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Abstract. We describe an efficient local multiple alignment filtration
heuristic for identification of conserved regions in one or more DNA se-
quences. The method incorporates several novel ideas: (1) palindromic
spaced seed patterns to match both DNA strands simultaneously, (2)
seed extension (chaining) in order of decreasing multiplicity, and (3)
procrastination when low multiplicity matches are encountered. The re-
sulting local multiple alignments may have nucleotide substitutions and
internal gaps as large as w characters in any occurrence of the motif. The
algorithm consumes O(wN) memory and O(wN log wN) time where N
is the sequence length. We score the significance of multiple alignments
using entropy-based motif scoring methods. We demonstrate the per-
formance of our filtration method on Alu-repeat rich segments of the
human genome and a large set of Hepatitis C virus genomes. The GPL
implementation of our algorithm in C++ is called procrastAligner and
is freely available from http://gel.ahabs.wisc.edu/procrastination

1 Introduction

Pairwise local sequence alignment has a long and fruitful history in computa-
tional biology and new approaches continue to be proposed [1,2,3,4]. Advanced
filtration methods based on spaced-seeds have greatly improved the sensitiv-
ity, specificity, and efficiency of many local alignment methods [5,6,7,8,9]. Com-
mon applications of local alignment can range from orthology mapping [10] to
genome assembly [11] to information engineering tasks such as data compres-
sion [12]. Recent advances in sequence data acquisition technology [13] provide
low-cost sequencing and will continue to fuel the growth of molecular sequence
databases. To cope with advances in data volume, corresponding advances in
computational methods are necessary; thus we present an efficient method for
local multiple alignment of DNA sequence.
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Unlike pairwise alignment, local multiple alignment constructs a single multi-
ple alignment for all occurrences of a motif in one or more sequences. The motif
occurrences may be identical or have degeneracy in the form of mismatches and
indels. As such, local multiple alignments identify the basic repeating units in one
or more sequences and can serve as a basis for downstream analysis tasks such as
multiple genome alignment [14,15,16,17], global alignment with repeats [18,19],
or repeat classification and analysis [20]. Local multiple alignment differs from
traditional pairwise methods for repeat analysis which either identify repeat
families de novo [21] or using a database of known repeat motifs [22].

Previous work on local multiple alignment includes an Eulerian path approach
proposed by Zhang and Waterman [23]. Their method uses a de Bruijn graph
based on exactly matching k-mers as a filtration heuristic. Our method can be
seen as a generalization of the de Bruijn filtration to arbitrary spaced seeds
or seed families. However, our method employs a different approach to seed
extension that can identify long, low-copy number repeats.

The local multiple alignment filtration method we present has been designed
to efficiently process large amounts of sequence data. It is not designed to de-
tect subtle motifs such as transcription factor binding sites in small, targeted
sequence regions–stochastic methods are better suited for such tasks [24].

2 Overview of the Method

Our local multiple alignment filtration method begins by generating a set of can-
didate multi-matches using palindromic spaced seed patterns, listed in Table 1.
The seed pattern is evaluated at every position of the input sequence, and the
lexicographically-lesser of the forward and reverse complement subsequence in-
duced by the seed pattern is hashed to identify seed matches—see Figure 1. The
use of palindromic seed patterns offers computational savings by allowing both
strands of DNA to be processed simultaneously.

Given an initial set of matching sequence regions, our algorithm then max-
imally extends each match to cover the entire surrounding region of sequence
identity. A visual example of maximal extension is given by the black match

ACAGCTAGCATGGCAA...GTTACCTAG
1*1*1

1 AAC
 2 ACG
  3 ACA
   4 CAC
    5 CAC
     6 TCA
      7 ACT

Step 1. Apply seed pattern at each position
to extract either the forward or reverse seed

8 CTC
 9 CAG
 10 AGC
  11 TCA
   12 GCA
     ...
      

  ...
  N-9 GAC
   N-8 GTA
    N-7 AGA
     N-6 ACA
      N-5 CAG

      

  1 AAC
  3 ACA
N-6 ACA
  2 ACG
  7 ACT
N-7 AGA
 10 AGC
  4 CAC
  5 CAC

Step 2. Hash seeds to identify
matches of two or more seeds

  9 CAG
N-5 CAG
  8 CTC
 12 GCA
N-9 GAC
N-8 GTA
  6 TCA
 11 TCA

}

} }

}

Fig. 1. Application of the palindromic seed pattern 1*1*1 to identify degenerate match-
ing subsequences in a nucleotide sequence of length N . The lexicographically-lesser of
the forward and reverse complement subsequence induced by the seed pattern is used
at each sequence position.
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Table 1. Palindromic spaced seeds used by procrastAligner. The sensitivity ranking
of a seed at various levels of sequence identity is given in the columns at right. A seed
with rank 1 is the most sensitive seed pattern for a given weight and percent sequence
identity. The default seeds used by procrastAligner are listed here, while the full list
of high-ranking seeds appears on the website.

Weight Pattern Seed Rank by Sequence Identity
65% 70% 75% 80% 85% 90%

5 11*1*11 1 1 1 1 1 1

6 1*11***11*1 1 1 1 1 1 1

7 11**1*1*1**11 1 1 1 1 1 1

8 111**1**1**111 1 1 1 1 1 1

9 111*1**1**1*111 1 1 1 1 1 1

10 111*1**1*1**1*111 1 1 1 1 1 1

11 1111**1*1*1**1111 1 1 1 1 1 2

12 1111**1*1*1*1**1111 5 3 1 1 1 1

13 1111**1**1*1*1**1**1111 > 10 5 1 1 1 1

14 1111**11*1*1*11**1111 2 2 1 1 1 1

15 1111*1*11**1**11*1*1111 1 1 1 1 1 1

16 1111*1*11**11**11*1*1111 2 1 1 1 1 1

18 11111**11*1*11*1*11**11111 1 1 1 1 1 1

19 1111*111**1*111*1**111*1111 5 2 1 1 1 1

20 11111*1*11**11*11**11*1*11111 > 10 > 10 3 1 1 1

21 11111*111*11*1*11*111*11111 1 1 1 3 3 2

in Figure 2. In order to extend over each region of sequence O(1) times, our
method extends matches in order of decreasing multiplicity–we extend the high-
est multiplicity matches first. When a match can no longer be extended without
including a gap larger than w characters, our method identifies the neighboring
subset matches within w characters, i.e., the light gray seed in Figure 2. We
then link each neighboring subset match to the extended match. We refer to the

Fig. 2. Seed match extension. Three seed matches are depicted as black, gray, and light
gray regions of the sequence. Black and gray have multiplicity 3, while light gray has
multiplicity 2. We maximally extend the black seed to the left and right and in doing
so, the black seed chains with the gray seed to the left. The light gray seed is adjacent
to only two out of three components in the extended black seed. We procrastinate and
extend the light gray seed later. We create a link between light gray and the extended
black seed match.
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extended match as a superset match. Rather than immediately extend the sub-
set match(es), we procrastinate and extend the subset match later when it has
the highest multiplicity of any match waiting to be extended. When extending
a match with a linked superset (light gray in Figure 2), we immediately include
the entire region covered by the linked superset match–obviating the need to
re-examine sequence already covered by a previous match extension.

We score alignments generated by our method using the entropy equation
and exact p-value method in [25]. Our method may produce many hundreds or
thousands of local multiple alignments for a given genome sequence, thus it is
important to rank them by significance. When computing column entropy, we
treat gap characters as missing data.

3 Algorithm

3.1 Notation and Assumptions

Given a sequence S = s1, s2, . . . , sN of length N defined over an alphabet
{A, C, G, T }, our goal is to identify local multiple alignments on subsequences of
S. Our filtration method first generates candidate chains of ungapped align-
ments, which are later scored and possibly re-aligned. Denote an ungapped
alignment, or match, among subsequences in S as an object M . We assume
as input a set of ungapped alignments M. We refer the number of regions in
S matched by a given match Mi ∈ M as the multiplicity of Mi, denoted as
|Mi|. We refer to each matching region of Mi as a component of Mi. Note that
|Mi| ≥ 2 ∀ M ∈ M. We denote the left-end coordinates in S of each compo-
nent of Mi as Mi.L1, Mi.L2, . . . , Mi.L|Mi|, and similarly we denote the right-end
coordinates as Mi.Rx. When aligning DNA sequences, matches may occur on
the forward or reverse complement strands. To account for this phenomenon we
add an orientation value to each matching region: Mi.Ox ∈ {1,−1}, where 1
indicates a forward strand match and -1 for reverse.

Our algorithm has an important limitation on the matches in M: no two
matches Mi and Mj may have the same left-end coordinate, e.g. Mi.Lx �=
Mj.Ly ∀ i, j, x, y except for the identity case when i = j and x = y. This
constraint has been referred to by others as consistency and transitivity [26]
of matches. In the present work we only require consistency and transitivity of
matches longer than the seed length, e.g. seed matches may overlap.

3.2 Data Structures

Our algorithm begins with an initialization phase that creates three data struc-
tures. The first data structure is a set of Match Records for each match M ∈M.
The Match Record stores M , a unique identifier for M , and two items which
will be described later in Section 3.3: a set of linked match records, and a sub-
suming match pointer. The linked match records are further subdivided into four
classes: a left and right superset link, and left and right subset links. The subsum-
ing match pointer is initially set to a NULL value. Figure 3 shows a schematic
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Match Record List

...4
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Procrastination Queue 

Left Links Right Links
Subset Superset Subset Superset

null null null null

Subsuming match pointer:

1 2 3 34 14 1 2 3 1 2 [w

1 2 3 34 14 1 2 3 1 2
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Resulting local multiple alignment chain:

M₁.L₁ M₁.L₂ M₁.L₃ M₁.L₄

M₁.R₁ M₁.R₂ M₁.R₃ M₁.R₄

M₂.L₁ M₂.L₂ M₂.L₃

M₂.R₁ M₂.R₂ M₂.R₃

null

M₃

M₄

...

Fig. 3. The match extension process and associated data structures. (A) First we
pop the match at the front of the procrastination queue: M1 and begin its leftward
extension. Starting with the leftmost position of M1, we use the Match Position
Lookup Table to enumerate every match with a left-end within some distance w. Only
M4.L1 is within w of M1, so it forms a singleton neighborhood group which we discard.
(B) M1 has no neighborhood groups to the left, so we begin extending M1 to the right.
We enumerate all matches within w to the right of M1. M2 lies to the right of 3 of 4
components of M1 and so is not subsumed, but instead gets linked as a right-subset
of M1. We add a left-superset link from M2 to M1. (C) Once finished with M1 we
pop M2 from the front of the procrastination queue and begin leftward extension. We
find the left-superset link from M2 to M1, so we extend the left-end coordinates of
M2 to cover M1 accordingly. No further leftward extension of M2 is possible because
M1 has no left-subset links. (D) Beginning rightward extension on M2 we construct a
neighborhood list and find a chainable match M3, and a subset M4. We extend M2 to
include M3 and mark M4 as inconsistent and hence not extendable. Upon completion
of the chaining process we have generated a list of local multiple alignments.

of the match record. We refer to the second data structure as a Match Position
Lookup Table, or P. The table has N entries p1, p2, . . . , pN , one per character of
S. The entry for pt stores the unique identifier of the match Mi and x for which
Mi.Lx = t or the NULL identifier if no match has t as a left-end coordinate. We
call the third data structure a Match extension procrastination queue, or simply
the procrastination queue. Again, we denote the multiplicity of a match M by
|M |. The procrastination queue is a binary heap of matches ordered on |M | with
higher values of |M | appearing near the top of the heap. The heap is initially
populated with all M ∈M. This queue dictates the order in which matches will
be considered for extension.

3.3 Extending Matches

Armed with the three aforementioned data structures, our algorithm begins the
chaining process with the match at the front of the procrastination queue. For a
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match Mi that has not been subsumed, the algorithm first attempts extension
to the left, then to the right. Extension in each direction is done separately in
an identical manner and we arbitrarily choose to describe leftward extension
first. The first step in leftward match extension for Mi is to check whether it
has a left superset link. If so, we perform a link extension as described later.
For extension of Mi without a superset link, we use the Match Position Lookup
Table P to enumerate all matches within a fixed distance w of Mi. For each
component x = 1, 2, . . . , |Mi| and distance d = 1, 2, . . . , w we evaluate first
whether pMi.Lx−(d·Mi.Ox) is not NULL. If not then pMi.Lx−(d·Mi.Ox) stores an
entry 〈Mj , y〉 which is a pointer to neighboring match Mj and the matching
component y of Mj .

In order to consider matches on both forward and reverse strands, we must
evaluate whether Mi.Ox and Mj .Oy are consistent with each other. We define the
relative orientation of Mi.Ox and Mj.Oy as oi,j,x,y = Mi.Ox ·Mj.Oy which causes
oi,j,x,y = 1 if both Mi.Ox and Mj .Oy match the same strand and −1 otherwise.
We create a tuple of the form 〈Mj , oi,j,x,y, x, d, y〉 and add it to a list called the
neighborhood list. In other words, the tuple stores (1) the unique match ID of
the match with a left-end at sequence coordinate Mi.Lx − (d ·Mi.Ox), (2) the
relative orientation of Mi.Ox and Mj .Oy, (3) the matching component x of Mi,
(4) the distance d between Mi and Mj, and (5) the matching component y of Mj .
If Mj = Mi for a given value of d, we stop adding neighborhood list entries after
processing that one. The neighborhood list is then scanned to identify groups of
entries with the same match ID Mj and relative orientation oi,j,x,y. We refer
to such groups as neighborhood groups. Entries in the same neighborhood group
that have identical x or y values are considered “ties” and need to be broken.
Ties are resolved by discarding the entry with the larger value of d in the fourth
tuple element: we prefer to chain over shorter distances. After tiebraking, each
neighborhood group falls into one of several categories:

– Superset: The neighborhood group contains |Mi| separate entries. Mj has
higher multiplicity than Mi, e.g. |Mj | > |Mi|. We refer to Mj as a superset
of Mi.

– Chainable: The neighborhood group contains |Mi| separate entries. Mj and
Mi have equal multiplicity, e.g. |Mj| = |Mi|. We can chain Mj and Mi.

– Subset: The neighborhood group contains |Mj| separate entries such that
|Mj | < |Mi|. We refer to Mj as a subset of Mi.

– Novel Subset: The neighborhood group contains r separate entries such
that r < |Mi| ∧ r < |Mj|. We refer to the portion of Mj in the list as a novel
subset of Mi and Mj because this combination of matching positions does
not exist as a match in the initial set of matches M.

The algorithm considers each neighborhood group for chaining in the order
given above: chainable, subset, and finally, novel subset. Superset groups are
ignored, as any superset links would have already been created when processing
the superset match.
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Chainable matches. To chain match Mi with chainable match Mj we first
update the left-end coordinates of Mi by assigning Mi.Lx ← min(Mi.Lx, Mj.Ly)
for each 〈i, j, x, y〉 in the neighborhood group entries. Similarly, we update the
right-end coordinates: Mi.Rx ← max(Mi.Rx, Mj.Ry) for each 〈i, j, x, y〉 in the
group. If any of the coordinates in Mi change we make note that a chainable
match has been chained. We then update the Match Record for Mj by setting
its subsuming match pointer to Mi, indicating that Mj is now invalid and is
subsumed by Mi. Any references to Mj in the Match Position Lookup Table
and elsewhere may be lazily updated to point to Mi as they are encountered.
If Mj has a left superset link, the link is inherited by Mi and any remaining
neighborhood groups with chainable matches are ignored. Chainable groups are
processed in order of increasing d value so that the nearest chainable match with
a superset link will be encountered first. A special case exists when Mi = Mj .
This occurs when Mi represents an inverted repeat within w nucleotides. We
never allow Mi to chain with itself.

Subset matches. We defer subset match processing until no more chainable
matches exist in the neighborhood of Mi. A subset match Mj is considered
to be completely contained by Mi when for all x, y pairs in the neighborhood
group, Mi.Lx ≤Mj.Ly ∧Mj .Ry ≤Mi.Rx. When subset match Mj is completely
contained by Mi, we set the subsuming match pointer of Mj to Mi. If the subset
match is not contained we create a link from Mi to Mj. The subset link is a
tuple of the form 〈Mi, Mj, x1, x2, . . . , x|Mj |〉 where the variables x1 . . . x|Mj | are
the x values associated with the y = 1 . . . |Mj | from the neighborhood list group
entries. The link is added to the left subset links of Mi and we remove any
pre-existing right superset link in Mj and replace it with the new link.

Novel subset matches. A novel subset may only be formed when both Mi and
Mj have already been maximally extended, otherwise we discard any novel subset
matches. When a novel subset exists matches we create a new match record
Mnovel with left- and right-ends equal to the outward boundaries of Mi and Mj .
Rather than extend the novel subset match immediately, we procrastinate and
place the novel subset in the procrastination queue. Recall that the novel subset
match contains r matching components of Mi and Mj . In constructing Mnovel,
we create links between Mnovel and each of Mi and Mj such that Mnovel is a
left and a right subset of Mi and Mj, respectively. The links are tuples of the
form outlined in the previous section on subset matches.

Occasionally a neighborhood group representing a novel subset match may
have Mi = Mj. This can occur when Mi has two or more components that form
a tandem or overlapping repeat. If Mi.Lx has Mi.Ly in its neighborhood, and
Mi.Ly has Mi.Lz in its neighborhood, then we refer to {x, y, z} as a tandem
unit of Mi. A given tandem unit contains between one and |Mi| components of
Mi, and the set of tandem units forms a partition on the components of Mi. In
this situation we construct a novel subset match record with one component for
each tandem unit of Mi. If Mi has only a single tandem unit then we continue
without creating a novel subset match record. Figure 4 illustrates how we process
tandem repeats.
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1 72 3 4
5 6 [w

Fig. 4. Interplay between tandem repeats and novel subset matches. There are two
initial seed matches, one black, one gray. The black match has components labelled
1-7, and the neighborhood size w is shown with respect to component 7. As we attempt
leftward extension of the black match we discover the gray match in the neighborhood
of components 2 and 5 of black. A subset link is created. We also discover that some
components of the black match are within each others’ neighborhood. We classify
the black match as a tandem repeat and construct a novel subset match with one
component for each of the four tandem repeat units: {1}, {2, 3, 4}, {5, 6}, {7}.
After the first round of chaining. If the neighborhood list contained one or
more chainable groups we enter another round of extending Mi. The extension
process repeats starting with either link extension or by construction of a new
neighborhood list. When the boundaries of Mi no longer change, we classify any
subset matches as either subsumed or outside of Mi and treat them accordingly.
We process novel subsets. Finally, we may begin extension in the opposite (right-
ward) direction. The rightward extension is accomplished in a similar manner,
except that the neighborhood is constructed from Mi.Rx instead of Mi.Lx and
d ranges from −1,−2, . . . ,−w and ties are broken in favor of the largest d value.
Where left links were previously used, right links are now used and vice-versa.

Chaining the next match. When the first match popped from the procras-
tination queue has been maximally extended, we pop the next match from the
procrastination queue and consider it for extension. The process repeats until
the procrastination queue is empty. Prior to extending any match removed from
the procrastination queue, we check the match’s subsuming match pointer. If the
match has been subsumed extension is unnecessary.

3.4 Link Extension

To be considered for leftward link extension, Mi must have a left superset link to
another match, Mj. We first extend the boundaries of Mi to include the region
covered by Mj and unlink Mi from Mj . Then each of the left subset links in Mj

are examined in turn to identify links that Mi may use for further extension. Recall
that the link from Mi to Mj is of the form 〈Mj , Mi, x1, . . . , x|Mi|〉. Likewise, a left
subset link from Mj to another match Mk is of the form 〈Mj , Mk, z1, . . . , z|Mk|〉.
To evaluate whether Mi may follow a given link in the left subsets of Mj , we take
the set intersection of the x and z values for each Mk that is a left subset of Mj .
We can classify the results of the set intersection as:

– Superset: {x1, . . . , x|Mi|} ⊂ {z1, . . . , z|Mk|} Here Mk links to every compo-
nent of Mj that is linked by Mi, in addition to others.

– Chainable: {x1, . . . , x|Mi|} = {z1, . . . , z|Mk|} Here Mk links to the same set
of components of Mj that Mi links.
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– Subset: {x1, . . . , x|Mi|} ⊃ {z1, . . . , z|Mk|} Here Mi links to every component
of Mj that is linked by Mk, in addition to others.

– Novel Subset: {x1, . . . , x|Mi|} ∩ {z1, . . . , z|Mk|} �= ∅ Here Mk is neither a
superset, chainable, nor subset relative to Mi, but the intersection of their
components in Mj is non-empty. Mk and Mi form a novel subset.

Left subset links in Mj are processed in the order given above. Supersets are
never observed, because Mk would have already unlinked itself from Mj when it
was processed (as described momentarily). When Mk is a chainable match, we
extend Mi to include the region covered by Mk and set the subsuming match
pointer in Mk to point to Mi. We unlink Mk from Mj, and Mi inherits any left
superset link that Mk may have. When Mk is a subset of Mi we unlink Mk from
Mj and add it to the deferred subset list to be processed once Mi has been fully
extended. Finally, we never create novel subset matches during link extension
because Mk will never be a fully extended match.

If a chainable match was found during leftward link extension, we continue
for another round of leftward extension. If not, we switch directions and begin
rightward extension.

3.5 Time Complexity

A neighborhood list may be constructed at most w times per character of S, and
construction uses sorting by key comparison, giving O(wN log wN) time and
space. Similarly, we spend O(wN log wN) time performing link extension. The
upper bound on the total number of components in the final set of matches
is O(wN). Thus, the overall time complexity for our filtration algorithm is
O(wN log wN).

4 Results

We have created a program called procrastAligner for Linux, Windows, and
Mac OS X that implements the described algorithm. Our open-source imple-
mentation is available as C++ source code licensed under the GPL.

We compare the performance of our method in finding Alu repeats in the
human genome to an Eulerian path method for local multiple alignment [23].
The focus of our algorithm is efficient filtration, thus we use a scoring metric
that evaluates the filtration sensitivity and specificity of the ungapped alignment
chains produced by our method. We compute sensitivity as the number of Alu
elements hit by a match, out of the total number of Alu elements. We compute
specificity as the ratio of match components that hit an Alu to the sum of match
multiplicity for all matches that hit an Alu. Thus, we do not penalize our method
for finding legitimate repeats that are not in the Alu family.

The comparison between procrastAligner and the Eulerian method is nec-
essarily indirect, as each method was designed to solve different (but related)
problems. The Eulerian method uses a de Bruijn graph for filtration, but goes
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Table 2. Performance of procrastAlign and the Eulerian path approach on Alu re-
peats. Rep: total number of Alu elements; Family: number of Alu families; Alu: average
Alu length in bp (S.D.); Div: average Alu divergence (S.D.); Sn: sensitivity; Sp: speci-
ficity; T: compute time; Sw: palindromic seed weight; w: max gap size. Alus were
identified by RepeatMasker [22]. We report data for the fast version of the Eulerian
path method as given by Table 1 of [23]. Sensitivity and specificity of procrastAlign
was computed as described in the text.

Accession Length Rep Family Alu (bp) Div, % Method Sn % Sp % T (s) Sw w

AF435921 22 Kb 28 10 261 (69) 15.0 (6.4) Eulerian 96.3 99.4 1 - -
procrast 100 95.9 1 9 27

Z15025 38 Kb 52 13 245 (85) 15.7 (5.7) Eulerian 98.6 96.7 4 - -
procrast 100 82.5 2 9 27

AC034110 167 Kb 87 18 261 (72) 12.2 (5.9) Eulerian 93.5 95.2 14 - -
procrast 100 97.9 3 15 45

AC010145 199 Kb 118 13 277 (55) 15.0 (5.6) Eulerian 85.2 93.7 32 - -
procrast 99.1 99.2 3 15 45

Hs Chr 22 1 Mbp 404 32 252 (79) 15.2 (6.1) Eulerian 72.4 99.4 85 - -
procrast 98.3 97.3 20 15 45

beyond filtration to compute gapped alignments using banded dynamic pro-
gramming. We report scores for a version of the Eulerian method that computes
alignments only on regions identified by its de Bruijn filter. The results suggest
that by using our filtration method, the sensitivity of the Eulerian path local
multiple aligner could be significantly improved. A second important distinction
is that our method reports all local multiple alignment chains in its allotted
runtime, whereas the Eulerian method identifies only a single alignment.

We also test the ability of our method to provide accurate anchors for genome
alignment. Using a manually curated alignment of 144 Hepatitis C virus genome
sequences [27], we measure the anchoring sensitivity of our method as the frac-
tion of pairwise positions aligned in the correct alignment that are also present
in procrastAligner chains. We measure positive predictive value as the num-
ber of match component pairs that contain correctly aligned positions out of
the total number of match component pairs. procrastAligner may generate
legitimate matches in the repeat regions of a single genome. The PPV score
penalizes procrastAligner for identifying such legitimate repeats, which sub-
sequent genome alignment would have to disambiguate. Using a seed size of 9
and w = 27, procrastAligner has a sensitivity of 63% and PPV of 67%.

5 Discussion

We have described an efficient method for local multiple alignment filtration. The
chains of ungapped alignments that our filter outputs may serve as direct input
to multiple genome alignment algorithms. The test results of our prototype im-
plementation on Alu sequences demonstrate improved sensitivity over de Bruijn
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filtration. A promising avenue of further research will be to couple our filtration
method with subsequent refinement using banded dynamic programming.

The alignment scoring scheme we use can rank alignments by information
content, however a biological interpretation of the score remains difficult. If a
phylogeny and model of evolution for the sequences were known a priori then a
biologically relevant scoring scheme could be used [28]. Unfortunately, the phy-
logenetic relationship for arbitrary local alignments is rarely known, especially
among repetitive elements or gene families within a single genome and across
genomes. It may be possible to use simulation and MCMC methods to score
alignments where the phylogeny and model of evolution is unknown a priori,
but doing so would be computationally prohibitive for our application.

Acknowledgements

AED was supported by NLM Training Grant 5T15LM007359-05. TJT was sup-
ported by Spanish Ministry MECD Grant TIN2004-03382 and AGAUR Training
Grant FI-IQUC-2005. LZ was supported by AFT Grant 146-000-068-112.

References

1. Ma, B., Tromp, J., and Li, M.: PatternHunter: faster and more sensitive homology
search. Bioinformatics 18 (2002) 440–445

2. Brudno, M., and Morgenstern, B.: Fast and sensitive alignment of large genomic
sequences. Proc. IEEE CSB’02 (2002) 138–147
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