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Abstract. The hydrophobic-hydrophilic (H-P) model for protein fold-
ing was introduced by Dill et al. [7]. A problem instance consists of a
sequence of amino acids, each labeled as either hydrophobic (H) or hy-
drophilic (P). The sequence must be placed on a 2D or 3D grid without
overlapping, so that adjacent amino acids in the sequence remain adja-
cent in the grid. The goal is to minimize the energy, which in the simplest
variation corresponds to maximizing the number of adjacent hydrophobic
pairs. The protein folding problem in the H-P model is NP-hard in both
2D and 3D. Recently, Fu and Wang [10] proved an exp(O(n1−1/d) · lnn)
algorithm for d-dimensional protein folding simulation in the HP-model.
Our preliminary results on stochastic search applied to protein folding
utilize complete move sets proposed by Lesh et al. [15] and Blazewicz
et al. [4]. We obtain that after (m/δ)O(Γ ) Markov chain transitions, the
probability to be in a minimum energy conformation is at least 1 − δ,
where m is the maximum neighbourhood size and Γ is the maximum
value of the minimum escape height from local minima of the underlying
energy landscape. We note that the time bound depends on the specific
instance. Based on [10] we conjecture Γ ≤ n1−1/d. We analyse Γ ≤ √

n
experimentally on selected benchmark problems [15,21] for the 2D case.

1 Introduction

A great variety of models has been developed for protein folding simulations,
with different levels of detail (for a concise discussion, cf. [20]). In the present
paper, we focus on minimal models [11], and we distinguish roughly between
lattice models [7] and off-lattice models [8,17]. For a discussion of energy func-
tions and justifications for the use of simplified (approximated) energy functions
we refer the reader to [20]. One of the most popular models of protein fold-
ing is the hydrophobic-hydrophilic (H-P) model [7]. In the H-P model, proteins
are modelled as chains whose vertices are marked either H (hydrophobic) or P
(hydrophilic); the resulting chain is embedded into some lattice. H nodes are
considered to attract each other while P nodes are neutral. An optimal embed-
ding is one that maximizes the number of H-H contacts. The rationale for this
� Research partially supported by EPSRC Grant No. EP/D062012/1.
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objective is that hydrophobic interactions contribute a significant portion of the
total energy function. Unlike more sophisticated models of protein folding, the
main goal of the H-P model is to explore broad qualitative questions about pro-
tein folding such as whether the dominant interactions are local or global with
respect to the chain [11].

Lattice models of protein folding have provided valuable insights into the
general complexity of protein structure prediction problems: Protein structure
prediction has been shown to be NP-hard for a variety of lattice models [3,11,16].
The intractability results are complemented by performance guaranteed approx-
imation algorithms that run in linear time [11,13]. Since protein structure pre-
diction is NP-hard, (local) search-based algorithms are a natural choice to tackle
the problem, especially in lattice models; cf. literature in [11]. Lesh et al. [15] and
Blazewicz et al. [4] proposed complete neighbourhood move sets for local search
in 2D and 3D grids, respectively, and performed computational experiments on
benchmark problems for protein folding in the H-P model. Recently, Fu and
Wang [10] proved an exp(O(n1−1/d) · ln n) algorithm for d-dimensional protein
folding simulation in the HP-model. It is interesting to note that this time bound
almost exactly mirrors the folding time approximation exp(λ · n2/3 ± χ · n1/2/2)
by Finkelstein and Badretdinov [9]1.

The present paper reports our preliminary results on stochastic search applied
to protein folding in the H-P model. We utilize the complete move sets proposed
in [15] and [4]. We obtain that after (m/δ)O(Γ ) Markov chain transitions, the
probability to be in a minimum energy conformation is at least 1 − δ, where
m is the maximum neighbourhood size of individual conformations, and Γ is
the maximum value of the minimum escape height from local minima of the
underlying energy landscape. Thus, the run-time estimation is problem-specific.
To be competitive with the Fu/Wang run-time bound, we need to show Γ ≤
n1−1/d. Future research will focus on proven upper bounds of Γ in the context
of complete move sets for the H-P model. In the present paper, we analyse the
conjecture Γ ≤ √

n experimentally on selected benchmark problems (taken from
[15,21]) for the 2D case.

2 Preliminaries

Our stochastic local search procedure for protein folding is based on simulated
annealing [6,14], where the underlying Markov chain is of inhomogeneous type
[5,12]. For simplicity of presentation, we focus on the 2D rectangular grid H-P
model only.

Anfinsen’s thermodynamic hypothesis [2] motivates the attempt to predict
protein folding by solving certain optimization problems, but there are two main
difficulties with this approach: The precise definition of the energy function that
has to be minimised, and the extremely difficult optimization problems arising
from the energy functions commonly used in folding simulations [11,17]. In the

1 The authors are grateful to one anonymous referee for drawing our attention to [9].
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2D rectangular grid H-P model, one can define the minimization problem as
follows:

min
α

E(S, α) for E(S, α) := ξ · HHc(S, α), (1)

where where S is a sequence of amino acids containing n elements; Si = 1, if
amino acid on the ith position in the sequence is hydrophobic; Si = 0, if amino
acid on the ith position is polar; α is a vector of (n − 2) grid angles defined
by consecutive triples of amino acids in the sequence; HHc is a function that
counts the number of neighbours between amino acids that are not neighbours
in the sequence, but they are neighbours on the grid (they are topological neigh-
bours); finally, ξ < 0 is a constant lower than zero that defines an influence ratio
of hydrophobic contacts on the value of conformational free energy. The dis-
tances between neighbouring grid nodes is assumed to be equal to 1. We identify
sequences α with conformations of the protein sequence S, and a valid confor-
mation α of the chain S lies along a non-self-intersecting path of the rectangular
grid such that adjacent vertices of the chain S occupy adjacent locations. Thus,
we define the set of conformations (for each S specifically) by

FS :=
{

α is a valid conformation for S
}
. (2)

Since F := FS is defined for a specific S, we denote the objective function by

Z(α) := ξ · HHc(S, α). (3)

The neighbourhood relation of our stochastic local search procedure is de-
termined by the set of pull moves introduced in [15] for 2D protein folding
simulations in the H-P model (and, basically, extended to the 3D case in [4]).
For details of the definition of the set of pull moves we refer the reader to [15].

Theorem 1. [15] The set of pull moves is local, reversible, and complete within
F , i.e., any β ∈ F can be reached from any α ∈ F by executing pull moves only.

The set of neighbours of α that can be reached by a single pull move is denoted
by Nα, where additionally α is included since the search process can remain in
the same configuration. Furthermore, we set

Nα := |Nα |; (4)
Fmin :=

{
α : α ∈ F and Z(α) = min

α′
E(S, α′)

}
. (5)

In simulated annealing-based search, the transitions between neighbouring ele-
ments are depending on the objective function Z. Given a pair of protein con-
formations [α, α′], we denote by G[α, α′] the probability of generating α′ from
α, and by A[α, α′] we denote the probability of accepting α′ once it has been
generated from α. As in most applications of simulated annealing, we take a
uniform generation probability:

G[α, α′] :=

{
1

Nα
, if α′ ∈ Nα;

0, otherwise.
(6)
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The acceptance probabilities A[α, α′] are derived from the underlying analogy
to thermodynamic systems:

A[α, α′] :=

{
1, if Z(α′) −Z(α) ≤ 0;

e−
Z(α′)−Z(α)

t , otherwise,
(7)

where t is a control parameter having the interpretation of a temperature in
annealing processes. The probability of performing the transition between α and
α′ is defined by

Pr{α → α′} =

⎧
⎨

⎩

G[α, α′] · A[α, α′], if α′ �= α;

1 − ∑

α′ �= α

G[α, α′] · A[α, α′], otherwise. (8)

By definition, the probability Pr{α → α′} depends on the control parameter t.
Let aα(k) denote the probability of being in conformation α after k transition
steps. The probability aα(k) is calculated in accordance with

aα(k) :=
∑

β∈F
aβ(k − 1) · Pr{β → α}. (9)

The recursive application of (9) defines a Markov chain of probabilities aα(k),
where α ∈ F and k = 1, 2, .... If the parameter t = t(k) is a constant t, the
chain is said to be a homogeneous Markov chain; otherwise, if t(k) is lowered at
any step, the sequence of probability vectors a(k) is an inhomogeneous Markov
chain.

In the present paper we are focusing on a special type of inhomogeneous
Markov chains where the value t(k) changes in accordance with

t(k) =
Γ

ln(k + 2)
, k = 0, 1, ... . (10)

The choice of t(k) is motivated by Hajek’s Theorem on logarithmic cooling sched-
ules for inhomogeneous Markov chains [12]. To explain Hajek’s result, we first
need to introduce some parameters characterising local minima of the objective
function:

Definition 1. A conformation α′ ∈ F is said to be reachable at height h from
α ∈F , if ∃α0, α1, ..., αr ∈ F with α0 = α ∧ αr = α′ such that G[αu, αu+1] >
0, u = 0, 1, ... , (r − 1), and Z(αu) ≤ h for all u = 0, 1, ... , r.

We use the notation H(α⇒α′) ≤ h for this property. The conformation α is a
local minimum, if α ∈ F\Fmin and Z(α′) ≥ Z(α) for all α′ ∈ Nα\{α}.
Definition 2. Let λmin denote a local minimum, then D(λmin) denotes the
smallest h such that there exists λ′ ∈ F with Z(λ′) < Z(λmin) that is reach-
able at height Z(λmin) + h.

The following convergence property has been proved by B. Hajek:
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Theorem 2. [12] For t(k) from (10), the asymptotic convergence
∑

α∈Fmin
aα(k)

−→
k→∞ 1 of the algorithm defined by (3), ..., (9) is guaranteed if and only if

1. ∀α, α′∈F ∃α0, α1, ... , αr∈F such that α0 = α ∧ αr = α′

and G[αu, αu+1] > 0 for u = 0, 1, ... , (r − 1);
2. ∀h : H(α⇒α′) ≤ h ⇐⇒ H(α′⇒α) ≤ h;
3. Γ ≥ max

λmin
D(λmin).

From Theorem 1 and the definition of Nα we immediately conclude that the
conditions (i) and (ii) are valid for F . Thus, together with Theorem 2 we obtain:

Corollary 1. If Γ ≥ maxλmin D(λmin), the algorithm defined by (3), ..., (10)
and the pull move set from [15] tends to minimum energy conformations in the
H-P model.

3 Run-Time Estimates of Simulations

In this section, we outline a run-time estimation for finding optimum conforma-
tions with a certain confidence δ′ = 1 − δ > 0. The run-time estimation is an
extension of the convergence analysis from [1] to a more complicated objective
function, and it relates the run-time to the landscape parameter Γ (cf. (10)), to
the confidence parameter δ′ = 1 − δ, and to the maximum size m of individual
neighbourhood sets.

For any α ∈ F we introduce the following parameters:

s(α) := |{α′ : α′ ∈ Nα ∧ Z(α′) > Z(α)}|, (11)
r(α) := |{α′ : α′ ∈ Nα ∧ α′ �= α ∧ Z(α′) ≤ Z(α)}| . (12)

Thus, from the definition of Nα and (4) we have

s(α) + r(α) = Nα − 1. (13)

We observe that for Z(α′) > Z(α) the acceptance probability (7) can be rewrit-
ten as

e−(Z(α′)−Z(α))/t(k) =
1

(
k + 2

)(Z(α′)−Z(α))/Γ
, k ≥ 0. (14)

To simplify notation, we use γ := γ(α′, α) := (Z(α′) − Z(α))/Γ , in most cases
not indicating the dependence on (α′, α).

In (9), we separate the probabilities according to whether or not α′ equals α,
and the probability to remain in α is substituted by the defining equation from
(8). Thus, we obtain:

aα(k)=
∑

α′ ∈ Nα

aα′(k − 1) ·Pr{α′ → α}

=aα(k − 1) ·
(
1 −

∑

α′ �= α

Pr{α → α′}
)

+
∑

α′ �= α

aα′ (k − 1) · Pr{α′ → α}.
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The value of aα(k) is now expressed by using structural parameters as defined
in (11) and (12):

Lemma 1. The value of aα(k) can be calculated from probabilities of the previ-
ous step by

aα(k) =
(

s(α) + 1
Nα

− 1
Nα

·
s(α)∑

i=1

1
(k + 1)γ

)
· aα(k − 1) +

s(α)∑

i=1

aαi(k − 1)
Nαi

+

+
r(α)∑

j=1

aαj (k − 1)
Nαj

· 1
(k + 1)γ . (15)

The backwards expansion from Lemma 1 will be used as the main relation
reducing aα(k) to probabilities from previous steps. The elements of the con-
formation space are distinguished by their minimum distance to Fmin: Given
α ∈ F , we consider a shortest path of length dist(α) with respect to neighbour-
hood transitions from α to Fmin. We introduce a partition of F in accordance
with dist(α):

α ∈ Mi ⇐⇒ dist(α) = i ≥ 0, and Mdm =
dm⋃

i=0

Mi, (16)

where M0 :=Fmin and dm is the maximum distance. From the proof of Theorem 1
in [15] we conclude

dm ≤ nO(1). (17)

Since we want to analyze the convergence to elements from M0 = Fmin, we have
to show that the value ∑

α�∈M0

aα(k) (18)

becomes small as k increases. We assume k ≥ dm and we are going backwards
from step k: At the same backwards transition from k to (k−1), the neighbours
of α are generating terms containing aα(k − 1) as a factor in the same way as
aα(k) generates terms with factors aαi(k − 1) and aαj (k − 1), see Lemma 1.
If we now consider the entire sum

∑
α�∈M0

aα(k), the terms corresponding to a
particular aα(k−1) can be collected together to form a single expression. Firstly,
we consider α ∈ Mi, i ≥ 2. In this case, α does not have neighbours from M0,
i.e., the expansion from Lemma 1 appears for all neighbours of α in the reduction
of

∑
α�∈M0

aα(k) to step (k − 1). Therefore, in the expansion of
∑

α�∈M0
aα(k),

the following arithmetic term is generated when the particular α is from M1:
(
1 − r(α)

Nα

)
· aα(k − 1). (19)

We introduce the following abbreviations:

ϕ(α, v) :=
1

Nα
·
s(α)∑

i=1

1
(k + 2 − v)γi

and Dα(k−v) :=
s(α) + 1

Nα
−ϕ(α, v). (20)
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Now, the backwards expansion can be summarised to

Lemma 2. A single step of the expansion of
∑

α�∈M0
aα(k) results in

∑

α �∈ M0

aα(k)=
∑

α �∈ M0

aα(k−1)−
∑

α ∈ M1

r(α)
Nα

·aα(k−1)+
∑

α′ ∈ M0

ϕ(α′, 1)·aα′ (k−1). (21)

The diminishing factor (1− r(α)/Nα) is generated by definition for all elements
of M1. At subsequent reduction steps, the factor is “transmitted” successively to
all probabilities from higher distance levels Mi because any element of Mi has
at least one neighbour from Mi−1. We denote

∑

α �∈ M0

aα(k) =
∑

α �∈ M0

μ(α, v) · aα(k − v) +
∑

α′ ∈ M0

μ(α′, v) · aα′(k − v), (22)

i.e., the coefficients μ(α̃, v) are the factors at probabilities after v steps of a back-
wards expansion of

∑
α�∈M0

aα(k). Starting from step (k − 1), the probabilities
aα′(k − v), α′ ∈ M0, from (22) are expanded in the same way as the proba-
bilities for all other α �∈ M0. Taking into account (20), we obtain the following
parameterized representation for μ(α̃, v):

Lemma 3. The following recurrent relation is valid for the coefficients μ(α̃, v):

μ(α̃, v)=μ(α̃, v−1)·Dα̃(k−v)+
∑

α′′ < α̃

μ(α′′, v−1)
Nα̃

+
∑

α′ > α̃

μ(α′, v−1)
Nα̃

· 1
(k+2−v)γ

. (23)

We take advantage of the fact that for conformations α different from local and
global minima the factor Dα(k − v), which is associated with the probability to
remain in α, is smaller than (1 − 1/(m + 1)) for m := maxα Nα, i.e. there is
an upper bound independent of (k − v); see (20). Let MIN denote the set of all
global and local minima. We set M̂ :=

{
α : r(α) ≥ 1

}
= F\MIN and consider

aα(k) defined by (8) and (9) when all probabilities on the right hand side are
recursively substituted in the same way, where we break up the paths of the
expansion that lead from some α to α′ with Z(α) > Z(α′). Such transitions
generate a factor (k + 2− u)−γ , which is then used as the crucial type of factors
in the upper bound of aα(k). By analysing this type of expansions, we obtain:

Lemma 4. If k > 2 · (m + 1)2 · ln (k + 2)maxγ for the maximum size m of
neighbourhoods, then

∑

α∈�M
aα(k) < O

( (m + 1)3

(k − 2 · (m + 1)2 · ln (k + 2)maxγ)min γ

)
. (24)

By Mlm ⊂ MIN we denote the set of all local minima, and A stands for the
RHS of (24). If α ∈ Mlm, we represent μ(α, v) by μ(α, v) = 1 − ν(α, v) and by
straightforward calculations we obtain

∑

α�∈M0

aα(k) −
∑

α�∈M0

aα(k′) < A +
∑

α∈Mlm

ν(α, v′)·aα(k).

Thus, it remains to analyse ν(α, v′), v′ ≥ dm + v, for local minima:
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Lemma 5. If α ∈ Mlm, then

ν(α, v′) < O
( (m + 1)

(k + 2 − v′)minγ

)
. (25)

From (25) and Lemma 5 we obtain the main result:

Theorem 3. If Γ ≥ max
λmin

D(λmin) for F from (2) and 0<δ<1, then

k ≥
((m + 1)3

δ

)O(Γ )

implies
∑

α′∈Fmin

aα′ (k) ≥ 1 − δ. (26)

4 Landscape Analysis on Selected Benchmarks

As mentioned in Section 1 already, the run-time estimation (26) from Theorem 3
is problem-specific, i.e. depends on the parameter Γ of the landscape induced
by an individual protein sequence. For a problem-independent upper bound we
conjecture Γ ≤ n1−1/d, which complies with the result from [10]. However, for
individual protein sequences one can proceed as follows: Given a sequence α, the
parameter Γ is estimated in a pre-processing step (landscape analysis), where
the maximum increase of the objective function is monitored in-between two
successive improvements of the best value obtained so far. This approach usually
overestimates Γ significantly. Therefore, we are searching for a suitable constant
c such that Γ ′ = Gmonit/c comes closer to Γ , where Gmonit is the maximum
of the monitored increases of the objective function in-between two successive
total improvements of the objective function. This estimation Γ ′ is then taken
(together with the length of α and a choice of δ for the confidence 1 − δ) as
the setting for the (slightly simplified) run-time estimation according to (26).
In our computational experiments on 2D benchmark problems we indeed obtain
optimum solutions for smaller values of Γ than

√
n.

The stochastic local search procedure as described in Section 2 was imple-
mented and we analysed the following 2D benchmark problems (cf. [15,21]):

Table 1. Selected 2D benchmark problems from [15,21]

name/n structure Zmin

S36 3P2H2P2H5P7H2P2H4P2H2PH2P -14
S60 2P3HP8H3P10HPH3P12H4P6HP2HPHP -35
S64 12HPHPH2P2H2P2H2PH2P2H2P2H2PH2P2H2P2H

2PHPHP12H -42
S85 4H4P12H6P12H3P12H3P12H3PH2P2H2P2H2PHPH -53
S100 6PHP2H5P3HP5HP2H4P2H2P2HP5HP10HP2HP7H

11P7H2PHP3H6PHP2H -48
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Table 2. Results for selected 2D benchmarks; 1 − δ = 0.51

name/n
√

n Gmonit Γ ′ (n/δ)Γ ′
Tmax

S36 6.00 9.25 3.00 ≈ 4.0 × 105 29, 341
S60 ≈ 7.74 14.00 3.87 ≈ 1.2 × 108 30, 319
S64 8.00 18.00 4.00 ≈ 2.9 × 108 259, 223
S85 ≈ 9.20 21.75 4.60 ≈ 2.0 × 1010 13, 740, 964
S100 10.00 21.50 5.00 ≈ 3.5 × 1011 57, 195, 268

Unfortunately, information about the exact number of ground states is not pro-
vided; the ground states are equally treated. In [15], three states are reported
for S85, two states for S100.

Following the experimental part of [1], we use (m/δ)Γ ′
as a simplified version

of (26), where Γ ′ is ≈ √
n/2. We compare Γ ′ to Gmonit/c, i.e. apart from trying

to approximate the real Γ by Γ ′, we also try to relate Γ ′ to Gmonit.
In Table 2 we report results where Zmin was achieved for all five benchmark

problems from Table 1. By Tmax we denote the average number of transitions
necessary to achieve Zmin calculated from four successive runs for the same
benchmark problem. The same applies to Gmonit, which is the average from
the four runs executed for each of the five benchmark problems. Although by
definition Γ has to be an integer value, we allowed rational values for Γ ′. The
simplified version of (26) was calculated for m = n and δ = 0.49, i.e. for a
confidence of 51%. As already mentioned, the value of Γ ′ was chosen ≈ √

n/2,
which was used in (10) for the implementation.

As can be seen, the simplified version of (26) still overestimates the number
of transitions sufficient to achieve Zmin for the selected benchmark problems,
which is at least partly due to the setting m = n. To incorporate improved
upper bounds of m will be subject of future research. Based on the data from
Table 2, the constant c in Γ ′ = Gmonit/c ranges from 3.08 to 4.73. Overall, the
results encourage us to attempt a formal proof of the conjecture Γ ≤ √

n.

5 Concluding Remarks

We analyzed the run-time of protein folding simulations in the H-P model, if
the underlying algorithm is based on the pull move set and logarithmic simu-
lated annealing. We obtained that the probability to be in a minimum energy
conformation is at least 1 − δ after (m/δ)κ·Γ Markov chain transitions, where
m < sequence length n, κ is a small constant, and Γ is a crucial parameter of
the landscape induced by the energy measure, the pull move set, and the indi-
vidual sequence that has to be folded. Future research will be directed towards
tight upper bounds of Γ in terms of the sequence length n, improved upper
bounds of the maximum neighbourhood size m, on computational experiments
on benchmark problems for the 3D case, and on landscape properties related to
Levinthal’s paradox [18], i.e. if there are “shallow” sub-landscapes with small Γ
that imply fast folding.
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