
Y.A. Dimitriadis et al. (Eds.): CRIWG 2006, LNCS 4154, pp. 286 – 301, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Leveraging the Linda Coordination Model for a
Groupware Architecture Implementation

José Luis Garrido1, Manuel Noguera1, Miguel González2,
Miguel Gea1, and María V. Hurtado1

1 Dpt. Lenguajes y Sistemas Informáticos, University of Granada,
E.T.S.I.I., c/ Saucedo Aranda s/n, 18071 Granada, Spain

{jgarrido, mnoguera, mgea, mhurtado}@ugr.es
2 Tecnologías de la Información, Autonomous University of Madrid,

E.P.S., c/ Tomás y Valiente 11, 28049 Madrid, Spain
miguel.gonzalez@uam.es

Abstract. Functional and non-functional requirements must be taken into
account early in the development process of groupware applications in order to
make appropriate design decisions, e.g. spatial distribution of group members
and group awareness, which are related to the main characteristics exhibited by
CSCW systems (communication, coordination and collaboration). This research
work presents a proposal intended to facilitate the development of groupware
applications considering non-functional requirements such as reusability,
scalability, etc. In order to achieve these objectives, the proposal focuses on the
architectural design and its implementation, with emphasis on the use of a
realization of the technological Linda coordination model as the basis for this
implementation. The outcome is a distributed architecture where application
components are replicated and event control is separated. This work is part of a
conceptual and methodological framework (AMENITIES) specially devised to
study and develop these systems.

1 Introduction

Groupware has been defined as “a computer-based system that supports groups of
people engaged in a common task (or goal) and that provides an interface to a shared
environment” [7]. To date, groupware has comprised various systems: Workflow
Management Systems (WfMS), Computer-Mediated Communication (CMC) (e.g. e-
mail), Decision Support Systems (DSS), shared artifacts and applications (e.g. shared
whiteboards and collaborative writing systems), etc. These systems include common
and specific requirements in relation to the following group activities [7]:

• Communication. This emphasizes the exchange of information between remote
agents by using available media (text, graphics, voice, etc.).

• Collaboration. Effective collaboration requires people to share information in the
group context.

• Coordination. The effectiveness of communication/collaboration is based on
coordination. It is related to the integration and harmonious adjustment of the
individual work effort towards the accomplishment of a greater goal.

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 287

The inherent complexity of CSCW (Computer Supported Cooperative Work)
systems requires a great deal of effort in specifications and development [3]. The
development of groupware applications, the technological part supporting
collaboration processes in CSCW systems, is more difficult than that of a single-user
application; social protocols and group activities must be taken into account for a
successful design [13]. Methodologies and implementation techniques aimed at
enhancing group interaction activities (especially for synchronous groupware [23])
should therefore be applied. On the other hand, there is a lack of methodological
proposals for addressing and integrating the study and development phases of a
CSCW system. Furthermore, we argue that special attention must be paid to the
software architecture, which is defined by the recommended practice for architectural
description of software systems [2] as “the fundamental organization of a system,
embodied in its components, their relationships to each other and the environment,
and the principles governing its design and evolution”.

This article shows the implementation of a high-level architectural design for
groupware applications [11]. This architecture guarantees important software quality
properties since the main design criterion centers on mutual component independence.
To this aim, we propose the use of the data-driven programming model [20] provided
by the JavaSpaces technology [29], a realization of the Linda coordination language
[5], in order to accomplish its implementation. The proposal based on this
technological data-driven coordination has two aims: firstly, to fulfill common and
specific functional requirements in CSCW systems related with human
communication, coordination and collaboration, such as to provide group awareness
in order to support and enhance these group activities; and secondly, to be able to
build this kind of distributed applications taking also into account non-functional
requirements such as reusability, scalability, etc. This proposal is part of AMENITIES
[10], a conceptual and methodological framework that is specially devised to study
CSCW systems and develop groupware applications.

The paper is organized as follows. Section 2 briefly introduces the AMENITIES
methodology, providing a general description of its models and stages. Section 3
focuses on how an architectural design enables us to address the development of
groupware applications. Section 4 introduces the Linda coordination model and
describes how it is used to implement group awareness in this architectural design. In
Section 5, the physical architecture and its corresponding deployment are described
briefly for the current implementation. Section 6 references related work and the main
conclusions are provided in Section 7.

2 AMENITIES

AMENITIES [10] (an acronym for A MEthodology for aNalysis and desIgn of
cooperaTIve systEmS) is a methodology based on behavior and task models, specially
devised for the analysis, design and development of CSCW systems. The
methodology stems from cognitive frameworks (activity theory, distributed cognition,
etc.) and methodological proposals (requirements [17] and software engineering [27],

288 J.L. Garrido et al.

task analysis [31] and modeling [21]). Thereby, AMENITIES provides a conceptual
and methodological framework that seeks to avoid the main deficiencies found in
approaches traditionally applied to this kind of system, by focusing on the group
concept and covering the most relevant aspects of its behavior (dynamics, evolution,
etc.) and structure (organization, laws, etc.). Another objective is to allow us to
systematically address the analysis and design of CSCW systems and to facilitate
subsequent software development. Therefore, it also proposes a concrete methodology
including concrete phases, models, notations, etc. Fig. 1 provides a general scheme of
the methodology, showing the main models (boxes) and stages (dashed lines)
involved. Just like most methodologies, AMENITIES follows a simple iterative
process allowing us to refine and review these models.

Model

Requirement Models

UML Case Use
Applied

Etnography

Cooperative Model
(COMO-UML)

Software Development
Models (UML)

Formal Model

UML
Statecharts

Requirements
Functional

Requirements

UML
Diagrams

Refine
DevelopAnalyse

(Coloured Petri Nets)

Additional
Requirements

Revise

Revise

Fig. 1. General scheme of AMENITIES

The cooperative model (called COMO-UML in Fig. 1) is the core of the
methodology and enables us to represent and connect instances of concepts defined in
the conceptual framework of AMENITIES, according to the requirements for each
specific system. The cooperative model [8] describes the system (especially on the
basis of coordination, collaboration and communication) irrespective of its
implementation. It therefore provides a better understanding of the problem domain.
In order to build this model, a structured method (comprising four stages) is proposed:
specification of the organization, role definition, task definition, and specification of
interaction protocols. This method has been specifically devised to make easier
connections between all the concepts (for instance, tasks to be performed under each
role). The modeling notation proposed is based on both UML state and activity
diagrams [19], but with a semantics specially defined for this problem domain [9].

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 289

3 An Architecture for the Groupware Development

The architectural design of the groupware application is the starting model for the
software development phase in AMENITIES, and therefore, for the proposal
introduced in this paper. This section shall first present the motivations and
foundations for our architectural proposal; it shall then make the proposal concrete by
using a real case study.

3.1 Motivations and Foundations

Most requirements to be considered for the development of each specific groupware
application are specified in the cooperative model described above, for instance, tasks
requiring various actors to be accomplished (i.e. cooperative tasks), or constraints
(specified by means of the law concept) preventing an actor from being involved in
more than one task. However, apart from specific requirements for each groupware
application, common design issues for this kind of system should be taken into
account at an abstract level. An architecture guiding the organization of architectural
elements (basically composition, interfaces and interactions) can just provide this
desired abstraction level covering the following general objectives:

• Groupware applications are inherently distributed. It is therefore important to
obtain an implementation stemming from a set of subsystems that communicate
with each other through well-defined interfaces. The division/partitioning of the
whole system into components (called subsystems) facilitates its development,
evolution and maintenance.

• Appropriate organization and mapping of functionality onto subsystems in order to
achieve certain desired software properties such as reusability, portability and
interoperability.

• A groupware system should be able to increase the number of subsystems because
new applications supporting other activities could be added for the same group.

In order to achieve these objectives, some guidelines of the Unified Software
Development Process [15] for specifying the architectural view of the design model
have been adopted. For this purpose, the design process is carried out using the UML
language, providing the three following architectural views:

1. Component view. In order to represent the system partitioning, package diagrams

with the stereotypes system and subsystem are used in conjunction with the
composition relationship (a form of the aggregation association that considers
bound parts by lifetime).

2. Functional view. The functional aspects (static structure) of the system are
specified by means of both class and interface diagrams associated with
subsystems, and creating connections between them on the basis of the use
relationship.

3. Behavioral view. System behavior (dynamic view) (i.e. how the subsystems
collaborate by means of interactions) is specified on the basis of the functional
structure (described in the previous paragraph), using collaboration diagrams.

290 J.L. Garrido et al.

3.2 Case Study

A collaborative appointment book application for group work has been developed
according to the architecture to be described in the next subsection. This application
allows lecturers/researchers (people playing these organization roles) within the same
department at the University of Granada to coordinate in proposing meetings in a
common forum. This human coordination must be supported on the basis of providing
group awareness [25]; users currently connected to the system can observe each other
(both presence and activity). An additional requirement for the system is to allow
participants to share information in real-time (synchronous) and asynchronous modes.

The application (see Fig.2) consists of:

1. A panel for possible roles to be played, which also highlights the role currently
being played by the participant.

2. A panel showing the other participants who are playing the same role.
3. A panel including the calendar and the messages sent.
4. A popup window to show the activities of each participant we are interested in.

Fig. 2. General view of the collaborative appointment book application

3.3 Architecture

According to the objectives and the three views described in the subsection 3.1, the
architecture is made concrete as follows:

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 291

1. Component view. The whole system is divided into several parts. A basic
groupware application consists of four subsystems: Identification,
Metainformation, Awareness and the application itself (in this case, the
Appointment book). Fig. 3 shows the component diagram for the case study,
illustrating the UML package diagram and the System and Subsystem stereotypes.
Although there is only one application in this example, other applications can be
easily integrated while this design is maintained.

Appointment book
subsystem

Identification
subsystem

Metainformation
subsystem

Groupware
system

Awareness
subsystem

Generic Platform (API)

Fig. 3. UML package diagram for the component view

The Identification, Metainformation and Awareness subsystems are always
present for every groupware application. The application subsystem is obviously
specific for each groupware application. All the subsystems are described in more
detail in the next views, according to the functionality they provide and the
behavior exhibited.

2. Functional view. By means of a UML interface diagram, Fig. 4 (left) shows the
four mentioned subsystems and their use relations on the basis of the associated
functionality. Each subsystem provides an interface designed to achieve
independence between the subsystems and other applications making use of them.

In particular, the Metainformation subsystem supports all the functionality for
checking metadata (possible roles to be acquired, laws applied by the organization,
etc.) specified in the cooperative model. The Identification subsystem is used to
start the application and to control users’ access to the system. The Awareness
subsystem is intended to maintain shared and contextual information (telepointers,
list of participants playing a specific role, etc.) in charge of providing group
awareness that the participants need for an effective collaboration. Finally, the
Appointment book subsystem provides both an extended functionality as that of a
single-user appointment book and slightly different semantics.

3. Behavioral view. Fig. 4 (right) shows how the subsystems collaborate to resolve
interactions between users and the Appointment book subsystem. A UML
collaboration diagram is used to model this behavior.

In this case, a typical user interaction starts at the Appointment book subsystem.
Firstly, users must identify themselves in the system (messages 1, 1.1, and 1.2).
Once they have been correctly identified, they can choose to register their presence

292 J.L. Garrido et al.

in the system so that other users can choose to observe them (messages 2, 2.1, and
2.2). They themselves want to know which users are currently connected under the
same role (messages 3, 3.1, 3.2, and 3.3). The system therefore supplies the
necessary infrastructure for group awareness and we are able to collaborate in real
time.

Identification
s ubsystem

A wareness
s ubsystem

Appointment book
subsystem

Metainformation
s ubsystem

Identific ation
interface

Appointment book
interface

Metainformation
interface

A wareness
interface

Identification
s ubsystem

A wareness
s ubsystem

Metainformation
s ubsystem

1:act or:=Identify (user)

1.2 [act or!=null]: O pen (actor)

1.1: act or:= Get (user)

2: Register (actor)

2.1: Register (actor, Stat eInfo)

2.2 [Registered]: Register (actor, StateInfo)

3: Foll owRol (actor)

3.1: FollowR ol (actor)

3.2 [Permitted action]: FollowRol (actor)

3.3
: a

ct
o
rL

ist:=
 S

h
o
w

 (
ac

tor
)

Appointment book
s ubsystem

Fig. 4. UML interface diagram (left) and collaboration diagram (right)

4 Architecture Implementation

There are basically three ways of communicating/sharing information between group
members in order to provide effective group awareness: “explicit communication,
where people tell each other about their activities; consequential communication, in
which watching another person work provides information as to their activities and
plans; and feedthrough, where observation of changes to project artifacts indicates
who has been doing what” [14].

In the following subsections, we will briefly describe Linda and JavaSpaces
(Section 4.1), and also how the Linda coordination model is applied to the
implementation of the Awareness subsystem (Sections 4.2 and 4.3) within the
architectural design presented in Section 3.3. The focus is on how object-oriented
tuple space features can be used to support these three ways of communicating/
sharing information.

4.1 The Linda Coordination Model and the JavaSpaces Technology

The aim of distributed computing is to design and develop each distributed
application as a set of processes and data which are distributed over a computer
network, and to interact with them in an integral way. Computation and involved
element coordination are usually addressed separately in distributed computing. A
technological coordination model establishes the relations between components and in
turn provides the mechanisms needed to enable interaction between them. These
mechanisms are orthogonal to the computation model [12].

The space-based distributed computing model is derived from Linda [5]. A space is
an object (or tuple in Linda terms) store for data shared through a computer network.
A tuple is a data structure with several typed fields set to particular values, e.g.

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 293

<10,”Madrid”>, consisting of an integer number and a string. Only a few atomic,
basic functions are provided to operate on them (see Table 1). Operations in and rd
use an especial template tuple as a pattern with which to match those tuples to be
retrieved. If several tuples match the searching template, only one is retrieved non-
deterministically. Since a tuple space is “global” (i.e. visible from any location), the
processes on any computer can insert tuples into or take tuples from the space
concurrently.

Table 1. Tuple space operations

Operation Description
out Insert a tuple into the space

in Take a tuple from the space

rd Inspect (read) a space tuple, without removing it

JavaSpaces [29] has been chosen as a tuple space implementation based on Linda.
In JavaSpaces, tuples and their fields are typed as objects in the Java programming
language. This provides a richer type system than Linda does. Since tuples are objects
which belong to a particular class, they may have methods which are associated with
them.

There are four main operations which can be invoked in a JavaSpace tuple space:
write, read, take (can be blocking or not) and notify; the first three operations
correspond to the Linda operations out, rd, and in. Henceforth, we will use the
operation names provided by JavaSpaces. Objects use the notify invocation to ask the
space to inform them that one kind of tuple matching a given template has been
inserted into the space. The mechanism involved in this operation is called distributed
notification of events [28]. When an object wants to be notified about some kind of
tuple insertion, it must register the corresponding matching pattern of the tuple
together with the notify operation. Notification will be provided when a tuple
matching this pattern has been inserted into the space. This mechanism will be very
useful as basis of providing context awareness in groupware applications.

In JavaSpaces, the operations mentioned above are not limited to a single space but
may be carried out in turn on different spaces. As far as the information space (i.e. the
tuple space) is concerned, this also enables centralized, replicated, dynamic, hybrid,
etc. architectures to be devised. On writing a tuple in the space, the time it will remain
in the space before being deleted is also defined. This time may be indefinite so the
tuple in question will remain until it has been withdrawn by the take operation.

4.2 Data Sharing

While the cooperative task is being performed, it is necessary to share data. This
section discusses the basic mechanism to share data stored in tuples. Depending on
when data are shared, it is possible to distinguish between synchronous and
asynchronous modes of communicating information [23]. Synchronous
communication shows the changes that occur in the shared environment as soon as
they take place. Asynchronous communication can be obtained for instance, when

294 J.L. Garrido et al.

logging into the system and observing the changes that other users have made on the
shared objects at another time.

In the collaborative appointment book application, both types of communication
can be found in the way the user interacts with the board saving appointment
messages. When a user decides to log into the system and download the
corresponding board messages, he/she can see the contributions that other group
members have submitted previously (asynchronous communication). If he/she wants
to be informed of any message arriving at the shared board, he/she will immediately
see any contribution from the members playing their current role (synchronous
communication). Similarly, users can choose what kind of system interaction they
desire at any time and effortlessly change from one to another.

Fig. 5 shows a sample scenario for the collaborative appointment book introduced
in Section 3.2. Let us imagine that there are several users in the system (e.g. Anna,
Peter, John and Martha). Each one is part of at least one group. For example, all are
members of the group Prof (Professor) and Peter, John and Martha are also TC
(Teaching Committee) members. Let us imagine that user John has just logged into
the system. At present, only Anna, Peter and now John are connected. If John decides
to load his group board, he will see all the proposals that other group members have
previously submitted. In this example, we can see how he would read Peter’s and
Martha’s messages (Martha is not even connected now). If he decides to “register”
to be notified about the submission of new messages by other members, he will need
to insert a template tuple into the space (through his Awareness subsystem) in order to
show that he is interested in the tuples related to his group board.

Shared spaceShared space

TC Juan

Prof Anna

TC Peter

Prof Anna txt

TC Peter txt

Prof Peter txt

TC Martha txt

TC Peter txt

Interest TC ??? ??? Arriv

Fig. 5. Synchronous and asynchronous data communication

4.3 Feedthrough and Consequential Communication

The JavaSpaces mechanism for distributed notification of events (notify operation
described above) and the definition of the time a tuple may remain in the space are
also used in our approach to support the other ways of group awareness, namely
feedthrough and consequential communication. This section discusses how events are
propagated in the system.

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 295

We have found that a groupware system can be basically modeled using two types
of tuples: tuples containing steady information and which are inserted into the space
for an indefinite time; and tuples used to announce events and which are more volatile
since information relating to their associated events is relevant at a given time and in a
particular context. This is shown through the two following scenarios.

Actor’s Presence
Let us consider that the actor John has logged into the system and is playing the role
of Teaching Committee (TC) member. He is reading this committee board to see what
messages have been sent by other members. Peter is currently connected and he is
playing the same role as John (i.e. TC). Anna is also connected and playing the role
Prof. In addition, John would like to know which other members are connected now
in order to discuss the date of an online meeting with them or to see which other
proposals they are currently submitting. In order to accomplish this, user John asks
(from his appointment book application, and therefore, the appointment book
subsystem) to be informed of which other users playing the same role as him are
connected. In turn, the Appointment book subsystem will use the awareness subsystem
to insert appropriate template tuples into the space so that he will be notified
whenever any user playing the role TC arrives or leaves. This scenario is depicted in
Fig. 6. The same applies to the notice board messages that are represented on the
right-hand side of the figure.

Shared spaceShared space

TC John

Prof Anna

TC Peter

Prof Anna txt

TC Peter txt

Prof Peter txt

TC John txt

TC Peter txt

TC ???

Interest

TC ??? ???

Interest

Arriv

TC ??? Exit

Arriv

Fig. 6. Starting scenario

If professor Martha, who is also a TC member, enters the system playing this role,
the space would notify John’s Awareness subsystem of this event. Previously,
Martha’s Awareness subsystem would have inserted the appropriate tuples into the
space (see Fig. 7) when she logs in.

In this way, Martha’s Awareness subsystem would insert a (1)-type tuple (as
mentioned at the beginning of this Section) indicating more stable information such as
her name, role she is playing, connection time, etc. (for the sake of simplicity, this
tuple has the form <TC, Martha> in Fig. 7); and another (2)-type tuple in the form
<TC, Martha, Arriv> that provides “event” information such as “Martha has just

296 J.L. Garrido et al.

logged in”. The (2)-type tuples would have a brief remaining time in the space
associated since this kind of information is only meaningful or valid to the connected
users that have asked to be notified of other group member activity. If after half an
hour, another TC member connects (e.g. Martin), his Awareness subsystem would
inform the other members playing his role by reading <TC,???> tuples.

The same applies to the exit notification. When Martin logs in, the tuples used by
other members logging out before he connects (e.g. <TC,Peter,Exit>) are useless and
must therefore be deleted. By deleting these tuples, we also decrease the information
overload in the space. We will see this in detail in the following scenario.

Shared spaceShared space

TC John

Prof Anna

TC Peter

interest

TC ??? Arriv

TC ??? Exit

TC Martha

TC Martha Arriv

MatchMatch Match

Tuples inserted by Martha’s
awareness subsystem

Fig. 7. Arrival of a member with the same role

Actor’s Activity
The need for tuple elimination is more evident if we consider the telepointer
mechanism. The coordinates of other users’ mouse pointers have a very brief validity
(a hundredth of a second at most) since they are continuously changing. In this regard,
the programmed removal of the tuples in the space is a very efficient way of
maintaining space consistency and preventing obsolete information being stored.

Shared spaceShared space

TC John

TC Peter

interestTC Martha

Tuples inserted by Martha’s
awareness subsystem

John ??? ???
x y

Peter ??? ???
x y

Fig. 8. Remote mouse pointer tracing

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 297

The starting point for the following scenario is Scenario 1, although some tuples
have been hidden for readability. Let us imagine that Martha has just arrived and
wants to see what John and Peter are doing. For this purpose, the appointment book
application allows other members’ application interfaces to be replicated and
represented remotely.

Martha’s awareness subsystem will be in charge of inserting template tuples in the
space so as to trace John’s and Peter’s pointers (see Fig. 8).

Since John and Peter are registered in the system and their activity can be
observed, their Awareness subsystems are continuously inserting their mouse pointer
coordinates (see Fig. 9) in the space. This kind of tuple lifetime is very brief as the
information they provide is very punctual. It does not matter whether Martha's
Awareness subsystem captures all John’s or Peter’s mouse pointer coordinates.

Shared
space
Shared
space

TC John

TC Peter

interestTC Martha
John ??? ???

x y
Peter ??? ???

x y

John 45 68 Peter 85 26

John 45 69 Peter 86 26

John 44 70 Peter 87 27

John … … Peter … …

Match

Notify

Automatically deleted tuples

Fig. 9. Remote mouse pointer tracing

5 Physical Architecture and Deployment

JavaSpaces allows several spaces to be “running” on the same or different machines.
This means that the tuple space need not be allocated on a specific machine and may
also be distributed and partitioned between different sites. In any case, all the tuples in
all the spaces form a single logical space of data. The space partitioning also allows
pieces of information and tuples used by certain services (e.g. Awareness subsystem)
to be allocated on certain machines depending on system performance. The way a
space client application is “advised” about the entire tuple space distribution and the
space distribution itself are beyond the scope of this work.

Each user has a replica of the application, i.e. the one he/she interacts with. In order
to represent the behavior of other group members remotely, it is only necessary to
replicate the events that the space notifies in the remote user interfaces that every user
maintains for each user he/she is observing. This way of programming remote state
replication is particularly efficient since a user need not send his entire state by means

298 J.L. Garrido et al.

of complex data structures or objects; this state is instead defined separately on the
basis of very short messages announcing the occurrence of certain events.

Current implementation has been carried out by using standard internet technology
(web browsers and servers, Java, etc.). Fig. 10 shows how client applications and the
space are not necessarily placed in any particular network node. The clients and
services can be allocated in the same or different nodes. Clients interact with the
system by inserting information into the space or retrieving information from it
without being aware of where the tuples (or services) are.

Client

Browser+JRE

Identification
Awareness

Metainformation
Client

Browser+JRE

ClientBrowser+JRE

Client
Browser+JRE

JavaSpaces

Fig. 10. Abstract view of the system and deployment

6 Related Works

The CSCW and groupware community have developed in the last years several
experimental collaborative systems. Most of them have been developed for particular
applications; this fact requires a great effort in implementations. Others have
identified basic services for groupware systems developing toolkits to build these
applications. For example, Groupkit [24] provides a component library for building
multi-user interfaces. The main problems of this kind of proposal are:

• interfaces cannot interoperate between them, and
• difficulty of adaptation to the user’s needs.

Pounamu [18] is a collaborative editing tool for software system design that permits
work to be carried out both synchronously and asynchronously. It is built in Java
using RMI and can be installed using different architectural designs, although it is
limited to peer-to-peer collaboration scenarios.

EventHeap [16] provides a software infrastructure for interactive workspaces by
means of an extension of TSpaces [32]. In [26] a flexible notification framework for
describing and comparing a range of notification strategies is introduced; it can be
very useful to guide the design of notification components. NSTP (Notification
Service Transfer Protocol) [22] is a basic service (no semantics) for sharing state in
synchronous groupware, therefore, it abstracts out the problem of state consistency
from any application. The mechanisms implemented in these three proposals are
similar to the presented in this paper, but in our case, the emphasis is mainly on the

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 299

methodological context for these implementations (global and abstract architectures,
methologies, …) instead of technological one (failure isolation, algorithms,
consistency...).

MARS-X [4] and XML-Spaces [30] are coordination models that extend Linda
model features using XML document properties for information sharing. Another
architectural pattern for web services based on the Linda model (which also uses
XML documents) is proposed in [1]. None of these addresses remote event replication
in remote interfaces.

7 Conclusions and Future Work

Technological and social aspects influence human collaboration; being aware of other
group members' activity diminishes the risk of work duplication and inconsistencies
in proposed tasks deriving from their concurrent accomplishment. This paper
proposes an implementation for fulfilling functional requirements related to group
awareness. It is part of a conceptual and methodological framework.

The state of the system is described by means of tuples in a space; replicas of the
same groupware application and interactions between subsystems can be techno-
logically coordinated exchanging tuples through spaces instead of communicating
directly. Another benefit is the temporal and spatial dissociation inherent to this
paradigm since a space and its tuples may remain in the system, even after the process
that created them has ended. At this level, implementation and deployment issues are
abstracted thanks to the coordination model that eases the building of distributed
applications.

Whether it is distributed or not, a tuple space (such as the one our collaborative
appointment book interacts with) imposes no restriction about the computer where it
must be placed. This enables us to fulfill certain non-functional requirements related
to profitable transparency characteristics in distributed systems: localization, access,
replication, concurrency and scalability. This degree of transparency simplifies
architecture development and facilitates the application of concrete guidelines in
groupware systems building. As outcome of this research work a hybrid collaboration
architecture [6] has been proposed; application is replicated in each network node,
and control is logically centralized (actually distributed or centralized depending on
the tuple space implementation). The main advantage of this approach is that users
keep local replicated copies of other participant interfaces without sending the objects
which define them (the interfaces).

There are other benefits of the proposed solution made apparent from the
experience acquired in the development of a real example. Although performance
analysis has not been carried out yet, apparent results obtained executing the
collaborative appointment book application on internet seem promising.

By way of future work, we have started to develop a graphic component library
(toolkit) for building groupware applications following the hybrid architecture
mentioned above. The aim is to include and encapsulate the implementation
philosophy described in this work within these graphical components in order to
simplify the subsequent groupware systems development. In addition, portability in
the current implementation is Java-dependent, that is, the applications which interact

300 J.L. Garrido et al.

with the space must be programmed in this language. Some of the related works avoid
this handicap using markup languages (XML) in the definition of the tuple space and
thereby, hiding implementation issues and promoting interoperability.

Acknowledgements

This research is partially supported by the R+D project TIN2004-08000-C03-02 of
the Spanish MCYT.

References

1. Álvarez, J., Bañares, J.A., Muro-Medrano, P.R.: An Architectural Pattern to Extend the
Interaction Model between Web-Services: The Location-Based Service Context. M.E.
Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 271–286, 2003

2. Architecture Working Group: Recommended Practice for Architectural Description of
Software-Intensive Systems. IEEE Std 1471 (2000)

3. Beaudouin-Lafon M.: Computer Supported Cooperative Work. Université Paris-Sud,
France, John Wiley & Sons (1999)

4. Cabri, G., Leonardi, L., Zambonelli, F.: XML Dataspaces for Mobile Agent Coordination.
In 15th ACM Symposium on Applied Computing, pages 181–188, 2000

5. Carriero, N., Gelernter, D.: Linda in Context. Communications of the ACM, Vol. 32, No.
4, 444-458, April 1989

6. Chung, G., Dewan, P.: Towards Dynamic Collaboration Architectures. Proc. ACM
CSCW’04, 1-10

7. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware: Some Issues and Experiences.
Communications of the ACM, Vol. 34, No. 1 (January 1991) 38-58

8. Garrido, J.L., Gea, M.: Modelling Dynamic Group Behaviors. In: Johnson, C. (ed.):
Interactive Systems - Design, Specification and Verification. LNCS 2220. Springer (2001)
128-143

9. Garrido, J.L., Gea, M.: A Coloured Petri Net Formalisation for a UML-Based Notation
Applied to Cooperative System Modelling. In: Forbrig, P. et all (ed.): Interactive Systems -
Design, Specification and Verification. LNCS 2545. Springer (2002) 16-28

10. Garrido, J.L., Gea, M., Rodríguez, M.L.: Requirements Engineering in Cooperative
Systems. Requirements Engineering for Sociotechnical Systems. IDEA GROUP, Inc.USA
(2005)

11. Garrido, J.L., Padereswki, P., Rodríguez, M.L., Hornos, M.J., Noguera, M. A Software
Architecture Intended to Design High Quality Groupware Applications. Proc. of the 4th
International Workshop on System/Software Architectures (IWSSA’05), Las Vegas
(USA), June 2005

12. Gelernter, D., Carriero, N.: Coordination Languages and Their Significance.
Communications of the ACM, Vol. 35, No. 5, 96-107, February 1992

13. Grudin, J.: Groupware and Cooperative Work: Problems and Prospects. In Baecker, R.M.
(ed.) Readings in Groupware and Computer Supported Cooperative Work, San Mateo,
CA, Morgan Kaufman Publishers (1993) 97-105

14. Gutwin, C., Penner, R., Schneider, K. Group Awareness in Distributed Software
Development. Proc. ACM CSCW’04, 72-81 (2004)

Leveraging the Linda Coordination Model for a Groupware Architecture Implementation 301

15. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley (1999)

16. Johanson, B. and Fox, A., "The Event Heap: A Coordination Infrastructure for Interactive
Workspaces". In Proc. of the 4th IEEE Workshop on Mobile Computer Systems and
Applications (WMCSA-2002) Callicoon, New York, USA (June, 2002)

17. Macaulay, L.A.: Requirements Engineering. Springer (1996)
18. Mehra, A., Grundy, J., Hosking, J.: Supporting Collaborative Software Design with a

Plug-in, Web Services-based Architecture. Proc. of the ICSE 2004 Workshop on
Directions in Software Engineering Environments, May 2004, Edingurgh, Scotland, IEE
Press

19. Object Management Group: Unified Modelling Language (UML) 2.0 Superstructure
Specification (OMG), August 2003. Ptc/03-08-02, 455-510

20. Papadopoulos G.A. and Arbab F.: Coordination models and languages. Advances in
Computers, 46, Academic Press (1998)

21. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Springer-
Verlag (2000)

22. Patterson, J., Day, M., Kucan, J.: Notification Servers for Synchronous Groupware. In
Proc. of the ACM Conference on Computer-Supported Cooperative Work (CSCW’96)
122-129

23. Phillips, W.G.: Architectures for Synchronous Groupware. Technical Report 1999-425,
Department of Computing and Information Science, Queen's University, May 1999

24. Roseman, M. and Greenberg, S.: Building Real Time Groupware with GroupKit, A
Groupware Toolkit. ACM Transactions on Computer Human Interaction 3(1), (March
1996)

25. Schlichter J., Koch M., Burger M.: Workspace Awareness for Distributed Teams. In: W.
Conen, G. Neumann (eds.), Coordination Technology for Collaborative Applications,
Springer Verlag, Heidelberg (1998)

26. Shen, H., Sun, C.: "Flexible Notification for Collaborative Systems" In Proc. of ACM
2002 Conference on Computer Supported Cooperative Work (CSCW’02), New Orleans,
USA (2002) 16-20

27. Sommerville, I.: Software Engineering. Addison-Wesley (7th ed.) (2004)
28. Sun Microsystems: Jini Distributed Events Specification. Version 1.0. Available on-line at

http://java.sun.com/products/jini/2.1/doc/specs/html/event-spec.html
29. Sun Microsystems: JavaSpaces Service Specification. Version 2.2. Available on-line at

http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
30. Tolksdorf, R., Glaubitz, D. XMLSpaces for Coordination in Web-based Systems. Tenth

IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 06 20 - 06, 2001

31. van der Veer, G., Lenting, B., Bergevoet B.: GTA: Groupware Task Analysis - Modelling
Complexity. Acta Psycologica, 91 (1996) 297-322

32. Wyckoff, P., McLaughry, S., Lehman, T., and Ford D.: TSpaces. IBM Systems Journal,
37(3): 454-474, (1998)

	Introduction
	AMENITIES
	An Architecture for the Groupware Development
	Motivations and Foundations
	Case Study
	Architecture

	Architecture Implementation
	The Linda Coordination Model and the JavaSpaces Technology
	Data Sharing
	Feedthrough and Consequential Communication

	Physical Architecture and Deployment
	Related Works
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

