
A Distributed, Parallel System for Large-Scale
Structure Recognition in Gene Expression Data

Jens Ernst

Lehrstuhl für Effiziente Algorithmen,
Institut für Informatik,

Technische Universität München
ernstj@in.tum.de

Abstract. Due to the development of very high-throughput lab tech-
nology, known as DNA microarrays, it has become feasible for scientists
to monitor the transcriptional activity of all known genes in many liv-
ing organisms. Such assays are typically conducted repeatedly, along a
timecourse or across a series of predefined experimental conditions, yield-
ing a set of expression profiles. Arranging these into subsets, based on
their pair-wise similarity, is known as clustering. Clusters of genes ex-
hibiting similar expression behavior are often related in a biologically
meaningful way, which is at the center of interest to research in func-
tional genomics.

We present a distributed, parallel system based on spectral graph the-
ory and numerical linear algebra that can solve this problem for datasets
generated by the latest generation of microarrays, and at high levels
of experimental noise. It allows us to process hundreds of thousands of
expression profiles, thereby vastly increasing the current size limit for
unsupervized clustering with full similarity information.

Keywords: computational biology, structure recognition, gene expres-
sion analysis, unsupervized clustering, spectral graph theory.

1 Introduction

Computational Biology has provided a great wealth of complex and challenging
algorithmic problems for researchers in the field of combinatorial optimization to
work on. Moreover, the development of high-throuput lab technology has brought
about a massive increase in the rate at which experimental data is generated and
has to be processed by suitable algorithms. This not only calls for a great deal
of effort in optimizing these algorithms for efficiency, but also presents a natural
motivation for exploiting their parallelism and for distributing work across a
network of computers. In this paper we consider unsupervized clustering of gene
expression profiles as a particular case of a structure recognition problem where
input data is generated at an industrial, ever increasing rate and at great cost,
while efficient processing is indispensible to handling an otherwise unmanageable
amount of information.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 21–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 J. Ernst

The DNA of all organisms contains a number of relatively short regions which
code for protein, the main chemical ingredient to life. Genes are DNA sequences
composed of such regions. The process by which the information encoded in a
gene is transcribed and protein molecules are produced by cellular machinery is
known as gene expression. This process is highly dynamic and very complex in
that there exist networks of genes that mutually promote or suppress each other’s
expression, particularly in response to environmental changes affecting the cell.
While it is possible to sequence entire genomes and to predict the location of
genes at a reasonably high level of reliability, many questions on gene function
and interaction are still unanswered. A great deal of research is directed towards
understanding gene expression on a gobal level, taking into account many –
perhaps all – genes of a given organism in parallel. This gives rise to the term
functional genomics. The technology of DNA microarrays [5] has made it possible
to observe the levels of expression activity of a very large number of genes in a
single experiment and has become a standard research tool. In simplified terms,
short but sufficiently representative nucleic acid subsequences (probes) of genes
are physically spotted or photolithographically synthesized on a glass substrate.
Then, in a hybridization reaction, these probes attract and bind to fluorescently
labeled counterparts of their respective sequences from, say, a tissue sample.
Later, fluorescence scanning of the array allows quantitative inferences on the
activity of each gene on the microarray in terms of its level of transcription, and
hence its expression. Often, but not always, probes correspond to genes.

Typically, a series of multiple experiments using identical arrays is performed
under different experimental conditions or along a timecourse, yielding a vector
of expression scores for each probe. Vectors of this type are known as expression
profiles. Let n be the number of probes and let m be the number of array ex-
periments. Then the profiles can be written in the form of an n × m matrix of
expression values. Typical values for n range up to 4 · 106, whereas m ≤ 50 is
usually a consequence of array cost and other practical limitations. The goal of
clustering in this context is to partition the set of probes, represented by their
corresponding expression profiles, into subsets (or clusters) in such a way that
members of the same cluster exhibit highly similar expression behavior (or coex-
pression), while similarity between clusters should be low. To formally capture
this, we assume to have a similarity measure s : Rm ×Rm −→ [0, 1] which maps
each pair of expression profiles to a similarity score. A score of 1 indicates per-
fect similarity. This function is symmetric but not necessarily metric. In practice,
Pearson correlation and measures based on L2 distances are commonly applied.

The input for the clustering problem is hence a symmetric n × n similarity
matrix A containing values between 0 and 1 and can be thought of as the edge
weight matrix of an undirected graph. The diagonal elements all have a value of 1.
The problem hence consists in partitioning the index set {1, 2, . . . , n} into subsets
representing the clusters. But the partitioning problem is complicated by the fact
that the number of clusters is not known a priori and that microarray technology
is extremely prone to experimental error, leading to incorrect expression values,
which translates into false positive and false negative similarity scores in A.

A Distributed, Parallel System for Large-Scale Structure Recognition 23

Extensive work has been done on clustering algorithms for gene expression
data since microarray technology was introduced. For a comprehensive survey of
the most popular methods, the reader is referred to [3,6,8]. The main limitation
shared by all existing algorithms is on the maximum feasible value of n. The
author is not aware of any current commercial or academic software system that
can handle more than some tens of thousands of probes. Our system is designed
to improve this limit on n by an order of magnitude. We shall restate the cluster-
ing problem more formally in the following Section. In Section 3 we briefly derive
the sequential SR-algorithm (“Spectral Reduction”) which is well suited for this
clustering problem. We then propose a set of techniques for parallelizing and
distributing this algorithm in Section 4. The final Section presents experimental
results to demonstrate the quality and performance of the method.

2 The Clustering Problem

The following graph theoretical framework shall henceforth be used for modeling
the input data to be processed by clustering algorithms.

Definition 1. Given a set S = {X1, . . . , Xn} of expression profiles Xi ∈ Rm

and a simliarity measure s : Rm × Rm → R, the associated similarity graph for
S is a complete, undirected graph G = (V, E, w) with self-loops, where |V | = n
and E =

{
{v, v′} : v, v′ ∈ V

}
. For 1 ≤ i, j ≤ n, each vertex vi is bijectively

associated with one expression profile Xi and each edge {vi, vj} is weighted with
the score of the similarity w(vi, vj) := w(vj , vi) := s(Xi, Xj) between Xi and Xj.

Within this formal framework we now define a data model for our clustering
problem. We assume that an unknown cluster structure exists in the input data
and is perturbed by some random noise, modeling experimental data error.

Definition 2. A cluster graph is an edge-weighted, complete, undirected graph
G0 = (V, E, w0) with self-loops whose vertex set V can be partitioned into K
clusters Ck such that w0(vi, vj)=1 for all edges {vi, vj} within the same cluster
Ck, 1 ≤ k ≤ K, and w0(vi, vj) = 0 for edges {vi, vj} connecting different clus-
ters. Let pint and pext be two different distributions on the interval [0, 1] with
respective expectations μint and μext. A (pint, pext)–perturbation, applied to G0,
yields a randomly weighted perturbed cluster graph G = (V, E, w) where each
edge {vi, vj} is independently assigned a weight w(vi, vj) = w(vj , vi) with respect
to distribution pint, if w0(vi, vj) = 1 and with respect to pext, if w0(vi, vj) = 0.

This allows us to formally state the clustering problem: Let G = (V, E, w) be the
result of some (pint, pext)-perturbation with μint �= μext, applied to a fixed but
unknown cluster graph G0 = (V, E, w0) whose vertex set consists of the clusters
C1, . . . , CK . Let A0 be the unknown edge weight matrix of G0. Given G or its
edge weight matrix A, our task is to reconstruct G0 by partitioning V into the K
original clusters Ck. The value of K is not necessarily known. It is assumed that
each cluster Ck is of size ckn for some constant ck > 0. The vector (c1, . . . , cK)
is called cluster structure of G. Also, we assume that {c1, . . . , cK} = {c1, . . . , cr}
where c1, . . . , cr are each unique and mi is the multiplicity of ci for 1 ≤ i ≤ r.

24 J. Ernst

3 Spectral Properties of Perturbed Cluster Graphs

In this Section we survey some fundamental mathematical properties of the input
similarity matrix A, which will help us in deriving an algorithm for the above
clustering problem. To this end, we first consider the unperturbed matrix A0
and then examine the effect of random noise.

Lemma 1. The spectrum of A0 consists of 0 and the set {c1n, c2n, . . . , crn}.
Each eigenvalue cin has multiplicity mi, and its associated eigenspace is spanned
orthogonally by characteristic vectors of the mi clusters of size cin.

By multiplying A0 with the characteristic vectors of the individual clusters,
one can immediately verify that the characteristic vectors belonging to the K
individual clusters are indeed eigenvectors, with the respective clusters sizes cin
as associated eigenvalues. Orthonormality is also obvious. As Rank A0 = K, it
follows that no additional non-zero eigenvalues exist.

Note that this immediately suggests an algorithm for identifying clusters.
A simple rotation of any set of dominant eigenvectors of A0 yields a set of
characteristic vectors indicating cluster membership. A different way of thinking
of the situation is to consider in a column-wise fashion a matrix (K×n)-matrix Z0
whose rows contain a set of mutually orthonormal vectors spanning the dominant
eigenspaces. Each column, representing a vertex, corresponds to a point in RK ,
and two vertices belong to the same cluster if and only if they correspond to
the same point. So instead of solving the trivial clustering problem for G0 by
looking for connected components of edges with weight 1, one can obtain the
desired partition by examining the dominant eigenvectors of A0.

Next, we can ask about the effects of (pint, pext)-perturbation which transforms
A0 into A. It is a well-known fact of matrix theory that the spectrum of a
symmetric matrix is relatively insensitive to component-wise perturbation – in
fact, eigenvalues are said to be perfectly conditioned. We will show that they are
stable enough to still reflect the number of clusters, K. The eigenspaces, on the
other hand, will be shown to be sufficiently stable to allow the reconstruction of
the unperturbed cluster structure with high probability. The following theorem
summarizes these results. Due to page restrictions, we omit the proof here and
refer the reader to [1] where we provide this proof in great detail.

Theorem 1. With probability 1 − o(1), matrix A has the following properties:
The spectrum of A consists of K dominant eigenvalues of magnitude Θ(n) and
n−K eigenvalues of magnitude O(n

1
2), counting multiplicity. The eigenspaces as-

sociated with the dominant eigenvalues are spanned by vectors which are constant
within the index sets associated with the individual clusters, up to a component-
wise variation of o(n− 1

2). Let Z be a (K × n)-matrix whose rows contain a set
of mutually orthonormal vectors spanning the dominant eigenspaces. Then the
columns zt of Z (1 ≤ t ≤ n) constitute n points in RK , and two columns t, t′

satisfy ‖zt − zt′‖∞ = o(n− 1
2) if vertices vt and vt′ belong to the same cluster.

Otherwise, it holds that ‖zt − zt′‖∞ = Ω(n− 1
2).

A Distributed, Parallel System for Large-Scale Structure Recognition 25

Algorithm 1. SR-algorithm

Input: (pint, pext)-perturbed cluster graph G = (V, E, w)
Output: Adjacency matrix of G0

(i) A := edge weight matrix of G;
(ii) γ := |V |2/3;
(iii) K:=number of eigenvalues λ ≥ γ;
(iv) {x1, x2, . . . , xK} :=orthonormal set of eigenvectors associated with eigen-

values > γ;
(v) Z := [x1, x2, . . . , xK]T;
(vi) Identify the K-clusters defined by the column vectors of Z;
(vii) Construct adjacency matrix A0 based on the K-clusters;

As a consequence, even in the presence of (pint, pext)-perturbation, the num-
ber of clusters can be obtained by counting the number of dominant eigen-
values. Any threshold γ satisfying γ = o(n) and γ = ω(n

1
2), can be used

to distinguish them from the others. The columns zt of Z define n points in
RK which form K groups named K-clusters. For sufficiently large n and with
probability 1 − o(1), the K-clusters are disjoint and grow arbitrarily tight as
n grows. The task of assigning each vertex to its cluster can be accomplished
by identifying the K-clusters in RK . This constitutes a Euclidean clustering
problem and can be solved by applying the K-means algorithm, a linear-time
farthest-first method or thresholding. This leads us to the Spectral Reduction
(SR) Algorithm 1.

A great advantage of the SR-algorithm over direct Euclidean clustering on the
expression vectors is that it does not rely on a particular choice of the similarity
measure. Regardless of how s is defined, the structure recognition problem is
reduced to a simple Euclidean clustering problem, and the correct number of
clusters is obtained as a by-product. For instance, one could envision designing
a custom similarity measure such as the absolute value of Pearson Correlation
(in order to define both, exact correlation and exact anti-correlation as maximal
relatedness between expression profiles). Moreover, similarity matrix A need not
even stem from a gene expression data set. Even if the biological entities whose
similarity is described by the matrix do not have a vector representation at all,
the clustering problem is transformed into a Euclidean one, and according vector
representations in K-space are generated for these entities.

The only remaining issue to be addressed is how to compute an orthonormal
basis of the dominant eigenspaces. It is not necessary to compute the entire
eigen decomposition of matrix A as only a few dominant eigenvectors are needed.
Instead we resort to an iterative numerical method based on Krylov subspaces
and the well-known Rayleigh-Ritz procedure. Algorithm 2 gives a sketch of the
method. Here we apply it as a black box and refer the reader to [2] for a detailed
treatment of the theory behind it and [4] for implementation hints.

26 J. Ernst

Algorithm 2. Compute eigenpairs

Input: A ∈ Rn×n

Output: Approximate dominant eigenpairs (�λi, �xi)

(i) Choose v1 ∈ Rn with ‖v1‖ = 1;
(ii) β1 := 0; v0 := 0;
(iii) for j = 1, 2, . . . do

wj := Avj − βjvj−1;
αj := 〈wj , vj〉;
wj := wj − αjvj ;
βj+1 := ‖wj‖;
vj+1 := 1

βj+1
wj ;

Compute (�λ(j)
i , �x(j)

i), 1 ≤ i ≤ j by the Rayleigh-Ritz procedure
if |�λ(j)

j | < n
2
3 then stop fi;

od

4 The Parallel and Distributed SR-Algorithm

To identify the parts of the SR-Algorithm that can benefit the most from paral-
lelization, let us first examine its complexity, assuming that similarity matrix A
is given as input. Identifying the K tightly concentrated clusters of the columns
of Z in Euclidean K-space requires no more than a simple linear-time compu-
tation, and storing matrix Z requires only linear space. While this could be
parallelized in a rather straightforward way, the gain would be negligible. Com-
puting a set of dominant eigenvalues of A, however, costs Ω(n2) time and space.
This severely limits the maximum feasible value of n. In the scenario of a typical
uniprocessor with 4GB of RAM and without use secondary storage, we find this
limit to be around n ≈ 40, 000. The processing time in this case is still within
the range of minutes. As an aside, a limitation of n to roughly 40, 000 is also
seen in all other academic and commercial clustering systems that the author is
aware of. This leads us to focus our efforts on parallelizing Algorithm 2.

Notice that all quadratic-time operations within this procedure are applica-
tions of matrix A as an operator to given column vectors. Therefore, the best
speedup can be expected from parallelizing all matrix-vector multiplications.
Notice further that A is not involved in any other operations. This allows us
to distribute A among multiple machines (and their RAM), thereby increas-
ing the maximum permissible n. As a third essential observation, note that for
all practical purposes, the number of iterations of Algorithm 2, and hence the
overall number of matrix-vector multiplications, is a very small number << n.1

1 In [1] we show that the number of iterations is bounded by O(log n), and we give
perturbation theoretical arguments suggesting that it is even a constant independent
of n, although a formal proof of this conjecture is not yet completed.

A Distributed, Parallel System for Large-Scale Structure Recognition 27

Node i

��
�

ni − δn

ni CPU 1
CPU 2

··
·

n′
i

n′
i + δn

A v

Fig. 1. Decomposition of matrix A and vector v for parallel multiplication

This last observation means that storing A and multiplying A with a series of
vectors can be performed on a distributed-memory architecture consisting of
machines that only communicate via a network protocol: The resulting amount
of communication is of magnitude O(n) and therefore not a serious limitation.

We choose our target architecture to be a general network of multiproces-
sor machines (nodes). The individual machines in the network communicate by
generic message passing, for instance using the standard TCP/IP protocol. The
processors within one node communicate via shared memory. This covers most
of the architectures commonly used for scientific computation today, including
the special cases of networks of uniprocessors and single multiprocessors.

One node is designated to play the part of a coordinator (or master). The gene
expression profiles are distributed by the coordinator among all other machines
which compute horizontal bands of the similarity matrix A to be held in local
storage. The number of rows (indices block [ni, . . . , n

′
i]) that each node i should

store is determined prior to the distribution process by a static load balancing
step in which the RAM capacity and the node’s overall performance (number
of inner products of length-n-vectors per millisecond) are measured. The index
range associated with each machine is chosen proportional to the measured per-
formance. In addition to the core index block, δn extra rows preceding it and δn
rows following it are also stored by each node for subsequent dynamic load bal-
ancing (see Figure 1). All work to be performed by an individual node is evenly
distributed among all the processors of this node. This requires no additional
synchronization because computations on different rows of A are independent.

After all matrix bands have been computed, the coordinator generates the first
vector v to which A should be applied (see Algorithm 2) and distributes it to all
other nodes. The nodes perform the inner products required for generating their
associated index block of Av. Again, this work is shared within each node by
all the processors that communicate via shared memory. Then the coordinator
collects the result blocks from each node, assembles and uses Av to finish the
current iteration of Algorithm 2. Note that this presents a synchronization point
for all nodes. Should the load on an individual node change significantly during
this process (due to use in a multi user environment), the other nodes may

28 J. Ernst

be caused to wait as a consequence. For this reason, the coordinator process
measures the time required by the individual nodes and adjusts the index ranges
proportionally to their performance for the next iteration, using the 2δn extra
rows stored within each node, if necessary. In our experiments we use δ = 0.05.

5 Experimental Results

In this Section we shall examine the quality of the cluster decomposition result-
ing from the application of the SR-algorithm to various types of input data, as
well as the algorithm’s performance on a current multiprocessor architecture.
We assess the clustering quality based on synthetically generated similarity data
consisting of some known, planted structure which was obscured by adding sig-
nificant amounts of noise. This data complies with the data model introduced
in Section 2. A cluster structure (c1, c2, . . . , cK) is imposed, resulting in clus-
ters of respective sizes c1n, c2n, . . . , cKn. Then, perturbation is modeled by the
two distributions pint and pext. We choose binary similarity scores and Bernoulli
distributions, causing false positive similarity with some probability α and false
negative scores with probability β. This is referred to as (α, β)-perturbation.
After the clustering process, we quantify the quality of the resulting partition,
using the Matching coefficient and the Minkowski measure defined as follows.

Definition 3. Given the two matrices A0, A1 ∈ {0, 1}n×n (where A0 represents
the true solution and A1 represents the solution to be evaluated), we define

nk,l :=
∣
∣{(i, j) : 1 ≤ i, j ≤ n, [A0]i,j = k, [A1]i,j = l}

∣
∣

for k, l ∈ {0, 1}. Based on these quantities, we define the following measures:

(i) Minkowski Measure M1 :=
√

n0,1+n1,0
n1,1+n1,0

(ii) Matching Coefficient M2 := n0,0+n1,1
n0,0+n0,1+n1,0+n1,1

Note that n1,0 is the number of false negatives in the solution, n0,1 is the number
of false positives, whereas n0,0 and n1,1 are the true negatives and positives,
respectively. In the ideal case where A0 = A1, the measures given in the above
definition have the respective values of 0 and 1. Only the Minkowski Measure
can potentially assume values greater than 1.

The results of our experiments can be seen in Figures 2 and 3. For grow-
ing values of n, the situation rapidly improves due to tighter concentrations
in the Chernoff-type random variables which are the key to the correctness of
Theorem 1. In this sense the choice of n = 1, 000 presents a worst-case scenario.

To measure the performance of our implementation, we used a machine con-
sisting of 32 nodes, each containing four AMD Opteron 850 processors at 2.4GHz
with 8GB of RAM running Linux. The nodes are interconnected by Gigabit Eth-
ernet. For this analysis we rely on a data set generated for the analysis of cigarette
smoking-induced changes in bronchial epithelia, and reversibility of effects when
smoking is discontinued. This data set may provide insight to molecular events
leading to chronic obstructive pulmonary disease (COPD) and lung cancer [7].

A Distributed, Parallel System for Large-Scale Structure Recognition 29

0.2

0.25

0.3

0.35

0.4

0.45
0.2

0.25
0.3

0.35
0.4

0.45

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.25

0.3

0.35

0.4

0.45

0.2 0.25 0.3 0.35 0.4 0.45

a.

α

β

M
at

ch
in

g
C

oe
ff
.

b.

α

β

Contour Plot

0.99

Fig. 2. a. The Matching Coefficient as a function of α and β for an (α, β)-perturbed
cluster graph with relative cluster sizes (0.1, 0.2, 0.3, 0.4) and n = 1000. b. Contour
plot of the Matching Coefficient, showing parameter pairs with equal Matching scores.

0.2
0.25

0.3
0.35

0.4
0.45

0.2

0.25

0.3

0.35

0.4

0.45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.25 0.3 0.35 0.4 0.45

0.2

0.25

0.3

0.35

0.4

0.45

a.

β

α

M
in

ko
w

sk
i
M

ea
su

re

b.

β

α

Contour Plot

0.01

Fig. 3. a. Minkowski Measure as a function of α and β for an (α, β)-perturbed cluster
graph with relative cluster sizes (0.1, 0.2, 0.3, 0.4) and n = 1000. b. Contour plot of a.

Fig. 4. a. Running times as a function of the number n of gene expression profiles and
as a function of the number m of nodes. b. Speedup diagram for multiple input sizes

It was created using an Affymetrix GeneChipR©Human Genome U133 microar-
ray set HG-U133A. We conduct our cluster analysis in single-probe resolution,
meaning that probes belonging to the same transcript of the same gene are con-
sidered separately rather than as components of a sum signal. In this experiment
we generate 1,000 clusters, bypassing the automatic detection of the number of

30 J. Ernst

clusters, to simulate more realistically the way in which clustering algorithms are
applied in practice to this type of expression data. We measure the running time
as a function of the number of expression profiles and as a function of the num-
ber m of multiprocessors used in the computation (see Figure 4). For each value
of n, m ranges between the minimum number of machines required to complete
the run without resorting to secondary storage, and the maximum value of 32.
This analysis shows that, as m is increased, the speedup initially is near-linear
and then decreases somewhat, due to communication overhead. This should be
expected because the amount of communication increases as a function of m.

Its ability to handle values of n on the order of k × 105 with very moderate
running time (e.g. n = 160, 000 in less than 3 minutes) allows the parallel SR-
Algorithm to process microarray data of the latest generation, e.g. Affymetrix
Exon and Tiling ArraysR©, without requiring a priori data filtering.

6 Conclusion

In this paper we have introduced a parallel, distributed algorithm for recov-
ering cluster structures hidden in large and strongly noise-contaminated sets
of gene expression data, originating from large-scale DNA microarray experi-
ments. Along with the algorithm, we have introduced a formal data model within
which its correctness can be proven. Moreover, we have described how to effi-
ciently solve the numerical problems induced by the algorithm. Experimental evi-
dence for both, its high noise-robustness and performance was presented. Further
developments will include, but not be limited to, compression of matrix A to fur-
ther increase the limit on parameter n. The software will soon be made accessible
at http://wwwmayr.informatik.tu-muenchen.de/personen/ernstj/.

References

1. Ernst J. Similarity-Based Clustering Algorithms for Gene Expression Profiles, Dis-
sertation, TU München, 2003

2. Gourlay A, Watson G. Computational Methods for Matrix Eigenproblems, John Wi-
ley & Sons, New York, 1973

3. Daxin Jiang, Chun Tang, Aidong Zhang. Cluster Analysis for Gene Expression Data:
A Survey, IEEE Transactions on Knowledge and Data Engineering, 2004; 16(11),
1370-86

4. Press W, Teukolsky S, Vetterling W, Flannery B. Numerical Recipes in C: The Art
of Scientific Computing, 2nd edn., Cambridge University Press, 1992

5. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expres-
sion patterns with a complementary DNA microarray, Science, 1995; 270:467-470

6. Shamir R, Sharan R. Algorithmic approaches to clustering gene expression data,
Current Topics in Computational Biology, 2002; 269-300

7. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS. Effects of
cigarette smoke on the human airway epithelial cell transcriptome, Proc Natl Acad
Sci US, 2004; 101(27):10143-8

8. Valafar F. Pattern Recognition Techniques in Microarray Data:A Survey, Special
Issue of Annals of New York, Techniques in Bioinformatics and Medical Informatics,
2002; 980:41-64

	Introduction
	The Clustering Problem
	Spectral Properties of Perturbed Cluster Graphs
	The Parallel and Distributed SR-Algorithm
	Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

