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Abstract. Discovery of motifs in biological sequences is an important
problem, and several computational methods have been developed to
date. One of the main limitations of the established motif discovery meth-
ods is that the running time is prohibitive for very large data sets, such
as upstream regions of large sets of cell-cycle regulated genes. Parallel
versions have been developed for some of these methods, but this re-
quires supercomputers or large computer clusters. Here, we propose and
define an abstract module PAMM (Parallel Acceleration of Motif Match-
ing) with motif matching on parallel hardware in mind. As a proof-of-
concept, we provide a concrete implementation of our approach called
MAMA. The implementation is based on the MEME algorithm, and uses
an implementation of PAMM based on specialized hardware to acceler-
ate motif matching. Running MAMA on a standard PC with specialized
hardware on a single PCI-card compares favorably to running parallel
MEME on a cluster of 12 computers.

1 Introduction

Computational discovery of motifs in biological sequences has many important
applications, the best known being discovery of transcription factor binding sites
(TFBS) in DNA and active sites in proteins. More than a hundred methods have
been developed for this problem, all with different strengths and characteristics.
Methods that use probabilistic motifs (typically PWMs) are often favored be-
cause of their high expressibility. One of the best known and most widely used
methods is MEME [1]. MEME is a flexible tool that uses Expectation Maxi-
mization (EM) to discover motifs as position weight matrices (PWMs) in both
proteins and DNA.

One of the main limitations of current PWM-based motif discovery methods
is that the running time is prohibitive for large datasets such as upstream regions
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of large sets of cell-cycle regulated genes. Parallel versions have been developed
for some methods, for instance the paraMEME [2] version of MEME, but this
typically requires supercomputers or computer clusters. Specialized hardware,
such as Field Programmable Gate Arrays (FPGAs), may be a very viable alter-
native to this. FPGAs have previously been used in bioinformatics for instance
to accelerate homology search [3], multiple sequence alignment [4] and phylogeny
inference [5].

In this paper, we propose and define an abstract module PAMM (Parallel
Acceleration of Motif Matching). Proposing the PAMM module serves two pur-
poses. Firstly, it introduces acceleration of motif matching by parallel hardware
to the motif discovery field. Secondly, PAMM serves as an interface between the
development of modules for parallel matching of motifs and the development of
algorithms that can make use of parallel motif matching.

As a first implementation of our methodology, we propose a method MAMA
(Massively parallel Acceleration of the Meme Algorithm) that accelerates MEME
by the use of an existing pattern matching hardware called the Pattern Match-
ing Chip (PMC) [6]. The PMC can match a subset of regular expressions with
massive parallelization1. Since this chip was not intended for weighted pattern
matching, some transformations are needed when representing and matching
motifs. Nonetheless, with these transformations in place we achieve very effi-
cient matching of PWMs against sequences. Running MAMA on a standard PC
with specialized hardware on a single PCI-card compares favorably to running
paraMEME on a cluster of 12 computers.

2 Parallel Acceleration of Motif Matching

An ever increasing number of computing platforms offer capabilities for parallel
execution of programs. Specialized hardware exists to relieve the main CPU of
specific tasks, and FPGAs allow the creation of modules for application specific
hardware acceleration. To allow the field of motif discovery to realize the full
potential of modern computing hardware, the algorithms need to take advantage
of this.

Here we propose and define an abstract module PAMM that can be used
for accelerating motif discovery by matching motifs against sequences in paral-
lel. The purpose of PAMM is to serve as an interface between development of
modules for parallel matching of motifs and the development of algorithms that
can make use of parallel motif matching. An overview of the PAMM module is
presented in Figure 1. The input to PAMM is a set of motifs M and a set of
sequences S, while the output depends on the requirements of the algorithm in
question. Each motif is represented as a matrix. As the figure shows, there are
two main parts in the PAMM module; a motif matcher and a post processing
unit. The motif matcher calculates the match scores for each motif, while the
post processing unit refines the results.

1 More information at http://www.interagon.com
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Fig. 1. The structure of the PAMM module

2.1 Motif Matching

The core of a PAMM implementation is a motif matcher that determines match
scores cm

s,p for each motif m when aligned at each position p in each sequence
s. As the number of motifs and sequences that can be processed in parallel will
be limited in any practical implementation of the module, the algorithm must
partition the inputs accordingly.

As a standard set-up we propose that a limited number of motifs are first
loaded into the PAMM, and that sequence data are then streamed through. The
motif matcher will continually calculate match scores for each motif against the
sequences. When all motifs have been matched against the complete sequence
data, a new set of motifs can be loaded into the module and matched against
the sequences. As this means that the same sequences will typically be streamed
through the PAMM many times, practical implementations could have an option
to store a limited amount of sequence data in local memory to further accelerate
matching and reduce bandwidth usage. This set-up is illustrated in Figure 2(a).

An alternative set-up could be to first load a limited amount of sequence data
into the PAMM, and then stream motifs through the module. This could be an
effective solution for cases with relatively short sequence data and large number
of motifs. This setup is illustrated in Figure 2(b).

2.2 Post-processing of Match Scores

The number of results from the motif matcher is |M | ∗ |S|, where M is the set
of motifs and S is the set of all sequence data. This potentially large amount
of results must somehow be processed by the system. By incorporating post
processing, the number of results returned from a PAMM implementation can
be reduced substantially. This reduces result processing in the algorithm module,
as well as bandwidth requirements in the case where the PAMM and algorithm
modules reside on different (sub)systems.

We envision three main branches of post processing for PAMM implementa-
tions; organizing, filtering, or aggregating (or a combination of these).
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Fig. 2. Two possible set-ups of the motif matcher

An organizing post processor organizes the results in a way that facilitates
efficient further processing of results outside the PAMM module. It could for
instance return the match scores sorted by value. Although this does not decrease
bandwidth usage, it may allow the CPU to process the results more efficiently.

A filtering post processor filters out uninteresting match scores to save process-
ing time outside the PAMM module. It could for instance make the PAMM re-
turn only match scores above a threshold given for each motif. Although this
discards some information, our own experiments (not presented here) show that
the normalized match scores typically follow a distribution where most sequence
offsets have a negligible likelihood of being motif locations. In combination with
an organizing post processor, the k highest match scores could be returned, or
all scores at most l lower than the highest match score.

An aggregating post processor is tailored to a specific motif discovery algo-
rithm and may be particularly (computationally) effective. If the PAMM is to be
used in connection with stochastic optimization methods like Gibbs sampling,
it can be set to return one sequence offset per sequence, with offsets chosen
randomly based on the normalized probabilities of motif occurrences. Alterna-
tively, if the PAMM is used in connection with EM methods, a new motif may
be constructed from the match scores directly in hardware (maximization step
of EM). This new motif would represent a weighted average of every window in
the sequences, with windows weighted by the match score of a previous motif.

2.3 Motif Representations

The representation of a motif in PAMM is as a motif matrix m ∈ M with element
values mi,x, where i is motif position and x is a symbol from the alphabet, i.e.,
x ∈ {A, C, G, T }. The element values represent individual scores for each symbol
x from the alphabet at each position i in the motif. The motif is aligned against
sequences as a sliding window. For a given alignment at position p in sequence
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s, the score of motif position i is mi,x, where x is the symbol at position p + i in
sequence s. The match score cm

s,p of the motif is the sum of scores at each motif
position. This motif representation maps directly to PWMs (log-likelihood or
log-odds) that are often used for motif discovery.

In addition to PWMs, strings allowing mismatches [7,8] (a consensus string
allowing a certain Hamming distance to an occurrence) and IUPAC strings [9,10]
(strings of characters and character classes) are commonly used models in motif
discovery. Both of these can be represented by a motif matrix. For a motif matrix
representing a mismatch string, elements mi,x corresponding to the consensus
symbol at a position have value 1, and all other matrix elements are 0. Matrix
scores c >= n − h corresponds to a hit for the mismatch expression, where
n is motif length and h is allowed number of mismatches. This is shown in
Figure 3(a). For a motif matrix representing an IUPAC string, elements mi,x

corresponding to symbols in the character class at a position are valued 1, and
all other matrix elements are 0. Matrix scores c = n corresponds to a hit for the
IUPAC expression. This is shown in Figure 3(b)
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Fig. 3. Matrix representation of discrete motif models

Other and more complex motif models could also be represented with such a
matrix (variants of Markov models and bayesian trees have for instance been used
in motif discovery). This will typically require a larger motif matrix and some pre-
processing of the sequence data. Such preprocessing could be done by additional
hardware modules within the PAMM. The generality of the matrix representation
makes it suitable as a standard motif representation for the PAMM module.

3 Practical Implementation

This section describes a motif discovery algorithm that uses a PAMM imple-
mentation to accelerate motif matching. To explore the potential of PAMM in
motif discovery, we have used available hardware (PMC) to implement a PAMM
module.

We have analyzed the running time of the MEME algorithm and developed
a motif discovery algorithm MAMA based on MEME that uses the PAMM
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implementation for motif matching in the performance-critial parts. As this is
a first implementation and a proof-of-concept, we have only made adjustments
to the MEME algorithm that make it run faster while not altering which motifs
are discovered.

3.1 Motif Discovery Using the PAMM Module

MEME is a a motif discovery algorithm based on Expectation Maximization
(EM) that match motifs against sequences in the expectation step. Profiling
of the MEME implementation showed that matching initial motifs (starting
points) against sequences consumed most of the total running time. We have
therefore made the necessary adjustments to allow parallel acceleration of this
first iteration of MEME.

MEME Running Time. EM was first used for motif discovery by Lawrence
et al. [11]. As EM is easily trapped in local minima, they used several random
starting points (initial PWMs) for EM. This was improved in the MEME algo-
rithm of Bailey and Elkan [1], which use every substring of a given length in
the data set as starting point. More specifically, for every substring a PWM is
constructed with a fixed weight to the elements in the matrix corresponding to
symbols in the substring, and another, lower fixed weight to the other elements.
As this typically amounts to very many starting points, they run EM for one
iteration from each starting point, and then only continue with those PWMs
that seem most promising.

Inspection of the MEME implementation2 shows that specialized code is used
for this first iteration, using dynamic programming to exploit overlap between
starting points. PWMs generated from each substring in the data set are first
matched against the sequences (expectation step). For each PWM, the sequence
offsets are then sorted by match score and the k highest scoring offsets used to
generate a PWM candidate for the next iteration (maximization step). Finally,
the significance values for all candidate PWMs are computed, and the most
significant ones kept and refined (iterated until convergence).

MEME tries a very large number of starting points in the first iteration,
and only continues with a few most promising motifs. Our profiling showed
that the first iteration amounted to around 97% of total running time in our
tests, using data sets supplied with MEME, the TCM model, and otherwise
default parameters. Although this number might vary for different test cases
and parameter settings, it shows that the first iteration is the bottleneck when it
comes to running time of the algorithm. Furthermore, matching motifs against
sequences and sorting offset scores dominate the running time.

Exploration of Starting Points. As the first iteration dominates the running
time of MEME, we have focused on accelerating this part. More specifically, we
have used the PAMM module to match PWMs and sort offset scores in the first
iteration, and left the remaining parts of MEME unaltered.

2 Version 3.5.0, downloaded from http://meme.nbcr.net/downloads/
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Exploration of starting points differs a bit from all other iterations in MEME.
First, all matrix elements of starting point PWMs has one of two values: a fixed
high value for elements corresponding to the symbol of the substring it is based
on, and a fixed low value for every other element. Thus, all sequence windows
at a given Hamming distance from the substring a PWM is based on will get
the same PWM score. Ranking of sequence offsets based on PWM score will
therefore in the first iteration be equal to ranking of sequences windows based
on Hamming distance. Secondly, in a general EM iteration each sequence window
is used in the maximization step (weighted by the expectation values). When
maximizing the PWMs in the first iteration, however, only the sequence windows
corresponding to the top k expectation values are used.

These properties are exploited in MAMA by using a PAMM implementation
that represents motifs efficiently and returns sequence offsets sorted by match
score. The motif discovery algorithm thus only needs to consider the first k
sequence offsets returned by the PAMM implementation.

3.2 Implementation of the PAMM Module

We have implemented PAMM using available hardware for parallel pattern
matching. This hardware, The Pattern Matching Chip (PMC) [6], is a multiple
instruction single data (MISD) parallel hardware on a PCI card. One PCI-card
can match up to one thousand simple patterns against 100 MB of sequences per
second, and it is quite straightforward to set up searches. Because of its effi-
ciency and ease of use, we have used the PMC for this first implementation of
the PAMM module. The PMC implementation covers both motif matching and
organization of match scores.

Motif Matching. As the PMC only supports binary matching of patterns,
and integer summation, the PWM match scores need to be discretized. The
discretization is based on the fact that the log-likelihood for any base pair in any
location is in the interval

[
log( β

n+4β ), log( n+β
n+4β )

]
, where β is the pseudo-count

and n is the number of motif sites, given as parameters to MEME. Instead of
using a fixed granulation of the interval, we define a granulation parameterized
with ε. Then, each value mi,x in the PWM m is represented by a number ci,x =

� log(mi,x)−log( β
n+4β )

ε � of processing elements (PEs) in the specialized hardware.
The number of PEs matching a symbol of the alphabet at a given position is thus
proportional to the log-likelihood value of that symbol at that position. When
the PWM is aligned with a sequence window, the sum of PE match scores at
a motif position then corresponds to the score at that position. Note that since
only one of the four nucleotides can match at a position, the other three do not
contribute to the score. Furthermore, as PWM log-likelihood is the the sum of
log-likelihoods for each position, the total PWM score is given by the sum of
scores of all positions.

Two optimizations are worth mentioning. First, if the minimum score ci =
minx(ci,x) at a given position i is higher than zero, we may subtract ci from
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each score value at that position, and then add ci to the score after the search.
Secondly, if c = maxi,x(ci,x) is the maximum score value of the motif, and more
score values are close to c than are close to zero, we then use transformed score
values c′i,x = c− ci,x and compute total PWM score as: c · I −∑

i

∑
x c′i,x, where

i runs over all I positions of m. Both optimizations give equivalent results to the
basic method while using less PEs on the PMC, thus allowing more matrices to
be matched simultaneously.

The discretization method considered above can be used generally for match-
ing arbitrary PWMs against sequences. The approximation accuracy clearly de-
pends on the granulation parameter ε. As discussed in section 3.1, the PWMs
are regular in the first iteration of MEME. Motif matching can then be done
with degenerate use of discretization, thereby avoiding approximation problems.
To ensure that MAMA gives the same results as MEME, we have therefore only
used hardware-acceleration in the first iteration, and used a standard software
solution for motif matching in the remaining iterations. Since the running time
of MEME is strongly dominated by the first iteration, we still achieve significant
speed-ups.

Organizing Match Scores. As the PMC provides massive parallelity, we are
able to calculate expectation values for many PWMs in parallel. We also use this
parallelity to scan each PWM against the sequences several times with different
hit thresholds. By searching with several thresholds in parallel, we can make the
PMC return sequence offsets sorted by decreasing match score. This corresponds
to a PAMM organizing module for post-processing of match scores, and avoids
CPU-intensive sorting of offsets after the expectation step.

4 Results

We have compared the performance of our hardware accelerated version MAMA
with the CPU based version of MEME on data sets of different sizes. On all
test referred to here we have used the TCM model of MEME, which is the most
general model and presented as the main model in the original MEME article
[1]. We ran our tests with the following hardware configuration:

– MAMA: 2.8 Ghz Pentium4 PC with 1 GB memory and the specialized hard-
ware on a single PCI card.

– MEME: 2.8 Ghz Pentium4 PC with 1 GB memory.

– ParaMEME: a cluster of 12 computers, each 3.4 Ghz Pentium4 PC with 1
GB memory.

We evaluated the performance of MAMA on the largest data set (mini-drosoph)
supplied with MEME and on 5 data sets of human promoter regions, consisting
of from 100 to 1600 sequences of 5000 base pair length from cell cycle regulated
genes (J.P.Diaz, in preparation). Data sets, sizes and running times are given in
Table 1 for both MEME, paraMEME and MAMA. We see that MAMA gives a
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Table 1. Results for MEME, paraMEME and MAMA on 6 data sets

Running time (hours)
Data set Size (Mbp) MEME paraMEME MAMA

mini-drosoph 0.5 2.6 0.19 0.27
hs 100 0.5 2.7 0.20 0.23
hs 200 1 11 0.87 0.50
hs 400 2 104 3.6 1.7
hs 800 4 X3 15 6.4
hs 1600 8 X3 64 13

significant speed-up compared to MEME on all datasets, and that the speed-up
increases with data set size. On the 1 Mbp (Million base pairs) data set, MAMA
is more than twenty times as fast as MEME, and on the 8 Mbp data set it is
even four times as fast as paraMEME on the 12-computer cluster. For all data
sets, standard MEME and the hardware-accelerated version MAMA discovers
the same motifs.

5 Discussion and Conclusion

We have proposed an abstract module PAMM for parallel hardware-acceleration
of motif discovery. This module could be used for acceleration of many differ-
ent motif discovery methods. The acceleration could be especially large if post-
processing of match scores is tailored to a specific algorithm.

As an exemplification and proof-of-concept we have developed a version of
the MEME algorithm called MAMA that uses available hardware to implement
a PAMM module. As shown in section 4, MAMA achieves a speed-up of more
than a factor of 10 as compared to MEME on a single CPU. Our working im-
plementation thus shows that the PAMM module indeed has a potential.

Furthermore, our work shows examples of both problematic issues and po-
tential rewards in connection with hardware acceleration of algorithms within
bioinformatics. Since we have implemented weighted motif matching on hardware
that was not specifically built for that purpose, we had to do some transforma-
tions of the problem. The issues and solutions with regards to discretization and
parallelization are relevant for many algorithmic solutions involving specialized
hardware.

A natural continuation of the work presented in this paper is to develop a
FPGA-based implementation of PAMM. Such a solution would be more readily
available for practical use and further refinement by the scientific community.
It could potentially also give even higher speed-ups. On the other hand, such a
solution presumes a solution of representing PWMs on FPGA that is both effi-
cient and flexible. We have ongoing work in this direction that shows promising
results.

3 Not tested due to excessive running times.
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