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Abstract. The task of calculating the expectation of a number of dis-
connected pairs of nodes (EDP) in unreliable network is discussed. The
task is NP-hard that is it requires complete enumeration of subgraphs.
The techniques for decreasing a number of enumerated subgraphs by us-
ing the branching (factoring) method and taking advantage from possible
structural features are discussed. Usage of chains, bridges, cutnodes and
dangling nodes is considered.

1 Introduction

Random graphs is an acknowledged model for networks of different kinds. For
the analysis of network’s reliability the probability of connectivity is used mostly
( [1,2,3,4,5,6,7], for example) while the expectation of a number of disconnected
pairs of nodes (EDP) is sometimes more valuable and informative index. For
example all trees are equal from the point of the probability of connectivity while
they are not from the point of EDP. Complementary index to EDP is a number of
connected pairs of nodes (ECP), their sum is equal to the whole number of pairs
of nodes in a network. Finding EDP requires complete enumeration of network
destructions for its calculation. This is one of the reasons why few of researches
deal with it. We can refer to the paper [8] where this index is mentioned among
other valuable indexes of a network reliability. We investigate how to decrease the
enumeration by using the branching (factoring) method and taking advantage
from possible structural features.

As in [1] we mostly gain from considering simple chains and dangling nodes.
Existence of bridges or cutnodes can help also.

The rest of the paper is organized as follows: in Section 2 we give main def-
initions and notations. In Section 3 we discuss reduction of the task dimension
by considering bridges, cutnodes and dangling nodes. In Section 4 we give the
exact equations for EDP for some kinds of graphs and in Section 5 we present
equations for branching by chain. Section 6 is the brief conclusion.
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2 Definitions and Notations

We consider random graphs with reliable nodes and unreliable edges. Let us
denote:

G(n, m) = (V, U, P, WT ) – non-oriented graph with a set of nodes V , set of edges
U , matrix of edges reliabilities P and vector of nodes weights WT .

n = |V |, m = |U | – number of nodes and edges, respectively.
wi = w(vi) – weight of a node vi, WT = w1, . . . , wn.
W (G) – total weight of all nodes of G.
pij – probability of an edge eij being existent (being in a working state, edge’s

reliability), P = ||pij ||; qij = 1 − pij .
M(G, P ) and N(G, P ) – ECP and EDP of a random graph G.

We use simply G for a graph if its n and m are clear from the context. If needed
we use G(P ), G(WT ) or G(P, WT ) also. If we need refer to the weight of i-th
node in some graph G, then we use WTi(G). If we consider some special edges
then we usually assign them personal numbers that is use notation ek (k-th
edge) instead of eij (an edge that connects vi and vj). Notation pk is used for
corresponding edge’s reliability.

For simplifying some equations we assume that
i∏

s=i+1
ps ≡ 1.

A weight wi equal to a number of nodes that were contracted to form a special
node vi (initial weight of each node is 1) is needed for keeping the number of
disconnected pairs in case when this node is separated from some other nodes
in a graph.

It is obvious that

N(G) =
n−1∑

i=1

n∑

j=i+1

aijwiwj , (1)

where aij is a probability of vi and vj be disconnected in G.
The branching (factoring) method for calculating an expected value of any

function of a random graph G is based on the equation of composite probability
by two alternative hypothesis: existence or non-existence of some edge eij . Thus

N(G) = pijN(G∗
ij) + (1 − pij)N(G\eij), (2)

where G∗
ij is a graph obtained from G by contracting vi and vj by an edge eij ,

G\eij – graph obtained from G by deleting the edge eij . Recursions go on until
deriving a graph for which a N(G) is easily obtained.

We say that a random graph is connected (disconnected) when its structure
is connected, not realization. In last case we say that “realization of a random
graph is connected (disconnected).”

3 EDP for Graphs of a Small Dimension (n = 2, 3, 4)

Case of n = 2 is obvious:

N(G) = (1 − p12)w1 · w2. (3)
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For n = 3 we use (1):

N(G) = w1w2(1 − p12)(1 − p23p13) + (4)
w1w3(1 − p13)(1 − p12p23) + w2w3(1 − p23)(1 − p12p13).

For n = 4 we use the equation of composite probability considering all possible
ways of a graph destruction as hypotheses. After collecting terms we have:

N(G) = (5)
w1w2q12[(1−p13p23)(1−p14p24)−p13q14q23p24p34−q13p14p23q24p34] +
w2w3q23[(1−p24p34)(1−p12p13)−q12p13p14p24q34−p12q13p14q24p34] +
w3w4q34[(1−p13p14)(1−p23p24)−p12p13q14q23p24−p12q13p14p23q24] +
w1w4q14[(1−p12p24)(1−p13p34)−q12p13p23p24q34−p12q13p23q24p34] +
w1w3q13[(1−p12p23)(1−p14p34)−p12q14q23p24p34−q12p14p23p24q34] +
w2w4q24[(1−p23p34)(1−p12p14)−q12p13p14p23q34−p12p13q14q23p34].

4 Using Structural Peculiarities

As in the case of calculation of a probabilistic connectivity we can take advantage
from some peculiarities of a graph under consideration.

First let us make the following derivation. During factoring process by equa-
tion (2) we may obtain several graphs with the same structure and matrix P
but with different weights of nodes. In this case we can gain from the following
useful lemma.

Lemma 1. If during a graph G factoring process some subgraphs G1, . . . , Gk

with same structure and matrix P are obtained in which only one special node vs

has different weight wsi in Gi, i = 1, . . . , k, then the total contribution of these
subgraphs into N(G) is equal to

(
k∑

i=1

pi

)

· N(Go), (6)

where pi is a probability of Gi’s realization, and graph Go has the same structure
and P as Gi and

WTs(Go) =
k∑

i=1

piwsi/
k∑

i=1

pi. (7)

Proof. From (1) we have that for any selected index s

N(G) =
( ∑

i∈{1...n}\s

wi

)
ws +

∑

i∈{1...n}\s

∑

(j>i)&(j �=s)

wiwj = Aws + B. (8)
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So, if we change a weight ws of vs, then coefficients A and B remain unchanged.
Thus the total contribution D of all Gi into N(G) is

D =
k∑

i=1

piN(Gi) =
k∑

i=1

pi(Awsi + B) (9)

= A
( k∑

i=1

piwsi

)
+

k∑

i=1

piB =
k∑

i=1

pi

(
A

k∑

i=1

piwsi/

k∑

i=1

pi + B
)
,

from which we have what was to be proved. �

4.1 k-Component Graphs

If a graph G consist of k mutually disconnected subgraphs G1, . . . , Gk then,
obviously

N(G) =
k∑

i=1

N(Gi) +
k−1∑

i=1

k∑

j=i+1

W (Gi)W (Gj). (10)

4.2 Deleting Dangling Nodes

Let a connected graph G(n, m) have a dangling node vi adjacent to some node vj .
Then deletion of the edge eij leads to occurrence of wi ·W (G\{eij}) = wi ·

∑

k �=i

wk

pairs of disconnected nodes. Hence,

N(G) = pijN(G∗
ij) + (1 − pij)(wiW (G\{eij}) + N (G\{eij})) . (11)

Note that in this case a graph G∗
ij , obtained by contracting nodes vi and vj by

eij , is by its structure the same as G\{eij}, and WTj(G∗) = wi +wj . Thus from
lemma 1 we obtain:

N(G) = N(Go) + (1 − pij)wiW (G\eij), (12)

where Go — a graph which has the same structure and a weight of vj

WTj(Go) = pij(wj + wi) + (1 − pij)wj = wj + pijwi. (13)

4.3 Using Cutnodes

Let G consists from two subgraphs (blocks) G1 and G2 that are jointed through
a node vs (cutnode). Then obviously for any pair of nodes vi and vj a path
between them or lies in one of the blocks if these nodes are in the same block,
or goes through vs otherwise. Thus from (1) we have

N(G) = N(G1) + N(G2) +
∑

i∈X(G1)

∑

j∈X(G2)

(ais + asj − aisasj)wiwj , (14)

where ais and asj are probabilities of vi and vj being disconnected with vs in
G1 and G2 correspondingly.



Network Probabilistic Connectivity 105

4.4 Bridge Removing

Let a connected graph G(n, m) have an edge est such that its deletion leads to
dividing the graph into two separated components G1(k, f) and G2(n − k, m −
f − 1) (they are obviously connected graphs). Such edges are known as bridges.
Then

N(G) = pstN(G∗
st) + (1 − pst)

[
W (G1)W (G2) + N(G1) + N(G2)

]
. (15)

Using (14) we obtain

N(G) = (1 − pst)
[
W (G1)W (G2)

]
+ N(G1) + N(G2) + (16)

pst

∑

i∈X(G1)

∑

j∈X(G2)

(ais + asj − aisatj)wiwj ,

where ais and atj are probabilities of vi and vj being disconnected with vs in G1
and with vt in G2 correspondingly.

4.5 Case of a Chain

Let us discuss the case of a chain with k nodes and k−1 edges (Chk). Let nodes
be enumerated in increasing order thus that nodes v1 and vk have a degree 1
while all other nodes have degree 2. For simplicity we denote ei,i+1 as ei here.

From (1) we have

N(Chk) =
k−1∑

i=1

k∑

j=i+1

wiwj

(
1 −

j−1∏

s=i

ps

)
. (17)

4.6 Case of a Cycle

Now we consider a cycle with k nodes and k edges (Ck). Let nodes be enumerated
in order thus that node vi+1 follows vi, i = 1, . . . , k − 1 and v1 follows vk. For
simplicity we denote ei,i+1, i = 1, . . . , k − 1 as ei and ek,1 as ek and denote
reliability of ei as pi. Now we can use equation (1) directly. Between each pair
of nodes vi and vj there are two pathes, clockwise and counterclockwise. Thus

N(Ck) =
k−1∑

i=1

k∑

j=i+1

wiwj

(
1 −

j−1∏

s=i

ps

)(
1 −

k∏

s=j

ps

i−1∏

s=1

ps

)
. (18)

4.7 Case of a Tree

The EDP for a n-nodes tree Tn we obtain from (1):

N(Tn) =
n−1∑

i=1

n∑

j=i+1

wiwj

(
1 −

∏

est∈Ptij

pst

)
, (19)

where Ptij is a path from vi to vj .
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For partial cases we can obtain simpler expressions. The case of a chain that
is the special case of a tree has been discussed earlier. Now let us have a star-like
tree Sk in which k nodes are adjacent to a single node (root). Thus we have some
node v0 with weight w0 that is adjacent to dangling nodes vi, i = 1, . . . , k with
weights wi. For simplicity let us denote edges (v0, vi) as ei and their reliabilities
as pi, correspondingly. Using (19) we obtain:

N(Chk) = w0

k∑

i=1

piwi +
k−1∑

i=1

k∑

j=i+1

wiwj(1 − pipj). (20)

5 Branching by Chain

As in [1] where we consider the probabilistic connectivity, we can gain from
considering simple chains. Because of limited area of this paper we consider only
the case of 2-edges chains here.

For further consideration we need the following lemma.
Lemma 2. If during a graph G factoring process some subgraphs G1, . . . , Gk

are obtained with probabilities p1, . . . , pk, such that they have the same structure
and matrix P , and two special nodes vs and vt have weights wsi and wti in Gi,
i = 1, . . . , k, then the total contribution of these subgraphs into N(G) is equal to

D =
k∑

i=1

piN(Go) + ast

k∑

i=1
pi

k∑

i=1
piwsiwti −

k∑

i=1
piwsi ·

k∑

i=1
piwti

( k∑

i=1
pi

)2
. (21)

where graph Go has the same structure and P as Gi and

WTs(Go) =
k∑

i=1

piwsi/
k∑

i=1

pi, (22)

WTt(Go) =
k∑

i=1

piwti/
k∑

i=1

pi.

Here ast is a probability of vs and vt being disconnected in Go.
Proof. Proof is similar to that of lemma 1 but more complex because of existence
of production wswt in (1). �

Now we continue to the main theorem.
Theorem 1. If a connected random graph has a simple chain C = esx, ext con-
necting nodes s and t through a node vx with degree 2 then the following equation
is true.

N(G) =
[
pst(1 − psxpxt) + psxpxt

]
N(G∗) + (23)

(
1 − pst − psxpxt)

{

N(Go) + ast
(1 − pst)(1 − pxt)psxpxt

(1 − pst − psxpxt)2
w2

x

}

.

where ast is a probability of vs and vt being disconnected in G.
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Fig. 1. Branching in a graph with a 2-edge chain

Proof. If est exists then we first choose it for factoring. Then we consequently
make factoring by esx and ext (see Fig. 1). Two terminal graphs G1 and G4 we
can easy replace by graphs with a structure of G5 and G6, correspondingly, using
(12) and (13) (note that in G1 we first replace multi-edge by a single one with
equivalent reliability):

N(G1) = N(G0
5), WT (G0

5, st) = ws + wt + (psx + pxt − psxpxt)wx, (24)
N(G4) = N(G0

6), WT (G0
6, t) = wt + pxtwx.

For graphs G5 and G6 themselves we have:

WT (G5, xst) = ws + wt + wx, (25)
WT (G6, s) = ws + wx,

WT (G6, t) = wt.

It is clear that graphs G1, G4, G5 and G6 are obtained with probabilities pst,
(1 − pst)(1 − psx), (1 − pst)psxpxt and (1 − pst)(1 − pxt)psx, correspondingly.
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According to lemma 1 we can change calculation of EDP for G5 and G0
5 to

calculation of EDP for some graph G∗, that has a structure of G5 with a weight
of joint node

WT (G∗, sxt) = ws + wt +
(psxpst + psxpxt + pstpxt − 2psxpstpxt)

pst + psxpst − psxpstpxt
wx. (26)

For G6 and G0
6 we use lemma 2 as two nodes vs and vt have different weights in

them. According to this lemma a joint contribution of G6 and G0
6 into EDP of

G is
(
1 − pst − psxpxt)

{

N(Go) + ast
(1 − pst)(1 − pxt)psxpxt

(1 − pst − psxpxt)2
w2

x

}

. (27)

where Go has a structure of G without chain esx, ext and edge est and

WTs(Go) = ws + wx
psx(1 − pxt)
1 − psxpxt

; (28)

WTt(Go) = wt + wx
pxt

1 − psxpxt
.

From this and (26) we obtain what was to be proofed. �

If est is absent then the equation (23) can be simplified:

N(G) = psxpxtN(G∗) +
(
1 − psxpxt)

{

N(Go) + ast
(1 − pxt)psxpxt

(1 − psxpxt)2
w2

x

}

, (29)

where WT (G∗, sxt) = ws + wt + wx.
Now let us discuss obtaining of ast that is a probability of vs and vt being

disconnected in G. Obviously

ast = (1 − pst)(1 − psxpxt)P (vs and vt are disconnected in G6). (30)

There are well-known algorithms for finding 2-terminal probabilistic connectivity
(see [6], for example). Note that a complexity of this task is obviously less then
complexity of calculation of EDP for G1 or G4 which makes use of equation (23)
effective.

6 Conclusion

Thus we have presented some useful equations that can help in calculating the
EDP of a random graph. Most advantage for speeding up is gained from branch-
ing by chains. Note that chains are inevitable during the factoring process as a
result of edge deletion and, sometimes, as a result of contracting by edge (refer
to [1]). Experiments shows that calculation of EDP for 30 random G(10, 15) is
in average more than 20 times faster with use of our equations then by using
equation (1).
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