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Abstract. In order to maintain load balancing in a distributed network,
each node should obtain workload information from all the nodes in the
network. To accomplish this, this processing requires O(v2) communi-
cation complexity, where v is the number of nodes. First, we present
a new synchronous dynamic distributed load balancing algorithm on a
(v, k + 1, 1)-configured network applying a symmetric balanced incom-
plete block design, where v = k2 +k+1. Our algorithm designs a special
adjacency matrix and then transforms it to (v, k + 1, 1)-configured net-
work for an efficient communication. It requires only O(v

√
v) commu-

nication complexity and each node receives workload information from
all the nodes without redundancy since each link has the same amount
of traffic for transferring workload information. Later, this algorithm is
reconstructed on distributed networks, where v is an arbitrary number
of nodes and is analyzed in terms of efficiency of load balancing.

1 Introduction

In a distributed network it is likely that some nodes are heavily loaded while
others are lightly loaded or idle. It is desirable that workload be balanced be-
tween these nodes so that utilization of nodes can be increased and response
time can be reduced. A load balancing scheme[1]-[3] determines whether a task
should be executed locally or by a remote node. This decision can be made in
a centralized or distributed manner. In a distributed network, distributed man-
ner is recommended. In order to make this decision, each node can be informed
about the workload information of other nodes. Also this information should
be the latest because outdated information may cause an inconsistent view of
the system state. So disseminating load information may incur a high link cost
or a significant communication traffic overhead. For example, the ARPANET[4]
routing algorithm is a distributed adaptive algorithm using estimated delay as
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the performance criterion and a version of the backward-search algorithm[5]. For
this algorithm, each node maintains a delay vector and a successor node vector.
Periodically, each node exchanges its delay vector with all of its neighbors. On
the basis of all incoming delay vectors, a node updates both of its vectors.

In order to decrease communication overhead for obtaining workload informa-
tion from all the nodes in the network, messages should be exchanged between
adjacent nodes and then load balancing process be performed periodically by
using these local messages. So each processor balances the workload with its
neighbors so that the whole system will be balanced after a number of iterations.
CWA(Cube Walking Algorithm)[6] is employed for load balancing on hypercube
network. It requires O(v2) communication complexity and a communication path
is O(log2v). To reduce communication cost, flooding scheme is applied. How-
ever, the overlap of workload information occurs[7]-[8]. Based on SBN(Symmetric
Broadcast Networks), communication patterns between nodes are constructed. It
also needs O(v2) communication complexity for collecting workload information
from all the nodes and a communication path is O(log2v)[9]-[10].

In this paper we design the network topology consisting of v nodes and v × k
links and each node of which is linked to 2k nodes, where v = k2 +k+1. On this
network, each node receives information from k adjacent nodes and then sends
these information to other k adjacent nodes periodically. So, each node receives
workload information for k2 +k nodes with two-round message interchange. Our
algorithm needs only O(v

√
v) communication complexity. Later, this algorithm

is revised for distributed networks and is analyzed in terms of efficiency of load
balancing.

2 About (v, k, λ)-Configuration

Let V = {0, 1, ..., v − 1} be a set of v elements. Let B = {B0, B1, ..., Bb−1} be
a set of b blocks, where Bi is a subset of V and |Bi| = k. For a finite incidence
structure σ = {V, B}, if σ satisfies following conditions, then it is a balanced
incomplete block design(BIBD)[11], which is called a (b, v, r, k, λ)-configuration.

1. B is a collection of b k-subsets of V and these k-subsets are called the blocks.
2. Each element of V appears exactly r of the b blocks.
3. Every two elements of V appears simultaneously in exactly λ of the b blocks.
4. k < v.

For a (b, v, r, k, λ)-configuration, if it satisfies k = r and b = v, then it is a
symmetric balanced incomplete block design (SBIBD)[12] and it is called a
(v, k, λ)-configuration. There are some relations among parameters b, v, r, k, λ
that are necessory conditions for existence of this configuration, bk = vr and
r(k − 1) = λ(v − 1).

3 Generation of a (v, k + 1, 1)-Configuration

We now present an algorithm to generate an incidence structure σ = {V, B}
satisfying the condition for a (v, k + 1, 1)-configuration in the case that k is
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a prime number. This (v, k + 1, 1)-configuration is employed for constructing
network topology below.

3.1 Design of an Algorithm to Construct (v, k + 1, 1)-Configuration

In order to construct (v, k + 1, 1)-configuration, (k + 1) sectors are designed.
The first sector is composed of (k + 1) blocks and the others k blocks. Each
block in the first sector contains element 0. The remaining elements of the first
block, the second block,..., the kth block of the first sector are (1, 2, ..., k),(k +
1, k + 2, ..., 2k),...,(k2 + 1, k2 + 2, ..., k2 + k),respectively. Each block in the ith

sector contains element (i − 1) and the remaining k elements are chosen from
(k + 1, k + 2, ..., k2 + k). According to Algorithm 1, incidence structure X gen-
erates the first sector and incidence structure Y the remaining sectors.

Algorithm 1 for Generating an incidence structure

Incidence structure T ={V, B}, where V ={0, 1,..., v − 1 }, B={B0, B1,..., Bb−1},
|Bi| = k + 1. Bi,j is the jth element of Bi

1. Select a prime number k and compute v = k2 + k + 1.
2. Construct two incidence structures X = {V, C} and Y = {V, D}.

(a) Ci,j =

⎡
⎣

0 if j = 0

t, t = i × k + j if j ≥ 1

⎤
⎦

0 ≤ i, j ≤ k.

(b) Di,j =

⎡
⎣

C0,t , t = �i/k� + 1 if j = 0

Cj,t , t = 1 + (i + (j − 1) × �i/k�) mod k if j ≥ 1

⎤
⎦

0 ≤ i ≤ (k2 − 1), 0 ≤ j ≤ k.

3. Generate Z = {V, B} from X and Y .
Bi ←− Ci

Bi+k+1 ←− Di

The table below illustrates how to create Z = {V, B}, V = {0, 1, ..., 12}.
We now prove that this structure satisfies the conditions of a (v, k + 1, 1)-
configuration.

Definition 1. On incidence structure Y , Sector Si is the ith family of k blocks,
Dj ∈ Si, i = �j/k�.

For example, If k equals 3 , then �0/k� = �1/k� = �2/k� = 0. So, S0 =
{D0, D1, D2}. There are k sectors in Y .

Lemma 1. For two elements Di1,j1 and Di2,j2, Di1,j1 	= Di2,j2, if j1 	= j2.
Proof: From Algorithm 1-2-(a), if 0 < j ≤ k, 0 ≤ i ≤ k then Ci,j = i×k+ j.
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Table 1. A set of blocks on Z generated from Algorithm 1

X

C0= { 0, 1, 2, 3 }
C1= { 0, 4, 5, 6 }
C2= { 0, 7, 8, 9 }
C3= { 0, 10, 11, 12 }

Y

D0= { 1, 4, 7, 10 }
D1= { 1, 5, 8, 11 }
D2= { 1, 6, 9, 12 }
D3= { 2, 4, 8, 12 }
D4= { 2, 5, 9, 10 } =⇒
D5= { 2, 6, 7, 11 }
D6= { 3, 4, 9, 11 }
D7= { 3, 5, 7, 12 }
D8= { 3, 6, 8, 10 }

Z
B0= { 0, 1, 2, 3 }
B1= { 0, 4, 5, 6 }
B2= { 0, 7, 8, 9 }
B3= { 0, 10, 11, 12 }
B4= { 1, 4, 7, 10 }
B5= { 1, 5, 8, 11 }
B6= { 1, 6, 9, 12 }
B7= { 2, 4, 8, 12 }
B8= { 2, 5, 9, 10 }
B9= { 2, 6, 7, 11 }
B10= { 3, 4, 9, 11 }
B11= { 3, 5, 7, 12 }
B12= { 3, 6, 8, 10 }

This means if j > 0 then all the elements are distinct. And as shown in
Algorithm 1-2-(b), an element of Cj is placed on the jth element of a certain
block of Y if Di,j = Cj,t, t 	= 0.

Lemma 2. For a sector consisting of k blocks, the first element of each block
has the same value and the other k2 elements are equal to V − C0.
Proof: In the case that Di,0 = C0,�i/k�+1 , the first element of k blocks on a
sector has the same value. According to Algorithm 1-2-(b), Di,j = Cj,t, t =
1+(i+(j −1)�i/k�) mod k. Since k is a prime number, each element except
the first element of each block is distinct and these distinct k2 elements are
equal to V − C0.

Lemma 3. For incidence structure Y , Da,j = Db,j, j ≥ 1 , if
b = ((a − c(j − 1)) mod k + k(�a/k� + c)) mod k2.
Proof: From Algorithm 1-2-(b), Da,j = Cj,t. We now prove that Db,j = Cj,t.
t can be calculated from parameters b, j below. Then t obtained on this
lemma is equal to that from Algorithm 1-2-(b). Therefore, Da,j = Db,j .
t = 1 + (b + (j − 1) × �b/k�) mod k
= 1+(((a−c(j−1)) mod k +k(�a/k�+c))+(j−1)�((a−c(j−1)) mod k +

k(�a/k� + c))/k�) mod k
= 1 + (a − c(j − 1)) + (j − 1) × (�a/k� + c) mod k
= 1 + (a + (j − 1)�a/k�) mod k

Here, if Da,j is in sector Ss then Db,j is in S(s+c) mod k. In case of c ≡ 0 (mod k),
then a = b .

Lemma 4. Each element of V appears in exactly k + 1 times in Z.
Proof: According to Algorithm 1-2-(a), Ci,0 = 0. Since 0 ≤ i ≤ k, 0 appears
k + 1 times. The other v − 1 elements, V − {0}, appear exactly once on X.
From Lemma 3, each element of C0,j , 1 ≤ j ≤ k, appears k times in a sector
of Y and the rest k2 elements appear once in every sector of Y. Therefore,
each element appears k + 1 times in Z.
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Lemma 5. Any pair of elements of V appears in exactly only once in Z.
Proof: The first element of V makes a pair with all the other elements and
this pair appears once by designing rule of incidence structure(see Algorithm
1-2-(a)). Each element of C0,j , 1 ≤ j ≤ k makes a pair with V −C0 elements
and it also appears once proven by Lemma 3. The rest k2 elements are now
considered. For an arbitrary pair Da,j1 = Da,j2, j1, j2 ≥ 1, in order to
make the same pair on other block Db, the two elements should be on the
same block. According to Lemma 4, if j1 = j2, then they are located on
Db. However, this case does not occur since j1 	= j2. Therefore, any pair of
elements of V appears in exactly once in Z.

Theorem 1. Z designed by Algorithm 1 satisfies the conditions of a (v, k+1, 1)-
configuration.
Proof: Z satisfies the conditions of the SBIBD by Lemma 4 and Lemma 5.

3.2 Design of Network Configuration

In order to construct a network topology which has minimum link cost and
traffic overhead, we imported (v, k + 1, 1)-configuration. An incidence structure
Z = {V, B} satifies the conditions for a (v, k + 1, 1)-configuration and M is a
binary incidence matrix of Z . Then this matrix M can be transformed to an
adjacency matrix of a graph G = {V, E}. Based on this idea, network topology
can be designed as follows.

Algorithm 2 for Design of Network Configuration

1. Create an incidence structure Z = {V, B} by Algorithm 1.
2. Generate L = {V, E} from Z by exchanging blocks so that each block Ei

includes element i.
E0 ←− B0
for ( i = 1 ; i ≤ k ; i = i + 1 )

E(i+1)k ←− Bi

for ( i = k + 1 ; i < v ; i = i + 1 ) {
if ( (Bi,�i/k�−1 mod k) = 0) then

E�i/k�−1 ←− Bi

else {
if ( (i mod k) = 0) then t = i − k

else t = �i/k� ∗ k
Et+(i mod k) ←− Bi }

}
3. Create an adjacency matrix A = (ai,j) for graph G from L , where G is a

network topology containing v nodes.

ai,j =
[
1 if (i 	= j) and (j ∈ Ei)
0 otherwise

]
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Table 2. Blocks of L generated from Z of Table 1

L
E0= { 0, 1, 2, 3 }
E1= { 1, 6, 9, 12 }
E2= { 2, 5, 9, 10 }
E3= { 3, 5, 7, 12 }
E4= { 1, 4, 7, 10 }
E5= { 1, 5, 8, 11 }
E6= { 0, 4, 5, 6 }
E7= { 2, 6, 7, 11 }
E8= { 2, 4, 8, 12 }
E9= { 0, 7, 8, 9 }
E10= { 3, 6, 8, 10 }
E11= { 3, 4, 9, 11 }
E12= { 0, 10, 11, 12 }

Lemma 6. The ith row of the adjacency matrix obtained from Algorithm 2
contains element i.
Proof: In Fig. 1, (k + 1) sectors are described - one sector on X and k sec-
tors on Y . Each sector on X and Y is composed of (k + 1) and k blocks,
respectively. New sectors on Z ′ would be generated. Since the ith block
on X(i > 0) includes element (i + 1)k , it is relocated on Si on Z ′ -
E0, E2k, E3k, ..., E(k+1)k. We now look into Si on Z, 1 ≤ i ≤ k. (k − 1)
blocks of it can be placed on Si on Z ′ and the remainder on the ith block of
S0 on Z ′ because Bik+j , 1 ≤ j ≤ k , the jth block of Si on Z, includes one
of {ik + 1, ik + 2, ..., ik + (k − 1), i}. If a certain block contains (ik + 2), then
it is placed on Eik+2. Therefore, the ith block on Z ′ can include element i.

G has v nodes since G is created from (v, k + 1, 1)-configuration. Each block
Ei is composed of k + 1 elements including i. Each node obtains 2k links from
Step 3 of Algorithm 2. So, G becomes a 2k-regular graph. Therefore there are
(2k × v)/2 = vk links in G. Given Z = {V, B} obtained from Algorithm 1, per-
formance of Algorithm 2 is shown on Table 2.

4 Design of an Efficient Load Balancing Algorithm on
Distributed Networks

An efficient load balancing algorithm is now constructed on (v, k + 1, 1)-
configured networks generated by Algorithm 2.

Definition 2. Construct two sets Pi and Ri consisting of adjacent k nodes,
where Pi is a set of nodes to send workload information to node i at time
T2t, and Ri is a set of nodes to send workload information to node i at time
T2t+1.
Pi = {j | j ∈ Ei − {i}}
Ri = {j | i ∈ Ej , (0 ≤ j ≤ n − 1) and (i 	= j)}
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The following example will provide a better understanding of the concept given
by Definition 2. Nodes 3, 6, 9 and node 12 send their workload information to
node 1 at time T2t, and P1 is {3,6,9,12}, while nodes 0, 4 and node 5 send the
information to node 1 at time T2t+1, and R1 is {0,4,5}.

Definition 3. Generate two sets SFi and RFi, where SFi(j) is a set of workload
information transmitted from node j to node i at time T2t and RFj(i) is
workload information transmitted from node j to node i at time T2t+1.
SFi = {SFi(j) | j ∈ Pi, SFi(j) = j}.
RFi = {RFj(i) | j ∈ Ri, RFj(i) = {Ej − {i}}.

Algorithm 3 for Construction of an Efficient Load Balancing Algorithm on
(v,k+1,1)-configured networks

1. Node i receives a set of workload information SFi(j) from node j ∈ Pi at
T2t and renews a table of workload information.

2. Node i receives a set of workload information RFj(i) from node j ∈ Ri at
T2t+1 and renews a table of workload information.

3. Repeat the first step.

The following table indicates that node i receives workload information SFi(j)
and RFj(i) from node j at times T2t and T2t+1, respectively. For example, node
1 receives information on {6}, {9} and {12} from SF1(6), SF1(9) and SF1(12)
at T2t, and receives information on {0,2,3}, {4,7,10} and {5,8,11} from RF0(1),
RF4(1) and RF5(1) at T2t+1. Therefore, node 1 can obtain workload information
for all the nodes at T2t+2 and this fact is proven in Theorem 2.

Theorem 2. According to Algorithm 3, every node obtains workload informa-
tion for all the nodes at T2t+2.
Proof: At T2t, node j sends workload information SFi(j) to node i and then
node i receives k workload information. At T2t+1, node i receives workload
information from node j by Algorithm 3-2. On an arbitrary pair (RFi1(j),
RFi2(j)) , i1 	= i2, intersection of these sets is empty since on (v, k + 1, 1)-
configuration, every pair of two objects appears simultaneously in exactly
one of v blocks and node j is an element of Ri1 and Ri2, respectively. So
node i obtains workload information for k2 nodes at T2t+1. Therefore, node
i receives workload information for k2 + k nodes at T2t+2.

In case that v1 	= k2 + k + 1, (v − v1) nodes are deleted starting from node v
node to node v1. The load balancing algorithm with v1 nodes is the same as
Algorithm 3 except node i receives information from node j, where i, j < v1.

5 Analysis of an Efficient Load Balancing Algorithm

Algorithm 3 can be performed well when v = k2 + k + 1. Each node receives
workload information from all the nodes in O(v

√
v) time. However, the number
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of nodes may not be v in real-world application. Then we can not gurantee a
desired result for an efficient load balancing. The algorithm now is analyzed in
terms of how much a node receives information.

Definition 3. w0 is the number of information on missing nodes for S�n/k� and
w1 from S�n/k�+1 to the Sk+1.

Lemma 7. If (n mod k) = 0 then w0 = kP2. Otherwise, w0 = k2∗k1P2+k−k2
P2, where k1 = n/k and k2 = (k ∗ (k1 + 1) − n).
Proof: In case that n = (i + 1)k, En = (0, ik + 1, ik + 2, ..., (i + 1)k). Sup-
pose that node n is deleted. According to Algorithm 3, node 0 does not
receive workload information on (k-1) nodes - node (ik+1), node (ik+2),...,
node ((i + 1)k − 1). Neither the other (k − 1) nodes in En do. So w0,
the number of information on missing nodes, is k ∗ (k − 1). In case that
n 	= (i+1)k and node n is deleted. (k2+1) nodes are deleted from E�n/k�∗k .
(k − k2) nodes do not receive information. Then the number of missing
information is k−k2P2. Because of deleting node n from En, k1 nodes do
not receive information and the number of missing information is k1P2.
(k2 − 1) blocks - En+1, En+2, ..., E�n/k�∗k−1 are the same as En and the
number of missing information for these blocks is (k2 − 1) ∗k1 P2. Therefore,
w0 = k2 ∗k1 P2 +k−k2 P2.

Lemma 8. If (n mod k) = 0 then w1 = (k − k1+ 1) ∗ ((k − 2) ∗k1 P2 +k1−1 P2).
Otherwise, w1 = (k − k1) ∗ ((k − k3 − 2) ∗k1+1 P2 + (k3 + 1) ∗k1 P2), where
if (n ≤ E(k1+1),k1) then k3 = k2 − 1 else k3 = k2.
Proof: In case that (n mod k) = 0 and node n is deleted. The number
of n is (k − k1 + 1) in (k − k1 + 1) sectors - from Sk1+1 to Sk+1. In
other word, a sector consisting of (k − 1) blocks has one n. For a block
deleting n, (k1 − 1) nodes do not receive information and the number of
missing information is k1−1P2 and for the remaining (k − 2) blocks, k1
nodes do not receive information and the number of missing information
is k1P2. Since w1 for a sector is (k − 2) ∗k1 P2 +k1−1 P2, w1 for (k −
k1 + 1) sectors is (k − k1 + 1) ∗ ((k − 2) ∗k1 P2 +k1−1 P2). In case that
n 	= (i + 1)k and node n is deleted. Similarly, the number of n is (k − k1) in
(k − k1) sectors - from the Sk1 to the Sk+1 sector. For a block delet-
ing m, n ≤ m ≤ k ∗ (n/k + 1), k1 nodes do not receive information and
the number of missing information is k1P2. Because the number of blocks
deleting m in a sector is (k2 + 1), the number of missing information is
(k2 + 1) ∗k1 P2. For the (k − k2 − 2) remaining blocks, (k1 + 1) nodes
do not receive information and that is (k − k2 − 2) ∗k1+1 P2. One impor-
tant thing must be considered. According to Algorithm 2, a certain block in
Sector i, 1 ≤ i ≤ k moves to the Ei - the ith block in S0. Ei,i−1 does not
appear in Si. Where i = k1 + 1, if (n ≤ E(k1+1),k1) then k3 = k2 − 1
else k3 = k2. Therefore, w1 is (k − k1) ∗ ((k − k3 − 2) ∗k1+1 P2 +
(k3 + 1) ∗k1 P2).
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Algorithm 4 for Computing the number of information on missing nodes given
n nodes

n 	= k2 + k + 1
k1 = n/k
k2 = (k ∗ (k1 + 1) − n)
if ( (n mod k) = 0) then {

w0 = kP2
w1 = (k − k1 + 1) ∗ ((k − 2) ∗k1 P2 +k1−1 P2)
}
else {

if (n ≤ E(k1+1),k1) then
k3 = k2 − 1
else k3 = k2
w0 = k2 ∗k1 P2 +k−k2 P2
w1 = (k − k1) ∗ ((k − k3 − 2) ∗k1+1 P2 + (k3 + 1) ∗k1 P2)
}

w = w0 + w1

Given the number of nodes - from 43 nodes to 32 nodes, the following table
illustrates the result of executing Algorithm 4.

Table 3. The number of Information on missing nodes required for load balancing

the number of nodes w0 w1

43 6 ∗6 P2 +1 P2 6 ∗6 P2

42 7P2 2 ∗ (5 ∗6 P2 + 1 ∗5 P2)
41 1 ∗5 P2 +6 P2 2 ∗ (4 ∗6 P2 + 2 ∗5 P2)
40 2 ∗5 P2 +5 P2 2 ∗ (3 ∗6 P2 + 3 ∗5 P2)
39 3 ∗5 P2 +4 P2 2 ∗ (2 ∗6 P2 + 4 ∗5 P2)
38 4 ∗5 P2 +3 P2 2 ∗ (1 ∗6 P2 + 5 ∗5 P2)
37 5 ∗5 P2 +2 P2 2 ∗ (1 ∗6 P2 + 5 ∗5 P2)
36 6 ∗5 P2 +1 P2 2 ∗ (0 ∗6 P2 + 6 ∗5 P2)
35 7P2 3 ∗ (5 ∗5 P2 + 1 ∗4 P2)
34 1 ∗4 P2 +6 P2 3 ∗ (4 ∗5 P2 + 2 ∗4 P2)
33 2 ∗4 P2 +5 P2 3 ∗ (3 ∗5 P2 + 3 ∗4 P2)
32 3 ∗4 P2 +4 P2 3 ∗ (2 ∗5 P2 + 4 ∗4 P2)

6 Conclusion

Researches have shown that distributed load balancing schemes can reduce task
turnaround time substantially by performing tasks at lightly loaded nodes in the
network. However, maintaining workload information on all the nodes is neces-
sary for such scheme, while it may incur large communication overhead. In this
paper, in order for the system to increase utilization and to reduce response time,
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we present an efficient load balancing algorithm on (v, k + 1, 1)-configured net-
works consisting of v nodes and vk links by employing the symmetric balanced
incomplete block design. To accomplish this, each node should receive workload
information from all the nodes without redundancy and each link should have
the same amount of traffic for transferring workload information. Our algorithm
requires two rounds of message interchange and O(v

√
v) communication com-

plexity, as opposed to O(v2) communication complexity needed by protocols
which use only one round of message interchange. Later, this algorithm is recon-
structed on distributed networks, where v is an arbitrary number of nodes and
is analyzed in terms of efficiency of load balancing.
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