy,y:A,y:DﬁA
Nex<y
(<) zocecursin Nand {z < z,z < y}NI =0

F,a:<y,z<y,F1j\iz wa<y,:v<z['M

.

Fig. 1. The calculus 7 R. To save space, rules for — and V are omitted.

Definition 3 (Truth conditions of formulas of 7R). Given a model M = (W, <, V)
and a labelled alphabet A, we consider a mapping I : A — W. Given a formula «
of the calculus TR, we define M =1 « as follows: M 1z : Fiff M, I(x) E F;
Mz < yiffI(z) < I(y).

We say that a set I" of formulas of TR is satisfiable if, for all formulas o € T', we
have that M =1 «, for some model M and some mapping I.

Analytic Tableau Calculi for KLM Rational Logic R 195

A tableau is a tree whose nodes are sets of formulas I'. Therefore, a branch is a se-
quence of sets of formulas I, 5, ..., I, ... Each node [; is obtained by its imme-
diate predecessor I;_; by applying a rule of 7R, having I;_; as the premise and
I; as one of its conclusions. A branch is closed if one of its nodes is an instance
of (AX), otherwise it is open. We say that a tableau is closed if all its branches are
closed.

In order to verify that a set of formulas I is unsatisfiable, we label all the formulas in
I" with a new label x, and verify that the resulting set of labelled formulas has a closed
tableau. For instance, in order to verify that the set {adult ~ worker, =(adult |~
—married), —(adult A\married |~ worker)} is unsatisfiable (thus adult Amarried |~
worker is entailed by {adult ~ worker, —~(adult ~ —married)}), we can build the
closed tableau in Figure 2.

i bw,x: = bom)r ol Am)

- (+7)
zratwy e,y Ooay —om, 2 =(ahmpow) ol

Tiapw,y ay:Ooay imae e Ampw) b

()
ziakwy o,y e,y mzianm,z:O-(aAm),z:~w W))
- (+*)
YooY . o bw,y wy ey O-aymzanmz:Oo(asm)z: —w ...y —O-ay:O-a
b (At X
woafew,y wy ay: Oy mzia, z:mz:OafgAm)z:—w ¥) ()
o
ZIiowl,zoid,. .. :r:a~u=._y:1u,y:a,y::|-|a,y:m_.z:—d:‘—m,::rr, seep WL Z W
X zom,z:[=la Am), 2z —w X
. @)
ziakw,r<zra,r: Charafasm), rCoje Am),
yow,y oy O-ay mz e, z:m,z:0-(aAm),z:—w
(<)
T <z <oz yiofafm), r<zr<y, rioar i Coara
y o O=fapmm), ..., Yooagym %
y:H=(Jooeoycas Y (")
Loy e TR T T
* X

Fig.2. A derivation in 7R of {adult | worker, —(adult |~ —-married), —(adult A
married |~ worker)}. To save space, we use a for adult, m for married, and w for worker.

Lemma 1. For any set of formulas I and any world formula x : F, there is a closed
tableau for I'yx : F,x : —F.

The calculus 7R is sound and complete w.r.t. the semantics.

Theorem 2 (Soundness). If there is a closed tableau for a set of formulas I, then I is
unsatisfiable.

Proof. By induction on the height of the closed tableau for I'. If I" is an axiom, then
x: P € 'and xz : =P € I, therefore there is no w € W such that M,w | P
and M,w [~ P, and I' is unsatisfiable. For the inductive step, we prove the contra-
positive, i.e. we prove for each rule that, if the premise is satisfiable, so is (at least)
one of the conclusions. To save space, we only present the most interesting case of
(O7). Since the premise is satisfiable, then there is a model M and a mapping [
such that M |=; I,z : “0O0-A. Let w € W such that I(x) = wj; this means that
M,w B~ O-A, hence there exists a world w’ < w such that M,w’ = A. By the

196 L. Giordano et al.

strong smoothness condition, we have that there exists a minimal such world, so we
can assume that w' € Min.(A), thus M, w’ | O-A. In order to prove that the con-
clusion of the rule is satisfiable, we construct a mapping I’ as follows: let iy be a new
label, not occurring in the current branch; we define (1) I’ (u) = I(u) for all u # y and
(2) I'(y) = w'. Since y does not occur in I, it follows that M = I". By Definition
3, we have that M =1 y < x since w’ < w. Moreover, since I'(y) = w’, we have that
MEpy: Aand M |=p y : O-A. Finally, M =p Fé‘ﬂy follows from the fact that
I'(y) < I'(z) and from the transitivity of <. The only conclusion of the rule is then
satisfiable in M via I’. []

In order to prove the completeness of the calculus, we introduce the notion of saturated
branch and we show that 7R introduces a finite number of labels in a tableau.

Definition 4 (Saturated branch). We say that a branch B = I, 1%,...,1,,,... of a
tableau is saturated if the following conditions hold: (1) For the boolean connectives,
the condition of saturation is defined in the usual way. For instance, if v : ANB € I;
in B, then there exists I'; in B suchthatx : A€ I'jandx : B e I (2)Ifz: A~
B € I, then for any label y in B, there exists I'; in B such that either y : = A € I
ory:-0O-Ae€ljory:Belj; 3)Ifz: (A B) € I, then there is a I
in B such that, for some y, y : A € I,y : O-A € Ij, andy : B € I}. (4)
If x « "0-A € Ij, then there exists I'; in B such that, for some y, y < x € Iy,
y:AeTljandy : O-A € I (5) Ifv <y € I}, then for all labels z in B, there
exists I'; in B such that either 2 <y € I'; orx < z € I}.

We can easily show the following Lemma:

Lemma 2. Given a tableau starting with xo : F, for any saturated branch B =
Iy, Is,..., 1, ..., wehave that:

—ifz<ye€lyinBandy < x € I in B, then there exists I, in B such that
z<xely;

—ifx:0-Aecl;inBandy < x € Iy in B, then there exists I}, in B such that
y: A€ lyandy:0O-A € Iy;

—fornol;inB,x <x el

Notice that in 7 R the order of application of the rules is not relevant, since all the rules
are invertible. Hence, no backtracking is required in the calculus, and we can assume
without loss of generality that a given set of formulas I" has a unique tableau.

In Theorem 3 below we prove that the tableau for a given set of formulas Iy contains
a finite number of labels. Indeed, the only rules that can introduce new labels in the
tableau are (j~~) and ((J7). We prove that in the tableau there can be only finitely many
applications of these rules. Intuitively, the rule (~~) can be applied only once for each
negated conditional I" (hence it introduces only a finite number of labels). Furthermore,
the generation of infinite branches due to the interplay between rules (~") and ((17)
cannot occur. Indeed, each application of (07) to a formula z : =[0—-A (introduced
by (~1)) adds the formula y : (J—-A to the conclusion, so that (~") can no longer

Analytic Tableau Calculi for KLM Rational Logic R 197

consistently introduce y : “0—A. This is due to the properties of [J, that are similar to
the corresponding modality of modal system G.

In order to prove this result in a rigorous manner, we proceed as follows: first, we
introduce the measure of Definition 6, and the auxiliary Definition 5; then, we prove
that each application of (~~) and (™) reduces this measure, until the two rules are
no longer applicable. We write A ~ B €4 ' (resp. A ~ B €_ I')if A ~ B occurs
positively (resp. negatively) in I', where positive and negative occurrences are defined
in the standard way.

Definition 5. Given an initial set of formulas Iy, we define: (i) the set Egﬂr of boxed
formulas (- A that can be generated in a tableau for I, i.e. Egﬂr ={0-4]4pr
B ey L} U{O-A| A B e_ Ty} Weletng =| LE, |; (ii) the multiset L of
negated boxed formulas that can be generated in a tableau for I, i.e. £§°_ = [-0-4|
A B ey To) Weletho =| L |.

Given a label x and a set of formulas I' in the tableau for the initial set Iy, we de-
fine: (i) the number n, of positive boxed formulas (- A not labelled by z, i.e. n, =
no— | {0-4 € ESL | x : O-A € I'} |; (i) the number k; of negated boxed for-
mulas A not yet expanded in a world x, i.e. ky, = ko— | ["0-A € [,S’, | -
—[-A has been expanded |.

Definition 6. We define p(I") = (c1, ca) where:

—a=|{u:ArBe_TI}|

— cg is the multiset given by [c5',c5?, ..., c5"], where x1,xa, ..., T, are the labels
occurring in I' and, given a label x, ¢% is a pair (ng, k;) in a lexicographic order
(ng and k.. are defined as in Definition 5). We consider the integer multiset ordering
given by co.

We consider the lexicographic order given by p(I").

Roughly speaking, c; is the number of negated conditionals that can still be expanded in
the tableau. co keeps track of positive conditionals which can still create a new world.
The application of (j~~) reduces c¢;. The application of ((07) reduces co. Indeed, if
() is applied to w : A |~ B, this application introduces a branch containing z :
—[0-A; when a new world y is generated by an application of (J7) on z : —[0-A4,
y : 0—A is added to the current set of formulas. If () is applied to u : A ~ B by
using the new world y, then the conclusion where y : =(J—A is introduced is closed, by
the presence of y : [J—A.

Theorem 3. Given a set of formulas I, the tableau generated by TR for I" only con-
tains a finite number of labels.

Proof sketch. First, we can easily prove that each application of (~~) and ((J7) reduces
p(I"). This means that a finite number of applications of these rules leads either to a
node containing = : F,x : =F (see Lemma 1) or to a node to which the two rules are
no further applicable. In particular, when ¢; = 0, (~7) is no longer applicable. When

198 L. Giordano et al.

=[(0,0), (0,0),...,(0,0)], we can reason as follows: suppose there is x : -[1-A €
F since ¢ = (O 0), it follows that x : (0= A € T', and we conclude by Lemma 1. B

Theorem 4 (Completeness). If a set of formulas I’ is unsatisfiable, then it has a closed
tableau.

Proof sketch. We show the contrapositive, i.e. if there is no closed tableau for I', then
T is satisfiable. Consider the tableau starting with the set of formulas {x : F such that
F € I'} and any open, saturated branch B = I}, I, ..., [}, in it. Starting from B, we
build a canonical model M = (Wg, <, V) satisfying I", where: W is the set of labels
that appear in the branch B; foreach z,y € Wp, x < y iff there exists 5 in B such that
x <y € Iy foreachz € Wg, V(z) = {P € ATM | thereis I; in B such that x :
P € I;}. We can easily prove that:

(7) by Theorem 3, we have that W is finite;

(i) < is an irreflexive, transitive and modular relation on Wp satisfying the smoothness
condition. Irreflexivity, transitivity and modularity are obvious, given Definition 4 and
Lemma 2 above. Since < is irreflexive and transitive, it can be easily shown that it is
also acyclic. This property together with the finiteness of WWg entails that < cannot have
infinite descending chains. In turn this last property together with the transitivity of <
entails the smoothness condition.

(ii7) We show that, for all formulas F' and for all I in B, (i) if z : F € I} then
M,z = F and (ii) if z : =F € I then M,z [~ F. The proof is by induction on
the complexity of the formulas. If /* € ATM this immediately follows from defini-
tion of V. For the inductive step, due to space limitations, we only present the case of
F = A |~ B. The other cases are similar and then left to the reader. Letz : A |~ B € I;.
By Definition 4, we have that, for all y, there is I; in B such that either y : =4 € I}
ory:Beljory:-0-A4¢€lj Weshowthatforally € Minc(A), M,y E B
Lety e M m<(A) This entails that M,y = A, hence y —A & I';. Similarly, we can
show that y : “00-A ¢ I7. It follows that y : B € [}, and by 1nduct1ve hypothesis
M,y EB.(i)Ifx: ﬂ(A ~ B) € I3, since B is saturated, there is a label y in some
I'jsuchthaty : A e [,y :0-A € [;,andy : =B € I;. By inductive hypothesis we
can easily show that M,y = A, M,y = 0-A4, hencey € Min.(A),and M,y |~ B,
hence M,z [~ A ~ B. |

4 Termination of 7R and Optimal Proof Search

In this section, we refine 7 R in order to ensure termination. Moreover, we describe an
optimal decision procedure for R that allows to decide the satisfiability in R in nonde-
terministic polynomial time.

In general, non-termination in tableau calculi can be caused by two different rea-
sons: 1. some rules copy their principal formula in the conclusion, so that they can be
reapplied over the same formula without any control; 2. dynamic rules can generate
infinitely-many worlds, creating infinite branches.

As far as 7 R is concerned, Theorem 3 excludes the second source of non termination
(point 2). Concerning point 1, the above calculus 7R does not ensure a terminating

Analytic Tableau Calculi for KLM Rational Logic R 199

proof search due to (1), which can be applied without any control. We ensure the
termination by putting some constraints on (~7) in 7R. It is easy to observe that it is
useless to apply the rule on the same conditional formula more than once by using the
same label . Indeed, all formulas in the premise of (|~+) are kept in the conclusions,
then we can assume, without loss of generality, that two applications of (~*) on z
are consecutive. We observe that the second application is useless, since each of the
conclusions has already been obtained after the first application, and can be removed.
We prevent redundant applications of (~T) by keeping track of labels (worlds) in which
aconditional v : A |~ B has already been applied in the current branch. To this purpose,
we add to each positive conditional a list of used labels; we restrict the application of
(~T) only to labels not occurring in the corresponding list. Notice that also the rule (<)
copies its principal formula x < y in the conclusion; however, this rule will be applied
only a finite number of times. This is a consequence of the side condition of the rule
application and the fact that the number of labels in a tableau is finite (Theorem 3).

The terminating calculus 7R is obtained by replacing the (~*) rule in Figure 1
with the one presented in Figure 3.

I'u:Apn B:
L,z L,z Lz(|N+)
Ix:—-Au:Apn B™ Ix:-0-Au:Apnr B™ I'z:B,u: A~ B™
with x € L

Fig. 3. The rule (~) in the tableau system 7R™

Theorem 5 (Soundness and completeness of 7RT). The calculus TR is sound and
complete w.r.t. the semantics.

Theorem 6 (Termination of 7TR7T). Let I be a finite set of formulas, then any tableau
generated by TR is finite.

Let n be the size of the starting set I" of which we want to verify the satisfiability. The
number of applications of the rules is proportional to the number of labels introduced
in the tableau. In turn, this is O(2"™) due to the interplay between the rules (~*) and
(O7). Hence, the complexity of the calculus 7R is exponential in n.

In order to obtain a better complexity bound for validity in R we provide the following
procedure. Intuitively, we do not apply (J07) to all negated boxed formulas, but only to
formulas y : =[J—A not already expanded, i.e. such that z : A, z : 0= A do not belong
to the current branch. As a result, we build a small model for the initial set of formulas
in accordance with Theorem 1. This is made possible by the modularity of < in R.

Let us define a nondeterministic procedure CHECK(!") to decide whether a given set
of formulas I is satisfiable. Let EXPAND(I") be a procedure that returns one saturated
expansion of I" w.r.t. all static rules. In case of a branching rule, EXPAND nondetermin-
istically selects (guesses) and applies one conclusion of the rule.

200 L. Giordano et al.

CHECK(I)
1. ' — EXPAND(I);
2. if I contains an axiom then return UNSAT;
3. I « result of applying (j~~) to each negated conditional in I;
4. ' — EXPAND(I");
5.if I" contains an axiom then return UNSAT;
while I” contains a y : =[J—A not marked as CONSIDERED do
6. select y : "(0—A € I not already marked as CONSIDERED;
6a. if thereis zin I"suchthat z: A€ 'and z : O-A € I”
then 6a’. add z < y, I}"., to I';
else 6a”. I" «— result of applying (07) to y : =[0—A;
6b. mark y : =[J—A as CONSIDERED;
7. ' «— EXPAND(I");
8. if I" contains an axiom then return UNSAT;
endWhile
9. return SAT;

Observe that the addition of the set of formulas z < v, F;‘ﬁz in step 6a’ could be
omitted and it has been added mostly to enhance the understanding of the procedure.
Indeed, the rule (<), which is applied at each iteration to assure modularity, already
takes care of adding such formulas. The procedure CHECK nondeterministically builds

an open branch for I".

Theorem 7 (Soundness and completeness of the procedure). The above procedure
is sound and complete w.r.t. the semantics.

Proof sketch. (Soundness). We prove that if the initial set of formulas I is satisfiable,
then the above procedure returns SAT. More precisely, we prove that each step of the
procedure preserves the satisfiability of I". As far as EXPAND is concerned, notice that
it only applies the static rules of 7R™T and the soundness follows from the fact that
these rules preserve satisfiability (see Theorems 2 and 5). Consider now step 6. Let
y : —0-A the formula selected in this step. If (™) is applied to y : =00—A (step
6a”) we are done, since ([J7) preserves satisfiability (see Theorems 2 and 5). If I
already contains z : A,z : [J-A, then step 6a’ is executed, and the relation z < y is
added. In this case we reason as follows. Since I is satisfiable, we have that there is a
model M and a mapping I such that (1) M, I(y) = -0-A and (2) M,I(z) = A
and M, I(z) = O-A. We can observe that I(z) < I(y) in M. Indeed, by the truth
condition of =[J-A (see Definitions 2 and 3) and by the strong smoothness condition,
we have that there exists w such that w < I(y) and M, w = A,0—-A. By modularity
of <, either 1. w < I(z) or 2. I(z) < I(y). 1 is impossible, since otherwise we would
have M, w | —A, which contradicts M, w = A. Hence, 2 holds. Therefore, we can
conclude that step 6a’ preserves satisfiability.

(Completeness). It can be easily shown that in case the procedure above returns SAT,
then the branch built is saturated (see Definition 4). Therefore, we can build a canonical
model for the initial I", as done in the proof of Theorem 4. |

Theorem 8 (Complexity of the CHECK procedure). By means of the procedure
CHECK the satisfiability of a set of formulas of logic R can be decided in nondeter-
ministic polynomial time.

Analytic Tableau Calculi for KLM Rational Logic R 201

Proof. Observe that the procedure generates at most O(n) labels by applying the rule
(™) (step 3) and that the while loop generates at most one new label for each -[(1-A
formula. Indeed, the rule ((O7) is applied to a labelled formula y : -(0—A to generate
a new world only if there is not a label z such that z : A € I"and z : 0-A € I are
already on the branch. In essence, the procedure does not add a new minimal A-world
on the branch if there is already one. As the number of different -[(J-A formulas is
at most O(n), then the while loop can add at most O(n) new labels on the branch.
Moreover, for each different label x, the expansion step can add at most O(n) formulas
a : =[J—A on the branch, one for each positive conditional A |~ B occurring in the set
I". We can therefore conclude that the while loop can be executed at most O(n?) times.

As the number of generated labels is at most O(n), by the subformula property,
the number of labelled formulas on the branch is at most O(n?). Hence, the execu-
tion of step 6a has complexity O(n?). The execution of the nondeterministic procedure
EXPAND has complexity O(n?), including a guess of size O(n?), whereas to verify if
I’ contains an axiom has complexity O(n*) (since it requires to check whether, for each
labelled formula z : P € I, the formula x : =P is also in I, and I contains at most
O(n?) labelled formulas). We can therefore conclude that the execution of the CHECK
procedure requires at most O(n%) steps. |

By Theorem 8, the validity problem for R is in coNP. coNP-hardness is immediate,
since R includes classical propositional logic. Thus, we can conclude that:

Theorem 9 (Complexity of R). The problem of deciding the validity for rational logic
R is coNP-complete.

5 Conclusions and Future Work

In this paper we have developed an analytic tableau calculus 7R for the rational logic
R. To the best of our knowledge, this is the first calculus for R directly based on pref-
erential semantics. We have proved the termination of the calculus and provided a sys-
tematic procedure for deciding the satisfiability of a set of formulas in nondeterministic
polynomial time. The paper is complementary to the work [15], where the other KLM
systems are considered.

We briefly remark on some related work for deductive approaches to KLM logics.

Proof methods for the other KLM logics and for conditional logics related to them
have been presented in [19, 20, 21]. Decidability of P and R has also been obtained by
interpreting them into standard modal logics, as it is done by Boutilier [17]. However,
Boutilier rejects the smoothness condition, which is essential in KLM framework. Fur-
thermore, Boutilier gives a less natural and more complicated mapping into modal logic
S4 and S4.3 for P and R respectively. Our logic and S4.3 are incomparable: finite-chain
condition corresponding to the axiom G does not hold in S4.3, reflexivity and weak con-
nectedness (holding in S4.3) do not hold in our logic. In [15] analytic tableaux calculi
for P and CL are presented. These calculi are based on the same idea of using suitable
modalities to interpret conditional assertions. In [15] authors show that the problem of
deciding validity is co-NP complete for both logics P and CL.

We plan to extend our calculi to the first order case. The starting point will be the
analysis of first order rational logic by Friedman, Halpern and Koller in [4]. In sub-

202 L. Giordano et al.

sequent research we also intend to investigate how to find models in the alternative
semantics of P and R [3] of a set of conditional assertions by using our tableau meth-
ods. This could be a step in order to use our tableau procedures to uniformly implement
a variety of default reasoning mechanisms built upon KLM logics P and R [5, 6,7, 8].

References

1. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1-2) (1990) 167-207
2. Gardenfors, P.: Knowledge in Flux. MIT Press (1988)
3. Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal of the
ACM 48(4) (2001) 648-685
4. Friedman, N., Halpern, J.Y., Koller, D.: First-order conditional logic for default reasoning
revisited. ACM TOCL 1(2) (2000) 175-207
5. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and pos-
sibility theory. Artificial Intelligence 92(1-2) (1997) 259-276
6. Benferhat, S., Saffiotti, A., Smets, P.: Belief functions and default reasoning. Artificial
Intelligence 122(1-2) (2000) 1-69
7. Weydert, E.: System jlz - rational default reasoning by minimal ranking constructions. Jour-
nal of Applied Logic 1(3-4) (2003) 273-308
8. Pearl, J.: System z: A natural ordering of defaults with tractable applications to nonmono-
tonic reasoning. In: Proc. of the 3rd Conference on Theoretical Aspects of Reasoning about
Knowledge, Morgan Kaufmann Publishers Inc. (1990) 121-135
9. Makinson, D.: Bridges from Classical to Nonmonotonic logic. London: King’s College
Publications. Series: Texts in Computing, vol 5 (2005)
10. Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal of the
IGPL 11(1) (2003) 69-96
11. Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: From basic entailments
to plausible relations. Logic Journal of the IGPL 8(2) (2000) 119-148
12. Dubois, D., Fargier, H., Perny, P., Prade, H.: Qualitative decision theory: from savages ax-
ioms to nonmonotonic reasoning. Journal of the ACM 49(4) (2002) 455-495
13. Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and
comparative uncertainty: An axiomatic approach. Art. Int. 148(1-2) (2003) 219-260
14. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial
Intelligence 55(1) (1992) 1-60
15. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferen-
tial and Cumulative Logics. In: Proc. of LPAR 2005, LNAI 3835, Springer (2005) 666—681
16. Crocco, G., Lamarre, P.: On the connection between non-monotonic inference systems and
conditional logics. In: Proc. of KR 92. (1992) 565-571
17. Boutilier, C.: Conditional logics of normality: a modal approach. Art. Int. 68(1) (1994)
87-154
18. Hughes, G., Cresswell, M.: A Companion to Modal Logic. Methuen (1984)
19. Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning:
Cumulative consequence relations. J. of Logic and Computation 12(6) (2002) 1027-1060
20. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculi for preference-based
conditional logics. In: Proc. of TABLEAUX 2003, LNAI 2796, Springer (2003) 8§1-101
21. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Extensions of tableau calculi for
preference-based conditional logics. In: Proc. of M4M-4, Informatik-Bericht 194 (2005)
220-234

On the Semantics of Logic Programs with Preferences

Sergio Greco, Irina Trubitsyna, and Ester Zumpano

DEIS, University of Calabria,
87030 Rende, Italy

{greco, irina, zumpano}@deis.unical.it

Abstract. This work is a contribution to realizing prioritized reasoning in logic
programming in the presence of preference relations involving atoms. In more
details, the case of dynamic preferences is investigated and a semantics inter-
preting each preference rule as a tool for representing a choice over alternative
options is proposed. The technique, providing a new interpretation for prioritized
logic programs, is inspired by the one proposed by Sakama and Inoue in [19] and
enriched with the use of structural information of preference rules as proposed
by Brewka et al. in [6]. Specifically, the analysis of the logic program is carried
out together with the analysis of preferences in order to determine the choice or-
der and the sets of comparable models. The proposed approach is compared with
those in [6, 19]. Complexity analysis is also performed showing that the use of
additional information does not increase the complexity of computing preferred
stable models.

1 Introduction

The increased interest in preferences is reflected by an extensive number of proposals
and systems for preference handling [17,22,24,25]. The literature distinguish static
and dynamic preferences. Static preferences are fixed at the time a theory is speci-
fied, i.e. they are “external” to the logic program [19, 26], whereas dynamic preferen-
ces appear within the logic program and are determined “on the fly” [6, 8, 10, 12,24].
The most common form of preference consists in specifying preference conditions
among rules [2, 3,4,5,10, 11, 12, 16,20, 21, 23,27, 28], whereas, some recent proposals
admit the expression of preference relations among atoms [6, 7, 19, 24]. More sophisti-
cated forms of preferences also allow specifying priorities between conjunctive (disjun-
ctive) knowledge with preconditions [6, 10, 19] and numerical penalties for suboptimal
options [7].

This work is a contribution to realizing prioritized reasoning in logic programming
in the presence of preference conditions involving atoms. In more details, the case of
dynamic preferences is investigated and a semantics interpreting each preference rule as
tool for representing a choice over alternative options is proposed. In particular, priori-
ties are applied by following the natural ordering defined by dependencies, as proposed
in [6], and the comparison strategy, proposed in [19], is extended by introducing the
concept of comparable models. Next example describes the intuition at the basis of the
proposed approach.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 203-215, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

204 S. Greco, 1. Trubitsyna, and E. Zumpano

Example 1. The following prioritized program (P, ®;), inspired by a program pre-
sented in [6], describes different menus and the preferences among drinks and desserts:

fish @ beef «— 01 : white > red < fish
red @ white «— 02 : red > white < beef
pie @ ice-cream «+ 03 : pie > ice-cream «+— red

« fish, white
«— beef, pie
« fish, ice-cream

The symbol & denotes exclusive disjunction, i.e. if the body of the rule is true only
one atom in the head is true, whereas a rule with empty head defines a constraint, i.e.
a rule which is satisfied only if the body is false. The first three rules of Py select the
main dish, the drink and the dessert; the last three rules are constraints and state that a
feasible solution cannot contain (i) fish and white or (ii) beef and pie or (iii) fish
and ice-cream. Prioritized rules in @ introduce preferences among drinks (o1, 02)
and desserts (03).

The program P has three stable models: M; = {fish,red, pie}, My = {beef,
white, ice-cream} and M3 = {beef,red, ice-cream}. The PLP (Prioritized Logic
Program) technique [19] returns M as unique preferred model; whereas the ASO (An-
swer Set Optimization) technique [6], following the natural ordering of preference rules,
derives that M3 is the unique solution. Thus, the two approaches provide different re-
sults. The structure of preference rules suggests that (i) the choice of drink precedes
the choice of dessert and depends on the selected main dish; (ii) fish and beef are
alternative options for main dish. The latter conclusion is based on the observation that
o1 and p» provide opposite valuation to the drink choice. This is possible if their bodies
define two different classes of models (menus), which should be considered separately.
In other words, the model M (associated to the menu containing £ ish) should not be
compared with the models M2 and M3 (associated with the menus containing beef).
Consequently, both M; and M3 should be preferred. o

Contribution. The paper provides a new semantics for prioritized logic programs
enriching the one proposed in [19] with additional information gained from the struc-
ture of preference rules as proposed in [6]. In particular, the new semantics intro-
duces a natural ordering among preferences that fixes the order of choices, looking
at the stratification of the preference program. Each decision is determined by the
set of choices belonging to the corresponding level and provides the subset of mo-
dels given in input as solution. Once a decision is made, this output subset becomes
the input set of the following decision and so on. The proposed semantics drives the
decision process by catching additional information regarding non comparable sets of
models; the concept of incomparability has not been taken into account by previous
approaches.

The paper also analyzes the complexity of computing preferred answer sets and
shows that, w.r.t. others previous proposals such as the one proposed in [19], the use
of additional information does not increase the complexity of computing preferred sta-
ble models.

On the Semantics of Logic Programs with Preferences 205

2 Preliminaries

We assume familiarity with relational database theory, disjunctive logic programs, di-
sjunctive deductive databases, (disjunctive) stable model semantics and computational
complexity [13, 14, 15, 18].

2.1 Background

A (disjunctive) logic program is a finite set of rules of the form A; V --- V Ay «—
By, ...,Bp,notCyq,...,not Cp, k+m+n>0,where Ay, ..., Ag, B1, ..., B, C1, ..., Cp,
are atoms. The disjunction A; V - -+ V Ay, denoted by head(r), is called the head of
r; while the conjunction By, ..., B,,, not C, ..., not C,,, denoted by body(r), is called
body of r. The intuitive meaning of previous disjunctive rule is that if body(r) is true,
i.e. By, ..., By, are true and C1, ..., C, are false, then head(r) is true, i.e at least one
of Ay, ..., Ay is true (otherwise r is not satisfied). In this paper exclusive disjunction,
denoted by @, is used in the head; the statement head(r) = A1 @ ... ® Ay is true, if
exactly one of Ay, ..., A is true. Rules with empty head, called denials or constraints,
will be used to define constraints and are satisfied only if the body is false. The solution
of a logic program P is given in term of stable model (answer set) semantics [14, 15].

An interpretation M for P is a model of P if M satisfies all rules in ground(P).
The minimal model semantics, defined for positive P, assigns to P the set of its mini-
mal models MM (P), where a model M for P is minimal, if no proper subset of M is
amodel for P. The more general disjunctive stable model semantics also applies to pro-
grams with (unstratified) negation [15]. Disjunctive stable model semantics generalizes
stable model semantics, previously defined for normal programs [14]. For any interpre-
tation M, denote with P the ground positive program derived from ground(P) by
(1) removing all rules that contain a negative literal not a in the body and @ € M, and
(i1) removing all negative literals from the remaining rules. An interpretation M is a
(disjunctive) stable model of P if and only if M € MM (PM). For general P, the stable
model semantics assigns to P the set SM (P) of its stable models. It is well known that
stable models are minimal models (i.e. SM(P) C MM (P)) and that for negation free
programs, minimal and stable model semantics coincide (i.e. SM(P) = MM (P)).

The rest of this section will briefly review the two main approaches for prioritizing
reasoning we refer to, i.e. Prioritized Logic Programs and Answer Set Optimization,
proposed respectively in [19] and [6].

2.2 Prioritized Logic Programs

A (partial) preference relation =~ among atoms is defined as follows: given two atoms
e and eg, the statement e; >~ e (called priority) means that e; has higher priority than
ez. Moreover, if e; > eg and e > es, then e; = es. A priority statement e; > eq
states that for each a; instance of e; and for each a, instance of e5 it is a; > as. The
statement e; > eo stands for e; > eq and eg ¥ ey. Clearly, if e; >~ eo, the sets of
ground instantiations of e; and e have an empty intersection.

A prioritized logic program (PLP) is a pair (P, ®) where P is a disjunctive program
and @ is a set of priorities. * denotes the set of priorities which can be reflexively or
transitively derived from &.

206 S. Greco, 1. Trubitsyna, and E. Zumpano

Definition 1. Given a prioritized logic program (P, @), the relation J is defined over
the stable models of P as follows. For any stable models M7, My and M3 of P:

1. My 3 My,

2. My 3J Ms if dey € My — M5, Jes € My — M; such that (61 > 62) € &* and
Aes € My — M such that (e3 > e1) € &%,

3. if My 3 Ms and Mo 3 Ms, then My 3 Msj.

If My 3 Ms then M, is preferable to Ms. Moreover, if My 3 Ms and My 2 M then
M; 3 M. O

An interpretation M is a preferred stable model of (P, @) if M is a stable model of P
and N J M implies M 1 N for any stable model N. The set of preferred stable models
of (P, ®) will be denoted by PSM((P,P)). Note that the relation $; C P, between
two PLPs (P, ®1) and (P, ®3) does not imply PSM ((P,P1)) C PSM((P, Ps)).

In a prioritized logic program (P, ®) the basic priority relations are defined over
atoms by means of static preference rules. The priorities over more general forms of
knowledge (conjunctive, disjunctive knowledge, rules, preconditions) can be then ex-
press by a simple rewriting of the preference program. For instance, a dynamic prefe-
rence rule of the form (e; = e3) <« B is equivalent to €} > €/, where ¢} «— e;, B and
e «— e, B.

The semantics of prioritized programs proposed by Sakama and Inoue will be de-
noted by PLP semantics. More details can be found in [19] (see also [9, 28] for related
material).

The complexity of answering queries over PLP programs is one level above the
complexity of answering queries over standard programs (without preferences). In par-
ticular, let (PP, @) be a prioritized logic program, then (i) deciding the existence of a
preferred stable model is % — complete; (i) deciding whether a literal is true in some
(resp. all) preferable stable model of (P, ®) is X%-complete (resp. I13-complete) [19].

Sakama et al. in [24] propose a sound and complete procedure that allows preferred
answer sets for a prioritized logic program to be computed using a generate and test
algorithm. This algorithm translates a PLP program (P, @) and any answer set .S of the
program P into a single logic program T'[P, &, S], such that its answer sets are answer
sets of P preferable to S. Dynamic preferences are expressed by a stratified logic program
whose rules have the standard form: head(r) < body(r), where head(r) can be either
a standard atom or a prioritized fact, and body(r) is a conjunction of ground literals.

2.3 Answer Set Optimization

An answer set optimization program, denoted as ASO program, is a pair (P, ®),
where P is called Generation Program and @ is called Preference Program and
consists of a finite set of rules of the form: C; > --- > Cy « aa, ..., an,not by, ..., not by,
where a;s and b;s are literals and C;s are boolean combinations' of literals; here a lit-
eral is either an atom A or its negation —A. @ determines a preference ordering on the
answer sets described by the generation program P.

' A boolean combination is a formula built of atoms by means of disjunctions, conjunctions,
strong and default negation with the restriction that strong negation is allowed to appear only
in front of atoms and default negation only in front of literals.

On the Semantics of Logic Programs with Preferences 207

Definition 2. Let & = {ry,...,r,} be a preference program and S be an answer set,
then S induces a satisfaction vector Vy = (vs(r1), ..., vs(75)) where:

— vs(rj) =1, if r; is Irrelevant to S, i.e. (i) the body of r; is not satisfied in S or (ii)
the body of r; is satisfied, but none of the C;s is satisfied in S.
- vs(r;) = min{i : S = C;}, otherwise. O

In the comparison of models it is assumed that I is equal to 1 (i.e., vs,(r;) = I is
equivalent to vg, (r;) = 1).

Definition 3. Let S; and S2 be two answer sets, then (i) Vs, < Vg, if vg, (i) <
vs,(r;) for every i € [1.n]; (i) Vs, < Vg, if Vs, < Vs, and for some i € [1..n]
vs, (r;) < vs,(r;). In these cases S1 > Sy and S7 > Ss, respectively.

A set of literals S is an optimal model of an ASO program (P, @) if S is an answer

set of P and there is no answer set S’ of P such then S’ > S. O

The complexity of ASO programs depends on the class of generating programs. For
disjunctive programs we have the same complexity of prioritized programs, while for
disjunction-free programs the complexity is one level lower.

The strategy is further extended by introducing meta-preferences among preference
rules: a ranked ASO program is a sequence (P, @1, ..., @,) consisting of a generation
program P and a sequence of pairwise disjoint preference programs @;. The rank of a
rule r € $1 U --- U P, denoted rank(r), is the unique integer ¢ for which r € @;.
S1 >rank Sa if for every preference rule ' such that vg, (') < vg, (') does not hold,
there is a rule " such that rank(r”’) < rank(r’) and vg, (') < vg, (r").

Moreover, a procedure deriving the natural ordering of the preference rules is intro-
duced. Firstly, given a preference program &, its dependency graph G(®) is defined.
The atoms appearing in ¢ form the vertex set of G(®). There is a directed edge from a
vertex b to a vertex a in G(9) if there is a rule in ¢ such that a appears in the head of
r and b appears in the body of r. If the graph G (@) is acyclic, there is a natural ranking
of its atoms which can be defined recursively as follows: rank(a) = 0 for every atom
a that has no predecessors in G(®); otherwise rank(a) is the maximum of the ranks of
all predecessors of a in G(®) incremented by 1. The rank of a preference rule r is then
defined as the maximum rank of atoms in its head.

The standard semantics of ASO programs, where priorities are examined all together,
will be denoted as ASO semantics. The alternative semantics, where priorities are di-
vided into layers following the natural order, will be denoted by RASO (ranked .ASO)
semantics.

3 Well Formed Prioritized Logic Programs

In this paper a syntax similar to the one proposed in [6] is used. Given two atoms A
and A, the statement A, > A; means that A5 has higher priority than A;. A (partial)
preference relation > among atoms is defined as follows.

Definition 4. A prioritized program is a pair (P, ®) where P is a disjunctive program
and @ is set of preference rules of the form:

208 S. Greco, 1. Trubitsyna, and E. Zumpano

Al > AQ > e > Ak «— B17 ...7Bm,n0t01, ...,'flOtOn (1)
where k > 1land A4, ..., Ag, By, ..., By, Ch, ..., C,, are atoms.

A ground prioritized program, denoted by ground((P,®)) = (ground(P), ground(P))
is a prioritized program, where each rule r € (P U @) with variables is replaced with
the set of its ground instances, i.e the set of rules obtained by replacing variables with
constants. |

Intuitively, a preference rule o of the form (1) describes the choice between Ay, ..., Ag
(choice options) under the condition specified by the body of g. The head of g introduces
the preference order between choice options: A; is preferred to A;, ¢ < jand4,j €
[1..k]. As o can be applied only if body(p) is true, the body of g specifies the decisions
which have to precede this choice. For instance, a > ¢ < b states that if b is true, then
a is preferred to c. In the following the short cut of the form a V d > ¢ «— body will
be used, stating for the two preference rules a > ¢ « body and d > ¢ < body, whose
meaning is that a and d are preferred to c if body is true.

A preference rule with exactly two atoms in the head will be called binary preference
rule, whereas preference rules with empty bodies will be called preference facts. A
prioritized program is said to be in binary form if all its preference rules are binary.
Preference rules can be rewritten into binary preferences. Thus, a preference rule of the
form A; > Ay > -+ > A < body is equivalent to k — 1 binary rules of the form
A; > Ai+1 — bOdy
The following example, presenting a classical program borrowed from [6], will be used
as running example.

Example 2. Consider the prioritized program (P,,®,) whose stable models define
menus of a restaurant:

fish @ beef «— 01 : white > red > beer < fish
red @ white @ beer «— 02 : redV beer > white < beef
pie @ ice-cream «+ 03 : pie > ice-cream «+— beer

< beef, pie

« fish, ice-cream
The first three rules of P, select the main dish, the drink and the dessert; the rules in
&, introduce preferences among drinks and desserts. The program P, has six stable
models:

M; = {fish,white, pie} My = {beef, white, ice-cream}
M, = {fish, red, pie} Ms = {beef, red, ice-cream}
Ms = {fish, beer,pie} Ms = {beef, beer, ice-cream}

Both techniques proposed in [19] and [6] select the stable models M7 and M5 as pre-
ferred ones. O

Before presenting the formal semantics of programs, some preliminary definitions are
needed. Given a prioritized program (P, @), the (ground) transitive closure of @ is &* =
&' U{a > ¢« bodyy,bodys | a > b« body; € &* Ab > ¢ — bodys € P* Na # c},
where @' is the binary form of ground(®).

®* is defined as the set of rules, explicitly representing the preference relations between

choice options. In order to ensure that these relations regard alternative choice options,
the following property is introduced:

On the Semantics of Logic Programs with Preferences 209

Definition 5. Well-formed programs. A prioritized program (P, ®) is said to be well-
formed if there is no model M € SM(P) and preference rule a > b < body in &*,
such that body is true in M and a,b € M. O

Observe that in order to guarantee that programs are well formed it is sufficient to add
rules which guarantee that for each preference rule a > b < body in @* there is a
constraint < a, b, body in ground(P). All programs considered so far are well-formed
(the constraints which guarantee that programs are well formed are not necessary as
exclusive disjunction has been used).

In the following we consider only well-formed programs.

Definition 6. Contradictory preferences. Two ground (binary) preferences of the form
a > b« body; and b > a < bodys, are said to be contradictory. A set of preferences
@ is said to be contradictory if $* contains two contradictory preference rules. a

For instance, the preferences g; : white > red « fish and g, : red > white «—
beef of Example 1 are contradictory, whereas the preferences o; and g, : red V
white > water < beef are not.

Definition 7. Relevant models. Given a prioritized program (P, ®) and a preference
0 € ®, the set of stable models relevant for g is SM(P,0) = {M | M € SM(P) A
M = body(o)}. O

Definition 8. Conflicting preferences. Let (P, ®) be a prioritized program, a pair of
contradictory preferences o; and g5 is conflicting if SM(P, 01) N SM(P, g2) # 0. O

Example 3. Considering the preference rules of Example 1, we have that SM(Py,
01) = {M;} and SM(P1, 02) = { Mz, M3}; the contradictory preferences o1 and g2
are not conflicting as SM(P1, 01) N SM(P1, 02) = 0. For the preferences of Exam-
ple 2 we have that SM (P, 1) = { M1, M2, M3} and SM(P3, 02) = { My, M5, Mg}
also in this case the two contradictory preference rules are not conflicting. O

Thus, two contradictory preferences p; and g, are conflicting if there is a stable model
satisfying the bodies of both p; and o-.

Definition 9. Stratification. A (ground) preference program @ is stratified if it is possi-
ble to determine the stratification into (®[0], $[1], ..., @[n]) such that:

- Every atom A is associated with the least possible level 7 (denoted A[4]) in such a
way that for each preference rule o € @ the level of head atoms is greater than the
level of each body atom; the level of body atoms that do not appear in any head is
assumed to be equal to 0;

— Every preference rule ¢ € @ is associated with a level ¢ (denoted by o[i]) consisting
of the maximum level of the atoms in body(p);

— @[i] consists of all preference rules associated with the level ¢. O

The above definition of stratification of preference rules defines the order in which
preferences are applied. Observe, that the preference program may have only one stra-
tification, or may be not stratified. In the latter case we consider all preference rules
together by introducing the default stratification ($[0]), where ¢[0] = &*.

210 S. Greco, 1. Trubitsyna, and E. Zumpano

It should be noticed that the assignment of the level to each atom can be performed
following the first part of the declarative procedure establishing the natural ordering
of preference rules, defined in [6]; whereas the assignment of the level to each rule,
performed on the second step, differs from the one proposed in [6] as it considers body’s
instead of head’s atoms. A more detailed comparison of the two approaches will be
presented in the next section.

Example 4. Consider the prioritized program (Ps, P2) of Example 2, where ®5 =
{01, 02, 03} The stratification of @5 consists of: P2[0] = {1, 02} and P2[1] = {p3}. O

The intuition at the basis of our approach is clarified in this example. Suppose there are
two contradictory preferences 91 : @ > b < cand g2 : b > a < d. Intuitively, the two
contradictory preferences p; and g» are meaningful if they are applied to different sets
of models, i.e. models defined by alternative decisions associated respectively, with ¢
and d (or with atoms on which c and d depend). Thus when defining two contradictory
preferences p; and p- the user assumes that their bodies define alternative decisions.
Moreover, once the alternative decisions have been made, the associated solutions are
no longer comparable. In order to capture the previously mentioned intuition, use is
made of the following concept.

Definition 10. Comparable models. Let (P, ®) be a prioritized program, M7 and Ms
two stable models for P and @*[0], ..., #*[n] be a stratification of ¢*, then

1. M, and M are comparable on ¢*[0].
2. M and M5 are comparable on *[i + 1], if
(a) they are comparable on $*[i], and
(b) there do not exist two contradictory preferences g1, 02 € ¢*[i] such that
M, is relevant for p; and M, is relevant for g9,
i.e. My = body(p1) and Mo = body(02). m|

Observe that, the second condition in the previous definition of comparable models
states that given two models M; and M, associated with two alternative decisions, if
an alternative decision has been performed in the previous level (i.e. if two contradictory
preferences exist in the previous level), then no further comparison can be made, i.e. M
and M are not comparable in the current and next levels. In other words, if M; and
M are relevant for two contradictory preferences in the previous level, they have to be
considered separately, i.e. they are not comparable.

Example 5. Let’s consider M3 = {fish,beer,pie} and Mg = {beef,beer, ice-
cream} with respect to the preferences @5 of Example 2. M3 and Mg are comparable

on ¢4 [0] by definition, while they are not comparable on ¢35 [1], because M3 is relevant
for o1, Mg is relevant for g2, and these contradictory preferences belong to 9155 0. O

Fact 1. Let (P,®) be a prioritized program without contradictory preferences and
(@*[0], D*[1],...,D*[n]) the stratification of *. Then, each pair of models M, Mo
is comparable on $*[i], i € [0..n). O

On the Semantics of Logic Programs with Preferences 211

The proof of the fact above follows directly from Definition 10.

On the basis of Definition 10 the declarative semantics of prioritized logic programs
can be now provided. This new semantics, denoted with PAS (Preferred Answer Sets),
is given by preferred answer sets as follows:

Definition 11. Preference between Answer Sets. Given a prioritized program (P,),
the relation I is defined over the stable models of P as follows. For any stable models
My, M3 and M3 of P, let *[0], #*[1], ..., *[n] be a stratification of $*, then

- My 3 My,
— M, 3 My if 34, such that M; and M are comparable on ¢*[i] and
e Jdey € My — My, Jex € My — M such that g : (e; > eg) «— body; € D*[i],
and both models M7, My are relevant for p.
e Aes € My — M such that g : (e3 > e1) « bodys € $*[j], j < i, and both
models M;, M5 are relevant for p.
— if M7 3 M5 and M 3 M3, then My 3 Ms. O

If My 3 M, we say that M is preferable to Ms. Moreover, we write M; 3 M, if
M1 g M2 and M2 z Ml.

Definition 12. Preferred Answer Sets. An interpretation M is a preferred stable model
for a prioritized program (P, ®) if M is a stable model of P and N J M implies
M 3 N for any stable model N. The set of preferred stable models for (P, ®) will be
denoted by PAS((P, D). O

Note that Definition 11 extends the PLP semantics. In particular, PAS semantics de-
fines priorities between pairs of models, and can be seen as a PLP semantics enriched
with additional information gained from the structure of preference rules.

Example 6. Consider the prioritized program (P, ®5) of Example 2. We have that

— all models are comparable on ¢*[0] by definition and
e due to o1, My 3 My 3 Ms;
e due to g2, M5 3 My and Mg 3 My;
— as p1 and p9 are contradictory, models satisfying the body of p; (M7, M2 and Ms)
cannot be compared in $*[1] with models satisfying the body of py (M4, M5, Mg).

*

Therefore, M3 and Mg are not comparable on @2[1], as discussed in Example 5. The
preferred models are: M, My and Mg. Mg is considered as good as M5 because both
them present beef as main dish, the best choice of drink and the same (unique possible)
dessert.

Observe that both ASO [6] and PLP [19] semantics discard Mg. The ASO semantics
deduces that M7 and M5 are preferable to Mg owing to o3, while the PLP semantics
states that M is preferable to M3 and M3 i is preferable to Mg, owing to 01, 03.

Consider the program (P, ¢2> where @2 is derived from &5 by replacing 03 with
03 : pie > ice-cream «. The new preference program has the unique level @2 [0] =
{01, 02, 04 }; thus, due to g} the following relations hold M3 3 My and M3 J Ms.
Therefore M is the unique preferred model. The same result is obtained by both PLP
and ASO semantics.]

212 S. Greco, 1. Trubitsyna, and E. Zumpano

Complexity Result
Theorem 2. Let (P,) be a prioritized program. Then

1. Deciding the existence of a preferred stable model is X% -complete.
2. Deciding whether a literal is true in some (all) preferred stable models of (P, ®) is
X3, -complete (II}-complete).

Proof sketch: The lower bound derives from analogous results presented in [19], in
which static preferences are considered (in our framework static preferences belong
to the same stratum, the first). Concerning the upper bound, the computational com-
plexity does not increase with respect to the semantics proposed in [19]. In fact, the
difference states in the introduction of the stratification of @, which can be done in
polynomial time. The comparison of models is carried out by considering the preferen-
ces one stratum at time, instead of considering the preferences all together. The test of
comparability can be also done in a polynomial time. a

Corollary 1. Let (P,®) be a disjunction-free, prioritized program. Then deciding
whether a literal is true in some (all) preferred stable models of (P, ®) is X%-complete
(Hl%—complete). O

Previous results states that the use of additional information does not increase the com-
putational complexity of the proposed approach with respect to the PLP semantics [19].

4 Analysis and comparison

This section compares the proposed semantics with the PLP and ASO semantics pro-
posed in [6, 19, 24]. We also briefly consider other semantics recently proposed.

The PLP technique is very elegant and simple and compares pairs of models on the
basis of their common preferences and not on the basis of their degree of satisfaction. It
does not consider the natural ordering between preference rules and, in some cases, as
in Example 1 and 2, compares (and consequently discards) models which in the PAS
approach are not comparable.

The ASO technique is a very powerful tool as it determines the preferred models
by evaluating the degree of satisfaction of all preference rules (thus it compares two
models also in the absence of common preferences). In more detail, it considers the
structure of preference rules by associating a degree of satisfaction to choice options
and introduces a natural ordering among preferences. As in the case of PLP semantics,
also the RASO semantics compares and, consequently, discards models which are not
comparable using the PAS technique. For instance, for the program (P},), presented
in the Introduction, it discards M, having the second best option of drink, even if this
is the unique possible choice in the presence of fish.

The PAS semantics extends the semantics proposed in [19] by introducing the con-
cept of comparable models and by considering a refinement of the natural order among
preferences so defining the order of choices. This latter aim is modelled by refining
the stratification of preference rules of [6]: levels to rules are assigned on the basis of
the body atoms instead of the head atoms. Moreover, PAS semantics only considers
well-formed programs, i.e. programs in which preferences are defined over alternative

On the Semantics of Logic Programs with Preferences 213

choice options. To better understand the introduction of stratification consider the fol-
lowing example:

Example 7. The problem defined by means of the below prioritized program (Py, $7)
consists in selecting the colors of the trouser and the shirt having only black or blue
trousers (r;) and white, yellow or red shirts (ry) available. The fashion consultant
suggests that blue trousers are better than black ones (g;); a white shirt is better than
a yellow shirt (g2); and in the case of black trousers a white shirt is preferred to a
red one (p3). Moreover, blue trousers do not go with a white shirt (cy) and a red shirt
does not go with blue trousers (cs).

ri : black @ blue 01 : blue > black «
ry : white @ yellow @ red « 02 : white > yellow «
Ccq : < blue,white 03 : white > red < black

Cy : < red, blue

The program P; has four stable models: M; = {black,white}, My = {black,
yellow}, M3 = {blue,yellow} and My = {black,red}. In order to define the
stratification of preference rules, both RASO and PAS semantics firstly assign the level
to atoms: first level to blue, black and yellow and second level to white and red.
On the second step RASO approach, by considering the maximum level of head atoms,
assigns o7 to the first level and g2 and p3 to the second level, whereas PAS defines
the level of preferences on the basis of body atoms and assigns g; and g2 to the first
level and p3 to the second level. Note that in this case the order of g9 is relevant for
determining the preferred models. In fact, RASO gives only M3, while PAS returns
M; and M3 as preferred models. O

We point out that the stratification here proposed always assigns static preferences to
the first level because the level of a rule is fixed by looking at the level of body atoms.
Our technique introduces the concept of comparable models in order to avoid to com-
pare models which (in our opinion) should not be compared because are associated to
alternative decisions. Moreover, the presented approach does not increase the compu-
tational complexity with respect to the above mentioned techniques. Basically, in all
approaches the introduction of priorities increases the complexity and expressivity of
the languages by one level in the polynomial hierarchy. However, it should be pointed
out that an advantage of the PAS technique lies in a significant reduction in the number
of models to be examined. In fact, the stratification of the preference program permits
the search space to be cut, because on each level i only the “best” models from the
level i-1 are considered. Moreover, the introduction of non comparable sets of models
reduces the number of preferences which have to be applied.

Other Approaches. Following the approach in [6], in [7, 8] it is proposed an extension
of the ASO semantics. In more details, in [7] a preference description language is pro-
vided, allowing to express complex preferences by combining qualitative and quantita-
tive, penalty based preferences. In [8] a framework to specify problem solutions (out-
comes) and preferences among them is provided. The proposal combines ideas from
answer-set programming, answer-set optimization and CP-nets [1]. The semantics that

214 S. Greco, 1. Trubitsyna, and E. Zumpano

we have proposed in this paper is different from both those proposed in [7, 8] as in some
case, returns different results (see Examples 2 and 4).

Besides the approaches managing preferences among atoms, some other works pro-
posed in the literature specify preferences among rules.

Early proposals expressing preferences on rules focus on Default Logic [4, 11],
whereas more recently the emphasis has been given to logic programs and different
proposals have been developed for representing and reasoning about user preferences
such as ordered logic programs [10,21, 23], preferred answer sets of extended logic
programs [3] and logic programs with ordered disjunction [5]. Most of the approaches
propose an extension of Gelfond and Lifschitz’s extended logic programming by adding
preference information [12, 27, 28], others attempt to extend the well founded semantics
to logic programs with preferences [2, 20] and an extension of van-Gelder’s alternating
fixpoint theory for logic programs with priority is proposed in [27].

In [16] Gelfond and Son a methodology of reasoning with prioritized default in the
language of logic programming under the answer set semantics is investigated. The
approach admits the specification of preferences among rules and allows default rules
which must be strictly obeyed and default rules which may be ignored if reasonable in
a given context.

Delgrande et al. in [10] define an ordered logic program as an extended logic pro-
gram whose rules are subject to a strict partial order with both static and dynamic prefe-
rences. The approach is fully prescriptive as it enforces the ordering information during
the construction of the answer set. The original program is transformed into a second
extended logic program in which preferences are respected in that the answer sets ob-
tained by evaluating the transformed theory correspond to the preferred answer sets of
the original theory.

In [12] it is proposed a methodology in which logic programs containing preferences
on the set of rules can be translated into logic programs under stable model semantics.

5 Conclusions

In this paper the case of dynamic preferences involving atoms in logic programming
has been studied. In particular, the behavior of the technique proposed by Sakama and
Inoue [19] and Brewka et al. [6] has been analyzed and a semantics, interpreting each
preference rule as a tool for representing a choice over alternative options, has been
proposed. Specifically, the proposed approach extends the semantics proposed in [19]
by considering a refinement of the natural order among preferences and introduces the
concept of comparable models. Preferences and logic programs are examined together
in order to determine the choice order and the sets of models which can be compared.
The proposed framework forces user to introduce preferences on alternative choices
so that they can be used to compare stable models on the base of alternative choices.
Complexity analysis has been also performed showing that the use of additional infor-
mation, regarding the preference order and the sets of non comparable models, does not
increase the complexity of computing preferred stable models. Although the approach
here proposed has the same expressivity of other approaches, proposed in the literature,
the benefit relies in the fact it seems to better catch the intuitive meaning of prioritized
programs by also considering structural information of preference rules.

On the Semantics of Logic Programs with Preferences 215

References

1.

0N O\

Nel

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.
23.

24.

25.
26.

27.

28.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D., CP-nets: A tool for represent-
ing and reasoning with conditional ceteris paribus preference statements. JAIR, 21:135191,
2004.

. Brewka, G., Well-Founded Semantics for Extended Logic Programs with Dynamic Preferen-

ces. JAIR, 4: 19-36, 1996.

. Brewka, G., Eiter, T., Preferred Answer Sets for Extended Logic Programs. Artificial Intelli-

gence, 109(1-2), 297-356, 1999.

. Brewka, G., Eiter, T., Prioritizing Default Logic. Intellectics and Computational Logic, 27-

45, 2000.

. Brewka, G., Logic programming with ordered disjunction. AAAI/IAAI, 100-105, 2002.

. Brewka, G., Niemela, 1., Truszczynski, M., Answer Set Optimization. IJCAI, 867-872, 2003.
. Brewka, G., Complex Preferences for Answer Set Optimization, KR, 213-223, 2004.

. Brewka, G., Niemela, ., Truszczynski, M., Prioritized Component Systems. AAAI, 596-601,

2005.

. Buccafurri, F., Faber, W., Leone, N., Disjunctive deductive databases with inheritance. /CLP,

79-93, 1999.

Delgrande, J., P., Schaub, T., Tompits, H., Logic Programs with Compiled Preferences. ECAI,
464-468, 2000.

Delgrande, J., P., Schaub, T., Tompits, H., A Compilation of Brewka and Eiter’s Approach to
Prioritization. JELIA, 376-390, 2000.

Delgrande, J., P., Schaub, T., Tompits, H., A Framework for Compiling Preferences in Logic
Programs. Theory and Practice of Logic Programming, 3(2), 129-187, 2003.

Eiter, T., Gottlob, G., Mannila, H., Disjunctive Datalog. ACM Transaction On Database Sys-
tems, 22(3), 364418, 1997.

Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic Programming, ICLP,
1070-1080, 1988.

Gelfond, M., Lifschitz, V., Classical Negation in Logic Programs and Disjunctive Databases,
New Generation Computing, 9:365-385, 1991.

Gelfond, M., Son, T.C., Reasoning with prioritized defaults. LPKR, 164-223, 1997.

Grell, S., Konczak, K., Torsten Schaub, T., nomore<: A System for Computing Preferred
Answer Sets. LPNMR, 394-398, 2005.

Papadimitriou, C. H., Computational Complexity. Addison-Wesley, 1994.

Sakama, C., Inoue, K., Priorized logic programming and its application to commonsense
reasoning. Artificial Intelligence, 123, 185-222, 2000.

Schaub, T., Wang , K., A Comparative Study of Logic Programs with Preference. IJCAI,
597-602, 2001.

Van Nieuwenborgh, D., Vermeir, D., Preferred Answer Sets for Ordered Logic Programs.
JELIA, 432-443, 2002.

Van Nieuwenborgh, D., Vermeir, D., Ordered Diagnosis, LPAR, 244-258, 2003.

Van Nieuwenborgh, D., Heymans, S., Vermeir, D., On Programs with Linearly Ordered Mul-
tiple Preferences. ICLP, 180-194, 2004.

Wakaki, T., Inoue, K., Sakama, C., Nitta, K., Computing Preferred Answer Sets in Answer
Set Programming. LPAR, 259-273, 2003.

Wakaki, T., Inoue, K., Sakama, C., Nitta, K., The PLP System. JELIA, 706-709, 2004.
Wang, X., You, J. H,, Yuan, L. Y., Nonmonotonic reasoning by monotonic inferences with
priority conditions. NMELP, 91-109, 1996.

Wang, K., Zhou, L., Lin, F., Alternating Fixpoint Theory for Logic Programs with Priority.
Computational Logic, 164-178, 2000.

Zhang, Y., Foo, N., Answer sets for prioritized logic programs. ILPS, 69-83, 1997.

A Modularity Approach for a Fragment of ALC

Andreas Herzig and Ivan Varzinczak

IRIT — 118 route de Narbonne
31062 Toulouse Cedex — France
{herzig,ivan}@irit.fr
http://www.irit.fr/LILaC

Abstract. In this paper we address the principle of modularity of on-
tologies in description logics. It turns out that with existing accounts
of modularity of ontologies we do not completely avoid unforeseen in-
teractions between module components, and modules designed in those
ways may be as complex as whole theories. We here give a more fine-
grained paradigm for modularizing descriptions. We propose algorithms
that check whether a given terminology is modular and that also help
the designer making it modular, if needed. Completeness, correctness
and termination results are demonstrated for a fragment of ALC. We
also present the properties that ontologies that are modular in our sense
satisfy w.r.t. reasoning services.

Keywords: Knowledge representation, description logics, modularity.

1 DMotivation

Imagine an automatic passport control system in an airport such that all passen-
gers must be controlled. Besides other software components, such a system is built
on a passenger ontology. Suppose that the ontology is made up of statements like
“a passenger has a passport”, “EU citizens have EU passports”, and “foreigners
have non-EU passports”. Such a knowledge can be encoded in description logics
like ALC [1] by the following terminological axioms: Passenger T Jpassport.T,
EUcitizen = Vpassport.EU, and Foreigner = Vpassport.—EU. Moreover, let the ax-
iom DoubleCitizen = Foreigner M EUcitizen define a foreigner that also has got a
second citizenship of some EU country. It is not that hard to see that this de-
scription is consistent. Now, from such an ontology it follows DoubleCitizen =
Vpassport._ L, and from this and the axiom Passenger C dpassport. T we conclude
DoubleCitizen C —Passenger, i.e., a person with double citizenship is not a pas-
senger. Hence, if we have the assertion DoubleCitizen(BINLADEN), regarding the
system behavior, this means that the concerned individual does not necessarily
need to be controlled!

Despite the simplicity of such a scenario, problems like this are very likely
to happen, especially if the knowledge base gets huge and hence more difficult
to control. An alternative to ease maintainability of large ontologies is decom-
posing it into modules. Starting with [6], where modularity is assessed in logical
theories in general, this issue has been investigated for ontologies in the recent

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 216-228, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Modularity Approach for a Fragment of ALC 217

literature on the subject [15,5]. Nevertheless, it turns out that these methods
for modularizing descriptions, i.e., creating independent partitions of a knowl-
edge base, do not take into account internal interactions of components of the
description that can lead to unintuitive conclusions like the one above, even if
the ontology is consistent. Here we go further and propose a more fine-grained
modularity principle with which we get a decomposition of the ontology so that
interactions between and inside their components are limited and controlled.

Ontologies are usually represented by DL knowledge bases containing multiple
roles Ry, Ro,... Such roles are used to formalize attributes of a concept. Then
we naturally have modularity whenever a given ontology description X' can be
partitioned into sub-descriptions relative to each role:

y=3xbuyxyfhiyxhy...
such that

— X" contains no role references, and
— the only role of X% is R;.

We call these sub-descriptions modules (some modules might be empty). Examples
of such modules can easily be found in design of DL ontologies, where each X
contains axioms involving only the role R;, and X? is the sub-description whose
axioms mention no role at all, i.e., contains only boolean combinations of
concepts.

For example, for our passport control system we have the description:

Passenger C dpassport. T,
ypassport — /' ElUcitizen = Vpassport.EU,
Foreigner = Vpassport.—EU

2? = {DoubleCitizen = Foreigner M EUcitizen}

Such a description is composed of two sub-descriptions, one for expressing the
attributive part of the theory, XP2sP't and one to formalize the role-free con-
straints of the domain, X?. $Passport formalizes the restrictions on the attributes
of the concepts of the domain, in this case that a passenger must have a passport,
that an EU citizen has an EU passport, and so on. £? establishes the boolean
constraint according to which a double citizen is a foreigner and an EU citizen,
with no regard to his attributes.

A similar partitioning of descriptions can be found in reasoning about ac-
tions, where each X'* contains descriptions of the atomic action a in terms of
preconditions and effects, and X% is the set of static laws (alias domain con-
straints), i.e., those formulas that hold in every possible state of a dynamic
system, and are thus global axioms. Another example is when mental atti-
tudes such as knowledge, beliefs or goals of several independent agents are
represented: then each module X'¢ contains the respective mental attitudes of
agent o.

218 A. Herzig and 1. Varzinczak

Let X' denote a description logic ontology and suppose we want to know
whether X' =C C D, i.e., whether an axiom C C D follows from the description
in Y. Then it is natural to expect that we only have to consider those modules
of X7 which concern the alphabet of C' C D, more specifically the roles occurring
in C C D. For instance, deductions concerning the role passport should not
involve axioms for role hasDisease; querying the ontology of the passport control
system should not require bothering with that of the fast-food in the airport
hall. This is the problem we address in this paper.

The present work is structured as follows: in Section 2 we recall some logical
definitions that we will use throughout this paper. In Section 3 we present a role-
based decomposition of ontologies, which will serve as guideline for the definition
of modularity in description logics we give in Section 4. We then define a fragment
of ALC for which we have a sound and complete modularity test (Section 5).
Before concluding, we show some of the benefits we get from ontologies that are
modular in our sense (Section 6).

2 Description Logic ALC

Here we briefly present the basic definitions of the description logic ALC. For
more details, see [1].

The basic syntactic building blocks of ALC as of any other description logics
are atomic concepts, atomic roles, and individuals. We call atomic concepts and
atomic roles elementary descriptions. Complex descriptions are built from them
with concept constructors. We use A to denote atomic concepts, R for atomic
roles, and C, D, ... for complex concept descriptions.

Complex concept descriptions are recursively defined in the following way:

C:=A| (an atomic concept)
T (universal concept)
1] (contradiction concept)
-C | (complement)
CnC | (conjunction)
CUC | (disjunction)
VR.C'| (value restriction)
dR.C'| (existential restriction)

where A ranges over atomic concepts, R over atomic roles, and C' over complex
concepts. Recalling our running example, the statements Foreigner M EUcitizen,
dpassport. T, Vpassport.EU, and Vpassport.—EU are complex concepts in ALC.

We use individuals to describe a specific state of affairs in terms of con-
cepts and roles. We use a,b,... to denote individuals. In our example, JAN
and POLAND are individuals of which we can assert, respectively, the proper-
ties EUcitizen and EU. The intended meaning of such assertions is that JAN
has EU citizenship and POLAND is a member of the European community.
Individuals and assertions about them allow us to give a description of the
world.

A Modularity Approach for a Fragment of ALC 219

Definition 1. Aninterpretation Z is a tuple (AT, -T) such that AT is a nonempty
set and - a function mapping:

— every concept to a subset of AT
— every role to a subset of AT x AT
— every individual to an element of AT

Given an interpretation Z = (AZ,.T), AT is the interpretation domain, and -*
the associated interpretation function. If @ is an individual name, A an atomic
concept, R an atomic role, and C', D concepts, we have:

af e AT
AT Cc AT
RIQAIXAI
—AI
I =0
(I AI\CI
(cnbDY =0c*TnD?

)

)
(CuD)f =c*tuD?
(VR.C)T = {a € AT : Vb.(a,b) € R* implies b € CT}

OV ={ae AT : Jb.(a,b) € RF and b € CT}

In ALC we also have terminological axioms (axioms, for short). These are
statements of the form C' = D and C' T D. Axioms of the first kind are called
concept definitions (alias equalities). Those of the second kind are called concept
inclusion axioms (alias inclusions or subsumptions). If C'and D are both complex
concepts, then C C D is called a general concept inclusion axiom (GCI).

An interpretation Z satisfies a concept definition C' = D (noted |:I C =
D) if €T = DZ. Intuitively, C = D establishes a definition for concept C in
terms of D. In our example, we have DoubleCitizen = Foreigner M EUcitizen,
which gives both necessary and sufficient conditions to be a person with double
citizenship.

An interpretation 7 satisfies a subsumption C' C D (noted):I C C D)if
CT C DZT. Intuitively, C T D means that concept C' is more specific than
concept D. In our example we have DoubleCitizen C EUcitizen, which says that
a person with double citizenship is a specialization of a European citizen. We
also have Passenger T dpassport. T, saying that a necessary condition to be a
passenger is having a passport. Concept inclusion axioms are used when one is
not able to completely define a concept: in the last example, a passenger may
have many other properties of which the knowledge engineer was not necessarily
aware when modeling the description.

We call a (finite) set of terminological axioms a terminology, alias TBox. We

denote TBoxes by 7. An interpretation Z is a model of a TBox T (noted |:I 7)
if |:I CCDforallCCDeT. An axiom C C D is a consequence of a TBox 7
(noted 7 =C C D) if for every interpretation Z, I:I 7T implies):I CLCD.

220 A. Herzig and 1. Varzinczak

Henceforth we can suppose w.l.o.g. that TBoxes are linearized, i.e., T only
contains inclusion axioms (no concept definitions), and see C' = D as just as an
abbreviation for C C D and D C C.

A concept assertion is a statement about an individual with respect to some
concept. We denote by C(a) the fact that a belongs to (the interpretation of)
concept C. In our example, the assertion Foreigner(JOHN) says that JOHN is a
non-European citizen, and that all properties a foreigner has (e.g. possessing a
non-EU passport) apply to JOHN as well.

A role assertion establishes a relationship between two individuals. If a, b are
individuals and R is a role name, then R(a,b) asserts that b is a filler of the
role R for a. In our example, the role assertion refund(JOHN, VAT) states that
JOHN can claim the refund of the value added tax when leaving the airport.

An interpretation Z satisfies a concept assertion C(a) (noted):I C(a)) if
a? € C%, and a role assertion R(a,b) (noted I:I R(a,b)) if (a,b%) € RE.

A (finite) set of concept and role assertions define an ABox. We denote ABoxes
by A. An interpretation Z is a model of an ABox A (noted |:I A) if T satisfies
every assertion in A. A concept assertion C(a) (resp. a role assertion R(a,b)) is
a consequence of an ABox A, noted A =C(a) (resp. A = R(a,b)), if for every
interpretation Z,):I A implies):I C(a) (resp.):I R(a,b)).

A knowledge base is a tuple X = (7, A), where 7 is a TBox and A an
ABox. An interpretation Z is a model of X' = (7T, A) if I:I 7 and |:I A. Logical
consequence of an axiom C' T D, of a concept assertion C(a) and of a role
assertion R(a,b) from a knowledge base X' is defined in the standard way.

In the rest of this paper we are going to restrict ourselves only to the TBox
component of knowledge bases.

3 Role-Based Decomposition

Here we give a novel way of decomposing ontologies. Let QRoles = {R1, Ra, ...}

be the set of all role names of a domain. Let roles(C T D) return the set of role

names occurring in an axiom C' C D. For instance roles(C' = AR1.D MVYRy.E) =

{R1, Ra}. Moreover, for a TBox 7, let roles(7) = Joper roles(C E D).
With that we define a role-based classification of axioms.

Definition 2. A boolean axiom is an aziom C' T D such that roles(C T D) = ().
If roles(C C D) # (), C C D is a non-boolean axiom.

If Z C Roles, Z # 0, then we define
T#={CCDecT : roles(CCD)NZ # B}
Hence, 7% contains all non-boolean axioms of the terminology 7 whose roles

appear in Z. For # =0, T" = {C C D € T : roles(C C D) = ()} is the set of
all boolean axioms of a knowledge base.

A Modularity Approach for a Fragment of ALC 221

For example, if

Passenger C dpassport. T, EUcitizen = Vpassport.EU,
T = { Foreigner = Vpassport.—EU, Foreigner C Jrefund.Tax,
DoubleCitizen = Foreigner M EUcitizen

then we have
7 {refund} — fForeigner C Jrefund. Tax}

and
7% = {DoubleCitizen = Foreigner M EUcitizen}

For parsimony’s sake, we write 7% instead of 715},
Given these fundamental concepts, we are able to formally define modularity
for ontologies in description logics.

4 Modular TBoxes

We can suppose from now on that 7 is partitioned, in the sense that {79} U
{Th . R; € Roles} is a partition! of 7. We thus exclude 7 containing more
than one role name, which means that complex concepts with nested roles are
not allowed. We thus make it a hypothesis:

{T%yU{T" : R; € Roles} partitions T (H)
We are interested in the following principle of modularity:

Definition 3. A terminology T is modular if and only if for every C C D,
T =C C D implies groles(CED) (770 ECCD.

Modularity means that when investigating whether C C D is a consequence
of 7', the only axioms in 7 that are relevant are those whose role names occur
in C C D and the boolean axioms in 7.

This is reminiscent of interpolation [4], which for the case of roles says:

Definition 4. A terminology T has the interpolation property if and only if for
every axiom C T D, if T EC C D, then there is a terminology Torp such that

— roles(Toep) C roles(T') Nroles(C' T D)
- T EC'C D for every ' C D' € Torp
-~ Tecp ECED

! Remembering, {7°} U {T" : R; € Moles} partitions 7 if and only if 7 = 7° U
Unr, estotes TR and T°NTH =0, and TR N TH =0, if i # j. Note that 7% and
TR might be empty.

222 A. Herzig and 1. Varzinczak

Our definition of modularity is a strengthening of interpolation because it re-
quires 7 to be a subset of 7.

Contrary to interpolation however, modularity does not generally hold. Clearly
if the Hypothesis (H) is not satisfied, then modularity fails. To witness, consider

7T = {C = le.vRQ.C/7vR1.vR2.C/ = D}

Then 7 |=C = D, but 7% £C = D.
Nevertheless even under our hypothesis modularity may fail to hold. For ex-
ample, let
T ={CUVR.L=T,CU3RT =T}

Then 7% = (), and 7% = 7. Now 7 [=C, but clearly 7% £C.
How can we know whether a given TBox 7 is modular? The following criterion
is simpler:

Definition 5. A terminology T is boolean-modular if and only if for every
boolean axiom C C D,

T =C C D implies 79 ECCD.
With that we guarantee modularity:

Theorem 1 ([12]). Let T be a partitioned terminology. If T is boolean-modular,
then T is modular.

In the rest of the paper we investigate how it can be automatically checked
whether a given terminology 7 is modular and how to make it modular, if
needed. We do this for a version of ALC with a restriction on the form of the
axioms we can state in a TBox.

5 Soundness and Completeness for a Fragment of ALC

Definition 6. A concept C is a boolean concept if roles(C) = ().

We here make a syntactical restriction on the form of non-boolean axioms in our
TBoxes.

Definition 7. If C is a boolean concept, then VR.C is a boolean value restric-
tion, and IR.C is a boolean existential restriction.

In this section we suppose that:

All value/existential restrictions in a knowledge base

. - L H2
are boolean value/existential restrictions. (H2)

Our fragment differs from ALC just in the sense that only boolean concepts
are allowed in the scope of a quantification over a role. We observe however
that we could allow for axioms with nested roles like C' = VR1.VR>.D and GCIs

A Modularity Approach for a Fragment of ALC 223

like VR3.E C VRy.F. For that it would suffice to adapt an existing technique
of subformula renaming [17] in the literature on classical logic [14, 2, 3] to recur-
sively replace complex concepts with some new concepts, stating definitions for
these as global axioms. For instance, C' = VR1.VRs.D should then be rewrit-
ten as C' = VR;.C' and ¢’ = VRy.D, and VR3.E T VR4.F could be replaced
by E' C VR4.F and E' = VR,.E, where C', E' are new concept names. It is
known that subformula renaming is satisfiability preserving and can be com-
puted in polynomial time [13]. However it remains to assess the impact the
introduction of new concept names can have on the intuition about the original
ontology.

Our central hypothesis here is that the different types of axioms in a given
terminology should be neatly separated and only interfere in one sense: boolean
axioms together with non-boolean axioms for role R may have consequences
that do not follow from the non-boolean axioms for R alone. The other way
round, non-boolean axioms should not allow to infer new boolean axioms. That
is what we expect modularity of TBoxes to establish and we develop it in the
sequel.

Definition 8. A boolean inclusion axiom C T D is an implicit boolean inclusion
axiom of a terminology T if and only if T =C C D and T% ~C C D.

In our running example, DoubleCitizen C —Passenger is an example of an implicit
boolean inclusion axiom.

With Algorithm 1 below we can check whether a TBox has such implicit ax-
ioms. The idea is as follows: for each pair of axioms C C 9dR.D and F C VR.F
in 7 such that F conflicts with D, i.e., 7T DN F C L, if T°U{C N E} is
satisfiable and 79 £ C C —E, mark C C —F as an implicit boolean inclusion
axiom.

Algorithm 1. Deciding existence of implicit boolean inclusion axioms
input: a TBox 7

output: a set of implicit boolean inclusion axioms TZ?,,I,

T2 =0

imp ©
for all R € Roles do
for all {C: C 3R.Dy,...,C, TIR.D,} C T do
for all {E1 CVR.F1,...,En CVR.F,} C7T do

if 7" Ellicicn Ci Ml i<y, B E L and
7° ':|—|1gz§n D; N |_|1§j§m F; C 1 then

(e]
IZ’imp T IZ’imp u {l—llgzgn C" E |—|l§]§m “E'L}

Theorem 2. Algorithm 1 terminates.

Proof. Straightforward from finiteness of 7.

224 A. Herzig and 1. Varzinczak

Lemma 1. Let TZ& « be the output of Algorithm 2 on input 7. Then every
p

CCDce szp is an implicit boolean inclusion axiom of T .

Converse of Lemma 1 does not hold. Indeed, consider the quite simple TBox:

Cp E L,
T = 01;1 E VR.CZ', 1 S) § n,
TC3IRT

Thus, 7 EC; C L, for 0 < i < n, but running Algorithm 1 returns only
70— = {C,—1 C L}. This suggests that it is necessary to iterate the algorithm

imp
in order to find all implicit boolean inclusion axioms. Before doing that we

observe that:

Theorem 3. A terminology T is modular if and only if T, Zmp = 0.
Considering the example jubt above we can see that running Algorithm 1 on
T U{Cn_1 C 1} will give us 7, Zmp = {Cj—2 C 1}. This means that some of the
implicit boolean inclusion axioms of a terminology may be needed in order to
derive others. Hence, Algorithm 1 must be iterated to get 7 modular. This is
achieved with the following algorithm, which iteratively feeds the set of boolean
axioms considered into the if-test of Algorithm 1:

Algorithm 2. Finding all implicit boolean inclusion axioms

input: a TBox 7

output: szp*v the set of all implicit boolean inclusion axioms of 7

mLp = @
repeat

= find imp bia(T UTP) {a call to Algorithm 1}

mLp imp*

70 = T? uTP

'me imp mp

until 72 =10

imp

Theorem 4. Algorithm 2 terminates.

Theorem 5. Let T

imp*

be the output of Algorithm 2 on input T . Then

1. TU {szp } is modular;

2. T [T, .}

Corollary 1. For all boolean inclusion axioms C C D, T =C C D if and only
if T U{T) .} FCCD.

A Modularity Approach for a Fragment of ALC 225

This establishes that Algorithm 2 finds all implicit boolean inclusion axioms of
a given terminology 7 . Hence, adding such axioms to the original set of boolean
axioms 7% guarantees modularity of 7.

We want to point out, however, that the algorithm only catches implicit
boolean inclusion axioms. Deciding whether they are intuitive remains the knowl-
edge engineer’s task, and only she can carry out changes in the knowledge base
in order to accommodate them in or discard them from the description. In our
running example, the inclusion DoubleCitizen © —Passenger is not intuitive and
should then be contracted from the terminology.

Algorithms 1 and 2 are generalizations/extensions of the method for PDL
given in [12] where (in terms of description logics) only existential restrictions
of the form C C JR.T were allowed.

6 The Role of Modularity in Reasoning Services

The following result is important in the ontology building phase:

Theorem 6. Let 7 and C T D be such that T T T L. If T is modular, then
TU{CCD}ETC L ifand only if TP U T™es(CEP) y{CC D} =T C L.

This theorem says that under modularity consistency of a new learned axiom
C C D w.r.t. a consistent TBox reduces to consistency check of the axioms that
are relevant to C C D.

Theorem 7. If T is modular, then T =T C L if and only if T® =T C L.

Hence, if there are no implicit boolean inclusion axioms, then consistency of the
whole terminology can be checked by just checking consistency of 7.

It turns out that checking whether a concept C is the least common sub-
sumer (lcs) of a set of concepts, i.e., the minimal concept that subsumes all
other concepts in question [1], is also optimized under modularity:

Theorem 8. Let I' be a set of concepts. If T is modular, then C is the lcs of
I wort. T if and only if C is the les of I’ w.r.t. T U Troles(©),

For 7 a TBox, we define 77 = {C CVR.D : C CVYR.D € T},i.e., T contains
all non-boolean axioms in the TBox 7 with value restrictions for role R.

Theorem 9. If T is modular, then
T =C CVR.D if and only if T° U TS =C CVR.D.

This means that under our modularity principle we have modularity inside the
module for non-boolean axioms, too: when deducing an axiom with value re-
strictions we do not need to consider axioms with existential restrictions.

The existential restriction counterpart of Theorem 9, however, does not hold.
To witness, from the modular description {VR.CUD,3R.—C'} we conclude IR.D,
but {3R.~C} =3IR.D. Nevertheless, we can establish a result if only the universal
concept (T) is allowed in the scope of existential restrictions. For that we define
TE={CC3RT : CC3RTEeT}

226 A. Herzig and 1. Varzinczak

Theorem 10. If T is modular, then
T =C C3R.T if and only if T UTE =C C 3R.T.

Let ’Z;Rl""’R" =Ui<i<n ’Z;Ri. The following theorem shows that under modular-
ity deduction of an axiom based on nested value restrictions does not need the
axioms based on existential restrictions:

Theorem 11. If T is modular, then T =C C VRy...VR,.D if and only if
7Oy T/ |=C CVYR.D.

The same result holds for deductions of axioms based on existential restrictions
under the assumption that only T is allowed in the scope of 3. Let ’THR“'"R" =

Ulgign ER7
Theorem 12. If T is modular, then T =C C 3R;...3R,.T if and only if
TOu Tt =C C3RT.

7 Concluding Remarks

We defined here a modularity paradigm for ontologies in description logics and
pointed out some of the problems that arise if it is not satisfied, even if the
ontology is consistent. In particular we have argued that the boolean part of a
description could influence but should not be influenced by the role-based one.

We have seen that the presence of implicit boolean inclusion axioms is a
sign that we possibly have slipped up in designing the ontology in question. We
showed how to detect this problem in a fragment of ALC with a syntactical
restriction on its formulas. With Algorithm 2 we have a sound and complete
decision procedure for such a task. Moreover, the output of the algorithm gives
us guidelines that can help correcting the ontology.

We could also use full ALC, in this case our method is sound but not complete.
As an example, let T = {C =VR1.VRy.D,C' =VR1.3R2.—~D, T = 3R;. T}. We
have 7 =C C —C’, but running Algorithm 2 on 7 gives Tl.?np* = 0.

It could be argued that unintuitive consequences in ontologies are mainly due
to badly written axioms and not to lack of modularity. True enough, but what
we presented here is the case that making an ontology modular gives us a tool
to detect some of such problems and correct it. (But note that we do not claim
to correct badly written axioms automatically and once for all.) Besides this,
having separate entities in the ontology and controlling their interaction help us
to localize where the problems are, which is crucial for real world applications.

As our theorems show (proofs were omitted due to lack of space), being mod-
ular is a useful feature of terminologies w.r.t. reasoning: beyond being a reason-
able principle of design that helps structuring data, it clearly restricts the search
space, and thus makes reasoning easier.

The first work on formalizing modularity in logical systems in general seems to
be due to Garson [6]. Modularity of theories in reasoning about actions was orig-
inally defined in [10] and extensively developed in [12,9]. A different viewpoint

A Modularity Approach for a Fragment of ALC 227

of that can be found in [11], where modularity of action theories is assessed from
a more software engineering oriented perspective. The present work has been
inspired by ideas in the referred approaches. Following [6], a modularization
technique for ontologies in DL different from ours is addressed in [5].

Our notion of modularity is related to uniform interpolation for TBoxes [7].
Let concepts(7) denote the concept names occurring in a TBox 7. Given T
and a signature S C concepts(T) U roles(T), a TBox TS over (concepts(T) U
roles(T)) \ S is a uniform interpolant of T outside S if and only if:

- T):’TS;
- 7S E=C C D for every C' C D that has no occurrences of symbols from S.

It is not difficult to see that a partition {7°} U {7 : R; € Roles} is modular
if and only if every 7% is a uniform interpolant of 7 outside roles(T) \ {R;}.
In [16] there are complexity results for computing uniform interpolants in ALC.

In [7] a notion of conservative extension is defined that is similar to our
modularity. There, 7; U 7, is a conservative extension of 7; if and only if for
all concepts C, D built from concepts(7;) U roles(T;), T; U Ty, =C C D implies
7, ECC D.

Given our Theorem 1, we can show that checking for modularity can be
reduced to checking for conservative extensions of 7%, Indeed, supposing that
the signature of 7% is the set of all concept names, we have that 7 is modular
if and only if for every role R;, 7% UT" is a conservative extension of 77.

We plan to pursue further work on extensions of our method to more ex-
pressive description logics. Another extension that we foresee is generalizing
modularity to also take into account ABoxes. In this case our algorithms should
be adapted so that implicit interactions between terminologies and assertions
can be caught.

Because interactions between TBoxes and ABoxes may lead to inconsistency,
ontology update and revision should be considered, too. We are currently in-
vestigating update of terminologies based on the method given in [8], for which
satisfaction of modularity shows to be fruitful.

Acknowledgments

We are grateful to the anonymous referees for useful comments on an earlier
version of this paper. Thanks to Bernardo Cuenca Grau for useful and interesting
discussions about the topic of this work. We also would like to thank Meghyn
Bienvenu for comments about DL terminology and notation.

Ivan Varzinczak has been supported by a fellowship from the government of
the FEDERATIVE REPUBLIC OF BRraAzIL. Grant: CAPES BEX 1389/01-7.

References

1. F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, Description Logic
Handbook, chapter 2, pages 47-100. Cambridge University Press, 2003.

228

2.

11.

12.

13.

14.

15.

16.

17.

A. Herzig and 1. Varzinczak

T. Boy de la Tour. Minimizing the number of clauses by renaming. In M.E. Stickel,
editor, Proc. 10th International Conference on Automated Deduction (CADE’90),
pages 558-572, London, 1990. Springer-Verlag. LNCS, vol. 449.

. T. Boy de la Tour. An optimality result for clause form translation. J. of Symbolic

Computation, 14(4):283-301, 1992.

. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. of

Symbolic Logic, 22:250-268, 1957.

. B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web

ontologies. In Proc. 10th Intl. Conf. on Knowledge Representation and Reasoning
(KR’2006), pages 198-208, Lake District, 2006. Morgan Kaufmann Publishers.

. J. Garson. Modularity and relevant logic. Notre Dame J. of Formal Logic,

30(2):207-223, 1989

. S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? a case for conser-

vative extensions in description logic. In Proc. 10th Intl. Conf. on Knowledge Rep-
resentation and Reasoning (KR’2006), pages 187-197, Lake District, 2006. Morgan
Kaufmann Publishers.

. A. Herzig, L. Perrussel, and I. Varzinczak. Elaborating domain descriptions. In

Proc. 17th Eur. Conf. on Artificial Intelligence (ECAI’06), Riva del Garda, 2006.
IOS Press.

. A. Herzig and 1. Varzinczak. Metatheory of actions: beyond consistency. To appear.
. A. Herzig and I. Varzinczak. Domain descriptions should be modular. In

R. Lépez de Médntaras and L. Saitta, editors, Proc. 16th Eur. Conf. on Artificial
Intelligence (ECAI’04), pages 348-352, Valencia, 2004. IOS Press.

A. Herzig and I. Varzinczak. Cohesion, coupling and the meta-theory of actions.
In L. Kaelbling and A. Saffiotti, editors, Proc. 19th Intl. Joint Conf. on Artifi-
cial Intelligence (IJCAI’05), pages 442-447, Edinburgh, 2005. Morgan Kaufmann
Publishers.

A. Herzig and I. Varzinczak. On the modularity of theories. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic, volume 5, pages 93-109. King’s College Publications, 2005. Selected papers
of AiML 2004 (also available at http://www.aiml.net/volumes/volume5).

A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
A. Robinson and A. Voronkov, editors, Handbook of automated reasoning, pages
335-367. 2001.

D. Plaisted and S. Greenbaum. A structure-preserving clause form translation. J.
of Symbolic Computation, 2(3):293-304, 1986.

H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies.
In V. Sorge, S. Colton, M. Fisher, and J. Gow, editors, Proc. 18th Intl. Joint
Conf. on Artificial Intelligence (IJCAI'03), pages 900-908, Acapulco, 2003. Morgan
Kaufmann Publishers.

B. ten Cat, W. Conradie, M. Marx, and Y. Venema. Definitorially complete descrip-
tion logics. In Proc. 10th Intl. Conf. on Knowledge Representation and Reasoning
(KR’2006), pages 79-89, Lake District, 2006. Morgan Kaufmann Publishers.

G.S. Tseitin. On the complexity of derivation in propositional calculus. In A.
Slisenko, ed., Studies in Constructive Mathematics and Mathematical Logics, Part
11, 1968.

Whatever You Say

Luke Hunsberger

Vassar College
Poughkeepsie, NY 12604-0444, USA

hunsberg@cs.vassar.edu

Abstract. This paper addresses an important problem in multi-agent
coordination: the formal representation of parameters in the content of
agent intentions that are only partially specified (e.g., when the intended
action has not yet been executed and values for the parameters have not
yet been chosen or the authority for choosing such values has been dele-
gated to others). For example, Abe might intend to rent “whatever car
Zoe tells him to”, in which case the problem is how to formally represent
the quoted clause (i.e., the “whatever” content). The paper presents a
two-pronged approach. First, it uses the event calculus to model declar-
ative speech-acts which agents use to establish facts about parameters in
a social context. Second, it partitions the content of agent intentions into
(1) a condition that the agent should refrain from determining and (2) a
goal that the agent should strive to achieve. The satisfaction conditions
of such intentions treat these types of content differently; however they
can share variables and, thus, are linked in a restricted sense.

1 Introduction

Since people have limited computational resources, they cannot, at each mo-
ment, instantaneously compute their optimal action for that moment; instead,
they must plan ahead [3]. Thus, they adopt plans and intentions concerning their
future activity which are only partially specified and which they subsequently
elaborate over time [4,10]. One common way for plans to be only partially spec-
ified is that their parameters may not be fully determined. For example, while
having no particular car in mind, Abe might intend to rent a car. Later on,
Abe might select a car—say, Car39—to rent. However, before he makes such a
selection, there is no car about which we can say Abe intends to rent that car.
In addition to frequently being only partially specified, the plans and activi-
ties of different people are frequently interdependent, thus motivating people to
coordinate their future-directed planning activity [9]. As a result, they must fre-
quently negotiate about objects, such as the car mentioned above, that may be
only partially specified. For example, suppose that Abe decides to let the rental
agent Zoe select the car that he is going to rent. Abe must update his intention
to reflect this delegation of parameter-binding authority; he now intends to rent
whatever car Zoe selects for him. In this paper, intentions concerning this kind
of partially specified content are called intentions with “whatever” content. For

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 229-241, 2006.
© Springer-Verlag Berlin Heidelberg 2006

230 L. Hunsberger

computer agents to participate effectively in these kinds of commonplace, multi-
agent planning and coordination scenarios, they must be able to represent and
reason about intentions with “whatever” content.

An intention is satisfied [17] if it successfully motivates the intending agent to
eventually do the action or achieve the state of affairs stipulated in its content.
Whereas Abe’s original intention “to rent a car” might be satisfied by his renting
any of perhaps a hundred different cars, his updated intention “to rent whatever
car Zoe selects” can only be satisfied by his renting whatever car Zoe happens
to eventually select for him. Thus, the satisfaction of Abe’s updated intention
depends on how its “whatever” content is eventually determined—by Zoe.

This paper presents an approach to modeling intentions with “whatever” con-
tent that is based on public names (or identifiers) that agents mutually agree
to use. For example, Abe and Zoe might agree to use the name C1 to refer to
the context of their rental-car interaction.! Similarly, they might agree to use
the name Car to represent whatever car Zoe eventually selects for him. In this
paper, C1 is called a social context and CAR is called a parameter within a social
context (or, a social parameter). Linking parameters to social contexts helps to
disambiguate scenarios in which different contexts might have identically named
parameters. For example, Zoe might be selecting rental cars for several people
in different contexts.

The first part of this paper formally models the processes whereby agents as-
sign names to social contexts and parameters associated with those contexts. The
assignment of names is established by group declarations—that is, declarations
attributable to groups. Agents also use group declarations to bind parameters to
values and to delegate to other agents the authority for binding parameters. In
this paper, a group declaration is modeled as an abstract event that “happens”
when a group of agents make a decision, as a group, to make such a declaration.
The formal definitions are given in terms of the existing GDMM framework for
formally specifying group decision-making mechanisms [11, 12] that is recast, in
this paper, in terms of the event calculus[14]. The event calculus facilitates the
expression of axioms governing propositions (e.g., those established by declara-
tions) that hold only over certain temporal intervals.

The second part of the paper addresses the syntax and satisfaction conditions
for intentions with “whatever” content. It is formulated in terms of the stit
theory of Belnap et al.[1]. The content of intentions is augmented to include
not just a goal that the intending agent is committed to achieving, but also a
proposition that the agent refrains from determining (e.g., Abe might intend to
rent whatever car Zoe selects, while refraining from determining which car she
selects).

The rest of this paper is organized as follows. Section 2 recasts the pre-existing
GDMM framework in terms of the event calculus. Section 3 models group dec-
larations that agents can use to manage social contexts and social parameters.
Section 4 presents the syntax and satisfaction conditions for intentions with
“whatever” content. Section 5 discusses related work and presents conclusions.

! Grosz [8] highlights the importance of context in collaborative, multi-agent scenarios.

Whatever You Say 231

2 The GDMM Framework in the Event Calculus

The GDMM framework [11,12] is a framework for formally specifying group
decision-making mechanisms (GDMMs). In that framework, a GDMM (or inter-
action protocol) is defined in terms of declarative speech-acts and the incremental
accumulation of authority. In a typical GDMM, each agent might be authorized
(by the group) to initiate a GDMM instance (i.e., a run of a protocol) by mak-
ing an appropriate declaration. Such a declaration authorizes other agents to
make further declarations, thereby establishing facts that in certain combina-
tions authorize other agents to make still more declarations, and so on, until, in
successful instances, some agent is eventually authorized to declare, on behalf
of the group, that they have made a decision. That final, authorized declara-
tion establishes the group decision as a mutually believed fact among the group
members—an example of what Searle calls institutional facts[18].

The GDMM framework was originally presented using a dynamic, deontic,
temporal logic that enabled various properties to be formally proven. However,
that logic can be somewhat cumbersome when dealing with propositions—Ilike
those established or terminated by declarative speech-acts—that hold only over
certain temporal intervals. Thus, this section recasts the original GDMM frame-
work in terms of the event calculus[14]. In the recast framework, declarative
speech-acts are represented by events; authorization conditions by fluents (i.e.,
reified propositions); and an authorized speech-act establishing the truth of its
propositional content is represented by a speech-act event initiating an appro-
priate fluent. In addition, protocol-specific axioms specify a protocol’s method
of incrementally accumulating authority. For example, an axiom might stipulate
that certain combinations of fluents authorize certain speech-acts; or that cer-
tain speech-acts initiate or terminate certain fluents. The recast GDMM frame-
work is demonstrated on a sample propose-accept-reject (PAR) protocol [11, 12];
the formal definitions were tested using Shanahan’s abductive event-calculus
planner [19].

2.1 A Quick Summary of the Event Calculus

The event calculus [14] is based on events, fluents and time-points. Events include
actions such as buying a book or making a declarative speech-act. Fluents are
reified propositional terms that are initiated or terminated by events. Time-points
mark the occurrence of events and the initiation or termination of fluents. The
most important event-calculus predicates are listed in Fig. 1. In the figure, E
represents an arbitrary event, F an arbitrary fluent, and T, T; and Ty arbitrary
time-points. The predicates are governed by axioms such as SC1 and SC2 listed
below. SC1 states that if F holds at time 0 and is not subsequently clipped, then
it continues to hold. SC2 states that if F is initiated by E at time Ty, and is not
clipped between T; and some later time T2, then F continues to hold at Ts.

(SC1) [initially(F) A —clip(0,F,T)] = holds(F,T)

(SC2) [happens(E,T;) A inits(E,F,T1) A (T;<T2) A —clip(Ty,F,T2)]
= holds(F,Ts)

232 L. Hunsberger

happens(E,T) — event E happens at time T.

holds(F,T) — fluent F holds at time T.

initially(F) — fluent F holds from time 0 onward (until clipped).
inits(E,F,T) — if E happens at time T, then F is initiated at time T.
terms (E,F,T) — if E happens at time T, then F is terminated at time T.
clip(T:,F,T2) — F is terminated sometime between times T and Ta.

declip(T;,F,T2) — F is initiated sometime between times T and Ta.

Fig. 1. Predicates used in the event calculus

2.2 Declarative Speech-Acts and Authorization Conditions
A declarative speech-act is represented by an event term of the form
decl(G,Hs,Content), abbreviated as ¢

where G is an agent (the speaker), Hs is a group of agents (the hearers), and
Content is a fluent representing the propositional content of the declaration.
Authorization for such a speech-act is represented by a fluent of the form

auth(Gr, decl(G,Hs,Content)), abbreviated as auth(Gr,?d)

That is, agent G is authorized by the group Gr to make a declaration with con-
tent Content to a set of hearers Hs C Gr. Axiom A1, below, is the main axiom
governing declarative speech-acts. It stipulates that any suitably authorized dec-
laration establishes the truth of its propositional content.?

holds(auth(Gr,$),T) = inits(é,Content,T) (A1)

2.3 The PAR Protocol in the Recast Framework

In the sample PAR protocol [11,12], agents use declarative speech-acts to make
proposals, vote on proposals, and announce group decisions. Such speech-acts are
represented by the event terms listed in Fig. 2. Axioms governing the incremental
accumulation of authority in the PAR protocol are listed in Fig. 3.

Axiom E1 stipulates that each agent G in a group Gr is initially authorized
to make proposals to Gr. In this axiom, the authorizing group and the set of
hearers are the same (Gr); the content of the declarative speech-act, dwp, is the
fluent, madeProp(G,Gr,Prop); and the predicate proposable (Prop) is used to
restrict the range of allowable content for proposals. Axioms SC1, Al and E1
together entail that any agent G is authorized to make a PAR proposal to any
group Gr as long as: (1) G is a member of Gr; (2) the content of the proposal
is “proposable”; and (3) the agent’s authorization to make such proposals has
not been “clipped” by an intervening event (e.g., a group decision to revoke
it). To make a proposal, G simply declares that it has done so, whereupon (by
Axiom A1) a fluent of the form, madeProp(G,Gr,Prop), is initiated. Axiom E2

2 In all axioms in this paper, all free variables are implicitly universally quantified.

Whatever You Say 233

e decl(G,Gr,made(G,Gr,Prop)), abbreviated éup:

“G declares to the group Gr that it has made a proposal Prop.”

decl(G2,{G,G2},voted(G2,G,Gr,Prop,Vote)), abbreviated dy:

“G2 declares to G that it has made a vote concerning the proposal Prop,
where Vote € {accept,reject}.”

decl(G2,{G,G2},voted(G2,G,Gr,Prop,accept)), abbreviated dya:

“G2 declares to G that it has voted to accept the proposal Prop.”

decl(G,Gr,grAcc(Gr,Prop)), abbreviated 8ca:
“G declares to the group Gr that they have accepted Prop.”

Fig. 2. Event terms representing declarations in the PAR protocol

[(G € Gr) A proposable(Prop)] =- initially(auth(Gr,dw)) (E1)

[(G2 € Gr) A (G2 # G) A holds(auth(Gr,déw),T)] (E2)
= inits(éw ,auth(Gr,dby),T)

holds(auth(Gr,éw),T) = inits(éw ,accepters(G,Gr,Prop,d),T) (E3)

[holds(accepters(G,Gr,Prop,Others),T) A holds(auth(Gr,éws),T)] (E4)
= inits(éva,accepters(G,Gr,Prop,{G2} U Others),T)

[(Gr = {G} U Others) A holds(accepters(G,Gr,Prop,Others),T)] (E5)
= inits(éea,grAcc(Gr,Prop),T)

Fig. 3. Axioms governing incremental accumulation of authority in the PAR protocol

stipulates that the making of a proposal authorizes each of the other agents in
the group to vote on it—either to accept or reject it.

In the PAR protocol, if every agent votes to accept a proposal, then the
originator of that proposal—here, G—becomes authorized to declare, on behalf
of the group, that they have made a decision—namely, to accept the proposal.
G’s authorization to make such a declaration is accumulated incrementally, over
time, as each agent declares its own acceptance of the proposal, as governed
by axioms E3, E4 and E5. Axiom E3 stipulates that the making of a proposal
initiates a fluent of the form, accepters(G,Gr,Prop,{), representing that no
one in the group has (yet) voted to accept G’s proposal. Axiom E4 stipulates that
an agent G2’s authorized vote to accept a proposal incrementally updates the list
of “accepters” (by adding G2). Axiom E5 stipulates that if all of the other agents
(Others) have voted to accept G’s proposal, then G becomes authorized to declare

234 L. Hunsberger

on behalf of the group that they have accepted the proposal. If so authorized,
then, by Axiom A1, G’s declaration establishes the fluent, grAcc(Gr,Prop).

These axioms were encoded in Prolog and fed as input to Shanahan’s abduc-
tive event-calculus planner [19] which was able to come up with valid sequences
of speech-acts to yield various group decisions under the PAR protocol. For ex-
ample, the following sequence was generated in response to a query about how
a group of agents {g,h,i} might decide to accept a proposal prop:

happens(decl(g, [g,h,i] ,madeProp(g, [g,h,i] ,prop)),t51)
happens(decl(i, [g,i] ,voted(i,g, [g,h,i],prop,accept)),t52)
happens(decl(h, [g,h] ,voted(h,g, [g,h,i],prop,accept)),t50)
happens (decl(g, [g,h,i] ,grAcc([g,h,i],prop)),t48)

where the time-points were subject to the constraints: t51 < t52 < t50 < t48.
Although the PAR protocol is quite simple, the same approach can be used to
specify arbitrarily complex protocols based on declarative speech-acts and the
incremental accumulation of authority in the GDMM framework.

3 Group Declarations for Contexts and Parameters

For this paper, the most important types of group decisions are those that es-
tablish names for social contexts or parameters within those contexts, and those
that bind parameters to values or delegate authority for binding parameters.
Such decisions can be made using any GDMM; thus, it is convenient to ab-
stract away the GDMM used to generate the group decision and focus instead
on the proposition established by that decision. Toward that end, this section
uses the GDMM framework to model group declarations—that is, declarations
attributable to groups of agents. It then addresses the use of group declarations
to manage social contexts and parameters within those contexts.

In the single-agent case, an agent might establish the binding of a param-
eter thusly: “I hereby declare that the parameter P in the context C shall be
bound to the value 67.” By analogy, a group can establish such facts by making
group declarations. In particular, a group declaration, if suitably authorized, has
the power to establish the truth of its propositional content. However, a group
declaration is not uttered; instead it “happens”, by convention, when, at the
successful culmination of a GDMM instance, one of the agents announces, on
behalf of the group, that they have decided to make a declaration. For example,
at the end of a complex group decision-making procedure, a member of Congress
might announce that the Congress has decided, as a group, to declare war against
some other country. In such a case, the declaration of war is attributed to the
Congress as a whole, not to the individual making the announcement.

It is important to distinguish two kinds of authorization associated with group
declarations: internal and external. Internal authorization is that which is incre-
mentally accumulated during a run of whatever GDMM is being used to generate
the group declaration. For example, the member of Congress announcing their
decision to declare war must be suitably authorized by the Congress; otherwise,

Whatever You Say 235

no group declaration takes place. In contrast, the external authorization for a
group declaration is independent of the GDMM used to generate it. Instead, ex-
ternal authorization, which frequently comes from outside the group making the
declaration, is that which gives the group’s declaration the power to establish the
truth of its propositional content. In other words, the external authorization for
group declarations is analogous to the authorization conditions for single-agent
declarations. For example, a declaration of war by the Congress has the power
to establish a state of war only because the people, via the Constitution, have
authorized Congress to make such declarations.

A group declaration is represented by an event term of the form
grDecl(Gr,Hs,Content), abbreviated as A

where Gr represents the group making the declaration, Hs represents the set of
hearers, and Content is a fluent representing the content of the declaration.® A
group declaration is not an action that is directly “executable” by the group.
Instead, a group declaration “happens”, by convention, when a group makes a
group decision whose content has the form

done (grDecl(Gr,Hs,Content)), abbreviated as done(A).
In such a case, the group decision initiates (e.g., by Axiom E5) a fluent
gricc(Gr,done(A))

which can be glossed as “Gr has decided to make a group declaration to Hs that
Content holds.” Axiom A2, below, stipulates that such a fluent “counts as” [18]
a group having made the indicated group declaration.

holds(grAcc(Gr,done(A)),T) = happens(A,T) (A2)

Then, in direct analogy with Axiom Al, Axiom A3 below stipulates that an
authorized group declaration establishes the truth of its propositional content.

holds(auth(AuthGr,A),T) = inits(A,Content,T) (A3)
In this axiom, AuthGr represents the (external) authorizing group.

The rest of this section focuses on how agents can use group declarations to
establish names for social contexts and social parameters, and to bind such pa-
rameters or delegate the authority for binding them. In what follows, all contexts
and parameters are presumed to be under the sole control of the group Gr—that
is, Gr is its own “external” authorizing group. In addition, the set of hearers
is presumed to be the entire group. Thus, Gr = AuthGr = Hs. In addition, for
convenience, repeated arguments are omitted. Thus, a group declaration is rep-
resented by a term of the form, grDecl(Gr,Content)—abbreviated as A—and
the corresponding authorization condition is represented by a fluent of the form,

3 A denotes a group declaration; § denotes a single-agent declaration.

236 L. Hunsberger

grDecl (Gr,sContext (Gr,C)), abbreviated Ac:

“Group Gr declares a new social context named C.”

grDecl (Gr,sParam(Gr,C,P)), abbreviated Ap:

“Group Gr declares a new parameter named P associated with context C.”

grDecl(Gr,sBindParam(Gr,C,P,V)), abbreviated Agp:
“Group Gr declares that parameter P in context C is bound to value V.”
grDecl (Gr,sDelegParam(G,Gr,C,P)), abbreviated App:
“Group Gr declares that the authority for binding the parameter P in the
context C is delegated to the agent G.”
e decl(G,Gr,sBindParam(Gr,C,P,V)), abbreviated &gp:
“Agent G declares that parameter P in context C is bound to value V.”

Fig. 4. Event terms representing declarations for social contexts and parameters

initially(auth(Ac)) (E6)
holds(auth(Ac¢),T) = inits(Ac,auth(Ap),T) (E7)
holds(auth(Ap),T) = inits(Ap,auth(Agp),T) (E8)
holds(auth(Ap),T) = inits(Ap,auth(App),T) (E9)
holds (auth(Ap),T) = inits(App,auth(Gr,éep),T) (E10)

Fig. 5. Axioms pertaining to the declarations in Fig. 4

auth(grDecl (Gr,Content))—abbreviated as auth(A). Fig. 4 lists the types of
group declarations (and one single-agent declaration) to be discussed. Fig. 5 lists
the axioms pertaining to the declarations in Fig. 4.

A group Gr creates a social context named C by making a declaration of the
form Ac in Fig. 4. By Axiom E6 in Fig. 5, any group is initially authorized to cre-
ate arbitrary social contexts for itself. Thus, by Axiom A3, a group declaration,
Ac, establishes a fluent of the form, sContext (Gr,C).

A group Gr creates a social parameter named P, linked to a social context
C, by making a declaration of the form Ap in Fig. 4. By Axiom E7, a group’s
creation of a social context (Gr,C) automatically authorizes that group to create
social parameters within that context. Similarly, a group’s creation of a social
parameter (Gr,C,P) automatically authorizes that group to bind that parameter
to some value (Axiom E8) or delegate the authority for binding that parameter
to some other agent (Axiom E9).

A group Gr binds a parameter P in the context C to the value V by making a
declaration of the form Agp in Fig. 4. If suitably authorized, then, by Axiom A3,

Whatever You Say 237

such a declaration would initiate a fluent of the form sBindParam(Gr,C,P,V).*
Alternatively, a group might decide to delegate the authority for binding that
parameter to some agent, say G, by making a declaration of the form App in Fig. 4.
By Axiom E10, such a declaration authorizes G to bind P to any value V by making
a declaration of the form 6gp in Fig. 4.5 Should G make such a declaration, it
would, by Axiom A1, initiate the fluent, sBindParam(Gr,C,P,V). Thus, whether
the group Gr binds P directly using a group decision or indirectly via the delegate
G, the end result is the initiation of the same fluent: sBindParam(Gr,C,P,V).

Ezample. Abe (a) intends to rent whatever car Zoe (z) selects for him. In this
case, they make group declarations that initiate the following fluents:

sContext ({a,z},c) — ¢ is a social context for them.
sParam({a,z},c,p) —p is a social parameter for them in that context.
sDelegParam(z,{a,z},c,p) — they have delegated the binding of p to Zoe.

By Axiom E10, the last fluent in the above list initiates the following fluent,
which represents that Zoe is authorized to bind p to any value V.

auth({a,z},decl(z,{a,z},sBindParamn({a,z},c,p,V)))

4 Intentions with “Whatever” Content

This section presents a novel representation for intentions with “whatever” con-
tent. The satisfaction conditions for such intentions clearly distinguish conditions
that the intending agent seeks to achieve and those that it actively refrains from
determining. The representation is expressed in terms of the “sees to it that”
(stit) operator defined by Belnap et al. [1], which is briefly summarized below.
Afterward, intentions with “whatever” content and their satisfaction conditions
are defined and the definitions are illustrated with examples.

4.1 Seeing to It That

Belnap et al. [1] present a theory of “agents and choices in branching time”
within which they formally define a modal “sees to it that” (stit) operator, which
they use to represent agentive expressions. They argue that “[a proposition]
@ is agentive for [an agent] « just in case Q may be usefully paraphrased as
[stit: Q].” For example, the sentence, “Abe sees to it that a car is rented”, is
agentive for Abe since it has the form, [A stit: @], where A denotes Abe and ¢
denotes the proposition, “a car is rented”.

4 The binding of a parameter should also terminate that group’s authority to subse-
quently bind that same parameter or to delegate the binding of that parameter. For
space reasons, providing such axioms is left to the reader.

5 A decision to delegate parameter-binding authority to an agent G would also entail
an obligation on G to eventually bind that parameter; however, this paper focuses on
authorization conditions, not obligations. Grosz and Hunsberger [9] address some of
the obligations entailed by various kinds of group decision.

238 L. Hunsberger

The semantics of the stit operator stipulate that [a stit: Q] holds now if and
only if: (1) @ holds now due to a prior choice (or sequence of choices) made by
a; and (2) o’s choice was real in the sense that some other choice open to «
might have resulted in @ mot holding. For example, I might see to it that my
office gets cold by opening a window, where my alternative, leaving the window
closed, might have resulted in my office staying warm.

In their “Restricted Complement Thesis”, Belnap et al. argue that “a variety
of constructions concerned with agents and agency—including deontic state-
ments, imperatives, and statements of intention, among others—must take agen-
tives as their complements.” For example, the expression, Int: [« stit: Q], would
represent that the agent « intends to see to it that the proposition @ holds.

Belnap et al. define active refraining in terms of the stit operator, as follows:

refrain(a,) = [a stit: —[a stit:)]

That is, an agent « actively refrains from bringing about v if « sees to it that «
does not see to it that 1 holds. In other words, some choice made by «, perhaps
even a choice to do nothing, must guarantee that — remains an option—at
least insofar as «’s choices are concerned. Of course, the choice(s) of some other
agent(s) might nonetheless establish 1, despite «’s refraining.

The following abbreviation will be useful later in this section:

refrain(a, £¢) = refrain(a,¥) A refrain(a,)

That is, a both refrains from) and refrains from —. Such an expression holds if
some prior choice(s) made by « guarantee that both ¢ and —% remain options.

4.2 Intentions with “Whatever” Content

Definition 1. An intention with “whatever” content is an expression of the
form: Int,, (G, z,¢¥(x), ¢(x)), where G is a term, x is a variable, and ¥(x) and
o(x) are arbitrary propositions that may contain free occurrences of x.

The intended interpretation of such an expression is that the agent G intends
to see to it that the proposition ¢(z) holds for whatever (unique) value of x the
proposition ¥ (z) holds, while refraining from determining the choice of = for
which ¢(x) holds. The formal interpretation is given in Definition 2.
Definition 2. Int, (G, z,¥(x), ¢(x)) is satisfied if:

(1) (Yx)refrain(G, +1(x)) holds; and

(2) if there is a unique object d in the semantic domain for which the ex-

pression ¥ (cq) holds, where cq is a constant term denoting d and ¥(cq) is

obtained from 1 (x) by substituting cq for each occurrence of the free variable
x in P(x), then the expression, stit(G, ¢(cq)), also holds.

Condition 1 stipulates that G should refrain from determining ¢ (z) or —)(x) for
any x—that is, choices made by G should guarantee that both ¢ (z) and —(x)
remain options for any x. Condition 2 stipulates that if there is a unique value
of x for which the expression ¥ (x) holds, then the agent G must see to it that
the expression ¢(z) holds for that same value of x.

Whatever You Say 239

Example. Recall Abe’s intention to rent whatever car Zoe selects for him. Sup-
pose that Abe (A) and Zoe (Z) have already established a name C' for a social
context and a parameter P for the car. Suppose further that they have delegated
the binding of P to Zoe. Abe’s intention can be represented by an intention with
“whatever” content where:

Y(z) = sBindParam({A, Z}, C, P, z); and
o(z) = Rents(A, z).

According to Definition 2, for Abe’s intention to be satisfied, he must refrain from
both ¢ (z) and —w)(x) for all z. In other words, his choices must not constrain
the possible values for the parameter P. In addition, if the condition (z) holds
for some unique value of x (e.g., should Zoe declare P to have the value Car39),
then Abe must see to it that ¢(x) holds for that value of x (e.g., that he rents
Car39). In short, if Abe refrains from determining which car is selected, and Zoe
selects a unique car, then Abe must see to it that he rents that car; however,
if no such car is selected, or more than one is selected, then Abe’s intention is
trivially satisfied.

Intentions with “whatever” content can be defined with multiple partially-
determined objects by substituting (z1,zs,...,z,) for z, (Vxi,x9,...,2,) for
(Vx), and 91 (1) A ... Ay (zy) for ¢(x) in Definition 1; and, in addition, sub-
stituting (dy,...,dy) for d and (cq,,...,cq,) for ¢ in Definition 2. For example,
Abe’s intention to hammer in a nail using whatever hammer Zoe specifies and
whatever nail Yao (V') specifies could be represented by

Inty (A, (71, 22), P1(21) A a(x2), (21, 72))

where 1(x1)
Pa(x2)
¢(1’1, $2)

sBindParam(Z, C,hamr, x1);
sBindParam (Y, C,nail, zs); and
Pounds(A, 1, x2).

5 Related Work and Conclusions

Several researchers are actively investigating the use of the event calculus to
model interaction protocols in normative settings. For example, Yolum and
Singh [20] use it to model protocols as commitment machines. In that work,
agents use various kinds of speech-acts to adopt or modify (one-on-one) social
commitments. Pitt et al. [16] use the event calculus to formalize a complex voting
protocol for general-purpose decision-making in virtual organizations. In their
work, events such as proposing, voting, and so forth initiate or terminate various
powers (authorizations), permissions and obligations. These approaches are com-
plementary to the approach taken in this paper where the GDMM framework
is based solely on declarative speech-acts and the incremental accumulation of
authority, and is used to model declarations attributable to groups.

Other researchers are investigating contracts for multi-agent systems in terms
of normative concepts. For example, Farrell et al. [6] define a contract language in

240 L. Hunsberger

terms of obligation, power and permission and present an algorithm for tracking
the normative state of a contract over its entire life-cycle. And Boella and van
der Torre [2] view contracts as legal institutions based on Searle’s construction
of social reality [18]. In their work, mental states such as beliefs, desires and
intentions are attributed not only to agents, but also to normative systems. In
prior work, Grosz and Hunsberger [9] specify the obligations entailed by certain
common types of group decision (e.g., binding a parameter, selecting a recipe
for a complex task, or delegating a task) in the context of multi-agent coordi-
nation scenarios. Ongoing research is aimed at augmenting that work to include
authorizations and permissions, as well as intentions with “whatever” content.

The most related work on delegation is that of Norman and Reed [15]. In their
work, agents use imperative speech-acts to delegate tasks to other agents and to
command others to refrain from further delegating those same tasks. They use a
propositional logic and thus do not address intentions with “whatever” content,
but they employ two stit operators, one for propositions and one for actions.

In the field of linguistics, Dekker and van Rooy [5] formally analyze so-called
Hob-Nob sentences in which “a number of people ... have attitudes with a com-
mon focus, whether or not there actually is something at that focus” which is
a broad category that seems to include intentions with “whatever” content.®
In addition, Kamp and Reyle [13] use Discourse Representation Theory (DRT)
to analyze sentences (or sequences of sentences) that include partially specified
content in the form of indefinite noun phrases and pronouns that subsequently
refer to that content—as in: “Every farmer who owns a donkey beats it” or
“John owns a Porsche. It fascinates him.” An investigation into the potential
application of these methods to intentions with “whatever” content (i.e., par-
tially specified content to which agents need to refer as they coordinate with
others), is the subject of ongoing research.

The research presented in this paper is part of a long-term project aimed at
developing collaboration-capable computer agents [9]. Current work is focused
on providing a comprehensive logical foundation for intentions with “whatever”
content that can accommodate other types of partially specified content (e.g.,
Bea intends to drive whatever car Abe rents) as well as the obligations that are
entailed by group decisions in multi-agent planning and coordination scenarios.

References

1. Nuel Belnap, Michael Perloff, and Ming Xu. Facing the Future. Oxford University
Press, 2001.

2. Guido Boella and Leendert van der Torre. Contracts as legal institutions in orga-
nizations of autonomous agents. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems. ACM, 2004.

3. Michael E. Bratman. Intentions, Plans, and Practical Reason. Harvard University
Press, Cambridge, MA, 1997.

4. Michael E. Bratman. Faces of Intention: Selected Essays on Intention and Agency.
Cambridge University Press, 1999.

5 The quotation is from Geach [7], cited in Dekker and Rooy [5].

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Whatever You Say 241

Paul Dekker and Robert van Rooy. Intentional identity and information exchange.
In R. Cooper and T. Gamkrelidze, editors, Second Tbilisi Symposium on Language,
Logic and Computation, 1997.

Andrew D. H. Farrell, Marek Sergot, Mathias Salle, and Claudio Bartolini. Using
the event calculus for tracking the normative state of contracts. International
Journal of Cooperative Information Systems, 14(2-3), June—September 2005.

P. Geach. Intentional identity. Journal of Philosophy, 74:309—-44, 1967.

Barbara J. Grosz. The contexts of collaboration. In E. Sosa K. Korta and X. Ar-
razola, editors, Cognition, Agency and Rationality, pages 175-188. Kluwer Press,
Dordrecht, 1999.

Barbara J. Grosz and Luke Hunsberger. The dynamics of intention in collaborative
activity. Journal of Cognitive Systems Research, 7:259-272, 2006.

Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86:269-357, 1996.

Luke Hunsberger. Group Decision Making and Temporal Reasoning. PhD thesis,
Harvard University, 2002. Available as Harvard Technical Report TR-05-02.

Luke Hunsberger. A framework for specifying group decision-making mechanisms
(poster). In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS-2005). ACM Press, 2005.
Hans Kamp and Uwe Reyle. From Discourse to Logic, volume 42 of Studies in
Linguistics and Philosophy. Kluwer Academic Publishers, 1993.

R.A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67-95, 1986.

Timothy J. Norman and Chris Reed. A model of delegation for multi-agent systems.
In M. Fisher M. d’'Inverno, M. M. Luck and C. Preist, editors, Foundations and
Applications of Multi-Agent Systems, volume 2403 of Lecture Notes in Artificial
Intelligence, pages 185—-204. Springer-Verlag, 2002.

Jeremy Pitt, Lloyd Kamara, Marek Sergot, and Alexander Artikis. Formaliza-
tion of a voting protocol for virtual organizations. In Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2005), pages
373-380. ACM, 2005.

J. R. Searle. Speech acts: An essay in the philosophy of language. Cambridge
University Press, Cambridge, UK, 1969.

J.R. Searle. The Construction of Social Reality. Allen Lane, London, 1995.
Murray Shanahan. The FEvent Calculus Ezplained, volume 1600 of Lecture Notes
in Computer Science. 1999.

Pinar Yolum and Munindar P. Singh. Reasoning about commitments in the event
calculus: An approach for specifying and executing protocols. Annals of Mathe-
matics and Artificial Intelligence (AMAI), 2003.

Automatic Deductive Synthesis of Lisp Programs in the
System ALISA

Yulia Korukhova"

Lomonosov Moscow State University, Computational Mathematics and Cybernetics Faculty
119992 Russia, Moscow, GSP-2, Leninskie Gory, MSU
yulia@cs.msu.su

Abstract. The work deals with deductive synthesis of functional programs.
During this synthesis formal specification of a program is taken as a mathe-
matical existence theorem and while proving it, we derive a program and prove
that this program corresponds to given specification. Our method of synthesis is
based on the deductive tableau method, that allows to derive three basic
constructions of a functional program. But the full search of possible proof
attempts in the deductive tableau induces a very large search space; the proof is
needed to be guided. For using this method in the automatic mode additional
heuristics are required. Some of such heuristics are proposed in this work. They
consist in proof planning by using rippling and in the use of sorted logic with
type hierarchy that reduces search space and blocks some branches of proof,
corresponding to synthesis of incorrect functions. The proposed techniques are
implemented in the system ALISA' and used for automatic synthesis of several
functions on Lisp language.

1 Introduction

The problem of automatic program synthesis was treated since 1960s. It consists in
construction of a program code from some description of desired program. Two
approaches were distinguished: inductive synthesis (that assumes program construc-
tion from traces of its work) and deductive synthesis (that assumes program deriva-
tion from a specification that describes a relationship between input and output of a
desired program). Deductive approach is particularly interesting because it allows to
construct programs with proving its correctness with respect to given specification,
so the constructed program does not require verification. If such synthesis is
performed automatically and the correctness of chosen method of synthesis is
proved, the problem of writing a program is reduced to writing a correct
specification. Good specification is readable and clear for a user, because it
describes the goal of a program and may not present a particular method for
computation the required solution. Such specification is taken as a mathematical

* This work is a part of the author's PhD project, which was supervised by Assoc. Prof. Dr.
V.N. Pilschikov. The work has been partially supported by RFBR grant 05-01-00948a.
" ALISA - Automatic LIsp Synthesizer.

M. Fisher et al. (Eds.): JELIA 2006, LNAI 4160, pp. 242 -252, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Deductive Synthesis of Lisp Programs in the System ALISA 243

existence theorem and we prove the existence of an object that satisfies the
specified conditions. This proof is required to be constructive and each step of a
proof corresponds to a step of synthesis.

There were several methods and realizations of deductive synthesis for some
class of programs. First systems, such as Heuristic Compiler [17], PROW [12] were
used to derive a sequence of operators and condition. For derivation of cycle or
recursion special inference rule, based on using of mathematical induction in the
proof was required. Programs containing cycle operator were derived in the system
PRIZ [19], using the synthesis based on computational model, but the cyclic
structures of a program were incorporated in this model as many other facts about
the domain.

In [13],[14] the deductive tableau method was proposed. It is appropriate for
synthesis of functional programs from formal logic-based specifications. The method
gives the rules that allow to derive three basic constructions of functional program:
function application, conditional term and recursion, but order of these rules
application is not specified. The deductive tableau method was used for interactive
synthesis. This synthesis was guided manually by user, as described in [8]. Also
automated synthesis was implemented by embedding the deductive tableau method as
a higher order logic rules into ISABELLE [15], where proofs were partially
automated by tactics, written by user.

We took the deductive tableau method as a basic method for the automatic
synthesis in the system ALISA. But when the fully automated synthesis in the
deductive tableau (with the full search of possible proof attempts) is performed, the
induced search space is very large even for simple problems. To reduce it, we can
either use some additional heuristics that decrease the number of rules applicable in
every step of the proof, or plan the proof before application of the deductive rules. In
our system for the first goal we use sorted logic with type hierarchy; it allows to
reduce the search space and also to avoid the synthesis of incorrect function branches.
Second, we suggest here to use proof planning by using rippling heuristic [4], [7] for
constructing the proof path corresponding to recursive branch synthesis.

The paper is organized as follows. Section 2 describes the synthesis in the
deductive tableau. Section 3 precise the particular problems that should be resolved
for performing synthesis fully automatically and describes the proposed solutions.
Section 4 reports on practical results and presents some directions of future research.
In the section 5 conclusions are drawn.

2 Synthesis in the Deductive Tableau

Deductive program synthesis begins with a specification which represents a
relationship between input and output of a program. We use a specification language
based on first order logic predicates and constructions. There are also specific
predicates for lists and integers (such as head(a), tail(a), atom(x),
number (x), etc.) For example, a function that calculates the value of integer square
root for an integer number b has the following specification:

244 Y. Korukhova

<sqgrt(b)> <= for Number (b) find <z> such that (1
if (b20) then (z°<b) A (b<(z+1)?)

After "for" there are type definitions for function parameters (b is an integer), z is
the output variable and the expression after "such that" describes a relationship
between inputs and outputs.

The specification (1) is taken as a mathematical existence theorem

(Vb) (3z) (if (b=0) then (z°<b) A (b<(z+1)?))

To synthesize an algorithm for computation of z we are trying to prove the theorem
constructively. The structure of the proof determines the structure of the program we
extract. In particular, a case analysis in the proof corresponds to the formation of a
conditional term in the program; the use of principle of mathematical induction in the
proof coincides with the appearance of recursion.

Suppose, we've found a term t (b) that meets the specified conditions. The
program we produce is then

sgrt(b) = t(b)

For writing such a proof we use special framework called the deductive tableau.
The tableau structure is shown in Table 1. A tableau corresponds to a first order
sentence

if (A1 A A2 A .. A An) then (Gl v G2 Vv .. Vv Gn)

where Al...An are assertions written in the tableau and G1...Gn are goals to be
proved. Each row of a deductive tableau contains either an assertion or a goal. The
table has one or more output columns, corresponding to outputs of functions. The goal
functions appear in the output columns during synthesis. The output columns of one
row are processed in the same manner.

The following properties are useful consequences of the above definition.

Duality. By removing an assertion (a goal) and adding its negation as a goal (an
assertion) we obtain an equivalent tableau.

Variables. All free variables are assumed universally quantified in assertions and
existentially quantified in goals. Free variables in different rows are independent and
can be renamed if necessary. Bound variables are replaced by skolem constants or
functions, using skolemization procedure [9]. During the proof skolem functions can
only be unified with the same skolem function.

Instance. Let A be a substitution and G a goal in a row with output s. Then adding or
deleting a row with goal GA and output sA will produce the equivalent tableau.
Output. A row with no output entry is equivalent to one whose output entry is a new
variable, that doesn't occur free in this row.

The synthesis starts with adding the expression written in the specification as a
new goal in a deductive tableau. For the specification (1) the goal
if (b>0)then (z°< b) and (b<(z+1)") is added. Then the deduction rules are
applied. The deduction rules add new rows to a tableau, preserving validity of the

Automatic Deductive Synthesis of Lisp Programs in the System ALISA 245

logical expression associated with the tableau. Some examples of deduction rules are
the following:

The splitting rule. If a row contains a goal (G1 or G2) it can be decomposed into
two rows with the goal G1 and the goal G2. The output entries are inherited by the
generated rows.

The resolution rule. If a tableau contains rows 1 and 2 (see Table 1), the row 3 can
be added. Logical simplifications (such as, for example, A and true > true)
should be done in the new row.

Table 1. The deductive tableau.The resolution rule. Here 1,2 are rows with no free variables
in common (we rename variables to achieve it if necessary), P,Q — quantifier free
subexpressions, such that PA=QA. We replace all occurrences of PA in G1A with false and all
occurrences of QA in G2A with true and add a new row 3 with the conditional output.

Assertions Goals Output
1 Gl [P] z
2 G2[Q] "
3 G1 A [false] A G2 [true] if PA then tA else zA

Remarks about outputs: if one of two rows, say the 2nd, has no output entry,
then the output of the generated row will be zA, where z is the output for G1; if
rows 1 and 2 both have no output entries then the generated row will also have no
output.

The equality rule. If the tableau contains rows 1 and 2 (see Table 2), the row 3 can
be added to this table. Remarks about outputs are the same as for the resolution rule.
The analogous equality rule can be applied for rows, containing equal terms. We
take the same rule as in the Table 2, but consider P,Q,R to be terms and take the
equality for terms P=R and PA=QA\ instead of equality = for logical expressions.

Table 2. The equality rule. Here 1,2 are rows with no free variables in common (we rename
variables to achieve it if necessary), P,Q,R — quantifier free subexpressions, such that PA=QA.
We replace all occurrences of (P=R)A in G1A with false and some occurrences of QA in G2\
with RA and add a new row 3.

1 G1[P=R] 4
2 G2[Q] t
3 G1A [false] A G2A<RA> if (P=R)A then tA else zA

Using these rules and the tableau properties we can derive a non-recursive branch
of the goal function. For the specification (1), we can derive a row N, see Table 3.

246 Y. Korukhova

Table 3. The sqrt example: the nonrecursive branch of the function. Row 1 is obtained by
splitting the initial goal, row 2 represents one of the system axioms, useful for this synthesis.
Row N — the nonrecursive branch of the sqrt function (it means "if we prove that b=0, then
sqrt(b)=0").

Assertions Goals sqrt(b)
1 (Z*<b) A (b<(z+1)%) z
2| if x=0 then x’=0
N b=0 0

The induction rule. For introducing a recursive function call to the table we use the
induction rule. For the initial goal of the tableau an induction hypothesis can be
added, see Table 4.

Table 4. The induction rule. Here f(a) is the goal function, the induction is hold on a. The 2nd
row is a general variant of the induction hypothesis, row 3 represents an induction hypothesis
for lists and for the relation tail(a) <,,ra determined for nonempty lists. The 4th row shows an
example of induction hypothesis for integers for the relation a-1 < a for nonnegative integers.

Assertions Goals f(a)
1 Qla,z] b4
if X <yr a then Q[x,f(x)]
if not(a=NIL) then Q[tail(a),f(tail(a))]
if (a>0) then Q[a-1,f(a-1)]

AW

We use the Noetherian induction scheme:
VX (Vy y <utX 2 F(y)) 2 F(x)
Vx F(x)

where <y is a well-founded relation (a relation that can not derive infinite decreasing
sequences for the objects of a current sort). In the proof construction particular variants
of this hypothesis are used, they are formed by instantiating a particular relation instead
of <y, see examples in Table 4. There are several relations embedded in the system,
they are stored as usual axioms (assertions) of akind if A then y < x, where A
is a logical expression, specifying a particular conditions for x and y to be connected by
<wf relation. Usually while proving these conditions the nonrecursive branch is derived.
Other relations can be easily added by user to the system as an axiom, this facility
allows to construct new hypotheses.

The synthesis is complete when a row with the true goal is derived. In the output
column of this row the computational algorithm for the goal function can be found.

3 Automation of Synthesis in the Deductive Tableau

The deductive tableau method gives a very good instrument for synthesis, but for
performing synthesis automatically the order of application should be determined. If

Automatic Deductive Synthesis of Lisp Programs in the System ALISA 247

we are simply trying to apply one rule after another for all existing rows of the table
the number of possible proof attempts grows exponentially. Additional heuristics are
needed to limit the number of proof attempts and make the proof search directed. We
are going to look at some of them here.

3.1 The Use of Sorted Logic

We propose to extend our logic by assigning sorts to constants, variables and
assigning the domains for functions and predicates arguments and a sort of functions
ranges. We are working now in the theory of lists and the theory of integers, so there
are two basic sorts of objects in our system. In axiomatizing these theories we need
some way of distinguishing between them; otherwise false inferences could result
from applying axioms to objects of wrong types. The sort of an object is determined
from the context by considering the functions applied to this object and from “for”
section of the formal specification. For example, variable x in the expression
tail (x) is considered to be list, but x is treated as integer in the expression x+1=Db,
the predicate Number (b) in “for” section of specification declares, that b should be
treated as integer.

The idea of sorted logic was presented, for example in [18], but we extend it by
specifying the hierarchy of subsorts for each sort. We determine the relation < for
sorts: tl<t2 means that t2 contains all the objects of t1. For example, for
integers we have: positive<not_zero<integer (where positive contains all integers
greater than 0 and not_zero contains all integers except 0), but the types list and
not_zero are not bounded by the hierarchic relation. Particular subsorts are also
determined from the context from the information about known functions (for
example, in the expression 1/a a is considered to be not_zero).

The use of sorted logic with hierarchy has two advantages. First, it allows to reduce
the number of applicable rules by blocking the instantiations of objects of a wrong
sort (instantiation of a list variable by an integer expression and vice versa). Second, it
allows to avoid some incorrectly synthesized functions. By the functions synthesized
correctly we mean functions that meet the given specification, and can be computed
in according to domain restrictions for this function’s subterms. Others are considered
to be incorrect. For example a function

f(a)= (b=3/a) A not(a>0)

can not be computed for a=0, because operation / (division) is undetermined for a=0,
whereas the same function written in the other form

f(a)= if (a>0) then b=3/a

can be computed even for a=0. The difference is in the order of computing, that is
fixed in if-then expression and can be different in A operation, because it is
considered to be commutative.

Let's look at the example in Table 5. From the same initial rows (1, 2 and 3) we can
derive two functions. First, we apply resolution rule to rows 3 and 1 and then for the
result and the 2™ row. The output of the resulted row (see row 4 in the Table 5) can

248 Y. Korukhova

not be computed for a=0. But if we change the order of resolution application (first, to
rows 2 and 1 and then for result row and the 3™ row) we obtain the row 5 with the
output, that can be computed even for a=0.

Table 5. An example of different resolution application. Rows 1-3 are initial rows and rows 4
and 5 are obtained by using the resolution rule in different order.

1 not (b=3/a) A (a>0) 1
2 (b=3/a) 2
3 not(a>0) 3
4 true if (b=3/a) then 2 else (if a>0 then 1 else 3)
5 true if (a>0) then (if b=3/a then 2 else 1) else 3

To avoid the application of rules that derived constructions not appropriate for
computing, we use the information about sorts of objects and their hierarchy. During
resolution, equality or relation replacement rule application we should replace the
expressions with "smaller" types by true (or false) earlier. In our example
the expression b=3/a (where the sort of a is not_zero) should be replaced before the
expression (a>0) (where the sort of a is integer), because not_zero < integer. By
applying this restriction the row 4 (see Table 5) will not be added to the tableau.

The use of sorted logic with hierarchy can resolve the problem only in for
functions, that meets the specification, it does not correct the problems in the
specification if they exist. For example, if a specification is written in such a way that
there are input values, for which the specification value is undetermined or erroneous,
the same problem will nor be resolved by considering sort hierarchy during the
synthesis. If f(a) is specified as

<f (a)><=for number (a) find<z>such that i1f (a>=0) then 1l/a

both the specification and the derived program will have problems with a=0. We’ve
assumed, that the given specification should not allow such incorrect functions
applications.

3.2 Constructing the Proof Plan Using Rippling

The stage of recursion formation is particularly needed to be directed, because of a
large number of rows participating in the proof attempts. We propose, first, to
perform the induction step using rippling technique [4],[6], [7] and save the path of
the proof. Then we perform the proof in the table according to the found proof path
and simultaneously a function is derived in the output column. A strategy of using
general rippling principles for planning the proof has been described in [10].

Rippling is a rewriting, based on the idea, that very often the induction hypothesis
and conclusion are syntactically similar. We rewrite the conclusion in such a way that
we can use the hypothesis. We use only the rules that move the differences through
the induction conclusion in a way that makes progress in minimizing difference with
the induction hypothesis. The minimization of differences will always stop (either
because all differences will be removed, or none of the rules could be applied). We
change the conclusion only, because the hypothesis is assumed to be true.

Automatic Deductive Synthesis of Lisp Programs in the System ALISA 249

The rules that are used for rippling are called wave rules. They are special
rewriting rules formed from the axioms, known in the system. For example the axiom

(A<B) = (A+C<B+C) (2)
produces a following wave rule
LA+ C)< (B +C)) ==> (A<B) 3)

Note, that the direction of rewriting is opposite to the logical implication, because we
use backward reasoning (from conclusion to the hypothesis). The underlined parts in (3)
are wave-fronts, that should be removed. The unmarked parts form skeleton, which is
preserved during rewriting. Wave fronts are marked using difference unification
algorithm [3], and these rules should "decrease" the differences in the expression to
which they are applied. Rewrite rules are formed once at the moment then a new axiom
appears in the deductive tableau and then rules are stored in the system.

To perform the induction step we insert the induction hypothesis in the tableau
using the induction rule. To form a concrete induction hypothesis we need a particular
well founded relation. Such relations are stored in the system as axioms, containing
<t (and also a new well founded relation can be added as an axiom). A particular
well founded relation is chosen from the relations known in the system. The choice is
based on the information about induction parameter type (there are such relations
appropriate for lists and relations for integers). If several well founded relations can
be used they are tried one after another. The induction conclusion is the initial goal
from the table.

When an induction hypothesis and conclusion are written, the differences are
marked as wave fronts and rewriting using wave rules starts. During it we save the
sequence of axioms numbers, corresponding to used wave rules. This sequence is
called proof path. The proof using rippling is considered to be successfully finished if
an instance of hypothesis is obtained in the conclusion, so we can use the fact that
hypothesis is assumed to be true and instantiate it by true. That helps us to prove the
conclusion. In other cases we search for another way of proof using backtracking: we
try to use another annotation or form another hypothesis. If after that the proof still
does not succeed we can continue the full search in the deductive tableau. So we do
not lose a solution while applying rippling heuristic. But it helps us to derive
programs faster in practice: if proof is successfully finished, we return to deductive
tableau and restore the proof by deduction rules according to the found path; it is
necessary for derivation of a function in the output column.

4 Implementation, Results and Future Work

The described techniques were implemented in the system ALISA. The system
performs synthesis in the interactive and in the automatic mode. During interactive
synthesis user can create a deductive tableau, add a row, in particular containing a
goal to prove, and choose an appropriate deductive rule. In the automatic mode the
specification of a function and, possibly, some axioms are given and the proof is
performed by the system. Some of the functions that are derived automatically are the
following:

250 Y. Korukhova

1. Integer square root
Specification: <sgrt (b) > <= for number (b) find <z> such that
if b2 0 then (sgr(z)<=b) A (b<sgr(z+1l)) A (z 2 0)

Derived function:
(DEFUN sqrt (b) (COND((NUMBERP b) (COND((< b 1) 0)

(T(COND((<= (sgr(+(sgrt (+ b -1)) 1))b) (+(sgrt(+ b -1)) 1))

(T (sgrt (+ b -1]
Number of rule applications in full search — 31000, in synthesis with heuristics - 76
2. List partitioning into last element and front (all elements, except the last one).
Specification:
<front (a),last (a)> <= for list(a) find <h,t> such that

if —(a =()) then (tail(t)=()) A (a=append(h,t))
Derived functions:
(DEFUN front (a) (COND ((LISTP a)
(COND ((NULL (CDR a)) NIL)
(T (CONS (CAR a) (