
M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 148 – 159, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CSTallocator: Call-Site Tracing Based Shared Memory
Allocator for False Sharing Reduction

in Page-Based DSM Systems

Jongwoo Lee1, Sung-Dong Kim2, Jae Won Lee3, and Jangmin O4

1 Dept. of Multimedia Science, Sookmyung Women’s University, Seoul 140-742, Korea
bigrain@sookmyung.ac.kr

2 Dept. of Computer Engineering, Hansung University, Seoul 136-792, Korea
sdkim@hansung.ac.kr

3 School of Computer Science and Engineering, Sungshin Women’s University,
Seoul 136-742, Korea

jwlee@cs.sungshin.ac.kr
4 NHN corp., 9th Fl. Venture Town Bldg. 25-1 Jungja-dong Bungdang-gu, Gyunggi-do,

463-844, Korea
jmoh@nhncorp.com

Abstract. False sharing is a result of co-location of unrelated data in the same
unit of memory coherency, and is one source of unnecessary overhead being of
no help to keep the memory coherency in multiprocessor systems. Moreover,
the damage caused by false sharing becomes large in proportion to the
granularity of memory coherency. To reduce false sharing in page-based DSM
systems, it is necessary to allocate unrelated data objects that have different
access patterns into the separate shared pages. In this paper we propose call-site
tracing-based shared memory allocator, shortly CSTallocator. CSTallocator
expects that the data objects requested from the different call-sites may have
different access patterns in the future. So CSTallocator places each data object
requested from the different call-sites into the separate shared pages, and
consequently data objects that have the same call-site are likely to get together
into the same shared pages. We use execution-driven simulation of real parallel
applications to evaluate the effectiveness of our CSTallocator. Our observations
show that our CSTallocator outperforms the existing dynamic shared memory
allocator.

Keywords: False Sharing, Distributed Shared Memory, Dynamic Memory
Allocation, Call Site Tracing.

1 Introduction

In distributed shared memory (DSM) systems, efficient data caching is critical to the
entire system performance due to their non-uniform memory access time
characteristics. Because the access to a remote memory is much slower than the
access to a local memory, reducing the frequencies of the remote memory accesses
with efficient caching can lead to decrease of the average cost of memory accesses,
and subsequently improve the entire system performance [1]. A simple and widely

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 149

P1

B

P2

B

Pn

B

Interconnection Network

M1 Mm

...

...

...
Cache

Memory
B

Fig. 1. Example of page replication in DSM systems

used mechanism for exploiting locality of reference is to replicate or migrate
frequently used pages from remote to local memory [2]. But in case of page
replication, the existence of multiple copies of the same page causes memory
coherence problem (Fig. 1).

In DSM systems, false sharing happens when several independent objects, which
may have different access patterns, share the memory coherency unit. Memory faults
or misses caused by false sharing do not affect the correct executions of the parallel
applications. As a result, we can say that false sharing is one major source of
unnecessary overhead to keep the memory consistent [3, 4, 5, 6]. Especially, the
problem becomes severe in PC-NOW DSM systems where the memory coherency
unit is very large (generally, one virtual page). They say that the false sharing misses
occupy 80% or so of the shared memory faults in page-based DSM systems [3, 4, 5,
6]. It means that the false sharing is the major obstacle for improving the memory
performance in page-based DSM systems. In this paper, we present an efficient
dynamic shared memory allocator for false sharing reduction in DSM system. The
reasons why we chose to optimize dynamic shared memory allocator for reducing
false sharing are that this approach is transparent to the application programmers, and
almost all the false sharing misses happen in shared heap when multiple processes in
a parallel application communicate with each other using shared memory allocated by
dynamic shared memory allocator. The prediction of the future access patterns of each
data object is necessary to reduce the false sharing misses caused by the data object.
To accomplish this, we classify the data objects such that data objects requested at
different locations in parallel program codes should not be allocated in the same
shared page by tracing the call-site(object request location in parallel program codes).
This is based on the idea that data objects requested at the different locations in
program codes will show different access patterns in the future. Though the prediction
technique of the access patterns we use is not always correct, we find out that our call-
site tracing prediction technique could reduce the false sharing in comparison with
other existing techniques. In order to measure the frequencies of page faults caused by
false sharing(shortly false sharing misses), we use SPLASH and SPLASH II as a
parallel application benchmark, and MINT as a multiprocessor architecture simulator.

150 J. Lee et al.

In section 2, we review the related works. Section 3 explains the design and
implementation of the call-site tracing-based shared memory allocator. We present the
results of performance evaluation in section 4, and section 5 draws the conclusions.

2 Related Works

In this paper, we focus on the page-based DSM systems that keep the memory
coherency in unit of a virtual memory page. The dynamic shared memory allocator
for the page-based DSM systems has to decide where the requested data objects are
placed. If the dynamic shared memory allocator knows the characteristics and access
patterns of the requested data objects in advance, the allocator can easily place the
data objects into the appropriate shared page with removing the causes of the false
sharing. For example, the allocator can reduce the false sharing misses by placing the
objects with much different access patterns to the different shared pages, or not
placing non-related data objects into the same shared page. But, the dynamic shared
memory allocator cannot know the characteristics and access patterns of the requested
objects in advance. Therefore, the typed allocation is proposed in [7] where the clues
provided by the programmers are used. In this typed allocation, the programmer must
specify the memory access type through the allocation function arguments, such as
Read-Only, Write-Mostly, and Lock types. Thus, the data objects with different types
could be placed in the different shared pages. But, this scheme needs to additional
overheads that user interfaces of the dynamic shared memory allocator have to be
changed, and in turn the modification of the application source code is unavoidable.
Moreover, it is not an easy job for the programmers to know in advance the access
types of each shared data object. Our work assumes that there is no change in the API
of the dynamic shared memory allocator.

Per-process allocation scheme assigns the different cache lines to the data objects
requested by the different processes [3]. In this scheme, the data objects requested by
the different processes are placed in the separate cache lines, so that it could reduce
the possibility that data objects without relationships or with different access patterns
are placed in the same cache line. This technique is effective where multiple
processes request shared memory allocation evenly, but is likely to be ineffective
where a dedicated process has the full responsibility of shared memory allocation [8].
In all the parallel applications used in our experiments, a dedicated process is also
used for shared memory allocation, so it is inappropriate to compare this scheme with
our approach.

Sized allocation scheme is proposed in [5, 6, 8], where the different-sized objects
are prohibited from being placed in the same shared page. That is, by placing only the
same-sized objects in the same shared page, this method tries to minimize the co-
location of heterogeneous data objects. They say that, by using the object-size
information for the prediction of the future access patterns, the transparency of the
allocator API could be kept and the false sharing misses could be reduced
simultaneously. Particularly according to [8], allocation with separated tag scheme
and minimizing the multi-page spanning scheme could additionally reduce the false
sharing misses. But this sized allocation is not enough to exactly predict the future
access patterns of the shared data objects because the object size may not sufficiently

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 151

represent the future access patterns. In our work, we will compare our call-site tracing
technique with this sized allocation technique because these two methods have the
similar assumptions that the interface of the dynamic shared memory allocator must
not be modified and the shared memory allocation must be effective regardless of the
existence of the allocation-dedicated process.

In [9], the hybrid allocation technique is proposed, which combines per-processor
allocation and minimizing the multi-page spanning scheme. In this hybrid scheme,
data objects requested by the different processors are placed in the different pages
only when the object size is smaller than the page size. When the size of the data
objects is bigger than the page size, on the other hand, they try to minimize the multi-
page spanned allocations by prohibiting a shared object from being allocated in the
page boundary. This technique could reduce the false sharing misses a little more by
only combining the existing methods. But it is insufficient to accept this technique as
a new prediction model of the future access patterns.

We find out by reviewing the previous works that the effective prediction of the
future access patterns to be applied to the shared object allocations is an important
factor to reduction of the false sharing misses. The shared objects which may have
different access patterns must be placed in the different memory coherency unit. In
this paper, we present call-site tracing based shared memory allocator, shortly called
CSTallocator, where the future access patterns are predicted by the shared objects’
request location(call-site) in the program codes. That is, the prediction is based on the
instruction pointer from which the shared object allocation is requested. We hope that
the objects with different call-sites may have the different access patterns in the
future. By using the implicit information inherent in the program codes, our method
not only keeps the API transparency, but also does not burden the programmers with
the additional access type information. The call-site information of a shared object
could be a useful clue for predicting the future access patterns because most parallel
application programs call the allocation functions at different locations according to
the object usage plans. Of course, the call-site tracing cost is more expensive than the
cost of getting static information such as the allocation size passed via parameters or
processor/process ID calling the function. Nevertheless, we can say that the call-site
tracing overhead is not quite large because a call-site tracing procedure happens at a
time only when the new call-site appears.

3 Design and Implementation of CSTallocator

With the information about objects’ request locations in the program codes, we can
infer the object’s usage more accurately than with the object-size because multiple
processes(or threads) cannot help to call the allocator at the different call-site
according to the object’s future usage. We expect that the future access patterns of the
shared objects requested at different call-sites will be different even though the object
sizes are the same. The only case that our expectation becomes wrong is when the
usage of data objects requested at the same call-site changes abruptly and/or
frequently. But it is difficult for the usage of the specific part of the program code to
be dynamically changed, so we can use the object request call-sites as a clue for
predicting the object’s future access patterns.

152 J. Lee et al.

Parallel Program

Allocation

Site 1

Allocation

Site 2

Allocation

Site 3

Allocation

Site n

…
…

Shared Page 1

for Allocation Site 1

…
…

Shared Page 2

for Allocation Site 2

Shared Page 3

for Allocation Site 3

Shared Page n

for Allocation Site n

…
…

Fig. 2. Shared objects allocation example according to the call-sites in CSTallocator

Fig. 2 shows an example of the call-sites of each shared object in a parallel
application program. In this figure, the shared objects are placed in the separate
pages according to their allocator call-sites. The key idea is to prevent the shared
objects requested at the different call-sites from being placed in the same shared
page, while the different sized objects are allowed to be in the same page if the
objects are requested at the same call-site. In our experiments, we intentionally
allow this situation for the exact one-to-one comparison with the sized allocation
scheme. In addition, we exclude the mixture scheme of call-site tracing and sized
allocation for the accurate comparison of the two methods. Though the mixture
technique considering both the call-site and object size is expected to show better
performance, we do not discuss about the mixture technique here, and leave it as a
future work.

3.1 Call-Site Tracing Technique

To accomplish the call-site tracing based allocation, firstly we have to identify the
call-site where the shared memory allocation function is called in the program codes.
The identification procedure must be done dynamically and transparently in the
shared memory allocation function without additional formal parameters. For this
purpose, we embed a module called call path back tracker, into the shared memory
allocator. By back tracking the activation records accumulated in the process’s (or
thread’s) stack, we could identify the call path from main(), the starting point of the
program, to the current call-site. A return address has to be stored in the activation
record for returning from the function call, and we could get this return address by
identifying the size of local variables and the parameters used in the function. The
stack back-tracking repeats till the main() function. For example, if we get
“share_malloc() B() A() main()” from the stack back-tracking at a certain
call-site, the ID of this call-site is represented as “A B”. The share_malloc() and
main() functions are excluded in the call site ID representation because they always

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 153

A()
{

…
B();
…

}
B()
{

…
Share_Malloc(); // Call Site SN
…

}
Share_Malloc()
{

Call_Site_ID = Stack_Tracer();
…

}

……

A()’s Stack
Record

B()’s Stack
Record

Share_Malloc()’s Stack
Record

Call-Site Tracing Results

Call-Site SN’s ID : A B

Fig. 3. An example of identifying call-site ID by call-site tracing

appear in every call-site ID. Fig. 3 shows an example of call-site tracing. In this
figure, the call-site, SN, is identified and registered with a call-site ID “A B”. And
then, the shared objects with different call-site IDs are allocated in the different
shared pages.

For the performance trade-offs of the stack back tracking, we have to consider the
back tracking depth of function call paths. As a rule, a call-site ID can be defined
after the back tracking to main() is completed. But in some parallel applications, we
could identify all the call-sites without back tracking to main(). Therefore, we may
decrease the overhead caused by the redundant stack back tracking if we could choose
dynamically between the deep tracing and the shallow tracing. But the
implementation of the dynamically depth-controlled back tracking is impossible
because we cannot know the appropriate back tracking depth in advance to identify all
the call-sites in a parallel application. So in our experiments, we will statically
measure the effect of the back tracking depth adjustment on the performance. To do
this, we define length-N call chain, which is the first N call paths from share_malloc()
to main(). For example, length-1 call chain identifies only function B() which calls
share_malloc(). In the same way, length-2 call chain includes function B(), which
calls share_malloc(), and function A(), which calls B(), in the call-site ID. The longer
the length of call chain, the deeper back tracking is to be done. In the prospect of the
call chain length, we can expect that the possibility of false sharing would drop when
using the longer length of call chain because it could identify the call-sites minutely.

3.2 Examples of Call-Site Tracing in Parallel Application Programs

Fig. 4 shows the call-site tracing results for the parallel applications used in our
experiments. This figure summarizes all the paths from the main() to the call-sites
identified during the applications’ run-time. As we can see in this figure, cholesky(fig.
4(a)) and volend(fig. 4(d)) have a relatively large number of call-sites, on the other
hand, mp3d(fig. 4(b)) and barnes(fig. 4(c)) have much smaller number of call-sites
than the others. For convenience, we exclude the functions that have no call-site in
this figure.

As we can see in this figure, most parallel application programs request shared
memory at various locations in the program codes. In addition, we expect that the
future access patterns to the shared objects allocated from the different call-sites are

154 J. Lee et al.

ParInitParInit()()

G lobal

the Task
the Task[i]

theC olum n

ParentToC hildParentToC hild()()

firstC hild

child

Elim inationTreeFrom AElim inationTreeFrom A ()()

parent

C om puteW orkC om puteW ork()()

w ork

w ork_tree

Sym bolicFactorSym bolicFactor()()

ReadSparse5()ReadSparse5() C reateVectorC reateVector()() TriangularSolveTriangularSolve()()

m ain()m ain()

C om puteIncom m ingC om puteIncom m ing()()

incom m ing

N ew M atrixN ew M atrix()()

M .firstnz

M .startrow
M .supernode

M .row

N ew VectorN ew Vector()()

v

ParInitParInit()()

G lobal

the Task
the Task[i]

theC olum n

ParentToC hildParentToC hild()()

firstC hild

child

Elim inationTreeFrom AElim inationTreeFrom A ()()

parent

C om puteW orkC om puteW ork()()

w ork

w ork_tree

Sym bolicFactorSym bolicFactor()()

ReadSparse5()ReadSparse5() C reateVectorC reateVector()() TriangularSolveTriangularSolve()()

m ain()m ain()

C om puteIncom m ingC om puteIncom m ing()()

incom m ing

N ew M atrixN ew M atrix()()

M .firstnz

M .startrow
M .supernode

M .row

N ew VectorN ew Vector()()

v

(a) Result of call-site tracing in Cholesky (maximum call chain length = 2).

prepare_m ultiprepare_m ulti()()

G lobal

Particles

get_geomget_geom ()()

C ells

Bc_space

fill_reservoirfill_reservoir()()

Ares

m ain()m ain()

prepare_m ultiprepare_m ulti()()

G lobal

Particles

get_geomget_geom ()()

C ells

Bc_space

fill_reservoirfill_reservoir()()

Ares

m ain()m ain()

ANLinitANLinit()()

G lobal

tab_inittab_init()()

C tab

C ellLock

m ybodytab

m ycelltab

startrunstartrun()()

m ain()m ain()

testdatatestdata()()

bodytab

inputdatainputdata()()

bodytab

ANLinitANLinit()()

G lobal

tab_inittab_init()()

C tab

C ellLock

m ybodytab

m ycelltab

startrunstartrun()()

m ain()m ain()

testdatatestdata()()

bodytab

inputdatainputdata()()

bodytab
(b) Result of call-site tracing in Mp3d (c) Result of call-site tracing in Barnes

(maximum call chain length = 1) (maximum call chain length = 1)

m ain()m ain()

Fram e()Fram e()

Allocate_Allocate_

Im age()Im age()

G lobal

Allocate_Allocate_

M Im ageM Im age()()

*address

Allocate_Allocate_

Shading_Shading_

Table()Table()

*address1

LoadM apLoadM ap()() C om pute_C om pute_

Norm al()Norm al()

Allocate_Allocate_

M ap()M ap()

*address

Allocate_Allocate_

Norm al()Norm al()

*address

Load_Load_

Norm al()Norm al()
C om pute_C om pute_

O ctreeO ctree()()
Load_Load_

O ctreeO ctree()()

Allocate_Allocate_

Pyram id_Pyram id_

Level()Level()

*address

C om pute_C om pute_

O pacity()O pacity()
Load_Load_

O pacity()O pacity()

Allocate_Allocate_

O pacity()O pacity()

*address

VoxelVoxel()()

Allocate_Allocate_

VoxelVoxel()()

*address

m ain()m ain()

Fram e()Fram e()

Allocate_Allocate_

Im age()Im age()

G lobal

Allocate_Allocate_

M Im ageM Im age()()

*address

Allocate_Allocate_

Shading_Shading_

Table()Table()

*address1

LoadM apLoadM ap()() C om pute_C om pute_

Norm al()Norm al()

Allocate_Allocate_

M ap()M ap()

*address

Allocate_Allocate_

Norm al()Norm al()

*address

Load_Load_

Norm al()Norm al()
C om pute_C om pute_

O ctreeO ctree()()
Load_Load_

O ctreeO ctree()()

Allocate_Allocate_

Pyram id_Pyram id_

Level()Level()

*address

C om pute_C om pute_

O pacity()O pacity()
Load_Load_

O pacity()O pacity()

Allocate_Allocate_

O pacity()O pacity()

*address

VoxelVoxel()()

Allocate_Allocate_

VoxelVoxel()()

*address

(d) Result of call-site tracing in Volrend (maximum call chain length = 2)

Fig. 4. Call-site tracing results in the four parallel application programs

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 155

likely to differ from each other because the different call-sites mean the different
programmer’s intention. We are sure that our approach can reduce the false sharing
misses because it prevents the shared objects with different access patterns from being
allocated in the same shared page. Of course, the cost of stack back tracking increases
in proportion to the length of call chain, but we can find out that the lengths of call
chains are not altogether long in most applications as shown in fig. 4. The maximum
length of call chain in the four parallel application programs used in our experiment is
only 2, so we could identify all the call-sites by using shallow tracing only.

4 Performance Evaluation

This section explains the experimental environments and shows the results of the false
sharing misses measurement, comparing with the performance of the two allocators,
CSTallocator and the sized allocator.

4.1 Experimental Environments

We use the execution-driven technique to simulate a DSM system consisting of 16
nodes. The simulator consists of the front-end and the back-end simulators. The front-
end simulator interprets the execution codes of the parallel application program
binaries and simulates the executions of the processors. We use MINT(Mips
INTerpreter) [10, 11] as a front-end simulator. The back-end simulator simulates the
policies of the memory management system using MINT’s outputs. MINT interprets
the execution codes and calls functions provided by the back-end simulator in every
memory reference. The back-end simulator implements the memory management
policies and the memory coherence protocols to be simulated.

We use cholesky, mp3d, barnes, and volrend as parallel application program suites.
These parallel applications are randomly selected from the Stanford’s SPLASH [12]
and SPLASHII [13]. We compare the number of false sharing misses when using the
two allocation schemes, CSTallocator and sized allocation scheme. We also measure
the effects of the length of call chain, N, on the number of false sharing misses when
using CSTallocator.

4.2 Experimental Results

Table 1 shows how many false sharing misses are reduced in each parallel application
when using our CSTallocator. The number of buckets in the second column is the
number of the unique allocation slots found during the repeated shared memory
allocation function calls. It represents the number of object sizes when using the sized
allocation scheme, and the number of call-site IDs when using our CSTallocator
respectively. Both the shared memory allocators manage the allocated objects as a
linked list using the separate pointers for each bucket. The shared pages with the same
bucket pointers are assigned to data objects with the same call-site ID or object size.
Thus, the more buckets are found, the more sophisticated classification has been done.
In general, the false sharing misses will decrease when the number of buckets
increases.

156 J. Lee et al.

Table 1. Results of performance comparison of CSTallocator and sized allocation (page size =
4KB, N = length of call chain)

(a) Cholesky

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 10 44,717

Call-Site-Tracing (N = 1) 15 40,921 8.5

Call-Site-Tracing (N = 2) 17 36,599 18.2

(b) Mp3d

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 8 6,147,589

Call-Site-Tracing (N = 1) 5 5,754,143 6.4

(c) Barnes

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 27 5,805,705

Call-Site-Tracing (N = 1) 7 5,104,413 12.1

(d) Volrend

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 11 953

Call-Site-Tracing (N = 1) 8 931 2.3

Call-Site-Tracing (N = 2) 12 883 7.3

From the result of table 1, we can see that our CSTallocator is much more effective
for the false sharing reduction than the existing sized allocation scheme for all the
parallel application programs used in our experiment. This observation indicates that
the object request location in program codes, that is call-site, can be a better clue than
the object size for predicting the objects’ future access patterns. For example, we find
out that the number of false sharing misses rather decreased for mp3d and barnes in
which the sized allocation scheme uses more buckets. To our expectations, the false
sharing misses reduction ratios of cholesky and volrend becomes larger in proportion
to the length of call chain. This means that the future access patterns of the objects
could be predicted more accurately with the fine-grained call-site identification.
Moreover, the fact that the false sharing misses decrease even though the number of
buckets decreases supports that our CSTallocator is also more effective in space
efficiency than the sized allocation scheme.

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 157

4.3 Analysis of Space Efficiency

For the strict performance evaluation, we need to analyze space overheads caused by
CSTallocator and the sized allocation scheme. The space overhead is the amount of
memory used additionally by the proposed methods. For more accurate space
efficiency analysis, we need to analyze the time efficiency in conjunction with space
efficiency. But in our experiments, it is impossible to measure the actual execution
time of the allocation functions because we use the simulation method instead of real
executions. So we do not discuss about the time efficiency here, and leave it as a
future work.

At first, we analyze the general shared memory allocator, which does not use the
buckets such as object size or call-site ID. In the general shared memory allocator, the
objects can be mixed up into the same shared page according to the sequence of
requests. So in the general allocator, the allocation requests stream, S, is represented as:

},...,,{ 21 nsssS =

 where si = requested size of i-th allocation (1 ≤ i ≤ n), n = total # of requests.
(1)

The number of pages needed to accept the above allocation requests stream is as
follows:

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

=
∑

=

size page
 required pages of # 1

n

i
is

 (2)

On the other hand, when using CSTallocator or sized allocation scheme, the
allocation request stream can be represented as follows without considering the order
of requests:

IDs.bucket unique ofset : },...,,{

,...

,IDbucketwithsallocationofset

},,...,,{

21

21

21

k

bucketbucketbucket

kbucket

bucketbucketbucket

bucketbucketbucketBS

SSS

bucketS

SSSS

k

k

k

=

∅=∩∩∩

=

=

(3)

And the number of pages needed to accept the above stream is as follows:

,
size page

||
 required pages of # ∑

∈
⎥
⎥

⎤
⎢
⎢

⎡ ×
=

BSbucket

bucketbucket

k

kk
AvgSizeS

 where
kbucketAvgSize is average size of each allocation request heading for

 bucketk.

(4)

In comparison of the equation (2) with (4), the difference lies in the number of
ceiling function. In equation (2), the ceiling function is applied at once, while it is
applied as many as the size of the set BS (|BS|) in equation (4). This means that the

158 J. Lee et al.

maximum additional number of pages is limited to the number of the unique
allocation sizes in sized allocation scheme and the number of call-site IDs in
CSTallocator respectively. Thus, the following is valid:

||
size pagesize page

||
 OverheadSpace 1 BS

sAvgSizeS

n

i
i

BSbucket

bucketbucket

k

kk ≤
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡ ×
=

∑
∑ =

∈

 (5)

The obvious fact we can obtain from the above equations is that the shared page
overhead is no more than the number of buckets regardless of which bucket
classification methods are used. Table 2 shows the comparison results about the space
efficiency measured by equation (5). As we can see in this table, the space efficiency
of CSTallocator is better than that of the sized allocation scheme for mp3d and
barnes, but is a little worse for cholesky and volrend. It means that the space
efficiency gap between the two schemes is not quite large. Moreover, nowadays the
space overhead such like the above can be surely tolerable if the memory
specification of the current computer systems is taken into account.

Table 2. Space efficiencies of the two schemes (Page size = 4KB. In CSTallocator, maximum
length of the call chain is used)

of additional pages (space overhead (%)) Parallel application programs
(total # of pages needed in
general allocation method) Sized allocation CSTallocator

 Cholesky (738) 10 (1.36) 17 (2.30)
 Mp3d (553) 8 (1.45) 5 (0.90)
 Barnes (308) 27(19.85) 7 (5.15)

 Volrend (441) 11 (2.49) 12 (2.72)

5 Conclusions and Future Works

This paper presents an efficient shared memory allocation method for parallel
applications which communicate via dynamically allocated shared memory in DSM
systems. Without modifying the user interface of the shared memory allocator, the
proposed call-site tracing-based allocator, called CSTallocator, can reduce the false
sharing misses more effectively than the existing sized allocation scheme. Our
CSTallocator prevents the shared objects with different call paths being allocated in
the same shared page by tracing the object request location in the application program
codes. We use the call-site as a clue for predicting the programmer’s intention, and
find out by simulation that the call-site help to predict the future access patterns of the
shared objects more accurately than the existing sized allocation scheme. The
CSTallocator additionally spends pages only as many as the number of unique call-
sites in the applications. That is, our method could reduce more false sharing misses
with a moderate space overhead than the sized allocation scheme. We are sure that
our CSTallocator can contribute to both reduction of the false sharing misses and
reduction of the cost on keeping the memory coherency in DSM systems.

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 159

In the future, we will verify how many false sharing misses can be reduced when
using the mixture scheme of the sized allocator and our CSTallocator. And to measure
the time efficiency as well as space efficiency, we will try to use the real DSM
systems as a test bed instead of simulation environments.

References

[1] Andrew S. Tanenbaum. Distributed Operating Systems, chapter 6, pages 333-345.
PRENTICE HALL, 1995.

[2] Jongwoo Lee, Yookun Cho. Page Replication Mechanism using Adjustable DELAY
Counter in NUMA Multiprocessors. Journal of the Korean Institute of Telematics and
Electronics B, 33B(6), pp.23-33, June 1996.

[3] Josep Torrellas, Monica S. Lam, and John L. Hennessy. Shared Data Placement
Optimizations to Reduce Multiprocessor Cache Miss Rates. In Proceedings of the 1990
International Conference on Parallel Processing, volume II(Software), pages 266-270,
August 1990.

[4] Susan J. Eggers and Tor E. Jeremiassen. Eliminating False Sharing. In Proceedings of the
1991 International Conference on Parallel Processing, volume I(Architecture), pages
377-381, August 1991.

[5] Jongwoo Lee, Yookun Cho. Shared Memory Allocation Mechanism for Reducing False
Sharing in Non-Uniform Memory Access Multiprocessors. Journal of Korean Information
Science Society(A): Computer Systems and Theory, 23(5), pp.487-497, May 1996.

[6] JongWoo Lee and Yookun Cho. An Effective Shared Memory Allocator for Reducing
False Sharing in NUMA Multiprocessors. In Proceedings of 1996 IEEE 2nd International
Conference on Algorithms & Architectures for Parallel Processing(ICA3PP '96), pages
373-382, June 1996.

[7] Roger L. Adema and Carla Schlatter Ellis. Memory Allocation Constructs to
Complement NUMA Memory Management. In Proceedings of the 3rd IEEE Symposium
on Parallel and Distributed Processing, December 1991.

[8] Jongwoo Lee, Moonhee Kim, Janghee Han, Daeku Ji, Jongwan Yoon, Jangseon Kim.
Effects of Dynamic Shared Memory Allocation Techniques on False Sharing in DSM
Systems. Journal of Korean Information Science Society(A): Computer Systems and
Theory, 24(12), pp.1257-1269, December 1997.

[9] Boohyung Han, Seongje Cho, Yookun Cho. Techniques for Eliminating False Sharing
and Reducing Communication Traffic in Distributed Shared Memory Systems. Journal of
Korean Information Science Society(A), 25(10), pp.1100-1108, October 1998.

[10] J. E. Veenstra. MINT Tutorial and User Manual. Technical Report TR452, Computer
Science Department, University of Rochester, July 1993.

[11] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Simulation of Shared-
Memory Multiprocessors. In Proceedings of the Second International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication Syst-
ems(MASCOTS '94), pages 201-207, January-February 1994.

[12] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. ACM SIGARCH Computer Architecture News, 20(1):5-44, March 1992.

[13] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH2 Programs: Characterization and Methodological Considerations. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 24-36, June 1995.

	Introduction
	Related Works
	Design and Implementation of CSTallocator
	Call-Site Tracing Technique
	Examples of Call-Site Tracing in Parallel Application Programs

	Performance Evaluation
	Experimental Environments
	Experimental Results
	Analysis of Space Efficiency

	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

