
Accelerating the Computation of Elementary

Modes Using Pattern Trees

Marco Terzer and Jörg Stelling

ETH Zurich, Department of Computer Science, 8092 Zurich, Switzerland
{marco.terzer, joerg.stelling}@inf.ethz.ch

Abstract. Elementary flux modes (EFMs)—formalized metabolic
pathways—are central and comprehensive tools for metabolic network
analysis under steady state conditions. They act as a generating basis
for all possible flux distributions and, thus, are a minimal (constructive)
description of the solution space. Algorithms to compute EFMs descend
from computational geometry; they are mostly synonymous to the enu-
meration of extreme rays of polyhedral cones. This problem is combina-
torially complex, and algorithms do not scale well. Here, we introduce
new concepts for the enumeration of adjacent rays, which is one of the
critical and stubborn facets of the algorithms. They rely on variants of k-
d-trees to store and analyze bit sets representing (intermediary) extreme
rays. Bit set trees allow for speed-up of computations primarily for low-
dimensional problems. Extensions to pattern trees to narrow candidate
pairs for adjacency tests scale with problem size, yielding speed-ups on
the order of one magnitude relative to current algorithms. Additionally,
fast algebraic tests can easily be used in the framework. This constitutes
one step towards EFM analysis at the whole-cell level.

1 Introduction

Metabolic networks are characterized by their complexity. Even in simple bacte-
ria, they involve ≈2.000 metabolites and ≈1.000 proteins that catalyze reactions
converting external substrates to metabolites and products. For their computa-
tional analysis, in particular, stoichiometric or constraint-based approaches have
gained popularity because the necessary reaction stoichiometries and reversibili-
ties are usually well–characterized, in contrast to reaction kinetics and associated
parameters [1]. For example, genome–scale stoichiometric models have been con-
structed for several organisms to predict flux distributions in metabolic networks
in normal or perturbed conditions as well as optimality and control thereof [2].

Conceptually, the analysis starts from the m × q stoichiometric matrix N,
where m is the number of (internal) metabolites and q the number of reac-
tions. As metabolism usually operates on faster time–scales than other cellular
processes, we can assume (quasi) steady–state for the metabolic reactions to
derive the fundamental metabolite balancing equation:

N · r = 0 (1)

P. Bücher and B.M.E. Moret (Eds.): WABI 2006, LNBI 4175, pp. 333–343, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

334 M. Terzer and J. Stelling

where the (q × 1)-vector r represents a flux distribution. Additionally, the reac-
tion rates r are subject to thermodynamic feasibility constraints for irreversible
reactions (into which any reversible reaction can be decomposed):

r ≥ 0 (2)

Eqs. (1) and (2) constrain the solution space for valid reaction fluxes to a con-
vex polyhedral cone P (see Section 2 for formal definitions). Hence, comprehen-
sively analyzing metabolic network behavior amounts to characterizing P [3].
Metabolic pathways such as elementary flux modes (EFMs) or extreme path-
ways, which are minimal, linearly independent flux vectors unique for a given
network, allow for this because they correspond to extreme rays of P [3].

Thus, computation of EFMs is equivalent to the enumeration of the extreme
rays of P , a problem from computational geometry known to be hard for the
general case. Current algorithms are variants of the double description method
(DDM) introduced by Motzkin et al. in 1953 [4]. In particular, the canonical basis
approach [5] and the more efficient nullspace approach [6] are used for EFM
computation. However, no efficient algorithm is known with time complexity
polynomial in the input and output size [7], which currently restricts metabolic
pathway analysis to networks of ≈100 reactions and metabolites [1].

Here, we propose improved algorithms for EFM computation that address the
most critical feature of the DDM, namely the independence tests for (prelimi-
nary) extreme rays. We focus on the nullspace approach, but the concepts are
readily applicable to the canonical form. After giving fundamental definitions
(Section 2) and a detailed description of current algorithms (Section 3), we will
present our new approaches relying on k-d trees (Section 4) and experimental
results showing their significant impact on performance (Section 5).

2 Fundamentals

Definition 1. A nonempty set C of points in an Euclidean space is called a
(convex) cone if λx + μ y ∈ C whenever x, y ∈ C and λ, μ ≥ 0.

Definition 2. A cone P is polyhedral if P = {x |Ax ≥ 0} for some matrix
A, i.e. P is the intersection of finitely many linear half-spaces.

Note that A = [NT ;−NT ; I]T and x = r, with the stoichiometric matrix N ,
identity matrix I to ensure irreversibility constraints, and the flux distribution
r, define the cone in the context of EFM analysis as given by eqs. (1) and (2).

Theorem 1 (Minkowski’s Theorem for Polyhedral Cones). For every
cone P = {x |Ax ≥ 0} there exists some R such that P = {x |x = R c for
some c ≥ 0} is generated by R.

A is called a representation matrix of the polyhedral cone P , R is the generating
matrix for P . Because both A and R describe the same object P , the pair (A, R)
is called double description pair or DD pair [4,7].

Accelerating the Computation of Elementary Modes Using Pattern Trees 335

Definition 3. For any vector x ∈ P , the set Z(x), containing the indices i such
that Ai x = 0, is called the zero set of x.

Definition 4. A vector r is said to be a ray of P if r �= 0 and α r ∈ P for
every α > 0. Two rays r and r′ are said to be equivalent, i.e. r � r′, if r = α r′

for some α > 0.

Definition 5. Let r be a ray of P . If one of the following holds, both hold and
r is called an extreme ray:

(a) rank(AZ(r)) = rank(A) − 1
(b) there is no r′ ∈ P with Z(r′) ⊇ Z(r) other than r′ � r.

If all columns of R are extreme rays, R is called a minimal generating set for P .

3 Existing Algorithms

3.1 Double Description Method (DDM)

The DDM relies on the definition of adjacent rays that is derived from the
extreme ray definition (5). Thus, there exist two options to ensure adjacency,
(a) sometimes referred to as algebraic adjacency test, (b) as combinatorial test:

Definition 6. Let r and r′ be two extreme rays of P . If one of the following
holds, both hold and r and r′ are said to be adjacent:

(a) rank(AZ(r)∩Z(r′)) = rank(A) − 2
(b) if r′′ ∈ P with Z(r′′) ⊇ Z(r) ∩ Z(r′) then r′′ � r or r′′ � r′.

The algorithm constructs R from A iteratively as follows:

1. Initialization Step: Since P is pointed, i.e. 0 is an extreme point of P , A has
full rank d, a nonsingular square sub-matrix Ad exists, and (Ad, A

−1
d) is an

initial DD pair. As we will see for the nullspace approach, other initial pairs
are possible.

2. Iteration Step: Assume the DD pair (Aj , Rj) with j inequality constraints
from Ax ≥ 0 already considered. The next DD pair (Aj+1, Rj+1) is achieved
by fulfilling an additional inequality aj+1 := Aj+1 x ≥ 0.

(a) The hyperplane H0
j+1 = {x |Aj+1 x = 0} separates Rj into 3 parts:

i. R0
j , the extreme rays of Rj fulfilling inequality aj+1 with equality,

ii. R+
j ⊆ Rj fulfilling aj+1 with strict inequality and

iii. R−
j ⊆ Rj not fulfilling aj+1.

(b) The matrix Rj+1 is constructed as the union of
i. those extreme rays that still fulfill the new condition (R0

j ∪ R+
j)

ii. together with the rays resulting from the intersection of the separat-
ing hyperplane H0

j+1 with the hyperplane through the pair of rays
(r−, r+) where r− ∈ R−

j , r+ ∈ R+
j and r− is adjacent to r+, i.e.

the newly created ray is an extreme ray. This step is also known as
Gaussian elimination with the newly constructed ray r′ in H0

j+1:
r′ = (Aj+1r

+)r− − (Aj+1r
−)r+.

3. Continue with 2 until all inequalities are considered.

336 M. Terzer and J. Stelling

3.2 Binary Nullspace Algorithm

Nullspace approach. Wagner [6] proposed to use a well defined form of the
kernel matrix K of N as an initial minimal representation matrix, where K =
[I; K∗]T . If Nm×q has full rank, i.e. d = rank(N) = m, the kernel matrix
has dimensions q × (q − m) and K∗ consequently m × (q − m). Thus, this
initialization results in (q − m) + 2m = q + m resolved constraints, leaving
m inequalities to be solved in the iteration phase. It can be shown [3] that
(A, K) form an initial DD-pair with K being a minimal generating matrix and
A(q+m)×q =

[
Iq−m0(q−m)×m; N ; −N

]
. The nullspace approach proved to

be faster than the original version, removes redundancies (by the nature of the
kernel matrix), and simplifies the Gaussian elimination step.

Bit sets. Adjacency tests are the most expensive parts of the algorithm. How-
ever, as we only need to know whether or not a ray fulfills a specific inequality
with equality, we can use bit sets to store this information. Corresponding to the
zero sets in definition 3, the bit set zero set of a given vector x at iteration step
j is defined as follows, complementary to [3]:

Definition 7. For any x ∈ Pj, Pj being the polyhedral cone at iteration step j
represented by the double description pair (Rj , Aj), the set

Bj(x) = {r1r2 . . . rj | ri ∈ [0, 1], 1 ≤ i ≤ j} with ri =
{

1 if Ai x = 0
0 otherwise

is called the bit set representation of the zero set of x.

We will use the shorter term zero set subsequently for bit set representation of
the zero set.

The bitwise and operation for zero sets corresponds to the intersection of sets,
because for every bit-position in the bit set, the position in the resulting set is 1
iff the position was 1 in both source sets. Accordingly, the subset (or superset)
operation can be performed by:

B(x) ⊆ B(y) ⇐⇒ B(x) ∧ B(y) ≡ B(x) (3)

Proposition 1. To derive the zero set of a vector at iteration j+1, the following
operations are performed:

Bj+1(x) =
{

Bj(x) + 1 if x ∈ R0
j+1

Bj(x) + 0 if x ∈ R+
j+1

(4)

for extreme rays which still fulfill the new equation and are kept, and

Bj+1(x, y) = {Bj(x) ∧ Bj(y) + 1 |x ∈ R+
j+1, y ∈ R−

j+1, x adj. to y} (5)

for newly combined rays, where + stands for concatenation, ∧ for the bitwise
and operation.

Accelerating the Computation of Elementary Modes Using Pattern Trees 337

Proof. The proof for (4) and (5) immediately emanates from definition (3).

The bit set representation of zero sets has two main advantages: It demands lit-
tle space in memory, and set operations (bitwise and, subset tests) for adjacency
can be performed efficiently. Moreover, storing only one bit for vector elements
concerning rows in A which have already been processed is sufficient. The num-
ber of zero positions in extreme rays is maximized and the combination of zeros
and non-zeros is unique; thus, the original real-valued rays can be reconstructed
from the bit set extreme rays after the final iteration step [3].

4 New Approaches

4.1 Bit-Set Trees

The bit sets in definition 7 can be seen as k-tuples of [0, 1] values, and thus
search operations on a set of bit sets coincide with queries on a collection of k-
dimensional records. For this purpose, k-d-trees have been invented as a structure
for storage and retrieval of multidimensional (k-dimensional) data [8].

In the context of EFM-computation, we need to test for the existence of a
superset for a given bit set. For 2 adjacent rays r and r′ with corresponding
zero sets B(r) and B(r′), the combinatorial adjacency test as defined in 6(b)
bars the existence of a zero set that is superset of B(r)∩B(r′) other than B(r)
and B(r′). This type of queries can operate on a binary k-d-tree and works
similar to the partial match queries given in [8].

Tree construction. Given a set of bit sets (our zero sets), the algorithm returns
a binary k-d-tree or bit set tree. The input of the algorithm is a set of bit sets,
that is, a collection without duplicates, which conforms to the actual problem.
This simplifies step 2 of the algorithm below, where the bit sets are split into
two newly created leafs, and we can assure that infinite loops are avoided.

main Create a leaf node containing all bit sets and invoke sub with it. The
returned node is the tree’s root r.

sub 1. If the leaf node contains not more elements than some threshold (the
maximum leaf size), return it and continue at invoker.

2. Choose some bit j that has not yet been used on prior levels. Sepa-
rate the leaf’s bit sets and create two new leaf nodes zero and one
containing the bit sets with bitj = 0 and bitj = 1, respectively.

3. Recursively invoke sub with zero and one.
4. Create a new intermediary node i with two children zero and one,

the nodes returned by sub in 3. Return i and continue at invoker.

Superset existence. Given the root r of a bit set tree t constructed as described
above and a bit set s to be tested, where s = s+∩s− with s+ ∈ t and s− ∈ t, the
algorithm returns true if a super set of s is contained in t (other than s+ and s−),
false otherwise (i.e. it returns true iff s+ is adjacent to s−). The functionality
of the algorithm is illustrated in Fig. 1.

338 M. Terzer and J. Stelling

Fig. 1. Superset-Existence algorithm on a bit-set tree/pattern set tree with ternary leafs
and a test bit set s = 010011. Double-lines indicate pointers to child nodes which are
traversed in both tree-variants, dotted lines are traversed in neither of them. Dashed
lines are only traversed in the bit-set tree, single solid lines only in the pattern-tree.
Double-bar arrow-heads highlight truncation by the pattern.

main Invoke sub with the root node r and return the result from that call.

sub 1. If the current node is a leaf, iterate through the leaf’s bit sets and
return true if any of them is a superset of s (not being s+ or s−),
false otherwise.

2. Let si be the bit i of s where i is the bit position corresponding to
the current node (this bit has been used to separate the bit sets in
child node zero from those in one).

3. Invoke sub with one. If true is returned, pass it to the invoker.
4. If si = 0, call sub with zero and return the result, else return false.

Correctness and complexity. By the way of constructing the tree, the zero
child of an intermediary node with selective bit j contains those bit sets that
have bitj = 0. Thus, if the set s to be tested contains j, that is, bitj = 1, the bit
sets in zero cannot be supersets of s and only the bit sets in one are superset
candidates, conforming with the recursion condition in step 4.

We cannot estimate the number of intermediary modes and, thus, the overall
time complexity of the DDM. However, for each step, at least d − 1 inequalities
are fulfilled with equality, where d = rank(A) (definition 5(a)). Since A contains
I, d = q equals the number of irreversible reactions, and due to the nature of the
nullspace, all equality constraints are fulfilled. They correspond to 2m rows in
A with rank m (assuming independent rows in N), thus q− 1−m positions are
left to be fulfilled with equality. That is, the bit sets in t have at least q −m− 1
1-bits, and due to definition 6(a) s at least q − m − 2 respectively. With bit set
length l (q − m ≤ l ≤ q), the probabilities of a 1 in s and in the tree’s bit sets
can be estimated:

{
n · q−m−1

l remaining bit sets with probability q−m−2
l

n remaining bit sets with probability 1 − q−m−2
l

(6)

Accelerating the Computation of Elementary Modes Using Pattern Trees 339

We assume a well balanced tree of depth log2(n) and set ε1 = q−m−1
l and

ε2 = q−m−2
l . The time complexity at step j is proportional to the number of

considered bit sets per adjacency test, approximated by

n · (1 − ε2 + ε1ε2)log2(n) = n1+log2(1−ε2+ε1ε2) (7)

Note that the sublinear function in eq. 7 has an optimum at ε1/2 ≈ 1/2. It is
relatively insensitive to perturbations in ≈ [0.2, 0.8], especially for large n. For
real problems, eq. 7 is a good (and conservative) approximation.

In a well-balanced tree, we have n/2 nodes holding n unary leafs, requiring
c · 2n additional memory space for a total of n intermediary nodes and n leafs,
where c is a small constant. Optimizations could be applied, but these memory
demands are far from being critical for our purposes. In [8], an algorithm is
presented which constructs a balanced tree based on the median of a collection
of elements. With binary values, this approach cannot be applied, but we can
adjust the selective bit at step 2 of the tree construction. Either a static bit order
is calculated before constructing the tree, or the most selective bit is chosen
dynamically when the leaf’s bit-sets are subdivided. We get closer to optimally
balanced trees with dynamic choice, but loose the property of having the same
selective bit for nodes on the same level. Here, we used static and dynamic
heuristics, leaving space for subsequent explorations.

4.2 Pattern Trees

The general idea of pattern trees ties up to the bit set trees, where bit sets
are separated into two child nodes in every intermediary node, taking some
designated selective bit as criterion for partitioning. In pattern trees, additionally,
all intermediary and leaf nodes account for the bit sets of their children by a
union pattern of all bit sets contained in the subtree. At least the selective bits of
the node and its predecessors are common for all bit sets in the subtree. However,
since the actual bit sets constitute only a small fraction of all possible values,
it is likely that other common 0’s will occur in the pattern. This allows a more
restrictive pre-rejection of test sets.

Proposition 2. Let s be a set, E a collection of sets and U = {⋃ e | e ∈ E} the
union of all sets in E. Then s ⊆ U is a necessary condition for {e | s ⊆ e, e ∈
E} �= ∅, i.e. that a superset of s exists in E.

Proof. If s �⊆ U , s contains at least some j /∈ U . Thus, for all e ∈ E, j /∈ e and
consequently s �⊆ e hold.

Tree construction. In addition to the algorithm for constructing bit set trees,
we calculate the union pattern U when a new leaf node (containing the set E of
bit sets) is created (in main and at step 2) as U = (∨e | e ∈ E) where ∨ stands
for the bitwise or operation.

Superset existence. The algorithm works very similarly to that given for bit
set trees, passing the root node r of a pattern tree. Note that no bit tests are

340 M. Terzer and J. Stelling

performed in step 4 and the recursion is always invoked with both children. Step
1 avoids descending the zero-subtree if the test bit of s was 1 since the pattern
of the zero-child contains 0 at the respective bit position (Fig. 1).

main Invoke sub with the root node r and return the result from that call.
sub 1. If s �⊆ U , U being the union pattern of the node, return false.

2. If the node is a leaf, iterate through the leaf’s bit sets and return
true if a superset of s exists (not being s+ or s−), false otherwise.

3. Invoke sub with one. If true is returned, pass it to the invoker.
4. Invoke sub with zero and return the result.

Correctness and complexity. The only point where we decide to disregard
some superset candidates is at step 1, where sets are excluded if their union
pattern does not fulfill the condition introduced in proposition 2 necessary for
the existence of supersets in the corresponding subtree.

Both time and memory demands for pattern trees are very similar to those of
bit set trees, and it is beyond the scope and objectives of this work to achieve
more precise estimates for time complexity.

4.3 Narrowing Adjacent Pair Candidates

In the previous sections, we have addressed adjacency testing. We will now focus
on narrowing the ray-pairs being candidates for adjacency even before testing.

Proposition 3. Let E1, E2 and E3 be collections of sets with corresponding
union patterns Uj = {⋃ e | e ∈ Ej , 1 ≤ j ≤ 3}, and let S = {s1 ∩ s2 | s1 ∈
E1, s2 ∈ E2}. Then

∃s3 : s3 ∈ E3 with U1 ∩ U2 ⊆ s3 =⇒ ∃s3 : s3 ∈ E3 with s ⊆ s3 (8)

holds for every s ∈ S.

Proof. By definition, U1∩U2 =
(
(s11∪· · ·∪s1n)∩(s21∪· · ·∪s2m)

)
. Applying the

distributive law, we get
(
(s11∩s21)∪(s11∩s22)∪· · ·∪(s11∩s2m)∪· · ·∪(s1n∩s2m)

)

being the union of all elements of S. Thus, s ⊆ U1 ∩ U2, and consequently
U1 ∩U2 ⊆ U3 =⇒ s ⊆ U3. From this, eq. (8) follows by replacing U3 by s3. If an
s3 exists (left hand of 8), the same s3 exists on the right hand side.

We can use eq. 8 as necessary preconditions for the all-pair combinations. The
success of this shortlisting of candidates highly depends on the relations between
the sets or their union patterns. Higher similarities of patterns U1 and U2 enhance
the probability of the precondition being true, while larger sets E1 and E2 are
more desirable since more pairs could be eliminated. Pattern trees comply with
these requirements well since they constitute subtrees with union patterns. Nodes
in the upper part of the tree have many, but barely similar entries; descending
the tree means lowering the number of entries and increasing the similarity.
This characteristic can be used to find the optimal balance between number and
similarity of entries in a set.

Accelerating the Computation of Elementary Modes Using Pattern Trees 341

Here, we implemented an algorithm that tests the cut-pattern U1 ∩ U2 for
two leaf nodes. We used heuristics to calculate the optimal leaf size, that is
the number of bit sets per leaf, in a manner of statically balancing similarity
and exclusion. Future development should also consider dynamic balancing by
calculating the cut pattern for all nodes, not only leaf nodes, to reject candidates
at different tree levels.

In Fig. 1, the pattern combination of the left-most leaf nodes leads to the
cut-pattern of 000101 (000101 ∧ 001101), for which we find a superset 111101
in the right-most leaf node of the tree. Thus, no pair from the left-most leafs
form an adjacent pair, which has been found by one test instead of four for all
combinations.

Algorithmic extensions. At iteration j of the double description algorithm,
we construct a pattern tree tj as described above with the following extensions:

1. The collections of zero sets in the leafs of the pattern tree are divided into
three subsets S0, S+, and S− corresponding to the separation of the rays by
the hyperplane H0

j at step 2a of the DD-algorithm.

2. We calculate three union patterns for every leaf l:

l.U = {∨ s | s ∈ l.S0 ∪ l.S+ ∪ l.S−}
l.U+ = {∨ s | s ∈ l.S+}
l.U− = {∨ s | s ∈ l.S−}

To create the extreme rays for the next iteration step, we iterate through the
tree’s leafs L, and initialize LA = L.

loopA 1. Choose some leaf lA from LA and initialize LB = LA.
2. Collect the zero sets in S0 and S+ of lA and apply eq. 4.

loopB i. Pick some leaf lB ∈ LB (possibly again lA) and calculate the

cut-patterns
{

C+− = lA.U+ ∧ lB.U−

C−+ = lA.U− ∧ lB.U+

ii. If a superset s for C+− exists in the tree with s �∈ lA.S+, s �∈
lB.S−, no pair (s+

A, s−B) ∈ (lA.S+, lB.S−) is an adjacent pair
according to eq. 8, thus continue at (iv).

iii. Test every pair (s+
A, s−B) ∈ (lA.S+, lB.S−) as usual, i.e. by testing

the intersection s+
A ∧ s−B, and apply eq. 5 for adjacent pairs.

iv. Repeat (ii) and (iii) with C−+ accordingly.
v. Remove lB from LB and continue at loopB if LB is nonempty.

3. Remove lA from LA and continue at loopA if LA is nonempty.

5 Experimental Results

As realistic examples, we used variants of a stoichiometric model for the cen-
tral metabolism of Escherichia coli [9]. Network compression techniques mostly

342 M. Terzer and J. Stelling

Table 1. Computation of the elementary modes for variants of the central metabolism
of Escherichia coli. Abbreviations: Glc = glucose, Ac = acetate, Form = formiate, Eth
= ethanol, Lac = lactate, CO2 = carbon dioxide, Succ = succinate, Glyc = glycerol.
The products considered were Ac, Form, Eth, Lac, CO2. Relative speed figures relate
to the bit set tree version. Note that due to the current implementation, the absolute
time measurements are somewhat above those given in [10].

S0 S1 S2

substrates Suc Glc Glc, Succ, Glyc, Ac
network size 97 × 114 (28 rev.) 97 × 114 (28 rev.) 97 × 118 (28 rev.)
compressed size 34 × 45 (16 rev.) 35 × 46 (17 rev.) 37 × 52 (17 rev.)
iteration steps 28 29 31
elementary modes 7,055 27,100 507,632

time rel. speed time rel. speed time rel. speed
iterate all 6.6s 0.5 453s 0.1 - -
bit set tree 3.6s 1.0 38s 1.0 451min 1.0
pattern tree 3.4s 1.1 28s 1.4 431min 1.1
candidate narrowing 2.6s 1.4 14s 2.7 28min 16.1

identical to those presented in [3] were applied. The algorithm was entirely im-
plemented in Java and the tests were run on a Linux machine with an AMD
Opteron(tm) 250 processor with 2.4 GHz, using a Java 5 virtual machine with
max. 4 GB memory. The results summarized in table 1 show major improve-
ments from the primitive combinatorial adjacency test to those with bit-set or
pattern trees for small problem sizes, where adjacent candidate pair narrowing
yields lower advances. With higher dimensional problems, candidate narrowing
scales much better than merely improving testing and in fact becomes essential
with regard to whole-cell metabolic networks.

6 Conclusions and Prospects

Determining elementary flux modes constitutes an important problem for bioin-
formatics. In addition, it is relevant for other domains of computer science /
applied mathematics due to the nature of the underlying problem: the enumer-
ation of all extreme rays of convex polyhedral cones. In this work, we focused
on one aspect of the double description method that is critical for its perfor-
mance, namely the independence tests for (preliminary) extreme rays. Concep-
tually, we introduced variants of k-d trees—bit-set trees and pattern trees—to
implement the search for a superset of a given test set in the combinatorial ad-
jacency test, and for effectively restricting the search scopes. Implementations
and applications of the algorithms to real-world metabolic networks confirmed
performance gains on the order of one magnitude compared to currently em-
ployed algorithms. In particular, refined searches using pattern trees scale well
with problem size, which is important for ultimately analyzing whole-cell net-
works.

Accelerating the Computation of Elementary Modes Using Pattern Trees 343

In perspective, further improvements are expected by exploiting pattern trees
for pre-rejection of test candidate pairs in a more sophisticated manner, by adap-
tive methods for tree-balancing, and by employing the more efficient rank test for
adjacency that does not depend on the number of modes to be tested. It is quite
simple to combine rank test and candidate narrowing with pattern trees, by de-
manding that cut patterns pass the rank test. All these aspects require further
efforts in theory, for instance, to determine optimal balancing schemes. Port-
ing efficiency-sensitive code parts from Java to a high-performance language will
certainly help fully realize the algorithms’ potential; another relevant and attrac-
tive topic regarding applicability to larger networks is parallelization. Overall, we
anticipate these approaches to finally enable enumeration of elementary modes
for genome-scale metabolic networks. This, of course, still has to be proven.
The subsequent interpretation of huge sets of metabolic pathways is yet another
challenging and interesting problem.

Acknowledgments

We thank Gaston Gonnet for algorithmic ideas and for comments on the
manuscript.

References

1. Klamt, S., Stelling, J.: Stoichiometric and constraint-based modeling. In Szallasi,
Z., Stelling, J., Periwal, V., eds.: System Modeling in Cellular Biology. MIT Press
(Cambridge / MA) (2006) 73–96

2. Price, N., Reed, J., Palsson, B.: Genome-scale models of microbial cells: Evaluating
the consequences of constraints. Nat. Rev. Microbiol. 2 (2004) 886–897

3. Gagneur, J., Klamt, S.: Computation of elementary modes: A unifying framework
and the new binary approach. BMC Bioinformatics 5 (2004) 175

4. Motzkin, T.S., Raiffa, H., Thompson, G., Thrall, R.M.: The double description
method. In Kuhn, H., Tucker, A., eds.: Contributions to the Theory of Games II.
Volume 8 of Annals of Math. Studies., Princeton University Press (Princeton / RI)
(1953) 51–73

5. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction sys-
tems at steady state. J. Biol. Syst. 2 (1994) 165–182

6. Wagner, C.: Nullspace approach to determine the elementary modes of chemical
reaction systems. J. Phys. Chem. B 108 (2004) 2425–2431

7. Fukuda, K., Prodon, A.: Double description method revisited. In: Combinatorics
and Computer Science. (1995) 91–111

8. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18 (1975) 509–517

9. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.: Metabolic network
structure determines key aspects of functionality and regulation. Nature 420 (2002)
190–193

10. Klamt, S., Gagneur, J., von Kamp, A.: Algorithmic approaches for computing
elementary modes in large biochemical reaction networks. IEE Proc. Systems Biol.
152 (2005) 249–55

	Introduction
	Fundamentals
	Existing Algorithms
	Double Description Method (DDM)
	Binary Nullspace Algorithm

	New Approaches
	Bit-Set Trees
	Pattern Trees
	Narrowing Adjacent Pair Candidates

	Experimental Results
	Conclusions and Prospects

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

