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Abstract. The traditional sender-based message logging protocols use
a garbage collection algorithm to result in a large number of additional
messages and forced checkpoints. So, in our previous work, an algorithm
was introduced to allow each process to autonomously remove useless log
information in its volatile storage by piggybacking only some additional
information without requiring any extra message and forced checkpoint.
However, even after a process has executed the algorithm, its storage
buffer may still be overloaded in some communication and checkpoint-
ing patterns. This paper proposes a new garbage collection algorithm
CCPNA for sender-based message logging to address all the problems
mentioned above. The algorithm considerably reduces the number of
processes to participate in the garbage collection by using the size of the
log information of each process. Thus, CCPNA incurs more additional
messages and forced checkpoints than our previous algorithm. However,
it can avoid the risk of overloading the storage buffers regardless of the
specific checkpointing and communication patterns. Also, CCPNA re-
duces the number of additional messages and forced checkpoints com-
pared with the traditional algorithm.

Keyword: message-passing system, fault-tolerance, message logging,
checkpointing, garbage collection.

1 Introduction

With the remarkable advance of processor and network technologies, message-
passing distributed systems composed of heterogenous networked computers are
becoming a cost-effective solution for high performance parallel computing com-
pared with expensive special-purpose supercomputers. However, one of the big
challenges the distributed systems should address is providing fault-tolerance.
In other words, even if the failure of a single process in a distributed application
occurs, it may lead to restarting the application from its initial state, which is
critical to long-running scientific and engineering applications. Rollback-recovery
techniques such as checkpointing-based recovery and log-based recovery are very
attractive for supporting transparent fault-tolerance to the applications because
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the techniques require fewer special resources compared to process replication
techniques [5]. In checkpointing-based recovery, when some processes crash, the
processes affected by the failures roll back to their last checkpoints such that
the recovered system state is consistent. But, this technique may not restore the
maximum recoverable state because it relies only on checkpoints of processes
saved on the stable storage. Log-based recovery performing careful recording of
messages received by each process with its checkpoints enables a system to be
recovered beyond the most recent consistent set of checkpoints. This feature is
desirable for the applications that frequently interact with the outside world
consisting of input and output components that cannot roll back [5]. In this
technique, messages can be logged either by their senders or by their receivers.
First, receiver-based message logging (RBML) approach [8,14] logs the recovery
information of every received message to the stable storage before the message
is delivered to the receiving process. Thus, the approach simplifies the recovery
procedure of failed processes. However, its main drawback is the high failure-free
overhead caused by synchronous logging. Sender-based message logging (SBML)
approach [2,4,9,11,13] enables each message to be logged in the volatile mem-
ory of its corresponding sender for avoiding logging messages to stable storage.
Therefore, it reduces the failure-free overhead compared with the RBML ap-
proach. However, the SBML approach forces each process to maintain in its
limited volatile storage the log information of its sent messages required for
recovering receivers of the messages when they crash. Thus, as enough empty
buffer space for logging messages sent in future should be ensured in this ap-
proach, it requires an efficient algorithm to garbage collect log information of
each process [1]. Traditional SBML protocols [2,4,9,11,13] use one between two
message log management procedures to ensure system consistency despite future
failures according to each cost. The first procedure just flushes the message log
to the stable storage. It is very simple, but may result in a large number of stable
storage accesses during failure-free operation and recovery. The second proce-
dure forces messages in the log to be useless for future failures and then removes
them. In other wards, the procedure checks whether receivers of the messages
has indeed received the corresponding messages and then taken no checkpoint
since. If so, it forces the receivers to take their checkpoints. Thus, this behavior
may lead to high communication and checkpointing overheads as inter-process
communication rate increases. To address their problems, in our previous work,
a low-cost algorithm called PGCA [1] was presented to have the volatile memory
of each process for message logging become full as late as possible with no ex-
tra message and forced checkpoint. The algorithm allows each process to locally
and independently remove useless log information from its volatile storage by
piggybacking only some additional information. However, the limitation of the
algorithm is that after a process has performed the algorithm, the storage buffer
of the process may still be overloaded in some communication and checkpointing
patterns. In this paper, we propose an active garbage collection algorithm called
CCPNA to lift the limitation. For this, the algorithm CCPNA uses an array
recording the size of the log information for each process. When the free buffer
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space in the volatile storage is needed, the algorithm selects a small number of
processes based on the array that take part in having the messages previously
logged for them be useless despite their future failures. Thus, CCPNA results in
low communication and checkpointing overheads compared with the traditional
ones while avoiding the disadvantage of the algorithm PGCA.

2 System Model

A distributed computation consists of a set P of n(n > 0) sequential processes
executed on hosts in the system and there is a stable storage that every process
can always access that persists beyond processor failures [5]. Processes have no
global memory and global clock. The system is asynchronous: each process is exe-
cuted at its own speed and communicates with each other only through messages
at finite but arbitrary transmission delays. We assume that the communication
network is immune to partitioning, there is a stable storage that every process
can always access and hosts fail according to the fail stop model [10]. Events
of processes occurring in a failure-free execution are ordered using Lamport’s
happened before relation [6]. The execution of each process is piecewise deter-
ministic [12]: at any point during the execution, a state interval of the process is
determined by a non-deterministic event, which is delivering a received message
to the appropriate application. The k-th state interval of process p, denoted by
sip

k(k > 0), is started by the delivery event of the k-th message m of p, denoted
by devp

k(m). Let p’s state, sp
i =< sip

0, sip
1, · · ·, sipi >, represent the sequence

of all state intervals up to sip
i. Therefore, given p’s initial state, sp

0, and the
non-deterministic events, [devp

1, devp
2, · · ·, devp

i], its corresponding state sp
i is

uniquely determined. sp
i and sq

j(p �= q) are mutually consistent if all messages
from q that p has delivered to the application in sp

i were sent to p by q in sq
j ,

and vice versa. A set of states, which consists of only one from each process in
the system, is a globally consistent state if any pair of the states is mutually
consistent [3].

The log information of each message kept by its sender consists of four fields,
its receiving process’ identifier(rid), send sequence number(ssn), receive se-
quence number(rsn) and data(data). In this paper, the log information of mes-
sage m and the message log in process p’s volatile memory are denoted by e(m)
and logp.

3 The Proposed Algorithm

The sender-based message logging needs an algorithm to allow each process to
remove the log information in its volatile storage while ensuring system con-
sistency in case of failures. This algorithm should force the log information to
become useless for future recovery to satisfy the goal. In the traditional sender-
based message logging protocols, to garbage collect every e(m) in logp, p requests
that the receiver of m (m.rid) takes a checkpoint if it has indeed received m and
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taken no checkpoint since. Also, processes occasionally exchange the state in-
terval indexes of their most recent checkpoints for garbage collecting the log
information in their volatile storages. However, this algorithm may result in
a large number of additional messages and forced checkpoints needed by the
forced garbage collection. To illustrate how to remove the log information in
the algorithm, consider the example shown in figure 1. Suppose p3 intends to
remove the log information in logp3 at the marked point. In this case, the al-
gorithm forces p3 to send checkpoint requests to p1, p2 and p4. When receiving
the request, p1, p2 and p4 take their checkpoints, respectively. Then, the three
processes send each a checkpoint reply to p3. After receiving all the replies, p3
can remove (e(m1), e(m2), e(m3), e(m4), e(m5), e(m6), e(m7), e(m8)) from logp3.
Also, in this checkpointing and communication pattern, the algorithm proposed
in [1] cannot allow p3 to autonomously decide whether log information of each
sent message is useless for recovery of the receiver of the message by using some
piggybacking information. Thus, even after executing the algorithm, p3 should
maintain all the log information of the eight messages in logp3.
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Fig. 1. An example showing the problem of the traditional sender-based message log-
ging protocols

To solve the problem, we present an algorithm CCPNA based on the fol-
lowing observation: if the requested empty space (=E) is less than or equal to
the sum (=Y ) of sizes of e(m1), e(m2), e(m4), e(m6) and e(m8), p3 has only
to force p2 to take a checkpoint. This observation implies that the number of
extra messages and forced checkpoints may be reduced if p3 knows sizes of the
respective log information for p1, p2 and p4 in its volatile storage. CCPNA ob-
tains such information by maintaining an array, LogSizep, to save the size of
the log information in the volatile storage by process. Thus, CCPNA can reduce
the number of additional messages and forced checkpoints by using the vector
compared with the traditional algorithm.
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• logp: It is a set saving e(rid, ssn, rsn, data) of each message sent by p. It is initialized to ∅.
• Lssnp: It is the send sequence number of the latest message sent by p. It is initialized to 0.
• Lrsnp: It is the receive sequence number of the latest message delivered to p. It is initialized to 0.
• LssnV ecp: It is a vector where LssnV ecp[q] records the send sequence number of

the latest message received by p that q sent. Each element of the vector is initialized to 0.
• LogSizep: It is a vector where LogSizep[q] is the sum of sizes of all e(m)s in logp such that

p sent m to q. LogSizep[q] is initialized to 0.
• LrsnInLchkptp: It is the rsn of the latest message delivered to p

before p’s having taken its last checkpoint. It is initialized to 0.
• ENsendp: It is a set of rsns that aren’t yet recorded at the senders of their messages.

It is initialized to an empty set Φ. It is used for indicating whether p can send messages
to other processes(when ENsendp = Φ) or not.

Fig. 2. Data Structures for every process p in CCPNA
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Fig. 3. An example of executing our algorithm CCPNA

In CCPNA, each process p should maintain the data structures shown in figure
2. First, LogSizep is a vector where LogSizep[q] is the sum of sizes of all e(m)s
in logp, such that p sent message m to q. Whenever p sends m to q, it increments
LogSizep by the size of e(m). When p needs more empty buffer space, it exe-
cutes CCPNA. It first chooses a set of processes, denoted by participatingProcs,
which will participate in the forced garbage collection. It selects the largest,
LogSizep[q], among the remaining elements of LogSizep, and then appends q
to participatingProcs until the required buffer size is satisfied. Then p sends
a request message with the rsn of the last message, sent from p to q, to all
q ∈ participatingProc such that the receiver of m is q for ∃e(m) ∈ logp. When
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procedure MSend(data, q)
wait until(ENsendp = Φ) ;
Lssnp ← Lssnp + 1 ;
send m(Lssnp, data) to q ;
logp ← logp ∪ {(q, Lssnp, -1, data)} ;
LogSizep[q] ← LogSizep[q] + size of (q, Lssnp, -1, data) ;

procedure MRecv(m(ssn, data), sid)
if(LssnV ecp[sid] < m.ssn) then {

Lrsnp ← Lrsnp + 1 ;
LssnV ecp[sid] = m.ssn ;
send ack(m.ssn, Lrsnp) to sid ;
ENsendp ← ENsendp ∪ {Lrsnp} ;
deliver m.data to the application ;

}
else discard m ;

procedure Ack-Recv(ack(ssn, rsn), rid)
find ∃e ∈ logp st ((e.rid = rid) ∧ (e.ssn = ack.ssn)) ;
e.rsn ← ack.rsn ;
send confirm(ack.rsn) to rid ;

procedure Confirm-Recv(confirm(rsn))
ENsendp ← ENsendp - {rsn} ;

procedure Checkpointing()
LrsnInLchkptp ← Lrsnp ;
take its local checkpoint on the stable storage ;

procedure AGC(sizeOflogSpace)
participatingProcs ← ∅ ;
while sizeOflogSpace > 0 do

if(there is r st ((r ∈ P ) ∧ (r is not an element of participatingProcs) ∧
(LogSizep[r] �= 0) ∧ (max LogSizep[r]))) then {
sizeOflogSpace ← sizeOflogSpace − LogSizep[r] ;
participatingProcs ← participatingProcs ∪ {r} ;

}
T : for all u ∈ participatingProcs do {

MaximumRsn ← (max e(m).rsn) st ((e(m) ∈ logp)∧(u = e(m).rid)) ;
send Request(MaximumRsn) to u ;

}
while participatingProcs �= ∅ do {

receive Reply() from u st (u ∈ participatingProcs) ;
for all et(m) ∈ logp st (u = e(m).rid) do

remove e(m) from logp ;
LogSizep[u] ← 0 ;
participatingProcs ← participatingProcs − {u} ;

}

procedure CheckLrsnInLchkpt(Request(MaximumRsn), q)
if(LrsnInLchkptp < MaximumRsn) then
Checkpointing() ;

send Reply() to q ;

Fig. 4. Procedures for every process p in CCPNA
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Fig. 5. NOAM vs. Tms

q receives the request message with the rsn from p, it checks whether the rsn
is greater than LrsnInLchkptp. If so, it should take a checkpoint and then send
p a reply message. Otherwise, it has only to send p a reply message. When p
receives the reply message from q, it removes all e(m)s from logp such that the
receiver of m is q.

For example, in figure 3, when p3 attempts to execute CCPNA at the marked
point after it has sent m8 to p2, it should create participatingProcs. In this
figure, we can see that LogSizep3[p2](= Y ) is the largest (Y ≥ Z ≥ X) among
all the elements of LogSizep3 due to e(m1), e(m2), e(m4), e(m6) and e(m8) in
logp3. Thus, it first selects and appends p2 to participatingProcs. Suppose that
the requested empty space E is less than or equal to Y . In this case, it needs
to select any process like p1 and p4 no longer. Therefore, p3 sends a checkpoint
request message with m8.rsn to only p2 in participatingProcs. When p2 receives
the request message, it should take a forced checkpoint like in this figure because
the rsn included in the message is greater than LrsnInLchkptp2. Then it sends
p3 a reply. When p3 receives a reply message from p2, it can remove e(m1), e(m2),
e(m4), e(m6) and e(m8) from logp3. From this example, we can see that CCPNA
chooses a small number of processes to participate in the garbage collection
based on LogSizep3 compared with the traditional algorithm. Thus, CCPNA
may reduce the number of additional messages and forced checkpoints.

3.1 Algorithmic Description

The procedures for process p in our algorithm are formally described in figure
4. MSend() is the procedure executed when each process p sends a message
m and logs the message to its volatile memory. In this case, p adds the size
of e(m) to LogSizep[q] after transmitting the message. Procedure MRecv()
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is executed when p receives a message. In procedure Ack-Recv(), process p
receives the rsn of its previously sent message and updates the third field of the
element for the message in its log to the rsn. Then, it confirms fully logging of the
message to its receiver, which executes procedure Confirm-Recv(). If process p
attempts to take a local checkpoint, it calls procedure Checkpointing(). In this
procedure, LrsnInLchkptp is updated to the rsn of the last message received
before the checkpoint. AGC() is the procedure executed when each process
attempts to initiate the forced garbage collection, and CheckLrsnInLchkpt()
is the procedure for forcing the log information to become useless for future
recovery.

4 Performance Evaluation

In this section, we perform extensive simulations to compare the proposed al-
gorithm CCPNA with the traditional algorithm TGCA using simjava discrete-
event simulation language [7]. Two performance indexes are used for comparison;
the average number of additional messages (NOAM) and the average number of
forced checkpoints (NOFC) required for garbage collection per process. In the
literature, these two indexes dominate the overhead caused by garbage collection
during failure-free operation [5]. A system with 20 nodes connected through a
general network was simulated. Each node has one process executing on it and,
for simplicity, the processes are assumed to be initiated and completed together.
The message transmission capacity of a link in the network is 100Mbps. For the
simulation, 20 processes have been executed for 72 hours per simulation run.
Every process has a 10MB buffer space for storing its logp. The message size
ranges from 50KB to 200KB. Normal checkpointing is initiated at each process
with an interval following an exponential distribution with a mean Tckpt=360
seconds. The simulation parameter is the mean message sending interval, Tms,
following an exponential distribution.

Figure 5 shows NOAM for the various Tms values. In this figure, we can see
that NOAMs of the two algorithms increase as Tms decreases. The reason is
that forced garbage collection should frequently be performed because the high
inter-process communication rate causes the storage buffer of each process to
be overloaded quickly. However, NOAM of CCPNA is much lower than that of
TGCA. CCPNA reduces about 38% - 50% of NOAM compared with TGCA.

Figure 6 illustrates NOFC for the various Tms values. In this figure, we can
also see that NOFCs of the two algorithms increase as Tms decreases. The
reason is that as the inter-process communication rate increases, a process may
take a forced checkpoint when it performs forced garbage collection. In the figure,
NOFC of CCPNA is lower than that of TGCA. CCPNA reduces about 25% -
51% of NOFC compared with TGCA.

Therefore, we can conclude from the simulation results that regardless of the
specific checkpointing and communication patterns, CCPNA enables the garbage
collection overhead occurring during failure-free operation to be significantly
reduced compared with TGCA.
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5 Conclusion

In this paper, we presented a garbage collection algorithm CCPNA for effi-
ciently removing log information of each process in sender-based message log-
ging. CCPNA allows each process to keep an array to save the size of the log
information for every process in its storage by process. It chooses a minimum
number of processes to participate in the forced garbage collection based on the
array. Thus, it incurs more additional messages and forced checkpoints than our
previous algorithm. However, it can avoid the risk of overloading the storage
buffers unlike the latter. Moreover, CCPNA reduces the number of additional
messages and forced checkpoints needed by the garbage collection compared with
the traditional algorithm TGCA. From our simulation experiments, we can see
that CCPNA significantly reduces about 38% - 50% of NOAM and 25% - 51%
of NOFC regardless of the communication patterns compared with TGCA.
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