
Implicit Plasticity Framework: A Client-Side
Generic Framework for Collaborative Activities

Montserrat Send́ın1 and César A. Collazos1,2

1 GRIHO: HCI research group
University of Lleida, 69, Jaume II St., 25001- Lleida, Spain

msendin@eps.udl.es
2 Department of Systems, FIET

University of Cauca, Campus Tulcan, Popayán, Colombia
ccollazo@unicauca.edu.co

Abstract. We are interested in integrating and exploiting the shared-
knowledge from a group by an existing infrastructure of plasticity, as
another parameter more to be embedded in the adaptation process. The
aim is to offer the benefits from plasticity and awareness jointly, provid-
ing a systematic support in both issues. In this paper we focus on the
proactive adaptation to contexts of use under a plasticity viewpoint. The
aim is to promote interaction and real time coordination, contributing
to real collaboration in multiple and changing groupware scenarios.

1 Introduction

We are no longer tied to our desktop computer due to the wireless technology, the
mobile networking capabilities, and a plethora of new computing technologies.
New advances provide us freedom to move around and to access to the tech-
nology in new and changing environments, keeping in permanent contact when
we are working on groups. However, current CSCW approaches focus on the
restrictions and affordances that mobile devices and mobility provide, but they
do not address the huge heterogeneity1 and the adaptation to changing contexts
of use at the same time. Real time constraints related not only to the shared-
knowledge between group members, but also other related to the user (changing
needs and preferences), to the environment (daylight, localization, etc.), and
even related to network constraints (bandwidth, server availability), which de-
scribe the context of use2, are volatile and require sophisticated capturing and
adaptive capabilities that today are still challenging. In a broad perspective, the
variability and multiplicity of parameters introduced by all the previous issues
are collected under the term plasticity. It was coined as the ability from systems

1 Diversity and versatility in the decision about the device or platform to use, taking
into account the significant differences in their physical, graphical and interaction
features.

2 Our context of use conception encompasses five components: the environment, the
user, the platform, the particular shared knowledge and the task at hand.

Y.A. Dimitriadis et al. (Eds.): CRIWG 2006, LNCS 4154, pp. 219–227, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

220 M. Send́ın and C.A. Collazos

to mold their own UI to a range of computational devices, conditions and envi-
ronments in order to tackle the diversity of contexts of use in an economical and
ergonomic way [12], offering a great flexibility. We propose to adapt plasticity
tools to novel groupware scenarios. Another handicap of CSCW is the lack of
evidence in the use of complex social dynamics where the group activity takes
place. In this line, groupware designers have included aspects related to aware-
ness, which has become a cornerstone in computer systems design in several
ways. Awareness reduces the meta-communicative effort needed to collaborate
across physical distances in CSCW environments [8] and promotes real collab-
oration among group members. The shared knowledge should be appropriately
captured, represented, integrated and promoted. However, awareness support is
not systematic and developers must build it from scratch every time.

Groupware systems must be highly adaptable to new changing conditions
involving not only constraints related to mobility as described above, but also
to their distributed shared knowledge. In this paper we deal with the dynamic
adaptation at runtime. It is necessary to implement some mechanisms to obtain a
twofold benefit: (1) reaction in a proactive manner to contextual changes and (2)
shared-knowledge awareness, contributing to make collaborative work successful.
The infrastructure presented in this paper reuses some existing tools addressed
to provide plasticity in order to integrate awareness information and exploit it
as an integral part of the plasticity process.

This paper is structured as follows. Section 2 discusses some related work.
Keeping in mind that our goal is to integrate awareness mechanisms in a certain
infrastructure of plasticity, in section 3 we describe the approach and infrastruc-
ture of plasticity we consider the most appropriate. Section 4 presents a de-
scription of the software architecture we propose and reports some guidelines of
abstraction towards a major flexibility to compose the generic application frame-
work 3 we pursue. Finally, some conclusions and further work are explained.

2 Related Work

Many authors have proposed different elements necessary for obtaining a real
collaboration. We present some related works to support collaborative systems
in which proactive aspects and/or awareness mechanisms are treated.

Collaborative environments supporting proactive adaptation. It is wor-
thy pointing up the research on collaborative work based on the Collaborative
Filtering approach. In this line, some authors have emphasized their research on
adaptive systems (proactive adaptation) based on the group member’s interests.
In particular, Barra [1] describes an adaptive system for group navigation on
the web whose goal is to provide collaborative and adaptive navigation to users
groups sharing a ”common interest” on the web. However, the most part of these

3 A semi-complete application that can be customized to produce particular applica-
tions.

Implicit Plasticity Framework 221

systems is only focused on different static user aspects, providing different kinds
of prefixed profiles.

Collaborative environments supporting heterogeneity and proactive
adaptation. One of the most relevant and complete work is the one developed
by Favela et al. [4]. Their research is applied in the healthcare field. They combine
interactive public displays together with handhelds, towards the development
of a pervasive hospital environment. The integration of proactive components
in an agent-based architecture offers information relevant to the case at hand,
apart from context-aware and personalized information to the user. We can
point up that their approach is totally dependent on the server, implying that
some problems like network failures could have serious consequences in critical
environments like hospitals. In that way, our approach intends to reduce this
degree of dependence, tending towards client-server architectures that obtain
an operational balance between both sides. Its idea is to make client devices
autonomous to a great extent by means of low resource-consuming programming
techniques that can be supported in small devices, as explained in section 4.1.

There are many works related with frameworks to dynamically support con-
text-awareness. Marsic [7] has developed a data-centric framework for synchro-
nous collaboration of users with heterogeneous computing platforms, allowing
clients with different computing capabilities to share different subsets of data
based on XML. The interface is customizable according to the context and the
user needs. However, the level of shared information is quite limited, and what is
more important, it is static. The shared-knowledge awareness [2] is not handled.

Collaborative environments supporting awareness and proactive
adaptation. One of the most relevant works that integrate awareness mech-
anisms is the one proposed by Correa and Marsic [3]. They have developed an
extensible and generic architecture to support awareness in heterogeneous col-
laborative environments under a semantic consistency approach, what is their
main innovation. Their architecture not only provides awareness, but also allows
the adaptation, although only related to resource constraints. They show that
awareness support implies a trade-off between the degree of awareness and the
network usage. In fact, our work is in the line of pursuing this balance. Another
common point with our work is the development of an application framework.
They plan the development of an adaptive version of their architecture to aware-
ness issues.

As we have observed, there is a lack of guidelines about how to integrate as-
pects as adaptivity, context-awareness and shared-knowledge in the same tool.
Our work intends to support the development of computing collaborative envi-
ronments that integrate all these aspects.

3 Initial Approach and Infrastructure of Plasticity

The infrastructure chosen for our proposal is based in our dichotomic view of
plasticity [9], which divides the plasticity problem in two different challenges

222 M. Send́ın and C.A. Collazos

with two clearly delimited goals that make up an extension to the Thevenin
and Coutaz concept of plasticity [12]. They are called explicit plasticity and im-
plicit plasticity [9]. We match these two issues respectively with the stages of
design (construction, sometimes a reconfiguration of an existing UI) and execu-
tion (specific readjustments at runtime) that the UI has to withstand over the
whole system’s lifetime. To be more precise, explicit plasticity tackles relevant
changes in the UI, caused by unforeseen situations that involve a reconfiguration
of the UI (e.g. changes in the computing device). Due to the considerable scope
involved, it needs to be solved in a server, where it is brought into operation
under an explicit request by the client. This is why we call it ”explicit”. Implicit
plasticity is in charge of providing proactive adaptation (also called adaptivity)
at runtime, as the user goes through new contexts of use. It tackles specific mod-
ifications in the UI, originated by predictable contextual changes (e.g. changes in
the daylight level or in the user’s location), which can be solved by an automatic
readjustment on the client side, without any express action or request. This is
why we call it ”implicit”. Clearly both challenges require different modelling,
strategies and tools; hence they need to be studied and developed in different
frameworks. This division in two goals is what we call a ”dichotomy”.

Under this twofold perspective, the infrastructure of plasticity consists of com-
bining two different engines framed in a client-server architecture. These engines
are called Explicit Plasticity Engine (EPE henceforth) and Implicit Plasticity
Engine (IPE henceforth), respectively. The EPE consists of an automatic tool
of production of plastic UIs, as in a design stage. The IPE consists of a runtime
adaptive engine with the capacity to detect the context and react in order to
adapt the UI to the contextual changes on the fly, providing thus the proactive
adaptation pursued on the client side. In this line, our interest is focused on de-
veloping a generic framework easily customizable to IPEs for particular systems.
This is what we call Implicit Plasticity Framework (IPF henceforth).

This architectural framework allows delimiting clearly both goals, to be solved
in both engines, which are managed in an alternative, iterative and complemen-
tary manner. The goal is to give feedback to the plasticity process without
discontinuities, keeping both sides in continuous updating. Under this approach,
the client only resorts to the server when he/she needs a reconfiguration of the
UI -unsolvable locally by the IPE-, propagating to the server the contextual
changes that require to be accommodated to the new situation. We can sum up
the benefits of our infrastructure in these three ones: (1) an operational balance
between both sides; (2) autonomy to perform adaptivity on the client side (that
reduces dependence to the server and possible communication failures); and (3)
real time reaction to certain contextual changes, contributing to a proactive (im-
plicit) adaptation. Figure 1 shows the overview of the process described, as well
as the delimitation between the two sub-concepts of plasticity. The EPE is out
of the scope of this paper. A detailed description can be looked up in [10].

In order to integrate the awareness information, the key point is to include
the evolving group state and the real time group constraints in the characteri-
zation of the context of use. This information is captured and represented in the

Implicit Plasticity Framework 223

Fig. 1. Overview of the plasticity process

client-side in order to be considered at runtime. However, it is essential sharing
it with the rest of the group. This is why he/she propagates it to the server,
which will be able to gather and model an overall group knowledge, through the
EPE.

4 Software Architecture for the Client-Side

4.1 Design Requirements and General Structure for the IPE

Taking into account that our final goal is to develop a generic framework to eas-
ily derive the suitable IPE for a particular system (the IPF), we apply the most
orthogonal design strategies to obtain the most challenging design requirements.
Particularly, we must guarantee certain properties such as: (1) transparency in
adaptation; (2) reusability; and (3) orthogonality. In particular, orthogonality
is essential in order to the adaptive mechanisms be handled independently, so
that they can evolve individually, avoiding conflicts and promoting reusability.
This property is especially important in systems where a lot of dimensions are
presented, such as collaborative environments. In order to guarantee these prop-
erties we need to apply a separation of concern technology.

We conceive an IPE as a software architecture divided into three layers. The
two first are: (1) the logical layer, which contains the application core function-
ality; (2) the context-aware layer, which controls and models the real time con-
straints (the contextual model); in the case of collaborative applications, all the
information related to the communication and coordination actions that affect
to the whole group state: the shared-knowledge [2] from the perspective of the
user at hand. This information will be kept updated for further use, in order to
provide awareness. Finally, the third layer is an intermediate layer responsible for
applying the adaptation over the core system according to the contextual model
(context-aware layer) following, as mentioned before, some sort of separation of
concern technology. The approach chosen for this layer is the Aspect Oriented
Programming [6] (AOP henceforth). The reasons that justify this decision are
out of the scope of this paper. It can be looked up [11] for a detailed justification,
as well as an introduction to AOP. AOP guarantees the three properties men-
tioned before, obtaining the maximum modularization for the adaptive mecha-
nisms, and what is more important, without affecting the software structure of
the underlying system (transparency). AOP offers these goals encapsulating the

224 M. Send́ın and C.A. Collazos

treatment of each real time constraint (e.g. the related to groupware) in sepa-
rated and concentrated program units called aspects4 (orthogonality). Hence we
call the intermediate layer (3) aspectual layer.

From a general collaborative viewpoint, the aspectual layer has the responsi-
bility of promoting communication events and actions focused on improving the
coordination of the group activities. To do so, it is in charge of interfering impli-
citly the situations along the system execution in which these initiatives could be
beneficial for the group, and augment there the core functionality triggering this
kind of actions, as well as catching the context in order to construct the shared-
knowledge from the particular viewpoint of each user. These actions are triggered
by means of the AOP mechanisms, trying to improve collaboration, and they
make up the extra-functionality that the IPE introduces without affecting the
underlying system. Furthermore, due to we use a combination of metadata and
aspects -whose explanation is out of the scope of this paper-, coupling between
the base system and the adaptation mechanisms is removed (reusability). We
can say that the aspectual layer acts as a transparent link between the other
ones. Figure 2 depicts a sketch of an IPE for a generic collaborative system.
We include two aspects to tackle the two goals mentioned: the Communication
aspect and the Coordination aspect. The role of the coreAppAnnotator aspect
in figure 2 is also out of the scope of this paper. The Shared-Knowledge-Model
component corresponds to a representation of the shared-knowledge from the
particular user viewpoint.

Fig. 2. IPE for a generic collaborative system

4 Program units that interfere the core functionality injecting new code or modifying
the base code.

Implicit Plasticity Framework 225

4.2 Further Guidelines Towards Abstraction: The IPF

In the design of our IPF, according to the experience extracted from the IPEs
built up to now, we take into account some considerations in order to achieve
system-independence and reusability. Let us see them according to each issue
pursued: different adaptation mechanisms, different contextual needs and differ-
ent domains of application.

Adaptation mechanisms. In order to avoid system-dependences, and to ob-
tain ”universal” adaptation mechanisms, we resort to aspect hierarchy and to
some refactoring steps. Thus, references to the name of certain methods, classes
or particular APIs are encapsulated, redefining the associated elements in sub-
aspects conveniently specialized. This is also the appropriate strategy if we need
to define different ways to interfere the base code behaviour following the AOP
mechanisms. Another strategy to achieve abstraction is refactoring in the aspects
code (the advices5). In effect, sometimes is not necessary to define the complete
advice in sub-aspects, but only a method that encapsulates special needs or vari-
abilities. Then, we use advice refactoring. This idea in particular corresponds to
the Template advice idiom [5]. We can use other types of refactoring or AOP-
specific patterns to make good aspectual designs.

Application domains. We are planning to reuse our IPF for different domains
deploying libraries of aspects. Thus, each particular application would be able to
establish the set of concerns it needs to manage. For example, in an archaeological
site considering the daylight constraint to adjust the UI is required. However, in
an indoors museum guide this concern is useless. In a tele-aid system another
kind of concerns are required to assist high-mountain rescues. It would be useful
to build a package of aspects related to mountain conditions.

Contextual needs. In a similar way, we need to adapt the context-aware layer
to the aspectual one, in order to map aspects with data stored in the contextual
model. We need to obtain flexibility also in the context-aware layer. As long
as this layer is based on the object-oriented programming, we use hierarchy of
classes to build their components in a generic way.

5 Conclusions and Further Work

Assuming that mobile solutions can offer large-scale solutions in supporting co-
ordinated work, it is recommendable to reuse as far as possible the work already
realised to solve problems inherent to mobility in the groupware work. In this
line, plasticity tools intend to offer a solution to most of the issues related to
groupware. Moreover, groupware activities need to be designed providing aware-
ness mechanisms to share the group understanding among group members. We
have presented an infrastructure of plasticity in which to integrate awareness

5 The code to be executed when aspects intercept the base code. Equivalent to methods
in classes.

226 M. Send́ın and C.A. Collazos

mechanisms, as well as how to accommodate the client-side software architec-
ture to support collaborative activities. The aim is to combine plasticity and
awareness goals, until now following separated ways, making group issues an
integral part of the plasticity process.

The infrastructure of plasticity proposed follows a client-server architecture
model not centered in the server as usual is presented in the literature, but ad-
justed to our dichotomic view of plasticity, which looks for an operational balance
client-server. This approach promotes a better collaboration between devices and
less constrained mobility conditions, contributing to autonomy and robustness at
the client side, as well as to a real time reaction during the task performing. This
approach is in the line of obtaining a trade-off between the degree of awareness
and the network usage, identified by Correa and Marsic [3]. Moreover, the soft-
ware architecture for the client-side is based on low resource-consuming program
units (aspects) that support awareness mechanisms and adaptivity in compact
limited appliances, scarcely increasing the size of the final code. As a result, this
architecture becomes suitable for the pervasive design. Additionally, the inte-
gration of the adaptive mechanisms with the base system becomes a seamless
process because of: (1) any refactoring step or modification in the software struc-
ture from the initial system is needed; and (2) coupling with the base system is
also removed due to we use a combination of metadata and aspects, promoting
so reusability.

As further work we plan to arrange and deploy a hierarchical library of generic
aspects that might be included in the groupware design. In a similar way, we
are developing the groupware facet in the server side, constructing an EPE to
tackle the design stage. Additionally, we want to specialize our work in the
construction of collaborative systems for ambience intelligence and pervasive
computing scenarios. Finally, we are interested to develop some visualization
mechanisms to provide shared knowledge awareness information to the whole
group, using the same infrastructure proposed in this paper.

Acknowledgements

Work partially funded by Spanish Ministry of Science and Technology, grants TIN2004-
08000-C03, Colciencias (Colombia) Project No. 4128-14-18008 and Project No. 030-
2005, and finally to ParqueSoft-Colombia (DaVinci’s Laboratory).

References

1. M. Barra. Distributed systems for group adaptivity on the web. Adaptive Hyper-
media and Adaptive Web-Based Systems (AH 2000), Italy, 2000.

2. C. Collazos, L. Guerrero, J. Pino, and S. Ochoa. Introducing shared-knowledge-
awareness. IASTED Conf.: Inform. and Knowledge Sharing, pages 13–18, 2002.

3. C. Correa and I. Marsic. A flexible architecture to support awareness in heteroge-
neous collabora-tive environments. CTS’03, pages 69–77, 2003.

Implicit Plasticity Framework 227

4. J. Favela, M. Rodŕıguez, A. Preciado, and V. González. Integrating context-aware
public displays into a mobile hospital information system. IEEE transactions on
information technology in Biomedicine, 8(3):279–286, 2004.

5. S. Hanenberg and A. Schmidmeier. Idioms for building software frameworks in
aspectj. 2nd ACP4IS, 2003.

6. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier, and
J. J. Irwin. Aspect-oriented programming. 11th ECOOP’97, 1241:220–242, 1997.

7. I. Marsic. A software framework for collaborative applications. Collaborative Tech-
nology Workshop, pages 10–11, 1999.

8. K.A. Palfreyman and T. Rodden. A protocol for user awareness on the world wide
web. Proc. of CSCW 96, Boston, MA, USA, pages 130–139, 1996.

9. M. Send́ın and J. Lorés. Plasticity in mobile devices: a dichotomic and semantic
view. Workshop on Engineering Adaptive Web, pages 58–67, 2004.

10. M. Send́ın and J. Lorés. Remote support to plastic user interfaces: a semantic
view. Selection of HCI related papers of Interaccin 2004. Springer-Verlag, 2005.

11. M. Send́ın and J. Lorés. Towards the design of a client-side framework for plastic
uis using aspects. Int. Workshop on Plastic Services for Mobile Devices, 2005.

12. D. Thevenin and J. Coutaz. Plasticity of user interfaces: Framework and research
agenda. Proc. of Interact 99, Edinburgh, pages 110–117, 1999.

	Introduction
	Related Work
	Initial Approach and Infrastructure of Plasticity
	Software Architecture for the Client-Side
	Design Requirements and General Structure for the IPE
	Further Guidelines Towards Abstraction: The IPF

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

