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Abstract. The H.264 video coding standard uses a 4*4 multiply-free integer 
transform, minimizing computational complexity. The emerging programmable 
stream architecture provides a powerful mechanism to achieve high perform-
ance in media processing and signal processing. This paper analyzes the algo-
rithm characteristics of transform and quantization in H.264 and presents a 
streaming implementation of transform and quantization on Imagine stream 
processor. We evaluate our implementation on a cycle-accurate simulator of 
Imagine and demonstrate stream processing efficiency by comparing its per-
formance against other implementations. Experimental results show that our 
streaming implementation deals with transform and quantization of a 4*4 block 
in 6.875ns. The coding efficiency can satisfy the real-time requirement of cur-
rent video applications. 

1   Introduction 

H.264 [1], proposed by Joint Video Team (JVT), is a new digital video coding stan-
dard. Some highlighted features are applied in H.264 for improved coding efficiency. 
Small block-size integer transform is one of the enhanced techniques to avoid inverse 
transform mismatch problem. It uses a 4*4 transform block size to somewhat reduce 
the block artifacts. All operations in transform process can be carried out in integer 
arithmetic only requiring additions and shifts. While a scaling multiplication is inte-
grated into the following quantizer to decrease the total number of multiplications. By 
short tables, a set of new scalar quantization formulas use multiplications but avoid 
divisions [2]. 

Transform and quantization is a computationally-intensive component. H.264 
adopts block-based motion prediction, so residual difference between current frame 
and predicted frame is organized in block. Each block is independent of others, expos-
ing a great deal of data parallelism. The issue of optimizing transform and quantiza-
tion in H.264 has been addressed in various research domains. For example, enhanced 
SIMD technologies such as MMX and SSE2 are used to improve coding rate of H.264 
[3,4]. DSP acceleration is always the favor of product researchers [5,6]. In addition, 
special-purpose hardware implementations for transform and quantization in H.264 
have emerged in succession [7,8,9,10].However, a new exploration on stream proc-
essing for H.264 has still remained. 
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In this paper we develop a streaming implementation of transform and quantization 
in H.264 on the programmable Imagine stream processor [11]. Two computational 
kernels, corresponding to transform and quantization respectively, are constructed to 
operate on large homogeneous stream elements. In the end, we evaluate its perfor-
mance by comparing it against other implementations. Experimental results show that 
the streaming transform and quantization implementation deals with the transform and 
quantization of a 4*4 block in 6.875ns, namely processing 145.5 millions of inputs per 
second. The coding efficiency can satisfy the real-time require-ment of current video 
applications. 

Implementing on stream processor requires us to modify algorithms on the basis of 
stream processing and to arrange data in a streaming sequence in order to efficiently 
utilize the SIMD manner of stream architecture. Exploiting data parallelism and local-
ity are encouraging for high performance applications. 

The remainder of this paper is organized as follows. In Section 2, the principle and 
the algorithm of transform and quantization in H.264 are given. Section 3 describes 
the details of Imagine stream architecture. In Section 4, we discuss a streaming im-
plementation of transform and quantization. Our experimental results and discussions 
are presented in Section 5. Finally, the paper is summarized in Section 6. 

2   Transform and Quantization of H.264 

The 4*4 transform adopted in the H.264 standard is an integer orthogonal computa-
tion [12]. This allows for bit-exact implementation for all encoders and decoders. 
Another important feature in the new standard is the removal of computationally-
expensive multiplication that appears in the conventional standards. 

The 4*4 integer transform of an input array X is shown in Equation (1). 

T
f fW C XC=  (1) 

where the matrix Cf is given by Equation (2). 
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In Equation (2), the absolute values of all the coefficients of the Cf matrix are ei-
ther 1 or 2. Thus, the transform operation presented by Equation (1) can be computed 
using signed additions and left-shifts only to avoid expensive multiplications. While a 
scaling multiplication is integrated into the following quantizer to minimize the total 
number of multiplications. 

H.264 uses a scalar quantizer. The post-scaling and quantization formulas are 
shown in Equation (3) and (4).  
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where QP is a quantization parameter. It can take any integer value from 0 up to 51. 
The wide range of 52 quantizer step sizes makes it possible for an encoder to accu-
rately and flexibly control the trade-off between bit rate and image quality. Zij is a 
quantized coefficient. MF is a multiplication factor that depends on QP and the posi-
tion (i, j) of the element in the matrix, referred to [12]. 

Fast algorithms for traditional DCT are also suited for integer transform, such as 
butterfly transform [2]. It converts matrix multiply into matrix-vector multiply, ensur-
ing that there is no dependency between different vector columns in a matrix. And its 
algorithm structure is relatively simple (see Fig.1), regarded as a good algorithm for 
hardware implementation. 

 

Fig. 1. Butterfly transform, where xn (n=0..3) is a column of encoded matrix, and xn’ (n=0..3) is 
its corresponding filtered results. No multiplications are needed, only additions and shifts. 

3   Imagine Stream Architecture 

Imagine [13] can be considered representative of stream architecture (see Fig.2). We 
have done thorough research on Imagine [14], and proposed a new MASA [15] sup-
porting multiple execution morphs. Imagine is programmable and flexible since it 
directly maps applications into streams and kernels. We have mapped many applica-
tions, such as fluid computation [15], Reed-solomon decoder [16], and motion estima-
tion of H.264 [17] and so on.  Imagine can provide high performance in so many 
domains including media processing and signal processing. For example, Imagine is 
able to sustain performance of 15.35 giga operations per second (GOPS) in MPEG-2 
encoding application, corresponding to 287 frames per second (fps) on a 320*288-
pixel, 24-bit color image [18]. 

In fact, the implementation of stream application is casted by a collection of 
streams passing through a series of computational kernels. A kernel is a small pro-
gram executed in arithmetic clusters that is repeated for each successive element of its 
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input streams to produce output stream for the next kernel in the application. Streams 
are ordered finite-length sequences of data records. Each record in a stream is a set of 
related data elements of a single arbitrary data type. The semantics of applying a ker-
nel to a stream are completely parallel, so the computation of a kernel can be per-
formed on different independent elements in the input stream(s) in parallel. Kernel 
reads its inputs from stream register file (SRF). During computation, all temporary 
data are stored in the local register file (LRF) of each cluster. And the output stream 
of a kernel are sent back to SRF. Only the initial and final data streams need to be 
transferred through streaming memory to the off-chip SDRAM. This three level 
memory hierarchy is able to meet the large instruction and data bandwidth demands 
of computationally intensive applications well. 

 

Fig. 2. Imagine stream architecture. The three-level memory hierarchy is shown in the figure. 

4   Implementation 

4.1   Characteristics Analysis 

Stream programming model can match the requirement of media processing very 
well. Before mapping transform and quantization of H.264 video encoder on Imagine 
stream processor, it is necessary to analyze the inherent characteristics especially in 
computation intensity, parallelism and locality.  

Computation Intensity 
Integer transform is a computationally intensive module like block searching in mo-
tion estimation except for extra decision-making. If using butterfly algorithm men-
tioned in Section 2, a transform needs 64 additions and 16 shifts. As a result, 12.16 
million additions and 3.04 million shifts are executed in one second for a CIF image 
of 352*288 pixels at 30fps. 
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Parallelism 
Large data parallelism exists in transform process. Based on 8-cluster structure of 
Imagine, different columns of encoded matrix can be performed in parallel. Efficient 
data organization may help magnify the advantage of data-level parallelism. Besides, 
transform has obvious instruction-level parallelism. The pure additions and shifts can 
be packed into VLIW compactly. An additional level of task parallelism can be dis-
cerned from the pipelining of kernels. 

Locality 
Video coding is processed orderly frame by frame and block by block, like a stream 
of data flowing through every sequential processing module. Kernels encapsulate 
short-term kernel locality, and allow efficient use of the LRFs. For example, the in-
termediate results of butterfly transform can be stored in the inner LRFs. At the same 
time, stream capture long-term producer-consumer locality in the transfer of data 
form one kernel (e.g. transform kernel) to another kernel (e.g. quantization kernel) 
through the SRF without requiring costly memory operations, as well as spatial local-
ity by the nature of stream being a series of data records. 

4.2   Implementation 

Programming model of Imagine includes two levels: stream level (in StreamC) and 
kernel level (in KernelC) [19]. According to the relationship of input and output 
streams, the kernel diagram of transform and quantization is described as Fig.3.  

 

Fig. 3. Kernel diagram. An ellipse represents a computational kernel. And the connection line 
represents the input or output streams of the kernel. 

These two kernels are chained together, where the output stream from the trans-
form kernel is fed into the next quantization kernel as an input stream. Producer-
consumer locality is exploited by consuming the result of one kernel as soon as it is 
produced. MF look-up table is organized as a constant stream and loaded with trans-
formed coefficient stream into the quantization kernel. Note that a kernel can take 
more than one streams as its input, and the output may be one or more streams for 
different kernels. 

Integer transform Y=CfXCf
T performs matrix multiplications twice. Assume that 

B=CfX, then Y= CfXCf
T= BCf

T= (CfB
T) T. Based on transpose we keep the block that 

is to be transformed as right matrix while the left matrix is Cf. The matrix X can be 
divided into four vectors by column. Inter-column independence makes the butterfly 
algorithm suited for stream processing.  The main loop in the transform kernel is 
illustrated in Fig.4. 
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Fig. 4. Pseudocode of transform kernel                    Fig. 5. Stream distribution in eight clusters 

The input stream of transform kernel consists of 4*4 matrix blocks. Fig.5 illus-
trates the distribution of each stream record in clusters, where xij represent one stream 
record with the relative position in its affiliated block. We choose a simple solution-
replicating a 4*4 matrix twice. It brings half waste of cluster resources because the 
computation of four clusters is redundant. The better data records in the input stream 
are organized, the better performance stream architecture will get [20]. The way of 
organizing the data records is explicit for stream programmers. So it requires pro-
grammers to understand the algorithm characteristics in order to map it efficiently. 

 

Fig. 6. Three-level memory hierarchy diagram 

The transform kernel reads each data element from memory (In the whole encoder, 
the input of transform kernel is also fed by its prior kernel. So, it is reasonable to 
suppose the input stream exists in SRF not memory.). After kernel execution, the 
transformed coefficient stream produced by transform is sent to the following quanti-
zation kernel directly. MF is loaded by a series of communication operations and 
multiplies Y by index. Finally, the output quantized coefficient stream can be written 
back to memory or stored in SRF as an intermediate stream for other kernels. The 
three-level bandwidth hierarchy corresponds to the three columns of Fig.6. 
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5   Simulations and Results 

5.1   Experimental Results 

We run our streaming implementation of transform and quantization on ISim, a cycle-
accurate simulator ISim (500MHz), which is provided by the Imagine Project of Stan-
ford University [21]. The simulator can accurately model all aspects of stream proc-
essing and stream memory system. And the execution cycles obtained by ISim is 
convictive enough to evaluate the performance of a streaming implementation. The 
correctness of our implemented transform and quantization is also checked. This is 
done by passing different input sequences to our stream program and comparing the 
experimental result and the mathematical value. 

Simulated results show that 3.485*105 cycles is needed for a CIF image. Thus, 
dealing with the transform and quantization process of a 4*4 block requires 6.875ns, 
thereinto 5.79ns for integer transform. It means that our streaming implementation is 
able to process 145.5 millions of inputs per second. The performance may be opti-
mized by some advanced techniques such as loop unrolling and software pipelining 
[20]. The processing rate is higher than that defined to HDTV video sequence (HDTV 
must process 124.5 millions of inputs per second [9]). 

We compare our streaming implementation with other different improvements, 
mentioned in Section 1. Take the time of 4*4 integer transform as the criterion, shown 
in Fig.7. Obviously, Imagine obtains comparative performance with special-purpose 
hardware designed for transform and quantization application, much better than 
MMX and DSP improvements. However, Imagine is more flexible than special-
purpose hardware. Thus, it has good adaptability and scalability. 
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Fig. 7. Comparison among different implementations, where the data of processing time refer 
to [4,6,7,9] resprectively 

Our streaming implementation has the shortest processing time of five cases in 
Fig.7. Imagine can achieve high performance for three reasons. First, stream computa-
tion is efficient when operated on homogeneous data elements. Stream processing 
mechanism ensures to overlap between kernel computation and memory access, 
hiding the latency of memory operations. Second, Imagine performs in the SIMD 
manner. Large data parallelism and little global data reuse may explore the powerful 
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computing capability of Imagine. Third, kernel locality and producer-consumer local-
ity are captured in LRF and SRF of Imagine. The three-level memory hierarchy can 
afford the bandwidth requirement well.  

5.2   Discussions 

For an actual image, the residual difference input stream is a very large data set. 
Processing each element in a single computation is impractical because the size of 
data set may greatly exceed the size of on-chip storage. Instead, most Imagine appli-
cations use the common technique of stripmining [18]. In our implementation, resid-
ual difference pixel-blocks are divided into input batches, stream operations are 
applied to an entire input batch at a time. The size of a batch in our implementation 
is almost 14000 pixels. Fig.8 gives the utilization of SRF in the execution of trans-
form and quantization. 

 

Fig. 8. SRF utilization, where the horizontal axis represents SRF size and colorful bars repre-
sent usage of SRF. Vertical axis represents stream execution time. The inputs in a batch are 
14080 residual difference pixels in this figure. But blue bar indicates a read or write that re-
quires a memory access when SRF is spilled over. 
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The utilization of functional units is given in Table 1. The result is matched with 
the algorithm characteristics: large amount of additions and shifts make great use of 
adders only expect for some stalls before initial operands are prepared. While multi-
pliers are only used for quantization, so the utilization ratio is not very high.  

By taking advantage of unique three-level memory hierarchy and large numbers of 
functional units, Imagine can achieve so high performance. Combined with the accel-
erated implementation of motion estimation on Imagine [17], we can infer that the 
whole H.264 encoder will get better performance and meet real-time requirement of 
current video applications. 

Table 1. Arithmetic unit utilization 

 Adders  Multipliers  
Utilization ratio 83% 26% 

6   Conclusion 

In this paper we have presented a streaming implementation of transform and quanti-
zation in H.264. Experimental results show that processing transform and quantiza-
tion for a 4*4 block needs 6.875ns. As a result, our implementation is able to process 
145.5 millions of inputs per second. It can satisfy the real-time requirement of video 
applications. And it proves that the programming model including memory hierarchy 
of stream architecture is helpful for large numbers of data to repeat the same or simi-
lar operations. But some issues are still needed to be researched deeply, such as slice 
partition granularity and stream algorithm optimization. We will pay more attention to 
its further improvement. 
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