
Distributed Classification of Textual Documents
on the Grid

Ivan Janciak1, Martin Sarnovsky2, A Min Tjoa3, and Peter Brezany1

1 Institute of Scientific Computing, University of Vienna, Nordbergstrasse 15/C/3
A-1090 Vienna, Austria

janciak@par.univie.ac.at, brezany@par.univie.ac.at
2 Department of Cybernetics and Artificial Intelligence, Technical University of

Kosice, Letna 9, Kosice, Slovakia
martin.sarnovsky@tuke.sk

3 Institute of Software Technology and Interactive Systems, Vienna University of
Technology, Favoritenstrasse 9-11/E188, A-1040 Vienna, Austria

tjoa@ifs.tuwien.ac.at

Abstract. Efficient access to information and integration of informa-
tion from various sources and leveraging this information to knowledge
are currently major challenges in life science research. However, a large
fraction of this information is only available from scientific articles that
are stored in huge document databases in free text format or from the
Web, where it is available in semi-structured format.

Text mining provides some methods (e.g., classification, clustering,
etc.) able to automatically extract relevant knowledge patterns contained
in the free text data. The inclusion of the Grid text-mining services
into a Grid-based knowledge discovery system can significantly support
problem solving processes based on such a system.

Motivation for the research effort presented in this paper is to use the
Grid computational, storage, and data access capabilities for text min-
ing tasks and text classification in particular. Text classification min-
ing methods are time-consuming and utilizing the Grid infrastructure
can bring significant benefits. Implementation of text mining techniques
in distributed environment allows us to access different geographically
distributed data collections and perform text mining tasks in paral-
lel/distributed fashion.

Keywords: Text Mining, Multi Label Text Categorization, Distributed
Text Mining, Grid Computing, JBOWL, GridMiner.

1 Introduction

The process of data mining is one of the most important topics in scientific and
business problems. There is a huge amount of data that can help to solve many
of these problems. However, data are often geographically distributed in various
locations. While text is still premier source of information on the web, the role
of text mining is increasing.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 710–718, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Classification of Textual Documents on the Grid 711

Fig. 1. Process of knowledge discovery in textual documents

Nowadays, the information overload means a big problem, so text mining
algorithms working on very large document collections take very long times on
conventional computers to get results. One approach to face this problem is
distributed computing - distributed text mining algorithms can offer an effective
way to mine extremely large document collections.

Motivation of this work is to use the Grid computational capabilities to solve
text mining tasks. Some of the methods are time-consuming and use of the
Grid infrastructure can bring significant benefits. Implementation of text mining
techniques in distributed environment allows us to perform text mining tasks,
such as text classification, in parallel/distributed fashion.

Knowledge discovery in texts is a variation on a field called knowledge discov-
ery in databases, that tries to find interesting patterns in data. It is a process of
semiautomatic non-trivial extraction of previously unknown, potentially useful
and non-explicit information from large textual document collection, as depicted
on Figure 1. A key element of text mining is to link extracted information to-
gether to form new facts or new hypotheses to be explored further by more
conventional means of experimentation. While regular data mining extracts the
patterns from structured databases of facts, text mining deals with problem of
natural language processing. The biggest difference between data mining and
text mining is in the preprocessing phase. Preprocessing of text documents is
completely different, in general, it is necessary to find a suitable way to transform
the text into an appropriate internal representation, which the mining algorithms
can work on. One of the most common internal representations of document col-
lection is the Vector Space Model [6]. Text mining phase is the core process of
knowledge discovery in text documents. There are several types of text mining
tasks as follows:

– Text categorization : assigning the documents into the pre-defined categories
– Text clustering : descriptive activity, which groups similar documents to-

gether
– Information retrieval : retrieving the documents relevant to the user’s query
– Information extraction : question answering.

Nowadays, text mining plays important role in the area of processing biomed-
ical databases that contain huge volume of textual documents. For example, one
of the current questions in genomics is to inspect which proteins interact with
others. There has been notable success in looking at which words co-occur in

712 I. Janciak et al.

articles that discuss the proteins in order to predict such interactions. The key is
not to search for direct occurrence of pairs in document, but to find articles that
mention individual protein names and keep track of which other words occur
in those articles, and finally look for other articles containing the same sets of
words. This method can yield surprisingly good results, even though the meaning
of the texts are not being discerned by the programs.

The structure of the rest of the paper is organized as follows. Section 2 dis-
cusses the classification of documents using multi-label classification. Section
3 describes the design of sequential and distributed versions of the text min-
ing service implemented using the knowledge discovery framework - GridMiner.
Experimental performance results are discussed in Section 4. Related work is
presented in Section 5 and we briefly conclude in Section 6.

2 Text Classification Based on a Multi-label Algorithm

Text Classification is the problem of assigning a text document into one or
more topic categories or classes based on document’s content. Traditional ap-
proaches to classification usually consider only the unilabel classification prob-
lem. It means that each document in collection has associated one unique class
label.

This approach is typical for data mining classification tasks, but in a number
of real-world text mining applications, we face the problem of assigning the
document into more than one single category. One sample can be labeled with
a set of classes, so techniques for the multi-label problem have to be explored.
Especially in text mining tasks, it is likely that data belongs to multiple classes,
for example in context of medical diagnosis, a disease may belong to multiple
categories, genes may have multiple functions, etc.

In general, there are many ways to solve this problem. One approach is to
use a multinomial classifier such as the Naive Bayes probabilistic classifier [4],
that is able to handle multi-class data. But most of common used classifiers
(including decision trees) cannot handle multi-class data, so some modifications
are needed. Most frequently used approach to deal with multi-label classification
problem is to treat each category as a separate binary classification problem,
which involves learning a number of different binary classifiers and use an output
of these binary classifiers to determine the labels of a new example. In other
words, each such problem answers the question, whether a sample should be
assigned to a particular class or not.

In the work reported in this paper, we used the decision trees algorithm based
on the Quinlan’s C4.5 [7]. A decision tree classifier is a tree with internal nodes
labeled by attributes (words), branches are labeled by weight of the attribute
in a document, and leafs represent the categories [1]. Decision tree classifies a
sample by recursively testing of the weights in the internal nodes until a leaf is
reached.

While this algorithm isn’t suitable to perform multi-label classification itself,
we use the approach of constructing different binary trees for each category.

Distributed Classification of Textual Documents on the Grid 713

Fig. 2. Design of sequential and distributed text mining services

The process of building many binary trees can be very time consuming when
running sequentially, especially on huge document collections. Due to the fact
that these binary classifiers are independent on each other, it is natural to find a
suitable way how to parallelize the whole process. Growing of these binary trees
is ideal for parallel execution on a set of distributed computing devices. Such a
distribution might be desirable for extremely large textual document collections
or large number of categories, which e.g. can be associated with a large number
of binary classifiers.

3 Architecture and Implementation of the Classification
Service

Building distributed text mining services is an inherently difficult and complex
task. To reduce the complexity, the first goal was to design a sequential version
of Text Classification Service based on the multi-label algorithm implemented
in the JBOWL library, which is discussed below.

3.1 JBOWL

JBOWL - (Java Bag-of-Words Library) [2] is an original software system devel-
oped in Java to support information retrieval and text mining. The system is

714 I. Janciak et al.

being developed as open source with the intention to provide an easy extensible,
modular framework for pre-processing, indexing and further exploration of large
text collections, as well as for creation and evaluation of supervised and un-
supervised text-mining models. JBOWL supports the document preprocessing,
building the text mining model and evaluation of the model. It provides a set
of classes and interfaces that enable integration of various classifiers. JBOWL
distinguishes between classification algorithms (SVM, linear perceptron) and
classification models (rule based classifiers, classification trees, etc.).

3.2 GridMiner

GridMiner [3] is a framework for implementing data mining services in the Grid
environment. It provides three layered architecture utilizing a set of services
and web applications to support all phases of data mining process. The system
provides a graphical user interface that hides the complexity of the Grid, but still
offers the possibility to interfere with the data mining process, control the tasks
and visualize the results. GridMiner is being developed on top of the Globus
Toolkit1.

3.3 Implementation

The interface of the sequential and distributed versions of the service defines two
main methods needed to build final model: BuildTextModel and BuildClassifica-
tionModel. While the first one is implemented as a pure sequential method, the
second one can build the final model distributing the partial binary classifiers.
This behavior of the service depends on its configuration. A simplified archi-
tecture of both versions is depicted in Figure 2. Moreover, other methods were
implemented to provide term reduction and model evaluation, but these meth-
ods were not used during the performance evaluation experiments discussed in
Section 4.

1. BuildTextModel - This method creates the Text Model from the docu-
ments in the collection. The model contains a document-term matrix created
using TF-IDF weighting [8], which interprets local and global aspects of the
terms in collection. The input of the method is a parameter specifying the
text model properties and the location of the input collection.

2. BuildClassificationModel - The Classification Model, as the result of the
decision tree classifier, is a set of decision trees or decision rules for each
category. This service method creates such a model from the document-term
matrix created in the previous method. The sequential version builds the
model for all categories and stores it in one file. The process of building
the model iterates over a list of categories and for each of them creates
a binary decision tree. The distributed version performs the same, but it
distributes the work of building individual trees onto other services, so called
workers, where partial models containing only trees of dedicated categories

1 http://www.globus.org

Distributed Classification of Textual Documents on the Grid 715

are created. These partial models are collected and merged into the final
classification model by the master node and stored in the binary file, which
can be passed to a visualization service.

4 Experiments

In this section, we present experiments performed on the local area network of
the Institute of Scientific Computing in Vienna. As the experimental test bed,
we used five workstations Sun Blade 1500, 1062MHz Sparc CPU, 1.5 GB RAM
connected by a 100MBit network.

Fig. 3. Logarithmic distribution of categories frequency in the Reuters-21578 dataset

4.1 The Training Dataset

The Reuters-21578 [5] document collection was used as the training data in
our experiments. It is de facto a standard dataset for text classification. Its
modification, ModApte split [1], consisting out of 9603 training documents in
90 categories and formatted in XML, was used in all tests. Figure 3 depicts the
logarithmic distribution of category frequencies in the Reuters-21578 collection.
It shows that there are only two categories that occur more than 1000 times in
the collection, while there is a lot of categories with frequency of occurrence less
than 10. The time needed to build binary classifiers for categories with highest
frequency of occurrence is significantly longer than the building time for the rest
of the categories. This is a key factor for tasks distribution and optimization. In
our case it is a decision how to assign partial categories and associated binary
decision trees construction to the worker nodes.

716 I. Janciak et al.

4.2 Performance Results

The main goal of the experiments was to prove, that the distribution of processes
mentioned above, can reduce the time needed to construct the classification
model. We started the experiments using the sequential version of the service,
in order to compare the sequential version with the distributed one. The time
to build the final classification model on a single machine using the ModApte
dataset was measured three times and its mean value was 32,5 minutes. Then
we performed the first series of the distributed service tests without using any
optimization of distribution of categories to the worker nodes. According to the
number of worker nodes, the master node assigned the equal number of cate-
gories to each worker node. The results, see Figure 4, show us the speedup of
building the classification model using multiple nodes. The detailed examina-
tion of the results and the document collection proved that the time to build a
complete classification model is significantly influenced by the working time of
the first node. Examination of the dataset and workload of particular workers
showed us that the first node always received a set of categories with the highest
frequency of occurrences in the collection. It means that other worker nodes al-
ways finished the building of their partial models in a shorter time than the first
one. It is caused by non-linear distribution of category occurrences as discussed
in Section 4.1. The most frequent category (category number 14) occurs in 2780
documents and it was always assigned to the first worker node. That was the
reason, why the first worker node spent much longer time to build-up the partial
model.

After the first series of tests, we implemented the optimization of distribution
of the categories to the worker nodes according to the frequency of category
occurrences in the documents. Categories were sorted by this frequency and
distributed to the worker nodes according to their frequency of occurrence, what
means that each node was assigned with equal number of categories, but with a
similar frequency of their occurrences.

We run the same set of the experiments as in the first series and the re-
sults showed us more significant speedup using less worker nodes, see optimized
bars in Figure 4. The best performance results were achieved using optimized
distribution on 5 worker nodes (5.425 minutes), which was comparing to single
machine computing time (32.5 minutes) almost 6 times faster. The minimal time
to complete classification model is limited by the time of processing of the most
frequent category - if this is assigned to a single worker node.

5 Related Work

In this section, we describe projects utilizing the Grid to perform advanced
knowledge discovery in textual documents. DiscoveryNet2 provides a service ori-
ented computing model for knowledge discovery, allowing the user to connect
to an use data analysis software as well as document collection that are made
2 http://www.discovery-on-the.net

Distributed Classification of Textual Documents on the Grid 717

Fig. 4. Performance results of the normal and optimized distribution of nodes work-
loads

available online by third parties. The aim of this project is to develop a uni-
fied real-time e-Science text-mining infrastructure that leverages the technolo-
gies and methods developed by the DiscoveryNet and myGrid3 projects. Both
projects have already developed complimentary methods that enable the analy-
sis and mining of information extracted from biomedical text data sources using
Grid infrastructures, with myGrid developing methods based on linguistic anal-
ysis and DiscoveryNet developing methods based on data mining and statistical
analysis. National Centre for Text Mining4 is also involved in research activi-
ties covering the Grid based text mining. Primary goal of this project is also
focused to develop an infrastructure for text mining, a framework comprised of
high-performance database systems, text and data mining tools, and parallel
computing.

6 Conclusions and Future Work

In this paper we presented a comparative study of sequential and distributed ver-
sions of classifiers based on decision trees. We proposed an idea how to distribute
the process of building a multi-label classification model in the Grid environment
by splitting the set of particular binary classifiers, needed to construct the final
models into the workpackages, that are computed in distributed fashion. The
results proved that the distributed version can bring significant benefits and
3 http://www.mygrid.org.uk
4 http://www.nactem.ac.uk

718 I. Janciak et al.

helps to reduce computing time needed to build the classification model. We
also implemented an optimized distribution of particular binary classifiers onto
the worker nodes, which had inconsiderable impact on the final time reduction
comparing to the non-optimized approach. On a different real-world datasets,
the speedup of the distributed version may be more significant. In our future
research effort, we plan to explore and extend this approach of distribution of
text classification services to other text mining tasks.

References

1. C. Apte, F. Damerau, and S. M. Weiss. Towards language independent automated
learning of text categorisation models. In Research and Development in Information
Retrieval, pages 23–30, 1994.

2. P. Bednar, P. Butka, and J. Paralic. Java library for support of text mining and
retrieval. In Proceedings of Znalosti 2005, Stara Lesna, pages 162–169, 2005.

3. P. Brezany, I. Janciak, A. Woehrer, and A Min Tjoa. Gridminer: A framework for
knowledge discovery on the grid - from a vision to design and implementation. In
Cracow Grid Workshop, Cracow, December 2004.

4. Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

5. D. D. Lewis. Reuters-21578 text categorization test collection distribution 1.0.
http://www.research.att.com/ lewis, 1999.

6. H. P. Luhn. A statistical approach to mechanized encoding and searching of literary
information. IBM Journal of Research and Developement, 4:309–317, 1957.

7. J. R. Quinlan. Learning first-order definitions of functions. Journal of Artificial
Intelligence Research, 5:139–161, 1996.

8. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24:513–523, 1988.

	Introduction
	Text Classification Based on a Multi-label Algorithm
	Architecture and Implementation of the Classification Service
	JBOWL
	GridMiner
	Implementation

	Experiments
	The Training Dataset
	Performance Results

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

