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Abstract. False sharing is a result of co-location of unrelated data in the same 
unit of memory coherency, and is one source of unnecessary overhead being of 
no help to keep the memory coherency in multiprocessor systems. Moreover, 
the damage caused by false sharing becomes large in proportion to the 
granularity of memory coherency. To reduce false sharing in page-based DSM 
systems, it is necessary to allocate unrelated data objects that have different 
access patterns into the separate shared pages. In this paper we propose call-site 
tracing-based shared memory allocator, shortly CSTallocator. CSTallocator 
expects that the data objects requested from the different call-sites may have 
different access patterns in the future. So CSTallocator places each data object 
requested from the different call-sites into the separate shared pages, and 
consequently data objects that have the same call-site are likely to get together 
into the same shared pages. We use execution-driven simulation of real parallel 
applications to evaluate the effectiveness of our CSTallocator. Our observations 
show that our CSTallocator outperforms the existing dynamic shared memory 
allocator. 

Keywords: False Sharing, Distributed Shared Memory, Dynamic Memory 
Allocation, Call Site Tracing. 

1   Introduction 

In distributed shared memory (DSM) systems, efficient data caching is critical to the 
entire system performance due to their non-uniform memory access time 
characteristics. Because the access to a remote memory is much slower than the 
access to a local memory, reducing the frequencies of the remote memory accesses 
with efficient caching can lead to decrease of the average cost of memory accesses, 
and subsequently improve the entire system  performance  [1].  A  simple  and  widely 
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Fig. 1. Example of page replication in DSM systems 

used mechanism for exploiting locality of reference is to replicate or migrate 
frequently used pages from remote to local memory [2]. But in case of page 
replication, the existence of multiple copies of the same page causes memory 
coherence problem (Fig. 1). 

In DSM systems, false sharing happens when several independent objects, which 
may have different access patterns, share the memory coherency unit. Memory faults 
or misses caused by false sharing do not affect the correct executions of the parallel 
applications. As a result, we can say that false sharing is one major source of 
unnecessary overhead to keep the memory consistent [3, 4, 5, 6]. Especially, the 
problem becomes severe in PC-NOW DSM systems where the memory coherency 
unit is very large (generally, one virtual page). They say that the false sharing misses 
occupy 80% or so of the shared memory faults in page-based DSM systems [3, 4, 5, 
6]. It means that the false sharing is the major obstacle for improving the memory 
performance in page-based DSM systems. In this paper, we present an efficient 
dynamic shared memory allocator for false sharing reduction in DSM system. The 
reasons why we chose to optimize dynamic shared memory allocator for reducing 
false sharing are that this approach is transparent to the application programmers, and 
almost all the false sharing misses happen in shared heap when multiple processes in 
a parallel application communicate with each other using shared memory allocated by 
dynamic shared memory allocator. The prediction of the future access patterns of each 
data object is necessary to reduce the false sharing misses caused by the data object. 
To accomplish this, we classify the data objects such that data objects requested at 
different locations in parallel program codes should not be allocated in the same 
shared page by tracing the call-site(object request location in parallel program codes). 
This is based on the idea that data objects requested at the different locations in 
program codes will show different access patterns in the future. Though the prediction 
technique of the access patterns we use is not always correct, we find out that our call-
site tracing prediction technique could reduce the false sharing in comparison with 
other existing techniques. In order to measure the frequencies of page faults caused by 
false sharing(shortly false sharing misses), we use SPLASH and SPLASH II as a 
parallel application benchmark, and MINT as a multiprocessor architecture simulator. 
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In section 2, we review the related works. Section 3 explains the design and 
implementation of the call-site tracing-based shared memory allocator. We present the 
results of performance evaluation in section 4, and section 5 draws the conclusions. 

2   Related Works 

In this paper, we focus on the page-based DSM systems that keep the memory 
coherency in unit of a virtual memory page. The dynamic shared memory allocator 
for the page-based DSM systems has to decide where the requested data objects are 
placed. If the dynamic shared memory allocator knows the characteristics and access 
patterns of the requested data objects in advance, the allocator can easily place the 
data objects into the appropriate shared page with removing the causes of the false 
sharing. For example, the allocator can reduce the false sharing misses by placing the 
objects with much different access patterns to the different shared pages, or not 
placing non-related data objects into the same shared page. But, the dynamic shared 
memory allocator cannot know the characteristics and access patterns of the requested 
objects in advance. Therefore, the typed allocation is proposed in [7] where the clues 
provided by the programmers are used. In this typed allocation, the programmer must 
specify the memory access type through the allocation function arguments, such as 
Read-Only, Write-Mostly, and Lock types. Thus, the data objects with different types 
could be placed in the different shared pages. But, this scheme needs to additional 
overheads that user interfaces of the dynamic shared memory allocator have to be 
changed, and in turn the modification of the application source code is unavoidable. 
Moreover, it is not an easy job for the programmers to know in advance the access 
types of each shared data object. Our work assumes that there is no change in the API 
of the dynamic shared memory allocator.  

Per-process allocation scheme assigns the different cache lines to the data objects 
requested by the different processes [3]. In this scheme, the data objects requested by 
the different processes are placed in the separate cache lines, so that it could reduce 
the possibility that data objects without relationships or with different access patterns 
are placed in the same cache line. This technique is effective where multiple 
processes request shared memory allocation evenly, but is likely to be ineffective 
where a dedicated process has the full responsibility of shared memory allocation [8]. 
In all the parallel applications used in our experiments, a dedicated process is also 
used for shared memory allocation, so it is inappropriate to compare this scheme with 
our approach. 

Sized allocation scheme is proposed in [5, 6, 8], where the different-sized objects 
are prohibited from being placed in the same shared page. That is, by placing only the 
same-sized objects in the same shared page, this method tries to minimize the co-
location of heterogeneous data objects. They say that, by using the object-size 
information for the prediction of the future access patterns, the transparency of the 
allocator API could be kept and the false sharing misses could be reduced 
simultaneously. Particularly according to [8], allocation with separated tag scheme 
and minimizing the multi-page spanning scheme could additionally reduce the false 
sharing misses. But this sized allocation is not enough to exactly predict the future 
access patterns of the shared data objects because the object size may not sufficiently 
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represent the future access patterns. In our work, we will compare our call-site tracing 
technique with this sized allocation technique because these two methods have the 
similar assumptions that the interface of the dynamic shared memory allocator must 
not be modified and the shared memory allocation must be effective regardless of the 
existence of the allocation-dedicated process. 

In [9], the hybrid allocation technique is proposed, which combines per-processor 
allocation and minimizing the multi-page spanning scheme. In this hybrid scheme, 
data objects requested by the different processors are placed in the different pages 
only when the object size is smaller than the page size. When the size of the data 
objects is bigger than the page size, on the other hand, they try to minimize the multi-
page spanned allocations by prohibiting a shared object from being allocated in the 
page boundary. This technique could reduce the false sharing misses a little more by 
only combining the existing methods. But it is insufficient to accept this technique as 
a new prediction model of the future access patterns. 

We find out by reviewing the previous works that the effective prediction of the 
future access patterns to be applied to the shared object allocations is an important 
factor to reduction of the false sharing misses. The shared objects which may have 
different access patterns must be placed in the different memory coherency unit. In 
this paper, we present call-site tracing based shared memory allocator, shortly called 
CSTallocator, where the future access patterns are predicted by the shared objects’ 
request location(call-site) in the program codes. That is, the prediction is based on the 
instruction pointer from which the shared object allocation is requested. We hope that 
the objects with different call-sites may have the different access patterns in the 
future. By using the implicit information inherent in the program codes, our method 
not only keeps the API transparency, but also does not burden the programmers with 
the additional access type information. The call-site information of a shared object 
could be a useful clue for predicting the future access patterns because most parallel 
application programs call the allocation functions at different locations according to 
the object usage plans. Of course, the call-site tracing cost is more expensive than the 
cost of getting static information such as the allocation size passed via parameters or 
processor/process ID calling the function. Nevertheless, we can say that the call-site 
tracing overhead is not quite large because a call-site tracing procedure happens at a 
time only when the new call-site appears. 

3   Design and Implementation of CSTallocator 

With the information about objects’ request locations in the program codes, we can 
infer the object’s usage more accurately than with the object-size because multiple 
processes(or threads) cannot help to call the allocator at the different call-site 
according to the object’s future usage. We expect that the future access patterns of the 
shared objects requested at different call-sites will be different even though the object 
sizes are the same. The only case that our expectation becomes wrong is when the 
usage of data objects requested at the same call-site changes abruptly and/or 
frequently. But it is difficult for the usage of the specific part of the program code to 
be dynamically changed, so we can use the object request call-sites as a clue for 
predicting the object’s future access patterns. 



152 J. Lee et al. 

Parallel Program

Allocation

Site 1

Allocation

Site 2

Allocation

Site 3

Allocation

Site n

…
…

Shared Page 1

for Allocation Site 1

…
…

Shared Page 2

for Allocation Site 2

Shared Page 3

for Allocation Site 3

Shared Page n

for Allocation Site n

…
…

 

Fig. 2. Shared objects allocation example according to the call-sites in CSTallocator 

Fig. 2 shows an example of the call-sites of each shared object in a parallel 
application program. In this figure, the shared objects are placed in the separate 
pages according to their allocator call-sites. The key idea is to prevent the shared 
objects requested at the different call-sites from being placed in the same shared 
page, while the different sized objects are allowed to be in the same page if the 
objects are requested at the same call-site. In our experiments, we intentionally 
allow this situation for the exact one-to-one comparison with the sized allocation 
scheme. In addition, we exclude the mixture scheme of call-site tracing and sized 
allocation for the accurate comparison of the two methods. Though the mixture 
technique considering both the call-site and object size is expected to show better 
performance, we do not discuss about the mixture technique here, and leave it as a 
future work. 

3.1   Call-Site Tracing Technique 

To accomplish the call-site tracing based allocation, firstly we have to identify the 
call-site where the shared memory allocation function is called in the program codes. 
The identification procedure must be done dynamically and transparently in the 
shared memory allocation function without additional formal parameters. For this 
purpose, we embed a module called call path back tracker, into the shared memory 
allocator. By back tracking the activation records accumulated in the process’s (or 
thread’s) stack, we could identify the call path from main(), the starting point of the 
program, to the current call-site. A return address has to be stored in the activation 
record for returning from the function call, and we could get this return address by 
identifying the size of local variables and the parameters used in the function. The 
stack back-tracking repeats till the main() function. For example, if we get 
“share_malloc()  B()  A()  main()” from the stack back-tracking at a certain 
call-site, the ID of this call-site is represented as “A B”. The share_malloc() and 
main() functions are excluded in the call site ID representation because they always 
 



 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 153 

A()
{

…
B();
…

}
B()
{

…
Share_Malloc(); // Call Site SN
…

}
Share_Malloc()
{

Call_Site_ID = Stack_Tracer();
…

}

……

A()’s Stack
Record

B()’s Stack
Record

Share_Malloc()’s Stack
Record

Call-Site Tracing Results

Call-Site SN’s ID : A B

 

Fig. 3. An example of identifying call-site ID by call-site tracing 

appear in every call-site ID. Fig. 3 shows an example of call-site tracing. In this 
figure, the call-site, SN, is identified and registered with a call-site ID “A B”. And 
then, the shared objects with different call-site IDs are allocated in the different 
shared pages. 

For the performance trade-offs of the stack back tracking, we have to consider the 
back tracking depth of function call paths. As a rule, a call-site ID can be defined 
after the back tracking to main() is completed. But in some parallel applications, we 
could identify all the call-sites without back tracking to main(). Therefore, we may 
decrease the overhead caused by the redundant stack back tracking if we could choose 
dynamically between the deep tracing and the shallow tracing. But the 
implementation of the dynamically depth-controlled back tracking is impossible 
because we cannot know the appropriate back tracking depth in advance to identify all 
the call-sites in a parallel application. So in our experiments, we will statically 
measure the effect of the back tracking depth adjustment on the performance. To do 
this, we define length-N call chain, which is the first N call paths from share_malloc() 
to main(). For example, length-1 call chain identifies only function B() which calls 
share_malloc(). In the same way, length-2 call chain includes function B(), which 
calls share_malloc(), and function A(), which calls B(), in the call-site ID. The longer 
the length of call chain, the deeper back tracking is to be done. In the prospect of the 
call chain length, we can expect that the possibility of false sharing would drop when 
using the longer length of call chain because it could identify the call-sites minutely.  

3.2   Examples of Call-Site Tracing in Parallel Application Programs  

Fig. 4 shows the call-site tracing results for the parallel applications used in our 
experiments. This figure summarizes all the paths from the main() to the call-sites 
identified during the applications’ run-time. As we can see in this figure, cholesky(fig. 
4(a)) and volend(fig. 4(d)) have a relatively large number of call-sites, on the other 
hand, mp3d(fig. 4(b)) and barnes(fig. 4(c)) have much smaller number of call-sites 
than the others. For convenience, we exclude the functions that have no call-site in 
this figure. 

As we can see in this figure, most parallel application programs request shared 
memory at various locations in the program codes. In addition, we expect that the 
future access patterns to the shared objects allocated from the different call-sites are 
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(a) Result of call-site tracing in Cholesky (maximum call chain length = 2). 
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(d) Result of call-site tracing in Volrend (maximum call chain length = 2) 

Fig. 4. Call-site tracing results in the four parallel application programs 
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likely to differ from each other because the different call-sites mean the different 
programmer’s intention. We are sure that our approach can reduce the false sharing 
misses because it prevents the shared objects with different access patterns from being 
allocated in the same shared page. Of course, the cost of stack back tracking increases 
in proportion to the length of call chain, but we can find out that the lengths of call 
chains are not altogether long in most applications as shown in fig. 4. The maximum 
length of call chain in the four parallel application programs used in our experiment is 
only 2, so we could identify all the call-sites by using shallow tracing only. 

4   Performance Evaluation 

This section explains the experimental environments and shows the results of the false 
sharing misses measurement, comparing with the performance of the two allocators, 
CSTallocator and the sized allocator. 

4.1   Experimental Environments 

We use the execution-driven technique to simulate a DSM system consisting of 16 
nodes. The simulator consists of the front-end and the back-end simulators. The front-
end simulator interprets the execution codes of the parallel application program 
binaries and simulates the executions of the processors. We use MINT(Mips 
INTerpreter) [10, 11] as a front-end simulator. The back-end simulator simulates the 
policies of the memory management system using MINT’s outputs. MINT interprets 
the execution codes and calls functions provided by the back-end simulator in every 
memory reference. The back-end simulator implements the memory management 
policies and the memory coherence protocols to be simulated. 

We use cholesky, mp3d, barnes, and volrend as parallel application program suites. 
These parallel applications are randomly selected from the Stanford’s SPLASH [12] 
and SPLASHII [13]. We compare the number of false sharing misses when using the 
two allocation schemes, CSTallocator and sized allocation scheme. We also measure 
the effects of the length of call chain, N, on the number of false sharing misses when 
using CSTallocator. 

4.2   Experimental Results 

Table 1 shows how many false sharing misses are reduced in each parallel application 
when using our CSTallocator. The number of buckets in the second column is the 
number of the unique allocation slots found during the repeated shared memory 
allocation function calls. It represents the number of object sizes when using the sized 
allocation scheme, and the number of call-site IDs when using our CSTallocator 
respectively. Both the shared memory allocators manage the allocated objects as a 
linked list using the separate pointers for each bucket. The shared pages with the same 
bucket pointers are assigned to data objects with the same call-site ID or object size. 
Thus, the more buckets are found, the more sophisticated classification has been done. 
In general, the false sharing misses will decrease when the number of buckets 
increases. 
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Table 1. Results of performance comparison of CSTallocator and sized allocation (page size = 
4KB, N = length of call chain) 

(a) Cholesky 

Measure 
Allocator 

# of buckets # of false sharing misses Reduction rate(%) 

Sized 10 44,717  

Call-Site-Tracing (N = 1) 15 40,921 8.5 

Call-Site-Tracing (N = 2) 17 36,599 18.2 

(b) Mp3d 

Measure 
Allocator 

# of buckets # of false sharing misses Reduction rate(%) 

Sized 8 6,147,589   

Call-Site-Tracing (N = 1) 5 5,754,143 6.4 

(c) Barnes 

Measure 
Allocator 

# of buckets # of false sharing misses Reduction rate(%) 

Sized 27 5,805,705   

Call-Site-Tracing (N = 1) 7 5,104,413 12.1 

(d) Volrend 

Measure 
Allocator 

# of buckets # of false sharing misses Reduction rate(%) 

Sized 11 953   

Call-Site-Tracing (N = 1) 8 931 2.3 

Call-Site-Tracing (N = 2) 12 883 7.3 

 

From the result of table 1, we can see that our CSTallocator is much more effective 
for the false sharing reduction than the existing sized allocation scheme for all the 
parallel application programs used in our experiment. This observation indicates that 
the object request location in program codes, that is call-site, can be a better clue than 
the object size for predicting the objects’ future access patterns. For example, we find 
out that the number of false sharing misses rather decreased for mp3d and barnes in 
which the sized allocation scheme uses more buckets. To our expectations, the false 
sharing misses reduction ratios of cholesky and volrend becomes larger in proportion 
to the length of call chain. This means that the future access patterns of the objects 
could be predicted more accurately with the fine-grained call-site identification. 
Moreover, the fact that the false sharing misses decrease even though the number of 
buckets decreases supports that our CSTallocator is also more effective in space 
efficiency than the sized allocation scheme. 
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4.3   Analysis of Space Efficiency 

For the strict performance evaluation, we need to analyze space overheads caused by 
CSTallocator and the sized allocation scheme. The space overhead is the amount of 
memory used additionally by the proposed methods. For more accurate space 
efficiency analysis, we need to analyze the time efficiency in conjunction with space 
efficiency. But in our experiments, it is impossible to measure the actual execution 
time of the allocation functions because we use the simulation method instead of real 
executions. So we do not discuss about the time efficiency here, and leave it as a 
future work. 

At first, we analyze the general shared memory allocator, which does not use the 
buckets such as object size or call-site ID. In the general shared memory allocator, the 
objects can be mixed up into the same shared page according to the sequence of 
requests. So in the general allocator, the allocation requests stream, S, is represented as: 

},...,,{ 21 nsssS =  

 where si = requested size of i-th allocation (1 ≤  i ≤  n), n = total # of requests. 
(1) 

The number of pages needed to accept the above allocation requests stream is as 
follows: 
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On the other hand, when using CSTallocator or sized allocation scheme, the 
allocation request stream can be represented as follows without considering the order 
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And the number of pages needed to accept the above stream is as follows: 
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 where 
kbucketAvgSize  is average size of each allocation request heading for 

 bucketk. 

(4) 

In comparison of the equation (2) with (4), the difference lies in the number of 
ceiling function. In  equation (2), the ceiling function is applied at once, while it is 
applied as many as the size of the set BS (|BS|) in equation (4). This means that the 
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maximum additional number of pages is limited to the number of the unique 
allocation sizes in sized allocation scheme and the number of call-site IDs in 
CSTallocator respectively. Thus, the following is valid: 
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The obvious fact we can obtain from the above equations is that the shared page 
overhead is no more than the number of buckets regardless of which bucket 
classification methods are used. Table 2 shows the comparison results about the space 
efficiency measured by equation (5). As we can see in this table, the space efficiency 
of CSTallocator is better than that of the sized allocation scheme for mp3d and 
barnes, but is a little worse for cholesky and volrend. It means that the space 
efficiency gap between the two schemes is not quite large. Moreover, nowadays the 
space overhead such like the above can be surely tolerable if the memory 
specification of the current computer systems is taken into account. 

Table 2. Space efficiencies of the two schemes (Page size = 4KB. In CSTallocator, maximum 
length of the call chain is used) 

# of additional pages (space overhead (%)) Parallel application programs
(total # of pages needed in 
general allocation method) Sized allocation CSTallocator 

 Cholesky (738) 10 (1.36) 17 (2.30) 
 Mp3d (553) 8 (1.45) 5 (0.90) 
 Barnes (308) 27(19.85) 7 (5.15) 

 Volrend (441) 11 (2.49) 12 (2.72) 

5   Conclusions and Future Works 

This paper presents an efficient shared memory allocation method for parallel 
applications which communicate via dynamically allocated shared memory in DSM 
systems. Without modifying the user interface of the shared memory allocator, the 
proposed call-site tracing-based allocator, called CSTallocator, can reduce the false 
sharing misses more effectively than the existing sized allocation scheme. Our 
CSTallocator prevents the shared objects with different call paths being allocated in 
the same shared page by tracing the object request location in the application program 
codes. We use the call-site as a clue for predicting the programmer’s intention, and 
find out by simulation that the call-site help to predict the future access patterns of the 
shared objects more accurately than the existing sized allocation scheme. The 
CSTallocator additionally spends pages only as many as the number of unique call-
sites in the applications. That is, our method could reduce more false sharing misses 
with a moderate space overhead than the sized allocation scheme. We are sure that 
our CSTallocator can contribute to both reduction of the false sharing misses and 
reduction of the cost on keeping the memory coherency in DSM systems. 
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In the future, we will verify how many false sharing misses can be reduced when 
using the mixture scheme of the sized allocator and our CSTallocator. And to measure 
the time efficiency as well as space efficiency, we will try to use the real DSM 
systems as a test bed instead of simulation environments. 
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