
A Framework Designed for Synchronous
Groupware Applications in Heterogeneous

Environments

Axel Guicking1 and Thomas Grasse2

1 Fraunhofer IPSI, Dolivostrasse 15, 64293 Darmstadt, Germany
axel.guicking@ipsi.fraunhofer.de

2 Jeppesen GmbH, Frankfurter Strasse 233, 63263 Neu-Isenburg, Germany
thomas.grasse@jeppesen.com

Abstract. The recent proliferation of using mobile devices in collabo-
rative scenarios increases the need for sophisticated and flexible group-
ware frameworks for heterogeneous environments. This paper presents
the architectural design of Agilo, a groupware framework that has been
designed explicitly for synchronous groupware applications involving the
use of heterogeneous devices. By respecting device heterogeneity from
the ground up, the framework provides an architectural design that is
highly flexible along different architectural dimensions on the one hand
and simple yet powerful to use on the other hand. Two applications from
different application domains based on Agilo are described together with
first usage experiences from the developer’s point of view.

1 Introduction

During the last decade, the use of mobile devices in daily work scenarios has
massively increased. Although mobile devices have found their way into business
work settings the application areas still are most often limited to individual
services like synchronizing personal calendars, note-taking, and browsing the
web. More recently, the research on the integration and use of mobile devices
in collaborative settings is constantly growing. It has been pointed out that
the use of application frameworks is an adequate way to simplify the design
and development of applications in general and groupware in particular [1,2].
Allowing for the increasing trend of mobility in CSCW (Computer-Supported
Collaborative Work) scenarios, new groupware application frameworks have been
developed or existing groupware frameworks have been extended in order to
support mobile devices.

Heterogeneous environments comprising mobile devices exhibit specific char-
acteristics [3,4,5], most notably these are (a) the limitations of processing and
battery power, memory and user interface capabilities, (b) unreliable network
conditions, and (c) a highly dynamic environment during application runtime
including, for example, changing user and device locations).

These characteristics affect all parts typically available in a groupware
framework—communication abstractions, framework and application layer, and

Y.A. Dimitriadis et al. (Eds.): CRIWG 2006, LNCS 4154, pp. 203–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 A. Guicking and T. Grasse

user interface support. The belated extension and adaptation of frameworks
therefore leads to conceptual as well as implementation-related mismatches be-
tween the framework parts addressing classical groupware scenarios and the parts
addressing support for mobile devices. Groupware frameworks that have been
designed explicitly to support mobile or heterogeneous devices usually focus on
specific application domains, such as meeting environments where mobile devices
are used as input devices and to share data (e.g. Pebbles [6] and SharedNotes [7])
and collaborative face-to-face learning environments (e.g. ConcertStudeo [8]).

This paper presents the groupware development framework Agilo that was
explicitly designed to support heterogeneous devices from the ground up. The
consideration of device heterogeneity from the very beginning of the framework
design phase has lead to a framework architecture that avoids the above men-
tioned mismatches while providing support for the different characteristics of
heterogeneous environments. By providing a high degree of flexibility along sev-
eral architectural dimensions the framework is suitable for applications in very
different application domains.

The focus of this paper lies on the presentation of the architectural design of
the framework and how it meets the characteristics of heterogeneous devices. The
framework has been used to build two applications from the domains of public
safety organizations and meeting support systems. Besides the description of
the applications first usage experiences from the developer’s point of view are
presented as well.

The remainder of this paper is organized as follows: section 2 motivates the
need for a highly flexible groupware framework to include heterogeneous de-
vices. In section 3 groupware frameworks supporting heterogeneous devices are
presented and analyzed according to their flexibility. In section 4 the architec-
tural design of the Agilo groupware framework is explicated. Section 5 describes
two applications built using the Agilo framework. In section 6 experiences from
application development and runtime execution are presented. Section 7 con-
cludes the paper with a short summary and several open issues that need to be
addressed in subsequent research.

2 Motivation

In order to provide comprehensive support for application development in gen-
eral, it has been pointed out that application frameworks need to provide flexibil-
ity appropriate to the application domain [1]. For the development of groupware
applications, several architectural patterns (or “variation points”) have been
identified [9,10].

These variation points can be divided into static and dynamic variation points.
Variation points addressing static characteristics of groupware architectures are
the following: (a) The Distribution Architecture addresses the distribution in the
collaborative application. Prominent examples for different distribution architec-
tures are Client-Server and Peer-To-Peer distribution models. (b) The Commu-
nication Infrastructure addresses low-level communication issues such as network

A Framework Designed for Synchronous Groupware Applications 205

and messaging protocols. (c) The Sharing Model specifies how data accessible
by different users and components is shared and manipulated, for example by
exchanging messages or by manipulating replicated objects.

Variation points addressing dynamic characteristics are the following: (d) The
Concurrency Model addresses the design how multiple concurrent processes and
threads execute in the collaborative application and framework. (e) The Synchro-
nization Model specifies the coordination of concurrent access of shared data in
order to avoid or resolve conflicting changes. Although the latter two variation
points usually address issues that are part of the framework, application devel-
opers should be able to easily adapt or even exchange the according framework
components according to specific application needs.

It is rather obvious that the tight integration of different realizations of varia-
tion points simplifies the development of more complex applications [10]. For ex-
ample, when considering a meeting scenario where the participants are equipped
with notebooks in order to provide input for brainstorming and voting sessions:
during the meeting, after one of the voting sessions, the facilitator notices that
another brainstorming session should be performed next. He updates the meet-
ing agenda accordingly and changes the configuration of several subsequent vot-
ing sessions. While the input of participants is usually entered once and never
changed again, the agenda and session configurations need to be synchronously
updated in an atomic way at each device. For participant submissions a message-
based approach is convenient since they are atomic by themselves and no con-
currency conflicts can arise. However, atomic manipulations of multiple data
instances necessitate the use of transactions, and, depending on the frequency
of concurrent (and maybe conflicting) changes of the data objects, specific con-
currency control mechanisms might be necessary as well.

Coming from this example it is only a small extension of the application sce-
nario to include heterogeneous devices which puts other constraints and require-
ments on the application and, as stated above, on the underlying application
framework as well.

3 Related Work

There exists a wide variety of frameworks that provide comprehensive support
for the development of groupware applications. However, the support of hetero-
geneous devices often has been added belatedly to existing frameworks that origi-
nally have been designed to support the application development for desktop and
PC-based groupware applications, e.g. Pocket DreamTeam [11] or Manifold [12].
During the last few years frameworks have been proposed to support the de-
velopment of groupware applications using either mobile devices exclusively or
using heterogeneous devices. According to the focus of the paper, we focus on
the discussion of groupware frameworks for heterogeneous environments.

The DOORS system has been designed for asynchronous collaboration in het-
erogeneous environments which has been extended to support synchronous col-
laboration as well [13]. Its object framework provides replicated data objects in

206 A. Guicking and T. Grasse

order to allow working on shared data while disconnected (so-called coobjects).
DOORS offers flexibility according to the Distribution Model by providing repli-
cated servers and according to the Concurrency and Synchronization Models by
encapsulating the according framework functionality and providing different im-
plementations. In order to provide different Sharing Model implementations, the
coobject notion needs to be extended. However, these implementations are based
on replicated objects which complicates more low-level implementations, such as
plain message-passing.

In [12], Marsic presents the Manifold framework, an extension of the DIS-
CIPLE framework [14] to support heterogeneous devices. It uses a data-centric
approach for sharing: while data is shared among all collaborators using XML
(Extensible Markup Language) it is presented and adapted according to device-
specific capabilities using XSL (Extensible Stylesheet Language). Manifold uses
a multi-tier architecture by separating concerns in a presentation layer, domain
logic, and collaboration functionality. While DISCIPLE already provides support
for heterogeneity on the networking level, Manifold makes use of Java Beans1

in order to provide support for heterogeneous devices on the application and in-
teraction level. Although Manifold provides an extensible architecture and flex-
ibility according to the communication infrastructure, flexibility related to the
other variation points is limited.

Pocket DreamTeam [11] is an extension of the Java-based DreamTeam plat-
form [15] in order to support mobile collaboration. DreamTeam is a Peer-to-
Peer based platform for synchronous collaborative applications that makes use
of so-called “resources” which form the basis for collaborative applications, e.g.
shared texts or shared web pages. Each resource can communicate with their
corresponding peer resources using synchronous remote method calls. Pocket
DreamTeam handles the restrictions of wireless connections by using remote
proxies that mediate state changes between peer resources. These proxies are lo-
cated on stationary parts of the network and therefore provide reliable network
connectivity to other peers that may act as proxies themselves. Another exten-
sion of DreamTeam addresses flexibility concerning the Sharing Model, called
DreamObjects [16]. However, DreamObjects does not support devices with lim-
ited capabilities. Furthermore, flexibility according to the Distribution Model as
well as most other variation points is limited. In addition, as described in [11], a
DreamTeam application has to be ported to C++ for use in Pocket DreamTeam.

QuickStep is a toolkit designed to support data-centered collaborative appli-
cations for handheld devices [17] based on record-based shared data (like to-do
lists, calendars etc.). In order to avoid conflicts, only the creator of a record
is allowed to modify it which in turn allows fast synchronization of replicated
objects. However, it does not provide typical groupware services like session
management (all users connected to a server implicitly join a session). Further-
more, QuickStep primarily addresses collaboration of co-located users, e.g. in
meeting scenarios to synchronize personal calendars. In fact, according to the
variation points described above, QuickStep only provides flexibility according

1 http://java.sun.com/products/javabeans/

http://java.sun.com/products/javabeans/

A Framework Designed for Synchronous Groupware Applications 207

to the Communication Infrastructure by supporting different communication
protocols.

The BEACH environment has been designed to support synchronous collabo-
ration using heterogeneous devices [18]. As an example application for asynchro-
nous brainstormings using limited devices (in this case Palm Pilot V), PalmBeach
has been implemented [19]. However, PalmBeach is a separate application that
has been implemented from scratch using a proprietary messaging protocol in or-
der to allow for communication with more capable devices running the BEACH
platform. The BEACH platform itself has never been designed for application
development involving mobile devices with limited capabilities.

4 Framework Design

The Agilo framework combines approaches of so-called “white-box” and “black-
box” application frameworks [1]. White-box frameworks support extensibility by
providing base classes to be inherited and pre-defined hook methods to be over-
ridden by application developers. Black-box frameworks provide interfaces to
plug-in components into the framework by using object composition and delega-
tion. While white-box frameworks usually require application developers to have
intimate knowledge of the internal structure of the framework, they provide bet-
ter support for the developer in order to adapt internal framework functionality
than black-box frameworks. Black-box frameworks, on the other hand, are gener-
ally easier to use and extend but hide most of the framework functionality. Agilo
provides both, template methods and framework base classes to be extended on
the one hand as well as interfaces in order to plug-in application components on
the other hand. This approach leads to a major benefit over frameworks that
strictly follow one of the two approaches: The black-box parts of the framework
are fully sufficient to build less complex applications that can be easily accom-
plished by less-experienced developers. However, the white-box parts allow the
fine-tuning of framework-internal structures and behavior by more experienced
developers in order to meet application-specific needs and requirements which
have not been foreseen during the framework design phase.

The Agilo framework architecture is composed of three tiers: The bottom tier
consists of a network abstraction interface and protocol-specific implementations,
the middle tier consists of the mandatory framework core and the upper tier
consists of application as well as optional framework components (see figure 1).

The upper tier is the framework part application developers usually are faced
with. By providing most of the framework functionality as optional components
in this tier Agilo becomes much more flexible and customizable compared to
frameworks, where all or most of the framework functionality is contained in the
middle tier. The upper tier follows a component-based approach which leads to
several advantages: (a) components can be easily reused, (b) components can
be configured and adapted independently which simplifies testing and increases
flexibility, (c) the API (Application Programming Interface) of the core frame-
work is small and compact and therefore easy to learn and memorize which is

208 A. Guicking and T. Grasse

Network Abstraction Interface

Framework Core

OS-provided network access

TCP HTTP UDP

ComponentComponentComponent Component Application Component Tier

Framework Core Tier

Connection Abstraction Tier

Fig. 1. The Three Tiers of the Agilo Framework Architecture

important especially for less experienced developers, (d) since unnecessary com-
ponents don’t have to be deployed and instantiated, application deployment can
be tailored according to specific device capabilities more easily.

The remainder of this chapter details the architectural design of the Agilo
framework according to the variation points depicted in section 2.

4.1 Conceptual Model

The Agilo framework is based on three main concepts: modules, messages, and
connections. Modules are software components either on framework or applica-
tion level that are responsible for processing incoming messages (they constitute
the upper tier, see figure 1). Messages are application-specific data chunks that
are sent between clients and server.2 The delivery of messages between clients
and server is performed by connections that hide low-level implementation de-
tails of network protocols (connections are the upper edge of the bottom tier).
While the concepts of messages and connections can be directly mapped to the
variation points Sharing Model and Communication Infrastructure, respectively,
the concept of modules is cross-cutting to the different variation points. The fol-
lowing paragraphs explain the three concepts in more detail.

According to the Sharing Model, Agilo provides different data sharing real-
izations. As basic communication abstraction Agilo provides messages that are
application-specific data chunks sent asynchronously between clients and server.
Synchronous messages are realized on top of asynchronous messages that can
be used by clients to send a request to the server and block until a response
from the server arrives. Although not often required, messages can have an ex-
plicit priority in order to be able to process more important messages earlier
than other messages. On top of both types of messages and provided as optional
components in the upper tier, transactions for atomic sending and processing of
multiple messages as well as a generic transaction-based object replication mech-
anism can be used in application scenarios with a high number of concurrency
conflicts and frequent data access and manipulations. The different realizations
can be used tightly integrated in a single application.
2 For the sake of clarity we use the terms Client and Server since a Peer-To-Peer

distribution model can be realized on top of the Client-Server distribution model,
where each peer acts as both, client and server, at the same time [10].

A Framework Designed for Synchronous Groupware Applications 209

According to the Communication Infrastructure, Agilo provides a high-level
abstraction of network connections (the bottom tier in figure 1) that allows the
implementation of applications independent of underlying network and trans-
port characteristics. Typical connection implementations are TCP (Transmis-
sion Control Protocol) sockets and—to support nodes secured by a firewall—
HTTP (Hypertext Transfer Protocol) connections, where clients constantly poll
the server to send and receive accumulated messages. Each connection uses a
marshaller that converts messages into a byte sequences and vice versa. By ex-
changing the marshaller of a connection the messaging protocol can be easily
adapted in order to support the integration of third-party clients and devices
into Agilo applications or to meet specific security requirements.

An Agilo application usually consists of several modules, each running either
on client- or server-side. Modules listen to incoming messages and process them
by performing some kind of activity. Which messages a module is interested in is
specified by a message filter of the module. The message filter arbitrarily defines
a boolean expression to accept or reject incoming messages. This way, a single
module can listen to different kinds of messages and different modules can get
notified about the same incoming message. Modules are registered at a local
ModuleRegistry that allows retrieving local module instances using node-wide
unique lookup names in order to access application logic of other local modules
by direct method calls.

Figure 2 shows the static relationships of the conceptual core of Agilo.

<<interface>>
Message

<<interface>>
Module

<<interface>>
Connection

<<interface>>
MessageFilter

ModuleRegistry
<<interface>>
Marshaller

< accepts or rejects

MessageHandler ClientRegistry

 is registered at >

1

* 1

*

*

1 1

1

* *

co
nv

er
ts

 >

Fig. 2. The Classes and Interfaces Constituting the Agilo Conceptual Model

4.2 Execution Model

During application runtime, several aspects of the Agilo framework core
functionality are required in order to provide message delivery and processing.
Besides the two variation points addressing dynamic concerns, the Concurrency
and Synchronization Model, the typical message flow is of central importance of
the Agilo architecture. The following paragraphs describe the two core modules
that are related to the dynamic variation points, the Concurrency Model and the

210 A. Guicking and T. Grasse

Sharing Model, and that are necessary for the execution of Agilo-based group-
ware applications before the general message flow in the system is presented.

The server-side ClientRegistry module manages the dynamic grouping of
clients. By storing a mapping from arbitrary identifiers to a collection of client
identifiers, multiple clients can be easily addressed at once to deliver messages.
Using the general-purpose ClientRegistry, application-specific session and client
management can easily be realized. Since the ClientRegistry is an ordinary mod-
ule that can be accessed via the ModuleRegistry, the framework does not limit
whether the client mappings are entered by clients or directly by the server.

In order to improve network performance the default implementation of the
ClientRegistry can be exchanged to support message delivery to multiple clients
on network level using, e.g., IP multicast. In combination with a toolkit for
reliable multicast such as JGroups3, the typical drawback of multicast—potential
packet loss—can be avoided. However, for scenarios involving widely distributed
clients the benefit and performance gain of network-level multicast decreases.

The second core module that needs to be present for processing messages
is the MessageHandler that supports different realizations of the Concurrency
Model. By default it enqueues incoming messages according to their priorities;
messages with the same priority are enqueued in FIFO (First In First Out) or-
der. A single active object, the MessageRouter, dequeues messages and forwards
them sequentially to the modules that are listening for this message (according
to their MessageFilter). In case other message delivery orders are sufficient4,
these can be realized by either configuring the MessageHandler module or, for
proprietary concurrent message processing strategies, by replacing it with a pro-
prietary implementation.

Regarding the Synchronization Model, the default implementation of the Mes-
sageHandler avoids any conflicts because all messages are processed sequentially,
which can be seen as an implicit transaction handling. The use of transactions to
bundle multiple messages and process them atomically does not necessitate con-
flict resolution strategies as well: the messages that are part of the transaction
are enqueued one after the other similar to enqueuing single messages—the only
difference is that the framework guarantees that no other messages not belong-
ing to the transaction are enqueued in between. Analogously, the execution of
transactions that manipulate replicated objects does not require synchronization
if manipulations of replicated objects can occur independent of the current ob-
ject state. Hence, as long as data manipulations cannot fail, no synchronization
mechanisms are necessary.

Nevertheless, if manipulations of shared data can fail, synchronization strate-
gies such as locking or automatic conflict resolution are inevitable. To provide
support for applications that require this kind of data manipulation behavior, a
module providing transaction management based on the Java Transaction API5

is currently under development.

3 http://www.jgroups.org/
4 For a survey and comparison of different message orders, see, for example, [20].
5 http://java.sun.com/products/jta/

http://www.jgroups.org/
http://java.sun.com/products/jta/

A Framework Designed for Synchronous Groupware Applications 211

Figure 3 shows how messages are processed by Agilo. In order to provide a
“complete picture,” the figure shows a situation where a message is delivered as
reaction on an incoming message.

(Network) Connection Marshaller MessageHandler MessageRouter Module(s)

incoming data (byte[])

unmarshal message(s)

enqueue message(s)

dequeue message

notify module(s)

send message

marshal message

queue outgoing data
outgoing data (byte[])

Fig. 3. Message Delivery and Processing in the Agilo Framework

4.3 Immanent Support for Heterogeneous Devices

The Agilo framework addresses the heterogeneity of devices by the following
features:

1. The framework provides appropriate device-independent abstractions to free
application developers as much as possible from device-specific implementa-
tion details.

2. The framework is highly tailorable according to device characteristics and
usage purposes.

3. The network abstraction interface provides configurable network protocol-
independent reliability support.

The first feature is realized by using Java as framework programming lan-
guage. For many of the more capable devices on the market today Java Virtual
Machines (JVM) based on the Java 2 Micro Edition (J2ME) are available. De-
vices for that no JVM is available or that do not provide enough resources to
execute J2ME-based applications, client applications based on other program-
ming languages can be integrated into Agilo applications by using customized
messaging protocols.

The second feature is enabled by the modularity of the framework design.
The capabilities of different devices used in a single application scenario often
differ. Therefore, the devices are used for specific purposes that best match
their individual characteristics. By providing the modularity as integral part of
the architectural design of the framework, this massively simplifies application
development involving devices with different capabilities:

212 A. Guicking and T. Grasse

– Best-matching modules can be chosen by application developers as needed
for the purpose of specific devices while modules that are not used by a spe-
cific device do not need to be deployed to it. This is a necessary prerequisite
for using devices with very limited processing power and memory.

– The runtime performance increases because unnecessary code execution over-
heads are avoided.

– Since the API of the framework is inherently segmented into the core API
and separate module APIs, especially less experienced application developers
benefit by not getting overwhelmed by a huge and complex API.

The third feature is part of the network abstraction tier. According to the fact
that wireless network connections can be highly unreliable Agilo has to provide a
reliable messaging service. In order to provide reliable network connections, the
different connection implementations need to be equipped with a guarantee for
(a) lossless message transmission, (b) correct message reception, and (c) correct
message arrival order without duplicates. These requirements are implemented
on framework level instead of completely relying on network protocol charac-
teristics which on the one hand simplifies the connection implementation using
other network protocols and increasing code reusability and, on the other hand,
enables reliable message exchange independent of the underlying network pro-
tocols and marshalling of messages. However, different protocols per se already
ensure some of the required reliability issues. For example, TCP provides correct
message reception and arrival order, while UDP (User Datagram Protocol) does
not provide lossless transmission and correct arrival order.

In order to avoid unnecessary overhead on the framework connection layer, the
different connection implementations only make use of the reliability features if
necessary. For that, an “optimized ACK” protocol is provided by the framework
where lost or corrupt messages are explicitly requested by the receiving from the
sending node. In order to be able to use third-party messaging platforms that
provide reliable messaging on their own (for example, JGroups or JMS6), the
reliability features of the framework can be easily switched off.

5 Applications

Based on Agilo, two applications for heterogeneous environments have been im-
plemented: First, an application supporting communication and coordination in
emergency missions of public safety organizations, called OPUS. Second, a com-
mercial application for sophisticated large-scale meeting support, called Digital
Moderation7, has been extended to support the use of heterogeneous devices.

5.1 OPUS

The communication during emergency missions as they are performed today by
public safety organizations is based on analog trunked radio which leads to several
6 http://java.sun.com/products/jms/
7 http://www.ipsi.fraunhofer.de/digital-moderation

http://java.sun.com/products/jms/
http://www.ipsi.fraunhofer.de/digital-moderation

A Framework Designed for Synchronous Groupware Applications 213

problems [21]: (a) A partner has to follow the whole communication in order to de-
cide which information is dedicated to him. (b) In order to communicate a partner
has to interrupt his current work context. (c) In high noise areas the understand-
ing of the communication partner can become difficult and may lead to delays in
case of explicit inquiries. (d) Messages that contain a high amount of information
probably have to be written down. (e) No private information can be exchanged
between two communication partners. (f) Finally, the access to the communica-
tion media is not easy as the number of participants increases.

In order to address these problems caused by the trunked radio technique as
communication medium, the synchronous groupware OPUS has been proposed
in [21]. The requirements for the software were derived from several typical
scenarios in missions of public safety organizations. The functional requirements
can be divided into the domains task management and resource management.
The task management comprises all activities of generation, assignment, and
maintenance of tasks. A task is a problem which a resource has to work on.
A resource, in turn, is every unit, single man, or equipment that can perform
or can be used to perform the work to solve a task. The resource management
comprises all activities to control the relationship among resources.

Besides the functional requirements, two non-functional requirements have
been identified as well. First, to adequately support the work context the system
has to run on handheld devices. This avoids additional weight to be carried by
relief units besides their regular equipment. Depending on the user-specific work
context, PDA, SmartPhones as well as cell phones need to be supported. Second,
during a mission, the device may be not always connected to the network. Thus,
interrupted communication links need to be taken into account.

To meet the denoted requirements, the OPUS software architecture has been
designed as described in [21]. By applying the patterns “Replicate For Freedom”
and “Mediated Updates” [22], the architecture follows a replicated approach,
where applications and shared data objects are replicated to client devices. In
case of local modifications the client notifies a central server component that
propagates the changes to the affected clients. This architecture ensures that
a user can still keep on working while the communication link to the server is
temporarily interrupted. To support limited devices, the provision of a central
server exempts client devices from maintaining lots of communication links.

Figure 4 shows the overall architecture of the OPUS system. The consistency
module is responsible for communicating local data changes to the server and
for updating local data replicas in case of data update messages received from
the server. The data model holds the domain-specific application data which is
accessed and manipulated either by the consistency module or locally by the
user via the user interface. The task and resource management modules contain
the application logic which connects the application data with the user interface.

Details about the implementation of OPUS can be found in [21]. Table 1
shows the realization of the static variation points in the OPUS system. The
transaction-based messages are used in order to allow reassigning resources to
another supervisor which has been realized by using the Agilo ClientRegistry.

214 A. Guicking and T. Grasse

Network Abstraction Interface

Framework Core

OS-provided network access

TCP HTTP UDP

ClientRegistryMessageHandler

Task Management

Consistency Module

OPUS Application Tier

Agilo Framework Core Tier

Agilo Connection Abstraction Tier

Resource Management

Data Model

User Interface

Fig. 4. Top-Level Software Components in the OPUS System

Table 1. Realizations of Static Variation Points in the OPUS Application

Variation Point Realization
Distribution Model Client-Server
Comm. Infrastructure Different Network Protocols (TCP, HTTP)
Sharing Model Asynchronous messages, synchronous messages,

transaction-based messages

5.2 Digital Moderation

The Digital Moderation system is a commercial meeting support system for fa-
cilitated and co-located meetings providing conceptual as well as technical scal-
ability with respect to the number of meeting participants (meetings with up to
several hundreds of users are supported). The main characteristics of the Digi-
tal Moderation system are easy adaptability and extensibility to accommodate
different facilitation methods, dynamic runtime extensibility to allow changes of
the agenda during the meeting, automatic meeting report generation as well as
sophisticated facilitation services in order to increase meeting performance. Fa-
cilitation methods are realized by providing a meeting tool API, e.g. to provide
brainstorming, ranking and voting tools.

Digital Moderation supports different meeting scenarios; besides large-scale
meetings, workshop scenarios with about 20 participants are supported that
usually are performed by an external facilitator equipped with several WiFi-
capable notebooks at a company site (see figure 5). Both scenarios essentially
require a very high system reliability. The system itself needs to be robust against
hardware and network failures either because no sophisticated failure-tolerating
hardware is available or because of financial reasons in case of a large number of
meeting participants.

Digital Moderation is implemented using Agilo with a Client-Server Distrib-
ution Model which provides better technical scalability for large-scale meetings

A Framework Designed for Synchronous Groupware Applications 215

compared to a Peer-to-Peer Distribution Model and which simplifies automatic
meeting report generation. Network failures are already avoided by the network
abstraction tier of the framework while hardware failures, especially in case of
server failures, are currently addressed by a generic recovery module based on
message logging.

Fig. 5. A Typical Digital Moderation Workshop Setup

Recently, the Digital Moderation meeting scenarios have been extended in or-
der to provide support for using heterogeneous (especially mobile) devices during
meetings; the implementation of these extensions are currently ongoing. One of
these extensions addresses the technical support during a large-scale meeting:
technicians are equipped with PDA during meetings in order to get continuously
informed about device characteristics and device-specific connectivity details.
Additionally, participants can ask for technical support via the user interface
which automatically shows up on the user interface of the technicians’ PDA.
This way, technical issues can be handled more efficiently and user satisfaction
can be improved because of the smooth integration of the technicians and their
responsibilities into the meeting execution.

Another extension addresses the use of different devices in a meeting according
to specific meeting task characteristics. Depending on the task, devices with
different interface capabilities are more appropriate than others. For example,
for a meeting of a design team, the use of devices with pen-based input is more
applicable e.g. to provide scribbles during a brainstorming session, while other
participants use keyboard-based input devices to submit new ideas.

Table 2 shows the static variation points in the Digital Moderation applica-
tion. While asynchronous messages are used for participant contributions, syn-
chronous messages are mainly used during client startup in order to retrieve

216 A. Guicking and T. Grasse

Table 2. Realizations of Static Variation Points in the Digital Moderation System

Variation Point Realization
Distribution Model Client-Server
Comm. Infrastructure Different Network Protocols (TCP, HTTP)
Sharing Model Asynchronous messages, synchronous messages,

replicated objects

meeting and tool configuration data. The transaction-based manipulation of
replicated objects is used by the facilitator to update meeting data, such as
tool configurations and the meeting agenda. Since no concurrent data manipula-
tions can happen (only the facilitator is allowed to update the meeting data), no
sophisticated concurrency control and synchronization mechanisms are needed.

6 Experiences Gained

Up to now, the Agilo framework has been used by ten application developers
whose expertise ranges from less-experienced Java developers to expert Java de-
velopers with comprehensive experience in developing distributed systems. The
Digital Moderation application has been used successfully to perform meetings
with up to 200 participants involving more than 50 devices.

The Agilo framework core consists of 112 classes for clients and 132 classes
for the server which result in framework binaries of around 200 KB and 230 KB,
respectively, in size. Optional modules, e.g. the transaction-based generic object-
replication without sophisticated synchronization and concurrency-handling,
consists of 54 classes resulting in around 50 KB binaries on clients and server.

Compared to Agilo, other groupware frameworks, e.g. COAST [2] and
DyCE [23], provide more functionality as part of the non-dividable framework
core which leads to two immanent limitations. On the one hand, larger frame-
works put more constraints on how to use and extend the framework which
massively increases the learning time of application developers. On the other
hand, these frameworks require more system resources which limits the applica-
bility for heterogeneous environments.

The experiences gained during the development of the applications sketched
in the previous section confirm these conclusions. The small framework core and
the modular architecture of the framework lead to a very quick understanding
of how to implement applications using Agilo (typically far less than a single
day)—even for less-experienced developers.

To our experiences, the modularity and flexibility of Agilo substantially sup-
ports the evolution of applications. New functionality can be implemented by in-
troducing new kinds of messages and developing independent modules. This way,
new functionality can be easily added without affecting stability and correctness
of existing application logic. The flexibility to combine different realizations of
variation points in a single application massively simplifies the development of
applications combining different complexity levels without overly increasing the
overall system complexity.

A Framework Designed for Synchronous Groupware Applications 217

7 Conclusions and Future Work

This paper presented the architectural design of the groupware framework Agilo
that has been explicitly designed to support the development of groupware ap-
plications in heterogeneous environments. By providing a highly modular archi-
tecture where most of the groupware functionality itself is provided as separate
modules, the framework offers a high degree of flexibility, which imposes only
few usage constraints on the application development. In fact, applications can
be built faster due to increased reusability of software components and faster un-
derstanding of the provided framework core concepts. The inherent extensibility
of the framework provides support for device-specific development and tailor-
ing for a wide range of devices—from desktop PCs and full-featured notebooks
to handheld PDA and devices providing only a very limited set of capabilities
like SmartPhones. The experiences gained during the design and development of
two different systems (one of them a large commercial meeting support system)
based on Agilo have shown that even unexperienced Java developers can compre-
hend the conceptual framework design very quickly and implement applications
within the first one or two days after starting to work with Agilo.

Although the framework has been used to implement two different systems,
there are three main areas that require further research. One area addresses the
implementation of other applications that especially differ with respect to the
dynamic variation points. Since both applications presented in this paper do
not put strong requirements on synchronization and concurrency control mech-
anisms (because of their application domains), the experiences regarding the
Synchronization as well as the Concurrency Model are still in an early stage.

Another area is to improve runtime support for heterogeneous devices. In the
literature of Ubiquitous Computing it has been emphasized that heterogeneous en-
vironments are highly dynamic [3]. While some of the dynamic characteristics are
already supported in Agilo (e.g. fault tolerance against intermittent network fail-
ures), others are not yet supported in an application-independent way, for exam-
ple, changing user and device locations and moving stateful applications to other
devices. In order to support this kind of context awareness, the approach most of-
ten suggested is automatic self-adaptation of the system or framework (e.g. in [3]).
For convenient support of application developers the Agilo framework should pro-
vide according services, especially to support device and application mobility.

Finally, Agilo needs to be evaluated quantitatively regarding runtime perfor-
mance, stability and scalability. Albeit there have been several performance and
load tests conducted for the Digital Moderation system, concrete statements
about throughput, failure frequency and scalability of the framework need to be
determined in a more systematic and reproducible way.

References

1. Fayad, M., Schmidt, D.C.: Object-oriented application frameworks. Communica-
tions of the ACM 40(10) (1997) 32–38

2. Schuckmann, C., Kirchner, L., Schmmer, J., Haake, J.M.: Designing object-oriented
synchronous groupware with COAST. In: Proc. CSCW ’96, ACM Press (1996) 30–38

218 A. Guicking and T. Grasse

3. Raatikainen, K.E., Christensen, H.B., Nakajima, T.: Application requirements for
middleware for mobile and pervasive systems. ACM SIGMOBILE Mobile Com-
puting and Communications Review 6(4) (2002) 16–24

4. Roth, J.: Seven challenges for developers of mobile groupware. In: Workshop
“Mobile Ad Hoc Collaboration” of CHI ’02. (2002)

5. Weiser, M.: The computer for the 21st century. Scientific American (September)
(1991) 94–104

6. Myers, B.A.: Using handhelds and PCs together. Communications of the ACM
44(11) (2001) 34–41

7. Greenberg, S., Boyle, M., LaBerge, J.: PDAs and shared public devices: Making
personal information public, and public information personal. Personal Technolo-
gies 3(1) (1999) 54–64

8. Wessner, M., Dawabi, P., Fernndez, A.: Supporting face-to-face learning with hand-
held devices. In: Proc. CSCL ’03, Kluwer Academic Publishers (2003) 487–491

9. Avgeriou, P., Tandler, P.: Architectural patterns for collaborative applications.
International Journal of Computer Applications in Technology (IJCAT) 25(2–3)
(2006) 86–101

10. Guicking, A., Tandler, P., Avgeriou, P.: Agilo: A highly flexible groupware frame-
work. In: Proc. CRIWG ’05, Springer Verlag (2005) 49–56

11. Roth, J.: The resource framework for mobile applications: Enabling collaboration
between mobile users. In: Proc. ICEIS ’03. Volume 4. (2003) 87–94

12. Marsic, I.: An architecture for heterogeneous groupware applications. In: Proc.
ICSE ’01, IEEE (2001) 475–484

13. Preguia, N., Martins, J.L., Domingos, H.J.L., Duarte, S.: Integrating synchronous
and asynchronous interactions in groupware applications. In: Proc. CRIWG ’05,
Springer Verlag (2005) 89–104

14. Marsic, I.: DISCIPLE: a framework for multimodal collaboration in heterogeneous
environments. ACM Computing Surveys 31(2es) (1999) Article No. 4

15. Roth, J.: DreamTeam – A platform for synchronous collaborative applications. AI
& Society 14(1) (2000) 98–119

16. Lukosch, S.: Transparent and Flexible Data Sharing for Synchronous Groupware.
PhD thesis, University of Hagen, Germany (2003)

17. Roth, J., Unger, C.: Using handheld devices in synchronous collaborative scenarios.
Personal and Ubiquitous Computing 5(4) (2001) 243–252

18. Tandler, P.: Synchronous Collaboration in Ubiquitous Computing Environments.
PhD thesis, Darmstadt University of Technology, Germany (2004)

19. Prante, T., Magerkurth, C., Streitz, N.: Developing CSCW tools for idea finding:
empirical results and implications for design. In: Proc. CSCW ’02, ACM Press (2002)
106–115

20. ter Hofte, H.: Working Apart Together. Foundations for Component Groupware.
PhD thesis, Telematica Instituut, Enschede, NL (1998)

21. Grasse, T.: Eine Systemarchitektur zur effizienten Steuerung von mobilen Ein-
satzkrften [in german]. Master’s thesis, FernUniversitt Hagen, Germany (2005)

22. Lukosch, S., Schmmer, T.: Patterns for managing shared objects in groupware
systems. In: Proc. EuroPLoP ’04. (2004) 333–378

23. Tietze, D.: A Framework for Developing Component-based Cooperative Applica-
tions. PhD thesis, Darmstadt University of Technology, Germany (2001)

	Introduction
	Motivation
	Related Work
	Framework Design
	Conceptual Model
	Execution Model
	Immanent Support for Heterogeneous Devices

	Applications
	OPUS
	Digital Moderation

	Experiences Gained
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

