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Abstract. The Singular Value Decomposition (SVD) is a vital problem
that finds a place in numerous application domains in science and engi-
neering. As an example, SVDs are used in processing voluminous data
sets. Many sequential and parallel algorithms have been proposed to
compute SVDs. The best known sequential algorithms take cubic time.
This amount of time may not be acceptable especially when the data size
is large. Thus parallel algorithms are desirable. In this paper, we present
a novel technique for the parallel computation of SVDs. This technique
yields impressive speedups.

We discuss implementation of our technique on parallel models of
computing such as the mesh and the PRAM. We also present an exper-
imental evaluation of our technique.

Keywords: Singular Value Decomposition, Two-sided Jacobi, One-sided
Jacobi.

1 Introduction

The Singular Value Decomposition (SVD) is a vital problem with applications
in many a domain. An important application of SVD is to reduce dimensional-
ity in data mining and information retrieval fields. The well-known sequential
bidiagonalization-based Golub-Kahan-Reinsch SVD algorithm [6] takes O(mn2)
time (on an m × n matrix). For large values of m and n, this time could be
prohibitive. With the advent of the internet and the subsequent data explo-
sion, parallel techniques for computing SVDs have become increasingly more
important.

The bidiagonalization-based SVD algorithm has been found to be difficult to
parallelize and hence works on parallel SVD focus on Jacobi-based techniques.
Both two-sided Jacobi and one-sided Jacobi techniques have been studied in this
context. Brent and Luk [5] presented a parallel one-sided SVD algorithm using
a linear array of O(n) processors, with a run time of O(mnS), where S is the
number of sweeps. They also presented an O(nS) time algorithm to compute the
singular values of a symmetric matrix using an array of n2 processors. Zhou and
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Brent [12] described an efficient parallel ring ordering algorithm for one-sided
Jacobi.

Bec̆ka and Vajters̆ic [2] presented a parallel block two-sided Jacobi algorithm
on hypercubes and rings with a run time of O(n2S). They also gave an O(nS)
time algorithm on meshes [3]. Bec̆ka et al. [1] proposed a dynamic ordering al-
gorithm for a parallel two-sided block-Jacobi SVD with a run time of O(nS).
Oks̆a and Vajters̆ic [10] designed a systolic two-sided block-Jacobi algorithm
with a run time of O(nS). Strumpen et al. [11] presented a stream algorithm for
one-sided Jacobi that has a run time of O(n3

p2 S), where p is the number of pro-
cessors (p being O(

√
n)). They created parallelism by computing multiple Jacobi

rotations independently and applying all the transformations thereafter. They
show that each sweep of the Jacobi iteration algorithm can be parallelized on
an n × n mesh in O(nS) time. Clearly this algorithm is asymptotically optimal.
Unfortunately their experimental results show that the value of S is much larger
than what the sequential algorithm takes. In this paper, we employ their idea
of separating rotation computations and transformations. We propose a novel
algorithm for computing SVDs. This algorithm is fundamentally different from
all the algorithms that have been proposed for SVD. It employs a specific ”re-
laxation” of the Jacobi iteration. We call this JRS iteration. This algorithm is
nicely parallelizable. For example, it enables the computation of all the rotations
of a sweep in parallel such that the number of sweeps is reasonable.

We discuss the implementation of JRS iteration on various models of com-
puting such as the mesh, the hypercube, and the PRAM. For example, on the
CREW PRAM our algorithm has a run time of O(S log2 n) (for a symmetrix
n × n matrix).

The remainder of the paper is organized as follows. In Section 2, we introduce
the sequential Jacobi-SVD algorithm. Section 3 describes our new JRS iteration
algorithm. In Section 4, we show experimental results. Section 5 discusses parallel
implementations of our new algorithms. Finally, we provide some concluding
remarks in Section 6.

2 A Survey of the Basic Ideas

The SVD problem takes as input any m × n matrix A (m ≥ n) and computes
three matrices U, Σ, and V such that:

A = UΣV T ,

where U is a m × n orthogonal matrix (i.e., UT U = I), V is an n × n or-
thogonal matrix (V T V = I), and Σ is an n × n diagonal matrix. If Σ =
diag(σ1, σ2, . . . , σn), then these diagonal elements are the singular values of A.
The column vectors of U are the left singular vectors of A, and the column
vectors of V are the right singular vectors of A.

All the existing parallel algorithms use the Jacobi iteration as the basis. Jacobi
iteration algorithm attempts to diagnolize the input matrix A by a series of Jacobi
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rotations where each rotation tries to zero-out an off-diagonal element. In partic-
ular, each Jacobi rotation involves premultiplying A by an orthogonal matrix and
postmultiplying by another orthogonal matrix. We perform (n2 − n)/2 rotations
(in the case of a symmetric matrix) attempting to zero-out all the off-diagonal ele-
ments. These (n2 − n)/2 transformations constitute a sweep. It can be shown that
after each sweep the norm of the off-diagonal elements decreases and hence the
algorithm converges. It is believed that the number S of sweeps needed for conver-
gence of the sequential Jacobi iteration algorithm is O(log n) [6].

There are two varaints of the Jacobi iteration algorithm, namely, one-sided
and two sided. Accordingly, there are two versions of our JRS iteration algorithm
as well. Both the versions of JRS perform well in parallel.

2.1 Two-sided Jacobi SVD

The two-sided Jacobi iteration algorithm [9] transforms a symmetric matrix A
into a diagonal matrix Σ by a sequence of Jacobi rotations (J):

Σ = · · · JT
3 (JT

2 (JT
1 AJ1)J2)J3 · · · = (J1J2J3 · · ·)T A(J1J2J3 · · ·)

Each transform attempts to zero-out a given off-diagonal element of A. The
Jacobi rotation, also called the Givens rotation[6], is defined as follows:

J(i, j, θ) =

⎛
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where (i, j) is an index pair of A to be zeroed, c = cos θ, s = sin θ, θ being called
the rotation angle. It can be easily verified that JT J = I, so the Jacobi rotation
is an orthogonal transformation. The values of c and s are computed as follows.
Consider one of the transformations: B = JT AJ . We choose c and s such that

(
bii bij

bji bjj

)
=

(
c s

−s c

)T (
aii aij

aji ajj

) (
c s

−s c

)

is diagonal, i.e., bij = bji = 0. By solving this equation and taking the smaller
root [6], c and s are obtained by:

c =
1√

1 + t2
, s = tc,

where

t =
sign(τ)

|τ | +
√

τ2 + 1
,
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and
τ =

aii − ajj

2aij
.

Depending on the order of choosing the element to be zeroed, there are clas-
sic Jacobi and cyclic Jacobi algorithms. In the classic Jacobi iteration algo-
rithm, each transformation chooses the off-diagonal element of the largest abso-
lute value. However, searching for this element requires expensive computations.
Cyclic Jacobi algorithm sacrifices the convergence behavior and steps through
all the off-diagonal elements in a row-by-row fashion. For example, if n = 3,
the sequence of elements is (1, 2), (1, 3), (2, 3), (1, 2), . . .. The computation is or-
ganized in sweeps such that in each sweep every off-diagonal element is zeroed
once. Note that when an off-diagonal element is zeroed it may not continue to
be zero when another off-diagonal element is zeroed. After each sweep, it can be
shown that, the norm of the off-diagoal elements decreases monotonically. Thus
the Jacobi algorithms converge.

2.2 One-sided Jacobi SVD

One-sided Jacobi algorithm, also called Hestenes-Jacobi algorithm [7][11], first
produces a matrix B whose rows are orthogonal by premultiplying A with an
orthogonal matrix U :

UA = B,

where rows of B satisfy:
bT
i bj = 0 for i �= j.

Followed by this B is normalized by:

V = S−1B,

where S = diag(s1, s2, . . . , sm), and si = bT
i bi. It can be easily shown that

A = UT SV , which is equivalent to the definition of SVD.
One-sided Jacobi is also realized by a series of Jacobi rotations, but on one

side. For a given i and j, rows i and j are orthogonalized by B = JT A where
J = J(i, j, θ) is the same matrix as in the two-sided Jacobi and:

(
bT
i

bT
j

)
=

(
c s

−s c

)T (
aT

i

aT
j

)
.

Here c and s of J are chosen such that bT
i bj = 0. The solution of them is:

c =
1√

1 + t2
, s = tc.

where

t =
sign(τ)

|τ | +
√

τ2 + 1
,
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and

τ =
aT

j aj − aT
i ai

2aT
i aj

.

As we could see, there is a close similarity between the one-sided and two-sided
versions of the Jacobi algorithm.

3 JRS Iteration Algorithm

Since any rotation in the two-sided Jacobi algorithm changes only the corre-
sponding (two) rows and (two) columns, and one-sided Jacobi algorithm changes
only the corresponding (two) rows, there exists inherent parallelism in the Ja-
cobi iteration algorithms. For example, the n(n − 1)/2 rotations in any sweep
can be grouped into n − 1 non-conflicting rotation sets each of which containing
n/2 rotations. For instance, if n = 4, there are 3 rotation sets: {(1,2),(3,4)},
{(1,3),(2,4)}, {(1,4),(2,3)}. Since each rotation can be performed in O(n) time
on a single machine, we can perform all the rotations in O(n2S) time on a ring
of n processors [6]. The idea here is to perform each set of rotations in parallel.

We can think of the Jacobi algorithm as consisting of two phases. In the
first phase we compute all the rotation matrices (there are O(n2) of them). In
the second phase we multiply them out to get U and V . Consider any rotation
operation. The values of s and c can be computed in O(1) time sequentially.
The algorithm of Strumpen et al. [11] performs all the n(n − 1)/2 rotations
of a sweep in parallel even though not all of these rotations are independent.
Thus in their algorithm, all the rotation matrices can be constructed in O(1)
time using n2 CREW PRAM processors. This will complete the first phase of
the Jacobi algorithm. Followed by this the second phase has to be completed.
This involves the multiplication of O(n2) rotation matrices. Since two n × n
matrices can be multiplied in O(log n) time using n3 CREW PRAM processors
(see e.g., [4], [8]), a straight forward implementation of [11]’s algorithm runs in
time O(S log2 n) using n5 CREW PRAM processors. In [11] an implementation
on an n×n mesh has been given that runs in O(nS) time. However, as has been
pointed out before, the value of S is much larger than the corresponding value
for the sequential Jacobi iteration algorithm.

Any parallel algorithm for SVD partitions the n(n−1)/2 rotations of a sweep
into rotation sets where each rotation set consists of some number of rotations.
All the rotations of a rotation set are performed in parallel. Most of the par-
allel SVD algorithms in the literature employ (n − 1) rotation sets each rota-
tion set consisting of n/2 independent rotations. The algorithm of Strumpen et
al. is an exception. We let multiple processors compute the rotation matrices
of a rotation set (one matrix per processor), all the processors employing the
same original matrix. In the sequential case, if A is the input matrix, compu-
tations will proceed as follows. B1 = JT

1 AJ1; B2 = JT
2 B1J2; B3 = JT

3 B2J3;
and so on. On the other hand, in parallel, computations will proceed as follows.
B1 = JT

1 AJ1; B2 = JT
2 AJ2; B3 = JT

3 AJ3; etc. The number of Bis computed in
parallel will be decided by the number of available processors. Once this parallel
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computation is complete, all of the computed transformations will be applied to
A to obtain a new matrix B. After this, again a parallel computation of rotation
matrices will be done all with respect to B; B will be updated with the computed
transformations; and so on.

In this paper we propose a fundamentally different algorithm for SVD. It is
a specific ”relaxation” of the Jacobi iteration algorithm that wel call the JRS
iteration algorithm. Just like the Jacobi algorithm, there are two variants of the
JRS iteration algorithm as well, namely, one-sided and two-sided. We provide
details on these two variants in the next subsections.

3.1 Two-sided JRS Iteration Algorithm

The main idea behind the original two-sided Jacobi SVD is to systematically
reduce the norm of the off-diagonal elements of a symmetric matrix A:

off(A) =

√√√√
n∑

i=1

n∑
i=1,j �=i

a2
ij .

The convergence of the Jacobi algorithm is ensured by the fact that after each
rotation, the norm of the off-diagonal elements decreases by twice the square of
the element zeroed out in this rotation [6].

The JRS iteration algorithm also has sweeps and in each sweep we perform
rotations (one corresponding to each off-diagonal element). The only difference
is that in a given rotation we do not zero-out the targeted off-diagonal element
but rather we decrease the value of this element by a fraction.

Let the element targeted in a given rotation be the (i, j)th element. Then we
let

bij = aij(c2 − s2) + (aii − ajj)cs = λaij ,

where λ is in the interval [0, 1). When λ = 0, we get the original Jacobi iteration
algorithm. We can solve for s and c as follows: If aij = 0, then set c = 1 and
s = 0; Otherwise

aii − ajj

2aij
=

c

2s
− s

2c
− λ

2cs
.

Let τ = aii−ajj

2aij
, t = s

c , then

(1 + λ)t2 + 2τt + λ − 1 = 0.

According to [6], the smaller root should be chosen, so

t =
sign(τ)(1 − λ)

|τ | +
√

τ2 + (1 − λ2)
.

Like in the regular Jacobi rotation, c and s can be computed as:

c =
1√

1 + t2
, s = tc.

We call the above algorithm JRS iteration algorithm.
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3.2 One-sided JRS Iteration Algorithm

One-sided JRS algorithm is similar to the one-sided Jacobi algorithm. In each
rotation, we let the norm of the corresponding two rows be reduced to a fraction
of it. That is,

vT
i vj = λuT

i uj.

The solution is similar to the two-sided Jacobi:

c =
1√

1 + t2
, s = tc.

where

t =
sign(τ)(1 − λ)

|τ | +
√

τ2 + (1 − λ2)
,

and

τ =
uT

j uj − uT
i ui

2uT
i uj

.

4 Experimental Results

We have implemented our JRS algorithms and tested them for convergence as
well as performance. They have been compared with the regular Jacobi algo-
rithms as well as the algorithms of [11]. We provide the experimental results in
this subsection.

In this experiment, we have compared the number of sweeps taken by the
different Jacobi approaches. We generated randomly several matrices of different
sizes, including 10×10, 50×50, 100×100, 200×200, 500×500, and 1000×1000.
The elements of the matrices were generated randomly to have a value in the
interval [1, 10]. For each matrix size, we generated 10 matrices and for each
algorithm we took the average number of sweeps. The convergence condition
employed was on the norm of the off-diagonal elements. We used a norm value
of 10−15.

The results are shown in tables 1 and 2 for two-sided Jacobi and one-sided
Jacobi algorithms, respectively. For two-sided Jacobi, we used symmetric matri-
ces; for one-sided Jacobi, we generated unsymmetric matrices. In these tables,
Independent Jacobi refers to the Jacobi algorithm where all the rotations in a
sweep are done independently and in parallel. This is one of the algorithms em-
ployed in [11]. The values of the parameter λ used in JRS algorithm for matrices
of different sizes are chosen experimentally, which are: 0.25, 0.5, 0.5, 0.75, 0.8,
0.85 respectively.

From tables 1 and 2, we see that the number of sweeps taken by the JRS is
significantly less than that of Independent Jacobi of [11]. Also the number of
sweeps taken by the JRS based algorithm is within a reasonable multiple of that
of the sequential cyclic Jacobi algorithm.
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Table 1. Experimental results for two-sided SVD

Matrix size Cyclic Jacobi Independent Jacobi [11] JRS
10×10 5 11 16
50×50 7 6692 31

100×100 7 >300000 47
200×200 8 >300000 66
500×500 9 >300000 90

1000×1000 9 >300000 125

Table 2. Experimental results for one-sided SVD

Matrix size Cyclic Jacobi Independent Jacobi [11] JRS
10×10 7 14 28
50×50 10 133 52

100×100 11 1037 62
200×200 12 193107 114
500×500 14 >300000 145

1000×1000 15 >300000 197

5 Parallelism

As our experimental results show, even when all the rotations in a sweep are
done in parallel, JRS based algorithms converge fast. In particular, the number
of sweeps is no more than a reasonable multiple of the number of sweeps taken
by the sequential Jacobi algorithm. As a consequence, JRS based algorithms
offer maximum parallelism. In fact most of the parallel algorithms that have
been derived thus far (that employ Jacobi iterations) for SVDs can be readily
translated into JRS based algorithms. We just mention a few of them below.

Based on the algorithms of [11] we get:

Theorem 1. JRS algorithms run in time O(nS) on an n × n mesh.

The algorithm of [5] yields the following:

Theorem 2. One-sided JRS algorithm can be implemented on a linear array of
O(n) processors to have a run time of O(mnS).

From our discussion in Section 3, we infer the following:

Theorem 3. JRS algorithms can be implemented on a CREW PRAM to have
a run time of O(S log2 n).

6 Conclusions

In this paper, we have proposed a novel algorithm (called JRS Iteration Al-
gorithm) for computing SVDs. This algorithm enables one to perform all the
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rotations in a sweep independently and in parallel without increasing the num-
ber of sweeps significantly. Thus this algorithm can be implemented on a variety
of parallel models of computing to obtain optimal speedups when the processor
bound is O(n2). This method significantly decreases the number of sweeps over
independent Jacobi proposed in [11]. Therefore, our method can be used in their
stream algorithm to achieve a run time of O(nS). Our algorithm can also be
implemented on a CREW PRAM to have a run time of O(S log2 n).

In the full version of this paper we provide additional experimental data, a
value for λ (as a function of n) that results in the minimum number of sweeps,
a convergence proof for JRS, a variant of JRS called Group JRS, etc.
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