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Abstract. The most efficient numerical methods for the solution of par-
tial differential equations, multigrid methods on adaptively refined grids,
imply several drawbacks from the point of view of memory-efficiency on
high-performance computer architectures: First, we loose the trivial struc-
ture expressed by the simple i, j-indexing of grid points or cells. This effect
is even worsened by the usage of hierarchical data and – if implemented
in a naive way – leads to both increased storage requirements (neighbour-
hoodrelations possibly modified difference stencils) and a less efficient data
access (worse locality of data and additional data dependencies), in ad-
dition. Our approach to overcome this quandary between numerical and
hardware-efficiency relies on structured but still highly flexible adaptive
grids, the so-called space-partitioning grids, cell-oriented operator evalu-
ations, and the construction of very efficient data structures based on the
concept of space-filling curves. The focus of this paper is in particular on
the technical and algorithmical details concerning the interplay between
data structures, space-partitioning grids and space-filling curves.

1 Introduction

As soon as we want to simulate real world applications described by (systems
of) partial differential equations, we are faced with two increasingly important
requirements: First, there is a rising need for accuracy and, second, the com-
puting time should stay within manageable borders. These requirements force
us to reduce both the number of unknowns – typically by sophisticated grid
adaptivity – and the complexity of our solver – typically with the help of multi-
grid methods. Unfortunately, both methods – grid adaptivity and multigrid –
come along with several drawbacks. Adaptively refined grids in general imply a
substantial overhead in terms of storage requirements due to the need to store
neighbourhoud relations and/or specialised stencils for the particular local adap-
tivity pattern. But also with respect to the efficiency of data access, adaptively
refined grids cause considerable deficits since in an irregular data structure it is
much more difficult to bring together data dependencies with data locality in
the physical memory space. Multigrid methods even worsen this effect as they
induce additional data dependencies between data of different grid levels.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 138–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Cache-Optimal Data-Structures for Hierarchical Methods 139

In the following,wepresent our approach to overcomethe quandarybetween nu-
merical efficiency and efficient memory usage described above. Sect. 2 introduces
the used grids. Sect. 3 describes the algorithm of our solver and Sect. 4 demon-
strates the construction of suitable memory efficient data structures. Finally, we
present results on the applicability and efficiency of our concept in Sect. 5.

2 Space-Partitioning Grids

As a first towards hardware efficiency, we use so-called space-partitioning grids
which offer both a high flexibility in term of the adaptivity pattern and a strict
structuredness which is already inherently storage saving as the storage of depen-
dencies of grid elementsbecomes obsolete. Space-partitioning grids,mostly referred
to in the form of octrees, are widely used as a tool to solve different subproblems
in the simulation context, for example grid generation, geometry description, vi-
sualisation, load distribution, and as a computational grid. This shows the va-
riety of functionalities and advantages of the underlying concept making space-
partitioning grids a very attractive choice – also as an overall integrating concept
in particular in larger context such as coupled simulations [4].

Fig. 1 shows examples for space-partitioning Cartesian grids. The construction
principle is the recursive refinement of grid cells into a fixed number of congruent
subcells. The number of subcells can be varied. In the case of the well-known
quadtree (two-dimensional) or the octree (three-dimensional), a partitioning into
two in each coordinate direction is performed. We instead perform a partitioning
into three in each direction for reasons we will explain later on in the context of
the construction of data structures (Sect. 4).

Fig. 1. Two- (left) and three-dimensional (right) examples for space-partitioning grids
with a partitioning into three per coordinate direction

Arbitrarily local adaptive refinements can be mapped with space-partitioning
grids1. The degrees of freedom are assigned to the vertices of the grid cells in our
1 The only case we can not hadle without further efforts are unisotropic refinements.

The generalisation of our concepts to unisotropic refinements is subject of our current
work and in the implementation phase.
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concept, but exceptions to this rule such as for the pressure in the Navier-Stokes
equations [2,3] are possible. For reasons of clarity, we will restrict ourselves to
vertex data in the following.

3 Algorithms

3.1 Operator Evaluation

Our main task – to achieve a high memory efficiency – requires the prevention
of the storage of unnecessary informations and a high locality of data access (in-
creasing the efficiency of the cache-usage). That is, we have to avoid the storage
of neighbourhoodrelations and specialised difference stencils in dependence on
the local adaptivity pattern, wich are, in our case, only caused by the vertex-
oriented operator evaluation (processesing the grid vertex by vertex and using
values at neighbouring vertices for operator evaluation) compute the value of
the corresponding difference operator with the help of the values at neighbour-
ing vertices. In addition, values at neighbouring verties might be arbitrarily far
away from the current point in the physical memory space – and, therefore, are
currently not in the cache with a high probability.

Thus, we switch to the so-called cell-oriented operator evaluation, a well-
known concept in the finite element context [5]. It decomposes the operator
into cell-parts which accumulate to the complete operator during a run over all
cells contributing to the operator value. For the evaluation of the cell-part of an
operator we allow only the usage of data owned to the cells, that is the degrees of
freedom stored at the cells vertices. At boundaries between different refinements
depths, the operator results from the accumulation of cell-parts of neighbouring
cells appropriately combined with restriction and interpolation operators. Such,
there is no need to store specialised stencils.

3.2 Multigrid

For the description of our multigrid methods, we only concentrate on the algo-
rithmic realisation and leave out mathematical details as far as they have no
algorithmic impacts.

Additive Multigrid. If we process our cell tree in the natural top-down-depth-
first order, we cannot finish the evaluation of an operator at the current level
before we switch to the next (coarser or finer) level, but we can compute the
residual on all levels based on the same data. Thus, from the algorithmic point
of view, the additive multigrid method is the natural choice: We interpolate
all values to the finest level (dehierachisation) in the down-traversal (coarse to
fine) of the cell tree, compute the cell-parts of the residual and smooth on the
finest level, and restrict the fine grid residuals (those computed before fine-
grid smoothing!) to the coarser grids during the up-traversal. Simultanously, we
smooth on all grid levels as soon as the accumulation of residual parts (resulting
from operator evaluation or restriction) is finished.
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Multiplicative Multigrid. In contrast to additive multigrid methods, an iter-
ation of a multiplicative multigrid method cannot be done within one top-down-
depth-first sweep over the corresponding cell tree. We have to perform a run over
the whole cell tree for each operation (smoothing, interpolation, restriction) but
stop at the current grid level to prevent an overall cost of O(N log N) for a grid
with N unknowns on the finest level. As a result, we have to swap out fine grid
data to intermediate data structures whenever they are not needed.

The F-Cycle. If we now combine our multigrid methods with dynamical adap-
tivity, we end up with the so-called full-multigrid methods or F-cycles which start
with an a priori defined preliminary and in general quite coarse grid, compute
a first solution on this grid, apply some adaptivity criteria, refine or coarsen
the grid according to these criteria, and, finally, compute the solution on the
new grid. This results in an overall iterative process producing solutions on a
sequence of incrementally enhanced grids.2

4 Data Structures

As mentioned above, our algorithm processes the grid in a top-down depth-first
order and performs a cell-oriented evaluation of the discrete operators (differ-
ence stencils, restriction, interpolation). The cell-oriented view helps us to avoid
the storage of unneccessary data (pointers to sons/fathers, specialised stencils
at boundaries between different refinement depths) and, second, enhances the
locality of data accesses if we additionally provide suitable data structures for
vertex data3.

4.1 Space-Filling Curves as an Ordering Mechanism

To achieve an optimal locality of data access and, thereby, a high cache-efficiency,
we define a unique ’suitable’ processing order of our grid cells and examine the
resulting processing order of vertex data.

Space-filling curves [11] are used as an established tool for parallelisation and
balanced load distribution [7,8,9,10] for PDE solvers on adaptive grids. The
quasi-optimal locality of the class of self-similar recursively defined space-filling
curves yields quasi-minimal communication costs [10]. Exactly this quasi-optimal
locality is the property which is decisive for the optimisation of time locality
of data usage in our algorithm, too. In general, self-similar recursively defined
space-filling curves are given by a generating template connecting the cells of a
first decomposition of the unit square (2D) or unit cube (3D) and a set of rules

2 In the case of time-dependend problems, we have to adapt the grid to the temporal
changes after each or after some time steps, in addition.

3 Whenever we need cell-centered data such as the pressure in the Navier-Stokes equa-
tion, the allocation of the respective data structure is trivial: data are simply stored
in a stream corresponding to the cell-stream resulting from our top-down-depth-first
tree traversal.
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Fig. 2. Template, first two iterate and iterate for an adaptively refined space-
partitioning grid of the the two-dimensional Peano curve

describing the recursive application of this template (possibly mirrored and/or
rotated) on each of the subdomains in case of further refinement. Fig. 2 shows
the generating template and the first iterate of the two-dimensional Peano curve
as an example. The space-filling curves themselves are define as the limit of this
recursive refinement process.

As we look for ordering mechanisms for the cells of a discrete grid, we are in
fact not interested in the space-filling curves itself but in their iterates. Since the
refinement rules of the curves are purely local, these iterates can be naturally
generalised to adaptively refined space-partitioning grids. See Fig. 2 for an ex-
ample. The high locality of the resulting oder of cells results from the fact that
the curve visits all son (and grandson,. . .) cells of a father cell at once before
they proceed to other cells not contained in the repective father cell. Such, all
work to be done at one vertex of the grid (during the evaluation of operators)
is finished within a short time period in the average case.

The resulting oder of grid cells can be easily generalised to an order of the cells
of all refinement levels (needed hierarchical methods such as multigrid). Follow-
ing the recursive definition of space-filling curves, we start with the coarsest cell
(covering the whole computational domain), apply the curve’s template in this
cell, visit the son cells according to this template, their son cells (if existing) and
so on. Thus, we end up with a particular – uniquely defined – top-down-depth-
first odering as already presumed in Sect. 3.

4.2 Space-Filling Curves and Stacks

In the literature, we already find hints [12] on substantial improvements of the
cache-preformance and, thus, the runtime of a PDE solver by the pure reordering
of data according to their usage during the run along a space-filling curve. We
go one step further and consequently use the properties of the Peano curve to
construct data structures with optimal spatial locality perfectly supplementing
the time locality described above. We will explain the underlying idea for two-
dimensional regular grids with nodal data. Fig. 3 shows the Peano curve in two-
dimensional regular grids. Moving along the curve, we see that the grid points
at the left-hand side of the curves are processed in one direction during the first
pass of the curve and exactly in the opposite direction during the second pass
of the curve. The same holds for the points at the right-hand side of the curve.
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This directly corresponds to a very simple type of data structures, the so-called
stacks, which allow only two basic operations: put a datum on top of the stack
and pop a datum from the top of the stack. In our examples, we can perform one
iteration over all data with four data structures: one input stream containing all
data in the order of their first usage, two stacks – corresponding to the left- and
the right-hand side of the curve – on which we put data after the first pass of
the curve and from which we pop them during the second pass, and one output
stream collecting all vertex data after their last usage. The output stream can
directly be used as an input stream for the next solver iteration if we process
the grid along the same curve but in the opposite direction.

Fig. 3. Assignment of vertices and their data to two groups: left- and right-hand side
of the Peano curve corresponding to two stacks used for the intermediate storage of
data during solver iterations [4]

In the three-dimensional case, this concept works only if an analogue forward
and backward processing of vertex data also holds on the two-dimensional faces
of the cubic cells. We could not find any Hilbert curve fulfilling this requirement,
whereas it is trivial to show for the Peano curve due to their dimension-recursive
definition [13,14]. The generalisation to adaptively refined grids with hierarchical
data is quite technical both in the two-dimensional and in the three-dimensional
case. Therefore, we refer to other publications [15,13,14,16] for further details. We
only state the results: we need eight intermediate stacks in the two-dimensional
case and 27 stacks in the three-dimensional case, both independent of the current
refinement depth of our grid.

5 Evaluation and Numerical Results

Before we present results on the hardware efficiency of our concept – measured
by the cache-efficiency and the runtime – we would like to point out that our
algorithms fulfill all numerical requirements, in particular offer a flexible and
dynamical adaptivity and multigrid performance of the solvers. For detailed
results see [15,13,14,6].

5.1 Cache-Efficiency and Storage Requirements

As described above, the storage of administrational data is almost obsolete due to
the structueredness of the grid and the cell-oriented operator evaluation. There-
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fore, we end up with a very low storage requirement of only about five Byte per
degree of freedom in the case of the three-dimensional Poisson equation (with
unknowns stored as float variables), for example [13].

If we look at the cache-efficiency of our programs, we observe an extremely
high hit-rate in the L2-cache of above 99.9% in two and in three dimensions
[15,13]. Similar hit-rates could be achieved as well for all algorithmic extensions
such as dynamical adaptivity [6], higher order discretisations [14], parallelization
[17,18,19], and the Navier-Stokes solver [3,2]. In addition, we could show that the
actual number of L2-cache-misses is only about 10% larger than the theoretical
minimum given by the need to load data to the cache at least once per solver
iteration [15,13]4. Besides those absolute values, we would like to point out the
robustness of our concept with the help of three observations:

– Both the storage- and the cache-efficieny do not depend of the degree of
adaptivity of our grid.

– Our approach can be successfully applied without any knowledge of the
cache parameters (cache size, cache line length, . . .) and, thus, can be easily
ported to different platforms. In the literature, such methods are denoted as
cache-oblivious [22,23].

– The cache hit-rates scale perfectly with the number of degrees of freedom.
That is, there are no size effects deteriorating the efficiency above a certain
problem size.

5.2 Runtime and Parallel Efficiency

The runtime of a program is surely the last and most important criterion of
efficiency. To give some indication of the potential of our program in comparison
with other cache-optimized PDE solvers, we compare the runtimes with DiME
[24], a cache- and runtime-optimised multigrid solver for partial differential equa-
tions on regular grids. Concretely, we compare one DiME-V-cycle with one pre-
and one postsmoothing step to one iteration of our additive multigrid method
for the solution of the two-dimensional Poisson equation on a regular grid. Ta-
ble 1 shows the resulting runtimes. Our program is about five times slower than
DiME, which is quite good if we take into account that we can handle fully adap-
tive grids, the runtime per degree of freedom is independent on the adaptivity
pattern of the grid [15,13], the storage requirements of our program are very low
(less than seven Bytes per degree of freedom even in the three-dimensional case
[13] whereas DiME needs more than 27 Bytes per degree of freedom in the two-
dimensional case), and there are still numerous further optimisation potentials
for our program (see Sect. 6).

As mentioned above, space-filling curves are a well-known tool for balanced
parallelisation of algorithms on adaptive grids. We stated in addition, that we can
easily generalize our data structures to processes working on a part of the grid

4 We measured and simulated the cache-efficieny with the help of the tools cachegrind
[20] (simulation), perfmon [21] and hpcmon (hardware performance counter).
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Table 1. Comparison of the runtimes per degree of freedom and multigrid iteration
for our code (left hand side) and DiME [24] (right hand side) on an AMD Athlon
XP 2400+ (1.9 GHz) processor with 256 KB cache and 1 GB RAM using the gcc3.4
compiler with options -O3 -Xw (from [1])

grid # deg. of runtime per
res. freedom it and dof
243 5.95 · 104 1.70 · 10−6 sec
729 5.33 · 105 1.71 · 10−6 sec

2187 4.79 · 106 1.72 · 10−6 sec

grid # deg. of runtime per
res. freedom it and dof
257 6.60 · 104 5.78 · 10−7

513 2.63 · 105 4.23 · 10−7

1025 1.05 · 106 3.85 · 10−7

2049 4.20 · 106 3.74 · 10−7

Table 2. Parallel speedup achieved for the solution of the three-dimensional Poisson
equation on a spherical domain on an adaptive grid with 23, 118, 848 degrees of freedom.
The computations were performed on a myrinet cluster consisting of eight dual Pentium
III processors with 2 GByte RAM per node [17,25].

processes 1 2 4 8 16
speedup 1.00 1.95 3.73 6.85 12.93

only [17]. Table 2 shows the achieved parallel speedups for the three-dimensional
Poisson equation on an adaptive grid on a spherical domain with 23, 118, 848
degrees of freedom [17].

6 Conclusions and Outlook

Wepresentet a newapproach for the hardware- and, in particular,memory-efficient
implementation of state-of-the-art numerical methods, that is dynamically adap-
tive multigrid solvers. Without loosing mathematical functionality and/or eff-
iciency, we maintain an extremely high cache-efficiency and a very low storage
requirement per degree of freedom. In terms of the runtime, the last and crucial
criterion, we are about a factor of five to ten slower than highly optimised solvers
working on regular grids. Although this is already a good result taking into account
that we work on adaptive grids with arbitrarliy local refinements, this is a clear
hint that there is still a potential for further improvements for example based on
methods similar to those presented in [26,27] or with the help of streaming SIMD
extensions (SSE). Furthermore, the simplification of stack definition and adminis-
tration is a currently active – and promising – field of our research as it will reduce
stalls of floating point operations due to administrational integer operations.

Besides the detailed examination of the applicability of these optimisation
possibilities, an important focus of our future work is on the implementation of
more complicated equations and systems of equations, in particular the three-
dimensional Navier-Stokes equations. Hereby, we can already start from an exist-
ing implementation of the two-dimensional Navier-Stokes equations [2,3]. Such
’real’ applications will also show the effective potential of our method in com-
parison to other (adaptive or regular) solvers.



146 M. Mehl

References

1. M. Mehl, T. Weinzierl, Ch. Zenger. A cache-oblivious self-adaptive full multigrid
method. To appear in: special issue Copper Mountain Conference on Multigrid
Methods 2005, Numerical Linear Algebra with Applications, Wiley Interscience.

2. T. Neckel. Einfache 2D-Fluid-Struktur-Wechselwirkungen mit einer cache-
optimalen Finite-Element-Methode. Diploma thesis, Institut für Informatik, Tech-
nische Universität München, (2005).

3. T. Weinzierl. Eine cache-optimale Implementierung eines Navier-Stokes Lösers
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