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Abstract. The performance of parallel computing systems using the
master/worker model for distributed grid computing tends to be de-
graded when large data sets have to be dealt with, due to the impact
of data transmission time. In our previous study, we proposed a par-
allel transferable uniform multi-round algorithm (PTUMR), which effi-
ciently mitigated this impact by allowing chunks to be transmitted in
parallel to workers in environments that were homogeneous in terms of
workers’ computation and communication capacities. The proposed algo-
rithm outperformed the uniform multi-round algorithm (UMR) in terms
of application turnaround time, but it could not be directly adapted to
heterogeneous environments. In this paper, therefore, we propose an ex-
tended version of PTUMR suitable for heterogeneous environments. This
algorithm divides workers into appropriate groups based on both com-
putation and communication capacities of individual workers, and then
treats each group of workers as one virtual worker. The new PTUMR
algorithm is shown through performance evaluations to significantly mit-
igate the adverse effects of data transmission time between master and
workers compared with UMR, achieving turnaround times close to the
theoretical lower limits even in heterogeneous environments.

Keywords: Grid Computing, Master/Worker Model, Divisible Work-
load, Multi-Round Scheduling, UMR.

1 Introduction

Grid computing has recently increased in popularity for distributed applications
[1,2]. The master/worker model is suited to grid computing environments in-
volving a large number of computers that differ in resource capacities. In this
model, a master with application tasks dispatches subtasks to several workers,
which process the data allocated by the master. A typical instance of appli-
cations based on the master/worker model is a divisible workload application
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[3,4,5], where the master divides the application data into an arbitrary number
of chunks and then dispatches them to multiple workers. For a given application,
it is assumed that computation and transmission times for a chunk are roughly
proportional to the size of the chunk.

The existing uniform multi-round algorithm (UMR), can handle an applica-
tion having a large amount of data in a ‘multiple-round’ manner to overlap the
time required for communication with that required for computation [3,6,7,8].
However, it utilizes sequential transmission model, i.e. the master transmits data
to one worker at a time [9,10]. In actual networks where the master and workers
are connected via a heterogeneous network, it is unable to minimize the adverse
effects of data transmission on the application turnaround time.

Therefore, in our previous study, we proposed a new scheduling algorithm,
parallel transferable uniform multi-round (PTUMR) adapted to the heteroge-
neous network [11]. The proposed algorithm fully utilizes the high-speed data
transmission capacity of the heterogeneous network by allowing the master to
transmit application data to multiple workers simultaneously. However it is not
adaptive to a heterogeneous environment containing workers with varying re-
source capacities.

The contributions of this paper are two-fold. Firstly, we extend the PTUMR
so that it can be applied in a heterogeneous environment. The master divides
workers into appropriate groups based on both computation and communication
capacities of individual workers, and then treats the set of workers in a group
as one virtual worker. After that, the master optimally transmits chunks to the
virtual workers sequentially as in UMR. Secondly, we evaluate the efficiency of
the new PTUMR in various environments. The proposed algorithm reduces the
adverse effects of data transmission time on application turnaround time to a
greater extent than the conventional UMR by handling heterogeneity in terms
of workers’ capacities and the network model, allowing turnaround times close
to the theoretical lower limit to be achieved.

This paper is organized as follows. In Section 2, the conceptual basis for
multiple-round scheduling and the conventional UMR algorithm are introduced.
The proposed PTUMR algorithm is presented in Section 3, and its performance
is investigated in Section 4. The conclusion follows in Section 5.

2 The Conventional UMR Scheduling Algorithm

Recently, a number of scheduling methods have been proposed in which the mas-
ter dispatches data to workers in a multiple-round manner in order to overlap
communication with computation and thereby reduce the application turnaround
time. Figure 1 shows a simple example of this scenario where the master dis-
patches a workload of the application to a worker. In this figure, a black rectangle
represents the fixed-length overhead for one round of computation and a gray rect-
angle represents the fixed-length overhead in one round of data transmission. In
multiple-round scheduling the entire application data set W [units] is divided into
multiple chunks of arbitrary size and processed in M rounds, which can reduce



A Parallel Transferable Uniform Multi-Round Algorithm 53

Communication
Computation

Communication
Computation

Multiple Round

Single Round

Fig. 1. Multiple-round scheduling

Master

Worker

BackboneBackbone

Fig. 2. Distributed comput-
ing model

Comm
Comp

Worker 1

Worker 2

Worker 3

Worker N

Round 0 Round 1 Round 2

c01/b1’

c01/s1

ε2

δ1
c11/s1

c11/b1’

Comm
Comp

Comm
Comp

Comm
Comp

δ2

ε1
c02/b2’

c02/s2

c0N/sN

c0N/bN’

δN
εN

Fig. 3. Timing chart of data transmission and worker
processing under UMR

the adverse effects of data transmission time on the application turnaround time.
However, the use of a large number of rounds results in an increase in the total
overhead. Thus, optimizing the number of rounds so as to minimize the appli-
cation turnaround time is a key issue in multiple-round scheduling.

UMR is an example of a multiple-round scheduling algorithm [6,7]. The dis-
tributed computing model for UMR is shown in Fig. 2. The master and N work-
ers are connected to a high-speed network that is free of bottlenecks. This model
has heterogeneity in terms of the computation and communication capacities of
workers: each worker i has associated with its computation speed si [units/s],
data transmission capacity bi [units/s] of the link attached to the worker, and
overheads δi [s], εi [s] added to the computation time and data transmission time,
respectively. Furthermore, the data transmission capacity of the link attached
to the master is denoted by b0 [units/s].

UMR adopts the sequential transmission model whereby the master transmits
a chunk to one worker at a time. Therefore, the actual data transmission rate
b′i between the master and worker i has to be bounded above by min{bi, b0}.
Figure 3 illustrates how the data is transmitted to workers and then processed
under UMR, where the size of the chunk allocated to the worker i in Round j is
denoted by cji [units]. The master determines the amount of chunks allocated
to each worker in such a way that the computation time becomes identical for
all workers during a round. To reduce data transmission time in the first round,
relatively small chunks are transmitted to workers in this round, and the size of
chunks then grows exponentially in subsequent rounds.
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3 The PTUMR Scheduling Algorithm

The PTUMR algorithm determines how the application data should be divided
and when the data should be transmitted to workers in a network environment
that allows the master to transmit data to multiple workers in parallel (Fig. 4),
assuming that εi can be overlapped among concurrent transmissions. More pre-
cisely, the PTUMR divides workers into appropriate groups, and treats the set
of workers in each group as a single virtual worker. Then the master transmits
chunks to virtual workers sequentially, as in UMR.

After appropriately grouping the workers, the PTUMR algorithm analyti-
cally determines the appropriate number M+ of rounds so that the application
turnaround time for the total amount W of application data is minimized.

We assume that the values b0 and bi(i = 1, 2, . . . , N) are known to the master,
and also that it can control the rate of data transmission b′i to worker i to be
within the range [0, min(b0, bi)]. Note that such control can be achieved under
the TCP by constraining the sending socket buffer size.

3.1 Computation and Data Transmission Capacities of a Virtual
Worker

This subsection shows how to derive the resource capacity of a virtual worker in
terms of the resource capacities of its members. The set of workers composing
the virtual worker k is denoted by Lk and the number of workers in Lk by mk.

In order to minimize the computation time of the virtual worker, the size cji of
chunk allocated to worker i in Round j(= 0, . . . , M − 1) should be proportional
to its computation speed si [3]. In addition, we take the overhead Δk of virtual
worker k to be the largest overhead δi among all workers in Lk. Then, the
computation time of the virtual worker k in Round j is given by

Tcompjk
=

Cjk∑
i∈Lk

si
+ max

i∈Lk

{δi} =
Cjk

Sk
+ Δk.

(

Cjk =
∑

i∈Lk

cji

)

(1)
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where Cjk is defined as the total size of chunks allocated to all workers in Lk in
Round j, and Sk denotes the computation speed of virtual worker k.

Next, we assume that the data transmission time in each round is identical
for all workers in Lk by limiting the data transmission rate b′i (≤ bi) to each
worker i. In addition, we define that the overhead Ek of virtual worker k is the
largest overhead εi among all workers in Lk. Then, the data transmission time
of the virtual worker k in Round j is given by

Tcommjk
=

Cjk∑
i∈Lk

b′i
+ max

i∈Lk

{εi} =
Cjk

Bk
+ Ek. (2)

3.2 The Grouping Method

Since the resource capacity of the virtual worker depends on those of its members,
the grouping method strongly affects the performance of PTUMR. The grouping
method of PTUMR consists of two steps.

1. All workers are sorted and given serial numbers in ascending order of ri =
si/ min{b0, bi}. The workers are then divided into several groups according
to the following equation.

mk =max

{

m

∣
∣
∣
∣
∣

lk+m−1∑

l= lk

bl ≤b0

}

+x, lk+1 = lk+mk. (3)

where lk indicates the serial number of the first worker composing the virtual
worker k and x indicates the number of additional workers added to the
group after the number of worker has been chosen in a way to make full use
of the master-network bandwidth. Note that the optimal value of x cannot
be derived analytically. However, in our extensive performance evaluation,
we found ten or more additional workers improved the performance to a
nearly optimal point in various conditions.

1’. The master groups workers whose resource capacities are close to each other
according to the following equation.

mk =min {mk in (3), m′
k} , m′

k =max

{

m

∣
∣
∣
∣
∣
rlk+m−1≤

1.5×
∑lk+m−2

l=lk
rl

m−1

}

.(4)

If ri of the next worker is 1.5 times larger than the average ri of all workers
already selected for the group, this next worker will not be included.

2. The virtual workers are sorted in ascending order of Rk = Sk/Bk, and the
number Nv of virtual workers utilized for application processing is chosen
according to the following equation.

Nv = max

{

n

∣
∣
∣
∣
∣

n∑

k=1

Rk < 1

}

. (5)
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Step 1 presents a basic grouping method which attempts to preferentially
select workers with larger ri, as happens in UMR [7], and to fully utilize the
bandwidth of the master-network link. Furthermore, the additional number x of
workers aims at reducing the number of steps required to transmit data to all
workers, which allows overlapping of the overhead for more workers.

However, in more heterogeneous environments, a virtual worker determined
by Step 1 may include some workers with much lower ri than others, which leads
to critical degradation of the resource capacity of the virtual worker. Therefore,
when heterogeneity is high, the basic grouping method does not result in efficient
execution of the application (shown later in Section 4.1). Step 1’ proposes a
modified PTUMR, PTUMR with Grouping Threshold (GT), which is restricted
to make a group of workers with similar resource capacities.

Step 2 then preferentially selects virtual workers with larger Rk, and limits
the number of virtual workers so as to prevent the allocation of application tasks
to a virtual worker having low capacity.

3.3 Derivation of Parameters That Result in Almost Minimal
Turnaround Time

The new scheduling algorithm, PTUMR, determines the number M+ of rounds
that is nearly optimal in terms of minimizing application turnaround time. The
application turnaround time Treal is determined by given parameters (the num-
ber M of rounds and the size Cjk of chunk allocated to virtual worker k in Round
j). However, since Treal is difficult to express analytically, we instead derive the
ideal application turnaround time Tideal under the (ideal) assumption that no
virtual worker ever enters the idle computation state once it has received its first
chunk of data. In addition, we also assume that the time required to compute
chunks received in each round is identical for all virtual workers.

We denote by wj(=
∑Nv

k=1 Cjk) the total amount of chunk to be allocated to
virtual workers in Round j, and from Eq. (1), the relation between wj and the
size Cjk of chunk allocated to the virtual worker k is given by

Cjk = αk × wj + βk, (6)
(

αk =
Sk

∑Nv

k=1 Sk

, βk =
Sk ×

∑Nv

k=1{Sk × Δk}
∑Nv

k=1 Sk

− Sk × Δk.

)

In addition, from Eqs. (1) and (2), the total amount of chunk wj for Round
j can be determined by the total chunk size w0 in the first round as follows.

wj =θj(w0 − γ) + γ,

(

θ=
1/

∑Nv

k=1 Sk
∑Nv

k=1{αk/Bk}
, (7)

γ =
∑Nv

k=1{Sk × Δk}/
∑Nv

k=1 Sk −
∑Nv

k=1{βk/Bk} −
∑Nv

k=1 Ek
∑Nv

k=1{αk/Bk} − 1/
∑Nv

k=1 Sk

.

)
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The application turnaround time Tideal under the ideal assumption can be
derived as a function of the number M of rounds, as follows.

Tideal =
1

∑Nv

k=1 Sk

{

W +M ×
Nv∑

k=1

(Sk×Δk)

+
Nv∑

k=1

⎡

⎣Sk×
k∑

t=1

⎛

⎝
αt×

(
1−θ

1−θM ×(W −Mγ)+γ
)

+ βt

Bt
+Et

⎞

⎠

⎤

⎦

⎫
⎬

⎭
. (8)

Due to space limitation, derivation of the application turnaround time in detail
is omitted.

Let M∗ denote the real value minimizing Tideal in Eq. (8), which can be
obtained by solving ∂Tideal

∂M = 0. Then, it is necessary to determine an appropriate
number M+ of rounds as an integer expected to nearly minimize Treal if M∗ is
not an integer. There are four possible integers to consider: �M∗� − 1, �M∗�,
�M∗� and �M∗�+1. We can choose one among them in such a way as to minimize
Treal.

4 Performance Evaluation

In this study, we assume, as was the case in the study proposing UMR [7], that
the computation speed si, the worker-network link capacity bi, and the latency
parameters εi and δi corresponding to the related overheads of workers, are
distributed uniformly within the following range.

(
(1 −

√
3 × het) × mean, (1 +

√
3 × het) × mean

)
. (9)

where het represents the heterogeneity of each resource capacity in the environ-
ment. We employ a coefficient of variation of each resource capacity as het. In
addition, mean can be set to the average capacity over all workers, namely s̄, b̄,
δ̄, and ε̄ listed in Tab 1.

The effectiveness of PTUMR is evaluated by comparing the achievable
turnaround time Treal(M+) with the lower bound Tbound, which corresponds
to the best possible turnaround time in an environment where the network re-
sources are sufficient to ensure negligible data transmission times and any latency
corresponding to related overheads is ignored. From Eq. (8), Tbound is obtained
as follows.

Tbound =
W

∑N
i=1 si

. (10)

For a given parameter set (heterogeneity het and average resource capacities
s̄, b̄, δ̄ and ε̄), 100 experiments were conducted. The average and maximum
application turnaround time Treal in the 100 experiments was then used as a
measure of performance of the scheduling algorithms.
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Table 1. Model parameters and their val-
ues examined in performance evaluation

W 100, 500, 1000, 5000, 10000 [units]
s̄ 1 [units/s]
b0 200, 400, · · · , 2000 [units/s]
b̄ 200 [units/s]
ε̄ 0.001, 0.01 [s]
δ̄ 0.1 [s]
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Fig. 5. Impact of heterogeneity

4.1 The Impact of Heterogeneous Resource Capacities

First, we investigated the effect of the heterogeneity het on the performance
of our scheduling algorithms, UMR and PTUMR. In our evaluation model, we
assumed a total amount W of application data of 1000, a master-network trans-
mission capacity b0 of 1000, an average overhead ε̄ at the start of the data
transmission of 0.01, and 100 workers (N). When we evaluated the impact of
the heterogeneity het of each resource capacity, all resource capacities si, bi, δi

and εi of each worker were randomly chosen according to Eq. (9).
Figure 5 shows the average and maximum normalized turnaround times

Treal/Tbound for 100 experiments as a function of the heterogeneity het, where
the number x of additional workers under PTUMR was set to 10. As shown in
Fig. 5, regardless of het, normal PTUMR is superior to conventional UMR in
terms of average normalized turnaround time. However, when the heterogeneity
is high, the application turnaround time of normal PTUMR in the worst case
becomes larger than that of UMR. In contrast, PTUMR with GT can achieve
an application turnaround time close to the lower bound even in the worst case.
It is apparent from these results that PTUMR with GT can achieve an excellent
turnaround time by grouping workers in an appropriate way.

In the following section, we will consider only PTUMR with GT with the
number x of addition workers of 10. In addition we will investigate the perfor-
mance of the scheduling algorithms in highly heterogeneous environment, namely
het =

√
3

4 .

4.2 The Impact of Network Resources

The impact of network resources is examined here by assuming a total work-
load W of 1000 and 100 workers (N). Figure 6 shows the average normalized
turnaround time Treal/Tbound, as a function of the master-network link capacity
b0. Even if b0 increases, the UMR algorithm cannot effectively utilize the ad-
ditional network capacity. By contrast, the application turnaround time under
PTUMR decreases with increasing b0 because the algorithm can utilize the full
capacity of b0 by transmitting chunks to multiple workers in parallel. Further-
more, PTUMR achieves Treal close to its lower bound Tbound across a wide range
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of overhead ε̄. This is because PTUMR can reduce the impact of the overhead
by aggressively overlapping the overhead εi for multiple workers.

This evaluation demonstrates that the PTUMR algorithm can achieve applica-
tion turnaround time quite close to the lower bound through effective utilization
of the transmission capacity of the master-network link and the overlapping of
overheads for multiple workers.

4.3 The Impact of Total Workload

Finally, the effect of the total amount W of application data is evaluated as-
suming a master-network transmission capacity b0 of 1000 and 100 workers (N).
Figure 7 shows the average normalized turnaround time Treal/Tbound, as a func-
tion of the application data size W . PTUMR provides excellent performance
quite close to the lower bound for any W and any ε̄, that is, the PTUMR algo-
rithm effectively eliminates the performance degradation associated with these
factors. Under UMR, the normalized turnaround time becomes quite poor as
the total data size W decreases, although good performance is achieved for large
W . The degradation of performance for low values of W under UMR can be
attributed to the increase of the overhead ratio which comes about as a result
of decreasing the chunk size. This increase in the overhead ratio can be neutral-
ized by PTUMR. These results therefore show that the PTUMR algorithm can
effectively schedule applications of any size by minimizing the adverse effect of
overheads on the application turnaround time.

5 Conclusion

We have proposed a novel scheduling algorithm called PTUMR for divisible
workload-type applications based on a master-worker model in grid computing
environments. The PTUMR allows the master to optimally transmit data to
workers in parallel in a multi-round manner, which can considerably reduce ap-
plication turnaround time compared with conventional multi-round scheduling
algorithms such as UMR. The PTUMR presented in this paper is greatly ex-
tended from that in our previous study [11] in terms of adaptability to heteroge-
neous environments with respect to computation and communication resources.
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This extension can be done by grouping workers appropriately for parallel data
transmission, while taking heterogeneity in resources into account. Extensive
performance evaluations show that the (extended) PTUMR can achieve an ap-
plication turnaround time close to the theoretical lower limit under a variety of
resource heterogeneity conditions.
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