
M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 487 – 494, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Implementation of Middleware and Context
Server for Context-Awareness*

Jae-Woo Chang and Yong-Ki Kim

Research Center of Industrial Technology
Dept. of Computer Engineering, Chonbuk National University,

Chonju, Chonbuk 561-756, South Korea
jwchang@chonbuk.ac.kr, ykkim@dblab.chonbuk.ac.kr

Abstract. Context-awareness is a technology to facilitate information acquisi-
tion and execution by supporting interoperability between users and devices
based on users' context. In this paper, we design and implement a middleware
and a context server for dealing with context-aware applications in pervasive
computing. The middleware plays an important role in recognizing a moving
node with mobility by using a Bluetooth wireless communication technology as
well as in executing an appropriate execution module according to the context
acquired from a context server. In addition, the context server functions as a
manager that efficiently stores into the database server context information,
such as user's current status, physical environment, and resources of a comput-
ing system. To verify the usefulness of the middleware and the context server,
we finally develop our context-aware application system which provides users
with a music playing service in pervasive computing environment.

1 Introduction

In traditional computing environments, users actively choose to interact with com-
puters. On the contrary, pervasive computing applications are embedded in the users’
physical environments and integrate seamlessly with their everyday tasks [1]. Mark
Wieser at Xerox Palo Alto Research Center identified the goal of future computing to
be invisible computing [2]. An effective software infrastructure for running pervasive
computing applications must be capable of finding, adapting, and delivering the ap-
propriate applications to the user’s computing environment based on the user’s con-
text. Thus, context-aware application systems determine which user tasks are most
relevant to a user in a particular context. They may be determined based on history,
preferences, or other knowledge of the user’s behavior, as well as the environmental
conditions. Once the user has selected a task from the list of relevant tasks, an appli-
cation may have to move seamlessly from one device to another and from one envi-
ronment to another based on the user’s activity. The context-awareness is one of the
most important technologies in pervasive computing, which facilitate information
acquisition and execution by supporting interoperability between users and devices
based on users' context.

* This work is financially supported by the Ministry of Education and Human Resources De-

velopment(MOE), the Ministry of Commerce, Industry and Energy(MOCIE) and the Minis-
try of Labor(MOLAB) though the fostering project of the Lab of Excellency.

488 J.-W. Chang and Y.-K. Kim

In this paper, we design and implement middleware and context server components
for dealing with context-aware applications in pervasive computing. The middleware
plays an important role in recognizing a moving node with mobility by using a Blue-
tooth wireless communication technology as well as in executing an appropriate exe-
cution module according to the context acquired from a context server. In addition,
the context server functions as a manager that efficiently stores into database server
con-text information, such as user's current status, physical environment, and re-
sources of a computing system. In order to verify the usefulness of the middleware
and the con-text server, we develop our context-aware application system which pro-
vides a music playing service in pervasive computing environment. The remainder of
this paper is organized as follows. The next section discusses related work. In section
3, we de-scribe the overall architecture for context-aware application services. In
section 4 and 5, we describe the design of our middleware and our context server for
context-awareness. In section 6, we present the development of our context-aware
application system using them. Finally, we draw our conclusions in section 7.

2 Related Work

In this section, we discuss the typical context-aware application systems. First, INRIA
in France [3] proposed a general infrastructure based on contextual objects to design
adaptive distributed information systems in order to keep the level of the delivered ser-
vice despite environmental variations. The contextual objects (COs) were mainly moti-
vated by the inadequacy of current paradigms for context-aware systems. The use of
COs does not complicate a lot of development of an application, which may be devel-
oped as a collection of COs. They also presented a general framework for context-aware
systems, which provides application developers with an architecture to design and im-
plement adaptive systems and supports a wide variety of adaptations. Secondly, AT&T
Laboratories Cambridge in U.K [4] presented a platform for context-aware computing
which enables applications to follow mobile users as they move around a building. The
platform is particularly suitable for richly equipped, networked environments. Users are
required to carry a small sensor tag, which identifies them to the system and locates
them accurately in three dimensions. Finally, Arizona State Univ. [5] presented Recon-
figurable Context-Sensitive Middleware (RCSM), which made use of the contextual
data of a device and its surrounding environment to initiate and manage ad hoc commu-
nication with other devices. The RCSM provided core middleware services by using
dedicated reconfigurable Field Programmable Gate Arrays (FPGA), a context-based
reflection and adaptation triggering mechanism, and an object request broker that are
context-sensitive and invokes remote objects based on contextual and environmental
factors, thereby facilitating autonomous exchange of information.

3 Overall Architecture for Context-Aware Application Services

Context is any information that can be used to characterize the situation of any entity
[6]. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves. In
this section, we propose an overall architecture of context-adaptive system for sup-
porting various context-aware application services, which is divided into three com-

 Design and Implementation of Middleware and Context Server 489

ponents, context server, middleware (fixed node), and moving node (client). First, the
context server serves to insert remote objects into an object database and context
information into a context database, as well as to retrieve them from the both data-
bases. Secondly, a fixed node functions as a middleware to find, insert, and execute a
remote object for context awareness. Finally, a moving object serves to execute a
predefined built-in program according to the context information acquired from the
middleware. Figure 1 shows the overall architecture for supporting various context-
aware application services.

Fig. 1. Overall architecture for supporting context-aware application services

Because our architecture combines the advantage of the INRIA work with that of
the AT&T work, it has a couple of powerful features. First, our middleware can de-
fine context objects describing context information as well as can keep track of a
user’s current location. Secondly, our context server can store context objects and
their values depending on a variety of contexts as well as can mange users’ current
locations being acquired from a set of fixed nodes by using spatial indexing. Finally,
our client can provide users with adaptive application services based on the context
objects. Meanwhile, the context server communicates with a middleware by using a
network based on TCP/IP, while a moving object communicates with a middleware
using Bluetooth wireless communication [7].

4 Middleware for Context-Awareness

Our middleware for context-aware application services consists of three layers, such
as detection/monitoring layer, context-awareness layer, and application layer. First,
the detection/monitoring layer serves to monitor the locations of remote objects, net-
work status, and computing resources, i.e., CPU usage, memory usage, bandwidth,

TCP/IP

Middleware
(Fixed Node 1)

Context Server

Middleware
(Fixed Node 2)

Middleware
(Fixed Node n)

Moving Node 2
(Client)

Moving Node 1
(Client)

Moving Node m
(Client)

contextDB

bluetooth

bluetooth

bluetooth

TCP/IP TCP/IP

490 J.-W. Chang and Y.-K. Kim

and event information related with devices including Bluetooth. Secondly, the con-
text-awareness layer functions as a middleware which is an essential part for handling
context-aware application services. It can be divided into five managers, such as
script processor, remote object manager, context manager, context selection manager,
communication proxy manager. The script processor analyzes the content of context-
aware definition script and executes its specified actions. The remote object manager
man-ages a data structure for all the context objects used in application programs. The
context manager manages context and environmental information including user pref-
erence and user location. The context selection manager chooses the most appropriate
context information under the current situation. The communication proxy manager
serves to communicate with the context server and to temporarily reserve data for
retransmission in case of failure. Finally, being executed independently of the mid-
dleware, the application layer provides users with a set of functions to develop vari-
ous context-aware applications by using the application programming interface (API)
of the middleware. Figure 2 shows the three-layered structure of the middleware.

Fig. 2. Three-layered structure of the middleware

5 Context Server for Context-Awareness

For context-awareness, context server is required to store and retrieve remote objects
and context information extracted from them. We design a context server which can
efficiently manage both the remote object and the context information using a com-
mercial DBMS called MySQL. This is because we can reduce the developing time,
compared with using a storage system, and we can increase the reliability of the de-
veloped system. The designed context server analyzes and executes the content of
packets delivered from the middleware. That is, the server determines whether the
packet’s content is contexts or context objects and stores them into the corresponding
database. Figure 3 shows the structure of context server which is divided into four
managers, such as communication manager (CM), packet analysis manager (PAM),
context/object manager (COM), and mySQL query manager (SQM).

Object
Manager

Context
Manager

Selection
Manager

Communication
Manager(Proxy)

Context Awareness Layer

a
t
t
r
i
b
u
t
e

Object
Request

Object
Reply

Interest Info. on
detected change

Object
Request

Object
Varients

Script
Processor

Application Layer

Detection / Monitoring Layer

Script

Context

Object
Context Object

 Design and Implementation of Middleware and Context Server 491

Fig. 3. Structure of context server

The CM serves to communicate between the context server and a middleware. The
CM delivers to PAM the packets transferred from the middleware as well as to the
middleware the result packets made from the server. The CM includes both file re-
ceiving module and TCP/IP socket module. The file receiving module is dependant on
the TCP/IP socket module because it communicates with the middleware using
TCP/IP socket. When the server is ready to communicate, it receives packets from the
middleware. The PAM parses the packets from the CM and determines what action
wants to be done currently. Based on the parsing, the PAM calls the most proper func-
tions, i.e., context APIs, in the COM. The COM translates into SQL statements the
content delivered from the PAM and delivers the SQL statements to SQM to execute
them. The context APIs (application programming interfaces) for the COM is Con-
textDefine, ContextDestroy, ContextInsertTuple, ContextDeleteTuple, ContextSearch,
ContextSearchTuples, and ContextCustom. The SQM executes the SQL statements
from the COM using the MySQL DBMS and delivers the result to the middleware via
the CM. The SQL includes the mySQL API module being implemented by using
mysql C libraries.

6 Development of Context-Aware Application System

In this section, we first develop both our middleware and our context server which are
designed for context awareness in the previous sections. For this, we implement them
using GCC compiler 2.95.4 under Redhat Linux 7.3 (kernel version 2.3.20) with 1.7
GHz Pentium-IV CPU and 512 MB main memory. In order to show the efficiency of
both our middleware and our context server implemented, we also develop a con-text-
aware application system using them. The context-aware application system servers to
provide users with a music playing service in pervasive computing environment. In
the system, when a user belonging to a moving node approaches to a fixed node, the
fixed node starts playing the user’s music with his (her) preference according to his

 Communication
Manager

Packet Analysis
Manager

Context/Object
Manager

MySQL Query
Manager

MySQL

DBMS

Context DB

492 J.-W. Chang and Y.-K. Kim

location. In general, each user has a list of his (her) music with his preference and
even a user can have a different list of his (her) popular music depending on time, i.e.,
morning time, noon time, and night time. In the context server, a user record for the
music playing application service has six attributes, such as User_ID, User_Name,
Location, Music_M, Music_A, and Music_E. The User_ID serves as a primary key to
identify a user uniquely. The User_Name means a user name and the Location means
a user’s current location which can be changed whenever a middleware finds the
location of a moving object. Finally the Music_M, the Music_A, and the Music_E
represent his (her) preferred music file in the morning time, the noon time, and the
night time, respectively. The context server manages a list of music files for a user,
processes queries given from a fixed node, and delivers the corresponding music file
to the fixed node by its request.

We develop our context-aware application system providing a music playing ser-
vice by using affix 2.0.2 as a Bluetooth device driver protocol and by using GCC
2.95.4 an a compiler, under Redhat Linux 7.3 (kernel version 2.4.20) with 866 MHz
Pentium-III CPU and 64 MB main memory. In addition, the Bluetooth device follows
the specification of Version1.1/Class1 and makes a connection to PCs using USB
interfaces [8]. To determine whether or not our context-aware application system
implemented works well, we test it by adopting a scenario used in Cricket [9], one of
the MIT Oxygen project. For this, we test the execution of our context-aware applica-
tion system in the following three cases; the first case when a user covered by a mov-
ing node approaches to a fixed node or move apart from it, the second case when two
different users approaches to a fixed node, and the final case when a user approaches
to a fixed node at different times. Among them, because the first case is the most
general one, we will explain it in more detail. For our testing environment, we locate
two fixed nodes in the database laboratory (DB Lab) and the media communication
laboratory (Media Lab) of Chonbuk National University, respectively, where their
middleware can detect a moving node by using Bluetooth wireless communication.
There is a corridor between DB Lab and Media Lab and its distance is about 60 meter.
We test the execution of our context-aware application system in a case when a user
having a moving node moves from DB Lab to Media Lab or in a reverse direction.
Figure 4 shows a testing case when a user having a moving node approaches to a
fixed node. First, the fixed node receives a user name from the moving node as the
moving node is approaching to it (①). Secondly, the fixed node determines whether
or not the information of the user has already been stored into a server. If it does, the
context server searches the music file belonging to the user in a current time and
downloads the music file from the database (②). In case when the fixed node detects
that a user is too far to communicate with it, the fixed node stops the process to play
music and it re-moves the music playing process.

To analyze the performance of our context-aware application system, we measure
an average time by adopting a boundary detection of beacons used in Cricket [9].
First, as a moving node is approaching to a fixed node, it takes 1.34 second for the
fixed node to make a connection with the moving node. It means the time for the
fixed node to detect the presence of a moving node. Secondly, it takes 0.5 second for
the fixed node to start music playing service after making the connection between
them. Finally, as a moving node is moving apart from a fixed node, it takes 1.45

 Design and Implementation of Middleware and Context Server 493

Fig. 4. Testing case when a user is approaches to a fixed node

second for the fixed node to make a disconnection to the moving node. It means the
time for the fixed node to detect the absence of the moving node. The time is rela-
tively long because the kernel tries to communicate with the moving node even
though the moving node is beyond the communication boundary of the fixed node.
Therefore, it is very reasonable for the fixed node to set the time limit to two seconds.
If it takes long time for a fixed node to establish a connection to a moving node and to
detect a context from it, a user may consider the situation as a fault. Because the de-
tection time for a context is less than two seconds, the context-aware application pro-
gram is reasonable for the music playing application service.

7 Conclusions and Future Work

In this paper, we designed and implemented both our middleware and our context
server for supporting a context-aware application system. The middleware played an
important role in recognizing a moving node with mobility by using Bluetooth wire-
less communication as well as in executing an appropriate execution module accord-
ing to the context acquired from a context server. In addition, the context server func-
tions as a manager that efficiently stores into database server context information,
such as user's current status, physical environment. To verify the usefulness of both
the middleware and context server implemented, we developed our context-aware
application system which provided users with a music playing service in pervasive
computing environment. We tested it by adopting a scenario used in Cricket. It was

494 J.-W. Chang and Y.-K. Kim

shown that it took about 1.5 seconds for our context-aware application system to
make a connection (or disconnection) between a fixed node and a moving node, thus
being considered reasonable for our music playing application service. As future
work, it is required to study on an inference engine to acquire new context informa-
tion from the existing one.

References

1. K. Raatikainen, H. B. Christensen, and T. Nakajima, "Application Requirements for Mid-
dleware for Mobile and Pervasive systems", Mobile Computing and Communications Re-
view, pp. 16-24, Vol. 6, No. 4.

2. M. Weiser, "The Computer for the Twenty-First Century", Scientific American, pp. 94-104,
Sept. 1991.

3. P. Couderc, A. M. Kermarrec, "Improving Level of Service for Mobile Users Using Con-
text-Awareness", Proc. of 18th IEEE Symposium on Reliable Distributed Systems, pp. 24-
33, 1999.

4. A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, "The anatomy of a Context-aware
application", Wireless Networks Vol. 8, Issue 2/3, pp. 187-197, 2002.

5. S. S. Yau and F. Karim, "Context-sensitive Middleware for Real-time Software in Ubiqui-
tous Computing Environments", Proc. of 4th IEEE Symposium on Object-oriented Real-
time Distributed Computing, pp.163-170, 2001.

6. K. Cheverst, N. Davies, K. Mitchell, and A. Feiday, "Experiences of Developing and De-
ploying a Context-Aware Tourist Guide: The GUIDE Project", Proc. of 6th Int’l Conference
on Mobile Computing and Networking, 2001.

7. Bluetooth Version 1.1 Profile, http://www.bluetooth.com.
8. Affix: Bluetooth Protocol Stack for Linux, http://affix.sourceforge.net.
9. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket Location Support Sys-

tem", 6th ACM/IEEE Int'l Conf. on Mobile Computing and Networking(MOBICOM), pp.
32-43, 2000.

	Introduction
	Related Work
	Overall Architecture for Context-Aware Application Services
	Middleware for Context-Awareness
	Context Server for Context-Awareness
	Development of Context-Aware Application System
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

