
M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 41 – 50, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Streaming Implementation of Transform
and Quantization in H.264

Haiyan Li, Chunyuan Zhang, Li Li, and Ming Pang

School of Computer Science, National University of Defense Technology,
 Changsha, Hunan, P. R. China, 410073

hy_lee@163.com

Abstract. The H.264 video coding standard uses a 4*4 multiply-free integer
transform, minimizing computational complexity. The emerging programmable
stream architecture provides a powerful mechanism to achieve high perform-
ance in media processing and signal processing. This paper analyzes the algo-
rithm characteristics of transform and quantization in H.264 and presents a
streaming implementation of transform and quantization on Imagine stream
processor. We evaluate our implementation on a cycle-accurate simulator of
Imagine and demonstrate stream processing efficiency by comparing its per-
formance against other implementations. Experimental results show that our
streaming implementation deals with transform and quantization of a 4*4 block
in 6.875ns. The coding efficiency can satisfy the real-time requirement of cur-
rent video applications.

1 Introduction

H.264 [1], proposed by Joint Video Team (JVT), is a new digital video coding stan-
dard. Some highlighted features are applied in H.264 for improved coding efficiency.
Small block-size integer transform is one of the enhanced techniques to avoid inverse
transform mismatch problem. It uses a 4*4 transform block size to somewhat reduce
the block artifacts. All operations in transform process can be carried out in integer
arithmetic only requiring additions and shifts. While a scaling multiplication is inte-
grated into the following quantizer to decrease the total number of multiplications. By
short tables, a set of new scalar quantization formulas use multiplications but avoid
divisions [2].

Transform and quantization is a computationally-intensive component. H.264
adopts block-based motion prediction, so residual difference between current frame
and predicted frame is organized in block. Each block is independent of others, expos-
ing a great deal of data parallelism. The issue of optimizing transform and quantiza-
tion in H.264 has been addressed in various research domains. For example, enhanced
SIMD technologies such as MMX and SSE2 are used to improve coding rate of H.264
[3,4]. DSP acceleration is always the favor of product researchers [5,6]. In addition,
special-purpose hardware implementations for transform and quantization in H.264
have emerged in succession [7,8,9,10].However, a new exploration on stream proc-
essing for H.264 has still remained.

42 H. Li et al.

In this paper we develop a streaming implementation of transform and quantization
in H.264 on the programmable Imagine stream processor [11]. Two computational
kernels, corresponding to transform and quantization respectively, are constructed to
operate on large homogeneous stream elements. In the end, we evaluate its perfor-
mance by comparing it against other implementations. Experimental results show that
the streaming transform and quantization implementation deals with the transform and
quantization of a 4*4 block in 6.875ns, namely processing 145.5 millions of inputs per
second. The coding efficiency can satisfy the real-time require-ment of current video
applications.

Implementing on stream processor requires us to modify algorithms on the basis of
stream processing and to arrange data in a streaming sequence in order to efficiently
utilize the SIMD manner of stream architecture. Exploiting data parallelism and local-
ity are encouraging for high performance applications.

The remainder of this paper is organized as follows. In Section 2, the principle and
the algorithm of transform and quantization in H.264 are given. Section 3 describes
the details of Imagine stream architecture. In Section 4, we discuss a streaming im-
plementation of transform and quantization. Our experimental results and discussions
are presented in Section 5. Finally, the paper is summarized in Section 6.

2 Transform and Quantization of H.264

The 4*4 transform adopted in the H.264 standard is an integer orthogonal computa-
tion [12]. This allows for bit-exact implementation for all encoders and decoders.
Another important feature in the new standard is the removal of computationally-
expensive multiplication that appears in the conventional standards.

The 4*4 integer transform of an input array X is shown in Equation (1).

T
f fW C XC= (1)

where the matrix Cf is given by Equation (2).

1 1 1 1

2 1 1 2

1 1 1 1

1 2 2 1

fC

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

 (2)

In Equation (2), the absolute values of all the coefficients of the Cf matrix are ei-
ther 1 or 2. Thus, the transform operation presented by Equation (1) can be computed
using signed additions and left-shifts only to avoid expensive multiplications. While a
scaling multiplication is integrated into the following quantizer to minimize the total
number of multiplications.

H.264 uses a scalar quantizer. The post-scaling and quantization formulas are
shown in Equation (3) and (4).

 A Streaming Implementation of Transform and Quantization in H.264 43

()15 6qbits QP DIV= + (3)

2ij ij qbits

MF
Z round W

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4)

where QP is a quantization parameter. It can take any integer value from 0 up to 51.
The wide range of 52 quantizer step sizes makes it possible for an encoder to accu-
rately and flexibly control the trade-off between bit rate and image quality. Zij is a
quantized coefficient. MF is a multiplication factor that depends on QP and the posi-
tion (i, j) of the element in the matrix, referred to [12].

Fast algorithms for traditional DCT are also suited for integer transform, such as
butterfly transform [2]. It converts matrix multiply into matrix-vector multiply, ensur-
ing that there is no dependency between different vector columns in a matrix. And its
algorithm structure is relatively simple (see Fig.1), regarded as a good algorithm for
hardware implementation.

Fig. 1. Butterfly transform, where xn (n=0..3) is a column of encoded matrix, and xn’ (n=0..3) is
its corresponding filtered results. No multiplications are needed, only additions and shifts.

3 Imagine Stream Architecture

Imagine [13] can be considered representative of stream architecture (see Fig.2). We
have done thorough research on Imagine [14], and proposed a new MASA [15] sup-
porting multiple execution morphs. Imagine is programmable and flexible since it
directly maps applications into streams and kernels. We have mapped many applica-
tions, such as fluid computation [15], Reed-solomon decoder [16], and motion estima-
tion of H.264 [17] and so on. Imagine can provide high performance in so many
domains including media processing and signal processing. For example, Imagine is
able to sustain performance of 15.35 giga operations per second (GOPS) in MPEG-2
encoding application, corresponding to 287 frames per second (fps) on a 320*288-
pixel, 24-bit color image [18].

In fact, the implementation of stream application is casted by a collection of
streams passing through a series of computational kernels. A kernel is a small pro-
gram executed in arithmetic clusters that is repeated for each successive element of its

44 H. Li et al.

input streams to produce output stream for the next kernel in the application. Streams
are ordered finite-length sequences of data records. Each record in a stream is a set of
related data elements of a single arbitrary data type. The semantics of applying a ker-
nel to a stream are completely parallel, so the computation of a kernel can be per-
formed on different independent elements in the input stream(s) in parallel. Kernel
reads its inputs from stream register file (SRF). During computation, all temporary
data are stored in the local register file (LRF) of each cluster. And the output stream
of a kernel are sent back to SRF. Only the initial and final data streams need to be
transferred through streaming memory to the off-chip SDRAM. This three level
memory hierarchy is able to meet the large instruction and data bandwidth demands
of computationally intensive applications well.

Fig. 2. Imagine stream architecture. The three-level memory hierarchy is shown in the figure.

4 Implementation

4.1 Characteristics Analysis

Stream programming model can match the requirement of media processing very
well. Before mapping transform and quantization of H.264 video encoder on Imagine
stream processor, it is necessary to analyze the inherent characteristics especially in
computation intensity, parallelism and locality.

Computation Intensity
Integer transform is a computationally intensive module like block searching in mo-
tion estimation except for extra decision-making. If using butterfly algorithm men-
tioned in Section 2, a transform needs 64 additions and 16 shifts. As a result, 12.16
million additions and 3.04 million shifts are executed in one second for a CIF image
of 352*288 pixels at 30fps.

 A Streaming Implementation of Transform and Quantization in H.264 45

Parallelism
Large data parallelism exists in transform process. Based on 8-cluster structure of
Imagine, different columns of encoded matrix can be performed in parallel. Efficient
data organization may help magnify the advantage of data-level parallelism. Besides,
transform has obvious instruction-level parallelism. The pure additions and shifts can
be packed into VLIW compactly. An additional level of task parallelism can be dis-
cerned from the pipelining of kernels.

Locality
Video coding is processed orderly frame by frame and block by block, like a stream
of data flowing through every sequential processing module. Kernels encapsulate
short-term kernel locality, and allow efficient use of the LRFs. For example, the in-
termediate results of butterfly transform can be stored in the inner LRFs. At the same
time, stream capture long-term producer-consumer locality in the transfer of data
form one kernel (e.g. transform kernel) to another kernel (e.g. quantization kernel)
through the SRF without requiring costly memory operations, as well as spatial local-
ity by the nature of stream being a series of data records.

4.2 Implementation

Programming model of Imagine includes two levels: stream level (in StreamC) and
kernel level (in KernelC) [19]. According to the relationship of input and output
streams, the kernel diagram of transform and quantization is described as Fig.3.

Fig. 3. Kernel diagram. An ellipse represents a computational kernel. And the connection line
represents the input or output streams of the kernel.

These two kernels are chained together, where the output stream from the trans-
form kernel is fed into the next quantization kernel as an input stream. Producer-
consumer locality is exploited by consuming the result of one kernel as soon as it is
produced. MF look-up table is organized as a constant stream and loaded with trans-
formed coefficient stream into the quantization kernel. Note that a kernel can take
more than one streams as its input, and the output may be one or more streams for
different kernels.

Integer transform Y=CfXCf
T performs matrix multiplications twice. Assume that

B=CfX, then Y= CfXCf
T= BCf

T= (CfB
T) T. Based on transpose we keep the block that

is to be transformed as right matrix while the left matrix is Cf. The matrix X can be
divided into four vectors by column. Inter-column independence makes the butterfly
algorithm suited for stream processing. The main loop in the transform kernel is
illustrated in Fig.4.

46 H. Li et al.

Fig. 4. Pseudocode of transform kernel Fig. 5. Stream distribution in eight clusters

The input stream of transform kernel consists of 4*4 matrix blocks. Fig.5 illus-
trates the distribution of each stream record in clusters, where xij represent one stream
record with the relative position in its affiliated block. We choose a simple solution-
replicating a 4*4 matrix twice. It brings half waste of cluster resources because the
computation of four clusters is redundant. The better data records in the input stream
are organized, the better performance stream architecture will get [20]. The way of
organizing the data records is explicit for stream programmers. So it requires pro-
grammers to understand the algorithm characteristics in order to map it efficiently.

Fig. 6. Three-level memory hierarchy diagram

The transform kernel reads each data element from memory (In the whole encoder,
the input of transform kernel is also fed by its prior kernel. So, it is reasonable to
suppose the input stream exists in SRF not memory.). After kernel execution, the
transformed coefficient stream produced by transform is sent to the following quanti-
zation kernel directly. MF is loaded by a series of communication operations and
multiplies Y by index. Finally, the output quantized coefficient stream can be written
back to memory or stored in SRF as an intermediate stream for other kernels. The
three-level bandwidth hierarchy corresponds to the three columns of Fig.6.

 A Streaming Implementation of Transform and Quantization in H.264 47

5 Simulations and Results

5.1 Experimental Results

We run our streaming implementation of transform and quantization on ISim, a cycle-
accurate simulator ISim (500MHz), which is provided by the Imagine Project of Stan-
ford University [21]. The simulator can accurately model all aspects of stream proc-
essing and stream memory system. And the execution cycles obtained by ISim is
convictive enough to evaluate the performance of a streaming implementation. The
correctness of our implemented transform and quantization is also checked. This is
done by passing different input sequences to our stream program and comparing the
experimental result and the mathematical value.

Simulated results show that 3.485*105 cycles is needed for a CIF image. Thus,
dealing with the transform and quantization process of a 4*4 block requires 6.875ns,
thereinto 5.79ns for integer transform. It means that our streaming implementation is
able to process 145.5 millions of inputs per second. The performance may be opti-
mized by some advanced techniques such as loop unrolling and software pipelining
[20]. The processing rate is higher than that defined to HDTV video sequence (HDTV
must process 124.5 millions of inputs per second [9]).

We compare our streaming implementation with other different improvements,
mentioned in Section 1. Take the time of 4*4 integer transform as the criterion, shown
in Fig.7. Obviously, Imagine obtains comparative performance with special-purpose
hardware designed for transform and quantization application, much better than
MMX and DSP improvements. However, Imagine is more flexible than special-
purpose hardware. Thus, it has good adaptability and scalability.

0

10

20

30

40

50

transform time

(
n
s
)

MMX

TMS320C6416 DSP

Hardware in [10]

Hardware in [12]

Our Streaming

Implementation

Fig. 7. Comparison among different implementations, where the data of processing time refer
to [4,6,7,9] resprectively

Our streaming implementation has the shortest processing time of five cases in
Fig.7. Imagine can achieve high performance for three reasons. First, stream computa-
tion is efficient when operated on homogeneous data elements. Stream processing
mechanism ensures to overlap between kernel computation and memory access,
hiding the latency of memory operations. Second, Imagine performs in the SIMD
manner. Large data parallelism and little global data reuse may explore the powerful

48 H. Li et al.

computing capability of Imagine. Third, kernel locality and producer-consumer local-
ity are captured in LRF and SRF of Imagine. The three-level memory hierarchy can
afford the bandwidth requirement well.

5.2 Discussions

For an actual image, the residual difference input stream is a very large data set.
Processing each element in a single computation is impractical because the size of
data set may greatly exceed the size of on-chip storage. Instead, most Imagine appli-
cations use the common technique of stripmining [18]. In our implementation, resid-
ual difference pixel-blocks are divided into input batches, stream operations are
applied to an entire input batch at a time. The size of a batch in our implementation
is almost 14000 pixels. Fig.8 gives the utilization of SRF in the execution of trans-
form and quantization.

Fig. 8. SRF utilization, where the horizontal axis represents SRF size and colorful bars repre-
sent usage of SRF. Vertical axis represents stream execution time. The inputs in a batch are
14080 residual difference pixels in this figure. But blue bar indicates a read or write that re-
quires a memory access when SRF is spilled over.

 A Streaming Implementation of Transform and Quantization in H.264 49

The utilization of functional units is given in Table 1. The result is matched with
the algorithm characteristics: large amount of additions and shifts make great use of
adders only expect for some stalls before initial operands are prepared. While multi-
pliers are only used for quantization, so the utilization ratio is not very high.

By taking advantage of unique three-level memory hierarchy and large numbers of
functional units, Imagine can achieve so high performance. Combined with the accel-
erated implementation of motion estimation on Imagine [17], we can infer that the
whole H.264 encoder will get better performance and meet real-time requirement of
current video applications.

Table 1. Arithmetic unit utilization

 Adders Multipliers
Utilization ratio 83% 26%

6 Conclusion

In this paper we have presented a streaming implementation of transform and quanti-
zation in H.264. Experimental results show that processing transform and quantiza-
tion for a 4*4 block needs 6.875ns. As a result, our implementation is able to process
145.5 millions of inputs per second. It can satisfy the real-time requirement of video
applications. And it proves that the programming model including memory hierarchy
of stream architecture is helpful for large numbers of data to repeat the same or simi-
lar operations. But some issues are still needed to be researched deeply, such as slice
partition granularity and stream algorithm optimization. We will pay more attention to
its further improvement.

Acknowledgements. We thank Imagine project group of Stanford University for
providing the Imagine simulator. We also thank the reviewers for their insightful
comments. This work was sponsored by National Natural Science Foundation of
China under Grant 60573103.

References

1. JVT, Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H.264| ISO/IEC 14496-10 AVC). May 2003.

2. Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, Louis Kerofsky: Low-
Complexity Transform and Quantization in H.264/AVC. IEEE Transactions on Circuits
and Systems for Video Technology, Vol.13, No.7, July 2003.

3. Cui Yansong, Duan Dagao, Deng Zhongliang: The Analysis of Transform and Quantiza-
tion in H.264. Modern Cable Transmission, 2004.5, pp 71-74

4. Wei Fang, Li Xueming: SIMD Optimization of Transform and Quantization in H.264.
Computer Engineering and Applications, 2004.17, pp 24-27

5. Liu Baolan, Liu Guizhong, Su Rui: Implementation and Optimization of Pixel-
Compression Module in H.264 Based on DSP System. Microelectronics, Vol. 22, 2005,
No.6, pp200-205

50 H. Li et al.

6. Shen Haitao, Fan Yangyu, Wang Fengqin, Hao Chongyang: An Implementation of Trans-
form Encoding on DSP in H.264. 2004

7. Liu Ling-zhi, Qiu Lin, Rong Meng-tian, Jiang Li: A 2-D Forward/Inverse Integer Trans-
form Processor of H.264 Based on Highly-parallel Architecture. In Proceedings of the 4th
IEEE International Workshop on System-on-chip for Real-Time Applications, 2004

8. Ihab Amer, Wael Badawy, and Graham Jullien: Hardware Prototyping for the H.264 4*4
Transformation. ICASSP 2004.

9. Roger Endrigo Carvalho Porto, Marcelo Schiavon Porto, Thaisa Leal da Silva, Leandro
Zanetti Paiva da Rosa, Jose Luis Almada Guntzel, Luciano Volcan Agostini: An Integer 2-
D DCT Architecture for H.264/AVC Video Coding Standard. XX SIM-South Symposium
on Microeletronics.

10. Young-hun Lim, Yong-jin Jeong: Hardware Implementation of Integer Transform and
Quantization for H.264. December 2003.

11. Ujval J. Kapasi, William J. Dally, Scott Rixner, John D. Owens, Brucek Khailany: The
Imagine Stream Processor. Appears in the Proceedings of the 2002 International Confer-
ence on Computer Design, September 2002.

12. “H.264/MPEG-4 Part 10: Transform&Quantization”www.vcodex.com
13. Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung Namkoong,

John D. Owens, Brian Towles, Andrew Chang: Imagine: Media Processing with Streams.
IEEE Micro, March-April 2001.

14. Mei Wen, Nan Wu, Haiyan Li, Chunyuan Zhang: Research and Evaluation of Imagine
Stream Architecture. Advances on Computer Architecture, ACA’04

15. Mei Wen, Nan Wu, Haiyan Li, Li Li, Chunyuan Zhang: Multiple-morghs Adaptive Stream
Architecture. Journal of Computer Science and Technologgy, 2005

16. Mei Wen, Nan wu, Haiyan Li, Li Li, Chunyuan Zhang: A Parallel Reed-solomon Decoder
on the Imagine Stream Processor. Second International symposium on Parallel and Dis-
tributed Processing and Applications, Hongkong, 2004.12

17. Haiyan Li, Mei Wen, Chunyuan Zhang, Nan Wu, Li Li, Changqing Xun: Accelerated Mo-
tion Estimation of H.264 on Imagine Stream Processor. International Conference on Image
Analysis and Recognition 2005

18. John D. Owens, Scott Rixner, Ujval J. Kapasi, Peter Mattson, Brian Towles, Ben Serebrin,
William J. Dally: Media Processing Applications on the Imagine Stream Processor. In the
Proceedings of the 2002 International Conference on Computer Design, 2002

19. Abhishek Das, Peter Mattson, Ujval Kapasi, John Owens, Scott Rixner, Nuwan Jayasena:
Imagine Programming System User’s Guide 2.0, June 2004

20. Haiyan Li, Chunyuan Zhang, Li Li, Ming Pang: Stream Algorithm of 4*4 Integer Trans-
form. Conference on Virtual Reality and Vision 2006.

21. The Imagine Project, Stanford University, http://cva.stanford.edu/imagine/

	Introduction
	Transform and Quantization of H.264
	Imagine Stream Architecture
	Implementation
	Characteristics Analysis
	Implementation

	Simulations and Results
	Experimental Results
	Discussions

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

