

Lecture Notes in Computer Science 4208
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael Gerndt Dieter Kranzlmüller (Eds.)

High Performance
Computing
and Communications

Second International Conference, HPCC 2006
Munich, Germany, September 13-15, 2006
Proceedings

13

Volume Editors

Michael Gerndt
Technische Universität München
Institut für Informatik
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: gerndt@in.tum.de

Dieter Kranzlmüller
Johannes Kepler Universität Linz
Institut für Graphische und Parallele Datenverarbeitung (GUP)
Altenbergerstr. 69, 4040 Linz, Austria
E-mail: kranzlmueller@gup.jku.at

Library of Congress Control Number: 2006932039

CR Subject Classification (1998): D, F.1-2, C.2, G.1-2, H.4-5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-39368-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39368-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11847366 06/3142 5 4 3 2 1 0

Preface

Welcome to the proceedings of the 2006 International Conference on High-
Performance Computing and Communications (HPCC 2006), which was held
in Munich, Germany, September 13–15, 2006. This year’s conference marks the
second edition of the HPCC conference series, and we are honored to serve as
the Chairmen of this event with the guidance of the HPCC Steering Chairs,
Beniamino Di Martino and Laurence T. Yang.

With the rapid growth in computing and communication technology, the past
decade has witnessed a proliferation of powerful parallel and distributed systems
and an ever-increasing demand for the practice of high-performance computing
and communication (HPCC). HPCC has moved into the mainstream of com-
puting and has become a key technology in future research and development
activities in many academic and industrial branches, especially when the solu-
tion of large and complex problems must cope with very tight time constraints.
The HPCC 2006 conference provides a forum for engineers and scientists in
academia, industry, and government to address all resulting profound challenges
and to present and discuss their new ideas, research results, applications, and
experience on all aspects of HPCC.

There was a very large number of paper submissions (328), not only from
Europe, but also from Asia and the Pacific, and North and South America.
This number of submissions represents a substantial increase of contributions
compared to the first year of HPCC, which clearly underlines the importance of
this domain.

All submissions were reviewed by at least three Program Committee members
or external reviewers. It was extremely difficult to select the presentations for
the conference because there were so many excellent and interesting submissions.
In order to allocate as many papers as possible and keep the high quality of the
conference, we finally decided to accept 95 regular papers for oral technical
presentations. We believe that all of these papers and topics not only provide
novel ideas, new results, work in progress, and state-of-the-art techniques in this
field, but also stimulate the future research activities in the area of HPCC.

The exciting program for this conference was the result of the hard and
excellent work of many others, such as the Program Vice-Chairs, the Program
Committee members, and the external reviewers. We would like to express our
sincere appreciation to all authors for their valuable contributions and to all
Program Committee members and external reviewers for their cooperation in
completing the program under a very tight schedule. We are also grateful to the
members of the Organizing Committee for supporting us in handling the many
organizational tasks and to the keynote speakers for accepting to come to the
conference with enthusiasm.

VI Preface

Last but not least, we hope that the attendees enjoyed the conference pro-
gram, and the attractions of the city of Munich, together with the social activities
of the conference.

September 2006 Michael Gerndt
Dieter Kranzlmüller

Organization

HPCC 2006 was organized by the Technical University of Munich, Germany, in
collaboration with the Johannes Kepler University Linz, Austria.

Executive Committee

General Chair: Michael Gerndt (Technical University Munich,
Germany)

Program Chair: Dieter Kranzlmüller (Joh. Kepler University
Linz, Austria)

Local Chair: Karl Fürlinger (Technical University Munich,
Germany)

Steering Chairs: Beniamino Di Martino (Second University of
Naples, Italy)

Laurence T. Yang (St. Francis Xavier Univer-
sity, Canada)

Organizing Committee: Roland Hopferwieser (Joh. Kepler University
Linz, Austria)

Christian Glasner (Joh. Kepler University Linz,
Austria)

Program Vice-Chairs

Parallel and Distributed Architectures
Roland Wismüller (University of Siegen, Germany)

Embedded Systems
Francois Bodin (University of Rennes, France)

Networking Protocols, Routing, Algorithms
Michel Diaz (LAAS-CNRS, Toulouse, France)

Reliability and Fault-Tolerance
Erik Maehle (Medical University of Luebeck, Germany)

Security and Authentication
Antonino Mazzeo (University of Naples, Italy)

Wireless and Mobile Computing
Marios Dikaiakos (University of Cyprus, Cyprus)

Pervasive Computing and Communications
Frank Stajano (University of Cambridge, UK)

VIII Organization

Web Services and Internet Computing
Laurent Lefevre (INRIA, France)

Grid and Cluster Computing
Marian Bubak (AGH University of Science and Technology, Cracow, Poland)

Peer-to-Peer Computing
Yunhao Liu (Hong Kong University of Science and Technology, Hong Kong)

Tools and Environments for Software Development
Martin Schulz (Lawrence Livermore National Laboratory, USA)

Performance Evaluation and Measurement
Allen Malony (University of Oregon, USA)

Programming Interfaces for Parallel Systems
Rudolf Eigenmann (Purdue University, USA)

Languages and Compilers for HPC
Hans Zima (California Institute of Technology, USA and
University of Vienna, Austria)

Parallel and Distributed Algorithms
Jack Dongarra (University of Tennessee, USA)

Applications in High-Performance Scientific and Engineering Computing
Alan Sussman (University of Maryland, USA)

Database Applications and Data Mining
Peter Brezany (University of Vienna, Austria)

Biological and Molecular Computing
Harald Meier (Technische Universität München, Germany)

Collaborative and Cooperative Environments
Vassil Alexandrov (University of Reading, UK)

Special Session Chairs

High-Performance Simulation of Reactive Flows
Salvatore Filippone (University of Rome Tor Vergata, Italy)

Service Level Agreements
Frances Brazier (Vrije Universiteit, Amsterdam, The Netherlands)
Benno Overeinder (Vrije Universiteit, Amsterdam, The Netherlands)
Omer F. Rana (Cardiff University and Welsh eScience Center, UK)
Jianhua Shao (Cardiff University and Welsh eScience Center, UK)

Pervasive Computing Application and Security Service
Byoung-Soo Koh (Digicaps Co., Ltd., Seoul, South Korea)
Ilsun You (Department of Information Science, Korean Bible University,

South Korea)

Organization IX

Automatic Performance Analysis of Parallel/Distributed Applications
Emilio Luque (Universitat Autonoma de Barcelona, Spain)
Tomas Margalef (Universitat Autonoma de Barcelona, Spain)

Program Committee

David Abramson (Monash University, Australia)
Georg Acher (Technische Universität München, Germany)
Hyo beom Ahn (Kongju National University, Korea)
Rashid Al-Ali (QCERT, Qatar)
Raad S. Al-Qassas (University of Glasgow, UK)
Ilkay Altintas (University of California, USA)
Henrique Andrade (IBM T.J. Watson Research Center, USA)
Cosimo Anglano (Univ. Piemontale, Italy)
Rocco Aversa (Seconda Università di Napoli, Italy)
Irfan Awan (University of Bradford, UK)
Eduard Ayguade (Univ. Politecnica de Catalunya, Barcelona, Spain)
Rosa M. Badia (Universitat Politecnica Catalunya, Spain)
Piotr Bala (N. Copernicus University, Torun, Poland)
Frank Ball (Bournemouth University, UK)
Richard Barrett (Oak Ridge National Laboratory, USA)
Dominique Bayart (Alcatel, France)
Alessio Bechini (University of Pisa, Italy)
Micah Beck (LOCI Labs, USA)
Siegfried Benkner (University of Vienna, Austria)
Alastair Beresford (University of Cambridge, UK)
Erik Berglund (Linkping University, Sweden)
Massimo Bernaschi (IAC-CNR, Italy)
Thomas Bonald (France Telecom, France)
Olivier Bonaventure (Université Catholique de Louvain, Belgium)
Luciano Bononi (University of Bologna, Italy)
Cristian Borcea (New Jersey Institute of Technology, USA)
Thomas Brandes (SCAI, Fraunhofer Gesellschaft, Germany)
Olivier Brun (LAAS, France)
Holger Brunst (Technical University Dresden, Germany)
Wojciech Burakowski (Warsaw University, Poland)
Helmar Burkhart (University of Basel, Switzerland)
Fabian Bustamante (Northwestern University, Illinois, USA)
Rajkumar Buyya (University of Melbourne, Australia)
David Callahan (Microsoft, USA)
Calin Cascaval (IBM Research, Yorktown Heights, USA)
Valentina Casola (University of Naples, Italy)
Bradford Chamberlain (Cray Research, USA)
Barbara Chapman (University of Houston, USA)
Lei Chen (Hong Kong University of Science and Technology, Hong Kong)

X Organization

YongRak Choi (University of Daejeon, Korea)
I-Hsin Chung (IBM T.J. Watson Research Center, USA)
Yeh-Ching Chung (National Tsing Hua University, Taiwan)
Michele Colajanni (University of Modena, Italy)
Toni Cortes (UPC Barcelona, Spain)
Domenico Cotroneo (University of Naples, Italy)
Valentin Cristea (Polytechnic University of Bucharest, Romania)
Marilia Curado (University of Coimbra, Portugal)
Jan-Thomas Czornack (Technische Universität München, Germany)
Pasqua D’Ambra (ICAR-CNR, Italy)
Alessandro De Maio (NUMIDIA s.r.l., Italy)
Giuseppe De Pietro (ICAR CNR, Italy)
Geert Deconinck (University of Leuven, Belgium)
Ewa Deelman (University of Southern California, USA)
Isabelle Demeure (ENST, France)
Luiz DeRose (CRAY Inc., USA)
Frdric Desprez (ENS Lyon, France)
Daniela di Serafino (Second University of Naples, Italy)
Roxana Diaconescu (California Institute of Technology, USA)
Ivan Dimov (University of Reading, UK)
Chen Ding (University of Rochester, New York, USA)
Karim Djemame (University of Leeds, UK)
Dirk Duellmann (CERN, Geneva, Switzerland)
Olivier Dugeon (France Telecom R&D, France)
Marc Duranton (Philips Research, Eindhoven, The Netherlands)
Ernesto Exposito (LAAS-CNRS, France)
Thomas Fahringer (University of Innsbruck, Austria)
Wu-chun Feng (Virginia Tech, USA)
Xinwen Fu (Dakota State University, USA)
Karl Fürlinger (Technische Universität München, Germany)
Fabrizio Gagliardi (Microsoft, Switzerland)
Luis Javier Garcia Villalba (Complutense University of Madrid, Spain)
Maria Garzaran (University of Illinois at Urbana-Champaign, USA)
Jean-Patrick Gelas (University of Lyon 1, France)
Alexander Gelbukh (National Polytechnic Institute, Mexico)
Vladimir Getov (University of Westminster, UK)
Olivier Gluck (ENS Lyon, France)
Frank-Oliver Glöckner (MPI für Marine Mikrobiologie, Bremen, Germany)
Ananth Grama (Purdue University, USA)
Karl-Erwin Grosspietsch (Fraunhofer AIS, Germany)
Amitava Gupta (Jadavpur University, Kolkata, India)
Vesna Hassler (European Patent Office, Austria)
Zdenek Havlice (Technical University of Kosice, Slovakia)
Hermann Hellwagner (Universität Klagenfurt, Austria)
Volker Heun (Ludwig-Maximilians-Universität München, Germany)

Organization XI

Ladislav Hluchy (Institute of Informatics, Slovak Academy of Sciences, Slovakia)
Ralf Hofestaedt (Bielefeld University, Germany)
Jeff Hollingsworth (University of Maryland, USA)
Chunming Hu (Beihang University, China)
Tai-Yi Huang (National Tsing Hua University, Taiwan)
Zhiyi Huang (University of Otago, New Zealand)
Marty Humphrey (University of Virginia, USA)
HoJae Hyun (Korea Information Security Agency, Korea)
Valerie Issarny (INRIA, Rocquencourt, France)
Zhen Jiang (West Chester University of Pennsylvania, USA)
Josep Jorba (Universitat Oberta de Catalunya, Spain)
Guy Juanole (LAAS, France)
YunHee Kang (Cheonan University, Korea)
Helen Karatza (Aristotle University of Thessaloniki, Greece)
Karen L. Karavanic (Portland State University, USA)
Wolfgang Karl (Universität Karlsruhe, Germany)
Constantine Katsinis (Drexel University, USA)
Yeong-Deok Kim (Woosong University, Korea)
Jacek Kitowski (AGH University of Science and Technology, Cracow, Poland)
Paris Kitsos (Hellenic Open University, Greece)
Peter Knijnenburg (Leiden University, The Netherlands)
Harald Kornmayer (Forschungszentrum Karlsruhe, Germany)
Stefan Kramer (Technische Universität München, Germany)
Jerome Lacan (ENSICA, France)
Nicolas Larrieu (LAAS, France)
Craig Lee (AeroSpace Org., USA)
Deok-Gyu Lee (Soonchunyang University, Korea)
Jenq-Kuen Lee (National Tsing Hua University, Taiwan)
Johun Lee (Dong-Ah Broadcasting College, Korea)
Yiming Li (National Chiao Tung University, Taiwan)
Jie Lian (University of Waterloo, Canada)
Xiaofei Liao (Huazhong University of Science and Technology, China)
Wei Lin (Australian Taxation Office, Sydney, Australia)
Antonio Liotta (University of Essex, UK)
Bin Lu (West Chester University of Pennsylvania, USA)
Simone Ludwig (Concordia University, Canada)
Thomas Ludwig (University of Heidelberg, Germany)
Bob Mann (University of Edinburgh, UK)
Jesus Marco (CSIC IFCA Santander, Spain)
Eva Marin (UPC Barcelona, Spain)
Muneer Masadah (University of Glasgow, UK)
Xavier Masip (UPC Barcelona, Spain)
Laurent Mathy (Lancaster University, UK)
John May (Lawrence Livermore National Laboratory, USA)
Piyush Mehrotra (NASA Ames Research Center, USA)

XII Organization

Harald Meier (Technische Universität München, Germany)
Xiaoqiao Meng (University of California, Los Angeles, USA)
Barton Miller (University of Wisconsin Madison, USA)
Bernd Mohr (Research Centre Juelich, ZAM, Germany)
Nikolay Moldovyan (Specialized Center of Program Systems, Russia)
Edmundo Monteiro (University of Coimbra, Portugal)
Anna Morajko (Universitat Autonoma de Barcelona, Spain)
Jose Moreira (IBM T.J. Watson Research Center, USA)
Frank Mueller (North Carolina State University, USA)
Henk Muller (University of Bristol, UK)
Dong Myung Shin (Korea Information Security Agency, Korea)
Wolfgang Mühlbauer (Technische Universität München, Germany)
Jarek Nabrzyski (PSNC, Poznan, Poland)
Tatsuo Nakajima (Waseda University, Japan)
Laura Nett Carrington (San Diego Supercomputing Center, USA)
Nobuhiko Nishio (Ritsumei University, Japan)
Teresa Oh (Cheongju University, Korea)
Yong-Chul Oh (Korea Polytechnic University, Korea)
Vicent Oria (New Jersey Institute of CLIPS-IMAG, USA)
Jose Orlando Pereira (University of Minho, Portugal)
Salvatore Orlando (University of Venice “Ca′ Foscari,” Italy)
Michael Ott (Technische Universität München, Germany)
Mohamed Ould-Khaoua (University of Glasgow, UK)
Julian Padget (Bath University, UK)
Stylianos Papanastasiou (University of Glasgow, UK)
Myung-Chan Park (International Graduate University for Peace, Korea)
SuJin Park (University of Daejeon, Korea)
Rubem Pereira (Liverpool John Moores University, UK)
Ron Perrott (Queen’s University, Belfast, UK)
Antonio Picariello (University of Naples, Italy)
Jean-Marc Pierson (INSA, France)
Evaggelia Pitoura (University of Ioannina, Greece)
Thomas Plagemann (University of Oslo, Norway)
Gilles Pokam (University of California, San Diego, USA)
Balakrishna Prabhu (VTT TRC, Finland)
Isabelle Puaut (University of Rennes, France)
Aaron Quigley (University College Dublin, Ireland)
Khaled Ragab (University of Tokyo, Japan)
Massimiliano Rak (Seconda Università degli Studi di Napoli, Italy)
Omer Rana (Cardiff University, UK)
Thomas Rattei (Technische Universität München, Germany)
Andrew Rau-Chaplin (Dalhousie University, Canada)
Thomas Rauber (University of Bayreuth, Germany)
Lawrence Rauchwerger (Texas A&M University, USA)
Kasim Rehman (Cambridge Systems Associates, UK)

Organization XIII

Vincent Roca (INRIA Rhone-Alpes, France)
Daniel Rodriguez Garcia (University of Reading, UK)
Paul Roe (Queensland Univ. of Technology, Australia)
Mathilde Romberg (University of Ulster, UK)
Philip Roth (Oak Ridge National Laboratory, USA)
Stefano Russo (University of Naples, Italy)
Rizos Sakellariou (University of Manchester, UK)
Kave Salamatian (Laboratoire d’Informatique de Paris 6, France)
Yahya Sanadidi (UCLA, USA)
Miguel Santana (Central R&D, ST Microelectronics, France)
Vivek Sarkar (IBM T.J. Watson Research Center, USA)
Mitsuhisa Sato (University of Tsukuba, Japan)
Ichiro Satoh (National Institute of Informatics, Japan)
Olaf Schenk (University of Basel, Switzerland)
Erich Schikuta (University of Vienna, Austria)
David Schmidt (University of Massachussetts at Amherst, USA)
Assaf Schuster (TECHNION, Israel Institute of Technology, Haifa, Israel)
James Scott (Intel Research, UK)
Stephen Scott (ORNL, USA)
Sameer Shende (University of Oregon, USA)
Qi Shi (Liverpool John Moores University, UK)
Nicolas Sklavos (University of Patras, Greece)
Peter M.A. Sloot (University of Amsterdam, The Netherlands)
Peter Sobe (Universität Lübeck, Germany)
Matthew Sottile (Los Alamos National Laboratory, USA)
Alexandros Stamatakis (Foundation for Research and Technology-Hellas, Greece)
Thomas Sterling (Caltech and Louisiana Sate University, USA)
Kurt Stockinger (Lawrence Berkeley National Laboratory, USA)
Daniel Stodden (Technische Universität München, Germany)
Vaidy Sunderam (EMORY University, USA)
Mee Young Sung (University of Incheon, Korea)
Martin Swany (University of Delaware, USA)
Domenico Talia (Università della Calabria, Rende, Italy)
Kun Tan (Microsoft Research, China)
David Taniar (Monash University, Melbourne, Australia)
Jie Tao (Universität Karlsruhe, Germany)
Renata Teixeira (Laboratoire d’Informatique de Paris 6, France)
Dan Terpstra (University of Tennessee, Knoxville, USA)
Nigel A. Thomas (University of Newcastle, UK)
Carsten Trinitis (Technische Universität München, Germany)
Ziga Turk (University of Ljubljana, Slovenia)
Hanjo Täubig (Technische Universität München, Germany)
Stefano Ubertini (University of Rome, Italy)
Andreas Uhl (University of Salzburg, Austria)
Theo Ungerer (University of Augsburg, Germany)

XIV Organization

Shmuel Ur (IBM Research Haifa, Israel)
Marian Vajtersic (University of Salzburg, Austria)
Sudharshan Vazhkudai (Oak Ridge National Laboratory, USA)
Daniel Veit (University of Karlsruhe, Germany)
Iakovos Venieris (National Technical University of Athens, Greece)
Salvatore Venticinque (Seconda Università di Napoli, Italy)
Pascale Vicat-Blanc (ENS Lyon, France)
Pablo Vidales (Deutsche Telekom Labs, Germany)
Umberto Villano (Università del Sannio, Italy)
Valeria Vittorini (University of Naples, Italy)
Max Walter (Technische Universität München, Germany)
Xiaofang Wang (New Jersey Institute of Technology, USA)
Xin-Gang Wang (University of Bradford, UK)
Greg Watson (Los Alamos National Laboratory, USA)
Josef Weidendorfer (Technische Universität München, Germany)
Andrew L. Wendelborn (University of Adelaide, Australia)
Marianne Winslett (University of Illinois, USA)
Felix Wolf (Forschungszentrum Juelich, Germany)
Dan Wu (University of Windsor, Canada)
Brian Wylie (Research Centre Juelich, ZAM, Germany)
Tao Xie (New Mexico Institute of Mining and Technology, USA)
Baijian Yang (Ball State University, USA)
Kun Yang (Univ. of Essex, UK)
Marcelo Yannuzzi Sanchez (UPC Barcelona, Spain)
Wai Gen Yee (Illinois Institute of Technology, USA)
Hao Yin (Tsinghua University, China)
Martin Zacharias (International University Bremen, Germany)
Ning Zhang (University of Manchester, UK)
Hongbo Zhou (Slippery Rock University, USA)
Hai Zhuge (Chinese Academy of Science, China)
Wolfgang Ziegler (Fraunhofer Institute, Germany)
Anna Zygmunt (AGH University of Science and Technology, Cracow, Poland)

Sponsoring Institutions
(as of July 10, 2006)

HP
Intel
Megware
ParTec
Transtec

Table of Contents

Introducing Combustion-Turbulence Interaction in Parallel Simulation
of Diesel Engines . 1

P. Belardini, C. Bertoli, S. Corsaro, P. D’Ambra

An Enhanced Parallel Version of Kiva–3V, Coupled with a 1D CFD
Code, and Its Use in General Purpose Engine Applications 11

G. Bella, F. Bozza, A. De Maio, F. Del Citto, S. Filippone

A Distributed, Parallel System for Large-Scale Structure Recognition
in Gene Expression Data . 21

J. Ernst

Cluster Design in the Earth Sciences Tethys . 31
J. Oeser, H.-P. Bunge, M. Mohr

A Streaming Implementation of Transform and Quantization
in H.264 . 41

H. Li, C. Zhang, L. Li, M. Pang

A Parallel Transferable Uniform Multi-Round Algorithm
in Heterogeneous Distributed Computing Environment 51

H. Yamamoto, M. Tsuru, Y. Oie

Clustering Multicast on Hypercube Network . 61
S. Lu, B. Fan, Y. Dou, X. Yang

Checkpointing and Communication Pattern-Neutral Algorithm
for Removing Messages Logged by Senders . 71

J. Ahn

The Design of a Dynamic Efficient Load Balancing Algorithm
on Distributed Networks . 81

Y. Lee, O. Lee, W. Choi, C. Youn, I. Chung

Distributed Resource Allocation for Stream Data Processing 91
A. Tang, Z. Liu, C. Xia, L. Zhang

Network Probabilistic Connectivity: Expectation of a Number
of Disconnected Pairs of Nodes . 101

A.S. Rodionov, O.K. Rodionova

XVI Table of Contents

Parallel LU Factorization of Band Matrices on SMP Systems 110
A. Remón, E.S. Quintana-Ort́ı, G. Quintana-Ort́ı

A Tree-Based Distributed Model for BGP Route Processing 119
K. Wu, J. Wu, K. Xu

A Novel Scheme for the Parallel Computation of SVDs 129
S. Rajasekaran, M. Song

Cache-Optimal Data-Structures for Hierarchical Methods on Adaptively
Refined Space-Partitioning Grids . 138

M. Mehl

CSTallocator: Call-Site Tracing Based Shared Memory Allocator
for False Sharing Reduction in Page-Based DSM Systems 148

J. Lee, S.-D. Kim, J.W. Lee, J. O

Performance Evaluation of Storage Formats for Sparse Matrices
in Fortran . 160

A. Usman, M. Luján, L. Freeman, J.R. Gurd

Performance Monitoring and Visualization of Grid Scientific Workflows
in ASKALON . 170

P. Brunner, H.-L. Truong, T. Fahringer

Exploring the Capacity of a Modern SMT Architecture to Deliver High
Scientific Application Performance . 180

E. Athanasaki, N. Anastopoulos, K. Kourtis, N. Koziris

A Statistical Approach to Traffic Management in Source Routed
Loss-Less Networks . 190

T. Sødring, R. Mart́ınez, G. Horn

Model-Based Relative Performance Diagnosis of Wavefront Parallel
Computations . 200

L. Li, A.D. Malony, K. Huck

Self-optimization of MPI Applications Within an Autonomic
Framework . 210

M. Iannotta, E. Mancini, M. Rak, U. Villano

Discovery of Locality-Improving Refactorings by Reuse Path
Analysis . 220

K. Beyls, E.H. D’Hollander

Table of Contents XVII

Integrating TAU with Eclipse: A Performance Analysis System
in an Integrated Development Environment . 230

W. Spear, A. Malony, A. Morris, S. Shende

Scalable Architecture for Allocation of Idle CPUs in a P2P Network 240
J. Celaya, U. Arronategui

A Proactive Secret Sharing for Server Assisted Threshold Signatures 250
J.-P. Yang, K.H. Rhee, K. Sakurai

An Efficient ID-Based Bilinear Key Predistribution Scheme
for Distributed Sensor Networks . 260

T.T. Dai, C.T. Hieu, C.S. Hong

A Key-Predistribution-Based Weakly Connected Dominating Set
for Secure Clustering in DSN . 270

A.-S.K. Pathan, C.S. Hong

Pairwise Key Setup and Authentication Utilizing Deployment
Information for Secure Sensor Network . 280

I. Doh, J.-M. Park, K. Chae

HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems 290
X. Chen, Z. Li, Y. Zhuang, J. Han, L. Chen

A High Performance Heterogeneous Architecture and Its Optimization
Design . 300

J. Guo, K. Dai, Z. Wang

Development and Performance Study of a Zero-Copy File Transfer
Mechanism for VIA-Based PC Cluster Systems . 310

S. Park, S.-H. Chung, I.-S. Yoon

DPCT: Distributed Parity Cache Table for Redundant Parallel File
System . 320

S.-K. Hung, Y. Hsu

On High Performance Multicast Algorithms for Interconnection
Networks . 330

A. Al-Dubai, M. Ould-Khaoua, I. Romdhani

A Proactive Distributed QoS Control Framework for Cluster
Web Site . 340

X. Wang, S. Jin

XVIII Table of Contents

Design and Implementation of Zero-Copy Data Path for Efficient File
Transmission . 350

D.-J. Kang, Y.-H. Kim, G.-I. Cha, S.-I. Jung, M.-J. Kim,
H.-Y. Bae

Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks 360
H. Park, T.-J. Lee, H. Choo

Design and Analysis of High Performance TCP . 370
T.J. Park, J.Y. Lee, B.C. Kim

On a NIC’s Operating System, Schedulers and High-Performance
Networking Applications . 380

Y. Weinsberg, T. Anker, D. Dolev, S. Kirkpatrick

A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme
in NGI . 390

X. Wang, Q. Wang, M. Huang, N. Gao

Adaptive Online Management for Congestion Control in QoS Sensitive
Multimedia Services . 400

Sw. Kim, Sc. Kim

BGPSep D: An Improved Algorithm for Constructing Correct
and Scalable IBGP Configurations Based on Vertexes Degree 406

F. Zhao, X. Lu, P. Zhu, J. Zhao

DiffServ–Aware MPLS Scheme to Support Policy–Based End–to–End
QoS Provision in Beyond 3G Networks . 416

K. Jun, S. Kang, B. Choi

Effect of Flow Aggregation on the Maximum End-to-End
Delay . 426

J. Joung, B.-S. Choe, H. Jeong, H. Ryu

Heterogeneous QoS Multicast and Its Improvement on Edge-Based
Overlay Networks . 436

S. Li, J. Wu, K. Xu, Y. Liu

On Multicasting Steiner Trees for Delay and Delay Variation
Constraints . 447

M. Kim, Y.-C. Bang, H. Choo

Periodic Message Scheduling on a Switched Ethernet for Hard
Real-Time Communication . 457

M.K. Kim, H.C. Lee

Table of Contents XIX

Optical Traffic Grooming Based on Network Availability 467
Y.-R. Yoon, T.-J. Lee, M.Y. Chung, H. Choo

Do We Really Need Dynamic Wavelength-Routed Optical Networks? 477
A. Zapata, P. Bayvel

Design and Implementation of Middleware and Context Server
for Context-Awareness . 487

J.-W. Chang, Y.-K. Kim

Security and Privacy Analysis of RFID Systems Using Model
Checking . 495

H.-S. Kim, I.-G. Kim, K.-H. Han, J.-Y. Choi

ITB: Intrusion-Tolerant Broadcast Protocol in Wireless Sensor
Networks . 505

J.W. Lee, Y.-H. Lee

Authentication for Ubiquitous Multi Domain in Pervasive Computing
Using PMI . 515

D.G. Lee, J.S. Moon, J.H. Park, I.Y. Lee

Proxy-Based Service Discovery and Network Selection in 6LoWPAN 525
S.A. Chaudhry, W.D. Jung, A.H. Akbar, K.-H. Kim

A Low-Power Hybrid ARQ Scheme for the RFID System 535
I. Joe

Multi-Granularities Counting Bloom Filter . 542
M. Zhou, J. Gong, W. Ding, G. Cheng

Dynamic Execution Environments for Ubiquitous Computing
Service . 552

S. Lee

A Dynamic Trust Model Based on Naive Bayes Classifier for Ubiquitous
Environments . 562

W. Yuan, D. Guan, S. Lee, Y. Lee

Context-Role Based Access Control for Context-Aware Application 572
S.-H. Park, Y.-J. Han, T.-M. Chung

Context Communication for Providing Context-Aware Application’s
Independency . 581

K. Jeong, D. Choi, G. Lee

XX Table of Contents

A Heterogeneous Embedded MPSoC for Multimedia Applications 591
H. Yue, Z. Wang, K. Dai

Generated Implementation of a WLAN Protocol Stack 601
S. Kolevatov, M. Wesseling, A. Hunger

A New Address Mapping Scheme for High Parallelism MEMS-Based
Storage Devices . 611

S. Lee, H. Bahn

Practice and Experience of an Embedded Processor Core Modeling 621
G.-H. Park, S.-W. Chung, H.-J. Kim, J.-B. Im, J.-W. Park,
S.-D. Kim, S.-B. Park

QoS Support for Video Transmission in High-Speed Interconnects 631
A. Mart́ınez, G. Apostolopoulos, F.J. Alfaro, J.L. Sánchez,
J. Duato

Discrete Broadcasting Protocols for Video-on-Demand 642
C. Peng, H. Shen, N. Xiong, L.T. Yang

Multistage Authentication Scheme for Mobile Ad-Hoc Network Using
Clustering Mechanism . 653

H.K. Lee, J. Choi

Fast and Memory-Efficient NN Search in Wireless Data Broadcast 662
M.-S. Lee, S.K. Lee

A New Proposal of TCP for IEEE 802.11 Wireless Networks 672
F.C.M. Araújo, C.J.B. Abbas, L.J.G. Villalba

Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc
Networks . 682

L. Li, X. Xu, Y. Cai

Model-Aided Data Collecting for Wireless Sensor Networks 692
C. Zhang, M. Li, M.-Y. Wu

Low Latency and Cost Effective Handoff Based on PBF Scheme
in Hierarchical Mobile IPv6 . 700

J. Jeong, M.Y. Chung, H. Choo

Distributed Classification of Textual Documents on the Grid 710
I. Janciak, M. Sarnovsky, A.M. Tjoa, P. Brezany

Table of Contents XXI

Towards Job Accounting in Existing Resource Schedulers: Weaknesses
and Improvements . 719

H. Rosmanith, P. Praxmarer, D. Kranzlmüller, J. Volkert

Mapping Heavy Communication Workflows onto Grid Resources
Within an SLA Context . 727

D.M. Quan

The SLA-Compatible Fault Management Model for Differentiated
Fault Recovery . 737

K. Long, X. Yang, S. Huang, X. Yang, Y. Kuang

Towards SLA-Supported Resource Management . 743
P. Hasselmeyer, B. Koller, L. Schubert, P. Wieder

Reliable Orchestration of Resources Using WS-Agreement 753
H. Ludwig, T. Nakata, O. Wäldrich, P. Wieder, W. Ziegler

Dynamically Scheduling Divisible Load for Grid Computing 763
S.-S. Boutammine, D. Millot, C. Parrot

Computational Efficiency and Practical Implications for a Client Grid . . . 773
N. Zhou, R. Alimi

Developing a Consistent Data Sharing Service over Grid Computing
Environments . 783

C.W. Park, J. No, S.S. Park

Analysis of Interoperability Issues Between EGEE and VEGA Grid
Infrastructures . 793

B. Kryza, �L. Skita�l, J. Kitowski, M. Li, T. Itagaki

Temporal Storage Space for Grids . 803
Y. Cardenas, J.-M. Pierson, L. Brunie

e-AIRS: An e-Science Collaboration Portal for Aerospace Applications . . . 813
Y. Kim, E.-K. Kim, J.Y. Kim, J.-H. Cho, C. Kim, K.W. Cho

A Parallel Plug-In Programming Paradigm . 823
R. Baumann, C. Engelmann, A. Geist

Hybrid MPI-Thread Implementation on a Cluster of SMP Nodes
of a Parallel Simulator for the Propagation of Powdery Mildew
in a Vineyard . 833

G. Tessier, J. Roman, G. Latu

XXII Table of Contents

Exploring Unexpected Behavior in MPI . 843
M. Schulz, D. Kranzlmüller, B.R. de Supinski

Zone-Oriented Byzantine Agreement on Zone-Based Wireless Ad-Hoc
Network . 853

C.-F. Cheng, S.-C. Wang, T. Liang

Priority-Enabled Optimization of Resource Utilization in Fault-Tolerant
Optical Transport Networks . 863

J. Rak

SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster 874
H. Han, H. Jung, J.W. Kim, J. Lee, Y. Yu, S.G. Kim, H.Y. Yeom

Priority-Based Event Message Scheduling in Distributed Virtual
Environment . 884

S. Yu

inVRs - A Framework for Building Interactive Networked Virtual
Reality Systems . 894

C. Anthes, J. Volkert

JaDiMa: Java Applications Distributed Management on Grid
Platforms . 905

Y. Cardinale, E. Blanco, J. De Oliveira

Reducing Data Replication Overhead in DHT Based Peer-to-Peer
System . 915

K. Kim, D. Park

Improving Resiliency Using Capacity-Aware Multicast Tree
in P2P-Based Streaming Environments . 925

E. Kim, J. Jang, S. Park, A. Sussman, J.S. Yoo

Author Index . 935

Introducing Combustion-Turbulence Interaction
in Parallel Simulation of Diesel Engines

Paola Belardini1, Claudio Bertoli1, Stefania Corsaro2, and Pasqua D’Ambra3

1 Istituto Motori (IM)-CNR
Via Marconi, 8 I-80125 Naples, Italy

{p.belardini, c.bertoli}@im.cnr.it
2 Department of Statistics and Mathematics for Economic Research

University of Naples “Parthenope”
Via Medina 40, I-80133 Naples, Italy
stefania.corsaro@uniparthenope.it

3 Institute for High-Performance Computing and Networking (ICAR)-CNR
Via Pietro Castellino 111, I-80131 Naples, Italy

pasqua.dambra@na.icar.cnr.it

Abstract. In this work we focus on parallel combustion simulation
in modern Common Rail Diesel engines when the interaction between
complex chemical kinetics and turbulence is taken into account. We in-
troduce a turbulence term in a detailed chemical reaction model and
analyze the impact on the reliability of pollutant emission predictions
and on the efficiency and scalability of our combustion software. The
parallel combustion software we developed adaptively combines numeri-
cal schemes based either on Backward Differentiation Formulas or semi-
implicit Runge-Kutta methods for the solution of ODE systems arising
from the chemical reaction model. It is based on CHEMKIN-II package
for managing detailed chemistry and on two general-purpose solvers for
adaptive solution of the resulting ODE systems. Furthermore, it is inter-
faced with KIVA3V-II code in order to simulate the entire engine cycle.

1 Introduction

In recent years stringent limits on engines pollutant emissions have been imposed
by Government laws, strongly conditioning motor industry. For this reason, the
design of modern engines relies on even more sophisticated, complex technologies.
In particular, in latest-generation Diesel engines the Common Rail technolo-
gy is usually employed and an high level of Exhaust Gas Recirculation (EGR)
rate is also established; moreover, multiple fuel injection mechanism is typically
adopted in order to reduce soot emissions and combustion noise. The impact on
engine modeling is the need of accurately simulating highly complex, different
physical-chemical phenomena occurring in each engine cycle. Mathematical mo-
dels for the description of the overall problem typically involve unsteady Navier-
Stokes equations for turbulent multi-component mixtures of ideal gases, coupled
with suitable equations for fuel spray and combustion modeling. The solution

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 P. Belardini et al.

of the complex overall model usually relies on a time-splitting approximation
technique, where different physical phenomena are conceptually decoupled and,
consequently, different sub-models are solved separately one from each other on
a suitable 3d computational grid representing engine cylinder and piston bowl.

In recent years much attention has been addressed to combustion: great effort
has been devoted to the design of detailed chemical reaction models suitable to
predict emissions in sophisticated, last-generation Common Rail Diesel engines.
Therefore, the numerical solution of chemistry has become one of the most com-
putational demanding parts in simulations, thus leading to the need of efficient
parallel combustion solvers [1,15]. The typical main computational kernel in this
framework is the solution of systems of non-linear Ordinary Differential Equa-
tions, characterized by a very high stiffness degree. The reaction model does not
introduce any coupling among grid cells, in other words cells are supposed to
be isolated when chemical reactions occur. This assumption actually neglects
turbulence effects in combustion process, a quite severe approximation in the
high temperature combustion phase.

In this work we discuss the impact of introducing, in multidimensional mo-
deling of Diesel engines, based on a decoupled solution of transport and re-
action phenomena, a model describing the combustion-turbulence interaction.
We model the interaction between complex chemistry and turbulence following
the approach discussed in [13,14], that is, splitting the characteristic times of the
species involved in combustion into the sum of a laminar term and a properly
smoothed turbulent term. This model does not introduce any coupling among
computational grid cells, preserving locality in the solution of the turbulent com-
bustion process. The simulations are obtained by a parallel combustion software
[4,5,6], based on CHEMKIN-II package for managing detailed chemistry and
on a multi-method ODE solver [7] for the solution of the ODE systems arising
from the turbulent chemical reaction model. The software is interfaced with the
KIVA3V-II code for the simulation of the entire engine cycle. In section 2 we
briefly outline the turbulent combustion model, in section 3 we describe the so-
lution procedure and the main features of the parallel software, in section 4 we
discuss some results of numerical simulations on realistic test cases.

2 Turbulent Combustion Model

Diesel engine combustion is characterized by liquid fuel injection in a turbulent
environment. Two main phases can be distinguished in the overall phenomenon.
Fuel injection gives raise to chemical reactions that, under suitable temperature
and pressure conditions, lead to fuel ignition. The period from the starting of
fuel injection and fuel ignition is named ignition delay: in this phase chemical
reactions occur without giving strong energy contributions, but high stiffness is
the main feature, due to very different reaction rates among the reactant species.
Kinetics occurring before ignition is usually referred to as low temperature com-
bustion or cold phase, while combustion phase, or high temperature combustion,
is the chain of reactions subsequent to ignition.

Introducing Combustion-Turbulence Interaction 3

In a time-splitting solution procedure for simulation of Diesel engines, compu-
tational grid cells are supposed to be isolated during the solution of the chemical
reaction equations driving combustion, thus, neglecting their interaction, turbu-
lence is not properly considered. On the other hand, combustion is strongly in-
fluenced by turbulence, since it has significant effects on the transport properties
and on the mixing of reactants. Neglecting turbulence can seriously affect results
concerning the numerical simulation of combustion phase, when turbulence ef-
fects are more relevant: indeed, chemical species conversion rates estimation does
not take into account mixture inhomogeneities, thus leading to overestimated
combustion rates. As a consequence, the stiffness degree of the arising ODE sys-
tems increases in this case, that is, neglecting turbulence has considerable effects
from the mathematical point of view as well.

We consider a turbulent combustion model in order to accurately predict the
effects of both chemical kinetics and turbulent mixing. The model is based on
a recent detailed kinetic scheme, which considers N-dodecane as primary fuel.
It involves 62 chemical species and 285 reactions. The kinetic scheme consid-
ers the H abstraction and the oxidation of the primary fuel, with production
of alchil-peroxy-radicals, followed by the ketoydroperoxide branching. In the
model the fuel pirolysis determines the chetons and olefins formation. Moreover,
a scheme of soot formation and oxidation is provided, together with a classical
scheme of NOx formation. The reaction system is expressed by the following
system of non-linear Ordinary Differential Equations:

ρ̇m = Wm

R∑
r=1

(bmr − amr)ω̇r(ρ1, . . . , ρm, T), m = 1, . . . , M, (1)

where R is the number of chemical reactions involved in the system, M is the
number of species, ρ̇m is the production rate of species m, Wm is its molecular
weight, amr and bmr are integral stoichiometric coefficients for reaction r and
ω̇r is the kinetic reaction rate.

Production rate terms can be separated into creation rates and destruction
rates[12]:

ρ̇m = Ċm − Ḋm, m = 1, ...M, (2)

where Ċm, Ḋm are the creation and the destruction rate of species m respec-
tively. The latter can be expressed as

Ḋm =
Xm

τm
, m = 1, ...M, (3)

where Xm, τm are respectively the molar concentration and the characteristic
time for destruction rate of species m. Expression (3) shows that the eigenva-
lues of the Jacobian matrix of the right-hand side of system (1) are related to
the characteristic times for destruction rates of species involved in the combu-
stion model. Detailed reaction models involve a great number of intermediate
species and no equilibrium assumption is made. Thus, the overall reaction sy-
stems include species varying on very different timescales one from each other;

4 P. Belardini et al.

this motivates the high stiffness degree that typically characterizes ODE sys-
tems arising in this framework. Moreover, relation (3) shows that if combustion
rates are overestimated, that is, characteristic times are underestimated, then it
results in a higher stiffness degree: this explains the impact of neglecting turbu-
lence from the computational point of view.

We model interaction between complex kinetics and turbulence following the
approach discussed in [13,14]. The model relies on the assumption that the char-
acteristic time τc

m of each species involved in the combustion model depends both
on a kinetic timescale and a turbulent timescale. The former is defined as the
time needed by a species to reach equilibrium state under perfectly homogeneous
conditions, the latter is the eddy breakup time. More precisely, we suppose that
it holds

τc
m = τk

m + fτ t
m, m = 1, ...M (4)

where τk
m, τ t

m are the kinetic and the turbulent timescales of species m, respec-
tively. The turbulent timescale is considered proportional to the eddy turnover
time as estimated by the standard k − ε turbulence model employed in the
KIVA3V-II code. The factor f serves as a delay coefficient that slows down
reactions according to turbulence effects. It is assumed to be

1− er

0.632
, (5)

where r is the ratio between combustion products and total reactant concen-
trations. It indicates the stage of combustion within specific regions: the value
r = 1 corresponds to complete consumption of fuel and oxygen. Note that a
reliable estimate of r is a key issue when detailed chemical kinetic models are
used, since in that case combustion products have to be well established. The
delay coefficient f changes accordingly to r, depending on the local conditions.

From relation (4) it follows that the densities ρm satisfy the equation

∂ρm

∂t
=

ρ∗m − ρm

τk
m + fτ t

m

, m = 1, ...M (6)

where ρ∗m is the equilibrium concentration. Therefore, the main computational
kernel in the turbulent combustion model is the solution, in each grid cell and
at each splitting time step, of system (1) where the right-hand side is properly
scaled, according to (6). Note that, for sake of efficiency, the kinetic timescale
for all the species is assumed to be equal to that of the slowest species involved
in the oxidation scheme.

In Figure 1 two graphics reporting stiffness degree estimations during the
ignition delay period of a typical engine simulation are shown. One refers to a
simulation where the detailed combustion model, without turbulence term, was
employed. The other one shows the results of a simulation involving interaction
between complex kinetics and turbulence. Figure reveals that, as expected, since
the introduction of turbulence term in the model slows down reaction rates, it
has, from the computational point of view, a smoothing effect on ODE systems.

Introducing Combustion-Turbulence Interaction 5

0

16

16

16

16

17

17

17

-12 -11 -10 -9 -8 -7

lo
ga

rit
hm

 o
f m

ax
/m

in
 r

at
io

s
of

 c
ha

ra
ct

er
is

tic
 ti

m
es

crank

without turbulence
with turbulence

Fig. 1. Stiffness estimate

3 Parallel Solution of Turbulent Combustion

In this section we describe the main features of the parallel package we devel-
oped for the numerical simulation of turbulent combustion in Diesel engines.
As also proposed in [1,15], parallelism is based on a domain decomposition tech-
nique where the computational grid is partitioned among the parallel processors;
the main computational kernel arising from the turbulent combustion model is
the solution of a system of non-linear Ordinary Differential Equations per each
grid cell, at each time step of the splitting solution procedure, which can be
solved concurrently, since there is no coupling among the cells. On the other
hand, the approach followed for accounting interaction between complex kinet-
ics and turbulence does not affect inherent parallelism in the solution process:
indeed, the scaling procedure described in section 2 preserves the locality with
respect to grid cells.

In our software, main contribution is related to the local stiff ODE solver.
Indeed, we proposed a multi-method solver, based on an adaptive combination
of a 5-stages Singly Diagonally Implicit Runge-Kutta (SDIRK) method [11] and
variable coefficient Backward Differentiation Formulas (BDF) [8].

We tested SDIRK4 and VODE packages when no interaction between turbu-
lence and chemical reactions was considered; main features of both solvers and
some results are described in [6]. Those results showed that the VODE package
is more accurate than SDIRK4 in the cold phase. From the mathematical point
of view, low temperature combustion corresponds to the transient phase; Runge-
Kutta based methods are well-known to loose accuracy in the very stiff phase [3],
indeed we observed that SDIRK4 could overestimate ignition delay [6] and, con-
sequently, underestimate pressure rise. On the other hand, SDIRK4 was, in all
of our numerical simulations, more efficient than VODE in the high temperature
combustion phase, therefore, we proposed and developed a multi-method solver

6 P. Belardini et al.

that automatically switches from VODE to SDIRK4 when ignition is approach-
ing. First results on the use of the multi-method solver in the solution of detailed
chemical kinetics in multidimensional Diesel engine simulations have been pre-
sented at [7]. Here we analyze the behaviour of the multi-method solver when the
turbulence combustion interaction model described in section 2 is considered.

Note that physical stiffness is strongly related to local conditions, therefore,
when adaptive solvers are considered in a parallel setting, grid partitioning be-
comes a critical issue for computational load balancing. To this aim, our parallel
solver supports three partitioning strategies, namely, pure block, pure cyclic and
random distribution. In the former, a block of contiguous cells, according to cell
numbering into the grid, is distributed to each process, in the latter, cells are di-
stributed among processes following a typical round-robin algorithm. In the case
of random partitioning grid cells are reordered according to a permutation of
indexes, deduced by a pseudo-random sequence, before grid distribution. Expe-
riments on our test cases, when VODE or SDIRK4 were used as solver, revealed
that random partitioning produces the best parallel performance results. Details
on the performance analysis of different grid partinioning strategies on our test
cases can be found in [5].

The parallel combustion software is written in Fortran and uses standard MPI
API for message passing. Furthermore, it is based on CHEMKIN-II [12], a soft-
ware package for managing large models of chemical reactions in the context of
simulation software. It provides a database and a software library for computing
model parameters involved in system (1).

Our parallel software has been interfaced with the KIVA3V-II code [2], in or-
der to properly test it within real simulations. Details on the integration between
the parallel combustion software and KIVA3V-II can be found in [4,6].

4 Numerical Results

In this section we show some results concerning simulations performed on a
prototype, single cylinder Diesel engine, with IV valves, having characteristics
similar to the 16 valves EURO IV Fiat Multijet. Simulations have been carried
out at 1500 rpm. In order to fit a wide range of operating conditions both in
the experimental measurements and in the numerical simulations, the production
engine has been modified for having a swirl variable head. The engine is equipped
with an external supercharging system to simulate intake conditions deriving
from turbo-charging application. In addition, the exhaust pipe is provided with a
motored valve to simulate the backpressure due to the turbocharger operation. In
the experiments three test cases, corresponding to different operating conditions,
reported in Table 1, have been considered. The position of the piston into the
cylinder is measured by means of crank angle values, therefore, injection timing
and injection period are expressed with respect to them. The limit positions of
the piston, that is, the lowest point from which it can leave and the highest
point it can reach, correspond to −180o and 0o crank angle values respectively.
Numerical experiments have been carried out on a Beowulf-class Linux cluster,

Introducing Combustion-Turbulence Interaction 7

Table 1. Engine operating conditions

Rail Pressure EGR Injection timing Injection period Injected fuel
(bar) (crank angle) (crank angle) (mg)

Test case 1 500 40% -12.7 7.3 8.0
Test case 2 900 0% -2.3 5.7 8.7
Test case 3 500 0% -2.1 7.3 8.5

made of 16 PCs connected via a Fast Ethernet switch, available at IM-CNR.
Eight PCs are equipped with a 2.8GHz Pentium IV processor, while the others
have a 3.8GHz Pentium IV processor. All the processors have a RAM of 1 GB
and an L2 cache of 256 KB. We used the GNU Fortran compiler (version 3.2.2)
and the LAM implementation (version 7.0) of MPI.

ODE systems have been solved by means of the multi-method solver we deve-
loped. In the stopping criteria, both relative and absolute error control tolerances
were considered; at this purpose, we defined two vectors, rtol and atol, respec-
tively. In all the experiments here analyzed atol values were fixed in dependence
of the particular chemical species. The reason motivating this choice relies on the
very different concentrations characterizing chemical species involved in detailed
reaction models. All the components of rtol were set to 10−3, in order to satisfy
the application accuracy request.

In Fig. 2 the in-cylinder combustion pressure graph is shown. Experimental
pressure values are compared to predicted ones for testing results reliability. In
order to analyze the impact of accounting for kinetics-turbulence interaction,
two graphics are shown: on the left, results concerning simulations performed
without turbulence term in kinetics model are reported. On the right, the re-
presented pressure curves refer to numerical simulations involving the turbulent
combustion model described in section 2. We observe that, for all the considered
test cases, the introduction of chemistry-turbulence interaction term in the com-
bustion model provides a better agreement between experimental and simulated
pressure curves, confirming that the complex physical phenomena occurring dur-
ing combustion are more accurately described in this case.

In Figure 3 we show some performance results on the Test case 1. In the ex-
periments we are discussing, computational grid has been distributed according
to random grid partitioning strategy. We show results of numerical simulations
involving the detailed combustion model without the kinetics-turbulence inte-
raction term and compare them with the ones obtained via the numerical solution
of the turbulent combustion model in order to investigate the impact of accoun-
ting for kinetics-turbulence interaction on performance as well. In Fig. 3, on the
top-left, we reported the total number of performed function evaluations for each
process configuration, that is a measure of the total computational complexity
of the combustion solver. More precisely, for a fixed number of processes varying
from one to sixteen, we added the number of function evaluations performed by
each process. On the top-right, simulation time, expressed in hours, versus num-
ber of processes is represented. We note that considering the turbulence term in

8 P. Belardini et al.

Fig. 2. Comparison between experimental and simulated in-cylinder pressure. Left:
combustion simulation without turbulence term. Right: turbulent combustion model
simulation results.

1 2 4 8 16
0

1

2

3

4

5

6

7

8
x 10

7

processes

fu
nc

tio
n

ev
al

ua
tio

ns

without turb.
with turb.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

processes

si
m

ul
at

io
n

tim
e

in
 h

ou
rs

without turb.
with turb.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8
x 10

7

processes

fu
nc

tio
n

ev
al

ua
tio

ns

with turb., maximum
with turb., minimum
without turb., maximum
without turb., minimum

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

processes

sp
ee

d−
up

ideal
without turb.
with turb.

Fig. 3. Top-left: total number of performed function evaluations versus number of pro-
cesses. Top-right: simulation time expressed in hours. Bottom-left: maximum and min-
imum number of performed function evaluations versus number of processes. Bottom-
right: speed-up.

Introducing Combustion-Turbulence Interaction 9

the combustion model results in an higher overall simulation time. Accounting
for turbulence-chemistry interaction turns in a local scaling of the right-hand
side of systems (1), which affects the properties of the involved ODE systems,
leading to an increase of the computational load per processor. On the other
hand, communication costs and serial computation overheads are not affected.
Furthermore, accounting for turbulence-chemistry interaction seems to produce
better load balancing: on the bottom-left of the figure we analyze the load ba-
lancing among the processes for each configuration. We reported the minimum
and the maximum number of performed function evaluations, for each process
configuration. More precisely, for a fixed number of processes, we computed the
total number of function evaluations performed by each process and considered
the maximum and the minimum among such values. We note that, when the
turbulent term is introduced in the combustion model, the gap between those
values is reduced. The whole previous analysis is in agreement with the speed-up
lines, represented on the bottom-right of the figure, where we can observe that
higher speed-up values are obtained when turbulence is considered.

5 Some Conclusions

In this work we have shown first results related to the effort of improving re-
liability of parallel simulations of combustion in Diesel engines. A chemistry-
turbulence interaction model has been introduced in a decoupled solution of
the chemical reaction and of the Navier-Stokes equations for the reactive fluid
flow. Even though the chemistry-turbulence interaction term does not affect
the inherent parallelism in the combustion solver, it seems to produce larger
local computational complexity and better load balancing. Numerical results
on realistic test cases show that the use of the model provides a better agree-
ment between experimental and simulated results. Therefore, the impact of the
chemistry-turbulence interaction term on the ODE systems arising in detailed
combustion models has to be deeply investigated.

References

1. A. Ali, G. Cazzoli, S. Kong, R. Reitz, C. J. Montgomery, Improvement in Compu-
tational Efficiency for HCCI Engine Modeling by Using Reduced Mechanisms and
Parallel Computing, 13th International Multidimensional Engine Modeling User’s
Group Meeting, (Detroit 2003).

2. A. A. Amsden, KIVA-3V: A Block-Structured KIVA Program for Engines with
Vertical or Canted Valves, Los Alamos National Laboratory Report No. LA-13313-
MS, (1997).

3. U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations, SIAM, (1998).

4. P. Belardini, C. Bertoli, S. Corsaro, P. D’Ambra, Parallel Simulation of Combus-
tion in Common Rail Diesel Engines by Advanced Numerical Solution of Detailed
Chemistry, in Applied and Industrial Mathematics in Italy, Proc. of the 7th Con-
ference of SIMAI, M. Primicerio, R. Spigler, V. Valente eds., World Scientific Pub.,
(2005).

10 P. Belardini et al.

5. P. Belardini, C. Bertoli, S. Corsaro, P. D’Ambra, Multidimensional Modeling of
Advanced Diesel Combustion System by Parallel Chemistry, Society for Automotive
Engineers (SAE) Paper, 2005-01-0201, (2005).

6. P. Belardini, C. Bertoli, S. Corsaro, P. D’Ambra, The Impact of Different Stiff
ODE Solvers in Parallel Simulation of Diesel Combustion, in Proc. of HPCC’05,
L. Yang, O. Rana, B. Di Martino, J. Dongarra eds., Lecture Notes in Computer
Science, Springer Pub., vol. 3726, pp. 958-968, 2005.

7. P. Belardini, C. Bertoli, S. Corsaro, P. D’Ambra, A Multi-Method ODE Software
Component for Parallel Simulation of Diesel Engine Combustion, SIAM Conference
on Parallel Processing for Scientific Computing, San Francisco, February 2006.

8. Brown,P.N., Byrne,G.D., Hindmarsh, A.C., VODE: A Variable Coefficient ODE
Solver, SIAM J. Sci. Stat. Comput., 10, (1989).

9. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, NY, (1973).

10. Gustavsson, J., Golovitchev, V.I., Spray Combustion Simulation Based on Detailed
Chemistry Approach for Diesel Fuel Surrogate Model, Society for Automotive En-
gineers (SAE) Paper, 2003-0137, (2003).

11. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems, second edition, Springer Series in Comput. Math-
ematics, Vol. 14, Springer-Verlag, (1996).

12. R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin-II: A Fortran chemical kinetics
package for the analysis of gas-phase chemical kinetics, SAND89-8009, Sandia Na-
tional Laboratories, (1989).

13. S. C. Kong, Z. Han and R. D. Reitz, The Development and Application of a Diesel
Ignition and Combustion Model for Multidimensional Engine Simulation, SAE
950278, (1995).

14. S. C. Kong, C. D., Marriott, R. D. Reitz and M. Christensen, Modeling and Ex-
periments of HCCI Engine Combustion Using Detailed Chemical Kinetics with
Multidimensional CFD, SAE 2001-01-1026, (2001).

15. P. K. Senecal, E. Pomraning, K. J. Richards, T. E. Briggs, C. Y. Choi, R. M. Mc-
David, M. A. Patterson, Multi-dimensional Modeling of Direct-Injection Diesel
Spray Liquid Lenght and Flame Lift-off Lenght using CFD and Parallel Detailed
Chemistry, SAE 2003-01-1043, (2003).

An Enhanced Parallel Version of Kiva–3V,
Coupled with a 1D CFD Code, and Its Use in

General Purpose Engine Applications

Gino Bella1, Fabio Bozza2, Alessandro De Maio3,
Francesco Del Citto1, and Salvatore Filippone1,�

1 DIM, University of Rome “Tor Vergata”
salvatore.filippone@uniroma2.it

2 N.U.M.I.D.I.A s.r.l.
3 DIME, University of Naples “Federico II”

Abstract. Numerical simulations of reactive flows are among the most
computational demanding applications in the scientific computing world.

KIVA-3V, a widely used computer program for CFD, specifically tai-
lored to engine applications, had been deeply modified in order to im-
prove accuracy and stability, while reducing computational time.

The original methods included in KIVA to solve equations of fluid
dynamics had been fully replaced by new solvers, with the aim of both
improving performance and writing a fully parallel code. Almost every
feature of original KIVA-3V has been partially or entirely rewritten, a
full 1D code has been included and a strategy to link directly 3D zones
with zero dimensional models has been developed.

The result is a reliable program, noticeably faster than the original
KIVA-3V in serial mode and obviously even more in parallel, capable of
treating more complex cases and bigger grids, with the desired level of
details where required.

1 Computational Models

1.1 3D Code

The three dimensional CFD code used in this work is a highly modified version
of the well known Kiva 3V code; this is the result of a long development process,
which we will briefly outline in Sec. 2. Most of the code features have been
reimplemented, starting from the inner solver kernels, to the treatment of mesh
movement and boundary conditions; moreover the code is now fully parallelized.

1.2 1D Code

The one-dimensional model (1Dime code) has been developed at the DIME of
University of Naples “Federico II” during several years [5, 6, 7, 8, 9, 10]. It can
handle all main engines configurations, thanks to a very versatile and modular
structure.
� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

12 G. Bella et al.

The numerical procedure includes a reliable 1D flow model [14, 16] for the
characterization of wave propagation phenomena in the external pipes, described
by the equations:

Ut + [F (U)]x = S. (1)

The system of eqs. (1) is numerically solved in a finite volume Total Variation
Diminishing (TVD) scheme, reaching a second and a fourth order accuracy in
space and time respectively [14, 16].

The one-dimensional model also includes a multi–zone zero–dimensional treat-
ment of the cylinders. In particular, burning rate, in the case of an SI engine,
is computed by a turbulent combustion model, based on a fractal description
of the flame front area [6, 7, 8, 9, 10, 18]. According to this approach, an initially
smooth flame surface of spherical — the laminar flame AL — is wrinkled by the
presence of turbulent eddies of different length scales. The interactions between
the turbulent flow field and the flame determine the development of a turbulent
flame, AT , which propagates at the laminar flame speed SL. The combustion
model has been recently extended to the analysis of twin-spark engines too [19].
The interested reader will find model and application details in the references.

2 Parallelization of Kiva–3V

The parallelization of KIVA has been carried out according to the strategies laid
out in [11] and later in [3], based on the parallel linear algebra toolkit of [12]. The
basic idea is to apply domain decomposition techniques to partition and balance
the computations among processors in the parallel machine, according to the
“owner computes” paradigm. The toolkit employed provides the facilities to
build and maintain a representation of the discretization mesh that can be used
not only to support the linear system solvers, but also to handle other parts of
the computations, such as the explicit flux phase and the spray dynamics, thanks
to the fact that the adjacency matrix of the discretization graph is isomorphic
to the linear system coefficient matrix.

While modifying the main strcture of the work we also included more modern
solvers for the innermost lineaer systems. The original KIVA code employs the
Conjugate Residual method, one member of the Krylov subspace projection
family of methods [15,20,13,21]; the field of iterative solvers has witnessed many
advances in recent years, with many new methods for non symmetric matrices,
and more effective preconditioners, i.e. transformations of the systems aimed at
improving the convergence speed. By employing the PSBLAS software we were
able to include better solvers; moreover, the solver and preconditioner choices are
now parametrized, so that the choices made may be revised as further software
developments become availbale.

For further details please refer to [3].

2.1 Moving Meshes

Changes in Local Node Numbering. Kiva–3V originally stored all the hid-
den nodes of the full grid before ifirst, which coincided with the first active

An Enhanced Parallel Version of Kiva–3V, Coupled with a 1D CFD Code 13

cell. We now have to take into account the fact that each process has its own
local numbering, mapping one section of the global address space into a local
contiguous space.

General Improvements. In the original version of Kiva, the piston was con-
sidered topologically flat, while a bowl below the piston surface was marked and
treated separately. In the current code the the piston surface may have any re-
quired topological profile; hence, the valves can now move through any fluid cell
in the squish zone, even below the original flat piston.

In the original code on only the head of the valve was moved; this could lead
to deforming the shape of the valve. We removed this limitation, and now treat
the entire valve, including the stem, as a rigid object.

Graph Partitioning. When running in parallel we do apply a domain parti-
tioning technique based on the usage of the Metis graph partitioning tool. To
illustrate this let us consider Fig. 1 where we show the wireframe model of a
computational mesh with the various partitions color-coded according to the
legend shown.

Fig. 1. Domain partitioning on 16 processes

2.2 Data Management Facilities

A major problem in using a parallel application such as ours in a production
environment, is chosing the correct strategy to store, manage and retrieve all
the data output generated by the simulations.

To avoid serial bottlenecks each process should write on local disk(s) its own
part of data, delegating to a post–processor the task of collecting and merging
them, when needed. Data from each job has to be uniquely identified, to allow
the usage of a database to store simulation data for future reference.

We thus implemented an application environment with the possibility of mon-
itoring and altering the status of a running job retrieving information about a
terminated job, managing output data and generating mpeg or XviD video; as
a by-product of this activity we also introduced enhanced dump and restart
capabilities, taking into account the features of parallel data distribution.

14 G. Bella et al.

3 Code Coupling

3.1 3D–0D

The boundary condition between 3D and 0D volumes, namely the valve cross
section, is implemented as a special kind of velocity boundary, where the velocity
distribution imposed at each time step is deduced from a full 3D simulation, while
the mean normal velocity is computed in order to respect the mass flow imposed
by the 0D.

Hence, a three dimensional simulation, with the whole cylinder and the pis-
ton, is initially performed, in order to save the velocities of grid nodes defining
the valve cross section, for each valve. These velocity vectors are represented
in a cylindrical coordinates system with the vertical axis coincident with the
displacement axis of each valve and the origin of angles is chosen as the bottom
– left topological corner of each valve.

For each 3D – 0D boundary used, KIVA needs a file produced by the full 3D
simulation, a phase shift between the homologue valve lifts in 3D and 0D runs
and a 0D model. The files are loaded at the start of each simulation, the velocities
are transformed into the local system of coordinates of the corresponding valve
and normalized with respect to the average radial component.

Mean values of thermodynamics properties needed by the 0D model are com-
puted, using a parallel recursive subroutine, at each time step and passed to
the 0D subroutine, which then computes a required mass flow. The velocities
of the boundary nodes are then imposed so that the mean normal velocity on
the whole valve cross section satisfies the requested mass flow, while the compo-
nents of each velocity vector are deduced interpolating the values saved in the
reference file, both along time and space.

3.2 3D–1D

At the current development stage, it is possible to link an arbitrary number of
1D elements to an equal number of boundaries of the three dimensional grid,
without wondering of the direction of the flow. Obviously, connection between
1D and 3D elements should be set where the flow is supposed to be uniform
enough along the section, or the mono dimensional approximation fails.

The coupling strategy is explicit and performed by a special boundary condi-
tion for both 3D and 1D code. While passing any thermodynamic property from
the three–dimensional part to the mono–dimensional one, its value is integrated
along the two internal layers of cells close to the boundary. Both values obtained
(one for each layer) is used by the 1D solver as the boundary condition for next
time step, reaching a quite accurate description even of rapidly changing condi-
tions within the flow, as shown later on. In the other direction, the value of any
property computated on the internal node of the 1D description closest to the
link with the 3D section is applied as boundary condition for the next time step
of the 3D solver.

The resulting computer program is an embedded application in which the 3D
and the 1D parts are driven at the same time and exchange information via

An Enhanced Parallel Version of Kiva–3V, Coupled with a 1D CFD Code 15

the boundary conditions. The integration of the two models, mono and three
dimensional, is complete and robust, using the same inputs as the two origi-
nal programs, having only added the handling of these new kind of links and
boundaries.

The result is one single application that, together with the 3D – 0D coupling
described above, permits to handle complex and complete problems, permitting
of a different level of approximations for different parts, and taking advantage
of parallel computing, concerning the time consumptive 3D simulation, in order
to considerably reduce the computing time, or to increase the dimension of the
three dimensional part of the problem.

4 Results

4.1 Performance of Modified Version of Kiva–3V

In analyzing performance of the implicit solvers in KIVA we had to search for
the best compromise between preconditioning and solution methods in the ap-
plication context. We settled on the Bi-CGSTAB method for all of the linear
systems; the critical solver is that for the pressure correction equation, where we
employed a block ILU preconditioner, i.e. an incomplete factorization based on
the local part of A. The BiCGSTAB method always converged, usually in less
than 10 iterations, and practically never in more than 30 iterations, whereas the
original solver quite often would not converge at all within the specified max-
imum number of iterations. Moreover, the termination of the SIMPLE loop is
based on the amount of the pressure correction; thus a better solution for the
pressure equation reduces the number of SIMPLE iterations needed.

4.2 3D–1D Coupling

1D–3D Pipe with Variable Boundary Conditions. The first test for the
1D–3D coupling method described above is a flow through a pipe, composed
by three segments (figure 2). The diameter doesn’t vary along the whole pipe
and the connection with the volumes at the ends of the pipe are supposed to be
lossless. Let besides the duct be adiabatic and without friction.

The pipe can be represented both with all 1D segments and with one 3D
segment, in the middle or at one end.

For this test conditions we measured both total and static pressure and tem-
perature.

Let chose the rightmost boundary condition imposing a variable total pressure

given by the relation p0 = 1.15 + 0.3 · sin
(

1
T
· t
)

.

The results obtained are shown in figures 4 – 5, in terms of pressure, tem-
perature and velocity in the first two sections. It’s important to notice that,
during the simulation, the velocity vector changes direction, hence the mass flow
through the boundaries both with the external volumes and between 1D and 3D
sections changes.

16 G. Bella et al.

Fig. 2. Test case 1D-3D-1D Fig. 3. Test case 1D-3D-1D with bound-
ary conditions

Fig. 4. Static pressure in section 1 Fig. 5. Temperature in section 2

4.3 3D–0D Coupling

In order to test the new boundary created for coupling Kiva with a 0D model,
a flow trough an inlet duct is examined, both with and without a cylinder. The
comparison is made paying attention not to have reverse flow from the cylinder
to the intake duct during the full 3D simulation, in order to avoid the description
of the thermodynamic properties of the 0D cylinder connected to the duct.

As explained above, a full 3D simulation is required to obtain a map of veloc-
ities through the valve cross section. The reference run is driven during the end
of the intake process of the four-valves engine represented in figure 4.2, namely

Fig. 6. Full 3D model and 3D intake duct
with special velocity boundaries

Fig. 7. Average pressure in intake duct

An Enhanced Parallel Version of Kiva–3V, Coupled with a 1D CFD Code 17

around the bottom-center crank position, till 50 degrees after the inlet valve
close crank angle.

The same intake duct, without cylinder and exhaust duct, is then taken into
consideration, as shown in figure 6. The boundary conditions imposed are the
same as for the full 3D simulation at the inlet of the duct, but the new special
boundary of velocity at the valves cross section, where the vector field is obtained
from the first run.

A comparison between the two simulations, in term of average pressure in
the intake duct during the simulation is shown in Figure 7. Notice that for this
simulation the time of the combined 3D-1D simulation was 24 min, whereas the
full 3D simulation took 189 min

4.4 Full Engine Test

1D Engine with 3D Airbox. In order to validate the code against a more
exhaustive test case, we have decided to simulate the whole automotive spark–
ignition engine represented in figure 8.

This is a 4 cylinders, 16 valve engine, with EGR valve in the exhaust line.
We have compared the results obtained with a pure 1D–0D modeling with those
obtained by substituting the 0D airbox (P4 in the scheme) with a 3D model,
as represented in figure 9. The airbox has six ports, each one connected to a
1D pipe. Notice that there is no practical limit to the number of ports of the
3D mesh, connected with 1D elements or having their own boundary conditions,
and that we can connect different 3D elements by one or more 1D lines. While
in a full 1D–0D simulation the cylinders have exactly the same behaviour, in a
1D simulation with a 3D airbox we expect to have different values of variables
in the four cylinders, depending on the airbox geometry.

As shown in figure 10, the amount of trapped mass in the four cylinders is
indeed varying, while remaining close to the value returned by the 1D model.

Parallel Performance. Our parallel performance and scalability test were
conducted on the Linux cluster available at the computing center of CASPUR

Fig. 8. 1D Scheme of test engine Fig. 9. 3D airbox

18 G. Bella et al.

Fig. 10. Trapped mass at 3000 rpm

Fig. 11. Burned mass fraction at 3000 rpm

Table 1. Airbox, ncells=281863

NP Total time Time 1D Time 3D Speedup Speedup 3D Cycles Time/cycle (m) Efficiency
1 126.76 0.73 126.03 1 1 2016 0.063 100%
2 77.26 0.72 76.54 1.64 1.65 2016 0.038 82%
4 76.46 1.1 75.36 1.66 1.67 2015 0.038 41%
6 61.16 0.82 60.34 2.07 2.09 2007 0.030 35%
8 46.15 0.81 45.34 2.75 2.78 2018 0.023 34%

12 36.31 0.84 35.47 3.49 3.55 2015 0.018 29%
16 26.44 0.85 25.59 4.79 4.92 2006 0.013 30%
20 24.02 0.77 23.25 5.28 5.42 2004 0.012 26%
24 19.24 0.83 18.41 6.59 6.85 2003 0.010 27%
30 16.36 0.87 15.49 7.75 8.14 2004 0.0082 26%
36 13.46 0.78 12.68 9.42 9.94 2003 0.0067 26%
42 13.96 0.77 13.19 9.08 9.55 2004 0.0070 22%
48 11.4 0.79 10.61 11.12 11.88 2005 0.0057 23%

(Inter-University Consortium for the Application of Super-Computing for Uni-
versities and Research) in Rome, comprising dual-processor nodes based on the
AMD Opteron 250 with a 4 GB RAM and a 1024 KB cache memory. The nodes

An Enhanced Parallel Version of Kiva–3V, Coupled with a 1D CFD Code 19

are connected via InfiniBand Silverstorm InfiniHost III Ex HCA; this network
interface has a user level latency of approx. 5 μsec and a measured sustained
bandwidth of 960 MB/sec.

In a pure 3D setting with combustion our code is capable of a sustained
parallel efficiency well over 50 %. When coupled with the 1D code and without
combustion, due to the characteristics and smaller size of the computational
mesh, the efficiency is lower, but still around 25 % with more than 40 processors
nodes, as shown in Table 1.

5 Conclusions

We have demonstrated an effective coupling of a general-purpose 3D fluid dy-
namics code with specialized 0D and 1D codes, providing an effective strategy
to attack difficult simulations, giving good performance on parallel machine ar-
chitectures.

References

1. Amsden, A.A., KIVA 3: A KIVA with Block Structured Mesh for Complex Geom-
etry, 1992, Los Alamos National Laboratory report LA 12503-Ms.

2. Amsden, A.A., KIVA 3-V: A Block Structured KIVA Program for Engine with Verti-
cal or Canted Valves, 1997, Los Alamos National Laboratory report LA 13313-Ms.

3. G. Bella, A. Buttari, A. De Maio, F. Del Citto, S. Filippone, F. Gasperini FAST-
EVP: an Engine Simulation Tool, Proceedings of HPCC ’05.

4. Courant R., Friederichs K.O., Lewy H., Uber die partiellendifferenz–leichungen
der mathematischen phisik, Mathematische Annalen 1928, vol. 100, pagg. 32–74.
English Translation in IBM journal 1967, pagg. 215–234.

5. Bozza F., Cameretti M.C., Tuccillo R., Numerical Simulation of In–Cylinder Pro-
cesses and Duct Flow in a Light–Duty Diesel Engine, Fourth Int. Symp. on Small
Diesel Engines, Varsavia, 1996, in “Journal of POLISH CIMAC”, Vol. 2, n. 1, pp.
51–66, 1996.

6. Bozza F., Tuccillo R., de Falco D., A Two–Stroke Engine Model Based on Advanced
Simulation of Fundamental Processes, SAE paper 952139, also in “Design and
Emissions of Small Two– and Four–Stroke Engines”, SAE SP-1112, pp. 87–98,
1995.

7. Bozza F., Gimelli A., Senatore A., Caraceni A., A Theoretical Comparison of Var-
ious VVA Systems for Performance and Emission Improvements of SI Engines,
SAE Paper 2001-01-0671, 2001, also in “Variable Valve Actuation 2001”, SAE
SP-1599, ISBN 0-7680-0746-1.

8. Bozza F., Cardone M., Gimelli A., Senatore A., Tuccillo R., A Methodology for the
Definition of Optimal Control Strategies of a VVT–Equipped SI Engine proc. of.
5th Int. Conf. ICE2001 Internal Combustion Engines: Experiments and Modeling,
September 2001.

9. Bozza F., Gimelli A., Tuccillo R., The Control of a VVA Equipped SI–Engine
Operation by Means of 1D Simulation and Mathematical Optimization, SAE Paper
2002-01-1107, 2002 SAE World Congress, Detroit, March 2002, also in “Variable
Valve Actuation 2002”, SAE SP-1692, ISBN 0-7680-0960-X. Published also on SAE
2002 Transactions - Journal of Engines.

20 G. Bella et al.

10. Bozza F., Torella E., The Employment of a 1D Simulation Model for A/F Ratio
Control in a VVT Engine, SAE Paper 2003-01-0027, 2003 SAE World Congress,
Detroit, March 2003, also in “Variable Valve Actuation 2003”.

11. S. Filippone, P. D’Ambra, M. Colajanni: Using a Parallel Library of Sparse Linear
Algebra in a Fluid Dynamics Applications Code on Linux Clusters. Parallel Com-
puting - Advances & Current Issues, G. Joubert, A. Murli, F. Peters, M. Vanneschi
eds., Imperial College Press Pub. (2002), pp. 441–448.

12. S. Filippone and M. Colajanni. PSBLAS: A library for parallel linear algebra com-
putation on sparse matrices. ACM Trans. Math. Softw., 26(4):527–550, December
2000.

13. A. Greenbaum: Iterative Methods for Solving Linear Systems, SIAM, 1997.
14. Harten A., On a Class of High Resolution Total Variation Stable Finite Difference

Schemes, Jrl of Computational Physics, Vol. 21, 21–23, 1984.
15. C. T. Kelley: Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.
16. Manna M., A Three Dimensional High Resolution Compressible Flow Solver, PhD

Thesis, Catholic Univ. of Louvain - Von Karman Institute for Fluid Dynamics,
1992, also in TN 180, VKI, 1992.

17. Miller D.S., Internal Flow Systems, Second Edition, BHR Group Limited, 1990.
18. Matthews R.D., Chin Y.W., A Fractal–Based SI Engine Model: Comparisons of

Predictions with Experimental Data, SAE Paper 910075, 1991.
19. Bozza F., Gimelli A., Siano D., Torella E. Mastrangelo G., A Quasi–Dimensional

Three–Zone Model for Performance and Combustion Noise Evaluation of a Twin–
Spark High–EGR Engine SAE Paper 2004-01-0619, SAE World Congress, Detroit,
March 2004, also in “Modeling of Spark–Ignition Engines”, SAE SP-1830, ISBN
0-7680-1366-6, pp. 63–73.

20. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Pub., Boston, 1996.
21. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donat, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst. Templates for the solution of linear
systems. SIAM, 1993.

A Distributed, Parallel System for Large-Scale
Structure Recognition in Gene Expression Data

Jens Ernst

Lehrstuhl für Effiziente Algorithmen,
Institut für Informatik,

Technische Universität München
ernstj@in.tum.de

Abstract. Due to the development of very high-throughput lab tech-
nology, known as DNA microarrays, it has become feasible for scientists
to monitor the transcriptional activity of all known genes in many liv-
ing organisms. Such assays are typically conducted repeatedly, along a
timecourse or across a series of predefined experimental conditions, yield-
ing a set of expression profiles. Arranging these into subsets, based on
their pair-wise similarity, is known as clustering. Clusters of genes ex-
hibiting similar expression behavior are often related in a biologically
meaningful way, which is at the center of interest to research in func-
tional genomics.

We present a distributed, parallel system based on spectral graph the-
ory and numerical linear algebra that can solve this problem for datasets
generated by the latest generation of microarrays, and at high levels
of experimental noise. It allows us to process hundreds of thousands of
expression profiles, thereby vastly increasing the current size limit for
unsupervized clustering with full similarity information.

Keywords: computational biology, structure recognition, gene expres-
sion analysis, unsupervized clustering, spectral graph theory.

1 Introduction

Computational Biology has provided a great wealth of complex and challenging
algorithmic problems for researchers in the field of combinatorial optimization to
work on. Moreover, the development of high-throuput lab technology has brought
about a massive increase in the rate at which experimental data is generated and
has to be processed by suitable algorithms. This not only calls for a great deal
of effort in optimizing these algorithms for efficiency, but also presents a natural
motivation for exploiting their parallelism and for distributing work across a
network of computers. In this paper we consider unsupervized clustering of gene
expression profiles as a particular case of a structure recognition problem where
input data is generated at an industrial, ever increasing rate and at great cost,
while efficient processing is indispensible to handling an otherwise unmanageable
amount of information.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 21–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 J. Ernst

The DNA of all organisms contains a number of relatively short regions which
code for protein, the main chemical ingredient to life. Genes are DNA sequences
composed of such regions. The process by which the information encoded in a
gene is transcribed and protein molecules are produced by cellular machinery is
known as gene expression. This process is highly dynamic and very complex in
that there exist networks of genes that mutually promote or suppress each other’s
expression, particularly in response to environmental changes affecting the cell.
While it is possible to sequence entire genomes and to predict the location of
genes at a reasonably high level of reliability, many questions on gene function
and interaction are still unanswered. A great deal of research is directed towards
understanding gene expression on a gobal level, taking into account many –
perhaps all – genes of a given organism in parallel. This gives rise to the term
functional genomics. The technology of DNA microarrays [5] has made it possible
to observe the levels of expression activity of a very large number of genes in a
single experiment and has become a standard research tool. In simplified terms,
short but sufficiently representative nucleic acid subsequences (probes) of genes
are physically spotted or photolithographically synthesized on a glass substrate.
Then, in a hybridization reaction, these probes attract and bind to fluorescently
labeled counterparts of their respective sequences from, say, a tissue sample.
Later, fluorescence scanning of the array allows quantitative inferences on the
activity of each gene on the microarray in terms of its level of transcription, and
hence its expression. Often, but not always, probes correspond to genes.

Typically, a series of multiple experiments using identical arrays is performed
under different experimental conditions or along a timecourse, yielding a vector
of expression scores for each probe. Vectors of this type are known as expression
profiles. Let n be the number of probes and let m be the number of array ex-
periments. Then the profiles can be written in the form of an n ×m matrix of
expression values. Typical values for n range up to 4 · 106, whereas m ≤ 50 is
usually a consequence of array cost and other practical limitations. The goal of
clustering in this context is to partition the set of probes, represented by their
corresponding expression profiles, into subsets (or clusters) in such a way that
members of the same cluster exhibit highly similar expression behavior (or coex-
pression), while similarity between clusters should be low. To formally capture
this, we assume to have a similarity measure s : Rm×Rm −→ [0, 1] which maps
each pair of expression profiles to a similarity score. A score of 1 indicates per-
fect similarity. This function is symmetric but not necessarily metric. In practice,
Pearson correlation and measures based on L2 distances are commonly applied.

The input for the clustering problem is hence a symmetric n × n similarity
matrix A containing values between 0 and 1 and can be thought of as the edge
weight matrix of an undirected graph. The diagonal elements all have a value of 1.
The problem hence consists in partitioning the index set {1, 2, . . . , n} into subsets
representing the clusters. But the partitioning problem is complicated by the fact
that the number of clusters is not known a priori and that microarray technology
is extremely prone to experimental error, leading to incorrect expression values,
which translates into false positive and false negative similarity scores in A.

A Distributed, Parallel System for Large-Scale Structure Recognition 23

Extensive work has been done on clustering algorithms for gene expression
data since microarray technology was introduced. For a comprehensive survey of
the most popular methods, the reader is referred to [3,6,8]. The main limitation
shared by all existing algorithms is on the maximum feasible value of n. The
author is not aware of any current commercial or academic software system that
can handle more than some tens of thousands of probes. Our system is designed
to improve this limit on n by an order of magnitude. We shall restate the cluster-
ing problem more formally in the following Section. In Section 3 we briefly derive
the sequential SR-algorithm (“Spectral Reduction”) which is well suited for this
clustering problem. We then propose a set of techniques for parallelizing and
distributing this algorithm in Section 4. The final Section presents experimental
results to demonstrate the quality and performance of the method.

2 The Clustering Problem

The following graph theoretical framework shall henceforth be used for modeling
the input data to be processed by clustering algorithms.

Definition 1. Given a set S = {X1, . . . , Xn} of expression profiles Xi ∈ Rm

and a simliarity measure s : Rm ×Rm → R, the associated similarity graph for
S is a complete, undirected graph G = (V, E, w) with self-loops, where |V | = n
and E =

{{v, v′} : v, v′ ∈ V
}
. For 1 ≤ i, j ≤ n, each vertex vi is bijectively

associated with one expression profile Xi and each edge {vi, vj} is weighted with
the score of the similarity w(vi, vj) := w(vj , vi) := s(Xi, Xj) between Xi and Xj.

Within this formal framework we now define a data model for our clustering
problem. We assume that an unknown cluster structure exists in the input data
and is perturbed by some random noise, modeling experimental data error.

Definition 2. A cluster graph is an edge-weighted, complete, undirected graph
G0 = (V, E, w0) with self-loops whose vertex set V can be partitioned into K
clusters Ck such that w0(vi, vj)=1 for all edges {vi, vj} within the same cluster
Ck, 1 ≤ k ≤ K, and w0(vi, vj) = 0 for edges {vi, vj} connecting different clus-
ters. Let pint and pext be two different distributions on the interval [0, 1] with
respective expectations μint and μext. A (pint, pext)–perturbation, applied to G0,
yields a randomly weighted perturbed cluster graph G = (V, E, w) where each
edge {vi, vj} is independently assigned a weight w(vi, vj) = w(vj , vi) with respect
to distribution pint, if w0(vi, vj) = 1 and with respect to pext, if w0(vi, vj) = 0.

This allows us to formally state the clustering problem: Let G = (V, E, w) be the
result of some (pint, pext)-perturbation with μint �= μext, applied to a fixed but
unknown cluster graph G0 = (V, E, w0) whose vertex set consists of the clusters
C1, . . . , CK . Let A0 be the unknown edge weight matrix of G0. Given G or its
edge weight matrix A, our task is to reconstruct G0 by partitioning V into the K
original clusters Ck. The value of K is not necessarily known. It is assumed that
each cluster Ck is of size ckn for some constant ck > 0. The vector (c1, . . . , cK)
is called cluster structure of G. Also, we assume that {c1, . . . , cK} = {c1, . . . , cr}
where c1, . . . , cr are each unique and mi is the multiplicity of ci for 1 ≤ i ≤ r.

24 J. Ernst

3 Spectral Properties of Perturbed Cluster Graphs

In this Section we survey some fundamental mathematical properties of the input
similarity matrix A, which will help us in deriving an algorithm for the above
clustering problem. To this end, we first consider the unperturbed matrix A0
and then examine the effect of random noise.

Lemma 1. The spectrum of A0 consists of 0 and the set {c1n, c2n, . . . , crn}.
Each eigenvalue cin has multiplicity mi, and its associated eigenspace is spanned
orthogonally by characteristic vectors of the mi clusters of size cin.

By multiplying A0 with the characteristic vectors of the individual clusters,
one can immediately verify that the characteristic vectors belonging to the K
individual clusters are indeed eigenvectors, with the respective clusters sizes cin
as associated eigenvalues. Orthonormality is also obvious. As Rank A0 = K, it
follows that no additional non-zero eigenvalues exist.

Note that this immediately suggests an algorithm for identifying clusters.
A simple rotation of any set of dominant eigenvectors of A0 yields a set of
characteristic vectors indicating cluster membership. A different way of thinking
of the situation is to consider in a column-wise fashion a matrix (K×n)-matrix Z0
whose rows contain a set of mutually orthonormal vectors spanning the dominant
eigenspaces. Each column, representing a vertex, corresponds to a point in RK ,
and two vertices belong to the same cluster if and only if they correspond to
the same point. So instead of solving the trivial clustering problem for G0 by
looking for connected components of edges with weight 1, one can obtain the
desired partition by examining the dominant eigenvectors of A0.

Next, we can ask about the effects of (pint, pext)-perturbation which transforms
A0 into A. It is a well-known fact of matrix theory that the spectrum of a
symmetric matrix is relatively insensitive to component-wise perturbation – in
fact, eigenvalues are said to be perfectly conditioned. We will show that they are
stable enough to still reflect the number of clusters, K. The eigenspaces, on the
other hand, will be shown to be sufficiently stable to allow the reconstruction of
the unperturbed cluster structure with high probability. The following theorem
summarizes these results. Due to page restrictions, we omit the proof here and
refer the reader to [1] where we provide this proof in great detail.

Theorem 1. With probability 1 − o(1), matrix A has the following properties:
The spectrum of A consists of K dominant eigenvalues of magnitude Θ(n) and
n−K eigenvalues of magnitude O(n

1
2), counting multiplicity. The eigenspaces as-

sociated with the dominant eigenvalues are spanned by vectors which are constant
within the index sets associated with the individual clusters, up to a component-
wise variation of o(n− 1

2). Let Z be a (K × n)-matrix whose rows contain a set
of mutually orthonormal vectors spanning the dominant eigenspaces. Then the
columns zt of Z (1 ≤ t ≤ n) constitute n points in RK , and two columns t, t′

satisfy ‖zt − zt′‖∞ = o(n− 1
2) if vertices vt and vt′ belong to the same cluster.

Otherwise, it holds that ‖zt − zt′‖∞ = Ω(n− 1
2).

A Distributed, Parallel System for Large-Scale Structure Recognition 25

Algorithm 1. SR-algorithm

Input: (pint, pext)-perturbed cluster graph G = (V, E, w)
Output: Adjacency matrix of G0

(i) A := edge weight matrix of G;
(ii) γ := |V |2/3;
(iii) K:=number of eigenvalues λ ≥ γ;
(iv) {x1, x2, . . . , xK} :=orthonormal set of eigenvectors associated with eigen-

values > γ;
(v) Z := [x1, x2, . . . , xK]T;
(vi) Identify the K-clusters defined by the column vectors of Z;
(vii) Construct adjacency matrix A0 based on the K-clusters;

As a consequence, even in the presence of (pint, pext)-perturbation, the num-
ber of clusters can be obtained by counting the number of dominant eigen-
values. Any threshold γ satisfying γ = o(n) and γ = ω(n

1
2), can be used

to distinguish them from the others. The columns zt of Z define n points in
RK which form K groups named K-clusters. For sufficiently large n and with
probability 1 − o(1), the K-clusters are disjoint and grow arbitrarily tight as
n grows. The task of assigning each vertex to its cluster can be accomplished
by identifying the K-clusters in RK . This constitutes a Euclidean clustering
problem and can be solved by applying the K-means algorithm, a linear-time
farthest-first method or thresholding. This leads us to the Spectral Reduction
(SR) Algorithm 1.

A great advantage of the SR-algorithm over direct Euclidean clustering on the
expression vectors is that it does not rely on a particular choice of the similarity
measure. Regardless of how s is defined, the structure recognition problem is
reduced to a simple Euclidean clustering problem, and the correct number of
clusters is obtained as a by-product. For instance, one could envision designing
a custom similarity measure such as the absolute value of Pearson Correlation
(in order to define both, exact correlation and exact anti-correlation as maximal
relatedness between expression profiles). Moreover, similarity matrix A need not
even stem from a gene expression data set. Even if the biological entities whose
similarity is described by the matrix do not have a vector representation at all,
the clustering problem is transformed into a Euclidean one, and according vector
representations in K-space are generated for these entities.

The only remaining issue to be addressed is how to compute an orthonormal
basis of the dominant eigenspaces. It is not necessary to compute the entire
eigen decomposition of matrix A as only a few dominant eigenvectors are needed.
Instead we resort to an iterative numerical method based on Krylov subspaces
and the well-known Rayleigh-Ritz procedure. Algorithm 2 gives a sketch of the
method. Here we apply it as a black box and refer the reader to [2] for a detailed
treatment of the theory behind it and [4] for implementation hints.

26 J. Ernst

Algorithm 2. Compute eigenpairs

Input: A ∈ Rn×n

Output: Approximate dominant eigenpairs (λi, xi)

(i) Choose v1 ∈ Rn with ‖v1‖ = 1;
(ii) β1 := 0; v0 := 0;
(iii) for j = 1, 2, . . . do

wj := Avj − βjvj−1;
αj := 〈wj , vj〉;
wj := wj − αjvj ;
βj+1 := ‖wj‖;
vj+1 := 1

βj+1
wj ;

Compute (λ(j)
i , x

(j)
i), 1 ≤ i ≤ j by the Rayleigh-Ritz procedure

if |λ(j)
j | < n

2
3 then stop fi;

od

4 The Parallel and Distributed SR-Algorithm

To identify the parts of the SR-Algorithm that can benefit the most from paral-
lelization, let us first examine its complexity, assuming that similarity matrix A
is given as input. Identifying the K tightly concentrated clusters of the columns
of Z in Euclidean K-space requires no more than a simple linear-time compu-
tation, and storing matrix Z requires only linear space. While this could be
parallelized in a rather straightforward way, the gain would be negligible. Com-
puting a set of dominant eigenvalues of A, however, costs Ω(n2) time and space.
This severely limits the maximum feasible value of n. In the scenario of a typical
uniprocessor with 4GB of RAM and without use secondary storage, we find this
limit to be around n ≈ 40, 000. The processing time in this case is still within
the range of minutes. As an aside, a limitation of n to roughly 40, 000 is also
seen in all other academic and commercial clustering systems that the author is
aware of. This leads us to focus our efforts on parallelizing Algorithm 2.

Notice that all quadratic-time operations within this procedure are applica-
tions of matrix A as an operator to given column vectors. Therefore, the best
speedup can be expected from parallelizing all matrix-vector multiplications.
Notice further that A is not involved in any other operations. This allows us
to distribute A among multiple machines (and their RAM), thereby increas-
ing the maximum permissible n. As a third essential observation, note that for
all practical purposes, the number of iterations of Algorithm 2, and hence the
overall number of matrix-vector multiplications, is a very small number << n.1

1 In [1] we show that the number of iterations is bounded by O(log n), and we give
perturbation theoretical arguments suggesting that it is even a constant independent
of n, although a formal proof of this conjecture is not yet completed.

A Distributed, Parallel System for Large-Scale Structure Recognition 27

Node i

ni − δn

ni CPU 1
CPU 2

··
·

n′
i

n′
i + δn

A v

Fig. 1. Decomposition of matrix A and vector v for parallel multiplication

This last observation means that storing A and multiplying A with a series of
vectors can be performed on a distributed-memory architecture consisting of
machines that only communicate via a network protocol: The resulting amount
of communication is of magnitude O(n) and therefore not a serious limitation.

We choose our target architecture to be a general network of multiproces-
sor machines (nodes). The individual machines in the network communicate by
generic message passing, for instance using the standard TCP/IP protocol. The
processors within one node communicate via shared memory. This covers most
of the architectures commonly used for scientific computation today, including
the special cases of networks of uniprocessors and single multiprocessors.

One node is designated to play the part of a coordinator (or master). The gene
expression profiles are distributed by the coordinator among all other machines
which compute horizontal bands of the similarity matrix A to be held in local
storage. The number of rows (indices block [ni, . . . , n

′
i]) that each node i should

store is determined prior to the distribution process by a static load balancing
step in which the RAM capacity and the node’s overall performance (number
of inner products of length-n-vectors per millisecond) are measured. The index
range associated with each machine is chosen proportional to the measured per-
formance. In addition to the core index block, δn extra rows preceding it and δn
rows following it are also stored by each node for subsequent dynamic load bal-
ancing (see Figure 1). All work to be performed by an individual node is evenly
distributed among all the processors of this node. This requires no additional
synchronization because computations on different rows of A are independent.

After all matrix bands have been computed, the coordinator generates the first
vector v to which A should be applied (see Algorithm 2) and distributes it to all
other nodes. The nodes perform the inner products required for generating their
associated index block of Av. Again, this work is shared within each node by
all the processors that communicate via shared memory. Then the coordinator
collects the result blocks from each node, assembles and uses Av to finish the
current iteration of Algorithm 2. Note that this presents a synchronization point
for all nodes. Should the load on an individual node change significantly during
this process (due to use in a multi user environment), the other nodes may

28 J. Ernst

be caused to wait as a consequence. For this reason, the coordinator process
measures the time required by the individual nodes and adjusts the index ranges
proportionally to their performance for the next iteration, using the 2δn extra
rows stored within each node, if necessary. In our experiments we use δ = 0.05.

5 Experimental Results

In this Section we shall examine the quality of the cluster decomposition result-
ing from the application of the SR-algorithm to various types of input data, as
well as the algorithm’s performance on a current multiprocessor architecture.
We assess the clustering quality based on synthetically generated similarity data
consisting of some known, planted structure which was obscured by adding sig-
nificant amounts of noise. This data complies with the data model introduced
in Section 2. A cluster structure (c1, c2, . . . , cK) is imposed, resulting in clus-
ters of respective sizes c1n, c2n, . . . , cKn. Then, perturbation is modeled by the
two distributions pint and pext. We choose binary similarity scores and Bernoulli
distributions, causing false positive similarity with some probability α and false
negative scores with probability β. This is referred to as (α, β)-perturbation.
After the clustering process, we quantify the quality of the resulting partition,
using the Matching coefficient and the Minkowski measure defined as follows.

Definition 3. Given the two matrices A0, A1 ∈ {0, 1}n×n (where A0 represents
the true solution and A1 represents the solution to be evaluated), we define

nk,l :=
∣∣{(i, j) : 1 ≤ i, j ≤ n, [A0]i,j = k, [A1]i,j = l}∣∣

for k, l ∈ {0, 1}. Based on these quantities, we define the following measures:

(i) Minkowski Measure M1 :=
√

n0,1+n1,0
n1,1+n1,0

(ii) Matching Coefficient M2 := n0,0+n1,1
n0,0+n0,1+n1,0+n1,1

Note that n1,0 is the number of false negatives in the solution, n0,1 is the number
of false positives, whereas n0,0 and n1,1 are the true negatives and positives,
respectively. In the ideal case where A0 = A1, the measures given in the above
definition have the respective values of 0 and 1. Only the Minkowski Measure
can potentially assume values greater than 1.

The results of our experiments can be seen in Figures 2 and 3. For grow-
ing values of n, the situation rapidly improves due to tighter concentrations
in the Chernoff-type random variables which are the key to the correctness of
Theorem 1. In this sense the choice of n = 1, 000 presents a worst-case scenario.

To measure the performance of our implementation, we used a machine con-
sisting of 32 nodes, each containing four AMD Opteron 850 processors at 2.4GHz
with 8GB of RAM running Linux. The nodes are interconnected by Gigabit Eth-
ernet. For this analysis we rely on a data set generated for the analysis of cigarette
smoking-induced changes in bronchial epithelia, and reversibility of effects when
smoking is discontinued. This data set may provide insight to molecular events
leading to chronic obstructive pulmonary disease (COPD) and lung cancer [7].

A Distributed, Parallel System for Large-Scale Structure Recognition 29

0.2

0.25

0.3

0.35

0.4

0.45
0.2

0.25
0.3

0.35
0.4

0.45

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.25

0.3

0.35

0.4

0.45

0.2 0.25 0.3 0.35 0.4 0.45

a.

α

β

M
at

ch
in

g
C

oe
ff
.

b.

α

β

Contour Plot

0.99

Fig. 2. a. The Matching Coefficient as a function of α and β for an (α, β)-perturbed
cluster graph with relative cluster sizes (0.1, 0.2, 0.3, 0.4) and n = 1000. b. Contour
plot of the Matching Coefficient, showing parameter pairs with equal Matching scores.

0.2
0.25

0.3
0.35

0.4
0.45

0.2

0.25

0.3

0.35

0.4

0.45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.25 0.3 0.35 0.4 0.45

0.2

0.25

0.3

0.35

0.4

0.45

a.

β

α

M
in

ko
w

sk
i
M

ea
su

re

b.

β

α

Contour Plot

0.01

Fig. 3. a. Minkowski Measure as a function of α and β for an (α, β)-perturbed cluster
graph with relative cluster sizes (0.1, 0.2, 0.3, 0.4) and n = 1000. b. Contour plot of a.

Fig. 4. a. Running times as a function of the number n of gene expression profiles and
as a function of the number m of nodes. b. Speedup diagram for multiple input sizes

It was created using an Affymetrix GeneChipR©Human Genome U133 microar-
ray set HG-U133A. We conduct our cluster analysis in single-probe resolution,
meaning that probes belonging to the same transcript of the same gene are con-
sidered separately rather than as components of a sum signal. In this experiment
we generate 1,000 clusters, bypassing the automatic detection of the number of

30 J. Ernst

clusters, to simulate more realistically the way in which clustering algorithms are
applied in practice to this type of expression data. We measure the running time
as a function of the number of expression profiles and as a function of the num-
ber m of multiprocessors used in the computation (see Figure 4). For each value
of n, m ranges between the minimum number of machines required to complete
the run without resorting to secondary storage, and the maximum value of 32.
This analysis shows that, as m is increased, the speedup initially is near-linear
and then decreases somewhat, due to communication overhead. This should be
expected because the amount of communication increases as a function of m.

Its ability to handle values of n on the order of k × 105 with very moderate
running time (e.g. n = 160, 000 in less than 3 minutes) allows the parallel SR-
Algorithm to process microarray data of the latest generation, e.g. Affymetrix
Exon and Tiling ArraysR©, without requiring a priori data filtering.

6 Conclusion

In this paper we have introduced a parallel, distributed algorithm for recov-
ering cluster structures hidden in large and strongly noise-contaminated sets
of gene expression data, originating from large-scale DNA microarray experi-
ments. Along with the algorithm, we have introduced a formal data model within
which its correctness can be proven. Moreover, we have described how to effi-
ciently solve the numerical problems induced by the algorithm. Experimental evi-
dence for both, its high noise-robustness and performance was presented. Further
developments will include, but not be limited to, compression of matrix A to fur-
ther increase the limit on parameter n. The software will soon be made accessible
at http://wwwmayr.informatik.tu-muenchen.de/personen/ernstj/.

References

1. Ernst J. Similarity-Based Clustering Algorithms for Gene Expression Profiles, Dis-
sertation, TU München, 2003

2. Gourlay A, Watson G. Computational Methods for Matrix Eigenproblems, John Wi-
ley & Sons, New York, 1973

3. Daxin Jiang, Chun Tang, Aidong Zhang. Cluster Analysis for Gene Expression Data:
A Survey, IEEE Transactions on Knowledge and Data Engineering, 2004; 16(11),
1370-86

4. Press W, Teukolsky S, Vetterling W, Flannery B. Numerical Recipes in C: The Art
of Scientific Computing, 2nd edn., Cambridge University Press, 1992

5. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expres-
sion patterns with a complementary DNA microarray, Science, 1995; 270:467-470

6. Shamir R, Sharan R. Algorithmic approaches to clustering gene expression data,
Current Topics in Computational Biology, 2002; 269-300

7. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS. Effects of
cigarette smoke on the human airway epithelial cell transcriptome, Proc Natl Acad
Sci US, 2004; 101(27):10143-8

8. Valafar F. Pattern Recognition Techniques in Microarray Data:A Survey, Special
Issue of Annals of New York, Techniques in Bioinformatics and Medical Informatics,
2002; 980:41-64

Cluster Design in the Earth Sciences
Tethys

Jens Oeser, Hans-Peter Bunge, and Marcus Mohr

Department of Earth and Environmental Sciences, Geophysics Section,
Ludwigs-Maximilians-University, Munich, Germany

jens.oeser@geophysik.uni-muenchen.de

Abstract. Computational modeling is a powerful tool in the Earth Sci-
ences. In the solid Earth important simulation areas include seismic wave
propagation, rupture and fault dynamics in the lithosphere, creep in the
mantle, and magneto-hydrodynamic flow linked to magnetic field gen-
eration in the core. These problems rank among the most demanding
calculations computational physicists can perform today. They exceed
the limitations of the largest high-performance computing systems by a
factor of ten to one hundred measured both in terms of the demands on
capacity and capability of systems. Off-the-shelf high-performance Linux
clusters are useful to ease the limitations in capacity computing by ex-
ploiting price advantages in mass produced PC hardware. Here we review
our experience of building a 128 processor AMD Opteron Gigabit Ether-
net Linux cluster. The machine is operated at the scientific department
level, targeted directly at large-scale geophysical and tectonic modeling
and is funded by the German Ministry of Education and Science and the
Free State of Bavaria. We observe an aggregate system performance of
140 GFLOPs out of a theoretical 624 GFLOPs peak.

1 Introduction

The Earth’s interior is complex, consisting of three distinct regions nested one
inside the other. Starting from the outside, there is first the brittle crust, then
the solid mantle, and finally the (mostly) liquid core. As a result of convective
and other forcings, all three regions are in motion, albeit on different time scales.
On the longest time scale solid state convection (creep) overturns the solid man-
tle once in about every 100-200 million years [1]. This overturn is the primary
means by which our planet rids itself of primordial and radioactive heat. It gives
rise to large-scale geologic activity such as plate tectonics and continental drift.
Reflecting this importance geophysicists have performed computer-based studies
of mantle convection for decades, initially with simple 2D approaches [2], and
recently in fully 3D spherical models [3,4,5,6].

On a shorter time scale of perhaps 1 to 1000 years convection of the liquid iron
core generates Earth’s magnetic field. The field is sustained by a complicated dy-
namo process that probably operated throughout much of Earth’s history. Only
recently have geophysicists been able to study dynamo action in sophisticated

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 31–40, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

32 J. Oeser, H.-P. Bunge, and M. Mohr

magneto-hydrodynamic models of the core [7,8]. On an even shorter time scale
of hours to seconds both the core and the mantle are traversed by seismic sound
waves, and seismologists are now turning to computer models to study seismic
wave propagation through our planet [9,10].

Geophysical modeling has benefitted greatly from the advent of large-scale
parallel computers. Focusing on the Earth’s mantle, computing resources are
now sufficient to simulate convection at full vigor in 3D spherical geometry.
One current frontier lies in applying a range of data-assimilation techniques to
study the geologic history of deep Earth flow [11,12]. Data-assimilation is, of
course, a familiar tool in numerical weather prediction. A powerful approach to
data-assimilation exists through variational methods, see e.g. [13,14]. In mantle
convection this technique requires one to solve a numerical adjoint code and the
forward model iteratively to find solutions to a non-linear inverse problem [15].
Unfortunately adjoint modeling comes at a heavy computational price. Weeks
to months of dedicated integration time are needed to solve these problems even
on some of the most powerful parallel machines currently in use at national
compute centers. Such resources are often out of reach for individual research
groups and academic departments.

While parallel computing has moved into the mainstream, it is not econom-
ically feasible on a department budget to invest in dedicated commercial high-
performance parallel machines sufficient to handle, for example, forward and
adjoint mantle circulation models with earth-like Rayleigh numbers on the or-
der of 109. The spatial resolution in such a simulation needs to be at least 20 km
throughout the mantle, involving about 100,000,000 numerical grid points. How-
ever, it appears practical to address such problems at the academic department
level by building cost-efficient departmental supercomputers.

In this paper we report on our approach on building such a system for ca-
pacity computing in the Earth sciences. In order to give an impression of the
requirements and challenges of cluster computing in this field we consider as
an example application the above mentioned problem of mantle convection. We
start in Chap. 2 with a brief overview of the governing equations before describ-
ing our solution algorithm and its parallelization in Chap. 3. We then report
how these requirements influenced the design of our Tethys cluster in Chap. 4
and provide some first benchmarks.

2 A Model for Mantle Convection

Generally speaking mantle convection is a flow process driven by temperature
variations. As such it can be described by the time-dependent compressible
Navier-Stokes equations that constitute a system of partial differential equations
(PDEs) describing the conservation of mass and momentum in combination with
an equation for energy conservation, see e.g. [16]. However, several simplifications
to this model are possible. The first one is to assume a quasi-static flow field,
i.e. the time-derivative is dropped from the momentum equations. One then ex-
ploits the small magnitude of the flow velocities to also drop here the non-linear

Cluster Design in the Earth Sciences Tethys 33

convection terms. Finally one employs the so called Boussinesq approximation,
see again e.g. [16], whose main assumption is that density variations may be ne-
glected except for the buoyancy terms. Thus, one arrives at a generalized Stokes
problem coupled to a time-dependent energy equation. Using standard notation
in which the divergence of a matrix field A is understood as a vector whose k-th
entry is the (scalar) divergence of the k-th column of A and (gradu)ij = ∂uj/∂xi

this system can be written as:

div u = 0 (1)

div
[
ν
(
gradu + (gradu)T

)]− grad p + �α (T − T0) g = 0 (2)

� cp

(
∂T

∂t
+ u · gradT

)
− div (κ gradT)− �H = 0 (3)

Here the dependent variables are velocity u, pressure p and temperature T , α
is the coefficient of thermal expansion, cp the specific heat at constant pressure,
H the rate of internal heat production per unit volume, g the gravitational ac-
celeration, κ the thermal diffusivity, � the density and ν the kinematic viscosity
of the fluid. Note that we have also dropped the inertial and coriolis term from
the momentum equation, because of their small relative amplitude. Their ab-
sence distinguishes the slow creeping flow of the mantle (where viscous forces
dominate) from other perhaps more familiar geophysical flows such as ocean
circulation or the magneto-hydrodynamic flow problem of the core.

3 TERRA: Algorithm and Parallel Issues

In order to solve the coupled non-linear PDE system of mantle convection given
in Sect. 2 we use a Finite Element technique. Our numerical modeling code
TERRA is a parallel version of the vectorized model introduced in [17]. The code
is widely used for mantle convection studies. Supported by NASA’s High Per-
formance Computing and Communication (HPCC) initiative TERRA demon-
strated sustained parallel performance better than 100 GFLOPs (1011 floating
point operations per second) in 1998 on a 1024 Processor Cray T3E-1200.

In TERRA the mantle is discretized using a computational grid adopted from
the atmospheric community. The mesh is based on the regular icosahedron [18]
and displays the remarkable property of providing an almost uniform triangula-
tion of the spherical surface. The icosahedral grid allows one to avoid the pole-
problem of conventional latitude-longitude grids, where narrow wedge-shaped
computational cells near the pole impose a severe Courant limitation on the
time step. Starting from the icosahedron a Finite Element surface mesh is built
recursively by splitting nodal distances in half and inserting new nodes at the
midpoints, see e.g. [19] for a detailed description. A graphical representation of
the first three steps is given in Fig. 1. Note that each time we repeat this pro-
cess lateral resolution in the domain is doubled. We can thus achieve arbitrary
degrees of mesh refinement. The surface grid is then expanded into 3D by radial

34 J. Oeser, H.-P. Bunge, and M. Mohr

Fig. 1. Three successive mesh-refinements of the icosahedral grid

replication down to the inner surface of the mantle. In this fashion one obtains
prismatic elements with spherical triangles on top and bottom. The icosahedral
discretization also yields a convenient data structure for our code. Combining
pairs of the original twenty icosahedral triangles to form ten diamonds on the
sphere, we obtain ten logically rectangular blocks. Topologically the spherical
mesh thus appears as one single logically rectangular problem domain.

After converting the problem into its weak formulation and choosing piece-
wise linear Finite Element ansatz functions the resulting system of equations is
solved using the following approach. The temperature T is integrated in time
with an explicit second order approach, i.e. the modified Euler method. Thus,
for each time step the non-differential part of (3) must be evaluated twice. This
requires knowledge of u at the respective simulation time. The latter is de-
termined by solving the Stokes problem (1), (2) for the velocity field u and
the pressure p via a Schur complement approach, see e.g. [20]. This is accom-
plished by an inner-outer iteration pair, where the outer conjugate gradient
(CG) iteration is used to compute the pressure and in each CG step a multi-
grid method is employed to determine the new search direction. The velocity is
computed together with p in the CG method. For details of the algorithm see
e.g. [21,22].

We, thus, see that at the core of the mantle convection code TERRA lies the
problem of efficiently solving a discrete linear system stemming from an elliptic
boundary value problem. This task arises not only in mantle convection simula-
tions, but also e.g. in geo-potential problems and (quasi-)static viscoelastic anal-
ysis. In fact it can be found at the heart of numerous applications ranging from
computational fluid dynamics over chip layout to bioelectric field simulations.

It is well-known that multigrid methods, see e.g. [23], are among the most
efficient methods for solving large elliptic systems. Their key advantage is the
possibility to reach an optimal linear scaling of computational expense relative
to the number of unknowns of the problem. This makes these methods at least
competitive in cost with the fast transform schemes (FFT) available for spectral
codes. We note that high computational efficiency is essential for global mantle
flow problems that involve millions of grid points. The nested structure of the
icosahedral grid lends itself naturally to multigrid, as each grid is a subset of the
next finer grid level.

Contrary to standard FFT approaches for PDEs both the CG and MG method
can be parallelized in a straightforward manner using a domain decomposition
(or more precisely a grid partitioning approach) in our case, see e.g. [23,24].
This is because the FEM approach leads only to a spatially restricted coupling of

Cluster Design in the Earth Sciences Tethys 35

unknowns at nodes, which is similar to the local stencils of a Finite Difference set-
ting. Splitting the grid into sub-domains and associating each sub-domain with
one parallel process the main effort of parallelization lies in the co-ordination of
information exchange along the sub-domain boundaries. In a distributed mem-
ory setting this can be achieved by explicit message passing based on the MPI
standard1.

In TERRA grid partitioning focusses on the ten diamonds that compose the
icosahedral grid. Each associated 3D block is partitioned by powers of four. If four
processes are used they work on the blocks associated with the upper, left, right
and lower quarter of each diamond. Hence each process works on one quarter of
the global problem domain. This approach can be repeated further, separately
for the upper and the lower hemisphere, to achieve domain decompositions for
any power of two.

Due to the above mentioned locality most of the work within each sub-domain
can be performed independently of the others, with communication limited
mostly to the exchange of boundary data among nearest neighbors. Depend-
ing on the volume-to-surface ratio of the sub-domains this local communication
property assures high parallel efficiency. However, without going into too much
detail, we must mention two aspects here. The first one is that due to the grid
hierarchy employed in the MG method the volume-to-surface ratio naturally de-
grades on coarser grid levels. TERRA employs the standard approach of coarse
grid agglomeration to counter this effect, we again point to [24] for this and
alternative solutions. The second remark concerns the fact that TERRA uses a
2D partitioning of the grid. From a pure volume-to-surface point of view this is
of course less favorable than a 3D splitting, where the grid is also partitioned
in the radial direction. However, 2D splitting also has two distinct advantages.
First, TERRA uses line-smoothing in the radial direction in order to ensure good
MG convergence rates in the presence of strong viscosity variations. The choice
of 2D decomposition avoids cutting these lines by sub-domain interfaces, which
is a considerable performance and implementation advantage for the smoother.
Second, 2D splitting results in a significant reduction of the number of messages
that must be passed between processes compared to the 3D case. Using e.g.
a partitioning with 64 sub-domains we need approximately 2,560 (2D) versus
3.520 (3D) messages for one boundary update after a single smoothing step.
This reduction of about 27% may be considerable in a system with (relatively)
high latency interconnects, cf. the design of Tethys in Sect. 4 in this respect.

4 Munich Earth Modeling Cluster Tethys

4.1 Design of Tethys

Global mantle flow studies rely on modern parallel computers. Taking mantle
convection simulations with 100 million finite element grid points (to approxi-
mate the dynamic regime of vigorous mantle convection) as representative, about

1 A PVM implementation of TERRA is also still available.

36 J. Oeser, H.-P. Bunge, and M. Mohr

Fig. 2. Schematic representation of the setup of Tethys and its interconnect topology

70 Gigabytes (GB) of main memory and a sustained system performance of about
100 GFLOPs are needed to complete at least one convective overturn per hour.
These requirements are now well in reach of dedicated PC-clusters. Such systems
are called Beowulf, after the initial Beowulf PC-cluster project at the Goddard
Space Flight Center [http://www.beowulf.org].

Our current cluster, named Tethys for Tectonic High Performance Simulator,
includes 64 AMD Opteron 250 (64 bit, single core) 2.4 GHz dual-processors,
each equipped with 2 GB RAM and 160 GB of disc-space. A dual-processor
configuration improves the price performance ratio of our system and allows for
some flexibility for those codes that require very large per-processor memory.
Table 1 summarizes the Tethys configuration, Figure 2 gives an overview of the
setup of the cluster and its network topology. The 64 compute nodes of Tethys

Table 1. Hardware specification of the 64 compute nodes

no. of processors two per node
type of processors AMD Opteron 250 (64 bit, single core)
clock speed 2.4 GHz
L1 cache 64/64KB (data/instruction)
L2 cache 1MB (data + instruction)
local memory 2 GB RAM (DDR1)
local storage 160 GB
network interface 1000T Ethernet (2 ports)

Cluster Design in the Earth Sciences Tethys 37

are arranged in four bricks consisting of 16 nodes each. The nodes within one
such brick communicate via a single 1000T cluster node switch. For inter-brick
communication the four cluster node switches are attached to a central cluster
core switch.

4.2 Some Benchmarks

We start our exposition by considering the communication performance of the
Tethys cluster. In order to evaluate the latter we employ the Intel MPI bench-
marks (IMB) suite2. For the sake of brevity we restrict ourselves to the Exchange
and Allreduce benchmarks, since they represent exemplary communication pat-
terns in domain decomposition approaches for parallel multigrid. In the Exchange
test processes are assumed to form a periodic process chain. Each process ex-
changes data with both of its neighbors in the chain. This resembles the update
of internal boundary values e.g. after one MG smoothing step. The Allreduce
test, on the other hand, represents a collective communication involving all pro-
cesses. The corresponding MPI ALLREDUCE method gathers data from all
processes performing a global reduction operation, e.g. a summation, on the fly
and returns the result to all processes. This situation typically occurs in the
computation of the residual norm in parallel iterative methods. Further details
of the benchmarks can be found in the user’s guide.

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

t [
μs

ec
]

message size [8-byte units]

np = 4 (1 CPU/node)
 8 (1 CPU/node)
 16 (1 CPU/node)
 32 (2 CPU/node)

 128 (2 CPU/node)

Fig. 3. Performance for Exchange bench-
mark

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

t [
μs

ec
]

message size [8-byte units]

np = 4 (1 CPU/node)
 8 (2 CPU/node)
 16 (1 CPU/node)
 32 (2 CPU/node)
 128 (2 CPU/node)

Fig. 4. Performance for Allreduce bench-
mark

Figures 3 and 4 give timing results for both tests for different message sizes
and increasing number of processes (np). Performance is in line with expecta-
tions for TCP/IP based communication over GBit-Ethernet and there is a linear
scaling with increasing message size. Note that the first four cases (np = 4, 8,
16, 32) involve only nodes belonging to a single brick. Thus, communication in-
volves a single cluster node switch only. The case having 128 CPUs (np = 128),

2 We employ IMB version 2.3 in combination with MPICH 1.2.5.3 an the Intel Com-
piler suite version 9.0 for these tests.

38 J. Oeser, H.-P. Bunge, and M. Mohr

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

t [
μs

ec
]

message size [8-byte units]

exchange (intra)
echange (inter)
allreduce (intra)
allreduce (inter)

Fig. 5. Comparison between intra- and
inter-brick communication

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

t [
μs

ec
]

message size [8-byte units]

exchange (1 CPU)
exchange (2 CPU)
allreduce (1 CPU)
allreduce (2 CPU)

Fig. 6. Influence of double-CPU nodes on
communication performance

instead, involves all four bricks and hence the entire cluster network including
the cluster core switch, see Fig. 2. We also show the direct comparison of a set-
ting with 4 processes running either on 4 nodes within one brick or running on
four nodes each in a separate brick in Fig. 5. We verify from the similar scaling
of the two configurations that the hierarchical system of our network topol-
ogy works quite well, and does not present any serious bottle-neck to global
communication.

Finally we measure in Fig. 6 the effect of using our cluster nodes in dual-
processor mode. In the first setting we use 8 CPUs on 8 nodes and in the second
one 8 CPUs on 4 nodes. We note small differences especially in the Exchange
performance for certain message lengths. However, this might be eliminated by
employing an SMP communication layer for intra-node communication within
MPICH.

We now turn to the performance of our mantle convection code TERRA. For
our initial test we considered three different discretizations marked by mt=64,
128, and 256. These result in a problem size of about 1, 10 and 85 million grid
points and reflect a surface resolution of 100, 50 and 25 km. Figure 7 reports
the wall clock times3 of a single simulation run consisting of 500 time-steps
for different numbers of processes np. We observe a nice, approximately linear
decay with increasing np. This is directly reflected in Fig. 8 where the speedup
for mt=64 and 128 is plotted. From the Earth scientist’s point of view the scaleup
of the application is of course more interesting than the mere speedup. In this
respect we point out that we obtain a run-time of 2002 s (for the mt=128 case
on 16 processes) and 2564 s (for the mt=256 case on 128 processes), which
both lead to the same workload per process, see again Fig. 7. Based on an
approximate requirement of 8000 operations per node and time-step the latter
example results in an aggregate system performance of 140 GFLOPs out of a
theoretical 624 GFLOPs peak. These are initial results and an improved scale-up
might be obtained by tuning the code to the Opteron architecture.

3 The value for mt=128 on a single process is extrapolated (due to memory limitations).

Cluster Design in the Earth Sciences Tethys 39

 100

 1000

 10000

 100000

128643216841

to
ta

l r
un

 ti
m

e
[s

]

number of processors

MT = 64
128
256

Fig. 7. Run times for different problem
sizes and increasing number of processes

64

32

16

8

4

1

643216841

sp
ee

du
p

number of processors

MT = 64
128

Fig. 8. Speedup of the TERRA code on
the Tethys cluster

5 Conclusions and Outlook

We have built a large-scale geophysical modeling cluster at Munich University’s
(LMU) Geosciences department. The machine serves as a departmental super-
computer to perform a range of geosciences simulations, including compute in-
tensive variational data-assimilation calculations for global mantle convection
studies. We observe parallel efficiencies of better than 80% and an aggregate
system performance of 200 GFLOPs. We conclude that cost-efficient Beowulf
clusters should take an increasing role in performing large-scale capacity-oriented
geosciences simulations.

Acknowledgment

Tethys was funded by the German Ministry of Education and Research (BMBF)
and the Free State of Bavaria by means of the HBFG program. We would also
like to thank Microstaxx GmbH and the High-Performance Group of Fujitsu-
Siemens Computers for their support.

References

1. Bunge, H.P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand,
S., Romanowicz, B.: Time scales and heterogeneous structure in geodynamic earth
models. Science 280 (1998) 91–95

2. Jarvis, G.T., McKenzie, D.P.: Convection in a compressible fluid with infinite
prandtl number. Journal of Fluid Mechanics 96 (1980) 515–583

3. Glatzmaier, G.A.: Numerical simulations of mantle convection: Time-dependent,
three-dimensional, compressible, spherical shell. Geophysical and Astrophysical
Fluid Dynamics 43 (1988) 223–264

4. Tackley, P.J., Stevenson, D.J., Glatzmaier, G.A., Schubert, G.: Effects of an en-
dothermic phase transition at 670 km depth on a spherical model of convection in
Earth’s mantle. Nature 361 (1993) 699–704

40 J. Oeser, H.-P. Bunge, and M. Mohr

5. Bunge, H.P., Richards, M.A., Baumgardner, J.R.: Effect of depth dependent vis-
cosity on the planform of mantle convection. Nature 379 (1996) 436–438

6. Zhong, S., Zuber, M.T., Moresi, L., Gurnis, M.: Role of temperature-dependent
viscosity and surface plates in spherical shell models of mantle convection. Journal
of Geophysical Research 105 (2000) 11063–11082

7. Glatzmaier, G.A., Roberts, P.H.: A three-dimensional, self-consistent computer
simulation of a geomagnetic field reversal. Nature 377 (1995) 203–209

8. Kuang, W.L., Bloxham, J.: An earth-like numerical dynamo model. Nature 389
(1997) 371–374

9. Igel, H., Weber, M.: SH-wave propagation in the whole mantle using high-order
finite differences. Geophysical Research Letters 22 (1995) 731–734

10. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-
dimensional seismic wave propagation. Geophysical Journal International 139
(1999) 806–822

11. Bunge, H.P., Richards, M.A., Baumgardner, J.R.: Mantle circulation models with
sequential data-assimilation: Inferring present-day mantle structure from plate mo-
tion histories. Philosophical Transactions of the Royal Society of London: Series
A 360 (2002) 2545–2567

12. McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the
Pacific Ocean. Nature 437 (2005) 1136

13. Courtier, P., Talagrand, O.: Variational assimilation of meterological observations
with the adjoint vorticity equation I: Numerical results. Quarterly Journal of the
Royal Meteorological Society 113 (1987) 1329–1347

14. Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press
(1996)

15. Bunge, H.P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with varia-
tional data-assimilation: Inferring past mantle flow and structure from plate motion
histories and seismic tomography. Geophysical Journal International 152 (2003)
280–301

16. Landau, L., Lifschitz, E.: Fluid mechanics. Pergamon Press (1987)
17. Baumgardner, J.R.: Three-Dimensional Treatment of Convective Flow in the

Earth’s Mantle. Journal of Statistical Physics 39 (1985) 501–511
18. Williamson, D.: Integration of the barotropic vorticity equations on a spherical

geodesic grid. Tellus 20 (1968) 642–653
19. Baumgardner, J.R., Frederickson, P.O.: Icosahedral discretization of the two-

sphere. SIAM Journal on Numerical Analysis 22 (1985) 1107–1115
20. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems.

Acta Numerica 14 (2005) 1–137
21. Verfürth, R.: A Combined Conjugate Gradient-Multigrid Algorithm for the Nu-

merical Solution of the Stokes Problem. IMA Journal of Numerical Analysis 4
(1984) 441–455

22. Yang, W.S., Baumgardner, J.R.: A matrix-dependent transfer multigrid method for
strongly variable viscosity infinite Prandtl number thermal convection. Geophysical
and Astrophysical Fluid Dynamics 92 (2000) 151–195

23. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press (2001)
ISBN: 0-12-701070-X.

24. Hülsemann, F., Kowarschik, M., Mohr, M., Rüde, U.: Parallel Geometric Multi-
grid. In Bruaset, A.M., Tveito, A., eds.: Numerical Solution of Partial Differential
Equations on Parallel Computers. Number 51 in Lecture Notes in Computational
Science and Engineering. Springer (2005) ISBN: 3-540-29076-1.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 41 – 50, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Streaming Implementation of Transform
and Quantization in H.264

Haiyan Li, Chunyuan Zhang, Li Li, and Ming Pang

School of Computer Science, National University of Defense Technology,
 Changsha, Hunan, P. R. China, 410073

hy_lee@163.com

Abstract. The H.264 video coding standard uses a 4*4 multiply-free integer
transform, minimizing computational complexity. The emerging programmable
stream architecture provides a powerful mechanism to achieve high perform-
ance in media processing and signal processing. This paper analyzes the algo-
rithm characteristics of transform and quantization in H.264 and presents a
streaming implementation of transform and quantization on Imagine stream
processor. We evaluate our implementation on a cycle-accurate simulator of
Imagine and demonstrate stream processing efficiency by comparing its per-
formance against other implementations. Experimental results show that our
streaming implementation deals with transform and quantization of a 4*4 block
in 6.875ns. The coding efficiency can satisfy the real-time requirement of cur-
rent video applications.

1 Introduction

H.264 [1], proposed by Joint Video Team (JVT), is a new digital video coding stan-
dard. Some highlighted features are applied in H.264 for improved coding efficiency.
Small block-size integer transform is one of the enhanced techniques to avoid inverse
transform mismatch problem. It uses a 4*4 transform block size to somewhat reduce
the block artifacts. All operations in transform process can be carried out in integer
arithmetic only requiring additions and shifts. While a scaling multiplication is inte-
grated into the following quantizer to decrease the total number of multiplications. By
short tables, a set of new scalar quantization formulas use multiplications but avoid
divisions [2].

Transform and quantization is a computationally-intensive component. H.264
adopts block-based motion prediction, so residual difference between current frame
and predicted frame is organized in block. Each block is independent of others, expos-
ing a great deal of data parallelism. The issue of optimizing transform and quantiza-
tion in H.264 has been addressed in various research domains. For example, enhanced
SIMD technologies such as MMX and SSE2 are used to improve coding rate of H.264
[3,4]. DSP acceleration is always the favor of product researchers [5,6]. In addition,
special-purpose hardware implementations for transform and quantization in H.264
have emerged in succession [7,8,9,10].However, a new exploration on stream proc-
essing for H.264 has still remained.

42 H. Li et al.

In this paper we develop a streaming implementation of transform and quantization
in H.264 on the programmable Imagine stream processor [11]. Two computational
kernels, corresponding to transform and quantization respectively, are constructed to
operate on large homogeneous stream elements. In the end, we evaluate its perfor-
mance by comparing it against other implementations. Experimental results show that
the streaming transform and quantization implementation deals with the transform and
quantization of a 4*4 block in 6.875ns, namely processing 145.5 millions of inputs per
second. The coding efficiency can satisfy the real-time require-ment of current video
applications.

Implementing on stream processor requires us to modify algorithms on the basis of
stream processing and to arrange data in a streaming sequence in order to efficiently
utilize the SIMD manner of stream architecture. Exploiting data parallelism and local-
ity are encouraging for high performance applications.

The remainder of this paper is organized as follows. In Section 2, the principle and
the algorithm of transform and quantization in H.264 are given. Section 3 describes
the details of Imagine stream architecture. In Section 4, we discuss a streaming im-
plementation of transform and quantization. Our experimental results and discussions
are presented in Section 5. Finally, the paper is summarized in Section 6.

2 Transform and Quantization of H.264

The 4*4 transform adopted in the H.264 standard is an integer orthogonal computa-
tion [12]. This allows for bit-exact implementation for all encoders and decoders.
Another important feature in the new standard is the removal of computationally-
expensive multiplication that appears in the conventional standards.

The 4*4 integer transform of an input array X is shown in Equation (1).

T
f fW C XC= (1)

where the matrix Cf is given by Equation (2).

1 1 1 1

2 1 1 2

1 1 1 1

1 2 2 1

fC
− −

=
− −
− −

 (2)

In Equation (2), the absolute values of all the coefficients of the Cf matrix are ei-
ther 1 or 2. Thus, the transform operation presented by Equation (1) can be computed
using signed additions and left-shifts only to avoid expensive multiplications. While a
scaling multiplication is integrated into the following quantizer to minimize the total
number of multiplications.

H.264 uses a scalar quantizer. The post-scaling and quantization formulas are
shown in Equation (3) and (4).

 A Streaming Implementation of Transform and Quantization in H.264 43

()15 6qbits QP DIV= + (3)

2ij ij qbits

MF
Z round W= (4)

where QP is a quantization parameter. It can take any integer value from 0 up to 51.
The wide range of 52 quantizer step sizes makes it possible for an encoder to accu-
rately and flexibly control the trade-off between bit rate and image quality. Zij is a
quantized coefficient. MF is a multiplication factor that depends on QP and the posi-
tion (i, j) of the element in the matrix, referred to [12].

Fast algorithms for traditional DCT are also suited for integer transform, such as
butterfly transform [2]. It converts matrix multiply into matrix-vector multiply, ensur-
ing that there is no dependency between different vector columns in a matrix. And its
algorithm structure is relatively simple (see Fig.1), regarded as a good algorithm for
hardware implementation.

Fig. 1. Butterfly transform, where xn (n=0..3) is a column of encoded matrix, and xn’ (n=0..3) is
its corresponding filtered results. No multiplications are needed, only additions and shifts.

3 Imagine Stream Architecture

Imagine [13] can be considered representative of stream architecture (see Fig.2). We
have done thorough research on Imagine [14], and proposed a new MASA [15] sup-
porting multiple execution morphs. Imagine is programmable and flexible since it
directly maps applications into streams and kernels. We have mapped many applica-
tions, such as fluid computation [15], Reed-solomon decoder [16], and motion estima-
tion of H.264 [17] and so on. Imagine can provide high performance in so many
domains including media processing and signal processing. For example, Imagine is
able to sustain performance of 15.35 giga operations per second (GOPS) in MPEG-2
encoding application, corresponding to 287 frames per second (fps) on a 320*288-
pixel, 24-bit color image [18].

In fact, the implementation of stream application is casted by a collection of
streams passing through a series of computational kernels. A kernel is a small pro-
gram executed in arithmetic clusters that is repeated for each successive element of its

44 H. Li et al.

input streams to produce output stream for the next kernel in the application. Streams
are ordered finite-length sequences of data records. Each record in a stream is a set of
related data elements of a single arbitrary data type. The semantics of applying a ker-
nel to a stream are completely parallel, so the computation of a kernel can be per-
formed on different independent elements in the input stream(s) in parallel. Kernel
reads its inputs from stream register file (SRF). During computation, all temporary
data are stored in the local register file (LRF) of each cluster. And the output stream
of a kernel are sent back to SRF. Only the initial and final data streams need to be
transferred through streaming memory to the off-chip SDRAM. This three level
memory hierarchy is able to meet the large instruction and data bandwidth demands
of computationally intensive applications well.

Fig. 2. Imagine stream architecture. The three-level memory hierarchy is shown in the figure.

4 Implementation

4.1 Characteristics Analysis

Stream programming model can match the requirement of media processing very
well. Before mapping transform and quantization of H.264 video encoder on Imagine
stream processor, it is necessary to analyze the inherent characteristics especially in
computation intensity, parallelism and locality.

Computation Intensity
Integer transform is a computationally intensive module like block searching in mo-
tion estimation except for extra decision-making. If using butterfly algorithm men-
tioned in Section 2, a transform needs 64 additions and 16 shifts. As a result, 12.16
million additions and 3.04 million shifts are executed in one second for a CIF image
of 352*288 pixels at 30fps.

 A Streaming Implementation of Transform and Quantization in H.264 45

Parallelism
Large data parallelism exists in transform process. Based on 8-cluster structure of
Imagine, different columns of encoded matrix can be performed in parallel. Efficient
data organization may help magnify the advantage of data-level parallelism. Besides,
transform has obvious instruction-level parallelism. The pure additions and shifts can
be packed into VLIW compactly. An additional level of task parallelism can be dis-
cerned from the pipelining of kernels.

Locality
Video coding is processed orderly frame by frame and block by block, like a stream
of data flowing through every sequential processing module. Kernels encapsulate
short-term kernel locality, and allow efficient use of the LRFs. For example, the in-
termediate results of butterfly transform can be stored in the inner LRFs. At the same
time, stream capture long-term producer-consumer locality in the transfer of data
form one kernel (e.g. transform kernel) to another kernel (e.g. quantization kernel)
through the SRF without requiring costly memory operations, as well as spatial local-
ity by the nature of stream being a series of data records.

4.2 Implementation

Programming model of Imagine includes two levels: stream level (in StreamC) and
kernel level (in KernelC) [19]. According to the relationship of input and output
streams, the kernel diagram of transform and quantization is described as Fig.3.

Fig. 3. Kernel diagram. An ellipse represents a computational kernel. And the connection line
represents the input or output streams of the kernel.

These two kernels are chained together, where the output stream from the trans-
form kernel is fed into the next quantization kernel as an input stream. Producer-
consumer locality is exploited by consuming the result of one kernel as soon as it is
produced. MF look-up table is organized as a constant stream and loaded with trans-
formed coefficient stream into the quantization kernel. Note that a kernel can take
more than one streams as its input, and the output may be one or more streams for
different kernels.

Integer transform Y=CfXCf
T performs matrix multiplications twice. Assume that

B=CfX, then Y= CfXCf
T= BCf

T= (CfB
T) T. Based on transpose we keep the block that

is to be transformed as right matrix while the left matrix is Cf. The matrix X can be
divided into four vectors by column. Inter-column independence makes the butterfly
algorithm suited for stream processing. The main loop in the transform kernel is
illustrated in Fig.4.

46 H. Li et al.

Fig. 4. Pseudocode of transform kernel Fig. 5. Stream distribution in eight clusters

The input stream of transform kernel consists of 4*4 matrix blocks. Fig.5 illus-
trates the distribution of each stream record in clusters, where xij represent one stream
record with the relative position in its affiliated block. We choose a simple solution-
replicating a 4*4 matrix twice. It brings half waste of cluster resources because the
computation of four clusters is redundant. The better data records in the input stream
are organized, the better performance stream architecture will get [20]. The way of
organizing the data records is explicit for stream programmers. So it requires pro-
grammers to understand the algorithm characteristics in order to map it efficiently.

Fig. 6. Three-level memory hierarchy diagram

The transform kernel reads each data element from memory (In the whole encoder,
the input of transform kernel is also fed by its prior kernel. So, it is reasonable to
suppose the input stream exists in SRF not memory.). After kernel execution, the
transformed coefficient stream produced by transform is sent to the following quanti-
zation kernel directly. MF is loaded by a series of communication operations and
multiplies Y by index. Finally, the output quantized coefficient stream can be written
back to memory or stored in SRF as an intermediate stream for other kernels. The
three-level bandwidth hierarchy corresponds to the three columns of Fig.6.

 A Streaming Implementation of Transform and Quantization in H.264 47

5 Simulations and Results

5.1 Experimental Results

We run our streaming implementation of transform and quantization on ISim, a cycle-
accurate simulator ISim (500MHz), which is provided by the Imagine Project of Stan-
ford University [21]. The simulator can accurately model all aspects of stream proc-
essing and stream memory system. And the execution cycles obtained by ISim is
convictive enough to evaluate the performance of a streaming implementation. The
correctness of our implemented transform and quantization is also checked. This is
done by passing different input sequences to our stream program and comparing the
experimental result and the mathematical value.

Simulated results show that 3.485*105 cycles is needed for a CIF image. Thus,
dealing with the transform and quantization process of a 4*4 block requires 6.875ns,
thereinto 5.79ns for integer transform. It means that our streaming implementation is
able to process 145.5 millions of inputs per second. The performance may be opti-
mized by some advanced techniques such as loop unrolling and software pipelining
[20]. The processing rate is higher than that defined to HDTV video sequence (HDTV
must process 124.5 millions of inputs per second [9]).

We compare our streaming implementation with other different improvements,
mentioned in Section 1. Take the time of 4*4 integer transform as the criterion, shown
in Fig.7. Obviously, Imagine obtains comparative performance with special-purpose
hardware designed for transform and quantization application, much better than
MMX and DSP improvements. However, Imagine is more flexible than special-
purpose hardware. Thus, it has good adaptability and scalability.

Fig. 7. Comparison among different implementations, where the data of processing time refer
to [4,6,7,9] resprectively

Our streaming implementation has the shortest processing time of five cases in
Fig.7. Imagine can achieve high performance for three reasons. First, stream computa-
tion is efficient when operated on homogeneous data elements. Stream processing
mechanism ensures to overlap between kernel computation and memory access,
hiding the latency of memory operations. Second, Imagine performs in the SIMD
manner. Large data parallelism and little global data reuse may explore the powerful

48 H. Li et al.

computing capability of Imagine. Third, kernel locality and producer-consumer local-
ity are captured in LRF and SRF of Imagine. The three-level memory hierarchy can
afford the bandwidth requirement well.

5.2 Discussions

For an actual image, the residual difference input stream is a very large data set.
Processing each element in a single computation is impractical because the size of
data set may greatly exceed the size of on-chip storage. Instead, most Imagine appli-
cations use the common technique of stripmining [18]. In our implementation, resid-
ual difference pixel-blocks are divided into input batches, stream operations are
applied to an entire input batch at a time. The size of a batch in our implementation
is almost 14000 pixels. Fig.8 gives the utilization of SRF in the execution of trans-
form and quantization.

Fig. 8. SRF utilization, where the horizontal axis represents SRF size and colorful bars repre-
sent usage of SRF. Vertical axis represents stream execution time. The inputs in a batch are
14080 residual difference pixels in this figure. But blue bar indicates a read or write that re-
quires a memory access when SRF is spilled over.

 A Streaming Implementation of Transform and Quantization in H.264 49

The utilization of functional units is given in Table 1. The result is matched with
the algorithm characteristics: large amount of additions and shifts make great use of
adders only expect for some stalls before initial operands are prepared. While multi-
pliers are only used for quantization, so the utilization ratio is not very high.

By taking advantage of unique three-level memory hierarchy and large numbers of
functional units, Imagine can achieve so high performance. Combined with the accel-
erated implementation of motion estimation on Imagine [17], we can infer that the
whole H.264 encoder will get better performance and meet real-time requirement of
current video applications.

Table 1. Arithmetic unit utilization

 Adders Multipliers
Utilization ratio 83% 26%

6 Conclusion

In this paper we have presented a streaming implementation of transform and quanti-
zation in H.264. Experimental results show that processing transform and quantiza-
tion for a 4*4 block needs 6.875ns. As a result, our implementation is able to process
145.5 millions of inputs per second. It can satisfy the real-time requirement of video
applications. And it proves that the programming model including memory hierarchy
of stream architecture is helpful for large numbers of data to repeat the same or simi-
lar operations. But some issues are still needed to be researched deeply, such as slice
partition granularity and stream algorithm optimization. We will pay more attention to
its further improvement.

Acknowledgements. We thank Imagine project group of Stanford University for
providing the Imagine simulator. We also thank the reviewers for their insightful
comments. This work was sponsored by National Natural Science Foundation of
China under Grant 60573103.

References

1. JVT, Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H.264| ISO/IEC 14496-10 AVC). May 2003.

2. Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, Louis Kerofsky: Low-
Complexity Transform and Quantization in H.264/AVC. IEEE Transactions on Circuits
and Systems for Video Technology, Vol.13, No.7, July 2003.

3. Cui Yansong, Duan Dagao, Deng Zhongliang: The Analysis of Transform and Quantiza-
tion in H.264. Modern Cable Transmission, 2004.5, pp 71-74

4. Wei Fang, Li Xueming: SIMD Optimization of Transform and Quantization in H.264.
Computer Engineering and Applications, 2004.17, pp 24-27

5. Liu Baolan, Liu Guizhong, Su Rui: Implementation and Optimization of Pixel-
Compression Module in H.264 Based on DSP System. Microelectronics, Vol. 22, 2005,
No.6, pp200-205

50 H. Li et al.

6. Shen Haitao, Fan Yangyu, Wang Fengqin, Hao Chongyang: An Implementation of Trans-
form Encoding on DSP in H.264. 2004

7. Liu Ling-zhi, Qiu Lin, Rong Meng-tian, Jiang Li: A 2-D Forward/Inverse Integer Trans-
form Processor of H.264 Based on Highly-parallel Architecture. In Proceedings of the 4th
IEEE International Workshop on System-on-chip for Real-Time Applications, 2004

8. Ihab Amer, Wael Badawy, and Graham Jullien: Hardware Prototyping for the H.264 4*4
Transformation. ICASSP 2004.

9. Roger Endrigo Carvalho Porto, Marcelo Schiavon Porto, Thaisa Leal da Silva, Leandro
Zanetti Paiva da Rosa, Jose Luis Almada Guntzel, Luciano Volcan Agostini: An Integer 2-
D DCT Architecture for H.264/AVC Video Coding Standard. XX SIM-South Symposium
on Microeletronics.

10. Young-hun Lim, Yong-jin Jeong: Hardware Implementation of Integer Transform and
Quantization for H.264. December 2003.

11. Ujval J. Kapasi, William J. Dally, Scott Rixner, John D. Owens, Brucek Khailany: The
Imagine Stream Processor. Appears in the Proceedings of the 2002 International Confer-
ence on Computer Design, September 2002.

12. “H.264/MPEG-4 Part 10: Transform&Quantization”www.vcodex.com
13. Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung Namkoong,

John D. Owens, Brian Towles, Andrew Chang: Imagine: Media Processing with Streams.
IEEE Micro, March-April 2001.

14. Mei Wen, Nan Wu, Haiyan Li, Chunyuan Zhang: Research and Evaluation of Imagine
Stream Architecture. Advances on Computer Architecture, ACA’04

15. Mei Wen, Nan Wu, Haiyan Li, Li Li, Chunyuan Zhang: Multiple-morghs Adaptive Stream
Architecture. Journal of Computer Science and Technologgy, 2005

16. Mei Wen, Nan wu, Haiyan Li, Li Li, Chunyuan Zhang: A Parallel Reed-solomon Decoder
on the Imagine Stream Processor. Second International symposium on Parallel and Dis-
tributed Processing and Applications, Hongkong, 2004.12

17. Haiyan Li, Mei Wen, Chunyuan Zhang, Nan Wu, Li Li, Changqing Xun: Accelerated Mo-
tion Estimation of H.264 on Imagine Stream Processor. International Conference on Image
Analysis and Recognition 2005

18. John D. Owens, Scott Rixner, Ujval J. Kapasi, Peter Mattson, Brian Towles, Ben Serebrin,
William J. Dally: Media Processing Applications on the Imagine Stream Processor. In the
Proceedings of the 2002 International Conference on Computer Design, 2002

19. Abhishek Das, Peter Mattson, Ujval Kapasi, John Owens, Scott Rixner, Nuwan Jayasena:
Imagine Programming System User’s Guide 2.0, June 2004

20. Haiyan Li, Chunyuan Zhang, Li Li, Ming Pang: Stream Algorithm of 4*4 Integer Trans-
form. Conference on Virtual Reality and Vision 2006.

21. The Imagine Project, Stanford University, http://cva.stanford.edu/imagine/

A Parallel Transferable Uniform
Multi-Round Algorithm in Heterogeneous

Distributed Computing Environment

Hiroshi Yamamoto�, Masato Tsuru, and Yuji Oie

Department of Computer Science and Electronics,
Kyushu Institute of Technology, Kawazu 680-4, Iizuka, 820-8502 Japan

yamamoto@infonet.cse.kyutech.ac.jp, {tsuru, oie}@cse.kyutech.ac.jp

Abstract. The performance of parallel computing systems using the
master/worker model for distributed grid computing tends to be de-
graded when large data sets have to be dealt with, due to the impact
of data transmission time. In our previous study, we proposed a par-
allel transferable uniform multi-round algorithm (PTUMR), which effi-
ciently mitigated this impact by allowing chunks to be transmitted in
parallel to workers in environments that were homogeneous in terms of
workers’ computation and communication capacities. The proposed algo-
rithm outperformed the uniform multi-round algorithm (UMR) in terms
of application turnaround time, but it could not be directly adapted to
heterogeneous environments. In this paper, therefore, we propose an ex-
tended version of PTUMR suitable for heterogeneous environments. This
algorithm divides workers into appropriate groups based on both com-
putation and communication capacities of individual workers, and then
treats each group of workers as one virtual worker. The new PTUMR
algorithm is shown through performance evaluations to significantly mit-
igate the adverse effects of data transmission time between master and
workers compared with UMR, achieving turnaround times close to the
theoretical lower limits even in heterogeneous environments.

Keywords: Grid Computing, Master/Worker Model, Divisible Work-
load, Multi-Round Scheduling, UMR.

1 Introduction

Grid computing has recently increased in popularity for distributed applications
[1,2]. The master/worker model is suited to grid computing environments in-
volving a large number of computers that differ in resource capacities. In this
model, a master with application tasks dispatches subtasks to several workers,
which process the data allocated by the master. A typical instance of appli-
cations based on the master/worker model is a divisible workload application

� The author is now working in FUJITSU LABORATORIES LTD. The contact e-mail
address is hiro-yamamoto@jp.fujitsu.com

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 51–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 H. Yamamoto, M. Tsuru, and Y. Oie

[3,4,5], where the master divides the application data into an arbitrary number
of chunks and then dispatches them to multiple workers. For a given application,
it is assumed that computation and transmission times for a chunk are roughly
proportional to the size of the chunk.

The existing uniform multi-round algorithm (UMR), can handle an applica-
tion having a large amount of data in a ‘multiple-round’ manner to overlap the
time required for communication with that required for computation [3,6,7,8].
However, it utilizes sequential transmission model, i.e. the master transmits data
to one worker at a time [9,10]. In actual networks where the master and workers
are connected via a heterogeneous network, it is unable to minimize the adverse
effects of data transmission on the application turnaround time.

Therefore, in our previous study, we proposed a new scheduling algorithm,
parallel transferable uniform multi-round (PTUMR) adapted to the heteroge-
neous network [11]. The proposed algorithm fully utilizes the high-speed data
transmission capacity of the heterogeneous network by allowing the master to
transmit application data to multiple workers simultaneously. However it is not
adaptive to a heterogeneous environment containing workers with varying re-
source capacities.

The contributions of this paper are two-fold. Firstly, we extend the PTUMR
so that it can be applied in a heterogeneous environment. The master divides
workers into appropriate groups based on both computation and communication
capacities of individual workers, and then treats the set of workers in a group
as one virtual worker. After that, the master optimally transmits chunks to the
virtual workers sequentially as in UMR. Secondly, we evaluate the efficiency of
the new PTUMR in various environments. The proposed algorithm reduces the
adverse effects of data transmission time on application turnaround time to a
greater extent than the conventional UMR by handling heterogeneity in terms
of workers’ capacities and the network model, allowing turnaround times close
to the theoretical lower limit to be achieved.

This paper is organized as follows. In Section 2, the conceptual basis for
multiple-round scheduling and the conventional UMR algorithm are introduced.
The proposed PTUMR algorithm is presented in Section 3, and its performance
is investigated in Section 4. The conclusion follows in Section 5.

2 The Conventional UMR Scheduling Algorithm

Recently, a number of scheduling methods have been proposed in which the mas-
ter dispatches data to workers in a multiple-round manner in order to overlap
communication with computation and thereby reduce the application turnaround
time. Figure 1 shows a simple example of this scenario where the master dis-
patches a workload of the application to a worker. In this figure, a black rectangle
represents the fixed-length overhead for one round of computation and a gray rect-
angle represents the fixed-length overhead in one round of data transmission. In
multiple-round scheduling the entire application data set W [units] is divided into
multiple chunks of arbitrary size and processed in M rounds, which can reduce

A Parallel Transferable Uniform Multi-Round Algorithm 53

Fig. 1. Multiple-round scheduling

Fig. 2. Distributed comput-
ing model

Fig. 3. Timing chart of data transmission and worker
processing under UMR

the adverse effects of data transmission time on the application turnaround time.
However, the use of a large number of rounds results in an increase in the total
overhead. Thus, optimizing the number of rounds so as to minimize the appli-
cation turnaround time is a key issue in multiple-round scheduling.

UMR is an example of a multiple-round scheduling algorithm [6,7]. The dis-
tributed computing model for UMR is shown in Fig. 2. The master and N work-
ers are connected to a high-speed network that is free of bottlenecks. This model
has heterogeneity in terms of the computation and communication capacities of
workers: each worker i has associated with its computation speed si [units/s],
data transmission capacity bi [units/s] of the link attached to the worker, and
overheads δi [s], εi [s] added to the computation time and data transmission time,
respectively. Furthermore, the data transmission capacity of the link attached
to the master is denoted by b0 [units/s].

UMR adopts the sequential transmission model whereby the master transmits
a chunk to one worker at a time. Therefore, the actual data transmission rate
b′i between the master and worker i has to be bounded above by min{bi, b0}.
Figure 3 illustrates how the data is transmitted to workers and then processed
under UMR, where the size of the chunk allocated to the worker i in Round j is
denoted by cji [units]. The master determines the amount of chunks allocated
to each worker in such a way that the computation time becomes identical for
all workers during a round. To reduce data transmission time in the first round,
relatively small chunks are transmitted to workers in this round, and the size of
chunks then grows exponentially in subsequent rounds.

54 H. Yamamoto, M. Tsuru, and Y. Oie

Fig. 4. Timing chart of data transmission and worker processing under PTUMR

3 The PTUMR Scheduling Algorithm

The PTUMR algorithm determines how the application data should be divided
and when the data should be transmitted to workers in a network environment
that allows the master to transmit data to multiple workers in parallel (Fig. 4),
assuming that εi can be overlapped among concurrent transmissions. More pre-
cisely, the PTUMR divides workers into appropriate groups, and treats the set
of workers in each group as a single virtual worker. Then the master transmits
chunks to virtual workers sequentially, as in UMR.

After appropriately grouping the workers, the PTUMR algorithm analyti-
cally determines the appropriate number M+ of rounds so that the application
turnaround time for the total amount W of application data is minimized.

We assume that the values b0 and bi(i = 1, 2, . . . , N) are known to the master,
and also that it can control the rate of data transmission b′i to worker i to be
within the range [0, min(b0, bi)]. Note that such control can be achieved under
the TCP by constraining the sending socket buffer size.

3.1 Computation and Data Transmission Capacities of a Virtual
Worker

This subsection shows how to derive the resource capacity of a virtual worker in
terms of the resource capacities of its members. The set of workers composing
the virtual worker k is denoted by Lk and the number of workers in Lk by mk.

In order to minimize the computation time of the virtual worker, the size cji of
chunk allocated to worker i in Round j(= 0, . . . , M − 1) should be proportional
to its computation speed si [3]. In addition, we take the overhead Δk of virtual
worker k to be the largest overhead δi among all workers in Lk. Then, the
computation time of the virtual worker k in Round j is given by

Tcompjk
=

Cjk∑
i∈Lk

si
+ max

i∈Lk

{δi} =
Cjk

Sk
+ Δk.

(
Cjk =

∑
i∈Lk

cji

)
(1)

A Parallel Transferable Uniform Multi-Round Algorithm 55

where Cjk is defined as the total size of chunks allocated to all workers in Lk in
Round j, and Sk denotes the computation speed of virtual worker k.

Next, we assume that the data transmission time in each round is identical
for all workers in Lk by limiting the data transmission rate b′i (≤ bi) to each
worker i. In addition, we define that the overhead Ek of virtual worker k is the
largest overhead εi among all workers in Lk. Then, the data transmission time
of the virtual worker k in Round j is given by

Tcommjk
=

Cjk∑
i∈Lk

b′i
+ max

i∈Lk

{εi} =
Cjk

Bk
+ Ek. (2)

3.2 The Grouping Method

Since the resource capacity of the virtual worker depends on those of its members,
the grouping method strongly affects the performance of PTUMR. The grouping
method of PTUMR consists of two steps.

1. All workers are sorted and given serial numbers in ascending order of ri =
si/ min{b0, bi}. The workers are then divided into several groups according
to the following equation.

mk =max

{
m

∣∣∣∣∣
lk+m−1∑
l= lk

bl≤b0

}
+x, lk+1 = lk+mk. (3)

where lk indicates the serial number of the first worker composing the virtual
worker k and x indicates the number of additional workers added to the
group after the number of worker has been chosen in a way to make full use
of the master-network bandwidth. Note that the optimal value of x cannot
be derived analytically. However, in our extensive performance evaluation,
we found ten or more additional workers improved the performance to a
nearly optimal point in various conditions.

1’. The master groups workers whose resource capacities are close to each other
according to the following equation.

mk =min {mk in (3), m′
k} , m′

k =max

{
m

∣∣∣∣∣rlk+m−1≤
1.5×∑lk+m−2

l=lk
rl

m−1

}
.(4)

If ri of the next worker is 1.5 times larger than the average ri of all workers
already selected for the group, this next worker will not be included.

2. The virtual workers are sorted in ascending order of Rk = Sk/Bk, and the
number Nv of virtual workers utilized for application processing is chosen
according to the following equation.

Nv = max

{
n

∣∣∣∣∣
n∑

k=1

Rk < 1

}
. (5)

56 H. Yamamoto, M. Tsuru, and Y. Oie

Step 1 presents a basic grouping method which attempts to preferentially
select workers with larger ri, as happens in UMR [7], and to fully utilize the
bandwidth of the master-network link. Furthermore, the additional number x of
workers aims at reducing the number of steps required to transmit data to all
workers, which allows overlapping of the overhead for more workers.

However, in more heterogeneous environments, a virtual worker determined
by Step 1 may include some workers with much lower ri than others, which leads
to critical degradation of the resource capacity of the virtual worker. Therefore,
when heterogeneity is high, the basic grouping method does not result in efficient
execution of the application (shown later in Section 4.1). Step 1’ proposes a
modified PTUMR, PTUMR with Grouping Threshold (GT), which is restricted
to make a group of workers with similar resource capacities.

Step 2 then preferentially selects virtual workers with larger Rk, and limits
the number of virtual workers so as to prevent the allocation of application tasks
to a virtual worker having low capacity.

3.3 Derivation of Parameters That Result in Almost Minimal
Turnaround Time

The new scheduling algorithm, PTUMR, determines the number M+ of rounds
that is nearly optimal in terms of minimizing application turnaround time. The
application turnaround time Treal is determined by given parameters (the num-
ber M of rounds and the size Cjk of chunk allocated to virtual worker k in Round
j). However, since Treal is difficult to express analytically, we instead derive the
ideal application turnaround time Tideal under the (ideal) assumption that no
virtual worker ever enters the idle computation state once it has received its first
chunk of data. In addition, we also assume that the time required to compute
chunks received in each round is identical for all virtual workers.

We denote by wj(=
∑Nv

k=1 Cjk) the total amount of chunk to be allocated to
virtual workers in Round j, and from Eq. (1), the relation between wj and the
size Cjk of chunk allocated to the virtual worker k is given by

Cjk = αk × wj + βk, (6)(
αk =

Sk∑Nv

k=1 Sk

, βk =
Sk ×

∑Nv

k=1{Sk ×Δk}∑Nv

k=1 Sk

− Sk ×Δk.

)

In addition, from Eqs. (1) and (2), the total amount of chunk wj for Round
j can be determined by the total chunk size w0 in the first round as follows.

wj =θj(w0 − γ) + γ,

(
θ=

1/
∑Nv

k=1 Sk∑Nv

k=1{αk/Bk}
, (7)

γ =
∑Nv

k=1{Sk ×Δk}/
∑Nv

k=1 Sk −
∑Nv

k=1{βk/Bk} −
∑Nv

k=1 Ek∑Nv

k=1{αk/Bk} − 1/
∑Nv

k=1 Sk

.

)

A Parallel Transferable Uniform Multi-Round Algorithm 57

The application turnaround time Tideal under the ideal assumption can be
derived as a function of the number M of rounds, as follows.

Tideal =
1∑Nv

k=1 Sk

{
W +M×

Nv∑
k=1

(Sk×Δk)

+
Nv∑
k=1

⎡
⎣Sk×

k∑
t=1

⎛
⎝αt×

(
1−θ

1−θM ×(W−Mγ)+γ
)

+ βt

Bt
+Et

⎞
⎠
⎤
⎦
⎫⎬
⎭ . (8)

Due to space limitation, derivation of the application turnaround time in detail
is omitted.

Let M∗ denote the real value minimizing Tideal in Eq. (8), which can be
obtained by solving ∂Tideal

∂M = 0. Then, it is necessary to determine an appropriate
number M+ of rounds as an integer expected to nearly minimize Treal if M∗ is
not an integer. There are four possible integers to consider: �M∗	 − 1, �M∗	,

M∗� and
M∗�+1. We can choose one among them in such a way as to minimize
Treal.

4 Performance Evaluation

In this study, we assume, as was the case in the study proposing UMR [7], that
the computation speed si, the worker-network link capacity bi, and the latency
parameters εi and δi corresponding to the related overheads of workers, are
distributed uniformly within the following range.(

(1−
√

3× het)×mean, (1 +
√

3× het)×mean
)

. (9)

where het represents the heterogeneity of each resource capacity in the environ-
ment. We employ a coefficient of variation of each resource capacity as het. In
addition, mean can be set to the average capacity over all workers, namely s̄, b̄,
δ̄, and ε̄ listed in Tab 1.

The effectiveness of PTUMR is evaluated by comparing the achievable
turnaround time Treal(M+) with the lower bound Tbound, which corresponds
to the best possible turnaround time in an environment where the network re-
sources are sufficient to ensure negligible data transmission times and any latency
corresponding to related overheads is ignored. From Eq. (8), Tbound is obtained
as follows.

Tbound =
W∑N
i=1 si

. (10)

For a given parameter set (heterogeneity het and average resource capacities
s̄, b̄, δ̄ and ε̄), 100 experiments were conducted. The average and maximum
application turnaround time Treal in the 100 experiments was then used as a
measure of performance of the scheduling algorithms.

58 H. Yamamoto, M. Tsuru, and Y. Oie

Table 1. Model parameters and their val-
ues examined in performance evaluation

W 100, 500, 1000, 5000, 10000 [units]
s̄ 1 [units/s]
b0 200, 400, · · · , 2000 [units/s]
b̄ 200 [units/s]
ε̄ 0.001, 0.01 [s]
δ̄ 0.1 [s]

UMR

PTUMR with GT

PTUMR

Maximum
Average

Maximum
Average

Maximum
Average

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.1 0.2 0.3 0.4 0.5 0.6
Heterogeneity (het)

N
or

m
al

iz
ed

 T
ur

na
ro

un
d

T
im

e
(T

re
al
/T

bo
un

d)

Fig. 5. Impact of heterogeneity

4.1 The Impact of Heterogeneous Resource Capacities

First, we investigated the effect of the heterogeneity het on the performance
of our scheduling algorithms, UMR and PTUMR. In our evaluation model, we
assumed a total amount W of application data of 1000, a master-network trans-
mission capacity b0 of 1000, an average overhead ε̄ at the start of the data
transmission of 0.01, and 100 workers (N). When we evaluated the impact of
the heterogeneity het of each resource capacity, all resource capacities si, bi, δi

and εi of each worker were randomly chosen according to Eq. (9).
Figure 5 shows the average and maximum normalized turnaround times

Treal/Tbound for 100 experiments as a function of the heterogeneity het, where
the number x of additional workers under PTUMR was set to 10. As shown in
Fig. 5, regardless of het, normal PTUMR is superior to conventional UMR in
terms of average normalized turnaround time. However, when the heterogeneity
is high, the application turnaround time of normal PTUMR in the worst case
becomes larger than that of UMR. In contrast, PTUMR with GT can achieve
an application turnaround time close to the lower bound even in the worst case.
It is apparent from these results that PTUMR with GT can achieve an excellent
turnaround time by grouping workers in an appropriate way.

In the following section, we will consider only PTUMR with GT with the
number x of addition workers of 10. In addition we will investigate the perfor-
mance of the scheduling algorithms in highly heterogeneous environment, namely
het =

√
3

4 .

4.2 The Impact of Network Resources

The impact of network resources is examined here by assuming a total work-
load W of 1000 and 100 workers (N). Figure 6 shows the average normalized
turnaround time Treal/Tbound, as a function of the master-network link capacity
b0. Even if b0 increases, the UMR algorithm cannot effectively utilize the ad-
ditional network capacity. By contrast, the application turnaround time under
PTUMR decreases with increasing b0 because the algorithm can utilize the full
capacity of b0 by transmitting chunks to multiple workers in parallel. Further-
more, PTUMR achieves Treal close to its lower bound Tbound across a wide range

A Parallel Transferable Uniform Multi-Round Algorithm 59

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 200 400 600 800 1000 1200 1400 1600 1800 2000N
or

m
al

iz
ed

 T
ur

na
ro

un
d

T
im

e
(T

re
al
/T

bo
un

d)

Transmission Capacity of Master-Side Link (b0)

PTUMR

UMR ε=0.001
ε=0.01

ε=0.001
ε=0.01

Fig. 6. Impact of network resources

PTUMR

UMR ε=0.001
ε=0.01

ε=0.001
ε=0.01

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 1000 10000N
or

m
al

iz
ed

 T
ur

na
ro

un
d

T
im

e
(T

re
al
/T

bo
un

d)

Total Amount of Application Data (W)

Fig. 7. Impact of total workload

of overhead ε̄. This is because PTUMR can reduce the impact of the overhead
by aggressively overlapping the overhead εi for multiple workers.

This evaluation demonstrates that the PTUMR algorithm can achieve applica-
tion turnaround time quite close to the lower bound through effective utilization
of the transmission capacity of the master-network link and the overlapping of
overheads for multiple workers.

4.3 The Impact of Total Workload

Finally, the effect of the total amount W of application data is evaluated as-
suming a master-network transmission capacity b0 of 1000 and 100 workers (N).
Figure 7 shows the average normalized turnaround time Treal/Tbound, as a func-
tion of the application data size W . PTUMR provides excellent performance
quite close to the lower bound for any W and any ε̄, that is, the PTUMR algo-
rithm effectively eliminates the performance degradation associated with these
factors. Under UMR, the normalized turnaround time becomes quite poor as
the total data size W decreases, although good performance is achieved for large
W . The degradation of performance for low values of W under UMR can be
attributed to the increase of the overhead ratio which comes about as a result
of decreasing the chunk size. This increase in the overhead ratio can be neutral-
ized by PTUMR. These results therefore show that the PTUMR algorithm can
effectively schedule applications of any size by minimizing the adverse effect of
overheads on the application turnaround time.

5 Conclusion

We have proposed a novel scheduling algorithm called PTUMR for divisible
workload-type applications based on a master-worker model in grid computing
environments. The PTUMR allows the master to optimally transmit data to
workers in parallel in a multi-round manner, which can considerably reduce ap-
plication turnaround time compared with conventional multi-round scheduling
algorithms such as UMR. The PTUMR presented in this paper is greatly ex-
tended from that in our previous study [11] in terms of adaptability to heteroge-
neous environments with respect to computation and communication resources.

60 H. Yamamoto, M. Tsuru, and Y. Oie

This extension can be done by grouping workers appropriately for parallel data
transmission, while taking heterogeneity in resources into account. Extensive
performance evaluations show that the (extended) PTUMR can achieve an ap-
plication turnaround time close to the theoretical lower limit under a variety of
resource heterogeneity conditions.

Acknowledgments

This work was supported in part by the Ministry of Education, Culture, Sports,
Science and Technology, Japan, under the Project National Research GRID Ini-
tiative (NAREGI) and in part by the Ministry of Internal Affairs and Commu-
nications, Japan.

References

1. I. Foster and C. Kesselman, The GRID Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, 1998.

2. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid,” International
Journal of Supercomputer Applications, Vol. 15, No. 3, pp. 200–222, 2001.

3. V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, “Scheduling Divisible
Loads in Parallel and Distributed Systems,” IEEE Computer Society Press, 1996.

4. T. G. Robertazzi, “Ten Reasons to Use Divisible Load Theory,” Jounal of IEEE
Computer, Vol. 36, No. 5, pp. 63–68, May 2003.

5. D. Gerogiannis and S. C. Orphanoudakis, “Load Balancing Requirements in Par-
allel Implementations of Image Feature Extraction Tasks,” IEEE Trans. Parallel
and Distributed Systems, Vol. 4, No. 9, pp. 994–1013, 1993.

6. Y. Yang and H. Casanova, “UMR: A Multi-Round Algorithm for Scheduling Divis-
ible Workloads,” Proc. of International Parallel and Distributed Processing Sym-
posium (IPDPS’03), Nice, France, April 2003.

7. Y. Yang and H. Casanova, “A Multi-Round Algorithm for Scheduling Divisi-
ble Workload Applications: Analysis and Experimental Evaluation,” Technical
Report of Dept. of Computer Science and Engineering, University of California
CS20020721, 2002.

8. O. Beaumont, A. Legrand, and Y. Robert, “Optimal Algorithms for Scheduling
Divisible Workloads on Heterogeneous Systems,” Proc. of International Parallel
and Distributed Processing Symposium (IPDPS’03), Nice, France, April 2003.

9. C. Cyril, O. Beaumont, A. Legrand, and Y. Robert, “Scheduling Strategies for
Master-Slave Tasking on Heterogeneous Processor Grids,” Technical Report 2002-
12, LIP, March 2002.

10. A. L. Rosenberg, “Sharing Partitionable Workloads in Heterogeneous NOWs:
Greedier Is Not Better,” Proc. of the 3rd IEEE International Conference on Cluster
Computing (Cluster 2001), pp. 124–131, California, USA, October 2001.

11. H. Yamamoto, M. Tsuru, and Y. Oie, “Parallel Transferable Uniform Multi-Round
Algorithm for Achieving Minimum Application Turnaround Times for Divisible
Workload,” Proc. of the 2005 International Conference on High Performance Com-
puting and Communication (HPCC-05), LNCS 3726, pp. 817–828, Capri-Sorrento
Penisular, Italy, September 2005.

Clustering Multicast on Hypercube Network�

Lu Song, Fan BaoHua, Dou Yong, and Yang XiaoDong

College of Computer Science, National University of Defense Technology,
Changsha, Hunan 410073, People’s Republic of China

lusong@nudt.edu.cn

Abstract. Multicast communication is one of the general patterns of
collective communication in multiprocessors. On hypercube network, the
optimal multicast tree problem is NP-hard and all existing multicast
algorithms are heuristic. And we find that the existing works are far
away from optimal. So this paper aims to design an more efficient al-
gorithm to reduce the communication traffic of multicast in hypercube
network. We propose a clustering model and an efficient clustering multi-
cast algorithm. Compared with the existing related works by simulation
experiments, our heuristic algorithm reduces the communication traffic
significantly.

1 Introduction

A multicast communication in networks means that a source node sends a mes-
sage to some destination nodes. The multicast algorithms are to determine the
paths routing the message to the destination nodes. One goal of the researches
on multicast is to reduce the communication traffic.

Depending on the different underlying switching, Lin and Ni[1] formulated the
multicast communication problem in multicomputers as three different graph
problems: the Steiner tree (ST) problem, the multicast tree (MT) problem, and
the multicast path (MP) problem. The optimization of all these three multicast
problems on hypercube networks has been proved to be NP-hard [1,2,9]. Lan,
Esfahanian and Ni proposed a famous algorithm (LEN’s MT algorithm)[2] for
multicast tree problem on hypercube networks. Another heuristic algorithm for
multicast tree problem was proposed by Sheu[3].

However, the existing algorithms are optimal or approximately optimal only
under some special conditions. Moveover, routing following Sheu’s algorithm
may lead to a cycle in some case, which means the correctness of the algorithm
can not be always guaranteed. In this paper, we propose a clustering model for
hypercube and design a heuristic multicast algorithm. The idea is putting the
neighboring nodes together to form a cluster. Then choose for the routing path
based on the clusters.

In section 2, the definition of multicast tree and optimal multicast tree [7]
are presented. We also propose two properties of multicast set, global-info and
� Supported by PCSIRT (Program for Changjiang Scholars and Innovative Research

Team in University) of China under Grant No. IRT0446.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 61–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

62 S. Lu et al.

locality, which are used for message routing. Then we outline the LEN’s MT
algorithm and Sheu’s algorithm. In section 3, we propose a clustering model
for hypercube, the relevant clustering algorithm and the clustering multicast
algorithm with an illustration. Sections 4 presents the performance analysis
and the result of simulation experiments. The final section is about the con-
clusions.

2 Related Works

A multicast communication can be supported by many one-to-one communica-
tions, which is called unicast-based multicast. In this method, system resources
are wasted due to the unnecessary blocking caused by nondeterminism and asyn-
chrony [5,6,7]. Even without blocking, multicast may reduce communication traf-
fic and latency considerably. In this section, we state the multicast tree problem
and outline LEN’s and Sheu’s algorithms.

2.1 Multicast Tree

Multicast tree problem is formulated as a graph problem by Lin and Ni[1]. And
the optimal multicast problem is originally defined by [4].

Definition 1 (Multicast Tree). Given a graph G = (V, E), a source node u0,
and a multicast set M ⊆ V , a multicast tree is a subtree GT = (VT , ET) of G
such that M ⊆ VT and for each u ∈ M , the path length from u0 to u is equal to
length on G.

Definition 2 (Optimal Multicast Tree). Given a graph G = (V, E), the
optimal multicast tree (OMT) GOMT = (VOMT , EOMT) from source vertex u0
to destination set M = {u1, u2, · · · , uk} is a multicast tree of G such that |EOMT |
is as small as possible.

Here, we propose two properties of multicast set, global-info and locality. The
global-info describes the distribution of the destination nodes. The locality de-
scribes the extent of neighboring. They are both used for message routing.

Definition 3 (Global-info). The global-info consists of (1) the number of des-
tination vertices ‖M‖, (2) the counter of relative address (see definition 9) of all
destination vertices on each dimension, t � t1t2 · · · tn, t =

∑k
i=1(bitxor(ui, u0)).

Definition 4 (Locality). The locality is the extent of nearness between vertices
inside destination set, which can be measured by an array of distance D−array.
There is no locality between deferent destination subset.

D−array =

⎡
⎢⎢⎣

H(u1, u1) H(u1, u2) · · · H(u1, uk)
H(u2, u1) H(u2, u2) · · · H(u2, uk)

· · · · · · · · · · · ·
H(un, u1) H(un, u2) · · · H(un, un)

⎤
⎥⎥⎦ .

Clustering Multicast on Hypercube Network 63

2.2 LEN’s MT Algorithm

In LEN’s algorithm [2], when an intermediate node w receives the message and
the destination set M , it has to check if it is a destination node itself. If so, it
accepts the message locally and deletes itself from M . Then, it has to compute
the relative address of all the destination nodes. For a destination u, the ith bit
of u’s relative address is 1 if u is different from w on dimension i. Hence, for
each dimension i(0 � i � n− 1), LEN’s algorithm counts how many destination
nodes whose ith bit of the relative address is 1. After that, it always chooses
a particular dimension j with the maximum count value. All destination nodes
whose jth bit of the relative address is 1 are sent to the neighbor of w on jth
dimension. Then, these nodes are deleted from destination set M . This procedure
is repeated until the multicast set M becomes empty.

LEN’s MT algorithm votes for the paths to route the message depending on
the global-info, without considering the locality between the destination nodes.
Hence, the result from LEN’s algorithm is far from optimal. Let us give an
example. Consider Q5, suppose the source node is 00000(0) and the multicast
destination set M = {01010(10), 11101(29), 10001(17), 11111(31), 11100(28),
01011(11), 00010(2), 10110(22), 11110(30), 11011(27)}. The result from LEN’s
algorithm is shown in figure 1(a), where the gray nodes are destination nodes
and the nodes with dashed line are intermediate nodes. A better result from our
algorithm is shown figure 1(b).

00000

00010

01010

01011

11011

10000 10001

10100 10110

11100 11101

11110

11111

00000

10000

10100

10001

10101

11101 11100

00010 00110 10110

01010

01110

11110

01011

11011

11111

(a) (b)

Source node Destination node intermediate node

Fig. 1. The results from LEN’s MT algorithm and our algorithm

2.3 Sheu’s Algorithm

Sheu’s algorithm [3] consists of two phases, i.e. the neighbors linking phase and
the message routing phase. The neighbors linking phase is executed only on the
source node. It links the destination nodes in the multicast set M which are
adjacent. After this phase, the multicast set becomes a neighboring forest in
which each element is a root of tree. The routing phase is executed on each

64 S. Lu et al.

intermediate nodes in the multicast tree. Similar to LEN’s MT algorithm, this
phase votes for the paths to routing the message.

Sheu’ algorithm votes for the paths depending on the global-info and the
locality between the nodes. However, the neighbor linking phase make the global-
info injured without reserving weight of the trees. Under particular condition,
the result from Sheu’s algorithm has a cycle. Here is an example. Consider Q9,
suppose the source node is 000000000(0) and the multicast destination set M =
{000010000(16), 000011000(24), 000011100(28), 000001111(15), 000011111(31),
110011111(415), 001111111(127)}. There is a cycle in the result from Sheu’s
algorithm shown by figure 2, where two branches arrive node 000011111(31). In
the neighbor linking phase, the global-info losses the node 000011111(31) which
should be used to vote for the paths to node 110011111(415) and 001111111(127).
It means that Sheu’s MT algorithm is not always right. In the rest of this paper,
we leave Sheu’s algorithm out of account.

000000000 000010000 000011000

000011100000011110

000000100

000000110 000000111

000001111 000011111 100011111

001011111 110011111001111111

Source node Destination node intermediate node

Fig. 2. A cycle existed in result of Sheu’s algorithm

3 Clustering Multicast Algorithm

In this section we propose a clustering model. Based on the model, our multicast
tree algorithm consists of two phases, the clustering phase and the clustering
multicast phase. The Algorithm 1 describes the clustering phase executed only on
the source node. The clustering multicast phase is executed on each intermediate
node in the multicast tree. This procedure is shown by algorithm 2.

3.1 Clustering Model

Since one of the goals in the MT problem is to minimize the traffic, a multicast
tree is better if it has fewer nodes in the multicast tree. Actually, there are at
least k + 1 nodes to form a tree for a 1-to-k multicast communication. Sup-
pose the multicast set contains only two adjacent node u and v. The multicast
tree formed by putting two nodes on the same path will never be worse than that

Clustering Multicast on Hypercube Network 65

formed by putting them on different paths, because the former case never leads
to additional traffic. It is also suitable for the case that node u and node v are
neighboring, (H(u, u0) � H(u, v), H(v, u0) � H(u, v)). The nearness between
nodes is called locality (Definition 4). Based on the idea of locality, we propose
a clustering model which can split the multicast set into clusters.

Based on the definition of hypercube [8,10], we propose the definition of sub-
cube, expansion subcube, distance and relative address.

Definition 5 (Hypercube). A hypercube is defined as a graph Qn = (V, E).
The vertex set V of Qn consists of all binary sequence of length n on the
set {0, 1}, V = {x1x2 · · ·xn|xi ∈ {0, 1}, i = 1, 2, · · · , n}. Two vertices u =
u1u2 · · ·un and v = v1v2 · · · vn are linked by an edge if and only if u and v
differ exactly in one coordinate, E = {(u, v)|∑n

i=1 |ui − vi| = 1}.

Definition 6 (Subcube of Qn). A subcube Hk of Qn is a binary sequence
b1b2 · · · bn−k of length (n − k) which presents a subgraph containing 2k vertices
and k · 2k−1 edges. Hk can be denoted as b1b2 · · · bn−k � �� inside of which the
vertex has a form like b1b2 · · · bn−kxn−k+1 · · ·xn(xj ∈ {0, 1}, n− k + 1 � j � n).

Definition 7 (Expansion subcube). A expansion subcube of destination set
M denoted as expan(M) is the minimal subcube containing M . expan(M) =
{Hk|k � i(∀i, M ⊆ Hi)}.

Definition 8 (Distance). The distance between vertices is defined as the Ham-
ming distance, H(u, v) =

∑n
i=1 |ui − vi|(u = u1u2 · · ·un, v = v1v2 · · · vn). The

distance between vertex sets is defined as H(U, V) = minui∈U,vj∈V (H(ui, vj)).

Definition 9 (Relative address). The relative address of vertex u to vertex v
is a binary sequence R(u, v) � r1r2 · · · rn, where ri = ui⊕vi(u = u1u2 · · ·un, v =
v1v2 · · · vn).

Using definition 5,6,7,8,9, we present the definition of cluster.

Definition 10 (Cluster). Cluster is a set of destination nodes that are near
each other. There are two metrics of a cluster c, weight and degree. (1)Weight.
Weight is defined by the number of nodes in the cluster. W (c) = ‖c‖.(2)Degree.
Degree is defined as the dimension of the expansion subcube of cluster c. D(c) =
k(Hk = expan(c)).

Actually, considering each node as a cluster, LEN’s algorithm is a kind of gen-
eralized clustering multicast algorithm where the degree of each cluster is zero.
It means that LEN’s algorithm doesn’t use the locality between destination
nodes. As mentioned above, the result from LEN’s algorithm is far away from
optimal.

In next two subsections, we propose a clustering algorithm to split the multi-
cast set into clusters and a clustering multicast algorithm based on clusters with
their priorities.

66 S. Lu et al.

3.2 Clustering Algorithm

In this subsection, we propose a clustering algorithm (algorithm 1) which is used
to split the multicast set into clusters. In algorithm 1, all the destination nodes
are classified by their distance to the source node. Then we find adjacent nodes
that are directly linked by an edge in the graph of hypercube, and put these
adjacent nodes together to form a tree. After step 2, we get a set of trees. At
step 3, we combine the trees with the one whose expansion subcube contains the
other’s. The combination forms a cluster. Thus, the cluster set is generated by
our clustering algorithm.

Algorithm 1. Clustering algorithm on Qn

Input : source node u0, multicast set M = {u1, u2, · · · , uk}
Output: cluster set C

step 1: M0 ← {u0}, M1 ← M2 ← · · · ← Mn ← ∅
for i ∈ [1, n] do

Mi = {uj |H(uj , u0) = i}
end

step 2: ∀i ∈ [1, n]; for u ∈ Mi do
if ∃v ∈ Mi−1 && H(u, v) == 1 then

Mi−1 = Mi−1 ∪ {u}
Mi = Mi − {u}

end
end
C = M1 ∪ M2 ∪ · · · ∪ Mn

step 3: ∀i, j ∈ [1, n]; if expan(ci) ⊆ expan(cj) then
cj ← cj ∪ ci

ci ← ∅
end

3.3 Clustering Multicast

In this subsection, we present the clustering multicast algorithm (algorithm 2).
At step 1, if local node is contained in the multicast set, it deletes itself from the
multicast set. At step 2, for each cluster, we find out the head that is nearest to
local node in the cluster. Then compute the relative address of each head to local
node. Now we can use the relative addresses as the message routing direction and
the weight of clusters as the priority. At step 3, for each cluster and dimension i,
we counts the product of wight and ith bit of relative address. Similar to LEN’s
algorithm, we choose a particular dimension j with the maximum count value.
All clusters whose relative address of the head has 1 on jth bit are sent to the
neighbor of local node on jth dimension. This procedure is repeated until the
cluster set C becomes empty.

The following theorem shows the correctness of clustering multicast Algorithm.

Clustering Multicast on Hypercube Network 67

Algorithm 2. Message routing phase
Input : Local node address w, cluster set C
Output: None

step 1: if ∃c ∈ C, w ∈ c then
send the message to local processor
delete w from c

end
step 2: foreach ci ∈ C do

ui ← min(H(uj , w)); (uj ∈ ci)
ui ← bitxor(ui, w)
wi ← ‖ci‖

end
step 3: while C �= ∅ do

t ← ui ∗ wi; (t � t1t2 · · · tn)
tj ← max1≤i≤n(ti)
C′ ← {ci|ci ∈ C, ui and w diff on dimension j }
if ∃c ∈ C, H({w}, c) � H(c, C′) then

C′ ← C′ ∪ {c}
C ← C − c

end
Transmit C′ and the message to node (w ⊕ 2j)
C ← C − C′

end

C1
C2

C3

C4

X

C1
C2

C3

C4

X

Source Source

(a) (b)

Fig. 3. Routing between clusters

Theorem 1. Given a cluster set C in Qn, the edges selected by clustering mul-
ticast algorithm form a multicast tree.

Proof. (Proof by Contradiction.) Assume to the contrary that there is a cycle
in the result from clustering multicast algorithm. It means that paths between
clusters intersect at a node. We may suppose that the path from cluster c1 to
cluster c3 and the path from cluster c2 to cluster c4 intersect at node x (see

68 S. Lu et al.

figure 3(a)). The distance between each cluster and node x is denoted as d1,d2,d3
and d4. There are two cases to consider. (1) d1 == d2. Because the algorithm
2 executed in sequence, cluster c3 and c4 can only be both appeared in the
branch from cluster c1(or c2), contradicting our assumption. (2) d1 �= d2. We
may assume d1 < d2. Then we get d(c1, c4) < (c2, c4). It means that cluster c4
is closer to c1 than c2. According to clustering multicast algorithm, cluster c3
and c4 are both appeared in the branch from cluster c1 (shown in figure 3(b)),
again a contradiction. This completes the proof. ��

4 Performance Analysis

4.1 Complexity Compare

Consider the 1-to-k multicast on Qn. The complexities of step 1 and step 2
in clustering algorithm (algorithm 1) are both O(nk). Since the elements of
C are far less than M , the complexity of step 3 is O(step3) < O(nk). Hence
the complexity of clustering algorithm is O(nk). Similarly in message routing
algorithm, O(step1) = O(k), O(stpe2) = O(step3) < O(nk), the complexity of
clustering multicast is O(nk). So the complexity to finish multicast is O(nk).
And the complexity of LEN’s algorithm is also O(nk)[1,2].

And the transfer latency of LEN’s algorithm and our algorithm are approx-
imately equal. The latency of multicast was composed of transferring time and
routing time which are independent with each other. The transferring time is
dependent on the electric mechanism. Since the LEN’s algorithm and our algo-
rithm are both with the complexity of O(nk), the routing time of two algorithm
are approximately equal. Then so do the total latency.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

Number of Multicast Destinations

A
ve

ra
ge

 A
dd

iti
on

al
 T

ra
ffi

c

LEN's MT
Clustering MT

Fig. 4. Average additional traffic generated by LEN’s MT algorithm and clustering
multicast

Clustering Multicast on Hypercube Network 69

4.2 Simulation

In this subsection, we analysis the performance of our multicast algorithms on
Q10 by simulation experiments. In general, the distribution of destination nodes
has a great effect on the total traffic of multicast communication. But, similar
to the performance studies in existing works [1,2,3], we assume that the routing
distribution is uniform. For a 1-to-k multicast, it requires at least k units of
traffic, where a unit of traffic is measured as one message transmitted over
one link. As in the existing studies [1,2,3], we use average additional traffic
to evaluate the performance of a multicast communication, where the average
additional traffic is defined as the average amount of total traffic minus k. The
number of destination nodes k is ranged from 50 to 1000 by the step of 50. For
each k, we perform the simulation 500 times and the amount of traffic generated
for a given k is averaged over the 500 runs. Figure 4 shows the comparison of
average additional traffic generated by LEN’s MT algorithm and our multicast
algorithm.

5 Conclusions

In this paper, we propose a clustering model and a clustering algorithm to
achieve a better balance between the global-info and locality which are two
essential properties of the multicast set. Based on the clustering model, an ef-
ficient heuristic multicast algorithm is presented. By simulation experiments,
our clustering multicast algorithm has significant improvements compared to
the existing algorithms. And the generation of resulting multicast tree is fully
distributed.

References

1. X. Lin and L. M. Ni: Multicast communication in multicomputer networks. IEEE
Trans. Parallel Distrib. Systems 4 (1993) 1105-1117

2. Y. Lan, A. H. Esfahanian, and L. M. Ni: Multicast in hypercube multiprocessors.
J. Parallel Distrib. Comput. 8 (1990) 30-41

3. Shih-Hsien Sheu and Chang-Biau Yang: Multicast Algorithms for Hypercube Mul-
tiprocessors. Journal of Parallel and Distributed Computing 61 (2001) 137-149

4. Y. Lan, A. H. Esfahanian, and L. M. Ni: Distributed multi-destination routing
in hypercube multiprocessors. Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications 1988 631-639

5. Choi Y., Esfahanian A. H., and Ni L. M.: One-to-k communication in distributed-
memory multiprocessors. Proc. 25th Annual Allerton Conference on Communica-
tion, Control, and Computing 1987 268-270

6. William James Dally and Brian Patrick Towles: Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers 2003

7. J. Duato, S. Yalamanchili, and L. M. Ni: Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers 2002

70 S. Lu et al.

8. Junming Xu: Topological structure and Analysis of Interconnection Networks.
Kluwer Academic Publishers 2001

9. R. L. Graham and L. R. Foulds: Unlikelihood that minimal phylogenies for real-
istic biological study can be constructed in reasonable computational time. Math.
Biosci. 60 (1982) 133-142

10. Jianer Chen, Guojun Wang and Songqiao Chen: Locally subcube-connected hyper-
cube networks: theoretical analysis and experimental results. IEEE Transactions
on Computers 5 (2002) 530-540

Checkpointing and Communication
Pattern-Neutral Algorithm for Removing

Messages Logged by Senders

JinHo Ahn

Dept. of Computer Science, College of Science, Kyonggi University
San 94-6 Iuidong, Yeongtonggu, Suwonsi Kyonggido 443-760, Republic of Korea

jhahn@kyonggi.ac.kr

Abstract. The traditional sender-based message logging protocols use
a garbage collection algorithm to result in a large number of additional
messages and forced checkpoints. So, in our previous work, an algorithm
was introduced to allow each process to autonomously remove useless log
information in its volatile storage by piggybacking only some additional
information without requiring any extra message and forced checkpoint.
However, even after a process has executed the algorithm, its storage
buffer may still be overloaded in some communication and checkpoint-
ing patterns. This paper proposes a new garbage collection algorithm
CCPNA for sender-based message logging to address all the problems
mentioned above. The algorithm considerably reduces the number of
processes to participate in the garbage collection by using the size of the
log information of each process. Thus, CCPNA incurs more additional
messages and forced checkpoints than our previous algorithm. However,
it can avoid the risk of overloading the storage buffers regardless of the
specific checkpointing and communication patterns. Also, CCPNA re-
duces the number of additional messages and forced checkpoints com-
pared with the traditional algorithm.

Keyword: message-passing system, fault-tolerance, message logging,
checkpointing, garbage collection.

1 Introduction

With the remarkable advance of processor and network technologies, message-
passing distributed systems composed of heterogenous networked computers are
becoming a cost-effective solution for high performance parallel computing com-
pared with expensive special-purpose supercomputers. However, one of the big
challenges the distributed systems should address is providing fault-tolerance.
In other words, even if the failure of a single process in a distributed application
occurs, it may lead to restarting the application from its initial state, which is
critical to long-running scientific and engineering applications. Rollback-recovery
techniques such as checkpointing-based recovery and log-based recovery are very
attractive for supporting transparent fault-tolerance to the applications because

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 71–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 J. Ahn

the techniques require fewer special resources compared to process replication
techniques [5]. In checkpointing-based recovery, when some processes crash, the
processes affected by the failures roll back to their last checkpoints such that
the recovered system state is consistent. But, this technique may not restore the
maximum recoverable state because it relies only on checkpoints of processes
saved on the stable storage. Log-based recovery performing careful recording of
messages received by each process with its checkpoints enables a system to be
recovered beyond the most recent consistent set of checkpoints. This feature is
desirable for the applications that frequently interact with the outside world
consisting of input and output components that cannot roll back [5]. In this
technique, messages can be logged either by their senders or by their receivers.
First, receiver-based message logging (RBML) approach [8,14] logs the recovery
information of every received message to the stable storage before the message
is delivered to the receiving process. Thus, the approach simplifies the recovery
procedure of failed processes. However, its main drawback is the high failure-free
overhead caused by synchronous logging. Sender-based message logging (SBML)
approach [2,4,9,11,13] enables each message to be logged in the volatile mem-
ory of its corresponding sender for avoiding logging messages to stable storage.
Therefore, it reduces the failure-free overhead compared with the RBML ap-
proach. However, the SBML approach forces each process to maintain in its
limited volatile storage the log information of its sent messages required for
recovering receivers of the messages when they crash. Thus, as enough empty
buffer space for logging messages sent in future should be ensured in this ap-
proach, it requires an efficient algorithm to garbage collect log information of
each process [1]. Traditional SBML protocols [2,4,9,11,13] use one between two
message log management procedures to ensure system consistency despite future
failures according to each cost. The first procedure just flushes the message log
to the stable storage. It is very simple, but may result in a large number of stable
storage accesses during failure-free operation and recovery. The second proce-
dure forces messages in the log to be useless for future failures and then removes
them. In other wards, the procedure checks whether receivers of the messages
has indeed received the corresponding messages and then taken no checkpoint
since. If so, it forces the receivers to take their checkpoints. Thus, this behavior
may lead to high communication and checkpointing overheads as inter-process
communication rate increases. To address their problems, in our previous work,
a low-cost algorithm called PGCA [1] was presented to have the volatile memory
of each process for message logging become full as late as possible with no ex-
tra message and forced checkpoint. The algorithm allows each process to locally
and independently remove useless log information from its volatile storage by
piggybacking only some additional information. However, the limitation of the
algorithm is that after a process has performed the algorithm, the storage buffer
of the process may still be overloaded in some communication and checkpointing
patterns. In this paper, we propose an active garbage collection algorithm called
CCPNA to lift the limitation. For this, the algorithm CCPNA uses an array
recording the size of the log information for each process. When the free buffer

Checkpointing and Communication Pattern-Neutral Algorithm 73

space in the volatile storage is needed, the algorithm selects a small number of
processes based on the array that take part in having the messages previously
logged for them be useless despite their future failures. Thus, CCPNA results in
low communication and checkpointing overheads compared with the traditional
ones while avoiding the disadvantage of the algorithm PGCA.

2 System Model

A distributed computation consists of a set P of n(n > 0) sequential processes
executed on hosts in the system and there is a stable storage that every process
can always access that persists beyond processor failures [5]. Processes have no
global memory and global clock. The system is asynchronous: each process is exe-
cuted at its own speed and communicates with each other only through messages
at finite but arbitrary transmission delays. We assume that the communication
network is immune to partitioning, there is a stable storage that every process
can always access and hosts fail according to the fail stop model [10]. Events
of processes occurring in a failure-free execution are ordered using Lamport’s
happened before relation [6]. The execution of each process is piecewise deter-
ministic [12]: at any point during the execution, a state interval of the process is
determined by a non-deterministic event, which is delivering a received message
to the appropriate application. The k-th state interval of process p, denoted by
sip

k(k > 0), is started by the delivery event of the k-th message m of p, denoted
by devp

k(m). Let p’s state, sp
i =< sip

0, sip
1, · · ·, sipi >, represent the sequence

of all state intervals up to sip
i. Therefore, given p’s initial state, sp

0, and the
non-deterministic events, [devp

1, devp
2, · · ·, devp

i], its corresponding state sp
i is

uniquely determined. sp
i and sq

j(p �= q) are mutually consistent if all messages
from q that p has delivered to the application in sp

i were sent to p by q in sq
j ,

and vice versa. A set of states, which consists of only one from each process in
the system, is a globally consistent state if any pair of the states is mutually
consistent [3].

The log information of each message kept by its sender consists of four fields,
its receiving process’ identifier(rid), send sequence number(ssn), receive se-
quence number(rsn) and data(data). In this paper, the log information of mes-
sage m and the message log in process p’s volatile memory are denoted by e(m)
and logp.

3 The Proposed Algorithm

The sender-based message logging needs an algorithm to allow each process to
remove the log information in its volatile storage while ensuring system con-
sistency in case of failures. This algorithm should force the log information to
become useless for future recovery to satisfy the goal. In the traditional sender-
based message logging protocols, to garbage collect every e(m) in logp, p requests
that the receiver of m (m.rid) takes a checkpoint if it has indeed received m and

74 J. Ahn

taken no checkpoint since. Also, processes occasionally exchange the state in-
terval indexes of their most recent checkpoints for garbage collecting the log
information in their volatile storages. However, this algorithm may result in
a large number of additional messages and forced checkpoints needed by the
forced garbage collection. To illustrate how to remove the log information in
the algorithm, consider the example shown in figure 1. Suppose p3 intends to
remove the log information in logp3 at the marked point. In this case, the al-
gorithm forces p3 to send checkpoint requests to p1, p2 and p4. When receiving
the request, p1, p2 and p4 take their checkpoints, respectively. Then, the three
processes send each a checkpoint reply to p3. After receiving all the replies, p3
can remove (e(m1), e(m2), e(m3), e(m4), e(m5), e(m6), e(m7), e(m8)) from logp3.
Also, in this checkpointing and communication pattern, the algorithm proposed
in [1] cannot allow p3 to autonomously decide whether log information of each
sent message is useless for recovery of the receiver of the message by using some
piggybacking information. Thus, even after executing the algorithm, p3 should
maintain all the log information of the eight messages in logp3.

p2

p1

m
5

m
1

m
1

C
1.i

C
1.i

C
2.j

C
2.j

p3

C
3.k

C
3.k

log3(e(m1), e(m2), e(m3), e(m4), e(m5), e(m6), e(m7), e(m8))

time

p4

C
4.l

C
4.l

m
2

m
2

m
4

m
4

m
6

m
6

m
8

m
8

m
3

m
7

garbage
collection

point

C
1.i+1

C
2.j+1

C
4.l+1

Fig. 1. An example showing the problem of the traditional sender-based message log-
ging protocols

To solve the problem, we present an algorithm CCPNA based on the fol-
lowing observation: if the requested empty space (=E) is less than or equal to
the sum (=Y) of sizes of e(m1), e(m2), e(m4), e(m6) and e(m8), p3 has only
to force p2 to take a checkpoint. This observation implies that the number of
extra messages and forced checkpoints may be reduced if p3 knows sizes of the
respective log information for p1, p2 and p4 in its volatile storage. CCPNA ob-
tains such information by maintaining an array, LogSizep, to save the size of
the log information in the volatile storage by process. Thus, CCPNA can reduce
the number of additional messages and forced checkpoints by using the vector
compared with the traditional algorithm.

Checkpointing and Communication Pattern-Neutral Algorithm 75

• logp: It is a set saving e(rid, ssn, rsn, data) of each message sent by p. It is initialized to ∅.
• Lssnp: It is the send sequence number of the latest message sent by p. It is initialized to 0.
• Lrsnp: It is the receive sequence number of the latest message delivered to p. It is initialized to 0.
• LssnV ecp: It is a vector where LssnV ecp[q] records the send sequence number of

the latest message received by p that q sent. Each element of the vector is initialized to 0.
• LogSizep: It is a vector where LogSizep[q] is the sum of sizes of all e(m)s in logp such that

p sent m to q. LogSizep[q] is initialized to 0.
• LrsnInLchkptp: It is the rsn of the latest message delivered to p

before p’s having taken its last checkpoint. It is initialized to 0.
• ENsendp: It is a set of rsns that aren’t yet recorded at the senders of their messages.

It is initialized to an empty set Φ. It is used for indicating whether p can send messages
to other processes(when ENsendp = Φ) or not.

Fig. 2. Data Structures for every process p in CCPNA

p2

p1

m
5

m1m1

C
1.i

C
1.i

C 2.jC 2.j

p3

C3.kC3.k

log
3
(e(m

1
), e(m

2
), e(m

3
), e(m

4
), e(m

5
), e(m

6
), e(m

7
), e(m

8
))

time

p4

C
4.l

C
4.l

m2m2 m4m4 m6m6 m8m8

m3 m7

garbage
collection

point

C2.j+1

LogSize 3[1] = X
LogSize 3[2] = Y
LogSize

3
[4] = Z

If Y >= Z >= X and Y >= E

Fig. 3. An example of executing our algorithm CCPNA

In CCPNA, each process p should maintain the data structures shown in figure
2. First, LogSizep is a vector where LogSizep[q] is the sum of sizes of all e(m)s
in logp, such that p sent message m to q. Whenever p sends m to q, it increments
LogSizep by the size of e(m). When p needs more empty buffer space, it exe-
cutes CCPNA. It first chooses a set of processes, denoted by participatingProcs,
which will participate in the forced garbage collection. It selects the largest,
LogSizep[q], among the remaining elements of LogSizep, and then appends q
to participatingProcs until the required buffer size is satisfied. Then p sends
a request message with the rsn of the last message, sent from p to q, to all
q ∈ participatingProc such that the receiver of m is q for ∃e(m) ∈ logp. When

76 J. Ahn

procedure MSend(data, q)
wait until(ENsendp = Φ) ;
Lssnp ← Lssnp + 1 ;
send m(Lssnp, data) to q ;
logp ← logp ∪ {(q, Lssnp, -1, data)} ;
LogSizep[q] ← LogSizep[q] + size of (q, Lssnp, -1, data) ;

procedure MRecv(m(ssn, data), sid)
if(LssnV ecp[sid] < m.ssn) then {

Lrsnp ← Lrsnp + 1 ;
LssnV ecp[sid] = m.ssn ;
send ack(m.ssn, Lrsnp) to sid ;
ENsendp ← ENsendp ∪ {Lrsnp} ;
deliver m.data to the application ;

}
else discard m ;

procedure Ack-Recv(ack(ssn, rsn), rid)
find ∃e ∈ logp st ((e.rid = rid) ∧ (e.ssn = ack.ssn)) ;
e.rsn ← ack.rsn ;
send confirm(ack.rsn) to rid ;

procedure Confirm-Recv(confirm(rsn))
ENsendp ← ENsendp - {rsn} ;

procedure Checkpointing()
LrsnInLchkptp ← Lrsnp ;
take its local checkpoint on the stable storage ;

procedure AGC(sizeOflogSpace)
participatingProcs ← ∅ ;
while sizeOflogSpace > 0 do

if(there is r st ((r ∈ P) ∧ (r is not an element of participatingProcs) ∧
(LogSizep[r] �= 0) ∧ (max LogSizep[r]))) then {
sizeOflogSpace ← sizeOflogSpace − LogSizep[r] ;
participatingProcs ← participatingProcs ∪ {r} ;

}
T : for all u ∈ participatingProcs do {

MaximumRsn ← (max e(m).rsn) st ((e(m) ∈ logp)∧(u = e(m).rid)) ;
send Request(MaximumRsn) to u ;

}
while participatingProcs �= ∅ do {

receive Reply() from u st (u ∈ participatingProcs) ;
for all et(m) ∈ logp st (u = e(m).rid) do

remove e(m) from logp ;
LogSizep[u] ← 0 ;
participatingProcs ← participatingProcs − {u} ;

}

procedure CheckLrsnInLchkpt(Request(MaximumRsn), q)
if(LrsnInLchkptp < MaximumRsn) then
Checkpointing() ;

send Reply() to q ;

Fig. 4. Procedures for every process p in CCPNA

Checkpointing and Communication Pattern-Neutral Algorithm 77

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

10 20 30 40 50 60

Tms

N
O
A
M

TGCA

CCPNA

Fig. 5. NOAM vs. Tms

q receives the request message with the rsn from p, it checks whether the rsn
is greater than LrsnInLchkptp. If so, it should take a checkpoint and then send
p a reply message. Otherwise, it has only to send p a reply message. When p
receives the reply message from q, it removes all e(m)s from logp such that the
receiver of m is q.

For example, in figure 3, when p3 attempts to execute CCPNA at the marked
point after it has sent m8 to p2, it should create participatingProcs. In this
figure, we can see that LogSizep3[p2](= Y) is the largest (Y ≥ Z ≥ X) among
all the elements of LogSizep3 due to e(m1), e(m2), e(m4), e(m6) and e(m8) in
logp3. Thus, it first selects and appends p2 to participatingProcs. Suppose that
the requested empty space E is less than or equal to Y . In this case, it needs
to select any process like p1 and p4 no longer. Therefore, p3 sends a checkpoint
request message with m8.rsn to only p2 in participatingProcs. When p2 receives
the request message, it should take a forced checkpoint like in this figure because
the rsn included in the message is greater than LrsnInLchkptp2. Then it sends
p3 a reply. When p3 receives a reply message from p2, it can remove e(m1), e(m2),
e(m4), e(m6) and e(m8) from logp3. From this example, we can see that CCPNA
chooses a small number of processes to participate in the garbage collection
based on LogSizep3 compared with the traditional algorithm. Thus, CCPNA
may reduce the number of additional messages and forced checkpoints.

3.1 Algorithmic Description

The procedures for process p in our algorithm are formally described in figure
4. MSend() is the procedure executed when each process p sends a message
m and logs the message to its volatile memory. In this case, p adds the size
of e(m) to LogSizep[q] after transmitting the message. Procedure MRecv()

78 J. Ahn

is executed when p receives a message. In procedure Ack-Recv(), process p
receives the rsn of its previously sent message and updates the third field of the
element for the message in its log to the rsn. Then, it confirms fully logging of the
message to its receiver, which executes procedure Confirm-Recv(). If process p
attempts to take a local checkpoint, it calls procedure Checkpointing(). In this
procedure, LrsnInLchkptp is updated to the rsn of the last message received
before the checkpoint. AGC() is the procedure executed when each process
attempts to initiate the forced garbage collection, and CheckLrsnInLchkpt()
is the procedure for forcing the log information to become useless for future
recovery.

4 Performance Evaluation

In this section, we perform extensive simulations to compare the proposed al-
gorithm CCPNA with the traditional algorithm TGCA using simjava discrete-
event simulation language [7]. Two performance indexes are used for comparison;
the average number of additional messages (NOAM) and the average number of
forced checkpoints (NOFC) required for garbage collection per process. In the
literature, these two indexes dominate the overhead caused by garbage collection
during failure-free operation [5]. A system with 20 nodes connected through a
general network was simulated. Each node has one process executing on it and,
for simplicity, the processes are assumed to be initiated and completed together.
The message transmission capacity of a link in the network is 100Mbps. For the
simulation, 20 processes have been executed for 72 hours per simulation run.
Every process has a 10MB buffer space for storing its logp. The message size
ranges from 50KB to 200KB. Normal checkpointing is initiated at each process
with an interval following an exponential distribution with a mean Tckpt=360
seconds. The simulation parameter is the mean message sending interval, Tms,
following an exponential distribution.

Figure 5 shows NOAM for the various Tms values. In this figure, we can see
that NOAMs of the two algorithms increase as Tms decreases. The reason is
that forced garbage collection should frequently be performed because the high
inter-process communication rate causes the storage buffer of each process to
be overloaded quickly. However, NOAM of CCPNA is much lower than that of
TGCA. CCPNA reduces about 38% - 50% of NOAM compared with TGCA.

Figure 6 illustrates NOFC for the various Tms values. In this figure, we can
also see that NOFCs of the two algorithms increase as Tms decreases. The
reason is that as the inter-process communication rate increases, a process may
take a forced checkpoint when it performs forced garbage collection. In the figure,
NOFC of CCPNA is lower than that of TGCA. CCPNA reduces about 25% -
51% of NOFC compared with TGCA.

Therefore, we can conclude from the simulation results that regardless of the
specific checkpointing and communication patterns, CCPNA enables the garbage
collection overhead occurring during failure-free operation to be significantly
reduced compared with TGCA.

Checkpointing and Communication Pattern-Neutral Algorithm 79

0

5

10

15

20

25

30

35

40

45

50

55

60

10 20 30 40 50 60

Tms

N
O
F
C

TGCA

CCPNA

Fig. 6. NOFC vs. Tms

5 Conclusion

In this paper, we presented a garbage collection algorithm CCPNA for effi-
ciently removing log information of each process in sender-based message log-
ging. CCPNA allows each process to keep an array to save the size of the log
information for every process in its storage by process. It chooses a minimum
number of processes to participate in the forced garbage collection based on the
array. Thus, it incurs more additional messages and forced checkpoints than our
previous algorithm. However, it can avoid the risk of overloading the storage
buffers unlike the latter. Moreover, CCPNA reduces the number of additional
messages and forced checkpoints needed by the garbage collection compared with
the traditional algorithm TGCA. From our simulation experiments, we can see
that CCPNA significantly reduces about 38% - 50% of NOAM and 25% - 51%
of NOFC regardless of the communication patterns compared with TGCA.

References

1. JinHo Ahn. An Efficient Algorithm for Removing Useless Logged Messages in
SBML Protocols. Lecture Notes In Computer Science, Vol. 3816, pp. 166-171, Dec.
2005.

2. A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier and F. Mag-
niette. MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging. In Proc. of the 15th International Conference on
High Performance Networking and Computing(SC2003), November 2003.

3. K. M. Chandy, and L. Lamport. Distributed Snapshots: Determining Global States
of Distributed Systems. ACM Transactions on Computer Systems, 3(1): 63-75,
1985.

80 J. Ahn

4. D. B. Johnson and W. Zwaenpoel. Sender-Based Message Logging. In Digest of
Papers: 17th International Symposium on Fault-Tolerant Computing, pp. 14-19,
1987.

5. E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson. A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Computing Surveys, 34(3),
pp. 375-408, 2002.

6. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21, pp. 558-565, 1978.

7. R. McNab and F. W. Howell. simjava: a discrete event simulation package for Java
with applications in computer systems modelling. In Proc. First International
Conference on Web-based Modelling and Simulation, 1998.

8. M. L. Powell and D. L. Presotto. Publishing: A reliable broadcast communication
mechanism. In Proc. of the 9th International Symposium on Operating System
Principles, pp. 100-109, 1983.

9. P. Sens and B. Folliot. The STAR Fault Tolerant manager for Distributed Op-
erating Environments. Software Practice and Experience, 28(10), pp. 1079-1099,
1998

10. R. D. Schlichting and F. B. Schneider. Fail-stop processors: an approach to design-
ing fault-tolerant distributed computing systems. ACM Transactions on Computer
Systems, 1, pp. 222-238, 1985.

11. R.E. Strom, D.F. Bacon and S.A. Yemeni. Volatile Logging in n-Fault-Tolerant
Distributed Systems. In Digest of Papers: the 18th International Symposium on
Fault-Tolerant Computing, pp. 44-49, 1988.

12. R.E. Strom and S.A. Yemeni. Optimistic recovery in distributed systems. ACM
Transactions on Computer Systems, 3, pp. 204-226, 1985.

13. J. Xu, R.B. Netzer and M. Mackey. Sender-based message logging for reducing
rollback propagation. In Proc. of the 7th International Symposium on Parallel and
Distributed Processing, pp. 602-609, 1995.

14. B. Yao, K. -F. Ssu and W. K. Fuchs. Message Logging in Mobile Computing.
In Proc. of the 29th International Symposium on Fault-Tolerant Computing, pp.
14-19, 1999.

The Design of a Dynamic Efficient Load
Balancing Algorithm on Distributed Networks�

Yeojin Lee1, Okbin Lee1, Wankyoo Choi1, Chunkyun Youn2,
and Ilyong Chung1,��

1 Dept. of Computer Science and BK Team, Chosun University, Gwangju, Korea
iyc@chosun.ac.kr

2 Department of Internet Software, Honam University, Gwangju, Korea
chqyoun@itc.honam.ac.kr

Abstract. In order to maintain load balancing in a distributed network,
each node should obtain workload information from all the nodes in the
network. To accomplish this, this processing requires O(v2) communi-
cation complexity, where v is the number of nodes. First, we present
a new synchronous dynamic distributed load balancing algorithm on a
(v, k + 1, 1)-configured network applying a symmetric balanced incom-
plete block design, where v = k2 +k+1. Our algorithm designs a special
adjacency matrix and then transforms it to (v, k + 1, 1)-configured net-
work for an efficient communication. It requires only O(v

√
v) commu-

nication complexity and each node receives workload information from
all the nodes without redundancy since each link has the same amount
of traffic for transferring workload information. Later, this algorithm is
reconstructed on distributed networks, where v is an arbitrary number
of nodes and is analyzed in terms of efficiency of load balancing.

1 Introduction

In a distributed network it is likely that some nodes are heavily loaded while
others are lightly loaded or idle. It is desirable that workload be balanced be-
tween these nodes so that utilization of nodes can be increased and response
time can be reduced. A load balancing scheme[1]-[3] determines whether a task
should be executed locally or by a remote node. This decision can be made in
a centralized or distributed manner. In a distributed network, distributed man-
ner is recommended. In order to make this decision, each node can be informed
about the workload information of other nodes. Also this information should
be the latest because outdated information may cause an inconsistent view of
the system state. So disseminating load information may incur a high link cost
or a significant communication traffic overhead. For example, the ARPANET[4]
routing algorithm is a distributed adaptive algorithm using estimated delay as
� This research was supported by the Program for the Training of Graduate Students

in Regional Innovation which was conducted by the Ministry of Commerce Industry
and Energy of the Korean Government.

�� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 81–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 Y. Lee et al.

the performance criterion and a version of the backward-search algorithm[5]. For
this algorithm, each node maintains a delay vector and a successor node vector.
Periodically, each node exchanges its delay vector with all of its neighbors. On
the basis of all incoming delay vectors, a node updates both of its vectors.

In order to decrease communication overhead for obtaining workload informa-
tion from all the nodes in the network, messages should be exchanged between
adjacent nodes and then load balancing process be performed periodically by
using these local messages. So each processor balances the workload with its
neighbors so that the whole system will be balanced after a number of iterations.
CWA(Cube Walking Algorithm)[6] is employed for load balancing on hypercube
network. It requires O(v2) communication complexity and a communication path
is O(log2v). To reduce communication cost, flooding scheme is applied. How-
ever, the overlap of workload information occurs[7]-[8]. Based on SBN(Symmetric
Broadcast Networks), communication patterns between nodes are constructed. It
also needs O(v2) communication complexity for collecting workload information
from all the nodes and a communication path is O(log2v)[9]-[10].

In this paper we design the network topology consisting of v nodes and v× k
links and each node of which is linked to 2k nodes, where v = k2 +k+1. On this
network, each node receives information from k adjacent nodes and then sends
these information to other k adjacent nodes periodically. So, each node receives
workload information for k2 +k nodes with two-round message interchange. Our
algorithm needs only O(v

√
v) communication complexity. Later, this algorithm

is revised for distributed networks and is analyzed in terms of efficiency of load
balancing.

2 About (v, k, λ)-Configuration

Let V = {0, 1, ..., v − 1} be a set of v elements. Let B = {B0, B1, ..., Bb−1} be
a set of b blocks, where Bi is a subset of V and |Bi| = k. For a finite incidence
structure σ = {V, B}, if σ satisfies following conditions, then it is a balanced
incomplete block design(BIBD)[11], which is called a (b, v, r, k, λ)-configuration.

1. B is a collection of b k-subsets of V and these k-subsets are called the blocks.
2. Each element of V appears exactly r of the b blocks.
3. Every two elements of V appears simultaneously in exactly λ of the b blocks.
4. k < v.

For a (b, v, r, k, λ)-configuration, if it satisfies k = r and b = v, then it is a
symmetric balanced incomplete block design (SBIBD)[12] and it is called a
(v, k, λ)-configuration. There are some relations among parameters b, v, r, k, λ
that are necessory conditions for existence of this configuration, bk = vr and
r(k − 1) = λ(v − 1).

3 Generation of a (v, k + 1, 1)-Configuration

We now present an algorithm to generate an incidence structure σ = {V, B}
satisfying the condition for a (v, k + 1, 1)-configuration in the case that k is

The Design of a Dynamic Efficient Load Balancing Algorithm 83

a prime number. This (v, k + 1, 1)-configuration is employed for constructing
network topology below.

3.1 Design of an Algorithm to Construct (v, k + 1, 1)-Configuration

In order to construct (v, k + 1, 1)-configuration, (k + 1) sectors are designed.
The first sector is composed of (k + 1) blocks and the others k blocks. Each
block in the first sector contains element 0. The remaining elements of the first
block, the second block,..., the kth block of the first sector are (1, 2, ..., k),(k +
1, k + 2, ..., 2k),...,(k2 + 1, k2 + 2, ..., k2 + k),respectively. Each block in the ith

sector contains element (i − 1) and the remaining k elements are chosen from
(k + 1, k + 2, ..., k2 + k). According to Algorithm 1, incidence structure X gen-
erates the first sector and incidence structure Y the remaining sectors.

Algorithm 1 for Generating an incidence structure

Incidence structure T ={V, B}, where V ={0, 1,..., v − 1 }, B={B0, B1,..., Bb−1},
|Bi| = k + 1. Bi,j is the jth element of Bi

1. Select a prime number k and compute v = k2 + k + 1.
2. Construct two incidence structures X = {V, C} and Y = {V, D}.

(a) Ci,j =

⎡
⎣0 if j = 0

t, t = i× k + j if j ≥ 1

⎤
⎦

0 ≤ i, j ≤ k.

(b) Di,j =

⎡
⎣C0,t , t = �i/k	+ 1 if j = 0

Cj,t , t = 1 + (i + (j − 1)× �i/k) mod k if j ≥ 1

⎤
⎦

0 ≤ i ≤ (k2 − 1), 0 ≤ j ≤ k.

3. Generate Z = {V, B} from X and Y .
Bi ←− Ci

Bi+k+1 ←− Di

The table below illustrates how to create Z = {V, B}, V = {0, 1, ..., 12}.
We now prove that this structure satisfies the conditions of a (v, k + 1, 1)-
configuration.

Definition 1. On incidence structure Y , Sector Si is the ith family of k blocks,
Dj ∈ Si, i = �j/k	.

For example, If k equals 3 , then �0/k	 = �1/k	 = �2/k	 = 0. So, S0 =
{D0, D1, D2}. There are k sectors in Y .

Lemma 1. For two elements Di1,j1 and Di2,j2, Di1,j1 �= Di2,j2, if j1 �= j2.
Proof: From Algorithm 1-2-(a), if 0 < j ≤ k, 0 ≤ i ≤ k then Ci,j = i×k+ j.

84 Y. Lee et al.

Table 1. A set of blocks on Z generated from Algorithm 1

X

C0= { 0, 1, 2, 3 }
C1= { 0, 4, 5, 6 }
C2= { 0, 7, 8, 9 }
C3= { 0, 10, 11, 12 }

Y

D0= { 1, 4, 7, 10 }
D1= { 1, 5, 8, 11 }
D2= { 1, 6, 9, 12 }
D3= { 2, 4, 8, 12 }
D4= { 2, 5, 9, 10 } =⇒
D5= { 2, 6, 7, 11 }
D6= { 3, 4, 9, 11 }
D7= { 3, 5, 7, 12 }
D8= { 3, 6, 8, 10 }

Z
B0= { 0, 1, 2, 3 }
B1= { 0, 4, 5, 6 }
B2= { 0, 7, 8, 9 }
B3= { 0, 10, 11, 12 }
B4= { 1, 4, 7, 10 }
B5= { 1, 5, 8, 11 }
B6= { 1, 6, 9, 12 }
B7= { 2, 4, 8, 12 }
B8= { 2, 5, 9, 10 }
B9= { 2, 6, 7, 11 }
B10= { 3, 4, 9, 11 }
B11= { 3, 5, 7, 12 }
B12= { 3, 6, 8, 10 }

This means if j > 0 then all the elements are distinct. And as shown in
Algorithm 1-2-(b), an element of Cj is placed on the jth element of a certain
block of Y if Di,j = Cj,t, t �= 0.

Lemma 2. For a sector consisting of k blocks, the first element of each block
has the same value and the other k2 elements are equal to V − C0.
Proof: In the case that Di,0 = C0,�i/k	+1 , the first element of k blocks on a
sector has the same value. According to Algorithm 1-2-(b), Di,j = Cj,t, t =
1+(i+(j−1)�i/k) mod k. Since k is a prime number, each element except
the first element of each block is distinct and these distinct k2 elements are
equal to V − C0.

Lemma 3. For incidence structure Y , Da,j = Db,j, j ≥ 1 , if
b = ((a− c(j − 1)) mod k + k(�a/k	+ c)) mod k2.
Proof: From Algorithm 1-2-(b), Da,j = Cj,t. We now prove that Db,j = Cj,t.
t can be calculated from parameters b, j below. Then t obtained on this
lemma is equal to that from Algorithm 1-2-(b). Therefore, Da,j = Db,j .
t = 1 + (b + (j − 1)× �b/k) mod k
= 1+(((a−c(j−1)) mod k +k(�a/k	+c))+(j−1)�((a−c(j−1)) mod k +

k(�a/k	+ c))/k) mod k
= 1 + (a− c(j − 1)) + (j − 1)× (�a/k	+ c) mod k
= 1 + (a + (j − 1)�a/k) mod k

Here, if Da,j is in sector Ss then Db,j is in S(s+c) mod k. In case of c ≡ 0 (mod k),
then a = b .

Lemma 4. Each element of V appears in exactly k + 1 times in Z.
Proof: According to Algorithm 1-2-(a), Ci,0 = 0. Since 0 ≤ i ≤ k, 0 appears
k + 1 times. The other v − 1 elements, V − {0}, appear exactly once on X.
From Lemma 3, each element of C0,j , 1 ≤ j ≤ k, appears k times in a sector
of Y and the rest k2 elements appear once in every sector of Y. Therefore,
each element appears k + 1 times in Z.

The Design of a Dynamic Efficient Load Balancing Algorithm 85

Lemma 5. Any pair of elements of V appears in exactly only once in Z.
Proof: The first element of V makes a pair with all the other elements and
this pair appears once by designing rule of incidence structure(see Algorithm
1-2-(a)). Each element of C0,j , 1 ≤ j ≤ k makes a pair with V −C0 elements
and it also appears once proven by Lemma 3. The rest k2 elements are now
considered. For an arbitrary pair Da,j1 = Da,j2, j1, j2 ≥ 1, in order to
make the same pair on other block Db, the two elements should be on the
same block. According to Lemma 4, if j1 = j2, then they are located on
Db. However, this case does not occur since j1 �= j2. Therefore, any pair of
elements of V appears in exactly once in Z.

Theorem 1. Z designed by Algorithm 1 satisfies the conditions of a (v, k+1, 1)-
configuration.
Proof: Z satisfies the conditions of the SBIBD by Lemma 4 and Lemma 5.

3.2 Design of Network Configuration

In order to construct a network topology which has minimum link cost and
traffic overhead, we imported (v, k + 1, 1)-configuration. An incidence structure
Z = {V, B} satifies the conditions for a (v, k + 1, 1)-configuration and M is a
binary incidence matrix of Z . Then this matrix M can be transformed to an
adjacency matrix of a graph G = {V, E}. Based on this idea, network topology
can be designed as follows.

Algorithm 2 for Design of Network Configuration

1. Create an incidence structure Z = {V, B} by Algorithm 1.
2. Generate L = {V, E} from Z by exchanging blocks so that each block Ei

includes element i.
E0 ←− B0
for (i = 1 ; i ≤ k ; i = i + 1)

E(i+1)k ←− Bi

for (i = k + 1 ; i < v ; i = i + 1) {
if ((Bi,
i/k�−1 mod k) = 0) then

E
i/k�−1 ←− Bi

else {
if ((i mod k) = 0) then t = i− k

else t = �i/k	 ∗ k
Et+(i mod k) ←− Bi }

}
3. Create an adjacency matrix A = (ai,j) for graph G from L , where G is a

network topology containing v nodes.

ai,j =
[
1 if (i �= j) and (j ∈ Ei)
0 otherwise

]

86 Y. Lee et al.

Table 2. Blocks of L generated from Z of Table 1

L
E0= { 0, 1, 2, 3 }
E1= { 1, 6, 9, 12 }
E2= { 2, 5, 9, 10 }
E3= { 3, 5, 7, 12 }
E4= { 1, 4, 7, 10 }
E5= { 1, 5, 8, 11 }
E6= { 0, 4, 5, 6 }
E7= { 2, 6, 7, 11 }
E8= { 2, 4, 8, 12 }
E9= { 0, 7, 8, 9 }
E10= { 3, 6, 8, 10 }
E11= { 3, 4, 9, 11 }
E12= { 0, 10, 11, 12 }

Lemma 6. The ith row of the adjacency matrix obtained from Algorithm 2
contains element i.
Proof: In Fig. 1, (k + 1) sectors are described - one sector on X and k sec-
tors on Y . Each sector on X and Y is composed of (k + 1) and k blocks,
respectively. New sectors on Z ′ would be generated. Since the ith block
on X(i > 0) includes element (i + 1)k , it is relocated on Si on Z ′ -
E0, E2k, E3k, ..., E(k+1)k. We now look into Si on Z, 1 ≤ i ≤ k. (k − 1)
blocks of it can be placed on Si on Z ′ and the remainder on the ith block of
S0 on Z ′ because Bik+j , 1 ≤ j ≤ k , the jth block of Si on Z, includes one
of {ik + 1, ik + 2, ..., ik + (k− 1), i}. If a certain block contains (ik + 2), then
it is placed on Eik+2. Therefore, the ith block on Z ′ can include element i.

G has v nodes since G is created from (v, k + 1, 1)-configuration. Each block
Ei is composed of k + 1 elements including i. Each node obtains 2k links from
Step 3 of Algorithm 2. So, G becomes a 2k-regular graph. Therefore there are
(2k × v)/2 = vk links in G. Given Z = {V, B} obtained from Algorithm 1, per-
formance of Algorithm 2 is shown on Table 2.

4 Design of an Efficient Load Balancing Algorithm on
Distributed Networks

An efficient load balancing algorithm is now constructed on (v, k + 1, 1)-
configured networks generated by Algorithm 2.

Definition 2. Construct two sets Pi and Ri consisting of adjacent k nodes,
where Pi is a set of nodes to send workload information to node i at time
T2t, and Ri is a set of nodes to send workload information to node i at time
T2t+1.
Pi = {j | j ∈ Ei − {i}}
Ri = {j | i ∈ Ej , (0 ≤ j ≤ n− 1) and (i �= j)}

The Design of a Dynamic Efficient Load Balancing Algorithm 87

The following example will provide a better understanding of the concept given
by Definition 2. Nodes 3, 6, 9 and node 12 send their workload information to
node 1 at time T2t, and P1 is {3,6,9,12}, while nodes 0, 4 and node 5 send the
information to node 1 at time T2t+1, and R1 is {0,4,5}.

Definition 3. Generate two sets SFi and RFi, where SFi(j) is a set of workload
information transmitted from node j to node i at time T2t and RFj(i) is
workload information transmitted from node j to node i at time T2t+1.
SFi = {SFi(j) | j ∈ Pi, SFi(j) = j}.
RFi = {RFj(i) | j ∈ Ri, RFj(i) = {Ej − {i}}.

Algorithm 3 for Construction of an Efficient Load Balancing Algorithm on
(v,k+1,1)-configured networks

1. Node i receives a set of workload information SFi(j) from node j ∈ Pi at
T2t and renews a table of workload information.

2. Node i receives a set of workload information RFj(i) from node j ∈ Ri at
T2t+1 and renews a table of workload information.

3. Repeat the first step.

The following table indicates that node i receives workload information SFi(j)
and RFj(i) from node j at times T2t and T2t+1, respectively. For example, node
1 receives information on {6}, {9} and {12} from SF1(6), SF1(9) and SF1(12)
at T2t, and receives information on {0,2,3}, {4,7,10} and {5,8,11} from RF0(1),
RF4(1) and RF5(1) at T2t+1. Therefore, node 1 can obtain workload information
for all the nodes at T2t+2 and this fact is proven in Theorem 2.

Theorem 2. According to Algorithm 3, every node obtains workload informa-
tion for all the nodes at T2t+2.
Proof: At T2t, node j sends workload information SFi(j) to node i and then
node i receives k workload information. At T2t+1, node i receives workload
information from node j by Algorithm 3-2. On an arbitrary pair (RFi1(j),
RFi2(j)) , i1 �= i2, intersection of these sets is empty since on (v, k + 1, 1)-
configuration, every pair of two objects appears simultaneously in exactly
one of v blocks and node j is an element of Ri1 and Ri2, respectively. So
node i obtains workload information for k2 nodes at T2t+1. Therefore, node
i receives workload information for k2 + k nodes at T2t+2.

In case that v1 �= k2 + k + 1, (v − v1) nodes are deleted starting from node v
node to node v1. The load balancing algorithm with v1 nodes is the same as
Algorithm 3 except node i receives information from node j, where i, j < v1.

5 Analysis of an Efficient Load Balancing Algorithm

Algorithm 3 can be performed well when v = k2 + k + 1. Each node receives
workload information from all the nodes in O(v

√
v) time. However, the number

88 Y. Lee et al.

of nodes may not be v in real-world application. Then we can not gurantee a
desired result for an efficient load balancing. The algorithm now is analyzed in
terms of how much a node receives information.

Definition 3. w0 is the number of information on missing nodes for S
n/k� and
w1 from S
n/k�+1 to the Sk+1.

Lemma 7. If (n mod k) = 0 then w0 = kP2. Otherwise, w0 = k2∗k1P2+k−k2
P2, where k1 = n/k and k2 = (k ∗ (k1 + 1)− n).
Proof: In case that n = (i + 1)k, En = (0, ik + 1, ik + 2, ..., (i + 1)k). Sup-
pose that node n is deleted. According to Algorithm 3, node 0 does not
receive workload information on (k-1) nodes - node (ik+1), node (ik+2),...,
node ((i + 1)k − 1). Neither the other (k − 1) nodes in En do. So w0,
the number of information on missing nodes, is k ∗ (k − 1). In case that
n �= (i+1)k and node n is deleted. (k2+1) nodes are deleted from E
n/k�∗k .
(k − k2) nodes do not receive information. Then the number of missing
information is k−k2P2. Because of deleting node n from En, k1 nodes do
not receive information and the number of missing information is k1P2.
(k2 − 1) blocks - En+1, En+2, ..., E
n/k�∗k−1 are the same as En and the
number of missing information for these blocks is (k2− 1) ∗k1 P2. Therefore,
w0 = k2 ∗k1 P2 +k−k2 P2.

Lemma 8. If (n mod k) = 0 then w1 = (k− k1+ 1) ∗ ((k− 2) ∗k1 P2 +k1−1 P2).
Otherwise, w1 = (k− k1) ∗ ((k− k3− 2) ∗k1+1 P2 + (k3 + 1) ∗k1 P2), where
if (n ≤ E(k1+1),k1) then k3 = k2− 1 else k3 = k2.
Proof: In case that (n mod k) = 0 and node n is deleted. The number
of n is (k − k1 + 1) in (k − k1 + 1) sectors - from Sk1+1 to Sk+1. In
other word, a sector consisting of (k − 1) blocks has one n. For a block
deleting n, (k1 − 1) nodes do not receive information and the number of
missing information is k1−1P2 and for the remaining (k − 2) blocks, k1
nodes do not receive information and the number of missing information
is k1P2. Since w1 for a sector is (k − 2) ∗k1 P2 +k1−1 P2, w1 for (k −
k1 + 1) sectors is (k − k1 + 1) ∗ ((k − 2) ∗k1 P2 +k1−1 P2). In case that
n �= (i + 1)k and node n is deleted. Similarly, the number of n is (k− k1) in
(k − k1) sectors - from the Sk1 to the Sk+1 sector. For a block delet-
ing m, n ≤ m ≤ k ∗ (n/k + 1), k1 nodes do not receive information and
the number of missing information is k1P2. Because the number of blocks
deleting m in a sector is (k2 + 1), the number of missing information is
(k2 + 1) ∗k1 P2. For the (k − k2 − 2) remaining blocks, (k1 + 1) nodes
do not receive information and that is (k − k2 − 2) ∗k1+1 P2. One impor-
tant thing must be considered. According to Algorithm 2, a certain block in
Sector i, 1 ≤ i ≤ k moves to the Ei - the ith block in S0. Ei,i−1 does not
appear in Si. Where i = k1 + 1, if (n ≤ E(k1+1),k1) then k3 = k2 − 1
else k3 = k2. Therefore, w1 is (k − k1) ∗ ((k − k3 − 2) ∗k1+1 P2 +
(k3 + 1) ∗k1 P2).

The Design of a Dynamic Efficient Load Balancing Algorithm 89

Algorithm 4 for Computing the number of information on missing nodes given
n nodes

n �= k2 + k + 1
k1 = n/k
k2 = (k ∗ (k1 + 1)− n)
if ((n mod k) = 0) then {

w0 = kP2
w1 = (k − k1 + 1) ∗ ((k − 2) ∗k1 P2 +k1−1 P2)
}
else {

if (n ≤ E(k1+1),k1) then
k3 = k2− 1
else k3 = k2
w0 = k2 ∗k1 P2 +k−k2 P2
w1 = (k − k1) ∗ ((k − k3− 2) ∗k1+1 P2 + (k3 + 1) ∗k1 P2)
}

w = w0 + w1

Given the number of nodes - from 43 nodes to 32 nodes, the following table
illustrates the result of executing Algorithm 4.

Table 3. The number of Information on missing nodes required for load balancing

the number of nodes w0 w1

43 6 ∗6 P2 +1 P2 6 ∗6 P2

42 7P2 2 ∗ (5 ∗6 P2 + 1 ∗5 P2)
41 1 ∗5 P2 +6 P2 2 ∗ (4 ∗6 P2 + 2 ∗5 P2)
40 2 ∗5 P2 +5 P2 2 ∗ (3 ∗6 P2 + 3 ∗5 P2)
39 3 ∗5 P2 +4 P2 2 ∗ (2 ∗6 P2 + 4 ∗5 P2)
38 4 ∗5 P2 +3 P2 2 ∗ (1 ∗6 P2 + 5 ∗5 P2)
37 5 ∗5 P2 +2 P2 2 ∗ (1 ∗6 P2 + 5 ∗5 P2)
36 6 ∗5 P2 +1 P2 2 ∗ (0 ∗6 P2 + 6 ∗5 P2)
35 7P2 3 ∗ (5 ∗5 P2 + 1 ∗4 P2)
34 1 ∗4 P2 +6 P2 3 ∗ (4 ∗5 P2 + 2 ∗4 P2)
33 2 ∗4 P2 +5 P2 3 ∗ (3 ∗5 P2 + 3 ∗4 P2)
32 3 ∗4 P2 +4 P2 3 ∗ (2 ∗5 P2 + 4 ∗4 P2)

6 Conclusion

Researches have shown that distributed load balancing schemes can reduce task
turnaround time substantially by performing tasks at lightly loaded nodes in the
network. However, maintaining workload information on all the nodes is neces-
sary for such scheme, while it may incur large communication overhead. In this
paper, in order for the system to increase utilization and to reduce response time,

90 Y. Lee et al.

we present an efficient load balancing algorithm on (v, k + 1, 1)-configured net-
works consisting of v nodes and vk links by employing the symmetric balanced
incomplete block design. To accomplish this, each node should receive workload
information from all the nodes without redundancy and each link should have
the same amount of traffic for transferring workload information. Our algorithm
requires two rounds of message interchange and O(v

√
v) communication com-

plexity, as opposed to O(v2) communication complexity needed by protocols
which use only one round of message interchange. Later, this algorithm is recon-
structed on distributed networks, where v is an arbitrary number of nodes and
is analyzed in terms of efficiency of load balancing.

References

1. C.Hui, S.Chanson, Hydrodynamic Load Balancing, IEEE Transactions on Parallel
and Distributed System, vol. 10, no. 11, pp. 1118-1137, 1999.

2. V. Bharadwaj, D. Ghose and T. Robertazzi, ”A New Paradigm for Load Scheduling
in Distributed Systems,” Cluster Computing, vol. 6, no. 1, pp. 7-18, 2003.

3. A. Legrand, et al., ”Mapping and Load-Balancing Iterative Computing,” IEEE
Transactions on Parallel and Distributed System, vol. 15, no. 6, pp. 546-558, 2004.

4. M. Padlipsky, A perspective on the ARPANET Reference Model, Proc. of INFO-
COM, IEEE, 1983.

5. L. Ford, D. Fulkerson, Flow in Network, Princeton University Press, 1962.
6. M. Wu, On Runtime Parallel Scheduling for processor Load balancing, IEEE Trans-

actions on Parallel and Distributed System, vol. 8, no. 2, pp. 173-185, 1997.
7. K. Nam, J. Seo, Synchronous Load balancing in Hypercube Multicomputers with

Faulty Nodes, Journal of Parallel and Distributed Computing, vol. 58, pp. 26-43,
1999.

8. H. Rim, J. Jang, S. Kim, Method for Maximal Utilization of Idle links for Fast
Load Balancing, Journal of Korea Information Science Society, vol. 28, no. 12, pp.
632-641, 2001.

9. S. Das, D. Harvey, and R. Biswas, Adaptive Load-Balancing Algorithms Using
Symmetric Broadcast Networks, Journal of parallel and Distributed Computing,
vol. 62, no. 6, pp. 1042-1068, 2002.

10. S. Das, D. Harvey, and R. Biswas, Parallel Processing of Adaptive Meshes with
Load Balancing, IEEE Transactions on Parallel and Distributed Systems, vol. 12,
no. 12, pp. 1269-1280, 2001.

11. C.L.Liu, Introduction to Combinatorial Mathematics, pp. 359-383, McGraw-Hill,
1968.

12. I. Chung, W. Choi, Y. Kim, M. Lee, The Design of conference key distribution
system employing a symmetric balanced incomplete block design, Information Pro-
cessing Letters, vol. 81, no. 6, pp. 313-318, 2002.3.

Distributed Resource Allocation for Stream
Data Processing

Ao Tang1, Zhen Liu2, Cathy Xia2, and Li Zhang2

1 California Institute of Technology, Department of Electrical Engineering,
Pasadena, CA 91125

2 IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532

Abstract. Data streaming applications are becoming more and more
common due to the rapid development in the areas such as sensor net-
works, multimedia streaming, and on-line data mining, etc. These ap-
plications are often running in a decentralized, distributed environment.
The requirements for processing large volumes of streaming data at real
time have posed many great design challenges. It is critical to optimize
the ongoing resource consumption of multiple, distributed, cooperating,
processing units. In this paper, we consider a generic model for the gen-
eral stream data processing systems. We address the resource alloca-
tion problem for a collection of processing units so as to maximize the
weighted sum of the throughput of different streams. Each processing
unit may require multiple input data streams simultaneously and pro-
duce one or many valuable output streams. Data streams flow through
such a system after processing at multiple processing units. Based on
this framework, we develop distributed algorithms for finding the best
resource allocation schemes in such data stream processing networks.
Performance analysis on the optimality and complexity of these algo-
rithms are also provided.

Keywords: Stream Processing, Distributed Algorithm, Resource
Allocation.

1 Introduction

The rapid development of the network technologies has triggered the emergence
of many new applications. Stream data processing is one of the most interest-
ing and challenging applications that are under extensive study by the research
community. In such applications, continuous data streams arriving to the sys-
tem need to be processed by multiple processing units in real-time to generate
streams of desirable results. One example of this type of application is network
monitoring and management. Continuous streams of network usage information
are collected from various monitoring points in the network. These informa-
tion need to be analyzed and correlated on the fly to determine whether the
network is in a normal running mode, or is under intrusive attacks. Many fi-
nancial applications such as the stock quote and trading systems also exhibit
this type of characteristics. Continuous quote and trade data streams need to

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 91–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

92 A. Tang et al.

be processed in real-time. Sensor networks is another area where many stream
data processing applications arise. The nature of these continuous processing
applications to process a large volume of data has lead to many new design
challenges.

Stream data processing systems typically require a large amount of process-
ing power with many different computers in order to achieve satisfactory perfor-
mance levels. Multiple processing units often share a pool of computing resource.
One important problem is to find the best resource allocation scheme for the mul-
tiple processing units to efficiently utilize the available resources. As in most real
time systems, applications are often running in a decentralized environment. The
resource allocation scheme also has to be decentralized in nature.

This paper addresses some of the fundamental resource allocation problems
raised above. We formulate a generic stream data processing model with data
streams passing through multiple processing units to generate the result streams.
Sub-optimal allocation of the resources may lead to the under-utilization of cer-
tain processing units and over-utilization of some others. Our goal is to obtain
a distributed mechanism that maximizes the weighted sum of the throughput of
different output streams. In our model, each processing unit may require multi-
ple input data streams simultaneously and produce one or many valuable output
streams. Such kind of simultaneous flow consumption is related to the fork-join
mechanism in queueing applications and supply chain management [1,2,4,10,8].
It is an important feature in many streaming processing applications. For exam-
ple, the network usage information from multiple routers need to be correlated
to derive the overall user flow information. Another distinct characteristic in our
model is the introduction of the shrink/expansion factor for the flows at each
processing units. The volume of the output data stream can be different from
the volume of the input data stream at each processing unit. Such a phenomenon
naturally occurs in the join, filter and selection mechanisms in streaming query
like applications [12].

In this paper, we present an analytical approach to solve the generic stream
data processing problem. We first develop the optimal solution for several special
cases, including the case with a single output and the case with a tree topology.
For the single output case, we propose a backward algorithm which produces
an optimal solution in linear time. For the tree case, we provide a backward
shrink algorithm which also yields an optimal solution in linear time. Based on
the algorithm for trees, we propose two distributed algorithms to find the best,
or close to optimal solutions in a general network with multiple streams. The
algorithms are based on an aggregation heuristic that aggregates local subgraphs
into equivalent super nodes, where the super nodes can play the role as a clus-
ter head or local manager. We present experimental results to demonstrate the
quality of our distributed solutions.

The paper is organized as follows. Section 2 presents the general model. We
then investigate the structural properties of the optimal solutions for special
cases (a single output stream case and the tree case) in Sections 3. In Section 4,
we propose two distributed solutions for the general resource allocation problem

Distributed Resource Allocation for Stream Data Processing 93

based on the optimal algorithms derived previously. Experimental evaluations of
the effectiveness of these solutions are also presented. Concluding remarks are
provided in Section 5.

2 Model

In a stream data processing system, incoming data flow continuously from sev-
eral sources. These data needs to go through several levels of processing, such
as selection, filtering, or combining, to generate the expected output. We use
a directed acyclic graph, referred to as stream processing graph, to describe
the producer-consumer relationship among processing units associated with the
streams. There are source nodes, sink nodes and processing nodes in the graph,
where directed edges represent the information flow between various nodes. The
source nodes correspond to the source of the input data streams. These nodes
only have edges going out, and do not have any edges between them. The sink
nodes correspond to the receivers of the eventual processed information. These
nodes only have edges going to them, and do not have any edges in between. Pro-
cessing nodes stand for processing units. A processing unit may require inputs
from multiple data streams simultaneously and produce one or many valuable
output streams. Such a graph can be plotted in a way such that all the directed
edges are pointing downward. We can now view the system as information com-
ing from the top and passing through the processing units in the middle and
eventually leading to the output streams at the bottom, see Figure 1.

6

8

4

5

β5
8

β5
7 β

7
6

7
5

α

7α
4

β7
10

10

9
5

α8

w
11

w
12

w
13

O

3
2

1

12
1311

P

7α
6

7

I

Fig. 1. A graph representation of the
problem

Denote I,P ,O respectively the set of
source, processing, and sink nodes in the
graph, as illustrated in Figure 1. Let E de-
note the set of all the directed edges. Each
node in I is a source node. Each node in
O is a sink node. For convenience, we will
refer to the underlying graph, G = (N , E),
where N = I ∪ P ∪O, and graph G is as-
sumed to be connected. For each j ∈ N , let
Ij denote the set of immediate predeces-
sors, i.e. all nodes i such that the directed
edge (i, j) is in E .

Let Oj denote the set of immediate suc-
cessors, i.e. all the nodes k such that the
directed edge (j, k) is in E . Without loss
of generality, we assume that each source
node produces a single stream as the in-
put to the processing nodes, and there is
exactly one output stream leading to each
sink node. Therefore, |Oi| = 1 for all source
nodes i ∈ I, and |Ik| = 1 for all sink nodes
k ∈ O.

94 A. Tang et al.

We now describe the quantitative relationship between the input, output and
resource consumption. In our model, each processing unit processes data flows
from its upstream nodes simultaneously at a given proportion and generate out-
put flows to its downstream nodes at a possibly different proportion. Each pro-
cessing unit j ∈ P , with a unit of CPU resource, will process αj

i amount of
flow from node i for all i ∈ Ij , and generate βj

k amount of flow to node k for
all k ∈ Oj . Here, the superscript j always represents the current node under
consideration. For all the source nodes j ∈ I, let λj be their flow input rates,
where 0 < λj ≤ ∞. Each unit of output flow to node k ∈ O has value wk.

We assume all the parameters λ, α, β and w are positive, as is the case in most
real applications. In general, quantities αj

i and βj
k, although measurable, are not

deterministic. They typically depend on the input data. Throughout this paper,
unless specifically stated, we shall assume that this dependence is stationary.
The quantities αj

i and βj
k are defined as the average consumption and production

rates, respectively. The case of changing consumption and production rates will
be discussed in Section 4.

Assume we have a total of R units of CPU resource available. Our goal is to
find optimal or approximate solutions of allocating the resource among all the
processing units to maximize the weighted sum (e.g. based on the importance) of
the throughput of the output streams. We look for distributed solutions capable
of adapting to local changes in the consumption and production rates.

3 The Single Output Case and Trees

We first consider the case when there is only one final output stream of interest.
In other words, O = {O} is a singleton, where O is the only sink node. Without
loss of generality, denote node N to be the last processing node reaching O (since
there is exactly one edge leading to each sink node). In this case, we can have a
simple backward algorithm to solve the problem in time O(|E|). Please refer to
[11] for details of the proof using a backward tracing argument.

Algorithm 1. Graphs with Single Output
1. Initialize set A = {N}, and let xN = 1.
2. Let B :=

⋃
i∈A Ii be the set of all predecessors of nodes in A.

- If B ⊂ I, go to step 3;
- Else, let xi = max{j∈A:(i,j)∈E}

αj
i xj

βi
j

, ∀i ∈ B; set A = B; go back to step 2.

3. Let x = (xj , j ∈ P) be the allocation produced by steps 1 & 2. Denote
δmax := max{δ > 0 : δαj

ixj ≤ λi, i ∈ I, (i, j) ∈ E}. Then the final allocation
x∗ is given by x∗

i = min(δmax,
R∑
i xi

) · xi, i ∈ P , and the total return is

V ∗ = min(δmax,
R∑
i xi

)βN
O .

We now generalize the previous algorithm to address the cases with multiple
output nodes, i.e., |O| > 1. In this setting, there is a decision between generating
output for one stream versus generating output for another stream, or both. This
kind of trade-off is not easy to evaluate due to the simultaneous flow consumption

Distributed Resource Allocation for Stream Data Processing 95

and output. We will first derive the algorithms to treat certain simpler cases.
And then extend the solution to address the general cases.

1
2

β1
3

β3
5

β2
4

2 3

1

α

β

0

0

1

α
1
2 α3

1

4 5

Fig. 2. A 3-node binary tree

Example 2: A Binary Tree
We now define a linear program as follows,

max w4β
2
4x2 + w5β

3
5x3

s.t. x1 + x2 + x3 ≤ R, α1
0x1 ≤ λ0,

α2
1x2,≤ β1

2x1, α3
1x3 ≤ β1

3x1 (1)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

In the event this maximization problem has more than one optimal solution,
we let (x#

1 , x#
2 , x#

3) be the optimal solution that minimizes the total allocated
capacity x1 +x2 +x3. We use this convention for the optimal solutions in all the
optimization problems considered in this paper.

Theorem 1. The solution to the above problem is
i) If w4β2

4β1
2

α2
1+β1

2
> w5β

3
5 , then, x#

2 = β1
2

α2
1+β1

2
r, x#

3 = 0, x#
1 = α2

1
α2

1+β1
2
r, where

r = min(R,
α2

1+β1
2

α1
0α2

1
λ0).

ii) If w5β3
5β1

3
α3

1+β1
3

> w4β
2
4 , then, x#

2 = 0, x#
3 = β1

3
α3

1+β1
3
r, x#

1 = α3
1

α3
1+β1

3
r, where

r = min(R,
α3

1+β1
3

α1
0α3

1
λ0).

iii) Else, x#
2 = α3

1β1
2

α2
1α3

1+α3
1β1

2+α2
1β1

3
r, x#

3 = α2
1β1

3
α2

1α3
1+α3

1β1
2+α2

1β1
3
r, x#

1 = α2
1α3

1
α2

1α3
1+α3

1β1
2+α2

1β1
3
r,

where r = min(R,
α2

1α3
1+α3

1β1
2+α2

1β1
3

α1
0α2

1α3
1

λ0).

Proof. This result can be proved case by case with linear algebra using contra-
diction techniques. Please refer to [11] for details. ��
Theorem 2. The problem in Figure 2 is equivalent to the
simpler model in Figure 3. The equivalent parameters α, β
and w are given as follows:

i) If w4β2
4β1

2
α2

1+β1
2

> w5β
3
5 , then α̂1

0 = α1
0, β̂

1
2 = β1

2 ,

α̂2
1 = α2

1, β̂
2
3 = β2

4 , ŵ3 = w4.

ii) If w5β3
5β1

3
α3

1+β1
3

> w4β
2
4 , then, α̂1

0 = α1
0, β̂

1
2 = β1

3 ,

α̂2
1 = α3

1, β̂
2
4 = β3

5 , ŵ3 = w5.

iii) Else, α̂1
0 = α1

0, β̂
1
2 = β1

2 + β1
3 , α̂2

1 =
α2
1

β1
2

α3
1+

α3
1

β1
3

α2
1

α2
1

β1
2

+
α3
1

β1
3

, β̂2
3 =

β1
2

α2
1

β2
4+

β1
3

α3
1

β3
5

β1
2

α2
1
+

β1
3

α3
1

, ŵ3 =
β1
2

α2
1

β2
4w4+

β1
3

α3
1

β3
5w5

β1
2

α2
1

β2
4+

β1
3

α3
1

β3
5

.

0

1

β1
2

α2
1

3

2

α
0
1

β

2

3

Fig. 3. 2-node
Representation

Notice that these parameter mappings are independent of the parameters λ0 and
R. This is a key property for the later algorithms.

96 A. Tang et al.

Proof. The proof is straightforward by checking feasibility conditions both ways.
��

After merging the leaf nodes into a single leaf, we also have another basic reduc-
tion to reduce two node in tandem into a single node.

Theorem 3. We can further aggregate the model in Fig-
ure 3 with parameters α̂1

0, α̂
2
1, β̂

1
2 , β̂2

3 , ŵ3, into a simpler
model as shown in Figure 4 with the equivalent parameters
α̃1

0, β̃
1
2 , w̃2 as follows:

α̃1
0 = α̂1

0α̂2
1

α̂2
1+β̂1

2
, β̃1

2 = β̂2
3 β̂1

2

α̂2
1+β̂1

2
, w̃2 = ŵ3, x̃

∗
1 =

α̂2
1+β̂1

2
α̂2

1
x̂∗

1, x̃∗
1 = α̂2

1+β̂1
2

β̂1
2

x̂∗
2.

0

1

β1
2

α2
1

α
0
1

2

Fig. 4. 1-node
Representation

Proof. The proof can be easily carried out by showing that the solution obtained
from the optimal solution for one problem is feasible for the other problem, and the
two solutions have the same objective value. The details can be found in [11]. ��
Besides binary trees, Theorem 2 can also be applied repeatedly to handle general
fork trees with arbitrary out-degree(≥ 2). It is straight forward to check formula
that result of the merging process in Theorem 2 does not depend on the order
of the merging process. It is also straight forward to prove a similar theorem
as Theorem 1. The idea of dealing with general tree is to apply Theorem 1 to
unit two layer subtree and then replace them with a new node. The following
algorithm states the whole process.

Algorithm 2. Backward Shrink Algorithm for Trees
1. If there are 2 leaves with a common predecessor, apply Theorem 2 to these
3 nodes (2 leaves and their predecessor) to find the equivalent 2 node structure.
Otherwise, Use Theorem 3 to aggregate the 2 nodes(a leave and its predecessor)to
be a single node structure.
2. Repeat from step 1 until there is only one node left.
3. Set all resource to that node, and map resource allocation back according to
Theorems 2 and 3.

Theorem 4. Algorithm 2 terminates and yields the optimal solution. It runs in
time O(|E|).
Proof. Since each round of execution of step 1 decreases the number of links by
1, the complexity is O(|E|). The optimality can be proved by induction on the
size of the graph. The details are omitted due to limited space. ��

4 Distributed Solutions

In this section, we present distributed solutions for the problem. Simulation ex-
periments demonstrate that they perform well even for general network topolo-
gies that do not have a tree structure.

Distributed Resource Allocation for Stream Data Processing 97

4.1 Distributed Algorithms

We develop two heuristics to solve the general problem. These heuristics are
based on the the optimal solutions for the tree case and for the single-output
case. Experimental results are provided to illustrate their effectiveness. As we
will see in the next section, these heuristics can be implemented easily in a
distributed way.

The first heuristic is based on the optimal solution for trees. As assumed
earlier, all the nodes have been labeled from 1 to N such that all the edges
(i, j) satisfy i < j. This algorithm will start from the bottom of the graph and
move up to the top. At each step, the algorithm examines each node, generate
aggregated information based on information from its children, and pass this
information up to its parents.

Heuristic A
- initialize graph G to be the whole graph;
- for node = N to 1 (compute bottom up for the aggregated solution)

- if node is a leaf in G then pass its parameters α, β, w to its parents;
- else (all the children of node must be leaves in G;)

- apply Theorem 2 repeatedly to remove one leaf at a time from G;
- apply Theorem 3 to obtain the updated parameters α, β, w for node;
- pass the updated parameters to all its parents;

(node has no children left in G;)
- G has one node left, with aggregated parameters;
- solve this single node problem;
- for node = 1 to N (compute a solution for original problem from top down)

- apply Theorem 1 and 3 to compute solution for node and the flow amount
to all its children;

If the original graph is a tree, it can be shown that the above algorithm obtains
the optimal solution. For the general graph case, we will present experimental
results to demonstrate the quality of this distributed algorithm.

Another heuristic for the general problem with multiple output streams is de-
veloped based on the single output algorithm combined with the general gradient
decent algorithm. Assume there are multiple output streams, O1, . . . , Ok. We de-
fine a function f(u1, . . . , uk) to be the best objective value if the solutions are
generating flows for the output streams according to the relative proportion given
by (u1, . . . , uk). Finding f(u1, . . . , uk) is the same as solving a modified problem
with a new final sink node Ok+1, and making all the original output flows to
flow into this final sink node. The β parameters for all the flows from O1, . . . , Ok

to Ok+1 are all set to be 1. The α proportions at Ok+1 are given by (u1, . . . , uk)
for flows from O1, . . . , Ok. The β parameter at Ok+1 is w1u1 + . . . + wkuk. The
weight factor w at Ok+1 is 1. The equivalence of these two problems can be easily
checked. Since we can apply the backtrack algorithm in the earlier sections to
find the optimal solution for the single output problem, we can find the value
of f(u1, . . . , uk) for any given (u1, . . . , uk). We now apply the gradient decent
algorithm to find the maximum value for function f(u1, . . . , uk).

98 A. Tang et al.

Heuristic B
0) initialize (u1, . . . , uk) to be (w1, . . . , wk);
1) call Algorithm 1 for the single output problem with (u1, . . . , uk);
2) estimate the gradient for f(u1, . . . , uk);
3) move point (u1, . . . , uk) along the gradient direction;
4) repeat from step 1) until relative difference between consecutive solutions

is smaller than a given threshold.

Note that in Heuristic B, the gradient method can be replaced by other search
techniques such as simulated annealing, Tabu search, genetic algorithms, smart
hill-climbing [13], etc.

Heuristic A has the advantage that it can quickly generate high quality so-
lutions for simple graph topologies. However, when the graph is complex, the
quality may degrade. Heuristic B is expected to be able to handle more effectively
complex graph structures.

4.2 Experimental Results

We present below experimental results to compare the performance of these two
heuristics and the optimal solution. The setting of the experiment is as follows.
First, directed acyclic graphs with N nodes are generated randomly using the
following 4 steps:

1) Randomly generate N points (xi, yi) in the unit square [0, 1]× [0, 1];
2) For i = 1, . . . , N , generate its successor set Si := {j : xj ≥ xi, yj ≥ yi};
3) For i = 1, . . . , N , generate its immediate successor set si := Si − ∪k∈SiSk;
4) For i = 1, . . . , N , create a link from i to j if j ∈ si.

This algorithm is inspired by a scheme to generate random partial orders among
N elements. Once the graph is generated, the parameters α, β, w are then gen-
erated from independent uniform random samples.

We randomly generate graphs with 20, 50, and 100 nodes. For each fixed num-
ber of nodes, we generate 1000 instances of the problem with random topology
and random parameter values. We apply the two heuristics to obtain the corre-
sponding objective values. We also obtain the optimal solution through a static
linear program formulation. We have collected the characteristics of the random
graphs, as well as the quality of the two heuristics. Because the problem is a
maximization problem, the quality of the heuristics is reflected by the achieved
percentage of the optimal solution. The results from Heuristic A is presented in
Table 1. We can see that Heuristic A generates reasonably good solutions for
small size graphs. However, the quality of the solutions degrades as the size of
the graph grows. This behavior is consistent with our earlier intuitions.

Table 2 presents the results for Heuristic B. We used 10% relative difference
as the stopping criterion for the gradient algorithm. We observe that Heuristic
B is consistently better than Heuristic A. It is also important that the average
number of iterations is small. This means Heuristic B does not require too much
additional time to compute compared with Heuristic A. It is very promising

Distributed Resource Allocation for Stream Data Processing 99

Table 1. Results for Heuristic A

of Nodes 20 50 100
Avg # of edges 74.2 507.4 2063.7

Avg # of source nodes 4.6 5.8 7.0
Avg # of sink nodes 3.1 3.7 4.9
% optimality (avg) 74.4 57.6 54.3
% optimality (std) 26.6 33.2 34.3

% cases > 90% optimal 42.1 29.5 25.1

Table 2. Results for Heuristic B

of Nodes 20 50 100
Avg # of edges 79.1 520.1 1912.7

Avg # of source nodes 4.4 4.9 7.6
Avg # of sink nodes 3.4 3.6 5.0
% optimality (avg) 82.4 68.9 59.0
% optimality (std) 25.4 36.4 39.2

% cases > 90% optimal 61 41.1 32.2
Avg # of iterations 5.2 10.1 10.0

to find out that Heuristic B consistently generates quality solutions, and more
importantly, its effectiveness can be improved through the use of more sophisti-
cated search methods. Keeping in mind that we are interested in the distributed
nature and the efficiency of the algorithm. Heuristic B seems to be a preferable
solution.

5 Concluding Remarks

This paper solves the CPU resource allocation problem in stream processing
systems with the objective of maximizing the total return of multiple output
streams. We explore structural properties of the optimal solution for the the
problem under different network topologies, and develop efficient, yet simple to
implement algorithms to solve them. Detailed performance analysis on optimal-
ity and complexity of those algorithms are also provided.

We further present two distributed solutions to the general problem and give
the corresponding measurement-based distributed implementation. Our experi-
mental results show that the algorithms are highly robust and capable of quickly
adapting to real-time fluctuations in the consumption and production rates and
changes in resource consumption requirements, while achieving high quality so-
lutions even in non-stationary systems.

References

1. F. Baccelli, Z. Liu. On the Execution of Parallel Programs on Multiprocessor
Systems-A Queuing Theory Approach. Journal of the ACM, Vol.37, No.2, April
1990, pp.373-417

2. F. Baccelli, Z. Liu. On the Stability Condition of a Precedence-based Queueing
Discipline. Adv. Appl. Prob., Vol 21, 1989, pp. 883-887.

3. F. Baccelli, F. Makowski, and D. Towsley. Acyclic Fork-Join Queueing Networks.
J. ACM, Vol. 36, 3, 1989, pp. 615-642.

4. C. Baldwin, K.B. Clark, J. Magretta, J.H. Dyer, M. Fisher, D.V. Fites Harvard
Business Review on Managing the Value Chain, Harvard Business School Press,
2000.

5. A. Brandstdt, V. Bang Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM,
1999.

100 A. Tang et al.

6. E. Coffman and G. Lueker. Probabilistic Analysis of Packing and Partitioning Al-
gorithms. Wiley, 1991.

7. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algo-
rithms, Second Edition, MIT Press and McGraw-Hill, 2001.

8. A. Mas-Collel,M. Whinston and J. Green. Microeconomic Theory. Oxford Univer-
sity Press, 1995.

9. J. A. Sharp, Data Flow Computing, (Ed.), Ablex Publication Corp., 1991.
10. D. Simchi-Levi, P. Kaminsky, E. Simchi-Levi. Designing and Managing the Supply

Chain, 2 edition, McGraw-Hill/Irwin, 2002.
11. K. Tang, Z. Liu, C. Xia and L. Zhang. Distributed Resource Allocation for Stream

Processing Systems. IBM Research Report. 2006.
12. S. Viglas and J. Naughton. Rate-Based Query Optimization for Streaming Infor-

mation Sources. ACM SIGMOD, 2002.
13. B. Xi, Z. Liu, M. Raghavachari, C. Xia, and L. Zhang. A Smart Hill-Climbing Algo-

rithm for Application Server Configuration. Proceedings of the 13th International
Conference on World Wide Web. 2004, pp. 287-296.

Network Probabilistic Connectivity: Expectation
of a Number of Disconnected Pairs of Nodes

Alexey S. Rodionov� and Olga K. Rodionova

Institute of Computational Mathematics and Mathematical Geophysics
Siberian Division of the Russian Academy of Science

Novosibirsk, Russia
Tel.: +383-3326949
alrod@rav.sscc.ru

Abstract. The task of calculating the expectation of a number of dis-
connected pairs of nodes (EDP) in unreliable network is discussed. The
task is NP-hard that is it requires complete enumeration of subgraphs.
The techniques for decreasing a number of enumerated subgraphs by us-
ing the branching (factoring) method and taking advantage from possible
structural features are discussed. Usage of chains, bridges, cutnodes and
dangling nodes is considered.

1 Introduction

Random graphs is an acknowledged model for networks of different kinds. For
the analysis of network’s reliability the probability of connectivity is used mostly
([1,2,3,4,5,6,7], for example) while the expectation of a number of disconnected
pairs of nodes (EDP) is sometimes more valuable and informative index. For
example all trees are equal from the point of the probability of connectivity while
they are not from the point of EDP. Complementary index to EDP is a number of
connected pairs of nodes (ECP), their sum is equal to the whole number of pairs
of nodes in a network. Finding EDP requires complete enumeration of network
destructions for its calculation. This is one of the reasons why few of researches
deal with it. We can refer to the paper [8] where this index is mentioned among
other valuable indexes of a network reliability. We investigate how to decrease the
enumeration by using the branching (factoring) method and taking advantage
from possible structural features.

As in [1] we mostly gain from considering simple chains and dangling nodes.
Existence of bridges or cutnodes can help also.

The rest of the paper is organized as follows: in Section 2 we give main def-
initions and notations. In Section 3 we discuss reduction of the task dimension
by considering bridges, cutnodes and dangling nodes. In Section 4 we give the
exact equations for EDP for some kinds of graphs and in Section 5 we present
equations for branching by chain. Section 6 is the brief conclusion.

� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 101–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

102 A.S. Rodionov and O.K. Rodionova

2 Definitions and Notations

We consider random graphs with reliable nodes and unreliable edges. Let us
denote:

G(n, m) = (V, U, P, WT) – non-oriented graph with a set of nodes V , set of edges
U , matrix of edges reliabilities P and vector of nodes weights WT .

n = |V |, m = |U | – number of nodes and edges, respectively.
wi = w(vi) – weight of a node vi, WT = w1, . . . , wn.
W (G) – total weight of all nodes of G.
pij – probability of an edge eij being existent (being in a working state, edge’s

reliability), P = ||pij ||; qij = 1− pij .
M(G, P) and N(G, P) – ECP and EDP of a random graph G.

We use simply G for a graph if its n and m are clear from the context. If needed
we use G(P), G(WT) or G(P, WT) also. If we need refer to the weight of i-th
node in some graph G, then we use WTi(G). If we consider some special edges
then we usually assign them personal numbers that is use notation ek (k-th
edge) instead of eij (an edge that connects vi and vj). Notation pk is used for
corresponding edge’s reliability.

For simplifying some equations we assume that
i∏

s=i+1
ps ≡ 1.

A weight wi equal to a number of nodes that were contracted to form a special
node vi (initial weight of each node is 1) is needed for keeping the number of
disconnected pairs in case when this node is separated from some other nodes
in a graph.

It is obvious that

N(G) =
n−1∑
i=1

n∑
j=i+1

aijwiwj , (1)

where aij is a probability of vi and vj be disconnected in G.
The branching (factoring) method for calculating an expected value of any

function of a random graph G is based on the equation of composite probability
by two alternative hypothesis: existence or non-existence of some edge eij . Thus

N(G) = pijN(G∗
ij) + (1 − pij)N(G\eij), (2)

where G∗
ij is a graph obtained from G by contracting vi and vj by an edge eij ,

G\eij – graph obtained from G by deleting the edge eij . Recursions go on until
deriving a graph for which a N(G) is easily obtained.

We say that a random graph is connected (disconnected) when its structure
is connected, not realization. In last case we say that “realization of a random
graph is connected (disconnected).”

3 EDP for Graphs of a Small Dimension (n = 2, 3, 4)

Case of n = 2 is obvious:

N(G) = (1− p12)w1 · w2. (3)

Network Probabilistic Connectivity 103

For n = 3 we use (1):

N(G) = w1w2(1 − p12)(1− p23p13) + (4)
w1w3(1 − p13)(1− p12p23) + w2w3(1− p23)(1 − p12p13).

For n = 4 we use the equation of composite probability considering all possible
ways of a graph destruction as hypotheses. After collecting terms we have:

N(G) = (5)
w1w2q12[(1−p13p23)(1−p14p24)−p13q14q23p24p34−q13p14p23q24p34] +
w2w3q23[(1−p24p34)(1−p12p13)−q12p13p14p24q34−p12q13p14q24p34] +
w3w4q34[(1−p13p14)(1−p23p24)−p12p13q14q23p24−p12q13p14p23q24] +
w1w4q14[(1−p12p24)(1−p13p34)−q12p13p23p24q34−p12q13p23q24p34] +
w1w3q13[(1−p12p23)(1−p14p34)−p12q14q23p24p34−q12p14p23p24q34] +
w2w4q24[(1−p23p34)(1−p12p14)−q12p13p14p23q34−p12p13q14q23p34].

4 Using Structural Peculiarities

As in the case of calculation of a probabilistic connectivity we can take advantage
from some peculiarities of a graph under consideration.

First let us make the following derivation. During factoring process by equa-
tion (2) we may obtain several graphs with the same structure and matrix P
but with different weights of nodes. In this case we can gain from the following
useful lemma.

Lemma 1. If during a graph G factoring process some subgraphs G1, . . . , Gk

with same structure and matrix P are obtained in which only one special node vs

has different weight wsi in Gi, i = 1, . . . , k, then the total contribution of these
subgraphs into N(G) is equal to

(
k∑

i=1

pi

)
·N(Go), (6)

where pi is a probability of Gi’s realization, and graph Go has the same structure
and P as Gi and

WTs(Go) =
k∑

i=1

piwsi/
k∑

i=1

pi. (7)

Proof. From (1) we have that for any selected index s

N(G) =
(∑

i∈{1...n}\s

wi

)
ws +

∑
i∈{1...n}\s

∑
(j>i)&(j �=s)

wiwj = Aws + B. (8)

104 A.S. Rodionov and O.K. Rodionova

So, if we change a weight ws of vs, then coefficients A and B remain unchanged.
Thus the total contribution D of all Gi into N(G) is

D =
k∑

i=1

piN(Gi) =
k∑

i=1

pi(Awsi + B) (9)

= A
(k∑

i=1

piwsi

)
+

k∑
i=1

piB =
k∑

i=1

pi

(
A

k∑
i=1

piwsi/

k∑
i=1

pi + B
)
,

from which we have what was to be proved. �

4.1 k-Component Graphs

If a graph G consist of k mutually disconnected subgraphs G1, . . . , Gk then,
obviously

N(G) =
k∑

i=1

N(Gi) +
k−1∑
i=1

k∑
j=i+1

W (Gi)W (Gj). (10)

4.2 Deleting Dangling Nodes

Let a connected graph G(n, m) have a dangling node vi adjacent to some node vj .
Then deletion of the edge eij leads to occurrence of wi ·W (G\{eij}) = wi ·

∑
k �=i

wk

pairs of disconnected nodes. Hence,

N(G) = pijN(G∗
ij) + (1− pij)(wiW (G\{eij}) + N (G\{eij})) . (11)

Note that in this case a graph G∗
ij , obtained by contracting nodes vi and vj by

eij , is by its structure the same as G\{eij}, and WTj(G∗) = wi +wj . Thus from
lemma 1 we obtain:

N(G) = N(Go) + (1− pij)wiW (G\eij), (12)

where Go — a graph which has the same structure and a weight of vj

WTj(Go) = pij(wj + wi) + (1 − pij)wj = wj + pijwi. (13)

4.3 Using Cutnodes

Let G consists from two subgraphs (blocks) G1 and G2 that are jointed through
a node vs (cutnode). Then obviously for any pair of nodes vi and vj a path
between them or lies in one of the blocks if these nodes are in the same block,
or goes through vs otherwise. Thus from (1) we have

N(G) = N(G1) + N(G2) +
∑

i∈X(G1)

∑
j∈X(G2)

(ais + asj − aisasj)wiwj , (14)

where ais and asj are probabilities of vi and vj being disconnected with vs in
G1 and G2 correspondingly.

Network Probabilistic Connectivity 105

4.4 Bridge Removing

Let a connected graph G(n, m) have an edge est such that its deletion leads to
dividing the graph into two separated components G1(k, f) and G2(n− k, m−
f − 1) (they are obviously connected graphs). Such edges are known as bridges.
Then

N(G) = pstN(G∗
st) + (1− pst)

[
W (G1)W (G2) + N(G1) + N(G2)

]
. (15)

Using (14) we obtain

N(G) = (1− pst)
[
W (G1)W (G2)

]
+ N(G1) + N(G2) + (16)

pst

∑
i∈X(G1)

∑
j∈X(G2)

(ais + asj − aisatj)wiwj ,

where ais and atj are probabilities of vi and vj being disconnected with vs in G1
and with vt in G2 correspondingly.

4.5 Case of a Chain

Let us discuss the case of a chain with k nodes and k−1 edges (Chk). Let nodes
be enumerated in increasing order thus that nodes v1 and vk have a degree 1
while all other nodes have degree 2. For simplicity we denote ei,i+1 as ei here.

From (1) we have

N(Chk) =
k−1∑
i=1

k∑
j=i+1

wiwj

(
1−

j−1∏
s=i

ps

)
. (17)

4.6 Case of a Cycle

Now we consider a cycle with k nodes and k edges (Ck). Let nodes be enumerated
in order thus that node vi+1 follows vi, i = 1, . . . , k − 1 and v1 follows vk. For
simplicity we denote ei,i+1, i = 1, . . . , k − 1 as ei and ek,1 as ek and denote
reliability of ei as pi. Now we can use equation (1) directly. Between each pair
of nodes vi and vj there are two pathes, clockwise and counterclockwise. Thus

N(Ck) =
k−1∑
i=1

k∑
j=i+1

wiwj

(
1−

j−1∏
s=i

ps

)(
1−

k∏
s=j

ps

i−1∏
s=1

ps

)
. (18)

4.7 Case of a Tree

The EDP for a n-nodes tree Tn we obtain from (1):

N(Tn) =
n−1∑
i=1

n∑
j=i+1

wiwj

(
1−

∏
est∈Ptij

pst

)
, (19)

where Ptij is a path from vi to vj .

106 A.S. Rodionov and O.K. Rodionova

For partial cases we can obtain simpler expressions. The case of a chain that
is the special case of a tree has been discussed earlier. Now let us have a star-like
tree Sk in which k nodes are adjacent to a single node (root). Thus we have some
node v0 with weight w0 that is adjacent to dangling nodes vi, i = 1, . . . , k with
weights wi. For simplicity let us denote edges (v0, vi) as ei and their reliabilities
as pi, correspondingly. Using (19) we obtain:

N(Chk) = w0

k∑
i=1

piwi +
k−1∑
i=1

k∑
j=i+1

wiwj(1− pipj). (20)

5 Branching by Chain

As in [1] where we consider the probabilistic connectivity, we can gain from
considering simple chains. Because of limited area of this paper we consider only
the case of 2-edges chains here.

For further consideration we need the following lemma.
Lemma 2. If during a graph G factoring process some subgraphs G1, . . . , Gk

are obtained with probabilities p1, . . . , pk, such that they have the same structure
and matrix P , and two special nodes vs and vt have weights wsi and wti in Gi,
i = 1, . . . , k, then the total contribution of these subgraphs into N(G) is equal to

D =
k∑

i=1

piN(Go) + ast

k∑
i=1

pi

k∑
i=1

piwsiwti −
k∑

i=1
piwsi ·

k∑
i=1

piwti(k∑
i=1

pi

)2
. (21)

where graph Go has the same structure and P as Gi and

WTs(Go) =
k∑

i=1

piwsi/
k∑

i=1

pi, (22)

WTt(Go) =
k∑

i=1

piwti/
k∑

i=1

pi.

Here ast is a probability of vs and vt being disconnected in Go.
Proof. Proof is similar to that of lemma 1 but more complex because of existence
of production wswt in (1). �

Now we continue to the main theorem.
Theorem 1. If a connected random graph has a simple chain C = esx, ext con-
necting nodes s and t through a node vx with degree 2 then the following equation
is true.

N(G) =
[
pst(1− psxpxt) + psxpxt

]
N(G∗) + (23)

(
1− pst − psxpxt)

{
N(Go) + ast

(1− pst)(1 − pxt)psxpxt

(1 − pst − psxpxt)2
w2

x

}
.

where ast is a probability of vs and vt being disconnected in G.

Network Probabilistic Connectivity 107

Fig. 1. Branching in a graph with a 2-edge chain

Proof. If est exists then we first choose it for factoring. Then we consequently
make factoring by esx and ext (see Fig. 1). Two terminal graphs G1 and G4 we
can easy replace by graphs with a structure of G5 and G6, correspondingly, using
(12) and (13) (note that in G1 we first replace multi-edge by a single one with
equivalent reliability):

N(G1) = N(G0
5), WT (G0

5, st) = ws + wt + (psx + pxt − psxpxt)wx, (24)
N(G4) = N(G0

6), WT (G0
6, t) = wt + pxtwx.

For graphs G5 and G6 themselves we have:

WT (G5, xst) = ws + wt + wx, (25)
WT (G6, s) = ws + wx,

WT (G6, t) = wt.

It is clear that graphs G1, G4, G5 and G6 are obtained with probabilities pst,
(1 − pst)(1 − psx), (1 − pst)psxpxt and (1 − pst)(1 − pxt)psx, correspondingly.

108 A.S. Rodionov and O.K. Rodionova

According to lemma 1 we can change calculation of EDP for G5 and G0
5 to

calculation of EDP for some graph G∗, that has a structure of G5 with a weight
of joint node

WT (G∗, sxt) = ws + wt +
(psxpst + psxpxt + pstpxt − 2psxpstpxt)

pst + psxpst − psxpstpxt
wx. (26)

For G6 and G0
6 we use lemma 2 as two nodes vs and vt have different weights in

them. According to this lemma a joint contribution of G6 and G0
6 into EDP of

G is (
1− pst − psxpxt)

{
N(Go) + ast

(1 − pst)(1 − pxt)psxpxt

(1− pst − psxpxt)2
w2

x

}
. (27)

where Go has a structure of G without chain esx, ext and edge est and

WTs(Go) = ws + wx
psx(1 − pxt)
1− psxpxt

; (28)

WTt(Go) = wt + wx
pxt

1− psxpxt
.

From this and (26) we obtain what was to be proofed. �

If est is absent then the equation (23) can be simplified:

N(G) = psxpxtN(G∗) +
(
1− psxpxt)

{
N(Go) + ast

(1 − pxt)psxpxt

(1− psxpxt)2
w2

x

}
, (29)

where WT (G∗, sxt) = ws + wt + wx.
Now let us discuss obtaining of ast that is a probability of vs and vt being

disconnected in G. Obviously

ast = (1− pst)(1− psxpxt)P (vs and vt are disconnected in G6). (30)

There are well-known algorithms for finding 2-terminal probabilistic connectivity
(see [6], for example). Note that a complexity of this task is obviously less then
complexity of calculation of EDP for G1 or G4 which makes use of equation (23)
effective.

6 Conclusion

Thus we have presented some useful equations that can help in calculating the
EDP of a random graph. Most advantage for speeding up is gained from branch-
ing by chains. Note that chains are inevitable during the factoring process as a
result of edge deletion and, sometimes, as a result of contracting by edge (refer
to [1]). Experiments shows that calculation of EDP for 30 random G(10, 15) is
in average more than 20 times faster with use of our equations then by using
equation (1).

Network Probabilistic Connectivity 109

References

1. Rodionova, O.K., Rodionov, A.S., and Choo, H.: Network Probabilistic Connec-
tivity: Exact Calculation with Use of Chains. ICCSA-2004, Springer LNCS. 3046
(2004) 315–324

2. Krivoulets, V.G., Polesskii, V.P., “What is the Theory of Bounds for Network
Reliability?,” Information Processes, ISSN: 1819-5822, Vol. 1, n. 2, pp. 199-203,
2001.

3. Cancela, H., Petingi L., “Diameter constrained network reliability: exact evalua-
tion by factorization and bounds,” Proc. of the Int. Conf. on Industrial Logistics,
Japan, 2001, pp. 359-366, 2001.

4. Lucet,C., Manouvrier, J.-F., “Exact Methods to compute Network Reliability,
Proc. of 1st International Conf. on Mathematical Methods in Reliability, Bucharest,
Roumanie, Sep. 1997, (paper available via http:// ramp.ucsd.edu/resources.html)

5. Satyanarayana, A. and Chang, M.K. “Network reliability and the factoring the-
orem,” Networks, Vol. 13, pp.107120, 1983.

6. Shooman, A.M.: Algorithms for Network Reliability and Connection Availability
Analysis. Electro/95 Int. Professional Program Proc. (1995) 309–333

7. Moore, E.F., Shannon, C.E., “Reliable Circuits Using Less Reliable Relays,” J.
Franclin Inst., 262, n. 4b, pp. 191-208, 1956.

8. Palmer C.R., Siganos G., Faloutsos M., Faloutsos C., and Gibbons P.:
The connectivity and faulttolerance of the Internet topology. Workshop
on Network-Related Data Management (NRDM-2001), http://www.research.
att.com/ divesh/papers/cjfgs98-ir.ps.

9. Rodionov, A.S., Choo H.: On Generating Random Network Structures: Connected
Graphs. International Conference on Information Networking ICOIN 2004, Revised
selected papers. Springer LNCS. 3090 (2004) 483–491

10. Shooman, A.M., Kershenbaum, A.: Exact Graph-Reduction Algorithms for Net-
work Reliability Analysis. Proc. GLOBECOM’ 91. 2 (1991) 1412–1420

Parallel LU Factorization of Band Matrices
on SMP Systems�

Alfredo Remón1, Enrique S. Quintana-Ort́ı1, and Gregorio Quintana-Ort́ı1

Depto. de Ingenieŕıa y Ciencia de Computadores
Universidad Jaume I

12.071–Castellón, Spain
{remon, quintana, gquintan}@icc.uji.es

Abstract. In this paper we present two routines for the LU factoriza-
tion of band matrices that target (parallel) SMP architectures and expose
coarser-grain parallelism than their LAPACK counterpart. Preliminary
experimental results on two different parallel platforms show some initial
benefits for the new approach.

Keywords: Band matrix, LU factorization, LAPACK, multithreaded
BLAS, Symmetric Multiprocessor (SMP).

1 Introduction

Linear systems with band coefficient matrix have to be solved, among others, in
static and dynamic analyses and linear equations in structural engineering, finite
element analysis in structural mechanics, and domain decomposition methods for
partial differential equations in civil engineering. Exploiting the structure of the
coefficient matrix for band linear systems yields huge savings, both in number of
computations and storage space. This is recognized in LAPACK, which includes
unblocked and blocked routines for the LU factorization of band matrices [1,2].
While the first routine performs most of the operations in terms of BLAS-2, the
second routine reorganizes the computations so as to carry out a major part in
terms of BLAS-3.

In this paper we analyze the parallel efficacy of the (double-precision) routine
dgbtrf in LAPACK. As the parallelism in LAPACK is extracted by using mul-
tithreaded implementations of BLAS, the fragmentation (partitioning) of the
operations in the LAPACK routine may potentially reduce its parallel perfor-
mance. Our approach consists in merging operations so that parallelism with
coarser-grain is exposed. In order to do so, our first routine requires a simple
modification of the storage scheme for band matrices so that a few rows of ze-
ros are added to the bottom of the matrix. By doing some additional copies
and manipulation of the matrix blocks, the second routine does not require this
workspace.
� This research was supported by the CICYT project TIN2005-09037-C02-02 and

FEDER, and project No. P1B-2004-6 of the Fundación Caixa-Castelló/Bancaixa
and UJI.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 110–118, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Parallel LU Factorization of Band Matrices on SMP Systems 111

υ
00

μ
10

μ
20

υ
01

υ
11

μ
21

μ
31

υ
12

υ
22

μ
32

μ
42

υ
23

υ
33

μ
43

μ
53

υ
34

υ
44

μ
54

υ
45

υ
55

υ
24

υ
14

υ
03

υ
02

υ
13

υ
25

υ
35

α
00

α
10

α
01

α
11

α
21

α
12

α
22

α
32

α
23

α
33

α
43

α
34

α
44

α
54

α
45

α
55

α
42

α
31

α
53

α
20

α
00

α
10

α
11

α
20

α
21

α
22

α
12

α
23

α
31

α
32

α
33

α
42

α
44

α
34

α
53

α
54

α
45

α
55

α
01

α
43

*

*

* *

*

* *

*

*

0

*

*

* *

* 0 0

0 0 0

0

* *

*

*

Fig. 1. 6 × 6 band matrix with upper and lower bandwidths kl = 2 and ku = 1,
respectively (left); packed storage scheme used in LAPACK (center); result of the
LU factorization where υi,j and μi,j stand, respectively, for the entries of the upper
triangular factor U and the multipliers of the Gauss transformations

The paper is structured as follows. The blocked factorization xgbtrf routine
in LAPACK is reviewed in Section 2. Our new routines are then presented in
Section 3. The preliminary experiments on two Intel SMP architectures, based
on XeonTM and Itanium2TM processors, show some benefits of this approach in
Section 4. Finally, some concluding remarks are given in Section 5.

2 LAPACK Blocked Routine for the Band LU
Factorization

Given a matrix A ∈ Rn×n, with lower and upper bandwidth kl and ku re-
spectively, routine xgbtrf computes the LINPACK-style LU factorization with
partial pivoting

L−1
n−2 · Pn−2 · · ·L−1

1 · P1 · L−1
0 · P0 · A = U (1)

where P0, P1, . . . , Pn−2 ∈ Rn×n are permutation matrices, L0, L1, . . . , Ln−2 ∈
Rn×n are Gauss transformations, and U ∈ Rn×n is upper triangular with upper
bandwidth kl + ku. In order to reduce the storage needs, the lower triangular
factor of the (traditional) LAPACK-style LU factorization with partial pivoting

PA = LU (2)

is not explicitly constructed. Instead, the multipliers corresponding to the Gauss
transformations are stored overwriting the subdiagonal entries of A. This corre-
sponds to the permutations matrices not being applied to the Gauss transfor-
mations, as in (1). Figure 1 illustrates the packed storage scheme used for band
matrices in LAPACK and how this scheme accommodates for the result of the
LU factorization with pivoting.

In order to describe routine xgbtrf, for simplicity, we will assume that the
algorithmic block size, nb, is an exact multiple of both kl and ku; we also consider

112 A. Remón, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı

that A is stored with kl additional superdiagonals initially set to zero (as shown in
Fig. 1) to accommodate for fill-in due to pivoting. Consider now the partitionings

A =

⎛
⎝ ATL ATM

AML AMM AMR

ABM ABR

⎞
⎠→

⎛
⎜⎜⎜⎝

A00 A01 A02

A10 A11 A12 A13

A20 A21 A22 A23 A24

A31 A32 A33 A34

A42 A43 A44

⎞
⎟⎟⎟⎠ , (3)

where ATL, A00 ∈ Rk×k, A11, A33 ∈ Rnb×nb , and A22 ∈ Rl×u, with l = kl − nb

and u = k̄u − nb = (ku + kl)−nb. With this partitioning, A02, A13, and A24 are
lower triangular.

Routine xgbtrf corresponds to what is usually known as a right-looking algo-
rithm; that is, an algorithm where, at a certain iteration, ATL has been already
factorized, AML and ATM have been overwritten, respectively, by the multipliers
and the corresponding block of U , and AMM has been updated correspondingly.
In order to move forward in the computation by nb rows/columns, during the
current iteration of the routine the following operations are performed (the an-
notations to the right of some of these operations correspond to the name of the
BLAS routine that is used):

1. Obtain W31 := triu(A31), a copy of the upper triangular part of A31; com-
pute the LU factorization with partial pivoting

P1

⎛
⎝ A11

A21
W31

⎞
⎠ =

⎛
⎝L11

L21
L31

⎞
⎠U11. (4)

The blocks of L and U overwrite the corresponding blocks of A and W31. (In
the actual implementation, the copy W31 is obtained as this factorization is
being computed.)

2. Apply the permutations in P1 to the remaining columns of the matrix:

⎛
⎝A12

A22
A32

⎞
⎠ := P1

⎛
⎝A12

A22
A32

⎞
⎠ and (xlaswp) (5)

⎛
⎝A13

A23
A33

⎞
⎠ := P1

⎛
⎝A13

A23
A33

⎞
⎠ . (6)

A careful application of permutations is needed in the second expression as
only the lower triangular structure of A13 is physically stored. As a result
of the application of permutations, A13, which initially equals zero, may
become lower triangular. No fill-in occurs in the strictly upper part of this
block.

Parallel LU Factorization of Band Matrices on SMP Systems 113

3. Compute the updates:

A12(= U12) := L−1
11 A12, (xtrsm) (7)

A22 := A22 − L21U12, (xgemm) (8)
A32 := A32 − L31U12. (xgemm) (9)

4. Obtain the copy of the lower triangular part of A13, W13 := tril(A13);
compute the updates

W13(= U13) := L−1
11 W13, (xtrsm) (10)

A23 := A23 − L21W13, (xgemm) (11)
A33 := A33 − L31W13; (xgemm) (12)

and copy back A13 := tril(W13).
5. Undo the permutations on

[
LT

11, L
T
21, W

T
31
]T so that these blocks store the

multipliers used in the LU factorization in (6) and W31 is upper triangular;
copy back A31 := triu(W31).

In our notation, after these operations are carried out, ATL (the part that has
been already factorized) grows in nb rows/columns so that

A =

⎛
⎝ ATL ATM

AML AMM AMR

ABM ABR

⎞
⎠←

⎛
⎜⎜⎜⎝

A00 A01 A02

A10 A11 A12 A13

A20 A21 A22 A23 A24

A31 A32 A33 A34

A42 A43 A44

⎞
⎟⎟⎟⎠ (13)

in preparation for the next iteration.
From this particular implementation we observe that:

– Provided nb � ku, kl, a major part of the floating-point arithmetic opera-
tions (flops) are performed in terms of the BLAS-3 matrix product in (8).
Thus, by calling a tuned implementation of xgemm, high performance is to
be expected from xgbtrf.

– No attempt is made to exploit the lower triangular structure of A13/U13
in the computations corresponding to (10)–(12) as there is no appropriate
BLAS kernel for these types of operations. Moreover, the additional space
W13 and the extra copies in Step 4 are only required in order to use BLAS-3
to compute these updates.

– In Step 1, the LAPACK-style LU factorization of
[
AT

11, A
T
21, W

T
31
]T is com-

puted. This allows the use of BLAS-3 in the application of the triangular
factors to the blocks to the right. At the end, in Step 4, the permutations are
undone on

[
LT

11, L
T
21, L

T
31
]T so that these blocks store the multipliers from

the LINPACK-style LU factorization. In this way, L31 recovers the upper
triangular form, and no additional space is needed to store it overwriting
the corresponding block of A (Step 5).

114 A. Remón, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı

3 New Algorithms for the Band LU Factorization

The exposition of the algorithm underlying routine xgbtrf in the previous sec-
tion shows that, in order to advance the computation by nb rows/columns, two
invocations of routine xtrsm and four invocations of xgemm are necessary for
the updates in Steps 3 and 4. This is needed because of the special storage pattern
used for band matrices in LAPACK. As all parallelism is extracted in LAPACK
from calling multithreaded implementations of BLAS routines, the fragmenta-
tion of the computations that need to be performed in a single iteration of the
algorithm into several small operations (and a large one) is potentially harmful
for the efficacy of the codes. This is specially so on SMP platforms, where the
threshold between what is considered “small” and “large” is considerably high;
see [3] for details.

In this section we describe how to merge the operations corresponding to
Steps 2–4 so that higher performance is likely to be obtained on SMP architec-
tures. Our first algorithm requires additional storage space in the data structure
containing A so that nb rows of zeros are present at the bottom of the matrix.
By doing some extra copies and manipulation of the matrix blocks, the second
algorithm does not require this workspace.

3.1 Routine xgbtrf+M

Consider the data structure containing A (see Fig. 1-center) is padded with nb

rows at the bottom with all the entries in this additional space initially set to
zero. (Interestingly, that corresponds, e.g., to the structure that would be neces-
sary in the LAPACK storage scheme to keep a band matrix with square blocks
of order nb in the lower band. Block band matrices are frequently encountered
in practice as well, but no specific support is provided for them in the current
version of LAPACK). Then, Steps 1–4 in xgbtrf are transformed as follows:

1. In the first step, the LU factorization with partial pivoting

P1

⎛
⎝A11

A21
A31

⎞
⎠ =

⎛
⎝L11

L21
L31

⎞
⎠U11 (14)

is computed and the blocks of L and U overwrite the corresponding blocks
of A. There is no longer need for workspace W31 nor copies to/from it as the
additional rows at the bottom accommodate for the elements in the strictly
lower triangle of L31.

2. Apply the permutations in P1 to the remaining columns of the matrix:⎛
⎝A12 A13

A22 A23
A32 A33

⎞
⎠ := P1

⎛
⎝A12 A13

A22 A23
A32 A33

⎞
⎠ (xlaswp). (15)

A single call to xlaswp suffices now as the zeros at the bottom of the data
structure and the additional kl superdiagonal set to zero in the structure

Parallel LU Factorization of Band Matrices on SMP Systems 115

ensure that fill-in may only occur in the elements in the lower triangular
part of A13.

3. Compute the updates:

(A12, A13) (= (U12, U13)) := L−1
11 (A12, A13) (xtrsm), (16)(

A22 A23
A32 A33

)
:=

(
A22 A23
A32 A33

)

−
(

L21
L31

)
(U12, U13)

(xgemm). (17)

The lower triangular system in (16) returns a lower triangular block in A13.
4. Undo the permutations on

[
LT

11, L
T
21, L

T
31
]T so that these blocks store the

multipliers used in the LU factorization in (6) and L31 is upper triangular.

Indeed, the procedure just described would allow the block lower triangular
matrix L to be explicitly constructed using the additional space provided so that
Step 4 could be eliminated. In case multiple linear systems (right-hand sides)
were to be solved with the same coefficient matrix, this in turn would facilitate
the use BLAS-3 during the forward substitution stage (with L).

3.2 Routine xgbtrf+C

The previous approach, though efficient in the sense of grouping as many com-
putations as possible in coarse-grain blocks, requires a non-negligible workspace.
Although a padding of kl rows is already necessary at the top of the matrix
to accommodate for fill-in in U , we recognize this is not completely satisfac-
tory. Therefore we propose the following algorithm which also aims at clustering
blocks but does not require storage for nb rows:

1. Obtain W31 := stril(A31), a copy of the physical space that would be
occupied by the strictly lower triangular part of A31 and set stril(A31) := 0;
compute the LU factorization with partial pivoting

P1

⎛
⎝A11

A21
A31

⎞
⎠ =

⎛
⎝L11

L21
L31

⎞
⎠U11. (18)

The blocks of L and U overwrite the corresponding blocks of A. A copy of
the elements in the physical storage overwritten in this factorization is kept
at W31.

2. Obtain W13 := striu(A13), a copy of the physical space that would be
occupied by the strictly upper triangular part of A13 and set stril(A13) := 0;
apply the permutations in P1 to the remaining columns of the matrix:⎛

⎝A12 A13
A22 A23
A32 A33

⎞
⎠ := P1

⎛
⎝A12 A13

A22 A23
A32 A33

⎞
⎠ (xlaswp). (19)

116 A. Remón, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı

3. Compute the updates:

(A12, A13) (= (U12, U13)) := L−1
11 (A12, A13) (xtrsm), (20)(

A22 A23
A32 A33

)
:=

(
A22 A23
A32 A33

)

−
(

L21
L31

)
(U12, U13)

(xgemm). (21)

4. Undo the permutations on
[
LT

11, L
T
21, L

T
31
]T so that these blocks store the

multipliers used in the LU factorization in (6) and L31 is upper triangular;
restore stril(A31) and striu(A13) from W31 and W13, respectively.

4 Experimental Results

All experiments in this section were performed using ieee double-precision (real)
arithmetic and band matrices of order n = 10000 with kl = ku. In the evaluation,
for each bandwidth dimension, we employed values from 1 to 200 to determine
the optimal block size, nopt

b ; only those results corresponding to nopt
b are shown.

The usual measure to report performance of linear algebra codes is the MFLOP
(millions of flops per second) rate. However, the actual number of flops done in
the band LU factorization depends on the pivoting sequence. Therefore, in order
to reduce the number of results, we will report the speed-up the new routines at-
tain over dgbtrf. Thus, e.g., a speed-up factor of 1.2 means the execution time
(MFLOP rate) of the new routine is 20% lower (higher) than that of dgbtrf.

We report the performance of the routines on two different SMP architectures,
with 2 and 4 processors; see Table 1. Two threads were employed on xeon and 4
on itanium. As the efficacy of the kernels in BLAS is crucial, for each platform
we use the implementations listed in Table 2.

Table 1. SMP architectures employed in the evaluation

Platform Architecture #Proc. Frequency L2 cache L3 cache RAM
(GHz) (KBytes) (MBytes) (GBytes)

xeon Intel Xeon 2 2.4 512 – 1
itanium Intel Itanium2 4 1.5 256 4 4

Figure 2 illustrates the speed-up achieved by routines dgbtrf+M and dg-
btrf+C for matrices with bandwidth ranging from 50 to 500. The lower limit
was selected because that was experimentally determined to be (approximately)
the threshold from which the blocked codes outperformed the unblocked routine
dgbtf2. The first experiments revealed a major bottleneck in the parallel im-
plementation of routine dger from GotoBLAS when the matrix involved in the
rank-1 update had a few columns (exactly the case that appears in (6)). In order

Parallel LU Factorization of Band Matrices on SMP Systems 117

Table 2. Software employed in the evaluation

Platform BLAS Compiler Optimization Operating
Flags System

xeon GotoBLAS 1.00 gcc 3.3.5 -O3 Linux 2.4.27
MKL 8.0

itanium GotoBLAS 0.95mt icc 9.0 -O3 Linux 2.4.21
MKL 8.0

to overcome this problem, the code of these routine in the reference BLAS was
manually inlined.

The results show that a notable reduction of the execution time was obtained
by routine dgbtrf+M on itanium for matrices of moderate bandwidth: approx-
imately from kl = ku=50 to 150–200, depending on the BLAS implementation.
The improvements of that routine on xeon were more modest and stable, around
5%. As expected, the efficacy of routine dgbtrf+C is slightly lower. The higher
efficacy of the new codes for moderate bandwidth can be explained as follows:
as the bandwidth increases, so does the optimal block size of the algorithm and
thus, the updates of those blocks other than A22 can no longer be considered
small operations (with respect to the number of threads used in the experiments)
with no parallelism.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 100 200 300 400 500

S
pe

ed
-u

p

Bandwidth, ku=kl

DGBTRF+M using MKL

XEON
ITANIUM

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 100 200 300 400 500

S
pe

ed
-u

p

Bandwidth, ku=kl

DGBTRF+M using GotoBLAS

XEON
ITANIUM

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 100 200 300 400 500

S
pe

ed
-u

p

Bandwidth, ku=kl

DGBTRF+C using MKL

ITANIUM

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 100 200 300 400 500

S
pe

ed
-u

p

Bandwidth, ku=kl

DGBTRF+C using GotoBLAS

ITANIUM

Fig. 2. Speed-up attained by routines dgbtrf+M (top) and dgbtrf+C (bottom)
using multithreaded implementations of BLAS in MKL (left) and GotoBLAS (right)

118 A. Remón, E.S. Quintana-Ort́ı, and G. Quintana-Ort́ı

5 Conclusions

We have presented two algorithms for computing the LU factorization of a band
matrix that reduce the number of calls to BLAS per iteration so that coarser-
grain parallelism is exposed. The routines are potentially better suited to explote
the architecture of SMP systems. Although initial results seem to confirm our
expectations, further experimentation, specially using architectures with more
processors, is needed.

Several other (minor) conclusions have been extracted from our experience
with band codes:

– BLAS does not support all the functionality that is needed for the factor-
ization.

– The performance of BLAS-1 and BLAS-2 is much more important than in
general for other dense routines.

– The optimal block size for the blocked routines needs careful tuning.

References

1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, 1992.

2. Jeremy Du Croz, Peter Mayes, and Giuseppe Radicati. Factorization of band ma-
trices using level 3 BLAS. LAPACK Working Note 21, Technical Report CS-90-109,
University of Tennessee, July 1990.

3. Alfredo Remón, Enrique S. Quintana-Ort́ı, and Gregorio Quintana-Ort́ı. Perfor-
mance evaluation of LAPACK codes for the LU factorization of band matrices using
serial and multithreaded BLAS. Technical report, Depto. de Ingenieŕıa y Ciencia
de Computadores, Universidad Jaume I, 2006. In preparation.

A Tree-Based Distributed Model for BGP Route
Processing�

Kun Wu, Jianping Wu, and Ke Xu

Department of Computer Science and Technology, Tsinghua University
Beijing 100084, P.R.China

{kunwu, xuke}@csnet1.cs.tsinghua.edu.cn, jianping@cernet.edu.cn

Abstract. The scalable architecture is one of the key issues of the next
generation routers. The distributed routing protocol computing model
is one of the most difficult challenges on the router control plane. This
paper studies the route processing model of BGP, which has been de-
ployed in backbone widely. A tree-based distributed computing model is
discovered, based on the inherent parallel features of BGP. The model is
described in two structures for two different system configurations. And
the related algorithms are given. The performance promotion is analyzed
theoretically. Finally, the promotion is proved by experiments.

1 Introduction

The router system can be divided into two functional planes inherently. They
are the data plane and the control plane. The former is responsible for the route
look-up and packet forwarding. The other covers the router control and man-
agement, including the routing information exchanges, route computing, the
system maintenance, and so on. The scalability enhancements locate on both of
the planes.

Plenty of researches[1][2] have been conducted on the scalable switching plane
by far. Some commercial systems have been carried out under this concept
[3][4][5]. Nevertheless, the centralized control is still the main stream structure
in the control plane. The existing multi-control-board systems mainly focus on
the redundant backup, other than the distributed control.

On the core routers in the backbone, the traditional centralized control model
turns out to be a major potential bottleneck. The increasing route table requires
more processing power and larger memory storage. Only the distributed control
plane can match the performance requirements of the scalable router architec-
ture. However, the inherent complexity of the control plane makes it very difficult
to achieve an excellent decentralized structure. It is a major ongoing challenge
to develop distributed routing protocol processing models, which are the most
important components on the router.
� This work was supported by the National Key Fundamental Research Plan (973) of

China (No. 2003CB314801) and the National Natural Science Foundation of China
(No. 60473082).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 119–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 K. Wu, J. Wu, and K. Xu

The main contribution of this work is a distributed BGP processing archi-
tecture. And the corresponding necessary algorithms are given to dispatch the
sub-tasks efficiently under different system configurations. BGP is the default
routing protocol in the Internet. The model in this paper can be well deployed
on the core router in the scalable manner. The parallel computing and balanced
storage can bring a promising performance improvement, which is verified by
the experiments.

The rest of this paper is organized as follows. Section 2 gives an overview of
the related systems and models. Section 3 analyzes the BGP route computing
model, and proposes the tree-based distributed approach. Related algorithms
are presented in this section. Section 4 evaluates the performance promotion
theoretically, and conducts experiments to proof the improvements. Section 5
draws the conclusion and introduces the future work.

2 Related Work

The research on distributed control plane mainly focuses on modular software de-
veloping and the parallel routing protocol computing. Zebra is a typical modular
routing software[6]. It implements the functions by a set of processes, including
routing protocols and the route management. The the Vyatta[7], which comes
from XORP, provides an open extensible router software reference model. [8]
set up a separate server for the route computing. Furthermore, [9] moves the
complexity to end systems, which require the routing information from route
server. And, [10] is another proposal under this category. All of these researches
enhance the router control plane structure in a distributed manner. However, the
minimum granularity in these methods is one protocol, which is not fine enough
to the scalable routers. [11]and[12] provide an abstract distributed model based
on the routing behavior. This approach defines a set of database query language
for the information exchange. It focuses on the overlay network much more than
the single core router. [13][14][15] implement some flexible router systems. But,
their main target is to develop an extensible router, which is very different from
a scalable router.

The result in [16] can contribute to the distributed shortest path tree comput-
ing for OSPF. For BGP[17], which has been widely deployed in the backbone[18],
the distributed route computing model is one of the key issues for the control
plane in the scalable routers. [19] describes a distributed model for BGP. Agent
technology is used in this model for the load balance. However, the load dis-
patching pattern is limited by the topology in this model.

3 Distributed BGP Route Computing

3.1 General Route Processing Model for BGP

BGP is illustrated as a path vector protocol[17]. The path vector is the basis for
BGP route computing and route information exchanges. For the convenience of

A Tree-Based Distributed Model for BGP Route Processing 121

later discussion, some definitions are given. On a router running BGP, which is
talking to n BGP neighbors, the path information to the destination r is denoted
as pi(r). The path information about r collected from all of the n neighbors is
written as P (r) = {pi(r), i = 1, . . . , n}.

The path compare is the fundamental operation during the shortest path com-
peting. This process can be illustrated as a binary relation �. While considering
destination r, if the path from neighbor i is better than that from neighbor j,
then pi(r) � pj(r). By the path selection rules defined in [17], � is total or-
der, linear order, and simple order on the set P (r). This means the following
statements hold for pi(r), pj(r) and pl(r) in P (r):

pi(r) � pj(r) ⇒ i = j (1)

pi(r) � pl(r), pl(r) � pj(r) ⇒ pi(r) � pj(r) (2)

pi(r) � pj(r) or pj(r) � pi(r) (3)

Considering the equations above and the path selection rules in [17], the route
computing for destination r is to find the optimal p̂(r) under the relation � at
set P (r). That is ∃p̂(r), ∀pi(r) ∈ P (r), (̂p)(r) � pi(r). In the runtime system,
P (r) reflect the network status at the current time. A set of all the possible
P (r) is denoted as Q(r), ∀P (r) ∈ Q(r). Hence, the BGP route computing result
can be expressed as a function R, which is defined on Q(r) × P (r). That is
R : Q(r) �→ P (r), and R[P (r)] = p̂(r).

3.2 The Parallel BGP Computing Framework

In this subsection, the conventional BGP computing model is to be improved
in a distributed manner. For the purpose of discussion, assume P (r) �= ∅. The
infinite value is given as following.

Definition 1. If the route updates received from neighbor i do not have in-
formation about route r, then the distance to r through i is assigned infinity.
pi(r) = ∞.

For each neighbor i exporting the route to r, the path through i is better than
the remainders.

∀p(r) ∈ P (r), p(r) �= ∞ ⇒ p(r) � ∞ (4)

If no route to r exists, P (r) = ∞, then no output should be given from R.
So, R can be extended more strictly to reflect the optimal path selection as R,
which is defined on Q(r) × {{(̂p)(r)}, ∅}. R : Q(r) �→ {{p̂(r)}, ∅}. R[P (r)] =
{p|p = R[P (r)]}. That is

R[P (r)] =
{{p̂(r)} , P (r)has member(s) better than∞

∅ , P (r)has∞ only (5)

The computation structure of R[P (r)] can is dividable on P (r) while taking
the relation � into account.

122 K. Wu, J. Wu, and K. Xu

Definition 2. For P (r)’s subsets P1(r), P2(r),. . . ,Pm(r), m < ∞, if∀i, j, i �=j ⇒
Pi(r) ∩ Pj(r) = ∅, and

⋃
m
i=1Pi(r) = P (r), then the set {P1(r), P2(r), . . . , Pm(r)}

is defined as a division of P (r).

Theorem 1. For any division {P1(r), P2(r), . . . , Pm(r)} of P (r), the following
equation is hold.

R[P (r)] = R[
m⋃

i=1

R[Pi(r)]] (6)

Proof. If R[P (r)] = ∅, from Definition 1 and Equation 4, P (r) = {pi(r)|pi(r) =
∞, 1 ≤ i ≤ n}. Hence, any division of P (r) is a set including ∞ only.
R[Pi(r) = ∅, ∀i = 1, . . . , m. So, R[

⋃m
i=1 R[Pj(r)]] = ∅ = R[P (r)].

If R[P (r)] �= ∅, R[Pj(r)] = p̂j(r). Then,
⋃m

i=1 R[Pj(r)] =
⋃m

i=1{p̂j(r)} =
{p̂1(r), . . . , p̂m(r)}. For ∀i = 1, . . . , m, we have p̂(r) � p̂j(r). Otherwise, there
must be at least a p̂j(r) in P (r), holding p̂j(r) � p̂(r), and p̂j(r) �= p̂(r). As-
sume p̂J(r) is the smallest one. From the transitivity of � in Equation2, we
have R[P (r)] = {p̂J(r)}. However, p̂J(r) �= p̂(r). This conflicts against the
definition of R[P (r)]. Hence the assumption is not valid. That is for ∀i =
1, . . . , m, there is p̂(r) � p̂j(r). Furthermore, We have R[

⋃m
i=1 (R)[Pi(r)]] =

R[{p̂1(r), . . . , p̂m(r)}] = R[P (r)].

From Theorem 1, the optimal path computing based on relation � can be illus-
trated as a tree model. All the nodes are organized logically in the structure in
Fig1.

(), ..., ()1p r p rn

ˆ ()p r

Fig. 1. The Tree-Like Computing Model

3.3 Models and Algorithms

Some definitions are given for the ease of discussion.

Definition 3. The route information about r collected from some neighbors
forms a set, which is defined as a path group. The best path dominated by rela-
tion � on a path group is called the local optimal path. The optimal one on all
the paths is named as global optimal path, which is the p̂(r) above.

A Tree-Based Distributed Model for BGP Route Processing 123

Definition 4. The bottom-up iterating model illustrated in Fig.1 is called a it-
erating tree. The leaf nodes are the original information from neighbors. The
inner nodes are named computing nodes.

There are two typical scalable router structure from the implementation view.
They are named as the Un-Bound Structure(UBS), and the Load-Bound Struc-
ture(LBS). In UBS, All the computing nodes are equivalent, and the processing
for the original information can be dispatched to every node freely. In LBS, the
original information must be processed on the node, which the neighbors at-
tached. In general UBS routers, every computing nodes have the same power.
This is the k-ary iterating tree in this paper, and it has some useful features.

Definition 5. If each inner node of the tree has k equivalent children nodes, the
whole system is called a k-ary iterating tree.

Theorem 2. If the number of inner nodes on a k-ary iterating tree is u, and
the number of leaf nodes is n, then u ≥ n−1

k−1 .

Proof. Because of the definition of k-ary iterating tree, the children number of
each inner node is no more than k. Every child node has an edge in the tree
connected to it’s father. So, the total number of the edges v ≤ uk. These edges
connect to all the nodes except the root node. That is v = n + (u − 1), and
uk ≥ v = n + (u − 1). In a real system, it is meaningful only if the inner node
has more than one children. That is k > 1. So we have u ≥ n−1

k−1 .

A simple dispatching algorithm is given below.

Algorithm 1

1. Numbering u computing nodes randomly as 1, 2, . . . , u.
2. Numbering n neighbor randomly as u + 1, u + 2, . . . , u + n.
3. Take node 1 as the root node.
4. Append the left u + n− 1 nodes to corresponding father orderly. If the child

node number is x, then it’s father’s number is �x+k−2
k 	

Algorithm 1 can be extended to support LBS. Before describing the solution,
a few definitions and features are given.

Definition 6. The father of a leaf node is defined as last-to-leaf node, which is
denoted as ltl-node.

Definition 7. For an iterating tree, if the children number of all the inner nodes
(ltl-nodes excluded) is k, and the children number of each ltl-nodes is no less than
k. And, for the ltl-nodes whole children number is greater than k, the children
are all neighbors, then this type of tree is named as k-ary half-fixed iterating
tree, which is written as k-ary hfi-tree.

If the number of neighbor attached is z. We define:

w =
{

k − z , k ≥ z
0 , k < z

(7)

124 K. Wu, J. Wu, and K. Xu

Theorem 3. For a k-ary hfi-tree,
∑

u wi ≥ u− 1.

The proof is very similar with that of Theorem 2. It is not provided here for
the limitation of the paper length. A width first dispatching algorithm extended
from Algorithm 1 can be described as below.

Algorithm 2

1. Numbering all the node with 1, 2, . . . , u in the decent resource order.
2. Set up an array w[1 . . . u] denoting the sequence in step 1. Extending w[0] =

0. Execute the following codes

for i = 1 to u
w[i] := w[i] + w[i-1]

3. Take node 1 as the root node.
4. Appending reminder nodes to the correspoding father orderly. Assume the

child node number is x, the father is y. Find an item from w, assuring
w[i− 1] ≤ x < w[i], then y = i.

4 Performance Evaluation

The UBS structure is more general model than LBS, and it is an ideal scalable
framework for core router systems. For the limitation of the paper length, the
performance evaluation is conducted mainly on the k-ary iterating tree, which is
the solution for UBS. First of all, some often used symbols are given as following:
n: the number of neighbors, u: the number of computing nodes, l: the depth of
the inner nodes of the tree, k: the number of children for each non-leaf node, s:
the BGP routing table size.

Considering the tree structure, we have the following statements.

u =
n− 1
k − 1

(8)

n = kl (9)

Definition 8. Under the concept described above, the ratio of n to k is called
the key value of the system. It is written as below.

E =
n

k
(10)

4.1 Performance Analysis

Contribution to Computing. Assume the average time for one operation on two
path under the relation � is t. In the conventional models, the overall route
table computing can be written as t0 = snt. In the k-ary iterating tree, the
total transmission time can be reduced by pipeline the iterating cycles bottom

A Tree-Based Distributed Model for BGP Route Processing 125

up. Therefore, the overall route table buildup time t1 = (lkt+(l−1)(tt))+skt,
where the tt is the transmission time for between two adjacent level. The speedup
can be given as

S =
snt

(lkt + (l − 1)tt) + skt

In the core router, s is much greater than l and k, so we have S ≈ n
k . The

speedup of the k-ary iterating tree is the same as the key value E.

Contribution to Memory Storage. Assume the average memory cost for one path
is α. In the traditional centralized models, the total memory cost on the node is
m0 = αns0. However, the k-ary iterating tree reduce the cost on each node to
m1 = αks1. Let s0 = s1, we have Rm = m0

m1
= n

k , which is named as memory
reduction ratio. On the other hand, let m0 = m1, then Rs = s1

s0
= n

k , which is
called route storage ratio.

Contribution to Availability. In the centralized model, the recovery time is the
route rebuild time t0 = snt. In the k-ary iterating tree, assuming the crash
probability of each node is the same, the rebuild time can be expressed as

t1 =
l∑

i=1

((i− 1)kt + (i− 2)tt) + skt)
ki−1

u

The (i − 1)kt + (i − 2)tt) can be ignored while s is big enough in the core

router. So t1 = st�k(kl−1)
u(k−1) . From equations 8 and 9, we have the recovery time

ratio Rr = n
k = E.

4.2 Experimental Verification

Some simulating experiments are conducted to verify the performance improve-
ments of the k-ary iterating tree. The experiment environment is set up on a x86
hardware framework, carrying one PentiumIV 2.4GHz CPU, and 512M memory.
The operating system is Linux Fedora 4 RC3, with compiler gcc-3.4.4. The core
component of BGP protocol processing is implemented in a process. We statistic
the time of the key processing of the route processing. The transmission time
is parameterized as a relative value. The Trans-Comp-Ratio (TCR) is taken as
the measurement of the ratio of the unit transmission time and the unit path
comparing time. 27 neighbors are involved in the processing. k is set to 3. The
key value E = 9.

Fig. 2 illustrates the speedup-to-route curves under different TCR. The
speedup becomes stable to about the expected value 9 while route exceeds 40,000.
The average speedup spread across [104, 107) is listed in Tab.1. Under the con-
dition having 105 routes, speedup is stable. For the system overhead introduced,
the speedup observed is less than the expected value. However the overall error
is not more than 10%.

126 K. Wu, J. Wu, and K. Xu

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6

7

8

9

10

TCR = 1, Ave−Speedup = 8.37
TCR = 1000, Ave−Speedup = 8.22
TCR = 9000, Ave−Speedup = 7.90

Routes s

S
pe

ed
up

 S

TCR = 1
TCR = 1000
TCR = 9000

Fig. 2. Speedup-to-Route Curves

Table 1. Average Speedup Distribution 1

TCR Ave-Speedup on
route∈ [104, 105)

Ave-Speedup on
route∈ [105, 106)

Ave-Speedup on
route∈ [106, 107)

1 8.31 8.27 8.53
1,000 8.02 8.30 8.33
9,000 7.26 8.23 8.21

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

s = 10,000, Ave−Speedup = 7.71
s = 800,000, Ave−Speedup = 8.38

TCR

S
pe

ed
up

 S

s = 10,000
s = 800,000

Fig. 3. Speedup-to-TCR Curves

Table 2. Average Speedup Distribution 2

routes Ave-Speedup on
TCR∈ [100, 101)

Ave-Speedup on
TCR∈ [101, 102)

Ave-Speedup on
TCR∈ [102, 103)

Ave-Speedup on
TCR∈ [103, 104)

10,000 8.14 8.05 7.73 6.92
800,000 8.36 8.33 8.43 8.42

A Tree-Based Distributed Model for BGP Route Processing 127

Fig. 3 depicts the speedup-to-TCR curves under different routes. The trans-
mission forms the main overhead in the iterating algorithm. While the TCR is
less than 103, speed up becomes stable. Tab.2 shows the average speedup trend
against TCR. While number of route reaches 800,000, the error between observed
value to the expected value (9) is no more than 8%.

0
2

4
6

8
10

x 10
4

0

2

4

6

8

10

x 10
6

0

1

2

3

4

5

6

7

8

9

TCR

s

R
ec

ov
er

y
T

im
e

R
at

io
 R

r

Fig. 4. Recovery Time Ratio

The failure probability of each node is assumed equal in the recovery veri-
fication experiments. The route table rebuilding time is taken as the recovery
time. The routes varies from 104 to 107. The TCR varies from 100 to 104. The
observed recovery time is illustrated in Fig. 4. The recovery time ratio increases
rapidly while route number comes up. And it is very close to the expected value
9. The different configurations of TCR do not affect it very much. While routes
exceeds 800,000, the error is less than 10% only if TCR¿1. This can be satisfied
easily under a normal condition in the real circumstance.

5 Conclusion

Firstly, the BGP computing model is studied in this paper. The distributed
architecture is given in a tree-based processing framework according to the par-
allel features. The k-ary iterating tree model and the k-ary hfi-tree model are
given to deal with the UBS and LBS structures. And, the related load dis-
patching pattern algorithms are provided. The performance is improved by the
tree-based model in there aspects, including the computing power, the memory,
and the availability. The theoretical analysis shows that the enhancement is re-
lated to the ratio of neighbor number to k, which is defined as the key value of
the model. Finally, some experiments are taken. The simulating results give a
solid proof of performance promotion of the tree-based model proposed in this
paper.

128 K. Wu, J. Wu, and K. Xu

References

1. Iyer, S., McKeown, N.: Analysis of the parallel packet switch architecture.
IEEE/ACM Transactions on Networking 11(2) (2003.) 314–324

2. Chao, H.J., Deng, K., Jing, Z.: Petastar: A petabit photonic packet switch. IEEE
Journal on Selected Areas in Communications 21(7) (2003) 1096–1112

3. Dally, W.J., Carvey, P., Dennison, L.: The avici terabit switch/router. In: Hot
Interconnects 6, Stanford, CA. USA (1998)

4. Juniper Networks, Inc.: T640 routing node and TX MatrixTM platform: Architec-
ture. white paper (Part Number 350031-001) (2004) http://www.juniper.net.

5. Cisco Systems, Inc.: Next generation networks and the cisco carrier routing system.
white paper (2004) http://www.cisco.com.

6. (GNU Zebra) http://www.zebra.org.
7. (Vyatta Community) http://www.vyatta.com.
8. Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh, A., van der Merwe, K.:

Design and implementation of a routing control platform. In: Second Symposium
on Networked Systems Design and Implementation (NSDI), Boston, USA (2005)

9. Yang, X.: Nira: A new internet routing architecture. In: ACM SIGCOMM Work-
shop on Future Directions in Network Architecture, Karlsruhe, Germany (2003)

10. Govindan, R., Alaettinoğlu, C., Varadhan, K., Estrin, D.: Route servers for inter-
domain routing. Computer Networks and ISDN Systems 30(12) (1998) 1157–1174

11. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing:
Extensible routing with declarative queries. In: ACM Special Interest Group on
Data Communication (SIGCOMM), Philadelphia, USA (2005)

12. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Im-
plementing declarative overlays. In: 20th ACM Symposium on Operating Systems
Principles (SOSP), Brighton, UK (2005)

13. Mosberger, D., Peterson, L.L.: Making paths explicit in the scout operating system.
In: Second USENIX Symposium on Operating System Design and Implementation
(OSDI), Seattle, USA (1996)

14. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular
router. ACM Transaction on Computer Systems 18(3) (August 2000) 263–297

15. Decasper, D., Dittia, Z., Parulkar, G., Plattner, B.: Router plugins: A software
architecture for next generation routers. IEEE/ACM Transactions on Networking
1(2) (February 2000) 8

16. Xiao, X., Ni, L.M.: Parallel routing table computation for scalable ip routers. In:
Second International Workshop on Network-Based Parallel Computing: Commu-
nication, Architecture, and Applications, Las Vegas, USA (1998)

17. Rekhter, Y., Li, T., Hares, S.: A border gateway protocol 4 (BGP-4). IETF:Requst
for Comments 4271 (2006)

18. Huston, G.: Analyzing the internet’s bgp routing table. Cisco Internet Protocol
Journal 4(1) (2001)

19. Zhang, X., Zhu, P., Lu, X.: Fully-distributed and highly-parallelized implementa-
tion model of bgp4 based on clustered routers. In: Networking - ICN 2005: 4th
International Conference on Networking, Reunion Island, France (2005)

A Novel Scheme for the
Parallel Computation of SVDs

Sanguthevar Rajasekaran and Mingjun Song

Computer Science and Engineering
University of Connecticut
Storrs CT 06269, USA

{rajasek, mjsong}@engr.uconn.edu

Abstract. The Singular Value Decomposition (SVD) is a vital problem
that finds a place in numerous application domains in science and engi-
neering. As an example, SVDs are used in processing voluminous data
sets. Many sequential and parallel algorithms have been proposed to
compute SVDs. The best known sequential algorithms take cubic time.
This amount of time may not be acceptable especially when the data size
is large. Thus parallel algorithms are desirable. In this paper, we present
a novel technique for the parallel computation of SVDs. This technique
yields impressive speedups.

We discuss implementation of our technique on parallel models of
computing such as the mesh and the PRAM. We also present an exper-
imental evaluation of our technique.

Keywords: Singular Value Decomposition, Two-sided Jacobi, One-sided
Jacobi.

1 Introduction

The Singular Value Decomposition (SVD) is a vital problem with applications
in many a domain. An important application of SVD is to reduce dimensional-
ity in data mining and information retrieval fields. The well-known sequential
bidiagonalization-based Golub-Kahan-Reinsch SVD algorithm [6] takes O(mn2)
time (on an m × n matrix). For large values of m and n, this time could be
prohibitive. With the advent of the internet and the subsequent data explo-
sion, parallel techniques for computing SVDs have become increasingly more
important.

The bidiagonalization-based SVD algorithm has been found to be difficult to
parallelize and hence works on parallel SVD focus on Jacobi-based techniques.
Both two-sided Jacobi and one-sided Jacobi techniques have been studied in this
context. Brent and Luk [5] presented a parallel one-sided SVD algorithm using
a linear array of O(n) processors, with a run time of O(mnS), where S is the
number of sweeps. They also presented an O(nS) time algorithm to compute the
singular values of a symmetric matrix using an array of n2 processors. Zhou and

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 129–137, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 S. Rajasekaran and M. Song

Brent [12] described an efficient parallel ring ordering algorithm for one-sided
Jacobi.

Bec̆ka and Vajters̆ic [2] presented a parallel block two-sided Jacobi algorithm
on hypercubes and rings with a run time of O(n2S). They also gave an O(nS)
time algorithm on meshes [3]. Bec̆ka et al. [1] proposed a dynamic ordering al-
gorithm for a parallel two-sided block-Jacobi SVD with a run time of O(nS).
Oks̆a and Vajters̆ic [10] designed a systolic two-sided block-Jacobi algorithm
with a run time of O(nS). Strumpen et al. [11] presented a stream algorithm for
one-sided Jacobi that has a run time of O(n3

p2 S), where p is the number of pro-
cessors (p being O(

√
n)). They created parallelism by computing multiple Jacobi

rotations independently and applying all the transformations thereafter. They
show that each sweep of the Jacobi iteration algorithm can be parallelized on
an n× n mesh in O(nS) time. Clearly this algorithm is asymptotically optimal.
Unfortunately their experimental results show that the value of S is much larger
than what the sequential algorithm takes. In this paper, we employ their idea
of separating rotation computations and transformations. We propose a novel
algorithm for computing SVDs. This algorithm is fundamentally different from
all the algorithms that have been proposed for SVD. It employs a specific ”re-
laxation” of the Jacobi iteration. We call this JRS iteration. This algorithm is
nicely parallelizable. For example, it enables the computation of all the rotations
of a sweep in parallel such that the number of sweeps is reasonable.

We discuss the implementation of JRS iteration on various models of com-
puting such as the mesh, the hypercube, and the PRAM. For example, on the
CREW PRAM our algorithm has a run time of O(S log2 n) (for a symmetrix
n× n matrix).

The remainder of the paper is organized as follows. In Section 2, we introduce
the sequential Jacobi-SVD algorithm. Section 3 describes our new JRS iteration
algorithm. In Section 4, we show experimental results. Section 5 discusses parallel
implementations of our new algorithms. Finally, we provide some concluding
remarks in Section 6.

2 A Survey of the Basic Ideas

The SVD problem takes as input any m × n matrix A (m ≥ n) and computes
three matrices U, Σ, and V such that:

A = UΣV T ,

where U is a m × n orthogonal matrix (i.e., UT U = I), V is an n × n or-
thogonal matrix (V T V = I), and Σ is an n × n diagonal matrix. If Σ =
diag(σ1, σ2, . . . , σn), then these diagonal elements are the singular values of A.
The column vectors of U are the left singular vectors of A, and the column
vectors of V are the right singular vectors of A.

All the existing parallel algorithms use the Jacobi iteration as the basis. Jacobi
iteration algorithm attempts to diagnolize the input matrix A by a series of Jacobi

A Novel Scheme for the Parallel Computation of SVDs 131

rotations where each rotation tries to zero-out an off-diagonal element. In partic-
ular, each Jacobi rotation involves premultiplying A by an orthogonal matrix and
postmultiplying by another orthogonal matrix. We perform (n2 − n)/2 rotations
(in the case of a symmetric matrix) attempting to zero-out all the off-diagonal ele-
ments. These (n2−n)/2 transformations constitute a sweep. It can be shown that
after each sweep the norm of the off-diagonal elements decreases and hence the
algorithm converges. It is believed that the number S of sweeps needed for conver-
gence of the sequential Jacobi iteration algorithm is O(log n) [6].

There are two varaints of the Jacobi iteration algorithm, namely, one-sided
and two sided. Accordingly, there are two versions of our JRS iteration algorithm
as well. Both the versions of JRS perform well in parallel.

2.1 Two-sided Jacobi SVD

The two-sided Jacobi iteration algorithm [9] transforms a symmetric matrix A
into a diagonal matrix Σ by a sequence of Jacobi rotations (J):

Σ = · · · JT
3 (JT

2 (JT
1 AJ1)J2)J3 · · · = (J1J2J3 · · ·)T A(J1J2J3 · · ·)

Each transform attempts to zero-out a given off-diagonal element of A. The
Jacobi rotation, also called the Givens rotation[6], is defined as follows:

J(i, j, θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 · · · 0 · · · 0

··
·

· · · ··
·

··
·

··
·

0 · · · c · · · s · · · 0

··
·

··
·

· · · ·
·· ··
·

0 · · · −s · · · c · · · 0

··
·

··
·

··
·

· · · ·
··

0 · · · 0 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

j

i j

,

where (i, j) is an index pair of A to be zeroed, c = cos θ, s = sin θ, θ being called
the rotation angle. It can be easily verified that JT J = I, so the Jacobi rotation
is an orthogonal transformation. The values of c and s are computed as follows.
Consider one of the transformations: B = JT AJ . We choose c and s such that(

bii bij

bji bjj

)
=
(

c s
−s c

)T (
aii aij

aji ajj

)(
c s
−s c

)
is diagonal, i.e., bij = bji = 0. By solving this equation and taking the smaller
root [6], c and s are obtained by:

c =
1√

1 + t2
, s = tc,

where

t =
sign(τ)

|τ | +√
τ2 + 1

,

132 S. Rajasekaran and M. Song

and
τ =

aii − ajj

2aij
.

Depending on the order of choosing the element to be zeroed, there are clas-
sic Jacobi and cyclic Jacobi algorithms. In the classic Jacobi iteration algo-
rithm, each transformation chooses the off-diagonal element of the largest abso-
lute value. However, searching for this element requires expensive computations.
Cyclic Jacobi algorithm sacrifices the convergence behavior and steps through
all the off-diagonal elements in a row-by-row fashion. For example, if n = 3,
the sequence of elements is (1, 2), (1, 3), (2, 3), (1, 2), The computation is or-
ganized in sweeps such that in each sweep every off-diagonal element is zeroed
once. Note that when an off-diagonal element is zeroed it may not continue to
be zero when another off-diagonal element is zeroed. After each sweep, it can be
shown that, the norm of the off-diagoal elements decreases monotonically. Thus
the Jacobi algorithms converge.

2.2 One-sided Jacobi SVD

One-sided Jacobi algorithm, also called Hestenes-Jacobi algorithm [7][11], first
produces a matrix B whose rows are orthogonal by premultiplying A with an
orthogonal matrix U :

UA = B,

where rows of B satisfy:
bT
i bj = 0 for i �= j.

Followed by this B is normalized by:

V = S−1B,

where S = diag(s1, s2, . . . , sm), and si = bT
i bi. It can be easily shown that

A = UT SV , which is equivalent to the definition of SVD.
One-sided Jacobi is also realized by a series of Jacobi rotations, but on one

side. For a given i and j, rows i and j are orthogonalized by B = JT A where
J = J(i, j, θ) is the same matrix as in the two-sided Jacobi and:

(
bT
i

bT
j

)
=
(

c s
−s c

)T (
aT

i

aT
j

)
.

Here c and s of J are chosen such that bT
i bj = 0. The solution of them is:

c =
1√

1 + t2
, s = tc.

where

t =
sign(τ)

|τ | +√
τ2 + 1

,

A Novel Scheme for the Parallel Computation of SVDs 133

and

τ =
aT

j aj − aT
i ai

2aT
i aj

.

As we could see, there is a close similarity between the one-sided and two-sided
versions of the Jacobi algorithm.

3 JRS Iteration Algorithm

Since any rotation in the two-sided Jacobi algorithm changes only the corre-
sponding (two) rows and (two) columns, and one-sided Jacobi algorithm changes
only the corresponding (two) rows, there exists inherent parallelism in the Ja-
cobi iteration algorithms. For example, the n(n − 1)/2 rotations in any sweep
can be grouped into n− 1 non-conflicting rotation sets each of which containing
n/2 rotations. For instance, if n = 4, there are 3 rotation sets: {(1,2),(3,4)},
{(1,3),(2,4)}, {(1,4),(2,3)}. Since each rotation can be performed in O(n) time
on a single machine, we can perform all the rotations in O(n2S) time on a ring
of n processors [6]. The idea here is to perform each set of rotations in parallel.

We can think of the Jacobi algorithm as consisting of two phases. In the
first phase we compute all the rotation matrices (there are O(n2) of them). In
the second phase we multiply them out to get U and V . Consider any rotation
operation. The values of s and c can be computed in O(1) time sequentially.
The algorithm of Strumpen et al. [11] performs all the n(n − 1)/2 rotations
of a sweep in parallel even though not all of these rotations are independent.
Thus in their algorithm, all the rotation matrices can be constructed in O(1)
time using n2 CREW PRAM processors. This will complete the first phase of
the Jacobi algorithm. Followed by this the second phase has to be completed.
This involves the multiplication of O(n2) rotation matrices. Since two n × n
matrices can be multiplied in O(log n) time using n3 CREW PRAM processors
(see e.g., [4], [8]), a straight forward implementation of [11]’s algorithm runs in
time O(S log2 n) using n5 CREW PRAM processors. In [11] an implementation
on an n×n mesh has been given that runs in O(nS) time. However, as has been
pointed out before, the value of S is much larger than the corresponding value
for the sequential Jacobi iteration algorithm.

Any parallel algorithm for SVD partitions the n(n−1)/2 rotations of a sweep
into rotation sets where each rotation set consists of some number of rotations.
All the rotations of a rotation set are performed in parallel. Most of the par-
allel SVD algorithms in the literature employ (n − 1) rotation sets each rota-
tion set consisting of n/2 independent rotations. The algorithm of Strumpen et
al. is an exception. We let multiple processors compute the rotation matrices
of a rotation set (one matrix per processor), all the processors employing the
same original matrix. In the sequential case, if A is the input matrix, compu-
tations will proceed as follows. B1 = JT

1 AJ1; B2 = JT
2 B1J2; B3 = JT

3 B2J3;
and so on. On the other hand, in parallel, computations will proceed as follows.
B1 = JT

1 AJ1; B2 = JT
2 AJ2; B3 = JT

3 AJ3; etc. The number of Bis computed in
parallel will be decided by the number of available processors. Once this parallel

134 S. Rajasekaran and M. Song

computation is complete, all of the computed transformations will be applied to
A to obtain a new matrix B. After this, again a parallel computation of rotation
matrices will be done all with respect to B; B will be updated with the computed
transformations; and so on.

In this paper we propose a fundamentally different algorithm for SVD. It is
a specific ”relaxation” of the Jacobi iteration algorithm that wel call the JRS
iteration algorithm. Just like the Jacobi algorithm, there are two variants of the
JRS iteration algorithm as well, namely, one-sided and two-sided. We provide
details on these two variants in the next subsections.

3.1 Two-sided JRS Iteration Algorithm

The main idea behind the original two-sided Jacobi SVD is to systematically
reduce the norm of the off-diagonal elements of a symmetric matrix A:

off(A) =

√√√√ n∑
i=1

n∑
i=1,j �=i

a2
ij .

The convergence of the Jacobi algorithm is ensured by the fact that after each
rotation, the norm of the off-diagonal elements decreases by twice the square of
the element zeroed out in this rotation [6].

The JRS iteration algorithm also has sweeps and in each sweep we perform
rotations (one corresponding to each off-diagonal element). The only difference
is that in a given rotation we do not zero-out the targeted off-diagonal element
but rather we decrease the value of this element by a fraction.

Let the element targeted in a given rotation be the (i, j)th element. Then we
let

bij = aij(c2 − s2) + (aii − ajj)cs = λaij ,

where λ is in the interval [0, 1). When λ = 0, we get the original Jacobi iteration
algorithm. We can solve for s and c as follows: If aij = 0, then set c = 1 and
s = 0; Otherwise

aii − ajj

2aij
=

c

2s
− s

2c
− λ

2cs
.

Let τ = aii−ajj

2aij
, t = s

c , then

(1 + λ)t2 + 2τt + λ− 1 = 0.

According to [6], the smaller root should be chosen, so

t =
sign(τ)(1− λ)

|τ |+√
τ2 + (1 − λ2)

.

Like in the regular Jacobi rotation, c and s can be computed as:

c =
1√

1 + t2
, s = tc.

We call the above algorithm JRS iteration algorithm.

A Novel Scheme for the Parallel Computation of SVDs 135

3.2 One-sided JRS Iteration Algorithm

One-sided JRS algorithm is similar to the one-sided Jacobi algorithm. In each
rotation, we let the norm of the corresponding two rows be reduced to a fraction
of it. That is,

vT
i vj = λuT

i uj.

The solution is similar to the two-sided Jacobi:

c =
1√

1 + t2
, s = tc.

where

t =
sign(τ)(1− λ)

|τ |+√
τ2 + (1 − λ2)

,

and

τ =
uT

j uj − uT
i ui

2uT
i uj

.

4 Experimental Results

We have implemented our JRS algorithms and tested them for convergence as
well as performance. They have been compared with the regular Jacobi algo-
rithms as well as the algorithms of [11]. We provide the experimental results in
this subsection.

In this experiment, we have compared the number of sweeps taken by the
different Jacobi approaches. We generated randomly several matrices of different
sizes, including 10×10, 50×50, 100×100, 200×200, 500×500, and 1000×1000.
The elements of the matrices were generated randomly to have a value in the
interval [1, 10]. For each matrix size, we generated 10 matrices and for each
algorithm we took the average number of sweeps. The convergence condition
employed was on the norm of the off-diagonal elements. We used a norm value
of 10−15.

The results are shown in tables 1 and 2 for two-sided Jacobi and one-sided
Jacobi algorithms, respectively. For two-sided Jacobi, we used symmetric matri-
ces; for one-sided Jacobi, we generated unsymmetric matrices. In these tables,
Independent Jacobi refers to the Jacobi algorithm where all the rotations in a
sweep are done independently and in parallel. This is one of the algorithms em-
ployed in [11]. The values of the parameter λ used in JRS algorithm for matrices
of different sizes are chosen experimentally, which are: 0.25, 0.5, 0.5, 0.75, 0.8,
0.85 respectively.

From tables 1 and 2, we see that the number of sweeps taken by the JRS is
significantly less than that of Independent Jacobi of [11]. Also the number of
sweeps taken by the JRS based algorithm is within a reasonable multiple of that
of the sequential cyclic Jacobi algorithm.

136 S. Rajasekaran and M. Song

Table 1. Experimental results for two-sided SVD

Matrix size Cyclic Jacobi Independent Jacobi [11] JRS
10×10 5 11 16
50×50 7 6692 31

100×100 7 >300000 47
200×200 8 >300000 66
500×500 9 >300000 90

1000×1000 9 >300000 125

Table 2. Experimental results for one-sided SVD

Matrix size Cyclic Jacobi Independent Jacobi [11] JRS
10×10 7 14 28
50×50 10 133 52

100×100 11 1037 62
200×200 12 193107 114
500×500 14 >300000 145

1000×1000 15 >300000 197

5 Parallelism

As our experimental results show, even when all the rotations in a sweep are
done in parallel, JRS based algorithms converge fast. In particular, the number
of sweeps is no more than a reasonable multiple of the number of sweeps taken
by the sequential Jacobi algorithm. As a consequence, JRS based algorithms
offer maximum parallelism. In fact most of the parallel algorithms that have
been derived thus far (that employ Jacobi iterations) for SVDs can be readily
translated into JRS based algorithms. We just mention a few of them below.

Based on the algorithms of [11] we get:

Theorem 1. JRS algorithms run in time O(nS) on an n× n mesh.

The algorithm of [5] yields the following:

Theorem 2. One-sided JRS algorithm can be implemented on a linear array of
O(n) processors to have a run time of O(mnS).

From our discussion in Section 3, we infer the following:

Theorem 3. JRS algorithms can be implemented on a CREW PRAM to have
a run time of O(S log2 n).

6 Conclusions

In this paper, we have proposed a novel algorithm (called JRS Iteration Al-
gorithm) for computing SVDs. This algorithm enables one to perform all the

A Novel Scheme for the Parallel Computation of SVDs 137

rotations in a sweep independently and in parallel without increasing the num-
ber of sweeps significantly. Thus this algorithm can be implemented on a variety
of parallel models of computing to obtain optimal speedups when the processor
bound is O(n2). This method significantly decreases the number of sweeps over
independent Jacobi proposed in [11]. Therefore, our method can be used in their
stream algorithm to achieve a run time of O(nS). Our algorithm can also be
implemented on a CREW PRAM to have a run time of O(S log2 n).

In the full version of this paper we provide additional experimental data, a
value for λ (as a function of n) that results in the minimum number of sweeps,
a convergence proof for JRS, a variant of JRS called Group JRS, etc.

Acknowledgments. This research has been supported in part by the NSF
Grant ITR-0326155.

References

1. Bec̆ka, M., Oks̆a, G., Vajters̆ic, M., Dynamic ordering for a parallel block-Jacobi
SVD algorithm, Parallel Comp., 28, 243-262, 2002.

2. Bec̆ka, M. and Vajters̆ic, M., Block-Jacobi SVD algorithms for distributed memory
systems I: Hypercubes and rings, Parallel Algorithms Appl., 13, 265-287, 1999.

3. Bec̆ka, M. and Vajters̆ic, M., Block-Jacobi SVD algorithms for distributed memory
systems II: Meshes, Parallel Algorithms Appl., 14, 37-56, 1999.

4. Bini, D., and Pan, V., Polynomial and Matrix Computations, Vol.1, Fundamental
Algorithms, Birkhäuser, Boston, 1994.

5. Brent, R.P., and Luk, F.T., The Solution of Singular-Value and Symmetric Eigen-
value Problems on Multiprocessor Arrays. SIAM Journal on Scientific and Statis-
tical Computing, 6(1):69-84, 1985.

6. Golub, G.H., and Van Loan, C.F., Matrix Computations. John Hopkins Univer sity
Press, Baltimore and London, 2nd edition, 1993.

7. Hestenes, M.R., Inversion of Matrices by Biorthogonalization and Related Results.
Journal of the Society for Industrial and Applied Mathematics, 6(1):51-90, 1958.

8. Horowitz, E., Sahni, S., and Rajasekaran, S., Computer Algorithms, W.H. Freeman
Press, 1998.

9. Jacobi, C.G.J., Über eine neue Auflösungsart der bei der Methode der kleinsten
Quadrate vorkommenden linearen Gleichungen. Astronomische Nachrichten, 22,
1845.

10. Oks̆a, G., and Vajters̆ic, M., A Systolic Block-Jacobi SVD Solver for Processor
Meshes, Parallel Algorithms and Applications, 18(1-2), 49-70, 2003.

11. Strumpen, V., Hoffmann, H., Agarwal, A., A Stream Algorithm for the SVD, Tech-
nical Memo 641, Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, October 2003.

12. Zhou, B.B., and Brent, R.P., A Parallel Ring Ordering Algorithm for Efficient
One-sided SVD Computations, Journal of Parallel and Distributed Computing, 42,
1-10, 1997.

Cache-Optimal Data-Structures for Hierarchical
Methods on Adaptively Refined

Space-Partitioning Grids

Miriam Mehl

Institut für Informatik, TU München
Boltzmannstraße 3, D-85748 Garching, Germany

mehl@in.tum.de
http://www5.in.tum.de/persons/mehl/

Abstract. The most efficient numerical methods for the solution of par-
tial differential equations, multigrid methods on adaptively refined grids,
imply several drawbacks from the point of view of memory-efficiency on
high-performance computer architectures: First, we loose the trivial struc-
ture expressed by the simple i, j-indexing of grid points or cells. This effect
is even worsened by the usage of hierarchical data and – if implemented
in a naive way – leads to both increased storage requirements (neighbour-
hoodrelations possibly modified difference stencils) and a less efficient data
access (worse locality of data and additional data dependencies), in ad-
dition. Our approach to overcome this quandary between numerical and
hardware-efficiency relies on structured but still highly flexible adaptive
grids, the so-called space-partitioning grids, cell-oriented operator evalu-
ations, and the construction of very efficient data structures based on the
concept of space-filling curves. The focus of this paper is in particular on
the technical and algorithmical details concerning the interplay between
data structures, space-partitioning grids and space-filling curves.

1 Introduction

As soon as we want to simulate real world applications described by (systems
of) partial differential equations, we are faced with two increasingly important
requirements: First, there is a rising need for accuracy and, second, the com-
puting time should stay within manageable borders. These requirements force
us to reduce both the number of unknowns – typically by sophisticated grid
adaptivity – and the complexity of our solver – typically with the help of multi-
grid methods. Unfortunately, both methods – grid adaptivity and multigrid –
come along with several drawbacks. Adaptively refined grids in general imply a
substantial overhead in terms of storage requirements due to the need to store
neighbourhoud relations and/or specialised stencils for the particular local adap-
tivity pattern. But also with respect to the efficiency of data access, adaptively
refined grids cause considerable deficits since in an irregular data structure it is
much more difficult to bring together data dependencies with data locality in
the physical memory space. Multigrid methods even worsen this effect as they
induce additional data dependencies between data of different grid levels.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 138–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cache-Optimal Data-Structures for Hierarchical Methods 139

In the following,wepresent our approach to overcomethe quandarybetween nu-
merical efficiency and efficient memory usage described above. Sect. 2 introduces
the used grids. Sect. 3 describes the algorithm of our solver and Sect. 4 demon-
strates the construction of suitable memory efficient data structures. Finally, we
present results on the applicability and efficiency of our concept in Sect. 5.

2 Space-Partitioning Grids

As a first towards hardware efficiency, we use so-called space-partitioning grids
which offer both a high flexibility in term of the adaptivity pattern and a strict
structuredness which is already inherently storage saving as the storage of depen-
dencies of grid elementsbecomes obsolete. Space-partitioning grids,mostly referred
to in the form of octrees, are widely used as a tool to solve different subproblems
in the simulation context, for example grid generation, geometry description, vi-
sualisation, load distribution, and as a computational grid. This shows the va-
riety of functionalities and advantages of the underlying concept making space-
partitioning grids a very attractive choice – also as an overall integrating concept
in particular in larger context such as coupled simulations [4].

Fig. 1 shows examples for space-partitioning Cartesian grids. The construction
principle is the recursive refinement of grid cells into a fixed number of congruent
subcells. The number of subcells can be varied. In the case of the well-known
quadtree (two-dimensional) or the octree (three-dimensional), a partitioning into
two in each coordinate direction is performed. We instead perform a partitioning
into three in each direction for reasons we will explain later on in the context of
the construction of data structures (Sect. 4).

Fig. 1. Two- (left) and three-dimensional (right) examples for space-partitioning grids
with a partitioning into three per coordinate direction

Arbitrarily local adaptive refinements can be mapped with space-partitioning
grids1. The degrees of freedom are assigned to the vertices of the grid cells in our
1 The only case we can not hadle without further efforts are unisotropic refinements.

The generalisation of our concepts to unisotropic refinements is subject of our current
work and in the implementation phase.

140 M. Mehl

concept, but exceptions to this rule such as for the pressure in the Navier-Stokes
equations [2,3] are possible. For reasons of clarity, we will restrict ourselves to
vertex data in the following.

3 Algorithms

3.1 Operator Evaluation

Our main task – to achieve a high memory efficiency – requires the prevention
of the storage of unnecessary informations and a high locality of data access (in-
creasing the efficiency of the cache-usage). That is, we have to avoid the storage
of neighbourhoodrelations and specialised difference stencils in dependence on
the local adaptivity pattern, wich are, in our case, only caused by the vertex-
oriented operator evaluation (processesing the grid vertex by vertex and using
values at neighbouring vertices for operator evaluation) compute the value of
the corresponding difference operator with the help of the values at neighbour-
ing vertices. In addition, values at neighbouring verties might be arbitrarily far
away from the current point in the physical memory space – and, therefore, are
currently not in the cache with a high probability.

Thus, we switch to the so-called cell-oriented operator evaluation, a well-
known concept in the finite element context [5]. It decomposes the operator
into cell-parts which accumulate to the complete operator during a run over all
cells contributing to the operator value. For the evaluation of the cell-part of an
operator we allow only the usage of data owned to the cells, that is the degrees of
freedom stored at the cells vertices. At boundaries between different refinements
depths, the operator results from the accumulation of cell-parts of neighbouring
cells appropriately combined with restriction and interpolation operators. Such,
there is no need to store specialised stencils.

3.2 Multigrid

For the description of our multigrid methods, we only concentrate on the algo-
rithmic realisation and leave out mathematical details as far as they have no
algorithmic impacts.

Additive Multigrid. If we process our cell tree in the natural top-down-depth-
first order, we cannot finish the evaluation of an operator at the current level
before we switch to the next (coarser or finer) level, but we can compute the
residual on all levels based on the same data. Thus, from the algorithmic point
of view, the additive multigrid method is the natural choice: We interpolate
all values to the finest level (dehierachisation) in the down-traversal (coarse to
fine) of the cell tree, compute the cell-parts of the residual and smooth on the
finest level, and restrict the fine grid residuals (those computed before fine-
grid smoothing!) to the coarser grids during the up-traversal. Simultanously, we
smooth on all grid levels as soon as the accumulation of residual parts (resulting
from operator evaluation or restriction) is finished.

Cache-Optimal Data-Structures for Hierarchical Methods 141

Multiplicative Multigrid. In contrast to additive multigrid methods, an iter-
ation of a multiplicative multigrid method cannot be done within one top-down-
depth-first sweep over the corresponding cell tree. We have to perform a run over
the whole cell tree for each operation (smoothing, interpolation, restriction) but
stop at the current grid level to prevent an overall cost of O(N log N) for a grid
with N unknowns on the finest level. As a result, we have to swap out fine grid
data to intermediate data structures whenever they are not needed.

The F-Cycle. If we now combine our multigrid methods with dynamical adap-
tivity, we end up with the so-called full-multigrid methods or F-cycles which start
with an a priori defined preliminary and in general quite coarse grid, compute
a first solution on this grid, apply some adaptivity criteria, refine or coarsen
the grid according to these criteria, and, finally, compute the solution on the
new grid. This results in an overall iterative process producing solutions on a
sequence of incrementally enhanced grids.2

4 Data Structures

As mentioned above, our algorithm processes the grid in a top-down depth-first
order and performs a cell-oriented evaluation of the discrete operators (differ-
ence stencils, restriction, interpolation). The cell-oriented view helps us to avoid
the storage of unneccessary data (pointers to sons/fathers, specialised stencils
at boundaries between different refinement depths) and, second, enhances the
locality of data accesses if we additionally provide suitable data structures for
vertex data3.

4.1 Space-Filling Curves as an Ordering Mechanism

To achieve an optimal locality of data access and, thereby, a high cache-efficiency,
we define a unique ’suitable’ processing order of our grid cells and examine the
resulting processing order of vertex data.

Space-filling curves [11] are used as an established tool for parallelisation and
balanced load distribution [7,8,9,10] for PDE solvers on adaptive grids. The
quasi-optimal locality of the class of self-similar recursively defined space-filling
curves yields quasi-minimal communication costs [10]. Exactly this quasi-optimal
locality is the property which is decisive for the optimisation of time locality
of data usage in our algorithm, too. In general, self-similar recursively defined
space-filling curves are given by a generating template connecting the cells of a
first decomposition of the unit square (2D) or unit cube (3D) and a set of rules

2 In the case of time-dependend problems, we have to adapt the grid to the temporal
changes after each or after some time steps, in addition.

3 Whenever we need cell-centered data such as the pressure in the Navier-Stokes equa-
tion, the allocation of the respective data structure is trivial: data are simply stored
in a stream corresponding to the cell-stream resulting from our top-down-depth-first
tree traversal.

142 M. Mehl

Fig. 2. Template, first two iterate and iterate for an adaptively refined space-
partitioning grid of the the two-dimensional Peano curve

describing the recursive application of this template (possibly mirrored and/or
rotated) on each of the subdomains in case of further refinement. Fig. 2 shows
the generating template and the first iterate of the two-dimensional Peano curve
as an example. The space-filling curves themselves are define as the limit of this
recursive refinement process.

As we look for ordering mechanisms for the cells of a discrete grid, we are in
fact not interested in the space-filling curves itself but in their iterates. Since the
refinement rules of the curves are purely local, these iterates can be naturally
generalised to adaptively refined space-partitioning grids. See Fig. 2 for an ex-
ample. The high locality of the resulting oder of cells results from the fact that
the curve visits all son (and grandson,. . .) cells of a father cell at once before
they proceed to other cells not contained in the repective father cell. Such, all
work to be done at one vertex of the grid (during the evaluation of operators)
is finished within a short time period in the average case.

The resulting oder of grid cells can be easily generalised to an order of the cells
of all refinement levels (needed hierarchical methods such as multigrid). Follow-
ing the recursive definition of space-filling curves, we start with the coarsest cell
(covering the whole computational domain), apply the curve’s template in this
cell, visit the son cells according to this template, their son cells (if existing) and
so on. Thus, we end up with a particular – uniquely defined – top-down-depth-
first odering as already presumed in Sect. 3.

4.2 Space-Filling Curves and Stacks

In the literature, we already find hints [12] on substantial improvements of the
cache-preformance and, thus, the runtime of a PDE solver by the pure reordering
of data according to their usage during the run along a space-filling curve. We
go one step further and consequently use the properties of the Peano curve to
construct data structures with optimal spatial locality perfectly supplementing
the time locality described above. We will explain the underlying idea for two-
dimensional regular grids with nodal data. Fig. 3 shows the Peano curve in two-
dimensional regular grids. Moving along the curve, we see that the grid points
at the left-hand side of the curves are processed in one direction during the first
pass of the curve and exactly in the opposite direction during the second pass
of the curve. The same holds for the points at the right-hand side of the curve.

Cache-Optimal Data-Structures for Hierarchical Methods 143

This directly corresponds to a very simple type of data structures, the so-called
stacks, which allow only two basic operations: put a datum on top of the stack
and pop a datum from the top of the stack. In our examples, we can perform one
iteration over all data with four data structures: one input stream containing all
data in the order of their first usage, two stacks – corresponding to the left- and
the right-hand side of the curve – on which we put data after the first pass of
the curve and from which we pop them during the second pass, and one output
stream collecting all vertex data after their last usage. The output stream can
directly be used as an input stream for the next solver iteration if we process
the grid along the same curve but in the opposite direction.

Fig. 3. Assignment of vertices and their data to two groups: left- and right-hand side
of the Peano curve corresponding to two stacks used for the intermediate storage of
data during solver iterations [4]

In the three-dimensional case, this concept works only if an analogue forward
and backward processing of vertex data also holds on the two-dimensional faces
of the cubic cells. We could not find any Hilbert curve fulfilling this requirement,
whereas it is trivial to show for the Peano curve due to their dimension-recursive
definition [13,14]. The generalisation to adaptively refined grids with hierarchical
data is quite technical both in the two-dimensional and in the three-dimensional
case. Therefore, we refer to other publications [15,13,14,16] for further details. We
only state the results: we need eight intermediate stacks in the two-dimensional
case and 27 stacks in the three-dimensional case, both independent of the current
refinement depth of our grid.

5 Evaluation and Numerical Results

Before we present results on the hardware efficiency of our concept – measured
by the cache-efficiency and the runtime – we would like to point out that our
algorithms fulfill all numerical requirements, in particular offer a flexible and
dynamical adaptivity and multigrid performance of the solvers. For detailed
results see [15,13,14,6].

5.1 Cache-Efficiency and Storage Requirements

As described above, the storage of administrational data is almost obsolete due to
the structueredness of the grid and the cell-oriented operator evaluation. There-

144 M. Mehl

fore, we end up with a very low storage requirement of only about five Byte per
degree of freedom in the case of the three-dimensional Poisson equation (with
unknowns stored as float variables), for example [13].

If we look at the cache-efficiency of our programs, we observe an extremely
high hit-rate in the L2-cache of above 99.9% in two and in three dimensions
[15,13]. Similar hit-rates could be achieved as well for all algorithmic extensions
such as dynamical adaptivity [6], higher order discretisations [14], parallelization
[17,18,19], and the Navier-Stokes solver [3,2]. In addition, we could show that the
actual number of L2-cache-misses is only about 10% larger than the theoretical
minimum given by the need to load data to the cache at least once per solver
iteration [15,13]4. Besides those absolute values, we would like to point out the
robustness of our concept with the help of three observations:

– Both the storage- and the cache-efficieny do not depend of the degree of
adaptivity of our grid.

– Our approach can be successfully applied without any knowledge of the
cache parameters (cache size, cache line length, . . .) and, thus, can be easily
ported to different platforms. In the literature, such methods are denoted as
cache-oblivious [22,23].

– The cache hit-rates scale perfectly with the number of degrees of freedom.
That is, there are no size effects deteriorating the efficiency above a certain
problem size.

5.2 Runtime and Parallel Efficiency

The runtime of a program is surely the last and most important criterion of
efficiency. To give some indication of the potential of our program in comparison
with other cache-optimized PDE solvers, we compare the runtimes with DiME
[24], a cache- and runtime-optimised multigrid solver for partial differential equa-
tions on regular grids. Concretely, we compare one DiME-V-cycle with one pre-
and one postsmoothing step to one iteration of our additive multigrid method
for the solution of the two-dimensional Poisson equation on a regular grid. Ta-
ble 1 shows the resulting runtimes. Our program is about five times slower than
DiME, which is quite good if we take into account that we can handle fully adap-
tive grids, the runtime per degree of freedom is independent on the adaptivity
pattern of the grid [15,13], the storage requirements of our program are very low
(less than seven Bytes per degree of freedom even in the three-dimensional case
[13] whereas DiME needs more than 27 Bytes per degree of freedom in the two-
dimensional case), and there are still numerous further optimisation potentials
for our program (see Sect. 6).

As mentioned above, space-filling curves are a well-known tool for balanced
parallelisation of algorithms on adaptive grids. We stated in addition, that we can
easily generalize our data structures to processes working on a part of the grid

4 We measured and simulated the cache-efficieny with the help of the tools cachegrind
[20] (simulation), perfmon [21] and hpcmon (hardware performance counter).

Cache-Optimal Data-Structures for Hierarchical Methods 145

Table 1. Comparison of the runtimes per degree of freedom and multigrid iteration
for our code (left hand side) and DiME [24] (right hand side) on an AMD Athlon
XP 2400+ (1.9 GHz) processor with 256 KB cache and 1 GB RAM using the gcc3.4
compiler with options -O3 -Xw (from [1])

grid # deg. of runtime per
res. freedom it and dof
243 5.95 · 104 1.70 · 10−6 sec
729 5.33 · 105 1.71 · 10−6 sec

2187 4.79 · 106 1.72 · 10−6 sec

grid # deg. of runtime per
res. freedom it and dof
257 6.60 · 104 5.78 · 10−7

513 2.63 · 105 4.23 · 10−7

1025 1.05 · 106 3.85 · 10−7

2049 4.20 · 106 3.74 · 10−7

Table 2. Parallel speedup achieved for the solution of the three-dimensional Poisson
equation on a spherical domain on an adaptive grid with 23, 118, 848 degrees of freedom.
The computations were performed on a myrinet cluster consisting of eight dual Pentium
III processors with 2 GByte RAM per node [17,25].

processes 1 2 4 8 16
speedup 1.00 1.95 3.73 6.85 12.93

only [17]. Table 2 shows the achieved parallel speedups for the three-dimensional
Poisson equation on an adaptive grid on a spherical domain with 23, 118, 848
degrees of freedom [17].

6 Conclusions and Outlook

Wepresentet a newapproach for the hardware- and, in particular,memory-efficient
implementation of state-of-the-art numerical methods, that is dynamically adap-
tive multigrid solvers. Without loosing mathematical functionality and/or eff-
iciency, we maintain an extremely high cache-efficiency and a very low storage
requirement per degree of freedom. In terms of the runtime, the last and crucial
criterion, we are about a factor of five to ten slower than highly optimised solvers
working on regular grids. Although this is already a good result taking into account
that we work on adaptive grids with arbitrarliy local refinements, this is a clear
hint that there is still a potential for further improvements for example based on
methods similar to those presented in [26,27] or with the help of streaming SIMD
extensions (SSE). Furthermore, the simplification of stack definition and adminis-
tration is a currently active – and promising – field of our research as it will reduce
stalls of floating point operations due to administrational integer operations.

Besides the detailed examination of the applicability of these optimisation
possibilities, an important focus of our future work is on the implementation of
more complicated equations and systems of equations, in particular the three-
dimensional Navier-Stokes equations. Hereby, we can already start from an exist-
ing implementation of the two-dimensional Navier-Stokes equations [2,3]. Such
’real’ applications will also show the effective potential of our method in com-
parison to other (adaptive or regular) solvers.

146 M. Mehl

References

1. M. Mehl, T. Weinzierl, Ch. Zenger. A cache-oblivious self-adaptive full multigrid
method. To appear in: special issue Copper Mountain Conference on Multigrid
Methods 2005, Numerical Linear Algebra with Applications, Wiley Interscience.

2. T. Neckel. Einfache 2D-Fluid-Struktur-Wechselwirkungen mit einer cache-
optimalen Finite-Element-Methode. Diploma thesis, Institut für Informatik, Tech-
nische Universität München, (2005).

3. T. Weinzierl. Eine cache-optimale Implementierung eines Navier-Stokes Lösers
unter besonderer Berücksichtigung physikalischer Erhaltungssätze. Diploma thesis,
Institut für Informatik, Technische Universität München, (2005).

4. M. Brenk, H.-J. Bungartz, M. Mehl, and T. Neckel. Fluid-Structure Interaction on
Cartesian Grids: Flow Simulation and Coupling Interface. In Bungartz and Schfer
(eds.), Fluid-Structure Interaction: Modelling, Simulation, Optimisation, LNCSE
series, Springer, to appear.

5. D. Braess. Finite Elements. Theory, Fast Solvers and Applications in Solid Me-
chanics, Cambridge University Press, (2001).

6. N. Dieminger. Kriterien für die Selbstadaption cache-effizienter Mehrgitteralgo-
rithmen. Diplomarbeit, Institut für Informatik, Technische Universität München,
(2005).

7. M. Griebel and G. Zumbusch. Hash based adaptive parallel multilevel methods
with space-filling curves. In: Rollnik and Wolf (eds.), NIC Series 9, (2002), 479-
492.

8. A. K. Patra, J. Long, and A. Laszloff. Efficient Parallel Adaptive Finite Element
Methods Using Self-Scheduling Data and Computations. In: Banerjee, Prasanna,
and Sinha (eds.), High Performance Computing – HiPC’99, 6th International Con-
ference, Calcutta, India, December 17-20, 1999, Proceedings, HiPC, Lecture Notes
in Compter Science 1745, (1999), 359-363.

9. S. Roberts, S. Klyanasundaram, M. Cardew-Hall, and W. Clarke. A key based par-
allel adaptive refinement technique for finite element methods. In: Noye, Teubner,
and Gill (eds.), Proceedings Computational Techniques and Applications: CTAC
’97, World Scientific, Singapore, (1998), 577-584.

10. G. W. Zumbusch. Adaptive Parallel Multilevel Methods for Partial Differential
Equations. Habilitationsschrift, Universität Bonn, (2001).

11. H. Sagan. Space-Filling Curves. Springer, New York, (1994).
12. M. J. Aftosmis, M. J. Berger, and G. Adomavivius. A Parallel Multilevel Method for

Adaptively Refined Cartesian Grids with Embedded Boundaries, American Institute
of Aeronautics and Astronautics-2000-808, Aerospace Science Meeting and Exhibit,
38th, Reno, Nevada, Jan 10-13, (2000).

13. M. Pögl. Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für
große Probleme. Doctoral thesis, Institut für Informatik, TU München, (2004).

14. A. Krahnke. Adaptive Verfahren höherer Ordnung auf cache-optimalen Datenstruk-
turen für dreidimensionale Probleme. Doctoral thesis, Institut für Informatik, TU
München, (2005).

15. F. Günther. Eine cache-optimale Implementierung der Finite-Elemente-Methode.
Doctoral thesis, Institut für Informatik, TU München, (2004).

16. F. Günther, M. Mehl, M. Pögl, Ch. Zenger. A cache-aware algorithm for PDEs
on hierarchical data structures based on space-filling curves. SIAM Journal on
Scientific Computing, in review.

Cache-Optimal Data-Structures for Hierarchical Methods 147

17. M. Langlotz. Parallelisierung eines Cache-optimalen 3D Finite-Element-
Verfahrens. Diplomarbeit, Institut für Informatik, TU München, (2004).

18. W. Herder. Lastverteilung und parallelisierte Erzeugung von Eingabedaten für ein
paralleles Cache-optimales Finite-Element-Verfahren. Diplomarbeit, Institut für
Informatik, TU München, (2005).

19. F. Günther, A. Krahnke, M. Langlotz, M. Mehl, M. Pögl, and Ch. Zenger. On the
Parallelization of a Cache-Optimal Iterative Solver for PDEs Based on Hierarchical
Data Structures and Space-Filling Curves. In: Recent Advances in Parallel Virtual
Machine and Message Passing Interface: 11th European PVM/MPI Users Group
Meeting Budapest, Hungary, September 19 - 22, 2004. Proceedings, Lecture Notes
in Computer Science, Vol. 3241/2004, Springer, Heidelberg, (2004).

20. J. Seward, N. Nethercote, and J. Fitzhardinge. cachegrind: a cache-miss profiler;
http://valgrind.kde.org/docs.html

21. HP invent. perfmon: create powerful performance analysis tools wich use
the IA-54 Performance Monitoring Unit (PMU); http://www.hpl.hp.com/
research/linux/perfmon/index.php4.

22. M. Frigo, C. E. Leierson, H. Prokop, and S. Ramchandran. Cache-oblivious algo-
rithms. In: Proceedings of the 40th Annual Sympoisium on Foundations of Com-
puter Science, New York, (1999), 285-297.

23. E. D. Demaine. Cache-Oblivious Algorithms and Data Structures. In: Lecture Notes
from the EEF Summer School on Massive Data Sets, University of Aarhus, Den-
mark, June 27-July 1, Lecture Notes in Computer Science, Springer, (2002).

24. M. Kowarschik, C. Weiß. DiMEPACK – A Cache-Optimal Multigrid Library. In:
Arabnia (ed.), Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Application (PDPTA 2001), Las Vegas, USA
I, (2001).

25. M. Langlotz, M. Mehl, T. Weinzierl, and C. Zenger. SkvG: Cache-Optimal Parallel
Solution of PDEs on High Performance Computers Using Space-Trees and Space-
Filling Curves. In: A. Bode und F. Durst (eds.), High Performance Computing in
Science and Engineering, Garching 2004, Springer-Verlag, Berlin Heidelberg New
York, (2005), 71-82.

26. C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, C. Weiß. Cache Optimization for
Structured and Unstructured Grid Multigrid. Electronic Transactions on Numeri-
cal Analysis 10, (2000), 21-40.

27. M. Kowarschik, C. Weiß. An Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms. In: Meyer, Sanders, and Sibeyn (eds.), Algo-
rithms for Memory Hierarchies – Advanced Lectures; Lecture Notes in Computer
Science 2625, Springer, (2003), 213-232.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 148 – 159, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CSTallocator: Call-Site Tracing Based Shared Memory
Allocator for False Sharing Reduction

in Page-Based DSM Systems

Jongwoo Lee1, Sung-Dong Kim2, Jae Won Lee3, and Jangmin O4

1 Dept. of Multimedia Science, Sookmyung Women’s University, Seoul 140-742, Korea
bigrain@sookmyung.ac.kr

2 Dept. of Computer Engineering, Hansung University, Seoul 136-792, Korea
sdkim@hansung.ac.kr

3 School of Computer Science and Engineering, Sungshin Women’s University,
Seoul 136-742, Korea

jwlee@cs.sungshin.ac.kr
4 NHN corp., 9th Fl. Venture Town Bldg. 25-1 Jungja-dong Bungdang-gu, Gyunggi-do,

463-844, Korea
jmoh@nhncorp.com

Abstract. False sharing is a result of co-location of unrelated data in the same
unit of memory coherency, and is one source of unnecessary overhead being of
no help to keep the memory coherency in multiprocessor systems. Moreover,
the damage caused by false sharing becomes large in proportion to the
granularity of memory coherency. To reduce false sharing in page-based DSM
systems, it is necessary to allocate unrelated data objects that have different
access patterns into the separate shared pages. In this paper we propose call-site
tracing-based shared memory allocator, shortly CSTallocator. CSTallocator
expects that the data objects requested from the different call-sites may have
different access patterns in the future. So CSTallocator places each data object
requested from the different call-sites into the separate shared pages, and
consequently data objects that have the same call-site are likely to get together
into the same shared pages. We use execution-driven simulation of real parallel
applications to evaluate the effectiveness of our CSTallocator. Our observations
show that our CSTallocator outperforms the existing dynamic shared memory
allocator.

Keywords: False Sharing, Distributed Shared Memory, Dynamic Memory
Allocation, Call Site Tracing.

1 Introduction

In distributed shared memory (DSM) systems, efficient data caching is critical to the
entire system performance due to their non-uniform memory access time
characteristics. Because the access to a remote memory is much slower than the
access to a local memory, reducing the frequencies of the remote memory accesses
with efficient caching can lead to decrease of the average cost of memory accesses,
and subsequently improve the entire system performance [1]. A simple and widely

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 149

P1

B

P2

B

Pn

B

Interconnection Network

M1 Mm

...

...

...
Cache

Memory
B

Fig. 1. Example of page replication in DSM systems

used mechanism for exploiting locality of reference is to replicate or migrate
frequently used pages from remote to local memory [2]. But in case of page
replication, the existence of multiple copies of the same page causes memory
coherence problem (Fig. 1).

In DSM systems, false sharing happens when several independent objects, which
may have different access patterns, share the memory coherency unit. Memory faults
or misses caused by false sharing do not affect the correct executions of the parallel
applications. As a result, we can say that false sharing is one major source of
unnecessary overhead to keep the memory consistent [3, 4, 5, 6]. Especially, the
problem becomes severe in PC-NOW DSM systems where the memory coherency
unit is very large (generally, one virtual page). They say that the false sharing misses
occupy 80% or so of the shared memory faults in page-based DSM systems [3, 4, 5,
6]. It means that the false sharing is the major obstacle for improving the memory
performance in page-based DSM systems. In this paper, we present an efficient
dynamic shared memory allocator for false sharing reduction in DSM system. The
reasons why we chose to optimize dynamic shared memory allocator for reducing
false sharing are that this approach is transparent to the application programmers, and
almost all the false sharing misses happen in shared heap when multiple processes in
a parallel application communicate with each other using shared memory allocated by
dynamic shared memory allocator. The prediction of the future access patterns of each
data object is necessary to reduce the false sharing misses caused by the data object.
To accomplish this, we classify the data objects such that data objects requested at
different locations in parallel program codes should not be allocated in the same
shared page by tracing the call-site(object request location in parallel program codes).
This is based on the idea that data objects requested at the different locations in
program codes will show different access patterns in the future. Though the prediction
technique of the access patterns we use is not always correct, we find out that our call-
site tracing prediction technique could reduce the false sharing in comparison with
other existing techniques. In order to measure the frequencies of page faults caused by
false sharing(shortly false sharing misses), we use SPLASH and SPLASH II as a
parallel application benchmark, and MINT as a multiprocessor architecture simulator.

150 J. Lee et al.

In section 2, we review the related works. Section 3 explains the design and
implementation of the call-site tracing-based shared memory allocator. We present the
results of performance evaluation in section 4, and section 5 draws the conclusions.

2 Related Works

In this paper, we focus on the page-based DSM systems that keep the memory
coherency in unit of a virtual memory page. The dynamic shared memory allocator
for the page-based DSM systems has to decide where the requested data objects are
placed. If the dynamic shared memory allocator knows the characteristics and access
patterns of the requested data objects in advance, the allocator can easily place the
data objects into the appropriate shared page with removing the causes of the false
sharing. For example, the allocator can reduce the false sharing misses by placing the
objects with much different access patterns to the different shared pages, or not
placing non-related data objects into the same shared page. But, the dynamic shared
memory allocator cannot know the characteristics and access patterns of the requested
objects in advance. Therefore, the typed allocation is proposed in [7] where the clues
provided by the programmers are used. In this typed allocation, the programmer must
specify the memory access type through the allocation function arguments, such as
Read-Only, Write-Mostly, and Lock types. Thus, the data objects with different types
could be placed in the different shared pages. But, this scheme needs to additional
overheads that user interfaces of the dynamic shared memory allocator have to be
changed, and in turn the modification of the application source code is unavoidable.
Moreover, it is not an easy job for the programmers to know in advance the access
types of each shared data object. Our work assumes that there is no change in the API
of the dynamic shared memory allocator.

Per-process allocation scheme assigns the different cache lines to the data objects
requested by the different processes [3]. In this scheme, the data objects requested by
the different processes are placed in the separate cache lines, so that it could reduce
the possibility that data objects without relationships or with different access patterns
are placed in the same cache line. This technique is effective where multiple
processes request shared memory allocation evenly, but is likely to be ineffective
where a dedicated process has the full responsibility of shared memory allocation [8].
In all the parallel applications used in our experiments, a dedicated process is also
used for shared memory allocation, so it is inappropriate to compare this scheme with
our approach.

Sized allocation scheme is proposed in [5, 6, 8], where the different-sized objects
are prohibited from being placed in the same shared page. That is, by placing only the
same-sized objects in the same shared page, this method tries to minimize the co-
location of heterogeneous data objects. They say that, by using the object-size
information for the prediction of the future access patterns, the transparency of the
allocator API could be kept and the false sharing misses could be reduced
simultaneously. Particularly according to [8], allocation with separated tag scheme
and minimizing the multi-page spanning scheme could additionally reduce the false
sharing misses. But this sized allocation is not enough to exactly predict the future
access patterns of the shared data objects because the object size may not sufficiently

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 151

represent the future access patterns. In our work, we will compare our call-site tracing
technique with this sized allocation technique because these two methods have the
similar assumptions that the interface of the dynamic shared memory allocator must
not be modified and the shared memory allocation must be effective regardless of the
existence of the allocation-dedicated process.

In [9], the hybrid allocation technique is proposed, which combines per-processor
allocation and minimizing the multi-page spanning scheme. In this hybrid scheme,
data objects requested by the different processors are placed in the different pages
only when the object size is smaller than the page size. When the size of the data
objects is bigger than the page size, on the other hand, they try to minimize the multi-
page spanned allocations by prohibiting a shared object from being allocated in the
page boundary. This technique could reduce the false sharing misses a little more by
only combining the existing methods. But it is insufficient to accept this technique as
a new prediction model of the future access patterns.

We find out by reviewing the previous works that the effective prediction of the
future access patterns to be applied to the shared object allocations is an important
factor to reduction of the false sharing misses. The shared objects which may have
different access patterns must be placed in the different memory coherency unit. In
this paper, we present call-site tracing based shared memory allocator, shortly called
CSTallocator, where the future access patterns are predicted by the shared objects’
request location(call-site) in the program codes. That is, the prediction is based on the
instruction pointer from which the shared object allocation is requested. We hope that
the objects with different call-sites may have the different access patterns in the
future. By using the implicit information inherent in the program codes, our method
not only keeps the API transparency, but also does not burden the programmers with
the additional access type information. The call-site information of a shared object
could be a useful clue for predicting the future access patterns because most parallel
application programs call the allocation functions at different locations according to
the object usage plans. Of course, the call-site tracing cost is more expensive than the
cost of getting static information such as the allocation size passed via parameters or
processor/process ID calling the function. Nevertheless, we can say that the call-site
tracing overhead is not quite large because a call-site tracing procedure happens at a
time only when the new call-site appears.

3 Design and Implementation of CSTallocator

With the information about objects’ request locations in the program codes, we can
infer the object’s usage more accurately than with the object-size because multiple
processes(or threads) cannot help to call the allocator at the different call-site
according to the object’s future usage. We expect that the future access patterns of the
shared objects requested at different call-sites will be different even though the object
sizes are the same. The only case that our expectation becomes wrong is when the
usage of data objects requested at the same call-site changes abruptly and/or
frequently. But it is difficult for the usage of the specific part of the program code to
be dynamically changed, so we can use the object request call-sites as a clue for
predicting the object’s future access patterns.

152 J. Lee et al.

…
…

…
…

…
…

Fig. 2. Shared objects allocation example according to the call-sites in CSTallocator

Fig. 2 shows an example of the call-sites of each shared object in a parallel
application program. In this figure, the shared objects are placed in the separate
pages according to their allocator call-sites. The key idea is to prevent the shared
objects requested at the different call-sites from being placed in the same shared
page, while the different sized objects are allowed to be in the same page if the
objects are requested at the same call-site. In our experiments, we intentionally
allow this situation for the exact one-to-one comparison with the sized allocation
scheme. In addition, we exclude the mixture scheme of call-site tracing and sized
allocation for the accurate comparison of the two methods. Though the mixture
technique considering both the call-site and object size is expected to show better
performance, we do not discuss about the mixture technique here, and leave it as a
future work.

3.1 Call-Site Tracing Technique

To accomplish the call-site tracing based allocation, firstly we have to identify the
call-site where the shared memory allocation function is called in the program codes.
The identification procedure must be done dynamically and transparently in the
shared memory allocation function without additional formal parameters. For this
purpose, we embed a module called call path back tracker, into the shared memory
allocator. By back tracking the activation records accumulated in the process’s (or
thread’s) stack, we could identify the call path from main(), the starting point of the
program, to the current call-site. A return address has to be stored in the activation
record for returning from the function call, and we could get this return address by
identifying the size of local variables and the parameters used in the function. The
stack back-tracking repeats till the main() function. For example, if we get
“share_malloc() B() A() main()” from the stack back-tracking at a certain
call-site, the ID of this call-site is represented as “A B”. The share_malloc() and
main() functions are excluded in the call site ID representation because they always

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 153

A()
{

…
B();
…

}
B()
{

…
Share_Malloc(); // Call Site SN
…

}
Share_Malloc()
{

Call_Site_ID = Stack_Tracer();
…

}

……

A()’s Stack
Record

B()’s Stack
Record

Share_Malloc()’s Stack
Record

Call-Site Tracing Results

Call-Site SN’s ID : A B

Fig. 3. An example of identifying call-site ID by call-site tracing

appear in every call-site ID. Fig. 3 shows an example of call-site tracing. In this
figure, the call-site, SN, is identified and registered with a call-site ID “A B”. And
then, the shared objects with different call-site IDs are allocated in the different
shared pages.

For the performance trade-offs of the stack back tracking, we have to consider the
back tracking depth of function call paths. As a rule, a call-site ID can be defined
after the back tracking to main() is completed. But in some parallel applications, we
could identify all the call-sites without back tracking to main(). Therefore, we may
decrease the overhead caused by the redundant stack back tracking if we could choose
dynamically between the deep tracing and the shallow tracing. But the
implementation of the dynamically depth-controlled back tracking is impossible
because we cannot know the appropriate back tracking depth in advance to identify all
the call-sites in a parallel application. So in our experiments, we will statically
measure the effect of the back tracking depth adjustment on the performance. To do
this, we define length-N call chain, which is the first N call paths from share_malloc()
to main(). For example, length-1 call chain identifies only function B() which calls
share_malloc(). In the same way, length-2 call chain includes function B(), which
calls share_malloc(), and function A(), which calls B(), in the call-site ID. The longer
the length of call chain, the deeper back tracking is to be done. In the prospect of the
call chain length, we can expect that the possibility of false sharing would drop when
using the longer length of call chain because it could identify the call-sites minutely.

3.2 Examples of Call-Site Tracing in Parallel Application Programs

Fig. 4 shows the call-site tracing results for the parallel applications used in our
experiments. This figure summarizes all the paths from the main() to the call-sites
identified during the applications’ run-time. As we can see in this figure, cholesky(fig.
4(a)) and volend(fig. 4(d)) have a relatively large number of call-sites, on the other
hand, mp3d(fig. 4(b)) and barnes(fig. 4(c)) have much smaller number of call-sites
than the others. For convenience, we exclude the functions that have no call-site in
this figure.

As we can see in this figure, most parallel application programs request shared
memory at various locations in the program codes. In addition, we expect that the
future access patterns to the shared objects allocated from the different call-sites are

154 J. Lee et al.

(a) Result of call-site tracing in Cholesky (maximum call chain length = 2).

(b) Result of call-site tracing in Mp3d (c) Result of call-site tracing in Barnes

(maximum call chain length = 1) (maximum call chain length = 1)

(d) Result of call-site tracing in Volrend (maximum call chain length = 2)

Fig. 4. Call-site tracing results in the four parallel application programs

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 155

likely to differ from each other because the different call-sites mean the different
programmer’s intention. We are sure that our approach can reduce the false sharing
misses because it prevents the shared objects with different access patterns from being
allocated in the same shared page. Of course, the cost of stack back tracking increases
in proportion to the length of call chain, but we can find out that the lengths of call
chains are not altogether long in most applications as shown in fig. 4. The maximum
length of call chain in the four parallel application programs used in our experiment is
only 2, so we could identify all the call-sites by using shallow tracing only.

4 Performance Evaluation

This section explains the experimental environments and shows the results of the false
sharing misses measurement, comparing with the performance of the two allocators,
CSTallocator and the sized allocator.

4.1 Experimental Environments

We use the execution-driven technique to simulate a DSM system consisting of 16
nodes. The simulator consists of the front-end and the back-end simulators. The front-
end simulator interprets the execution codes of the parallel application program
binaries and simulates the executions of the processors. We use MINT(Mips
INTerpreter) [10, 11] as a front-end simulator. The back-end simulator simulates the
policies of the memory management system using MINT’s outputs. MINT interprets
the execution codes and calls functions provided by the back-end simulator in every
memory reference. The back-end simulator implements the memory management
policies and the memory coherence protocols to be simulated.

We use cholesky, mp3d, barnes, and volrend as parallel application program suites.
These parallel applications are randomly selected from the Stanford’s SPLASH [12]
and SPLASHII [13]. We compare the number of false sharing misses when using the
two allocation schemes, CSTallocator and sized allocation scheme. We also measure
the effects of the length of call chain, N, on the number of false sharing misses when
using CSTallocator.

4.2 Experimental Results

Table 1 shows how many false sharing misses are reduced in each parallel application
when using our CSTallocator. The number of buckets in the second column is the
number of the unique allocation slots found during the repeated shared memory
allocation function calls. It represents the number of object sizes when using the sized
allocation scheme, and the number of call-site IDs when using our CSTallocator
respectively. Both the shared memory allocators manage the allocated objects as a
linked list using the separate pointers for each bucket. The shared pages with the same
bucket pointers are assigned to data objects with the same call-site ID or object size.
Thus, the more buckets are found, the more sophisticated classification has been done.
In general, the false sharing misses will decrease when the number of buckets
increases.

156 J. Lee et al.

Table 1. Results of performance comparison of CSTallocator and sized allocation (page size =
4KB, N = length of call chain)

(a) Cholesky

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 10 44,717

Call-Site-Tracing (N = 1) 15 40,921 8.5

Call-Site-Tracing (N = 2) 17 36,599 18.2

(b) Mp3d

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 8 6,147,589

Call-Site-Tracing (N = 1) 5 5,754,143 6.4

(c) Barnes

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 27 5,805,705

Call-Site-Tracing (N = 1) 7 5,104,413 12.1

(d) Volrend

Measure
Allocator

of buckets # of false sharing misses Reduction rate(%)

Sized 11 953

Call-Site-Tracing (N = 1) 8 931 2.3

Call-Site-Tracing (N = 2) 12 883 7.3

From the result of table 1, we can see that our CSTallocator is much more effective
for the false sharing reduction than the existing sized allocation scheme for all the
parallel application programs used in our experiment. This observation indicates that
the object request location in program codes, that is call-site, can be a better clue than
the object size for predicting the objects’ future access patterns. For example, we find
out that the number of false sharing misses rather decreased for mp3d and barnes in
which the sized allocation scheme uses more buckets. To our expectations, the false
sharing misses reduction ratios of cholesky and volrend becomes larger in proportion
to the length of call chain. This means that the future access patterns of the objects
could be predicted more accurately with the fine-grained call-site identification.
Moreover, the fact that the false sharing misses decrease even though the number of
buckets decreases supports that our CSTallocator is also more effective in space
efficiency than the sized allocation scheme.

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 157

4.3 Analysis of Space Efficiency

For the strict performance evaluation, we need to analyze space overheads caused by
CSTallocator and the sized allocation scheme. The space overhead is the amount of
memory used additionally by the proposed methods. For more accurate space
efficiency analysis, we need to analyze the time efficiency in conjunction with space
efficiency. But in our experiments, it is impossible to measure the actual execution
time of the allocation functions because we use the simulation method instead of real
executions. So we do not discuss about the time efficiency here, and leave it as a
future work.

At first, we analyze the general shared memory allocator, which does not use the
buckets such as object size or call-site ID. In the general shared memory allocator, the
objects can be mixed up into the same shared page according to the sequence of
requests. So in the general allocator, the allocation requests stream, S, is represented as:

},...,,{ 21 nsssS =

 where si = requested size of i-th allocation (1 ≤ i ≤ n), n = total # of requests.
(1)

The number of pages needed to accept the above allocation requests stream is as
follows:

⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢

⎢

⎡

=
∑

=

size page
 required pages of # 1

n

i
is

 (2)

On the other hand, when using CSTallocator or sized allocation scheme, the
allocation request stream can be represented as follows without considering the order
of requests:

IDs.bucket unique ofset : },...,,{

,...

,IDbucketwithsallocationofset

},,...,,{

21

21

21

k

bucketbucketbucket

kbucket

bucketbucketbucket

bucketbucketbucketBS

SSS

bucketS

SSSS

k

k

k

=

∅=∩∩∩

=

=

(3)

And the number of pages needed to accept the above stream is as follows:

,
size page

||
 required pages of # ∑

∈
⎥
⎥

⎤
⎢
⎢

⎡ ×
=

BSbucket

bucketbucket

k

kk
AvgSizeS

 where
kbucketAvgSize is average size of each allocation request heading for

 bucketk.

(4)

In comparison of the equation (2) with (4), the difference lies in the number of
ceiling function. In equation (2), the ceiling function is applied at once, while it is
applied as many as the size of the set BS (|BS|) in equation (4). This means that the

158 J. Lee et al.

maximum additional number of pages is limited to the number of the unique
allocation sizes in sized allocation scheme and the number of call-site IDs in
CSTallocator respectively. Thus, the following is valid:

||
size pagesize page

||
 OverheadSpace 1 BS

sAvgSizeS

n

i
i

BSbucket

bucketbucket

k

kk ≤
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡ ×
=

∑
∑ =

∈

 (5)

The obvious fact we can obtain from the above equations is that the shared page
overhead is no more than the number of buckets regardless of which bucket
classification methods are used. Table 2 shows the comparison results about the space
efficiency measured by equation (5). As we can see in this table, the space efficiency
of CSTallocator is better than that of the sized allocation scheme for mp3d and
barnes, but is a little worse for cholesky and volrend. It means that the space
efficiency gap between the two schemes is not quite large. Moreover, nowadays the
space overhead such like the above can be surely tolerable if the memory
specification of the current computer systems is taken into account.

Table 2. Space efficiencies of the two schemes (Page size = 4KB. In CSTallocator, maximum
length of the call chain is used)

of additional pages (space overhead (%)) Parallel application programs
(total # of pages needed in
general allocation method) Sized allocation CSTallocator

 Cholesky (738) 10 (1.36) 17 (2.30)
 Mp3d (553) 8 (1.45) 5 (0.90)
 Barnes (308) 27(19.85) 7 (5.15)

 Volrend (441) 11 (2.49) 12 (2.72)

5 Conclusions and Future Works

This paper presents an efficient shared memory allocation method for parallel
applications which communicate via dynamically allocated shared memory in DSM
systems. Without modifying the user interface of the shared memory allocator, the
proposed call-site tracing-based allocator, called CSTallocator, can reduce the false
sharing misses more effectively than the existing sized allocation scheme. Our
CSTallocator prevents the shared objects with different call paths being allocated in
the same shared page by tracing the object request location in the application program
codes. We use the call-site as a clue for predicting the programmer’s intention, and
find out by simulation that the call-site help to predict the future access patterns of the
shared objects more accurately than the existing sized allocation scheme. The
CSTallocator additionally spends pages only as many as the number of unique call-
sites in the applications. That is, our method could reduce more false sharing misses
with a moderate space overhead than the sized allocation scheme. We are sure that
our CSTallocator can contribute to both reduction of the false sharing misses and
reduction of the cost on keeping the memory coherency in DSM systems.

 CSTallocator: Call-Site Tracing Based Shared Memory Allocator 159

In the future, we will verify how many false sharing misses can be reduced when
using the mixture scheme of the sized allocator and our CSTallocator. And to measure
the time efficiency as well as space efficiency, we will try to use the real DSM
systems as a test bed instead of simulation environments.

References

[1] Andrew S. Tanenbaum. Distributed Operating Systems, chapter 6, pages 333-345.
PRENTICE HALL, 1995.

[2] Jongwoo Lee, Yookun Cho. Page Replication Mechanism using Adjustable DELAY
Counter in NUMA Multiprocessors. Journal of the Korean Institute of Telematics and
Electronics B, 33B(6), pp.23-33, June 1996.

[3] Josep Torrellas, Monica S. Lam, and John L. Hennessy. Shared Data Placement
Optimizations to Reduce Multiprocessor Cache Miss Rates. In Proceedings of the 1990
International Conference on Parallel Processing, volume II(Software), pages 266-270,
August 1990.

[4] Susan J. Eggers and Tor E. Jeremiassen. Eliminating False Sharing. In Proceedings of the
1991 International Conference on Parallel Processing, volume I(Architecture), pages
377-381, August 1991.

[5] Jongwoo Lee, Yookun Cho. Shared Memory Allocation Mechanism for Reducing False
Sharing in Non-Uniform Memory Access Multiprocessors. Journal of Korean Information
Science Society(A): Computer Systems and Theory, 23(5), pp.487-497, May 1996.

[6] JongWoo Lee and Yookun Cho. An Effective Shared Memory Allocator for Reducing
False Sharing in NUMA Multiprocessors. In Proceedings of 1996 IEEE 2nd International
Conference on Algorithms & Architectures for Parallel Processing(ICA3PP '96), pages
373-382, June 1996.

[7] Roger L. Adema and Carla Schlatter Ellis. Memory Allocation Constructs to
Complement NUMA Memory Management. In Proceedings of the 3rd IEEE Symposium
on Parallel and Distributed Processing, December 1991.

[8] Jongwoo Lee, Moonhee Kim, Janghee Han, Daeku Ji, Jongwan Yoon, Jangseon Kim.
Effects of Dynamic Shared Memory Allocation Techniques on False Sharing in DSM
Systems. Journal of Korean Information Science Society(A): Computer Systems and
Theory, 24(12), pp.1257-1269, December 1997.

[9] Boohyung Han, Seongje Cho, Yookun Cho. Techniques for Eliminating False Sharing
and Reducing Communication Traffic in Distributed Shared Memory Systems. Journal of
Korean Information Science Society(A), 25(10), pp.1100-1108, October 1998.

[10] J. E. Veenstra. MINT Tutorial and User Manual. Technical Report TR452, Computer
Science Department, University of Rochester, July 1993.

[11] J. E. Veenstra and R. J. Fowler. MINT: A Front End for Efficient Simulation of Shared-
Memory Multiprocessors. In Proceedings of the Second International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication Syst-
ems(MASCOTS '94), pages 201-207, January-February 1994.

[12] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. ACM SIGARCH Computer Architecture News, 20(1):5-44, March 1992.

[13] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH2 Programs: Characterization and Methodological Considerations. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 24-36, June 1995.

Performance Evaluation of Storage Formats for
Sparse Matrices in Fortran

Anila Usman1, Mikel Luján2, Len Freeman2, and John R. Gurd2

1 Department of Computer & Information Sciences,
PIEAS (Pakistan Institute of Engineering & Applied Science),

Islamabad, Pakistan
anila@pieas.edu.pk

2 Centre for Novel Computing, The University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom

{mlujan, len.freeman, john.r.gurd}@manchester.ac.uk

Abstract. Many storage formats have been proposed to represent spa-
rse matrices. This paper extends to Fortran 95 the performance eval-
uation of sparse storage formats in Java presented at ICCS 2005, [7].
These experiments have the same set up (almost 200 sparse matrices and
matrix-vector multiplication), but now consider the Fortran 95 Sparse
BLAS reference implementation.

Keywords: Sparse matrix, storage format, Sparse BLAS, performance
evaluation, JSA (Java Sparse Array).

1 Introduction

Sparse matrices (matrices with a substantial minority of nonzero elements, nor-
mally less than 10% nonzero elements) are pervasive in many mathematical and
scientific applications. These matrices provide an opportunity to minimise stor-
age and computational requirements by storing, and performing arithmetic with,
only the nonzero elements. The many existing storage formats for sparse matri-
ces are derived from different means of taking advantage of sparsity patterns in
frequently occurring matrices.

The Basic Linear Algebra Subroutines (BLAS) standard includes for the first
time a set of subroutines dedicated to operating with sparse matrices [3]. This
part of the standard, hereafter referred to as the Sparse BLAS, primarily pro-
vides functionality for iterative methods. The Sparse BLAS does not state which
storage formats must be supported, but ensures that the storage format used is
completely transparent to the users. The Sparse BLAS leaves each specific hard-
ware vendor the freedom to select the storage format (or formats) that performs
best for its specific platforms.

In ICCS 2005 [7], the authors present a performance evaluation of different
storage formats for sparse matrices in Java using the main kernel of iterative
methods for linear systems: matrix-vector multiplication. The results show that
a recently proposed storage format for Java, namely the Java Sparse Array (JSA)

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 160–169, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Evaluation of Storage Formats for Sparse Matrices in Fortran 161

[6] performs similarly to, or better than, other long established storage formats.
This paper concentrates on the performance of the same matrix operation and
same storage formats with the same test matrices, but now their implementations
are in Fortran 95 and belong to the reference implementation of the Sparse
BLAS [4]. The JSA implementation has been translated to Fortran 95 and it is
considered in the experiments.

The outline of the paper is as follows. Section 2 provides a brief description
of some commonly used storage formats for sparse matrices and the JSA stor-
age format. The Sparse BLAS reference implementations of the matrix-vector
multiplication and other implementations used in the performance evaluation
are described in Section 3. The performance evaluation (see Section 4) compares
this operation using eight different storage formats. Around two hundred differ-
ent symmetric/non-symmetric sparse matrices are considered in the performance
study. Preliminary conclusions are given in Section 5.

2 Storage Formats for Sparse Matrices

There are many documented versions of different storage formats for sparse
matrices. One of the most complete sources is the book by Duff et al. [2] (for a
historical source see [8]). Some examples of these storage formats follow.

2.1 Compressed Sparse Row/Column Storage Formats (CSR/CSC)

CSR and CSC storage formats are not based on any particular matrix property
and hence can be used to store any sparse matrix. In CSR, the nonzero values of
every row in the matrix are stored together with their column number, consec-
utively in two parallel arrays, Value and Col. There is no particular order with
respect to the column number, Col. The Size and Pointer for each row define the
number of nonzero elements (nnze) in the row and point to the relative position
of the first nonzero element of the row. Fig. 1 presents a sparse matrix stored
in CSR.

The column based version, CSC, instead stores Value and Row, in two parallel
arrays. Size and Pointer of each column allow each member of Value to be
associated with a column as well as the row given in Row.

2.2 Block Entry Storage Formats

Block entry storage formats divide a matrix into blocks or submatrices (squares
or rectangles) and define schemes to describe the memory position of a single
block. If the block size remains fixed, for example, Block Sparse Row/Column
(BSR/BSC) storage format can be obtained from CSR/CSC, respectively. Sim-
ilarly, when the block size can vary the Variable Block Compressed Sparse
Row/Column formats (VBR/VBC) are obtained.

162 A. Usman et al.

A =

⎛
⎜⎜⎜⎜⎝

a12

a23 a25

a33 a35

a41 a42 a44

a54

⎞
⎟⎟⎟⎟⎠

i 1 2 3 4 5
Size 1 2 2 3 1

Pointer 1 2 4 6 9

1 2 3 4 5 6 7 8 9
Col 2 3 5 5 3 1 4 2 3

V alue a12 a23 a25 a35 a33 a41 a44 a42 a54

Fig. 1. An example sparse matrix A stored using CSR

Index Value

2

3 5

3 5

1 2 4

4

a a

aa

a a a

a

a12

23

54

444241

35

25

33

Fig. 2. The sparse matrix A stored using JSA

2.3 Java Sparse Array (JSA)

A recent storage format, designed particularly to suit Java, is JSA (Java Sparse
Array), see Gundensen and Steihaug [6] for more details. JSA relies on being able
to declare an array with individual elements being arrays – arrays of arrays. JSA
is a row oriented storage format, similar to CSR. In Fortran 95, it is implemented
as two arrays, each element of which is a pointer to an array. One of these arrays,
Value, stores pointers to arrays which contain the matrix elements – each row
in the matrix has its elements in a separate array. All the separate arrays can
be reached through the pointers in the Value array; that is an array of pointers
to arrays. The second array Index stores pointers to arrays which contain the
column indices of the matrix, again one array per row. Fig. 2 shows the matrix
A stored using JSA.

3 Fortran Implementations of Matrix-Vector Multiply

3.1 Reference Implementation of the Sparse BLAS

The Fortran 95 reference implementation of the Sparse BLAS was developed by
CERFACS [4]. Although the standard does not indicate which storage formats
must be supported, the Sparse BLAS reference implementation (SBF95) includes

Performance Evaluation of Storage Formats for Sparse Matrices in Fortran 163

nine different storage formats (Coordinate or COO, CSR, CSC, diagonal or DIA,
Block Coordinate or BCO, BSR, BSC, Block Diagonal or BDI and VBR1 — see
[2] for descriptions).

To use sparse matrices with the Sparse BLAS consist of three steps: (1) create
a sparse matrix handle, (2) use this handle as a parameter in the Sparse BLAS
routines, and (3) free any resources associated with the handle when it is no
longer required.

For the first step and third step, the SBF95 uses a linked list to keep track of
the different created/freed sparse matrices or handles. The handle is an integer
used to access to the linked list which points to internal2 data types implementing
each of the mentioned storage formats. These hold specific information about
the created matrix (such as the number of rows and columns, whether it is
symmetric, etc.) and pointers to the arrays necessary for each of the different
storage formats.

For the second step, the SBF95 transforms the handle into an internal pointer
to the sparse matrix representation. Then several checks are performed for the
correctness of the parameters (if these checks fail no part of the multiplication
is performed and the execution stops immediately). For matrix-vector multipli-
cation, 5 different checks are carried out, of which 4 involve subroutine calls to
access data in the internal data types. After these checks, the implementations
of matrix-vector multiplication present an if-then-else code structure separating
special cases, where for example, the matrix is symmetric and only the elements
in the upper triangular region are stored, from the general case. The actual im-
plementation for each of the cases is part of the same subroutine; i.e. after the
5 checks no further subroutine call is made.

By default the SBF95 creates matrices in COO. Using internal utilities sub-
routines, users can transform from COO to the other storage formats.

3.2 Fortran Implementation of Java Sparse Array

The implementation of JSA is a separate and self-contained Fortran 95 module
which defines the storage format as a data type. The data type holds the same
information as the internal data types in the SBF95. The module has subrou-
tines to allocate and assign the elements of a matrix, perform the matrix-vector
multiplication and deallocate the memory used by a matrix.

Comparing the implementation of matrix-vector multiplication in JSA with
those in the SBF95, the same checks and the same if-then-else structure are
present. However the checks do not involve subroutine calls, and there is no
handle to be translated into an internal representation.

4 Performance Evaluation

Matrix test data consists of 182 real, sparse symmetric and non-symmetric matri-
ces available to download from the Matrix Market Collection [1] covering both
1 The storage formats BDI and VBR are not used in the performance evaluation.
2 Hereafter the word internal also means not part of the Sparse BLAS standard.

164 A. Usman et al.

Table 1. Legend for the storage formats axis in Fig. 3

1 COO 7 BSC block size 2 13 BSC block size 8
2 CSR 8 BCO block size 4 14 BCO block size 16
3 CSC 9 BSR block size 4 15 BSR block size 16
4 DIA 10 BSC block size 4 16 BSC block size 16
5 BCO block size 2 11 BCO block size 8
6 BSR block size 2 12 BSR block size 8

systems of linear equations and eigenvalue problems, and representing many
fields of Computational Science & Engineering.

The test program reads a matrix from file, multiplies a random vector by
that matrix and records both the result vector and the time taken to calculate
the result vector. The test program progresses in this way through the different
implementations of the matrix operation. The test program checks the output
results and we note that all the experiments produce the correct results.

The test machines are the same as those used in [7] to allow direct compari-
son. However, due to space limitations only results for one of the machines are
reported; an Ultra Sparc 10 running Solaris and Sun’s Fortran 95 compiler with
optimisation flag -fast. In order to obtain meaningful times, the experiments
report the execution times for each matrix-vector multiplication repeated 50
times. This not only gives timing results that are large enough compared with
the accuracy of the timers (milliseconds), but is also a realistic simulation of
the sequence of matrix-vector multiplications that dominates iterative methods
in numerical linear algebra. The complete test program is run 10 times and the
average of these times are reported.

4.1 SBF95 Performance Results

Fig. 3 gives the results of 8 different storage formats included in SBF95 for all
matrices. Square block sizes between 2 and 16 are considered. No distinction is
made between eigenvalue problems and systems of linear equations, nor between
symmetric and non-symmetric matrices. The matrices in the Matrix Number
axis are ordered by increasing nnze (the total number of non-zero elements).

Comparing these results with the results for the other machines not reported
here, all the storage formats follow the same general pattern. For all of the storage
formats there is a correlation between nnze and the observed execution times.

For the smaller problem sizes the block entry storage formats do not perform
significantly differently for different block sizes. However, for the largest prob-
lems, the block entry storage formats, with block sizes of 4 and 8, perform better
than the block formats with other block sizes. This suggests that there is a com-
promise between the gain resulting from more efficient use of the cache and the
loss due to increases in the number of zero elements that are stored as the block
sizes increase. For most of the test matrices, the point entry storage formats
COO, CSR, CSC and DIA perform better than the block storage formats.

Performance Evaluation of Storage Formats for Sparse Matrices in Fortran 165

Fig. 3. Time results (seconds) for all matrices and storage formats. Table 1 presents
the legend for the storage formats axis.

Fig. 4 takes a closer look at the results of CSR (as a typical representative of
COO, CSC and DIA) and BSR with block sizes 4 and 8 (the fastest results among
the block entry storage formats).The results are divided into two graphs (the upper
graph coveringmatrices 1 to 140 and the lower graph coveringmatrices 141 to 182).
For a fewof thematriceswith large numbers of nonzero elements (frommatrix 173),
the performance for BSR with block sizes of 4 and 8 is better than the performance
of the point entry storage formats COO, CSR, CSC and DIA.

Performance Results for JSA
Fig. 5 presents the results of JSA and of the SBF95 implementation of CSR,
referred to as CSR(SBF95) on the figure.

166 A. Usman et al.

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Matrix Number

T
im

in
gs

(s
.)

System A

CSR
BSR(4)
BSR(8)

140 145 150 155 160 165 170 175 180 185
0

0.5

1

1.5

2

2.5

3

Matrix Number

T
im

in
gs

(s
.)

System A

CSR
BSR(4)
BSR(8)

Fig. 4. Time results (seconds) for some selected storage formats

Performance Evaluation of Storage Formats for Sparse Matrices in Fortran 167

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Matrix Number

Ti
m

in
gs

(s
.)

System A

CSR(SBF95)
CSR(JSA)
JSA

140 145 150 155 160 165 170 175 180 185
0

0.5

1

1.5

2

2.5

3

Matrix Number

Ti
m

in
gs

(s
.)

System A

CSR(SBF95)
CSR(JSA)
JSA

Fig. 5. Time results (seconds) for JSA

168 A. Usman et al.

For all matrices JSA is comparable to, or significantly more efficient than,
CSR(SBF95). Note that CSR(SBF95) is the fastest storage format among the
SBF95 implementations for matrix 1 to matrix 173 (see Fig. 4). For the remaining
matrices (matrix 174 to matrix 192), the fastest storage format among the SBF95
implementations is BSR with a block size of 8. Nonetheless, for these matrices
JSA is approximately twice as efficient as BSR with a block size of 8.

The results of Fig. 5 give a clear indication of the advantage of JSA over
the other storage formats. However, although the implementation of the matrix-
vector multiplication for JSA and the SBF95 are similar, there are significant
differences (see Section 3): (1) there is no need for the handle and the linked list
translation or indirection in JSA; and (2) there are four checks, without subrou-
tine calls in JSA, but with subroutine calls in the SBF95. Given that the code
is executed 50 times, these differences could be the source of the performance
advantage of JSA. To test this hypothesis, a CSR implementation following ex-
actly the same style as the JSA implementation (no handle, no subroutine calls
in the four checks) is developed and Fig. 5 presents these results as CSR(JSA).
Comparing JSA and CSR(JSA), the results are indistinguishable up to matrix
177. For the remaining matrices the difference in performance is relatively small,
although it favours the JSA implementation.

Taking this addition experiment into consideration, the conclusion remains
that JSA is as good as any of the point entry storage formats, with a small
advantage for JSA for those matrices with larger numbers of nonzero elements
(matrices 177 to 182).

5 Conclusions

It would be presumptuous to say that all the storage formats for sparse matrices
are covered by this work. Especially since there are many minor variations which
can create entirely new storage formats. Nonetheless, this paper has presented a
comprehensive performance comparison of storage formats for sparse matrices.
The results have shown that point entry storage formats perform better than
block entry storage formats for most matrices. For a set of around 30 of the ma-
trices with the larger numbers of nonzero elements, BSR with block size 8 has
performed better than the other block entry and point entry storage formats.
The performance evaluation has shown that JSA delivers performance similar
to, or better than, existing storage formats. The performance evaluation has
also identified a performance problem with the SBF95 (Sparse BLAS reference
implementation). This performance problem can be addressed by favouring com-
mon execution paths — check whether the last call to a subroutine was made
with the same handle as the current parameter and accordingly eliminate checks
and translation to internal data structures. The most relevant related work is the
Sparsity project [5]. For a given sparse matrix the Sparsity project has developed
compile time techniques to optimise automatically several sparse matrix kernels
using a specific block entry storage format and selecting an optimal block size.

Performance Evaluation of Storage Formats for Sparse Matrices in Fortran 169

References

1. The matrix market. http://math.nist.gov/MatrixMarket/.
2. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.

Oxford University Press, 1986.
3. I. S. Duff, M. A. Heroux, and R. Pozo. An overview of the sparse basic linear

algebra subprograms: The new standard from the BLAS technical forum. ACM
Transactions on Mathematical Software, 28(2):239–267, 2002.

4. I. S. Duff and C. Vömel. Algorithm 818: A reference model implementation of
the Sparse BLAS in Fortran 95. ACM Transactions on Mathematical Software,
28(2):268–283, 2002.

5. Eun-Jin, K. A. Yelick, and R. Vuduc. SPARSITY: An optimization framework
for sparse matrix kernels. International Journal of High Performance Computing
Applications, 18(1):135–158, 2004.

6. G. Gundersen and T. Steihaug. Data structures in Java for matrix computations.
Concurrency and Computation: Practice and Experience, 16(8):799–815, 2004.

7. M. Luján, A. Usman, P. Hardie, T. L. Freeman, and J. R. Gurd. Storage formats
for sparse matrices in Java. In Proceedings of the 5th International Conference
on Computational Science – ICCS 2005, Part I, volume 3514 of Lecture Notes in
Computer Science, pages 364–371. Springer-Verlag, 2005.

8. U. W. Pooch and A. Nieder. A survey of indexing techniques for sparse matrices.
ACM Computing Surveys, 5(2):109–133, 1973.

Performance Monitoring and Visualization of Grid
Scientific Workflows in ASKALON�

Peter Brunner, Hong-Linh Truong��, and Thomas Fahringer

Institute of Computer Science, University of Innsbruck
{brunner, truong, tf}@dps.uibk.ac.at

Abstract. The execution of scientific workflows in Grids can imply complex
interactions among various Grid applications and resources spanning multiple
organizations. Failures and performance problems can easily occur during the
execution. However, online monitoring and detecting failures and performance
problems of scientific workflows in Grids is a nontrivial task. So far little ef-
fort has been spent on supporting performance monitoring and visualization of
scientific workflows for the Grid. In this paper we present an online workflow
performance monitoring and visualization tool for Grid scientific workflows that
is capable to monitor the performance and to detect failures of Grid workflows.
We also support sophisticated visualization of monitoring and performance result.
Performance monitoring is conducted online and Grid infrastructure monitoring
is integrated with workflow monitoring, thus fostering the chance to detect perfor-
mance problems and being able to correlate performance metrics from different
sources.

1 Introduction

Scientific workflows commonly compose several scientific tools and applications to per-
form complex experiments. The execution of scientific workflows in Grids frequently
implies large amounts of complex interactions among various, diverse Grid applications
and resources spanning multiple organizations. Due to the complexity and the diversity
of both Grid workflows and resources, failures and performance problems can easily
occur during runtime of Grid workflows. To monitor and detect failures and perfor-
mance problems as early as possible at runtime is a key requirement from the scientific
workflows community in the Grid.

However, until now performance monitoring and analysis tools for Grid scientific
workflows are not well supported. Most research effort is dedicated to developing work-
flow languages and execution engines, as shown in [1]. Many existing Grid monitoring
tools [2] do not support Grid scientific workflows. In this paper we present an online
performance monitoring and visualization tool for Grid scientific workflows. The tool
can monitor performance, detect failure of Grid scientific workflows, and present the
monitoring and performance result through a sophisticated, but easy to use, visualiza-
tion. Performance monitoring is conducted online, during the execution of the Grid

� The work described in this paper is supported by the European Union through the IST-2002-
511385 project K-WfGrid.

�� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 170–179, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Monitoring and Visualization of Grid Scientific Workflows 171

workflows, and infrastructure monitoring is also integrated. The user can observe the
performance of workflows as well as the Grid resources the workflow consumes by
requesting and analyzing monitoring data of Grid infrastructure in parallel with appli-
cation monitoring and analysis. As a result, the tool increases the probability to detect
performance problems. Moreover it can correlate performance metrics from different
sources. A prototype of this tool has been integrated into ASKALON environment [3]
for developing scientific workflows in the Grid.

The rest of this paper is organized as follows: Section 2 outlines the ASKALON
workflow system. In Section 3 we describe the architecture of our performance moni-
toring and visualization tool. Section 4 details techniques and features for performance
monitoring, instrumentation and visualization of Grid scientific workflows. We illus-
trate experiments in Section 5. Related work is discussed in Section 6. Section 7 sum-
marizes the paper and gives an outlook to the future work.

2 The ASKALON Environment

Our work on performance monitoring and visualization of scientific workflows in Grids
is conducted in the framework of the ASKALON environment. ASKALON [3] is a
Grid application development and computing environment which provides services for
composing, scheduling and executing scientific workflows in the Grid. The main ser-
vices in ASKALON are the Resource Manager, which is responsible for negotiation,
reservation, allocation of resources and automatic deployment of services; the Sched-
uler, which determines effective mappings of workflows onto the Grid; and the dis-
tributed Execution Engine (EE), which is responsible for the reliable and fault tolerant
execution of workflows. All ASKALON middleware services implement WSRF [4] by
using Globus Toolkit 4.0 [5]. In ASKALON a user can compose Grid workflow appli-
cations using a UML-based workflow composition or can describe workflows using the
XML-based Abstract Grid Workflow Language (AGWL). After the composition, the
workflow is executed by the execution engine.

By using ASKALON a user designs a workflow, submits the workflow and observes
the execution of the workflow on selected Grid sites. Performance bottlenecks and fail-
ures can occur at any time during the execution. A performance monitoring and visual-
ization tool for scientific workflows enriches ASKALON by allowing users to monitor
their running activities on selected Grid sites and to detect failure and abnormal behav-
ior in Grid middleware.

3 Architecture of Workflow Performance Monitoring and
Visualization Tool

Figure 1 depicts the architecture of the performance monitoring and visualization tool
for Grid workflows within ASKALON. The performance monitoring and visualization
tool relies on the SCALEA-G monitoring middleware [6] for collecting Grid infrastruc-
ture and application monitoring data. SCALEA-G services use peer-to-peer technology
to communicate with each other and they can retrieve and store multiple types of mon-
itoring data from diverse sensors.

172 P. Brunner, H.-L. Truong, and T. Fahringer

Fig. 1. Architecture of workflow performance monitoring and visualization tool

At the client side, the main GUI of the performance tool is integrated with the
ASKALON IDE. From the IDE the user can compose workflows, submit them to the
EE, and perform the performance monitoring and analysis of the workflows. Within
distributed EEs, we have sensors capturing execution status of workflows. The sen-
sors send monitoring data to SCALEA-G services which propagate the monitoring data
to the main component (PerfMonVis) of the performance tool via subscription/query
mechanism. On Grid sites where scheduled workflows are executed, sensors are also
used to monitor Grid resources; these sensors provide the infrastructure information
(e.g., machine and networks) of Grid sites. At the client side, monitoring data of Grid
workflows and resources are received through data subscription and query. Monitoring
data is analyzed and the performance results and failures are then visualized in the GUI.

4 Online Performance Monitoring and Visualization

4.1 Instrumentation and Monitoring Data

The execution of a Grid workflow is controlled by the EE under the guidance of the
scheduler. However, invoked applications which perform the real work specified in
workflow activities will be executed on distributed Grid sites by local Grid resource
allocation and management (GRAM). To monitor the performance of Grid workflows,
it is necessary to collect monitoring data not only within EEs but also at Grid sites.

To obtain workflow monitoring data we statically instrument EEs, which control
job and data submissions to different Grid sites. Through the instrumentation, sensors
are manually inserted into EEs to capture all the events associated with the workflow.

Performance Monitoring and Visualization of Grid Scientific Workflows 173

Table 1. Examples of workflow events

Event Name Description
initialized the activity has been initialized
queued the activity gets in the EE queue
submitted the activity has been submitted to the Grid site
active the activity is active
suspended the activity is suspended
completed the activity is completed
failed the activity is failed
canceled the activity is canceled

Table 2. Examples of event attributes

Attribute Name Description
ACTIVITY-NAME original name of the activity
ACTIVITY-INSTANCE-ID name of the activity instance
ACTIVITY-TYPE type of activity
ACTIVITY-PARENT-NAME parent name of the activity instance
COMPUTATIONALNODE machine on which the activity is running
SOURCE-ID source activity of a file transfer
DESTINATION-ID destination activity of a file transfer

These events are then sent to the SCALEA-G middleware. Based on that they can be
retrieved by the performance tool or any services or clients which are interested in
obtaining workflow events. For instrumentation and monitoring at Grid sites, currently
we have infrastructure sensors deployed in Grid sites. These sensors are used to monitor
Grid resources and middleware services, e.g., capturing machine information, network
bandwidth, and availability of GRAM and GridFTP. However, our previous work on
instrumentation of Grid applications [7] has not been integrated into ASKALON.

We use a generic schema to describe various types of events. Basically, an event has
an event name and an event time indicating the time at which the event occurs. Every
event has event attributes that hold detailed monitoring data associated with the event.
Event attribute can be used to store any interesting data, for example computational
nodes on which an invoked application is executed, the source and the destination of a
file transfer between activities, etc. Table 1 presents a few events captured in our system
and Table 2 presents examples of event attributes.

Currently, all monitoring data collected is represented in XML form. Figure 2 pres-
ents examples of real events captured. In Figure 2(a) is an initialized event of a
computational activity; the event consists of activity instance ID, the type of activity,
the name of the parent instance. In Figure 2(b) is a completed event of a file transfer
between two activity instances named first-4 and second-75.

4.2 Online Monitoring and Visualization

Monitoring data collected from different sources, such as distributed EEs and Grid sites,
is published into the SCALEA-G middleware. Each type of monitoring data is identified

174 P. Brunner, H.-L. Truong, and T. Fahringer

<event>
<eventname>activity_initialized
</eventname>
<eventtime>1142499781204</eventtime>
<eventdata>
<attrname>ACTIVITY_NAME</attrname>
<attrvalue>first</attrvalue>

</eventdata>
<eventdata>
<attrname>ACTIVITY_INSTANCE_ID
</attrname>
<attrvalue>first_4</attrvalue>

</eventdata>
<eventdata>
<attrname>ACTIVITY_TYPE</attrname>
<attrvalue>ControflowController
</attrvalue>

</eventdata>
<eventdata>
<attrname>ACTIVITY_PARENT_NAME
</attrname>
<attrvalue>whileBody_0_3</attrvalue>

</eventdata>
</event>

(a)

<event>
<eventname>activity_completed
</eventname>
<eventtime>1142499880862</eventtime>
<eventdata>

<attrname>ACTIVITY_INSTANCE_ID
</attrname>
<attrvalue>first/fVns1142499878780
</attrvalue>

</eventdata>
<eventdata>

<attrname>SOURCE_ID</attrname>
<attrvalue>first_4</attrvalue>

</eventdata>
<eventdata>

<attrname>DESTINATION_ID</attrname>
<attrvalue>second_75</attrvalue>

</eventdata>
<eventdata>

<attrname>ACTIVITY_TYPE</attrname>
<attrvalue>FileTransfer</attrvalue>

</eventdata>
</event>

(b)

Fig. 2. Examples of representation of events: (a) computational activity, (b) data transfer

by a tuple (dataTypeID, resourceID), for example in case of workflow events the tuple
(wf.pma, 0c08d950-9979-11da-88a8-9ac1d10ab445) indicates all events
associated with the workflow whose UUID is 0c08d950-9979-11da-88a8-9ac1
d10ab445. The workflow performance monitoring and visualization tool can sub-
scribe and/or query any monitoring data type of interest. In our tool, during the exe-
cution of a workflow, when the user starts to conduct the performance monitoring and
analysis, the performance tool will subscribe all workflow events associated with the
workflow. The tool will analyze events received and visualize performance results as
well as failure detected in its GUI. Depending on the resulting analysis, the tool can
subscribe/query other data types in order to find sources of problems. For example, if a
workflow activity cannot be submitted to a Grid site, the user can query the monitoring
data about the availability of local resource management on that Grid site.

The performance monitoring and visualization tool analyzes large amounts of di-
verse monitoring data and presents the result in an understandable way to the user.
In ASKALON, our performance tool provides the following functionalities for online
monitoring and visualization of Grid workflows:

– Monitoring of execution phases of Grid workflows. The user can monitor and an-
alyze execution phases, e.g., queuing and processing, of Grid workflows during
runtime. Detailed execution information of every single activities can be analyzed.

– Monitoring of data transfer between Grid sites. Monitoring of data transfer between
Grid sites is an important feature. The user can observe the data transfer between
activity instances through the visualization. Moreover, a specific data transfer can
also be selected for analysis, for example to examine transfer time.

– Interactive analysis of different activities. The user can compare the execution of
different running activities, for example examining different performance metrics

Performance Monitoring and Visualization of Grid Scientific Workflows 175

of the selected activities, load imbalances or overheads. This feature is particularly
useful for analyzing parallel regions in scientific workflows.

– Analysis and comparison of activity distribution and allocation for Grid sites. How
activities distributed to Grid sites as well as the utilization of Grid sites can be
analyzed and compared. Allowing the user to select Grid sites that the user wants
to analyze is a useful feature because if there are hundreds of Grid sites involved in
execution of the workflow, the user can observe which sites are slower and find out
why they are slow by using infrastructure monitoring.

– Interactive querying of infrastructure monitoring during execution. Infrastructure
monitoring data, such as CPU load or network bandwidth between Grid sites can
also be provided during the monitoring and analysis of Grid workflows. Grid work-
flows and resources consumed are analyzed in an integrated environment.

The monitoring and visualization tool can also help to develop the ASKALON mid-
dleware services. For example, performance results are used by the performance pre-
diction service to provide estimated execution times of Grid workflows to support the
scheduler. In ASKALON, the scheduling service can subscribe events indicating abnor-
mal behaviors of Grid middleware and workflows so that it can reschedule the workflow.

Figure 3 shows the main GUI of the workflow performance tool. The top window
(Execution Trace) visualizes the workflow representation together with detailed
monitoring information. In the top-left pane is the static representation of the workflow,
showing the hierarchical view of workflows. The hierarchical view explicitly defines,
in detail, concepts and properties of workflows, including workflow, workflow regions
and workflow activities, and their relationships based on the workflow performance
ontology [8]. In the top-right pane is the execution trace of the workflow. The activities
are sorted sequentially by the time they have been initialized. The example trace is for
a workflow named Wien2K, which will be described in Section 5.1. We can monitor
and visualize activities, workflow regions, data transfers, etc. By clicking an activity in
the top-left pane, instances of that activity will be highlighted in the top-right pane. In
the bottom-left pane is a tree representing performance information about the current
selected activity, for example, the name of the activity, the parent activity of this activity,
the machine where the activity is executed, queueing time, processing time, transfer
time, source and destination of file transfers, etc. Detailed performance information
such as average execution times per Grid sites and job distribution to Grid sites are also
visualized.

5 Experiments

We have implemented a prototype of our workflow performance monitoring and visual-
ization, and integrated it into ASKALON. Currently the prototype is based on Java 1.5,
and JGraph [9] is employed for the visualization of the activities and of the workflow.

In this section, we present experiments illustrating the performance monitoring and
visualization of real world Grid scientific workflows named Wien2K and Invmod. Our
experiments are conducted within the Austrian Grid infrastructure [10], which connects
several national Austrian Grid sites. For our experiments we selected two altix ma-
chines, including altix1.uibk.ac.at which is an altix 16 CPUs machine at the

176 P. Brunner, H.-L. Truong, and T. Fahringer

University of Innsbruck and altix1.jku.austriangrid.at which is an altix
64 CPUs machine at the University of Linz. In all our experiments, we just specified
the two Grid sites but the number of CPUs used for executing workflows is decided by
the ASKALON scheduler.

5.1 Wien2K

Wien2K [11] is a program package for performing electronic structure calculations
of solids using density functional theory, based on the full-potential (linearized) aug-
mented planewave ((L)APW) and local orbital (lo) method. The problem size is 5.5
specifying the number of planewaves used, and the number of parallel k-points is 650.
With this problem size, the two parallel sections - pforLAPW1 and pforLAPW2- have
65 parallel iterations.

Fig. 3. Wien2K workflow experiment

This workflow has only one primary workflow region, named pforLAPW1, which
takes a long time to finish. The rest of the workflow activities are not time-consuming.
Through the trace execution in Figure 3, we observed that activities executed on
altix1.uibk machine in Innsbruck are completed much faster than activities on
altix1.jku machine in Linz. The window second shows performance informa-
tion for activity second. The pane Mean Execution Time shows various average
timing metrics (per number of instances) for activity second on different Grid sites
whereas the pane Job distribution displays how instances of activity second
are distributed on different Grid sites. Overall, timing metrics on altix1.uibk are
better than that on altix.jku. Out of 65 parallel instances of activity second, the

Performance Monitoring and Visualization of Grid Scientific Workflows 177

scheduler distributed 16 instances to altix1.uibk, which fully loads this 16-CPU
machine. The remaining, 49 instances, are mapped to 64-CPU altix1.jku because
the ASKALON performance prediction service indicates that an instance could be com-
pleted faster on altix1.uibk than on altix1.jku.

During our experimental work with Wien2K, we detected some errors made by the
execution engine. For example, in one case, we did not get any failed event from the
execution engine, but we observed in our visualization tool that one activity had been
reinitialized. After analyzing the case, we found that the missing failed event was
due to a bug in the execution engine.

5.2 Invmod

Invmod [12] is a hydrological application for river modelling which has been designed
for inverse modelling calibration of the WaSiM-ETH program. Invmod has two levels
of parallelism, one for the calibration of parameters that is calculated separately for
each starting value using parallel random runs, the second for each optimization step
represented by an inner loop iteration. In this experiment, the number of the parallel
random runs is 7 and the parameter of the optimization step is 3.

Fig. 4. Invmod workflow experiment

As shown in Figure 4, the Invmod workflow is more complex than Wien2K work-
flow. There are more parallel regions and data transfers, and a larger number of ac-
tivities is executed in parallel. We observed the execution engine sends all the jobs,
using GridFTP, from altix1.jku to itself, which is a performance overhead be-
cause this transfer is unnecessary as altix1.jku has a NFS (Network File System).
In its current implementation, if a file must be sent to many activities which have

178 P. Brunner, H.-L. Truong, and T. Fahringer

different parameters, the execution engine just sends the file to every activity using
GridFTP, without considering the underlying file system. By selecting data types in
the tree in the bottom-left pane of Figure 4, infrastructure monitoring can also be in-
voked. For example, the window Forecast Bandwidth shows the network band-
width between altix1.jku and altix1.uibk whereas the window Service
Availability displays the availability of GRAM service on altix1.jku.

6 Related Work

While many tools support performance monitoring and visualization for scientific paral-
lel applications, there is a lack of similar tools for Grid scientific workflows. P-GRADE
[13] is a performance monitoring and visualization for Grid workflows. In contrast to
our tool, P-GRADE does not support cyclic workflows. P-GRADE is based on Globus
Toolkit 2 while our tool is based on advanced WSRF-based architecture using Globus
Toolkit 4. Taverna Workbench [14] allows users to monitor the status of activities within
Grid workflows, but visualizes information in a form of a simple table. Moreover, de-
tailed execution phases are available only after the execution of the workflow. Our per-
formance tool is more advanced because it can analyze monitoring data in detail at
runtime, and dynamic calling relationship among activity instances can be examined
online as well.

A few tools are developed for performance monitoring and visualization of Web ser-
vices. Web Service Navigator [15], for example, provides good visualization techniques
for Web service based applications. BEA WebLogic Integration Studio [16] supports the
automation of business processes. It can also visualize the monitoring of a workflow.
However, such tools are not developed for Grid scientific workflows which are quite
different from business workflows.

None of above-mentioned tools integrates a monitoring system for Grid resources,
networks and middleware services with Grid workflow monitoring. Our workflow tool
can also correlate performance of Grid infrastructure to Grid workflows in a single
framework.

In our previous work, we have demonstrated Grid services for dynamically instru-
menting and measuring Grid-based applications of DAG-based workflows [7]. Our tool
presented in this paper extends our previous work by covering scientific workflows with
complex structures such as loop and parallel regions and by supporting Grid workflows
composed and executed by an advanced WSRF-based middleware.

7 Conclusion and Future Work

Scientific workflows in Grids are complex and their execution commonly implies dis-
tributed, sophisticated interactions among various types of Grid applications and re-
sources. We need performance monitoring and visualization tools that are capable to
assist the user in monitoring these complex interactions and in detecting failures occur-
ring during runtime. The contribution of this paper is a workflow performance moni-
toring and visualization tool that not only allows users to observe and analyze complex

Performance Monitoring and Visualization of Grid Scientific Workflows 179

interactions during the execution of Grid workflows but also supports the correlation
between the performance of Grid workflows and the underlying Grid infrastructure.

We are currently enhancing our tool with performance monitoring and visualiza-
tion features that cover also invoked applications within workflow activities and code
regions, according to our workflow performance ontology [8]. Moreover, we are inte-
grating our tool into the K-WfGrid workflow system [17].

References

1. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. SIGMOD
Rec. 34 (2005) 44–49

2. Gerndt, M., Wismueller, R., Balaton, Z., Gombas, G., Kacsuk, P., Nemeth, Z., Podhorszki,
N., Truong, H.L., Fahringer, T., Bubak, M., Laure, E., Margalef, T.: Performance Tools for
the Grid: State of the Art and Future. Volume 30 of Research Report Series, Lehrstuhl fuer
Rechnertechnik und Rechnerorganisation (LRR-TUM) Technische Universitaet Muenchen.
Shaker Verlag (2004) ISBN 3-8322-2413-0.

3. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong,
H.L., Villazon, A., Wieczorek, M.: ASKALON: A Grid Application Development and Com-
puting Environment. In: 6th International Workshop on Grid Computing (Grid 2005), Seattle,
USA, IEEE Computer Society Press (2005)

4. OASIS Web Services Resource Framework (WSRF) TC: http://www.oasis-open.
org/committees/tc home.php?wg abbrev=wsrf (2006)

5. Globus Project: http://www.globus.org (2006)
6. Truong, H.L., Fahringer, T.: SCALEA-G: a Unified Monitoring and Performance Analysis

System for the Grid. Scientific Programming 12 (2004) 225–237 IOS Press.
7. Truong, H.L., Fahringer, T., Dustdar, S.: Dynamic Instrumentation, Performance Monitoring

and Analysis of Grid Scientific Workflows. Journal of Grid Computing 3 (2005) 1–18
8. Truong, H.L., Fahringer, T., Nerieri, F., Dustdar, S.: Performance Metrics and Ontology for

Describing Performance Data of Grid Workflows. In: Proceedings of IEEE International
Symposium on Cluster Computing and Grid 2005, 1st International Workshop on Grid Per-
formability, Cardiff, UK, IEEE Computer Society Press (2005)

9. JGraph: http://www.jgraph.com/ (2006)
10. AustrianGrid: http://www.austriangrid.at/ (2006)
11. Blaha, P., Schwarz, K., Luitz, J.: WIEN97: A Full Potential Linearized Augmented Plane

Wave Package for Calculating Crystal Properties. Institute of Physical and Theoretical
Chemistry (2000)

12. Jasper, K.: Hydrological Modelling of Alpine River Catchments Using Output Variables
from Atmospheric Models (2001)

13. Lovas, R., Kacsuk, P., Horvath, A., Horanyi, A.: Application of P-Grade Development En-
vironment in Meteorology, http://www.lpds.sztaki.hu/pgrade (2003)

14. taverna: http://taverna.sourceforge.net/ (2006)
15. Pauw, W.D., Lei, M., Pring, E., Villard, L., Arnold, M., Morar, J.F.: Web ser-

vices navigator: Visualizing the execution of web services, ibm systems journal,
http://www.research.ibm.com/journal/sj/444/depauw.html (2005)

16. BEA Systems: Monitoring workflows, http://e-docs.bea.com/wli/docs70/studio/ch10.htm
(2002)

17. K-WF Grid Project: http://www.kwfgrid.net (2006)

Exploring the Capacity of a Modern
SMT Architecture to Deliver High
Scientific Application Performance�

Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis,
and Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering

{valia, anastop, kkourt, nkoziris}@cslab.ece.ntua.gr

Abstract. Simultaneousmultithreading (SMT)hasbeen proposed to im-
prove system throughput by overlapping instructions from multiple
threads on a single wide-issue processor. Recent studies havedemonstrated
that heterogeneity of simultaneously executed applications can bring up
significant performance gains due to SMT. However, the speedup of a sin-
gle application that is parallelized into multiple threads, is often sensitive
to its inherent instruction level parallelism (ILP), as well as the efficiency
of synchronization and communication mechanisms between its separate,
but possibly dependent, threads. In this paper, we explore the performance
limits by evaluating the tradeoffs between ILP and TLP for various kinds
of instructions streams. We evaluate and contrast speculative precompu-
tation (SPR) and thread-level parallelism (TLP) techniques for a series of
scientific codes executed on an SMT processor. We also examine the effect
of thread synchronization mechanisms on multithreaded parallel applica-
tions that are executed on a single SMT processor. In order to amplify this
evaluation process, we also present results gathered from the performance
monitoring hardware of the processor.

1 Introduction

Despite the efficiency of code optimization techniques and the continued ad-
vances in caches, memory latency still dominates the performance of many ap-
plications on modern processors. This CPU-memory gap seems difficult to be
alleviated; on the one hand, CPU clock speeds continue to advance more rapidly
than memory access times, on the other hand, the data working sets increase
and complexity of conventional applications sets a limit on ILP.

One approach to maintain high throughput of processors despite the large
relative memory latency has been Simultaneous Multithreading (SMT). SMT is
a hardware technique that allows a processor to issue and execute instructions
from multiple independent threads in the same cycle. The dynamic sharing of
� This research is supported by the Pythagoras II Project (EPEAEK II), co-founded

by the European Social Fund (75%) and National Resources (25%).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 180–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Exploring the Capacity of a Modern SMT Architecture 181

the functional units allows for the substantial increase of throughput, compen-
sating for the two major impediments to processor utilization - long latencies
and limited per-thread parallelism.

Thread-level parallelism (TLP) and speculative precomputation (SPR) have
been proposed to utilize the multiple hardware contexts of the processors for
improving performance of a single program. With TLP, sequential codes are par-
allelized so that the total amount of work is decomposed into independent parts
which are assigned to a number of software threads for execution. In SPR, the
execution of programs is facilitated with the introduction of additional threads,
which speculatively prefetch data that is going to be used by the sibling com-
putation threads in the near future, thus hiding memory latencies and reducing
cache misses [13], [5], [10].

The benefit of multithreading on SMT architectures depends on the applica-
tion and its level of tuning. In this paper we demonstrate that significant per-
formance improvements are really difficult to achieve for optimized, fine-tuned
parallel applications running on SMT processors. We tested two different configu-
rations. Firstly, we balanced the computational workload of a parallel benchmark
on two threads, statically partitioning the iteration space to minimize dynamic
scheduling overhead. Secondly, we ran a main computation thread in parallel
with a helper-prefetching thread. The latter was spawned to speculatively pre-
compute L2 cache misses. Synchronization of the two threads is essential, in
order to avoid the helper thread from running too far ahead, evicting useful
data from the cache.

The rest of the paper is organized as follows. Section 2 describes related prior
work. Section 3 deals with implementation aspects of software techniques to ex-
ploit hardware multithreading. Section 4 explores the performance limits and
TLP-ILP tradeoffs, by considering a representative set of instruction streams.
Section 5 describes the experimental framework, presents performance measure-
ments obtained from each application, and discusses their evaluation. Finally,
we conclude with section 6.

2 Related Work

SMT [12] is said to outperform previous execution models because it combines
the multiple-instruction-issue features of modern superscalar architectures with
the latency-hiding ability of multithreaded ones. However, the flexibility of SMT
comes at a cost. When multiple threads are active, the static partitioning of
resources (e.g., instruction queue, reorder buffer, store queue) affects codes with
relative high instruction throughput. Static partitioning, in the case of identical
thread-level instruction streams, limits performance, but mitigates significant
slowdowns when non-similar streams of microinstructions are executed [11].

Cache prefetching is a technique that reduces the observed latency of mem-
ory accesses by bringing data into the cache before it is accessed by the CPU.
Numerous thread-based prefetching schemes, either static or dynamic, have re-
cently been proposed, including Collins et al., Speculative Precomputation [3],

182 E. Athanasaki et al.

and Kim et al., Helper-Threads [5]. The key idea is to utilize otherwise idle
hardware thread contexts to execute speculative threads on behalf of the main
thread. These speculative threads attempt to trigger future cache-miss events far
enough in advance of access by the non-speculative (main) thread, so that the
memory miss latency can be masked. A common implementation pattern was
used in these studies. A compiler identifies either statically or with the assistance
of a profile the memory loads that are likely to cause cache misses with long la-
tencies. Such load instructions, known as delinquent loads, may also be identified
dynamically in hardware triggering speculative-helper threads [13]. SPR targets
load instructions that exhibit unpredictable irregular, data-dependent or pointer
chasing access patterns. Traditionally, these loads have been difficult to handle
via either hardware or software prefetchers.

3 SPR and Synchronization Implementation Issues

There are two main issues that must be taken into account in order to effectively
perform software prefetching using the multiple execution contexts of a hyper-
threaded processor. First of all, the distance at which the precomputation thread
runs ahead of the main computation thread, has to be sufficiently regulated. This
requirement can be satisfied by imposing a specific upper bound on the amount
of data to be prefetched. In our codes it ranges from 1

A ([10]) to 1
2 of the L2 cache

size, where A is the associativity of the cache (8 in our case). Whenever this up-
per bound is reached but the computation thread has not yet started using the
prefetched data, the precomputation thread must stop its forward progress in or-
der to prevent potential evictions of useful data from cache. It can only continue
when it is signaled that the computation thread starts consuming the prefetched
data. In our program codes, this scenario is implemented using synchronization
barriers which enclose program regions (precomputation spans) whose memory
footprint is equal to the upper bound we have imposed. In the general case, and
considering their relatively lightweight workload, precomputation threads reach
always first the barriers.

For codes whose access patterns were difficult to determine a-priori, we had
to conduct memory profiling using the Valgrind simulator[8]. From the profiling
results we were able to determine and isolate the instructions that caused the
majority(92% to 96%) of L2 misses. In all cases, precomputation threads were
constructed manually from the original code of the main computation threads,
preserving only the memory loads that triggered the majority of L2 misses; all
other instructions were eliminated.

Secondly, we must guarantee that the co-execution of the precomputation
thread does not result in excessive consumption of shared resources that could
be critical for the sibling computation thread. Despite the lightweight nature
of the precomputation threads, significant processor resources can be consumed
even when they are simply spinning on synchronization barriers.

The synchronization mechanisms have to be as lightweight as possible and
for this purpose we have implemented lightweight spin-wait loops as the core

Exploring the Capacity of a Modern SMT Architecture 183

of our synchronization primitives, embedding the pause instruction in the spin
loop [4]. This instruction introduces a slight delay in the loop and de-pipelines
its execution, preventing it from aggressively consuming valuable, dynamically
shared, processor resources (e.g. execution units, branch predictors).

However, some other units (such as micro-ops queues, load/store queues and
re-order buffers), are statically partitioned and are not released when a thread
executes a pause. By using the privileged halt instruction, a logical processor
can relinquish all of its statically partitioned resources, make them fully avail-
able to the other logical processor, and stop its execution going into a sleeping
state. The halt instruction is primarily intended for use by the operating system
scheduler. Multithreaded applications with threads intended to remain idle for a
long period, could take advantage of this instruction to boost their execution. We
implemented kernel extensions that allow from user space the execution of halt
on a particular logical processor, and the wake-up of this processor by sending
IPIs to it. By integrating these extensions in the spin-wait loops, we are able
to construct long duration wait loops that do not consume significant processor
resources. Excessive use of these primitives, however, in conjunction with the
resultant multiple transitions into and out of the halt state of the processor,
incur extra overhead in terms of processor cycles. This is a performance tradeoff
that we took into consideration throughout our experiments.

4 Quantitative Analysis on the TLP and ILP Limits of
the Processor

This section explores the ability and the limits of hyper-threading technology on
interleaving and executing efficiently instructions from two independent threads.
We constructed a series of homogeneous instruction streams, which include basic
arithmetic operations (add,sub,mul,div), as well as memory operations (load,
store), on integer and floating-point 32-bit scalars. For each of them, we tested
different levels of instruction level parallelism.

In our experiments, we artificially increase(decrease) the ILP of the stream
by keeping the source and target registers always disjoint, and at the same
time expanding(shrinking) the target operands (T). We have considered three
degrees of ILP for each instruction stream: minimum (|T |=1), medium (|T |=3),
maximum (|T |=6).

4.1 Co-executing Streams of the Same Type

As a first step, we execute each instruction stream alone on a single logical
processor, for all degrees of ILP (1thr columns of Table 1). In this way, all
execution resources of the physical package are fully available to the thread ex-
ecuting that stream. As a second step, we co-execute within the same physical
processor two independent instruction streams of the same ILP, each of which
gets bound to a specific logical processor (2thr columns of Table 1). This gives
us an indication on how various kinds of simultaneously executing streams of

184 E. Athanasaki et al.

Table 1. Average CPI for different TLP and ILP execution modes of some common
instruction streams

CPI
min ILP med ILP max ILP

instr. 1thr 2thr 1thr 2thr 1thr 2thr
fadd 6.01 6.03 2.01 3.28 1.00 2.02
fmul 8.01 8.04 2.67 4.19 2.01 3.99

faddmul 7.01 7.03 2.34 3.83 1.15 2.23
fdiv 45.06 99.90 45.09 107.05 45.10 107.43

fload 1049.05 2012.62 1049.06 2012.43 1049.05 2011.86
fstore 1050.67 1982.99 1050.68 1983.07 1050.67 1982.93
iadd 1.01 1.99 1.01 2.02 1.00 2.02
imul 11.02 11.05 11.03 11.05 11.03 11.05
idiv 76.18 78.76 76.19 78.71 76.18 78.73

iload 2.46 4.00 2.46 3.99 2.46 3.99
istore 1.93 4.07 1.93 4.08 1.93 4.07

a specific ILP level, contend with each other for shared resources, and an esti-
mation whether the transition from single-threaded mode of a specific ILP level
to dual-threaded mode of a lower ILP level, can hinder or boost performance.
For example, let’s consider a scenario where, in single-threaded and maximum
ILP mode, instruction A gives an average CPI of C1thr−maxILP , while in dual-
threaded and medium ILP mode the same instruction gives an average CPI of
C2thr−medILP > 2×C1thr−maxILP . Because the second case involves half of the
ILP of the first case, the above scenario prompts that we must probably not
anticipate any speedup by parallelizing into multiple threads a program that
uses extensively this instruction in the context of high ILP (e.g. unrolling). Bold
elements of Table 1 indicate best case performance.

4.2 Co-executing Streams of Different Types

Table 2 presents the results from the co-execution of different pairs of streams
(for the sake of completeness, results from the co-execution of a given stream
with itself, are also presented). We examine pairs whose streams have the same
ILP level. The slowdown factor represents the ratio of the CPI when two threads
are running concurrently, to the CPI when the benchmark indicated in the fist
column is being executed in single-threaded mode. Note that the throughput
of integer streams is not affected by variations of ILP and for this reason we
present only exact figures of medium ILP. Slowdown factors that vary less than
0.05 compared to the slowdown factor of the medium ILP case in a specific
stream combination, are omitted. Bold elements indicate the most significant
slowdown factors.

5 Experimental Framework and Results

We experimented on Intel Xeon processor enabled with HT technology, running
at 2.8GHz. With the introduction of HT technology, the performance monitoring
capabilities of the processor were extended, so that the performance counters

Exploring the Capacity of a Modern SMT Architecture 185

Table 2. Slowdown factors from the co-execution of various instruction streams

Co-executed Instruction Streams

ILP fadd fmul fdiv fload fstore

fadd
min:
med:
max:

1.004
1.635
2.016

1.004
1.787
2.801

1.010
2.023

1.398
1.474

1.409
1.462

fmul
min:
med:
max:

1.002
1.433
1.384

1.004
1.566
1.988

1.006
1.062 1.391 1.393

fdiv min:
med: 1.017 1.027

2.217
2.374 1.413 1.422

fload
min:
med:
max:

1.144
1.286
1.684

1.169
1.255
1.358

1.153 1.919 1.907

fstore
min:
med:
max:

1.134
1.229
1.625

1.133
1.229
1.316

1.150 1.897 1.887

ILP iadd imul idiv iload istore

iadd med: 2.014 1.316 1.117 1.515 1.405

imul med: 1.116 1.002 1.008 1.003 1.004

idiv med: 1.042 1.019 1.033 1.003 1.003

iload med: 2.145 0.941 0.934 1.621 1.331

istore
min:
med:
max:

4.072
4.299
2.160

1.979
0.941

1.970
0.934

1.986
1.622

2.115
1.331

could be programmed to select events that are qualified by logical processor IDs,
whenever that was possible. To use these performance monitoring capabilities,
a simple custom library was developed. For each of the multithreaded execution
modes presented in section 3 we present measurements taken for three events:

• L2 Misses: The number of 2nd level read misses as seen by the bus unit.
For the TLP methods, including the prefetch hybrid method the L2 misses pre-
sented are the sum of the misses for both threads. For the pure software prefetch
method, only the misses of the working thread are presented.
• Resource stall cycles: The number of clock cycles that a thread stalls

in the processor allocator, waiting until store buffer entries are available. This
performance metric is indicative of the contention that exists between hardware
threads. For all cases, the results presented correspond to the sum of stall cycles
on behalf of both logical processors.
• μops retired: The number of μops that were retired during the execution

of the program. For all cases the μops number is the number of those retired for
both threads.

We have used the NPTL library for the creation and manipulation of threads.
Our operating system was Linux version 2.6.9. To force the threads to be sched-
uled on a particular logical processor within a physical package, we have used
the sched setaffinity system call. All user codes were compiled with gcc 3.3.5
compiler using the O2 optimization level, and linked against glibc 2.3.2.

186 E. Athanasaki et al.

We evaluated performance using two computational kernels, Matrix Multipli-
cation and LU decomposition, and two NAS benchmarks, CG and BT. In MM
and LU, we used 4096×4096 matrices, while in CG and BT we considered Class
A problem sizes. In MM and LU, we applied tiling choosing tiles that completely
fit in L1 cache, since this yielded the best performance. Furthermore, in MM we
used blocked array layouts (non-linear layouts) with binary masks [2] and ap-
plied loop unrolling. The implementations of CG and BT were based on the
OpenMP C versions of NPB suite version 2.3 provided by the Omni OpenMP
Compiler Project [1]. We transformed these versions so that appropriate thread-
ing functions were used for work decomposition and synchronization, instead of
OpenMP constructs. Both CG and BT are characterized by random memory
access patterns, with the latter exhibiting somewhat better data locality.

The TLP versions of the codes are based on coarse-grained work partitioning
schemes (tlp-coarse), where the total amount of work is statically balanced
across the participant threads (e.g., different tiles assigned to different threads
in MM and LU). The SPR versions use prefetching to tolerate cache misses,
following the scheme we described in section 3. In the pure prefetching version
(spr), the whole workload is executed by just one thread, while the second is
just a helper thread that performs prefetching of the next data chunk in issue.
In the hybrid prefetching version (spr+work), the workload is partitioned in
a more fine-grained fashion with both threads performing computations on the
same data chunk, while one of them takes on the prefetching of the next data
chunk. This latter parallelization scheme was applicable only in MM and CG.

Figure 1 presents the experimental results for the aforementioned benchmarks.
HT technology helped us to gain a speedup of 5%− 6% only in the case of NAS
benchmarks, when applying the TLP scheme. In the SPR versions, although a
significant reduction in L2 misses of the working thread was achieved in most
cases, this was not followed by overall speedup. As Figure 1(d) depicts, in these
cases, there was a noticable increase in the total number of μops, as well, due
to the instructions required to implement prefetching. For LU and CG, specif-
ically, the total μops were almost double than those of the serial case. Since
these extra instructions could not be overlapped efficiently with those of the
thread performing useful computations, as designated by the increased stall cy-
cles in the spr case of all benchmarks compared to their serial versions, the
reduction of L2 misses itself proved eventually not to be enough for performance
improvement.

5.1 Further Analysis

Figure 2 presents the utilization of the busiest processor execution subunits,
while running the reference applications. The first column (serial) contains re-
sults of the serial versions. The second column (tlp) presents the behavior of
one of two threads for the TLP implementation (results for the other thread are
identical). The third column (spr) presents statistics of the prefetching thread
in the SPR versions. All percentages refer to the portion of the total instruc-
tions of each thread that used a specific subunit of the processor. The statistics

Exploring the Capacity of a Modern SMT Architecture 187

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

BTCGLUMM

S
pe

ed
up

serial
tlp-coarse

spr
spr+work

(a) Speedup

 1e+06

 1e+07

 1e+08

 1e+09

BTCGLUMM

L2
 m

is
se

s

serial
tlp-coarse
spr
spr+work

(b) L2 misses

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

BTCGLUMM

S
ta

ll
cy

cl
es

serial
tlp-coarse
spr
spr+work

(c) Resource stall cycles

 1e+10

 1e+11

 1e+12

BTCGLUMM

uo
ps

serial
tlp-coarse

spr
spr+work

(d) μops retired

Fig. 1. Experimental results

were generated by profiling the original application executables using the Pin
binary instrumentation tool [6], and analyzing for each case the breakdown of
the dynamic instruction mix, as recorded by the tool. Figure 3([4]) presents
the main execution units of the processor, together with the issue ports that
drive instructions into them. Our analysis examines the major bottlenecks that
prevent multithreaded implementations from achieving some speedup.

Compared to the serial versions, TLP implementations do not generally change
the mix for various instructions. Of course, this is not the case for SPR implemen-
tations. For the prefetcher thread, not only the dynamic mix, but also the total
instruction count, differ from those of the worker thread. Additionally, different
memory access patterns require incomparable effort for address calculations and
data prefetching, and subsequently, different number of instructions.

In the MM benchmark the most specific characteristic is the large number of
logical instructions used: at about 25% of total instructions in both serial and
TLP versions. This is due to the implementation of blocked array layouts with
binary masks that were employed for this benchmark. Although the out-of-order
core of the Xeon processor possesses two ALU units (double speed), among them
only ALU0 can handle logical operations. As a result, concurrent requests for
this unit in the TLP case, will lead to serialization of corresponding instructions,
without offering any speedup. In the SPR case of LU, the prefetcher executes
at least the same number of instructions as the worker, and also puts the same
pressure on ALUs. This is due to the non-optimal data locality, which leads
prefetcher to execute a large number of instructions to compute the addresses

188 E. Athanasaki et al.

Instrumented thread
EXECUTION UNIT serial tlp spr

MM

ALU0+ALU1:
FP ADD:
FP MUL:

MEM LOAD:
MEM STORE:

27.06%
11.70%
11.70%
38.76%
12.07%

26.26%
11.82%
11.82%
27.00%
12.02%

37.56%
0.00%
4.13%

58.30%
20.75%

Total instructions: 4590588278 2270133929 202876770

LU

ALU0+ALU1:
FP ADD:
FP MUL:

MEM LOAD:
MEM STORE:

38.84%
11.15%
11.15%
49.24%
11.24%

38.84%
11.15%
11.15%
49.24%
11.24%

38.16%
0.00%
0.00%

38.40%
22.78%

Total instructions: 3205661399 1622610935 3264715031

CG

ALU0+ALU1:
FP ADD:
FP MUL:

FP MOVE:
MEM LOAD:

MEM STORE:

28.04%
8.83%
8.86%

17.05%
36.51%
9.50%

23.95%
7.49%
7.53%

14.05%
45.71%
8.51%

49.93%
0.00%
0.00%
0.00%

19.09%
9.54%

Total instructions: 11934228188 7069734891 166842453

BT

ALU0+ALU1:
FP ADD:
FP MUL:

FP MOVE:
MEM LOAD:

MEM STORE:

8.06%
17.67%
22.04%
10.51%
42.70%
16.01%

8.06%
17.67%
22.04%
10.51%
42.70%
16.01%

12.06%
0.00%
0.00%
0.00%

44.70%
42.94%

Total instructions: 44973276097 22486809710 8398026979

Fig. 2. Processor subunits utilization from the viewpoint of a specific thread

Fig. 3. Instruction issue ports and main execution units of the Xeon processor

of data to be brought in cache. These facts translate into major slowdowns for
the SPR version of LU, despite any significant L2 misses reduction.

As can be seen in Figure 1, TLP mode of BT benchmark was one of few
cases that gave us some speedup. The relatively low usage and thus contention
on ALUs, in conjunction with non-harmful co-existence of faddmul streams (as
Table 2 depicts) which dominate other instructions, and the perfect workload
partitioning, are among the main reasons for this speedup.

6 Conclusions

This paper presents performance results for a SMT architecture, the Intel hyper-
threaded microarchitecture. We examined scientific codes in which both TLP
and SPR schemes were applied. Our evaluation was based on actual program

Exploring the Capacity of a Modern SMT Architecture 189

execution, as well as simulation. The results gathered demonstrated the limits
in achieving high performance for such applications.

SPR can achieve a fairly good reduction in L2 cache misses. However, in
order to fine tune data prefetching, a considerable number of additional instruc-
tions have to be inserted into the pipeline. This increase in the number of μops,
in combination with some kind of resource contention, harms performance in
terms of execution time. Besides, optimized applications with a relatively high
IPC (such as the tested microkernels), are really difficult to achieve even better
performance without reducing the μops executed.

Coarse-grained work partitioning schemes do not have a significant impact on
the number of μops executed (usually brings a slight increase). Total execution
performance would be expected to be improved, especially in cases of L2 cache
miss decrease. However, the two working threads, due to their symmetric profiles,
compete for the same hardware resources. This contention constitutes in some
cases a bottleneck to high performance.

References

1. Omni OpenMP Compiler Project. Released in the International Conference for
High Performance Computing, Networking and Storage (SC’03), Nov 2003.

2. E. Athanasaki and N. Koziris. Fast Indexing for Blocked Array Layouts to Improve
Multi-Level Cache Locality. In Proc. of INTERACT’04, Madrid, Spain.

3. J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery, and J. Shen. Spec-
ulative Precomputation: Long-Range Prefetching of Delinquent Loads. In Proc. of
ISCA ’01, Göteborg, Sweden.

4. Intel Corporation. IA-32 Intel Architecture Optimization. Order Num: 248966-011.
5. D. Kim, S. Liao, P. Wang, J. Cuvillo, X. Tian, H. Wang, D. Yeung, M. Girkar,

and J. Shen. Physical experimentation with prefetching helper threads on Intel’s
hyper-threaded processors. In Proc. of IEEE/ACM CGO 2004, San Jose, CA.

6. C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,
and K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation. SIGPLAN Not., 40(6):190–200, 2005.

7. D. Marr, F. Desktop, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton.
Hyper-Threading Technology Architecture and Microarchitecture. ITJ, Feb 2002.

8. N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework. In
Proc. of RV’03, Boulder, CO.

9. D. Patterson and J. Hennessy. Computer Architecture. A Quantitative Approach,
pages 597–598. Morgan Kaufmann, 3rd edition, 2003.

10. F. Blagojevic T. Wang and D. Nikolopoulos. Runtime Support for Integrating Pre-
computation and Thread-Level Parallelism on Simultaneous Multithreaded Proces-
sors. In Proc. of LCR’2004, Houston, TX.

11. N. Tuck and D. Tullsen. Initial Observations of the Simultaneous Multithreading
Pentium 4 Processor. In Proc. of PACT ’03, New Orleans, LA.

12. D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing
On-Chip Parallelism. In Proc. of ISCA ’95, Santa Margherita Ligure, Italy.

13. H. Wang, P. Wang, R. Weldon, S. Ettinger, H. Saito, M. Girkar, S. Liao, and
J. Shen. Speculative Precomputation: Exploring the Use of Multithreading for
Latency. ITJ, Feb 2002.

A Statistical Approach to Traffic Management in Source
Routed Loss-Less Networks�

Thomas Sødring1, Raúl Martı́nez2, and Geir Horn1

1 Simula Research Laboratory
Martin Linges vei 17

1325 - Lysaker, Norway
{tsodring, geirho}@simula.no
2 Departamento de Sistemas Informáticos

Universidad de Castilla-La Mancha
02071 - Albacete, Spain

raulmm@info-ab.uclm.es

Abstract. The evolution of high-performance networks has resulted in the devel-
opment of new applications with Quality of Service (QoS) requirements. In this
paper we review and evaluate the Simple Host (SH) traffic management mecha-
nism that enables QoS provisioning within source-routed loss-less interconnect
networks. SH provides statistical QoS guarantees for brokered multimedia traffic
while supporting limited amounts of unbrokered background traffic. The results
obtained from simulation show how to configure SH to provide statistical QoS
based on jitter and latency requirements in an efficient manner.

Keywords: Networking protocol, Performance evaluation, Interconnection Net-
works, Traffic Management, Statistical Quality of Service, Advanced Switching.

1 Introduction

The evolution of high performance networks over recent years has been underpinned by
the on-going development of interconnect networks such as InfiniBand [1], Advanced
Switching (AS) [2] and Gigabit Ethernet [3]. The development of these interconnect
platforms was necessitated by a need to support transactions of high volumes of data.
This evolution has also seen the development of new applications providing multimedia
entertainment to end-users that are served from high-performance networks that support
large traffic volumes.

In the case of a multimedia content network serving a variety of video streams, there
are strict quality of service (QoS) requirements that must be met. A video stream, for
example, will have both latency and jitter requirements as a users’ perception of the
stream they are watching is bounded by its timely delivery. These requirements must

� This work was financed in part by the EU under the 6th framework program for IST as part
of the SIVSS project. This work was partly supported by the Spanish CICYT under Grant
TIC2003-08154-C06-02, by the Junta de Comunidades de Castilla-La Mancha under Grant
PBC-05-005-1, and by the Spanish State Secretariat of Education and Universities under FPU
grant.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 190–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Statistical Approach to Traffic Management 191

be met by the underlying network and necessitate the use of traffic management mech-
anisms to ensure that the traffic it is serving is not subjected to any unnecessary delays.
To achieve this a network typically employs the use of a QoS provisioning mechanism
that ensures the traffic receives certain levels of service.

In the Internet domain the IETF1 have specified two mechanisms to deal with QoS:
IntServ and DiffServ. The IntServ [4] protocol uses the Resource reSerVation Protocol
(RSVP) [5] to reserve a set of resources along a path from source to destination and
supports the use of per-flow admission control, classification and scheduling. IntServ
has problems with scalability, which are related to the requirement of storing flow-state
information in switches. Differentiated Services [6] (DiffServ) on the other hand moves
the protocol complexity to the edge of the network and switches in the core merely
implement a suite of buffering and scheduling techniques that are applied to a limited
number of traffic classes. The switches at the edge of the network are responsible for
classifying and policing the flows according to rules applicable to each traffic class.

The motivation behind this work is the development of a simple, efficient and ef-
fective traffic management scheme that provides statistical QoS guarantees in source-
routed loss-less high performance networks. In particular, we focus on whether or not
a network can meet the statistical delivery guarantees required by brokered multimedia
traffic while supporting limited amounts of un-brokered best-effort traffic. In [7], we
introduced a traffic management mechanism called Simple Host (SH) that works with
source routed loss-less networks and detailed its applicability to Advanced Switching.
In this article we refine and present results based on simulation relating to the idea
presented in [7].

The remainder of this article is organised as follows. First we motivate the idea be-
hind this work and review the SH protocol. Then the methodology we used to run a
series of experiments is explained followed by an analysis of the results. We conclude
with a discussion on the importance of our findings and a look at how this work could
be taken further.

2 Simple Host

QoS is a topic that has been the focus of lot of attention and discussion over recent years.
From a networking perspective the general QoS provisioning parameters are through-
put, latency, jitter, and loss rate. Throughput is the effective number of data units trans-
ported per time unit, while latency (delay) is the time interval between the departure of
a packet from the source to its arrival at the destination. Jitter represents the variance
in latency and can be calculated as the difference between the latencies of consecu-
tive packets belonging to a given flow. Figure 1 illustrates a typical probability density
function for latency and shows that jitter is bound between the minimum and maximum
latencies [8]. Finally, loss-rate is the percentage of packets that were not delivered to
their destination and is usually represented as a“probability” of loss.

The QoS parameters an application may wish to specify can be expressed as the
minimum throughput and maximum latency, jitter, and loss rate. For those applications
with latency or jitter requirements, if a packet is unable to meet its deadline, its value

1 The Internet Engineering Task Force http://www.ietf.org/

192 T. Sødring, R. Martı́nez, and G. Horn

Fig. 1. Packet latency probability density

to the application may be greatly diminished or even worthless. In some cases, packets
that miss their QoS deadlines can be considered lost.

The degree of tolerance or sensitivity to each of these parameters varies widely from
one application to another. For example, multimedia applications are usually sensitive to
latency and jitter, but many of them can tolerate packet losses to some extent. However,
the severity of the effect of loss on video quality is also influenced by parameters such
as the compression and encoding techniques used, loss pattern, transmission packet
size, and the error recovery technique implemented [9]. For a further discussion about
different applications and their requirements see [10].

In loss-less networks congested packets are not thrown away and as such the loss
rate due to congestion is zero. As the packets are stored in network buffers the on-
set of congestion increases the latency experienced by packets traversing the point of
congestion, which can have a knock-on effect on jitter as jitter is influenced by fluctu-
ations in latency. In addition, this congestion can affect other flows that share common
upstream links. However, if the congestion is not persistent, the congestion situation
should dissipate after a short period of time and packets will reach their destinations.
Depending on the latency introduced by the congestion a packet may or may not meet
their QoS requirements. The goal of the SH protocol is to avoid persistent congestion
situations and limit the transient congestion such that the brokered traffic meet their QoS
requirements.

A common approach to achieve this is by using an admission control (AC) mech-
anism. The AC decides whether a new connection is accepted or rejected and ensures
that the entry of additional traffic into a network does not disturb the QoS requirements
of the existing traffic. Many AC schemes have been proposed. In [11] an implemen-
tation of both a probe and statistical approach to the problem is detailed. Probe-based
algorithms are limited by a traffic awareness that is restricted to the traversal route while
fluctuating traffic patterns, especially within a busy network, provide limited temporal
information describing the network load. The collection and calculation of statistical
data can be both costly to gather and process. Our work is related to [12] who proposed
a framework that uses a distributed admission control scheme in order to provide QoS
support within an IP network. Their protocol allows edge routers admitting traffic to
provide QoS guarantees for the entire network with bandwidth-status updates circu-

A Statistical Approach to Traffic Management 193

lating in a token. The main differences between our work and [12] is that their work
is presented for the Internet domain and they report results where absolute guarantees
on bandwidth requirements are provided. Moreover, no results on latency or jitter are
presented.

Multimedia servers injecting traffic into a network will see that most of the band-
width is consumed by packets belonging to persistent multimedia flows while a small
amount of bandwidth is consumed by intermittent short-lived transmissions. Consider-
ing the short-lived transmissions as background traffic the network can save resources
by only provisioning the multimedia traffic. The multimedia traffic has certain band-
width, latency and jitter constraints that must be met so QoS is provisioned solely for
this traffic.

SH is a traffic management mechanism that provides statistical QoS guarantees and
is applicable when the traffic is clearly distinguishable as belonging to the category of
either persistent multimedia flows or intermittent short-lived transmissions. It aims to
minimize the complexity of providing QoS within a network by working at the edge of
the network, allowing for a simple switch design within the network.

SH uses a bandwidth broker that has a priori knowledge of the bandwidth required
by the flows. Central to the use of bandwidth broker is a network state graph that de-
tails the remaining bandwidth on each link in the network. When an endnode wishes to
start injecting a flow, the routing algorithm is consulted to determine a set of routes
that the flow can use while traversing the network. This information is sent to the
traffic manager. Analysing each path to determine if there is available bandwidth, the
traffic manager either grants or denies the endnode request to use one of the spec-
ified routes. If the bandwidth requirements are met the network state graph is up-
dated consuming the bandwidth along the chosen path. Note that while there is no
explicit requirement for multiple routes the use of multiple routes can lead to increased
performance.

The traffic manager can be centralized in a given end node or distributed among
the different end nodes. In [7] we proposed a distributed AC mechanism that could
be applied to an Advanced Switching fabric. This work treated the entire network as
a logical shared medium and exploited the use of multicast tables within Advanced
Switching to distribute bandwidth updates.

As stated earlier, the SH framework supports both brokered and unbrokered traffic
within a network at the same time. Using the network state graph, SH has a view of
the bandwidth status of each link in the network. We define a parameter, β, that rep-
resents the proportion of bandwidth that each link reserves for multimedia traffic. The
bandwidth broker makes sure that no link will be subjected to more than β multimedia
traffic. However, the SH framework supports both brokered multimedia and unbrokered
background traffic within a network at the same time. Therefore, we also consider a pa-
rameter, α, that represents the maximum amount of unbrokered traffic that is expected
to be inserted into the network. Background traffic is injected on an intermittent basis
and interleaved with the multimedia traffic, and as such interferes with the multimedia
flows ability to meet its QoS requirements.

The focus of this work is to analyse the assignment of optimal values for the mul-
timedia β parameter under certain loads of α background traffic. We achieve this ob-

194 T. Sødring, R. Martı́nez, and G. Horn

serving how varying β for given loads of α effects the networks ability to meet the QoS
requirements of the traffic it serves.

With this information, SH is able to provide statistical QoS guarantees limiting the
fraction of traffic that exceeds specific end-to-end latency or jitter constraints below
prescribed bounds.

3 Performance Evaluation

The experiments that are reported here are undertaken in order to determine what val-
ues of β (multimedia) traffic meet their QoS requirements under various loads of α
(background traffic). We achieve this using three different values for α and varying β,
and thus the amount of multimedia traffic. For each combination of α and β, we ana-
lyze the effect that the interaction of both types of traffic have on performance of the
multimedia traffic, which is the traffic we provision QoS for. Specifically, we derive
statistics regarding the probability that a packet belonging to a brokered flow will meet
its latency and jitter requirements. These probabilities are dependent on the amount of
α and β injected.

We developed a detailed simulator, capable of replicating the functionality of an AS
fabric, however, the mechanism is applicable to any source-routed loss-less intercon-
nection network technology. AS is a modern high performance networking architecture
that evolved from the PCI Express protocol. It replaces the top layer of the PCI Express
protocol stack in order to provide peer-to-peer communication through an AS fabric.
PCI Express is itself an evolution of the PCI input/output bus of present day computers.
Together, PCI Express and AS have the potential to become the next generation high
performance interconnect [13].

3.1 Simulated Architecture

The topology used in all experiments is a fat-tree Bidirectional Multi-stage Interconnec-
tion Network (BMIN) with 16 end-points connected using 32 4-port switches (4 stages
of 8 switches). AS supports the use of any topology, but we chose a BMIN as it is a
commonly used interconnect topology in high-performance environments.

The switch model uses a combined input-output buffer architecture with a crossbar
to connect the buffers. Virtual output queuing was implemented to minimize the head-
of-line blocking problem at switch level. In our tests, the link bandwidth is 2.5 Gb/s but
as links use the 8b/10b encoding scheme, the maximum effective bandwidth for data
traffic is limited to 2 Gb/s. We assume an internal speed-up (x2) for the crossbar, as is
the usual case for most commercial switches. As AS provides the freedom to use any
crossbar scheduling algorithm, we chose to implement a first-come, first-serve (FCFS)
scheduler.

A credit-based flow control protocol ensures that packets are only transmitted when
there is enough buffer space at the other end to store them, making sure that no packets
are dropped when congestion is present. The buffer capacity at the input and at the
output ports of the switches is 16,384 bytes and in order to collect accurate latency
statistics, we use infinite queues in the end nodes.

A Statistical Approach to Traffic Management 195

3.2 Traffic Model

As described earlier, α represents the maximum expected percentage of background
load in the network. To simulate this each end node injects 2 × α/100 Gb/s of traffic
(this refers to the 2Gb/s link effective bandwidth) distributed uniformly among the other
end nodes. The β parameter determines the maximum amount of multimedia traffic that
the bandwidth broker allows overs a link. We use the β parameter as a basis to generate
as many random flows as possible.

Both traffic types are simulated differently but have some common characteristics.
Both are constant bit rate (CBR) and have a packet size equal to 2,048 bytes. The
brokered traffic is comprised of 2 Mb/s point-to-point flows where all packets belonging
to a particular brokered flow follow the same route through the network. The route of
each background packet is chosen randomly among the possible routes available from
the routing function. The injection time of the first packet belonging to a flow as well
as when a node starts generating background traffic is calculated randomly.

3.3 Simulation Results

Simulations were run with the following values for α and β: α = 1, 7, 14 and β =
70, 75, 80, 85, 90, 95. For each combination we ran 16 simulations. For each simulation
we calculated and recorded the global average injection, the global average throughput,
the average packet latency, and the average packet jitter. Figures 2 and 3 show the
average values of these statistics for each of the 16 simulations. We also collected the
latency and jitter of each packet belonging to a flow throughout the 16 simulations.
Using this information we generated Figures 4, 5, 6, and 7. Note that the statistics are
only shown for the multimedia traffic, which is the traffic with QoS requirements.

Figure 2 also shows the normalized aggregated average injection of the multimedia
flows. This value is directly proportional to the β value as can be seen from the fig-
ure, but they are not the same. The reason for this is that the paths that endnodes use
to communicate with each other are over shared links. In an ideal case, where links
are not shared the theoretical maximum amount of injected multimedia traffic that the
bandwidth broker can achieve is β. The figure shows this theoretical maximum and the
actual amount of multimedia traffic that is able to be injected.

Figure 2 shows the normalized global throughput of the multimedia flows. The mul-
timedia traffic manages to utilise all the bandwidth it injects except for the case where
α = 14 and β = 90 and 95.

Figure 3 shows the average values for both latency and jitter. We can see that both
values grow gradually with the α and β parameters (the load of the network). This is
the effect of the increasing congestion when the load increases. However, when the
load is very high (the network is becoming saturated) the latency and the jitter grow
exponentially. This happens when congestion is prevalent and congestion trees take
form and start to grow, affecting not only the flows that traverse the point of congestion
but also other upstream flows sharing common links. The effect of this congestion is
evident from the latency and jitter values, but even more in the throughput results shown
before, where some combinations of α and β were unable to utilise all the bandwidth
that they inject.

196 T. Sødring, R. Martı́nez, and G. Horn

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.7 0.75 0.8 0.85 0.9 0.95

Injected
Maximum

N
or

m
al

iz
ed

in
je

ct
io

n

β

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.7 0.75 0.8 0.85 0.9 0.95

β

N
or

m
al

iz
ed

th
ro

ug
hp

ut

α= 1
α= 7
α=14

Fig. 2. Average injection and throughput

 0.1

 1

 10

 100

 0.7 0.75 0.8 0.85 0.9 0.95

β

L
at

en
cy

(m
s)

α= 1
α= 7
α=14

 0.1

 1

 10

 100

 0.7 0.75 0.8 0.85 0.9 0.95

β

Ji
tte

r
(m

s)

α= 1
α= 7
α=14

Fig. 3. Performance of average latency and jitter

We have shown the general performance of the network under different loads and
presented results that show statistics relating to average values. However, there is little
to gain from provisioning QoS based on average values. Our objective is to study the
probability that the packets can meet certain latency and jitter deadlines under various
combinatorial loads of multimedia and background traffic.

We generated a distribution histogram of the latency and jitter for each combination
of α and β. To achieve this we calculated the latency and jitter values of each packet be-
longing to a multimedia flow across all simulations. We then divided the entire range of
possible latencies into several intervals and calculated how many packets from the se-
quence fit within each interval. As a result we obtained distribution histograms similar
to the ones shown in Figures 4(a) and 5(a) for α = 7 and β = 85. The latency his-
togram provides a good representation of the networks performance. Using it, we can
evaluate which latencies are probable and which are unlikely to be met. However, the
information we wish to acquire is the fraction of traffic that exceeds a specific latency
or jitter constraint, or looking at the same information from a different angle, what is
the probability that a given packet will meet a certain latency or jitter requirement.

To compute these values, we acquired accumulated distribution histograms similar
to those shown in Figures 4(b) and 5(b) from the distribution histograms. These figures
show the proportion of packets that either meet or are below a certain latency (or jitter)
constraint. From the accumulated histograms, we derived probability functions, again
similar to the ones shown in Figure 4(c) and 5(c). Finally, from these functions we

A Statistical Approach to Traffic Management 197

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700

Latency (μs)

P
ro

ba
bi

li
ty

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

Latency (μs)

P
ro

ba
bi

li
ty

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

L
at

en
cy

(μ
s
)

Probability

 0

 100

 200

 300

 400

 500

 600

 700

L
at

en
cy

(μ
s
)

Probability
1 10−1 10−2 10−3 10−4 10−5 10−6

(a) Distribution his-
togram

(b) Accumulated Dis-
tribution histogram

(c) Probability
(d) Logarithmic proba-
bility

Fig. 4. Latency performance for α=7 and β=85

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 100 200 300 400 500 600 700

Jitter (μs)

P
ro

ba
bi

li
ty

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

Jitter (μs)

P
ro

ba
bi

li
ty

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1
Ji

tt
er

(μ
s
)

Probability

 0

 100

 200

 300

 400

 500

 600

 700

Ji
tt

er
(μ

s
)

Probability
1 10−1 10−2 10−3 10−4 10−5 10−6

(a) Distribution his-
togram

(b) Accumulated Dis-
tribution histogram

(c) Probability
(d) Logarithmic proba-
bility

Fig. 5. Jitter performance for α=7 and β=85

 0

 200

 400

 600

 800

 1000

L
at

en
cy

(μ
s
)

Probability
1 10−1 10−2 10−3 10−4 10−5

β=70
β=75
β=80
β=85
β=90
β=95

 0

 200

 400

 600

 800

 1000

L
at

en
cy

(μ
s
)

Probability
1 10−1 10−2 10−3 10−4 10−5

β=70
β=75
β=80
β=85
β=90
β=95

 0

 200

 400

 600

 800

 1000
L

at
en

cy
(μ

s
)

Probability
1 10−1 10−2 10−3 10−4 10−5

β=70
β=75
β=80
β=85
β=90
β=95

(a) α=1 (b) α=7 (c) α=14

Fig. 6. Probability that a packet experiences a certain (or higher) latency

calculated probability functions for meeting a given latency (or jitter). These are shown
in Figures 4(d) and 5(d) with appropriate granularity.

Figures 6 and 7 show the probability that a packet will experience a certain latency
or jitter while traversing the network. Given a precondition that a network is to have a
background traffic load equal to or below a certain value the figures can be used to rea-
son about an optimum β value that enables packets to meet certain QoS requirements.

As an example, consider the case where the QoS requirements of the multimedia
traffic has both a latency and jitter deadline equal to 400 μs and the maximum fraction
of traffic that is allowed to not meet the deadlines is 0.0001 (10−4). In addition, the
maximum expected background traffic is 7%. From Figure 7(b) we can see that we
meet these jitter requirements with β = 70, 75, 80 and 85. Further we observe in Figure
6(b) that only β = 70, 75 and 80 meet the latency requirements. Therefore, to meet the
above QoS requirements, the optimal β value is equal 80.

Summing up, our results show the probability of meeting the latency and jitter re-
quirements under different traffic loads where the traffic load is characterized by the
α and β parameters. We achieve this by generating histograms that detail the latency

198 T. Sødring, R. Martı́nez, and G. Horn

 0

 200

 400

 600

 800

 1000
Ji

tte
r

(μ
s
)

Probability
1 10−1 10−2 10−3 10−4 10−5

β=70
β=75
β=80
β=85
β=90
β=95

 0

 200

 400

 600

 800

 1000

Ji
tte

r
(μ

s
)

Probability
1 10−1 10−2 10−3 10−4 10−5

β=70
β=75
β=80
β=85
β=90
β=95

 0

 200

 400

 600

 800

 1000

Ji
tte

r
(μ

s
)

Probability
1 10−1 10−2 10−3 10−4 10−5

β=70
β=75
β=80
β=85
β=90
β=95

(a) α=1 (b) α=7 (c) α=14

Fig. 7. Probability that a packet experiences a certain (or higher) jitter

and jitter experienced by all packets belonging to multimedia flows traversing the net-
work during simulation. The results provide a network manager, using SH as the traffic
management mechanism, with the information necessary to make a decision regarding
the configuration of the amount of background and multimedia that can safely co-exist
within the network.

4 Conclusion

In this paper we reviewed, and evaluated by simulation, the behavior of the SH traffic
management mechanism. This mechanism is intended to work in environments where
there is a clear distinction between a majority of traffic that has QoS requirements and
a minority of traffic without these requirements. SH provides a simple yet effective and
efficient mechanism to handle these two kinds of traffic sharing the network resources.

SH assumes and allows a certain amount of background traffic to exist within the net-
work and controls the amount of injected multimedia traffic using a bandwidth broker.
This admission control mechanism limits the maximum amount of multimedia traffic
that is allowed over each link in the network. We have denoted β as the configuration
parameter that determines the amount of multimedia traffic.

The objective behind SH is to provide the multimedia traffic with statistical QoS
guarantees. We considered these requirements as deadlines for the latency and jitter
and the maximum fraction of traffic that is unable to meet them. If this scheme is to
have the ability to allow unbrokered traffic into the network without disturbing the QoS
requirements of the existing brokered multimedia flows, it must first make a decision
regarding how much multimedia traffic to allow into the network.

We studied the performance of the network using three different loads for back-
ground traffic (α) and several possibilities for the multimedia load (β). The results ob-
tained from simulations presented in this article show the effect that different loads
of multimedia and background traffic have on latency and jitter and how this maps
to the multimedia flows ability to meet its QoS requirements. Specifically, we derived
statistics about the fraction of traffic that is unable to meet a certain latency or jitter
constraint. With this information a network manager can choose an optimum value for
the maximum multimedia traffic per link. This value should maximize the utilization of
the network without breaking the specific QoS constraints of the multimedia traffic.

Future work includes undertaking simulations with variable bit rate traffic for multi-
media flows and self similar traffic for background traffic which will create spatial and

A Statistical Approach to Traffic Management 199

temporal hot spots throughout the network. Moreover, we also intend to study different
possibilities for constraining the injection of background traffic without brokering it.

References

1. InfiniBand Trade Association: Infiniband architecture specification. 1.2 edn. (2004)
2. Advanced Switching Interconnect Special Interest Group: Advanced Switching Core Archi-

tecture Specification. revision 1.1 edn. (2004)
3. Sheifert, R.: Gigabit Ethernet. Addison-Wesley (1998)
4. Braden, R., Clark, D., Shenker, S.: RFC 1633 Integrated Services. IETF. (1994)
5. Braden, R., et al.: Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specifica-

tion. IETF. rfc2205 edn. (1997)
6. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: RFC 2475 Differentiated

Services. IETF. (1998)
7. Horn, G., Sødring, T.: SH: A simple distributed bandwidth broker for source-routed loss-

less networks. In Hamza, M., ed.: Proceedings of the IASTED International Conference
on Computer, Networks and Information Security (CNIS), November 14-16, Phoenix, AZ,
USA, ACTA Press, ISBN 0-88986-537-X (2005) 133–139

8. Wang, Z.: Internet QoS: Architecture and Mechanisms for Quality of Service. Morgan
Kaufmann (2001)

9. Wang, Y., Zhu, Q.: Error control and concealment for video communication: A review.
Proceedings of the IEEE 86(5) (1998) 974–997

10. El-Gendy, M.A., Bose, A., Shin, K.G.: Evolution of the internet QoS and support for soft
real-time applications. Proceedings of the IEEE 91(7) (2003) 1086–1104

11. Reinemo, S.A., Sem-Jacobsen, F.O., Skeie, T., Lysne, O.: Admission control for DiffServ
based Quality of Service in cut-through networks. In: Proceedings of the 10th International
Conference on High Performance Computing (HiPC). (2003)

12. Bhatnagar, S., Vickers, B.: Providing quality of service guarantees using only edge routers.
In: Proceedings of IEEE Globecom, IEEE (2001)

13. Mayhew, D., Krishnan, V.: PCI Express and Advanced Switching: Evolutionary path to
building next generation interconnects. In: 11th Symposium on High Performance Intercon-
nects, IEEE (2003)

Model-Based Relative Performance Diagnosis of
Wavefront Parallel Computations

Li Li, Allen D. Malony, and Kevin Huck

Performance Research Laboratory
Department of Computer and Information Science

University of Oregon, Eugene, OR, USA
{lili, malony, khuck}@cs.uoregon.edu

Abstract. Parallel performance diagnosis can be improved with the use
of performance knowledge about parallel computation models. The Her-
cule diagnosis system applies model-based methods to automate perfor-
mance diagnosis processes and explain performance problems from high-
level computation semantics. However, Hercule is limited by a single
experiment view. Here we introduce the concept of relative performance
diagnosis and show how it can be integrated in a model-based diag-
nosis framework. The paper demonstrates the effectiveness of Hercule’s
approach to relative diagnosis of the well-known Sweep3D application
based on a Wavefront model. Relative diagnoses of Sweep3D performance
anomalies in strong and weak scaling cases are given.

Keywords: Performance diagnosis, parallel models, wavefront, relative
analysis.

1 Introduction

In recent years there has been growing interest in automating the process of
parallel performance analysis, including the generation and running of exper-
iments, the comparative analysis of performance results, the characterization
of performance properties, and the diagnosis of performance problems. Perfor-
mance diagnosis is a particularly challenging process to automate because it
fundamentally is an intelligent system wherein we capture and apply knowledge
about performance problems, how to detect them (i.e., their symptoms), and
why they exist (i.e., their causes). In our work, we focus on performance knowl-
edge engineering as the basis for building a framework to support automated
performance diagnosis. The framework’s function would be guided by expert
strategies for problem discovery and for hypothesis testing, strategies that are
captured and encoded in the knowledge base. We advocate looking to models
of parallel computations as sources of performance knowledge, which present
structural and communication patterns of a program. Models provide seman-
tically rich descriptions that enable better interpretation and understanding of
performance behavior. Here, performance knowledge can be engineered based
on the model behavior descriptions so that bottom-up inference of performance

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 200–209, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model-Based Relative Performance Diagnosis 201

causes is effectively supported. A diagnosis system then uses the knowledge for
performance bug search and reasoning.

We developed the Hercule performance diagnosis system [6] to validate how
performance knowledge derived from parallel models provides a sound basis for
automating performance diagnosis processes and can explain performance loss
from high-level computation semantics. This has been shown for several par-
allel models to date (e.g., master-worker, divide-and-conquer, and domain de-
composition). However, we also realized that diagnosis of a single execution
is incomplete as a comprehensive diagnosis process. Understanding of perfor-
mance problems routinely involves comparative and relative interpretation. This
paper reports our work to improve the Hercule methodology to support what
we will term relative performance diagnosis (in the spirit of relative debugging
[4]). The multi-experiment relative performance analysis is also addressed in
[5] [7] etc.

In Section §2, we start with a description of the Hercule framework for di-
agnosis of the Wavefront model, and then discuss in Section §3 how Hercule is
extended to allow relative execution diagnostic analysis. We show in Section §4
how Hercule explains certain performance anomalies in strong- and weak-scaling
studies. Section §5 concludes with observations.

2 Hercule Automatic Performance Diagnosis Framework

Hercule is a prototype automatic performance diagnosis system that implements
the model-based performance diagnosis approach. Hercule framework is dis-
played in figure 1. The Hercule system operates as an expert system within
a parallel performance measurement and analysis toolkit, in this case, the TAU
[3] performance system. Hercule includes a knowledge base that is composed of
an abstract event library, performance metrics set, and performance factors for
individual parallel models. The knowledge engineering approach that generates
the knowledge base is discussed in [6]. Below, we use the Wavefront model as a
driver example to describe Hercule’s working mechanism.

Wavefront is a two-dimensional variant of a traditional pipeline pattern. Com-
putation or data is partitioned and distributed on a two-dimensional process grid
where every processor receives data from preceding processors and passes down
data to successive processors in two orthogonal directions. Well-known pipeline
performance problems include sensitivity to load imbalance, processor idleness
when pipeline filling up and emptying, and so on. It is these types of problems
that we want to find.

We use abstract events to describe behavioral and performance characteristics
of the Wavefront model. The abstract event describing a Wavefront process node
is shown in figure 2. An abstract event description includes constituent primitive
events and their format and ordering, a related abstract event list, and associated
performance attributes. Hercule implements the abstract event representation in
a Java class library which provides a general programmatic means to capture
model behaviors and allows for algorithm and implementation extension.

202 L. Li, A.D. Malony, and K. Huck

Hercule

Parallel

models

inference engine

problems explanations

diagnosis results

m
ea

su
re

m
en

t

 s
ys

te
m

da
ta

Parallel
program

information
implementation
algorithm /

sp
ec

if
ic

at
io

ns
ex

pe
ri

m
en

t
pe

rf
or

m
an

ce knowledge
model

inference rules

knowledge baseevent

metric
evaluator

recognizer

Fig. 1. Hercule diagnosis frame-
work

Fig. 2. Abstract event description of Wavefront

The event recognizer in Hercule fits event instances into abstract event de-
scriptions as performance data stream flows through it. It then feeds the event
instances into Hercule’s performance metric evaluator, where performance at-
tributes associated with the event instances are calculated. The metric evaluator
also takes in model-specific metric evaluation rules from the knowledge database
so it is able to produce metrics by synthesizing performance attributes of the
related event instances. Thus, the performance metrics reflect model semantics.
A metric named pl handshaking in Wavefront model, for instance, refers to the
performance penalty of waiting preceding processes in the Wavefront to pass
down data. The model-specific metrics help in mapping low level performance
information to a higher level of program abstraction.

Perhaps the most interesting part of Hercule is its cause inferencing system.
The expert knowledge used to reason about performance symptoms can be struc-
tured as inference trees where the root is the symptom to be diagnosed, the
branch nodes are intermediate observations obtained so far, and the leaf nodes
are high-level performance factors that contribute to the root symptom. An in-
ference tree for diagnosing symptom “low speedup” in Wavefront is presented in
figure 3. An intermediate observation is obtained by evaluating a model-specific
performance metric against the expected value (from performance modeling)
or certain pre-set severity-tolerant threshold. In figure 3, for example, pl comm
means the communication cost associated with pipeline message passing. If it
turns out to be significant comparing to the expected, the inference engine will
continue to search for the node’s child branches. The leaf nodes finally reached
together compose an explanation of the root symptom.

We encode inference trees with production rules. Hercule makes use of syn-
tax defined in the CLIPS [2] expert system building tool to describe production
rules, and the CLIPS inference engine for operation. The inference engine pro-

Model-Based Relative Performance Diagnosis 203

Fig. 3. An inference tree of Wavefront model that diagnoses low-speedup

vided in CLIPS is particularly helpful in performance diagnosis because it can
repeatedly fire rules with original and derived performance information until
no more new facts can be produced, thereby realizing automatic performance
experiment generation and causal reasoning.

3 Hercule Extensions for Relative Performance Diagnosis

Understanding of performance problems routinely involves comparative and rel-
ative interpretation. Performance analysts often need to answer such questions
in scalability analysis of a parallel application: what are most pronounced per-
formance differences between two program executions with difference problem
scales, which program design factors contribute to the differences, and what are
magnitudes of their contributions?

Hercule’s single execution diagnosis can be extended to support what we term
relative performance diagnosis that is intended to answer the questions. To in-
terpret what was happening at the performance anomalies with certain problem
scale, we pick a performance reference run, in the family of scalability executions,
which has comparatively normal performance and evaluate problematic runs
against it. Relative performance diagnosis follows the same inference processes
as presented in model-specific inference trees except for performance evaluation
at branch nodes. Recall that cause inference in the inference trees is driven by
performance evaluation, that is, to compare the model-specific metric with an
expected value (from performance modeling) to decide on an intermediate obser-
vation. In relative performance diagnosis, we calculate the expected value based
on model-specific metrics of the reference run to evaluate problem behaviors.
Examples of relative diagnosis of anomalous Wavefront application executions
will be presented in the next section.

Hercule extensions for supporting relative performance diagnosis manifest in
the interfacing of the metric evaluator and the inference engine. To assert the
performance observation associated with a branch node in the inference tree, the

204 L. Li, A.D. Malony, and K. Huck

metric evaluator takes in event instances of two runs to be compared and feeds
the calculated model-specific metrics into the inference engine. The inference
engine sets a performance expectation according to the reference run metric and
evaluates the problematic run against it.

4 Experiment with Sweep3D

In this section, we will demonstrate Hercule’s effectiveness in relative perfor-
mance diagnosis of the ASCI Sweep3D benchmark which uses a Wavefront com-
putational model. Sweep3D [1] is a solver for the 3-D, time-independent, neutron
particle transport equation on an orthogonal mesh. The three-dimensional space
is partitioned on a two-dimensional processor grid, where each processor is as-
signed one columnar domain. Sweep3D exchanges messages between adjacent
processors in the grid as wavefront propagates diagonally across the 3-D space
in eight directions. Sweep3D is a well-researched parallel benchmark. Although
parallelism overheads in Sweep3D have been minimized, for instance, by evenly
distributing data across a process grid, leaving little room for performance tun-
ing, Hercule can tell exactly how running time is spent in terms of model se-
mantics, helping understand inherent performance losses of the model under an
optimistic condition. Our performance study with Sweep3D focuses on overall
scalability, looking at how well the application scales as the number of processors
is increased (strong scaling) and as total problem size increases with the process
count increase (weak scaling).

We ran tests on MCR, a linux cluster located at Lawrence Livermore national
Laboratory. MCR has 1,152 nodes, each with two 2.4-GHz Pentium 4 Xeon pro-
cessors and 4 GB of memory and has peak performance rating of 11.06 Tflop/s.
The system interconnection is a customized 1024-port single rail QsNet network.

4.1 Case I: Diagnose Strong Scaling Performance Problems

Figure 4 shows the strong scaling behavior of Sweep3D with problem size 1503,
and angle blocking factor, mmi, equal to 3, k-blocking factor, mk, equal to 10. The
application scales well in general, but at process count 32 the speedup drops and
bounces up when process count increases to 36. We applied Hercule to contrast
performance of run1 (with 32 processors) against run2 (with 36 processors) and
diagnose performance anomaly cause. Hercule uses relative speedup (compared
to two-processor run) to evaluate performance since there is no inter-processor
communication in a sequential execution. The results that follow were generated
in a completely automated manner.

Hercule first calculates speedup of run1 (with 32 processors), run2 (with 36
processors) relative to run3 (with 2 processors), and expected speedup of run1
based on run2 performance. It reaches a performance symptom of run1 that will
be further explained.

Model-Based Relative Performance Diagnosis 205

comparative diagnosis

Fig. 4. Sweep3D strong scaling with prob-
lem size 150x150x150 (mmi=3, mk=10)

comparative diagnosis

Fig. 5. Sweep3D weak scaling with problem
size 20x20x320 (mmi=3, mk=10)

Hercule diagnosis step 1: find performance symptom

dyna6-166:~/PerfDiagnosis lili$./model_diag WF_speedup.clp 32pe.dup 36pe.dup 2pe.dup
Begin diagnosing ...
==
Speedup of run1 and run2 relative to run3

run1 run2 expected run1
speedup 12.80 15.84 14.08
--
run1 is slower than the expected value 14.08
--
Next we look at the symptom low speedup.
==

Hercule then breaks runtime down into computation and communication, nar-
rowing performance bug search.

Hercule diagnosis step 2: locate poorly performed functional groups

==
Level 1 experiment -- generate performance data with respect to comp. and comm..
--
Relative speedup of functional groups in run1 and run2

run1 run2 expected run 1
computation: 16.035 19.906 17.694
communication: 1.115 1.172 1.042
--
computation in run1 is longer than the expected.
--
Next look at performance with respect to pipeline components.
==

As computation time per process stands out, Hercule further distinguishes
pipeline-related computation and others.

Hercule diagnosis step 3: refine locating poorly performed functional groups

==
Level 2 experiment -- generate performance data with respect to pipeline components.
--
Relative speedup of pipeline components in run1 and run2

run1 run2 expected run 1
computation in pipeline: 16.598 20.702 18.402

206 L. Li, A.D. Malony, and K. Huck

other computation: 10.452 12.405 11.03
--
computation in pipeline in run1 is slower than the expected most.
--
Next look at computation in pipeline.
==

Pipeline computation per process in run1 is more expensive than the expected.
Hercule then looks at how well the load is distributed on processes.

Hercule diagnosis step 4: form performance hypothesis

==
run1 run2 difference

computation in pipeline SDV (us): 236859 97548 139311
(w.r.t. processes)

--
Standard deviation of pipeline computation in run1 is significantly larger than run2, which
implies a load imbalance across processes.
--
Next testify the hypothesis load imbalance.
==

Hercule forms a load imbalance performance hypothesis based on the standard
deviation of pipeline computations on all processes. It tests the hypothesis by
looking at model-related overheads to which load imbalance possibly contributes
most. It calculates and distinguishes performance impact of load imbalance on
the overhead categories, and exemplifies occurrence of load imbalance with pro-
cess behaviors in some specific computation step (iteration) and pipeline sweep.
This way of explanation provides the users with both the nature of performance
causes and evaluations of performance impact of the causes.

Hercule diagnosis step 5: test performance hypothesis
==
The impact of process load imbalance on performance manifests in pipeline-handshaking and
sweep-direction-change overhead.

Passing along data among successive pipeline stages (handshaking) takes 14.9% of pipeline
communication time. Pipeline handshake delay is unevenly distributed across processes.
std dev = 486463.75. process 31 involves the longest pipeline handshake cost.
--
Level 3 experiment for diagnosing handshaking related problems -- collect performance event
trace with respect to process 31
--
Pipeline HS delay is evenly distributed across iterations in the process 31. Next we look at
performance characteristics of iteration 3 which involves the longest pipeline HS.

Pipeline HS delay is evenly distributed across sweep in iteration 3 process 31, Next we look
at sweep 6 which involves the longest pipeline HS.

In iteration 3 sweep 6, computation are unevenly distributed across pipeline stages. For
example, in stage 4 process 4 spends 1964(us) doing computation, while in stage 10 process
31 spends 1590(us) computing.

In general, process 31 is assigned 23.6% less work load than process 4. Such discrepancy
causes process 31 idle for 29.5% of pipeline communication time..
--
When pipeline sweep direction change, processes may be idle waiting for successive pipeline
stages in previous sweep to finish, and for pipeline to fill up in a new sweep. The sweep
direction changes comprise 34.6% of pipeline communication time. The delay is unevenly

Model-Based Relative Performance Diagnosis 207

distributed across processes. process 31 involves the longest pipeline direction change.

... ... (Due to the limit of space, we skip the interpretation of other overhead categories)
==
Diagnosing finished...

4.2 Case II: Diagnose Weak Scaling Performance Problems

The second experiment with Hercule demonstrates its capability of identifying
and explaining parallelism overhead increases as both problem size and process
count are increased in weak scaling study. Figure 5 shows the weak scaling be-
havior of Sweep3D with fixed problem size 20x20x320. We can see that runtime
increases as more processors are used even though each process’s computation
load is kept the same. Hercule will compare 4-processor and 48-processor run
and report and explain the performance difference. Again, the results that follow
are generated in a completely automated fashion.

Hercule first calculates significance of performance difference and reaches a
performance symptom, higher parallelism overhead.

Hercule diagnosis step 1: find performance symptom

dyna6-166:~/PerfDiagnosis lili$./model_diag WF_overhead.clp weak.48pe.dup weak.4pe.dup
Begin diagnosing ...
==
Runtime of run1 and run2 (in seconds)

run1 run2 difference%
runtime 11.489 9.815 17.055%
--
run1 is 17.055% slower than the run2.
--
Next we look at the symptom parallelism overhead.
==

Hercule then breaks runtime down into computation and communication, lo-
cating the functional group with most pronounced performance difference.

Hercule diagnosis step 2: locate poorly performed functional groups

==
Level 1 experiment -- generate performance data with respect to comp. and comm..
--
Runtime of functional groups in run1 and run2 (in seconds)

run1 run2 difference%
computation: 8.886 8.891 -5.624e-4
communication: 2.603 0.924 181.71%
--
communication cost in run1 is significantly higher than run2.
--
Next look at communication performance with respect to pipeline components.
==

Hercule further distinguishes pipeline-related communication and others.

Hercule diagnosis step 3: refine locating poorly performed functional groups

==
Level 2 experiment -- generate performance data with respect to pipeline components.
--

208 L. Li, A.D. Malony, and K. Huck

Runtime of pipeline in run1 and run2 (in seconds)
run1 run2 difference%

computation in pipeline: 8.014 8.013 1.25e-4
other computation: 0.872 0.878 -6.83e-3

communication in pipeline: 2.275 0.803 183.31%
effective communication in pipeline: 0.943 0.571 65.15%
waiting time in pipeline: 1.332 0.231 476.62%

other communication: 0.328 0.121 171.07%

comm. count in pipeline (count/per process): 12288 12288 0
comm. volume in pipeline (byte/per process): 58982400 58982400 0
--
waiting time in pipeline in run1 is 476.62% higher than run2.
--
Next look at pipeline overheads.
==

Since waiting time in pipeline is significant, Hercule refines model-specific
overhead categories and computes corresponding metrics.

Hercule diagnosis step 4: locate poorly performed pipeline components
==
Level 3 experiment -- generate performance data with respect to pipeline waiting time
--
Runtime of pipeline components in run1 and run2 (in seconds)

run1 run2 difference%
waiting time in pipeline 1.332 0.231 476.62%
pipeline fill-up: 0.161 0.014 1050%
pipeline empty-up: 0.244 0.017 1335.29%
pipeline handshaking: 0.337 0.075 349.33%
pipeline direction change: 0.584 0.125 367.2%

==

There are increases in most overhead categories. We present below diagnosis
results explaining two most pronounced categories, pipeline fill-up and empty-up.

Hercule diagnosis step 5: diagnose two most pronounced pipeline overheads
==
Diagnosing pipeline fill-up

In run1, pipeline fill-up delay is evenly distributed across iterations. We look at
performance characteristics of the iteration 0, which involves the longest pipeline fill-up.

In iteration 0, the depth of pipeline is 13. The pipeline tail, process 0 is being idle when
the pipeline is filling up by processes in preceding stages. The pipeline fill-up delay
comprises 335103us (20.8%) of process 0’s total waiting time. The computations at preceding
pipeline stages together account for the long waiting time at the process. Reducing
computation load at preceding stages or pipeline depth will decrease filling up time.

In run2, pipeline fill-up delay is evenly distributed across iterations. We look at
performance characteristics of the iteration 1, which involves the longest pipeline fill-up.

In iteration 1, the depth of pipeline is 3. The pipeline tail, process 0 is being idle while
the pipeline is filling up by processes in preceding stages. The pipeline fill-up delay
comprises 28707us (25.5%) of process 0’s total waiting time.
--
Diagnosing pipeline empty-up

In run1, pipeline empty-up delay is evenly distributed across iterations. Next we look at
performance characteristics of the iteration 4, which involves the longest pipeline empty-up.

In iteration 4, the depth of pipeline is 13. The pipeline head, process 0 is being idle when
the pipeline is emptying up by processes in successive stages. The pipeline empty-up

Model-Based Relative Performance Diagnosis 209

delay comprises 573,162us (35.5%) of process 0’s total waiting time. The computations at
successive pipeline stages together account for the long waiting time at the process. Redu-
cing workload at successive pipeline stages or pipeline depth will decrease empty-up time.

In run2, pipeline empty-up delay is evenly distributed across iterations. We look at
performance characteristics of the iteration 1, which involves the longest pipeline empty-up.

In iteration 1, the depth of pipeline is 3. The pipeline head, process 0 is being idle when
the pipeline is emptying up by processes in successive stages. The pipeline empty-up
delay comprises 34858us (31.0%) of process 0’s total waiting time.
==

As shown in the results, the increase of pipeline depth in run1 (48-processor
run) is clearly the main cause of its overhead increase. Hercule illustrates and
interprets performance impact of the pipeline depth with the behaviors of the
process of the longest pipeline fill-up and empty-up. The pipeline depth also has
a performance effect on sweep direction change. Due to limitation of space, we
skip the interpretation of other overhead categories, event though Hercule is able
to explain them equally well.

5 Conclusions

The use of relative performance diagnosis, where problems are discovered and
explained in relation to other experiments, is important to support in diagno-
sis systems. For model-based diagnosis frameworks such as Hercule, we look to
integrate relative analysis in the knowledge and inference engineering. In this
paper, we report on how the Hercule framework was extended to enable rela-
tive diagnosis by adding an interface from the metric evaluator to the inference
engine to analyze performance from different runs. In addition, decision rules
were developed for problem identification and hypothesis testification. The pa-
per demonstrates the effectiveness of the approach to relative diagnosis of the
well-known Sweep3D application based on a wavefront model.

References

1. The ASCI sweep3d benchmark. http://www.llnl.gov/asci benchmarks/asci/
limited/sweep3d/.

2. CLIPS: A tool for building expert systems. http://www.ghg.net/clips/CLIPS.
html.

3. TAU tuning and analysis utilities. http://www.cs.uoregon.edu/research/
paracomp/tau/tautools/.

4. D. Abramson, I. Foster, J. Michalakes, and R. Sosic. Relative debugging: a new
paradigm for debugging scientific applications. The Communications of the Associ-
ation for Computing Machinery, 39(11):67–77, 1996.

5. K. Karavanic and B. Miller. A framework for multi-execution performance tuning.
In On-line Monitoring Systems and Computer Tool Interoperability, pages 61–89.
Nova Science Publishers, Inc., 2004.

6. L. Li and A. Malony. Knowledge engineering for automatic parallel performance
diagnosis. Accepted by Concurrency and Computation: Practice and Experience.

7. F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An algebra for cross-
experiment performance analysis. In ICPP 2004, 2004.

Self-optimization of MPI Applications Within an
Autonomic Framework

M. Iannotta1, E. Mancini1, M. Rak2, and U. Villano1

1 Università del Sannio, via Traiano, Benevento, Italy
massi.iannotta@gmail.com, {epmancini, villano}@unisannio.it

2 Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE), Italy
massimiliano.rak@unina2.it

Abstract. An existing autonomic framework (MAWeS) can be used to
provide run-time self-optimization for distributed applications. This pa-
per introduces a new MAWeS Component that provides an interface for
MPI applications. As case study, we will present the implementation of a
dynamically-reconfigurable n-body solver, evaluating its obtained perfor-
mance with and without the MAWeS framework under several different
working load conditions.

1 Introduction

The high redundancy and logical complexity of present-day distributed com-
puting systems have stimulated a great interest in autonomic computing sys-
tems [1,2], whose goal is to behave as the human autonomic system. Autonomic
capabilities are usually classified in four different categories: self-configuring,
in which the system can dynamically adapt to changing environments, self-
healing, in which the system can discover, diagnose and react to disruptions,
self-optimizing, in which the system can monitor and tune resources automat-
ically, and self-protecting, in which the system can anticipate, detect, identify
and protect itself against threats.

The first applications of autonomic systems [3, 4, 5, 6] are mainly targeted to
the configuration, management and optimization of large distributed systems
running highly dynamic applications, such as web services. We have contributed
to this research field with a prototype framework, MAWeS [7, 8, 9], which al-
lows running applications to self-tune querying an optimization engine using a
web services interface. Unlike most autonomic system existing today, MAWeS
optimizations are not based on reactive autonomicity, i.e., on feedback control.
MAWeS instead relies on predictive autonomicity, which uses feedforward con-
trol. The idea is to detect by means of external monitoring modules cyclic vari-
ations in parameters and their impact on performance, and to self-tune auto-
matically the system, anticipating the need [10]. The MAWeS framework hinges
on an existing description language and simulation environment (MetaPL and
HeSSE, respectively [11, 12, 13, 14]). The framework optimizations tools exploit
the simulator to predict the system behavior in real, fictitious or future working
conditions, anticipating the need for new configurations or tunings.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 210–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-optimization of MPI Applications 211

In [15], we proposed the adoption of self-optimization techniques also in the
context of MPI applications. However, the optimization engine presented in the
mentioned paper was able to optimize applications only at start-up time, making
it possible to adapt their computational and communications requirements to
the load measured at that time. Successive load variations were systematically
ignored. The objective in this paper is instead to execute MPI applications in
the context of the MAWeS framework, thus exploiting its dynamical, predictive
optimization capabilities. These are particularly suited to systems with a vari-
able background CPU and network load, such as small-scale shared clusters. The
objective of this experience is twofold: to evaluate the validity of the autonomic
approach in the high-performance computing context, and to explore the fea-
sibility of linking MPI code to a tool based on a service-oriented architecture
through a web service interface.

In particular, we will present here a new MAWeS Component that acts as
frontend for the framework. It provides a MAWeS interface for MPI applications.
The component is made of a “standard” template that can be used to develop
MPI applications interfaced to MAWeS, and of an interfacing daemon linked to a
distributed load detection system. The latter is used to detect (or even to foresee)
changed load conditions. The framework reacts distributing new configurations
to the running application through the daemon interface.

The reminder of the paper is structured as follows. The next section sketches
the structure of the MAWeS framework. Then, the design and the implementa-
tion of the new MAWeS frontend is presented. After that, the implementation
of a reconfigurable MPI test application is described, presenting the perfor-
mance results obtained. After an overview of related work on autonomic and
self-optimization systems, the conclusions are drawn.

2 The MAWeS Framework and the MetaPL/HeSSE
Methodology

The MAWeS Framework has been developed to support predictive autonomicity
in web services based architectures. It is based on two existing technologies:
the MetaPL language [12, 13] and the HeSSE simulation environment [11, 14].
The first is used to describe the software system and the interactions inside
it; the second, to describe the system behavior and to predict its performance
using simulation. The MAWeS framework uses MetaPL descriptions and HeSSE
configuration files to run HeSSE simulations. Through the execution of multiple
simulations, with different parameter values, it chooses the parameter set that
optimizes the software execution.

The MAWeS framework partially hides the presence of a simulation environ-
ment exploited through a web service interface. It is structured in three layers
(Figure 1), as follows:

Frontend made up of the software modules used by final users to access the
MAWeS services. These modules aim to give high transparency to the tool,
from the final user perspective;

212 M. Iannotta et al.

MAWeSclient MetaPL / HeSSE
WS Interface

MAWeS Core

User
Developed
Application

MetaPL
Description

MAWeS
Interface

Decision
Unit

M /H
Client

HeSSEws

MetaPLws

Environment
S ervices

Frontend Core WS Interface

Target
S ervices

1. submit MetaPL
description

Repeat

2. create
the project

3. generate
traces

4. simulate
5. return
optimal

parameters

6. execute application

Fig. 1. MAWeS Framework logical schema

Core composed of the software and the services that manage MetaPL files and
make optimization decisions;

WS Interface the set of Web Services used to obtain simulations and predic-
tions through MetaPL and HeSSE.

The MAWeS Frontend provides a standard client application interface,
MAWeSclient, which has to be extended by developers with their actual ap-
plication code. The MAWeSclient client accepts as input a MetaPL file describ-
ing the application code. The MAWeS Core exploits environment services and
the MetaPL/HeSSE Web Services interface using the application information
contained in the MetaPL description, to find out optimal execution conditions.
It is a software unit provided both as a web service and integrated into the
MAWeSclient.

The sequence of events and calls that allow the execution of an application
with optimal values of parameters is also shown in Figure 1. The MAWeS client
submits the MetaPL application description to the MAWeS core (1). Then the
services of the framework automatically find out the set of simulations needed,
perform them (2,3,4), and return the set of optimal parameters for the target
application (5). Finally, MAWeSclient starts the application code, passing to it
the set of optimized parameters (6).

A critical issue is to point out the set of parameters that mostly affect per-
formance, in order to find automatically the best application configuration.
MetaPL descriptions consist essentially of code prototypes, enriched with task-
to-processor mapping (Mapping tag). The Autonomic MetaPL extensions define
additional language elements for this section. They introduce the Autonomic tag,
included in Mapping element, which describes the target simulation configura-
tions that can be used for application execution. Further details on MAWeS can
be found in [7, 8].

Self-optimization of MPI Applications 213

MAWeS Client

MPI Template Application

Frontend

MAWeS
Core

Core

Master
Process

Daemon

SlavesSlavesSlaves
(User)

3. invoke service

4. return
optimal parameters

1. MetaPL

2. read system
information

Load Detection System

MonitorsMonitorsMonitorsCollector

MPI MAWeS Interface

5. optimal
parameters

Fig. 2. Client-side of a Self-optimizing Application using MAWeS

3 Self-optimization of MPI Applications with MAWeS

In [15] we have shown the potential of the MetaPL/HeSSE methodology to self-
tune scientific applications using predictive autonomicity. In the tests described
in the mentioned paper, we optimized an MPI application performing a set of
simulation before application start-up. In this paper, we aim to obtain an auto-
nomic behavior performing the applications optimization while the application
runs. It is important to point out that the MAWeS framework is based on a
web services approach, whereas the target scientific application application is
an MPI one. In order to interface the target application to the framework, a
modification the original MAWeS Frontend is needed. As shown in Figure 2, the
MPI-MAWeS frontend is made out of:

1. MPI Template Application (MTA)
2. MPI/MAWeS Interface (MMI)

The MTA provides a template that can be used to develop an MPI application
interfaced to the MAWeS framework. In practice, the template allows the con-
struction of master/worker codes. In addition to its “normal” coordination and
(possibly) computational task, the master is the interface of the MPI code to the
optimization framework. On the other hand, the workers contain no additional
optimization logic and have only computational tasks. In our opinion, restricting
our interest to master/worker codes is not great generality loss, as a “fake” mas-
ter can in any case be introduced in different software design patterns. A second
design choice of the template is to support only iterative codes, where each node
performs its operations several times on a subset of the problem whole data set.
The idea is to redistribute the data set whenever the optimization engine, due
to the changed system load, points out a more profitable load sharing.

The MMI component provides a daemon, which is the direct interface with
the MAWeS core, and a Load Detection System, useful to find changed system
load conditions and to trigger the optimization engine in MAWeS. The MMI
daemon module is essentially a gateway: it waits for UDP requests from the

214 M. Iannotta et al.

MetaPL

MAWeSMasterSlaves
1..n

default startup
parameters

Application runs

Create files
needed by
MAWeS

create
project

ask for
parameters

Slaves
1..n

Slaves

fork()

Multithreading
Daemon

Fig. 3. Start-up phase: the daemon returns default startup parameters

MTA master, and then asks the MAWeS core for optimal parameters exploiting
its web services interface.

The Load Detection System of MMI is designed with a master/worker ap-
proach. A collector, which usually resides on the same node as the MMI daemon
and as the MTA master, queries a set of local monitors, which retrieve data
about the state of each node. In the current implementation, the Load Detec-
tion System just takes into account CPU load.

3.1 The MTA-MMI Protocol

Figure 3 shows what happens when the application developed extending the
MTA template is started. The application workers (which contain only user code)
ask the master for the local data sets. This starts the MMI daemon and returns
to the workers, in addition to actual data, a “default” set of parameters. In other
words, the first iterations are not optimized. The MMI daemon generates the
thread that will manage the optimizations. While the workers are working using
the default configuration, MAWeS starts searching for the optimal configuration.

The workers compute, conclude their iteration, possibly return results or syn-
chronize with the master, and, in the absence of any reconfiguration messages,
start computing on the next iteration. As shown in Figure 4, the master asks
the daemon to know if a better configuration is available. This happens with a
frequency that depends on the application characteristics. In this case, a recon-
figuration message is sent to the workers. The optimization logic is completely
asynchronous with the user program. In the absence of reconfiguration messages,
the MPI code runs at full speed without any introduced overhead. New config-
urations are broadcast to the workers that apply them as soon as possible (in
practice, between one iteration and the next).

4 Case Study: N-Body

The objective of this section is to show how the framework can optimize the
run-time behavior of a scientific MPI application. The example chosen is a code
solving the n-body problem [16]. The universe of bodies is split in disjoint subsets

Self-optimization of MPI Applications 215

optimization request

new configuration

Load Detection
System

socket test

retrieve load info

send actual configuration
and load Info

Multithreading
Daemon

Search for
optimized

configuration

MAWeSMaster

Application
runs

socket test

optimization request

Slaves
1..n

Slaves
1..n

Slaves

optimized
configuration

Reconfiguration

optimized configuration

Fig. 4. Optimization phase: the daemon contacts the MAWeS framework to obtain an
optimized configuration and returns it to the application

that are managed in a parallel way using a master-worker paradigm. The master
initializes body positions and assigns distinct subsets of bodies to the workers.
These, at every iteration, compute the gravitational forces between the bodies in
their own subset against all bodies in the universe, and broadcast the updated
bodies position and velocity, to be used in the next iteration.

As “global” iteration time is clearly the maximum of the iteration times of
the different workers, the optimization strategy target is to level off any possible
differences. This is fairly trivial in a homogeneous machine in the absence of
external CPU load. In a system where the nodes have a variable fraction of
CPU load due to other applications or services, achieving a good balance is
instead a hard task.

As the single worker iteration times depend (besides on CPU load) on then
number of bodies to be managed, MAWeS will control the latter parameter to
obtain optimal execution conditions. In this context, “optimal” means balanced
iteration times for the slaves and thus minimum overall execution time. To this
end, MAWeS will occasionally ask for variations in the number of the bodies
assigned to the slaves. As every slave knows the spatial coordinates of all bodies,
not only of the locally-managed ones, reconfigurations can be easily obtained
before starting a new iteration. It is clear that the algorithm proposed is highly
non-optimized, due to the unnecessary data replications. However, our main goal
here is to provide simply a proof-of-concept code. In an optimized code, where
data are not replicated, bodies coordinates have to be transferred between work-
ers when reconfigurations are performed. The effect of the overheads introduced
can be easily taken into account by simulation in MAWeS.

4.1 Description of the Tests Performed

The environment used to test the application is the Fab4 Cluster, at the Univer-
sity of Sannio in Benevento, using MPICH version 1.2.7. During the tests, the
MTA master, the MMI daemon and the Load Detection System Collector run on

216 M. Iannotta et al.

0

20

40

60

0 200 400 800 1000 1300 1600
t (s)

C
P

U
 L

oa
d

(%
)

0

5

10

15

20

25

30

35

0 200 400 800 1000 1300 1600

t (s)

O
ve

rh
ea

d
(s

)

Fig. 5. Synthetic load time profile and corresponding MAWeS overhead

the cluster frontend, which hosts also the MAWeS Frontend Web Services and
HeSSE. On each node (frontend and nodes) the Load Detection System is used
to obtain periodically load information. In order to evaluate the tool behavior
in a variety of conditions, we injected a synthetic CPU Load on some of the
nodes during the target application execution. The MAWeS tool will adapt the
application behavior to the system load, modifying the data sets of the workers.

Figure 5 shows in the upper diagram the synthetic additional CPU load in-
jected in each node during the application run (the x axis reports the time from
application start-up, the y axis the ratio of CPU time used by the synthetic load
generator, in different colors for each node). The lower diagram shows the corre-
sponding time for simulation, optimizations, . . . , spent in the MAWeS framework
(not in the application nodes, which simply receive pre-computed optimal con-
figurations). The overhead is nearly negligible, except when, due to changes of
system load, new configurations have to be compared, in order to find the op-
timal one for the future interval of time. It should be noted that this overhead
has no direct effect on the application execution. The use of feedforward makes
it possible to start the choice of a new configuration well before expected load
changes. Should even MAWeS delay to communicate the new optimized configu-
ration, the workers will continue to compute with the previous (likely, no longer
optimal) one.

4.2 Experimental Results

As mentioned in the introduction, MAWeS is based on a feedforward approach.
A predicted load profile is used, along with actual measurement data, to foresee
changes of system load and to adapt proactively to the changes, anticipating the
need for reconfigurations. However, the tool can be easily modified (this cannot
be done on-the-fly in the current implementation) to adopt the more conservative

Self-optimization of MPI Applications 217

0

20

40

60

80

100

0 200 400 600 800 1.000 1.200 1.400 1.600

t (s)

Ite
ra

tio
n

tim
e

(s
)

No Self-optimization Feedback Feedforward

Fig. 6. System evolution without MAWeS, with feedback and with feedforward MAWeS

feedback approach. A comparison between the two strategies is indeed useful in
the testing phase to understand the limits and the usefulness of the framework.
It should be noted that, using the feedforward approach, the optimizations are
carried out before the load is injected. With feedback, they are performed only
after that a load variation is detected. As regards the previsions on system load,
they can be obtained by historical data, and/or by making considerations on the
type of host application load.

Figure 6 shows the evolution in time of the global iteration response times of
the n-body application without any self-optimization (No self-optimization), and
under MAWeS with feedback (Feedback) and feedforward strategy (Feedforward).
In all the tests, the externally injected additional load is the one represented
in the load profile in Figure 5. The optimization framework is supplied with
perfectly accurate predictions of system load (in practice, with the actually-
injected load profile). The comparison between the response times without and
with MAWeS shows the validity of the self-optimizing technique implemented.
Using MAWeS, it is clear that in the hypothesis of perfectly-accurate predictions
the feedforward approach should lead to the best results. In fact, the feedback
approach has a delay time linked to the optimization latency and overhead (see
Figure 5). When the optimization is based on feedback, the system can optimize
itself only after a short period of unoptimal performance, as it has to monitor the
system to find unwanted situations. When this happens, the program can obtain
the optimal parameters by MAWeS. These optimal parameters are obtained in
advance if the feedforward approach is used.

5 Related Work

Even if the research efforts at the basis of MAWeS are placed in the context
of autonomic computing, this paper is essentially concerned with parallel code
self-optimization and tuning. This has been a very active research area in the
last decade, and a wide body of literature has been produced on similar topics.
In particular, the contributions more similar to our proposal are Active Har-
mony [17] and Autopilot [18]. Both of them allow the run-time configuration of

218 M. Iannotta et al.

applications in response to monitoring data, and provide an automatic optimiza-
tion engine. Moreover, the ATLAS project has developed automatically tuned
linear algebra libraries [19], and the AppLeS project [20], possibly in union with
the Network Weather Service [21], provides adaptive application level scheduling.

A first difference between MAWeS and the projects mentioned above is that
it is particularly oriented toward systems where the resources (both computing
resources and network) are shared. These include small clusters with background
(or conflicting) load and Grids. Though some of the libraries/tools can be used
for such systems, only MAWeS uses simulations of the computing system and of
the network to estimate the effect of external load. A second difference is that
MAWeS is the only system that decides when and what to reconfigure using a
feedforward approach. At the best of the authors’ knowledge, all other systems
are based on feedback control.

6 Conclusions and Future Work

In this paper, we have described the process of building MPI autonomic appli-
cations that are able to self-optimize. The proposed solution relies on the use
of an existing autonomic framework, MAWeS, which has been provided with
a new front-end to support the interfacing to MPI applications, developed us-
ing a supplied template. A real scientific application was developed for testing
purposes. The experimentation showed that the proposed approach gives good
performance results across artificially-introduced changes of system load.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. In: Computer.
Volume 36, num. 1., IEEE Computer Society Press (2003) 41–50

2. IBM Corp.: An architectural blueprint for autonomic computing. IBM Corp., USA
(2004) www-3.ibm.com/ autonomic/pdfs/ ACBP22004-10-04.pdf.

3. Jacob, B., Basu, S., Tuli, A., Witten, P.: A First Look at Solution Installation
for Autonomic Computing. IBM Corp. (2004) http://www.redbooks.ibm.com/
redbooks/pdfs/ sg247099.pdf.

4. Jacob, B., Lanyon-Hogg, R., Nadgir, D.K., Yassin, A.F.: A Pratical Guide to IBM
Autonomic Computing Toolkit. IBM Corp. (2004) http://www.redbooks.ibm.com/
redbooks/pdfs/ sg246635.pdf.

5. Birman, K.P., van Renesse, R., Vogels, W.: Adding high availability and autonomic
behavior to web services. In: Proc. of 26th International Conference on Software
Engineering (ICSE 2004), Edinburgh, United Kingdom, IEEE Computer Society
(2004) 17–26

6. Zhang, Y., Liu, A., Qu, W.: Software architecture design of an autonomic system.
In: Proc of 5th Australasian Workshop on Software and System Architectures,
Melbourne, Australia (2004) 5–11

7. Mancini, E., Rak, M., Torella, R., Villano, U.: Predictive autonomicity of web
services in the MAWeS framework. Journal of Computer Science 2 (2006)

Self-optimization of MPI Applications 219

8. Mancini, E., Rak, M., Torella, R., Villano, U.: A simulation-based framework for
autonomic web services. In: Proc.s of the 11th Int. Conference on Parallel and
Distributed Systems, Fukuoka, Japan (2005) 433–437

9. Mancini, E., Rak, M., Villano, U.: Autonomic web service development with
MAWeS. In: Proc. of 20th International Conference on Advanced Information
Networking and Applications (AINA’06), Vienna, Austria (2006) 504–508

10. Russell, L.W., Morgan, S.P., Chron, E.G.: Clockwork: A new movement in auto-
nomic systems. In: IBM Systems Journal. Volume 42, num. 1., IBM Corp. (2003)
77–84

11. Mazzocca, N., Rak, M., Villano, U.: The transition from a PVM program simulator
to a heterogeneous system simulator: The HeSSE project. In J. Dongarra et al., ed.:
Recent Advances in PVM and MPI, Lecture Notes in Computer Science. Volume
1908., Berlin (DE), Springer-Verlag (2000) 266–273

12. Mazzocca, N., Rak, M., Villano, U.: MetaPL a notation system for parallel pro-
gram description and performance analysis parallel computing technologies. In
V. Malyshkin, ed.: Parallel Computing Technologies, Lecture Notes in Computer
Science. Volume 2127., Berlin (DE), Springer-Verlag (2001) 80–93

13. Mazzocca, N., Rak, M., Villano, U.: The MetaPL approach to the performance
analysis of distributed software systems. In: Proc. of 3rd International Workshop
on Software and Performance (WOSP02), IEEE Press (2002) 142–149

14. Mancini, E., Mazzocca, N., Rak, M., Villano, U.: Integrated tools for performance-
oriented distributed software development. In: Proc. SERP’03 Conference. Vol-
ume 1., Las Vegas (NE), USA (2003) 88–94

15. Mancini, E., Rak, M., Torella, R., Villano, U.: Self-optimizing mpi applications:
A simulation-based approach. In Yang, L.T., Rana, O.F., Martino, B.D., Don-
garra, J., eds.: High Performance Computing and Communications: First Int. Conf.,
LNCS. Volume 3726., Sorrento, Italy (2005) 143–155

16. Greengard, L.: The numerical solution of the n-body problem. Comput. Phys. 4
(1990) 142–152

17. Tapus, C., Chung, I.H., Hollingsworth, J.K.: Active harmony: Towards automated
performance tuning. In: Supercomputing Conference. (2002) 44–54

18. Ribler, R.L., Vetter, J.S., Simitci, H., D. A, R.: Autopilot: adaptive control of
distributed applications. In: 7th Int. Symp. on High Performance Distributed
Computing. (1998) 172–179

19. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Supercomputing Conference. (1998)

20. Berman, F., Wolski, R.: Scheduling from the perspective of the application. In:
5th Int. Symp. on High Performance Distributed Computing. (1996) 100–111

21. Wolski, R.: Forecasting network performance to support dynamic scheduling using
the network weather service. In: 6th Int. Symp. on High Performance Distributed
Computing. (1997) 316–325

Discovery of Locality-Improving Refactorings by
Reuse Path Analysis

Kristof Beyls and Erik H. D’Hollander

Department of Electronics and Information Systems (ELIS), Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

{kristof.beyls, erik.dhollander}@elis.UGent.be

Abstract. Due to the huge speed gaps in the memory hierarchy of mod-
ern computer architectures, it is important that programs maintain a
good data locality. Improving temporal locality implies reducing the dis-
tance of data reuses that are far apart. The best existing tools indicate
locality bottlenecks by highlighting both the source locations generating
the use and the subsequent cache-missing reuse. Even with this knowl-
edge of the bottleneck locations in the source code, it often remains hard
to find an effective code refactoring that improves temporal locality, due
to the unclear interaction of function calls and loop iterations occurring
between use and reuse.

The contributions in this paper are two-fold. First, the locality anal-
ysis is enhanced to not only pinpoint the cache bottlenecks, but to also
suggest code refactorings that may resolve them. The refactorings are
found by analyzing the dynamic hierarchy of function calls and loops on
the code path between reuses, called reuse paths. Secondly, reservoir sam-
pling of the reuse paths results in a significant reduction of the execution
time and memory requirements during profiling, enabling the analysis of
realistic programs.

An interactive GUI, called SLO (Suggestions for Locality Optimiza-
tions), has been used to explore the most appropriate refactorings in a
number of SPEC2000 programs. After refactoring, the execution time of
the selected programs was halved, on the average.

1 Introduction

The memory access time is a growing bottleneck in high performance computer
systems. A suitable memory hierarchy is one of the prominent answers, and its
beneficial effect is proportional to a good data locality during program execution.

Poor temporal locality occurs when between consecutive reuses of the same
data, a large amount of other data is accessed. Two consecutive reuses of the
same data are called a reuse pair. In this paper, the distance of a reuse pair is
defined as the number of accesses between use and reuse

The temporal locality of a reuse pair can only be increased by reordering
memory accesses, so that its distance is reduced. The best existing analysis
tools [1,2] highlight both the source locations generating the use and the reuse
of long-distance reuse pairs. However, using this information, it often remains

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 220–229, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Discovery of Locality-Improving Refactorings by Reuse Path Analysis 221

double inproduct(double*X,double*Y,int len) {
int i; double result=0.0;
for(i=0; i<len; i++)
result += X[i]*Y[i]; //place of use

return result; }
double sum(double *X, int len) {
int i; double result=0.0;
for(i=0; i<len; i++)
result += X[i]; //place of reuse

return result; }

(a) Reuse Pairs indicated by existing tools.

i−loop i−loop i−loop
inproduct sum sum

prodsum

i=1 i=1i=0 i=0i=0 i=1

X[0] Y[0] X[1] Y[1] X[0] X[1] Y[0] Y[1]

(I)
(L)
(F)
(F)

(b) Dynamic function-loop hierarchy,
len=2.

(c) Fusions indicated by SLO (converted
from color to black-and-white by hand).

0

1M

2M

0 210 220

nr
. r

eu
se

s
reuse distance

FUSE-B15-B16

FUSE-B15-B18

(d) The reuse distance histogram corre-
sponding to (a), len=1000000.

Fig. 1. Example program containing long-distance reuses

hard to find a code refactoring that reduces the distance, due to the unclear
interaction of function calls and loop iterations between the reuses.

Example 1. Consider the code in Fig. 1(a). The comments indicate the source lo-
cation where the cache-missing reuse occurs and the location where the previous
use of the data was. This view on the code does not reveal how to bring use and
reuse closer together, since it is not clear from where the functions inproduct
and sum are called.

In contrast, the presented method analyzes the dynamic function-loop hierarchy,
which is the hierarchy of all function calls, loop executions and loop iterations at
run-time. An example is given in Fig. 1(b), where (I) indicates a loop-iteration
level, (L) a loop level and (F) a function-call level. Our method proceeds by
analyzing the highest level in this hierarchy where “sections” are crossed between
use and reuse. Significantly reducing the distance between use and reuse requires
the merging of the corresponding sections. Merging these run-time sections by
static source code transformations requires the following refactorings, depending
on the type of sections that need to be merged:

(I) Iteration merging can be done by a tiling-like code transformation, so
that less data is accessed in a given loop iteration.

(L) Loop merging can be done by fusing the corresponding loops.
(F) Function merging is done by fusing the corresponding functions.

Example 2. (continued) For the reuse of X[0] in Fig. 1(b), the highest-level
sections that are crossed are function-call sections. Therefore, bringing use and
reuse closer together requires fusing inproduct and sum. This refactoring is

222 K. Beyls and E.H. D’Hollander

graphically represented by SLO as shown in Fig. 1(c). Furthermore, Fig. 1(d)
shows that the other half of long-distance reuse pairs need to be optimized by
fusing inproduct with the second call to sum. The need for these refactorings is
not easily extracted from the bottleneck information shown by previous analyses
(see Fig. 1(a)). The resulting optimized code runs 3 times faster on a 2.66Ghz
Pentium4. The use of SLO as a tool to improve temporal locality has been
discussed in more detail in [3]. In this paper, we present the underlying analysis.

Constructing the complete function-loop-hierarchy explicitly would result in pro-
hibitive memory overheads, and prohibitive time overhead to find the highest-
level section crossed. Therefore, we developed a data structure and accompanying
algorithm to track the function-loop hierarchy for the open reuse pairs, i.e. those
reuse pairs for which the use has occurred, but the potential reuse is still in the
future, as presented in Sect. 2.

Furthermore, a sampling algorithm is introduced in Sect. 3, that speeds up
the profiling of long-running programs. Previous sampling methods for cache
measurement such as time and set sampling [1,4,5] only allow to control the
sample rate, without guarantees about the resulting accuracy, since samples
are taken systematically instead of randomly. In contrast, our algorithm takes
samples randomly, which allows to derive a theoretically guaranteed accuracy.

The sampled profiling and analysis has been implemented in the GCC com-
piler. Using the data structures presented in Sect. 2, the analysis becomes doable
for most SPEC2000 programs, albeit at a sometimes large memory overhead
and a time overhead of a factor 1000 during profiling. As shown in Sect. 4, the
sampling largely reduces memory overhead to an almost constant factor, and a
time overhead of only a factor 5 for long-running programs compared to unin-
strumented, fully-optimized execution. Using SLO, we were able to improve the
locality of five already hand-optimized programs in SPEC2000, resulting in an
average speedup of 2 on a number of different platforms. A comparison with re-
lated work is made in Sect. 5, indicating that the data structures and sampling
techniques introduced in Sections 2 and 3 might also be profitable for a number
of other program analyses. In Sect. 6, concluding remarks follow.

2 Compact Representation of the Function-Loop
Hierarchy for Open Reuse Pairs

Pinpointing the refactoring for optimizing a given reuse pair is based on deter-
mining the highest level in the function-loop hierarchy where sections are crossed.
Constructing the complete function-loop hierarchy would be prohibitively expen-
sive. Therefore, a compact representation of the function-loop hierarchy for only
the open reuse pairs has been developed. At each memory access, if the address
has been accessed before, the highest-level sections crossed between the previous
use and the current reuse is computed as follows.

First, the innermost function in the hierarchy that contains both use and reuse
occur is determined. We call it the Least Common Ancestor Function (LCAF)

Discovery of Locality-Improving Refactorings by Reuse Path Analysis 223

10 9

11

6
7

8

12 13

5

0 4

(a) The Control Flow Graph.

NNUBBNNRBB

UseBB

ReuseBB

10

9 6

5

12

8 7 11

0 4 13

(b) The Nested Loop Forest.

Fig. 2. A Control Flow Graph and Nested Loop Forest. The basic blocks executed
between use and reuse are indicated by double ellipses. For the considered reuse pair,
the use occurs in basic block 6, while the reuse occurs in basic block 9.

since it is the least common ancestor of both use and reuse in the function-loop
hierarchy. Then, the basic blocks executed between use and reuse are analyzed
to find the outermost loops or loop iterations in the LCAF that are crossed
between use and reuse, using the following definitions (see Fig. 2):

Definition 1. The Intermediately Executed Code (IEC) of a given reuse
pair is the set of basic blocks in the LCAF executed between use and reuse.
The UseBB is the basic block in the LCAF containing the use; the ReuseBB
contains the reuse.

The Nested Loop Forest of a function is a graph, with its basic blocks as
nodes and edges going from loop headers to the basic blocks directly controlled by
them. The Outermost Executed Loop Header (OELH) of a basic block
BB with respect to a given reuse pair is the earliest ancestor of BB in the
nested loop forest that has been executed between use and reuse.

The Non-nested Use Basic Block (NNUBB) is the OELH of UseBB.
The Non-nested Reuse Basic Block (NNRBB) is the OELH of ReuseBB.

When NNUBB=NNRBB, the highest level sections crossed are iterations of the
loop for which the loop header is NNUBB. If NNUBB�=NNRBB, fusion of the
loops or function calls associated with the NNUBB and NNRBB are required
(Each function call is located in a separate basic block).

When a data reuse is detected, the algorithm in Fig. 4 is used to calculate the
LCAF, NNUBB and NNRBB. The three steps in the algorithm are discussed
below; the data structure for representing basic blocks executed between use and
reuse is illustrated in Fig. 3:

1. On every memory access and basic block transition, the global time is in-
creased. For each data address, the time of its last access is stored in a
hash-table. At time of reuse, the time of use is retrieved from that hash-
table.

2. At run-time, a stack is maintained that reflects the call stack of the program.
The LCAF is simply the latest function on the call stack that was called
before the time of use.

3. For each frame in the stack, the list of executed basic blocks is maintained
sorted in Most Recently Used order, e.g. Fig. 3. At the time of reuse, the

224 K. Beyls and E.H. D’Hollander

function = prodsum

entertime = 0

function = sum

entertime = 34

BB=21

time=34

call sum

BB=12

time=37

BB=20

time=34

BB=19

time=33

call sum

BB=18

time=19

BB=17

time=18

call inproduct

BB=14

time=37

BB=10

time=36

Fig. 3. Illustration of call stack, with an MRU list of basic blocks per call frame. The
call stack for the code in Fig. 1 is presented. (current time=37, tu = 6, LCAF =
prodsum,head(LCAF) = BB21, LAST (LCAF, tu = 6) = BB17).

1: tu ← time of last use.
2: LCAF ← FirstFunctionBeforeT imeInStack(tu)
3: head ← HEAD(LCAF); last ← LAST (LCAF, tu); iec ← {head..last};

NNRBB ← OELH(iec, head); NNUBB ← OELH(iec, last)

Fig. 4. Algorithm to find (NNUBB,NNRBB) for a reuse pair at time of reuse

ReuseBB is the head of the list of the LCAF, so NNRBB=OELH(head).
The UseBB cannot be determined from this data structure. Also, it is not
possible to record the UseBB at time of use, since the LCAF is unknown
at that time. However, OELH(UseBB) is the same as the OELH of the last
basic block in the list with an access time before the time of use, see lemma 1
below. Therefore, NNUBB=OELH(last).

Lemma 1. The last basic block L in the MRU list with a time more recent than
the time of use, has the same OELH as the UseBB.

Proof. (a) If UseBB is executed once between use and reuse, then UseBB=L, so
OELH(UseBB)=OELH(L).

(b) If UseBB is executed multiple times between use and reuse, then the trace
of basic blocks between use and reuse has the following general form: (UseBB1
· · · L · · · UseBBN · · · ReuseBB), where UseBB1 is the dynamic instance of
UseBB where the use occurs and UseBBN is the last instance of UseBB that is
executed between use and reuse. L is executed between UseBB1 and UseBBN ,
so it must lay on some cyclic path from UseBB to itself. This cyclic path is part
of a loop, and goes through the loop header which is part of the IEC. Since L
and UseBB have a common loop header that is executed between use and reuse,
they have a common loop header which is part of the IEC. As such, the OELH
for both UseBB and L is the OELH of that common loop header. ��

3 Overhead Reduction by Reservoir Sampling

While the data structures introduced in Sect. 2 enable to measure the data reuses
and to pinpoint the required refactorings, it still has a large profiling overhead
(factor 1000 on average) and a large memory overhead (over 2GB for some

Discovery of Locality-Improving Refactorings by Reuse Path Analysis 225

SPEC2000 benchmarks), see Sect. 4. In this section, we introduce a sampling
method to reduce both the time and memory overhead. The aim is to reduce
the amount of reuse pairs for which the analysis in Sect. 2 is needed, while still
guaranteeing the resulting error to be within a specified confidence interval.

3.1 Determining Number of Samples Needed for a Given Accuracy

Earlier sampling methods for memory traces, such as time sampling and set sam-
pling [5] perform systematic sampling, i.e. the samples are not taken randomly.
In contrast, we take uniform random samples of the reuse pairs in the program.
This allows to perform the following analysis on the number of samples needed
to obtain a given confidence interval.

The following assumptions are made: (1) A refactoring R is identified by the
couple (NNUBB,NNRBB). (2) A refactoring R optimizes a given fraction Rf of
all reuses for a given program run. (3) For a given reuse pair P , the probability
that P is optimized by a refactoring R is RP .

When the refactorings are determined for a sample of only n out of a to-
tal of N reuse pairs in a program run, the estimation for the fraction of reuse
pairs that are optimized by refactoring R is R̂P = c/n, where c equals the num-
ber of reuse pairs in the sample that can be optimized by R. The correspond-
ing large sample confidence interval [6] is, without assuming any distribution

on RP , R̂P ± zα/2

√
R̂P (1 − R̂P)/(n− 1). Therefore, the expected relative er-

ror within an α% confidence interval is e =
(

zα/2

√
R̂P (1− R̂P)/(n− 1)

)
/R̂P

Rearranging this formula, the number of samples n that need to be taken to
estimate RP to within a certain error e for a given confidence interval α is:
n =

((
z2

α/2(1− R̂P)
)

/e2R̂P

)
+ 1

In the experiments below, we wanted to find for each refactoring that opti-
mizes at least 0.01% of all reuse pairs, the true fraction of reuses it optimizes
with a maximum relative error of 10% (e = 0.1) with a 95% confidence interval
(zα/2 = 1.96). Substituting these values in the above formula, shows n must be
at least 3.841.217. Therefore, a uniform random sample of at least 3841217 reuse
pairs is needed to accurately pinpoint the refactorings.

3.2 Profiling Based on Reservoir Sampling

The goal of the sampling is to collect the (NNUBB, NNRBB) for n reuse pairs
that have been uniform randomly selected. At the start of the program, it is un-
known how many reuse pairs there will be in the program run, so it’s impossible
to select a fixed sampling rate (apart from the fact that a fixed sampling rate
does not result in a completely random set of reuse pairs). Therefore, the imple-
mentation is based on reservoir sampling [7]. At the start of execution, each reuse
pair detected is inserted in the sample, until there are n reuse pairs. From then
on, the formula presented in [7, Alg. L] determines the number of reuse pairs
to be skipped, before the next reuse pair is chosen to replace one of the pairs

226 K. Beyls and E.H. D’Hollander

already present in the sample. As the program runs longer, the distance between
reuse pairs that are sampled also grows larger. At the end of the execution, each
reuse pair has an equal probability of being present in the sample [7].

In our implementation in the GCC compiler, every memory access, basic block
and function call is instrumented. For each basic block and function call, a call
to a run-time library is inserted that maintains the call stack data structure
illustrated in Fig. 3. For each memory access, the following code is inserted:

++time;
if (HASH_ARRAY[addr & mask] != 0) __full_check (addr, ref);
if (--accesses_to_next_traced == 0) __track_address (addr, ref);

time is the global time. HASH_ARRAY is a large array that is indexed using the
accessed address modulo the size of HASH_ARRAY. HASH_ARRAY contains non-zero
entries for all addresses that are currently part of an open reuse pair that is
sampled. accesses_to_next_traced is the number of accesses that need to be
skipped until the next access that will be entered in the sample, according to [7,
Alg. L]. When HASH_ARRAY is substantially larger than the number of samples n
to be taken, and when the number of accesses already executed in the program
run is substantially larger than n, both if tests are likely to be false. As a result,
for most accesses in long running programs, the overhead of memory access
instrumentation is just incrementing the time and accesses_to_next_traced
variables and performing the two conditions in the if-test.

4 Experimental Results

We implemented the presented method in the GCC 4.1 compiler. The patch is
available at http://www.elis.ugent.be/∼kbeyls/slo. We used the SPEC2000
benchmarks, with all their available inputs, to evaluate the reduction in time and
memory overhead due to the sampling. All profiling overhead tests were run on
an AMD Opteron 1.6Ghz processor running Linux.

Fig. 5(a) shows the time overhead of profiling versus the original execution
time of the non-profiled fully-optimized programs. It shows that profiling without
sampling has a more or less constant overhead of about a factor 1000. Using
sampling, the time overhead reduces to about 5 for long-running applications.

Fig. 5(b) shows the memory overhead. Using non-sampled profiling, a few runs
lead to more than 2GB memory overhead, resulting in a program crash due to out
of memory on the 32-bit platform. These results agree with those found by Fang
et al. [8, Sect. 4.1] who instruments programs to measure the branch history
between use and reuse: there are too many different paths executed between
reuses to be able to store them in a reasonable amount of memory. Therefore,
it seems that sampling techniques are required to practically measure the paths
executed between reuses for arbitrary programs.

In contrast, the sampled profiling has an almost constant memory overhead
of about 200MB, allowing to profile all SPEC2000 programs. Of those 200MB,
about 150MB is consumed by the sample buffer containing 4 million reuse pairs,
and the associated data. The slight fluctuation in memory overhead between

Discovery of Locality-Improving Refactorings by Reuse Path Analysis 227

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400 450 500

pr
of

ili
ng

 o
ve

rh
ea

d
(f

ac
to

r)

exec. time orig (s)

sampled overhead
non-sampled overhead

out of memory

(a) Execution time overhead measured as a
factor of the original execution time. (Ver-
tical axis is logarithmic)

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

m
em

or
y

ov
er

he
ad

 (
by

te
s)

program-input pairs

sampled
non-sampled

out of memory

(b) Memory overhead.

Fig. 5. Time and memory overhead of sampled and non-sampled profiling for the
SPEC2000 benchmarks

Table 1. Speedups on different platforms for five SPEC2000 programs after applying
temporal locality optimizations based on suggestions made by SLO. The cache sizes of
the largest cache level are indicated between parentheses for each platform.

Speedup Analysis Time
Pentium4 Itanium Alpha Average Non-Sampling Sampling
(512KB) (2MB) (8MB)

Art 4.11 1.54 1.16 2.39 12h13m 0h16m
Equake 1.10 2.93 3.09 2.30 59h33m 0h22m

VPR.route 1.51 1.40 1.41 1.44 18h32m 0h16m
Galgel 1.92 2.37 2.39 2.22 65h15m 0h24m
Applu 1.63 2.46 1.69 1.92 100h59m 0h28m

different program runs is due to the different number of basic block that are
executed between use and reuse of those 4 million sampled reuse pairs.

We visually explored the analysis results using the SLO tool (available at
http://www.elis.ugent.be/∼kbeyls/slo) [3]. We optimized five SPEC2000
programs with a high cache miss rate by following the suggestions made by
SLO. While some of the suggested refactorings could not be legally applied
due to true data dependences, we still found a number of useful refactorings,
resulting in an average speedup of 2 on a number of different platforms, see
Tab. 1. The table also shows that thanks to sampling, the profiling time of
these programs with reference input is reduced to less than 30 minutes for all
programs.

Furthermore, SLO was also used to optimize the data locality of a video
decoder that is being implemented in hardware, leading to a two-fold reduction
of off-chip memory accesses. Since the video decoder is bandwidth-limited, this
results in a doubled decoding frame rate [9].

228 K. Beyls and E.H. D’Hollander

5 Related Work

Performance Debugging Tools for optimizing Cache Behavior Too many profil-
ing tools have been proposed to pinpoint cache bottlenecks in the source code
to explicitly mention them all here. However, most of these tools focus on pin-
pointing the source lines, or data structures on which cache misses occurs. As
illustrated in the introduction, our SLO tool aims at going further by pinpointing
the refactorings that are needed to optimize the temporal locality.

An objective comparison of the usefulness of the different tools in finding
good optimizations is hard, due to the human factor involved. Nonetheless, as
far as we know, two other works have attempted to improve the data locality
of Equake based on profiling results. In both [1] and [10], spatial locality is
optimized by rearranging data layout, resulting in reported speedups of 1.4 and
1.24. In contrast, our method results in increased temporal locality, with an
average speedup of 2.3. Both methods could be combined to further increase the
overall locality and speedup. We are not aware of any earlier successful attempts
of optimizing the temporal locality of the Art, VPR, Galgel and Applu programs.

Sampling Reuse Distance and Cache Simulation. The two most used methods
to sample memory access traces for cache simulation are time sampling and set
sampling [5]. In time sampling, a number of windows of consecutive memory
accesses are traced, with large inter-window gaps of non-traced accesses. This
method has its limitations for measuring long-distance reuses, since both the use
and the reuse must be in the same window. Since there are billions of memory
accesses between long-distance reuses in some applications, the windows should
be billions of memory accesses large. In set sampling, only a subset of data
addresses are sampled. For both time and set sampling, the accuracy cannot be
determined theoretically, since the samples are not taken in a uniform random
way. Typically, in order to reach less than 2% error, 10 to 20% of all accesses must
be sampled [5]. While the calculation of error rates is not directly comparable,
our sampling method allows to pinpoint all refactorings that optimize at least
0.01% of all reuses with at most 10% error by only sampling 0.09% of all accesses
for the SPEC2000 programs.

Berg [1] uses the MMU in the processor to speed up the detection of reuses,
resulting in a time overhead of only 40%. It is not clear how their method could
be extended to also measure the code that is executed between reuses.

Other Program Optimization Strategies Based on Analysis of Data Reuses. In
recent years, a number of techniques have been proposed that are based on pro-
filing long-distance data reuse, e.g. inserting prefetch instructions selectively [8],
inserting cache hints to improve replacement decisions [11], improving spatial
locality [12], speculative memory disambiguation of memory instructions [13],
optimizing the bandwidth usage in hardware implementations [9], predicting the
execution time of programs [14], estimating energy consumption [15], detecting
phases in program executions [16], etc. . The sampling proposed in Sect. 3 might
be an interesting extension to these methods to reduce their profiling overhead.

Discovery of Locality-Improving Refactorings by Reuse Path Analysis 229

6 Conclusion

Reuse path analysis is a new way to look at the locality behavior of a program.
A method has been presented to suggest the required refactoring that improves
temporal data locality for any given reuse pair. The algorithm and associated
data structure make the implementation of the method practical for realistic ap-
plications. In addition, reservoir sampling of the reuse paths drastically reduces
time and memory overhead. The techniques have been implemented in the GCC
compiler and the visualizer SLO was developed to analyze the results. Using
these tools, we optimized the temporal locality of five SPEC2000 programs, re-
sulting in an average two-fold speedup on a number of different platforms.

References

1. Berg, E., Hagersten, E.: Fast data-locality profiling of native execution. In: SIG-
METRICS. (2005) 169–180

2. Beyls, K., D’Hollander, E.H., Vandeputte, F.: RDVIS: A tool that visualizes the
causes of low locality and hints program optimizations. In: ICCS. Volume 3515 of
LNCS. (2005) 166–173

3. Beyls, K., D’Hollander, E.H.: Intermediately executed code is the key to find
refactorings that improve temporal data locality. In: Computing Frontiers. (2006)
373–382

4. Martonosi, M., Gupta, A., Anderson, T.: Effectiveness of trace sampling for per-
formance debugging tools. In: ACM SIGMETRICS. (1993)

5. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: a survey. ACM Com-
put. Surv. 29(2) (1997) 128–170

6. Walpole, R., Myers, R.: Probability and Statistics for Engineers and Scientists.
Prentice Hall (1993)

7. Li, K.H.: Reservoir-sampling algorithms of time complexity o(n(1 + log(n/n))).
ACM Trans. Math. Softw. 20(4) (1994) 481–493

8. Fang, C., Carr, S., Önder, S., Wang, Z.: Path-based reuse distance analysis. In:
Compiler Construction. Volume 3923 of LNCS. (2006) 32–46

9. Devos, H., Beyls, K., Christiaens, M., Campenhout, J.V., D’Hollander, E.H.,
Stroobandt, D.: Finding and applying loop transformations for generating op-
timized FPGA implementations. (Transactions on HiPEAC) submitted.

10. Buck, B.R., Hollingsworth, J.K.: Data centric cache measurement on the intel
itanium 2 processor. In: Proceedings of SuperComputing. (2004)

11. Beyls, K., D’Hollander, E.H.: Generating cache hints for improved program effi-
ciency. J. of Systems Architecture 51(4) (2005) 223–250

12. Zhang, C., Ding, C., Ogihara, M., Zhong, Y., Wu, Y.: A hierarchical model of data
locality. In: POPL. (2006)

13. Fang, C., Carr, S., Onder, S., Wang, Z.: Instruction based memory distance analysis
and its application to optimization. In: PACT. (2005)

14. Marin, G., Mellor-Crummey, J.: Cross-architecture performance predictions for
scientific applications using parameterized models. In: SIGMETRICS. (2004)

15. VanderAa, T., Jayapala, M., Barat, F., Corporaal, H., Catthoor, F., Deconinck,
G.: Instruction and data memory energy trade-off using a high-level model. In:
ODES. (2004)

16. Shen, X., Zhong, Y., Ding, C.: Locality phase prediction. In: ASPLOS-XI. (2004)
165–176

Integrating TAU with Eclipse: A Performance
Analysis System in an Integrated Development

Environment

Wyatt Spear, Allen Malony, Alan Morris, and Sameer Shende

{wspear, malony, amorris, sameer}@cs.uoregon.edu

Abstract. The Eclipse platform offers Integrated Development Envi-
ronment support for a diverse and growing array of programming appli-
cations and languages. There is an increasing call for programming tools
to support various development tasks from within Eclipse. This includes
tools for testing and analyzing program performance. We describe the
high-level synthesis of the Eclipse platform with the TAU parallel per-
formance analysis system. By leveraging Eclipse’s modularity and exten-
sibility with TAU’s robust automated performance analysis mechanisms
we produce an integrated, GUI controlled performance analysis system
for Java, C/C++ and High Performance Computing development within
Eclipse.

1 Introduction

IDEs (Integrated Development Environments) are increasing in popularity across
many venues of software development. At the same time they are encompassing
a larger set of roles within the software development process, such as advanced
debugging, version control and software deployment. Many projects focus on de-
veloping new software tools to fill the growing requirements of IDE software sys-
tems. However, integration of preexisting command-line or otherwise standalone
development tools into an IDE environment also offers several advantages. These
include interoperability with preexisting data and tools that support the newly
integrated components, user familiarity and, in many cases, the advantages de-
rived from starting with a more mature, robust system.

The Eclipse platform supports a popular Java IDE with additional support
available for for C and C++[3]. Support for Fortran and other languages is in
development. High performance application development within Eclipse is also
receiving increased attention[10]. However, performance analysis is an important
component of the software development process that has received little integrated
support in any of the Eclipse platform’s IDEs, outside of the scope of Java
development.

A number of specialized performance analysis systems exist. Although Eclipse
projects may be able to make use of them, their interfaces are external to the
platform. Most are command line based and not designed with IDE integration
in mind. The complexity of a full, multi-language, performance analysis system

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 230–239, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Integrating TAU with Eclipse 231

makes implementing one specifically for a given IDE generally impractical. The
difficulty is compounded further by issues of architectural and operating system
support. Some performance analysis features, such as hardware event recording,
may require platform specific configuration which would complicate deployment
of any performance analysis solution internal to the IDE. A practical solution
to these problems is to allow the IDE to wrap a consistent interface around
an extant performance analysis system already configured and deployed on the
desired platform.

TAU(Tuning and Analysis Utilities)[11] is a comprehensive performance anal-
ysis system which supports a wide array of architectures, operating systems and
programming languages. Its features include automation of many performance
analysis operations and utilities for converting its performance data output to
a number of formats commonly used by other performance analysis tools. This
makes it ideal for integration with the diversely deployed, extensible Eclipse
platform.

The following two sections discuss Eclipse and TAU respectively, focusing on
the features that facilitate and benefit from their integration. This is followed by
a description of the Eclipse plugins that achieve the integration with TAU and
an explanation of their implementation and future goals. Finally, the conclusion
summarizes the success of the initial work.

2 Eclipse

Eclipse[4] is a popular software platform with support for customized IDE func-
tionality. Its default set of plugins is designed for Java development but the
Eclipse community is providing increasing support for other languages such as
C/C++ and Fortran. Recently, support for high performance computing has
also been provided via the Parallel Tools Platform(PTP)[10].

Two distinct advantages of the Eclipse platform are its portability and exten-
sibility. The former is provided largely by Eclipse’s Java-based implementation.
Because it is implemented in Java it can be run consistently on Windows, Mac-
intosh and many Unix based OSes. This can facilitate development of software
for multiple architectures and helps provide a consistent interface if a user needs
to migrate between different systems or operating systems during a project’s
development.

Because Eclipse is open source users are free to modify and extend its func-
tionality as they see fit. This freedom is enhanced by Eclipse’s fundamentally
modular architecture. The result is a diverse array of enhancements and plug-
ins made to increase Eclipse’s functionality for software development, as well as
other tasks.

2.1 The Eclipse Platform

Eclipse is essentially a platform for the support of plugins. The core of Eclipse
provides the basic user interface and internal control mechanisms but virtually
every useful activity that can be performed within Eclipse relies on a plugin.

232 W. Spear et al.

Typically a single application, such as the Java IDE, is comprised of a set of
plugins subdivided according to their individual functions. Eclipse’s plugin API
allows the inclusion of functionality from simple context menus to advanced
program build managers.

Although Eclipse’s default set of plugins are aimed at Java development they
provide a significant level of general functionality and support for the expansion
of its capabilities. The basic file controls, text editors and preferences widgets, for
example, are plugin components that can be reused in many other applications.

Eclipse provides automated utilities for plugin installation and upgrading, but
the manual procedure is as simple as moving the folder or jar file associated with
a given plugin to the appropriate directory in the Eclipse installation. Addition-
ally Eclipse allows control over which plugins are instantiated at runtime.

2.2 Eclipse Plugins

The Eclipse platform’s facilities for extension and modification have resulted
in a rich and growing supply of plugins for a wide variety of purposes. These
serve both within Eclipse’s original capacity as an IDE platform and in other
more diverse applications. Performance analysis tools are by no means absent
from this. The Test and Performance Tools Platform (TPTP)[14] is an example
of a significant effort toward a fully integrated performance analysis system for
Eclipse. Although the TPTP possesses a deliberately extensible API, presently
it primarily supports analysis only within the JDT.

There are three Eclipse plugin collections, or projects, that lend themselves
directly to the integration of the TAU performance analysis tools. The Java De-
velopment Tools (JDT), the C/C++ Development Tools (CDT) and the Parallel
Tools Platform (PTP) all facilitate the development of programs and the use of
programming paradigms that are supported by TAU and none include their own
internal mechanisms for performance analysis.

JDT. The JDT[6] assists with Java development by providing a context sensitive
source editor, project management and development control facilities, among
other features. Most relevant to TAU integration is the JDT’s run configuration
management system. This grants control over the main method executed when a
project is run from within Eclipse along with program arguments, environment
variables and related options.

Because the JDT is a fundamental component of the default Eclipse package,
it is the most mature of the projects to be integrated with TAU. Its API is fairly
static and well documented, easing the development of plugins that add to its
functionality.

CDT. Many of the CDT’s features are comparable to those of the JDT. In
particular the source editing features provide similar functionality such as syn-
tax based colorization, search, replacement and refactoring tools and tree views
of source structure. However, the build system of the CDT is naturally quite
different. It supports both the use of external makefiles and an internally con-
structed “Managed” makefile system. In either case the compilation and linking

Integrating TAU with Eclipse 233

of programs within the CDT is accomplished via user specified compilers and
compiler options.

The run management systems of the JDT and CDT are similar in their user
interfaces and internal APIs. In the case of a CDT, the run management system
requires specification of a compiled binary file.

PTP. The PTP has made significant advances in support of parallel program
development within Eclipse. While it is possible to program and compile parallel
programs from within the CDT, it has no innate facilities to launch the resulting
executables with a given parallel runtime. The PTP grants the ability to both
launch and debug parallel programs from within Eclipse. Presently, the PTP only
supports the OpenMPI[8] MPI implementation. However, parallel launching and
debugging capabilities support for other MPI implementations and OpenMP are
in development.

In many ways, the PTP acts as an extension of the CDT. This is especially
evident in its compilation and execution system APIs. Thus, the creation of
plugins that make use of these components is quite similar between the two
projects.

3 TAU

TAU is a mature performance analysis system designed to operate on many dif-
ferent platforms, operating systems and programming languages. In addition to
collecting a wide range of performance data it includes resources for performance
data analysis and conversion to third party data formats.

Many of TAU’s functions are closely bound to the underlying architecture of
the system where the analysis takes place. Therefore, TAU is generally config-
ured and compiled by the user to create custom libraries for use in performance
analysis. In addition to generating system specific libraries, this configuration
process allows specification of many performance analysis options allowing an
extremely diverse range of performance experiments to be carried out with TAU.
Each separate configuration operation produces a stub makefile and a library file
that is used to compile an instrumented program for analysis.

3.1 Instrumentation

TAU’s fundamental functionality is based on source code instrumentation. At the
most basic level this consists of registering the entry and exit of methods within
the program via calls to the performance analysis system. Performance analysis
of a given program can be focused on a given set of functions or phases of the
program’s execution by adjusting which functions are instrumented. A common
application of such selective instrumentation is to exclude small, frequently called
routines to help reduce performance analysis overhead.

Manual instrumentation can be time consuming, especially for large programs.
TAU includes utilities to perform automatic instrumentation of source code.

234 W. Spear et al.

These utilities rely on the Program Database Toolkit, or PDT[7], to analyze the
code so proper instrumentation points can be programmatically determined.

TAU also provides compiler scripts which act as wrappers of the compilers
described at TAU’s configuration. Use of these scripts in place of a conventional
compiler results in fully instrumented binary files without modification to the
original source.

3.2 Analysis

Depending on the configuration settings provided to TAU, it can generate a wide
variety of performance data. As shown in fig 1, TAU includes utilities to convert
both its profile and trace output to a diverse array of other performance data
formats, allowing performance analysis and visualization in many third party
performance analysis programs.

Additionally, TAU includes its own facilities for analysis of performance data.
The ParaProf[2] profile analysis tool (seen in Figure 2), for example, provides a
full set of graphical tools for evaluation of performance profile data.

4 Integration

Currently, three separate TAU plugins have been developed for Eclipse. Each
allows performance analysis within the scope of a different Eclipse IDE imple-
mentation, one for the JDT, one for the CDT and one for the PTP. The TAU
JDT plugin requires only the standard Eclipse SDK distribution and allows
TAU analysis of Eclipse Java projects. The TAU CDT and TAU PTP plugins
allow performance evaluation of C and C++ programs within the standard, se-
quential, C/C++ IDE implementation and the PTP’s parallel implementation
respectively. Both the TAU CDT and TAU PTP plugins support Fortran when
the FDT plugin is installed.

All of the TAU Eclipse plugins share a similar user interface. As shown in
Figure 1, a preferences screen allows the user to specify the location of TAU’s
installation. When this is done a TAU stub makefile can be selected. The makefile
will determine which TAU libraries are included in the program’s compilation.
The preferences also include options for the output location of trace or profile
data, the automatic deployment of the profile analysis tool ParaProf on pro-
file output after program execution and other options relevant to the specific
language or platform being analyzed.

TAU enabled compilation is invoked in the build system via a context menu
in the project explorer, available for objects eligible for standard build opera-
tions. Similarly, executable objects are provided with a menu option that allows
them to be run with TAU-relevant options automatically. Essentially, once the
TAU plugins for the desired IDEs have been installed and configured, obtaining
performance data from an Eclipse project is simplified to a sequence of mouse
clicks.

Integrating TAU with Eclipse 235

Fig. 1. The preferences screen for the TAU PTP plugin

4.1 The TAU JDT Plugin

The TAU plugin for the Java Development Tools (JDT) adds an Instrument
command to the context menu of each Java project, package and source file.
This command automatically instruments all of the Java source under the se-
lected object. Thus, in addition to instrumenting an entire project, performance
analysis can be done selectively at the source file or package level.

The plugin API of Eclipse’s Java Development Tools (JDT) includes access
to an Abstract Syntax Tree representation of Java source files. The TAU JDT
plugin uses the AST to determine the proper instrumentation points within the
source files.

The Java file, package and project context menus are also provided with an
uninstrument Java command. This strips all automatically inserted TAU instru-
mentation from the selected Java file or files.

The TAU JDT plugin supports use of a selective instrumentation file, specified
in the TAU JDT options panel. Files and methods can be specified for inclusion
or exclusion from instrumentation. The selective instrumentation file supports
wild card characters as well. The instrumentor simply accepts or rejects methods
and files for instrumentation by referencing the names in the file against those
returned by the AST.

236 W. Spear et al.

Fig. 2. TAU CDT/PTP plugin functionality

Standard instrumentation of Java with JVMPI[12] incurs the overhead of
placing probes at each method entry and exit. The TAU JDT’s selective source
instrumentation avoids this problem. The automatic Java instrumentation man-
agement achieved using Eclipse is an example of functionality not available in
TAU on its own.

The Run Tau Instrumented Java command creates and executes a Java run
configuration modified to accommodate the requirements of TAU’s invocation,
specifically the inclusion of the TAU Java libraries. It builds a directory structure
to contain the performance information generated by the instrumented program.
It also generates and deploys the command line and environment arguments that
specify the location of the required TAU libraries and the output location of the
performance data.

4.2 The TAU CDT Plugin

The C/C++ Development Tools (CDT) project’s interaction with TAU differs
significantly from the JDT’s. TAU’s compiler script in conjunction with the
TAU stub makefile of an appropriate configuration will automatically perform
all of the necessary instrumentation, compilation and linking operations without
affecting the source code of the project being analyzed.

The TAU CDT plugin adds a context menu option to Managed Make CDT
projects, Add TAU Configuration, to create a new build configuration. When this
is selected the plugin provides a list of existing build configurations to use as a
template. The selected build configuration will be duplicated but with a TAU
compiler script specified as the compiler and linker. The CDT plugin interacts
with the Fortran Development Tools (FDT) identically to the CDT except that
the TAU compiler script replacing the default compiler is Fortran specific. The
compiler script is passed the stub makefile chosen in the TAU preferences screen.
Because the compiler script recognizes compilation and linking commands as if
it were a conventional compiler any preexisting customizations to the selected

Integrating TAU with Eclipse 237

build configuration will be properly included in the new TAU build configuration.
The compiler script’s options, which may be set at the plugin preferences screen,
include selective instrumentation similar to that described for the JDT.

The Run Tau command added to the binary context menu operates analo-
gously to that provided by the JDT plugin. However, because the TAU libraries
are included at compilation, the standard run system can be used without pro-
viding any TAU specific options. Figure 2 outlines the steps in obtaining perfor-
mance data from an eclipse project via the plugin.

4.3 The TAU PTP Plugin

For the most part, the Parallel Tools Project (PTP) build system is equivalent
to the CDT. Internally, the interfaces with the PTP build and run systems are
similar to those of the CDT. The primary distinction is the necessity of setting
a default number of processes with which to run the parallel code, as specified
in the plugin’s options.

As the PTP project develops, further enhancements of the TAU PTP plugin
may be required. For example when the PTP implements remote execution of
parallel computing jobs the TAU plugin will require a mechanism of obtaining
the resulting performance data from the remote system.

Because program performance is an essential goal of high performance com-
puting the TAU PTP plugin is likely to be the main focus of future development.
Fortunately, its architectural similarity to the TAU CDT plugin may eventually
allow the two to be combined, simplifying deployment and maintenance in the
future.

4.4 Future Work

The present implementation of the TAU plugins allows access to most of TAU’s
capabilities from within Eclipse. However there are several avenues of integration
and interface development that remain to be explored. Additionally there may
be useful functions that can be developed within the Eclipse framework that
have no parallel within the standalone TAU system.

One of the most immediate goals of future TAU plugin development is addition
of persistent source instrumentation for projects within the CDT, FDT or PTP,
similar to that already implemented in the JDT plugin. TAU’s compiler script
does offer some control over project instrumentation but allowing persistent
instrumentation in the source code would greatly facilitate manual adjustment of
that instrumentation. Manual instrumentation allows a finer level of user control
which may be desirable in some performance analysis scenarios. Persistent source
instrumentation would also necessitate some functionality to manage and allow
switching between instrumented and uninstrumented code.

Another goal is to move the integration of TAU and Eclipse to a lower, more
internalized level. Ideally, instead of calling on TAU’s compiler scripts, the CDT
build system will derive that functionality from the TAU plugin itself. Only
the TAU makefiles and libraries would be required to build and run a TAU
instrumented project once this is accomplished.

238 W. Spear et al.

An important feature yet to be implemented is advanced management of per-
formance data output. Ultimately the directory based solution will be replaced
by a performance database solution within Eclipse analogous to the PerfDMF[5]
system already included with the TAU.

In general, closer unification of TAU’s peripheral utilities with Eclipse is a
priority. For example allowing ParaProf to communicate with Eclipse could per-
mit performance hot-spots depicted in ParaProf to programmatically link back
to their source calls in Eclipse.

5 Conclusion

Growing interest in the use of IDEs for parallel computing raises questions re-
garding how parallel tools will be integrated. The nature of these tools, the
variations specified in their software development and platform implementation,
and the complexity of their function suggests that re-engineering of the tools to
make them more compatible with the IDE framework would be a major under-
taking. Instead, an approach that looks at the problem from a point of view of
tool interoperability is more productive. We have described in this paper our
approach for the integration of TAU with Eclipse following this strategy.

By providing a clean, simple interface between TAU and the Eclipse JDT,
CDT and PTP projects we have created a relatively straightforward, unified
mechanism of undertaking performance analysis within these respective Eclipse
IDEs. High performance computing applications in particular require perfor-
mance analysis and tuning during their development life-cycle to to achieve their
implicit goal of efficient operation. Of course, conventional, sequential programs
in more common venues also stand to benefit from IDE-aided performance anal-
ysis and optimization. In either case a consistent and robust mechanism for
performance analysis is advantageous during the software development process.

Because TAU and Eclipse are only loosely coupled, significant changes in
the functionality or interface of either of these actively developing programs is
unlikely to disrupt of their integration. Maintenance and continued enhancement
of the TAU plugins as described above will continue. TAU Eclipse integration
will continue supporting IDE assisted performance analysis within Eclipse as
the Eclipse platform and its IDE components continue to mature and as TAU’s
capabilities extend to new parallel analysis paradigms.

References

1. Amsden, J., “Levels Of Integration: Five ways you can integrate with the Eclipse
Platform”, http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-
of-integration.html, March 2001

2. R. Bell, A. D. Malony, and S. Shende, "A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis", Proc. EUROPAR 2003 conference,
LNCS 2790, Springer, Berlin, pp. 17-26, 2003

3. CDT - C/C++ Development Tools, http://www.eclipse.org/cdt

Integrating TAU with Eclipse 239

4. Eclipse, http://www.eclipse.org
5. K. Huck, A. Malony, R. Bell, L. Li, and A. Morris. PerfDMF: Design and imple-

mentation of a parallel performance data management framework. In Proc. Inter-
national Conference on Parallel Processing (ICPP 2005). IEEE Computer Society,
2005

6. JDT - Java Development Tools, http://www.eclipse.org/jdt
7. K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Ras-

mussen. "A Tool Framework for Static and Dynamic Analysis of Object-Oriented
Software with Templates." Proceedings of SC2000: High Performance Networking
and Computing Conference, Dallas, November 2000.

8. Open MPI, http://www.open-mpi.org
9. Popescu, V. "Java Application Profiling using TPTP.", Eclipse Cor-

ner Article, http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/
tptpProfilingArticle.html, Febuary 2006

10. PTP - Parallel Tools Platform, http://www.eclipse.org/ptp
11. S. Shende and A. D. Malony, "The TAU Parallel Performance System," Inter-

national Journal of High Performance Computing Applications, ACTS Collection
Special Issue, 2005

12. SUN Microsystems Inc., Java Virtual Machine Profiler Interface (JVMPI),
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html

13. TAU - Tuning and Analysis Utilities, http://www.cs.uoregon.edu/research/tau/
home.php

14. TPTP - Test and Performance Tools Platform, http://www.eclipse.org/tptp

Scalable Architecture for Allocation of Idle
CPUs in a P2P Network

Javier Celaya and Unai Arronategui

University of Zaragoza,
Department of Computer Science and Systems Engineering

C/ Maŕıa de Luna 1, Ed. Ada Byron, 50018 Zaragoza, Spain
{jcelaya, unai}@unizar.es

Abstract. In this paper we present a scalable, distributed architecture
that allocates idle CPUs for task execution, where any node may request
the execution of a group of tasks by other ones. A fast, scalable dis-
covery protocol is an essential component. Also, up to date information
about free nodes is efficiently managed in each node by an availability
protocol. Both protocols exploit a tree-based peer-to-peer network that
adds fault-tolerant capabilities. Results from experiments and simulation
tests, using a simple allocation method, show discovery and allocation
costs scaling logarithmically with the number of nodes, even with low
communication overhead and little, bounded state in each node.

Keywords: Parallel andDistributedArchitectures,NetworkingProtocols
and Routing and Algorithms, Reliability and Fault-tolerance, Grid Com-
puting, Peer-to-Peer Computing, Parallel and Distributed Algorithms.

1 Introduction

One of the most recent solutions in large scale computing, primarily oriented
to embarrasingly parallel and computing-intensive problems, is the use of thou-
sands or even millions of unreliable personal computers connected to the Inter-
net. Projects like SETI@Home [1] and distributed.net [2] established a milestone
in the field of Distributed Computing by harnessing the idle cycles of personal
computers donated by volunteers to solve problems that could be split into inde-
pendent parts. Each computer executes the processes associated to one or more
parts, receiving the input data and returning the output results. Much work
around this idea has been developed covering efficiency, throughput, fairness
and security aspects, but the general structure still maintains some intrinsic dis-
advantages: only one entity in the network generates the workload, and the rest
consume it, leading to centralized management and scheduling that negatively
affect the scalability and fault-tolerance of the system.

To solve this problem, we propose an architecture where any participant of
the network may need idle cycles to complete its tasks. When a node does not
have enough computing power to finish its work in a certain amount of time, it
may divide it into n independent tasks and query the network for n more idle

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 240–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scalable Architecture for Allocation of Idle CPUs in a P2P Network 241

machines that can each execute one of them. This is not a new idea, but there
is little work covering this approximation. Projects with best results have been
those who use peer-to-peer (P2P) networks and distributed protocols; with them,
problems concerning scalability and fault-tolerance are drastically reduced. The
use of an unstructured P2P network is simple and is based on already working
ideas like Gnutella or Freenet, but does not allow the application of constraints
to the idle CPU search.

For this reason we present a peer-to-peer network based on a balanced tree
structure that finds the nearest free CPUs to the one that is demanding the
execution of a number of tasks. At any time, any node of the network may
request the execution of n tasks; this request is routed by neighbour nodes to
those available ones that are closer to the originating client with a fast discovery
protocol. The information about existing free nodes is dynamically managed by
an availability protocol. These functionalities are obtained with little state in
nodes, and low communication and CPU overhead. A simple allocation policy
has been designed and implemented to evaluate the architecture behavior.

This paper takes some steps into a complete distributed computing solution,
thus we will impose some restrictions to the environment: We assume that nodes
execute batch tasks that do not communicate between them, so we won’t be
addressing the issues that arise from having dependencies. Also, we will suppose
that there is low churn, that is, joins and leavings are not frequent. And finally,
we will only consider a weak concept of fairness in the allocation of free nodes.

The rest of the article will be structured as follows: In Sect. 2 we will expose
an overview of the system architecture and its behavior, and in Sects. 3 and
4 we will detail the protocols that allow the fast and scalable discovery of free
nodes. Following, we will briefly present the hierarchical overlay topology and
its management in Sect. 5. Finally, in Sect. 6 we will show the experimental
results and in Sects. 7 and 8 we will explain what other work has been presented
concerning distributed computing in peer-to-peer networks and the conclusions
of this investigation.

2 System Architecture

The system has a three layer architecture:

– The first one defines the connectivity protocol that maintains the overlay
links in the network. It conforms a tree-based network overlay, derived from
the B-Tree [3], thus it is a balanced tree where each node can have between
m and 2m children and the height is always a logarithm of the number of
nodes N . The protocol states how nodes join and leave the network, how the
tree is kept balanced, and how node failures are dealt with to rebuild the
structure.

– The second layer is described by the availability protocol, that distributes
information relative to the number of free nodes and computing power each
time it changes. Every node of the network stores the global state of the
branch that hangs below it, and communicates updates to its parent so it

242 J. Celaya and U. Arronategui

can recompute the state of its own branch. This protocol uses a number of
techniques that prevent the upper levels of the tree from being flooded with
update notifications, while maintaining the information accurate enough to
maximize the network use. Also, the conservative approach of notification
updates yields to a more stable behavior of this protocol.

– Finally, the discovery protocol uses the information stored by each branch
to route free nodes requests up and down the tree. It tries to find those free
nodes that meet a trade-off between proximity to the client and computing
power by distributing the requests among the appropriate branches at each
level. Therefore the search is performed in a number of network hops that
depends only on the height of the tree and, consequently, on the logarithm
of the number of nodes of the network.

3 Discovery of Free CPUs

As it has been said, when a node has a number of tasks to be done, it requests
the network to find that number of idle machines. This service is accomplished
with the discovery protocol, that works as follows. By applying heuristic rules,
it will try to allocate the fastest and nearest free nodes, so that tasks execution
is efficiently done. To find them, the tree structure is exploited. Each inner node
stores information about its descendants; not exhaustive information, but more
general information about the branch as a whole. To be concrete, it knows the
number of free CPUs of the branch, the maximum computing power and the
minimum number of hops to a free node. This way, the management of this
information becomes scalable as it does not depend directly on the number of
nodes. How it is exactly managed will be explained in Sect. 4.

A node that receives a message with n pending tasks will first check if itself
is ready to execute a new one. If so, it takes one of the tasks from the message.
Then it distributes the remaining tasks between its child nodes according to the
number of free nodes each branch has, calculated with the availability protocol,
giving priority to the branches having more computing power or less hops to a
free node. If it is not enough with the children branches to cope with all the
tasks, then a new message with the last tasks will be sent to the father so that
it can reach more distant branches. When the message arrives at the root of the
tree and it cannot be sent to another branch, it is returned to the originating
node meaning that there are no free nodes left in the network.

The worst case would be that of a leaf node that needs to allocate every node
of the net. The request would have to go up to the root and then down to the rest
of the tree; that is the longest path a request would traverse. As discovery of idle
nodes is done concurrently in every branch, that would be the same as reaching
one idle leaf node in the opposite side of the tree. This is done in O(logm N)
hops, being m the minimum number of children per node in the balanced tree
and N the number of nodes in the network, thus making the discovery protocol
highly scalable.

This is a best effort network. That is, the intermediate nodes make its best
to route the message to the most suitable free nodes, but the reception is not

Scalable Architecture for Allocation of Idle CPUs in a P2P Network 243

guaranteed. In fact, the failure of nodes is frequent in a peer-to-peer network.
For this reason, both the originating node and the allocated ones must avoid
problems in the discovery phase and when sending the actual work to execute
using timeout mechanisms, acknowledge messages and retransmissions.

4 CPU Availability Management

The information each node stores about its branch must be communicated to
its parent so that it can efficiently route requests to the idle nodes it has under
itself. Therefore, each node not only has information about its branch, but also
about each of its sub-branches. The way this information propagates is critical,
because it must be kept up to date without flooding the network with notifica-
tion messages, specially near the root where there are less nodes per level. This
propagation is performed by the availability protocol. Basically, when a node
receives a notification of change from one of its child nodes, it must decide if it
has to inform its parent, too.

With the maximum computing power and the minimum number of hops to
a free node, the process is simple. The inner node has to calculate the new
maximum and minimum values, respectively, between its child nodes and itself,
and if it changes, route the new information to its parent immediately. When
a notification goes up one level, the parent will compare these values with that
of the other branches, and if it is not the new maximum or minimum then the
notification will not propagate. So, it is less probable to jump up one more level
as the number of nodes compared is greater, making the traffic self-limited and
unlikely to reach the top levels.

The problems arise with the number of free nodes, because when a node
gets ready (busy), the number of free nodes of each of its ancestors increases
(decreases) by one. If the notification were sent with every change, the root would
get informed of all of them, what leads to an unacceptably high traffic in the top
levels. For this reason, we have designed a technique that delays the notification
of the number of free nodes at each level of the tree, reducing the traffic routed
up to the root. The basis of this method lies on sending a notification when the
change is ”important” enough. Actually, this means that the most significant bit
set to one changes; that is, the number of free nodes crosses a boundary of power
of two. For example, a notification would be sent if this value changes from 7 to
8 (111b and 1000b in binary) or from 32 to 31 (100000b and 11111b), but not
when it changes from 23 to 24 (10111b and 11000b). Although this yields to a
precision lack, there are three main reasons for using this technique:

1. Trying to provide optimality based on exact information is senseless when
we are dealing with millions of nodes that are continually and concurrently
changing state.

2. The traffic of notifications in the top levels is reduced because as a notifi-
cation goes up the tree it is less probable of being routed to the next level.
This depends also on the number of free nodes, as a high number has also
less probabilities of being routed.

244 J. Celaya and U. Arronategui

3. When the number of free nodes is low, the precision of this value is better.
This is most relevant as the nodes of the network get busy, because they are
correctly well-spent when there last only a few free nodes.

There are two policies deciding what availability value to take as reference
for a branch when a child node notifies a change to its father: optimistic and
conservative. An optimistic policy would use the same value sent by the child.
On one hand, it has the advantage of having better precision in the information
each node stores about its branch, but on the other hand the real number of free
nodes of a branch could decrease and be less than the number its father is using,
making top level nodes route requests to branches that cannot cope with them.
A conservative policy would store a lower value, for example the higher power
of two less than or equal to the notified value. With such a policy, the system
has a better behavior against situations when there last very few free nodes, as
it delays too big requests, although it does not make the most of the network.

We have decided to adopt a conservative approach. It forces a stabilization
mechanism in the value of free CPUs each node contains, providing a gradual
convergence in the occupation of the network.

5 B-Tree Based Topology

The overlay network topology is a hierarchy where every node of the network
is mapped to a node of the tree. In our approximation we use a B-Tree [3]
variant; it maintains the balance in every join and departure and allows more
than two child nodes, thus reducing the tree height. But the main objective of
the tree is grouping nearby nodes in the same branch. However, the concept of
locality usually depends on many variables, so it is actually an approximation.
We have decided to use the simple yet effective way of organizing the nodes in
the tree by their physical address, their IP address actually. Based on the sub-
net partitioning of the IP address space and the studies on geographic locality of
IP addresses [4], this method allows a fast and easy decision of where to insert
a node in the tree when it joins the network, while maintaining good metrics
between nodes of the same branch, specially near the leaves.

Our tree has some differences with the original B-Tree model. Each node holds
only one value (its IP address) and forms part of a group of siblings; therefore,
every node of the network participates in the management of the tree. There
exist a constant m so that every node not being the root of the hierarchy always
has between m and 2m siblings. If these limits are exceeded, the tree must be
rebalanced by splitting or joining groups. Also, every node that is not a leaf
has a pair of values that represent the interval of addresses of its descendants,
including itself. These intervals are used to route messages along the tree, mainly
in the operations of insertion and deletion of nodes.

Concerning fault-tolerance, every node knows the address of the k predeces-
sors and k successors at the same level (they can be ”brothers” or ”cousins”).
When a node fails, the tree structure can be repaired by its neighbours using

Scalable Architecture for Allocation of Idle CPUs in a P2P Network 245

these references, because they allow the communication between a node and the
brother of its dead father. The value of k is an trade-off between fault-tolerance
and an overload in the management of the tree.

5.1 Joining and Leaving the Network

The connectivity protocol consists in two operations that affect the structure of
the network: joining and leaving. Joining is usually easier: when a node requests
an insertion, the request message is routed up the hierarchy looking for a node
whose interval contains the address of the new node, and then it goes down until
it reaches the node with the nearest address to the new node’s address. Finally
they become brothers and the new node updates its references to its neighbours.
Then the father node is notified, and it may request a group split to re-balance
the tree if the number of its child nodes is greater than 2m. When a node is
added to the group of the root and it already has 2k nodes, a new root node will
be created.

By leaving the network we assume, usually, a voluntary action, so the leaving
node will supply its neighbours with the necessary information to maintain the
network connectivity. First of all, a leaving node must check if it has any child. If
so, it looks for a leaf node that becomes the new father of all of them, similarly
to the creation of a new root node. Once done, or if it had no child nodes,
it notifies its siblings and its father that it is going to leave and then they
update their reference lists. Similarly to the joining, when the father node is
notified of the node leaving, it must check if the number of child nodes is less
than m. In that case, it will ask its predecessor or successor to send it child
nodes, or to join into only one branch. One special case is when the father is
the only one node in the root group. Then it will check if it has less than 2k
child nodes, and if it has so, it will insert itself at the leafs, leaving its children
as the new root group. In some cases nodes can fail and leave the network
without notification. In this case, the fault-tolerance strategy presented above is
applied.

6 Experimental Results

This architecture has been implemented as a simulated system with the OM-
NeT++ simulation framework. The allocation policy used in the tests has been
a simple one, where as soon as nodes are discovered they are allocated.

Tests have been done aimed to measure free nodes discovery time, control
messages traffic and CPU load. Every test has been issued with variations in
the number of nodes, N , and the B-Tree parameter, m, to study the impact of
the size and structure of the network in the performance of the protocols. The
simulations have been performed with up to 50000 nodes and values of m from
6 to 10. Variations on the duration of the tasks and the size of the data have
also been applied to recreate more realistic situations. There are three constants,
though: the latency of the network connections has been established to 200 ms,
the mean continental value for Internet, to simulate a very wide area network; 1

246 J. Celaya and U. Arronategui

Mbps has been taken for the bandwidth, a conservative value for a home Internet
connection; and the mean computing power of the nodes has been set to 2000
MIPS.

Time tests show that both the number of nodes and the number of child nodes
per parent affect the discovery of free nodes. Just as expected, the last free node
of the n requested is reached in O(logm n) hops. For this reason, a network with
a higher value of m performs better, while an increasing value of n is hardly
appreciated. The results of the free nodes discovery time tests can be seen in
Fig. 1 as a logarithmic growth. We can extrapolate the results to higher values of
n. For example, we calculate that, for the test network, requesting the execution
of 100,000 tasks would discover 100,000 free nodes in 2 seconds, 1,000,000 in 2.4
seconds, 10,000,000 in 2.8 seconds, and so on.

Fig. 1. Discovery time for as many free nodes as requested tasks. The test network has
50000 nodes and m = 10. One network hop is 200 ms.

Control traffic (traffic of non-data messages) and CPU load tests have been
done under two situations: participants have a normal and high activity. Normal
activity means that there are frequent requests from randomly chosen nodes,
but the network does not get completely busy. On the other hand, under high
activity, every node is busy and continuously receiving new requests, so we expect
this to be the worst case. Traffic has been measured in bytes per second. CPU
load is more difficult to measure in a simulation, but as every message is managed
in constant time we have decided to express it in terms of messages per second.
Tables 1 and 2 show the results of the normal and high-activity behavior. They
present the value of m, the tree height and the mean and maximum values
of CPU load and control traffic for the root and leaves of a network of 50000
nodes.

While the discovery protocol was positively affected by the value of m, the
overall system load suffers when the tree is lower because each inner node has
to deal with a greater number of child nodes, thus a trade-off is needed between
them. Looking at each network variant it can be seen that, by using the avail-
ability protocol, under normal behavior both control traffic and CPU load is
heavier at the leaves than at the root nodes. Also, control traffic hardly reaches

Scalable Architecture for Allocation of Idle CPUs in a P2P Network 247

Table 1. CPU load and control traffic under normal activity. The net has 50000 nodes,
with m = 10 and a bandwidth of 1Mbps.

Root Leaves
Tree Load (msg/s) Traffic (Bps) Load (msg/s) Traffic (Bps)

m height mean max mean max mean max mean max
4 7 0.08 2.87 24.10 519.98 3.56 4.21 1235.89 1343.51
6 6 0.09 5.64 24.98 1005.69 3.71 4.33 1293.18 1405.28
8 5 0.09 5.64 25.28 1005.35 3.85 4.56 1330.41 1436.15
10 5 0.09 5.62 25.43 999.48 4.12 5.77 1435.08 1485.60

Table 2. CPU load and control traffic under high activity. The net has also 50000
nodes, with m = 10 and a bandwidth of 1Mbps.

Root Leaves
Tree Load (msg/s) Traffic (Bps) Load (msg/s) Traffic (Bps)

m height mean max mean max mean max mean max
4 7 0.13 28.20 38.19 4980.56 39.68 41.62 14359.74 16031.69
6 6 0.13 28.46 39.53 5021.05 44.20 50.55 15198.24 16205.83
8 5 0.14 27.65 39.75 4526.82 54.15 59.85 17417.23 19256.67
10 5 0.14 28.44 40.05 5018.49 63.72 65.29 19566.90 21947.28

1KBps, what represents less than 1% of the total bandwidth. However, under
high activity rate the root suffers waves of very high CPU load and control
traffic.

Results are promising. As we can see in Tables 1 and 2, control overhead is
very low. Under normal activity, the control traffic is only 1485 Bps and the CPU
load only reaches 5.77 messages per second, in the worst case. And under heavy
activity, the control traffic is 21947 Bps and the CPU load is 65.29 messages per
second.

7 Related Work

As it has been pointed out in the introduction, the main approximation until now
to a highly scalable distributed computing environment has been the harnessing
of idle cycles donated by volunteers, as in SETI@Home project, the BOINC
generic framework [5] and distributed.net. Those projects use the traditional
client/server paradigm to schedule tasks and return results, what soon leads
to scalability problems. For that reason, more elaborated network structures
and distributed algorithms have been adopted. One example is Javelin++ [6],
which extends the concepts of Javelin [7] replacing the broker that scheduled
the tasks with a network of brokers. Recently, more strict peer-to-peer networks
have been used to select the nodes which would execute the tasks. BOINC and
similar projects adopt an application-driven perspective, in which the existence
of an element that is generating all the workload determines the structure of
the network and the management algorithms. Following a more general view,

248 J. Celaya and U. Arronategui

another family of projects, in which this paper is included, have proposed an
architecture where every participant can generate the workload, which is better
suited for this peer-to-peer philosophy, as every node is equal to the other ones.

CompuP2P [8] is one of the first works to use a decentralized peer-to-peer
network to manage processor cycles as a shared resource. It arranges all the
nodes in a Chord [9] ring and organizes them into ’compute markets’, where
idle cycles are traded with. However, it presents a scalability problem because
it has no mechanism to limit the number of nodes in a market or to balance
load between markets. G2-P2P [10] uses an object-oriented approach. It uses
Pastry [11] to create a Distributed Hash Table (DHT) where computation objects
are stored. Each object is assigned a random ID and stored in the Pastry node
closer to that number. Using an uniform hashing function they claim to achieve
a good load-balancing property, but there is no other criterion to select the most
appropriate free node. In [12] the Pastry DHT is also used, but exploiting its
locality awareness to discover near idle nodes. It then announces availability with
controlled message floodings, what leads to inefficiency as a node surrounded by
busy neighbours won’t find a free node which is more distant than the maximum
number of hops that a request is allowed to make. On the other hand, in [13] it
is proposed the use of an unstructured overlay network, as it is easier to manage,
and traverse it with random walks. Even though, that is also inefficient because
there is no way of knowing if the next node of the walk is free or not.

For the overlay topology, other authors have proposed the use of a virtual tree
on top of a DHT, where each node store only part of a tree index. Examples
of this are P-Tree [14], P-Grid [15] and VBI-Tree [16]. However, they rely on a
uniform distribution of the shared resource; for example, using a uniform hashing
function for the DHT. For that reason, BATON [17] uses a balanced binary tree
where each node of the network maintains one node of the tree. This type of
organization is better suited for a non-uniform resource distribution because the
tree gets balanced automatically when the insertions or deletions occur within
the same zone. We adopt these ideas but with more than two children per node.

8 Conclusions and Future Work

In this paper, we have presented a network architecture that discovers the pres-
ence of idle machines with a scalable (O(logmN)) and fast (1.8 seconds for 10000
requested tasks) method. It organizes the nodes in a balanced tree structure to
efficiently distribute information about free nodes in a per-branch basis, that
is eventually used to route the request from a client to the appropriate idle
CPUs. The connectivity protocol, discovery protocol and availability protocol
are all three designed in a totally distributed way, that provide high scalabil-
ity and fault-tolerance. Moreover, the experimental simulation results show low
overhead in the control traffic and CPU load.

We envision to validate these results with a real prototype to be implemented
over the PlanetLab testbed. We believe this can be a valuable step to develop
system support for high performance computing applications.

Scalable Architecture for Allocation of Idle CPUs in a P2P Network 249

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home:
an experiment in public-resource computing. Commun. ACM 45(11) (2002) 56–61

2. Distributed.net: http://www.distributed.net (2000)
3. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-

dexes. In: Record of the 1970 ACM SIGFIDET Workshop on Data Description
and Access, November 15-16, 1970, Rice University, Houston, Texas, USA (Second
Edition with an Appendix), ACM (1970) 107–141

4. Freedman, M., Vutukuru, M., Feamster, N., Balakrishnan, H.: Geographic Locality
of IP Prefixes. In: Internet Measurement Conference (IMC) 2005, Berkeley, CA
(2005)

5. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
GRID. (2004) 4–10

6. Neary, M.O., Brydon, S.P., Kmiec, P., Rollins, S., Cappello, P.: Javelin++: scal-
ability issues in global computing. Concurrency: Practice and Experience 12(8)
(2000) 727–753

7. Christiansen, B.O., Cappello, P.R., Ionescu, M.F., Neary, M.O., Schauser, K.E.,
Wu, D.: Javelin: Internet-based parallel computing using java. Concurrency -
Practice and Experience 9(11) (1997) 1139–1160

8. Gupta, R., Somani, A.K.: Compup2p: An architecture for sharing of computing
resources in peer-to-peer networks with selfish nodes. In: Online Proceedings of
Second Workshop on the Economics of Peer-to-Peer Systems, Harvard University
(2004)

9. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1) (2003) 17–32

10. Mason, R., Kelly, W.: G2-p2p: A fully decentralised fault-tolerant cycle-stealing
framework. In: ACSW Frontiers. (2005) 33–39

11. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware. (2001) 329–350

12. Butt, A.R., Fang, X., Hu, Y.C., Midkiff, S.P.: Java, peer-to-peer, and accountabil-
ity: Building blocks for distributed cycle sharing. In: Virtual Machine Research
and Technology Symposium. (2004) 163–176

13. Awan, A., Ferreira, R.A., Jagannathan, S., Grama, A.: Unstructured peer-to-peer
networks for sharing processor cycles. Journal Parallel Computing (PARCO) 32(2)
(2006) 115–135

14. Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: Querying peer-to-
peer networks using p-trees. In: WebDB ’04: Proceedings of the 7th International
Workshop on the Web and Databases, New York, NY, USA, ACM Press (2004)
25–30

15. Aberer, K.: P-grid: A self-organizing access structure for p2p information systems.
In: CooplS ’01: Proceedings of the 9th International Conference on Cooperative
Information Systems, London, UK, Springer-Verlag (2001) 179–194

16. Jagadish, H.V., Ooi, B., Vu, Q., Zhang, R., Zhou, A.: Vbi-tree: A peer-to-peer
framework for supporting multi-dimensional indexing schemes. In: 22nd IEEE
International Conference on Data Engineering (ICDE), 2006 (to appear). (2006)

17. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: A balanced tree structure for peer-
to-peer networks. In: VLDB. (2005) 661–672

A Proactive Secret Sharing for Server Assisted
Threshold Signatures�

Jong-Phil Yang1,��, Kyung Hyune Rhee2, and Kouichi Sakurai3

1 The Korean Intellectual Property Office, Government Complex Daejeon,
Dunsan-Dong, Daejeon 302-701, Republic of Korea

jpyang@lisia21.net
2 Division of Electronic, Computer and Telecommunication Engineering,

Pukyong National University, 599-1, Daeyeon3-Dong, Nam-Gu,
Pusan 608-737, Republic of Korea

khrhee@pknu.ac.kr
3 Graduate School of Information Science and Electrical Engineering,

Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-0053, Japan
sakurai@itslab.csce.kyushu-u.ac.jp

Abstract. Threshold signature schemes distribute secret information
to several servers and make the whole system that maintains the secret
information fault-tolerant. Since threshold signature schemes typically
assume that the shared signing function can only be activated by a quo-
rum number of servers. If anyone has a power to activate the signing
function of servers, he can easily compute valid signatures for a spe-
cific organization without knowing the private key. S. Xu et al. proposed
a general construction to build threshold signature schemes (called as
server assisted threshold signatures) which provide an organization (e.g.,
a user) with controllability for activating his private signing function
in a certain enhanced way. In this paper, we newly propose proactive
secret sharing schemes which are suitable for server-assisted threshold
signatures.

Keywords: Secret sharing, Fault tolerant and Distributed Computing.

1 Introduction

A lot of organizations use their secret private keys to sign contracts or im-
portant electronic documents for secure transaction. Since these secret private
keys for signing become main targets of malicious adversaries, the secrecy of
private keys is one of the most import issues in secure electronic commerce. A
promise solution to this problem is to distribute the signing function among
multiple parties. Threshold signature schemes distribute secret information to
� This work was partially supported by Grant No. R01-2006-000-10260-0 from the Ba-

sic Research Program of KOSEF, and Strategic International Cooperative Program,
Japan Science and Technology Agency (JST).

�� This work has been done in part while at Kyushu University.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 250–259, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Proactive Secret Sharing for Server Assisted Threshold Signatures 251

several servers, and make the whole system that maintains the secret informa-
tion fault-tolerant. However, to maintain a private key securely, it is too costly
that each organization constructs a distributed system for securely managing its
private key. Therefore, it is necessary to build a security system which stores
securely secret private keys instead of organizations and performs securely their
cryptographic functions. When a private key is securely shared among several
servers, a threshold signature scheme typically assumes that the shared sign-
ing function can be only activated by a quorum number of servers. Therefore,
it is inappropriate for settings where an organization employs some servers for
a threshold protection of its private signing function. That is, if anyone has a
power to activate the signing function of servers, he can easily compute valid
signatures for a specific organization without knowing the private key. S. Xu et
al. provided a general construction to build threshold signature schemes (called
as server assisted threshold signatures) which provide an organization (e.g., a
user) with controllability for activating his private signing function in a certain
enhanced way [11]. In this paper, we design two types of proactive secret sharing
schemes which are suitable for server-assisted threshold signatures.

2 Preliminaries

2.1 Model and Assumptions

In this paper, we use the following notations for description.

– Servers: There are n servers, P1, . . . , Pn, in the system. Every server keeps
securely shares of each user’s private key, and performs a signing function
instead of each user.

– User: His secret private key is securely shared among n servers. At least t
servers out of n servers perform signing function for the user to generate
a valid signature, where n ≥ 2t − 1. An organization, an individual or a
certificate authority can act as a user.

– Communication: Servers have access to a dedicated broadcast channel; by
dedicated we mean that if server Pi broadcasts a message; it is received by
every other server and recognized that it came from Pi.

– Time: Time is divided into time periods which are determined by the com-
mon global clock. Each time period consists of a short refresh period, during
which the players engage in an interactive refreshing protocol. The proactive
secret sharing presented in this paper assumes a synchronous network.

– Adversary: We assume short-term constrained adversary introduced in [3] to
characterize adversary; the adversary cannot break t or more servers during
any time period. The adversary is also computationally bounded, implying
that he cannot solve factoring and discrete logarithm problem.

Our proactive secret sharing schemes can be implemented via either threshold
Schnorr in [9] or threshold RSA in [12]. Since the whole exponential operations in
[12] are performed over integer, and the modules value in [9] are public because of
obvious reasons, we use abstract modulus for the rest of this paper for generality.

252 J.-P. Yang, K.H. Rhee, and K. Sakurai

2.2 Server Assisted Threshold Signatures

S. Xu et al. proposed a server assisted threshold signature scheme which the sign-
ing function is activated by a user [11]; we say that the server assisted threshold
signature scheme provides user controllability for activating the user’s signing
function. It is based on hybrid threshold signature scheme, which is the com-
bination of two-party signature schemes such as [7][8] and threshold signature
schemes.

Initialization: A user(U) performs a 2-out-of-2 secret sharing to share his
private key x;

x

(2,2)︷︸︸︷−→(xU , xP),

where xU is U ’s share. U shares xP among n servers by using an appropriate
secret sharing scheme, namely

xP

(n,t)︷︸︸︷−→(x(1)
P , · · · , x(n)

P),

where each x
(i)
P (1 ≤ i ≤ n) is Pi’s share.

Signing: Let g1, g′1, g2 and g′2 be appropriate algorithms which depend on the
underlying ordinary signature scheme. To sign a message M , U generates a
partial signature σU = g′1(M, xU). Then, Pij contributes its partial signature
σ

(ij)
P = g1(M, x

(ij)
P), where 1 ≤ ij ≤ n for 1 ≤ j ≤ t. Given t valid partial

signatures, anyone can compute σP = g2(σ
(i1)
P , · · · , σ(it)

P), where 1 ≤ ij ≤ n
for 1 ≤ j ≤ t. Given σU and σP , anyone can compute a signature σ =
g′2(σU , σP).

Verification: The verification algorithm is the same as that of the underlying
signature scheme.

2.3 Combinatorial Secret Sharing

L. Zhou proposed combinatorial secret sharing which is based on additive secret
sharing [5]. To avoid confusion, he used share sets to denote shares of a secret
x by using a combinatorial secret sharing and used shares of x only for the
values comprising a standard secret sharing. We use a function CSS(n, t, x) for
describing (n, t)-combinatorial secret sharing, where x is a secret.

1. Create l =
(

n
t−1

)
different sets T1, . . . , Tl of servers. These sets of servers

represent the worst-case failure scenarios : sets of servers that could all fail
under the assumption that at most t− 1 servers are compromised.

2. Create l shares {x1, . . . , xl} using (l, l)-additive secret sharing. Associate
share xi with failure scenario Ti.

3. Include secret share xi in XP , the share set of a server P, if only if P is not in
corresponding failure scenario. That is, for any server P, share set XP equals
{xi | 1 ≤ i ≤ l ∧ P /∈ Ti}.

A Proactive Secret Sharing for Server Assisted Threshold Signatures 253

Note that, without assigning xi to any server in a failure scenario Ti, they
ensure that servers in Ti do not have all together l shares to reconstruct the
secret x. For any set Ω of servers, the constructed share sets satisfy the following
conditions:

– Condition 1 :
⋃

P∈Ω XP = {x1, x2, . . . , xl}, where |Ω| ≥ t.
– Condition 2 :

⋃
P∈Ω XP ⊂ {x1, x2, . . . , xl}, where |Ω| ≤ t− 1.

2.4 Verifiable Secret Sharing

Verifiable secret sharing provides means for servers to check whether a set of
shares constitute a sharing of a secret, so that erroneous shares from compro-
mised servers can be detected and discarded. In this paper, we use generic func-
tions to perform verifiable secret sharing for (l, l)-additive secret sharing in [5].

– oneWay(x) = y : y is the validity check for secret x.
– oneWay(xi) = yi for all 1 ≤ i ≤ l : guarantees that {y1, . . . , yl} are the

validity checks for all shares.
– vcConstr(y1, . . . , yl)=y : ensures that y can be constructed from {y1, . . . , yl}

using vcConstr.

Each function mentioned above can be implemented by slight variation of
Feldman’s style of verifiable secret sharing [6]. Owing to self-explanatory for
constructing additive versions, the concrete implementations are not introduced
in this paper.

3 Conceptional Approach

In contrast to the ordinary PSS in [2][10], our PSS is a user-intervened method
because of the nature of the server assisted threshold signature. Let xU be the
part held by the user, xP be the part distributed among n servers, where 1 ≤
i ≤ n. To periodically renew shares for xP , we describe the concept of our PSS
from (n, t)-polynomial secret sharing of view. When xP is distributively stored
as a value of f(0) = xP of a t − 1 degree polynomial f(·), we can update this
polynomial by adding it to a t−1 degree polynomial g(·), where g(0) = θ, and θ
is a renewal value, so that fnew(0) = f(0)+ g(0) = xP + θ. We can renew shares
for xP thanks to the linearity of the polynomial evaluation operation:

fnew(·) ← f(·) + g(·) ⇐⇒ ∀i fnew(i) = f(i) + g(i)

In above description, the value xP shared among servers is changed. However,
if the user updates his part as xU ◦ θ, the user can successfully derive a real
signature from σP which is generated by the newly changed and shared xP

1. In
1 According to the implementation of g′

2 in the section 2.2, the operator ◦ should be
decided. Let us consider an example based on RSA without considering modulus
operator. A user’s private exponent (x) can be divided into two halves; x = xU −xP .
Let m be a message to sign. In case of g′

2(mxU , mxP) = mxU /mxP , ◦ operator must
be +.

254 J.-P. Yang, K.H. Rhee, and K. Sakurai

this paper, we present two types of proactive secret sharing schemes, user original
proactive secret sharing (shortly called as user origin PSS) and server original
proactive secret shring (called as server origin PSS), according to someone who
initiates the activity of proactive secret sharing: in user original PSS, the user
initiates PSS, and the servers initiate PSS in the server original PSS.

4 User Origin PSS

In this section, we introduce user original PSS which consists of two protocols;
key renewal and key recovery. To initialize the system, the user and n servers
perform the following procedures. From now, we use x instead of xP for easy
description.

(Step 0). A user performs initially CSS(n, t, x). After that, the user sends
securely XPi to Pi, and makes oneWay(x) = y and oneWay(xi) = yi public,
where 1 ≤ i ≤ l. A set of at least t servers of n can construct x. In this paper,
we assume that this setup is securely performed.

4.1 Key Renewal

(Step 1). The user generates randomly a renewal secret θ. The user performs
CSS(n, t, θ) and generates additive shares {θ1, θ2, . . . , θl}. Then, the user
generates n renewal sets ;

RPi = {θk | 1 ≤ k ≤ l ∧ Pi /∈ Tk}
After that, the user sends securely RPi to Pi, for each i. Then, he makes
oneWay(θ) and oneWay(θk) public, where 1 ≤ k ≤ l.

(Step 2). Each Pi computes the validity checks for θi as many times as the
number of receiving θi by itself, and compares them with the corresponding
public values, oneWay(θi)s, respectively. If the result is true, it checks

vcConstr(oneWay(θ1), . . . , oneWay(θl))? = oneWay(θ).

If the result is true, it performs the next steps. Otherwise, the procedure of
key renewal is restarted Step 1. Each Pi computes a new share set Xnew

Pi

by using XPi and RPi :

Xnew
Pi

= {xk + θk | 1 ≤ k ≤ l ∧ Pi /∈ Tk}.
Finally, the new secret part shared by n servers, xnew , must be x + θ. Then,
each Pi deletes XPi and θk from memory. After that, Every Pi sends Update
success message to the user. After receiving them, the user updates its own
part as xnew

U = xU ◦ θ, and deletes all secret values for key renewal from
memory.

(Step 3). All validity check values for xnew are publicly computed;

vcConstr(yi, oneWay(θi)) = ynew
i

vcConstr(y, oneWay(θ)) = ynew,

where 1 ≤ i ≤ l.

A Proactive Secret Sharing for Server Assisted Threshold Signatures 255

4.2 Key Recovery

If a server Pm is corrupted, it is rebooted and initialized. The system initializa-
tion means that Pm is recovered from some Trojans or trapdoors.

(Step 1). After that, each Pi�=m sends securely necessary shares, Xnew
Pi

∩Xnew
Pm

,
to Pm.

(Step 2). After collecting necessary shares for recovery, Pm can verify the cor-
rectness of the received shares by using new validity check values at Step
3 in Key Renewal. Then, it can configure his share set at the same way as
Step 2 in Key Renewal.

5 Server Origin PSS

Since server origin PSS performs both recovery and renewal at once, we call the
procedure as key update.

(Step 0). The setup is the same as that of user origin PSS.

5.1 Configuration of Update Group

To configure a update group I of correct servers, a simple challenge, which can
be originated by one of n servers, is broadcasted. Each server computes partial
signatures as many times as the number of shares in share set and broadcasts
them. Each server generates a list of reputations for n− 1 servers except itself;
If a server does not send partial signatures or sends faulty partial signatures,
the reputation for the server is set to ”Bad”. Otherwise, the reputation is set
to ”Good”. Each server broadcasts it. As a result, each server obtains a list of
reputations which is generated by itself and n − 1 received lists of reputations.
Each server configures a candidate update group as follows:

– A server which has more than t ”Bad” reputations is accused.
– A candidate update group consists of servers which have less than t − 1

”Bad” reputations.

Note that n candidate update groups which are generated in different servers
should be identical. A update group I consists of a chosen coalition of servers in
the candidate update group. Since at most t− 1 servers can be compromised in
a time period, we can successfully configure a update group I.

5.2 Distribution of Key Update

Without loss of generality, we assume that the update group I consists of
{P1, P2, . . . , Pt}.
(Step 1). Every server Pi in I generates a random number θi, which is called

as update share of Pi, where 1 ≤ i ≤ t. A update secret θ will be equal
to

∑
i∈I θi, and no server know the value of θ. Each Pi ∈ I performs

CSS(n, t, θi), respectively.

256 J.-P. Yang, K.H. Rhee, and K. Sakurai

(i) Let {θ1
i , . . . , θ

l
i} be the result of (l, l)-additive secret sharing for θi. Then,

we call an additive share of an update share (e.g., θj
i , where 1 ≤ j ≤ l)

as share of update share. Each Pi generates n update share sets for θi;
U j

Pi
= {θk

i | 1 ≤ k ≤ l ∧ Pi /∈ Tk}, where 1 ≤ i ≤ t and 1 ≤ j ≤ n.
(ii) Each Pi sends securely U j

Pi
to Pj �=i ∈ I, respectively. Then, each Pi makes

oneWay(θi) and oneWay(θj
i) public, where 1 ≤ j ≤ l. As a result, each

Pi holds update share sets received from different servers.
(Step 2). For Pi ∈ I to compute a new share set Xnew

Pi
, each Pi computes the

validity checks for share of update shares, and compares the computed va-
lidity checks with the corresponding public values, respectively. If the result
is true, it checks the follows;

vcConstr(oneWay(θ1
h), . . . , oneWay(θl

h)) ? = oneWay(θh),

where 1 ≤ h ≤ t. If the result is true, it performs the next procedures.
Otherwise, it broadcasts an accusation message for any servers, which lead
failures, to n servers, and the procedure for key update is restarted by choos-
ing another update group from the candidate update group in Configuration
of update group. Each Pi ∈ I configures an update set ΔPi for update secret
θ =

∑
i∈I θi by using t update share sets received from t different servers:

ΔPi = {αk = θk
1 + · · ·+ θk

t | 1 ≤ k ≤ l ∧ Pi /∈ Tk}.
As a result, θ = θ1 + · · ·+ θt = α1 + · · ·+ αl. Then, each Pi ∈ I computes a
new share set Xnew

Pi
as follows:

Xnew
Pi

= {xk + αk | 1 ≤ k ≤ l ∧ Pi /∈ Tk}.
Finally, xnew must be x+ θ. Then, each Pi ∈ I deletes θi and t update share
sets, which were used to configure ΔPi , from memory, respectively.

(Step 3). All validity check values for xnew are publicly computed as follows,
where 1 ≤ i ≤ l.

oneWay(αi) = vcConstr(oneWay(θi
1), . . . , oneWay(θi

t))
oneWay(θ) = vcConstr(oneWay(θ1), . . . , oneWay(θt))

= vcConstr(oneWay(α1), . . . , oneWay(αl))
vcConstr(yi, oneWay(αi)) = ynew

i

vcConstr(y, oneWay(θ)) = ynew

5.3 Recovery and Propagation

(Step 1). If a server Pm /∈ I is accused, Pm is rebooted and initialized. Oth-
erwise, the system performs from Step 3 to Step 4.

(Step 2). Each Pi ∈ I sends necessary shares XPi ∩ XPm to Pm so that Pm

recovers XPm . After collecting necessary shares for recovery, Pm can verify
the correctness of the received shares by using previous validity check values
in Step 0. Then, it can configure its share set.

A Proactive Secret Sharing for Server Assisted Threshold Signatures 257

(Step 3). Each Pi ∈ I sends securely U j
Pi

generated at Step 1 in Distribution
of key update to Pj /∈ I, respectively. Each Pj /∈ I holds therefore t update
share sets for θ.

(Step 4). Each Pj /∈ I performs Step 2 in Distribution of key update, and also
holds Xnew

Pj
and ΔPj , respectively. Each Pj /∈ I deletes XPj and t update

share sets from memory. Then, each Pi ∈ I deletes XPi and n update share
sets at Step 1 in Distribution of key update, but keeps update set ΔPi at
Step 2 in Distribution of key update.

5.4 Delivery to User

(Step 1). As soon as the user connects to the system, each Pi sends securely
ΔPi to the user, where 1 ≤ i ≤ n. The user receives obviously necessary
update sets for recovering θ from at least t servers. The user can verifiably
recover θ by using the validity checking values at Step 3 in Distribution of
key update. If the validity checking is successful, the user sends update success
message to servers, and updates its own part as xnew

U = xU ◦ θ. Then, the
user deletes the received update sets from memory.

(Step 2). After receiving update success message, each server deletes its update
sets from memory.

6 Evaluation

For the security of cryptographic schemes used to design our proactive schemes,
refer to [5][9][11][12]. For our proactive secret sharing schemes to be fault-tolerant
even in the presence of up to t− 1 corrupted servers in every time period, they
satisfy the following properties:

– Independency: New shares for the secret cannot be combined with old shares
to reconstruct the secret.

– Secrecy: The secret remains unknown to adversaries.
– Availability: Correct servers have sufficient shares of the secret to reconstruct

it.

Due to the lack of space, we omit the proof that our schemes guarantee the
mentioned properties.

We implement our proactive secret sharing schemes by using JDK 1.4 and
Bouncy castle package [1][4]. We simulate them under Pentium IV processors.
The following notations are used to describe Fig. 1.

– UO-Renewal: The overall cost required to finish key renewal in user origin
PSS.

– UO-User: The user’s cost required to finish key renewal in user origin PSS.
– SO-Renewal: The overall cost required to finish key update without any

recovery in server origin PSS.
– SO-User: The user’s cost required to finish key update without any recovery

in server origin PSS.

258 J.-P. Yang, K.H. Rhee, and K. Sakurai

(a) Response times (b) Message traffics

Fig. 1. The costs for key renewal under 1024-bits keysize

Fig.1.(a) shows the measured response times under 1024-bits keysize according
to the number of servers. As expected, user origin PSS is more efficient than
server origin PSS about the response time for key renewal, and that is reasonable.
From the view point of user’s computation cost, the user can obtain computation
benefit from the usage of server original PSS, because the user does not need
to generate a secret value and shares it to servers in server origin PSS. We can
see from Fig. 1.(a) that the user’s burden of computation is about 70% of the
overall cost in user origin PSS. In spite that the response time of user origin
PSS is gradually increased according to the growth of the number of servers,
the response time of server origin PSS is rapidly increased. Fig. 1.(b) shows the
measured message traffics under 1024-bits keysize according to the number of
servers. The message traffic of user origin PSS for key renewal is always less than
that of server origin PSS. In particular, the message traffic of server origin PSS
is very sensitive to the increment of the number of servers.

To sum up the result of simulations, server origin PSS requires higher com-
putation and communication costs than user origin PSS. However, the user con-
sumes less computation cost and hires conveniently the distributed system for
threshold protection without taking care of renewal and recovery in server origin
PSS. When a distributed system consisting of a large number of servers spreads
on the low bandwidth network and the servers have low computing power, user
origin PSS is a suitable strategy for deploying the distributed system. Other-
wise, server origin PSS is suitable when a distributed system consisting of a
small number of servers spreads on the high bandwidth network (e.g., LAN) and
the servers have high computing power.

7 Conclusion

To the best of our knowledge, we newly provided the proactive secret sharing
schemes for server assisted threshold signatures. According to the initiator, we
designed two types of methods: user origin proactive secret sharing and server

A Proactive Secret Sharing for Server Assisted Threshold Signatures 259

origin proactive secret sharing. Through performance simulations, we evaluated
their computation and communication costs, respectively.

References

1. Bouncy Castle 1.24, https://www.bouncycastle.org.
2. C. Cachin, K. Kursawe, A. Lysyanskaya and A. R. Strobl, ”Asynchronous verifiable

secret sharing and proactive cryptosystems,”, In Proc. of 9th ACM CCS (2002).
3. Haiyun Luo, Songwu Lu, ”Ubiquitous and Robust Authentication Services for Ad

Hoc Wireless Networks,” UCLA Computer Science Technical Report 200030, Oct.
(2000).

4. J. Garms and D. Somerfield , Professional Java Security, Wrox Press Ltd (2001).
5. Lidong Zhou, Towards Fault-Tolerant and Secure On-line Services, PhD Disserta-

tion, Department of Computer Science, Cornell University, Ithaca, NY USA. April
(2001).

6. P. Feldman, ”A Pracitcal Scheme for Non-Interactive Verifiable Secret Sharing,”
In Proc. of 28th FOCS (1987).

7. P. MacKenzie, M. Reiter, ”Networked Cryptographic Devices Resilient to Cap-
ture,” IEEE Security and Privacy’01, May 14 - 16, (2001).

8. P. MacKenzie and M. Reiter. ”Two-Party Generation of DSA Signatures,”
Crypto’01, LNCS 2139, pp.137-154, (2001).

9. R. Gennaro, S. Jarecki and H. Krawczyk, ”Revisiting the Distributed Key Gener-
ation for Discrete-Log Based Cryptosystems,” RSA Security’ 03, (2003).

10. S. Jarecki, Proactive Secret Sharing and Public Key Cryptosystems, MIT Master
of Engineering Thesis (1995).

11. S. Xu and R. Sandhu, ”Two Efficient and Provably Secure Schemes for Server-
Assisted Threshold Signatures,” CT-RSA, (2003).

12. Tal Rabin, ”A Simplified Approach to Threshold and Proactive RSA,” Advanced
in Cryptology-CRYPTO 98, LNCS 1462, pp.89-104, (1998).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 260 – 269, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Efficient ID-Based Bilinear Key Predistribution
Scheme for Distributed Sensor Networks*

Tran Thanh Dai, Cao Trong Hieu, and Choong Seon Hong**

Networking Lab, Department of Computer Engineering, Kyung Hee University
Giheung, Yongin, Gyeonggi, 449-701 Korea

daitt@networking.khu.ac.kr, hieuct@networking.khu.ac.kr,
cshong@khu.ac.k

Abstract. Security requirements are very pressing in distributed sensor net-
works due to exploitation purposes of these networks in human life, especially
in military tasks. To obtain security in these sorts of networks, it is crucial to
enable message encryption and authentication features among sensor nodes.
This thing could be performed using keys agreed upon by communicating
nodes. Nonetheless, acquiring such key agreement in distributed sensor net-
works becomes extremely intricate due to resource constraints. Up to now, there
are many key agreement schemes proposed wired and wireless networks of
which key predistribution schemes are considered to be the fittest solutions.
Based on this observation, in this paper, we propose a key predistribution
scheme relying on sensor nodes’ unique identifiers. Our scheme exhibits several
noteworthy properties: direct pairwise key establishment permission with ex-
plicit key authentication, high resiliency against information-theoretic security
attack (node capture attack). We also present a detailed security and perform-
ance analysis of our scheme in terms of node capture attack, memory usage,
communication overhead, and computational overhead.

1 Introduction

Advances in wireless communications and electronics over the last few years have
sped up the development of networks of low-cost and multifunctional sensors.
These sensors are tiny in size and able to sense, process data, and communicate
with each other, typically over a radio frequency channel. They are usually de-
ployed in a immense number and in the form of distributed networks to detect
events or phenomena, collect and process data, and transmit sensed and processed
information to interested users. Those distributed sensor networks are anticipated to
be widely applied to many fields of human life ranging from civil applications to
military applications.

In most of the applications, we truly need security measures to protect each sensor
node in particular and the entire distributed sensor networks in general from malicious
adversaries. According to typical approaches, security measures could be fulfilled

 * This work was supported by MIC and ITRC projects.
** Corresponding author.

 An Efficient ID-Based Bilinear Key Predistribution Scheme 261

based on efficient key agreement schemes. Nonetheless, sensor nodes typically oper-
ate in unattended conditions; have limited computational capabilities and memory,
and battery-power capacity. Due to these resource limitations, the materialization of
the efficient key agreement schemes in distributed sensor networks becomes a deeply
intricate task. In fact, there are many key agreement schemes proposed for wired and
wireless network environments which have been proved to be efficient and secure like
trusted server schemes, public key based schemes, and key predistribution schemes.
Nevertheless, constrained computation and energy resources of sensor nodes often
make the first two schemes infeasible or too expensive for distributed sensor networks
[8], [9], [10]. Recently, there are some attempts to solve the key agreement problem
for sensor networks using elliptic curve cryptography (ECC) [11], [12]. However, the
energy consumption of ECC is still expensive, especially compared to symmetric key
based algorithms. Based on these analyses, it is straightforward to realize that key
predistribution schemes seem to be the most feasible solution for the key agreement
problem in distributed sensor networks.

A key predistribution scheme is a method to distribute off-line initial private pieces
of information (keying materials) among a set of users, such that each group of a
given size (in our scheme it is equals to two for the pairwise key generation purpose)
can compute a common key for secure communication [13]. One branch of the key
predistribution schemes is the ID-based key predistribution scheme. In that scheme,
no previous communication is required and its key predistribution procedure consists
of simple computations. Furthermore, in order to establish the key, each party should
only input its partner’s identifier to its secret key sharing function [14].

Due to those sorts of noteworthy properties, in this paper, we propose a highly re-
silient, resource-efficient and ID-based key predistribution scheme. Main contribu-
tions of our scheme are as follows:

1. Direct pairwise key establishment permission with explicit key
authentication.

2. Substantially improved network resiliency against information-theoretic se-
curity attack (node capture attack).

3. Detailed theoretical analysis of security, memory usage, and communication
and computation overhead.

The rest of the paper is organized as follows: section 2 mentions the related work;
section 3 gives an overview of our building block; section 4 presents our proposed
scheme; section 5 deals with the detailed security analysis; section 6 discusses per-
formance analysis; section 7 concludes the paper.

2 Related Work

Recently, symmetric key cryptography has been received extensive studies to obtain
various aspects of security in sensor networks. Perrig et al. [15] developed a security
architecture for sensor networks which is comprised of two link layer protocols:
SNEP and μTELSA. SNEP (Secure Network Encryption Protocol) provides data
confidentiality, two-party authentication, and data freshness. TELSA, the second
part of SPINS, provides authenticated broadcast for sensor networks. Liu and Ning

262 T.T. Dai, C.T. Hieu, and C.S. Hong

[16] proposed a multi-level key chain method for the initial commitment distribution
in TESLA. Karlof, Sastry and Wagner [17] developed TinySec, the first fully im-
plemented link layer security architecture for sensor networks. Eschenauer and Gligor
[18] proposed a probabilistic key predistribution scheme recently for pairwise key
establishment. The main idea is to let each sensor node randomly pick a set of keys
from a key pool before deployment so any two sensor nodes have a certain probability
of sharing at least one common key. Chan et al. [8] further extended this idea and
developed three mechanisms for key establishment using the framework of pre-
distributing a random set of keys to each node. The first one is q-composite keys
scheme. This scheme is mainly based on [18]. The difference between this scheme
and [18] is that q common keys, instead of just a single one, are needed to establish
secure communication between a pair of nodes. By increasing the amount of key
overlap required for key setup, the resiliency of the network is increased against node
capture. The second one is multipath key reinforcement scheme applied in conjunc-
tion with [18] to yield greatly improved resilience against node capture attacks by
trading off some network communication overhead. The main attractive feature of
this scheme is that it can strengthen the security of an established link key by estab-
lishing the link key through multiple paths. The third one is random pairwise keys
scheme. The purpose of this scheme is to allow node-to-node authentication between
communicating nodes. Du et al. [19] proposed a method to improve [18] by exploiting
a priori deployment knowledge. Specifically, by using node deployment knowledge
and a wise key ring setup, the sensor networks get much higher probability of estab-
lishing a secure link between any pairwise of nodes. Zhu et al. [22] proposed a proto-
col suite named LEAP to help establish individual keys between sensors and a base
station, pairwise keys between sensors, cluster keys within a local area, and a group
key shared by all nodes.

3 Overview of Matsumoto-Imai’s Key Predistribution Scheme

Matsumoto-Imai (MI) proposed a linear key predistribution scheme in [1] that allows
distributing a common key to an arbitrary group of entities in a network without pre-
vious communications among the group nor accesses to any public key directory or
whatsoever. In this section, we briefly describe how Matsumoto-Imai’s key predis-
tribution scheme works (MI scheme for short).

Let q be a prime power and m, l be positive integers. Let

()GF qΨ = and []{ }1 2| ... , , 1,m
m ix x x x x x i mΨ = = ∈ Ψ = .

Suppose that each entity’s (say, entity i's) identity yi is a member of a set ϒ and

that ,i jy y i j≠ ∀ ≠ .

And let Γ denote an one-way algorithm implementing an injection from ϒ to mΨ .

The key setup server selects l (m, m) symmetric matrices (1,)M s lτ τ = over

Ψ randomly and independently from other entities.

The key setup server generates the secret key sharing functions iΦ s:

 An Efficient ID-Based Bilinear Key Predistribution Scheme 263

() () ,T
i iω φ ω ωΦ = Γ ∈ ϒ

for each iy ∈ ϒ . Here, ()TωΓ is the transpose of ()ωΓ and iφ is an (l, m) matrix

defined by

1 () ,..., ()T T T
i i l iM y M yφ ⎡ ⎤= Γ Γ⎣ ⎦

Each entity I receives its own iΦ from the center.

If entity A and entity B want to establish a pairwise cryptographic key, entity A

computes ()A ByΦ and entity B computes ()B AyΦ independently. They are l-

vectors over Ψ . It is easy to realize that both vectors are the same. This scheme could
be used for key sharing among n entities by using symmetric n-linear mappings in-
stead of the aforementioned symmetric bilinear mappings.

4 ID-Based Bilinear Key Predistribution Scheme

Since the purpose of MI scheme is to apply to the smart-card-based systems, not for
distributed sensor networks, so we propose an ID-based bilinear key predistribution
scheme inspired by MI scheme. We will later show that our scheme exhibit the fasci-
nating properties satisfying security requirements due to specific characteristics of
distributed sensor networks which have not been mentioned in MI scheme. Accord-
ingly, our scheme consists of three phases, namely keying material predistribution,
pairwise key establishment, and pairwise key reinforcement. The following are de-
tailed description of these phases.

Keying material predistribution. Assume that each sensor node has a unique identi-
fication whose range is from 1 to N where N is the maximum number of sensor nodes
that could be deployed during the entire lifespan of the sensor network. Each of the

unique identifications is represented by 2log ()m N= bit effective ID in sensor

nodes’ memory. The keying material predistribution phase is to predistribute secret
key sharing functions to each sensor nodes before deployment such that after deploy-
ment, neighboring sensor nodes can find a secret common key between them using
these functions. It consists of the following steps:

1. Key setup server generates l ()m m× symmetric matrices (1,)M s lτ τ = over

finite field GF(2). The M τ s are private information and kept secret from both

sensor nodes and adversaries. M τ is used to generate the thτ bit of a pairwise
key between two neighboring sensor nodes, so l is the length of this key.

2. Key setup server computes secret key sharing function iΦ for each sensor node

iS by first computing i iy Mτ τΦ = (1,)lτ = (1) and then generating iΦ as

264 T.T. Dai, C.T. Hieu, and C.S. Hong

iΦ as

1

2

....

i

i
i

l
i

⎡ ⎤Φ
⎢ ⎥
Φ⎢ ⎥Φ = ⎢ ⎥

⎢ ⎥
⎢ ⎥Φ⎣ ⎦

 where (1,)iy i N= is the m-dimensional vector, the

effective ID of sensor node iS . This function is then distributed to each sensor

node before node deployment.

Pairwise key establishment. After completing the keying material predistribution
phase, each sensor node possesses a secret key sharing function. The object of this
phase is to establish pairwise keys among neighboring sensor nodes using those func-

tions. The procedure for establishing two neighboring sensor nodes iS and jS is

described as follows with and added step to allow explicit key authentication.

1. After being deployed, iS and jS instantly broadcast their effective IDs iy and

jy to their neighboring nodes. Since iS and jS are neighbors, iS will get jS 's

effective ID jy and vice versa.

2. iS computes the possible pairwise key ijK : (1,)T
ij i jK y lτ τ τ= Φ = (2), where

ijK τ indicates the τ th bit of the possible pairwise key ijK between Si and Sj.

jS carries out in the same way to get the possible pairwise key jiK .

3. Up to this step, iS / jS needs to certify that the other has the same key as the

one it computed. To do this, iS / jS has to show the other that it has the other’s

computed key by revealing secret information without revealing the computed

key. As in [2], iS / jS generates a message Mi/Mj containing jy / iy , calculates

the message authentication code (MAC) of Mi/Mj as a function of Mi/Mj and its

computed key: ()
ijK iMAC C M= / ()

jiK jMAC C M= and then send Mi/Mj

plus MAC to the other (MAC can be calculate using a key-dependent one-way
hash function such as HMAC [3]).

4. The recipient performs the same calculation on the received message, using its
computed key, to generate a new MAC. The received MAC is compared to the
calculated MAC. If the received MAC matches the calculated MAC then the re-
ceiver is assured that the message is from the alleged sender and its computed

Si Sj
|| ()

iji K iM C M

|| ()
jij K jM C M

 An Efficient ID-Based Bilinear Key Predistribution Scheme 265

key is exactly the same as that of the alleged sender. Since no one else knows
the secret key, no one else could prepare a message with a proper MAC.

Up to this point, any two neighboring sensor nodes can establish a pairwise key
to secure their communication link. However, as shown in [1], our proposed scheme
is vulnerable to the information-theoretic security attack discussed later against the
network resiliency. To prevent this sort of attack, there are two approaches. The
first one is to allow two neighboring sensor nodes to take part in the pairwise key
reinforcement phase. The second one will be discussed later on in security analysis
section.

Pairwise key reinforcement (optional). This phase is aimed to reinforce a pairwise

key between two neighboring sensor nodes iS and jS . It happens as follows: iS and

jS randomly generate ki and kj respectively such that their lengths are equal to

ijK / jiK . These keys are encrypted by ijK , jiK and transmitted to each end. Then,

iS / jS computes a new pairwise key with jS / iS using the formula:

ij i jK K k k= ⊕ ⊕ (ji j iK K k k= ⊕ ⊕) (3). In addition to the avoidance of in-

formation-theoretic attack, these formulas show that each node has the equal right to
decide the value of the potential key K. It ensures that no node can get an advantage
over the other from K selection.

This scheme substantially improves the security, resiliency and enable node to
node authentication in the network. These features as well as other parameters will be
thoroughly analyzed in the following sections of this paper.

5 Security Analysis

As already mentioned above, our scheme is vulnerable to information-theoretic
security attack against network resiliency. Indeed, our scheme has a certain

collusion threshold. As mentioned, (1,)M lτ τ = is a ()m m× matrix. By using m

linearly independent secret i
τΦ s, M τ can be easily revealed. Therefore, m is the

value of the collusion threshold. In other words, an adversary only needs to com-
promise m sensor nodes to be able to compute any pairwise key of any two uncom-
promised neighboring sensor nodes using their effective IDs. It implies that with
only m compromised sensor nodes, the adversary can compromise the entire
network.

A straightforward solution to the attack is to increase the value of m. However, the
increase in the value of m leads to the increase of memory size of sensor nodes

needed to store iΦ . The figure 1 show the relationship between m (number of com-

promised nodes), pairwise key length l and memory usage.

266 T.T. Dai, C.T. Hieu, and C.S. Hong

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

m - Number of Compromised Nodes

S
en

so
r

N
od

e'
s

M
em

or
y

S
to

ra
ge

 R
eq

ui
re

m
en

t
(K

B
)

l = 64 bits
l = 128 bits
l = 256 bits

Fig. 1. Memory storage requirement against information-theoretic security attack

Assume that the key length of the pairwire key l = 128 bits, from the fig. 1, it is
easy to realize that the solution can offer resistance to a collusion attack of up to 2000
compromised sensor nodes while using only about 32 KB of each sensor node’s mem-
ory storage. This number of memory storage consumption is considered to be suitable
for most sensor hardware platforms such as Berkeley Mica Motes with 128KB pro-
gram memory [8]. Therefore, by increasing little amount of memory storage, the resil-
iency is significantly improved against information-theoretic security attack. This
solution is considered to be acceptable in the sense that to successfully compromise
the network, the adversary has to perform large scale attacks which are very expen-
sive and more easily detectable.

The other solution has been briefly mentioned in section 3. This solution is partly
inspired by an assumption in [4]. Accordingly, in this solution we assume that there
exists a lower bound on the time interval Tmin that is necessary for an adversary to
compromise enough m sensor nodes, and that the time Test for newly deployed sen-
sor node to discover its immediate neighbors and establish initial pairwise keys with
them is smaller than Tmin. Taking advantage of the time interval Tmin, two neighbor-
ing sensor nodes need to quickly exchange ki and kj to each other and then use (3) to

change their initial pairwise key ijK (jiK) to the permanent pairwise key K. By

doing in this way, we can eliminate the information-theoretic security attack from
the entire network since the adversary could not compute the pairwise key K
using (2).

In addition to information-theoretic security attack (node capture attack), our
scheme also enable node to node authentication feature as already discussed. This
feature, together with encryption techniques, is considered as a powerful tool to pre-
vent some specific attacks carried out only in sensor networks such as sybil attack,
sinkhole attack, hello flood attack, acknowledgement spoofing attack, etc [5], [6].

 An Efficient ID-Based Bilinear Key Predistribution Scheme 267

6 Performance Analysis

In this section, we analyze the performance of our scheme in term of memory usage,
communication overhead and computational overhead.

As already analyzed in the aforementioned section, in our scheme, memory usage
in each sensor node is in proportion to m given pairwise key length l and l given m.
Increasing l, m or both result in the increase in security level (collusion threshold) but
it implies more memory consumption to store that keying material in sensor nodes.
The other approach to obtain higher security level (by eliminating collusion threshold
attack) while the consumption of sensor nodes’ memory storage could be significantly
reduced is to include pairwise key reinforcement phase in the scheme. However, in
this case, communication and computational overhead will be slightly increased.
Thus, there must be trade-offs among security achievement, memory usage, commu-
nication overhead and computational overhead.

In our scheme, to establish the pairwise key, iS and jS need only to transmit three

packets in case the pairwise key reinforcement phase is included. One packet is trans-
mitted in the broadcast form. The other two packets are transmitted in the unicast
form. These packets essentially contain the effective IDs of two nodes. Thus, the size
of these packets is rather small. Therefore communication overhead of our scheme is
rather low and can be acceptable in the distributed sensor network environment.

Considering computational overhead, it is easy to realize that our scheme is mainly

based on multiplications of matrices (1,)M lτ τ = and sensor nodes’ effective IDs

over GF(2). These multiplications essentially are exclusive-OR and AND bit opera-
tions. These multiplications consume much less computational time and require much
less energy as well. The remaining computation constituting the overall computational
overhead is MAC generation operations. These operations are considered as the least
complex of the cryptographic algorithms and should intuitively incur the least energy
cost [8]. For these reasons, the overall computational overhead of our scheme is not
worth considering.

7 Conclusion

In this paper, we proposed a key predistribution scheme for distributed sensor net-
works inspired by the ID-based key predistribution scheme. Consequently, our
scheme obviously inherits the noteworthy properties from that sort of scheme. First,
the number of packets exchanged to establish a pairwise key between two sensor
nodes which want to establish a secure communication channel is substantially mini-
mized. Second, the key distribution procedure is composed of simple calculations so
that computational costs are quite small and suitable for such computation limited
devices as sensor nodes. Lastly, each sensor node has only to input its partner’s iden-
tifier to its secret key sharing function to generate the desired key. Moreover, our
schemes present two approaches which have been analyzed to cost sensor nodes much
less their resource to tackle information-theoretic security attack inherited from ID-
based key predistribution schemes. Our schemes also expose a technique that enable

268 T.T. Dai, C.T. Hieu, and C.S. Hong

explicit key authentication which is expected to be the most effective solution to some
sorts of attacks in distributed sensor networks. For all those reasons, there is no doubt
that our scheme is an appropriate solution to the key agreement problem in distributed
sensor networks.

References

1. Matsumoto, T., and Imai, H., “On the KEY PREDISTRIBUTION SYSTEM: A Practical
Solution to the Key Distribution Problem”, Advances in Cryptology - Crypto'87, Lecture
Note in Computer Science, Vol. 293, 1988, pp. 185-193.

2. Stallings, W., “Cryptography and Network Security: Principles and Practice”, Prentice
Hall, 1998.

3. Rhee, M. Y., “Internet Security: Cryptographic Principles, Algorithms, and Protocols”,
Wiley, 2003.

4. Zhu, S., Setia, S., and Jajodia, S., “LEAP: Efficient Security Mechanisms for Large-Scale
Distributed Sensor Networks”, CCS'03, Washington, DC, USA, October 2003.

5. Wood, A. D., and Stankovic, J. A., “Denial of Service in Sensor Networks”, IEEE Com-
puter, Vol. 35, No. 10, October 2002, pp. 54-62.

6. Karlof, C., and Wagner, D., “Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures”, Proceedings of the First IEEE International Workshop on Sensor Net-
work Protocols and Applications, May 2003, pp. 113 - 127.

7. Potlapally, N. R., Ravi, S., Raghunathan, A., and Jha, N. K., “A Study of the Energy Con-
sumption Characteristics of Cryptographic Algorithms and Security Protocols”, IEEE
Transactions on Mobile Computing, Vol. 5, No. 2, February 2006.

8. Chan, H., Perrig, A., and Song, D., “Random key predistribution schemes for sensor net-
works”, Proceedings 2003 IEEE Symposium on Security and Privacy, May 2003, pp. 197-
213.

9. Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J., and Khalili, A., “A Pairwise Key
Predistribution Scheme for Wireless Sensor Networks”, ACM Transactions on Informa-
tion and System Security, Vol. 8, No. 2, May 2005, pp. 228-258.

10. Liu, D., Ning, P., and Li, R., “Establishing Pairwise Keys in Distributed Sensor Net-
works”, ACM Transactions on Information and System Security, Vol. 8. No. 1, February
2005, pp. 41-77.

11. Blaß, E.-O., and Zitterbart, M., “Towards Acceptable Public-Key Encryption in Sensor
Networks”, Proceedings of the 2nd International Workshop on Ubiquitous Computing,
ACM SIGMIS, May 2005.

12. Wander, A. S., Gura, N., Eberle, H., Gupta, V., and Shantz, S. C., “Energy analysis of
public-key cryptography for wireless sensor networks”, Proceedings of the 3rd IEEE Inter-
national Conference on Pervasive Computing and Communications, March 2005, pp. 324 -
328.

13. Blundo, C., Santis, A. D., Herzberg, A., Kutten, S., Vaccaro, U., and Yung, M. “Perfectly-
secure key distribution for dynamic conferences”, Advances in Cryptology - CRYPTO '92,
Lecture Notes in Computer Science, Vol. 740, 1993, pp. 471-486.

14. Hanaoka, G., Nishioka, T., Zheng, Y., and Imai, H., “A Hierarchical Non-interactive Key-
Sharing Scheme with Low Memory Size and High Resistance against Collusion Attacks”,
The Computer Journal, Vol. 45, No. 3, 2002.

 An Efficient ID-Based Bilinear Key Predistribution Scheme 269

15. Perrig, A., Szewczyk, R., Wen, V., Culler, D., and Tygar, D., “SPINS: Security protocols
for sensor networks”, Proceedings of 7th Annual International Conference on Mobile Com-
puting and Networks, July 2001.

16. Liu, D., and Ning, P., “Efficient distribution of key chain commitments for broadcast au-
thentication in distributed sensor networks”, Proceedings of the 10th Annual Network and
Distributed System Security Symposium, February 2003, pp. 263-276.

17. Karlof, C., Sastry, N., and Wagner, D. “TinySec: a link layer security architecture for
wireless sensor networks”, Proceedings of the 2nd international conference on Embedded
networked sensor systems, November 2004.

18. Eschenauer, L., and Gligor, V. D., “A key-management scheme for distributed sensor net-
works”, Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity, November 2002, pp. 41-47.

19. Du, W., Deng, J., Han, Y.S., Chen, S., and Varshney, P.K., “A key management scheme
for wireless sensor networks using deployment knowledge”, INFOCOM 2004, Proceed-
ings of the 23rd Annual Joint Conference of the IEEE Computer and Communications So-
cieties, Vol. 1, March 2004.

20. Blom, R., “An optimal class of symmetric key generation systems”, Advances in Cryptol-
ogy, Lecture Notes in Computer Science, Vol. 209, 1985, pp. 335-338.

21. Du, W., Ding, J., Han, Y., and Varshney, P., “A Pairwise Key Pre-distribution Scheme for
Wireless Sensor Networks”, Proceedings of the ACM Conference on Computer and Com-
munication Security (CCS’03), Washington, D.C., October 2003.

22. Zhu, S., Setia, S., and Jajodia, S., “LEAP: Efficient security mechanisms for large-scale
distributed sensor networks”, Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS’03), October 2003, pp. 62-72.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 270 – 279, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Key-Predistribution-Based Weakly Connected
Dominating Set for Secure Clustering in DSN*

Al-Sakib Khan Pathan and Choong Seon Hong**

Networking Lab, Department of Computer Engineering, Kyung Hee University
Giheung, Yongin, Gyeonggi, 449-701 Korea

spathan@networking.khu.ac.kr, cshong@khu.ac.kr

Abstract. The intent of this paper is to propose an efficient approach of secure
clustering in distributed sensor networks. The clusters or groups in the network
are formed based on offline rank assignment and key-predistribution. Our ap-
proach uses the concept of weakly connected dominating set to reduce the
number of cluster heads in the network. The formation of clusters in the net-
work is secured as the secret keys are distributed and used in an efficient way to
resist the inclusion of any hostile entity in the clusters. Along with the descrip-
tion of our mechanism, we present an analysis and comparison to justify the ef-
ficiency of our approach.

1 Introduction

A Distributed Sensor Network (DSN) is a wireless sensor network with a large num-
ber of sensors and large coverage area. It differs from the traditional wireless sensor
network in the sense that, it contains considerably huge number of sensors which are
intended to be deployed over hostile and hazardous areas where the communications
among the sensors could be monitored, the sensors are under constant threat of being
captured by the enemy or manipulated by the adversaries. DSN is dynamic in nature
in the sense that, new sensors could be added or deleted whenever necessary [1].
DSNs are suitable for covering large areas for monitoring, target tracking, surveil-
lance and moving object detection which are very crucial tasks in many military or
public-oriented operations.

In this paper, we propose an efficient key-predistribution scheme which helps for
offline rank assignments of the sensors and eventually plays the crucial role to
form a network-wide weakly connected dominating set. Later analysis shows that,
our approach could perform well to form secure clusters in a distributed sensor
network.

This paper is organized as follows: Section 2 outlines the related works, Section 3
presents our model, Section 4 proposes our approach and the method for key-
predistribution, Section 5 contains the performance analysis and comparison, and
Section 6 concludes the paper.

 * This work was supported by MIC and ITRC projects.
** Corresponding author.

 A Key-Predistribution-Based Weakly Connected Dominating Set 271

2 Related Works

Grouping nodes into clusters is a good idea as it helps to divide the network into sev-
eral separate but interrelated regions. It also helps for efficient routing within the
network. Some of the previous works already have addressed clustering in sensor
networks. Here we mention some of the works those dealt with clustering. [2] pre-
sents a distributed expectation-maximization (EM) algorithm suitable for clustering
and density estimation in sensor networks. Energy-Aware clustering is addressed in
[3], [4], [5], [6], [7] etc. In [17] the authors propose a load-balanced clustering scheme
which increases the lifetime of the network. Other works on clustering in sensor net-
works are [8], [9], [10] etc. In fact, most of these works consider a secure environ-
ment while forming the clusters in the network which might not always be true for
distributed sensor networks. For example, there might be a hidden and active enemy-
sensor network operating in the area where the clusters are to be formed and while
forming the clusters in the network the hostile-hidden nodes could actively try to
participate in the formation process or hinder the formation of clusters in the friendly
distributed sensor network. Hence, we focused on secure clustering from the very
beginning of the network.

Our work differs from all of the mentioned works as we model our network to
form clusters or groups based on offline rank assignments by pre-distribution of keys
and using the notion of weakly connected dominating set considering the whole dis-
tributed sensor network as a graph.

3 Our Model

We consider the topology of the whole distributed sensor network as a unit-disk graph
(UDG) [11], G = (V,E), where V is the set of sensors (vertices) in the network and E is
the set of direct communication links (edges) between any two sensors.

Fig. 1. Unit-disk Graph

Definition 1. A dominating set S is a subset of the vertex set V of a graph G =(V,E)
(i.e., VS ⊆), so that all other vertices in the graph are adjacent to the vertices of S.
For a dominating set S, NG[S]=V, where NG[S] is the set of vertices including the
vertices in S and the vertices adjacent to a vertex of S (see Figure 2). However, find-
ing a minimum size dominating set in a general graph is NP-complete [12].

Definition 2. A connected dominating set (CDS), SC is a dominating set of a given
graph G=(V,E) where the induced subgraph of SC is connected. Figure 3(left) shows
the connected dominating set for our graph model (i.e., all the black vertices).

272 A.-S.K. Pathan and C.S. Hong

The connected dominating set for any type of ad hoc network could be used for ef-
ficient routing or message transmission throughout the network. However, for CDS, a
large number of dominating nodes is needed to maintain the connectivity require-
ments of the network.

Fig. 2. (left) Legend used throughout the rest of the paper (right) Dominating Set consisting of
black vertices

Definition 3. A weakly connected dominating set (WCDS), SW is a dominating set
where the graph induced by the stars of the vertices in SW is connected. A star of a
vertex comprised of the vertex itself and all the vertices adjacent to it (All the black
nodes in Figure 3(right)). For any given graph,

 CDSWCDS ≤ (1)

where, |.| denotes the size of the set. So, in case of WCDS, less number of dominating
nodes is needed for establishing network-wide connectivity than that is required for
CDS. For example, in Figure 3, WCDS =8 while CDS =13.

Fig. 3. (left) Connected Dominating Set (right) Weakly Connected Dominating Set

The weakly connected dominating set underpins our proposed scheme. In fact, it is
easy to see that each dominating node (or vertex) in the weakly connected dominating
set is at the center of a star (or, disk). Thus for each dominating node in a WCDS of
the overall network, we have one star where all the other nodes in the star are just one
hop apart (Figure 4(left)). Also it could be observed that, between two stars there is at
least one common dominated node which could be used for the communication pur-
pose between two separate stars. We term this common dominated node between two
individual stars as ‘Mediator’ (Figure 4 (right)).

 A Key-Predistribution-Based Weakly Connected Dominating Set 273

4 Our Approach

We apply two stage operations for secure formation of clusters in the network.

Assumption 1. Once the sensors are deployed they remain relatively static in their
respective positions.

Assumption 2. In a unit disk or transmission range of a sensor, all the neighboring
sensors do not necessarily have a direct communication link among themselves. If
two nodes i and j have a direct communication link, it is bidirec-

tional; EijEjiji ∈∈∀),(),(,, and it exists if and only if i and j have common

keys.

Fig. 4. (left) Dominators’ coverage areas in WCDS (right) Mediator between two groups/stars

Fig. 5. Ranking of the sensors based on the key pre-distribution

4.1 Offline Rank Assignment

The sensors in the network are assigned their ranks based on the offline key-
distribution. We divide the whole set of sensors V into two subsets, V1 and V2, where
V1 contains the probable group dominators (GD or cluster heads) and V2 consists of
ordinary sensors (Os). The set V2 is further divided into several subsets wi ⊂ V2, i=1,
2, 3,….,N and N is the maximum number of possible proper subsets of V2. Each wi is
assigned to one element in the set V1. The sensors in the subset wi (Os1, Os2,….Osη)
and corresponding one sensor from V1 (let, GDi, i=1) are taken for group-wise key-
predistribution (Figure 5). All the sensors in the set wi are assigned two keys one of

274 A.-S.K. Pathan and C.S. Hong

which is the group key shared by only the particular sensor and the GDi. The GDi
contains all the individual keys of the sensors in its wi and its own group key.

Assumption 3. All the sensors have same transmission range. Each node transmits
within the transmission range isotropically (in all directions) so that each message
sent is a local broadcast.

Assumption 4. The Base Station (BS) contains all the individual keys and group keys
of the network.

Assumption 5. The number of Oss (value of η) in each group is decided on demand.
It could be group specific or set to a common value for all the groups. η is actually the
maximum degree (Δ (GDi)) of a GD in a group.

4.2 Secure Cluster Formation

The groups of sensors are deployed over the target region one group at a time. After
deployment, each Os tries to find out its own GD by sending a join request packet
encrypted with its individual key. The corresponding GD in turn sends the join ap-
proval message encrypted with the group key. In both cases, both the GD and the Os
can decrypt the messages and form the group. In some cases, the corresponding GD
of an Os might not be within one-hop transmission range (disk). In this case, the Os
detects the presence of other GDs of other groups in its surroundings, collects their ids
and sends an error message to the base station (BS) with this information. The GDs
within its one-hop transmission range also detects such erroneous Os and reports to
the BS. The BS in turn assigns one of the neighboring GD as the adopter of the or-
phan Os. In the worst case, the Os might not find any GD in its surroundings. In this
case, The BS assigns the rank of a GD to that particular Os though it does not contain
any other sub-ordinate sensors. An Os which gets its own GD and another GD of
another group in its transmission range is the mediator in this case. As stated earlier,
all the stars thus shaped could use mediators for the inter-group (inter-star or inter-
cluster) communication (see Figure 4(right)). In this way, eventually the resultant
logical model of the whole network contains a weakly connected dominating set
where the GDs of the logical groups (stars) are the dominating nodes and all other
nodes in the network are dominated. This logical model now could be used for se-
cure message delivery within the network (using the secret keys).The pseudo code
for secure cluster (group) formation algorithm is presented in Figure 6.

All the groups of sensors could be deployed at a time or more groups could be de-
ployed later based on demand. If it is needed, some sensors in a group could be de-
ployed later. During the offline key pre-distribution, all the nodes are assigned the
keys but all the nodes might not be deployed. When any of those remaining nodes is
newly deployed, it follows the procedure of joining a group. If authorized by the ac-
cess list of GD, it joins the group. Otherwise, GD forwards the id of this sensor to BS.
BS informs GD about the individual key of that Os if it is a legitimate node. If authen-
ticated by BS, GD generates a new group key and encrypts the new group key with
the newly added node’s individual key and sends it to that particular Os. All other
nodes in the group know about the change of group key by a local broadcast by the

 A Key-Predistribution-Based Weakly Connected Dominating Set 275

Let,
enci(.) - message encrypted by individual key of i
enciNOT(.) - message encrypted by an unknown individual key
encG(.) - message encrypted by the group key
encGNOT(.) - message encrypted by an unknown group key
Osg - the set of Oss allowed under a group dominator g
locbr(.) - local broadcast within one hop transmission
range

for each s∈VOs

locbr(enci(JOIN_REQ))
 if encG(JOIN_APRV) from any g∈VGD and hop(s,g)=1
 edge(s,g)
 dominator(s) g
 else
 flood(enci(GD_ERR)) destined to BS
 end if
 if encGNOT(JOIN_APRV) from any g∈VGD and hop(s,g)=1
 neighbor_dominator(s) g
 end if

for each g∈VGD
 if enci(JOIN_REQ) from any s∈VOs and s∈Osg
 send encG(JOIN_APRV)

edge(s,g)
sub-ordinate(g) s

end if
 if enciNOT(JOIN_REQ) from any s∈VOs
 mediator(g) s

end if
if enci(GD_ERR) from any s∈VOs and hop(s,g)=1

 report encG(ORP_ERR) to BS
 end if
#In case of the BS:
if enci(GD_ERR) from any s∈VOs and encG(ORP_ERR) from any
g∈VGD

if same id of s, issue command: Adopter_GD(s) g

Fig. 6. Pseudo Code for Clustering Algorithm

GD of that group. In this case, the previous group key is used for encrypting the new
group key. For leaving a group or cluster, the node simply leaves a message to inform
the GD which in turn generates a new group key and multicasts it within the group
members.

5 Performance Analysis and Comparison

We form a WCDS to cover almost all of the nodes in the network with minimum
effort. The offline rank assignment reduces the burden of executing resource-hungry

276 A.-S.K. Pathan and C.S. Hong

operations to form clusters like other clustering mechanisms. As shown in equation
(1), WCDS requires less number (or equal to) of dominating nodes to cover the whole
network than that of a CDS requires. Depending on the requirements we can increase
or decrease the value of η (the expected degree of a GD in a group). In ideal case, the
size of the dominating set created in our approach could be obtained by,

 Size of Dominating Set =

 = (2)

In our experiment, we generate random graphs of 20-200 and 40-200 nodes with
expected average degree 6 and 12 respectively. To simulate the structure of the sensor
network, we place the vertices randomly over a 2-D rectangular plane. The network
size and density is set by changing the number of vertices and transmission ranges of
the nodes. Applying our approach and two algorithms (I and II) of [13] we find that
our approach generates much smaller number of group dominators or cluster heads.
For a large number of sensors it works effectively. Figure 7 shows the size of domi-
nating sets in comparison with that of Algorithm I and Algorithm II of [13]. The ma-
jor advantage of our approach is the flexibility to set the value of η (expected maxi-
mum degree of a GD) according to the requirements.

Fig. 7. (left) Size of the dominating set when expected average degree 6 (right) when expected
average degree 12

We use the distinct group keys for each of the GDs and distinct individual keys for
each Os. So, in general case, the number of distinct keys required for our network is
equal to the number of sensors in the whole network.

Each group dominator (GD) in the network has to remember one group key and all
the individual keys of the Oss of that particular group. So, the storage requirement for
each GD in number of bits is,

 () kGD ×+= 1ηγ (3)

and for each Os,

 kOs ×= 2γ (4)

Number of vertices in the Graph
η+1

Number of vertices in the Graph
Δ (GD)+1

 A Key-Predistribution-Based Weakly Connected Dominating Set 277

where, η is the number of Oss in that particular group and k is the number of bits
required for representing the key. As the value of η increases, the storage load for a
GD increases. Hence, the value of η is set according to the requirements or a particu-
lar situation at hand. So, if initially we have α number of GDs and β number of Oss,
the network wide storage usage for storing the keys is,

 ()() ()kkwidenetwork ××+×+×=Γ − 21 βηα

 ()()βηα ×++××= 21k (5)

Fig. 8. Given a connectivity probability, expected degree of a GD from the high level view

After formation of clusters within the network, the mediators are used for commu-
nication among clusters. From the higher level view, we could consider the clusters
(or groups) as nodes in a random graph G=(n, p), where n is the number of nodes (i.e.
clusters in our case) for which the probability that an edge (i. e. communication link
via mediator) exists between two nodes is p. p=0 when there is no edge and p=1 when
the graph is fully connected. According to Erdös and Rényi [14], for monotone prop-
erties, there exists a value of p such that the property moves from “nonexistent” to
“certainly true” in a very large random graph. The function defining p is called the
threshold function of a property. Given a desired probability Pc for graph connec-
tivity, the threshold function p is defined by,

 Pc =
∞→n

lim Pr[G(n,p) is connected] =
cee

−

, Where, p =
n

Pn c))ln(ln()ln(−−

Let, p be the probability that an edge (communication link via mediator) exists be-
tween two GDs of two clusters, n be the number of nodes (i.e. clusters/groups in the
entire network in this case), and d be the expected degree of each GD, then,

 d = p× (n-1)=
n

Pnn c)))ln(ln())(ln(1(−−−
 (6)

278 A.-S.K. Pathan and C.S. Hong

In our approach, the sensors could be added later on rather deploying all of them at
a time. Sometimes the entire terrain info and deployment diagram could be available
(consider a battlefield scenario where the sensors are deployed prior to the enemy
forces’ invasion). In this case, the extra sensors could be deployed within the range of
its appropriate group or cluster. If the sensors are deployed randomly, in the worst
case, all the extra or newly added sensors will not be within the range of their in-
tended group dominator and even no other GD could be available in their surround-
ings. Hence, in the worst case, all the newly added sensors would be included in the
dominating set which would increase the size of the dominating set. Still it could be
less than the number of dominators needed in case of a connected dominating set
(CDS) when the network size is very large. Keeping the size of the dominating set to
a minimum is helpful as less number of dominators means less number of entry paths
for the false information injected in the network and also it is cost effective if the
expected dominators are considered to have relatively higher resources than those of
the ordinary sensors.

Our scheme ensures that, each of the GDs and the corresponding Oss could directly
form the groups (i. e. clusters) maintaining the security of the network from the boot-
strapping state. As encryption is used for message-transmission within the network
from the very beginning of the network formation, our scheme could successfully
defend Hello Flood Attack [15] and most of other attacks in wireless sensor networks
[16]. Again, as each node carries distinct individual and group keys, compromising
one node affects only one link in the network while other links remain safe from the
attacks by the adversaries. If the group key of a particular group is compromised, still
the adversary needs valid individual keys of the Oss for decrypting the information
sent from an Os. In case of the compromise of a GD, the base station gets involved for
revoking the keys and even in this case, only one group is affected while others could
still operate. The re-keying feature ensures robust security as with each addition of a
new sensor, the group key is renewed. If considered as resource-exhaustive, the key
renewal mechanism could be omitted. However, for military networks as security is
the major issue, we could consider a slight increase of the usage of the resources in
the sensors.

6 Conclusions and Future Works

This paper presents an efficient approach for secure clustering in distributed sensor
networks based on key-predistribution and prior rank assignments. As the group
dominators rule over all other sensors in the group for data transmission, the domina-
tors could require more energy, processing and storage power. For this, a set of sen-
sors with greater resources could be considered as dominators. As future works, we
would like to deal with secure routing and an efficient method to prevent Denial-of-
Service (DoS) and Distributed DoS (DDoS) attacks in distributed sensor networks
using our approach. Due to the page limitations, we have shortened the details of
some of the parts in this paper.

 A Key-Predistribution-Based Weakly Connected Dominating Set 279

References

1. Carman, D. W., Kruss, P. S., and Matt, B. J., “Constraints and Approaches for Distributed
Sensor Network Security”, NAI Labs Technical Report # 00-010, dated 1 September, 2000.

2. Nowak, R. D., "Distributed EM ALgorithms for Density Estimation and Clustering in Sen-
sor Networks", IEEE Transactions on Signal Processing, Vol. 51, No. 8, August 2003, pp.
2245-2253.

3. Halgamuge, M.N., Guru, S.M., and Jennings, A., "Energy efficient cluster formation in
wireless sensor networks", 10th International Conference on Telecommunications, 2003
(ICT 2003), Volume 2, 23 February-1 March 2003, pp. 1571-1576.

4. Lee, S., Yoo, J., and Chung, T., "Distance-based energy efficient clustering for wireless
sensor networks", 29th Annual IEEE International Conference on Local Computer Net-
works, 2004, 16-18 Nov 2004, pp. 567-568.

5. Younis, O. and Fahmy, S., "Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid,
Energy-Efficient Approach", IEEE Transactions on Mobile Computing, 3(4), Oct-Dec
2004, pp. 366-379.

6. Ye, M., Li, C., Chen, G., and Wu, J., "EECS: an energy efficient clustering scheme in
wireless sensor networks", 24th IEEE International Performance, Computing, and Com-
munications Conference, (PCCC 2005), 7-9 April 2005, pp. 535-540.

7. Liu, J.-S. and Lin, C.-H.R., "Power-efficiency clustering method with power-limit con-
straint for sensor networks", Proceedings of the 2003 IEEE International Performance,
Computing, and Communications Conference, 2003, 9-11 April 2003, pp. 129-136.

8. Tzevelekas, L., Ziviani, A., Amorim, M. D. D., Todorova, P., and Stavrakakis, I., "Towards
potential-based clustering for wireless sensor networks", Proc. of the 2005 ACM conference
on Emerging network experiment and technology, Toulouse, France, 2005, pp. 292-293.

9. I. Wokoma, L. S cks and I. Marshall, “Clustering n Sensor Networks using Quorum Sens-
ing,” in the London Communications Symposium, University College London, 8th-9th
September, 2003.

10. Banerjee, S. and Khuller, S., "A clustering scheme for hierarchical control in multi-hop
wireless networks", Proc. of the IEEE INFOCOM 2001, Volume 2, 22-26 April 2001, pp.
1028 - 1037.

11. Clark, B. N., Colbourn, C. J., and Johnson, D. S., “Unit Disk Graphs”, Discrete Mathe-
matics, 86: 165-177, 1990.

12. Garey , M. L. and Johnson, D. S., “Computers and Intractability: A Guide to the Theory of
NP-Completeness”, W. H. Freeman, San Francisco, 1979.

13. Das, B. and Bharghavan, V., "Routing in ad-hoc networks using minumum connected
dominating sets", Proc. IEEE International Conference on Communications (ICC'97), June
1997, pp. 376-380.

14. Erdos and Renyi, “On Random Graphs”, Publ. Math. Debrecen, Volume 6 (1959), pp.
290-297.

15. Karlof, C. and Wagner, D., “Secure routing in wireless sensor networks: Attacks and
countermeasures”, Elsevier's Ad Hoc Network Journal, Special Issue on Sensor Network
Applications and Protocols, September 2003, pp. 293-315.

16. Pathan, A-S. K., Lee, H-W., and Hong, C. S., "Security in Wireless Sensor Networks: Is-
sues and Challenges", Proc. of the 8th IEEE ICACT 2006, Volume II, 20-22 February,
Phoenix Park, Korea, 2006, pp. 1043-1048.

17. Gupta, G. and Younis, M., "Load-balanced clustering of wireless sensor networks", IEEE
International Conference on Communications (ICC'03), Volume 3, 11-15 May 2003,
pp.1848-1852.

Pairwise Key Setup and Authentication
Utilizing Deployment Information for Secure

Sensor Network�

Inshil Doh, Jung-Min Park, and Kijoon Chae

Dept. of Computer Science and Engineering, Ewha Womans University, Korea
isdoh@ewhain.net, pjm@kist.re.kr, kjchae@ewha.ac.kr

Abstract. For secure sensor network communications, pairwise key es-
tablishment between sensor nodes and data authentication are essential.
In this paper, we propose cluster based key establishment mechanism
in which clusterheads distribute key materials at the requests of their
own members and an authentication mechanism using the pairwise keys
established. Our proposal increases the degree of network connectivity
and resilience against node capture by utilizing clusterheads which carry
more key-related information. It also increases the authenticity of sensed
data and further decreases unnecessary traffic by filtering false data.

1 Introduction

Sensor networks can be applied in various application area and draw a lot of at-
tention these days. For reliable and efficient communication, security is a critical
issue and key management and data authentication are the core of the security
issues. However, because of basic constraints of sensor nodes, such as memory,
computation, price, and energy, traditional approaches cannot be applied, and
new security mechanisms for sensor network are needed[1]. Several key man-
agement mechanisms for sensor networks have been proposed, however, they
still have various drawbacks. When sensor network field is clustered, most nodes
need to establish pairwise keys with neighbor nodes located in the same clusters
because when sensor nodes are dropped from a helicopter hanging above a de-
ployment point, more nodes fall into the areas closer to the deployment point and
it is seldom for a node to reside far away this point. For this reason, these nodes
don’t have to carry key materials for the pairwise keys with neighbor nodes in
different clusters. Previous mechanisms did not consider this point and wasted
storage. In this paper, we propose cluster-based key establishment mechanism
in which clusterheads located near the deployment point in each cluster carry
the key materials and distribute them at their own member nodes’ requests. We
also propose an authentication mechanism in which the clusterheads deployed
on the routes verify and filter modified or forged data efficiently.
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 280–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Pairwise Key Setup and Authentication Utilizing Deployment Information 281

2 Related Work

Recently, many key establishment mechanisms have been proposed. Eschenauer
and Gligor[3] proposed basic scheme in which each node randomly picks some
secret keys from a large key pool. Chan et al.[4] extended the basic scheme to
q-composite scheme requiring any two nodes share at least q (q > 1) common
keys to establish a secure connection. Du et al.[5] presented a pairwise key pre-
distribution scheme combining the basic scheme and Blom’s key management
scheme[2] together. Liu and Ning[6] proposed a similar pairwise key scheme
based on Blundo[7]’s polynomial-based key distribution protocol. Du et al.[8]
first employed sensor deployment knowledge in the key pre-distribution scheme.
With the help of deployment knowledge, this scheme achieved a higher degree of
connectivity and a stronger resilience against node capture attacks. However, it
cannot keep the same performance when adversaries compromise nodes within a
small local area. Yu and Guan[9] proposed group-based pairwise key establish-
ment mechanism also using sensor deployment knowledge. This scheme achieves
a much higher degree of connectivity with stronger resilience against node cap-
ture. However, this scheme still has drawbacks of security weakness and low rate
of direct key establishment problems.

For authentication, Zhu et al.[10] proposed a mechanism which enables the
base station to verify the authenticity of event reports when compromised nodes
exist and also filters the false data packets injected into the network before they
reach the base station. This mechanism has the overhead of forming associations
between nodes and all the nodes should keep pairwise keys with their associated
nodes which are t-hops away.

3 Network Model

3.1 Assumptions

We assume that there are no adversaries before sensor nodes are deployed. Clus-
terhead(CH)s are located in their own cluster areas and are more powerful in
computation and transmission ability and have larger storage. We also assume
that every node is static and knows the next node on the route to its own CH
and the next node to the BS(Base station). All the routing paths from a CH to
BS need to go through the CH when they need to cross a cluster.

3.2 Network Architecture

Sensor field is clustered in hexagonal shape and in every cluster a CH is located
near the deployment point. We model this using a two-dimensional normal distri-
bution(pdf), and assume that the deployment distribution for a node in a cluster
follows a two-dimensional Gaussian distribution centered at a deployment point
(xi, yi),

fi(x, y) = 1
2πσ2 e−[(x−xi)2+(y−yi)2]/2σ2

282 I. Doh, J.-M. Park, and K. Chae

where σ is the standard deviation. The location of CH is assumed to be near the
deployment point(xi, yi).

4 Key Establishment Mechanism

4.1 Blom’s Symmetric Key Establishment Mechanism

Our proposal is based on Blom’s symmetric key establishment mechanism. In
Blom’s scheme, a symmetric matrix Kn× n stores all pairwise keys of a group
of n nodes, where each element kij is the key of node i used to secure its con-
nection with node j. A = (DG)T G, where D = (λ+1)×(λ+1) is symmetric and
G=(λ+1)×n is called public matrix. (DG)T is also called secret matrix. Each
node i carries the i′th row of secret matrix and the i′th column of public matrix
G. After deployment, each pair of nodes i and j can individually compute a
pairwise key kij = kji by only exchanging their columns in plain text because
the key is the dot product of their own row and the column of the other’s. Their
rows are always kept secret. Blom’s scheme has the property of λ-security, i.e.
when more than λ rows are compromised, the secret matrix is derived and all
keys can be computed by adversaries. So, λ is very critical for the security and
should be properly determined.

4.2 Pairwise Key Establishment Mechanism

Based on Blom’s scheme, our proposal establishes pairwise keys between every
pair of neighboring nodes irrespective of cluster area.

Key material predistribution. Yu’s mechanism[9] increased the security level
by partitioning the network filed into hexagonal grids, and assigning two kinds
of secret matrices under certain rules. However, it still has several shortcomings
such as network connectivity and the possibility of disclosure of shared matrices.

Fig. 1. Network clustering and Assignment of matrices

To overcome the shortcomings of previous schemes including Yu’s mechanism,
we locate CHs in every clusters and let the CHs distribute the key materials at
the member nodes’ requests after all the nodes being deployed in hexagonal clus-
ters. Not all the nodes but only the ones which detect neighbor sensor nodes from

Pairwise Key Setup and Authentication Utilizing Deployment Information 283

Table 1. Notations for our Proposal

Notation Description
SNXi Sensor node i deployed in cluster X
CHY Clusterhead of cluster Y
BS Base Station
AX Unique matrix A assigned to cluster X
BXY Shared matrix for neighboring sensor nodes deployed in different clus-

ters X and Y
Kij pairwise key between nodes i and j

n Number of clusters
m Average number of sensor nodes in a cluster requiring inter-cluster com-

munications

Fig. 2. Key information delivery after nodes deployment

different clusters get the shared key information. As in Fig. 1, Sensor network
field is clustered as hexagonal shape, and for every sensor node in a cluster, a
row from a unique matrix A assigned only for that cluster is predistributed. For
inter-cluster communication, a shared matrix B is assigned for a pair of clusters.
However, the information is not predistributed to sensor nodes, but their CHs
carry the information from maximum six shared matrices B and distribute the in-
formation when their member nodes request the information. Every neighboring
pair of CHs is predistributed their own pairwise keys before deployment, which
means every individual CHs are predistributed at most six inter-clusterheads
pairwise keys and one key with the BS depending on its location. Notations for
our mechanism are shown in Table 1.

Pairwise key establishment. Pairwise keys are established through four
steps.

Step 1. Sensor nodes deployment and Neighbor node detection : After all the
nodes are deployed with key materials predistributed, all sensor nodes detect
their own neighbor nodes through HELLO messages.
Step 2. Pairwise key establishment : Every pair of nodes in each cluster com-
putes their own pairwise key using predistributed information.
Step 3. Request for key material to CHs : A sensor node detecting a neigh-
bor node from different clusters requests corresponding information to its own

284 I. Doh, J.-M. Park, and K. Chae

CH. As in Fig. 2, node SNXi and SNY i request the data to CHX and CHY ,
respectively. The CHs deliver the encrypted information.

SNXi → CHX : Request(ClusterY, SNXi)||MAC(Request(ClusterY, SNXi))
CHX → SNXi : EncKCHX−SNXi

(one row from BXY , one column from G)

Step 4. Pairwise key computation: Sensor nodes compute pairwise keys with
nodes belonging to different clusters using additionally distributed key materials
from their own CHs.

5 Authentication Mechanism

When sensing an event, sensor nodes transmit the event report to BS in two
phases.

Phase 1. Each sensor node sensing the event, delivers the data to their own CHs
with MAC values(MAC0) computed with MAC keys derived from the pairwise
keys between each sensor node and their CHs. CHs verify the MAC values of
each data packets and then aggregate them.
Phase 2. The CH generates a new report packet with three MACs. MAC1 is com-
puted using pairwise key with the BS, MAC2 using the key with next CH on the
routing path, and MAC3 for the next normal node on the route to the BS.

Fig. 3 shows the two phase data delivery. In this way, not only outsider attacks,
but also the insider attacks by compromised nodes can be detected. The outsider
attacks are impossible because the adversaries don’t know the pairwise keys and
cannot generate legitimate MACs. Insider attackers, i.e. compromised nodes, can
modify the data and generate fake MAC value, but this will be detected by the
next CH, and even when the next CH cannot filter the false data, it can be finally
detected by the BS. Security and overhead is further analyzed in section 6.

Table 2. MAC values

MACs Used Keys Description
MAC0 KCH−SN Verified by the CH
MAC1 KCH−BS Verified by the BS
MAC2 KCH−CH Verified by the next CH on the route
MAC3 KCH−SN , KSN−SN , KSN−BS Verified by the neighbor node

6 Performance Analyses

6.1 Security Analysis

Key establishment Security. Cluster size affects the degree of connectiv-
ity and the security level. When cluster size is big, relative number of nodes
which need inter-cluster communication decreases. This lowers the number of
rows from shared matrices and hence decreases the possibility of the disclosure

Pairwise Key Setup and Authentication Utilizing Deployment Information 285

Fig. 3. Two phase message authentication

of shared matrices. However, with too big clusters, the degree of connectivity
can be lowered and when the number of nodes sharing the dedicated matrix is
more than λ, the matrix is reconstructed and the keys are calculated by the
attackers. When cluster size is small, the number of clusters increases and the
number of sensor nodes sharing dedicated matrices decreases. In this case, more
nodes are related to inter-cluster communication and shared matrix can be in
danger of disclosure. In addition, some nodes can be placed at different clusters
from originally assigned one. When cluster size is too small, transmission range
of a sensor node reaches non-neighboring clusters and causes that one-hop neigh-
boring nodes cannot establish pairwise keys. According to Gaussian distribution
and circumstances of Table 3, 99.87% of sensor nodes in a cluster are placed in
a circle of radius 6σ, and if the distance of two nearest non-neighboring deploy-
ment points is greater than 6σ, we can say that most neighbors of each node are
from its own cluster and the neighboring clusters[9].

Table 3. Parameters for performance

Notation Value Description
N 104 Number of sensor nodes
r 40 m Transmission range of a normal sensor node
M 100 or 200 Memory size
σ 50 m Standard deviation
S 103 × 103m2 Sensor network field
Cn 200 Number of compromised nodes
l a × σ Distance between the center of neighboring clusters

Table 4 lists the degree of connectivity of various mechanisms. Compared to
other schemes given the memory requirement M = 100, our proposal achieves
perfect degree of connectivity. Yu’s scheme approaches perfect connectivity when
w=4, which means that sensor nodes in one hexagon shares matrix B with
neighbor sensor nodes from four neighbor hexagons. With w=4, Yu’s mecha-
nism achieves higher performance than the basic scheme or Du’s deployment
knowledge scheme. Our proposal can achieve perfect connectivity with the con-
dition that all the matrix B is shared by only two hexagonal clusters, i.e. w=2.

286 I. Doh, J.-M. Park, and K. Chae

Table 4. Degree of Network connectivity

Mechanisms Pc
q-composite scheme(q=2, M=200) 0.9358
Eschenauer’s basic scheme(M=100) 0.9867
Eschenauer’s basic scheme(M=200) 0.9999
Du’s deployment scheme(M=100) 0.9988
Yu’s group based scheme(w=1∼3, M=100) 0.9969∼0.9999
Yu’s group based scheme (w=4,5,6,7, M=100) 1
Our proposal(w=2, M < 100) 1

1. Security for dedicated matrices
When cluster size becomes larger, the number of sensor nodes and the average
number of compromised nodes in one cluster increase. It means that as the
cluster size grows, the possibility that the dedicated matrix is disclosed also
grows when there are compromised nodes in the network. With the number of
compromised nodes 200 and M = 100, λ is 99 because M = (λ+1) for normal
sensor nodes requiring only intra-cluster communications. This means no more
than 99 compromised nodes in one cluster cannot reconstruct the dedicated
matrix. This provides perfect resilience against node capture under the condition,
M = 100, and it further lowers M of the normal sensor nodes.

2. Security for shared matrices
In our mechanism, required memory for pairwise key between sensor nodes from
different clusters is M = (λ+1) ×i, (i =1,2). However, maximum number of
clusters sharing a matrix is two, which means λ=49 when M = 100. In the worst
case, the distance is 6σ, and more nodes share the same matrix. In this case, the
number of clusters is fourteen, and with the number of compromised nodes 200,
the number of compromised nodes sharing a matrix B is less than five even if all
the compromised nodes are located in the border region. This is far from 49, and
the matrix is perfectly safe from node capture attacks. Fig.4 shows the number
of required matrices and the number of compromised nodes in one cluster as the
distance between the deployment points of neighboring clusters increases. In (b),
when total number of compromised nodes exceeds 400, the number of disclosed
rows in matrix B can be more than λ, however, security for matrix A still shows
perfect resistance because λ=99. As in Fig.5, our mechanism has much stronger
resistance against node capture than the other mechanisms. It can be affected
when the number of compromised nodes exceeds 400 and all the compromised
nodes are in border region.

Authentication Security. An unauthorized node cannot inject false data or
modify the data without being detected because of the hop-by-hop authentica-
tion. When normal nodes are compromised, they can modify the data, but it
can be also detected by the next CH on the route because the CH can verify the
MAC from the previous CH. Even if several compromised nodes collude, they
can be detected by uncompromised CH or by the BS at the least.

Pairwise Key Setup and Authentication Utilizing Deployment Information 287

Fig. 4. (a) Number of matrices required (b) Number of compromised nodes
(Cn=200,300,400)

Fig. 5. Fraction of compromised connections

6.2 Overhead Analysis

Key establishment Overhead. Key related information used by the nodes
are as in Table 5. By predistributing more information to CHs, normal sensor
nodes have much lower memory requirements. Every CH requires (λ+1)(m+1).
Normal sensor nodes only require one row from the dedicated matrix, i.e, λ+1,
and the nodes which need inter-cluster communications require (λ+1)×i, where
i=2,3, one row from matrix A, and one or two(maximum number of neighbor
clusters) rows from matrix B. For public matrix G, only one seed number for one
column is needed[5]. This can be neglected. For computation, all nodes including
CHs require as many dot operations as the number of their respective neighbor
nodes. The denser the network is, the more operations are required.

For sensor network, energy consumption is critical factor affecting on the life-
time of the network, and for communications, more energy is consumed than
other aspects. In our proposal, for pairwise key establishment, normal sensor
nodes don’t require additional communication except the HELLO messages ex-
changes. Only the nodes deployed near the border region exchange with their
CHs for key materials. Sensor nodes deployed in different cluster from their pre-
defined locations need extra communications, however, it is quire rare. CHs need
more communications than normal sensor nodes because they should distribute
all the key materials at the requests from the member nodes. This can be tol-
erable because CHs have larger memory storage and are stronger in energy and

288 I. Doh, J.-M. Park, and K. Chae

Table 5. Key material for establishing pairwise keys

Sensor nodes
in central area

Sensor nodes in
border region

Clusterheads Total number
of matrices

Matrix A one row one row one row n

Matrix B − one or two rows
(from CH)

m rows from six B
matrices

� 3 ×n - 4 ×√
n + 1

Required memory λ+1 (λ+1)×i, i=2,3 (λ + 1) × (m+1) −

computation ability. Yu’s mechanism require more communications for pairwise
key setup because it needs path key establishment for neighbor nodes which
cannot establish direct pairwise keys. Our mechanism not only lowers the com-
munication overhead but also makes all the direct key establishment possible.

Authentication Overhead. Every normal sensor node needs to compute and
verity one MAC. A CH generating the event report packet computes three pack-
ets, one for the BS, another for next CH, and the third for the next sensor node
on the route. The other CHs compute and verify two MACs, one for next CH
and the other for next sensor node. Even if the nodes compute more MACs than
normal authentication scheme, the security is much stronger. And because the
energy for computing one MAC is about the same as that for transmitting one
byte, detecting insider and outsider attacks can eventually save more energy by
eliminating unnecessary traffic.

6.3 Pairwise Key Establishment Probability with Neighbor Nodes

Yu’s scheme offers a stronger resilience against node capture attacks with a
higher degree of connectivity of the sensor network and a lower memory require-
ment compared to existing schemes. However, to prevent the shared matrices
from being disclosed, the possibility of direct key establishment becomes low. To
obtain the same degree of security, Yu’s scheme needs to set the parameter b and
w as 2 respectively, which means possibility of direct key establishment for inter-
cluster communication is confined to one-third of our proposal. Among pairs of
neighbor sensor nodes which require inter-cluster communications, more than
60% of the pairs should establish pairwise keys through path key establishment.
To eliminate this overhead, it also impairs the efficiency of communications by
setting up detours when routing. Our mechanism makes all pair of neighboring
nodes establish their own pairwise keys with low memory requirement of normal
sensor nodes and strong resilience against node capture.

7 Conclusion and Future Work

In this work, we proposed a pairwise key establishment mechanism which in-
creases the security level and the possibility of direct key establishment. We also
proposed an authentication mechanism using the pairwise keys to prevent the

Pairwise Key Setup and Authentication Utilizing Deployment Information 289

insider attacks. By clustering the network field into hexagonal shapes and de-
ploy the clusterheads at the center of each cluster, we can make efficient use of
clusterheads such as distributing key materials and filtering false data generated
by compromised nodes on the routes. Experimental results show that our pro-
posal requires lower memory requirement, increases the resilience against node
capture, and guarantee the direct key establishment for every pair of neighbor-
ing nodes by making clusterheads carry more predistributed data than normal
sensor nodes. It further decreases the amount of traffic generated by outsider
and insider attackers by verifying the MAC values. We assume that clusterheads
have larger memory storage and stronger in security. This assumption is quite
reasonable in respect that in-network processing is necessary for sensor network
communication. This architecture is more persuasive considering the efficient
and secure data processing. For our future research, we will research on the
secure routing based on the propsed architecture and possible attacks.

References

1. D. W. Carman, P. S. Kruus, and B. J. Matt, Constraints and approaches for
distributed sensor network security, Technical report, NAI Labs, 2000.

2. R. Blom, An optimal class of symmetric key generation systems. Advances in Cryp-
tology, Proc. of EUROCRYPT 84, LNCS 209, pp.335–338, 1985.

3. L. Eschenauer and V.D. Gligor, A key management scheme for distributed sensor
networks, Proc. of the 9th ACM CCS’02, pp.41–47, 2002.

4. H. Chan, A. Perrig, and D. Song, Random key predistribution schemes for sensor
networks, IEEE Symposium on Research in Security and Privacy, pp.197–213, 2003.

5. W. Du, J. Deng, Y. S. Han, and P. Varshney, A pairwise key predistribution scheme
for wireless sensor networks, Proc. of 10th ACM CCS’03, 2003.

6. D. Liu and P. Ning, Establishing pairwise keys in distributed sensor networks,
Proc. of 10th ACM CCS’03, pp.52–61, 2003.

7. C. Blundo, A. De Santis, Amir Herzberg, S. Kutten, U. Vaccaro, and M. Yung,
Perfectly-secure key distribution for dynamic conferences, In Advances in Cryptol-
ogy, CRYPTO’92, LNCS 740, pp.471–486, 1993.

8. W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, A key management scheme
for wireless sensor networks using deployment knowledge, Proc. of IEEE INFO-
COM, 2004.

9. Z. Yu and Y. Guan, A Robust Group-based Key Management Scheme for Wireless
Sensor Networks, IEEE Communications Society, WCNC 2005.

10. S. Zhu, S. Setia, S. Jajodia, and P. Ning, An Interleaved Hop-by-Hop Authentica-
tion Scheme for Filtering of Injected False Data in Sensor Networks, Proc. of IEEE
Symposium on Security and Privacy, 2004.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 290 – 299, 2006.
© Springer-Verlag Berlin Heidelberg 2006

HAND: An Overlay Optimization Algorithm in
Peer-to-Peer Systems*

Xiaoming Chen1, Zhoujun Li 2, Yongzhen Zhuang3, Jinsong Han3, and Lei Chen3

1 National Laboratory of Parallel and Distributed Processing, Changsha 410073
2 School of Computer Science & Engineering, Beihang University, Beijing 10083

3 Dept of Computer Science, Hong Kong University of Science & Technology, Hong Kong
chxmwp@163.com, lizj@buaa.edu.cn,
{cszyz, jasonhan, leichen}@cs.ust.hk

Abstract. Recently, peer-to-peer (P2P) model becomes popular due to its
outstanding resource sharing ability in large-scale distributed systems.
However, the most popular P2P system – unstructured P2P system, suffers
greatly from the mismatching between the logical overlay and physical
topology. This mismatching problem causes a large volume of redundant
traffic, which makes peer-to-peer system far from scalable and degrades their
search efficiency dramatically. In this paper we address the mismatching
problem in an unstructured P2P architecture by developing a distributed overlay
optimizing algorithm – HAND (Hops Adaptive Neighbor Discovery). Through
comprehensive simulations, we show that HAND significantly outperforms
previous approaches, especially in large-scale P2P systems.

Keywords: peer-to-peer, search efficiency, topology mismatching problem.

1 Introduction

Peer-to-peer computing, as a promising model to share and manage huge volumes of
information in large-scale distributed systems, has gained more and more attentions in
recent years [1-5]. In P2P systems, participating peers form a logical overlay on the
top of the physical internet topology, so that they can provide computing and sharing
services efficiently. In most of the overlays, neighbors of a peer are always chosen
randomly. However this random neighbor choosing may cause severe topology
mismatching problem, i.e. the logical topology does not match the underlying physical
topology. In a mismatched overlay, the overlay paths are inefficient in the physical
layer, leading to heavy traffic overheads in the search [6, 7]. Figure 1 is an example of
topology mismatching. Figure 1(b) is the logical topology and Figure 1(a) is the
underlying physical topology. A query message is delivered along the overlay path
A B C D in 1(b). However, in 1(a) we can observe that the query traverses twice
on the several physical links. For example, the query is sent from A to B, and route
through the same path back to A. Duplicated query messages may reach a certain peer

* This work is supported in part by the National Natural Science Foundation of China under

Grants No. 60473057, 60573057 and 90604007.

 HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems 291

several times. In this example, node A, who initiates the query, afterwards receives its
own query twice. This duplication is because that the overlay path is unaware of the
underlying physical topology. The situation of mismatching in a real P2P system is
even worse. According to Liu et al, topology mismatch problem incurs a large volume
of unnecessary traffic, and more than 70% of overlay links are suffered [8]. Many
previous studies have tried to address this problem by getting rid of the redundant
traffic [1, 9-11]. However, the existing approaches have various drawbacks. Some of
them, such as LTM [11], rely on clock synchronization, which is impractical and may
lead to tremendous synchronization overheads and delays. Other approaches are based
on distance probing. However these approaches bring additional traffic overheads, and
work well only in static P2P systems.

(a) (b)

Fig. 1. An example of topology mismatch

We propose a novel algorithm, HAND (Hops Adaptive Neighbor Discovery), to
address the topology mismatch problem. We first state that an optimal overlay is a
logical overlay that matches the underlying physical topology and name it LCN –
logical communication network. Here LCN is the target optimal overlay we want to
achieve. LCN can effectively minimize the redundant traffic in the P2P searching. In
HAND algorithm, we use a fully distributed triple hop adjustment strategy to adjust
the mismatched overlay to LCN.

Our algorithm has several advantages comparing with previous ones. (a) HAND
does not need any time synchronization. (b) The traffic overhead involving in the
triple hop adjustment is very low. (c) It is applicable to the dynamic P2P environment.
(d) HAND can maintain lower query response time.

The remainder of this paper is organized as follows. Section 2 introduces the
related work. In Section 3, we present the HAND algorithm. In Section 4, we
evaluation the performance of HAND and compare it with previous approaches.
Finally, we conclude our work in Section 5.

2 Related Work

Many approaches have been proposed to reduce the large amount of unnecessary
traffic caused by topology mismatching in decentralized unstructured P2P systems.
They can be categorized into three types: forwarding-based, cache-based and overlay
optimization approaches [11].

292 X. Chen et al.

In forwarding-based approaches, a peer only selects a subset of its neighbors to re-
broadcast query messages. When peers select neighbors, they use some metrics to
determine what kind of neighbors should be selected. These metrics are some statistic
information, including the number of query responses received from neighbors, the
latency to connections to neighbors, and so on. Some algorithms use multiple metrics
to select neighbors [10]. These forwarding-based approaches can improve the search
efficiency. However, they shrink the search scope.

Cache-based approaches can be further divided into two sub-types: data index
caching and content caching. Usually, researchers use two cache policies: the
centralized caching policy and the local caching policy. Centralized P2P systems
provide centralized index servers to keep indices of shared files of all peers. In the
local caching policy, each peer maintains some information about other peers. These
caching information can be the index of files, query strings and results, replicate data
(file contents or query responses), and so on. For example, caching the index of files
lets a peer, who maintains these files, process the query on behalf of all nodes within
the given hops [12]. Caching can significantly reduce traffic costs and response time.

In the above types of approaches, duplication messages still incurred by the
topology mismatching problem still exist. The performance of these approaches is
limited.

A lot of overlay optimization algorithms have been proposed [8, 13-18]. HAND
also belongs to this type. Here, we can divide all these overlay optimization
algorithms into three sub-types: spanning tree based [14], cluster based [13, 15-17],
minimum latency first approaches [8, 11]. The spanning tree based approaches first
construct a rich graph; and then build a minimum spanning tree from that rich graph
[14]. This kind of approaches incurs large traffic overheads to the system. Cluster
based approaches use different techniques to identify physically closer nodes and
connect them [13, 15-17]. These approaches may shrink the search scope
significantly. Minimum latency first approaches use latency as the main metric to
measure the distance between peers [8, 11]. However, most of the previous
approaches require global latency information to conduct the optimization. In this
paper, we also use latency as an optimization metric, but our algorithm HAND only
requires local knowledge to perform the overall optimization.

3 HAND Algorithm

To overcome the drawbacks of the previous algorithms, we designed a HAND
algorithm that meets the following criteria.

(1) The algorithm performs optimization without any clock synchronization.
(2) The algorithm is fully distributed. It is robust and reliable in decentralized P2P

systems.
(3) The traffic overhead incurred in the optimization is trivial.
(4) The algorithm is tolerable to the dynamic P2P environment.

3.1 LCN

The goal of HAND is to adjust a mismatched overlay to a matched one, called a LCN
(logic-communication network) in the context of this paper. LCN is an undirected

 HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems 293

graph G=(V E), which includes a vertex set V represents peers and an edge set E
represents links of all nature neighbors.

Definition 1. If a pair of peers (v1, v2) satisfy the following condition it is called nature
neighbors:

(I) (v1, v2) keeps a direct link in the overlay
(II) The shortest physical path between them does not include any other peer

nodes.

That is to say if a peer sends a message to its nature neighbor, this message would not
reach any other peer nodes. We call the link between the nature neighbors a matched
link. If a pair of peer nodes satisfy only the second condition, they are named as
matched neighbors. Note that matched neighbors are not necessary to be nature
neighbors.

Definition 2. Let G=(V E) represent the topology graph of an overlay network, and
V ={v1,v2····vn} be the set of vertices, we define a n x n square matrix A(G)=(aij) where

=
 0

overlay of peersneighbor ofpair a is),(if1

otherwise

vv
a ji

ij
 (1)

In addition, we define B(G)=(bij)as a matched adjacency matrix, where

=
 0

neighbors nature ofpair a is),(if1

otherwise

vv
b ji

ij
 (2)

Based on the above definition, we derive lemma 1, which can be proved obviously.

Lemma 1. The overlay network matches LCN if A(G)=B(G).

3.2 Peer Sequence Characteristics

In practice, it is impossible to build a LCN using the centralized method, which
assumes to have the global knowledge. However, a LCN implies the sequence
relationship of peers, which lead to our decentralized adjustment algorithm - HAND.

3.2.1 Peer Sequence Mismatching
Definition 3. Let G* be a LCN of the network, and G’ be the current overlay. A peer
sequence (v1, …, vk) of G’ is matched if this sequence exists in G* in the same order,
otherwise it is mismatched.

In practice, we use a triple sequences (v1, v2, v3) to characterize overlay mismatching.
A peer sequence of three adjacent nodes in a path is called a triple sequence. Figure 2
and Figure 3 is an example of peer sequence mismatching. Figure 2 represents a LCN
and Figure 3 represents a P2P overlay network. The peer sequence F-A-E in Figure 3
has a different order in its LCN (A-E-F or F-E-A in Figure 2), so this sequence is
mismatching. Another mismatching example is sequence F-A-C in Figure 3, which is
split into two other sequence F-E-A and E-A-C in Figure 2.

Lemma 2. Let G* be LCN of the network, and G’ be an overlay. G* and G’ is
matched if all the triple sequences of the two graph are matched.

294 X. Chen et al.

3.2.2 Mismatching Detection
Based on Lemma 2, we propose a matching detection algorithm. Suppose a pair of
probing messages is sent from a peer v1 to its neighbors v2 and v3 to test the sequence
v2-v1-v3. Figure 4, 5 and 6 are used to illustrate the process. We suppose the delays of
path (v1, v2) and (v1, v3) are x′ and z′ , respectively. When the probing message
arrives at v2, it is forwarded to v3 directly. We therefore obtain the delay of physical
path (v2, v3) and denote it as y’. Similarly, when the message reaches v3, it is
forwarded to v2 directly to obtain the delay of physical path (v3, v2), which is also y’.

Lemma 3. If y’=z’-x’, then the sequence v2-v1-v3 is mismatched and should be
adjusted to v1-v2,-v3.

Lemma 4. If y’=x’-z’, then the sequence v2-v1-v3 is mismatched and should be
adjusted to v1-v3,-v2.

Fig. 2. LCN Fig. 3. An inefficient overlay

Table 1. Route table

Fig. 4. The communication in overlay Neighbor’s IP Mark Use-mark

192.168.0.7 A B

Fig. 5. The matching triple in Lemma 3 192.168.0.111 B A

ip1 ip2

0 3 4 7
Fig. 6. The matching triple in Lemma 4

Fig. 7. Probing message body

If v2-v1,-v3 is already matched, y’=z’+x’ is satisfied. However, if y’=z’-x’, it implies
that the matched sequence should be v1-v2,-v3 as in Figure 5, where the delay of path
(v1, v2), (v2, v3) and (v1, v3) are x’, y’ and z’ respectively. Similarly, if y’=x’-z’, it
implies that the matched sequence should be v1-v3,-v2 as in Figure 6. In practice,
when the sequence is mismatched, the equation y’=z’-x’ and y’=x’-z’ can still be
false due to error caused by forwarding delays and delay jitters. So we relieve the
mismatching condition to be:

ε±−= ''' xzy , ε±−= ''' zxy and ε±+= ''' zxy

where is a small positive real number.

 HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems 295

3.3 Triple Hop Adjustment

In the previous section we describe the mismatching detection of a single sequence. In
this section we will describe the mismatching detection of the whole P2P overlay. It
includes designing the routing table, probing detect messages and adjusting
mismatching sequences.

3.3.1 Routing Table and Probing Messages
Firstly, we describe our routing table and the probing message format. Table 1 shows
the format of the routing table. Similar with Gnutella, it comprises a list of neighbor
IPs. To guarantee that the pair of neighbors isn’t probed repeatedly, we add two items
in the routing table, Mark and Use-mark. Mark is a label given to each neighbor, the
second node of a triple sequence. Use-mark records the candidates of the third node of
the triple sequence. Therefore, Mark and Use-mark is a probing pair. When a peer
adds a new neighbor, it must gives this neighbor a Mark; and then, this Mark should
be added to the Use-mark of every other neighbor in the routing table; finally, the
Mark of those old neighbors should be added to Use-mark of the new neighbor. When
a neighbor leaves the network, we remove its record, and delete its appearance in the
Use-mark of all other neighbors. Figure 7 is the format of probing message. The
probing message has two segments, which are a pair of neighbor’s IPs. For example, a
probing message for sequence v2-v1-v3 (Figure 4) consists of v2’s IP in the first
segment and v3 ’s IP in the second segment.

3.3.2 Probing Message Construction
Before we send detect messages, we must build the probing pair. For example in table
1, we find neighbor A, and select B from its Use-mark. Let A and B be a probing pair
(A, B), and remove B from this Use-mark of A. We also delete A from the Use-mark
of neighbor B. Finally, we encapsulate their IP in a probing message. In this example
ip1 is 192.168.0.7, ip2 is 192.168.0.111. According to the above algorithm, each peer
sends the probing message to a pair of neighboring peers. The peer receiving this
message then re-sends it to the other peer. The probing continues until the Use-mark
of the neighbors is empty.

3.3.3 Probing Algorithm
According to Lemma 3 and 4, a pair of probing messages can detect if the original
sequence is matched or not and decide how to adjust the sequence to be a matched
one. If the probing condition satisfies Lemma 3, edge (v1, v3) is deleted and a new
edge (v2, v3) is added. If Lemma 4 is satisfied, edge (v1, v3) is deleted and a new edge
(v2, v3) is added. In both situations, the routing tables of the corresponding peers are
updated accordingly.

The probing message is issued by each node periodically. The HAND algorithm
executed at each peer is as follows: for each triple sequence (h-i-j), we
use timestamp(i,h) to denote the timestamp when the probing message arrives at h
and timestamp(i,j,h) to denote when the probing message forwarded by j arrives
at h.

296 X. Chen et al.

4 Performance Evaluation

In this section, we present our simulation results. We first introduce the evaluation
metrics and the simulation methodology, and then present the results comparing
HAND with LTM.

4.1 Evaluation Metrics

We use two metrics to evaluate the performance of HAND - traffic cost and query
response time. Traffic cost is the overhead in message transmission. In our simulation,
we use comprehensive traffic cost, which is calculated from a function involving the
consumed network bandwidth and the other related parameters. Response time of a
query is the time period from when the query is issued until when the source peer
receives a response result from the first responder.

In the comparison of HAND and LTM, we use three metrics: traffic cost reduction
rate, response time reduction rate and traffic overhead, which are defined in [8]. The
traffic cost reduction rate Rc(*) and response time reduction rate Rt(*) is calculated as
follows:

() %100*
like)-(Gnutella

algorithm)-(oplike)-(Gnutella ×−=
C

CC
Rc (3)

() %100*
like)-(Gnutella

algorithm)-(oplike)-(Gnutella ×−=
T

TT
Rt (4)

where (*) represents a given mechanism that is used to search for all peers in a
Gnutella-like overlay. Under this mechanism C(Gnutella-like) is the traffic cost
incurred in a Gnutella-like overlay, C(op-algorithm) is the traffic cost incurred in an
optimizing algorithm enabled Gnutella-like overlay. T(Gnutella-like) is the average
response time of queries in a Gnutella-like overlay and T(op-algorithm) is that of an
optimizing algorithm enabled Gnutella-like overlay. In this simulation we use blind
flooding mechanism. Traffic overhead is the per minute traffic cost incurred by an
optimizing algorithm on the P2P overlay.

4.2 Simulation Methodology

To accurately simulate the algorithms in P2P systems, we use trace driven simulation.
First, we generate two topologies: one for physical application layer and the other for
P2P overlay layer. We used a topology generator -BRITE[19] to generate a physical
internet topology including 22,000 nodes. The logical topologies are obtained from real
traces Clip2 [20]. The network size is ranging from 5,000 to 8,000 peers. The average
number of neighbors in the P2P overlay ranges from 6 to 10. Both the physical
topology and overlay topology follow the small world and power law properties [21].

We employed flooding search in our simulations. To accurately simulate flooding
search, every node issues 0.3 queries per minute in our simulation, which is calculated
from the observation in [22]. The file popularity follows a Zipf distribution [23].

 HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems 297

In P2P systems, peers join or leave the overlay frequently. We simulate peer joining
and leaving behaviors via tuning on/off logical peers. When a peer joins, a lifetime
will be assigned to this peer. The lifetime is period the peer stay in the system,
counted by seconds. The assignment of lifetime is defined according to the
observation in. The lifetime will be decreased by each passing second. A peer will
leave in next second when its lifetime reaches zero. During each second, there are a
number of peers leaving the system. We then randomly turn on the same number of
peers from the physical network to join the overlay.

4.3 Simulation Results

We first simulate our algorithm in the static environment where the peers do not join
and leave frequently. In this simulation, we use the overlay topology with 8,000 peers
on the top of the physic network with 22,000 nodes. Figures 8 and 9 plot the
comparison of HAND and Gnutella. The results show that HAND can quickly
converge to an optimal overlay. During this converging process, both the traffic cost
and query response time are decreasing. Figure 8 and 9 show that our algorithm can
effectively decrease the traffic cost by about 77% and shorten the query response
time by about 49% in less than two minutes. In the simulation, each peer has 10
neighbors on average (i.e. the average connection of a peer is 10). The tradeoff
between query traffic cost and response time is affected by the average connection.
P2P systems with a higher average connection offer a faster search speed while
increasing traffic. It has been proven that the more neighbor connections, the less
query response time, but the more redundant traffic [17].

We then evaluate HAND in a dynamic environment with peer joining and leaving
defined in Section 4.2. We evaluate HAND with different average neighbor
connections and increasing network size in the dynamic environments.

First, we test two overlays of size 5,000 and 8,000. The average number of
neighbors is always 10. Figure 10 shows that their traffic reduction is about 76% and
64% respectively. After converged, the average traffic costs of the two overlays are
close. In addition, Figure 11 shows that HAND can effectively shorten the query
response time by about 48%~54%. From the above analysis, we know the size of
overlay network has a little impact on the effectiveness of our algorithm.

Second, we vary the average number of neighbors from 6 to 10 (6, 8, and 10). This
means at the very beginning, the overlay network has 6, 8, and 10 average neighbor
connections respectively. Figure 12 and Figure 13 plot the average traffic cost and
average query response time running HAND algorithm on the three overlays. At the
first few steps of the algorithm, the more neighbor connections, the higher the traffic
cost and the shorter the response time. This is consistent with the relationship of
neighbor connections, traffic cost and response time discussed in Section 4.3.1. After
several steps, three topologies all converge to an optimal topology - LCN. So their
average traffic costs and average query response time are almost the same. These
figures also show that the reduction of traffic costs is about 42%~64% and query
response time is about 40%~54%.

We then compare the performance of HAND with the performance of LTM. Figure
14 and Figure 15 plot traffic reduction rate and response time reduction rate
respectively. From figure 14 we can see that HAND and LTM have almost the same

298 X. Chen et al.

traffic reduction rate. However, the response time reduction rate of HAND is higher
than LTM in Figure 15.Their difference is about 4%. Figure 16 plots the traffic
overhead of HAND and LTM. The traffic overhead of HAND is much less than that
of LTM (including the traffic overhead of clock synchronization). On average, this
traffic overhead reduction is about 55%.

0 2 4 6 8 10
0

20

40

60

80

HAND optimization steps

A
ve

ra
ge

 t
ra

ff
ic

 c
os

t
pe

r
qu

er
y

(1
0

5
)

HAND
Gnutella

0 2 4 6 8 10

4

6

8

10

12

14

HAND optimization steps

A
ve

ra
ge

 r
es

po
ns

e
tim

e
pe

r
qu

er
y

HAND
Gnutella

0 2 4 6 8 10
0

20

40

60

80

100

HAND optimization steps

A
ve

ra
ge

 tr
af

fic
 c

os
t

pe
r

qu
er

y
(1

0
5
)

5 k

8 k

Fig. 8. Traffic reduction in
static environments

Fig. 9. Response time in sta-
tic envrionments

Fig. 10. Traffic cost of diff-
erent topology size

0 2 4 6 8 10
4

6

8

10

12

HAND optimization steps

A
ve

ra
ge

 r
es

po
ns

e
tim

e
pe

r
qu

er
y

5 k
8 k

0 2 4 6 8 10

10

20

30

40

50

60

HAND optimization steps

A
ve

ra
ge

 t
ra

ff
ic

 c
os

t
pe

r
qu

er
y(

10
 5)

6 Neighbors
8 Neighbors
10 Neighbors

0 2 4 6 8 10
6

8

10

12

14

HAND optimization steps

A
ve

ra
ge

 r
es

po
ns

e
tim

e
pe

r
qu

er
y 6 Neighbors

8 Neighbors
10 Neighbors

Fig. 11. Response time of
different topology size

Fig. 12. Traffic cost of diff-
erent average conn-ections

Fig. 13. Response time
of different average
connections

0 2 4 6 8 10
0

20

40

60

80

LTM-HAND optimization steps

T
ra

ffi
c

co
st

 r
ed

uc
tio

n
ra

te
(%

)

HAND
LTM

 0 2 4 6 8 10
0

10

20

30

40

50

60

LTM-HAND optimization steps

re
sp

on
se

 ti
m

e
re

du
ct

io
n

ra
te

 (
%

)

HAND
LTM

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

time(minute)

tr
af

fic
 o

ve
rh

ea
d

pe
r

m
in

ut
es

(1
0

3
)

HAND
LTM

Fig. 14. Traffic reduction
rate of HAND and LTM

Fig. 15. Response time redu-
ction rate of HAND and LTM

Fig. 16. Per minute traffic
overhead of HAND and
LTM

5 Conclusions and Future Work

In this paper, we propose a new solution for topology matching problem. The goal is
to adjust the mismatching topology to an optimal LCN. We designed an algorithm
HAND to optimize the overlay by considering the relation of LCN and the physical
topology. This algorithm can be executed distributed by triple hops adjustment. In the
future, we intend to deploy HAND into a real P2P streaming system.

 HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems 299

References

[1] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, "Making Gnutella-
like P2P Systems Scalable," In Proceedings of ACM SIGCOMM, 2003.

[2] A. Nakao, L. Peterson, and A. Bavier, "A Routing Underlay for Overlay Networks," In
Proceedings of ACM SIGCOMM, 2003.

[3] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, "A Distributed Approach to Solving Overlay
Mismatching Problem," In Proceedings of IEEE ICDCS, 2004.

[4] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, "AnySee: Peer-to-Peer Live Streaming,"
In Proceedings of IEEE INFOCOM, 2006.

[5] L. Xiao, Z. Zhuang, and Y. Liu, "Dynamic Layer Management in Superpeer Architectures,"
In Proceedings of IEEE Transactions on Parallel and Distributed Systems (TPDS), 2005.

[6] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Maloo, and S. Ron., "Practical locality-
awareness for large scale information sharing," In Proceedings of IPTPS, 2005.

[7] Y. Liu, L. Xiao, and L. M. Ni, "Building a Scalable Bipartite P2P Overlay Network," In
Proceedings of 18th International Parallel and Distributed Processing Symposium
(IPDPS), 2004.

[8] Y. Liu, A.-H. Esfahanian, L. Xiao, and L. M. Ni, "Approaching Optimal Peer-to- Peer
Overlays," In Proceedings of the 13th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2005.

[9] Z. Xu, C. Tang, and Z. Zhang, "Building Topology-aware Overlays Using Global Soft-
state," In Proceedings of the 23rd International Conference on Distributed Computing
Systems (ICDCS), 2003.

[10] Z. Zhuang, Y. Liu, L. Xiao, and L. M. NI, "Hybrid Periodical Flooding in Unstructured
Peer-to-Peer Networks," In Proceedings of IEEE ICPP, 2003.

[11] Y. Liu, X. Liu, L. Xiao , L. M. Ni, and X. Zhang, "Location-Aware Topology Matching in
P2P Systems", IEEE INFOCOM 2004, Hong Kong, China, March 2004.

[12] B. Yang and H. Garcia-Molina, "Efficient Search in Peer-to-Peer Networks," In
Proceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS), 2002.

[13] B. Krishnamurthy and J. Wang, "Topology Modeling via Cluster Graphs," In Proceedings
of SIGCOMM Internet Measurement Workshop, 2001.

[14] Y. Chu, S. G. Rao, and H. Zhang, "A Case for End System Multicast," In Proceedings of
ACM SIGMETRICS, 2000.

[15] V. N. Padmanabhan and L. Subramanian, "An Investigation of Geographic Mapping
Techniques for Internet Hosts," In Proceedings of ACM SIGCOMM, 2001.

[16] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, "Topologically-Aware Overlay
Construction and Server Selection," In Proceedings of IEEE INFOCOM, 2002.

[17] M. Ripeanu, A. Iamnitchi, and I. Foster, "Mapping the Gnutella Network," in IEEE
Internet Computing, 2002.

[18] X. Liu, L. Xiao, A. Kreling, Y. Liu, "Optimizing Overlay Topology by Reducing Cut
Vertices", In Proceedings of ACM NOSSDAV, 2006.

[19] BRITE, "http://www.cs.bu.edu/brite/."
[20] Clip2, " The Gnutella Protocol Specification v0.4, Document Revision 1.2."
[21] S. Saroiu, P. Gummadi, and S. Gribble, "A Measurement Study of Peer-to-Peer File Sharing

Systems," In Proceedings of Multimedia Computing and Networking (MMCN), 2002.
[22] K. Sripanidkulchai, "The Popularity of Gnutella Queries and Its Implications on

Scalability," 2005.
[23] L. Breslau, P. Cao, L. Fan, G.Phillips, and S. Shenker, "Web Caching and Zipf-Like

Distributions: Evidence and Implications," In Proceedings of IEEE INFOCOM, 1999.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 300 – 309, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A High Performance Heterogeneous
Architecture and Its Optimization Design

Jianjun Guo, Kui Dai, and Zhiying Wang

School of Computer, National University of Defense Technology,
410073 Changsha, Hunan, China

jjguo@tom.com

Abstract. The widely adoption of media processing applications provides great
challenges to high performance embedded processor design. This paper studies
a Data Parallel Coprocessor architecture based on SDTA and architecture de-
cisions are made for the best performance/cost ratio. Experimental results on a
prototype show that SDTA has high performance to run many embedded media
processing applications. The simplicity and flexibility of SDTA encourages for
further development for its reconfigurable functionality.

Keywords: Data Parallel, SDTA, ASIP.

1 Introduction

Nowadays, the developing media applications such as graphics, image and audio/vi-
deo processing put forward great pressure on high performance embedded processor
design. The increasing computational complexity and diversity of the applications
make it hard for architecture designers to design an optimized architecture suitable
anywhere. One typical embedded application field is from multimedia digital signal
processing and security. It shows the same features, such as heavy computational
workloads, large amounts of data, significant processing regularity, extensive data
parallelism and real-time constraints [1]. Another typical application field is from
scientific computing which shows the features of typically large number of arithmetic
floating-point operations, typically large data and working sets, typically low
temporal locality and high spatial locality depending on regularity of the applications
[2]. All these application features make the traditional embedded microprocessors
inadequate to meet the application requirements, thus high performance embedded
processors are demanded.

As we all know, power wall, memory wall and frequency wall are great obstacles
for high performance processor design. The energy consumption that accompanies
the high performance is often beyond power budgets especially in embedded
systems. Obviously, it has already become a bottleneck for the development of
microprocessor today. With the announcement of several multi-core microprocessors
from Intel, AMD, IBM and Sun Microsystems, the chip multiprocessors have
recently expanded from an active area of research to a hot product area. In fact,
multi-core technology is an efficient way to alleviate the pressure on power. For
example, the fastest CELL processor adopts the heterogeneous multi-core
architecture to attack the power wall [3][4].

 A High Performance Heterogeneous Architecture and Its Optimization Design 301

As for the memory wall, traditional cache-based design is still used but different
variations have been proposed to overcome its limitations. Standard cache hierarchy
is designed for general purpose applications which retain most of data in on-chip data
cache/memory and stream instructions in from off-chip. That is to say, those appli-
cations with good temporal and spatial locality are ideally supported by cache-based
memory hierarchies. However, for media and stream-based applications, they stream
in much of their data in from off-chip and retain their instruction code in on-chip
instruction cache/memory. They commonly spend 25-50% of execution time in
memory stalls on standard cache-memory systems [5]. So poor temporal locality leads
to compulsory misses in standard cache-memory hierarchies. Different variations of
traditional cache system are proposed to solve this problem. Jouppi proposed the
stream buffer [6], which stores the prefetched data in the stream buffer until needed.
Palacharla and Kessler [7] enhanced the stream buffer by using a filter to limit
unnecessary prefetches. Stride Prediction [8][9] overcomes the limitations of stream
buffers in only prefetching successive cache lines and the prefetched data elements
are placed directly into the cache. The performance of stride based prefetching is
often significantly lower in smaller caches because the prefetched data pollutes the L1
cache. Stream Cache [10] separates from the L1 cache, which uses a Stride Prediction
Table (SPT) to determine what data to prefetch, but stores the data in the stream cache
instead of the L1 cache. These methods have comparatively good prefetching
precision while the control mechanism is too complex and is not so suitable for high
performance design.

All of the above are cache-based design, while the recently announced CELL
processor adopts a three-level memory hierarchy to attack the memory wall [19]. That
is Main Memory, Local Store and Registers. It uses local store and larger register files
instead of the cache-based memory system. Its larger register file can also allow
deeper pipelines to achieve higher frequency. The memory system of CELL
introduces excellent performance while it needs fast DMA support to use local store
efficiently and its SRAM needs full custom design which is beyond conventional
design ability. It is also not transparent to programmers and offloads many works to
the compiler or the programmer. So the memory system in our research is still cache-
based but detailed research will be done to achieve acceptable performance.

High-end microprocessor designs have become increasingly more complex during
the past decade with designers continuously pushing the limits of instruction level
parallelism and speculative out-of-order execution. Although the complexity and
diversity of the applications make it hard to design an optimized architecture suitable
anywhere, it is possible to design high performance/cost ratio architecture especially
for one or one kind of applications. Such an Application Specific Instruction
Processor (ASIP) [11] is designed to perform certain specific tasks efficiently. Trans-
port Triggered Architecture (TTA) can provide both flexibility and configurability
during the design process [12]. In addition to the application specific instruction
processor design, it also provides support for instruction level parallelism (ILP).
Based on the flexibility and configurability of TTA, the high performance processor
architecture can be specially designed according to the characteristics of specific
applications.

This paper studies an embedded Data Parallel Coprocessor (DPC) based on
Synchronous Data Triggered Architecture (SDTA). It can exploit ILP as much as
possible with the support of custom function units for special operations and can
match well with ASIP design process. The main work of this paper is to design a

302 J. Guo, K. Dai, and Z. Wang

heterogeneous architecture composed of a LEON3 host processor and the DPC and
also to make architecture decisions for performance concern. The rest of this paper is
organized as follows. Section 2 briefly describes the transport triggered architecture.
Section 3 describes the proposed architecture, while in section 4 architecture
decisions are made and performance tests and results are given too. The last section
concludes and discusses the future work.

2 Transport Triggered Architecture

As shown in Fig. 1, TTA proposed by Henk Corporaal et al [12] can be viewed as
VLIW architecture. In TTA, there is only one data move instruction for programmers
and the operation is triggered by a data transfer. This is different from traditional
operation triggered architecture.

Fig. 1. Organization of Transport Triggered Architecture (TTA)

As shown in Fig. 2, the central part of TTA is very simple. Function units (FU) and
register files (RF) are connected to buses by sockets. Every function unit has one or
more operator registers (O), one trigger register (T) and result register (R). Data being
transferred to the trigger register will trigger the function unit to do the operation
using the data in the operator register and the trigger register as the source operands,
and after certain cycles put the final result into the result register. One function unit
can execute multiple operations (e.g. add, sub and mac) and the control code will
determine what operation to execute through instruction decoding.

In TTA, all operations, including load/store, jump and branch, etc. are executed by
a data move instruction. For example, a usual add operation can be represented by
three data move operations:

add r3 , r2 , r1 => r1 -> Oadd ; r2 -> Tadd ; Radd -> r3

First, the data in registers r1 and r2 are separately transferred to the operator register
and trigger register of the adder unit, after some cycles (according to the latency of
the adder unit) the result is sent from the result register to the register r3.

In TTA, the number of the function units, register files and their ports, buses and
bus connections are all flexible. This brings flexibility for the architecture design. In
addition, one TTA instruction always contains several paralleled data move opera-
tions after code scheduling. The maximum number of parallel operations is the same
as the number of the buses. Therefore, increasing bus number brings increase of
performance. In addition, the architecture designer can customize special operations

 A High Performance Heterogeneous Architecture and Its Optimization Design 303

into the instruction set by designing special function units for some special operations
[13]. Thus, some bottleneck operations in the applications can be implemented by
special function units to meet performance requirement of the applications.

Fig. 2. General Structure of TTA. It is composed of function units and register files, all of
which are connected by the transport network.

TTA with a synchronous control mechanism which is called Synchronous Data
Triggered Architecture (SDTA) is used in our design. A single controller can be
shared among multiple computational resources. It is an innovative architecture to
support high performance computing efficiently. Due to the synchronous control,
clock gating can be easily used to reduce power dissipation. The synchronous data
triggered architecture programming paradigm (programming data transport) gives rise
to undeveloped code scheduling degrees of freedom. The SIMD and MIMD
programming paradigm, which combines large throughput with very low latency inter
node communication, naturally fits into this synchronous data triggered architecture
model. The major advantage of SDTA is that it can match well with the ASIP design
process. When given a new application, we can first analyze the characteristics of the
application, and then we can get the frequently used operations in the application.
Special function units can be designed to accelerate the frequently used operations
and these function units can be easily added to the SDTA. Therefore, the whole
application can be accelerated. Synchronous data triggered architecture uses its
registers and data transport capacity more efficiently for it reduces the coupling
degree of the data transport and the operation execution. This becomes especially
important when integrating intra-node parallelism onto a single chip.

3 Implementation

The whole chip is a heterogeneous multi-core architecture as shown in Fig. 3. It is
composed of a LEON3 [14] host processor and the SDTA-based coprocessor. The
coprocessor has eight clusters. The control tasks are accomplished by the LEON3 host
processor while the computation intensive tasks are scheduled to the coprocessor by
the host processor to satisfy the high performance requirement of the data intensive
applications. Moreover, each cluster has eight parallel SIMD data paths and contains
four integer units, two floating-point units, one integer divider, one floating-point
divider, two integer compare units, one floating-point compare unit and one specific
CORDIC [15] unit. The type and number of the function units derive from the

304 J. Guo, K. Dai, and Z. Wang

analysis of applications to meet the performance requirements. In each cycle, all the
function units in the SIMD data paths can transfer the specified data to trigger a new
operation with the effective support of the 64-bits load/store unit. This suits for
different embedded applications such as graphics and image processing, video and
audio processing.

Fig. 3. Architecture Overview of the Whole Chip

3.1 Application Analysis and Compiler Work

When given a specific application, we first run it on the simulator to gather the
necessary information such as the frequently used operations and the parallelism
upper bound etc. by trace analysis. The type and number of the major operations in
the application determine the type and number of the function units in the SDTA.
According to the type of the operation, designer can quickly decide what function unit
to implement; similarly, the number of the function unit is decided according to the
proportion of the equivalent operations. The number of each function unit in our
design is determined by the analysis of results from [1] to gain the maximum benefit.
The number of buses determines how many operations can be executed at the same
time, and so the parallelism upper bound means how many buses should be used. To
make full use of the function units and also to save area, an 8-bus scheme is chosen.
The number of the average active registers shows that how many registers should
exist at the same time both to save the hardware cost and to keep the performance.
The decision of register file structure will be described later.

The application program is written in C language. First the compiler translates it
into serialized code in the form of data transport. Then the serialized code is
scheduled and matched to different function units. The upper bound of simultaneous
operations that can be scheduled is determined by the bus number in the cluster while
the actual number of simultaneous operations that can be scheduled depends on the
potential parallelism of the application and the registers available.

 A High Performance Heterogeneous Architecture and Its Optimization Design 305

3.2 Function Units

The arithmetic clusters in the core adopt the SDTA architecture, where the operation
is triggered by the data transfer. The computation is done by transferring values to the
operator register and starting an operation implicitly via a move targeting the trigger
register associated with the command. The operands may be the output of its own
final stage or the output of their neighbor units.

The integer ALU performs the common operations including the arithmetical and
logical ones. Many analyses such as [1] show that the data type used in many
embedded applications are integer and data size less than 32bits is frequently used. To
support all these features better, sub-word parallelism on byte or half-word is added.
Bit operations like bit reverse are also added to support security applications. The
multiplier supports 32-bit integer multiplication with 2 cycles’ latency and it can also
perform 2-way 16x16-bit or 4-way 8x8-bit multiplication.

The floating-point units perform operations on single and double precision
floating-point operands. All operations are IEEE-754 compliant. The FPU is fully
pipelined and a new operation can be started every clock cycle except that DIVF
command which requires 20 cycles to complete the divide operation and is not
pipelined.

The compare unit does the compare operation and returns a result, which can be
used to predicate the conditional transfers by the condition codes. The predicates
make the if-else conversion and conditional execution possible.

The CORDIC unit is based on the parallelization of the original CORDIC [15]
algorithm and adopts a relatively simple prediction scheme through an efficient angle
recoding. The proposed implementation, a pure combined logic without pipeline
operation, has a delay of 33 clock cycles.

3.3 Memory Subsystem

The cache systems described in part one are mostly prefetch-based. Different prefetch
methods are used to improve data fetch precision but complex prefetch mechanism
makes the design complex too. Therefore, it is not so suitable for high frequency
design. As illustrated in [16], when interconnect overheads are taken into account,
sharing L2 cache among multiple cores is significantly less attractive than when the
factors of delay and area are ignored. So only L1 cache and large register file system
is chosen in our design. The L1 cache is multi-banked and high-bit address
interleaved so that each bank has its own data space and each cluster can get its data
from a bank to reduce collisions. The write-back policy and 256 bits long cache lines
are selected to achieve higher performance. A compiler-managed L0 buffer is
supported to store some uncacheable data. In addition, a DMA channel is used to
allow the host processor and/or other peripherals such as I/O devices to access the
processed data quickly. As for the register file, different structures are designed and
tested. Finally, 8 banked and a total of 128 registers are used. Each bank has one read
port and one write port. Experimental results in section 4.3 indicate this structure can
achieve a best performance/cost ratio.

4 Experimental Results

A prototype chip with the host processor and one cluster is first implemented and
tested to verify our design. Several typical kernel applications are selected to verify

306 J. Guo, K. Dai, and Z. Wang

our design. By the analysis of different media processing applications, four kernel
applications are finally chosen to be the representative set as shown in Table 1. These
kernel applications are frequently used in many embedded applications. If they can be
executed very fast, the execution time of the whole application will be much shorter.

Table 1. Typical digital signal processing application set

Name Brief Description
fft Fast Fourier Transform
fir Finite Impulse Response filter
idct Inverse Discrete Cosine Transform
matrix Multiply of two matrix

The discrete fourier transform plays a very important role in representing the
relationship between time field and frequency field of discrete signal. FFT is a fast
implementation of discrete fourier transform, which is widely used in various DSP
applications. The FFT application in this set is to transform an array containing 128
complex samples. Digital filter is the substitute of the traditional analog filter, which
is used to change or modify the characteristics of the signal. FIR filter is one kind of
the digital filter. In the FIR application of this set, the number of coefficients is 16,
and the number of output samples is 40. IDCT is frequently used in video processing
applications to decode the compressed image. The IDCT application in this set is to
transform an 8x8 two dimensional image matrix. Then, MATRIX is an application
which contains basic operations in different DSP applications, so accelerating these
applications is a matter of great significance.

4.1 Silicon Implementation

Under the clock frequency of 230 MHz, the standard cell implementation of the
prototype design utilizing a 0.18um CMOS technology resulted in an area of approxi-
mate 5.2mm2 including the expected layout overhead with regard to the synthesis
results with the Synopsys® Design Compiler®.

4.2 Cache Write Policy Selection

For L1 cache system, the performance of DPC under write-through and write-back
policy is compared. Several 32bits applications are selected to do the experiment
and the read and write miss ratio for three of them under write-back policy are
shown in Table 2. Performance gains compared with write-through policy is also
given in Table 2. From Table 2, it can be seen that write-back policy can achieve a
better performance.

Table 2. The Read/Write miss ratio under write-back policy and its performance gains

Algorithm Read miss ratio Write miss ratio Performance gains
32bits idct 7.50 0.00 2.23
32bits fir 0.05 2.09 13.27
32bits fft 4.76 2.38 4.35

 A High Performance Heterogeneous Architecture and Its Optimization Design 307

4.3 Optimal Register File Structure Selection

TTA structure depends on scheduling algorithm heavily, so the number of registers
for compiler use is performance sensitive. Several typical applications in media signal
processing are selected to determine the optimal register number and port number.
The performance of these applications is compared between the LEON3 processor
and the coprocessor with different register number and port number. The performance
on LEON3 processor and DPC with 64 registers 2R/2W ports, 128 registers 1R/1W
port and 256 registers 1R/1W port are compared. As shown in Fig. 4, the baseline
performance is for LEON3 processor and 128 registers with 1R/1W port is the best
performance/cost ratio point.

Fig. 4. Performance Comparison between LEON3 and DPC with different register file structure

4.4 Performance Comparison of the Whole Chip

The performance speedup of typical applications on DPC compared with LEON3 is
shown in Table 3. The considerable speedup of FIR is due to that FIR uses sine
operation frequently which can be accelerated by the CORDIC function unit in DPC.
In addition, experiments show that the performance of DPC is better than Texas
Instrument TMS320C64x series DSP processor [17] which is a fixed-point VLIW
architecture comparable to DPC. For example, the speedup of 32bits IDCT and FIR is
respectively 1.8 and 23.0. During the comparison, the applications on TMS320C64x
are executed and evaluated in the CCS2.0 for C6000 [18].

Table 3. The typical algorithm performance comparison between LEON3 and DPC. The
speedup is given here.

Algorithm Speedup
8x8 32bits idct 2.9
128-dots 32bits fir 3795.1
radix-4 complex 128 16-bits fft 8.4
4x4 16-bits matrix 23.5

308 J. Guo, K. Dai, and Z. Wang

5 Conclusion

This paper studies a multi-core heterogeneous architecture that is very suitable for
embedded applications for its flexibility and configurability. Through the application
characteristics analysis and special function unit support, it is easy to modify the
architecture to adapt to different applications. Traditional processor architecture is
fixed, so the software must be adjusted to map to the hardware structure to gain best
performance, whereas the DPC is configurable, so the hardware/software co-design
method can be used to achieve a higher performance.

In the future work, the architecture will be further researched to use more efficient
function units and simpler interconnection while gaining better performance and some
low power mechanism will be implemented too. Software optimization such as
compiler optimization will be researched further for the experiments show that
handmade programs are 2-5 times faster than the compiler scheduled programs.
Analyses of the compiler-scheduled code show that compiler cannot make fully use
the registers as well as possible. For example, some data can stay in the registers and
do not need to write back to the main memory after a function call, so a better register
scheduling algorithm will be researched too.

Acknowledgments. The authors would like to thank Andrea Cilio and his colleagues
in Delft technology university of Netherlands for their great help and support to our
research work.

References

1. Jason E. Fritts, Frederick W. Steiling, Joseph A. Tucek. MediaBench II Video: Expediting
the next generation of video systems research. Embedded Processors for Multimedia and
Communications II. San Jose, California; March 8, 2005; ISBN / ISSN: 0-8194-5656-X; p.
79-93.

2. M. W. Berry. Scientific Workload Characterization By Loop-Based Analyses.
SIGMETRICS Performance Evaluation Review, Volume 19, Issue 3, 1992, p.17-29.

3. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, D. Shippy. Introduction
to the Cell multiprocessor. IBM Journal. Research & Development. Vol. 49 No. 4/5
July/September 2005.

4. Kevin Krewell. Cell moves into the limelight. Microprocessor Report. Feb. 14, 2005.
5. Jason Fritts. Multi-level Memory Prefetching for Media and Stream Processing. In Proc. of

the IEEE International Conference on Multimedia and Expo(ICME2002) , August. 2002,
p101–104.

6. N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Proc. of the 17th Annual International
Symposium on Computer Architecture, May 1990, p364–373.

7. S. Palacharla and R. Kessler. Evaluating stream buffers as a secondary cache replacement.
In Proc. of the 21st Annual International Symposium on Computer Architecture, April
1994, p24–33.

8. J. W. C. Fu and J. H. Patel. Data prefetching in multi-processor vector cache memories. In
Proc. of the 18th Annual International Symposium on Computer Architecture, May 1991,
p54–63.

 A High Performance Heterogeneous Architecture and Its Optimization Design 309

9. J. Fu, J. Patel, and B. Janssens. Stride directed prefetching in scalar processors. In Proc. of
the 25th International Symposium on Microarchitecture, December 1992, p102–110.

10. Daniel Zucker, Michael Flynn and Ruby Lee. A Comparison of Hardware Prefetching
Techniques For Multimedia Benchmarks. 3rd. IEEE International Conference on
Multimedia Computing and Systems, Hiroshima, Japan, June, 1996, p236-244.

11. M.K. Jain, M. Balakrishnan, and Anshul Kumar. ASIP Design Methodologies : Survey
and Issues. In Proc. of the 14th International Conference on VLSI Design(VLSID'01), Jan.
2001, p76-81.

12. Henk Corporaal and Hans Mulder. MOVE: A framework for high-performance processor
design. In Supercomputing91, Albuquerque, November 1991, p692-701.

13. Jan Hoogerbrugge. Code generation for Transport Triggered Architectures. PhD thesis,
Delft Univ.of Technology, February 1996. ISBN 90-9009002-9.

14. Leon3 Processor Introduction. http://www.gaisler.com/cms4_5_3/index.php?option=com_
content&task=view&id=13&Itemid=53.

15. Jack E. Volder. The CORDIC trigonometric computing technique. IRE Transactions on
Electronic Computers, vol. 8, 1959, pp. 330–334.

16. Terry Tao Ye. 0n-chip multiprocessor communication network design and analysis. PhD
thesis, Stanford University, December 2003.

17. TMS320C64x CPU and Instruction Set Reference Guide. Texas Instruments, Inc, USA,
2000.

18. TMS320C64x DSP library programmer's reference. Texas Instruments, Inc, USA, 2003.
19. H. Peter Hofstee. Power Efficient Processor Architecture and The Cell Processor. In Proc.

of the 11th International Symposium on High-Performance Computer Architecture
(HPCA2005), San Francisco, CA, USA, February 2005, p258-262.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 310 – 319, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Development and Performance Study of a Zero-Copy File
Transfer Mechanism for VIA-Based PC Cluster Systems*

Sejin Park1, Sang-Hwa Chung2, and In-Su Yoon2

1 Telecommunication Network Business, Samsung Electronics Co.,LTD
Gumi, 730-350, Korea

sejini.park@samsung.com
2 Department of Computer Engineering, Pusan National University

Pusan, 609-735, Korea
{shchung, isyoon}@pusan.ac.kr

Abstract. This paper presents the development and implementation of a zero-
copy file transfer mechanism that improves the efficiency of file transfers for
PC cluster systems using hardware-based VIA (Virtual Interface Architecture)
network adapters. VIA is one of the representative user-level communication
interfaces, but because there is no library for file transfer, one copy occurs
between kernel buffer and user buffers. Our mechanism presents a file transfer
primitive that does not require the file system to be modified and allows the
NIC to transfer data from the kernel buffer to the remote node directly without
copying. To do this, we have developed a hardware-based VIA network
adapter, which supports the PCI 64bit/66MHz bus and Gigabit Ethernet, as a
NIC, and implemented a zero-copy file transfer mechanism. The experimental
results show that the overhead of data coy and context switching in the sender is
greatly reduced and the CPU utilization of the sender is reduced to 30% ~ 40%
of the VIA send/receive mechanism. We demonstrate the performance of the
zero-copy file transfer mechanism experimentally, and compare the results with
those from existing file transfer mechanisms.

Keywords: Zero-copy, File transfer, VIA, Gigabit Ethernet, Cluster system.

1 Introduction

As high-performance networks like Gigabit Ethernet have come into service, efforts
have been made to improve the overall performance of cluster systems through
reducing data copying between kernel and user buffers, decreasing context switching
time, and minimizing the communication protocol overhead. User-level
communication interfaces such as U-Net[4], VIA[5], M-VIA[6] and InfiniBand[7]
have been developed to overcome these overheads for memory transactions. Another
approach is a zero-copy file transfer mechanism such as the sendfile [1][2] system call
based on TCP/IP. The sendfile system call is applied to web servers or cluster systems

* This work was supported by the Regional Research Centers Program(Research Center for

Logistics Information Technology), granted by the Korean Ministry of Education & Human
Resources Development.

 Development and Performance Study of a Zero-Copy File Transfer Mechanism 311

based on TCP/IP and is supported by various OSs such as Linux, Unix, and Solaris.
However, there is no special mechanism or library for file transfers in the VIA-based
cluster systems, so other methods are used to transfer files: the file can be read to a
user buffer and sent using the VI, or transferred using extra sockets for file transfer.

Meanwhile, research into accessing files for NAS (Network Attached Storage) has
progressed. NFS (Network File System) [10], based on TCP/IP, and DAFS (Direct
Access File System) [8][9], based on VIA, are typical examples. They provide file
access libraries to the client node, and the client node can access the file system using
these libraries. In particular, DAFS offers better performance than NFS because
DAFS uses the VIA protocol which is provided with user-level access, thereby
reducing overheads such as data copy and context switching time [9]. However
DAFS requires a dedicated file server and modification to the existing file system to
implement zero-copy file transfer. In a cluster system, each node must act as client or
server at the same time; in other words, any client node may be asked to transfer a
local file to other nodes in the cluster system, just as for memory transactions.
Therefore, if a general VIA-based cluster system can provide zero-copy file transfers
between cluster nodes without modifying file system, it will be more convenient and
efficient to construct cluster systems.

In this paper, we present a zero-copy file transfer mechanism based on VIA that
has not been implemented previously. To do this, we developed HVIA-GE64, which
is a second version of HVIA-GE (a Hardware implementation of VIA based on
Gigabit Ethernet) [11], and used it as a NIC (Network Interface Card). We show the
detailed implementation of the zero-copy file transfer mechanism and compare our
experimental results with other mechanisms based on TCP/IP and VIA.

This paper is organized as follows. Section 2 briefly overviews existing file
transfer mechanisms and related work, and Section 3 describes the implementation
details of our zero-copy file transfer mechanism and HVIA-GE64. Section 4
discusses the experimental results of our mechanism, and finally Section 5 provides a
brief conclusion.

2 Related Work

The most important factors in the file transfer performance are the number of data
copies between user space and kernel space and the time consumed in context
switching. Therefore, reducing these overheads will result in achieving better
performance for file transfers. Figure 1 shows the three traditional methods for file
transfer using TCP/IP on Linux cluster systems [1][3] and Figure 2 shows the number
of data copies and context switches for those methods between user space and kernel
space. As shown in Figure 1 (a), the read method reads the file data and copies it to a
user buffer through a kernel buffer and then copies the data again to a socket buffer to
transfer the data (Fig. 2 A B). Of course, context switches between kernel space
and user space also occur. In Figure 1 (b), the mmap method avoids one data copy
from kernel buffer to user buffer that occurred in the read method of Figure 1(a) and
copies data from kernel buffer to socket buffer directly (Fig. 2, C). However, because
kernel buffer is shared with the user process without any copy, the number of context
switches in executing the mmap method is the same as with the read method.

312 S. Park, S.-H. Chung, and I.-S. Yoon

Figure 1 (c), the sendfile system call is a zero-copy file transfer mechanism based
on TCP/IP. Because the sendfile system call in Linux kernel 2.1 does not use a
user buffer, two context switches are avoided and only one data copy occurs (Fig. 2,
C). Further, sendfile in kernel 2.4 does not copy file data from the kernel buffer to
the socket buffer, but only appends the descriptor for the kernel buffer. NIC then
reads the file data from the kernel buffer, referring to the descriptor in the socket
buffer. (Fig. 2, D) Therefore, the sendfile system call implements a zero-copy file
transfer.

 read(file, tmp_buf, len)

write(socket, tmp_buf, len)

tmp_buf = mmap(file, len)

write(socket, tmp_buf, len)

sendfile(socket, file, len)

(a) read (b) mmap (c) sendfile

Fig. 1. File Transfer based on TCP/IP

DMA

D

B

C

A

kernel buffer

user buffer

socket bufferkernel space

user space

NIC
disk

data

control

Fig. 2. Data copy based on TCP/IP

NIC

kernel space

user space

data

control

kernel buffer

user buffer

disk

Sender

user buffer

Receiver

NIC

Fig. 3. File Transfer based on VIA

Figure 3 shows the general file transfer method in VIA cluster. As described in the
introduction, VIA does not provide a file transfer library. Therefore, in a typical VIA
cluster system, file data should be copied once from the kernel buffer to the user
buffer, and then the data can be transferred using send/receive or RDMA.

 Development and Performance Study of a Zero-Copy File Transfer Mechanism 313

3 Implementation of a Zero-Copy File Transfer Mechanism

3.1 A Hardware-VIA-Based Network Adapter

Figure 4 shows the block diagram of HVIA-GE64 based on the 64 bit/66 MHz PCI
bus. HVIA-GE64 contains a Xilinx Virtex II Pro 30 FPGA for the VIA Protocol
Engine and Intel’s 82544EI Gigabit Ethernet chip for the physical network. This
adapter can process address translation, doorbell and completion of RDMA write and
send/receive in hardware. In particular, the address translation table (ATT) is stored
on SDRAM in the adapter, allowing the VIA Protocol Engine to process address
translation directly by accessing the table [11].

Gigabit

Ethernet

VIA Protocol Engine

&

Gigabit Ethernet Controller

Address

Translation

Table

MAC

PHY

System PCI Bus

MAC PCI

Send FIFO &

Recv FIFO

TX/RX Desc.

Buffer &

TX/RX Buffer

TX/RX

Descriptor

Controller

TX/RX

Buffer

Controller
Gigabit

Ethernet

Controller

PCI interface

ATT

Manager
Doorbell

VIA Protocol Manager VIA

Protocol

Engine RDMA Engine

SDRAM

Controller

PCI interface

Fig. 4. HVIA-GE64

The right part of Figure 4 presents the VIA Protocol Engine and the Gigabit
Ethernet Controller (GEC), which are the core modules of HVIA-GE64. The VIA
Protocol Engine consists of Send/Receive FIFOs, ATT Manager, Protocol Manager,
RDMA Engine, Doorbells, and local memory controller. It processes VIPL functions
delivered to HVIA-GE64 through the PCI bus. In the case of VipRegisterMem, which
is the VIPL function used to perform memory registration of a user buffer, the user
buffer's virtual address, physical address, and size are sent to HVIA-GE64 as function
parameters. The ATT manager receives information regarding the user buffer (i.e.,
virtual and physical addresses) and stores them on ATT.

When a send/receive request is posted to a send/receive queue, HVIA-GE64 is
notified through the doorbell mechanism, and obtains the corresponding VI descriptor
via DMA. Then, the VIA Protocol Manager reads the physical address of the user
data through the ATT Manager. If the current transaction is a send, it initiates a DMA
read operation for the user data in the host memory and transfers the data to the Tx
buffer in the GEC via the Send FIFO. A send/receive transaction can also be
implemented using RDMA, which enables a local CPU to read/write directly from/to
the memory in a remote node without intervention of the remote CPU. An RDMA
can be implemented as either RDMA read or RDMA write. If RDMA read is used,
the local CPU must first send the request and then wait for the requested data to arrive

314 S. Park, S.-H. Chung, and I.-S. Yoon

from the remote node. Therefore, RDMA Engine in HVIA-GE64 is based on RDMA
write, which is more advantageous in terms of latency.

Since HVIA-GE64 directly drives the Medium Access Control (MAC), GEC
basically functions as a device driver for the MAC. GEC processes the initialization,
transmit/receive, MAC management routines, and interfaces with the MAC using
PCI. Although accessing the MAC directly complicates the design of the GEC and its
internal buffers, the elimination of device driver access reduces the initialization
overhead and the actual transmission time.

3.2 A Zero-Copy File Transfer Mechanism

In the VIA-based systems, there exist two mechanisms to transfer file data. One is
using the sendfile system call based on TCP/IP, and the other is using the VIA
send/receive mechanism after the file data is copied to the user buffer from the kernel
buffer as shown in figure 3. Although the sendfile system call is a zero-copy file
transfer mechanism, the performance is not good enough because it is based on
TCP/IP. If VIA is used for file transfers, one copy from kernel to user buffer occurs
because there exists no library functions for zero-copy file transfer. Therefore, if a
zero-copy file transfer mechanism based on VIA can be supported, VIA-based cluster
system will achieve better performance.

DMA
kernel buffer

user space

kernel space

HVIA-GE64
disk

Sender Receiver

DMA

user buffer

HVIA-GE64
data

control

Fig. 5. A Zero-copy File Transfer Mechanism

Figure 5 shows the zero-copy file transfer mechanism for the VIA-based cluster
system presented in this paper. The location of the file data that is read from HVIA-
GE64 is the kernel buffer. The only action that occurs during a file transfer is that
HVIA-GE64 reads data from kernel buffer. Therefore, when transmitting file data,
the number of data copies between kernel space and user space is zero, and two
context switches between kernel space and user space are eliminated. Two conditions
must be satisfied to implement such zero-copy file transfer mechanism. First, the
physical address of the kernel buffer must be supplied to HVIA-GE64 so it can read
the kernel buffer directly. Second, HVIA-GE64 must be able to process a transport
protocol to transmit data to remote nodes through the network. We implemented a

 Development and Performance Study of a Zero-Copy File Transfer Mechanism 315

zero-copy file transfer mechanism using HVIA-GE64 and the detailed implem-
entation is explained below.

3.3 Detailed Implementation

Figure 6 shows our proposed zero-copy file transfer primitive. The VipSendFile
primitive reads the file data from the disk to the kernel buffer, and delivers the
physical address and length of the kernel buffer to HVIA-GE directly. The
mechanism is similar to that for a sendfile system call, except that it uses a VI for
transmission, not a socket. In the case of the sendfile system call, NIC must obtain
the remote node address and the physical address and length of the kernel buffer from
the corresponding socket. In our zero-copy file transfer mechanism, the sender can
obtain the remote node address from VIhandle and the address information of the
kernel buffer by executing the VipSendFile primitive. Then HVIA-GE64 transmits
the kernel buffer’s data using the address information by DMA.

VipSendFile(VIhandle //VI handle
fd, //file descriptor
offset, //offset of the file
len) //length of the file

Fig. 6. VipSendFile: Our Zero-copy File Transfer Primitive

The scenario to transfer file data using VI in the sender is as follows. First, the VI
is created and connection is established between the sender and receiver nodes. A
user buffer must be registered in a typical send/receive, but the process of memory
registration is omitted in the sender because the sender does not use a user buffer for
file transfer. The user process then calls VipSendFile to transmit the file data.

At this time, the process between kernel space and HVIA-GE64 is as follows.
When VipSendFile is called, the file data in the disk is read to the kernel buffer, the
doorbell is rung in the HVIA-GE64 that notifies the file transfer, and the kernel
buffer’s information such as physical address and length is transmitted to HVIA-
GE64. In a typical VIA-based system, the VI descriptor is posted to the Work Queue
(WQ) to send/receive, but this process is omitted in this mechanism. Instead, HVIA-
GE64 creates the virtual VI descriptor using ViHandle and the kernel buffer
information, and then it reads the kernel buffer using DMA with a page unit. Once
the file data has been read, it is transmitted to the remote node through the VI
connection established previously. Therefore, this mechanism does not require the
file system to be modified and allows the HVIA-GE64 to transfer data from the kernel
buffer to the remote node directly without copying.

In a sendfile system call, there are no new functions in the receiver, because the
work in the receiver is the same as for any typical receive. VipSendFile is the same as
a sendfile system call. As shown in Figure 5, the receiver obtains the data using the
VipPostRecv function, which is a typical receive function in VIA, and writes directly
to the user buffer. Therefore, it is possible to use the receive function that VIA
provides without modification.

316 S. Park, S.-H. Chung, and I.-S. Yoon

4 Experimental Results

The performance of the HVIA-GE64 card was evaluated using two 2 GHz Opteron
246 PCs with 64-bit/66-MHz PCI buses. The PCs were running the Fedora core 1 for
x86_64 with Linux kernel 2.4.22. In addition, for comparison purposes, the
performances of TCP/IP, M-VIA, and sendfile system calls based on TCP/IP were
measured using an Intel PRO/1000 MT Gigabit Ethernet card. This card includes
Intel’s Gigabit Ethernet MAC/PHY (82544EI), which is the same chip as the one in
the HVIA-GE64. In experiments for file transfer, we omitted the performances of
read and mmap, which are shown in Section 2, because the sendfile system call shows
better performance. The performance of the M-VIA was measured using the vnettest
program included with the M-VIA by the distributors. The performances of TCP/IP
and sendfile system call were measured by modifying the vnettest program using the
socket library.

4.1 Performance of a HVIA-GE64

Figures 7 and 8 show the latency and the bandwidth results of HVIA-GE64, M-VIA,
and TCP/IP with an Ethernet MTU size of 1,514 bytes. The latency reported is one-
half the round-trip time and the bandwidth is the total message size divided by the
latency. The latency and bandwidth of the HVIA-GE64 were measured using
send/receive on a single VI channel.

The minimum latency results of HVIA-GE64, M-VIA and TCP/IP are 8.2 s 21.3
s, and 27 s, respectively. Therefore, the minimum latency of HVIA-GE64 is 2.8

and 3.3 times lower than M-VIA and TCP/IP, respectively. The maximum bandwidth
results for 1 MB of user data are 112.1 MB/s, 90.5 MB/s, and 72.5 MB/s for HVIA-
GE64, M-VIA, and TCP/IP, respectively. Therefore, HVIA-GE64 attains 24% and
55% higher bandwidth than M-VIA and TCP/IP, respectively.

0

3000

6000

9000

12000

15000

8B 1K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B
1M

B

Data Size

L
at

en
cy

 (
)

TCP/IP M-VIA HVIA-GE64

0

20

40

60

80

100

120

8B 1K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B
1M

B

Data Size

B
an

dw
id

th
 (

M
B

/s
)

TCP/IP M-VIA HVIA-GE64

 Fig. 7. Latency Comparison Fig. 8. Bandwidth Comparison

 Development and Performance Study of a Zero-Copy File Transfer Mechanism 317

Figure 9 shows the CPU utilization results for HVIA-GE64, M-VIA and TCP/IP.
The elements that influence CPU utilization are the CPU's jobs, such as data copy,
context switching, system calls and other tasks for the CPU. CPU utilization for
TCP/IP increases as data size grows, and becomes saturated at 55%-60%. In the case
of M-VIA, CPU utilization is almost 100% when data size is below 4 KB, and
saturated near 30%. When small size messages below 4KB is transmitted, the latency
is the most important factor for the performance, therefore, M-VIA calls the polling
function (VipSendDone) 50,000 times before suspending the send/receive
process[14]. For HVIA-GE64, utilization decreases and saturates to below 1% when
data size increases to about 10 KB. The only portions that require CPU cycles are
posting send/receive on WQ and handling send/receive completion. Moreover, an
RDMA write does not need an explicit VipPostRecv in the receiver, therefore an
RDMA write is superior to a send/receive in terms of CPU utilization.

4.2 Performance of a Zero-Copy File Transfer

Figure 10 shows the total elapsed times of the three different mechanisms in the
sender, and Figure 11 shows the CPU times of the three mechanisms in the sender.
TCP/IP-sendfile represents a sendfile system call, HVIA-send/receive represents a
typical send operation using VIA, and HVIA-VipSendFile is our zero-copy file
transfer mechanism. The elapsed times are the times from the start of file read to the
completion notified from the Gigabit Ethernet card or HVIA-GE64, and therefore
include the total time for data copy, context switch and completion.

The TCP/IP-sendfile has more latency than the mechanisms based on HVIA-GE64
when the data size is larger. The HVIA-VipSendFile performs 47%–52% faster than
the TCP/IP-sendfile. Although the TCP/IP-sendfile is a zero-copy protocol, the time
to process the TCP/IP protocol is high. Between the two mechanisms based on
HVIA-GE64, the HVIA-VipSendFile performs 3% faster than the HVIA-send/receive
in the total elapsed time. The CPU time difference between the HVIA-VipSendFile
and the HVIA-send/receive is 45 s in sending 256 KB data as shown in Figure 11.
Although the difference in the total elapsed time is not large, the difference in the
CPU time is quite significant. The improvement is obtained by reducing one data
copy and two context switches in executing the HVIA-VipSendFile compared with the
HVIA-send/receive.

Figure 12 shows the CPU utilizations for the three mechanisms. The TCP/IP-
sendfile causes 8% ~ 10% CPU utilization regardless of data size. In the case of the
HVIA-send/receive, when the data size is below 6KB, CPU utilization is higher than
that of the TCP/IP-sendfile. Although the total elapsed time of the HVIA-send/receive
is lower than that of the TCP/IP-sendfile, the time to copy data between the kernel
buffer and the user buffer is relatively long when the data size is below 6KB.
However CPU utilizations of the HVIA-send/receive and the HVIA-VipSendFile
decrease as data size increases, resembling the CPU utilization shown in Figure 9.
Because HVIA-GE64 supports data transmission in hardware, the CPU utilizations
are lower than that of the TCP/IP-sendfile. Moreover CPU utilization of the HVIA-
VipSendFile is reduced to 30% ~ 40% of the HVIA-send/receive’s, because it removes
two context switches and one data copy.

318 S. Park, S.-H. Chung, and I.-S. Yoon

0

10

20

30

40

50

60

70

80

90

100

8B 64
B

25
6B 1K

B
4K

B
16

KB
32

KB
48

KB
64

KB
96

KB

12
8K

B

Data Size

U
ti

li
za

ti
on

 (
%

)

TCP/IP M-VIA HVIA-GE64

0

500

1000

1500

2000

2500

3000

3500

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

Data Size

E
la

ps
ed

 T
im

e
(

s)

HVIA-VipSendFile HVIA-send/receive
TCP/IP-sendfile

 Fig. 9. CPU Utilization Fig. 10. Elapsed Time in the Sender

0

50

100

150

200

250

300

350

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

Data Size

C
P

U
 T

im
e

(
s)

HVIA-VipSendFile HVIA-send/receive
TCP/IP-sendfile

Fig. 11. CPU Time in the Sender Fig. 12. CPU Utilization

5 Conclusions

This paper presents the development and implementation of a zero-copy file transfer
mechanism that improves the efficiency of file transfers for VIA-based cluster
systems based on HVIA-GE64. HVIA-GE64 supports the 64bit/66MHz PCI bus and
Gigabit Ethernet and implements a hardware-based VIA protocol. This adapter can
process virtual-to-physical address translation and doorbell in hardware. Our
experiments with HVIA-GE64 showed a minimum latency of 8.2 s and a maximum
bandwidth 112.1 MB/s and much lower CPU utilization compared with TCP/IP and
M-VIA. Our zero-copy file transfer mechanism provides a file transfer library that
does not require file system modification and can transfer local files to remote nodes
without data copying and eliminates two context switches between kernel and user

0

2

4

6

8

10

12

4KB 8KB 16KB 32KB 64KB 128KB 256KB
Data Size

C
PU

 U
til

iz
at

io
n(

%
)

HVIA-VipSendFile HVIA-send/receive
TCP/IP-sendfile

 Development and Performance Study of a Zero-Copy File Transfer Mechanism 319

space. As a result, our mechanism performs 47%–52% faster than the sendfile system
call based on TCP/IP and the CPU utilization of the sender is reduced to 30% ~ 40%
of the VIA send/receive mechanism.

References

[1] Dragan Stancevic, "Zero Copy I: User-Mode Perspective", Linux Journal, Volume 2003
Issue 105, January 2003

[2] Jeff Tranter, "Exploring The Sendfile System Call", Linux Gazette, Issue91, June 2003
[3] Oyetunde Fadele, "A Performance Comparison of read and mmap",

http://developers.sun.com/solaris/articles/read_mmap.html
[4] T. von Eicken, A. Basu, V. Buch, and W. Vogels. "U-Net: A User-level Network

Interface for Parallel and Distributed Computing", Proc, of the 15thACM Symposium on
Operating Systems Principles (SOSP), Colorado, December 3-6, 1995

[5] Virtual Interface Architecture Specification, http://www.viarch.org/
[6] P. Bozeman and B. Saphir, "A Modular High Performance implementation of the Virtual

Interface Architecture”, Proc. Of the 2nd Extreme Linux Workshop, June 1999
[7] InfiniBandTM Architecture, http://www.infinibandta.org/
[8] DAFS Collaborabive, Direct Access File System Protocol, Version 1.0, September 2001,

http://www.dafscollaborative.org
[9] A. Feforova, M. Seltzer, K. Magoutis, S. Addetia, "Application performance on the

Direct Access File System", ACM SIGSOFT Software Engineering Notes, Proc. of the
4th international workshop on Software and Performance, vol 29, January 2004

[10] Shepler, S., et. al. NFS version 4 Protocol, Internet Engineering Task Force RFC3010,
December 2000

[11] Sejin Park, Sang-Hwa Chung, B. Lee, "Implementation and Performance Study of a
Hardware-VIA-based Network Adapter on Gigabit Ethernet", Journal of Systems
Architecture, Volume 51, October-November 2005

[12] M-VIA Core Release 1.2, http://old-www.nersc.gov/research/FTG/via/
[13] Hermann Hellwagner and Matthias Ohlenroth, “VI architecture communication features

and performance on the Gigabit cluster LAN” Future Generation Computer Systems, Vol.
18, Issue 3, January 2002

DPCT: Distributed Parity Cache Table for
Redundant Parallel File System

Sheng-Kai Hung and Yarsun Hsu

Department of Electrical Engineering,
National Tsing-Hua University, HsinChu 30055, Taiwan

{phinex, yshsu}@hpcc.ee.nthu.edu.tw

Abstract. Using parity information to protect data from loss in a par-
allel file system is a straightforward and cost-effective method. However,
the “small-write” phenomenon can lead to poor write performance. This
is still true in the distributed paradigm even when file system cache is
used. The local file system knows nothing about a stripe and thus can
not benefit from the related blocks of a stripe. We propose a distributed
parity cache table (DPCT) which knows the related blocks of a stripe
and can use them to improve the performance of parity calculation and
parity updating. This high level cache can benefit from previous reads
and can aggregate small writes to improve the overall performance. We
implement this mechanism in our reliable parallel file system (RPFS).
The experimental results show that both read and write performance can
be improved with DPCT support. The improvement comes from the fact
that we can reduce the number of disk accesses by DPCT. This matches
our quantitative analysis which shows that the number of disk accesses
can be reduced from N to N(1 − H), where N is the number of I/O
nodes and H is the DPCT hit ratio.

1 Introduction

Commodity off the shelf computers have been used to form a Beowulf-like
cluster[1] in recent years. Relying on clusters to solve computation-intensive
problems (such as scientific applications) provides an economic solution. How-
ever, some data-intensive applications require a lot of data access from the I/O
subsystem which has been the bottleneck[2] of a cluster system. A cluster system
is an open architecture consisting of loosely coupled computers. Unlike commer-
cial machines which have proprietary parallel file systems (such as PFS on the
Intel Paragon[3], VESTA[4,5] on the IBM SP2 machine), commodity off the
shelf clusters have no support for parallel file systems. Instead, they often use
distributed fie system (such as NFS[6]) to provide an unified storage space. Dis-
tributed file systems usually provide an unified naming space but are less efficient
for concurrent accesses. To address this issue, a number of parallel file systems[7]
such as Parallel Virtual File System (PVFS) have been developed to improve
the performance of concurrent accesses in the cluster environment. PVFS is a
practical remedy for providing high performance I/O in the Linux cluster ei-
ther through POSIX interfaces or MPI-IO[8]. However, it is usually used as a

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 320–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DPCT: Distributed Parity Cache Table for Redundant Parallel File System 321

temporary storage for parallel computation. The reason is that PVFS does not
store any redundant information in its striping structure. Using striping without
keeping any redundancy information, the MTTF (Mean Time To Failure) of the
system may be lower by 1

N , where N is the number of I/O nodes in the cluster
system. Things become even worse since not only disk failures must be consid-
ered but also other faults (power shortage, software crash, memory error...) may
cause a node to fail. As a result, even if each node’s disks use RAID (Redundant
Array of Independent Disks)[9] to protect data from loss, it still doesn’t help for
the overall reliability.

We propose a reliable parallel file system (RPFS)[10] based on the original
PVFS to protect data from loss. With a distributed parity cache table (DPCT),
our RPFS can not only solve the small-write problem but also improve the
performance of the original PVFS. The benefits come from the fact that we
successfully reduce the number of disk accesses.

This paper is organized as follows. The related research topics are covered
in section 2. Section 3 describes the system architecture of our RPFS along
with DPCT. Finally, we will show the evaluation of our RPFS in section 4, and
section 5 concludes our work.

2 Related Work

In this section, we present some file systems used in the cluster environment, ei-
ther distributed or parallel ones. Sun Microsystems’ NFS (Network File System)
[6] is widely used in the traditional UNIX environment, but it lacks support
for parallel semantics and the server node is always a single point of failure. It
provides neither fault tolerance nor striping. A well known feature of NFS is
its unified interface to user applications. However, its performance is notorious
when serving many I/O clients. As we know, some of the clusters in the world
still use NFS as their file system and depend on MPI-IO[8] for parallel accesses.

The concept of distributed RAID was first proposed by Stonebraker and
Schloss[11] and then applied in Swift RAID distributed file system[12]. It sup-
ports the same redundancy schemes used in RAID level 0, 4, or 5. By the use
of parity disks, an error can be recovered as long as it does not happen at the
metadata server. Zebra[13] provides a similar technique as Swift but using logs
for writing. xFS[14] decentralizes Zebra file system and makes the global file
system cache available. GFS[15] and GPFS[16] connect disk storages and clients
by interconnection switches. This makes the concept of servers disappeared and
eliminates the failures caused by servers. However, these proprietary hardware
costs more, and can not be applied in the commodity off the shelf clusters.
OSM (Orthogonal Striping and Mirroring)[17] introduces a new concept, called
RAID-x. It enhances write performance for parallel applications and improves
scalability in the cluster environment. But it suffers from consuming network
bandwidth when mirroring data.

CEFT-PVFS[18], like PIOUS[19] and Petal[20] provides mirroring to protect
data from loss. CEFT-PVFS is based on PVFS and directly implement mirroring

322 S.-K. Hung and Y. Hsu

over PVFS. It can be regarded as a RAID-10 like parallel file system. However,
it suffers from the data consistency problem between mirror nodes and working
nodes. It also consumes too much network bandwidth when a lot of data needs to
be written and mirrored. CSAR[21] uses the technique like HP AutoRAID[22],
a hierarchical storage system supporting both RAID-1 and RAID-5. They both
address the performance issue and devote their work to the small-write problem.
CSAR is also based on PVFS and assumes that data must spread all over the I/O
nodes. Its redundancy is built in the client library and cannot support POSIX
interfaces.

Employing a cache to improve performance has been widely used either in
hardware architecture or software infrastructure. Here, we propose a distributed
parity cache table (DPCT) in our RPFS[10] to solve the small-write problem.
Our DPCT is implemented in each of the I/O nodes and can also be regarded
as a global server-side cache. This global server-side cache has the knowledge
of a stripe, knows how to collect related blocks to form a stripe and is aware
of its corresponding parity. With our novel cache replacement algorithm, we
can greatly reduce the number of disk accesses and thus enhance the overall
performance.

3 System Architecture

PVFS has three main components: mgr, iod and libpvfs. The mgr daemon should
be run in the management node. It maintains the metadata of the system, in-
cluding the mapping between a file name and its inode number, file striping size,
I/O nodes used to construct a stripe, file permission sets and access rights...etc.
There can be only one management node in the system. Iod runs on each of the
I/O nodes, serving requests from clients and feeding them with the requested
data. The more I/O nodes a system has, the more bandwidth it can provide.
Libpvfs provides native calls of PVFS, allowing applications to gain the max-
imal I/O performance that could offer. Besides, a kernel module implements
POSIX-complaint interfaces which allow traditional applications to run without
any modification.

The system architecture of our reliable parallel file system (RPFS) is shown
in Fig. 1. We add two functionalities which original PVFS does not provide.
One is the redundacy mechanism, the other is the distributed parity cache table.
These two functionalities are implemented without affecting the original striping
structure of PVFS. We will describe both of them in more detail in the following
subsections.

3.1 Distributed Parity Cache Table

As shown in Fig. 1, the distributed parity cache table (DPCT) is implemented
in each of the I/O nodes. It lies between iod daemon and local file system and is
used both as a read ahead and a write behind buffer. Each node has 4096 cache
blocks with each block (16K + 32) bytes in size. These blocks are divided into
1024 sets, with each set contains 4 blocks. These buffers are pre-allocated within

DPCT: Distributed Parity Cache Table for Redundant Parallel File System 323

Fig. 1. System Architecture: A distributed parity cache table lies between the local file
system and the iod daemon

each I/O node when the iod daemon is executed. Each cache block contains a
16-KB data region and a 32-bytes metadata. The 16-KB region is used to cache
files, while the 32-bytes metadata contains many information used for cache
replacement algorithm and parity updating. Fig. 2 shows detailed field names
and their size of a cache block. DTag field describes the tag information which
uniquely identifies the cache block itself. Different data segments which hash to
the same set have different DTag values.

DTag Dirty BitPTag LRef GRef Data Payload

96 bits 96 bits 1 bit 31 bits 32 bits 16 KBytes

Fig. 2. Fields of a cache block: DTag is used to indicate whether this block contributes
to a specific parity block described by PTag. If a write happens, the dirty bit would be
set. LRef records the number of hits in this cache block. GRef indicates the number of
related cache blocks being read or written within the same stripe.

If a write happens, the dirty bit of the cache block would be set. When the
dirty block and its corresponding parity block have been written to disk, the
corresponding dirty bit would be cleared. LRef field is used to record the number
of hits in this cache block, which acts as the reference for cache replacement
algorithm. GRef field monitors the related cache blocks (by the same DTag
value) being read or written in DPCT. Cache blocks with the same DTag fields
are used to construct a stripe and are XORed to form a parity block. Gref
carries additional information when its value is bigger than one. The detail is to
be explained in the next subsection. In our opinion, related blocks of a stripe are
more important than unrelated blocks of the whole file system. A cache block
may be reserved for a specific data segment when its PTag field is set. In this
situation, if the identity of a data segment is the same with the PTag field of a

324 S.-K. Hung and Y. Hsu

cache block, the data segment always wins the cache block. Here, the identity of
a data segment is its 64-bit inode number and its high 32-bit offset.

Each cache block can cache data segments up to 16 KB. However, users may
specify striping size different from 16 KB when storing a file. To let our DPCT
cache data segments regardless of their striping size, we need to split a bigger
segment into multiple 16 KB blocks or combine several small segments to form
a 16 KB cache block. Fig. 3 shows how to locate a cache block in DPCT when
a file’s striping size is different from 16 KB.

D1

D(N+1) D(N+2)

D2

...
...

...

...

...

DN-1

P2

...

Offset M

File

/ %M SSize Ν⎢ ⎥⎣ ⎦

P1

DN

...

(/ / *(/16384)M SSize N SSize⎢ ⎥)% 1024⎢ ⎥⎣ ⎦⎣ ⎦

I/O Node 1 I/O Node 2

I/O Node

N-1

I/O Node N

M : File offset in bytes

SSize : Striping Size in bytes

N : The number of I/O nodes

used in this stripe

Fig. 3. Locate a cache block of DPCT: Our DPCT supports striping size either bigger
or smaller than 16 KB

3.2 Cache Replacement Algorithm

With DPCT support, we need a novel cache replacement algorithm to solve
the small-write problem and also improve write performance. When PTag of a
cache block is null and its GRef field is less than two, LRef field is used solely
to determine if this block should be replaced or not when there is a conflict. A
conflict happens when two different data segments hash to the set. LRef is used
to implement LRU (Least Recently Used) replacement algorithm.

Whenever a cache block is used for buffering write data, it will check its
dirty bit first. If its dirty bit is set and there is a write conflict, the I/O node
would write the dirty block to disk. At the same time, it would inform the I/O
node holding the parity to write the corresponding parity block to disk. After
these, the write request would be proceeded and cached. This can avoid data
inconsistency. If the dirty bit is not set, the cache block is directly used to store
the write data. After data has been written to cache, the PTag field of the cache
block would be set to the same value as its DTag field. At the same time, a
thread in the I/O node would communicate with other I/O nodes and update

DPCT: Distributed Parity Cache Table for Redundant Parallel File System 325

the PTag filed of the corresponding cache blocks belonging to the same stripe.
This operation makes other I/O nodes to cache the required data segments, in
order to efficiently calculate the parity. Here, the required data segments are
those contributing to the same stripe and should be cached in I/O nodes. In
this case, the required data segments have the highest priority. If other “not
required” data segments hash to the same set and want to replace this block ,
the required data segment always wins.

There is a thread in each of the I/O nodes used to periodically monitor the
status of a stripe. By checking the DTag fields of cache blocks, it knows how
many data segments contributing to the same stripe are cached. The thread
then updates the GRef fields of the corresponding cache blocks in DPCT. GRef
field has higher priority than LRef in our cache replacement algorithm. This
suggests that a stripe with more data segments cached should be kept in DPCT
even if their LRef values are low.

The thread has another responsibility, that is to write the PTag fields of cache
blocks. The PTag field of a cache block will be set under two situations. The
first is the occurrence of writes, as described at the beginning of this subsection.
The other is triggered by the condition that half of the data segments used to
form a stripe are cached in DPCT.

If updating a parity block is needed, it will bring the required data segments
either from cache blocks in DPCT or remote disks. It then uses these data blocks
to calculate the new parity block to be written into disk.

3.3 Redundancy Mechanism

We store the parity blocks without disturbing the original striping structure of
PVFS. We use RAID-5 to provide fault tolerance, the placement of parity blocks
is shown in Fig. 4. Take P1 in Fig. 4 for example, if an application just writes
block D1 or partial of D1, we need to fetch D2 and D3 blocks from disks to
compute P1. This illustrates the problem of small writes. Whenever a small
write happens, we require extra N disk accesses, where N is the number of I/O
nodes. Using DPCT, we can quantify the number of required disk accesses in
Eq. 1.

N∑
x=1

xCn
x (1−H)x(H)N−x, where H is the hit ratio (1)

D2

D6

D10

P3

Node m+1

D1

D5

D9

P4

Node m

D3

D7

D11

P2

Node m+2

D4

D8

D12

P1

Node m+3

Fig. 4. Redundancy placement of RAID-5: P1 = D1 ⊕D2⊕D3, P2 = D4 ⊕D5⊕ D6,
P3 = D7 ⊕ D8 ⊕ D9, P4 = D10 ⊕ D11 ⊕ D12

326 S.-K. Hung and Y. Hsu

Eq. 1 happens to be the mean value of binomial distribution. In other words,
the number of disk accesses using DPCT is N(1−H). Where N is the number
of I/O nodes in the system and H is the hit ratio of the DPCT. This means that
we reduce the number of disk accesses from N to N(1−H) when “small-write”
phenomenon happens. For example, assume that the number of I/O nodes is 16
and DPCT hit ratio is 0.7. We could reduce the number of disk accesses from
16 times to around 5 times.

4 Experiment Results

In this section, we will show the experimental results along with the evaluation
environment used. Each node has a single AMD Athlon XP 2400+ CPU, except
for the metadata server which has dual AMD Athlon XP 2400+ CPUs. Nine
nodes are connected with a fast Ethernet switch to form a cluster, one metadata
server and eight I/O servers. All nodes run Redhat Linux 7.3 with kernel version
2.4.20. We perform three kinds of tests and would describe them separately in
the following subsections.

4.1 Throughput Test

To test the aggregate throughput, we use the pvfs test.c utility accompanied
with PVFS distribution. Pvfs test.c is an MPI program which can be used to
test the concurrent read and write of a single file or different files. In this test,
each I/O node acts as a client too. Fig. 5 shows the results of read when eight
clients are used. When reading, there is nothing to do with parity and thus
incurring no overhead. This can be observed by the similar curves of PVFS and
RPFS-NO-DPCT. The read performance of RPFS with DPCT is better than
others because of the global server-side cache. Data segments are brought into
cache blocks in the unit of 16 KB. This realizes the effect of prefetching.

Fig. 6 shows the results when using pvfs test.c to perform write tests. Updat-
ing parity blocks has significant impact on RPFS because small write still needs

Fig. 5. Read Throughput Fig. 6. Write Throughput

DPCT: Distributed Parity Cache Table for Redundant Parallel File System 327

Fig. 7. Read Using Bonnie++ Fig. 8. Write Using Bonnie++

four operations : read the old striped blocks, read the old parity block, write the
desired block and write the newly calculated parity block. The reason why every
small write needs to update the corresponding parity block lies on the fact that
PVFS does not implement cache mechanism. Without a global cache, we cannot
aggregate small writes to form a big write. A big write not only can save the
number of parity writing but also can reduce the needs to read old blocks again.
Besides, the global cache can save request time because data may be accessed
directly from DPCT instead of disk. Compared with Fig. 5, the write perfor-
mance of PVFS is better than that of read. However, the write performance of
RPFS-NO-DPCT is lowered by about 25%, due to parity writing. As for the
RPFS-DPCT, parity writing has less impact due to the use of DPCT. Its write
performance is only reduced by 3% when compared with its read performance.

4.2 POSIX-API Test

To help us understand the behavior of a traditional application which uses PVFS
to access files, we use Bonnie++[23] for the test. In this test, a single client is
used to run Bonnie++ program. Bonnie++ is a POSIX-compliant application
and uses no native PVFS APIs to access files. We mount PVFS in the client’s
local directory so that it behaves like a local file system. All measurements are
performed in the mounted directory. Fig. 7 and Fig. 8 show the results when using
Bonnie++ to measure the bandwidth of read and write. Here, we use logarithmic
scale in the X axis to clearly distinguish the performance of small data accesses.
Again, we observe that RPFS-DPCT has performance benefits when compared
with either PVFS or RPFS-NO-DPCT. In this test, the network bandwidth of
fast Ethernet limits the throughput that a singe client could get from multiple
I/O nodes. It is saturated at around 17 MB/sec.

5 Conclusion

Our reliable parallel file system (RPFS) extends PVFS with fault tolerance.
The small-write problem can be alleviated by our distributed parity cache table

328 S.-K. Hung and Y. Hsu

(DPCT). DPCT benefits from the cache effect of read ahead and write behind.
It could efficiently reduce the number of disk accesses when “small-write” phe-
nomenon happens. This also improves both the read and write performance of
PVFS which does not implement any caching mechanism.

References

1. Gropp, W., Lusk, E., Sterling, T.: Beowulf Cluster Computing with Linux, Second
Edition. The MIT Press (2003)

2. Thakur, R., Lusk, E., Gropp, W.: I/O in parallel applications: The weakest link.
The International Journal of High Performance Computing Applications 12(4)
(Winter 1998) 389–395

3. Intel Supercomputer System Division: Paragon System User’s Guide. (1995)
4. Corbett, P., Feitelson, D., Prost, J.P., almasi, G., Baylor, S., Bolmaricich, A., Hsu,

Y., Satran, J., Sinr, M., Colao, R., B.Herr, Kavaky, J., Morgan, T., Zlotel, A.:
Parallel file systems for IBM SP computers. IBM Systems Journal 34(2) (1995)
222–248

5. Corbett, P.F., Feitelson, D.G.: The Vesta parallel file system. In: High Performance
Mass Storage and Parallel I/O: Technologies and Applications. IEEE Computer
Society Press and Wiley, New York, NY (2001) 285–308

6. Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B.: Design and imple-
mentation of the Sun Network File System. In: Proceedings Summer 1985 USENIX
Conference. (1985) 119–130

7. Pâris, J.F.: A disk architecture for large clusters of workstations. In: Cluster
Computing Conference, GA (1997) 317–327

8. Message Passing Interface Forum: MPI2: Extensions to the Message Passing In-
terface. (1997)

9. Patterson, D.A., Gibson, G.A., Katz, R.H.: A case for redundant arrays of inex-
pensive disks (RAID). In: Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois. (1988) 109–116

10. Hung, S.K., Hsu, Y.: Modularized redundant parallel virtual file system. In:
Asia-Pacific Computer Systems Architecture Conference 2005, Singapore (2005)
186–199

11. Stonebraker, M., Schloss, G.A.: Distributed RAID— A new multiple copy algo-
rithm. In: Proceedings of 6th International Data Engineering Conference. (1990)
430–437

12. Long, D.D.E., Montague, B.R.: Swift/RAID: A distributed RAID system. Com-
puting Systems 7(3) (1994) 333–359

13. Hartman, J.H., Ousterhout, J.K.: The Zebra striped network file system. In: High
Performance Mass Storage and Parallel I/O: Technologies and Applications. IEEE
Computer Society Press and Wiley, New York, NY (2001) 309–329

14. Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M., Peck, G.: Scal-
ability in the xFS file system. In: Proceedings of the USENIX 1996 Technical
Conference, San Diego, CA, USA (1996) 1–14

15. Soltis, S.R., Ruwart, T.M., O’Keefe, M.T.: The Global File System. In: Pro-
ceedings of the Fifth NASA Goddard Conference on Mass Storage Systems and
Technologies, College Park, MD (1996) 319–342

16. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing
clusters. In: Proc. of the First Conference on File and Storage Technologies (FAST).
(2002) 231–244

DPCT: Distributed Parity Cache Table for Redundant Parallel File System 329

17. Hwang, K., Jin, H., Ho, R.S.: Orthogonal striping and mirroring in distributed
RAID for I/O-centric cluster computing. IEEE Trans. Parallel Distrib. Syst. 13(1)
(2002) 26–44

18. Zhu, Y., Jiang, H., Qin, X., Feng, D., Swanson, D.R.: Design, implementation and
performance evaluation of a Cost-Effective, Fault-Tolerance parallel virtual file
system. In: International Workshop on Storage Network Architecture and Parallel
I/Os, New Orleans, LA (2003)

19. Moyer, S.A., Sunderam, V.S.: PIOUS: a scalable parallel I/O system for distributed
computing environments. In: Proceedings of the Scalable High-Performance Com-
puting Conference. (1994) 71–78

20. K.Lee, E., Thekkath, C.A.: Petal: Distributed virtual disks. In: High Performance
Mass Storage and Parallel I/O: Technologies and Applications. IEEE Computer
Society Press and Wiley, New York, NY (2001) 420–430

21. Pillai, M., Lauria, M.: CSAR: Cluster storage with adaptive redundancy. In: Pro-
ceedings of the 2003 International Conference on Parallel Processing, Kaohsiung,
Taiwan, ROC (2003) 223–230

22. Wilkes, J., Golding, R., Staelin, C., Sullivan, T.: The hp autoraid hierarchical
storage system. ACM Transactions on Computer Systems (TOCS) 14(3) (1996)
108–136

23. Coker, R.: Bonnie++ – file system benchmark. (http://www.coker.com.au/
bonnie++/)

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 330 – 339, 2006.
© Springer-Verlag Berlin Heidelberg 2006

On High Performance Multicast Algorithms for
Interconnection Networks

Ahmed Al-Dubai1, Mohamed Ould-Khaoua2, and Imed Romdhani3

1,3 School of Computing, Napier University, 10 Colinton Road
Edinburgh, EH10 5DT, UK

{a.al-dubai, i.romdhani}@napier.ac.uk
2 Department of Computing Science, University of Glasgow

Glasgow G12 8RZ, UK
mohamed@dcs.gla.ac.uk

Abstract. Although multicast communication, in interconnection networks has
been a major avenue for a lot of research works found in literature, there are
several key issues that should still be improved in order to meet the increasing
demand for service quality in such systems. Apparently, most of the related
works handle multicast communication within limited operating conditions
such as low traffic load, specific network sizes and limited destination nodes.
However, this paper investigates the multicast communication under different
scenarios. It presents a comparison study of some well known multicast
algorithms proposed for wormhole switched interconnection networks. Unlike
the previous studies, this paper considers the multicast latency at both network
and node levels. Performance evaluation results show that our proposed
algorithm can greatly improve the performance of multicast operation.

Keywords: Wormhole Switched Networks, Path-based Multicast, Routing
Algorithms.

1 Introduction

Multicast communication, in which a source node sends the same message to an
arbitrary number of destination nodes in the network, is one of the most useful
collective communication operations [1, 2, 3, 6]. Due to its extensive use, efficient
multicast is critical to the overall performance of interconnection networks [1, 2, 3, 4,
14]. For instance, multicast is frequently used by many important applications such as
parallel search and parallel graph algorithms [3, 14]. Furthermore, multicast is
fundamental to the implementation of higher-level communication operations such as
gossip, gather, and barrier synchronisation [1, 2, 4]. Ensuring a scalable
implementation of a wide variety of parallel applications necessitates efficient
implementation of multicast communication. In general, the literature outlines three
main approaches to deal with the multicast problem: unicast-based [1, 3], tree-based
[3, 13, 17] and path-based [2, 3, 8, 14, 15]. A number of studies have shown that
path-based algorithms exhibit superior performance characteristics over their unicast-
based and tree-based counterparts [2, 14, 15]. In path-based multicast, when the units
(called flits in wormhole switched networks) of a message reach one of the

 On High Performance Multicast Algorithms for Interconnection Networks 331

destination nodes in the multicast group, they are copied to local memory while they
continue to flow through the node to reach the other destinations [2, 3, 8]. The
message is removed from the network when it reaches the last destination in the
multicast group. Although many interconnection networks have been studied [3], and
indeed deployed in practice, none has proved clearly superior in all roles, since the
communication requirements of different applications vary widely. Nevertheless, n-
dimensional wormhole switched meshes have undoubtedly been the most popular
interconnection network used in practice [2, 3, 5, 6, 10, 11] due to their desirable
topological properties including ease of implementation, modularity, low diameter,
and ability to exploit locality exhibited by many parallel applications [3]. In
wormhole switching, a message is divided into elementary units called flits, each of a
few bytes for transmission and flow control. The header flit (containing routing
information) governs the route and the remaining data flits follow it in a pipelined
fashion. If a channel transmits the header of a message, it must transmit all the
remaining flits of the same message before transmitting flits of another message.
When the header is blocked the data flits are blocked in-situ. Meshes are suited to a
variety of applications including matrix computation, image processing and problems
whose task graphs can be embedded naturally into the topology [3, 6, 10]. Meshes
have been used in a number of real parallel machines including the Intel Paragon,
MIT J-machine, Cray T3D, T3E, Caltech Mosaic, Intel Touchstone Delta, Stanford
DASH [3]. Recently, among commercial multicomputers and research prototypes,
Alpha 21364’s multiple processors network and IBM Blue Gene uses a 3D mesh. In
addition, a mesh has been recently the topology of choice for many high-performance
parallel systems and local area networks such as Myrinet-based LANs.

The rest of the paper is organised as follows. Section 2 outlines some related
works; Section 3 accommodates the proposed multicast algorithm. Section 4 conducts
extensive analysis and simulation experiments and Section 5 summarises this work.

2 Background and Motivation

In general, existing multicast communication algorithms rely on two main strategies.
In view of the dominance of the start-up time in the overall multicast latency,
algorithms in the first class try to reduce the number of start-ups required to perform
multicast, but this has been shown to be inefficient under high traffic loads [8, 10,
14]. For instance, the Dual Path (DP) and Multi Path (MP) algorithms proposed in
[10] use this strategy. Briefly, DP uses at most two copies of the multicast message to
cover the destination nodes, which are grouped into two disjoint sub-groups. This
may decrease the path length for some multicast messages. The MP algorithm
attempts to reduce path lengths by using up to four copies (or 2n for the n-
dimensional mesh) of the multicast message. As per the multi-path multicast
algorithm, all the destinations of the multicast message are grouped into four disjoint
subsets such that all the destinations in a subset are in one of the four quadrants when
source is viewed as the origin. Copies of the message are routed using dual-path
routing (see [10] for a complete description). Algorithms in the second class, on the
other hand, tend to use shorter paths, but messages can then suffer from higher
latencies due to the number of start-ups required [15]. Based on this strategy, for

332 A. Al-Dubai, M. Ould-Khaoua, and I. Romdhani

example, the Column Path (CP) algorithm presented in [15] partitions the set of
destinations into at most 2k subsets (e.g. k is the number of columns in the mesh),
such that there are at most two messages directed to each column.

Generally, most existing path-based algorithms incur high multicast latency. This
is due to the use of long paths required to cover the groups serially like algorithms
under the umbrella of the first multicast approach or those of the second category, in
which an excessive number of start-ups is involved. In addition, a common problem
associated with most existing multicast algorithms is that they can overload the
selected multicast path and hence cause traffic congestion. This is mainly because
most existing grouping schemes [8, 10, 15] do not consider the issue of load
balancing during a multicast operation. More importantly, existing multicast
algorithms have been designed with a consideration paid only to the multicast latency
at the network level, resulting in an erratic variation of the message arrival times at
the destination nodes. As a consequence, some parallel applications cannot be
performed efficiently using these algorithms, especially those applications which are
sensitive to variations in the message delivery times at the nodes involved in the
multicast operation. Thus, our objective here is to propose a new multicast algorithm
that can overcome the limitations of existing algorithms and thus leading to improve
the performance of multicast communication in mesh networks. In a previous work
[2], a new multicast scheme, the Qualified Group (QG) has been proposed for
symmetric meshes. Such a scheme has been studied under restricted operating
conditions, such as specific traffic load, fixed network sizes and a limited number of
destination nodes [2]. In the context of the issues discussed above, this paper makes
two major contributions. Firstly, the QG is generalised here with the aim of handling
multicast communication in symmetric, asymmetric and different network sizes.
Secondly, unlike many previous works, this study considers the issue of multicast
latency at both the network and node levels across different traffic scenarios.

3 The Qualified Groups (QG) Algorithm

In an attempt to avoid the problems of existing multicast algorithms, this section
presents the Qualified Group (QG) path-based multicast algorithm. The QG algorithm
takes advantage of the partitionable structure of the mesh to divide the destination
nodes into several groups of comparable sizes in order to balance the traffic load
among these groups, which leads to avoid the congestion problem in the network. The
groups, in turn, implement multicast independently in a parallel fashion, which results
in reducing the overall communication latency. In general, the proposed algorithm is
composed of four phases which are described below. For the sake of the present
discussion and for illustration in the diagrams, we will assume that messages are
routed inside the network according to dimension order routing [3, 10].

Definition 1. Consider a mesh),(EV , with node set V and edge set E , a multicast

set is a couple) ,(Ðp , where Vp ∈ , Ð = }...,{ 2,1 kppp and kiVpi ,...,1, =∈ . The

node p is the source of the multicast message, and the k nodes in Ð are the

 On High Performance Multicast Algorithms for Interconnection Networks 333

destinations. To perform a multicast operation, node p disseminates copies of the

same message to all the destinations in Ð .

We have adopted the dimension order routing due to the fact that this form of routing
is simple and deadlock and livelock free, resulting in a faster and more compact router
when the algorithm implemented in hardware, [3, 15]. However the QG algorithm can
be used along any other underlying routing scheme, including the well-known Turn
model and Duato’s adaptive algorithms [3]. This is because the grouping scheme, as
explained below, in QG can be implemented irrespective of the underlying routing
scheme (in the algorithmic level), which is not the case in most existing multicast
algorithms in which destination nodes are divided based on the underlying routing
used (in the routing level) [8, 10, 15]. It is worth mentioning that such a research line
will be investigated further in our future works.

Phase 1. In this phase, a multicast area is defined as the smallest n-dimensional array
that includes the source of the multicast message as well as the set of destinations.
The purpose of defining this area is to confine a boundary of network resources that
need to be employed during the multicast operation.

Definition 2. In the n-dimensional mesh with a multicast set) ,(Ðp , a multicast area

MAG includes the source node],...,[21 ndddp and destination

nodes)],...[21 nd,d(dÐ such that ∀ },...,,{ 21 ni dddd ∈ , has two corners, upper

corner])[][max(iid d, pdÐu
i

= and lower corner])[][min(iid d, pdÐl
i

= such

that
+−+

++
=

odd is)(if 2/)1)((

even is)(if 2/)(

iiii

iiii

i
dddd

dddd

d ulul

ulul
mid

Phase 2. The multicast area MAG is then divided into groups. The objective behind

grouping the destination nodes is to distribute the traffic load over the multicast area
in order to avoid traffic congestion, which contributes significantly to the blocking
latency. Besides, grouping enables the destination nodes to receive the multicast
message in comparable arrival times; i.e., this helps to keep the variance of the arrival
times among the destination nodes to a minimum.

Definition 3. In an n-dimensional mesh with a multicast set) ,(Ðp , a divisor

dimension
idDiv for satisfies the following condition

),...,,min(
21 ni dddd NNNDiv = ,][][−= iid dÐdÐN

i
:

][idÐ =
id

id

u

mid
idÐ][and][idÐ =

−1

][
id

id

mid

l
idÐ

334 A. Al-Dubai, M. Ould-Khaoua, and I. Romdhani

Notice that if
21 dd NN = , 1d is given a higher priority, i.e., a higher priority is

given based on the ascending order of the dimensions. For instance, if

zyx NNN == , X dimension will be considered as a divisor dimension. The

divisor dimension is used as a major axis for the grouping scheme in this phase. The

multicast area MAG is then divided into a number of disjoint groups as formulated

in the following definition.

Definition 4. Given an n-dimensional mesh with a multicast set) ,(Ðp and a

multicast area MAG , ji GG ,∀ : MAi GG ⊆ and MAj GG ⊆ → GG ji =∩ .

According to Definition 4, MAG is divided into a number of primary groups as given

in equation 1; where prg refers to the number of primary groups obtained after

dividing the destination nodes over the division dimension, such that

=⊆∃
=

otherwise 2

: if
n

iMAit
pr

GGGp
g (1)

where tp is an integer, n
tp 21 <≤

Phase 3. This phase is responsible for qualifying the groups already obtained in the

preceding phase for a final grouping. Having obtained the primary groups, prg , we

recursively find the multicast area for each group, MAi GG ⊆ , as defined in

Definition 4, and determine the internal distance)(iGInt for each group iG .

iGinifi NGpGpDistGInt +=))(),(()((2)

Where Dist refers to the Manhattan distance in which the distance between tow

nodes, for instance the distance between two nodes)1,1(yx pp and)2,2(yx pp is

given by)21()21()2,1(yyxx ppppppDist −+−= . While the first term,

))(),((inif GpGpDist , in the above equation represents the distance between the

farthest fp and the nearest node np in a group iG from/to the source node p ,

respectively, the second term,
iGN , represents the number of destination nodes that

belong to the relevant group MAi GG ⊆ . We then determine the external

distance)(iGExt .

)),(()(pGpDistGExt ini = (3)

 On High Performance Multicast Algorithms for Interconnection Networks 335

The minimum weight mW for a group iG , prgi ≤<1 , where prg refers to the

number of primary groups, is then calculated by

)()()(iiim GIntGExtGW += (4)

Definition 5. Given a multicast area MAG and MAi GG ⊆ , where prgi ≤<1 , the

average of the minimum weights avW , for the multicast area MAG , is given by

pr

g

i
im

av g

GW

W

pr

== 1

)(

 (5)

Definition 6. Given a multicast area MAG , MAi GG ⊆ , and avW , the qualification

point,)(iGQP , for each group is calculated as follows

av

avim
i W

WGW
GQP

))((
)(

−
= (6)

The qualification point for each group is compared to an assumed threshold
value TD , which is used to set a limit for the partitioning process.

Definition 7. Given a multicast area MAG and MAi GG ⊆ , we say that iG is a

qualified group if and only if its minimum weight avim WGW ≤)(or if its qualification

point TDGQP i ≤))((.

For example, given that the threshold value is 5.0=TD , each qualified group must

hold at least half of the total average weight avW of the groups. Once a group

MAi GG ⊆ does not satisfy the condition formulated in Definition 7, it is treated as

an unqualified group. In this case, this unqualified group is divided into two sub-
groups based on its division dimension. If the new resulting groups are qualified the
partitioning process is terminated. Otherwise, the unqualified group is divided into a

number of sub-groups sb , where nsb 22 ≤≤ . For instance, for any unqualified

group MAi GG ⊆ in the 2D mesh, it can be divided into four groups at maximum,

even if the new obtained groups are still larger than those which meet the
qualification point. In fact, the partitioning process is terminated at this stage in order
to reduce the number of comparisons during the qualifying phase. This helps to keep
the algorithm simple and maintains a low preparation time.

Phase 4. For each group resulting from Phase 3, the nodes which have the lowest
communication cost, in terms of distance from the source node, are selected as the
representative nodes of the qualified groups that can receive the multicast message
from the source node. In other words, the nearest node for each qualified group is

336 A. Al-Dubai, M. Ould-Khaoua, and I. Romdhani

elected so that it could be sent the multicast message with a single start-up only.
Concurrently, the representative nodes act as “source” nodes by delivering the
message to the rest of the destination nodes in their own groups with one additional
start-up time only. After qualifying all the groups, the source node sends the message
to the representative nodes in the qualified groups. The source node performs this
operation with a single start-up latency taking advantage of the multiple-port facility
of the system by creating two disjoint paths in this step. Concurrently, every
representative node in each group acts as a source node and, in turn, sends the
message to the rest of the destinations in its own group.

4 Performance Evaluation

A number of simulation experiments have been conducted to analyse the performance
of QG against DP, MP and CP. A simulation program has been developed to model
the multicast operation in the mesh. The developed model has been added to a larger
simulator called MultiSim [6], which has been designed to study the collective
communication operations on multicomputers and has been widely used in the
literature [2, 10, 12]. The simulation program was written in VC++ and built on top
the event-driven CSIM-package [7]. We have used the 2D mesh with four injection
channels and four ejection channels. Two unidirectional channels exist between each
pair of neighbouring nodes. Each channel has a single queue of messages waiting for
transmission. In our simulations, the start-up latency has been set at 33 cycles, the
channel transmission time at 1 cycle and the threshold TD at 0.5. The network cycle
time in the simulator is defined as the transmission time of a single flit across a
channel The preparation time (which consists of dividing the destination nodes into
appropriate subsets and creating multiple copies of the message as needed, depending
on the underlying algorithm) of the DP, MP, CP and QG algorithms are set at 2, 2, 4
and 16 cycles, respectively. The preparation time was deliberately set higher in the
QG algorithm to reflect the fact that our algorithm requires a longer time to divide the
destinations into qualified groups. All simulations were executed using 95%
confidence intervals (when confidence interval was smaller than 5% of the mean).
The technique used to calculate confidence intervals is called batch means analysis. In
batch means method, a long run is divided into a set of fixed size batches, computing
a separate sample mean for each batch, and using these batches to compute the grand
mean and the confidence interval. In our simulations, the grand means are obtained
along with several values, including confidence interval and relative errors which are
not shown in the figures. Like existing studies [1, 2, 3, 10, 15, 13], only the grand
mean is shown in our figures.

4.1 Latency at the Node Level

This section presents the coefficient of variation of the multicast latency as a new
performance metric in order to reflect the degree of parallelism achieved by the
multicast algorithms. A set of simulation experiments have been conducted where the
message inter-arrival times between two messages generated at a source node is set at
250 cycles. The message length is fixed at 64 flits and the number of destination

 On High Performance Multicast Algorithms for Interconnection Networks 337

nodes is varied from 20, 30, 40… to 60 nodes. The coefficient of variation (CV) is
defined as nlMSD / , where SD refers to the standard deviation of the multicast

latency (which is also the message arrival times among the destination nodes) and

nlM is the mean multicast latency. The coefficient of variation of QG has been

compared against that of DP, MP and CP. Table 1 contains performance results for
the 1616 × mesh, which have been obtained by averaging values obtained from at

least 40 experiments in each case. The %IMPRQG in Table 1 refers to the percentage

improvement obtained by QG over its DP, MP and CP competitors.
As shown in Table 1, QG achieves a significant improvement over DP, MP and

CP. This is due firstly to the efficient grouping scheme adopted by QG which divides
the destinations into groups of comparable sizes. Secondly, and more importantly,
unlike in DP, MP and CP, the destination nodes for each qualified group in QG
(except those selected in the first message-passing step) receive the multicast message
in the second message-passing step, in parallel. This has the net effect of minimising
the variance of the arrival times at the node level. In contrast, DP, MP and CP
perform multicast with either longer paths as in DP and MP or in an excessive
number of message-passing steps, as in CP.

Table 1. The coefficient of variation of the multicast latency in the DP, MP and CP algorithms
with the improvement obtained by QG (QGIMPR %) in the 16×16 mesh

#Destinations=20 # Destinations=40 # Destinations=60

CV (QGIMPR

%)

CV (QGIMPR %) CV (QGIMPR %)

DP 0.386 46.19 0.416 54.83 0.476 76.27

MP 0.326 23.48 0.365 35.69 0.420 55.56

CP 0.467 76.74 0.489 81.56 0.504 86.49

QG CV= 0.2640 CV= 0.2695 CV= 0.27004

4.2 Latency in the Presence of Multicast and Unicast Traffic

In some real parallel applications, a message may have to compete for network
resources with other multicast messages or even with other unicast messages. To
examine performance in such situation, results for the mean multicast latency have
been gathered in the 1010× mesh in the presence of both multicast (10%) and
unicast (90%) traffic (similar studies are outlined in [8, 10, 15]). The message size is
set at 64 flits and the number of destinations in a given multicast operation has been
set to 10 and 20 nodes, respectively. The simulation results are provided in Figs. 1
and 2. Fig. 1 reports results for 10 destinations while Fig. 2 shows results for 20
destinations. Under light traffic, QG, DP and MP have comparable performance
behaviour, with MP having a slightly lower latency. On the other hand, CP has a
higher time.

338 A. Al-Dubai, M. Ould-Khaoua, and I. Romdhani

0

100

200

300

400

500

600

700

800

900

1000

0.0014 0.0016 0.002 0.0025 0.0033 0.005 0.01 0.02

traff ic load (messages/cycle)

m
ea

n
m

ul
tic

as
t l

at
en

cy
 (

un
it

tim
e)

DP

MP

CP

QG

0

100

200

300

400

500

600

700

800

900

1000

0.0014 0.0016 0.002 0.0025 0.0033 0.005 0.01 0.02

traff ic load (messages/cycle)

m
ea

n
m

ul
tic

as
t l

at
en

cy
 (

un
it

tim
e)

DP

MP

CP

QG

Fig. 1. Mean multicast latency in the 10×10
mesh. Message length is 64 flits, number of
10 destinations = 10 nodes, traffic consists
of multicast (10%) and unicast (90%).

Fig. 2. Mean multicast latency in the
10×10 mesh. Message length is 64 flits,
number of destination =20 nodes, traffic
consists of multicast (10%) and unicast
(90%).

This is mainly due to the dominating effect of the start-up latency in such a

situation. However, under heavy traffic, an opposite behaviour is noticed in that QG
performs the best in terms of both latency and throughput, followed by CP. More
importantly, we can observe from Fig. 2 that as the number of destinations increases
the performance advantage of QG becomes more noticeable over that of CP. This is
mainly because QG alleviates significantly the congestion problem at the source
node. In contrast, the source node in CP suffers from a higher load and as more
destinations are involved in the multicast operation, the more severe this limitation
becomes.

5 Conclusions and Future Directions

In this study, the QG multicast algorithm has been evaluated under different scenarios
and conditions. Results from extensive simulations under different conditions have
revealed that the QG algorithm exhibits superior performance over well-known
algorithms, such as dual-path, multiple-path, and column-path algorithms. Unlike
existing multicast algorithms, the QG algorithm can maintain a lower variance of
message arrival times at the node level. Consequently, most of the destination nodes
receive the multicast message in comparable arrival times. It would be interesting to
further investigate the interaction between the important parameters that affect the
performance of the QG algorithm, notably the grouping scheme, network size,
threshold value, multicast group size, and traffic load, with the aim of proposing an
analytical model that could predict, for example, the multicast latency given a
particular grouping scheme, network size, multicast group size, and traffic load.

 On High Performance Multicast Algorithms for Interconnection Networks 339

References

[1] Nen-Chung Wang, Cheng-Pang Yen and Chih-Ping Chu, Multicast communication in
wormhole-routed symmetric networks with hamiltonian cycle model, Journal of Systems
Architecture, vol.51, Issue 3 , March 2005, pp.165-183, 2005.

[2] A. Al-Dubai, M. Ould-Khaoua and L. Mackenzie, An efficient path-based multicast
algorithm for mesh networks, Proc. the 17th Int. Parallel and Distributed Processing
Symposium (IEEE/ACM-IPDPS), Nice, France, 22 -26 April, pp. 283-290, 2003.

[3] J. Duato, C. Yalamanchili, L. Ni, Interconnection networks: an engineering approach,
Elsevier Science,2003.

[4] Abderezak Touzene, Optimal all-ports collective communication algorithms for the k-ary
n-cube interconnection networks , Journal of Systems Architecture, vol.50, Issue 4, pp.
169-236, 2004.

[5] Yuh-Shyan Chen, Chao-Yu Chiang and Che-Yi Chen, Multi-node broadcasting in all-
ported 3-D wormhole-routed torus using an aggregation-then-distribution strategy,
Journal of Systems Architecture, vol.50, Issue 9 , pp. 575-589, 2004.

[6] P. K. McKinley, C. Trefftz, MultiSim: A simulation tool for the study of large-scale
multiprocessors, Proceedings of the Int. Symp. Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’ 1993), pp. 57-62. 1993.

[7] H. D. Schwetman, CSIM: A C-based, process-oriented simulation language, Tech. Rep.
pp. 80-85, Microelectronics and Computer Technology Corp., 1985.

[8] E. Fleury, P. Fraigniaud, Strategies for path-based multicasting in wormhole-routed
meshes, J. Parallel & Distributed Computing, vol. 60, pp. 26-62, 1998.

[9] Y.-C. Tseng, S.-Y. Wang, C.-W. Ho, Efficient broadcasting in wormhole-routed
multicomputers: A network-partitioning approach, IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 1, pp. 44-61, 1999.

[10] X. Lin, P. McKinley, L.M. Ni, Deadlock-free multicast wormhole routing in 2D-mesh
multicomputers, IEEE Transactions on Parallel and Distributed Systems, vol. 5, no. 8,
pp. 793-804.1994.

[11] S. Cang, J. Wu, Time-step optimal broadcasting in 3-D meshes with minimal total
communication distance, J. Parallel & Distributed Computing, vol. 60, pp. 966-997,
2000.

[12] D. F. Robinson, P. K. McKinley, C. Cheng, Path based multicast communication in
wormhole routed unidirectional torus networks, Journal of Parallel Distributed
Computing, vol. 45, 104 - 121, 1997.

[13] M. P. Malumbres, J. Duato, An efficient implementation of tree-based multicast routing
for distributed shared-memory multiprocessors, J. Systems Architecture, vol. 46, 1019-
1032, 2000.

[14] P. Mohapatra, V. Varavithya, A hardware multicast routing algorithm for two
dimensional meshes, the Eighth IEEE Symposium on Parallel and Distributed
Processing, pp. 198-205, News Orleans, October 1996.

[15] R. V. Boppana, S. Chalasani, C.S Raghavendra, Resource deadlock and performanceof
wormhole multicast routing algorithms, IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 6, 535-549, 1998.

[16] S. Wang, Y. Tseng, C. Shiu , J, Sheu, Balancing traffic load for multi-node multicast in a
wormhole 2D torus/mesh, the Computer Journal, vol. 44, no. 5, pp. 354-367, 2001.

[17] D. R. Kumar, W. A. Najjar, P. K. Srimani, A new adaptive hadrdware tree-based
multicast routing in k-ary n-cubes, IEEE Computer, vol. 50, no. 7, pp. 647-659, 2001.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 340 – 349, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Proactive Distributed QoS Control Framework
for Cluster Web Site

Wang Xiaochuan and Jin Shiyao

School of Computer Science, National University of Defense Technology
410073 Changsha, China

{mrwangxc, syjin1937}@163.com

Abstract. In this paper, we present a distributed QoS control framework for
cluster web applications. We describe the system structure and inner operations
from the perspective of control theory. Controllers spread across all back-end
servers, proactively controlling the actuators on the cluster entry. This can ac-
commodate advanced but resource consuming control models and algorithms
without central performance bottleneck problem in contrast to previous propos-
als. Our proposal also takes friendliness, flexibility and effectiveness of the con-
trol scheme into consideration for practical employment. We give an example
implementation based on this framework. Experiments prove its feasibility and
effectiveness.

1 Introduction

With the pervasive deployment of Internet, more organizations and enterprises extend
their activity on WWW platform. Web applications face more challenges than ever
before. The three main challenges are: highly diversified web application demands;
highly variable user access patterns [1]; more demands on service availability, stabil-
ity, cost and performance, referred as QoS (Quality of Service). Regarding the first
two, QoS control may be the hardest one we have to conquer because it involves a
highly dynamic process.

Based on review of state of art solutions and practical requirements, we claim
that an advisable QoS control solution for cluster system, should satisfy three
requirements:

1. Friendliness: It should work well with existing systems. Radical change
should be avoided for cost and stability reasons. Further more, the deploy-
ment of such solution should not be complex or consuming too much.

2. Flexibility: It should work well with variation of the system under control
with no or little manual operation or reconfiguration. Different QoS control
types can be implemented expediently.

3. Effectiveness: Obviously, It’s the basic requirement. It’s essential for cluster
under very high load. For example, it should be extensible.

In this paper, we mainly focus on basic architecture for adaptable and extensible
QoS control of web cluster. In contrast to previous solutions, we adopt a distributed
scheme to accommodate complex controllers designed using modern control theory

 A Proactive Distributed QoS Control Framework for Cluster Web Site 341

without extensibility problem. In our proposal, QoS controllers reside on all servers
working independently with each other. The architecture provides the foundation to
meet aforementioned three criteria.

In section 2, we review state of the art QoS control mechanisms for web systems,
especially web cluster. Section 3 presents the proactive distributed QoS control
framework. Section 4 gives an example implementation based on the framework.
Section 5 describes the experiments and results. In section 6, we summarize our con-
clusions and offer possible directions for future work.

2 Related Work

During the last decade, people have done a lot of work on web QoS control. They can
be divided into two main categories: single node solution and cluster solution.

 Single Node QoS Control:
One classic approach to local QoS control is resource partition which imposes re-
source limits like maximum simultaneous threads on service entities to avoid over
commitment and ensure QoS level [2,3]. The main problem for these methods is that
it’s difficult to determine the ideal resource limits under widely fluctuating loads. In
addition, such limits don’t relate to client side QoS metrics directly.

Another approach uses schedule strategy in favor of given request type such as
shortest request, to achieve different QoS levels [4~6]. Although they have good
performance for specific requests, they usually lack of quantitative metrics.

Admission control is another important method. By restricting the amount of re-
quests entering the system, it can maintain the QoS level for some request types while
giving up the others when the system is overloaded [7~9]. Like resource partition
schemes, such proposals are usually based on inflexible fixed server side parameters
like queue threshold, which ignore client perceived performance.

For some applications, service degradation is used when system is overloaded. By
degrading image quality or page layout complexity, performance is maintained [10].
This method is very application specific.

In comparison with approaches based on intuition, analytical techniques are be-
coming popular in recent years. Mathematical tools and some modern theories like
feedback control are used to design the QoS control subsystem quantitatively. [11~14]
introduce different analytical models (queue theory, stochastic Petri net, productivity
function, etc) to profile the web system and analyze its performance. With the success
of feedback control theory in industrial fields, people introduce it to web QoS control
[15~22]. The above approaches usually use a simplified and idealized system model.
For example, analytical methods based on queue theory usually suppose a Poisson
arrival. Feedback control often requires a linear model and uses traditional PI(D)
controller. Unfortunately, Internet services tend to be highly nonlinear because of
poorly understood traffic and internal resource demands. The mismatch between the
model and actual system arouses doubt about the flexibility of the control mechanism
in a changeful world. Moreover, a nontrivial fact is that such control system often
needs a lot of preliminary work before deployment, such as offline system identifica-
tion, control loop parameter configuration, etc. These hold back its wide use in prac-

342 X. Wang and S. Jin

tice. Although control theory based QoS control is a promising direction, there’s still
much to do.

Most of the above methods don’t have direct relation with quantitative client per-
ceived QoS metrics. Moreover, they often need mass modification of existing soft-
ware (web server, OS, etc), even invent a new one from scratch. This could be espe-
cially expensive, ineffective and infeasible for practical application out of the lab.
People usually want to protect their investment and operation experience. Smooth
running without lots of disturbance is most desired. Further more, it makes system
upgrade and transition very difficult. In a word, a black box control is preferable.

 Cluster QoS Control:
Similar with single node solutions, cluster QoS control also usually involves resource
partition [23~26], preferential schedule [27, 30], admission control [28~30] , service
degradation [30] and analytical control [30~32]. They usually have the same limita-
tions like their single node counterparts.

It’s notable that there’re few solutions based on control theory for cluster. One im-
portant reason is extensibility. The control structure of a large cluster is rather com-
plex and resource consuming. Floating computation is the daily grind. Models like
matrix or artificial neural network may be involved. In a typical web cluster, QoS
control is usually performed at the cluster entry called dispatcher. It takes charge of
entire cluster system. Obviously, such control mechanism is a huge burden for dis-
patcher. Moreover, dispatcher codes usually work in OS kernel for performance rea-
son. However many OS kernels don’t allow floating operations at all, saying nothing
of other useful tools. Development of control theory based schemes in dispatcher is
rather expensive and complex. If a dedicated node is used for QoS control, the per-
formance bottleneck and single point failure problem still exist.

3 Proactive Distributed QoS Control Framework

As Fig. 1 shows, a web cluster usually has an entry point called dispatcher between
clients and server pool. In practice, the server pool may be divided into different
functional layers. For simplicity, we just consider a single layer. Servers in
this layer may provide different content. The dispatcher hides the inner structure of
the cluster to clients. It’s beneficial for application deployment, daily maintenance
and system security. Our proposal also adopts such a structure. To eliminate single
point failure, there may be a standby dispatcher, but this is not what this paper fo-
cuses on.

Server PoolStandby Dispatcher

Main Dispatcher

 L
A

N

Internet

1

4
3

2

…

Fig. 1. Web cluster structure and processing diagram

 A Proactive Distributed QoS Control Framework for Cluster Web Site 343

For better QoS control, dispatcher acts as application gateway. On behalf of back-
end web applications, it accepts client connections, reads in requests, and performs
analysis and classification (arrow 1 in Fig. 1). This technique is usually called con-
tent-based schedule. It distinguishes between different request types or user types,
preparing for further QoS control. After that, requests are distributed to back-end
servers according to QoS control strategy (arrow 2 in Fig. 1). We’ll describe this
process later. Server responses are relayed back to clients by dispatcher (arrow 3, 4 in
Fig. 1). Some techniques such as TCP handoff can send server response directly to
clients, bypassing the dispatcher, but they usually need server OS modification. We
still use dispatcher to relay server response for friendliness.

Controller Actuator System under
Control

Monitor

System model

Control Set Point

Fig. 2. A typical feedback control system

We’ll describe QoS control from the perspective of control theory. A typical feed-
back control system is shown in Fig. 2. There are three types of basic element: moni-
tor, controller and actuator. Monitor gathers run time information of the system under
control. Controller deduces the control action according to the information collected
by monitor, control objectives (set point) and specific control model and algorithm.
Actuator executes the decisions of controller, influencing the object system directly.
These three steps comprise the close control loop.

Dispatcher Real Server

Controller

Application
Gateway

Web System

Monitor

System model Control Set Point
Monitor

Actuator

Fig. 3. Distributed QoS control framework

The distributed QoS control framework is shown in Fig. 3. For simplicity, we only
give one server node. The dashed lines are control flows. The bold lines are applica-
tion data flows. Monitors gather run time information and report to controllers peri-
odically. Then controllers make decisions and inform actuator to execute them.

Adaptability and flexibility are guaranteed in this scheme. First, independent con-
trollers are running on each server. Control expenses are apportioned among all
nodes. Advanced but complex control methods can be used to achieve quantitative
QoS control. Second, web application has extensive parallelism. Holistic cluster QoS
objectives can be achieved by such parallel local solution. Third, it’s convenient to
customize control strategy, even use different control model for specific node or ser-
vice. Last, all control elements are transparent to the web system. Server side software
doesn’t have to be modified or replaced at all.

344 X. Wang and S. Jin

Periodical control flow from server to dispatcher is natural heartbeat mechanism to
detect failed server node, replacing additional server availability mechanism.

 Control Set Point
Control set point is the object of the control action. For web QoS control, it’s usually
referred to as performance metrics. The most common are classified into two catego-
ries depending on their relationship to time: delay metrics and rate metrics. The for-
mer are directly proportional to time such as response times. The latter are inversely
proportional to time such as data throughput. In this paper, we mainly consider two
most common ones: response time and data throughput. The first is straightforward to
users. The second is important for the service as a whole.

Response time varies according to client side capability and request type. It may
take a long time to transfer a file to a mobile client. Dynamic content usually takes
longer time than static one. To eliminate the factors out of server side control, we
introduce Initial Response Time. It starts when the analyzing and classifying work are
finished for the request at the dispatcher. It ends when dispatcher receives the first
response fragment from the server. Thus, interactions with outside world are ignored
while application characteristics are still taken into account.

 Monitor
There’re two types of monitor. The first type resides on real servers, collecting system
resource usage information like CPU usage. The second type resides on dispatcher,
collecting application performance data including Initial Response Time, data
throughput, request arrival rate and leaving rate, etc. Performance data are collected
for different {request type, server} combinations. Monitors work transparently to web
applications, and send data to controllers on servers periodically.

 Controller
Controller works only for local server. With periodical data fed by monitors, it de-
duces proper subsequent reactions for different request types based on QoS control
model and algorithm. Then it informs actuators on dispatcher. We call this proactive
approach because servers take charge of control instead of just accepting dispatcher’s
arrangement in previous solutions. To meet the three requirements remarked in Sec-
tion 1, controller should be designed in nontraditional way. Different control methods
may be designed and coexist in the cluster on different server without impact on other
nodes. In Section 4, we’ll present a controller based on fuzzy control theory.

 Actuator
We choose Maximum Concurrent Request Number and Maximum Request Admitting
Rate provided by controllers as the main control variables. They directly influence
resource allocation on server. We also call them Service Capacity Index. The former
is used to prevent resource over commitment; the latter is for QoS metrics control.
Like monitors, they are also enforced by actuator on {request type, server} combina-
tions. Thus, QoS control is achieved for different request type on different server.

4 Example Implementation

We implement a web cluster system (see Fig. 1) with QoS control mechanism based
on the framework proposed in Section 3. The dispatcher is implemented as an HTTP

 A Proactive Distributed QoS Control Framework for Cluster Web Site 345

gateway in Linux kernel 2.4. It supports HTTP 1.1 and classifies client requests based
on the characteristic defined by the administrator.

Actuators and monitors are integrated in the HTTP gateway. Monitors collect per-
formance statistics data and send them to controllers using UDP datagram every 2
seconds. The packet includes {concurrent request number, request admitting rate,
average Initial Response Time / data throughput} triples for each request category
managed by the controller. Actuators receive subsequent UDP messages from control-
lers in {Maximum Concurrent Request Number, Maximum Request Admitting Rate}
format for each request category supported by the controller. The maximum commu-
nication load is (35 * request type number * server number) bytes every 2 seconds.

Actuator enforces controllers’ decisions on the control variables. When thresholds
of all candidate servers for a request category are exceeded, requests belonging to that
category queue up at the gateway, until new resources are available or timeout. Con-
troller message replaces traditional server health check mechanism. Three successive
lose indicate the problem with the server or local network.

On real server, monitors collect system resource usage information periodically us-
ing system specific facilities. CPU usage monitor is implemented for the time being.
Other resource monitors may be added in the future. Because CPU usage often fluctu-
ates with peaks and valleys, we use a variation of DMC (Dynamic Matrix Control)
algorithm to smooth it while keeping track of the main trend. The same work is done
for concurrent request number and request admitting rate before they are fed to con-
troller. Service health checking monitor is another important monitor type. It periodi-
cally examines service availability based on user customizable scripts for specific
applications. When service dies, it sets Service Capacity Index to zero, thus dismiss
the server from the cluster.

The controller has two jobs: quantitative QoS control for different request types
(There’re few such solutions before), preventing system resource over-commitment.
In our implementation, we employs two independent fuzzy controllers for the above
two purpose. The fuzzy controller performs a black box style control, satisfying
friendliness flexibility and effectiveness requirements mentioned in Section 1. The
fuzzy inference uses Single Fuzzifier, Product Inference Engine and Center Average
Defuzzifier [33]. In fact, other control theories and techniques may be used in this
framework. For the time being, all controllers and server side monitors are imple-
mented for Windows platform and UNIX like OS such as Linux. Except the system
resource usage monitor code, all other codes are platform independent.

 Fuzzy Control Model for Quantitative Performance Control
The model takes three fuzzy inputs:

Capacity Utilization (U): the utilization of capacity indicated by Maximum Re-
quest Admitting Rate. Let Cmax is Maximum Request Admitting Rate, C is request
admitting rate at sampling time, then U = C / Cmax.

System Load (L): CPU usage percentage, preprocessed by DMC algorithm.
Relative Performance Error (E): error ratio to set point. E = (Preference – P) /

Preference, where Preference is object performance metrics such as Initial Response
Time, P is corresponding run time value preprocessed by DMC algorithm.

346 X. Wang and S. Jin

Output of the fuzzy inference is Regulation Ratio (R) of Maximum Request Ad-
mitting Rate. R = (Cnew – Cprevious) / Cprevious where Cprevious is previous value
of Maximum Request Admitting Rate. We can get the new value Cnew from R and
the above equation.

Based on the fuzzy sets defined for three inputs, we have 31 fuzzy inference rules.

 Fuzzy Control Model for Preventing Resource Over-Commitment
The model takes two fuzzy inputs:

Capacity Utilization (U): the utilization of capacity indicated by Maximum Con-
current Request Number. Let Cmax is Maximum Concurrent Request Number, C is
concurrent request number at sampling time, then U = C / Cmax.

Relative Load Error (E): error ratio to set point. E = (Preference – P) / Prefer-
ence, where Preference is object resource utilization (CPU usage), P is corresponding
run time value preprocessed by DMC algorithm.

Output of the fuzzy inference is Regulation Ratio (R) of Maximum Concurrent
Request Number. R = (Cnew – Cprevious) / Cprevious where Cprevious is previous
value of Maximum Concurrent Request Number. We can get the new value Cnew
from R and the above equation.

Based on the fuzzy sets defined for two inputs, we have 9 fuzzy inference rules.

5 Experiments and Results

The experiments are designed to validate the effectiveness of the QoS control frame-
work, especially for quantitative QoS control. The test-bed consists of one dispatcher,
two back-end servers, four client PCs. Each machine runs Linux kernel 2.4.8 with
One 2.5 GHz Intel P4, 512 MB RAM and 1000 Mbps Ethernet network. Clients and
servers belong to different subnets with dispatcher standing between them. Web serv-
ers are Apache 2.0.46. Maximum process number of Apache is 512; connection time-
out value is 15 sec.

The first experiment is designed to validate the effectiveness of the QoS control
framework under simple user load. We use sclient [34] to emulate 400 simultaneous
users in 30 seconds, requesting same one image of 190K bytes. Object Initial Re-
sponse Time is 100 ms. Initial Maximum Concurrent Request Number for all request
types on each server is set to 50. Fig. 4 shows that the control process is smooth due
to simple request pattern. The results converge to our objective.

The second experiment is to test the adaptability of the cooperative control frame-
work to more realistic load. We use SURGE [35] to emulate 400 simultaneous users.
Other settings are same with the first experiment. The results in Fig. 5 show larger
fluctuations, but the control is still responsive with adequate precision.

To find the load produced by the controller, we ran the cluster without load and
checked the load percentage with “top”. That’s around 2% every 2 seconds. The simi-
lar results are found on other platforms. Although it’s negligible for server, dozens of
such controller on single node will have serious impact, especially for a dispatcher
implemented as application gateway. We configure five request types in our experi-
ments. The total communication load is 350 bytes every 2 seconds.

 A Proactive Distributed QoS Control Framework for Cluster Web Site 347

Fig. 4. Results under simple load pattern

Fig. 5. Results under more realistic load pattern

From the above experiments results, we can see that our QoS control framework
can perform effective quantitative QoS control with little burden on the whole system.
There’re few such results in previous research and implementation.

6 Conclusions and Future Work

Web cluster QoS control can improve client’s experience and facilitate some valuable
web site management modes. This paper has proposed a distributed QoS control
framework based on back-end server’s proactive control. It allows the use of more
advanced but resource consuming control methods without single point performance
problems in contrast to previous proposals. Thus quantitative QoS control can be
achieved which is still a problem in previous solutions. Our proposal also takes
friendliness, flexibility and effectiveness of the control scheme into account for prac-
tical employment. Under this framework, we developed a web cluster using fuzzy
QoS controller which can perform quantitative QoS control. The experiments show its
feasibility and effectiveness.

More controller types and other control objectives like QoS differentiation under
this framework are worth further investigation. Distributed QoS control with multiple
dispatchers is another interesting subject.

348 X. Wang and S. Jin

References

1. Mark E. Crovella and Azer Bestavros, Self-Similarity in World Wide Web Traffic: Evi-
dence and Possible Causes in IEEE/ACM Transactions on Networking, 5(6):835--846,
December 1997.

2. K. Li and S. Jamin. A measurement-based admission-controlled Web server. In Proceed-
ings of IEEE Infocom 2000, Tel-Aviv, Israel, March 2000.

3. G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for resource
management in server systems. In Proceedings of the Third USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’99), February 1999.

4. M. Harchol-Balter, M. Crovella, and S. Park. The case for SRPT scheduling in Web serv-
ers. Technical Report MIT-LCR-TR-767, MIT, October 1998.

5. B. Schroeder and M. Harchol-Balter. Web servers under overload: How scheduling can
help. Technical Report CMU-CS-02-143, Carnegie-Mellon University, June 2002.

6. Jordi Guitart, David Carrera. Session-Based Adaptive Overload Control for Secure Dy-
namic Web Applications. In Proceedings of 34th International Conference on Parallel
Processing (ICPP 2005), 14-17 June 2005, Oslo, Norway

7. L. Breslau, E.W. Knightly, S. Shenker, I. Stoica, and H. Zhang. Endpoint admission con-
trol: Architectural issues and performance. In Proceedings of ACM SIGCOMM 2000,
Stockholm, Sweeden, October 2000.

8. R. Iyer, V. Tewari, and K. Kant. Overload control mechanisms for Web servers. In Work-
shop on Performance and QoS of Next Generation Networks, Nagoya, Japan, November
2000.

9. V. Kanodia and E. Knightly. Multi-class latency-bounded Web services. In Proceedings of
IEEE/IFIP IWQoS 2000, Pittsburgh, PA, June 2000.

10. S. Chandra, C. S. Ellis, and A. Vahdat. Differentiated multimedia Web services using
quality aware transcoding. In Proceedings of IEEE INFOCOM 2000, March 2000.

11. X. Chen, H. Chen, and P. Mohapatra. An admission control scheme for predictable server
response time for Web accesses. In Proceedings of the 10th World Wide Web Conference,
Hong Kong, May 2001.

12. Daniel A. Menasce, Daniel Barbara, Ronald Dodge. Preserving QoS of E-commerce Sites
Through Self-Tuning: A Performance Model Approach. In the Proceedings of the 3rd
ACM Conference on Electronic Commerce. Tampa, Florida, USA. Oct, 2001.

13. H. Chen and P. Mohapatra. Session-based overload control in QoS-aware Web servers. In
Proceedings of IEEE INFOCOM 2002, New York, June 2002.

14. Zhangxi Tan, Chuang Lin, Hao Yin, Ye Hong. Approximate Performance Analysis of
Web Services Flow Using Stochastic Petri Net. Accepted by GCC 2004, LNCS, October
2004, Wuhan China.

15. C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. A feedback control approach for guaran-
teeing relative delays in Web servers. In IEEE Real-Time Technology and Applications
Symposium, Taipei, Taiwan, June 2001.

16. Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and D. Tilbury. Using MIMO feedback con-
trol to enforce policies for interrelated metrics with application to the Apache Web server.
In Proceedings of the Network Operations and Management Symposium 2002, Florence,
Italy, April 2002.

17. Matthew David Welsh. An Architecture for Highly Concurrent, Well-Conditioned Internet
Services. Ph.D. thesis, U.C. Berkeley, September 2002.

 A Proactive Distributed QoS Control Framework for Cluster Web Site 349

18. Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, John A. Stankovic, ``ControlWare:
A Middleware Architecture for Feedback Control of Software Performance,'' International
Conference on Distributed Computing Systems, Vienna, Austria, July 2002.

19. Ronghua Zhang, Tarek F. Abdelzaher, and John A. Stankovic, ``Kernel Support for Open
QoS-Aware Computing,'' Real-Time and Embedded Technology and Applications Sympo-
sium, Toronto, Canada, May 2003.

20. Ying Lu, Tarek F. Abdelzaher, Avneesh Saxena, ``Design, Implementation, and Evalua-
tion of Differentiated Caching Services,'' IEEE Transactions on Parallel and Distributed
Systems Vol. 15, No. 5, pp. 440-452, May 2004.

21. Chenyang Lu, Ying Lu, Tarek F. Abdelzaher, John A. Stankovic, Sang H. Son, ``Feedback
Control Architecture and Design Methodology for Service Delay Guarantees in Web Serv-
ers,'' IEEE Transactions on Parallel and Distributed Systems, 2005.

22. Chengdu Huang and Tarek Abdelzaher, ``Bounded-Latency Content Distribution: Feasi-
bility and Evaluation,'' IEEE Transactions on Computers, 2005.

23. 30 Vivek S,Mohit A. Locality-Aware Request Distribution in Cluster-based Network
Servers. In:Proc. of ASPLOS- ,ACM SIGPLAN,1998. 205 216

24. M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: A mechanism for resource
management in cluster-based network servers. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, Santa Clara, CA, June
2000.

25. S. Ranjan, J. Rolia and E. Knightly, IWQoS 2002. QoS-Driven Server Migration for Inter-
net Data Centers. In Proceedings of IEEE IWQoS 2002.

26. Bhuvan Urgaonkar, Prashant Shenoy. Dynamic Provisioning of Multi-tier Internet Appli-
cations Proceedings of the 2nd IEEE International Conference on Autonomic Computing
(ICAC-05), Seattle, June 2005.

27. Xueyan Tang, Samuel T. Chanson, Huicheng Chi, and Chuang Lin. Session-Affinity
Aware Request Allocation for Web Clusters. In Proceedings of the 24th International Con-
ference on Distributed Computing Systems (ICDCS'04), IEEE Computer Society, 24-26
March 2004, Tokyo Japan, pp. 142-149.

28. A. Verma and S. Ghosal. On Admission Control for Profit Maximization of Networked
Service Providers. In Proc. of 12th Int'l World Wide Web Conf. (WWW2003), Budapest,
Hungary, May 2003.

29. Sameh Elnikety, Erich Nahum. A Method for Transparent Admission Control and Request
Scheduling in E-Commerce Web Sites. In Proceedings of WWW2004, May 17–22, 2004,
New York, New York, USA.

30. Bhuvan Urgaonkar, Prashant Shenoy. Cataclysm: Handling Extreme Overloads in Internet
Applications. In Proceedings of the Fourteenth International World Wide Web Conference
(WWW 2005), Chiba, Japan, May 2005.

31. Shan Z, Lin C, Marinescu D C, and Yang Y. QoS-aware load balancing in Web-server
clusters: performance modeling and approximate analysis. Computer Networks Journal,
September 2002, 40(2): 235-256.

32. Lin C and Marinescu D C. Stochastic high-level Petri nets and applications. IEEE Trans.
on Computers, 1988, 37(7): 815-825.

33. Li-Xin Wang. A Course in Fuzzy Systems and Control. Prentice-Hall, Inc. 1997
34. Banga, G. and Druschel, P. Measuring the capacity of a web server. Usenix Symposium on

Internet Technologies and Systems 1997.
35. P. Barford and M. E. Crovella, “Generating Representative Web Workloads for Network

and Server Performance Evaluation,” ACM SIGMETRICS '98, Madison WI, 1998.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 350 – 359, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Implementation of Zero-Copy Data Path
for Efficient File Transmission

Dong-Jae Kang2, Young-Ho Kim1, Gyu-Il Cha1, Sung-In Jung1,
Myung-Joon Kim1, and Hae-Young Bae2

1 Internet Server Group, Digital Home Division, ETRI,
161 Gajeong-dong, Yuseong-gu, Daejeon, Korea

{djkang, kyh05, gicha, sijung, joonkim}@etri.re.kr
2 Dept. of Computer Science and Information Engineering, In-Ha University,

253 Yonghyeon-dong, Nam-gu, Incheon, Korea
hybae@inha.ac.kr

Abstract. Huge requests for file transmission by concurrent users cause ex-
cessive memory copy operations and system calls between kernel and user
space, which are very expensive and require many CPU cycles for processing.
And it has been a bottleneck that limits the number of serviceable requests
and prevents CPU resources from being allocated to other processes. In this
paper, we suppose the zero-copy data path for efficient file transmission to
solve the upper described problems. To do that, we used existing system call
interface, sendfile, for file transmission from one device to another and used
the same buffer page to transmit a file. The supposed zero-copy data path re-
duces CPU cost per transaction by eliminating CPU copies between kernel
and user space and by avoiding unnecessary system calls in user space. The
improved CPU efficiency means that a larger number of requests can be ser-
viced with the same CPU configuration.

1 Introduction

With the steep growth of multimedia and distributed computing technology, the size
of requested data has been increased. And huge requests for file transmission by con-
current users cause excessive memory copy operations and system calls between
kernel and user space which are very expensive operations in the remote storage
server, shared backup server, ftp server and etc. Therefore, it has been a bottleneck
that limits the number of serviceable requests and prevents CPU resources from being
allocated to other processes in server. Generally, the operation which transfers file
between network and disk needs execution of several system calls in user space and
requires many CPU copies between kernel and user space. So, a lot of CPU cycles are
consumed for processing them [1]. This means that the CPU resource may be un-
available during the huge copy operations [4] and context switching for each system
call operation. But, in many cases, when the data don’t need processing and handling
in user space, so we don’t have to pass the data through user area for transmitting it in
server system, especially like as upper described server systems. It is possible to
transfer data without copying to user area in many applications.

 Design and Implementation of Zero-Copy Data Path 351

In this paper, we design and implement the zero-copy data path for efficient file
transmission to solve the upper described problems. Zero-copy means there is no CPU
copy occurred between kernel and user space. Supposed zero-copy data path elimi-
nates a lot of CPU copy operations and context switching between kernel and user
space. To do that, we used existing interface, sendfile, for file transmission from one
device to another. And we used same system buffer page allocated for getting data
from source (disk or network) and putting it to destination (disk or network) device.
Supposed zero-copy data path has several advantages. It reduces CPU cost per trans-
action by eliminating CPU copies between kernel and user space and by avoiding
unnecessary system calls in user space. And it can improve the whole system per-
formance by enhancement of CPU efficiency and it allows CPU resource to be allo-
cated to another process and can service the larger number of requests with same CPU
configuration.

2 Related Works

Recently, many researches have been performed to improve the system performance
by eliminating CPU copy operations and system calls between kernel and user
space. And the operations have been considered as bottlenecks in various server
systems for a long time [1], [6], [10]. The zero-copy has been studied in two differ-
ent ways, which use memory mapping technique, one is by using special hardware
and the other by only software. The former is mainly related to data transmission
using special network interface card (NIC), it can transmit data without CPU
copy operations by mapping application buffer into memory on device [11], [14],
[18]. The latter is related to memory mapping technique between user buffer and
kernel memory for direct access to it without CPU copy operation [1], [2]. Several
mechanisms supporting zero-copy have been supposed, including IOLite [9], and
UVM virtual memory system [10] which uses some kind of page remapping be-
tween kernel and user space for data sharing. And it has been designed to create a
fast in-kernel data path from one device to another, e.g., the data path between net-
work and disk. These mechanisms do not pass the data between kernel and user
space, but keep the data within the kernel. This means that applications do not ma-
nipulate data in any way, i.e., no data touching operations are performed by the
application [1].

In this paper, we don’t use memory mapping technique which needs memory ini-
tialization in startup time and memory management for allocation and de-allocation in
operation time. So, we shared buffer page in kernel without using memory mapping
between kernel and user space. Good example of such mechanism is the sendfile
system call [2] in Linux operating system. Despite of the many supposed mecha-
nisms, only a limited support for zero-copy, file transmission from disk to network
using system buffer page, is provided in commodity operating systems like Linux. So,
in this paper, we suppose the design and implementation of the in-kernel data path for
file transmission supporting full functionalities for zero-copy and extended the func-
tion of sendfile system call interface in Linux.

352 D.-J. Kang et al.

3 Design and Implementation of Zero-Copy Data Path

In this section, we describe the details of design and implementation for zero-copy
data path for file transmission.

3.1 Consideration for Design

We made several considerations for design of zero-copy data path, and it is reflected
to our implementation. The considerations are as like bellow. First, zero-copy data
path must be implemented in or upper VFS (Virtual File System) layer, because the
implementation should be independent on specific sub systems. For example, it
should be not dedicated function for specific file system. If it is implemented in VFS
layer, it can be more general interface for all file system under VFS layer. And it will
be able to operate correctly, regardless of any file systems. Second, its function is
combination of several system call operations in kernel, especially, in VFS layer be-
cause the cost for system call should be minimized. The zero-copy data path should
be supported by one interface and, regardless of data size, be called one time by ap-
plication. System calls are very expensive operations because each system call re-
quires two times of process context switching, and requires a lot of CPU copies be-
tween kernel and user space. Generally, like as recv and write, system calls are called
repeatedly until requested all data are processed. It has been known as very time and
resource consuming operation. If, regardless of data size, it is called one time by ap-
plication, a number of data copy operations between kernel and user space will be
eliminated. Additionally, process context switching for execution of system call will
be reduced. Third, the implementation should have minimal dependence with other
kernel subsystems, file subsystems, network subsystem and the other modules. This
will make management and modification for it to be easy in future. Fourth, the CPU
copy operations should be minimized. So, we use same system buffer page for data
input and output. It eliminates the memory copy operations by CPU between kernel
and user space. As a result, it will enhance system performance and CPU availability.
The last, general common interfaces should be supported. By now, many researches
support special interfaces to applications for usage of zero-copy. But, it may be obsta-
cle against being used popularly. So, we used existing system call interface, sendfile,
to adapt it.

3.2 Implementation of Zero-Copy Data Path

In this section, we describe the details of implementation for zero-copy data path for
file transmission. First, we explain overview of it and next, explain the zero-copy
operation and its interfaces in kernel.

3.2.1 Outline of Zero-Copy Data Path
Our zero-copy data path is the technique to eliminate the CPU copies between kernel
and user space and to reduce the number of system call in user space by sharing the
system buffer page. It is not implemented by memory remapping method between
kernel and user space. So it doesn’t have to create, manage and delete the pre-defined
shared memory area. Application in user space only initiates the file transmission

 Design and Implementation of Zero-Copy Data Path 353

operation without manipulating the file and most of the operation is processed in
kernel. The supposed zero-copy data path is consist of four kinds of modules as
showed in Fig. 1 and disk and network adapter may be the same one or another. Disk
read module and network receive module moves the data into the allocated buffer
page from disk or network adapter, and they pass the pointer of the buffer page to
other kernel module (disk write module or network send module) without passing the
data into a user application.

Fig. 1. Overview of zero-copy data path for file transmission. A solid line represents file trans-
mission from disk, and a dotted line is from network. In the two cases, destination may be disk
or network.

Zero-copy operations can be classified into sendfile (normal solid line), recvfile
(normal dotted line), copyfile (bold solid line) and routefile (bold doted line) as like
Fig.1. The sendfile is the operation from disk to network without CPU copy and con-
text switching between kernel and user space. It can be used in media streaming, file
uploading in ftp and so on. The recvfile is the reverse with sendfile, from network to
disk. It can be used in file downloading, file saving in backup system and so on. The
copyfile moves a file from disk to disk. Finally, the routefile is used for file transmis-
sion from network to network.

3.2.2 File Transmission Through Zero-Copy Data Path
Fig. 2 shows zero-copy data path (solid lines) and existing system call (dotted lines)
operation for file transmission. In case of existing method, the file data has been cop-
ied at least four times per one execution, two DMA copies and two CPU memory
copies as like Fig.2. And many user/kernel context switchings were required. The first
copy is performed by the DMA engine, which copies the data from source device
(disk or NIC) into buffer page in kernel address space. And then, the data is copied
from the kernel buffer into the user space buffer and the recv or read system call
returns. The return from this call caused a context switching from kernel back to user
mode. Now the data is stored to a buffer in the user address space, and it can begin its
way down again. The write or send system call causes a context switching from user
to kernel mode. A third copy is performed to put the data into a buffer page in kernel

354 D.-J. Kang et al.

address space again. In this time, the data is put into a different buffer page that is
associated with a destination device. And the operation returns, creating our fourth
context switch. Finally, the fourth copy happens as the DMA engine passes the data
from the kernel buffer page to the destination device. As another method, mmap sys-
tem call can be used. But, many system calls are still remained.

Fig. 2. Zero-copy data path for file transmission. A solid line represents file transmission flow
for our implementation (zero-copy operations), and a dotted line is that of existing system call
interface, recv /send / read / write.

But, zero-copy data path operations have no CPU memory copies between kernel
and user space and user/kernel context switching anywhere as like Fig.2. We shares
buffer page allocated for disk read module or network receive module with disk write
module or network send module in Fig.1. Therefore, the zero-copy data path makes
the data to be copied into a kernel buffer page from source device (NIC or disk) and
then, it is passed from the same buffer page into a target device (NIC or disk).

As like Fig.2, when zero-copy operation is called, allocation of buffer page P for
getting data from source device is performed in kernel. And allocated page is added to
page cache. Then, the data from source device is taken into the buffer page P until it
is full or all data are taken. In this time, if source device is network adapter, the data is
taken by one CPU copy from socket buffer. If buffer page is full or all data are taken,
the buffer page is put into the target device. If target device is disk, the buffer page is
removed from page cache and it is modified with file information to be written. Then
it is added to page cache again as page for output file. If the same buffer page is used
for source and destination, it may break out serious problems in operating system.
But, if destination device is network adapter, it is only removed from page cache,
because data for network is not needed to be cached. Also, if destination device is
network adapter, the data is move to target device through socket buffer with one
CPU copy. Upper operations are repeated until all data are processed. Finally, it re-

 Design and Implementation of Zero-Copy Data Path 355

turns to user space. We remained one CPU copy in network subsystem, because zero-
copy implementation should be independent on special subsystems as explained in
section3.1.

3.2.3 Interface Generalization for Zero-Copy Data Path
We tried to adapt our zero-copy operations to existing sendfile system call interface in
Linux 2.6. sendfile was a new feature in Linux 2.2. Originally, sendfile was intended
to copy data between one file descriptor and another. Either or both of these file de-
scriptor may refer to a disk or network. But, current sendfile system call interface only
supports that input file descriptor should be a file descriptor opened for data reading
from disk and output file descriptor should be a socket descriptor opened for data
sending to network. So, we adapt our zero-copy operations to sendfile interface and
support the full function of it.

Fig. 3. Interfaces for zero-copy data path. Our zero-copy function is adapted to existing system
call, sendfile, interface. And painted box supports generalized interface code for data input and
output regardless of devices.

Fig.3 shows interface call sequence of zero-copy data path for file transmission us-
ing existing system call, sendfile. Described four zero-copy functions are identified by
input arguments, in_fd and out_fd. In Fig.3, generic_file_sendfile performs disk read
operaton, generic_sock_sendfile does network receive, generic_file_sendpage does
disk write and sock_sendpage is network send module in Fig.1. file->f_op->sendfile
gets the page-sized data into allocated buffer page from disk or network according to
given in_fd argument. If input descriptor is file descriptor, generic_file_sendfile inter-
face is called, if it is socket descriptor, generic_sock_sendfile is executed. And next,
file->f_op->sendfile calls proper file->f_op->sendpage interface with given page
pointer used for file->f_op->sendfile. That is, the buffer page for putting data to des-
tination device (disk or NIC) is not allocated in file->f_op->sendpage. The buffer

356 D.-J. Kang et al.

page is shared between file->f_op->sendfile and file->f_op->sendpage interfaces for
data input and output. And then, file->f_op->sendpage calls the proper interface,
generic_file_sendpage or sock_sendpage, for putting data into destination device
(disk or NIC) according to given out_fd argument.

4 Experiments and Results

In this section, we tested and analyzed the performance of the supposed zero-copy
data path. We leaved out the test for sendfile and routefile functions because their
performance can be derived from that of recvfile and copyfile.

Fig. 4. Comparison of copyfile and cp operation. (a) shows the execution time, (b) and (c)
represents CPU system time and user time for each operation.

To test, we measured each overhead of the file transmission using zero-copy data
path and existing system call under various file size and compared with each other.
We used SupermicroTM (Intel Xeon dual CPU, Hyper threading, 3.06GHz, 1 and 3G
memory) system and PC (Intel Pentium 4 single CPU 2.60GHz, 512M memory) sys-
tem. The systems were connected by private network to eliminate the unexpected
effect by other computers in open network and TCP was used as network protocol.
Required values were extracted by getrusage, sar, time and vmstat utilities under the

 Design and Implementation of Zero-Copy Data Path 357

various environment. Booyo Linux (linux-2.6.12.6), Korea Linux Standard Spec, de-
veloped by ETRI in Korea was used as the operating system for test machines.

Fig. 5. the comparison of recvfile and recv/write operation. (a) and (b) shows execution time,
(c) and (d) represents the CPU system time and user time for each operation.

Fig.4 shows the comparison result of copyfile and cp operation and it was tested in
single server system environment. In detail, (a) in Fig.4 represents total execution time
according to various file size from 128M to 1G and it shows that file transmission by
copyfile is faster than by cp operation, on average, about 16.5%. (b) and (c) in Fig.4
presents the CPU system time and user time of copyfile and cp operation. The gap of
CPU usage rate between copyfile and cp operation is very big. In the case of CPU sys-
tem time, copyfile reduced the cost by 39.1% compared with cp and in the case of CPU
user time, it reduced the cost by 99.4%. In spite of huge reduction of CPU usage rate,
the total execution time took a small improvement. The reason is that most total execu-
tion time, about 90%, is consumed at waiting for disk I/O and required memory. As a
result, copyfile improved the execution time except waiting time, so improvement of
total execution time is very smaller than that of CPU usage rate. But, it will enhance the
CPU availability as much as reduction of CPU cost, and it will increase the number of
serviceable requests. Fig.5 presents the comparison of recvfile and recv/write operation,
especially, about execution time, CPU system time and CPU user time. (a) in Fig.5 is
total execution time of recvfile and recv/write operation.

358 D.-J. Kang et al.

This was measured in concurrent user environment, 9 concurrent users from 3 sys-
tems transmitting the described size of data in figure, that is, the last case (1024M)
means 9Gbyte was received. Total execution time was improved by 3.5% compared
with recv/write and (c), (d) in Fig.5 shows that CPU system time was reduced by 28%
and CPU user time by 99.4%. (b) in Fig.5 indicates the comparison of throughput
about recvfile, recv/write, mmap/recv. mmap/recv is performed by memory remap-
ping as like the most researches implementing existing zero-copy method. (b) in Fig.5
is total execution time that sender system transmits data to receiver system and re-
ceiver system receives it from NIC and saves to a disk. As showed in the figure, the
throughput of recvfile is the best compared with other operations and has most stable
performance. While, the gap is very slight, because the most of total processing time
are oriented from network transmission and disk I/O. But, the system will be able to
service more requests, because the CPU cost per operation is improved remarkably.

5 Discussion and Conclusion

We supposed zero-copy data path for efficient file transmission. To do that, we sup-
ported one interface for file transmission from one device to another. It reduced the
number of system call and context switching between kernel and user spaces. Next,
we used same system buffer page that is used for getting data from source device and
is used for putting it to destination device. It eliminated the unnecessary CPU memory
copies between kernel and user space.

As showed in the experimentation in section 4, copyfile improved total execution
time, on average, about 16.5%, reduces CPU system time about 39.1% and CPU user
time about 99.4% compared with cp operation. And recvfile enhanced total execution
time about 3.5%, reduced CPU system time about 28% and CPU user time about
99.4% compared with recv/write operation. In case of CPU user time in copyfile and
recvfile, the cost nearly came close to zero.

So, supposed zero-copy data path could enhance the CPU usage rate by removing
CPU copies between kernel and user space and by avoiding unnecessary system calls.
And it improved the whole system performance by bringing down the cost per opera-
tion. Additionally, it can allow CPU resource to be allocated to another process by
improving CPU availability and can service the larger number of requests with same
CPU cost.

References

1. Pal Halvorsen, Tom Anders Dalseng, Carsten Griwodz.: Assessment of Data Path Imple-
mentations for Download and Streaming. DMS'2005 (2005)

2. Dragan Stancevic.: Zero copy I: User-mode Perspective. Linux Journal, Issue 105 (2003)
3. Sotiropoulos, A., Tsoukalas, G., Koziris, N.: Efficient Utilization of Memory Mapped

NICs onto Clusters using Pipelined Schedules. Cluster Computing and the Grid (2002)
238-238

4. Halvorsen, P., Jorde, E., Skevik, K.-A., Goebel, V., Plagemann, T.: Performance Tradeoffs
for Static Allocation of Zero-copy Buffers. Euromicro Conference (2002) 138-143

5. Skevik, K.-A., Plagemann, T., Goebel, V., Halvorsen, P.: Evaluation of a Zero-copy Proto-
col Implementation. Euromicro Conference 2001, Proceedings (2001) 324-330

 Design and Implementation of Zero-Copy Data Path 359

6. Pal Halvorsen, Thomas Plagemann, Vera Goebel.: Improving the I/O Performance of In-
termediate Multimedia Storage Nodes. Multimedia Systems, Vol. 9, No 1 (2003) 56-67

7. Goldenberg, D., Kagan, M., Ravid, R., Tsirkin, M.S.: Zero-copy Sockets Direct Protocol
over Infiniband-preliminary Implementation and Performance Analysis. High Performance
Interconnects 2005, Proceedings (2005) 128-137

8. Amol Shukla, Lily Li, Anand Subramanian, Paul A. S. Ward, Tim Brecht.: Evaluating the
Performance of User-space and Kernel-space Web Servers. Proceedings of the 2004 con-
ference of the Centre for Advanced Studies on Collaborative research (2004)

9. Vivek, S., Pai, Peter Druschel., Willy, Zwaenepoel.: IO-Lite : A unified I/O Buffering and
Caching System. ACM Transactions on Computer Systems, Vol.18, No.1 (2000) 37-66

10. 10 Charles, D., Cranor and Gurudatta M. Parulkar.: The UVM Virtual Memory System.
USENIX Annual Technical Conference. Monterey CA USA (1999) 117-130

11. Piyush Shivam, Pete Wyckoff, Dhabaleswar Panda.: EMP: Zero-copy OS-bypass NIC-
driven Gigabit Ethernet Message Passing. Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (2001)

12. Sejin Park, Sang-Hwa Chung, Bong-Sik Choi, Sang-Moon Kim.: Design and Implementa-
tion of an Improved Zero-Copy File Transfer Mechanism. PDCAT. Lecture Notes in Com-
puter Science, Volume 3320 (2004) 446-450

13. Sotiropoulos, A., Tsoukalas, G., Koziris, N.: Efficient Utilization of Memory Mapped
NICs onto Clusters using Pipelined Schedules. Cluster Computing and the Grid 2nd
IEEE/ACM International Symposium (2002) 223-231

14. Yun-Chen Li, Mei-Ling Chiang.: LyraNET: A Zero-Copy TCP/IP Protocol Stack for Em-
bedded Operating Systems. Embedded and Real-Time Computing Systems and Applica-
tions (2005) 123-128

15. Shinichi Yamagiwa, Keiichi Aoki, Koichi Wada.: Active zero-copy: A performance Study
of Non-deterministic Messaging. Proceedings of the 5th International Symposium on Par-
allel and Distributed Computing (2005)

16. Xu Xiaofei, Ling Yi, Kang JiChang.: The Research on Zero-copy Receiving Method
Based on Communication-page Pool. Parallel and Distributed Computing, Applications
and Technologies (2003) 416 - 419

17. Tezuka, H., O'Carroll, F., Hori, A., Ishikawa, Y.: Pin-down Cache: A Virtual Memory
Management Technique for Zero-copy Communication. IPPS/SPDP, Proceedings (1998)
308-314

18. Dong-Jae Kang, Kang-Ho Kim, Sung-In Jung, Hae-Young Bae.: TCP/IP Offload Engine
Module Supporting Binary Compatibility for Standard Socket Interfaces. Grid and Coop-
erative Computing - GCC2005, LNCS, Volume 3795 (2005) 357-369

19. http://sourceforge.net/projects/zero-copy

Virtual Hierarchy Synthesis for Hybrid
Mobile Ad Hoc Networks

Hyemee Park, Tae-Jin Lee, and Hyunseung Choo�

School of Information and Communication Engineering
Sungkyunkwan University 440-746, Suwon, Korea

Tel.: +82-31-290-7145
{hyemee, tjlee, choo}@ece.skku.ac.kr

Abstract. The interconnection of mobile ad hoc networks to fixed IP
networks is one of the topics receiving more attention within the MANET
working group of the IETF. In such integrated scenarios, commonly
known as hybrid ad hoc networks, mobile nodes are witnessed as an
easily deployable extension to the exiting infrastructure. Some ad hoc
nodes act as gateway that can be used by other nodes to seamlessly com-
municate with hosts in the fixed network. Therefore, this research brings
up several issues regarding Internet gateway discovery and address auto-
configuration to be routable to the fixed Internet. In this paper, we focus
on these elements to guarantee smooth interworking. The proposed Vir-
tual Hierarchy Synthesis (VHS) scheme provides the efficient gateway
discovery and optimal routing protocol are suitable in high mobility hy-
brid MANETs.

1 Introduction

The 1990s have seen a rapid growth of research interests in mobile ad hoc net-
working. The infrastructureless and the dynamic nature of these networks de-
mands new set of networking strategies to be implemented in order to provide
efficient end-to-end communication. This, along with the diverse application of
these networks in many different scenarios such as battlefield and disaster recov-
ery, have seen MANETs being researched by many different organizations and
institutes. One interesting research area in MANET is routing. Routing in the
MANETs is a challenging task and has received a tremendous amount of atten-
tion from researches. This has led to development of many different routing pro-
tocols for MANETs, however, most work has been concentrated on stand-alone
ad hoc networks. Not much work has been done concerning the integration of ad
hoc networks and the Internet. It is limited in supporting connectivity between
communicating mobile nodes. Currently, users with portable devices in ad hoc
networks want to access useful information on the Internet. In particular, the
data collected from ad hoc devices is required to avail in central systems con-
nected to the Internet for various purposes. Therefore, the interconnection of
MANETs to fixed IP networks is increasingly important.
� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 360–369, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks 361

Mobility of user devices connecting to the Internet is of major interest in
today’s research in networking. The Mobile IPv6 [4] provides an important global
mobility solution. Since nodes in ad hoc networks are inherently mobile, it seems
inevitable that some of these nodes are likely to move between different ad hoc
networks and to other parts of the Internet as well. Hence, we focus on connecting
MANETs to global IPv6 networks, while supporting the mobility of ad hoc nodes
by integrating Mobile IPv6 and MANET. In such integrated scenarios, commonly
known as hybrid ad hoc networks, mobile nodes can easily be deployed and
expanded through existing infrastructures. For seamless communications with
Internet hosts, some ad hoc nodes act as gateways to be traversed by other
nodes. The gateway discovery mechanism has an impact in terms of overall
performance, and it is a key component in providing interoperability with fixed
networks. Furthermore, connecting an ad hoc network to the Internet brings up
several issues regarding routing and how to provide nodes in an ad hoc network
with IP addresses that are routable to the fixed Internet. These are the most
relevant elements to guarantee smooth interworking.

During the last year a number of schemes have been proposed to solve these
challenges, however, they suffer from the limitation that a handoff overhead oc-
curs from inefficient gateway discovery and addressing protocol in high mobility
MANETs. In the proposed Virtual Hierarchy Synthesis (VHS) scheme, MANETs
configure a virtual tree topology for reducing the overhead for the gateway dis-
covery. To perform this procedure, the control message is propagated from the
gateway to overall network and this message contains the network prefix infor-
mation other than the gateway information. That is, ad hoc nodes auto-configure
its IP address and discovers the gateway from this message. As the prefix dele-
gation is applied, all nodes share a common global network prefix. It allows that
routing overhead can be reduced due to avoid ingress filtering and unique address
for each MN can be easily auto-configured. By integrating the addressing auto-
configuration information into gateway discovery messages, the overall overhead
is reduced. MANETs based on tree provides the optimal routing protocol for
access to the Internet and reduces a handoff cost as well. By the comprehensive
computer simulation, we compared the proposed scheme with existing schemes
in terms of handoff delay and signaling overhead. Simulation results show that
the newly proposed scheme has better performance than others.

The rest of this paper is organized as follows. In Section 2, related works are
introduced with some discussions. Section 3 presents the proposed VHS scheme
integrating Mobile IPv6 and MANET. The performance of the proposed scheme
is evaluated in Section 4. Finally, we conclude in Section 5.

2 Related Works

There is a number of proposals in the literature to provide Internet connec-
tivity for MANETs. One of the first proposals by Broch et al. [5] is based on
integration of Mobile IP and MANETs employing a Dynamic Source Routing
(DSR) [1]. Jonsson et al. [6] propose a method, called MIPMANET, to connect
an ad hoc network to the Internet using Mobile IP with Foreign Agent (FA)’s

362 H. Park, T.-J. Lee, and H. Choo

Care-of Address (CoA) and reverse tunneling. MIPMANET combines the use
of Mobile IP protocol and Ad Hoc On-Demand Vector (AODV) [2]. Almmari
et al. [7] analyzed the performance of mobile gateways in a MANET based on
the Destination-Sequenced Distance Vector (DSDV) [3] routing protocol. Since
these proposals are based on existing protocols, they are limited in supporting
all routing protocols and do not provide scalability in heterogeneous network
environments. The gateway discovery function of them is done proactively or
reactively by using a routing protocol. It suffers from the flooding overhead for
rediscovering a default route toward the gateway whenever handoff is performed.
In addition, addressing protocol of these schemes cannot solve the ingress filter-
ing problem in MANETs with multihop routing. It incurs the routing overhead
by reverse tunneling, since the packet size is increased in each hop.

Hwang et al. [8] propose a self-organizing, self-addressing, and self-routing
IPv6-enabled MANETs infrastructure. MANETs automatically organize nodes
into tree architecture for self-organizing addressing protocol. When a new node
joins the MANET tree, it receives a unique logical address, which represents
its location of tree. The node uses the logical address as its 64 bit interface ID
when configuring its global IP address. The proposed routing protocol efficiently
reduces the flooding overhead by utilizing the default route between the parent
and child in MANET tree topology. In order to make the routing efficient and
to maintain the tree structure, each node regularly broadcasts control messages
to its parent and children. This scheme allows mobile nodes to use the network
prefix advertised by the gateway. However, it does not address how to propagate
the network prefix of the gateway in MANETs. As mobile nodes configure its
global IP using logical address of tree, the scheme does not provide an efficient
mechanism to configure and manage a mobile node’s address under high mobility.
Although a node changes its point of attachment within the network, it need to
reconfigure its address and perform Binding Update (BU) at its Home Agent
(HA) and Corresponding Node (CN) as well. Furthermore, this scheme requires
an additional function and overhead to organize and maintain the tree overlay.

3 Proposed Scheme

3.1 Virtual Hierarchy Synthesis (VHS) Scheme

In this paper, we consider the special property of the MANETs with the dynamic
multihop topology and focus on the issue that the protocol overhead should
be kept at minimum due to the scarcity of resources. To reduce the routing
overhead by ingress filtering, the prefix delegation mechanism is proposed. This
technique is also used to create virtual trees which are dynamically maintained
and updated when unpredictable topology changes occur. In this section, we
describe how to form and maintain a virtual tree with minimum overhead, and
provide the optimal gateway discovery and efficient addressing mechanism based
on the tree topology.

To propagate the prefix to overall networks, the gateway advertises the Router
Advertisement (RA) message containing its global prefix. It is assumed that Ac-

Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks 363

cess Router (AR) and MANET nodes operate under the IPv6 protocol, therefore
all entities broadcast periodically the RA message to their neighbors. Accord-
ing to using the property, the solution uses the RA message, so that nodes can
simply relay the prefix without a special control message or operation. Unfor-
tunately, the multi-hop nature of an ad hoc network makes it impossible to use
the advertisement message defined in IPv6. Therefore, the original RA message
is extended to propagate over multiple hops through the ad hoc network and to
share a common global network prefix using MANET nodes. Fig.1 presents the
format of the modified prefix information option.

prefix lengthlengthtype

preferred lifetime

8 bits 8 bits 16 bits

Hop count

L A R Reserved

valid lifetime

Gateway IP address (128 bits)

Mprefix lengthlengthtype

preferred lifetimepreferred lifetime

8 bits 8 bits 16 bits

Hop countHop count

L A RR Reserved

valid lifetimevalid lifetime

Gateway IP address (128 bits)Gateway IP address (128 bits)

MM

Fig. 1. Prefix information option

• The M flag means that this message is relayed over multi-hops.
• Hop count is the distance (in hops) from the gateway to the sender node.
• The IP address of the gateway is contained and the prefix length field rep-

resents the length (in bits) of the prefix part of this address.

And the initial distance transmitted by the gateway must be zero and set the
M flag. When a node receives this message, it first generate a global address with
the prefix advertised by a gateway and it’s EUI-64 (Ethernet Unique Identifier)
as the interface ID. Then, it increments the hop count one and forwards an
updated version of the RA message to its neighbors. The gateway information
contained in the RA message is therefore propagated in a hop-by-hop manner,
until all nodes of the ad hoc network share the gateway IP and global network
prefix. Prefix delegation is a method where all nodes of the MANET share the
same prefix advertised from the AR, to reduce the tunneling overhead according
to ingress filtering.

The proposed prefix propagation method leads to the creation of the virtual
tree topology of the ad hoc network. Each virtual tree is rooted at a gateway, and
it is formed by nodes using the global network prefix advertised by the gateway.
In the proposed scheme, the AR acts as a gateway. We consider that a MANET
connects to the Internet via an AR. The AR is a method of supporting Internet
connectivity at the point of attachment between the Internet and MANET nodes.
This overcomes the limitation that a MANET node with low power plays the
role of a gateway.

364 H. Park, T.-J. Lee, and H. Choo

In order to configure the virtual tree topology, each node tries to establish a
parent-child association with its neighbor using 3-way handshake. Control pack-
ets of the procedure include the RA message disseminated for prefix delegation,
PARENT REQUEST, and PARENT REQUEST ACK. When a node receives
the RA message from a neighbor, it generates its global IP address with the
prefix of the RA message. Then, it sends back a PARENT REQUEST to notify
that it is selected as a parent node. When the parent receives the PARENT
REQUEST from the child node, it selects the address which is not assigned
yet in its child table and sends with the response message. As the parent node
sends the ACK with the Tree ID as a logical address, parent-child association is
established.

The logical Tree ID indicates the location of nodes on the tree topology. This
is a routing information to deliver the packet between a gateway and nodes. The
parent keeps the Tree ID and corresponding MN’s address concurrently in its
child table in order to perform an optimal routing and manage them easily. For
example, if the parent node using 1.2.1 ID receives a request message from the
child node, it selects a random number(x) from 1 to 255, which is not used by
other children. Then, the ID of the child node is set to 1.2.1.x as shown in Fig.3.
If the parent does not have an available ID, it must ignore the request so that the
child chooses another parent. However, if the child moves away, it releases the
resource and the Tree ID used by the child and deletes the entry of the child in
its table. The reason why the Tree ID is not used as a global address of a node,
is to consider the high mobility in MANETs. When an ad hoc node changes its
point of attachment within the MANET tree, it must replace the global address
based on Tree ID. It requires significant cost with regard to handoff. The Tree ID
which is separated from the global IP addresses is proposed, in order to optimize
routing in busy mobile environments.

A node may receive one or more RA messages from its neighbors. In this
case, it selects the most appropriate node as a parent from one of the messages
and sends a PARENT REQUEST back. In the proposed scheme, the desirable
algorithm for selecting the parent node is that a node keeps its current prefix as
long as it has neighbors with the same prefix, i.e., until it cannot find a neighbor
that uses the same network prefix. The main advantage of this algorithm is that
they minimize the number of prefix changes. This greatly reduces the overhead
induced by the sending of BU messages when a node changes its global address.
And, a node chooses the parent node that advertises the shortest distance to
a gateway, to maintain the shortest path. This ensures that one node does not
concurrently generate multiple associations and avoids a tree loop. When a child
node is established with a parent node, it ignores the RA message transmitted
by other neighbors as long as it maintains the association.

In order to maintain the virtual tree topology, each node periodically checks
its neighborhood. The nodes can detect the loss of its parent or child nodes using
RA and Router Solicitation (RS) in the Neighbor Discovery Protocol (NDP) [9]
of IPv6. If a child node does not receive the RA message from its parent within
a predefined time, it assumes that its parent node has moved away. In this case,

Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks 365

as the node transmits a RS message to its neighbors, it should restart a 3-way
handshake procedure to select another parent. However, if a parent node does
not receive the RA message from its child and the timer associated to it is
expired, the parent node releases the resource and logical address assigned to
the child. Therefore, in the proposed scheme, the RA message disseminated by
a node allows its parent and children to simultaneously detect its existence.

START

Receive
RA message?

Select a proper
parent from RAs

YES

Send PARENT
REQUEST

back to parent

Receive PARENT
REQUEST ACK?

Send RS message
to its neighborNO

Configure
global IP address

Update RA message
&

Send to neighbors

Tree ID assignment

YES

Select another
Parent node

NO

END

(b)

START

Send RA message
to its neighbor

Receive
PARENT

REQUEST?

Child space
available?

Select child Tree ID

Send PARENT
REQUEST ACK

back to child node

Update child table

END

YES

YES

Ignore PARENT
REQUEST messageNO

NO

(a)

START

Receive
RA message?

Select a proper
parent from RAs

YES

Send PARENT
REQUEST

back to parent

Receive PARENT
REQUEST ACK?

Send RS message
to its neighborNO

Configure
global IP address

Update RA message
&

Send to neighbors

Tree ID assignment

YES

Select another
Parent node

NO

END

(b)

START

Send RA message
to its neighbor

Receive
PARENT

REQUEST?

Child space
available?

Select child Tree ID

Send PARENT
REQUEST ACK

back to child node

Update child table

END

YES

YES

Ignore PARENT
REQUEST messageNO

NO

(a)

Fig. 2. Flow chart of VHS scheme(a) New node joins in network, and (b) Neighbors
response to assign Tree ID

3.2 Integration with Internet Routing

We propose the routing protocol based on the virtual tree topology for commu-
nication with the Internet hosts. All traffic between ad hoc nodes and Internet
hosts are forwarded along the path configured by parent-child association. When
the MANET node wants to transmit the packet to the Internet host, it transmits
the data packets to the gateway using the IPv6 routing header. The extended
routing header contains the final destination address, i.e., the address of the
Internet host, and the destination field of the IPv6 header contains the gateway
address. If intermediate nodes receive the packet with the destination field set
to the gateway IP, they forward it to their parent node recursively. Only an
ad hoc node with an IP address contained in the destination field of an IPv6
header can examine the routing header of this packet. Once the packet arrives
at the gateway, the packet uses the address of the routing header as the final
destination address. The modified packet is then forwarded to the Internet host.

366 H. Park, T.-J. Lee, and H. Choo

In contrast, if the gateway receives the packet from the Internet host to the
ad hoc MN, it adds the hop-by-hop option to the original IPv6 packet. It first
searches its cache for the corresponding Tree ID of the destination address (MN’s
IP). Then, the Tree ID is inserted into the hop-by-hop option. As a result,
intermediate nodes check this option for routing and deliver the packet to the
child node selected by the longest prefix matching algorithm. This algorithm is
used to determine how to forward a packet to its destination using the Tree ID.
Since the proposed scheme uses the Tree ID and the parent-child relationship
based on tree topology, it can reduce the routing overhead.

Fig. 3. Proposed routing protocol

3.3 Integration with Mobile IPv6

The proposed scheme supports seamless mobility of MANET nodes by integrat-
ing the Mobile IPv6 and ad hoc network. We consider that the global address
acquired by an ad hoc node should be used as the Mobile IPv6 CoA of the node.
Each change of global address in the ad hoc network will trigger the sending
of at least one BU message. However, when the Tree ID changes, a new Local
BU (LBU) between gateway and MN is used to immediately provide an optimal
routing.

If the ad hoc MN moves from another MANET or changes its point of attach-
ment within the network, it performs a 3-way handshake procedure to reconfigure
the tree structure as it can no longer contact with its parent node any more. As a
result, it has a new Tree ID. Then, it transmits the LBU message to the gateway
in order to update the new ID. As the receiving gateway rewrites its cache entry,
the gateway can insert the exact information in the hop-by-hop option when it
is added to the packet transmitted by the CN. As it performs a light-weight BU
procedure with the gateway, it does not require the route rediscovery mechanism
of previous schemes between the gateway and the MN. Therefore it can reduce
the flooding overhead of the proactive or reactive protocol.

Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks 367

4 Performance Evaluation

In this section, the performance of the proposed scheme is evaluated in com-
parison with integrating the Mobile IPv6 and existing routing protocol, AODV,
DSR, DSDV, and MANETs based on tree topology. In order to evaluate these
schemes, simulation implemented in C is conducted. Our simulation models a
wireless network of 25 ∼ 100 mobile nodes placed randomly within a 150m ×
100m area. Radio propagation range for each node is 30m. Using the simulation
parameter in Table 1, we measure the total delay required when a node performs
handoff and the overhead of the gateway discovery. Performance is evaluated un-
der various mobility rates and numbers of nodes, to analyze the performance of
mobility and node density effect.

Table 1. Simulation Parameters

Bit rates Processing time
Wire links 100 Mbps MANET Nodes 0.01 msec

Wireless links 10 Mbps Gateway, HA 0.01 msec

Propagation time BU 0.01 msec

Wire links 500 μsec NDP 0.01 msec

Wireless links 2 msec Average number of hops
Data size Wire links 10

Message size 256 bytes Wireless links 1

4.1 Impact of the MANET Node Mobility

The average total delay of the proposed and other schemes is first compared for
various handoff rates. This simulation varies the handoff rates between 0.1 and
0.9. The network has 50 nodes. In addition, a node moves from another network
or changes its point of attachment within the network, and it is placed randomly.
The total delay is the summation of transmission, propagation and processing
time in each hop between two end nodes. The metric calculates the delay of
all procedures, such as NDP, BU, route discovery or routing table update, and
tree reconfiguration et al., occurring after handoff. When a node moves within
a network, it first receives the RA message from the new neighbors. Therefore,
it can detect its movement and perform the procedure to rediscover a default
path toward the gateway. However, if a node moves from another network, the
BU delay is added.

Fig. 4(a) presents the simulation results for the variation of handoff ratios. As
presented in Fig. 4(a), our proposed scheme has better performance than other
schemes. In the reactive protocol of AODV and DSR, the route discovery protocol
is conducted other than NDP, BU procedures when a node performs handoff.
Therefore, the RREQ message is forwarded by all nodes until the gateway is
discovered and RREP is then delivered by the gateway. However, the proactive
protocol of DSDV updates its routing table by adding a new node entry. Though
the route discovery procedure is not required, it must transmit table information

368 H. Park, T.-J. Lee, and H. Choo

25 50 75 100
0

20000

40000

60000

80000

100000

120000

140000

160000

C
on

tr
ol

 m
es

sa
ge

 o
ve

rh
ea

d
(b

yt
es

)

Number of nodes

 MIPv6+Proposed
 MIPv6+AODV
 MIPv6+DSR
 MIPv6+DSDV
 MIPv6+Tree

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

30

A
ve

ra
ge

 to
ta

l d
el

ay
 (

m
se

c)

Handoff ratio

 MIPv6+Proposed
 MIPv6+AODV
 MIPv6+DSR
 MIPv6+DSDV
 MIPv6+Tree

(a) (b)

25 50 75 100
0

20000

40000

60000

80000

100000

120000

140000

160000

C
on

tr
ol

 m
es

sa
ge

 o
ve

rh
ea

d
(b

yt
es

)

Number of nodes

 MIPv6+Proposed
 MIPv6+AODV
 MIPv6+DSR
 MIPv6+DSDV
 MIPv6+Tree

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

30

A
ve

ra
ge

 to
ta

l d
el

ay
 (

m
se

c)

Handoff ratio

 MIPv6+Proposed
 MIPv6+AODV
 MIPv6+DSR
 MIPv6+DSDV
 MIPv6+Tree

(a) (b)

Fig. 4. Simulation results of four schemes (a)Handoff delay, and (b) Gateway discovery
overhead

to all neighbors in order to notify a new node. The tree based schemes are not
required to perform the route discovery or table update and only performs the
procedure to relate with a new parent in tree topology. However, our scheme
reduces the handoff delay than previous tree based scheme [8] as mobility rate is
increasing, since it suffers from the BU storms by frequently changing of node’s
global address. Therefore, our proposed scheme is not significantly affected than
other schemes, as the handoff is more frequent.

4.2 Impact of the Density of MANET

The overhead of the gateway discovery is evaluated for various network sizes in
each scheme. In this simulation, the control message overhead is defined as the
total bytes of the control message when a network is configured and initially
attempts to connect with the Internet. That is, it is the sum of all control
messages delivered until the gateway discovery is completed. We measure the
overhead of 3-way handshake, route discovery and table update of these schemes
as the network size is increasing. The simulation result is presented in Fig. 4(b).
The result represents that the proposed scheme can reduce the control overhead
in large scale networks. In particular, the previous work based on tree topology
has higher control overhead than our scheme, since it requires an additional
overhead to organize and maintain the tree overlay. Our proposal unicasts a
PARENT REQUEST and ACK message of 3-way handshake by including the
RA message, while previous scheme broadcasts most of the control messages.
By integrating the addressing information into gateway discovery messages, the
overall overhead of the proposed scheme is reduced.

5 Conclusion

In this paper, we present a protocol that builds a virtual trees, where each tree
if formed by nodes that share a common global network prefix. By using the tree

Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks 369

topology, an efficient gateway discovery and optimal routing is proposed in high
mobility MANETs. In addition, this connectivity method is not dependent on
a particular routing protocol. Therefore, it provides the optimized communica-
tion as well as scalability in heterogeneous network environments and backward
compatibility with existing mechanisms.

Our simulation represents advantages of the proposed scheme compared to
integrating MIPv6 and the existing routing protocols - AODV, DSR, DSDV,
and tree based MANET. According to the simulation results, our newly proposed
scheme shows up to about 50% of performance improvements in comparison with
other schemes. Thus our solution provides Internet connectivity of ad hoc nodes
with minimum routing overhead and delay in large-scale, high mobility hybrid
MANETs.

Acknowledgment

This research was supported by Ministry of Information and Communication,
Korea under ITRC IITA-2005-(C1090-0501-0019) and grant No. R01-2006-000-
10402-0 from the Basic Research Program Korea Science and Engineering Foun-
dation of Ministry of Science & Technology.

References

1. D. Johnson, D. Maltz, and J. Jetcheva, “The dynamic source routing protocol for
mobile ad hoc networks,” IETF, draft-ietf-manet-dsr-10.txt, July 2004.

2. C. E. Perkins, et al., Ad hoc on-demand destance vector (AODV) routing,” IETF,
RFC 3561, July 2003.

3. C. E. Perkins, and T. J. Watson, “Highly dynamic destination-sequenced distance
vector routing (DSDV) for mobile computers,” ACM SIGCOMM’94, October 1994.

4. D. Johnson, C. E. Perkins, and J. Arkko, “Mobility Support in IPv6,” IETF, RFC
3775, June 2004.

5. J. Broch, D. A. Maltz, and D. B. Johnson, “Supporting Hierarchy and Heterogenous
Interfaces in Multi-Hop Wireless Ad Hoc Networks,” IEEE International Symposium
on Parallel Architectures, algorithms and Networks, June 1999.

6. U. Johnsson, et al., “MIPMANET-Mobile IP for mobile ad hoc networks,” IEEE
Proc. of MobiHoc’00, August 2000.

7. H. Almmari and H. El-Rewini, “Performance Evaluation of Hybrid Environments
with Mobile Gateways,” 9th International Symposium on Computers and Commu-
nications, June 2004

8. R. H. Hwang, et al., “Mobile IPv6-Based Ad Hoc Networks: Its Development and
Application,” IEEE JSAC, Vol. 23, No. 11, November 2005.

9. T. Narten, E. Nordmark, and W. Simpson “Neighbor Discovery for IP Version 6
(IPv6),” IETF, RFC 2461, December 1998.

Design and Analysis of High Performance TCP

TaeJoon Park1, JaeYong Lee2, and ByungChul Kim2

1 Carrier Class Ethernet Team, ETRI,
161 Gajong-Dong, Yuseong-Gu, Daejeon, 305-350, Korea

tjpark@etri.re.kr
2 Department of Infocom Engineering, Chungnam National University

220 Gung-Dong, Yuseong-Gu, Daejeon, 305-764, Korea
{jyl, byckim}@cnu.ac.kr

Abstract. Traditional TCP implementations have an under-utilization
problem in high bandwidth delay product networks. This paper proposes
a new congestion control mechanism, a high performance TCP (HP-
TCP), to solve the under-utilization problem. The congestion avoidance
period of the HP-TCP control is divided into linear and exponential
growth phases, where the linear increase phase is similar to that of the
legacy TCP; when there is no queueing delay in the linear increase phase,
the congestion window grows exponentially to fill a large pipe quickly.
The exponential increase phase can cause serious problems of overshoot-
ing the network capacity, which results in massive retransmissions and
low bandwidth utilization. To solve this problem, the proposed algorithm
uses the RTT status and the estimated bandwidth to prevent packet
losses during the exponential growth phase. The simulation results show
that the HP-TCP improves the convergence time and throughput per-
formance of the TCP in high bandwidth delay product networks.

1 Introduction

In Grid environments, access to distributed data is very important, as well as
access to distributed computational resources. Distributed scientific and engi-
neering applications require the transfer of large amounts of data (terabytes or
more) between storage systems in geographically different locations for analysis,
visualization, and so on [1][2]. While the legacy TCP is the most commonly used
and reliable transport protocol in the Internet, it is generally accepted that it is
not suitable for massive data transfers such as Grid applications. Since the TCP
congestion control algorithm is not dynamic enough for high bandwidth delay
product (HBDP) networks, the packet drop rate required to fill a gigabit pipe
using the current TCP protocol is beyond the limits of the currently achievable
fiber optic error rates.

In this paper, we propose a modified TCP congestion control mechanism that
can provide efficient data transfer in HBDP networks. The proposed congestion
control mechanism has not only linear, but also exponential growth phases in
the congestion window. When there is no queueing delay and it satisfies a cer-
tain condition, the congestion window grows exponentially during the congestion

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 370–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Design and Analysis of High Performance TCP 371

avoidance period. Otherwise, it maintains a linear growth in the congestion win-
dow similar to the legacy TCP congestion avoidance algorithm. Based on the
relationship of the current and minimum round trip time (RTT), the proposed
method selects between the linear and exponential growth phases of the conges-
tion window update during the congestion avoidance period. To prevent packet
loss during the exponential growth phase, our method uses not only the end-to-
end delay information, but also the estimated bandwidth of the bottleneck node.
In addition, the proposed method maintains a TCP-compatibility property in
ordinary small BDP networks. The simulation results show that the proposed
mechanism prevents overshooting during the exponential growth phase and im-
proves the performance and fairness of the TCP in HBDP networks.

The remainder of the paper is organized as follows. Section 2 describes the
related studies in this area; section 3 discusses the proposed mechanism. Section
4 discusses the analytic model for the HP-TCP. In Section 5, the simulation
results are shown and discussed, and the paper is concluded in Section 6.

2 Related Work

The traditional TCP, i.e. TCP-reno, is compliant to the RFC 793 [3] and RFC
2581 [4] IETF standards. During the initial start up phase (slow start), the
standard TCP exponentially increases the amount of transferred data until de-
tecting either a packet loss by a timeout or triple duplicate ACKs. When a loss
is detected, the TCP halves the congestion window (cwnd), which constrains
the number of packets to be sent without acknowledgement, and moves into the
congestion avoidance phase. During the congestion avoidance phase, the TCP
increases the cwnd by one packet per window and halves the window for a packet
drop. Thus, we call the TCP’s congestion control algorithms Additive Increase
Multiplicative Decrease (AIMD) algorithms. However, the AIMD control of the
current TCP is not dynamic enough to fill a large pipe for large BDP networks.
For example, for a standard TCP connection with 1500-byte packets and a 100
ms RTT, achieving a steady-state throughput of 10 Gbps would require an aver-
age congestion window of 83,333 segments and a maximum packet drop rate of
one congestion event for every 5,000,000,000 packets [5]. The average bit error
rate of (2×10−14) is needed for full link utilization in this environment; however
it is an unrealistic requirement for the current network technology.

Over the past few years, research has shown attempts to solve the under-
utilization problem of the legacy TCP in HBDP networks [5][6] and can be clas-
sified into two main groups: loss-based and delay-based solutions. The loss-based
solutions focus on a modification of the increase and decrease parameters of the
TCP-AIMD algorithm, i.e. HS-TCP [5] . The loss-based solutions use packet loss
as the only indication of congestion. However, these protocols have some draw-
backs for deployment in terms of convergence times, compatibility, fairness, and
so on [7][8]. The delay-based solutions propose the queueing delay as a conges-
tion measure, i.e. FAST-TCP [6]. The delay-based solutions reduce or increase
the transmission rate based only on RTT variations. However, when competing

372 T. Park, J. Lee, and B. Kim

with other loss-based solutions, the delay-based solutions are penalized due to
the aggressive nature of the loss-based solutions [9].

3 Congestion Control Mechanism of the High
Performance TCP

The suggested TCP, HP-TCP, modifies the standard TCP’s congestion control
mechanism used in TCP connections with large congestion windows. The legacy
TCP congestion control algorithm is composed of Slow Start (SS) and Con-
gestion Avoidance (CA) phases. Since the linearly increasing TCP congestion
avoidance algorithm is not dynamic enough, the packet drop rate required to
fill a gigabit pipe using the current TCP protocol is beyond the limits of the
currently achievable fiber optic error rates.

SS

Wm

Wm /2

SS’1

WAB

Time(sec)

CA2 SS’2CA1 CA3

W
in

d
o

w
(p

a
ck

e
ts

)

S1 C2 S2C1 C3

SS

Wm

Wm /2

SS’1

WAB

Time(sec)

CA2 SS’2CA1 CA3

W
in

d
o

w
(p

a
ck

e
ts

)

S1 C2 S2C1 C3

Fig. 1. Evolution example of window size including the startup phase in the proposed
HP-TCP

The proposed congestion control mechanism can be divided into three phases:
SS, CA, and SS’. The SS phase is the exponential growth phase; the CA phase is
the additive increase phase; and the SS’ phase is the exponential growth phase
only activated in HBDP networks after the CA phase. Figure 1 shows an example
evolution of the congestion window of the proposed HP-TCP.

The proposed congestion control mechanism has provided a solution to pre-
vent overshooting in the SS phase and a fast bandwidth reserving solution in
the CA phase to switch over to the SS’ phase.

3.1 The SS Phase

The legacy TCP’s SS phase is suitable for fast bandwidth reservations. To avoid
a premature exit from the SS phase (Fig. 1) and to increase utilization, the initial

Design and Analysis of High Performance TCP 373

ssthresh can be increased. However, a large initial ssthresh can cause slow start
overshooting problems, multiple packet losses, and further reduce the utilization.
The HP-TCP, like TCP-vegas, prevents overshooting during SS by only allowing
exponential growth every other RTT. While TCP-vegas’ congestion avoidance
mechanism during the initial SS period is quite effective, it can still overshoot
the available bandwidth, and it depends on sufficient buffering at the bottleneck
router to prevent loss until realizing that it needs to slow down. To compensate
for the weak points, we limited the maximum size of the cwnd in the SS phase
by resetting ssthresh to the estimated bandwidth of the bottleneck node and
adapting the pacing method to limit the burstness of sending packets. Limiting
ssthresh to the available bandwidth can limit the fairness in TCPs that use losses
for congestion verification. Therefore, in order to use a method that can estimate
the bottleneck node’s most available bandwidth, we use a bottleneck bandwidth
estimation scheme to determine the Pipesize, which is defined as [10]:

Pipesize =
delay · bandwidth

packet size
=

delay

packet spacing
(1)

Usually, most problems in the delay-based congestion control methods, like TCP-
vegas, are due to the reduction of cwnd depending on the delay. However, the
proposed method only decides the cwnd switching point from exponential growth
to additive increment and allows bandwidth competition using congestion con-
trol, as in the legacy TCP; thus, it minimizes problems in the legacy cwnd control
that uses delay-based methods.

3.2 The CA Phase

In the TCP Reno, the congestion avoidance phase, CA (Fig. 1), starts when
the congestion window exceeds the slow start threshold ssthresh or a packet loss
is detected with triple duplicate ACKs. The start condition of the CA phase
in the HP-TCP is the same as that of the TCP-reno. However, to manage the
under-utilization problem during the CA phase in HBDP networks, we adopt an
exponential growth of congestion window in the CA phase, called the SS’ phase.
In the HP-TCP, if the RTT does not increase for the predefined waiting time
and cwnd is smaller than the Pipesize, the CA phase switches to the SS’ phase
to drastically increase the congestion window and utilize the larger available
bandwidth. The waiting time is defined as:

waiting time = log2(cwnd max)× n (2)

where cwnd max is the maximum cwnd in the current CA phase.
As waiting time is a function of cwnd, it can be used to control fairness;

the larger the cwnd, the longer the waiting time. Therefore, the connection of a
larger cwnd delays the start of the SS’ phase. Since the modified SS phase can
quickly approach the achievable available bandwidth, the linear increasing rate
of the cwnd does not need to be greater than that of the ordinary TCP. Hence,
the increasing rate during the CA phase is the same as that of the legacy TCP.

374 T. Park, J. Lee, and B. Kim

The queueing duration, the CA period, is determined by the buffer capacity and
the incoming/outgoing traffic rate. If the RTT exceeds the predefined threshold
or the cwnd exceeds the estimated Pipesize during the SS’ phase, the phase
switches back to the CA phase again and the cwnd increases linearly until a
packet loss is detected. In the event of a packet loss, the congestion widow size
is halved for fairness; thus, the HP-TCP is compatible with the legacy TCP.

When an ACK for a new packet arrives;
If(cwnd > thresh_window){

If (state == SS){
// doubles its cwnd only every other RTT.
If (RoundNumber == even)

cwnd=cwnd +1;
If ((RTT > BaseRTT) || (cwnd > Pipesize))

state = CA;
} else If (state == CA){

cwnd = cwnd + 1/cwnd;
If ((RTT BaseRTT) && (cwnd < Pipesize)) {

waiting_time_counter ++;
If(waiting_time== waiting_time_counter)

state = SS’;
} else

wait_time_counter = 0;
} else If (state == SS’){

If (ACK_count cwnd_base)
cwnd=cwnd +1;

If ((RTT > BaseRTT) || (cwnd > Pipesize)) {
waiting_time = log2(cwnd_max)*n;
state = CA;}

}
}
When triple-duplicate ACKs arrive;
cwnd = cwnd / 2;
waiting_time = log2(cwnd_max)*n;
state = CA;

Fig. 2. Pseudo-code for the proposed congestion control

3.3 The SS’ Phase

The SS’ phase is similar to the initial slow start phase of the HP-TCP; however,
the start time of the exponential growth is controlled by the combination of the
waiting time, RTT status, and estimated Pipesize of the connection. The start
value of the exponential growth, cwnd base, is the final cwnd in the CA phase
and the increment, Incr, is given by (3).

Incr = �Max{cwnd(i)− cwnd base, 0}	/�cwnd(i)	 (3)

where i is the round number during the SS’ phase. For example, when cwnd base=
K, the cwnd of the first round becomes K+1; it becomes K+2 in the second round,
K+4 in the third, K+8 in the fourth, and so on.

Design and Analysis of High Performance TCP 375

The exit condition of the SS’ phase in the HP-TCP is the same as that of the
SS phase. Figure 2 shows the pseudo-code of the proposed mechanism. Only when
the congestion window is larger than thresh window, the proposed mechanism
is used; otherwise, the normal TCP algorithm is used to maintain backward
compatibility with the legacy TCP.

4 Analytic Model for the HP-TCP

In order to analyze the performance of the HP-TCP in a steady state, we used
a stochastic model of TCP congestion control with parameters of loss rate (p)
and average round trip time (RTT). We assumed that there was no ACK drop,
and an unlimited amount of data to send in the sender; also, the congestion
window size was not limited by the advertised receiver window size. The steady
state TCP throughput X(p) for the loss rate p is defined as the ratio of the total
number of bits sent to the total transmission time. We define a “period” as the
time between two adjacent packet drops. Yi is defined as the number of packets
sent in period Xi(= C + S) for the ith period.

In the steady state, we can assume that the above evolution is a regenerative
process, as shown in Fig. 1. The same assumption was used for modeling TCP
throughput in [11]. Then, we can express the throughput as:

X(p) =
E[Y]
E[X]

(4)

As shown in Fig. 1, the average value of X and Y (the subscript i is deleted
hereafter) can be expressed as:

E[X] = RTT · (E[C] + E[S]), and (5)

E[Y] = E[YC] + E[YS])

= E(C)WAB +
Wm

2
(k + 1) +

k∑
i=0

2i (6)

= 1/p

where YC and YS are defined as the number of packets sent in the CA phase and
the SS’ phase, respectively. E[Y] is equal to 1/p because we assume the random
packet drop probability p. WAB is the maximum available bandwidth in units
of packet; thus:

WAB =
AvailableBandwidth ·RTT

MSS
(7)

k is an integer satisfying (8) and E[S] becomes (k + 1) round.

Wm

2
+ 2k−1 < WAB ≤ Wm

2
+ 2k ≤ Wm (8)

376 T. Park, J. Lee, and B. Kim

Hence, the average number of packets sent in each regenerative period, E(Y), is
given by:

E[Y] ≈ E[C]WAB +
Wm

2
(k + 1) + (2k+1 − 1)

≈ E[C]WAB + (WAB − 2k)(k + 1) + (2k+1 − 1) (9)
≈ E[C]WAB + (k + 1)WAB − (k − 1)2k − 1

From (9), it follows that

E[C] ≈ 1/p− (k + 1)WAB − (k − 1)2k + 1
WAB

=
1

pWAB
− (k + 1) +

(k − 1)2k + 1
pWAB

(10)

Therefore, from (5), (6), and (10), X(p) is calculated as follows:

X [p] ≈ 1/p

RTT (E[C] + E[S])

=
WAB

RTT {1 + p((k − 1)2k + 1)} (11)

From (7), 2k+1 ≤ Wm and k =
log2(Wm)�. Thus, we can rewrite (11) as (12).
For a small value of p, (12) can be approximated by (13):

X [p] ≈ WAB

RTT {1 + p((k − 1)Wm/2 + 1)} , and (12)

≈ WAB

RTT
if pWAB � 1 . (13)

5 Simulation Study

We performed simulations using the network simulator ns-2 [12] for a network
with a bottleneck bandwidth of 800 Mbps and RTT values of 200 ms. The
queue size at each bottleneck node is 50% of the bandwidth delay product of
the bottleneck link. For convenience, the window size is measured in number of
packets with a packet size of 1000 bytes. Drop tail queues are used in the routers.

Figure 3 compares the analytical results of equation (12) of section 5 and the
simulation results. The environmental values used are as follows: a bottleneck
bandwidth of 800 Mbps, an RTT value of 200 ms, a bottleneck buffer size of
10,000 packets, and a packet size of 1000 bytes. Drop tail queues were used
in the routers. In the simulation, performance was measured by the packets
delivered 100 seconds after the initial start for 1000 seconds. In comparison, the
analytical results of equations (12) and (13) have been proved to be valid.

Figure 4 shows the congestion window variations of the three TCP variants
with a loss rate of 10−6. In spite of severe packet loss events, the congestion
window of the HP-TCP quickly recovers the link capacity and the performance

Design and Analysis of High Performance TCP 377

Fig. 3. Throughput comparison between analytical and simulation results

0 200 400 600 800 1000 1200
0

5000

10000

15000

20000

25000

30000

cw
nd

(p
ac

ke
ts

)

Time(sec)

 HP-TCP
 HS-TCP
 TCP-Reno

Fig. 4. Congestion window behavior of the HP-TCP, HS-TCP, and TCP Reno mech-
anisms with a loss rate of 10−6

is almost maintained at the available bandwidth. However, the performances
of the HS-TCP and TCP Reno are limited by the slow linear increase of the
congestion window and the large loss probability.

The performance of the proposed HP-TCP and fairness has been compared
with HS-TCP, which is known to be the representative TCP for HBDP networks.
The parameters for the HS-TCP are set at 31 for low windows, 83,000 for high
windows, and 10−7 for high p.

In Fig. 5, the performance of the HS-TCP is compared with that of the HP-
TCP in terms of packet loss rate. In both cases, the difference is minimal with
an almost zero drop rate (less than 10−7), since both use 100% of the available
bandwidth. However, with a reasonably high loss rate, greater than 3×10−6, the
throughput of the HP-TCP is 1.5 to 2.5 times better than that of the HS-TCP.

Figure 6 shows the fairness comparison between the HP-TCP and HS-TCP
when the packet loss rate is 10−6 and 10−7 with two flows. To show the fair

378 T. Park, J. Lee, and B. Kim

Fig. 5. Throughput ratio of the HP-TCP and HS-TCP mechanisms

Fig. 6. Fairness comparison of the HP-TCP and HS-TCP mechanisms

share distribution across the connections, we use Jain’s Fairness Index as defined
in [13]:

FairnessIndex =
(
∑n

i=1 bi)
2

n
∑n

i=1 b2
i

(14)

where bi is the throughput of the ith flow and n is the total number of flows.
When the throughputs of all flows are equal, the fairness index becomes 1. When
the packet loss rate is 10−7, the fairness index of HP-TCP increases faster than
that of HS-TCP. When the packet loss rate increases to 10−6, it takes 30 seconds
to get the fair share for the HP-TCP, while it takes more than 300 seconds for
the HS-TCP. In both cases, HP-TCP’s fairness index converges to 1 faster than
the HS-TCP. Hence, the HP-TCP shows improved fairness even for cases where
the performance difference is minimal due to a low packet loss rate.

Design and Analysis of High Performance TCP 379

6 Conclusion

We proposed a modified TCP congestion control mechanism, the HP-TCP, with
an exponential growth phase during the congestion avoidance state and a loss
avoidance mechanism during the slow start state in HBDP networks. The RTT
status and estimated bottleneck bandwidth are used to prevent overshooting
during the exponential growth phase. In addition, we mathematically analyzed
the performance of the proposed HP-TCP.

To obtain an analytical evaluation of the proposed HP-TCP, it was compared
with the HS-TCP, which is the representative TCP for HBDP networks. We
used our simulation results to verify the correctness of our mathematical anal-
ysis. In addition, the simulation results showed that the proposed mechanism
improves fairness even when the performance difference is minimal due to a low
loss rate. When the loss rate increases, the proposed method was proven to
outperform other methods as well. The proposed HP-TCP can solve the TCP
under-utilization problem in networks with a large available bandwidth. The
proposed algorithm can be easily implemented in sender TCPs. Therefore, the
proposed HP-TCP is a promising transport protocol for large data transfer ap-
plications in HBDP networks.

References

1. Allcock, W., et al: GridFTP: Protocol extensions to FTP for the Grid. GFD-R.020,
(2004)

2. Kim, S., Park, S., Moon, J., Lee, H.: A low-crosstalk design of 1.25 Gbps optical
triplexer module for FTTH systems. ETRI Journal, Vol. 28, no. 1. (2006) 9-16

3. IETF RFC 793: Transmission Control Protocol (1981)
4. IETF RFC 2581: TCP Congestion Control (1999)
5. IETF RFC 3649: HighSpeed TCP for large congestion windows (2003)
6. Jin, C., Wei, D.X., Low, S.H.: FAST TCP: Motivation, architecture, algorithms,

performance. Proceeding of IEEE INFOCOM’04, Vol. 4. (2004) 2490-2501
7. Wang, R., Pau, G., Yamada, K., Sanadidi, M.Y., Gerla, M.: TCP startup perfor-

mance in large bandwidth delay networks. Proceeding of IEEE INFOCOM 2004,
Vol. 2. (2004) 796-805

8. Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M.Y., Wang, R.: TCP Westwood:
Bandwidth estimation for enhanced transport over wireless links. Proceeding of
ACM/IEEE Mobi-Com 2001 (2001)

9. Mo, J., La, R.J., Anantharam, V., Walrand, J.: Analysis and comparison of TCP
Reno and Vegas. Proceedings of IEEE INFOCOM (1999)

10. Giordano, S., Procissi, G., Russo, F., Secchi, R.: On the use of pipesize estimators
to improve TCP transient behavior. Proceedings of ICC (2005)

11. Padhye, J., Firoiu, V., Towsley, d., Kurose, J.: Modeling tcp reno performance
throughput: A simple model and its empirical validation. IEEE/ACM Transactions
on Networking, Vol. 8. (2000)

12. The network simulator ns-2. Available: http://www.isi.edu/nsnam/ns/
13. Jain, R.: The art of computer systems performance analysis: techniques for exper-

imental design, measurement, simulation and modeling. New York, John Wiley &
Sons (1991)

On a NIC’s Operating System, Schedulers and
High-Performance Networking Applications

Yaron Weinsberg1, Tal Anker2, Danny Dolev1, and Scott Kirkpatrick1

1 The Hebrew University Of Jerusalem
{wyaron, dolev, kirk}@cs.huji.ac.il

2 RADLAN - A Marvell Company, Israel
tala@marvell.com

Abstract. Two critical issues impact the overall performance of Linux clusters
based on Intel servers: inter-process communication latency and data throughput.
Underlying both of these performance challenges is the inefficient use of compu-
tational power and server CPU cycles to process the network protocols. Today’s
modern high-end Network Interface Cards (NICs) are equipped with an onboard
CPU. In most cases, these CPU’s are only used by the vendor and are operated
by a proprietary OS, which makes them inaccessible to the HPC application de-
veloper. In this paper we present a design and implementation of a framework
for building high-performance networking applications. The framework consists
of an embedded NIC Operating System with a specialized scheduler. The main
challenge in developing such a scheduler is the lack of a preemption mechanism
in most high-end NICs. Our scheduler provides finer-grained schedules than the
alternatives. We have implemented several network applications, and were able
to increase their throughput while decreasing the host’s CPU utilization.

1 Introduction

High Performance Computing (HPC) and supercomputers were synonymous for many
years. But today, HPC clusters built from standards-based, common, off-the-shelf com-
ponents, such as standard Intel based servers and TCP/Ethernet networking, are chang-
ing the economics, opportunities, and abilities of high-performance computing plat-
forms. In an HPC application, latency is extremely important for inter-process commu-
nication among compute nodes. Additionally, computation tasks running on the com-
pute nodes need all the CPU cycles that they can get.

Today’s modern high-end NICs are equipped with a CPU onboard and line speeds
reaching up to 10Gbps. Such high speeds pose a great challenge for today’s CPUs and
bus architectures. As a result, in order to better utilize the new high speed network in-
frastructure, the industry is moving towards an approach that offloads part of the hosts’
protocol processing to the NIC (e.g. TCP Offload Engines (TOEs) [1]). In most cases,
the NICs’ CPUs are not fully utilized by the vendor and are usually running a propri-
etary OS that limit the applications ability to take advantage of them.

In this paper we propose a design and implementation framework that enables a de-
veloper to build a high-performance networking application. The developer can design
tasks that will be executed at the NIC. The framework enables a developer to easily

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 380–389, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On a NIC’s Operating System 381

divide the application logic between the host and the NIC. The framework inherently
facilitates the communication between the host and the NIC portions of the applica-
tion. Another important contribution of this work is a modified NIC level scheduler.
Most high-end NICs do not support preemption, thus when trying to schedule user
tasks on the NIC, using a common real time scheduling algorithm, we found that there
was a great inefficiency in the resulting schedule and the cluster throughput. Our new
scheduling scheme (henceforth called: <Sched>++) is capable of extending any given
non-preemptive scheduling algorithm with the ability to create finer-grained schedules.

2 Related Work

Today, HPC clusters can increase their achieved throughput by TOEs. However, to the
best of our knowledge, there is no NIC oriented operating system that enables devel-
opers to design applications that can utilize the NIC’s functionality. Although some
vendors have developed a proprietary OS for their platforms, such an OS does not al-
low the application developer to integrate parts of the application code into the NIC.
The ability to immigrate user tasks to the NIC can further increase the performance of
HPC applications.

Spine – is a safe execution environment [2] that is appropriate for programmable NICs.
Spine enables the installation of user handlers, written in Modula-3, at the NIC. Al-
though Spine enables the extension of host applications to use NIC resources it has two
major limitations. First, since all extensions are executed as a result of an event, build-
ing stand-alone applications at the NIC is difficult. Even for event-driven applications,
the developer is forced to dissect the application logic to a set of handlers, thus con-
founding an object-oriented application design. Second, the Spine runtime is based on
a virtual machine that offers many advantages such as safety and portability, but at a
rather high price. The performance severely degrades and it is very unlikely that NIC
manufacturers will agree on a single virtual machine as their device OS.

Arsenic – is a Gigabit Ethernet NIC that exports an extended interface to the host
operating system [3]. Unlike conventional adaptors, it implements some of the protec-
tion and multiplexing functions traditionally performed by the operating system. This
enables applications to directly access the NIC, thus bypassing the OS. The Ethernet
Message Passing (EMP) [4] system, of the Ohio Supercomputer Center (OSC), is a
zero-copy and OS-bypass messaging layer for Gigabit Ethernet. The EMP protocol
processing is done at the NIC and a host application (usually MPI applications) can
directly manipulate the NIC. Arsenic and EMP provide very low message latency and
high throughput but lack the support for offloading.

TOE – is a technique used to move some of the TCP/IP network stack processing
out of the main host and into a network card [1]. While TOE technology has been
available for years and continues to gain popularity, it has been less than successful from
a deployment standpoint. TOE only targets the TCP protocol, thus, user extensions are
out of its scope.

382 Y. Weinsberg et al.

3 Environment

Our programmable interface card is based on the Tigon chipset. The Tigon program-
mable Ethernet controller is used in a family of 3Com’s Gigabit NICs. The Tigon con-
troller supports a PCI host interface and a full-duplex Gigabit Ethernet interface. The
Tigon has two 88 MHz MIPS R4000-based processors which share access to external
SRAM. Each processor has a one-line (64-byte) instruction cache to capture spatial lo-
cality for instructions from the SRAM. Hardware DMA and MAC controllers enable
the firmware to transfer data to and from the system’s main memory and the network,
respectively. The Tigon architecture doesn’t contain an interrupt controller. The motiva-
tion is to increase the NIC’s runtime performance by reducing the overhead imposed by
interrupting the host’s CPU each time a packet arrives or a DMA request is ready. Fur-
thermore, on a single processor the need for synchronization and its associated overhead
is eliminated.

4 NIC Operating System (NICOS)

This section presents the NICOS services. We start by describing the memory manage-
ment service of NICOS, the NICOS task related APIs, the NICOS networking and the
NICOS filtering APIs. Following that we provide a detailed description of the NICOS

scheduling framework. We then conclude with several sample applications that use
NICOS and we show the significant gain in the applications performance.

4.1 Memory Management

NICOS has to allocate memory each time a task, a queue or a packet is created. NICOS

default memory allocation algorithm is based on the “boundary tag method” described
in [5], which is suitable for most applications. Implementing a “generic” memory al-
location mechanism is problematic: It takes up valuable code space, it is not thread
safe and it is not deterministic. Since different realtime systems may have very differ-
ent memory management requirements, a single memory allocation algorithm probably
will not be appropriate. To get around this problem the memory allocation APIs pro-
vided in NICOS can be easily replaced by using the filtering APIs (see Section 4.4). A
user’s task can easily replace the default methods by installing a special kind of a filter.
The registered method (i.e., the “filter” action) will be called instead of the default allo-
cation routine. NICOS memory allocation APIs can also enable a developer to choose
the target of the allocated memory. Memory consuming applications can allocate mem-
ory at the host. The memory is transparently accessed using DMA. This scheme is also
suitable for developing OS bypass protocols, which removes the kernel from the critical
path and hence reduces the end-to-end latency.

4.2 Task Management

NICOS provides several task management APIs that enable a developer to create/destroy
tasks and to control their lifecycle state. The API enables a developer to create a peri-
odic or non-periodic task, to yield, sleep, suspend, resume and kill a task. Although

On a NIC’s Operating System 383

periodic tasks can be implemented by a developer on top of a sleep API, we added an
explicit facility for periodic tasks so the OS is aware of them. Such a design allows the
OS to minimize the ready-to-running1 latency. Providing the timeliness guarantees re-
quired by NICOS has been a major challenge due to the non-preemptive architecture of
these NICs.

4.3 Networking

The current networking API is very simple. NICOS provides only a single method that
sends raw data.2 The data is provided by the developer and includes all of the necessary
protocol headers. NICOS supports synchronous and asynchronous send calls. The asyn-
chronous ones are non-blocking. When using the synchronous mode, the execution is
blocked until frame transmission is completed. Upon completion, the provided callback
is called. Receiving a packet is currently done only via filter registration.

4.4 Filtering

When deciding which functionality is needed to be offloaded to the NIC, we looked
for common building blocks in today’s networking applications. We have found that
the ability to inspect packets and to classify them according to specific header fields
is such a building block. For instance, the classification capability is useful for fire-
wall applications, applying QoS for certain traffic classes, statistics gathering, etc.
Therefore we enhanced the NICOS services with a packet filtering (classification) ca-
pability, and the optional invocation of a user installed callback per packet match. In
NICOS, a filter is a first class object - it can be introspected, modified and created at
runtime.

The “Ping Drop” task (Program 1), which drops all ICMP packets, demonstrates the
ease of use of the NICOS filtering API.

4.5 Scheduling

Schedulers for non-preemptive environments usually use an event-driven model. For
example, the programmable NIC we are using for evaluating NICOS, provides a special
hardware register whose bits indicate specific events. This event register is polled by
a dispatcher loop that invokes the appropriate handler. Once the event handler runs to
completion, the dispatcher loop resumes.

Providing timeliness guarantees for NIC based tasks can be beneficial for real-time
and HPC applications. NICOS enables a developer to easily install a custom sched-
uler, implementing whatever scheduling policy is needed. NICOS provides several non-
preemptive schedulers and an innovative scheme that can further improve their sched-
ule. We have used this scheme to implement an enhanced version of the Earliest Dead-
line First (EDF) scheduler, which is described in details in the next section.

1 The time from the moment a task becomes ready-to-run until it starts execution.
2 In the future we plan to write a minimal networking stack for the NIC.

384 Y. Weinsberg et al.

Program 1. Installing “Ping Drop” Filters
void registerPingDropFilters(void) {

/* we would like to match ICMP packets */
valueMask[0] = ICMP_PROTOCOL;
bitMask[0] = 0x1; // match 1 byte
/* start matching at ICMP_PROTOCOL_BYTE */
pattern_filter.startIndex =ICMP_PROTOCOL_BYTE;
pattern_filter.length = 1;
pattern_filter.bitMask = bitMask;
pattern_filter.numValues = 1;
pattern_filter.valueMask = &valueMask;
/* create the filter, add to Rx/Tx flows */
pingDropFilter.filter_type = STATIC_PATTERN_FILTER;
pingDropFilter.pattern_filter = &pattern_filter;
nicosFilter_Add(&nicosTxFilters,&pingDropFilter,DROP,NULL,

GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterTxId);
nicosFilter_Add(&nicosRxFilters,&pingDropFilter,DROP,NULL,

GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterRxId);
}

4.6 <Sched>++ Algorithm

Common Schedulers. The first scheduling algorithm we have implemented is the sim-
ple Cyclic-Executive scheduler [6]. The primary advantages of the Cyclic-Executive
approach are: being simple to understand, easy to implement, efficient and predictable.
Unfortunately, the deterministic nature of a Cyclic-Executive requires a lot of ad-hoc
tweaking to produce deterministic timelines, which then must be tested thoroughly. The
second scheduling algorithm we have implemented is the non-preemptive version of the
EDF algorithm [7]. In EDF, the task with the earliest deadline is chosen for execution.
In the non-preemptive version of EDF, the task runs to completion.

Both EDF and Cyclic-Executive are not optimal for a non-preemptive environment
such as in our NIC architecture. For a set of scheduable tasks, the resulting task sched-
ule meets the tasks’ realtime requirements, however with a rather low CPU utilization.
Therefore, we have devised a new task scheduling scheme (denoted as <Sched>++)
which can be used to enhance any given non-preemptive scheduler. This scheme uti-
lizes the compiler capabilities in order to create an optimized tasks schedule.

Related Definitions. A task is a sequence of operations to be scheduled by a scheduler.
A task system T = {T1, · · · , Tn}, where each task Ti is released periodically, is called
a periodic task system. Each task Ti is defined by a tuple (ei, di, pi, si), where ei is
the task’s Worst Case Execution Time (WCET), si is the first time at which the task
is ready to run (also known as the start time), di is the deadline to complete the tasks
once it is ready to run, and pi is the interval between two successive releases of the
task. Thus, a task Ti is first released at si and periodically it is released every pi. After
each periodic release, at some time t, the task should be allocated ei time units before
deadline t + di. A non-periodic task is a task that is released occasionally, and at each
invocation that task may require a different execution time. A hybrid task system is a

On a NIC’s Operating System 385

system that contains both periodic and non-periodic tasks. To differentiate between the
periodic and non-periodic tasks, a periodic task will be denoted as T̃ .

<Sched>++ assumes a hybrid task system, where for each periodic task, di = pi.
To represent the runtime instance of a task, the notion of a ticket of a task is introduced.
A ticket of a periodic task, T̃i is defined as the tuple (ei, pi, P ri), where ei and pi are
the execution and the period of the task, and Pri is the task’s priority. The ticket of a
non-periodic task, Tj , is (ej , P rj). This assumes that any type of task scheduler used
by the OS can be extended using this ticket.

Algorithm Overview. <Sched>++ uses several compile-time techniques, which pro-
vide valuable information that can be used at runtime. The developer uses <Sched>++
specific compiler directives in order to define the system’s tasks and tickets. The com-
piler uses these tickets as simple data structures in which it can store the calculated
WCETs.

The compiler uses the generated control flow graph in order to calculate the WCET

of the periodic and non-periodic tasks. Typical periodic tasks are comprised of a single
calculated WCET, while non-periodic tasks may be comprised of a set of WCETs. In our
context, a WCET is defined as the worst case execution time between two successive
yields.

The ability of a compiler to modify the developer’s code, at predefined places, is
also utilized. By modifying the code, the ticket primitive is maintained automatically.
The enhanced compiler updates the ticket with the task’s next WCET prior to each yield
invocation. This technique also eliminates the need to introduce a complicated runtime
structure that contains all the WCETs of a given non-periodic task. A single ticket is
recycled to represent the next task segment WCET at runtime.

<EDF>++ Algorithm. In order to implement the enhanced version of the EDF al-
gorithm, the ticket of a periodic task T̃ is extended to be (e, p, Nr, Nd, Pr), where
the additional fields Nr and Nd are the next release time and deadline of the task, re-
spectively. Figure 1 presents the main logic behind the <EDF>++ algorithm, which
is invoked by the Yield() function call. Part I of the algorithm starts with the classical
EDF algorithm. The algorithm selects the next periodic task Tnext that has the earliest
deadline among all periodic tasks that are ready to run.

Part II of the algorithm is invoked when no periodic task is ready to run. The algo-
rithm uses the tickets of the non-periodic tasks in order to select the next task to run.
The chosen task should be able to run without jeopardizing the deadline of the next (ear-
liest) periodic task. The scheduler considers the subset of non-periodical tasks that are
ready to run, such that their next execution time is smaller than the slack time (the time
until the next periodic task is ready). Among such tasks, the algorithm can use various
criteria to pick the next task to be scheduled. For instance, one can use the algorithm
in [8], which chooses a set of tasks that minimizes the remaining slack time. Any such
algorithm would use the next execution time (WCET) of the tasks listed in their tickets.
When there is no suitable task for execution, the IDLE task is invoked until the next
periodic task is ready to run (part III).

Notice that the scheduling algorithm strives to schedule non-periodic tasks whenever
there is an available time slot in the schedule. Available time slots may exist between

386 Y. Weinsberg et al.

Yield() called from task Tk:

I: Tnext = {T̃i|T̃i.Nd = min(T̃j .Nd|T̃j .Nr ≥ t)};

/* If no periodic task is ready, then
choose from the non-periodic tasks */

II: if (Tnext = NULL)
SlackT ime = duration until next

periodic task is ready;
/* Pick the next non-periodic task
that will run at most ’SlackTime’
time units */
Tnext = PickNonPeriodicTask(SlackT ime);

/* if no task is ready, the Idle task
will run for the time duration until
the next periodic task is ready */

III: if (Tnext = NULL)
Tnext = Idle Task(T imeout)

SwitchTo(Tnext);

Fig. 1. <EDF>++ Scheduler

periodic slots or whenever a task completes its execution ahead of time, which can only
be determined at runtime.

<EDF>++ Evaluation. We have implemented an experimental system with both EDF
and <EDF>++. Our task set includes twenty tasks where about half of them are peri-
odic. We have executed the system with various periods and constraints. On average,
for plain EDF, the IDLE task has been executed 28.6% of the time, yielding a CPU uti-
lization of 71.4%. For the <EDF>++ algorithm, the IDLE task ran 14.7% of the time
corresponding to 85.2% CPU utilization, an increase of 20% in the system’s throughput.

We have also compared the response times of the tasks. Figure 2 shows a sequence
of invocation times for a sample task measured from the system’s start time. The x-axis
shows the number of invocations, where the y-axis presents the time when the specific
invocation occurred. The response times, in-between invocations, for the non-periodic

Execution Number

1 2 3 4 5 6

T
im

e
[m

se
c]

0

20

40

60

80

100

120

140

160

180

11.6
21.9

47.5 51.7

71.6 73.6

21.6 25.5

83.4

111.7

143.6 144.3

EDF++ scheduler

EDF scheduler

(a) Task A

Execution Number

1 2 3 4 5 6

T
im

e
[m

se
c]

0

20

40

60

80

100

120

140

160

180

17.4
23.7

42
52.5

77.9
83.9

23.6

51.5

81.8

113.9

141.9

171.6
EDF++ scheduler

EDF scheduler

(b) Task B

Fig. 2. Invocation Times

On a NIC’s Operating System 387

Execution Number

1 2 3 4 5 6 7

R
es

po
ns

e
T

im
e

[m
se

c]

0

10

20

30

40

50

60

70
TaskA−EDF+

TaskA−EDF

(a) Task A

Execution Number

1 2 3 4 5 6 7

R
es

po
ns

e
T

im
e

[m
se

c]

0

5

10

15

20

25

30

35

40
TaskB−EDF+

TaskB−EDF

(b) Task B

Fig. 3. Response Times

tasks are presented in Figure 3. For example, the average response time for task A,
using <EDF>++, is 10.83ms with standard deviation of 8.51ms versus 22.86ms and
18.87ms using EDF (a 53% decrease in the average waiting time). For task B the values
are: 11.23ms and 5.78ms against 26.03ms and 2.54ms (57% decrease in the average
waiting time). The graphs clearly show that the response times for the non-periodic
tasks using the <EDF>++ scheduler are improved.

Regarding the response times for periodic tasks, the average response time is approx-
imately the same (1.37ms vs. 1.33ms with standard deviation of 2.49ms vs 2.39ms).
Thus, the improved response for the non-periodic tasks didn’t affect the response time
for the periodic tasks.

4.7 Sample Applications Using NICOS

A Firewall Application. An application of particular promise for offloading is a fire-
wall application. Since a firewall is an application that filters packets according to a user
defined security policy, earlier filtering (especially discarding packets) has a potential
for significant improvements in performance. A firewall application on a NIC also has
the additional advantage that it is harder for an adversary to modify than a software
application running at the host.

We have designed and implemented a firewall application, called SCIRON [9], for a
NIC. As presented in Section 4.4, NICOS provides a framework that enables a developer
to install filters. Filters can be installed both at the firmware level and/or at the kernel
level. SCIRON’s firewall is implemented as a set of such firmware filters.

In order to simulate common kernel-based firewalls for performance evaluation, we
have also installed filters at the driver layer. All comparisons shown below, compare
the same firewall code (with the same filtering policy) between the driver based firewall
and the NIC based firewall.3

Firewall Evaluation. This section compares the performance between host based and
NIC based firewalls. Many parameters have an impact on the firewall’s performance.
For example, the number of rules, current CPU utilization, packet size, ratio of incoming
to outgoing packets, total number of packets, number of packets accepted vs number
rejected, can all potentially influence the performance.

3 Currently, the firewall code is fully stateless, thus the state is not saved between successive
filter action invocations.

388 Y. Weinsberg et al.

Performance can be measured using two parameters. The first is the load on the CPU
and the second is the throughput. In this section we discuss several typical scenarios.
In the first scenario we present (Figure 4(a)), the firewall discards all the packets it
receives. During this scenario the CPU is only running system processes. The CPU is
on the left of the graph and throughput is on the right.4

Driver

NIC

0
10
20
30
40
50
60
70
80
90

100

CPU Utilization

%

Driver

NIC

0

20

40

60

80

100

M
bp

s

Throughput

78.96%

0.04%

0Mbps

0Mbps

(a) Receiving - Discarding all packets

Driver

NIC

0
10
20
30
40
50
60
70
80
90

100

CPU Utilization

%
Driver

NIC

0

20

40

60

80

100

Throughput

M
bp

s

93.02%

10.43%

19Mbps

43Mbps

(b) Receiving - 50% acceptance rate

Fig. 4. Firewall Performance

As expected, in this scenario the CPU utilization when using the firewall imple-
mented on the NIC is approximately zero, whilst for the same firewall on the host it
is quite high. The second scenario presented is given in Figure 4(b). This scenario is
probably a more realistic behavior for a typical host machine. It is evident that the NIC
based firewall has better performance both in CPU utilization and throughput.

STORM. Occasionally, clustered HPC applications need to synchronize the cluster’s
activities or to perform cluster-wide operations. Therefore, the cluster software usually
needs to implement a basic locking and/or consensus algorithms that consumes a lot of
bandwidth and degrades the cluster’s performance.

A STORM cluster [10] consists of five nodes running Linux where each node is
hosting a programmable NIC. As a proof of concept application we have implemented
Lamport’s Timestamp ordering algorithm [11] providing an agreed order on transmit-
ted messages. This messaging system’s performance is much better (latency of 84 us,
and throughput of 768 Mb/s) than the host level implementation (latency of 200 us, and
throughput of 490 Mb/s).

5 Conclusions

This paper presented a novel framework for building high-performance applications
that can benefit from offload capabilities. The framework is comprised of a NIC Op-
erating System and an innovative scheduler. We have implemented several HPC appli-
cations using this framework and have demonstrated increased application throughput.
According to the International Technology Roadmap for Semiconductors (ITRS), by

4 The benchmark ran on two hosts (Intel Pentium 4 CPU 2.4Ghz, 512MB) connected via
100Mbps ethernet.

On a NIC’s Operating System 389

2007, one million transistors will cost less than 20 cents. This current trend motivates
hardware and embedded system designers to use programmable solutions in their prod-
ucts. We believe that programmable NICs will soon become widespread. The need for
such a framework is apparent.

Acknowledgments. We would like to acknowledge Udi Weinsberg for his helpful sug-
gestions regarding the scheduling algorithm. We would also like to acknowledge all of the
NICOS project members: Maxim Grabarnik, Adamovsky Olga and Nir Sonnenschein.

References

1. Currid, A.: TCP offload to the rescue. Queue 2(3) (2004) 58–65
2. Fiuczynski, M.E., Martin, R.P., Owa, T., Bershad, B.N.: Spine: a safe programmable and

integrated network environment. In: EW 8: Proceedings of the 8th ACM SIGOPS European
workshop on Support for composing distributed applications, New York, NY, USA, ACM
Press (1998) 7–12

3. Pratt, I., Fraser, K.: Arsenic: A user-accessible gigabit ethernet interface. In: INFOCOM.
(2001) 67–76

4. Shivam, P., Wyckoff, P., Panda, D.: Emp: zero-copy os-bypass nic-driven gigabit ethernet
message passing. In: Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM), New York, NY, USA, ACM Press (2001) 57–57

5. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic storage allocation: A survey
and critical review. In: Proc. Int. Workshop on Memory Management, Kinross Scotland (UK)
(1995)

6. Cheng, S.C., Stankovic, J.A., Ramamritham, K.: Scheduling algorithms for hard real-time
systems: a brief survey. (1989) 150–173

7. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20(1) (1973) 46–61

8. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the performance of
parallel job scheduling. In: Job Scheduling Strategies for Parallel Processing. (2003)

9. Weinsberg, Y., Pavlov, E., Amir, Y., Gat, G., Wulff, S.: Putting it on the NIC: A case study
on application offloading to a Network Interface Card (NIC). In: IEEE CCNC. (2006)

10. (Super-fast Transport Over Replicated Machines (STORM)) Available at site:
http://www.cs.huji.ac.il/∼wyaron.

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7) (1978) 558–565

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 390 – 399, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Microeconomics-Based Fuzzy QoS Unicast Routing
Scheme in NGI*

Xingwei Wang, Qi Wang, Min Huang, and Nan Gao

College of Information Science and Engineering, Northeastern University, Shenyang,
110004, P.R. China

wangxw@mail.neu.edu.cn

Abstract. In this paper, a microeconomics-based fuzzy QoS unicast routing
scheme is proposed and has been implemented by simulation. It attempts to
make not only the user QoS requirements satisfied but also Pareto-optimum un-
der Nash equilibrium on the network provider end-to-end utility and the user
end-to-end utility achieved or approached along the found route by the pro-
posed heuristic route selection algorithm based on the bi-directional Dijkstra al-
gorithm and the intermediate list acceleration method. Simulation results have
shown that the proposed scheme has better performance.

1 Introductions

NGI (Next-Generation Internet) is now becoming an integrated network, including
terrestrial-based, space-based, sky-based, fixed and mobile sub-networks, supporting
anywhere, anytime with any kind of information to communicate with anyone or even
any object in fixed or mobile way [1]. End-to-end QoS (Quality of Service) should be
supported in NGI. However, it is hard to describe the network status exactly and
completely. With gradual commercialization of network operation, QoS pricing and
accounting should be provided [2]. There exist conflicts on profits between the net-
work providers and their users, and win-win should be attained. Support from QoS
routing should be provided to help solve the above problems. In this paper, a
microeconomics-based fuzzy QoS unicast routing scheme is proposed, trying to make
Pareto-optimum under Nash equilibrium [3] on both the network provider and the
user utilities achieved or approached along the found QoS route.

2 Problem Formulations

A network can be modeled as a graph ()EVG , , where V is node set and E is edge set.
Just for algorithm description simplicity, the node parameters are merged into edge.
Thus, the edge parameters become as follows: available bandwidth

ijbw , delay
ijde ,

delay jitter
ijjt , and error rate

ijls . Suppose that the source node is Vvs ∈ and the

* This work is supported by Program for New Century Excellent Talents in University; the

National Natural Science Foundation of China under Grant No. 60473089; the National De-
velopment and Reform Commission under CNGI-04-13-2T, CNGI-04-6-2T and CNGI-04-
15-7A.

 A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme in NGI 391

destination node is Vvd ∈ , look for the specific route
sdl between sv and

dv , trying

to make the network provider end-to-end utility TW and the user end-to-end utility
TU achieve or approach Pareto-optimum under Nash equilibrium as much as possible
with the following constraints satisfied: the available bottleneck bandwidth along

sdl

is not smaller than the user bandwidth requirement req_bw ; the delay along
sdl is

not bigger than the user delay requirement reqde _ ; the delay jitter along
sdl is not

bigger than the user delay jitter requirement reqjt _ ; the error rate along
sdl is not

bigger than the user error rate requirement reqls _ . The corresponding mathematical

model is described as follows:

{ }TUTWTUTW +→+ max (1)

{ }TWTW max→ (2)

{ }TUTU max→ (3)

{ }. . min _
ij sd

ij
e l

s t bw bw req
∈

≥ (4)

reqdede
sdij le

ij _≤
∈

(5)

reqjtjt
sdij le

ij _≤
∈

(6)

() reqlsls
sdij le

ij _11 ≤−− ∏
∈

(7)

TW and TU are calculated as follows:

∈

=
sdij le

ijwsTW
(8)

∈

=
sdij le

ijusTU
(9)

Among them, ijws and ijus represent the network provider utility and the user utility

on the edge
ije respectively.

The above problem is NP-complete [4], and is resolved by the proposed scheme.

3 QoS Routing Scheme Descriptions

The proposed QoS routing scheme in this paper consists of three parts: edge evalua-
tion, game analysis and route selection.

392 X. Wang et al.

3.1 Edge Evaluation

Due to difficulty on exact expression of network status, the adaptability membership
degree function is used to describe the adaptability of the candidate edge conditions to
the user QoS requirements. The edge bandwidth adaptability membership degree
function is defined as follows:

() ()1 1

0

1

ij

k

ij
ij ij ij

 bw bw_req

bw - bw_req
g bw ,bw_req f bw ,bw_req bw_req bw b

b - bw_req

<

= + ≤ <

ij bw b≥

(10)

()1

_
, _

0
ij

ij

bw bw req
f bw bw req

otherwise

ε =
= (11)

The edge delay adaptability membership degree function is defined as follows:

()
()

2

1

2

2

0

1
ij

ij

de_req deij

ij ij

 de de_req

g Jp,de ,de_req

e f Jp,de ,de_req de de_req

−
−

>
=

− + ≤

 (12)

()2

1 _
, , _

0
ij

ij

Jp de de req
f Jp de de req

otherwise

ε = ∧ =
= (13)

The edge delay jitter adaptability membership degree function is defined as
follows:

()
()

2

2

3

3

0

1
ij

ij

jt_req- jtij

ij ij

 jt jt_req

g Jp, jt , jt_req

e f Jp, jt , jt_req jt jt_req
−

>
=

− + ≤

 (14)

()3

1 _
, , _

0
ij

ij

Jp jt jt req
f Jp jt jt req

otherwise

ε = ∧ =
= (15)

The edge error rate adaptability membership degree function is defined as follows:

()
()

2

3

4

4

0

1
ij

ij

ls_req lsij

ij ij

 ls ls_req

g Jp,ls ,ls_req

e f Jp,ls ,ls_req ls ls_req

−
−

>
=

− + ≤

(16)

()4

1 _

0
ij

ij

Jp ls ls req
f Jp,ls ,ls_req

otherwise

ε = ∧ =
= (17)

 A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme in NGI 393

Formula (10), (12), (14) and (16) are Gaussian alike with smooth transition feature.
()4,3,2,1=if i

 is used to deal with one hop route. Jp is a positive integer, representing

the hop count of end-to-end route. ε is a positive pure decimal fraction and much
smaller than 1. k , b , 1σ , 2σ and 3σ all are positive, 1>k . An evaluation matrix

[]Tg,g,g,gR 4321= of the candidate edge can be gotten from (10), (12), (14) and (16).

According to the application nature, a weight matrix []4321 ,,, bbbbB = is given,
1b ,

2b ,

3b and
4b are the significance weights of bandwidth, delay, delay jitter and error rate

on the application QoS respectively, 1,,,0 4321 << bbbb , 14321 =+++ bbbb . The com-

prehensive evaluation value ω on the candidate edge conditions with regard to the
user QoS requirements is computed as follows:

RB ×=ω (18)

Obviously, the bigger the value of ω is, the higher the adaptability of the candi-
date edge conditions to the user QoS requirements is.

3.2 Game Analysis

As shown in Fig.1, suppose there are
un users in the

network and are divided to two classes: high-end and
low-end. There are

us high-end users who are willing

to pay more money for higher QoS, and the other

uu sn − users are low-end ones who can accept lower

QoS with less cost.
uk is the number of users (includ-

ing both high-end and low-end ones) who can be ad-
mitted by the network with the currently available
resources.

uuu skn ≥≥ . In Fig.1, Y-axis represents the

price of the network for data transmission; X-axis
represents the size of the data flow, and c represents the network cost. The producer
surplus

SP and the customer surplus
SC are as follows [5]:

1 2 ()S u u uC a s a k s= ⋅ + ⋅ − (19)

)()(321 uuuS skasaaP −⋅+⋅+= (20)

Whether the available bandwidth of the candidate edge is abundant can be derived
from the value of

1g . If 11 hg < (1h is a constant and 10 1 << h), the available band-

width of the candidate edge is considered to be scarce, and the network provider can
properly increase the price to suppress the user demands; if 211 hgh <≤ (2h is a

constant and 10 21 <<< hh), the available bandwidth of the candidate edge is con-

sidered to be moderate; if 21 hg ≥ , the available bandwidth of the candidate edge is

considered to be abundant, and the network provider can lower the price to attract the

Fig. 1. Demand curve

Y

a2

a1

D

C

su X

PH

PL

a3

ku nu

P

c

394 X. Wang et al.

users. Thus, a tuning coefficient for the amount of bandwidth to be actually allocated
to the user is introduced, and its definition is as follows [5]:

≥
<≤

<
=

21

211

11

2

1

1

hg

hgh

hg

ρ

ρ
ρ

(21)

11 >ρ , 10 2 << ρ , 1ρ and 2ρ are preset by experience. The actually allocated

amount of bandwidth
uf to the user on the candidate edge is as follows:

P

u
f c

u ρ
= (22)

cu denotes the cost paid by the user and P denotes the baseline price of the resource.

The network provider has two gaming strategies: 1s and 2s , denoting whether it is

willing to provide the bandwidth of the candidate edge to the user or not respectively;
the user also has two gaming strategies: 1t and 2t , denoting whether he is willing to

accept the provided bandwidth of the candidate edge or not respectively. The network
provider and the user gaming matrixes, 1U and 2U , are defined as follows:

 =
2221

12111
aa

aa
U =

2221

12112
bb

bb
U

Here, the rows in 1U and 2U correspond to 1s and 2s of the network provider, and

the columns correspond to 1t and 2t of the user.

According to experience, a threshold value 0ω is set. If 0ωω > , the actual status

of the candidate edge is considered better than that the user expected; if 0ωω = ,

the actual status of the candidate edge is considered to be just what the user ex-
pected; if 0ωω < , the actual status of the candidate edge is considered worse than

that the user expected. Therefore, the element values of 1U and 2U are given as
follows:

−
−

−

−
−

−

=

u

SS

u

SS

u

SS

u

SS

f

PP

f

PP

f

PP

f

PP

U

0

0

0

0

 1

ω
ω

ω
ω

ω
ω

μ

ω
ω

 0 0

0 0

2

S S S S

c c

S S S S

c c

C C C C

u u
U

C C C C

u u

ω ω
ω ω

μ

ω ω
ω ω

− −
−

=
− −

−

If the following inequations [6] are satisfied:

1 2
i* j* ij*

i* j* i* j

a a
 i, j ,

b b

≥
=

≥ , (23)

 A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme in NGI 395

then { }** , ji ts represents the specific solution under Nash equilibrium. Here, *i and

*j stand for some i and j ,
*is stands for

1s or
2s , and *jt stands for

1t or
2t .

3.3 Route Selection

The basic idea is as follows: calculate a heuristic cost for each edge and use it as
weight, and run the bi-directional Dijkstra algorithm and the intermediate list accel-
eration method [7] to select the route.

Heuristic cost. After the gaming result of the candidate edge ije is gotten, it is trans-

formed into one kind of weight, denoted by
ij

, which is defined as follows:�

um Equilibrinon -Nash

libriumNash Equi
ij >

=
1

1 (24)

The heuristic cost ()ijijijij ,us,wsTf of ije is defined as follows:

() +=
ijij

ijijijijij us
q

ws
q,us,wsTf

11
21

 (25)

In formula (25), ij represents the influence of Nash equilibrium on the route se-

lection. 1q and 2q are the preference weights, representing whether and how much

the network provider/user utility should be considered with priority when routing if
needed.

ijws and
ijus are the utilities which the network and the user actually get on

the edge ije respectively. Obviously, the smaller the heuristic cost sum along the

route, the nearer the network provider and the user utilities is to Pareto-optimum un-
der Nash equilibrium. Thus, when routing, in the premise of meeting constraints (4)-
(7), the objectives (1)-(3) are achieved or approached by means of minimizing the
heuristic cost sum along the selected route, that is,

()
∈

ijijij
le

ij ,us,wsTf
sdij

minimize (26)

Algorithm description. sv and
dv are source and destination node respectively. Let

1pc and
1Tc denote pc label and Tc label of node v when searching direction is

from sv to
dv , and let

2pc and
2Tc denote pc label and Tc label of node v when

searching direction is from
dv to sv . ()vpc1

 is the minimum heuristic cost from sv to

v with the specific constraints satisfied, and ()vpc2
 is the minimum heuristic cost from

dv to v with the specific constraints satisfied. ()vTc1
 is the upper bound of ()vpc1

,

and ()vTc2
 is the upper bound of ()vpc2

. iS is the set of nodes with
1pc label at Step

i , and '
iS is the set of nodes with

2pc label at Step i . To get the least-cost path from

396 X. Wang et al.

sv (or
dv) to current node at the same time as getting the least cost from sv (or

dv) to

current node, each node is given a
1λ and a

2λ . ()v1λ represents the precedent node

along the shortest path from sv to v , and ()v2λ represents the precedent node along

the shortest path from
dv to v .When the proposed algorithm ended, if () mv =1λ (or

() mv =2λ), the precedent node of v along the path from sv (or
dv) with the mini-

mum heuristic cost is mv ; if () '
1 mv =λ (or () '

2 mv =λ), there does not exist the satis-

fied path from sv (or
dv) to v ; if () 01 =vλ ,

svv = ; if () 02 =vλ ,
dvv = . In addition,

()jvbw1min is the available bottleneck bandwidth from jv to sv , and ()jvbw2min is

the available bottleneck bandwidth from jv to
dv ; ()jvde1

 is the delay from jv to

sv , and ()jvde2
 is the delay from jv to

dv ; ()jvjt1
 is the delay jitter from jv to sv ,

and ()jvjt 2
 is the delay jitter from jv to

dv ; ()jvls1
 is the error rate along the path

from jv to sv , and ()jvls2
 is the error rate along the path from jv to

dv .
ijTf ,

ijbw ,

ijde ,
ijjt , and

ijls are the heuristic cost, the available bandwidth, the delay, the delay

jitter, and the error rate of the edge ije respectively. 1MLS is the middle list used to

hold the sequence numbers of those temporary nodes when searching direction is
from sv to

dv , and
2MLS is the middle list used to hold the sequence numbers of

those temporary nodes when searching direction is from
dv to sv .

Based on the algorithm described in [7], the following routing algorithm is proposed:
Step0. Initialization: 0=i , { }svS =0

, () 01 =svλ ; { }dvS ='
0

, () 02 =dvλ .
svv ≠∀ ,

() +∞=vTc1
, () '

1 mv =λ , sk =1
;

dvv ≠∀ , () +∞=vTc2
, () '

2 mv =λ , dk =2
. Do:

(1) () 0
11 =kvpc , () 0

22 =kvpc ; () +∞=
11min kvbw , () +∞=

22min kvbw ;

(2) () 0
11 =kvde , () 0

11 =kvjt , () 0
11 =kvls ; () 0

22 =kvde , () 0
22 =kvjt , () 0

22 =kvls ;

For each node jv with Ee jk ∈
1

 and ij Sv ∉ , add jv to 1MLS and compute jkTf
1

according to (10)-(25); for each node 'j
v with Ee

jk
∈'

2

 and '
' ij

Sv ∉ , add 'j
v to

2MLS and compute '
2 jk

Tf according to (10)-(25).

Step1. Labeling procedure

1st labeling condition:

For each node
1MLSv j ∈ , in order to achieve the objective of (26), if

() () jkkj TfvpcvTc
1111 +> , do:

(1) () () jkjj Tfvpcvpc
11

'
1 += ;

(2) () (){ }jkkj bwvbwvbw
11

,minminmin 1
'
1 = ;

(3) () () jkkj devdevde
111

'
1 += , () () jkkj jtvjtvjt

111
'
1 += , () ()()()jkkj lsvlsvls

11
111 1

'
1 −−−= ;

 A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme in NGI 397

For each node
2' MLSv

j
∈ , in order to achieve the objective of (26), if

() ()' '
2 2

2 2 kj k j
Tc v pc v Tf> + , do:

(1) () () '
2

'' 2
'
2 jkjj

Tfvpcvpc += ;

(2) () (){ }' '
2 2

'
2 2min min min ,kj k j

bw v bw v bw= ;

(3) () () '
22

' 2
'
2 jkkj

devdevde += , () () '
22

' 2
'
2 jkkj

jtvjtvjt += , () ()()()'
22

' 111 2
'
2 jkkj

lsvlsvls −−−= ;

2nd labeling condition:

In order to meet constraints (4)-(7), if

(1) reqbwvbwvbw
jj _)}(min),(min{min '

'
2

'
1 ≥ ;

(2) () ()'
' '
1 2 _j j

de v de v de req+ ≤ , () ()'
' '
1 2 _j j

jt v jt v jt req+ ≤ , ()() ()()'

' '
1 21 1 1 _j j

ls v ls v ls req− − − ≤ ;

then

(1) () ()jj vpcvTc '
11 = , () ()''

'
22 jj

vpcvTc = ;

(2) () ()jj vbwvbw '
11 minmin = , () ()''

'
22 minmin

jj
vbwvbw = ;

(3) () ()jj vdevde '
11 = , () ()jj vjtvjt '

11 = , () ()jj vlsvls '
11 = ; () ()''

'
22 jj

vdevde = , () ()''
'
22 jj

vjtvjt = ,

() ()''
'
22 jj

vlsvls = ; () 11 kv j =λ , () 22 ' kv
j

=λ ;

go to Step2; otherwise, negotiate with user: if succeeded, go to Step2, otherwise the
end.

Step2. Modification procedure
Step2.1. Find the currently working nodes.

Find the node
1pv with the smallest)(1 vTc value (that is (){ }

1
1min

j
j

v MLS
Tc v

∈
) in 1MLS ,

let () ()
11 11 pp vTcvpc = , { }

11i i pS S v+ = ∪ , and
11 pk = ; find the node

2pv with the small-

est ()2Tc v value (that is { }'

' 2
2min ()

j
jv MLS

Tc v
∈

) in 2MLS , let () ()
22 22 pp vTcvpc = ,

{ }
2

' '
1i i pS S v+ = ∪ , and

22 pk = ; 1+= ii ;

Step2.2. Compute heuristic cost.
For each node jv with Ee jp ∈

1
 and ij Sv ∉ , compute

1jpTf according to (10)-(25);

for each node 'j
v with Ee

jp
∈'

2

 and '
' ij

Sv ∉ , compute
2

' pj
Tf according to (10)-(25).

Step2.3. Modify the middlelists.
Remove

1pv from 1MLS , and for each node jv with Ee jp ∈
1

 and
1MLSv j ∉ ,

add jv to 1MLS ; remove
2pv from 2MLS , and for each node

'j
v with Ee

jp
∈'

2

 and

2' MLSv
j

∉ , add 'j
v to 2MLS ;

Step2.4. Find out whether there exists a converging node.

398 X. Wang et al.

If φ=∪ '
ii SS , go to Step1, otherwise let bv represent the first node which is in

both 1S and 2S , and then go to Step 2.5.

Step2.5. Find out the final route.
If φ=∩ '

1 iSMLS , concatenate the path from sv to
bv and the path from

bv to
dv

to form the final route
sdl from sv to

dv . If
sdl meets constraints (4)-(7), output

sdl ,

the end; otherwise, negotiate with user: if succeeded, output
sdl , the end; otherwise,

there is no feasible solution, the end.
If φ≠∩ '

1 iSMLS , let '
1 iSMLSH ∩= and qH =|| . For each node

),...,2,1(qiv
ij

= in H , a path),...2,1(qili = from sv to
dv is formed by concatenat-

ing the path from sv to
ij

v and the path from
ij

v to
dv , so there are 1+q paths in

total, that is: 1l , 2l ,…,
ql and

sdl (
sdl is the path formed by concatenating the path

from sv to
bv and the path from bv to

dv); find out the path
el with the smallest

heuristic cost sum from the 1+q paths formed above; if
el meets constraints (4)-(7),

output
el , the end, otherwise negotiate with user: if succeeded, output

el , the end;

otherwise, there is no feasible solution, the end.

4 Performance Evaluations

Simulations have been done on NS (Network Simulator) 2 platforms. The scheme
proposed in this paper, the fuzzy-tower-based QoS unicast routing scheme [8] and the
Dijkstra-based unicast routing scheme have been performed over some actual and
virtual network topologies. For simplicity, the above three schemes are denoted by M,
F and D respectively. Comparison results on QoS unicast routing request succeeded
rate(RSR), user utility(UU), network provider utility(NU), comprehensive util-
ity(CU=UU+NU) achieved by M, F and D over CERNET2 topology(T1), CERNET
topology(T2) and one virtual topology(T3, generated by Waxman2 [9] with average
node degree 3.5) are shown in Table 1. From Table 1, it can be concluded that the
proposed scheme has better performance.

Table 1. Performance Comparison

Scheme
Metric

M:F:D(T1) M:F:D(T2) M:F:D(T3)

RSR 1.0656:1.0555:1.0000 1.0043:1.0088:1.0000 1.0544:1.0434:1.0000

UU 1.0250:1.0192:1.0000 1.0029:1.0072:1.0000 1.0282:1.0212:1.0000

NU 1.1514:1.1313:1.0000 1.0214:1.0321:1.0000 1.1172:1.0888:1.0000

CU 1.1471:1.1282:1.0000 1.0224:1.0322:1.0000 1.1409:1.1250:1.0000

5 Conclusions

In this paper, a microeconomics-based fuzzy QoS unicast routing scheme is proposed.
It can not only deal with the fuzziness of NGI network status, but also make both the

 A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme in NGI 399

network provider and the user utilities achieve or approach Pareto-optimum under
Nash equilibrium along the found route with the user QoS requirements satisfied,
supporting win-win from the aspect of routing. Simulation results have shown that the
proposed scheme is effective and efficient.

References

1. Keiji T.: A Perspective on the Evolution of Mobile Communications. IEEE Communica-
tions Magazine. Vol. 41. No. 10 (2003) 66-73

2. Bob B., Vasilios D., Oliver H. et al: A Market Managed Multi-service Internet. Computer
Communications. Vol. 26. No. 4 (2003) 404-414

3. Shi X. Q.: Microeconomics. Shanghai: Shang Hai University of Finance & Economics
Press. (2000)

4. Wang Z., Crowcroft J.: Quality of Service Routing for Supporting Multimedia Applications.
IEEE Journal on Selected Areas in Communications. Vol. 14. No. 7 (1996) 1288-1294

5. Hu Y. M., Zhang J. S.: Research on the Difference Pricing Strategy of Internet Congestion.
Quantitative & Technical Economics. Vol. 35. No. 7 (2004) 81-85

6. Lin H., Matnsk C., Sajal K. D., Kalyan B.: ARC: an Integrated Admission and Rate Control
Framework for CDMA Data Networks Based on Non-cooperative Games. In-ternational
Conference on Mobile Computing and Networking. (2003) 326-338

7. Jin X. Q.: Bi-directional Dijkstra Algorithm and the Acceleration of Intermediate List.
Computer Simulation. Vol. 21. No. 9 (2004) 78-81

8. Wang X. W., Yuan C. Q., Huang M.: A Fuzzy-tower-based QoS Unicast Routing Algo-
rithm. Proc. of Embedded and Ubiquitous Computing (EUC’04), Aizu: Springer LNCS
3207. (2004) 923-930

9. Waxman B. M.: Routing of Multipoint Connections. IEEE Journal on Selected Areas in
Communications. Vol. 6. No. 11(1988) 478-489

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 400 – 405, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adaptive Online Management for Congestion Control
in QoS Sensitive Multimedia Services

Sungwook Kim1 and Sungchun Kim2

1 Department of Computer Science, Sogang University,
Shinsu-dong 1, Mapo-ku, Seoul, 121-742, South Korea

swkim01@sogang.ac.kr
2 Department of Computer Science, Sogang University,
Shinsu-dong 1, Mapo-ku, Seoul, 121-742, South Korea

ksc@mail.sogang.ac.kr

Abstract. Over the years, the widespread proliferation of multimedia services
has necessitated the development for an efficient network management. How-
ever, during network operations, traffic contention for limited network band-
width may occur. Congestion is one of the most intense problems for more
bandwidth consuming multimedia service. In this paper, we investigate the role
of adaptive online pricing mechanism in order to manage effectively the net-
work congestion problem. Our on-line approach is dynamic and flexible that re-
sponds to current network conditions. With a simulation study, we demonstrate
that our proposed scheme enhances network performance and system efficiency
simultaneously under widely diverse traffic load intensities.

1 Introduction

With the emerging more bandwidth consuming multimedia services, traffic conges-
tion is one of the most intense problems in multimedia network management. In order
to alleviate traffic overload condition, bandwidth migration and adaptation techniques
[1]-[4] have been proposed. However, a major drawback of these approaches is the
lack of ability to avoid congestion because they do not provide negative or positive
incentives for users to control the unexpected growth of traffic.

Usually, users act independently and selfishly without considering the existence of
other users. However, they are price sensitive. Therefore, the pricing strategy can
have strong influence on the behavior of the users [5]. In this paper, we propose a new
online price charging mechanism based on real time measurements. In order to con-
trol the network congestion for QoS sensitive multimedia service, adaptive price
should reshape traffic congestion by providing negative incentives to users. Our ap-
proach combines adaptive bandwidth control concept with dynamic pricing concepts
that can be achieved taking into account the economic considerations. Therefore, not
only do we improve network performance, but we also achieve system efficiency. For
the efficient bandwidth control, a well-balanced compromise between network per-
formance and system efficiency is necessary.

For adaptive price management, we mainly concentrate on extending our previous
bandwidth management research [1]-[4]. Based on our already proposed algorithms,

 Adaptive Online Management for Congestion Control 401

our online price adjustment mechanism can exploit the adaptive nature of users in-
cluding the interaction between user behavior and the network efficiency. Therefore,
the service price in our scheme can vary dynamically based on the current traffic
situations. This paper is organized as follows. Section II describes the proposed
scheme in detail. In Section III, performance evaluation results are presented along
with comparisons with schemes proposed in [1],[3]-[4]. Finally, concluding remarks
are given in Section IV.

2 Dynamic Pricing Management

In this section, we describe the proposed adaptive online scheme in detail. In the first
step, we propose a bandwidth demand estimation algorithm. In the second step, we
develop an adaptive price control mechanism based on demand estimation and user
behavior. According to this information, we finally derive each service price for dif-
ferent multimedia services.

Since exact service information in the future is not known, we are not able to ex-
actly expect the bandwidth demand. Therefore, we estimate the expected bandwidth
demand (Be) by adaptive online manner. Our estimation algorithm can dynamically
adjust the amount of Be based on the current network conditions. For adaptive online
adjustment, we provide a coordination paradigm for two different - uniformly distrib-
uted and non-uniformly distributed - traffic situations. When the traffic is uniformly
distributed over time, the amount of traffics is close to stable. Therefore, traffic his-
tory is important information to estimate Be. However, if traffic distributions are non-
uniform, the traffic history cannot catch up with the temporal and spatial traffic fluc-
tuations. At the time of temporary traffic fluctuations, Be should be heavily influenced
by current traffic changes. The main idea is to adjust Be based on both the traffic his-
tory and recent traffic changes.

We define traffic window (Wset_I) to keep traffic history. By using traffic window,
we can learn the pattern of coming service requests. In order to implement the traffic
window management, we partition the time-axis into equal intervals of length
unit_time. The value of Dn, which is defined as the average amount of requested
bandwidths during traffic window, can be estimated as

∈

×=
set_IWj

ujjn TNBD /)((1)

where Ni and Bi are the number of call requests during traffic window and the corre-
sponding bandwidth of service type i, respectively. Tu is the length of the traffic win-
dow in terms of unit_time. However, the value of Dn is too slow to abrupt traffic
changes. Therefore, in order to be more responsive to current traffic fluctuations, we
adjust Dn every unit_time as a weighted average of recent request changes and traffic
history as follows.

Dn+1 = α Dn + (1 - α) Cb (2)

where Cb is the amount of requested bandwidth during the interval [tc - unit_time,

tc], Dn is the expected reservation amount at the current time and Dn+1 is the amount

402 S. Kim and S. Kim

of our optimized bandwidth demand for the interval [tc , tc + unit_time]. The parame-

ter α controls the relative amount given to recent and past traffic request histories in
our decision. Under diverse system environments, a fixed α value cannot effectively
adapt to the changing request conditions. Our online algorithm also adaptively modi-
fies α value each unit_time period. If current call blocking probability (CBP) is
higher (lower) than predefined target probability (Ptarget), it means that the current
requested service is larger (smaller) than the available bandwidth capacity, so the
value of α should be decreased (increased). Based on this online approach, we can
adaptively estimate the expected bandwidth demand (Be) value according to the cur-
rent network conditions. Every unit_time, the value of Be is computed periodically as
follows.

 if } ,{min

 if } ,{max

≤
>

=
+

+

target1nn

target1nn

e PCBPDD

PCBPDD
B (3)

Our simple network economic model consists of two types of agents: users (consum-
ers) and provider. Users require bandwidth to satisfy their QoS. Provider seeks to
maximize network profit by selling bandwidth. In order to response varied multime-
dia traffic demands, the amount of bandwidth allocation is a discrete quantity in terms
of the number of basic bandwidth units (BUs), where one BU is the basic amount of
bandwidth allocation. Required bandwidth for different multimedia service is differ-
ent number of BUs.

If the network is lightly loaded and all users are getting acceptable QoS, each BU
is provided with fixed price (Bm). When a congestion occurs, that is, the demand D
(requested bandwidth) exceeds the supply S (available bandwidth), our congestion-
dependent price mechanism begins to impose the extra price charge, which forces the
users to reduce their demand. Since users are very price sensitive, the increased price
gives the users an incentive to back-off their requests. It means that the bandwidth
demand and supply can be balanced dynamically. After the congestion situation is
removed, extra charge falls to zero. Therefore, extra charge is iteratively adjusted up
or down until the equilibrium of demand and supply.

Under our proposed model, the price adjustment process is performed at discrete
intervals of time. The price adjustment interval is defined adjustment_period (A_P).
Corresponding to the current network situations, we specify when this price adjust-
ment procedure starts. To decide the starting time point (ts_p), the conditions are pro-
posed. At current time (tc), if D is larger than S or current bandwidth utilization is
lower than predefined target utilization (Utarget), A_P is started (tc = ts_p). During A_P,
if estimated Be is larger than S (or average bandwidth utilization is lower than Utarget),
our price adjust procedure starts. During kth adjustment interval (A_Pk), the actual
price per each BU (Pk+1 (BU)) is obtained as

Pk+1 (BU) = max {Bm, [Pk(BU) + Fp(Be_k , Sk)] } (4)

where Bm is minimum charge for one BU, Be_k represent the expected bandwidth de-
mand estimation during A_Pk, Sk is available bandwidth for new service and Fp is a
function to calculate price adjustment. we assume that the price will not fall below a

 Adaptive Online Management for Congestion Control 403

certain nonnegative minimum price (Bm). Function Fp, which estimates the price
change in proportion to the difference between demand and supply, is defined as

Fp (Be_k , Sk) = (δ k × (Be_k - Sk) / Sk) (5)

where δ k is a control factor used to adjust the convergence rate. If rapidly and con-
tinually bandwidth demand (or supply) increases, we can facilitate to bring the net-
work to an equilibrium status by controlling the value of δ k.

3 Simulation Experiments

In this paper, user reaction behavior (elasticity of dynamic price) is modeled based on
different exponential demand functions. In these functions, the demand rate is expo-
nential inverse proportional to the price increase [6]. We consider three forms for the
demand function F in the example that follows. They are

 F1(x) =
2xe− , F2(x) =

x

e x

+

−

1
 , F3(x) =

4x+1

1
 for x ≥ 0. (6)

In Fig.1 - Fig.2, we compare the network performance of our online price man-
agement scheme with existing schemes [1]-[4], which are designed for QoS sensitive
multimedia service. Through performance evaluation of the communication/cellular
network management, we can confirm that our online price strategy provides the
ability to take care of the network congestion and encourages more efficient use of
available bandwidth.

Fig.1 shows the performance comparison for multimedia cellular network. The
curves indicate that the scheme based on adaptive price policy improves the perform-
ance of CBP and CDP significantly than a fixed price scheme. Fig.2 shows the per-
formance comparison for wire-lined multimedia communication network. From the
curves in Fig.2 we obtained, it can be seen that the proposed scheme achieves a better
balance of economic and technical efficiencies and attains excellent performance from
low to heavy traffic load distributions.

(a) (b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offered Load (Call Arrival Rate)

C
al

l B
lo

ck
in

g
P

ro
ba

bi
lit

y

Our previous Scheme
Proposed Scheme(F1)
Proposed Scheme(F2)
Proposed Scheme(F3)

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Offered Load (Call Arrival Rate)

C
al

l D
ro

pp
in

g
P

ro
ba

bi
lit

y

Our previous Scheme
Proposed Scheme(F1)
Proposed Scheme(F2)
Proposed Scheme(F3)

Fig. 1. Performance evaluation for multimedia cellular network (a) call blocking probabilities
(b) call dropping probabilities

404 S. Kim and S. Kim

(a) (b)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offered Load (Call Arrival Rate)

C
al

l B
lo

ck
in

g
P

ro
ba

bi
lit

y

Our previous Scheme
Proposed Scheme(F1)
Proposed Scheme(F2)
Proposed Scheme(F3)

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Offered Load (Call Arrival Rate)

C
al

l B
lo

ck
in

g
P

ro
ba

bi
lit

y
(C

la
ss

s
I)

Our previous Scheme
Proposed Scheme(F1)
Proposed Scheme(F2)
Proposed Scheme(F3)

Fig. 2. Performance evaluation for multimedia communication network (a) call blocking prob-
abilities (b) call blocking probabilities for class I data service

Simulation results have been concluded that dynamic and time-dependent pricing
policy leads to a significant performance improvement and better network revenue.
From a congestion management perspective, our adaptive price scheme achieves a
quicker convergence to stable state. From an economic perspective, our scheme pro-
vides a higher system efficiency. Therefore, the scheme based on adaptive pricing
policy can maintain well-balanced network performance between conflicting evalua-
tion criteria in widely different traffic load situations while existing scheme [1]-[4]
can not offer such an attractive trade off.

4 Summary and Conclusions

In this paper, online adaptive price management algorithm for multimedia networks is
proposed. Our research efforts have focused on how to alleviate the congestion occur-
rences while maintaining a network system in the most efficient state. The main nov-
elty of our proposed pricing mechanism is to respond to feedback from real time es-
timation. Due to traffic uncertainty, our on-line approach provides adaptability, flexi-
bility and responsiveness to current traffic conditions in multimedia networks. There-
fore, the key benefit of our scheme is to avoid sharp fluctuations in the offered traffic
load and to achieve higher network revenue simultaneously. Performance evaluation
results indicate that our scheme maintains better performance than existing scheme in
widely different traffic load situations.

References

1. Sungwook Kim and Pramod K. Varshney, “An Integrated Adaptive Bandwidth Manage-
ment Framework for QoS Sensitive Multimedia Cellular Networks,” IEEE Transactions on
Vehicular Technology, pp. , May, 2004.

2. Sungwook Kim and Pramod K. Varshney, “An Adaptive Bandwidth Reservation Algorithm
for QoS Sensitive Multimedia Cellular Network”, IEEE Vehicular Technology Conference,
pp. 1475-1479, September, 2002.

 Adaptive Online Management for Congestion Control 405

3. Sungwook Kim and Pramod K. Varshney, “Adaptive Load Balancing with Preemption for
Multimedia Cellular Networks”, IEEE Wireless Communications and Networking Confer-
ence (WCNC), March, 2003.

4. Sungwook Kim, “Adaptive On-line Bandwidth Management for QoS sensitive Multimedia
Networks,” Ph.D dissertation, Syracuse University, Syracuse, NY, U.S, 2003.

5. L. Badia, M. Lindstrom, J. Zander, M. Zorzi, “Demand and Pricing Effects on the Radio
Resource Allocation of Multimedia Communication System,” Proc. IEEE GLOBECOM’03,
San Francisco, Dec. 2003.

6. P.C. Fishburn and A.M. Odlyzko, “Dynamic behavior of differential pricing and quality of
service options for the Internet,” Proceedings of the ACM First International Conference on
Information and Computation Economics, New York, pp.128–139, 1998.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 406 – 415, 2006.
© Springer-Verlag Berlin Heidelberg 2006

BGPSep_D: An Improved Algorithm for Constructing
Correct and Scalable IBGP Configurations Based

on Vertexes Degree*

Feng Zhao, Xicheng Lu, Peidong Zhu, and Jinjing Zhao

School of Computer, National University of Defense Technology,
Changsha 410073, Hunan, China
fengzhao1980@tom.com

Abstract. IBGP configurations based on the route reflection may lead to for-
warding loops and sub-optimal paths. Although the IBGP configuration gener-
ated by BGPSep guarantees three correctness properties of complete visibility,
loop-free forwarding, robustness to IGP failures, and the number of IBGP ses-
sions is smaller than in a full-mesh configuration, BGPSep does not reduce the
number of IBGP sessions of its top level route reflectors. We improve BGPSep
by removing some vertexes, whose degrees satisfy some conditions, from the
IGP graph gradually. The improved algorithm is called BGPSep_D. We prove
that BGPSep_D satisfies the three correctness properties. The performance of
BGPSep_D is evaluated on several real-world backbone topologies. Experimen-
tal results indicate that BGPSep_D can generate an IBGP topology with much
smaller maximum degree and a much smaller number of IBGP sessions than
that produced by BGPSep.

1 Introduction

Border Gateway Protocol (BGP) [1] [2] is the widely used interdomain routing proto-
col. BGP can be divided into two parts: External BGP (EBGP) and Internal BGP
(IBGP). As an alternative to full mesh IBGP, BGP route reflection [3] [4] is often
used in the IBGP topology design.

However, IBGP configurations based on route reflection may lead to route oscilla-
tions, forwarding loops and sub-optimal paths [8][9][10]. These problems are hard to
diagnose and debug, and networks with these problems are hard to manage.

Basu et al. [5] study the problem of route oscillations in IBGP with route reflection
and prove deciding whether an IBGP configuration with route reflection can converge
is NP-complete. They propose a modification to IBGP that guarantees convergence.
Griffin and Wilfong study the conditions under which the BGP configuration con-
verges to a stable path assignment [7], and also examine MED-induced oscillations
[6]. Also they study the property of loop-free forwarding and prove that it is NP-hard
to verify whether an arbitrary IBGP configuration is forwarding correct. They also

* This research was supported by the National Grand Fundamental Research 973 Program of

China under Grant No. 2003CB314802 and the National High-Tech Research and Develop-
ment Plan of China under Grant No. 2005AA121570.

 BGPSep_D: An Improved Algorithm 407

describe a set of sufficient conditions that an IBGP configuration is free of deflections
and forwarding loops.

 R. Musunuri et al. [11] present a selective path dissemination (SPD) protocol,
which avoids IBGP anomalies specific to clustering. J.A. Cobb et al. [12] propose a
complete solution that solves both clustering and MED induced anomalies in IBGP.
However, these solutions require multiple path disseminations between route reflec-
tors, so they may not be scalable. Also because they require changes to the IBGP
messages, it is not so easy to deploy them.

M.Vutukuru et al. [13] present and analyze an algorithm, BGPSep, to construct an
IBGP session configuration that is both correct and more scalable than a full mesh.
They claim that to their knowledge, BGPSep is the first constructive algorithm to
generate IBGP configurations with useful correctness guarantees, while scaling better
than a full mesh. However, although the number of IBGP sessions is smaller than in a
full-mesh configuration, BGPSep does not reduce the number of IBGP sessions of its
top level route reflectors. That is, the maximum node degree of the IBGP topology
remains the same as in a full-mesh configuration. A router should not maintain too
much BGP sessions, because concurrent frequent updates on multiple peers may
cause problems. For example, 53 peers generating 150 updates per second can cause a
powerful router such as Cisco 12008 to miss sending a KEEPALIVE in time, thus
resulting in a session reset [14]. So it is very meaningful to reduce the number of
IBGP sessions a router needs to maintain.

We find that in the IGP topologies of some large ASes, there exist a lot of pendant
vertexes, i.e. whose degree is one. Base on this property, we modify the BGPSep
algorithm by removing some vertexes from the IGP graph gradually. We called the
modified algorithm BGPSep_D. We evaluate the performance of BGPSep on several
real-world IGP topologies. Experimental results show that the maximum degrees of
the IBGP topologies generated by BGPSep_D for these IGP topologies can be re-
duced by about 9%-50% and the IBGP sessions can be reduced by about 10%-50%.

2 BGPSep

To facilitate the discussion of the BGPSep_D algorithm, we first describe BGPSep
briefly.

According to [13], a full-mesh IBGP configuration satisfies the following desirable
correctness properties:

P1 Complete visibility: The dissemination of routing information amongst the
routers should be complete, in the sense that, for every external destination, each
router picks the same route that it would have picked had it seen the best routes from
every other EBGP router in the AS.

P2 Loop-free forwarding: After the dissemination of EBGP learned routes, the
resulting routes picked by all routers and the subsequent forwarding paths of packets
sent along those routes should be free of deflections and forwarding loops.

P3 Robustness to IGP failures: The route dissemination mechanism should be
robust to node or link failures and IGP path cost changes-such changes should not
result in a violation of the correctness property P2.

408 F. Zhao et al.

Algorithm 1 BGPSep
Input: IGP Graph G , set V of BGP routers
Output: Set I of IBGP sessions
if | | 1V then

I ;
else if | | 2V then

{ , }u v V ;

{(, ,)}I u v peer ;

else
/* Step 1: Choose a graph separator S V . Routers
in S are the route reflectors. */
S =Graph-Separator(G) ;

1,..., mG G components of V S ;
/* Step 2: Fully mesh the set of route reflectors
*/
foreach ,u v S , u v do

{(, ,)}I I u v peer ;

end
foreach iG do

/* Step 3: Make every router in each component iG a
route reflector client of every route reflector
*/
foreach iu G , v S do

{(, ,)}I I u v client ;

end
/* Step 4: Recursively apply BGPSep over each

component */

iI = BGPSep(iG) ;

iI I I ;

end
end
return I;

Fig. 1. The BGPSep algorithm

An IBGP configuration generated by BGPSep guarantees properties P1, P2 and P3.
As shown in Algorithm 1, BGPSep is based on the notion of a graph separator, a set
of vertexes whose removal partitions a graph into roughly equal-sized connected
components. BGPSep takes the graph (,)G V E= formed by the BGP routers and

produces the set I of IBGP sessions that must be established between the routers.
Every element in I denotes an IBGP session and is of the form (, ,)u v t , where u and

v are the routers between which the IBGP session is established and t is the type of

.

 BGPSep_D: An Improved Algorithm 409

the IBGP session. If t = “client”, then the IBGP session between u and v is a client-
route reflector session (with u being the client of route reflector v). If t = “peer”, then
the IBGP session between u and v is a normal non-client IBGP session. The recur-
sion stops when the component has one or two routers. The algorithm uses a proce-
dure Graph-Separator, which is a graph partitioning algorithm that takes a graph G
and returns a graph separator S.

From the Step 2 and Step 3 of Algorithm 1, we can see that a top level route reflec-
tor has to establish IBGP sessions with all other BGP routers. For large ASes, the
IBGP sessions number of a top level route reflector will be too many to influence the
scalability.

Fig. 2. The BGPSep_D algorithm

3 The BGPSep_D Algorithm

We find that there exist a lot of pendant vertexes in the IGP topologies of some large
ASes. So we modify the BGPSep algorithm by removing the pendant vertexes from

Algorithm 2. BGPSep_D
Input: IGP Graph G , set V of BGP routers
Output: Set I of IBGP sessions
/* Step 1: removing the pendant vertexes gradually*/
I = ∅ ;
pending =true;

'G G= ;
while pending == true do

'G G= ;
pending = false;

foreach .u G V∈ do
if () 1Gd u == then /* ()Gd u is the degree of u in G */

()Gv adj u= ; /* v is the adjacent node of u */

{(, ,)}I I u v client= ∪ ; /* let u be the client of v */

' ' { }G G u= − ;

pending = true;

end
end

end
/* Step 2: Apply BGPSep over the remaining subgraph

'G */

sI = BGPSep('G) ;

sI I I= ∪ ;

return I;

410 F. Zhao et al.

the IGP graph gradually. If there is no more pendant vertex in the produced subgraph,
then BGPSep is applied. We called the modified algorithm BGPSep_D, as shown in
Algorithm 2.

The idea of BGPSep_D is simple. If the degree of node u is one in the IGP graph,
then we let u be the client of its adjacent node v . If node v has complete visibility,
then following the route reflection rules and the BGP route selection rules, node u
will have complete visibility (this will be proved in the next section).

4 Proof of Correctness

In this subsection, we will prove that the IBGP configuration produced by
BGPSep_D satisfies the properties P1, P2 and P3 described in the previous Section.
To facilitate the discussion, we will borrow some related notations, definitions and
lemmas used in [13].

Consider the IGP subgraph G induced by the BGP routers of a network in an AS.

Let V denote the set of BGP routers. Let d denote any destination. For every router
A ,let d ()Egress A denote the best egress router that A would have picked had it seen

the best routes from every EBGP router in the AS.
Also we denote subG the subgraph 'G that is generated after the Step 1 of the

BGPSep_D algorithm is finished.

Definition 1. A signaling chain between two routers A and B is defined as a set of
routers , , , ..., ,0 1 2 r r+1A(= R) R R R B = (R) such that, for i = 1...r , (i) iR is a route re-

flector and (ii) at least one of 1iR + or 1iR − is a route reflector client of iR .

Definition 2. A signaling chain of monotone increase between two routers A and B
is a signaling chain : , , , ..., ,0 1 2 r r+1S A(= R) R R R B (= R) such that, for i = 1...r +1 ,

1iR − is a route reflector client of iR .

Definition 3. A signaling chain of monotone decrease between two routers A and B
is a signaling chain : , , , ..., ,0 1 2 r r+1S A(= R) R R R B (= R) such that, for i = 1...r +1 ,

iR is a route reflector client of 1iR − .

Definition 4. Given two signaling chains 1 0 1, ,..., kS R R R= and 2 0 1' , ' , ..., 'lS R R R= ,

if 0'kR R= and 0 0 1,..., ('), ' ,..., 'k lR R R R R= is a signaling chain, then we called 1S can

concatenate with 2S . We denote the concatenation of 1S and 2S by 1 2||S S .

Definition 5. For a signaling chain : , , , ..., ,0 1 2 r r+1S A(= R) R R R B (= R) , if there

exists a shortest IGP path P from A to B such that for i = 0...r +1 , iR P∈ , then we

say S is a shortest signaling chain between A and B .

Following the BGP route selection rule and the tie breaking rule, we can get the fol-
lowing claim:

 BGPSep_D: An Improved Algorithm 411

Claim 1. For any destination d , if there exists a shortest signaling chain between
router A and d ()Egress A , then A learns of the best route via d ()Egress A for destina-

tion d .

Proof. The proof is in Appendix I.

4.1 Complete Visibility (P1)

For complete visibility to hold, we require that every router A chooses the route via
egress d ()Egress A as its best route for destination d .

Lemma 1. In the IBGP configuration produced by BGPSep_D, for any destination
d , there exists a shortest signaling chain between every router A V∈ and the egress
router d ()Egress A .

Proof. The proof is in Appendix II.

The following theorem follows from Claim 1 and Lemma 1.

Theorem 1. The IBGP configuration output by BGPSep_D satisfies the property of
complete visibility.

4.2 Loop-Free Forwarding (P2)

Theorem 2. The IBGP configuration output by BGPSep_D satisfies the property of
loop-free forwarding.

The proof is omitted (it is similar to Theorem 6 of [13]).

4.3 Robustness to IGP Changes (P3)

Because Algorithm 2 does not use IGP link costs in computing the IBGP configura-
tion, we get the following Theorem.

Theorem 3. The IBGP configuration produced by BGPSep_D is not affected by
changes in IGP link costs.

Theorem 4. The IBGP configuration produced by BGPSep_D satisfies the properties
of loop-free forwarding and complete visibility in the face of IGP router and link
failures.

The proof is omitted (it is similar to Lemma 8 of [13]).

5 Implementation and Evaluation

We implemented the BGPSep_D algorithm in Matlab by extending BGPSep. The
program reads the IGP graph from a file and writes the IBGP sessions to a file. We
evaluate the performance of BGPSep_D on the backbone topologies of 5 ISPs anno-
tated with inferred link costs from the Rocketfuel project [15]. (There is a very small
connected component separated with the other part in the inferred topology of
AS1221. And an IGP topology of an AS should be connected. So we modified the
inferred topology of AS1221 slightly by removing the small connected component.)
The used topologies are summarized in Table 1.

412 F. Zhao et al.

Table 1. ISP Topologies Used

AS Name Number of routers Number of links comments
1221 Telstra 104 302 Modified slightly
1239 Sprint 315 1944
1755 Ebone 87 322
3257 Tiscali 161 656
3967 Exodus 79 294

We compare the number of IBGP sessions produced by the BGPSep_D algorithm
with those produced by BGPSep for these topologies. We assume conservatively that
all the vertexes in the topology are external BGP routers, like [13].

The results are shown in Fig.3. We observe that the IBGP configuration produced
by BGPSep_D results in a 10%-50% reduction in the number of IBGP sessions pro-
duced by BGPSep on these topologies.

Fig. 3. Number of IBGP sessions: Rocketfuel ISP topologies

Fig. 4. The maximum degrees of the generated IBGP topologies: Rocketfuel ISP topologies

Compared with BGPSep, another key aspect of BGPSep_D scalability is the
maximum degree of the generated IBGP topology. The results are shown in Fig.4.
Also we observe that the IBGP configuration produced by BGPSep_D results in a
9%-50% reduction in the maximum degree of the generated IBGP topologies pro-
duced by BGPSep on these topologies.

 BGPSep_D: An Improved Algorithm 413

6 Conclusion and Future Work

BGPSep is the first constructive algorithm to generate IBGP configurations with use-
ful correctness guarantees, while scaling better than a full mesh. In this paper, we
make a modification to the BGPSep algorithm. And we prove that the modified algo-
rithm satisfies the correctness properties of complete visibility, loop-free forwarding
and robustness to node and link failures. Although the modification is simple, an
evaluation of the modified algorithm on real-world ISP topologies shows that it can
achieve much better results than BGPSep.

References

1. Y. Rekhter and T. Li, Border Gateway Protocol 4, RFC 1771, SRI Network Information
Center, July 1995.

2. Y. Rekhter, T. Li, and S. Hares, A Border Gateway Protocol 4 (BGP- 4). Internet Draft
draft-ietf-idr-bgp4-26.txt, October 2004.

3. T. Bates, R. Chandra, and E. Chen, BGP Route Reflection – An Alternative to Full Mesh
IBGP, RFC 2796,Network Working Group, April 2000.

4. T. Bates, R. Chandra, and E. Chen, BGP Route Reflection – An Alternative to Full Mesh
IBGP, draft-ietf-idr-rfc2796bis-01.txt, Network Working Group, November 2004.

5. A. Basu, CH. Luke Ong, A. Rasala, F. Bruce Shepherd, and Gordon Wilfong, Route Oscil-
lations in IBGP with Route Reflection. In Proc. ACM SIGCOMM, pages 235.247, Pitts-
burgh, PA, August 2002.

6. Timothy G. Griffin and Gordon Wilfong, Analysis of the MED Oscillation Problem in
BGP. In Proc. 10th IEEE International Conference on Network Protocols, pages 90. 99,
Paris, France, November 2002.

7. Timothy G. Griffin and Gordon Wilfong, On the correctness of IBGP configuration. In
Proc. ACM SIGCOMM, pages 17.29, Pittsburgh, PA, August 2002.

8. D. McPherson, V. Gill, D. Walton, A. Retana. Border Gateway Protocol Persistent Route
Oscillation Condition, RFC 3345, August 2002.

9. Nick Feamster, Proactive Techniques for Correct and Predictable Internet Routing. PhD
thesis, Massachusetts Institute of Technology, September 2005.

10. Nick Feamster and Hari Balakrishnan, Detecting BGP Configuration Faults with Static
Analysis. In Proc. 2nd Symp. On Networked Systems Design and Implementation (NSDI),
Boston, MA, May 2005.

11. Ravi Musunuri, Jorge A. Cobb, Stable IBGP through Selective Path Dissemination,
IASTED Parallel and Distributed Computing and Systems Conference (PDCS), Marina
Del Ray, CA, Nov 3-5, 2003.

12. Ravi Musunuri, Jorge A. Cobb, A complete solution for IBGP stability, ICC 2004.
13. M. Vutukuru, P. Valiant, S. Kopparty, and H. Balakrishnan, How to Construct a Correct

and Scalable IBGP Configuration, in Proceedings of IEEE INFOCOM, 2006.
14. A.Feldman et al, Measuring BGP Pass-Through times, in Proceedings of the PAM 2004

workshops.
15. Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. Inferring Link Weights

Esing End-to-end Measurements. In Proc. 2nd ACM SIGCOMM Internet Measurement
Workshop, pages 231.236, Marseille, France, 2002.

414 F. Zhao et al.

Appendix I: Proof of Claim 1

Let : 0 1 2 k dS A(= R),R ,R , ...,R ,B (= Egress (A)) denotes the shortest signaling chain

between router A and d ()Egress A , and the best route selected by B for destination d is

denoted by ()dr B . Because kR ,B is a signaling chain, kR will learn the route ()dr B . If

there is not another egress router for destination d , then kR will choose ()dr B as its

best route. Else let 'B denote any other egress router for destination d .
Because B is the best egress router of A , for the egress router 'B for destina-

tion d , the relation of (')dr B and ()dr B can be classified into two cases: (i) (')dr B has

lower value of local_pref, longer as_path or a higher med value than ()dr B (if both

has the same neighboring AS);(ii) the local_pref values, as_path lengths and med
values of both routes are same.

In the case (i), kR will choose ()dr B as its best route whether it has leant (')dr B or

not.
In the case (ii), kR is not an egress router for destination d , otherwise the best

egress router of A will not be B because the IGP distance from A to kR is smaller

than that from A to B . The IGP distance from A to 'B is not smaller than that
from A to B , otherwise the best egress router of A will not be B . If the IGP distance
from A to 'B is greater than that from A to B , then the IGP distance from kR to

'B is greater than that from kR to B and kR will choose ()dr B as its best route. Else

if the IGP distance from A to 'B is the same as that from A to B , then the IGP
distance from kR to 'B is the same as that from kR to B , and kR will choose

()dr B as its best route because the tie breaking rule is deterministic.

From the above discussion we know that kR will choose ()dr B as its best route.

Likewise, 1kR − will learn ()dr B from kR further and select ()dr B . On the analogy of

this, at last A will learn ()dr B from 1R .

Appendix II: Proof of Lemma 1

Let B = d ()Egress A . We will analyze different cases as follows.

Case (1): subA G∈ and subB G∈ . If A and B have an IBGP session with each other,

then A and B belong to any shortest IGP path between A and B . Else consider a
shortest path between A and B . It follows from the construction in BGPSep that this
shortest path should pass through a set of recursively produced graph separators. Be-
cause the graph separators are configured as route reflectors and the routers in the
components (separated by the separator) are all clients of these route reflectors, it
follows that there exist router reflectors ,...,1 rR R on the shortest path such that

: , , ..., ,1 rS A R R B is a signaling chain. (Note that ,...,1 rR R need not be adjacent to

each other on the shortest path). So S is a shortest signaling chain.

 BGPSep_D: An Improved Algorithm 415

Case (2): subA G G∈ − and subB G∈ . It follows from step 1 in BGPSep_D that there

exists a vertex subC G∈ such that there is single IGP path : , , ..., ,1 kP A R R C ,

k subR G∉ . Also : , , ..., ,1 kS1 A R R C is a shortest signaling chain between A and C .

From the discussion of Case (1), we know that there exists a shortest signaling chain
S2 between router C and B . Because S1 is a signaling chain of monotone increase,
S1 and S2 can be concatenate together to form a signaling chain 1 2||S S S= . Also

because there is only an IGP path between A and C , S is a shortest signaling chain.
Case (3): subA G∈ and subB G G∈ − . It follows from step 1 in BGPSep_D that there

exists a vertex subC G∈ such that there is single IGP path : , , ..., ,1 kP B R R C ,

k subR G∉ . Also : , , ..., ,1 kS1 B R R C is a shortest signaling chain between B and C .

From the discussion of Case (1), there exists a shortest signaling chain S2 between
router C and A . Because S1 is a signaling chain of monotone increase, S1 and S2
can be concatenate together to form a signaling chain 1 2||S S S= . Also because there

is only an IGP path between B and C , S is a shortest signaling chain.
Case (4): subA G G∈ − and subB G G∈ − . There exists a vertex subC G∈ such that

there is single IGP path : , , ..., ,1 kP A R R C , k subR G∉ . Also : , , ..., ,1 kS1 A R R C is a

shortest signaling chain between A and C . And there exists a vertex subD G∈ such

that there is single IGP path ' : , ', ..., ',1 lP D R R B , 1 ' subR G∉ . Also

: , ',..., ',1 lS3 D R R B is a shortest signaling chain between D and B . From the discus-

sion of Case (1), there exists a shortest signaling chain S2 between router C and D .
Because S1 is a signaling chain of monotone increase, S1 and S2 can be concate-
nate together to form a signaling chain 1 2' ||S S S= . Also S3 is a signaling chain of

monotone decrease, 'S and S3 can be concatenate together to form a signaling chain
' ||S S S3= . S is a shortest signaling chain because there is only an IGP path from

A to C and only an IGP path from D and B .
So in all cases, for any destination d , there exists a shortest signaling chain be-

tween every router A V∈ and the egress router d ()Egress A .

DiffServ–Aware MPLS Scheme to Support
Policy–Based End–to–End QoS Provision in

Beyond 3G Networks

Kyungkoo Jun, Seokhoon Kang, and Byungjo Choi

Department of Multimedia Systems Engineering
University of Incheon, Korea

{kjun, hana, bjc97r}@incheon.ac.kr

Abstract. 3GPP proposes the policy-based network management to
provide end–to–end QoS to services, and employs IntServ and DiffServ
as policy enforcement means. Even if DiffServ is preferable to IntServ
in scalability and configurability, it has the limitation of not being able
to leverage multiple paths, hence undesirable in the network utilization
aspect. In this paper, we propose DiffServ-aware Multiple Protocol Label
Switching (MPLS) as a policy enforcement means. It enables to provide
differentiated levels of QoS as well as to improve network utilization by
splitting packets over multiple paths. It is also able to avoid the per–flow
packet ordering problem occurring when splitting a flow into multiple
paths by using a hashing–based scheme. We verify the effectiveness of
our proposed scheme by the NS–2 based simulation.

1 Introduction

End–to–end QoS provision in packet–based cellular services is gaining more im-
portance as there emerge more cases that UMTS networks interwork with ex-
ternal IP networks. Particularly, the end–to–end QoS provision is a critical issue
when it concerns delay–sensitive realtime traffic of which volume will increase sig-
nificantly when the UMTS networks start in near future the full–scale adoption
of IP Multimedia Subsystem (IMS)[1] to allow cellular users to access external
IP network based services.

3GPP[2] suggests adopting policy–based network management architecture in
order to tackle the end–to–end QoS provision issues[3]. In the current proposed
policy–based architecture, IntServ[4] and DiffServ[5] are employed as policy en-
forcement means and Common Open Policy Service (COPS)[6] protocol is used
to carry policy–related control messages among network entities. Both IntServ
and DiffServ, however, have limitations. IntServ has a drawback in scalabil-
ity because it tries to reserve network resources per traffic flow, while DiffServ
complementing IntServ by providing class–based differentiated QoS is unable to
distribute packets over multiple routing paths existing between source and des-
tination, i.e. IP packets flow to destination along only one path determined by
shortest–path–only routing rule, discarding other paths having more hop counts.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 416–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DiffServ–Aware MPLS Scheme 417

The lack of the multiple path support makes DiffServ improper in the network
resource utilization aspect to be used in the environment in which networks
connect together through multiple paths. Such inadequacy of DiffServ aggravates
as more multiple paths are being established as a consequence of the evolution
of cellular networks into All IP–based architecture which allows more external
IP networks to connect to cellular networks with easy.

In this paper, we propose to use DiffServ–aware Multi Protocol Label Switch-
ing (MPLS)[7] as a policy enforcement means in the policy–based network man-
agement for Beyond 3G networks. DiffServ–aware MPLS complements DiffServ
by enabling it to route packets with same destination over multiple paths. This
paper presents the following contributions.

• We propose DiffServ–aware MPLS as a policy enforcement means in the
policy–based network management in Beyond 3G networks in Section 3.
In a case study in Section 4, we apply DiffServ–aware MPLS based policy
to provide differentiated levels of QoS to traffic flows depending on their
belonging 3GPP–traffic classes, which are defined in [3] as conversational,
streaming, interactive, and background.

• We present a scheme to assign different bindings of DiffServ Code Point
(DSCP) and Explicit Route Label Switched Path (ER–LSP) to traffic flows
depending on the traffic characteristics in order to route them through sep-
arate paths in Section 4.

• We suggest a router architecture supporting the proposed DiffServ–aware
MPLS in Section 3. One of the features is that it is able to avoid the per–
flow packet ordering problem occurring when splitting a traffic flow into
multiple paths. It is also able to limit the maximum allowed bandwidth per
traffic class by using token buckets.

2 Policy–Based End–to–End QoS Provision

The policy–based network management architecture is proposed for the end–to–
end QoS provision in [3]. Policy Decision Function (PDF) and IP Bearer Service
(BS) Manager are two key entities to meet the end–to–end QoS requirements of
application traffic. They are in the relationship of master and slave; PDF as a
master determines which policy should be applied to satisfy QoS requirements
stated in Service Level Agreement (SLA), while the IP BS Manager as a slave,
acting as Policy Enforcement Point (PEP), carries the decided policy into action
by tweaking network resource allocation of the UMTS domain as well as the
external IP domain. PDF and the IP BS manager use Common Open Policy
Service (COPS) [6] protocol to exchange policy enforcement related signaling
messages: a set of query and corresponding response messages.

The IP BS manager provides the end-to-end QoS of services by managing both
external IP network resources and the UMTS resources. To manage the exter-
nal network resources, the IP BS Manager communicates to extern IP network
entities by using a set of IETF standard IP mechanisms such as DiffServ and

418 K. Jun, S. Kang, and B. Choi

IntServ. The management of the UMTS domain resources is, however, carried
indirectly through the UMTS BS Manager. Due to the differences between the
techniques used in the IP domain and the UMTS domain, the IP BS Manager
communicates to the UMTS BS manager through the Translation function.

DiffServ, while providing a scalable policy enforcement means by differentiated
packet scheduling according to DiffServ Code Point (DSCP) encoded in the
packets, lacks the support of multiple paths when routing packets, as mentioned
in Section 1.In the following section, we suggest using DiffServ–aware MPLS as a
policy enforcement means in order to complement such shortcoming of DiffServ.
Moreover, our scheme is able to avoid the packet ordering problem occurring
when using multiple paths.

3 Policy Enforcement Using DiffServ–Aware MPLS

MPLS[8] is an IETF standard enabling high speed packet switching by circum-
venting CPU-intensive table lookup in the forwarding routing table necessary to
determine the next hop router of an IP packet. Instead, it uses packet switching
based on labels, which are assigned to each packet by evaluating the pair of
source and destination IP addresses of packets. The path that a packet passes
through by switching according to its label to reach its destination, is called
Label Switched Path (LSP).

Realtime
Traffic
Source

Non-Realtime
Traffic
Source

Traffic
Destination

DiffServ-
aware
LSR-1

DiffServ-
aware
LSR-2

DiffServ-
aware
LSR-3

DiffServ-
aware+
MPLS
GGSN

DiffServ-
aware
LSR-4

DiffServ-
aware
LSR-5

DiffServ-
aware
LSR-6

DiffServ-aware MPLS Domain

Realtime Traffic Flow

Non-Realtime Traffic Flow

 Link

PDF PDF

External IP Network

UMTS

Fig. 1. The proposed DiffServ–aware MPLS based policy enforcement is capable of
routing realtime and non–realtime traffic through multiple paths

DiffServ–aware MPLS[7] determines the label of a packet by considering not
only the source and destination IP address pair but also the QoS class to which
the packet belongs, which is encoded in DSCP. Therefore, it is feasible to route
packets with the same source–destination IP address pair through different LSPs
depending on their QoS requirements.

Figure 1 illustrates how the proposed DiffServ–aware MPLS based policy en-
forcement leverages multiple paths by routing the realtime and the non–realtime
traffic through separate paths to destinations, as a consequence, being able to
provide them each with differentiated QoS levels. The applied policy is to de-
tour part of non–real traffic along a non–optimal path in order to protect the

DiffServ–Aware MPLS Scheme 419

bandwidth on a shortest path for realtime traffic. As a result, realtime traffic and
part of non–realtime traffic move along a shortest path consisting of Label Switch
Router (LSR)–1, LSR–2, LSR–3, and GGSN, while the rest of non–realtime traf-
fic along a one–hop longer path, LSR–1/LSR–4/LSR–5/LSR–6/GGSN.

The proposed traffic distribution of non–realtime traffic over multiple paths
must be done carefully so that the packets from the same flow are not sent over
different routes. Otherwise different delay of each path may cause disordered
arrival of packets at a destination. It severely harms the TCP performance in
particular; the disorder within a TCP flow can produce a false congestion signal
and cause unnecessary throughput degradation [19]. A quick solution to preserve
the per–flow packet ordering is to use either time stamp or sequence number to
reorder the packets at intermediate routers or final destinations. It, however, is
neither desirable nor practical when considering the complexity and the buffering
necessary to store the following packets until the preceding packets arrive.

We suggest splitting traffic among multiple paths in a way that all the packets
of a same flow are forwarded along a same path, preserving the packet ordering
and at the same time leveraging the increased bandwidth because of the multiple
paths. To differentiate the packets efficiently according to the flows, we propose
a hashing scheme of 3–tuple or 5–tuple of the packet headers. The 3–tuple means
the source and the destination IP address and the protocol, while the 5–tuple
means the 3–tuple plus the source and the destination ports. In the simulation of
Section 4, we use the 5–tuple hashing to provide more detailed level of flow clas-
sification. The 3–tuple hashing is more scalable though. We discuss the details
of the suggested hashing scheme shortly.

Figure 2 shows the architecture of the LSRs to support the proposed DiffServ–
aware MPLS based policy. We design the architecture to support the requirement
that we split only the non–realtime traffic into multiple paths. It is because
the time–sensitive characteristic makes the real–time traffic inappropriate to be
distributed over multiple paths each of which has different delay, sometimes,
exceeding the allowed maximum limit.

The router architecture consists of four parts from top to bottom: packet
classifying queues, packet scheduler, labeler, and switching component. Firstly,
incoming packets are classified according to their characteristics and, then stored
in the corresponding packet classifying queues, which will be described in detail
shortly. Secondly, the packet scheduler selects packets for transmission, and then
the labeler marks the packets with labels for switching unless labeled yet. Finally,
the switching component transmits the packets through one of outgoing network
interfaces, which is determined by the label of the packets.

There are three types of the packet classifying queues, which are for the real-
time traffic, for non–realtime traffic, and for DSCP–marked traffic respectively.
The realtime traffic queues use a token bucket to limit the maximum allowed
bandwidth for the realtime traffic. The realtime packets of which rate is below
the maximum allowed bandwidth go into in–profile queue and are assigned EF,
and otherwise into out–profile queue and AF. The non–realtime traffic queues are
explained shortly. The DSCP–marked traffic queues stores the packets which are

420 K. Jun, S. Kang, and B. Choi

Realtime
Traffic

Non-realtime
Traffic

EF AFAF BE

Token
 Bucket

DSCP marking

Packet
Scheduler

in-profile
packet

out-profile
packet

DiffServ-aware
MPLS Router Switcing

Labeler

DSCP-marked
Traffic

EF AF BE

Traffic Split
using Hashing

Queue
Mapping

Fig. 2. The Label Switch Router structure supporting DiffServ–aware MPLS

already classified and marked accordingly by other edge DiffServ routers, thus
three queues are named after the DSCP of the packets which they store: EF,
AF, and BE.

The queuing process is as follows. Firstly, a hashing scheme splits non–realtime
traffic stream into bins. The bins are then mapped to two queues based on a
queue mapping strategy; a first fit strategy is used such that bins are mapped one
by one to the first queue until the maximum allowed bandwidth for non–realtime
traffic is reached. The rest of the bins are mapped to the second queue. Then,
AF is assigned to the packets of the first queue, and BE to those of the second
queue. As a consequence, the DiffServ marking is done in a per–flow based way;
all the packets of a same flow have a same DSCP.

The packet scheduler selects the packets to transmit and the labeler deter-
mines the labels of the packets by considering the source/destination IP address
pair and the allocated DSCP of the packets. Such label binding information is
stored in Label Forwarding Information Base (LFIB), which is in turn referred
when the switching component determines transmitting interface of outgoing
packets according to their labels. The switching component operates in the same
way as MPLS routers works.

We establish multiple Explicit Router(ER)–LSPs for which we are able to
explicitly specify participating LSRs in order to route packets along different
LSPs according to their QoS requirements. To set up such ER–LSPs, we use

DiffServ–Aware MPLS Scheme 421

Constraint–based Route Label Distribution Protocol (CR–LDP) [18], an exten-
sion of LDP which is a MPLS signaling protocol for LSRs to exchange with each
other the binding information between labels and corresponding LSP. Those LDP
message communicating LSRs are called peer LSRs; LSR–1 to 5 and GGSN are
in the relationship of the peer LSRs.

VoIP
Src

DiffServ
Edge
MPLS
Router

WWW
Src

FTP
Src

LSR1 LSR2

LSR3 LSR4

VoIP
UE

Video
UE

WWW
UE

FTP
UE

GGSN

LSR5

Video
Src

MPLS-TE Domain

UMTS Domain

10 Mbps,
1 msec

3 Mbps,
2 msec

10 Mbps,
1 msec

3 Mbps,
40 msec

3 Mbps,
40 msec

3 Mbps,
40 msec

3 Mbps,
40 msec

3 Mbps,
2 msec

3 Mbps,
2 msec

Path A

Path B

External
PDF

UMTS
PDF

Fig. 3. The simulation setup consisting of an external IP network, a UMTS domain,
and a set of connecting LSRs

Our proposed scheme adopts the E–LSP to combine the DiffServ and the
MPLS information together. Since there are only four 3GPP–defined classes,
3–bit EXP field, which is able to represent eight levels of QoS, is sufficient to
differentiate the 3G traffics properly, thus our proposed LSR structure is designed
to treat the E–LSP accordingly. In our future research, we will investigate the
necessary modification of the proposed LSR structure to accommodate the L–
LSP scheme, which is expected to support more levels of QoS differentiation.

4 Simulation and Its Results

We perform a simulation to verify the performance and the effectiveness of our
proposed DiffServ–aware MPLS based policy enforcement. We use NS–2 version
2.29 [9] to run the simulation. To enable routers to support the DiffServ–aware
MPLS, we make necessary modification to MPLS–related modules of NS–2.

Figure 3 shows the simulation setup in which 3GPP–defined four types of
traffic, i.e. conversational, streaming, interactive, and background, flow from
an external IP network to a UMTS domain through a set of DiffServ–aware
MPLS based LSRs. The simulation setup consists of three network parts: an
external IP network hosting four traffic sources corresponding to 3GPP–defined
service classes, a UMTS domain having traffic sinks, and a set of intermediate
LSRs providing the DiffServ–aware MPLS capability. The LSRs connecting the
external IP network with the UMTS domain provide two different paths. First,
the path of Edge/LSR–1/LSR–2/GGSN, notated as Path A in the figure, is the

422 K. Jun, S. Kang, and B. Choi

shortest path taken as the default routing path. Second, the path of Edge/LSR–
3/LSR–4/LSR–5/GGSN, Path B, is a non–optimal path with one additional
hop. The maximum bandwidths of two paths are the same as 3 Mbps. It should
be, however, be noted that path A and B have significantly different delays as
4 msec and 160 msec respectively, the delay of path B is 40 times bigger than
that of path A.

We generate simulated traffic in a way that the non–real time traffic has more
volume than the realtime traffic: 1.2 Mbps for realtime traffic and 4.8 Mbps for
non–realtime traffic in total. For the realtime traffic, we generate 400 Kbps VoIP
traffic and 800 Kbps video streaming by using UDP–based CBR traffic. For the
non–realtime traffic, we use WWW traffic and FTP traffic each generating at
2.4 Mbps by using TCP–based traffic.

We perform the simulation for four cases. Firstly, we apply a DiffServ–only
policy by marking the realtime and the non–realtime traffic with different DSCPs
and scheduling accordingly. Secondly, we employ a MPLS–only policy by routing
realtime and non–realtime traffic into separate paths. Thirdly, we use the pro-
posed DiffServ–aware MPLS based policy, but without considering the per–flow
packet ordering. Finally, we use the proposed scheme supporting the per–flow
packet ordering. As the QoS metric to be compared among the cases, we measure
the goodput per traffic classes.

Figure 4(a) shows the result of the DiffServ–only policy application case in
which the realtime traffic bandwidth is ensured at the sacrifice of the non–
realtime traffic. We observe that the goodputs of the VoIP and the streaming
traffic are guaranteed to support the source transmission rate of 400 Kbps and
800 Kbps respectively but the goodputs of the WWW and the FTP traffic, which
are around 900 Kbps, are largely dropped compared with the source transmission
rates of 2.4 Mbps.

In the DiffServ–only case, the DiffServ Edge MPLS router of Figure 3 differen-
tiate the realtime traffic from the non–realtime traffic by assigning the following
DSCPs to incoming packets: EF to in–profile realtime traffic packets and AF to
out–profile realtime traffic, while AF and BE for in–profile and out–profile non–
realtime traffic respectively. To set up the maximum allowedbandwidth per traffic,
we allocate a token rate of 1 Mbps each for VoIP and video streaming traffic, and
500 Kbps each for WWW and FTP traffic. As a consequence, most of the WWW
and the FTP packets which are given the BE code are dropped , on the contrary all
of the VoIP and the streaming packets are coded as EF, reaching the destination
successfully.

Figure 4(b) shows the result of the MPLS–only policy application case in
which the realtime traffic bandwidth is guaranteed by preventing the non–
realtime traffic from sharing the same path, path A of Figure 3, instead the
non–realtime traffic is allowed to use the path B exclusively. However, it has a
drawback of low network utilization. We observe that the goodputs of the VoIP
and the streaming traffic are ensured to support the source transmission rate of
400 Kbps and 800 Kbps each, consuming 40% of the maximum bandwidth of

DiffServ–Aware MPLS Scheme 423

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

G
oo

dp
ut

 (
K

bp
s)

Time

VoIP
Video
WWW

FTP

(a) DiffServ–only policy application

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

G
oo

dp
ut

 (
K

bp
s)

Time

VoIP
Video
WWW

FTP

(b) MPLS–only policy application

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

G
oo

dp
ut

 (
K

bp
s)

Time

VoIP
Video
WWW

FTP

(c) DiffServ–aware MPLS application
without the packet ordering support

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

G
oo

dp
ut

 (
K

bp
s)

Time

VoIP
Video
WWW

FTP

(d) DiffServ–aware MPLS application with
the packet ordering support

Fig. 4. Goodput of traffic classes measured for four cases

the path A, and the goodputs of the WWW and the FTP traffic are average 1.4
Mbps each, which are little less than the maximum bandwidth of path B

Figure 4(c) shows the result of the DiffServ–aware MPLS based policy without
the packet ordering support. The non–realtime packets are given AF and BE only
depending on the packet rate, regardless of their belonging flow. Then, the AF
packets are routed along path A, while the BE packets along path B, resulting
in a case that the packets of a same flow are split into path A and B.

As a consequence, the goodputs of the WWW and the FTP traffic are even
smaller than those of the MPLS–only case shown in Figure 4(b). The reason is
that the disordering of TCP flow packets which are delivered through two delay–
different paths, causes the false congestion signal, thus preventing the senders
from raising the transmission rate. Nevertheless, the goodput of the realtime
traffic is guaranteed.

Figure 4(d) shows the result of the proposed DiffServ–aware MPLS based
policy application which supports the packet ordering. It splits the non–realtime
traffic into path A and path B based on the flows. It not only guarantees the
realtime traffic bandwidth but also increases the goodput of the non–realtime
traffic as high as 2.3 Mbps each for the WWW and the FTP, which is much higher
than 1.2 Mbps of the case without the packet ordering support. The reason is

424 K. Jun, S. Kang, and B. Choi

that the remnant bandwidth of path A as well as the whole bandwidth of path
B are used by the WWW and the FTP traffic. The packet order preservation
also contributes to the goodput increase.

5 Related Work

The research work about the policy–based network management architecture is
as follows. Iacono et. al. [10] propose a policy–based architecture using the COPS
protocol for the resource management of diversified and heterogeneous radio en-
vironment in which UMTS, HiperLan, and DVB are integrated. Zhuang et. al.[11]
propose a policy–based architecture for IMS service. Their work lists network
entities and communication interfaces necessary to support QoS of session–based
services of IMS. The same authors[12] suggest a policy–based architecture for the
UMTS and WLAN integrated environment. Their work presents several WLAN
interworking scenarios to show how the proposed architecture works. Xin et.
al.[13] considers the policy–based architecture for the all IP evolved cellular net-
works. Their work suggests procedures and interfaces involved in policy–based
control. Gur et. al.[14] presents the case of 4G networks in which the feasibility of
the policy–based QoS provision is discussed. In summary, the above mentioned
works justify the effectiveness of the policy–based QoS provision in diverse and
evolved network environment. These works also implicitly emphasize the impor-
tance of the provision of efficient policy enforcement means.

The research work about the policy enforcement schemes is as follows. Kim et.
al. [15] presents the case study of using DiffServ as the policy enforcement means
in 3G network connected to IP network through DiffServ–enabled routers. By
allocating differentiated DSCP depending on traffic characteristics, it is able to
ensure the QoS of realtime traffic. This scheme, however, is not able to utilize
multiple paths as explained in Section 3. RFC 3564 [16] lists the scenario–based
requirements that should be provided by the DiffServ–aware MPLS when it is
used for traffic engineering purpose. We refer to its work to contemplate our
simulation scenarios. One of the 3GPP technical specifications [17] suggests ex-
tending MPLS to be adopted as a policy enforcement means. Our work is founded
on its work and develops the idea further.

6 Conclusions

In this paper, we propose to use the DiffServ–aware MPLS as a policy enforcement
scheme to provide the required QoS to packet–based services in Beyond 3G net-
works interworking with external IP networks. The DiffServ–aware MPLS as the
policy enforcement scheme is able to not only satisfy specified QoS requirements
but also improve the network utilization by complementing the drawback of Diff-
Serv, enabling to use multiple paths. Also, we design a router architecture to use
a hashing scheme to split traffic stream based on flow to be able avoid the packet
ordering problem occurring when using multiple paths. We verify the performance
and the effectiveness of our proposed scheme by the NS–2 based simulation.

DiffServ–Aware MPLS Scheme 425

References

1. 3GPP Technical Specification 23.228 v.7.2.0 ”IP Multimedia Subsystem (IMS)
(R7),” Dec. 2005.

2. http://www.3gpp.org
3. 3GPP Technical Specification 23.207 v.6.6.0 ”End–to–End QoS Concept and Ar-

chitecture (R6),” Oct. 2005.
4. R. Braden et al., ”Resource ReSerVation Protocol (RSVP) – Version 1 Functional

Specification,” RFC 2205, Sept. 1997.
5. S. Blake et al., ”An Architecture for Differentiated Services,” RFC 2475, Dec. 1998.
6. D. Durham et al., ”The COPS (Common Open Policy Service) Protocol,” RFC

2748, Jan. 2000.
7. L. Wu et al., ”Multi–Protocol Label Switching (MPLS) Support of Differentiated

Services,” RFC 3270, May 2002.
8. E. Rosen et al., ”Multi–Protocol Label Switching Architecture,” RFC 3270, Jan.

2001.
9. http://www.isi.edu/nsnam/ns/

10. Iacono, S., Arneodo, F., Cardoso, K., Genet, M.G. and Zeghlache, D., ”Policy based
management for next generation mobile networks,” in Proceedings of Wireless
Communications and Networking 2003, Mar. 2003.

11. Zhuang, W., Gan, Y., Loh, K. and Chua, K., ”Policy-based QoS Architecture in
the IP Multimedia Subsystem of UMTS,” IEEE Network, May/June 2003.

12. Zhuang, W., Gan, Y., Loh, K. and Chua, K., ”Policy-based QoS Management
Architecture in an Integrated UMTS and WLAN Environment,” IEEE Communi-
cations Magazine, Nov. 2003.

13. Xin, Z., Xu, W., Fang, S., Yang, J., and Ping, Z., ”Policy based end-to-end ser-
vice control framework beyond 3G mobile network,” in Proceedings of Vehicular
Technology Conference 2004, Fall, 2004.

14. Gur, G., Alagoz, F., Tugcu, T., and AbdelHafez, M., ”Exploring the Issues in
Policy-Based Approaches for QoS Support in 3G+ Mobile Networks,” In Proceed-
ings of 2nd IFIP/IEEE International Conference on Wireless and Optical Commu-
nications Networks 2005, March 2005.

15. Kim, M., Nam, K., Lee, J., Hwang-Soo Lee, ”A Case Study of Policy–based QoS
Management in 3G Networks,” in Proceedings of Vehicular Technology Conference,
2003, Spring, 2003.

16. Faucheur, F. et. al., ”Requirements for Support of Differentiated Services–aware
MPLS Traffic Engineering,” RFC 3564, Jul. 2003.

17. 3GPP Technical Specification 23.802 v.6.6.0 ”Architectural Enhancements for end–
to–end Quality of Service (QoS) (R7),” Sep. 2005.

18. Jamoussi, B., ”Constraint–Based LSP Setup using LDP,” RFC 3212, Jan. 2002.
19. Wang, Z., ”Internet QoS: Architectures and Mechanisms for Quality of Services,”

Morgan Kaufmann, 2001.

Effect of Flow Aggregation on the Maximum
End-to-End Delay

Jinoo Joung1, Byeong-Seog Choe2, Hongkyu Jeong3, and Hyunsurk Ryu3

1 Sangmyung University, Seoul, Korea
jjoung@smu.ac.kr

2 Dongkuk University, Seoul, Korea
3 Samsung Advanced Institute of Technology, Kiheung, Korea

Abstract. We investigate the effect of flow aggregation on the end-
to-end delay in large scale networks. We show that networks with Dif-
ferentiated services (DiffServ) architectures, where packets are treated
according to the class they belong, can guarantee the end-to-end delay
for packets of the highest priority class, which are queued and sched-
uled with a strict priority, but without preemption. We then analyze the
network with arbitrary flow aggregation and deaggregation, and again
derive an upper bound on the end-to-end delay. Throughout the paper
we use Latency-Rate (LR) server model, and prove that FIFO, Strict
Priority, and other rate-guaranteeing servers with aggregated flows are
all LR servers to individual flows in certain conditions. We show that
the delay bound of a flow that experiences aggregation and deaggrega-
tion, including the flows in DiffServ, depends on, among others, the burst
sizes of the other flows within the aggregated flow and the number of the
aggregations and the deaggregations.

1 Introduction

The problem of guaranteeing QoS within a packet switching network has been
extensively studied and several solutions to this problem have been suggested.
IETF has defined two services on IP networks which are collectively called Inte-
grated services: the Controlled Load (CL) service and the Guaranteed Rate (GR)
service [1,2]. The CL service defines a service that approximates the behavior of
best-effort service under lightly utilized networks. The GR service, which we will
refer as IntServ in this paper, guarantees the end-to-end QoS by means of re-
serving, allocating and providing an amount of predefined resource to each data
traffic unit, which often is called a flow or a session, in every server. Let alone
the resource reservation, managing flows in a network node means a lot of works.
This complexity inhibits IntServ-type QoS architectures from being adopted in
real networks. DiffServ [3] is another approach that has been proposed to solve
the scalability problem of IntServ. It classifies packets, or the flows they belong,
into a number of traffic classes. The packets are marked accordingly at the edge
of a network. Therefore the hard works are necessary only at the edge nodes.
Classes may be assigned with strict priorities, or a certain amount of bandwidth

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 426–435, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Effect of Flow Aggregation on the Maximum End-to-End Delay 427

is provisioned for each class, as was the case with a flow in IntServ. With the
support from a proper signaling scheme, DiffServ is an overly simplified version
of IntServ, where many flows are aggregated into a single class, which is an-
other name for an aggregated flow, and treated as a whole. We consider three
networks with different QoS architectures. The first one is with IntServ-type
architecture, where many flows are handled independently. The second network
is with DiffServ-type architecture, where we consider the QoS characteristics of
the highest priority class traffic with strict priority. The third network is with a
hybrid architecture of aforementioned networks, where many flows may be ag-
gregated and deaggregated arbitrarily. We focus on the queueing and scheduling
behaviors of the flows or aggregated flows, and investigate the delay character-
istics of them, in each networks.

QoS characteristics of the network with IntServ architecture have been well
studied and understood by numerous researches in the past decade. Providing
the allocated bandwidths, or service rates, or simply rates of an output link to
multiple sharing flows plays a key role in this approach. Among a myriad of
scheduling algorithms, we focus on the deficit round robin (DRR) [4], because
the sorted priority scheduling algorithms, including Packetized Generalized Pro-
cessor Sharing (PGPS), suffer from the complexity, which is O(log N) at best
while N is the number of active flows in a scheduler [5]. The DRR, with many
other rate-providing servers, is proved to be a Latency-Rate server [6], or sim-
ply LR server. All the work-conserving servers that guarantee rates exhibit this
property and can therefore be modeled as LR servers. The behavior of an LR
server is determined by two parameters, the latency and the allocated rate. The
latency of an LR server may be considered as the worst-case delay seen by the
first packet of the busy period of a flow. It was shown that the maximum end-to-
end delay experienced by a packet in a network of LR servers can be calculated
from only the latencies of the individual servers on the path of the flow, and the
traffic parameters of the flow that generated the packet. More specifically for a
leaky-bucket constrained flow,

Di ≤ σi

ρi
+

k∑
j=1

Θ
Sj

i , (1)

where Di is the delay of flow i within a network, σi and ρi are the well known
leaky bucket parameters, the maximum burst size and the average rate, respec-
tively, and Θ

Sj

i is the latency of flow i at the server Sj . The second network
with DiffServ architecture is then considered. In this network packets in a same
class are enqueued to a single queue and scheduled in a FIFO manner within
the class. The higher priority class may be served with a strict priority over the
lower classes, or a certain amount of bandwidth may be assigned to each class.
In the third network, flows may be aggregated with an LR server at any node
in the network and deaggregated at some other node’s input port. LR servers
again schedule the aggregated flows and used throughout the network. There
is a significant volume of researches for such networks with flow aggregation.
End-to-end delay bounds with using fair aggregator was investigated [8]. It was

428 J. Joung et al.

shown that under condition that the scheduler is fair, the maximum delay of
an aggregated flow is bounded. A fair scheduler, however, should be able to re-
frain itself from transmitting packets at full link capacity whenever one or more
flows are not active, i.e. do not have packets to transmit at the moment. This
mandates a non-work conserving type of scheduler behavior to bound the delay.
Using Guaranteed Rate (GR) servers [9] as fair aggregator was also investigated
[10], and the maximum end-to-end delay was obtained. It was concluded that
the aggregated scheduling provides even better delay performance than per-flow
scheduling. Contrary to the work with GR servers [10], we still find the tra-
ditional per-flow scheduling performs better in general cases. This is because
that the aggregated scheduling does not protect the flow under observation from
other flows within the aggregate. If we have sufficiently large amount of burst
from other flows through aggregation and deaggregation, then the aggregated
scheduling performs quite poorly. This is obvious when we consider DiffServ as
an extreme of the hybrid architecture where aggregation and deaggregation oc-
cur in every node. Finally we compare the end-to-end delays in each networks
we analyzed.

2 Previous Works on LR Servers

We describe LR servers and its properties. The concept and the primary method-
ology for the analysis of LR servers are suggested by Stiliadis [7]. A server is
a commonly used terminology which in convention means the combination of a
scheduler and a transmitter that reside in a output port controller of a switch or
a router. We assume a packet switch (router) where a set of flows share a com-
mon output link. We assume that the switches (routers) are store-and-forward
devices. Let Ai(τ, t) denote the arrivals from flow i during the interval (τ, t] and
Wi(τ, t) the amount of service received by flow i during the same interval. In the
packet-by-packet model we assume that Ai(τ, t) increases only when the last bit
of a packet is received by the server; likewise Wi(τ, t) is increased only when the
last bit of the packet in service leaves the server. We further denote that a flow
i is backlogged when one or more packets of i are waiting for service. In other
words, if Ai(0, t) −Wi(0, t) is larger than zero then the flow i is backlogged at
t. A server busy period is a maximal interval of time during which the server is
never idle. During a server busy period the server is always transmitting pack-
ets. A flow i busy period is a maximal interval of time (τ1, τ2] such that for any
time t ∈ (τ1, τ2], packets of flow i arrive with rate greater than or equal to ρi

or, Ai(τ1, t) ≥ ρi(t − τ1). Now we are ready for the definition and the primary
characteristics of LR servers.

Definition 1. A server S belongs in the class LR if and only if for all times t
after time τ that the jth busy period started and until the packets that arrived
during this period are serviced, WS

i,j(τ, t) ≥ max
(
0, ρi(t − τ − ΘS

i)
)
. ΘS

i is the
minimum non-negative number that satisfies the above inequality.

Lemma 1. If S is an LR server, and flow i is leaky bucket constrained with
parameters (σi, ρi), then the followings hold.

Effect of Flow Aggregation on the Maximum End-to-End Delay 429

1. If QS
i (t) is the backlog of flow i at time t, QS

i (t) ≤ σi + ρiΘ
S
i .

2. If DS
i is the delay of any packet in flow i in server S, DS

i ≤ σi/ρi + ΘS
i .

3. The output traffic of flow i from S conforms to the leaky bucket model with
parameters (σi + ρiΘ

S
i , ρi).

Proof. See the proof of theorem 3.1 of [7]. ��
DRR is proved to be an LR server. For a detailed description on DRR, refer to
the original paper [4]. The latency of the DRR server is given as (3F − 2φi)/r,
where φi is the quantum value (a relative weight given to a flow), F is the frame
size, which is the sum of all φi over i, and r is the output link capacity.

3 Delay Bounds in DiffServ Architecture

Under a condition that there is no flow that violates the leaky bucket constraint
specified for itself, with only a simple FIFO scheduler or with a strict priority
scheduler, we will show that we can still guarantee the delay upper bound for
each flows. In this environment, the sum of all flows that want to pass through a
server is compared with the link capacity, and if it’s less than the link capacity
then delay upper bounds will be prescribed, as it can be calculated with the
method explained in this section. We assume there is a maximum length for
packets, and denote with L.

Lemma 2. During a server busy period, the amount of service given by a FIFO
server, WFIFO(τ, t), is bounded by WFIFO(τ, t) ≥ max

(
0, r

(
t − τ − L

r

))
, where

τ and t are arbitrary instants within the server busy period, L is the maximum
packet length, and r is the link capacity.

Proof. Let τ be any instant in a server busy period. By definition during a
server busy period the server is always serving packets at the rate r. Assume
a packet was being served at τ . Assume the service for this packet is started
at τ0 and finished at τ1. Let the length of this packet be L1. Let us further
denote by τ2, τ3, . . . the time instants the subsequent series of packets be served.
Similarly we will denote by L2, L3, . . . the lengths of these packets. For the
time instants at which the packet services are finished, W (τ, τn) =

∑n
i=1 Li =∑n

i=1 r(τi − τi−1) ≥ r(τn − τ) ≥ max
(
0, r(τn − τ − L

r)
)
. This inequality holds

for any τn, including the service finish time of the last packet of the server busy
period. For any time t in between the packet service instants, τ < t < τn,
W (τ, t) =

∑n−1
i=1 Li =

∑n−1
i=1 r(τi − τi−1) ≥ r(τn−1 − τ) ≥ max

(
0, r(t− τ − L

r)
)
.

The last inequality holds since τn−1 > t−Ln

r ≥ t−L
r . From the above inequalities

we conclude that W (τ, t) ≥ max
(
0, r(t − τ − L

r)
)
, for any time between τ and

the end of the server busy period. Moreover τ can be arbitrary, the lemma
follows. ��
If we consider a case where τ was chosen to be the starting time of the service
of a maximum length packet, we can easily see that the upper bound given in
lemma 2 is indeed tight. The identical logic derives the service lower bound for
strict priority scheduler without preemption, as the following.

430 J. Joung et al.

Lemma 3. During a server busy period, the amount of service given by a strict
priority server to the high priority traffic, W SP(τ, t), is bounded by W SP(τ, t) ≥
max

(
0, r

(
t − τ − 2L

r

))
, where τ and t are arbitrary instants within the server

busy period.

Proof. The proof of this lemma takes the same steps with the proof of lemma
2. The only difference is that with the strict priority scheduler even the highest
priority queue has to wait for the completion of the service of the packet currently
being served, since we assume a non-preemptive server. We omit the detail. ��
Lemma 4. Let K be the number of flows coming into server S, a FIFO server
or a strict priority server, and all the flows be leaky bucket constrained with
parameters (σi, ρi), 1 ≤ i ≤ K. The followings hold.

1. If QS(t) is the backlog at time t of server S, QS(t) ≤ σ + ρΘS, where
σ =

∑K
i=1 σi, ρ =

∑K
i=1 ρi, and ΘS = L/r when S is FIFO, 2L/r when S is

SP.
2. If DS is the delay of any packet in server S, DS ≤ σ/r + ΘS .

Proof. The proof is similar to the proof of lemma 1. We omit the detail because
of the space limitation. ��
Lemma 5. Under a condition that all the input flows are leaky-bucket con-
strained, during a flow i busy period a FIFO server or an SP server can provide
service to flow i as the following: WS

i (T0, t) ≥ max
(
0, ρi(t−T0−(σ−σi)/r−ΘS)

)
,

where T0 is the starting time of flow i busy period.

Proof. By definition,

WS
i (T0, t) = QS

i (T0) + Ai(T0, t)−QS
i (t) ≥ Ai(T0, t)−QS

i (t). (2)

Let us consider about the amount of backlogged packets of i at t, QS
i (t). Again by

definition the amount of the arrival during a flow i busy period is lower bounded
as Ai(T0, t) ≥ ρi(t−T0). Let us first start with the assumption on arrival Ai(T0, t)
as the following. Ai(T0, t) ≤ σ∗

i + ρi(t−T0), for some σ∗
i , 0 ≤ σ∗

i ≤ σi. Then the
maximum delay a packet from any flow will experience is bounded by lemma
4 with D∗ as D∗ = σ∗/r + ΘS , where σ∗ =

∑K
j=1 σj , under condition that

σi = σ∗
i . Since the maximum delay that a packet in any flow in a server is

bounded, packets that arrived before t −D∗ must have been served at t. That
is, for t ≥ T0 + D∗,

QS
i (t) ≤ Ai(T0, t)−Ai(T0, t−D∗) ≤ Ai(T0, t)−min

σ∗
i

Ai(T0, t−D∗). (3)

Because Ai(T0, t − D∗) ≤ σ∗
i + ρi(t − D∗ − T0) = σ∗

i + ρi(t − T0 − σ∗/r −
ΘS) = σ∗

i (1 − ρi/r) + ρi(t − T0 − (
∑

j �=i σj)/r − ΘS), it is easy to see that
argminσ∗

i
Ai(T0, t − D∗) = 0. Let us denote by D0 the maximum delay with

σ∗
i = 0, or equivalently minσ∗

i
Ai(T0, t−D∗) = Ai(T0, t−D0) = ρi(t−T0−D0).

Effect of Flow Aggregation on the Maximum End-to-End Delay 431

The last equality holds since Ai(T0, t−D0) ≥ ρi(t−T0−D0) by the definition of
flow i busy period. Then from equation (2) and (3), for t ≥ T0+D0, WS

i (T0, t) ≥
Ai(T0, t−D0) ≥ ρi(t−T0−D0). For t < T0+D0, WS

i (T0, t) can be zero, since the
first packet from i busy period may experience the maximum delay. Therefore
WS

i (T0, t) ≥ max
(
0, ρi(t− T0 − (σ − σi)/r −ΘS)

)
. ��

The following theorem is a direct consequence from the definition of LR servers
and lemma 5.

Theorem 1. A FIFO server or an SP server, under conditions that all the
input flows are leaky bucket constrained and the sum of average rates is less
than the link capacity, is an LR server for individual flows with latency given
as the following: ΘS

i = (σS − σS
i)/rS + ΘS , where σS is the sum of all the σS

i

within the server S, rS is the link capacity of S, and ΘS = L/rS when S is
FIFO, 2L/rS when S is SP.

From lemma 1 and theorem 1, the following corollary can be claimed, so that
the maximum burst size at each server through the network can be calculated
recursively.

Corollary 1. The output traffic of flow i from a FIFO server or an SP server
S conforms to the leaky bucket model with parameters (σS

i + ρiΘ
S
i , ρi), where

σS
i is the maximum burst size of flow i into the server S.

The end-to-end delay of a network with DiffServ architecture with FIFO servers
and/or Strict Priority servers therefore can be obtained by the following sets of
equations: Di ≤ σi/ρi +

∑N
n=1 ΘSn

i ; ΘSn
i = (σSn − σSn

i)/rSn + ΘSn; σSn
i =

σSn−1
i + ρiΘ

Sn−1
i , where Sn is the nth server from the entrance of a network.

4 Delay Bounds in Networks with Arbitrary Flow
Aggregations

A rationale for providing an amount of reserved service rate to an individual flow
in IntServ architecture is to protect the flow from other data traffic from un-
predictable sources that request best-effort service to the network, or malicious
users that purposefully violate the input constraints. All the LR servers success-
fully achieve this mission, at the cost of the complexity of per flow scheduling
and queueing. If we have a confidence in some of flows, however, that they never
violate the promised leaky bucket parameters, or the network itself can shape
the incoming traffic to conform to these parameters, then those trusted flows
can be aggregated into a fatter flow while still be guaranteed for QoS, therefore
we can greatly reduce the scheduling and queueing complexity in a server.

We consider a series of switches each withLR servers. The (n−1)th server from
the network entrance, S(n − 1), generates output traffic I

S(n−1)
out , or equivalently

an aggregated flow of several elemental flows including i, which is the flow under
observation. The next switch also has many output ports therefore many servers,
including Sn to which i is destined. Among the flows within I

S(n−1)
out , some of flows

432 J. Joung et al.

are switched to this server.Let us denote by ISn
in such a set of flows. Note that ISn

in ⊂
I

S(n−1)
out . InSn, ISn

in is considered as a single flow, andqueued into a single queue and
served accordingly. There are other elemental flows or aggregated flows from the
same or other input ports, which share the serverSn with ISn

in and then aggregated
with it, thus are consisted in ISn

out. Note that for the aggregation Sn does nothing
more than a normalLR server does. Also note that there may be other background
flows that share the servers but are not aggregated into flow ISn

out. The amount of
service given to the aggregated flow ISn

in is bounded as follows, because it is served
by an LR server: WSn

I,in ≥ max
(
0, ρSn

I,in(t − T0 − ΘSn
I,in)

)
, where T0 is the starting

time of a flow ISn
in busy period, ΘSn

I,in is the latency of the aggregated flow ISn
in at

Sn, andσSn
I,in =

∑
k∈ISn

in
σSn

k , ρSn
I,in =

∑
k∈ISn

in
ρk, whereσSn

k is themaximumburst
size of a flow k within ISn

in . The delay of a packet within flow ISn
in is also bounded by

the lemma 1 as the following: DSn
I,in ≤ σSn

I,in/ρSn
I,in +ΘSn

I,in. We are interested in the
output traffic characteristics of the flow i within ISn

out. Let WSn
i (τ, t) be the service

given to the packets that belong to flow i, at the server Sn during a time interval
[τ, t). We argue the following.

Lemma 6. Under a condition that all the input flows within ISn
in are leaky-

bucket constrained, during a flow i busy period an LR server Sn can provide
service to flow i, within aggregated flow ISn

in , as the following: WSn
i (T0, t) ≥

max
(
0, ρi(t−T0− (σSn

I,in−σSn
i)/ρSn

I,in−ΘSn
I,in)

)
, where T0 is the starting time of

flow i busy period.

Proof. The proof takes the same steps with the proof of lemma 5. Since an
aggregated flow is queued and scheduled as if they were in a FIFO server with
some latency, lemma 5 can be considered as a special case of this lemma with
the latency L/r and the allocated rate r. We omit the detail. ��

The following theorem is a direct consequence from the definition of LR servers
and lemma 6.

Theorem 2. An LR server with an aggregated flow, under condition that all
the input flows within the aggregated flow are leaky bucket constrained, is an LR
server for individual flows with latency given as the following: ΘS

i = (σS
I,in −

σS
i)/ρS

I,in + ΘS
I,in, where IS

in is the aggregated flow.

From lemma 1 and theorem 2, the following corollary can be claimed, so that
the maximum burst size at each server through the network can be calculated
recursively.

Corollary 2. The output traffic of flow i within an aggregated flow IS
out from

an LR server S conforms to leaky bucket model with parameters (σS
i + ρiΘ

S
i ,

ρi), where σS
i is the maximum burst size of flow i into the server S.

The maximum end-to-end delay of a network of LR servers with aggregated
flows can be obtained by the following sets of equations: Di ≤ σi/ρi+

∑N
n=1 ΘSn

i ;
ΘSn

i = (σSn
I,in−σSn

i)/ρSn
I,in+ΘSn

I,in; σSn
I,in =

∑
k∈ISn

in
σSn

k ; σSn
i = σSn−1

i +ρiΘ
Sn−1
i .

Effect of Flow Aggregation on the Maximum End-to-End Delay 433

5 Numerical Results

We focus on a residential network environment, where the maximum number of
hops and the number of flows are confined and predictable. Moreover in such
networks the demand for real-time service is strong, especially for video and
high quality audio applications. IEEE 802.3 Residential Ethernet Study Group
[11] defines a bound for the end-to-end delay to be 2ms in a network of 7 hops
for stringent audio and video applications [12]. We assume the 100Mbps Fast
Ethernet links are used across the network.

Consider a network of arbitrary topology whose maximum radius is seven
hops. We refer a hop by a switch, therefore a server. Consider the longest path
where seven DRR servers are in series. In this longest path, at each server there
are eight flows with the average rate of 10Mbps, including the flow under ob-
servation, i. The maximum burst size of i at the entrance of the network is 266
bytes. This maximum burst size, which is the same with the maximum packet
size, is calculated by assuming MPEG-2 Transport Streams (TS) over IP over
Ethernet. Note that the other flows do not have any burst size constraints. The
flows other than i at different servers may or may not be the same ones. In this
scenario the latencies at all the servers are identical and is 0.468ms, as given
in equation (2). The end-to-end delay with seven servers is again obtained from
equation (1) and is 3.490ms.

Next, consider a network of the same topology with the previous scenario,
now with FIFO servers. Again the flow under observation, i, in the longest path
of seven hops conforms to leaky bucket parameters (σi, ρi) at the entrance of the
network, where σi is 266 bytes and ρi is 10Mbps. The maximum burst size at
the nth server of i is denoted by σSn

i . While i traverses through seven servers, it
confronts with seven other flows, each with 10Mbps average rate, at each server.
The other flows at nth server Sn are assumed to have the maximum burst
size that is same as the maximum burst size of the flow i at that server, σSn

i .
This assumption on the maximum burst size of other flows makes this scenario
the worst case, because in a spanning tree network if i traverses the maximum
length path then the flows confronted by i at any node cannot have traveled more
hops than i. The maximum delay in this case for the flow under observation is
4.085ms. If SP servers instead of FIFO servers are used, the maximum network
delay increases to 11.166ms.

Now consider a hybrid network with an aggregated flow which comprises flow
1 and 2. This aggregated flow traverses a network of LR servers in series. In
every server there are six others flows, demanding 10Mbps per each flow. Again
the flows 1 and 2 are constrained with leaky buckets at the entrance of the
network with the parameters (266 bytes, 10Mbps). We define a subnetwork to
be the collection of servers in series that the flow under observation belongs in
an aggregated flow unaltered, therefore the subnetwork can be replaced with
an equivalent virtual LR server. The maximum delay can be calculated from
the maximum delay in the subnetwork 1 and the subnetwork 2. In this case the
subnetwork 1 is the switch 1, and the subnetwork 2 is the collection of switches
2 through 7. The delay in the subnetwork 1 is 0.681ms, which is from lemma 1.

434 J. Joung et al.

The maximum burst size of the aggregated flow into the subnetwork 2 is 10963
bits, and the maximum delay in the subnetwork 2 is 3.102ms. We obtain the
maximum delay of the whole network by summing these two delays, which is
3.783ms. Finally we consider the case where the aggregated flow in the previous
scenario is deaggregated into flows 1 and 2 at the input port of switch 7 to
different output ports thus different servers, and each is confronted with other
seven flows there. The total maximum network delay in this case is 6.501ms.

5.1 Summary

We compare a number of scenarios with various schemes of flow aggregations
and examine their maximum delay performances. Table 1 summarizes the re-
sults. The performance of DiffServ depends heavily on the burst sizes of other

Table 1. Summary of performance comparison

flows that are aggregated with the flow under observation. IntServ, however, suc-
cessfully protects the flows from each other’s burst size variations, therefore is
considered to have the predictable and robust performance. When there is only
an aggregation at the entrance of the network, the hybrid architecture performs
fine. When a deaggregation takes place in the middle of the path, however, the
delay bound is very large due to the maximum burst size of the flow under ob-
servation that have increased to a significant level while traveling the path. The
aggregation in the middle of a network will also lengthen the delay bound with
the same reason. If we think of the DiffServ as an extreme of the hybrid archi-
tecture where flow aggregation and deaggregation occur in every node, then it is
clear that the hybrid architecture cannot perform better than per-flow scheduling
in general.

Effect of Flow Aggregation on the Maximum End-to-End Delay 435

6 Conclusion

We have investigated how the maximum end-to-end delays can be guaranteed
in networks where different QoS architectures are applied. Based on the anal-
ysis with LR server model we have confirmed that even a simplest class-based
Strict Priority servers can guarantee a maximum end-to-end delay that is unsat-
isfactory but not excessive, especially in networks with spanning tree topologies.
The hybrid networks with flow aggregation show better performances than Diff-
Serv network, even with simple DRR servers. The maximum delays in such
networks, however, depend heavily on how far the aggregation or deaggregation
take places from the entrance of the network, since the farther the aggregation
point the larger the maximum burst size, which can be interpreted as the de-
gree of uncertainty. We suggest therefore to adopt the per-flow based IntServ
architecture in moderate-sized networks. This study, however, does not reveal
the statistical characteristics of the delay, e.g. the probability of delay violation
or the correlation between the violated packets, which profoundly impact the
AV stream performance. We suggest that the results shown in table 1 to be used
as a performance index among different architectures and server choices.

References

1. R. Braden, D. Clark and S. Shenker, Integrated Services in the Internet Architec-
ture: an Overview, IETF Request for Comments, RFC-1633. 1994.

2. P. P. White, RSVP and Integrated services in the Internet: A tutorial, IEEE Com-
mun. Mag., vol. 35, pp. 100–106, May 1997.

3. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An architecture
for Differentiated Services. IETF RFC-2475, 1998.

4. M. Shreedhar and G. Varghese, Efficient fair queueing using deficit round-robin,
IEEE/ACM Trans. Networking, vol. 4, no. 3, pp. 375–385, June 1996.

5. S. Golestani, A Self-clocked Fair Queueing Scheme for Broadband Applications, in
IEEE INFOCOM94, 1994.

6. D. Stiliadis and A. Varma, Latency-Rate servers: A general model for analysis of
traffic scheduling algorithms, IEEE/ACM Trans. Networking, vol. 6, no. 5, Oct.
1998.

7. D. Stiliadis, Traffic Scheduling in Packet-Switched Networks: Analysis, Design and
Implementation, Ph.D. Dissertation, U.C. Santa Cruz, June 1996.

8. J. A. Cobb, Preserving quality of service guarantees in spite of flow aggregation,
IEEE/ACM Transactions on Networking, vol. 10, no. 1, pp. 43–53, Feb. 2002.

9. P. Goyal, S. S. Lam, and H. M. Vin, Determining end-to-end delay bounds in
heterogeneous networks, In Proc. Workshop on Network and Operating Systems
upport for Digital Audio and Video (NOSSDAV95), pages 287.298, Apr. 1995.

10. W. Sun and K. G. Shin, End-to-End Delay Bounds for Traffic Aggregates Under
Guaranteed-Rate Scheduling Algorithms, IEEE/ACM Transactions on Network-
ing, Vol. 13, No. 5, Oct. 2005

11. Residential Ethernet Study Group website,
http://www.ieee802.org/3/re study/index.html

12. F. Feng and G. M. Garner, Meeting Residential Ethernet Requirements: A Simu-
lation Study, IEEE 802.3 Residential Ethernet Study Group, Sep. 2005

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 436 – 446, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Heterogeneous QoS Multicast and Its Improvement on
Edge-Based Overlay Networks*

Suogang Li, Jianping Wu, Ke Xu, and Ying Liu

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084 P.R. China

{lsg, xuke}@csnet1.cs.tsingha.edu.cn,
{jianping, liuying}@cernet.edu.cn

Abstract. Implementing traditional multicast in a network domain including
core and edge routers is likely to indicate a huge burden of storage and
forwarding for core routers. Supporting QoS aggravates the scalability problem
of multicast. The recent multicasting on application layers is more scalable as
well as increasing traffic load in network layers and end-to-end delivery delay.
In the paper, we deploy the multicast supporting heterogeneous QoS on the
overlay only comprising edge routers, and core routers may be unaware of
multicast. With router resource limitation and QoS class constraint, we design
an algorithm to build minimum cost trees. Also, we present a method to
improve the tree performance through introducing some eligible non-member
edge routers into multicast session. The simulation results demonstrate that the
proposed multicast scheme is effective to decrease the total tree cost and satisfy
the considered restriction factors. The scheme can offer an option to realize
heterogeneous QoS multicast in DiffServ domains or MPLS VPN networks.

1 Introduction

Multicast is an efficient method to support multipoint communications. The native
network-layer multicast is optimal in delivering data to a group of members, since it
uses a delivery tree to forward data packets only once over each link. However, the
network-layer multicast suffers from several problems. The first is the difficulty of
deployment since it requires all the routers in the networks to implement multicast
functions. The second is difficulty of supporting quality of service (QoS), whereas
many multicast multimedia applications need various class services. The third
problem is state scalability problem because each group session generates one entry
of multicast routing table in each router. The last problem will be aggravated once
heterogeneous QoS (i.e., different QoS classes) are provided in the multicast.

Recently, much study is focus on application-layer multicast among end system [1-
4] and some of them have actually been realized with peer-to-peer (P2P) technology.
The applications of file transfer and video on demand can be achieved on application
layer, but the real time applications such as video-conferencing and remote

* This work is supported by the National Natural Science Foundation of China under Grant No.

60303006 and No. 60473082 and the National Grand Fundamental Research 973 Program of
China under Grant No. 2003CB314801.

 Heterogeneous QoS Multicast and Its Improvement 437

experiment steering. Although no need for router support, the application-layer
multicast depends on unicasting one or more data copy on network links, therefore it
increases traffic in network.

In this paper we research overlay multicast in the network domain. A domain can
be a normal Autonomous System (AS). We construct the overlay mesh network on
the edge routers (ERs) of the domain and then deploy multicast on the overlay
network. The core routers (CRs) will be unaware of multicast therefore achieving
good scalability. The overlay is easy to realize since the ERs know the topology
information of the network layer. Our multicast scheme establishes delivery trees with
low cost as possible and considers two significant limitations, relating supported QoS
classes and the resource of ERs. Besides, the tree performance is attempted to
improve passing through the eligible non-member nodes.

The rest of the paper is organized as follows. The next section reviews related
work. Section 3 gives a design overview of the multicast scheme. Section 4 proposes
algorithms to construct multicast delivery trees satisfying limitations. Section 5
discusses the tree improving method. Section 6 studies the performance of the
proposal through simulations. The last section takes a conclusion and future work.

2 Related Work

For implementing QoS multicast and solving scalability problem, several types of
multicast were proposed recently.

(a) Application layer multicast (ALM). In ALM, end hosts accomplish member
management and multicast forwarding and no router is needed to support multicast
[1-4], etc. TAG [3] allows the hosts to learn network topology to optimize application
multicast trees. MSN [4] considers interface bandwidth limitation in tree building.
However, there is no ALM scheme supporting heterogeneous QoS requirements,
which is supported in our proposed multicast scheme. AnySee [2] proposed inter-
overlay optimizing scheme, where the nodes have no network layer topology and
shortest path trees (SPTs) are built. It is different from our tree-improving scheme, as
discussed in Section 5.1.

(b) Multicast in DiffServ. It is a facility to support QoS requested by members
when multicasting in DiffServ domain. EBM [5] and M-DS [6] limit the multicast
branching nodes in the ingress edge routers of the domain to scalability problem. This
may result in that ingress routers become very busy and interface bandwidth may be
not enough. Our proposal considers the resource limitation of the branching nodes.

(c) Aggregating multi-group on a single tree. Aggregated multicast [8] allows
several groups which have similar member nodes on the domain to share the same
tree, so the state maintained on core routers is decreased greatly. QMCT [9] employ
the notion and design scalable QoS multicast scheme. In the paper, we implement
multicast on the network edge and no multicast state on core routers at all. It is
important to point out that the existing schemes and our proposal make the tradeoffs
between optimality and scalability, in essence.

438 S. Li et al.

3 Design Overview

3.1 Relative Definitions

The current Internet includes many network domains. We firstly give the definitions
of the network domains.

Definition 1. Network domain: Generally, a network domain comprises the edge and
the interior, including ERs and CRs, respectively.

For example, the DiffServ network domain and the provider network domain
specified in BGP/MPLS VPN. The CRs are only in charge of forwarding packets as
quickly as possible, with little state information on packet flows, whereas the ERs
offer necessary functions for flows. The functions include resource reservation, flow
control, packet marking, managing VPNs, tunnels, multicast, etc.

Definition 2. Member and non-member edge routers: The ERs of a network
domain are multicast member ER, called mER(g), when a group session g transits it.
Correspondingly, the other ERs which the group session does not transit are called
non-member ERs, i.e., nmER(g). The mER is called source ER or ingress ER where
the session enters in the domain.

The proposed QoS multicast mechanism pushes the multicast function out to the
network edges. The all ERs in the domain organize an overlay meshed network,
called Edge Overlay Network (EON). On the EON, a tree with the minimum cost is
constructed to connecting all the mERs related with the multicast group. The
mechanism is called Edge Overlay QoS Multicast (EOQM). It takes advantage of
edge routers of the domain and combines the merits of application-layer multicast and
native network-layer multicast. Therefore, it becomes convenient for Internet service
providers (ISPs) to deploy and manage QoS multicast services and utilize network
resource efficiently. The CRs are completely free from multicast state maintaining.

In the routing in the EOQM, we assume that the ingress ER (ingERs) of each
multicast session is designated for the session to compute the tree. The ingERs have
full knowledge of other ERs in the session, and compute the tree according to its
current conditions of the available bandwidth. The function components of on the
ingER are showed in Fig.1. In this figure, the ingERs utilize directly the network layer
topology information to compute multicast routing trees. The components of tree
building and improvement will be discussed in the next two sections, respectively.

Network-layer Topology Infomation

Trees Improver:
Searching eligible nmERs

Multicast data forwarding by QoS classes

Multicast Trees Builder QoS Classes Manager

mER overlay subgraph

Edge Overlay Network Manager

Fig. 1. EOQM function components on ingERs

 Heterogeneous QoS Multicast and Its Improvement 439

As shown in Fig.1, one of advantages EOQM is no need for frequent state updates
via broadcasting among all nodes; while the overlay multicast updates the state
periodically since the participant nodes are end hosts. Therefore, routing performance
of the overlay multicast may be deterred due to the imprecise routing information [4].

3.2 Design Targets

Four targets are achieved in EOQM which is listed as follows.

(i) The total cost of multicast tree spanning all mERs is as small as possible.
(ii) Heterogeneous QoS classes required by mERs are to be supported.
(iii) The mERs should be subjected to the constraint of resource limitation.
(iv) Eligible nmERs are introduced into the group to improve the tree performance.

Target (iv) will be discussed in Section 5. Target (i) is aimed to reduce the
expenditure of multicast forwarding in the domain. The cost of the path between
mERs is acquired by network layer information. For Target (ii), we assume all of the
supported QoS classes are comparable [9], i.e., the resource satisfying the high class
QoS must satisfy the low class QoS. This is means the node requiring high class QoS
should not be placed downstream of the node requiring low class QoS. It is referred to
as the QoS Class Constraint (QCC). The built tree in EOQM conforms to the QCC.
The case of incomparable QoS classes will be studied in the future. Target (iii)
indicates that another restriction is supposed to satisfy. That is named the Member
Resource Constraint (MRC), which is related with the power of forwarding and the
access capacity of interface in the mERs.

3.3 An Application Instance in BGP/MPLS VPN

The service of BGP/MPLS VPN is specified in [10]. ISP provides VPNs (Virtual
Private Networks) to the customers using its network domain. The domain consists of
P (Provider) routers and PE (Provider Edge) routers. The customers connect the PE
through CE (Customer Edge) routers. The MPLS technology is used to implement
VPNs in the P network domain. Herein, the PE router is an ER; the P router is a CR.
Our proposal can be realized in the network model. The draft [11] specifies the
multicast VPNs in the BGP/MPLS networks, which support several scalable multicast
schemes. However, it cannot offer the heterogeneous QoS requirement. Again, the
scheme tunneling the multicast packets from the ingress PE to all of egress PEs may
make the ingress PE bear heavy load when many egress PEs are involved. These
disadvantages can be compensated if applying the EOQM. It is practical and feasible.

4 Multicast Algorithm

In this section, we present the proposed solutions for obtaining good multicast trees.
Above all, we should point out that the centralized route computation is used to
increase routing efficiency and reduce message complexity. The centralized version
does not create a single point of failure or even a performance bottleneck, as each
session may select its ingress ER to perform the tree computation. This means that the

440 S. Li et al.

overall computational load can be inherently distributed among different ERs for
different sessions. We begin with the formulation of the edge overlay network model.

4.1 Problem Statements

An EON is a fully connected virtual network formed by edge routers which
communicate with each other using links in the domain. The EON is modeled by a
complete graph G = (V, E), where V is a set of nodes representing ERs, and E is a set
of edges. Each edge, being undirected, represents a unicast path between two ERs.
Each edge e(u, v) ∈ E is associated with a cost, C(e), which represents the expenditure
of passing the edge.

Multicast services are offered in the EON. All the mERs of a session g in a domain
compose a node subset, M(g) ⊆ V. The ingress node is s. The multicast tree of g is a
directed tree rooted at s, called T(s M(g)) or T(s M), T ⊆ G. The total cost of T is
C(T) = eC(e). In the graph G, we called the overlay graph only formed by nodes in
M a pure subgraph of g, denoted GP(g). Adding one or more non-member nodes into
GP(g), the overlay graph is called a hybrid subgraph, called GH(g).

The multicast tree built is needed to satisfy the heterogeneous QoS requirement.
The available QoS class set is Q, |Q| = QN. The multicast member v ∈ M requests QoS
class, q(v) ∈ Q. The constraint of QCC indicates the directed transfer from high class
QoS node to low class QoS node. That is, the direction of edge e is u v (e:u v) if
q(u) > q(v). Obviously, the QoS class of source s is highest, i.e., q(s) = 0.

The limitation of MRC corresponds to the degree restriction of the nodes in the
graph. Each node v in the graph is attached with a degree limitation DMax(v). The
degree of node v ∈ T is dT(v), dT(v) DMax(v).

The cost of the built multicast tree is expected to be as low as possible, as well as
satisfying the constraints of QCC and MRC. We assume that the QoS requirement of
each node can be met without considering resource reservation problem in our study.
We refer to the problem as computing minimum cost trees with constraints of QoS
class and node degree, QD-MCT for short. The definition is given as below.

Definition 3. With constraints of QoS class and node degree, minimum cost
directed tree problem (QD-MCT): Given an undirected complete graph G(V, E), a
non-negative real cost C(e) for each edge, a positive degree limitation DMax(v) ∈ Z+
and a QoS class q(v) ∈ Q for each node v, where Q is the set of QoS classes supported,
Q = {0, 1, … } ⊂ Z with sort descending, |Q| = QN; find a spanning tree T of M ⊆ V of
minimum cost, subject to the constraints that the node u requiring high QoS class
should not be placed downstream of the node v requiring low QoS class in T, for all u,
v ∈ M and that the node v degree in T is less than DMax(v) for all v ∈ M.

This problem can be formalized as

Minimize C(T(s M)) = e∈TC(e)
Subject to (i) ∀ e(u, v) ∈ ET, e:u v, if q(u)>q(v);

(ii) dT(v) DMax(v).

Solving the minimum cost tree of the node subset M in a graph is a well-known
NP-complete (NPC) problem of Steiner Minimum Tree (SMT). The QD-MCT

 Heterogeneous QoS Multicast and Its Improvement 441

problem involves the constraints of QCC and MRC, which is corresponded to the
problem computing directed SMT with degree limitations. Especially, the problem is
reduced to Traveling Salesman Problem (TSP) when DMax(v) = 2 for all v ∈ M. The
QD-MCT problem is also NPC. The detailed process is omitted here for conciseness.

4.2 Heuristic Algorithm

We present the greedy heuristic algorithms to solve the QD-MCT problem for its
complexity. Let Topt denote the optimal QD-MCT tree and C(Topt) denote the tree
cost.

The heuristic algorithm tries to achieve the minimum cost spanning trees with the
constraints of QCC and MRC in the overlay pure subgraph GP(g). The problem to
compute Minimum Spanning Trees (MST) of a graph is polynomial solvable using
the well-known Prim’s algorithm. For the QD-MCT problem, the algorithm building a
spanning tree of GP(g) incrementally, like Prim’s algorithm.

In Prim’s algorithm, a new edge with its connecting node off-tree is selected to
join the current built tree if the edge cost is least in all candidate edge and results in
no loop in the current tree. The step goes on until all nodes are contained. In our
algorithm, we prefer to select the nodes with high class QoS rather than low class
QoS nodes to join the current subtree due to the QCC. Therefore, the algorithm
satisfies that the class QoS of every node on the current tree is not lower than that
of any candidate node off the tree, and the direction of the newly selected edge is
from the end on tree to the end off tree before joining. Finally, the gained tree is
guaranteed to satisfy the QCC. In the initialization of the algorithm, the ingER must
be the first to join the tree for it’s default highest class QoS. For the MRC,
assuming the degree limitation of each node, DMax is identical, the algorithm should
selects the new edge v to join the current tree which the degree dT(v) < DMax(v). If
not, another candidate edge with the second least cost is considered to join. See the
algorithm as below.

Algorithm 1. The heuristic for QD-MCT
Input: The graph, GP(g) ⊆ G; source node, s; node degree limitation, DMax(v) and required QoS class,

q(v), for v ∈ V, q(s) = 0. The QoS number, QN, the smaller q, the higher QoS class. Edge cost, C(e(u, v)) for
e(u, v) ∈ E. Output: Tree T

(0) T = ∅ and push s into T.
(1) Classify the rest nodes into Ri, i∈[0, QN-1], according to the QoS class of each node;
(2) for i from 0 to QN-1,
(3) while (Ri ∅), do
(4) Select the node u in Ri and the edge e(u, v) with v in T, with least C(e) and dT(v) < DMax(v);
(5) Join the node u and e(u, v) in T and set e:u v
(6) Remove the u from Ri and update the degree dT of u and v;

Node classifying in Step (2) of the algorithm needs to run in time O(|V|). The later
steps are like Prim’s algorithm, being made to run in time O(|E|·log|V|) using ordinary
binary heaps. By using Fibonacci heaps [12], it can be sped up to run in time
O(|E|+|V|·log|V|), which is an improvement since |V| is much smaller than |E|=|V|·(|V|-
1)/2=O(|V|2) in fully connected graph. So the total running time is polynomial.

442 S. Li et al.

5 Improving Multicast Through Non-member

We discuss how to improve the tree generated by Algorithm.1. The idea is to search
some eligible nmER nodes, called improving nodes, to join into multicasting in order
to reduce the total tree cost. We first illustrate the possibility of such nodes existing.

5.1 Possibility of Improving

A part of network topology is shown as Fig.2 (a). The overlay network shown in Fig.2
(b) comprises nodes o and m1 ~ mn. Node o connects m1 ~ mn through xu and then y1 ~
yn, respectively. The cost of path oxu, xuyi and yimi is po, ui and li, 1 i n, respectively.
The node r joins the overlay network as shown in Fig.2 (c), where r connects other
nodes by xv, the cost of path rxv, xuxv and xuyi is pr, px and vi, respectively. We assume
the cost of all paths is positive.

X u X v

o r

m nm 2m 1

op

iu

xp
rp

. . .

iv

il

y 1 y 2
y n

O

MnM2M1

o i ip u l+ +

...

O R

MnM2M1

o i ip u l+ +

...

r i ip v l+ +

o x rp p p+ +

(a) (b) (c)

Fig. 2. An example for improving nodes

In the overlay network of Fig.2 (b), the cost of the multicast tree T1 connecting o
and m1 ~ mn directly is

1 1
() ()

n

o i i o i i oi i i
C T p u l np u l np U L

=
= + + = + + = + +∑ ∑ ∑ (1)

where
1

n

ii
U u

=
= ∑ and

1

n

ii
L l

=
= ∑ .

In the overlay network of Fig.2 (c), the cost of the multicast tree T2 connecting o
and m1 ~ mn passing r is

2 1
() () (1)

 (1)

n

o x r r i i o x r i ii i i

o x r

C T p p p p v l p p n p v l

p p n p V L

=
= + + + + + = + + + + +

= + + + + +

∑ ∑ ∑

(2)

where
1

n

ii
V v

=
= ∑ .

Comparing Equ.(1) and (2), we see that C(T2) < C(T1) as long as
(1) () (1)

r x o
n p p V U n p+ + + − < − . Let = v-u, then (1) (1)

r o x
n p n p p+ < − − − Δ , i.e.,

(1) 1 1
()

1 1 1

o x

r o x

n p p n
p p p

n n n

− − − Δ −
< = − + Δ

+ + +
 (3)

Considering the case where px = 0, i.e., U = V, the right part of Inequ.(3) must be
positive if only n 2. So we have

 Heterogeneous QoS Multicast and Its Improvement 443

1 2
(1)

1 1
r o o

n
p p p

n n

−
< = −

+ +

(4)

where n denotes the children number of node o that is necessary to improvement
occurring. When n is large, r is qualified to become the improving node as long as pr
is a little less than po.

Especially, when n=1, there is no improvement for the partial tree. Meanwhile, the
partial tree is equivalent to unicast path between o and m1. Therefore, it is impossible
to improve the path o m1 when the object is solving the shortest path in the case
shown in Fig.2. This is just the case of AnySee [2], which differs from our scheme
and also shows the different improving possibility. We point out that if routing metric
in router xu and xv is identical to the cost of paths, then xu will know path xu xv y1 is
more optimal than path xu y1 and no improvement exists. However, our scheme to
optimize the total tree cost is always possible to find improvement.

5.2 Algorithm for Tree Improving

Now we give an improving algorithm how to search the improving node(s) among
non-member routes for the group g, as shown in Algorithm.2

The algorithm searches improving node with smallest cost for the on-tree node
having more than one child. In Step (6), we examine the degree limitation of current
nmER for MRC constraint. The algorithm assumes the QoS class of improving node r
is equal to the replaced node mi. The exterior cycle of the algorithm runs no more than
|Vm| and the interior cycle runs no more than |Vnm|. Therefore, the algorithm is made to
run in time O(|Vm|·|Vnm|) = O((|VG|2)/2) = O(|VG|2), for |Vm|+|Vnm|=|VG|.

The tree cost after improved by Algorithm.2 is not more than that before improved
definitely, since only the nmER(s) that is able to reduce the cost of the original tree is
selected to join the tree. Assuming that the replaced node set is {mi} ⊆ M and the
replacer of mi is ni, the reduced cost by Algorithm.2 is iR

min = i[C(e(mi ni)) +
kC(e(ni hk))], hk ∈ Ch(mi).

Algorithm 2. The improvement for QD-MCT
Input: Group g, tree T, member node set Vm={mi}, non-member node set Vnm={nmj}, node degree

limitation DMax(nmj), nmj ∈ Vnm. Output: improved tree T.
(0) Set variants: r, the current improving node, Rmin = , the current minimum cost related to r;
(1) for each mi in T:
(2) Set Chi = {hk}, the children set of mi on T.
(3) If |Chi| 1, then goto (1) to check next member node; otherwise, goto (4)
(4) Compute the cost sum Pi

m of the edges from mi to hk ∈ Chi,; Pi
m

 = kC(e(mi hk));
(5) for each nmERj in Vnm:
(6) If DMax(nmj) < |Chi| then goto (5) to check next non-member;
(7) Compute the cost sum Pi

m from nmj to hk ∈ Chi,; Pj
nm

 = C(e(mi nmj)) + kC(e(nmj hk));
(8) If Pj

nm < Pi
m and Pj

nm < Rmin, then Rmin = Pj
nm, r = nmj; otherwise goto(4) to check next node;

(9) If Rmin < , then add r and e(mi r) into T; add edges e(r hk) k into T and remove e(mi hk);

6 Simulation Experiments

Firstly, we compute the minimum cost tree without any constraint, called TM in the
pure subgraph and the improved solution, TiM in the hybrid subgraph, using the Prim’s

444 S. Li et al.

algorithm and the Algorithm.2, respectively. Next, we seek the minimum cost tree
with constraints of QCC and MRC, called TCM and TiCM in the same mode.

(1) For tree performance of Algorithm.1
Computing the optimal solution, Topt to QC-MDT is difficult since it is NP hard.

We substitute TM to Topt. Obviously, C(TM) C(Topt). Let the 1 and 2 denote the
performance ratios before and after improved, respectively, as shown as follows.

1

() ()
100%

()

CM M

M

C T C T

C T
λ

−
= × ,

2

() ()
100%

()

iCM iM

iM

C T C T

C T
λ

−
= × . Smaller is

meaning better performance.
(2) For improving effect of Algorithm.2
Let the 1 and 2 denote the improving effects for the trees with and without

constraints, respectively, as shown as follows. Larger is meaning better improving.

1

() ()
100%

()

M iM

M

C T C T

C T
μ −

= × ,
2

() ()
100%

()

CM iCM

CM

C T C T

C T
μ −

= × .

6.1 Setting of Experiments

We generate the experiment topologies using GT-ITM. Each node denotes a router
in the router and total number of nodes are N. ER nodes are a half of the nodes.
Random variant ∈ (0, 1) is the rate of the mER number to the number of all ERs,
indicating the group size, NmER= N/2. The link cost between nodes is refered to as
the corresponding edges delay, designated by the topology generator. The cost of a
path connecting two ERs is the sum cost of all the links on the path. The degree
limtation for each node is equal, DMax=10 and QoS class number is QN=3 in
simulations.

Two types of topology graph are generated: the sparse and the dense. The former
holds more edges than the latter with the same number of nodes. It is implemented by
setting the density parameter p∈(0, 1) that is the possibility that there exists an edge
between any two nodes in the graph.

The simulation consists of four sets of experiments, setting (N, p) = {(1000, 0.8),
(1000, 0.2), (500, 0.8), (500, 0.2)}, which denote the topology with many or few
nodes and dense or sparse edges, respectively. In each group experiment, ={0.05,
0.1, 0.2, …, 0.9}, totaling ten. For the cases with or without QCC and MRC, the (QN,
DMax) = {(0, 0), (0, 10), (3, 0), (3, 10)}.

6.2 Simulation Results

The tree performance by Algorithm.1 is shown in Fig.3, where (a) for the unimproved
trees and (b) for the improved trees. We can see that performance rates stand at 10%
or so and not more than 20% when group size increasing in four networks topologies.
It shows the good performance of the Algorithm.1.

 Heterogeneous QoS Multicast and Its Improvement 445

MST vs. QD-MCT

Pe
rf

or
m

an
ce

 R
at

e
of

 A
lg

or
ith

m
.1

0%

5%

10%

15%

20%

(1000, 0.2)

(500, 0.2)(500, 0.8)

(1000, 0.8)

(N, p)

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio of #mER to total #ER (#ER=N/2)

(1000, 0.2)

(500, 0.2)(500, 0.8)

(1000, 0.8)

(N, p)

P
er

fo
rm

an
ce

 R
at

e
of

 A
lg

or
it

hm
.1

0%

5%

10%

15%

20%

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio of #mER to total #ER (#ER=N/2)

iMST vs. iQD-MCT

(a) (b)

Fig. 3. Performance of Algorithm 1

(N, p)=(500, 0.8)

both constraints

only with QoS constraint

only with degree constraint

neither constraint

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio of #mER to total #ER (#ER=250)

Im
pr

ov
in

g
R

at
e

0%

5%

10%

15%

20%

Im
pr

ov
in

g
R

at
e

0%

5%

10%

15%
(N, p)=(500, 0.2)

both constraints

only with QoS constraint

only with degree constraint

neither constraint

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio of #mER to total #ER (#ER=250)

(a) (b)

Fig. 4. Improvement of Algorithm 2

The improving effects of Algorithm.2 are shown in Fig.4. The values of 1 and 2
are both about 5%. The summit of improving effect in QD-MCT is approach 18%
when =0.05 in Fig.4 (a).

We can obtain two facts from these curves. On one hand, the less , the better the
improvement is. The maximums of effects occur at =0.1 in the four group curves,
while there is nearly no improvement when >0.8. The reason is that the little value of
 means there more nmERs checked if they are eligible to improving the tree. On the

other hand, improvement to the trees with constraints is larger than the one without
any constraint. Under the constraint conditions, the performance of the trees by
Algorithm.1 is worse than the trees without constraints. Therefore they have more
opportunity to be improved.

7 Conclusions and Future Work

This paper presents an overlay multicast scheme supporting heterogeneous QoS in the
general network domains. The scalability of the scheme is achieved since multicast is
deployed on edge routers. The minimum cost trees are built to delivery traffic so as to
increase total network performance. The tree-building algorithm supports different
QoS requirements by members and considers the limited power of the member routers

446 S. Li et al.

for replicating and forwarding in overlay multicast trees. The tree-improving
algorithm is using eligible non-member nodes to replace some branching node. The
simulations show the algorithms are effective. The scheme offers an option to
implement QoS multicast in DiffServ domains or MPLS VPN networks.

FUTURE WORK. The optimizing object of the discussed algorithms in the paper is
to minimize the cost of total trees. It is interesting how to solve the minimum delay
tree or other types of the trees with these two constraints mentioned. Additionally, the
degree limitation of each node is identical in the simulations. Performance of the
algorithm with different degree limitations is studied in the future work.

References

[1] Y. Chu, S. G. Rao, and H. Zhang, A Case for End System Multicast, in Proceedings of
ACM Sigmetrics, 2000.

[2] X. Liao, H. Jin, Y.Liu, etc., AnySee: Peer-to-Peer Live Streaming, Infocom, 2006
[3] M. Kwon, S. Fahmy, Topology-Aware Overlay Networks for Group Communication, In

Proceedings of NOSSDAV, 2002
[4] S. Shi, J. Turner, Multicast Routing and Bandwidth Dimensioning in Overlay Networks,

IEEE JSAC, Vol. 20, No. 8, Oct., 2002
[5] A. Striegel, A. Bouabdallah, H. Bettahar, and G. Manimaran, EBM: A new approach for

scalable DiffServ multicasting, NGC, 2003
[6] M. Gupta and M. Ammar, Providing Multicast Communication in a Differentiated

Services Network Using Limited Branching Techniques, IC, 2002
[7] M. Carlson, W. Weiss, S. Blake et al. An Architecture for Differentiated Services. IETF

Internet RFC 2475, December 1998.
[8] A. Fei, J.-H. Cui, M. Gerla, and M. Faloutsos. Aggregated Multicast: an approach to

reduce multicast state. Proceedings of Sixth Global Internet Symposium (GI2001), Nov.,
2001.

[9] S. Li, J. Wu, K. Xu and Y. Liu, A Modularized QoS Multicasting Approach on Common
Homogeneous Trees for Heterogeneous Members in DiffServ, WMSN, 2006

[10] [10] E. Rosen, Y. Rekhter, BGP/MPLS IP Virtual Private Networks (VPNs), IETF RFC
4364, Feb. 2006

[11] E. Rosen, R. Aggarwal, Multicast in MPLS/BGP IP VPNs, draft-ietf-l3vpn-2547bis-
mcast-01, Dec. 2005

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw
Hill, 2000

On Multicasting Steiner Trees for Delay and
Delay Variation Constraints�

Moonseong Kim1, Young-Cheol Bang2, and Hyunseung Choo1

1 School of Information and Communication Engineering
Sungkyunkwan University 440-746, Suwon, Korea

Tel.: +82-31-290-7145
{moonseong, choo}@ece.skku.ac.kr

2 Department of Computer Engineering
Korea Polytechnic University 429-793, Gyeonggi-Do, Korea

Tel.: +82-31-496-8292
ybang@kpu.ac.kr

Abstract. The objective of multicasting is to find a tree that has a
minimum total cost, which called the Steiner tree. Multicast routing
algorithms should support the required QoS. There are two important
Quality of Service (QoS) parameters that need to be guaranteed in order
to support the real time and multimedia applications. Firstly, we con-
sider the delay parameter where, the data sent from source need to reach
destinations within a certain time limit (delay bound). Secondly, in addi-
tion to the delay constraint, we add the delay variation constraint. The
delay variation constraint is a bound on the delay difference between
any two destinations. Our research subject is Delay and delay Varia-
tion Bounded Steiner Tree (DVBST) problem. The problem has been
proved to NP-complete. In this paper, we propose efficient algorithm for
DVBST. Simulations demonstrate that our algorithm is better in terms
of tree cost as compared to the existing algorithms.

1 Introduction

New communication services involving multicast communications and real time
multimedia applications are becoming prevalent. The general problem of multi-
casting is well studied in the area of computer networks and algorithmic network
theory. In multicast communications, messages are sent to multiple destinations
that belong to the same multicast group. These group applications demand a cer-
tain amount of reserved resources to satisfy their Quality of Service (QoS) require-
ments such as end-to-end delay, delay variation, cost, loss, throughput, etc.

For multicast communications such as a teleconference, it is very critical that
the current speaker must be heard by all participants simultaneously, but oth-
erwise the communication may lose the feeling of an interactive face-to-face
discussion. Another similar dispute can be easily found in on-line video games.
These are all related to the multicast delay variation problem [12][17].
� Dr. Choo is the corresponding author and Dr. Bang is the co-corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 447–456, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

448 M. Kim, Y.-C. Bang, and H. Choo

Moreover, network cost of the multicast routing tree is another factor that we
have to consider, which is important in managing network resources. Varying
levels of complexity may be present in a multicast problem depending upon
the cost and/or criterion [21]. The Steiner tree is very useful in representing
solution to multicast routing problems. The Steiner tree, studied extensively in
network theory, deals with minimizing the cost of a multicast routing tree [7][23].
The Steiner tree problem is known to be NP-complete [6][9] and there are vast
literatures [2][8][14][19].

Two kinds of delay and delay variation constrained multicast routing problems
have been developed. One is Delay and delay Variation Bounded Multicast Tree
(DVBMT) problem [10][13][17][18], without considering cost optimization. The
other is Delay and delay Variation Bounded Steiner Tree (DVBST) problem. The
two kinds of problems have been proved to NP-complete [17]. In this paper, our
research subject is to construct the Steiner tree with delay and delay variation
constraints. Simulations demonstrate that the proposed algorithms are better in
terms of tree delay variation and tree cost as compared to the existing algorithms.
Also, the time complexity is comparable to one of previous works.

The rest of the paper is organized as follows. In Section 2, we state the network
model for the multicast routing, the problem formulations, and the previous
algorithms. Section 3 presents the details of the proposed algorithms. Then,
we evaluate the proposed algorithm by the computer simulation, in Section 4.
Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 Network Model

We consider that a computer network is represented by a directed graph G =
(V, E) with n nodes and l links where, V is a set of nodes and E is a set of links,
respectively. Each link e = (i, j) ∈ E is associated with two parameters, namely
link cost c(e) ≥ 0 and link delay d(e) ≥ 0. The delay of a link, d(e), is the sum
of the perceived queueing delay, transmission delay, and propagation delay. We
define a path as a sequence of links such that (u, i), (i, j), . . ., (k, v), belongs
to E. Let P (u, v) = {(u, i), (i, j), . . . , (k, v)} denote the path from node u to
node v. For given a source node s ∈ V and a destination node d ∈ V , (2s→d,∞)
is the set of all possible paths from s to d. i.e.,

(2s→d,∞) = { Pk(s, d) | all possible paths from s to d, ∀s, d ∈ V, ∀k ∈ Λ } (1)

where, Λ is an index set. The path cost of P is given by φC(P) =
∑

e∈P c(e)
and the path delay of P is defined by φD(P) =

∑
e∈P d(e). (2s→d, Δ) is the set

of paths from s to d for which the end-to-end delay is bounded by Δ. Therefore
(2s→d, Δ) ⊆ (2s→d,∞).

For the multicast communications, messages need to be delivered to all re-
ceivers in the set M ⊆ V \ {s} which is called the multicast group, where
|M | = m. The path traversed by messages from the source s to a multicast re-
ceiver, mi, is given by P (s, mi). Thus, multicast routing tree can be defined as

On Multicasting Steiner Trees for Delay and Delay Variation Constraints 449

T (s, M), the Steiner tree of
⋃

mi∈M P (s, mi), and the messages are sent from s to
M through T (s, M). The tree cost of tree T (s, M) is given by φC(T) =

∑
e∈T c(e)

and the tree delay is φD(T) = max{ φD(P (s, mi)) | ∀P (s, mi) ⊆ T, ∀mi ∈ M }.
The multicast delay variation, φδ(T), is the maximum difference between the

end-to-end delays along the paths from the source to any two destination nodes.

φδ(T) = max{|φD(P (s, mi))−φD(P (s, mj))|,∀ P ⊆ T,∀ mi, mj ∈ M, i �= j} (2)

Given a positive delay bound Δ and a positive delay variation bound δ, the
objective of DVBST is to construct a minimum cost multicast tree T (s, M)
which spans s and M such that the delay and delay variation constraints are
satisfied, i.e.,

P (s, mi) ∈ (2s→mi , Δ), ∀P (s, mi) ⊆ T (s, M) (3)

φδ(T) ≤ δ (4)

φC(T) is minimized. (5)

2.2 Previous Algorithms for DVBMT

The DVBMT problem had been firstly introduced in [17]. Rouskas and Baldine
proposed Delay Variation Multicast Algorithm (DVMA), finds a Multicast Tree
spanning the set of multicast nodes. DVMA works on the principal of finding
the kth shortest paths to the concerned nodes. If these paths do not satisfy delay
variation bound δ, more longer paths are found. The complexity of DVMA is
O(klmn4) where, k and l are the largest value among the numbers of the all
appropriate paths between any two nodes under delay bound Δ, |M | = m, and
|V | = n. DVMA is a high time complexity does not fit in modern high speed
computer network environment.

Sheu and Chen proposed Delay and Delay Variation Constraint Algorithm
(DDVCA) [18] based on Core Based Trees (CBT) [1]. Since DDVCA is meant
to search as much as possible for a multicast tree with a smaller multicast delay
variation under Δ, DDVCA in picking a core node has to inspect whether the core
node will violate the Δ. In spite of DVMA’s smart performance in terms of the
multicast delay variation, its time complexity is very high. However, DDVCA has
a much lower time complexity O(mn2) and has a satisfactory performance. Kim,
et al. recently proposed a heuristic algorithm based on CBT like DDVCA, their
algorithm hereafter referred to as KBC [10]. DDVCA overlooked a portion of the
core selection. The selection of a core node over several candidates (possible core
nodes) is randomly selected among candidate nodes. Meanwhile, KBC selects the
good core node among candidate nodes as the same time complexity of DDVCA.
KBC obtains the better minimum multicast delay variation than DDVCA.

However, if the above algorithms are used in DVBST then the minimum tree
costs may not be guaranteed. For our goal DVBST, specific paths which are sat-
isfied Δ have to be required. The paths should be obtained by Weighted Factor
Algorithm (WFA) [11]. The WFA is introduced in next subsection. In this paper,

450 M. Kim, Y.-C. Bang, and H. Choo

the proposed algorithm constructs multicast tree using the paths because a mul-
ticast tree is union of paths for every multicast member. Furthermore, Kim, et al.
recently proposed a heuristic algorithm based on WFA, their algorithm hereafter
referred to as KBYC [13]. KBYC also uses expected multiple paths by WFA.

2.3 Weighted Factor Algorithm (WFA)

Kim, et al. recently proposed a unicast routing algorithm, their algorithm here-
after referred to as WFA [11], which is probabilistic combination of the cost
and delay and its time complexity is O(Wl + Wnlogn) where, {ωα} is set of
weights and |{ωα}| = W . Authors investigated the efficiency routing problem
in point-to-point connection-oriented networks with QoS. They formulated the
new weight parameter that simultaneously took into account both the cost and
delay. In generally, the Least Delay path (PLD) cost is relatively more expensive
than the Least Cost path (PLC) cost, and moreover, φD(PLC) is relatively higher
than φD(PLD). The unicast routing algorithm, WFA, reinforces the properties
with the weight ω, and then it is quite similar to a performance of kth shortest
path algorithm. The weight ω plays on important role in combining the two the
independent measures. If the ω is nearly to 0, then the path delay is low as in
Fig. 1. Otherwise the path cost is low. Thus, the efficient routing path can be
determined once ω is selected. Our proposed algorithm uses WFA for construc-
tion of multicast tree. Since a multicast tree is union of paths for every multicast
member, the proposed algorithm has to select suitable weight for each member.

The w approaches to 1

PATH COST is decreasing

PATH DELAY is increasing

The w approaches to 1The w approaches to 1

PATH COST is decreasing

PATH DELAY is increasing

Fig. 1. Relationship between path delay and path cost from [11] (Pe: 0.3, |V |: 100)

3 The Proposed Algorithm

We now present algorithm to construct a multicast tree satisfying constraints (3)
and (4) for the given values of the path delay Δ and the interdestination delay
variation tolerance δ. Furthermore, the tree has the condition (5). We assume
that complete information regarding the network topology is stored locally at

On Multicasting Steiner Trees for Delay and Delay Variation Constraints 451

source node s, making it possible to determine the multicast tree at the source
node itself. This information may be collected and updated using an existing
topology broadcast algorithm.

Fig. 2. Weight selection in proposed algorithm

Fig. 3. Scenario illustrating loop creation in G∗ = P (s, m1) ∪ P (s, m2)

Our objective is to obtain the feasible tree of minimum cost for the given
values of Δ and δ. Now, we introduce a heuristic algorithm for DVBST. WFA
can check various paths with path delay or path cost for each ω as Fig. 1. For
each multicast member, the proposed algorithm uses WFA and finds a perti-
nent weight considering with Δ and δ. Let G = (V, E) be a given network and
M = { mα, mβ , mγ } ⊂ V be a multicast group. As indicated in Fig. 2,
we select ωi∗ such that min{ φC(Pωi) | ∀Pωi ∈ (2s→mi , Δ) ∀ωi ∈ W }. Since
φC(Pωi) is decreasing as φD(Pωi) is increasing (see Fig. 1), we take ωi∗ such that
max{ ωi | ∀Pωi ∈ (2s→mi , Δ) }. Let G∗ =

⋃
mi∈M Pω∗

i
(s, mi) be a connected

subgraph of G. As shown in Fig. 3, G∗ must be not tree. The proposed algorithm
has to find the minimal spanning tree T from G∗. If there are several minimal
spanning trees, pick an arbitrary one. And then, it constructs a multicast tree,
T (s, M), from G∗ by deleting links in G∗, if necessary, so that all the leaves in
T (s, M) are multicast members. The proposed algorithm is described in detail
as follows.

452 M. Kim, Y.-C. Bang, and H. Choo

Proposed Algorithm (G(V, E), M, s, Δ, δ)

Input: A directed graph G(V, E), M is the multicast group with m = |M |, a
source node s, an end-to-end delay bound Δ, a delay variation bound δ.

Output: The multicast tree T such that φD(P (s, mi)) ≤ Δ, ∀P (s, mi) ⊆ T ,
φδ(T) ≤ δ, ∀mi ∈ M , and has a small multicast tree cost.

01. Begin
02. CW [mi] = ∅; ωi∗ = ∅; G∗ = ∅; T = ∅; /* CW : Candidates for Weight */
03. For ∀mi ∈ M Do
04. CW [mi] is obtained by WFA, s, and Δ
05. Do
06. For ∀mi ∈ M Do
07. ωi∗ = maximum of CW [mi] \ ωi∗

08. G∗ =
⋃

mi∈M Pω∗
i
(s, mi)

09. T = Prune links for cycles in G∗

10. While(φδ(T) > δ)
11. Return T
12. End Algorithm.

4 Performance Evaluation

4.1 Random Real Network Topology for the Simulation

Random graphs of the acknowledged model represent different kinds of net-
works, communication networks in particular. There are many algorithms and
programs, but the speed is usually the main goal, not the statistical properties.
In the last decade the problem was discussed, for examples, by B. M. Waxman
(1993) [22], M. Doar (1993, 1996) [4][5], C.-K. Toh (1993) [20], E. W. Zegura,
K. L. Calvert, and S. Bhattacharjee (1996) [24], K. L. Calvert, M. Doar, and
M. Doar (1997) [3], R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A.
Tomkins, and E. Upfal (2000) [15]. They have presented fast algorithms that
allow the generation of random graphs with different properties, in particular,
these are similar to real communication networks. However, none of them have
discussed the stochastic properties of generated random graphs. A. S. Rodionov
and H. Choo [16] have formulated two major demands for the generators of ran-
dom graph: attainability of all graphs with required properties and uniformity of
distribution. If the second demand is sometimes difficult to prove theoretically,
it is possible to check the distribution statistically. The method uses parameter
Pe, the probability of link existence between any node pair. We use the method
by Rodionov and Choo.

4.2 Simulation Results

We now describe some numerical results with which we compare the performance
of the proposed scheme. We generate 100 different random real networks for

On Multicasting Steiner Trees for Delay and Delay Variation Constraints 453

Fig. 4. Random graph generation by Rodionov and Choo [16]

each size of 50, 100, and 200. Each node in network has the average degree
4 or Pe = 0.3. The proposed algorithms are implemented in C. We randomly
select a source node. The destination nodes are picked uniformly from the set
of nodes in the network topology (excluding the nodes already selected for the
destination). Moreover, the destination nodes in the multicast group, M , are
occupied 10% ∼ 80% of the overall nodes on the network. The delay bound Δ
value in our computer experiment is set to be 1.5 times the minimum delay
between the source node and the farthest destination node [18]. We simulate
1000 times (10 × 100 = 1000) for each |V |. For the performance comparison,
we implement DDVCA, KBC, and KBYC in the same simulation environments.
Since DDVCA outperforms DVMA [18] in terms of delay variation, we do not
implement DVMA.

For |V |: 50, 100, 200 with Pe: 0.3 or average degree 4
Do Generate random graph 100 times

For |D|: 10%, 20%, 30%, . . ., 80% of |V |
Do Generate a source node and destination

nodes 10 times, randomly uniform.
- Run DDVCA and get the multicast tree cost.
- Run KBC and get the multicast tree cost.
- Run KBYC and get the multicast tree cost.
- Run the proposed algorithm and get the multicast tree cost.

As indicated in Fig. 5, it is easily noticed that the proposed algorithm is always
better than others. Since KBC and DDVCA use analogous core selection, their
tree costs are similar. Because the proposed algorithm takes minimal cost paths
which are bounded Δ, its tree cost cannot help but be good. The proposed
algorithm enhancement is up to about 30.5% ∼ 38.7% (|V | = 200) in terms of
tree cost for KBC. We also show that enhancement of KBYC is up to about
9.2% ∼ 19.7% (|V | = 200) in terms of tree cost for KBC.

454 M. Kim, Y.-C. Bang, and H. Choo

(a) |V | = 50 with average degree 4 (b) |V | = 100 with average degree 4

(c) |V | = 100 with Pe = 0.3 (d) |V | = 200 with average degree 4

Fig. 5. Tree costs

5 Conclusion

We have studied the problem of constructing minimum cost multicast trees that
satisfy the end-to-end delay bound and delay variation bound, which is called as
DVBST, and has been proved to be NP-complete [17]. We proposed algorithms
using expected multiple paths. The expected multiple paths are obtained by
WFA which is introduced in [11]. WFA is efficiently combining two independent
measures, the cost and delay. The weight ω plays on important role in combining
the two measures in WFA. Our proposed algorithm find suitable weight ω for
each destination member, and it constructs the multicast tree for DVBST. The
efficiency of our algorithms is verified through the performance evaluations and
the enhancement is 30.5% ∼ 38.7% in terms of the multicast tree cost. Also, the
time complexity is O(Wml+Wmnlogn) which is comparable to one of previous
works.

Acknowledgment

This research was supported by Ministry of Information and Communication,
Korea under ITRC IITA-2005-(C1090-0501-0019).

On Multicasting Steiner Trees for Delay and Delay Variation Constraints 455

References

1. A. Ballardie, B. Cain, and Z. Zhang, “Core Based Trees (CBT version 3) Multicast
Routing protocol specification,” Internet Draft, IETF, August 1998.

2. Y.-C. Bang, S.-T. Chung, M. Kim, and S.-S. Joo, “On Multicast Communications
with Minimum Resources,” Springer-Verlag Lecture Notes in Computer Science,
vol. 3726, pp. 4-13, September 2005.

3. K. L. Calvert, M. Doar, and M. Doar, “Modelling Internet Topology,” IEEE Com-
munications Magazine, pp. 160-163, June 1997.

4. M. Doar, “Multicast in the ATM environment,” Ph.D dissertation, Cambridge
University, Computer Lab., September 1993.

5. M. Doar, “A Better Mode for Generating Test Networks,” IEEE Proc. GLOBE-
COM’96, pp. 86-93, 1996.

6. M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the
Theory of NP-Completeness,” W. H. Freeman and Co., San Francisco, 1979.

7. F. K. Hwang and D. Richards, “Steiner Tree Problems,” Networks, vol. 22, pp.
55-89, 1992.

8. G. Jho, M. Kim, and H. Choo, “Source-Based Minimum Cost Multicasting:
Intermediate-Node Selection with Potentially Low Cost,” Springer-Verlag Lecture
Notes in Computer Science, vol. 3746, pp. 808-819, November 2005.

9. R. M. Karp, “Reducibility among combinatorial problems,” Complexity of com-
puter computations (R. E. Miller, J. W. Thather eds.), pp. 85-104, Newyork
Plenum Press, 1972.

10. M. Kim, Y.-C. Bang, and H. Choo, “Efficient Algorithm for Reducing Delay Vari-
ation on Bounded Multicast Trees,” Springer-Verlag Lecture Notes in Computer
Science, vol. 3090, pp. 440-450, August 2004.

11. M. Kim, Y.-C. Bang, and H. Choo, “On Algorithm for Efficiently Combining Two
Independent Measures in Routing Paths,” Springer-Verlag Lecture Notes in Com-
puter Science, vol. 3483, pp. 989-998, May 2005.

12. M. Kim, Y.-C. Bang, and H. Choo, “On Estimation for Reducing Multicast Delay
Variation,” Springer-Verlag Lecture Notes in Computer Science, vol. 3726, pp. 117-
122, September 2005.

13. M. Kim, Y.-C. Bang, J. S. Yang, and H. Choo, “An Efficient Multicast Tree with
Delay and Delay Variation Constraints,” Springer-Verlag Lecture Notes in Com-
puter Science, vol. 3982, pp. 1129-1136, May 2006.

14. L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner trees,” Acta
Informatica, vol. 15, pp. 141-145, 1981.

15. R. Kumar, P. Raghavan, S. Rajagopalan, D Sivakumar, A. Tomkins, and E. Up-
fal, “Stochastic models for the Web graph,” Proc. 41st Annual Symposium on
Foundations of Computer Science, pp. 57-65, 2000.

16. A. S. Rodionov and H. Choo, “On Generating Random Network Structures: Con-
nected Graphs,” Springer-Verlag Lecture Notes in Computer Science, vol. 3090,
pp. 483-491, August 2004.

17. G. N. Rouskas and I. Baldine, “Multicast routing with end-to-end delay and delay
variation constraints,” IEEE J-SAC, vol. 15, no. 3, pp. 346-356, April 1997.

18. P.-R. Sheu and S.-T. Chen, “A Fast and Efficient Heuristic Algorithm for the
Delay- and Delay Variation-Bounded Multicast Tree Problem,” Computer Com-
munications, vol. 25, no. 8, pp. 825-833, 2002.

19. H. Takahashi and A. Matsuyama, “An Approximate Solution for the Steiner Prob-
lem in Graphs,” Mathematica Japonica, vol. 24, no. 6, pp. 573-577, 1980.

456 M. Kim, Y.-C. Bang, and H. Choo

20. C.-K. Toh, “Performance Evaluation of Crossover Switch Discovery Algorithms for
Wireless ATM LANs,” IEEE Proc. INFOCOM’96, pp. 1380-1387, 1996.

21. B. Wang and J. C. Hou, “Multicast Routing and Its QoS Extension: Problems,
Algorithms, and Protocols,” IEEE Network, vol. 14, no. 1, pp. 22-36, 2000.

22. B. W. Waxman, “Routing of multipoint connections,” IEEE JSAC, vol. 6, no. 9,
pp. 1617-1622, December 1988.

23. P. Winter, “Steiner Problem in Networks: A Survey,” Networks, vol. 17, pp. 129-
167, 1987.

24. E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an Internet-
work,” IEEE Proc. INFOCOM’96, pp. 594-602, 1996.

Periodic Message Scheduling on a Switched
Ethernet for Hard Real-Time Communication

Myung Kyun Kim and Hee Chan Lee

University of Ulsan, Ulsan 680749, Korea
mkkim@ulsan.ac.kr

Abstract. This paper proposes a message transmission model for hard
real-time communications of periodic messages on a switched Ethernet
and also proposes an algorithm to schedule the messages to be trans-
mitted within their deadlines. The proposed scheduling algorithm is a
distributed one and is performed by the source and the destination nodes
without the modification of the operational features of the standard Eth-
ernet switch. When a new periodic message needs to be transmitted, it is
first checked whether it can be scheduled on both the transmission and
the reception links without affecting the already-schedlued messages, and
a feasible schedule is made for the new message if it is schedulable. The
proposed scheduling algorithm guarantees the transmission of periodic
messages within their deadline and allows flexible message transmission
on a hard real-time switched Ethernet.

1 Introduction

Real-time distributed control systems are becoming more widely used in indus-
trial environment [1]. They are used to support a broad range of applications
such as process control, factory automation, automotive, robotics, and so on.
Switched Ethernet that are most widely used nowadays has many features for
real-time communications such as providing a large amount of bandwidth, micro-
segmentation of network traffic, cut-through switching, and full-duplex links [2].
However, to provide hard real-time communications on the switched Ethernet,
some real-time features must be added to both the end nodes and the switches
to regulate the amount of traffic on the network in order not to overrun the
output queue of the switch [3,4,5,6]. EtheReal switch [3] was built for real-time
communication over a switched Ethernet, but it has no explicit support for real-
time periodic traffic. Traffic shaping techniques have been proposed in [5,6] to
provide a real-time communication by limiting the amount of traffic on the net-
work, but their methods only show that the maximum delay on the network is
bounded without considering the explicit deadlines of messages. Hoang et al. [4]
have proposed hard real-time communication methods based on EDF (Earliest
Deadline First) scheduling over the switched Ethernet. Their approach, however,
assumes that both end nodes and the switch can schedule messages according to
the EDF policy, which requires the addition of RT(Real-Time) layer to support
the EDF scheduling above the MAC layer both on the nodes and on the switch.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 457–466, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

458 M.K. Kim and H.C. Lee

Pedreiras et al. [7] have proposed an elastic message transmission model called
FTT-Ethernet to support dynamic real-time message requirements on Ethernet.
Their method uses a synchronized message transmission based on a master-slave
model. Their centralized scheme lowers the advantage of the distributed message
transmission model of switched Ethernet (and also Ethernet) and the master be-
comes a single point of failure of the network.

This paper proposes a message scheduling algorithm of periodic messages for
hard real-time communications over the switched Ethernet.The proposed schedul-
ing algorithm is a distributed one and operates between source and destination
nodes without requiring the modification of the operation of the standard switch.
The switched Ethernet in this paper uses a synchronized message transmission
model that is similar to the one proposed by Pedreiras et al. [7], but our model
uses a distributed scheme to check the feasibility condition of a new message and
to make a transmission schedule for the message. When a new periodic message
needs to be transmitted, it is first checked whether it is feasible both on the trans-
mission link and on the reception link without affecting the periodic messages that
have already been scheduled, and a transmission schedule ismade for the message if
it is schedulable. For the admission control of new messages, two control messages,
Periodic msg req and Periodic msg rep messages are exchanged between source
and destination nodes. The proposed scheduling algorithm guarantees transmis-
sion of periodic messages within their deadline and allows flexible message trans-
mission on a hard real-time switched Ethernet.

The rest of the paper is organized as follows. In section 2, the message trans-
mission model on the switched Ethernet is discussed. In section 3, feasibility
check and a message scheduling algorithm for a new periodic message on the
switched Ethernet are described. An experiment of the proposed scheduling al-
gorithm is described in section 4, and finally, conclusions and future works are
discussed in section 5.

2 Message Transmission Model on the Switched Ethernet

Each node on a switched Ethernet is connected to a switch by a full-duplex link
which consists of a transmission link (TL) and a reception link (RL) as shown
in Fig. 1.

TL1

RL1

TL3

RL3

TL2
RL2

Fig. 1. A switched Ethernet example

Both transmission and reception links operate independently and the switch
uses cut-through switching for fast forwarding of frames from the input ports to
the output ports. In the cut-through switching, the switch determines the output

Periodic Message Scheduling on a Switched Ethernet 459

port immediately after receiving the header of a frame and forwards the frame
without waiting for the reception of the entire frame. When a switch operates
in the cut-through switching mode, if a message SMij from node Ni to node
Nj is transmitted at time t0 from Ni, it arrives at Nj after TL = 2 ∗ tp + ts
amount of delay from t0 if there is no collision at the output port of the switch
to Nj and the output queue at the output port is empty. This is shown in
Fig. 2-(a), where tp is a propagation delay on a link and ts is a switching delay
in the switch. In Fig. 2-(a), RLs and TLs are the reception and transmission
links of the switch, respectively. We assume that all of the nodes on a switched
Ethernet are synchronized and both the transmission and the reception links are
composed of a sequence of macro cycles (MCs), each of which is further divided
into smaller basic message transmission units called elementary cycles (ECs) as
shown in Fig. 2-(b). It is assumed that the switch uses cut-through switching, so
the MC on the reception links starts after TL amount of delay from the beginning
of the MC on the transmission links. Each EC is further divided into two time
periods: periodic cycle(PC) and aperiodic cycle(AC). PC is used for transmitting
periodic messages and AC is for transmitting aperiodic messages. PL (Length
of PC) and AL (Length of AC) are determined according to the ratio of the
amount of message traffic of periodic messages and that of aperiodic messages.

MC

EC0 EC1 … ECM-1

EC0 EC1 … ECM-1

TLi

RLj

TL

PC AC

t

t

TLi

RLs

TL=2*tp+ ts

t
SMij

TLs

SMij

SMij

SMij

tp ts

t

t
RLj

(a) Message transmission in cut-through switching (b) Message transmission model on a switch

t0

Fig. 2. Message transmission model

All of the periodic messages have their strict message transmission dead-
lines, so in order for the messages to be delivered within their deadlines, the
required network bandwidth must be allocated before transmitting the mes-
sages both on the transmission link and on the reception link. To reserve the
required network bandwidth for periodic messages, an admission control process
is performed between sender and destination nodes. During the admission con-
trol process, Periodic message req and Periodic message rep control messages
are exchanged in the AC of the current EC between the sender and destina-
tion nodes. The control messages are given higher priorities than other normal
aperiodic messages. In this paper, we only consider the scheduling of periodic
messages. A periodic message SMij from node Ni to Nj has a real-time trans-
mission requirement {Pij , Dij , Cij}, where Pij , Dij , and Cij denote the period,
the deadline, and the length of the message, respectively. We assume that Dij

= Pij = k * EL (Length of EC) for some integer k. It is also assumed that the

460 M.K. Kim and H.C. Lee

real-time transmission requirements of all of the periodic messages are known a
priori, and the number of ECs in a MC is M = LCM{Pij/EL} for all i and j
(LCM means least common multiple). A set of ECs from the (k ∗ p)-th EC to
the ((k + 1) ∗ p− 1)-th EC where p = Pij/EL and 0 ≤ k ≤ M/p− 1 is called the
k-th period boundary of a periodic message with period Pij .

3 Real-Time Scheduling of Periodic Messages on the
Switched Ethernet

Each node on the switched Ethernet maintains a message schedule which con-
tains an order of messages to be transmitted on each EC of a MC. When a source
node wants to send a new periodic message during message transmission, an ad-
mission control process is carried out during the next AC between the source
and destination nodes of the message. If the new message becomes feasible, the
message is added to the message schedule and begins to be transmitted from
the next period boundary of the message. The admission control process of a
new periodic message SMij from node Ni to node Nj which has a real-time
transmission requirement {Pij , Dij , Cij} is as follows.

(i) Node Ni checks the feasibility of SMij on TLi and sends Periodic msg req
message to node Nj during the AC of the current EC if it is feasible on TLi.

(ii) When receiving the Periodic msg req message from Ni, node Nj checks
the feasibility of the message on RLj and returns the result to node Ni in
Periodic msg rep message.

(iii) When Ni receives the Periodic msg rep message, it checks the message
and adds SMij to the message schedule if it is feasible on both TLi and RLj.

3.1 Feasibility Check on Transmission Links

Scheduling of a message SMij with a real-time transmission requirement {Pij ,
Dij , Cij} is to find an ordered set of M/p ECs, p = Pij/EL, in a MC, where the
k-th EC, 0 ≤ k ≤ M/p−1, belongs to the k-th period boundary of SMij and has
available bandwidth greater than or equal to Cij on both TLi and RLj. When a
new message becomes feasible in an EC, the message is added to the last of the
message schedule of the EC. For the feasibility check on the transmission links,
each node keeps the current amount of traffic in each EC of its transmission
link.

Fig. 3 shows an example of feasibility check on transmission link TL3. In this
example, a MC consists of 6 ECs and EL = 1.2 and PL = 1.0 (AL = 0.2). Fig. 3-
(a) shows the current message schedule of TL3, where three messages SM32,
SM31, and SM35 are being transmitted. In the figure, T3 = {T3,i, 0 ≤ i ≤ 5},
where T3,i denotes the amount of current traffic in ECi of TL3. When node N3
wants to send a new message SM34 that has a real-time requirement {2, 2, 0.4}
to node N4, our algorithm first finds a set of 3 (M/P34) ECs, where the k-th EC
is the one that has a minimum current amount of traffic among the ECs in the
k-th period boundary. In the case of the example of Fig. 3-(a), this corresponds

Periodic Message Scheduling on a Switched Ethernet 461

Fig. 3. An example of feasibility check of message SM34 on TL3: real-time requirement
of SM34 is {2, 2, 0.4}

to {EC1, EC2, EC5} (or {EC1, EC3, EC5}). All of the ECs in the set have
available bandwidths greater than 0.4 (C34). So, SM34 is feasible on TL3 and
can be scheduled on the ECs in {EC1, EC2, EC5}. Fig. 3-(b) shows the message
schedule of TL3 after the message SM34 is added.

After checking the feasibility on its transmission link, the source node trans-
mits Periodic msg req message to the destination node. For the feasibility check
on the reception link, the source node sends in the Periodic msg req message
the real-time requirement for the message to be added and the current amount
of traffic of each EC of the transmission link. The following is an algorithm to
check the feasibility of a message SMij on TLi.

// Algorithm 1. Feasibility check of SMij on TLi

// Real-time requirement of SMij : {Pij , Dij , Cij}
1. p = Pij/EL;
2. for (k = 0; k ≤ (M/p − 1); k + +) {
3. Tmin = min0≤m≤p−1 {Ti,k∗p+m};
4. if (Tmin + Cij > PL) { // Not feasible
5. Reject message transmission request of SMij ;
6. return;
7. }
8. }
9. Send Periodic msg req[SMij , {Pij , Dij , Cij}, Ti] to Nj ;
10. return;

3.2 Feasibility Check on Reception Links

The messages that were transmitted in an EC by the source nodes arrive at each
output queue of the switch to the destination nodes after (tp + ts) amount of
time delay, where tp is a propagation delay and ts is a switching delay in the
switch. The messages that arrive at the same output queue are stored in the
queue and transmitted one by one from the queue in FIFO(First-In, First-Out)
order through the reception link of the destination node. In order that a new
message should be feasible in an EC of the reception link, the new message
must be able to be transmitted completely within that EC without affecting

462 M.K. Kim and H.C. Lee

the other messages that have already been scheduled before the message. For
the feasibility check on the reception link, each node maintains the expected
transmission finishing time in all of the ECs of its reception link. The expected
transmission finishing time in ECi of RLj , Rj,i, is defined as the expected time
at which all of the messages that have arrived in ECi at the output queue to
RLj can be transmitted completely.

Fig. 4. Examples of feasibility check of SM52 in EC1 of RL2 where C52 = 0.3

When node Nj receives Periodic msg req[SMij , {Pij , Dij , Cij}, Ti] message
from node Ni, it checks the feasibility of SMij in the ECs of RLj using Rj =
{Rj,i, 0 ≤ i ≤ M − 1}, Ti, and Cij . In order for SMij to be feasible in ECk of
RLj, it must be satisfied that

max{Rj,k, Ti,k}+ Cij ≤ PL. (1)

If the message SMij is scheduled to be transmitted in ECk, the expected trans-
mission finishing time Rj,k is updated as follows:

Rj,k = max{Rj,k, Ti,k}+ Cij . (2)

Fig. 4 shows some examples of feasibility check of message SM52 and update of
the expected transmission finishing time on RL2. The cases (a) and (b) of the
figure show the examples of feasible cases, but in case (c), SM52 is not feasible
in EC1 because max{R2,1, T5,1} + C52 = 0.8 + 0.3 = 1.1 > PL.

As shown in Fig. 4-(b), there may be empty time periods on the reception
link between adjacent massages when the arrival time of the new message at
the reception link is greater than the current expected transmission finishing
time of the reception link. When a source node has multiple messages to send in
an EC, the waste of network bandwidth due to the empty time periods on the
reception link can be reduced if each node sends the messages in the increasing
order of message lengths. Thus, in our scheduling algorithm, each source node
performs the admission control of messages in the increasing order of message
lengths when it has multiple messages to add. The following is an algorithm to
check feasibility on the reception link when a node receives Periodic msg req
message from a source node.

Periodic Message Scheduling on a Switched Ethernet 463

// Algorithm 2. Feasibility check of SMij on RLj

// Nj receives Periodic msg req[SMij , {Pij , Dij , Cij}, Ti] from Ni

// next(S): function to return the next element in a set S and delete it
1. p = Pij/EL; S = ∅;
2. for (k = 0; k ≤ (M/p − 1); k + +) {
3. Rmin = max{Rj,k∗p, Ti,k∗p};
4. imin = k ∗ p; m = 1;
5. while (m ≤ p − 1) {
6. if (Rmin > max{Rj,k∗p+m, Ti,k∗p+m}) {
7. Rmin = max{Rj,k∗p+m, Ti,k∗p+m};
8. imin = k ∗ p + m;
9. }
10. m = m + 1;
11. }
12. if (Rmin + Cij > PL) { // Not feasible
13. Send Periodic msg rep[SMij , NULL] to Ni;
14. return;
15. } else
16. S = S ∪ {imin};
17. }
18. Send Periodic msg rep[SMij , S] to Ni; // Feasible
19. while ((k = next(S)) �= NULL) // update expected transmission
20. Rj,k = max{Rj,k, Ti,k} + Cij ; // finishing time Rj

21. return;

3.3 Update the Message Schedule

When node Ni receives Periodic msg rep[SMij , S] message from node Nj , it
examines the message. If S is NULL, SMij is not feasible on RLj, so it rejects
the transmission request of SMij. Otherwise, SMij is feasible on the ECs in S,
thus, Ni updates the current amount of traffic of ECs in S and adds SMij to
the message schedule. After that, the message SMij can be transmitted from
the next period boundary of SMij . The following is an algorithm to update the
message schedule when node Ni receives Periodic msg rep from node Nj.

// Algorithm 3. Updating the message schedule of TLi

// Ni receives Periodic msg rep[SMij , S] from Nj

// next(S): return the next element in S and delete it
// Update msg schedule(SMij , k): add SMij to the message schedule of ECk

1. if (S == NULL) {
2. Reject the transmission request of message SMij ;
3. return;
4. }
5. p = Pij/EL;
6. while ((k = next(S)) �= NULL) {
7. Ti,k = Ti,k + Cij ; // update Ti

8. Update msg schedule(SMij , k);
9. }
10. return;

464 M.K. Kim and H.C. Lee

4 Experiment of the Proposed Scheduling Algorithm

We have implemented the proposed scheduling algorithm on systems using Linux
2.6.10 with high resolution POSIX timers [8] and experimented on a switched
Ethernet which consists of a 10 Mbps switch (Cisco Catalyst WS-C1912C-EN
switch) and 5 nodes. The switch operates in cut-through switching mode and
the switching delay in the cut-through mode is 31 μs to 10 Mbps ports.

Table 1. The message set used in the experiment

Source Generated messages

N1 (N4,{1,0.1}), (N3,{3,0.1}), (N5,{3,0.2}), (N2,{2,0.3}), N3,{2,0.3})
(N2,{2,0.4}), (N2, {1, 0.4})∗, (N5,{1,0.4}), (N3, {3, 0.4})∗, (N5,{3,0.4})

N2 (N5,{2,0.1}), (N1,{2,0.2}), (N3,{2,0.2}), (N5,{1,0.2}), (N3,{1,0.3})
(N3,{2,0.3}), (N4,{2,0.3}), (N4, {1, 0.4})∗, (N5,{3,0.4}), (N4, {3, 0.4})∗

N3 (N5,{3,0.1}), (N1,{3,0.2}), (N4,{1,0.2}), (N2,{1,0.2}), (N1,{3,0.2})
(N5,{3,0.2}), (N2,{1,0.2}), (N4,{3,0.3}), (N1,{1,0.3}), (N4, {2, 0.4})∗

N4 (N2,{3,0.1}), (N2,{1,0.1}), (N2,{2,0.1}), (N3,{1,0.2}), (N5,{2,0.2})
(N1,{3,0.2}), (N3,{3,0.3}), (N1,{2,0.3}), (N5, {1, 0.3})∗, (N1, {2, 0.4})∗

N5 (N3,{2,0.1}), (N1,{3,0.1}), (N3,{3,0.2}), (N1,{2,0.3}), (N4,{2,0.3})
(N1,{3,0.4}), (N4,{1,0.4}), (N3,{3,0.4}), (N4, {2, 0.4})∗, (N2, {3, 0.4})∗

cf. (Nj, {Pij, Cij})∗: Nj specifies a destination node, Pij and Cij specifies the period (deadline) and the message

length of SMij , and * denotes the message that is not feasible

As discussed in section 2, a MC on the reception link begins after TL amount of
time from the beginning of the MC on the transmission link. We have used libnet
library [9] to write messages to the network and libpcap packet capture library [10]
to read messages from the network. There is a little more than 12 μs delay when
copying a frame from the application to the frame buffer in the NIC and vice versa.
The propagation delay on a link tp is almost negligible, so TL = 2 ∗ tp + ts = 31 μs,
but considering the delay due to copying between the application and the frame
buffer in the NIC, we assumed that TL = 60 μs, which is a little more than 55 μs
(31 + 2*12). In this experiment, EL = 2.0 ms and PL = 1.6 ms.

For the experiment, we generated 50 messages randomly such that their pe-
riods are 1, 2, or 3 (M = 6) and their message lengths are within [0.1, 0.4] ms.
Table 1 shows a set messages generated for the experiment. Each node sorts the
messages according to their length and performs the admission control process
in the increasing order of the message length. The experiment result shows that
among the messages in the table, 41 messages are feasible according to the pro-
posed scheduling algorithm. Fig. 5-(a) shows the response times of the messages
whose periods are 1. As shown in the figure, all of the messages have been de-
livered within their deadline which is 1*EL (2 ms). Fig. 5-(b) and (c) show the
response times of the messages with period 2 and 3, respectively. As shown in the
figure, all of the messages have been delivered completely within their deadlines
which are 2*EL (4 ms) and 3*EL (6 ms), respectively.

Periodic Message Scheduling on a Switched Ethernet 465

(a) Messages with period = 1 (b) Messages with period = 2 (c) Messages with period = 3

R
esponse tim

e (us)

R
esponse tim

e (us)

R
esponse tim

e (us)

Fig. 5. Experiment results for messages in Table 1: response times of messages (EL =
2.0ms and PL = 1.6ms)

The proposed message scheduling algorithm guarantees transmission within
their deadlines to the messages that have been added to the message schedule
by the admission control process. The admission control process of our schedul-
ing algorithm is a distributed one while FTT-Ethernet [7] uses a centralized
admission control algorithm. Our scheduling algorithm operates between source
and destination nodes without requiring modification to the standard Ethernet
switch while the approach of Hoang et. al. [4] requires the modification of the
switch to support EDF algorithm.

5 Conclusions and Future Works

This paper proposed a synchronized transmission model for hard real-time com-
munications of periodic messages over the switched Ethernet and also proposed a
dynamic message scheduling algorithm for the periodic messages. The proposed
scheduling algorithm is a distributed one and is performed between the source
and destination nodes without requiring the modification of the operational fea-
tures of the standard Ethernet switch. Our message scheduling algorithm guar-
antees the periodic messages to be transmitted within their deadlines and also
provides a flexible message transmission scheme for hard real-time communica-
tion among industrial applications.

The proposed message scheduling algorithm uses the exchange of control mes-
sages (Periodic msg req and Periodic msg rep messages) in an AC for the ad-
mission control of new periodic messages. We have assumed in this paper that
the exchange of the control messages is performed within an AC, but some traffic
restriction on asynchronous messages should be made to guarantee the transmis-
sion of the control messages within an AC. We continue to study on the traffic
restrictions on asynchronous messages.

466 M.K. Kim and H.C. Lee

Acknowledgment

The authors would like to thank Ministry of Commerce, Industry and Energy
and Ulsan Metropolitan City which partly supported this research through the
Network-based Automation Research Center (NARC) at University of Ulsan.

References

1. Buttazzo Georgio C.: Hard real-time computing systems: Predictable cheduling
algorithms and applications(2nd Ed.). Springer (2005)

2. Jasperneit J., and Neumann P.: Switched ethernet for factory communication. In
Proc. of ETFA, Antibes, France (2001) 205–212

3. Varadarajan S. and Chiueh T.: EtheReal: A host-transparent real-time fast Eth-
ernet switch. In Proc. of ICNP (1998) 12–21

4. Hoang H., Jonsson M., Hagstrom U., and Kallerdahl A.: Switched real-time ether-
net with earliest deadline first scheduling- protocols and traffic handling. In Proc.
of IPDPS, Fort Lauderdale, FL, USA (2002) 94–99

5. Loeser J. and Haertig H.: Low-latency hard real-time communication over switched
Ethernet. In Proc. ECRTS, Catania, Italy (2004)

6. Kweon S. K., Shin K. G., and Workman G.: Achieving real-time communication
over Ethernet with adaptive traffic shaping. In Proc. RTAS (2000) 90–100

7. Pedreiras P., Almeida L., and Gai P.: The FTT-Ethernet protocol: Merging flexi-
bility, timeliness and efficiency. In Proc. ECRTS (2002) 134–142

8. Linux with high resolution POSIX timers: http://sourceforge.net/projects/high-
res-timers

9. Libnet netwroking library: http://libnet.sourceforge.net
10. Libpacp packet capture library: http://ee.lbl.gov

Optical Traffic Grooming Based on
Network Availability

Yeo-Ran Yoon, Tae-Jin Lee, Min Young Chung, and Hyunseung Choo�

Lambda Networking Center
School of Information and Communication Engineering

Sungkyunkwan University, Korea
{ookuma, tjlee, mychung, choo}@ece.skku.ac.kr

Abstract. As thebandwidth request for traffic streams grows excessively,
traffic grooming on wavelength-division multiplexing (WDM) mesh net-
works becomes more important. In general it efficiently grooms low-
capacity requests onto high-capacity lightpath. Thus network throughput
and cost is improved. Also it affects the recent development of WDM pas-
sive optical network(PON) and the future fiber to the home(FTTH). Our
objective is to improve the network throughput while maintaining the sim-
ilar level of network cost. In this paper, we propose Dynamic Ordering on
Lightpath Assignment (DOLA) algorithm, in which an order of lightpath
assignment is determined according to the network availability. The com-
prehensive computer simulation results show that our proposed algorithm
is up to about 14% superior to the well-known previous work [11].

1 Introduction

Recent progress in fiber optics and wavelength-division multiplexing (WDM)
technology has lead the support for significant increase of traffic requests in the
Internet. The WDM technology enables a considerable portion of the available
fiber bandwidth to be used by allowing several signals with different wavelengths
to be transmitted simultaneously through one fiber. In WDM networks, a light-
path provides a basic communication mechanism between two nodes and it passes
through many fiber links and optical switches [3,4]

To satisfy the lightpath continuity constraint, the routing and assigning wave-
length should be performed appropriately for each service request. This is well
knownas a routing andwavelength assignment (RWA)problem [4,5] or a lightpath-
provisioning problem [1]. RWA is very important to efficiently utilize resources on
optical networks consisting of WDM systems and optical switches, because it has
significant effects on cost and performance of optical networks. Many solutions for
the RWA discussed in the literature have assumed that the required bandwidth for
connection request is the same as the WDM channel capacity [1,3,4,5,9]. However,
the required bandwidth (OC-1, OC-3, or OC-12) is much smaller than the WDM
channel capacity (OC-48, OC-192, or OC-768) in real environments.

If the entire bandwidth of a wavelength channel is allocated to a low-capacity
connection, a large portion of the transmission capacity could be wasted. Thus,
� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 467–476, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

468 Y.-R. Yoon et al.

traffic grooming schemes which are procedures for efficient multiplexing (demul-
tiplexing) and switching low-capacity traffic streams onto (from) high-capacity
lightpath are required to improve bandwidth utilization, to optimize network
throughout, and to minimize network cost. Traffic grooming problems in static
and dynamic environments are discussed in [11,12,13] and in [6,8,14], respec-
tively. Especially in [11], Zhu and Mukherjee formulates a grooming problem as
the Integer Linear Programing (ILP) to increase the network throughout. And
they propose Maximizing Single-hop traffic (MST) and Maximizing Resource
Utilization (MRU) algorithms based on the ILP solution.

This paper investigates traffic grooming problem in WDM mesh networks
with the capability of single- and multi-hop grooming to support static traf-
fic demands. Our objectives are to maximize the network throughput and to
minimize the blocking probability. As we all know, maximizing of throughput
guarantees the minimization on the blocking probability. For these, we propose
a Dynamic Ordering on Lightpath Assignment (DOLA) algorithm. Based on the
DOLA, the ordering on lightpath assignment is changed dynamically by using
the current network resource utilization. Compared with the MRU algorithm, the
DOLA achieves 14% improved performance in terms of the network throughput.
The discussion with the MST along our own proposition is provided in another
paper underway due to the space limitation.

The rest of the paper is organized as follows. Section 2 explains previous works
on WDM SONET ring and mesh networks, single- and multi-hop grooming, and
the general problem statement of the traffic grooming. We propose the DOLA
algorithm for solving of the traffic grooming problem in mesh networks and
describe it more in detail in Section 3. Section 4 evaluates the performance of the
proposed one in terms of the network throughput and the blocking probability.
Finally, we conclude this paper in Section 5.

2 Preliminaries

2.1 Related Works

Previous works in various environments: Most of the past traffic grooming
research mainly focused on network design and optimization for SONET/WDM
ring networks [2,7,10]. By employing wavelength add-drop multiplexers (W-
ADMs), efficient wavelength assignment and time-slot assignment algorithms
have been investigated to design a SONET/WDM ring network. The objective
function in these studies is to minimize the total network cost in terms of the
number of SONET add-drop multiplexers.

Optical transport networks keep evolving from interconnected SONET/WDM
rings to optical WDM mesh networks in recent years. And the traffic grooming
problem in optical WDM mesh networks becomes an important research area
[6,8,11,12,13,14]. A generic graph model is proposed for provisioning multigran-
ularity connections in multiwavelength optical WDM networks [12,13]. The au-
thors present that different network optimization objectives and corresponding
route selection schemes can be easily applied to this graph model. Based on the

Optical Traffic Grooming Based on Network Availability 469

�

��

� �

� �

����

�

��

�

�
�

���

��������	�

��	

���������

��	������

�
������
������������

�
������
������������

�
������
������������

Fig. 1. Example of traffic grooming

model, they propose several grooming algorithms for static traffic demands and
show that the performance of their algorithms is near optimal.

The authors in [6,8,14] discuss traffic grooming issues in dynamic traffic envi-
ronment. They observe that, in a multigranularity WDM network, it accidentally
blocks connections with high-capacity requirement more than those with low-
capacity one [6]. This results in unfairness between connections on different capac-
ities. Therefore, they propose a Call Admission Control (CAC) algorithm to imple-
ment the fairness.Theauthors in [8] and [14] studyon-lineprovisioningmechanisms
for connectionswith different capacities in a traffic groomableWDM network. Sev-
eral on-line algorithms are proposed to optimize the network performance.

Single-hop and Multi-hop grooming: In general, traffic requests are carried
through single-hop grooming and multi-hop grooming. Single-hop grooming is
a method that allows a connection to transmit a single lightpath. This means
that only end-to-end traffic grooming is allowed. On the other hand, multi-hop
grooming is a method that allows a connection to traverse multiple lightpaths.
In multi-hop grooming, a connection can be dropped at intermediate nodes and
groomed with other low-capacity connections on different lightpaths before it
reaches destination node. As expected, the multihop grooming leads to higher
throughput than the single-hop one.

Fig. 1 shows an illustrative example of the traffic grooming in a WDM mesh
network. Fig. 1(a) shows a physical topology with seven nodes and Fig. 1(b)
shows a virtual topology constructed for given connection requests. Each fiber
has two wavelength channels. The capacity given for each wavelength channel is
OC-48 (2.5 Gb/s). Each node is equipped with a tunable transceiver. There are

470 Y.-R. Yoon et al.

three connection requests: (5, 3) with bandwidth requirement of OC-12; (3, 2)
with bandwidth requirement of OC-12; and (5, 2) with bandwidth requirement
of OC-3. As shown in Fig. 1(b), lightpaths are set up for connection-1 (5, 3)
and connection-2 (3, 2), and two connection requests are carried through these
lightpaths. Because there is no available transceiver at nodes 5 and 2, connection-
3 is groomed with connection-1 on lightpath (5, 3) and with connection-2 on
lightpath (3, 2) through multi-hop grooming.

2.2 Problem Definition

The traffic grooming problem in which low-capacity traffic requests are groomed
to high-capacity lightpath has been generally presented [11]. The parameters
associated with the problem are as following.

• Gp = (V , Ep): A physical topology with weighted directional graph. V is
the set of network nodes and Ep is the set of physical links. The weight of
a link is assigned according to the physical distance between two nodes. We
assume that the weight of all links has 1, which corresponds to the fiber hop
distance.

• C: Capacity of a wavelength
• W : Number of wavelengths in a fiber link
• D: A demand set. Each traffic request of the demand set has a capacity lower

than C.
• Tr: Number of transceivers at each node.

We should determine the following two factors: 1) Gv = (V , Ev): A virtual
topology. V is corresponding to the set of nodes as in the physical topology. Ev

is for the set of directional lightpaths assigned between nodes in a node pair; 2)
Routing on traffic requests for the virtual topology. We focus on maximizing the
network throughput. As discussed earlier, the blocking probability is calculated
accordingly.

Traffic grooming usually can be divided into four subproblems [11]. These
problems are not necessarily independent, but we deal with the four separately:
1) constructing the virtual topology that consists of lightpaths; 2) routing the
lightpaths on the physical topology; 3) assigning wavelength to the lightpaths; 4)
routing the traffic requests on the virtual topology. The virtual topology design
and RWA problem is NP-complete, and traffic grooming in a mesh network is
also an NP-complete problem.

There are lots of studies on RWA based on traffic grooming in the WDM
networking field. The well-known routing approaches are fixed routing, fixed-
alternate routing, and adaptive routing [9]. Fixed routing always routes the traf-
fic through a predefined fixed route for a given source-destination pair. Fixed-
alternate routing considers multiple fixed routes in the routing table, when a
traffic request comes. And adaptive routing chooses the route between a source
and a destination dynamically, depending on the current network state. This
approach requires more computation and response time, but it is more flexible.
The First-Fit (FF) method is the best known wavelength assignment approach.

Optical Traffic Grooming Based on Network Availability 471

In FF, all wavelengths are numbered and a lower numbered wavelength is con-
sidered when searching for an available wavelength. In our proposed heuristic
algorithm, we use adaptive routing and FF wavelength assignment.

3 Dynamic Ordering on Lightpath Assignment (DOLA)

3.1 Motivation and MRU Algorithm

Our objective is to improve the network throughput by employing the network
resource utilization as a decision criterion and by changing the order of lightpath
assignments in the MRU algorithm [11]. Network resource utilization represents
average traffic per wavelength link and it is an effective factor for traffic groom-
ing. However, network resource utilization in the MRU algorithm does not reflect
the current network status. Our proposed DOLA algorithm dynamically decides
lightpath assignment order based on the practical resource utilization reflecting
the current network status.

The MRU algorithm assigns a lightpath for a source-destination pair with the
maximum network resource utilization value, subject to the constraints on the
number of transceivers at two end nodes and the availability of wavelengths in
the path connecting the two. Network resource utilization (R(s, d)) is defined as
T (s, d)/h(s, d), where T (s, d) is the aggregate traffic capacity between s and
d, which has not been successfully carried yet and h(s, d) is the hop distance on
the physical topology between s and d. This quantity shows how efficiently the
network resource is utilized when carrying the traffic requests.

The connection requests between s and d will be carried on the new estab-
lished single-hop lightpath as much as possible. If there is enough capacity in the
network, every traffic of connection requests will traverse a single-hop lightpath
(single-hop grooming). If no lightpath can be set up any more, the remaining
traffic requests will be routed on the multi-hop lightpaths using currently avail-
able spare capacity at the virtual topology (multi-hop grooming). The details for
single- and multi-hop grooming are explained in the subsection 2.1. This mul-
tihop grooming is performed based on the resource utilization t(s, d)/hv(s, d)
for a traffic request (s, d), where t(s, d) denotes a capacity for each request,
and hv(s, d) denotes the hop distance between s and d on the virtual topology
constructed for existing lightpaths.

3.2 Detailed Description on DOLA Algorithm

The MRU algorithm sorts all of the node pairs s and d according to network
resource utilization R(s, d) between s and d, and puts them into a list L in a
descending order, then attempts to assign lightpaths sequentially. But after a
lightpath for one node pair is assigned, the network resource utilization for the
other pairs is changed since the network status on the physical topology changes.
The MRU algorithm never consider the change of the network resource, hence
this does not reflect continuously the varying network resource utilization.

472 Y.-R. Yoon et al.

Accordingly, our proposed DOLA algorithm reflects varying network resource
utilization by instant updates for other node pairs whenever a lightpath for
one node pair is assigned. Then it finds the pair with the highest R(s, d) and
attempts to assign a lightpath for this node pair s and d. Because the DOLA
algorithm assigns lightpaths dynamically based on the current network status,
it uses the wavelengths and resources efficiently. Moreover, since the DOLA
algorithm generates more lightpaths with the smaller number of hops than the
MRU algorithm, connection requests which are not carried through single-hop
grooming have more chance to be carried through multi-hop grooming.

T (si, di) =
|D|∑
j=1

sj=si
dj=di

cj (1)

R(si, di) = T (si, di)/h(si, di) (2)

The proposed algorithm has two phases : 1) construction a virtual topology
and 2) routing low-speed connections on the constructed virtual topology.

Step 1: Construct a virtual topology
1.1: Sort all the node pairs (si, di) according to network resource utilization

R(si, di) and put them into a list L in a descending order.
1.2: Setup a lightpath for the node pair (si, di) with the highest R(si, di)

in L using Dijkstra’s shortest-path routing algorithm subject to the tra-
nsceiver constraints. If it fails, delete (si, di) from L;
otherwise, let T (si, di) = Max[T (si, di)− C, 0] and update R(si, di).
And the links of an assigned lightpath are deleted from the physical
topology.

1.3: Update R(sj , dj) appropriately for each node pair (sj , dj) whose short-
est path contains the deleted links in Step 1.2.

1.4: Go to Step 1.2 until list L becomes empty.
Step 2: Route low-speed connections on the virtual topology in Step 1.

2.1: Route all connection requests which can be carried through a single hop
lightpath, and update the network status for the virtual topology.

2.2: Route the remaining connection requests on the multi-hop lightpaths
using currently available spare capacity of the virtual topology based on
their connection resource utilization value t(si, di)/hv(si, di).

Step 3: Repeat Steps 1 and 2 until entire wavelengths are fully exhausted.

As you see in the pseudocode for the DOLA algorithm(Fig. 3), the physical
topology Gp, the number of wavelengths W , the capacity of each wavelength C,
and the number of transceivers Tr are given. First of all, for each (si, di) the
algorithm finds the shortest path and its number of hops h(si, di) (line 3). Then
it aggregates capacities of the uncarried traffic requests for the same si and di

(i.e. T (si, di)) in line 4. In line 5 we calculate the network resource utilization
R(si, di) and put them into a list L in a descending order (line 7). Even if the
L is a list, we sometimes use the set notation for simplicity on L. In order to

Optical Traffic Grooming Based on Network Availability 473

����������	�
�	�������������������������

������	�����������������������������	����������������
����������� ����������

�����������
������������������
��������������� ���	����������

�����������������������

 ���������������������� � ����������!���� �����������������

"������������"����	��#����
�����	��������

$�
�	����
�����	��!�#��������

"�������������#��������!�#���������

%�������"�
������	������	��������&������������
����		�����	�

'����	���"�
�����	��������

����������	�
�	�������������������������

������	�����������������������������	����������������
����������� ����������

�����������
������������������
��������������� ���	����������

�����������������������

 ���������������������� � ����������!���� �����������������

"������������"����	��#����
�����	��������

$�
�	����
�����	��!�#��������

"�������������#��������!�#���������

%�������"�
������	������	��������&������������
����		�����	�

'����	���"�
�����	��������

Fig. 2. Notations used in the DOLA algorithm

���������	
 �������������� ���

������	

 ��	���������������������������
�
���

�
���	�����	�����������������

�
���

�
��

� ������������
�
���

�
�� �� ���� ����! �"#"

$ ���������%��
�
���

�
�� ����

�
���

�
��&����

�
���

�
��

' (� �)

* +�����
�
���

�
����	��������	��	���������	���������%��

�
���

�
���	��(� �(�, ��

�
���

�
��

-��������. ����/�

0 ����������� �� ��� ���

�1� /�������(�2) �

��� +�������
�
���

�
��.��������3�����4��������%��

�
���

�
�������(�

�� 5��������3����4������������������	����	����4����

�
 6����	���������������
�
���

�
��

�� ���
�
���

�
�� �7�38���

�
���

�
�9���1:�

�$ 5�����
�
���

�
�� �1�

��������
�
���

�
�������(�

�'� #���.�����
�
���

�
�������;��

�* ��	�����	�.�������������	�����	�������������������������
�
���

�
��.�����

������������4���������.���������������

�- %����������%��
�
���

�
�� ����

�
���

�
��&����

�
���

�
�������������

�
���

�
��

�0� <����

#�������
�
���

�
�������(��	��������������������=�����(>

�1 <	�/�����

��� �� �������� �
�� ! ���� �� ��

�� +�	���9����������	�������������	���.������������������?�����

�
 7���9����������	��������������	�	������	��

������������@�����������	���	�.��@�������	�������������(� �(�� (>

�$���<	�����

�'�<	�

Fig. 3. Pseudocode of the DOLA Algorithm

construct a virtual topology, it tries to assign a lightpath between a node pair (si,
di) with the maximum R(si, di) in L based on Dijkstra’s shortest-path routing
algorithm. If a lightpath is not assigned, (si, di) is deleted from L and store it
to a temporary list L′ (line 19). If there are available paths and transceivers,
a lightpath between si and di is assigned (line 13) and T (si, di) is updated to
Max[T (si, di)− C, 0] (line 14). At this moment, if T (si, di) becomes zero, (si,

474 Y.-R. Yoon et al.

di) is deleted from L (line 15). The edges in the assigned lightpath are deleted
from the physical topology (line 16).

For each node pair (si, di) whose shortest path traverses the deleted edges, we
update R(si, di) (lines 17 and 18). And the proposed altogithm selects a node
pair (si, di) with the highest R(si, di) in L and tries to setup a lightpath for the
selected pair. Lines 10 ∼ 20 are repeated until the list L becomes empty, and
the virtual topology is constructed. Next it carries all of the small traffic connec-
tion requests which can be carried through single-hop lightpaths, and updates
the virtual topology status (line 22). Finally, if there are remaining connection
requests, these are still carried by multi-hop lightpaths using currently avail-
able spare capacity on the virtual topology (line 23). Now the physical topology
maintains the original network status again and the list L is restored by L ∪ L′.
Lines 8 ∼ 25 are repeated until entire wavelengths are exhausted.

4 Numerical Results

In this section, we compare our proposed DOLA algorithm with well-known MRU
for the performance evaluate in terms of network throughput, which is success-
fully carried traffic capacity among traffic requests. We use the network topology
of NSFNET as shown in Fig. 4(a) and random networks [?] for proper tests in vari-
ous network topologies. We assume that the capacity of each wavelength is OC-48
and traffic demands are among OC-1, OC-3, and OC-12 as done in the previous
work [11]. The traffic requests are randomly generated as follows: 1) the number
of OC-1 connection requests for each node pair is uniformly distributed between
0 and 16; 2) the number of OC-3 connection requests is with uniform distribution
over 0 through 8; 3) the number of OC-12 connection requests is selected uniformly
for 0, 1, and 2. We simulate 1,000 times for each network topology. We observe the
similar results for the network with bigger capacities.

We show the results of the MRU and DOLA algorithms on NSFNET in Fig.
4(b). We compare the network throughput as the number of wavelengths on each
fiber link increases and each node is equipped with fifteen tunable transceivers.We
observe that the DOLA algorithm demonstrates 6% ∼ 14% higher throughput
than the MRU algorithm. Since the number of tunable transceivers at each node is
limited to 15, increasing the number of wavelengths does not help to increase the
network throughput when the number of wavelengths on each fiber link reaches 9.

Figures 4(c) and (d) show the results of the MRU and DOLA algorithm in
random networks. To generate a random topology, we first generate a random
graph with the number of nodes (N) and the edge probability for each node pair
(Pe). Since a random graph must be connected, we generate a spanning tree with
N nodes. As we know, N−1 tree edges create the spanning tree and guarantee a
connected graph. Therefore, we calculate Pe again and determine whether there
are other edges or not.

In Fig. 4(c), network throughput versus edge probability between node pairs
(Pe) in random networks with fifteen nodes is shown. Each node is equipped
with 15 tunable transceivers and carries up to 10 wavelengths. The results show

Optical Traffic Grooming Based on Network Availability 475

0

1

2

3
4

5

6
7

8

9

13

12

1110

(a) NSFNET topology. (b) Throughput comparison in NSFNET
(Tr = 15).

(c) Throughput in random networks
(N = 15, W = 10, Tr = 15).

(d) Throughput in random networks
(N = 15, Pe = 0.6, W = 10, Tr = 15).

Fig. 4. Throughput comparison

that the DOLA algorithm outperforms 6% ∼ 12% than the MRU in terms of
network throughput. When the edge probabilities between node pairs (Pe) are
0.7 ∼ 0.9, it exhibits the highest throughput.

In Fig. 4(d), we compare the network throughput as the number of demands
varies in random networks with fifteen nodes and Pe = 0.6. The condition on
each node is same as in Fig. 6. We have adjusted the traffic by selecting the
number range when deciding the number of demands at random. The DOLA
algorithm accommodates 7% ∼ 18% more traffic demands than the MRU. And
as the number of demands increases, the performance of the DOLA algorithm
becomes better than that of MRU.

5 Conclusion

We have studied a traffic grooming problem in optical WDM mesh networks
and proposed an improved DOLA algorithm with respect to network throughput
based on the MRU. Our proposed algorithm updates network resource utilization
dynamically based on the current network status and decides the process order
on lightpath-assignment accordingly. It suits for changed topology frequency.

476 Y.-R. Yoon et al.

Performance of the MRU and DOLA algorithms with different parameters is
evaluated in NSFNET and random networks, and our proposed one provide
better performance than the MRU under various conditions. We plan to extend
our work to shared protection and multicasting in traffic groomable WDM mesh
networks in the near future.

Acknowledgement

This research was supported by MIC, Korea under ITRC IITA-2005-(C1090-
0501-0019), and by KRFG funded by the Korean Government(MOEHRD) KRF-
2005-042-D00248.

References

1. M. Alanyali and E. Ayanoglu, “Provisioning algorithms for WDM optical net-
works,” IEEE/ACMTrans. Networking, vol. 7, pp. 767-778, Oct.1999.

2. A. L. Chiu and E. H. Modiano, “Traffic grooming algorithms for reducing electronic
multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol. 18, pp. 2-12,
Jan. 2000.

3. I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An approach to
high bandwidth optical WAN’s,” IEEE Trans. Commun., vol. 40, pp. 1171-1182,
July 1992.

4. B. Mukherjee, Optical Communication Networks. New York: Mc-Graw-Hill, 1997.
5. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective.

San Francisco, CA: Morgan Kaufmann, 1998.
6. S. Thiagarajan and A. K. Somani, “Capacity fairness of WDM networks with groom-

ing capability,” Opt. Networks Mag., vol. 2, no. 3, pp. 24-31, May/June 2001.
7. J. Wang, W. Cho, V. R. Vemuri, and B. Mukherjee, “Improved approaches for cost-

effective traffic grooming in WDM ring networks: ILP formulations and single-hop
and multihop connections,” J. Lightwave Technol., vol. 19, pp. 1645-53, Nov. 2001

8. C. Xin, Y. Ye, S. Dixit, and C. Qiao, “An integrated lightpath provisioning ap-
proach in mesh optical networks,” in Proc. IEEE/OSA OFC ’02, Mar. 2002, pp.
547-549.

9. H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assign-
ment approaches for wavelength-routed optical WDM networks,”Optical Network
Mag. vol. 1, no. 1, pp. 47-60, Jan. 2000.

10. X. Zhang and C. Qiao, “On scheduling all-to-all personalized connections and
cost-effective designs in WDM rings,” IEEE/ACM Trans. Networking, vol. 7, pp.
435-443, June 1999.

11. K. Zhu and B. Mukherjee, “Traffic grooming in an optical WDM mesh network,”
IEEE J. Select. Areas Commun., vol. 20, pp. 122-133, Jan. 2002.

12. H. Zhu, H. Zang, K. Zhu, and B. Mukherjee, “A novel, generic graph model for
traffic grooming in heterogeneous WDM mesh networks,” IEEE/ACM Trans. Net-
working, vol. 11, pp. 285-299, Apr. 2003.

13. K. Zhu, H. Zang, and B. Mukherjee, “A Comprehensive Study on Next-Generation
OpticalGroomingSwitches” IEEEJ. Select.AreasCommun., vol. 21,No.7, Sep. 2003

14. K. Zhu and B. Mukherjee, “On-line provisioning connections of different bandwidth
granularities in WDM mesh networks,” in Proc. IEEE/OSA OFC ’02, Mar. 2002,
pp. 549-551.

Do We Really Need Dynamic
Wavelength-Routed Optical Networks?

A. Zapata1,2 and P. Bayvel2

1 Telematics Group, Electronic Engineering Department,
Universidad Técnica Federico Santa Maŕıa, Valparáıso, Chile

2 Optical Networks Group, Electronic & Electrical Department,
University College London, UK

Abstract. It is widely believed that dynamic operation in wavelength-
routed optical networks could overcome the inefficiencies of static allo-
cation in wavelength usage. In this paper this hypothesis is reviewed by
quantifying the wavelength requirements in dynamic wavelength-routed
optical networks and the comparison of these to those of the static ap-
proach. To do so, new analytical and heuristic lower bounds for the
wavelength requirements in dynamic networks are proposed. They are
used to evaluate the optimality of existing algorithms whose wavelength
requirements are evaluated by means of simulation. Results show that
dynamic wavelength-routed optical networks can save wavelengths only
at low traffic loads (< 0.4) and that the highest savings are achieved in
sparsely physically connected networks.

1 Introduction

The ever increasing amount of data traffic, reportedly growing at a rate of about
60-100 % per year [1], and the emergence of networked multimedia applications
impose high bandwidth demands (in the order of Tb/s) on transport networks.
To satisfy the growing traffic demands, transmission systems and networks have
migrated to an almost ubiquitous WDM (Wavelength Division Multiplexing)
operation [2] in which data is transmitted using multiple carrier wavelengths
(channels) over a fibre. Current WDM networks allow bandwidths in excess of
10 Tbp/s per fibre [3].

Currently WDM networks are operated statically. That is, lightpaths (where
the lightpath is defined by a physical route and a unique wavelength assigned
to that route) between network node pairs are allocated to accommodate the
maximum expected traffic demand, known a priori. Before the network opera-
tion starts, lightpath allocation is performed and routers/switches are configured
accordingly. Lightpath assignment is performed to avoid wavelength collisions in
the same fibre and that the minimum number of wavelengths is used. Once net-
work operation starts, data arriving at the electrical interface of an edge node
is grouped by destination, converted into the optical domain and transmitted
on the corresponding lightpath. These networks are now widely known as static
WRONs (wavelength-routed optical networks) [4].

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 477–486, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

478 A. Zapata and P. Bayvel

Static WRONs are attractive because they are simple to operate and manage,
it is possible to find the optimal (or near optimal) solution because there is no
restriction on the processing time (due to the off-line nature of the lightpath
allocation) and it has been found that the number of wavelengths required by
the optimal allocation cannot be significantly further reduced using wavelength
converters [4,5].

However, because the bandwidth allocation is carried out at wavelength gran-
ularity, allocated bandwidth (wavelengths) might not be used if the source re-
mains idle for long periods of time. Given that that most of current networks
operate at no more than 30% of their maximum capacity [6], under static op-
eration a significant number of wavelengths channels will be inefficiently used.
With the number of wavelengths mainly determining the cost of switches and
physical impairment-compensating equipment, the network cost would thus be
unnecessarily increased in static networks.

Although there are no conclusive research results to date, it is widely believed
that the dynamic allocation of resources in optical networks would overcome
the inefficiencies of the static allocation in wavelength usage, see for example
[7,8,9,10]. The allocation of resources only when and where required with mini-
mum delay would ensure that dynamic networks would provide the same service
that static networks but at decreased cost, making them very attractive to net-
work operators.

In this paper the potential wavelength savings of dynamic wavelength-routed
optical networks with respect to the static approach are quantified by means of
analysis and simulation. To do so, a new analytical lower bound for the wave-
length requirements of dynamic networks is derived in Section 2. The analytical
expression allows the study of the effect of the physical topology and the traf-
fic load on wavelength requirements. An algorithmic (simulation-based) tighter
lower bound is then proposed in Section 3. This algorithmic bound corresponds
to the application of a near-optimal heuristic for the static case every time a new
lightpath request arrives. Both bounds, analytical and algorithmic, allow the
evaluation of the optimality of current proposals for dynamic lightpath alloca-
tion. This is carried out in Section 4 by quantifying the wavelength requirements
of 3 different lightpath allocation algorithms by means of simulation for 7 real
physical network topologies and comparing them to the wavelength requirements
of the proposed bounds and static networks. A summary is given in Section 5.

2 Analytical Lower Bound for the Wavelength
Requirements of Dynamic WRONs

(i) Network and Traffic Model
The network consists of N nodes arbitrarily connected by L unidirectional
links (adjacent nodes are assumed connected by two fibres, one per direction).
The physical connectivity of the network [4], α, is given by L/N(N−1)(there
is a difference in a factor of 2 with respect to [4] because this paper considers
unidirectional links whilst [4] considers bi-directional links). Traffic demand

Do We Really Need Dynamic Wavelength-Routed Optical Networks? 479

between each node pair is assumed governed by an ON-OFF process, inde-
pendent for all node pairs. Traffic load ρ is given by μON (μON + μOFF),
where μON (μOFF) is the mean duration of the ON (OFF) period.

(ii) Analytical Lower Bound
The lower bound for the wavelength requirements can be obtained by as-
suming that the set A of active connections (connections in the ON state;
0 ≤ A ≤ N(N − 1)) is routed using shortest paths (in number of hops)
and fully re-utilising the wavelength space. This leads to the following mean
number of wavelengths per link:

WA =
[|A| ·HA/L

]
(1)

where |A| represents the cardinality of the set A and HA the average path length
(in number of hops) of the connections in the set A.

Different sets of active connections with cardinality |A| have different values
for HA, which results in different values of WA. The set A with the highest value
for HA determines the lower bound WLB for the total wavelength requirement:

WLB = max
∀A

WA = ||Â| ·HÂ/L| (2)

where Â corresponds to the set A of active connections with the longest routes
and HÂ corresponds to the average path length of the connections in the set Â.

By sorting all the possible N(N − 1) connections in decreasing path length
(the path length of a connection corresponds to the number of hops of its shortest
path) and letting hi be the length of the i-th longest connection (thus, h1 and
hN(N−1) are the number of hops of the connections with the longest and the
shortest paths, respectively), Eq.(2) can be re-written as follows:

WLB =
[|Â|∑

i=1

hi/L
]

(3)

Although Eq.(3) represents a simple closed analytical expression for the lower
bound on the wavelength requirement, it is difficult to evaluate because |Â|
depends in a non-trivial manner on the acceptable level of blocking B and the
traffic load ρ. In the following an analytical approximation to evaluate |Â| is
given.

1. If the network is dimensioned to accommodate a maximum of |Â| connec-
tions, B is equal to the probability of having more than |Â| connections in
ON state simultaneously, that is:

B = Pr
{

n > |Â|
}

(4)

2. A connection is in the ON state with probability ρ (a Bernoulli random
variable). Thus, the number of connections in ON state is a Binomial random
variable:

Pr{n = a} = Bi(N(N − 1), ρ) =
(

N(N − 1)
a

)
ρa(1 − ρ)N(N−1)−a (5)

480 A. Zapata and P. Bayvel

3. Combining equations (4) and (5), the following expression for B is obtained:

B =
N(N−1)∑
n=|Â|+1

Bi(N(N − 1), ρ) (6)

Given the target acceptable blocking B, the traffic load ρ and the number of
nodes N , the maximum number of active connections |Â| can be numerically
obtained from Eq.(6). However, the normal approximation of the binomial prob-
ability distribution [11] provides a simpler closed analytical expression for |Â|,
as follows:

|Â| ≈ min
{
N(N − 1) · ρ, N(N − 1) · ρ + β

√
N(N − 1) · ρ · (1 − ρ)

}
(7)

where β is such that the area under the normal distribution curve between
(−∞, β) is equal to (1−B) is equal to (1 −B) [12].

Eq.(7) is known to be accurate for N(N − 1)ρ(1− ρ) ≥ 10 [11], which means
that N must be greater or equal to 11 for ρ ∈ [0.1, 0.9], a typical condition in
real networks.

To investigate the potential wavelength savings achieved by dynamically oper-
ating the network, the ratio RW , defined as the ratio between the lower bounds for
the wavelength requirements in the dynamic case and static cases, is given as:

RW =

[
|Â|HÂ

L

]
N(N − 1)H

L

=

[
RHÂ

α

]
H

α

(8)

Where R, equal to |Â|/(N(N − 1)), represents the fraction of connections which
need to be accommodated in the network in the dynamic case compared to the
static case. In the extreme case of α = 1 (i.e., fully connected topology), H =
HÂ = 1. Thus, RW = [R] = 1 which means that fully connected networks do
not benefit from dynamic operation in terms of wavelength savings, irrespective
of the value of N , B and ρ.

For other values of α the analytical evaluation of Eq.(8) is problematic because
of the lack of an expression for HÂ. However, the following equation - based
on the assumption that the path length of the shortest paths is a Gaussian
random variable with mean equal to H (as shown, for example, in [13]), is used
to numerically estimate HÂ:

φ

(
HÂ −H

σh

)
≈ 1− |Â|

N(N − 1)
(9)

where φ(Z) corresponds to the value of the cumulative distribution function of the
standardnormal curve evaluated in z, H is the mean number of hops of the shortest
paths (estimated from

√
(N − 2)/δ − 1 [14]) and σh is the standard deviation of

the number of hops of the shortest paths (estimated from
√

lnN [13]).

Do We Really Need Dynamic Wavelength-Routed Optical Networks? 481

Fig. 1. Ratio RW as a function of the number of nodes N

To study the effect that the number of nodes N , the physical connectivity
α and the traffic load ρ have on the potential wavelength savings achieved in
dynamic operation, RW was calculated for a target blocking of B = 10−6 and
different values of N , α and ρ using the approximation provided by Eq.(9) for
HÂ. The results are shown in Figure 1. RW was also calculated for the following 7
real-world mesh topologies (for which the exact values of HÂ can be calculated):
Eurocore (N = 11, L = 50, α = 0.45), NSFNet (N = 14, L = 42, α = 0.23),
EON (N = 20, L = 78, α = 0.2), UKNet (N = 21, L = 78, α = 0.19),
ARPANet (N = 20, L = 62, α = 0.16), Eurolarge (N = 43, L = 180,
α = 0.1) and USNet (N = 46, L = 152, α = 0.07).

It can be seen that the number of nodes does not significantly affects the
potential wavelength savings and that the ratio RW decreases with ρ and α.
That is, the highest benefits of dynamic operation are expected for low loads
(ρ ≤ 0.5) and sparsely connected networks (α ≤ 0.2). This is reasonable, as at
low loads static networks are inefficiently used and highly-connected networks
already require very low number of wavelengths per link in the static case (for
example, 4 in Eurocore) making hard for dynamic operation to further decrease
this requirement.

These results indicate that, for most values of the traffic load, dynamic operation
has the potential of achieving significant savings in networks with a low physical
connectivity (α ≤ 0.2). Increasing the levels of acceptable blocking slightly in-
creases the percentage of savings aswell, but the acceptable blocking level is usually
determined by the applications rather than the network design process.

3 Algorithmic Lower Bound the Wavelength
Requirements of Dynamic WRONs

The analytical lower bound derived in the previous section may be unachievable
in practice, because adaptive routing does not necessarily use the shortest paths
nor fully utilizes wavelength space. Due to the difficulty of modeling the length of

482 A. Zapata and P. Bayvel

paths and the wavelength usage obtained by adaptive routing, a tighter heuristic
lower bound based on the application of a near-optimal heuristic for the static
case [4] every time a new lightpath request arrives is proposed in this section.
This heuristic (called Reconfigurable Routing, RR) however, would be im-
practical because the reallocation process would disrupt active connections and
increase the lightpath request processing beyond the limits allowed by scalability
considerations [15].

Every time a new lightpath request arrives RR works as follows:

1. Represent the network with as many graphs as the maximum number of
wavelengths in any link (layered graph [15]).

2. Sort the active connections (including the new arrival) according to the num-
ber of hops of their shortest (in number of hops) paths (longest first)

3. Allocate lightpaths one by one, choosing connections according to the order
established in step 1, as follows:
i. Execute Dijkstra to find the shortest available path in every graph
ii. Allocate the first path found which is at most e hops longer than the

shortest path. If not such path is found on any of the graphs, block the
request.

The parameter e in step 3.ii was varied between 0 and 3 depending on the
traffic load, as higher values did not reduce the wavelength requirements in the
studied networks.

4 Simulation Results

The following extreme (in terms of speed and blocking performance) dynamic
lightpath allocation algorithms have been chosen to study their wavelength re-
quirements in this paper:

• Adaptive Unconstrained Routing - Exhaustive (AUR-E). Shown to
yield the lowest blocking to date, due to the online execution of the Dijkstra
algorithm per request [16]. However, this way of operating makes AUR-E
computationally intensive and thus, slow [15].

• Shortest Path - First Fit (SP-FF) [17] Shown to be the fastest algorithm
available to date due to the use of pre-computed routes (only one per node
pair) and the simplicity of the wavelength allocation algorithm. However,
this algorithm exhibits higher blocking values than AUR-E.

• k Alternate Paths using Shortest Path First Fit (k-SP-FF). This
algorithm attempts to achieve a good compromise between computational
complexity and performance by applying alternate routing. Thus, the per-
formance of fixed routing is improved without incurring in the high compu-
tational cost of Dijkstra-based AUR-E.

The wavelength requirements resulting from the application of the algorithms
presented above was evaluated by means of simulation. Simulation details as
follows.

Do We Really Need Dynamic Wavelength-Routed Optical Networks? 483

The target blocking was set to a maximum value of 10−3 per node pair (thus,
the network-wide blocking, denoted by B in previous sections, is also 10−3).

ON and OFF periods were assumed identically and exponentially distributed
for all node pairs. Lightpath requests were generated at the start of each ON
period. To comply with the efficiency criteria [18] (that is, the transmission time
of a burst should be at least as long as the overhead time) the mean ON period
(μON) was set to 5, 10 and 25 ms for the UK, European and US networks,
respectively.

After eliminating transient simulation behaviour (first 103 lightpath requests
per node pair), 104 lightpath requests per node pair were generated. To quan-
tify the wavelength requirements, the number of wavelengths in each link was
increased until no more than 10 requests generated per node pair was rejected
(in this way, a maximum blocking of 10−3 is ensured).

The described simulation experiment was executed several times to obtain
a confidence interval of 95% for the wavelength requirements of each link. For
the SP-FF and k-SP-FF algorithms, 100 simulations were executed (for each
network, for a specific value for the traffic load) and the confidence interval was in
average 0.3% and 3.1% of the mean value for SP-FF and 3-SP-FF, respectively.
For AUR-E and RR instead, only 15 simulations were executed, due to their
high simulation time (as a way of illustration, the evaluation of the wavelength
requirements of RR for the USNet topology for a unique value of the traffic load
took more than 1 week in a Pentium 4 of 2.5 GHz and 256 MB RAM). The
confidence interval was on average 3.5% and 3.4% of the mean value for AUR-E
and RR, respectively.

The ratio RW is plotted as a function of the traffic load in Figure 2 a)-g)
for the SP-FF, 3-SP-FF (that is, up to 3 disjoint routes per node pair were
used as higher values of k did not achieve better results in terms of wavelength
requirements) and AUR-E algorithms. The ratio RW obtained for the analytical
and the heuristic lower bounds is also included for comparison.

From Figure 2a-g four main conclusions can be drawn:

• The heuristic lower bound is still significantly higher than the analytically
obtained value: 46 % higher on average. This difference is due to the as-
sumption of full wavelength reutilization and the use of shortest paths to
obtain the analytical lower bound, which might not be fulfilled in the case of
the heuristic lower bound. The heuristic lower bound predicts that potential
wavelength savings can be achieved only at low/moderated traffic loads (0.3-
0.5) and that sparsely connected networks experience the highest wavelength
savings.

• SP-FF and 3-SP-FF require a much higher number of wavelengths than
AUR-E to achieve the same blocking: 24% and 18% higher wavelength re-
quirements in average, respectively. In networks of large size, as USNet for
example, this difference might result in the installation of a few thousand
extra wavelengths to offer the same service. Thus, in terms of resource uti-
lization efficiency, SP-FF and k-SP-FF should not be considered for imple-
mentation in wavelength-routed networks.

484 A. Zapata and P. Bayvel

• Although AUR-E corresponds to the algorithm requiring the lowest number
of wavelengths, it requires on average, 14% higher number of wavelengths

Do We Really Need Dynamic Wavelength-Routed Optical Networks? 485

to achieve the same blocking performance than the heuristic lower bound.
This percentage still represents a high number of additional wavelengths in
networks of large size (about 2000 extra wavelengths in total for USNet).
Therefore, the design of a lightpath allocation algorithm improving on the
performance of AUR-E is still desirable. However, this is expected to be a
very difficult task (since the proposal of AUR-E in 1996 there have been no
better algorithms, despite significant activity in this research field).

• Considering the performance of AUR-E, the advantages of dynamic opera-
tion with respect to the static approach are observed only at low/moderate
loads (< 0.4) and especially for sparsely connected networks: networks with
physical connectivity, α, lower than 0.2 exhibit wavelength savings for traf-
fic loads up to 0.4 whilst more connected networks (for example, Eurocore
or NSFNet) exhibit savings only for loads up to 0.3. For loads in excess
of 0.4 all the studied dynamic networks require more wavelengths than the
corresponding static networks and thus, in that range of operation dynamic
networks are not attractive in terms of wavelength requirements.

5 Summary

In this paper the question of whether dynamic operation in wavelength-routed
optical networks brings benefits in terms of wavelength requirements compared
to the static operation was addressed.

Through the derivation of an analytical and a heuristic lower bound for the
wavelength requirements it was found that the traffic load and the physical con-
nectivity were key factors affecting wavelength savings in dynamic networks and
that dynamic operation could achieve wavelength savings only at low/moderated
traffic loads (0.3-0.5, with the highest savings being exhibited by sparsely con-
nected networks (α < 0.2).

Both lower bounds were used as a benchmark for the wavelength requirements
of dynamic lightpath allocation algorithms and it was found that the best per-
forming algorithm (AUR-E) required 14% higher number of wavelengths than
the heuristic lower bound. Considering such algorithm, dynamic wavelength-
routed optical networks exhibited wavelength savings with respect to the static
approach only at low/moderate traffic loads (0.3-0.4), with the highest savings
achieved in sparsely connected networks (α < 0.2).Wavelength-routed optical
networks operating at higher traffic loads do not benefit from dynamic opera-
tion in terms of wavelength requirements. Such lower efficiency in wavelength
usage of dynamic operation comes from the fact that lightpath allocation must
be carried out in an on-line manner and thus, it cannot be optimized as in the
static case. In addition, highly connected networks already require a low num-
ber of wavelengths in the static case, making difficult for dynamic operation to
decrease further the wavelength requirement. These results are contradictory to
the widely held view which says that savings will always occur under dynamic
operation, and should encourage the research community to review the idea that
dynamic operation of wavelength-routed optical networks is always desirable in
terms of wavelength requirements.

486 A. Zapata and P. Bayvel

Acknowledgements. Financial support from Fondecyt Project 1050361, USM
Project 23.05.81, Fundación Andes and EU FP6 Integrated Project NOBEL/
NOBELII is gratefully acknowledged.

References

1. K.G. Coffman and A.M. Odlyzko, “Growth of the Internet”, in Optical Fiber Com-
munication - vol. IV-B: Systems and Impairments, I.P. Kaminow and T. Li Eds.,
Academic Press, San Diego, 17-56, 2002

2. G. Agrawal, Fiber-Optic Communication Systems, 3rd Edition, Wiley-Interscience,
Wiley & Sons, Chapter 8, 2002

3. Post-deadline papers in Proceedings of 31st European Conference on Optical Com-
munications, ECOC 2005, Glasgow, Scotland, September 2005

4. S. Baroni and P. Bayvel, “Wavelength requirements in arbitrarily connected
wavelength-routed optical networks”, IEEE J. of Lightwave Technol., 15(2), 242-
251, 1997

5. C. Assi et al., “Impact of wavelength converters on the performance of optical
networks”, Optical Networks Magazine, 3 (2), 22-30, 2002

6. A. Odlyzko, “Data networks are lightly utilized, and will stay that way” Rev.
Network Economics 2, 210-237, 2003

7. O. Gerstel and H. Raza, “On the synergy between electrical and optical switching”,
IEEE Communications Magazine, 41 (4), 98-104, 2003

8. S. Sengupta, V. Kumar, D. Saha, “Switched optical backbone for cost-effective
scalable core IP neworks”, IEEE Communications Magazine 41 (6), 60-70, 2003

9. C. Assi, A. Shami, M. Ali, “Optical networking and real-time provisioning: an
integrated vision for the next - generation Internet”, IEEE Network, 15 (4), 36-45,
2001

10. M.J. O’Mahony, D. Simeonidou, D.K. Hunter, A. Tzanakaki, “The application of
optical packet switching in future communications networks”, IEEE Communica-
tions Magazine, 39 (3), 128-135, 2001

11. S. Ross, “A first course in Probability”, 6th Edition, Prentice Hall, 2002, pp. 206
12. R. Yates and D. Goodman, “Probability and stochastic processes. A friendly in-

troduction for Electrical and Computer Engineers”, Wiley & Sons, 2nd Ed., 1999
13. S.N. Dorogovtsev, A.V. Goltsev, J.F. Mendes,“Pseudofractal sacle-free web”, Phys-

ical Review E 65, 066122-1-066122-4, 2002
14. S. K. Korotky, “Network global expectation model: a statistical formalism for

quickly quantifying network needs and costs”, IEEE J. of Lightwave Technol. 22
(3), 703-722, 2004

15. M. Düser, A. Zapata, P. Bayvel, “Investigation of the Scalability of Dynamic
Wavelength-Routed Optical Networks” J. of Optical Networking 3, 667-686, 2004

16. A. Mokhtar and M. Azizoglu, “Adaptive wavelength routing in all-optical net-
works”, IEEE/ACM Transactions on Networking, 6(2), 197-206, 1998

17. I. Chlamtac, A. Ganz, G. Karmi, “Purely optical networks for terabit commu-
nication”, in Proceedings of INFOCOM‘89, v.3, 887-896, Ottawa, Canada, April
1989

18. M. Düser, P. Bayvel, “Analysis of a dynamically wavelength-routed optical burst
switched network architecture”, IEEE J. of Lightwave Technology 20(4), 574-585,
2002

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 487 – 494, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design and Implementation of Middleware and Context
Server for Context-Awareness*

Jae-Woo Chang and Yong-Ki Kim

Research Center of Industrial Technology
Dept. of Computer Engineering, Chonbuk National University,

Chonju, Chonbuk 561-756, South Korea
jwchang@chonbuk.ac.kr, ykkim@dblab.chonbuk.ac.kr

Abstract. Context-awareness is a technology to facilitate information acquisi-
tion and execution by supporting interoperability between users and devices
based on users' context. In this paper, we design and implement a middleware
and a context server for dealing with context-aware applications in pervasive
computing. The middleware plays an important role in recognizing a moving
node with mobility by using a Bluetooth wireless communication technology as
well as in executing an appropriate execution module according to the context
acquired from a context server. In addition, the context server functions as a
manager that efficiently stores into the database server context information,
such as user's current status, physical environment, and resources of a comput-
ing system. To verify the usefulness of the middleware and the context server,
we finally develop our context-aware application system which provides users
with a music playing service in pervasive computing environment.

1 Introduction

In traditional computing environments, users actively choose to interact with com-
puters. On the contrary, pervasive computing applications are embedded in the users’
physical environments and integrate seamlessly with their everyday tasks [1]. Mark
Wieser at Xerox Palo Alto Research Center identified the goal of future computing to
be invisible computing [2]. An effective software infrastructure for running pervasive
computing applications must be capable of finding, adapting, and delivering the ap-
propriate applications to the user’s computing environment based on the user’s con-
text. Thus, context-aware application systems determine which user tasks are most
relevant to a user in a particular context. They may be determined based on history,
preferences, or other knowledge of the user’s behavior, as well as the environmental
conditions. Once the user has selected a task from the list of relevant tasks, an appli-
cation may have to move seamlessly from one device to another and from one envi-
ronment to another based on the user’s activity. The context-awareness is one of the
most important technologies in pervasive computing, which facilitate information
acquisition and execution by supporting interoperability between users and devices
based on users' context.

* This work is financially supported by the Ministry of Education and Human Resources De-

velopment(MOE), the Ministry of Commerce, Industry and Energy(MOCIE) and the Minis-
try of Labor(MOLAB) though the fostering project of the Lab of Excellency.

488 J.-W. Chang and Y.-K. Kim

In this paper, we design and implement middleware and context server components
for dealing with context-aware applications in pervasive computing. The middleware
plays an important role in recognizing a moving node with mobility by using a Blue-
tooth wireless communication technology as well as in executing an appropriate exe-
cution module according to the context acquired from a context server. In addition,
the context server functions as a manager that efficiently stores into database server
con-text information, such as user's current status, physical environment, and re-
sources of a computing system. In order to verify the usefulness of the middleware
and the con-text server, we develop our context-aware application system which pro-
vides a music playing service in pervasive computing environment. The remainder of
this paper is organized as follows. The next section discusses related work. In section
3, we de-scribe the overall architecture for context-aware application services. In
section 4 and 5, we describe the design of our middleware and our context server for
context-awareness. In section 6, we present the development of our context-aware
application system using them. Finally, we draw our conclusions in section 7.

2 Related Work

In this section, we discuss the typical context-aware application systems. First, INRIA
in France [3] proposed a general infrastructure based on contextual objects to design
adaptive distributed information systems in order to keep the level of the delivered ser-
vice despite environmental variations. The contextual objects (COs) were mainly moti-
vated by the inadequacy of current paradigms for context-aware systems. The use of
COs does not complicate a lot of development of an application, which may be devel-
oped as a collection of COs. They also presented a general framework for context-aware
systems, which provides application developers with an architecture to design and im-
plement adaptive systems and supports a wide variety of adaptations. Secondly, AT&T
Laboratories Cambridge in U.K [4] presented a platform for context-aware computing
which enables applications to follow mobile users as they move around a building. The
platform is particularly suitable for richly equipped, networked environments. Users are
required to carry a small sensor tag, which identifies them to the system and locates
them accurately in three dimensions. Finally, Arizona State Univ. [5] presented Recon-
figurable Context-Sensitive Middleware (RCSM), which made use of the contextual
data of a device and its surrounding environment to initiate and manage ad hoc commu-
nication with other devices. The RCSM provided core middleware services by using
dedicated reconfigurable Field Programmable Gate Arrays (FPGA), a context-based
reflection and adaptation triggering mechanism, and an object request broker that are
context-sensitive and invokes remote objects based on contextual and environmental
factors, thereby facilitating autonomous exchange of information.

3 Overall Architecture for Context-Aware Application Services

Context is any information that can be used to characterize the situation of any entity
[6]. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves. In
this section, we propose an overall architecture of context-adaptive system for sup-
porting various context-aware application services, which is divided into three com-

 Design and Implementation of Middleware and Context Server 489

ponents, context server, middleware (fixed node), and moving node (client). First, the
context server serves to insert remote objects into an object database and context
information into a context database, as well as to retrieve them from the both data-
bases. Secondly, a fixed node functions as a middleware to find, insert, and execute a
remote object for context awareness. Finally, a moving object serves to execute a
predefined built-in program according to the context information acquired from the
middleware. Figure 1 shows the overall architecture for supporting various context-
aware application services.

Fig. 1. Overall architecture for supporting context-aware application services

Because our architecture combines the advantage of the INRIA work with that of
the AT&T work, it has a couple of powerful features. First, our middleware can de-
fine context objects describing context information as well as can keep track of a
user’s current location. Secondly, our context server can store context objects and
their values depending on a variety of contexts as well as can mange users’ current
locations being acquired from a set of fixed nodes by using spatial indexing. Finally,
our client can provide users with adaptive application services based on the context
objects. Meanwhile, the context server communicates with a middleware by using a
network based on TCP/IP, while a moving object communicates with a middleware
using Bluetooth wireless communication [7].

4 Middleware for Context-Awareness

Our middleware for context-aware application services consists of three layers, such
as detection/monitoring layer, context-awareness layer, and application layer. First,
the detection/monitoring layer serves to monitor the locations of remote objects, net-
work status, and computing resources, i.e., CPU usage, memory usage, bandwidth,

TCP/IP

Middleware
(Fixed Node 1)

Context Server

Middleware
(Fixed Node 2)

Middleware
(Fixed Node n)

Moving Node 2
(Client)

Moving Node 1
(Client)

Moving Node m
(Client)

contextDB

bluetooth

bluetooth

bluetooth

TCP/IP TCP/IP

490 J.-W. Chang and Y.-K. Kim

and event information related with devices including Bluetooth. Secondly, the con-
text-awareness layer functions as a middleware which is an essential part for handling
context-aware application services. It can be divided into five managers, such as
script processor, remote object manager, context manager, context selection manager,
communication proxy manager. The script processor analyzes the content of context-
aware definition script and executes its specified actions. The remote object manager
man-ages a data structure for all the context objects used in application programs. The
context manager manages context and environmental information including user pref-
erence and user location. The context selection manager chooses the most appropriate
context information under the current situation. The communication proxy manager
serves to communicate with the context server and to temporarily reserve data for
retransmission in case of failure. Finally, being executed independently of the mid-
dleware, the application layer provides users with a set of functions to develop vari-
ous context-aware applications by using the application programming interface (API)
of the middleware. Figure 2 shows the three-layered structure of the middleware.

Fig. 2. Three-layered structure of the middleware

5 Context Server for Context-Awareness

For context-awareness, context server is required to store and retrieve remote objects
and context information extracted from them. We design a context server which can
efficiently manage both the remote object and the context information using a com-
mercial DBMS called MySQL. This is because we can reduce the developing time,
compared with using a storage system, and we can increase the reliability of the de-
veloped system. The designed context server analyzes and executes the content of
packets delivered from the middleware. That is, the server determines whether the
packet’s content is contexts or context objects and stores them into the corresponding
database. Figure 3 shows the structure of context server which is divided into four
managers, such as communication manager (CM), packet analysis manager (PAM),
context/object manager (COM), and mySQL query manager (SQM).

Object
Manager

Context
Manager

Selection
Manager

Communication
Manager(Proxy)

Context Awareness Layer

a
t
t
r
i
b
u
t
e

Object
Request

Object
Reply

Interest Info. on
detected change

Object
Request

Object
Varients

Script
Processor

Application Layer

Detection / Monitoring Layer

Script

Context

Object
Context Object

 Design and Implementation of Middleware and Context Server 491

Fig. 3. Structure of context server

The CM serves to communicate between the context server and a middleware. The
CM delivers to PAM the packets transferred from the middleware as well as to the
middleware the result packets made from the server. The CM includes both file re-
ceiving module and TCP/IP socket module. The file receiving module is dependant on
the TCP/IP socket module because it communicates with the middleware using
TCP/IP socket. When the server is ready to communicate, it receives packets from the
middleware. The PAM parses the packets from the CM and determines what action
wants to be done currently. Based on the parsing, the PAM calls the most proper func-
tions, i.e., context APIs, in the COM. The COM translates into SQL statements the
content delivered from the PAM and delivers the SQL statements to SQM to execute
them. The context APIs (application programming interfaces) for the COM is Con-
textDefine, ContextDestroy, ContextInsertTuple, ContextDeleteTuple, ContextSearch,
ContextSearchTuples, and ContextCustom. The SQM executes the SQL statements
from the COM using the MySQL DBMS and delivers the result to the middleware via
the CM. The SQL includes the mySQL API module being implemented by using
mysql C libraries.

6 Development of Context-Aware Application System

In this section, we first develop both our middleware and our context server which are
designed for context awareness in the previous sections. For this, we implement them
using GCC compiler 2.95.4 under Redhat Linux 7.3 (kernel version 2.3.20) with 1.7
GHz Pentium-IV CPU and 512 MB main memory. In order to show the efficiency of
both our middleware and our context server implemented, we also develop a con-text-
aware application system using them. The context-aware application system servers to
provide users with a music playing service in pervasive computing environment. In
the system, when a user belonging to a moving node approaches to a fixed node, the
fixed node starts playing the user’s music with his (her) preference according to his

 Communication
Manager

Packet Analysis
Manager

Context/Object
Manager

MySQL Query
Manager

MySQL

DBMS

Context DB

492 J.-W. Chang and Y.-K. Kim

location. In general, each user has a list of his (her) music with his preference and
even a user can have a different list of his (her) popular music depending on time, i.e.,
morning time, noon time, and night time. In the context server, a user record for the
music playing application service has six attributes, such as User_ID, User_Name,
Location, Music_M, Music_A, and Music_E. The User_ID serves as a primary key to
identify a user uniquely. The User_Name means a user name and the Location means
a user’s current location which can be changed whenever a middleware finds the
location of a moving object. Finally the Music_M, the Music_A, and the Music_E
represent his (her) preferred music file in the morning time, the noon time, and the
night time, respectively. The context server manages a list of music files for a user,
processes queries given from a fixed node, and delivers the corresponding music file
to the fixed node by its request.

We develop our context-aware application system providing a music playing ser-
vice by using affix 2.0.2 as a Bluetooth device driver protocol and by using GCC
2.95.4 an a compiler, under Redhat Linux 7.3 (kernel version 2.4.20) with 866 MHz
Pentium-III CPU and 64 MB main memory. In addition, the Bluetooth device follows
the specification of Version1.1/Class1 and makes a connection to PCs using USB
interfaces [8]. To determine whether or not our context-aware application system
implemented works well, we test it by adopting a scenario used in Cricket [9], one of
the MIT Oxygen project. For this, we test the execution of our context-aware applica-
tion system in the following three cases; the first case when a user covered by a mov-
ing node approaches to a fixed node or move apart from it, the second case when two
different users approaches to a fixed node, and the final case when a user approaches
to a fixed node at different times. Among them, because the first case is the most
general one, we will explain it in more detail. For our testing environment, we locate
two fixed nodes in the database laboratory (DB Lab) and the media communication
laboratory (Media Lab) of Chonbuk National University, respectively, where their
middleware can detect a moving node by using Bluetooth wireless communication.
There is a corridor between DB Lab and Media Lab and its distance is about 60 meter.
We test the execution of our context-aware application system in a case when a user
having a moving node moves from DB Lab to Media Lab or in a reverse direction.
Figure 4 shows a testing case when a user having a moving node approaches to a
fixed node. First, the fixed node receives a user name from the moving node as the
moving node is approaching to it (). Secondly, the fixed node determines whether
or not the information of the user has already been stored into a server. If it does, the
context server searches the music file belonging to the user in a current time and
downloads the music file from the database (). In case when the fixed node detects
that a user is too far to communicate with it, the fixed node stops the process to play
music and it re-moves the music playing process.

To analyze the performance of our context-aware application system, we measure
an average time by adopting a boundary detection of beacons used in Cricket [9].
First, as a moving node is approaching to a fixed node, it takes 1.34 second for the
fixed node to make a connection with the moving node. It means the time for the
fixed node to detect the presence of a moving node. Secondly, it takes 0.5 second for
the fixed node to start music playing service after making the connection between
them. Finally, as a moving node is moving apart from a fixed node, it takes 1.45

 Design and Implementation of Middleware and Context Server 493

Fig. 4. Testing case when a user is approaches to a fixed node

second for the fixed node to make a disconnection to the moving node. It means the
time for the fixed node to detect the absence of the moving node. The time is rela-
tively long because the kernel tries to communicate with the moving node even
though the moving node is beyond the communication boundary of the fixed node.
Therefore, it is very reasonable for the fixed node to set the time limit to two seconds.
If it takes long time for a fixed node to establish a connection to a moving node and to
detect a context from it, a user may consider the situation as a fault. Because the de-
tection time for a context is less than two seconds, the context-aware application pro-
gram is reasonable for the music playing application service.

7 Conclusions and Future Work

In this paper, we designed and implemented both our middleware and our context
server for supporting a context-aware application system. The middleware played an
important role in recognizing a moving node with mobility by using Bluetooth wire-
less communication as well as in executing an appropriate execution module accord-
ing to the context acquired from a context server. In addition, the context server func-
tions as a manager that efficiently stores into database server context information,
such as user's current status, physical environment. To verify the usefulness of both
the middleware and context server implemented, we developed our context-aware
application system which provided users with a music playing service in pervasive
computing environment. We tested it by adopting a scenario used in Cricket. It was

494 J.-W. Chang and Y.-K. Kim

shown that it took about 1.5 seconds for our context-aware application system to
make a connection (or disconnection) between a fixed node and a moving node, thus
being considered reasonable for our music playing application service. As future
work, it is required to study on an inference engine to acquire new context informa-
tion from the existing one.

References

1. K. Raatikainen, H. B. Christensen, and T. Nakajima, "Application Requirements for Mid-
dleware for Mobile and Pervasive systems", Mobile Computing and Communications Re-
view, pp. 16-24, Vol. 6, No. 4.

2. M. Weiser, "The Computer for the Twenty-First Century", Scientific American, pp. 94-104,
Sept. 1991.

3. P. Couderc, A. M. Kermarrec, "Improving Level of Service for Mobile Users Using Con-
text-Awareness", Proc. of 18th IEEE Symposium on Reliable Distributed Systems, pp. 24-
33, 1999.

4. A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, "The anatomy of a Context-aware
application", Wireless Networks Vol. 8, Issue 2/3, pp. 187-197, 2002.

5. S. S. Yau and F. Karim, "Context-sensitive Middleware for Real-time Software in Ubiqui-
tous Computing Environments", Proc. of 4th IEEE Symposium on Object-oriented Real-
time Distributed Computing, pp.163-170, 2001.

6. K. Cheverst, N. Davies, K. Mitchell, and A. Feiday, "Experiences of Developing and De-
ploying a Context-Aware Tourist Guide: The GUIDE Project", Proc. of 6th Int’l Conference
on Mobile Computing and Networking, 2001.

7. Bluetooth Version 1.1 Profile, http://www.bluetooth.com.
8. Affix: Bluetooth Protocol Stack for Linux, http://affix.sourceforge.net.
9. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket Location Support Sys-

tem", 6th ACM/IEEE Int'l Conf. on Mobile Computing and Networking(MOBICOM), pp.
32-43, 2000.

Security and Privacy Analysis of RFID Systems
Using Model Checking�

Hyun-Seok Kim1, Il-Gon Kim1, Keun-Hee Han2, and Jin-Young Choi1

1 Dept. of Computer Science and Engineering, Korea University,
Seoul, Korea

{hskim, igkim, choi}@formal.korea.ac.kr
2 e-Government Security Team, Ministry of Goverment Administration

and Home Affairs, Seoul, Korea
keunhee@mogaha.go.kr

Abstract. Radio frequency identification (RFID) is expected to become
an important and ubiquitous infrastructure technology. As RFID tags are
affixed to all items, they may be used to support various useful services.
However, this pervasive use of RFID tags opens up the possibility for
various attacks violating user privacy and authentication among com-
munication participants. Security mechanisms for RFID systems will be
therefore of utmost important. In this paper, we describe problems of
previous works on RFID security protocol and specify several known at-
tacks with Casper, CSP and then verify their security properties such as
secrecy and authentication using FDR model checking tool. Finally, we
propose an RFID security protocol based on strong authenticaion that
guarantees data privacy and authentication between a tag and a reader.
Keywords : RFID Security, Model Checking, Casper, CSP, FDR.

1 Introduction

Regarding RFID security, few issues are related to the data protection of the
tags, message interception over the air channel, the eavesdropping within the
interrogation zone of the RFID reader[1]. Among these, we will discuss two
aspects on the risks posed to the passive party by RFID that has so far been
dominated by the topics of data protection associated with data privacy and
authentication between tag and reader. Firstly, the data privacy problem is that
storing person-specific data in an RFID system can threaten the privacy of the
passive party. This party might be, for example, a customer or an employee of
the operator. The passive party uses tags or items that have been identified
by tags, but the party has no control over the data which have been stored on
the tags.

Secondly, the authentication will be carried out when the identity of a person
or a program is checked. Then, on that basis, authorization takes place, i.e.

� This work was supported by Ministry of Commerce, Industry and Energy of Korea
and the RFID Research Center of Korea University.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 495–504, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

496 H.-S. Kim et al.

rights, such as the right of access to data are granted. In the case of RFID
systems, it is particularly important for tags to be authenticated by the reader
and vice-versa. In addition, readers must also authenticate themselves to the
backend, but in this case there are no RFID-specific security problems.

To satisfy above requirements, the most effective protective measure against
an attack involving eavesdropping at the air interface is not to store any contents
on the tag itself and instead to read only the ID of the tag. This measure, which
is most often recommended in the technical literature and which is assumed
by EPCglobal[2], offers the additional advantages that less expensive tags can
be used, the memory for the associated data in the database is practically un-
limited. For applications where relevant contents have to be stored on the tags
themselves, only strong encryption procedures can provide reliable protection
against eavesdropping. In this paper, we specify the hash[3] based RFID authen-
tication protocols as the previous works which employs hash functions to secure
the RFID communication using Casper[5], CSP[4]. Then we verify whether or
not it satisfies security properties such as secrecy and authentication using FDR
model checking tool[6]. After running FDR tool, we reconfirm the existence of
known security flaws in this protocol and describe the problems of hash based
technique. This paper is organized as follows. In brief, the related works on RFID
security and authentication schemes associated with hash function will be de-
scribed in Section 2. In Section 3, we outline the use of Casper, CSP, and FDR
tool for analysing security protocols automatically. Our analyzed result of the
protocol will be described in Section 4. The proposed security scheme associated
with encryption are presented in Section 5. Finally, the conclusion and our future
work are addressed in the last section.

2 Related Work

There have been many papers in the literature that attempt to address the
security concerns raised by the use of RFID tags.

2.1 The Hash Lock Scheme

A reader defines a “Lock” value by computing lock = hash(key)[3] where the key
is a random value. This lock value is sent to a tag and the tag will store this value
into its reserved memory location (i.e. a metaID value), and automatically the
tag enters into the locked state. To unlock the tag, the reader needs to send the
original key value to the tag, and the tag will perform a hash function on that
key to obtain the metaID value. The tag then has to compare the metaID with
its current metaID value. If both of them are matched, the tag unlocks itself.
Once the tag is in unlocked state, it can respond its identification number such
as the Electronic Product Code (EPC)[2] to readers’ queries in the forthcoming
cycles. This approach is simple and straight forward to achieve data protection,
i.e. EPC code stored in the tag is being protected. Only an authorized reader
is able to unlock the tag and read it, then lock the tag again after reading the
code. This scheme will be analyzed in this paper in detail.

Security and Privacy Analysis of RFID Systems Using Model Checking 497

2.2 The Randomized Hash Lock Scheme

This is an extension of hash lock[3] based on pseudorandom functions (PRFs).
An additional pseudo-random number generator is required to embed into tags
for this approach. Presently, tags respond to reader queries by a pair of values
(r, hash(IDk ‖ r)) where r is the random number generated by a tag, IDk is the
ID of the k-th tag among a number of tags in ID1, ID2, . . ., IDk, . . ., IDn.
For reader queries, the tag returns two values. One is the random number. The
other is a computed hash value based on the concatenation(‖) on its own IDk
and r. Once the reader gets two values, it retrieves the current N number of ID
(i.e. ID1, ID2, . . ., IDn) from the backend database. The reader will perform
the above hash function on each ID from 1 to n with r until it finds a match.
When the reader finds a match, the reader is able to identify that tag k is on its
tag’s ID list (i.e. tag authentication). The reader will then send the IDk value
to the tag for unlocking it. Once the tag is in an unlocked state, the reader can
get its EPC code in the next reading cycle.

3 Casper, FDR, and CSP

3.1 Casper, FDR

Over the last few years, a method for analyzing security protocol that first models
communication security protocol using CSP[4], then verifies its secrecy, authen-
tication and other properties using FDR(Failure-Divergence Refinement)[6]. In
this method, the main difficulty is specifying the security protocol’s behavior
using CSP. Creating the description of the security model with CSP is a very
error-prone and difficult task. To simplify the expression of the security pro-
tocol, and render this process more error free, Casper(A Compiler of Security
Protocol Analyzer)[5] was developed by Gavin Lowe[7]. This tool enables a non-
expert who is unfamiliar with CSP to express the security protocol’s behavior
more easily, without being familiar with the notation used by CSP notation,
using various key types, messages, security properties and intruder knowledge
descriptions contained in Casper. In brief, Casper is a compiler that translates
a more simple and concise description of a security communication model into
CSP code.

The Casper, FDR approach was chosen for the analysis of the security protocol
because Casper provides not only simple notation but also formal semantics,
which maps to the CSP language. In addition, FDR model checking is very good
at verifying concurrency models such as communication protocols.

3.2 CSP

CSP(Communicating Sequential Processes)[4] is a language for process specifica-
tion specially designed to describe communication processes, and it can describe
both a pure parallelism and interleaving semantics. In CSP, the former(a pure
parallelism) is expressed as “ ‖ ”and the latter(interleaving semantics) as “ ‖|”.

498 H.-S. Kim et al.

The combination of a client, server and intruder are regarded as a process. The
use of two different concurrency concepts is well suited to the description and
analysis of network protocols. For example, security communication systems op-
erated in distributed networks can be modeled briefly as follows.

SYSTEM = (CLIENT1 ||| CLIENT2 ||| SERVER)
|| INTRUDER

4 The Modelling and Analysis of the RFID
Authentication Protocol Using Casper and FDR Tool

4.1 The Specification of Hash Unlocking Protocol

Firstly, we model the behavior of hash unlocking protocol at the hash lock scheme
and attacker in Casper script.

Table 1. The Hash Lock Scheme Notation

T RF tag’s identity
R RF reader’s identity

DB Back-end server’s identity that has a database
Xkey Session Key generated randomly from X

metaID Key generated from reader using hash functioon
ID Information value of tag
Xn A random nonce generated by X
H Hash function

Message 1. R − > T : Query
Message 2. T − > R : metaID
Message 3. R − > DB : metaID
Message 4. DB − > R : RKey, ID
Message 5. R − > T : RKey
Message 6. T − > R : ID

Fig. 1. The hash unclocking protocol

The general overview of above protocol(Fig.1) was already described in 2.1
section.

#Protocol description
0. -> T : R
1. T -> R : (H(Rkey)) % metaID
2. R -> DB : metaID % (H(Rkey))
3. DB -> R : Rkey, Id
4. R -> T : Rkey
5. T -> R : Id

Security and Privacy Analysis of RFID Systems Using Model Checking 499

Before explaination of # Protocol description, we will describe % notation to
show specific notation. The % notation is used so that the metaID can be for-
warded to other participants. This is why a reader can not construct the metaID,
since the other reader does not know the value of hash function where m is a
message and v is a variable, denoting that the recipient of the message should
not attempt to decrypt the message m, but should instead store it in the variable
v. Similarly, v % m is written to indicate that the sender should send the mes-
sage stored in the variable v, and the recipient should expect a message of the
form given by m. Therefore, metaID is the certain not knowing result value of
hash function for T. In # Protocol description header, to unlock the tag, at the
first line, Message 0 means that T(Tag) must communicate with R(Reader). The
reader needs to send query to the tag and the tag sends the metaID to authenti-
cate with reader.(Message 1). The reader forwards this metaID to DataBase to
be ensured his identity.(Message 2). The DataBase has to compare the metaID
with its current metaID value and ,if both of them are matched, lets the reader
know the key and Id of tag.(Message 3). The reader authenticates his identity
with the tag sending key received by database. (Message 4). As a result, if both
of them are matched, the tag unlocks itself. Once the tag is in unlocked state, it
can respond its identification number(Id) to queries of readers in the forthcom-
ing cycles.(Message 5). This approach is simple and straight forward to achieve
data protection, i.e. EPC(Electronic Product Code)[2] stored in the tag is being
protected. Only an authorized reader is able to unlock the tag and read it, then
lock the tag again after reading the code.

#Specification
Secret(R, Rkey, [T])
Secret(R, Id, [T])
Agreement(T, R, [Id, Rkey])

In hash unlocking protocol Casper script, #Specification description represents
secrecy and authentication properties. The line starting with Secret expresses
secrecy property associated with data privacy in RFID system. For example,
the first statement is interpreted as “ R believes that Rkey is a secret which
should be known only to R and T” and the second statement is “ R believes
that Id is a secret which should be known only to R and T”. If R, T or DB is an
intruder in this protocol, secret information will be leaked to him, in which case a
man-in-the-middle attack is considered to have occurred. The line starting with
Agreement define that authentication property associated with authentication
between a tag and a reader. For example, the third line means that “ T is
authenticated to R with Id, Rkey.”

4.2 Protocol Goals

Using CSP[4], we describe the properties, i.e. secrecy property associated with
data privacy, authentication property associated with authentication between a
tag and a reader.

500 H.-S. Kim et al.

Secrecy - also called concealment or confidentiality - has a number of differ-
ent possible meanings; the designer of an application must decide which one is
appropriate. The strongest interpretation would be: an intruder is not able to
learn anything regarding communications between two participants of a system
by observing or even tampering the communication lines. That is, the contents
of message, sender and receiver, the message length, the time they were sent,
and even the fact that a message was transmitted in the first place cannot be
deduced.

The following predicate is implemented in CSP language.

SECRET_SPEC_0(s_) =
signal.Claim_Secret?T_!s_?Rs_ ->
(if member(Mallory,Rs_) then
SECRET_SPEC_0(s_)
else SECRET_SPEC_1(s_)) []leak.s_->
SECRET_SPEC_0(s_)

The SECRET SPECT 0 and SECRET SPECT 1 represent secret
property of above #Specification section meet in the system. Formally speaking,
if T has completed a protocol run apparently with R(signal.Claim Secret?T
!s ?Rs), and R is honest and uncompromised, then the key accepted during
that run by T is not known to anyone other than R(SECRET SPECT 1),
otherwise the key is known by someone in the system(leak.s). Similarly, if R has
completed a run with the honest and uncompromised T, then the key accepted
by R is not known to anyone other than T. That is, the end of a successful
protocol run each principal(T, R) should ensure whether it or not same with
matched key of the other principal. In addition, the participants of the protocol
should be satisfied that the session key is a suitable key for communication.
Each principal should also be able to confirm that the other protocol participant
possesses the Session Key(RKey).

Authentication: A system provides strong authentication if the following prop-
erty is satisfied: if a recipient R receives a message claiming to be from a specific
sender S then S has sent exactly this message to R. For most applications this
formulation must be weakened, since in most cases, communication channels are
subject to both technical errors and tampering by attackers. A system provides
weak authentication if the following property is satisfied: if a recipient R receives
a message claiming to be from a specific sender S then either S has sent exactly
this message to R or R unconditionally notices this is not the case.

AuthenticateINITIATORToRESPONDER
Agreement_0(T) =
signal.Running1.INITIATOR_T.R ->
signal.Commit1.RESPONDER_R.T -> STOP

Formally speaking, the events of the form Running1.INITIATOR T.R in
T’s run of the protocol are introduced to mark the point that should have been

Security and Privacy Analysis of RFID Systems Using Model Checking 501

reached by the time that R performs the Commit1.RESPONDER C.M event.
Occurrence of Running1.INITIATOR T.R run means simply that Agent T is
following a protocol run apparently with R. If a Running1.INITIATOR T.R
event must always have occurred by the time that the Commit1.RESPONDER
R.T event is performed, then authentication is achieved. That is, the protocol

is checked against these specifications in order to determine if the properties of
the protocol hold during subsequent runs of the protocol.

4.3 The Result of Verification

In this paper, we show verification results of the safety specification in hash un-
locking scheme, we use traces refinement provided in FDR tool. If the trace events
set of implementation model Q is a subset of the trace events set of specification
model P, we can say that Q is a safe implementation. After running the FDR
model checking tool, this protocol is not found to satisfy the Secret and Agree-
ment requirements in Casper script. Through debugging the counter-example
trace events, we reconfirm that hash unlocking protocol may be susceptible to
a sniff and spoof attack by an intruder due to unsecured communication chan-
nel between reader and tag. A general attack scenario, which could be found in
this protocol is described as below; I Agent means an intruder who can sniff
messages and spoof his identity.

1. Tag -> I_Reader : H(RKey)
2. I_Mallory -> DataBase : H(RKey)
3. DataBase -> I_Mallory : RKey, Id

The notation I x represents the intruder I imitating some participant to
fake or intercept a message. Through the man-in-the-middle attack of the hash
unlocking protocol, an intruder masquerading as Reader in Message 1, 2 could
forward the message H(Rkey)and in Message3, an intruder masquerading as
Reader could intercept the RKey, ID.

That is, a hacker may obtain the current metaID value(H(RKey)) by querying
a tag. The hacker replays the obtained metaID value and broadcasts it to any
readers nearby, to get the specific random key for this MetaID value if any reader
responds to his replay. Therefore, the hacker may have a chance to get the key
to unlock the tag and obtain its data.

4.4 Analysis of the Hash-Based Protocols Using FDR

Wecan summarize verification results about above protocols usingmodel checking.
Especially, the previous protocols are vulnerable to the replay attack, spoofing

attack and can be tracked by an attacker.
The attacker performs the following attack.

1. Security against the spoofing attack : The attacker disguises as a right reader,
then sends Query and reader to the tag. The attacker gets tag’s response
value due to not ensuring the response value of hash function from this
attack.

502 H.-S. Kim et al.

2. Security against the replay attack : After the reader transmits Query to the
tag, the attacker eavesdrops response value from tag.

3. Security against the traffic analysis and tracking: To receive responses, the
attacker disguises the reader then transmits fixed Query and reader to the
tag or overhears the information between the reader and the tag. Therefore,
the attacker can analyzes the response of the tag.

5 The Proposed of the Strong Authentication Protocol
for RFID Systems

5.1 The Modelling of the Strong Authentication Protocol Using
Casper

In the previous schemes [3], they assumed that R is a TTP(Trusted Third Party)
and the communication channel between R and B is secure. However, we assume
that R is not a TTP and the communication channel is insecure like the current
wireless network. We also assume that k is the secret session key shared between
R and B, and R and B has enough capability to manage the symmetric-key
crypto-system and sufficient computational power for encryption and decryption.
The main idea of this framework is based on the security algorithm that employed
in Yahalom protocol[8].

The proposed protocol must guaranty the secrecy of session key: in message
4, 5, the value of session key must be known only by the participants playing
the roles of T, R. R, T must be also properly authentified to DB.

Message 1. R − > T : Query
Message 2. T − > R : Tn
Message 3. R − > DB : { T, Tn, Rn } ServerKey(R)
Message 4. DB − > T : { R, DBkey, Tn, Rn, Id} ServerKey(T)
Message 5. DB − > R : { T, DBkey} ServerKey(R)
Message 6. T − > R : { Id }DBkey

Fig. 2. The proposed strong authentication protocol

We describe this protocol by the next protocol description as follows:

#Protocol description
0. -> T : R
1. T -> R : Tn
2. R -> DB: {T, Tn, Rn}{SKey(R)}
3a. DB-> T : {R, DBkey, Tn, Rn, Id}{SKey(T)}
3b. DB-> R : {T, DBkey}{SKey(R)}
4. T -> R : {Id}{DBkey}

In this protocol description, we use the Server Key and Tag’s Nonce(Tn) to
minimize for burden of Tag and to ensure the authentication between Tag and

Security and Privacy Analysis of RFID Systems Using Model Checking 503

Reader. Functions could be defined that can take in an input parameter and
return an output. It resembles a functional programming language in this aspect.
The definition of a function called SKey that takes in the name of an Server and
returns a ServerKey could be given as shared : Agent − > ServerKey. At the
Message 1, we design that T makes random nonce Tn and sends R. Since it makes
a simple challenge-response easily. Therefore, at the Message 2, through T, Tn,
Reader’s Nonce(Rn), and Server Key, R can be ensured the authentication from
database. At the Message 3a, DB encrypts all of the T, DBkey, Tn, Rn, and Id
received from R and sends these things to T to let R authenticate securely using
server key. At the Message 3b, DB also sends T, DBkey to R to decrypt Tag’s
Id. At the last Message 4, T can send a his Id securely using DBkey received at
the Message 3a.

In addition, we verify the proposed authentication protocol based encryp-
tion that establishes a secure channel between T and R, and confirm that the
authentication protocol satisfies the secrecy and authentication property.

5.2 The Result of Verification

After running FDR tool, we confirm that our proposed protocol solves the secu-
rity weakness in hash-based protocols.

– Secrecy: Spoofing, Replay Attack, Tracking, Eavesdropping on communi-
cation between tag and reader are attacks that threaten all participants.
To protect from these attack, the countermeasures are therefore essentially
identical in this protocol as follows.
Firstly, shift all data except the ID to the backend. This is also to be rec-
ommended for reasons of data management. (i.e. the Id for the tag existing
at the backend database will be shifted to protect spoofing, eavesdropping
attacks securely to the tag through the database when the reader request.)
Secondly, encode data transfer: we support encryption of the data transmis-
sion to ensure authorized access to the data that concern it and to protect
replay attack and tracking.

– Authentication: When a tag receives a “get challenge(query)” command from
a reader, it generates a random number Tn and sends it to the reader.
The reader in turn generates a random number Rn and with it and the
random number Tn generates an encrypted data block on the basis of an
encryption algorithm and a server key(R). The data block is then returned
to the database to authenticate the reader. Both reader and tag use the same
encryption algorithm and since the server key is stored on the tag, the tag is
capable of decrypting the server key(T). If the original random number Tn
and the random number Tn’, which has now been decrypted, are identical,
then the authenticity of the tag vis-a-vis the reader has also been proved.

6 Discussion and Conclusions

Although hash-based scheme offers good reliability at low cost, an adversary can
easily track the tag via its metaID or hash values. Furthermore, since the key K

504 H.-S. Kim et al.

is sent in the clear, an adversary upon capturing the key can later spoof the tag.
In this paper, we focus on the verification of the hash-unlocking protocol which
is widely researched in RFID system and analysis of the vulnerabilities of the
protocol using Casper ,CSP, and FDR. In verifying this protocol with FDR tool,
we were able to reconfirm some of the known security vulnerabilities which are
likely to occur in RFID system. Finally, we propose a strong authentication pro-
tocol based encryption algorithm against the man-in-the-middle, replay attacks
and also verify its safety using FDR tool.

References

1. S. Sarma, S. Weis, D. Engels,: RFID systems and security and privacy implications.
Workshop on Cryptographic Hardware and Embedded Systems (CHES) 2002, LNCS
No(2523):(2003)454-469

2. EPCGLOBAL INC.: http://www.epcglobalinc.org.
3. S. Weis, S. Sarma, R. Rivest and D. Engels,: Security and Privacy Aspects of Low-

Cost Radio Frequency Identification Systems. 1st Intern. Conference on Security in
Pervasive Computing(SPC)(2003)

4. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood
Cliffs, NJ(1985)

5. G. Lowe,: Casper: A compiler for the analysis of security protocols. Proceeding of the
1997 IEEE Computer Security Foundations Workshop X, IEEE Computer Society,
Silver Spring, MD(1997)18-30

6. Formal Systems Ltd. FDR2 User Manual, Aug(1999)
7. P. Y. A. Ryan and S. A. Schneider. Modelling and Analysis of Security Protocols:

the CSP Approach. Addison-Wesley(2001)
8. Lawrence C. Paulson.: Relations between secrets: Two formal analyses of the ya-

halom protocol, Journal of Computer Security(2001)

ITB: Intrusion-Tolerant Broadcast Protocol in Wireless
Sensor Networks

Jin Wook Lee1 and Yann-Hang Lee2

1 Networking Technology Lab.,
Samsung Advanced Institute of Technology, P.O. 111, Suwon, Korea 440-600

2 Real-Time Embedded Systems Lab.
Department of Computer Science and Engineering,

Arizona State University, Tempe, AZ 85287-8809, USA

Abstract. A large-scale wireless sensor network relies on broadcast protocol for
data communication. This paper presents an idea for a base station to reliably and
securely broadcast announcing messages to the network in an intrusion-tolerant
way. Our Intrusion-Tolerant Broadcast Protocol based on Mutual Verification
scheme guarantees that no forged information can be propagated to the network
if an intruder is assumed to not compromise the base station. We show that our
proposed protocol successfully runs and also demonstrate the effectiveness of the
protocol by introducing a theorem and the proof of the theorem.

1 Introduction

A large-scale wireless sensor network may consist of thousands of nodes randomly
deployed in an open environment. A typical communication in such a network would
be a base station delivering commands to every sensor node in the network and then
the sensor nodes sending sensed data from their close proximities to the base station
for further analysis. For such a communication pattern, a broadcast protocol based on
flooding would be an efficient solution. But there is a crucial issue concerning flooding-
based broadcast protocols in wireless sensor networks - broadcast authentication.

It becomes critical that, once a message is sent out from the base station, there is a
way for the node to guarantee that the message arrives at the recipient with its origi-
nal content. A solution to this broadcast authentication is the private/public -key-based
digital signature. TESLA-based protocols, proposed by Perrig et al. and Liu et al. as
a broadcast authentication protocol, require a digital signature to distribute the initial
parameters and all nodes to perform pre-setup procedures before undertaking a real
task such as assigning the last key of a hash chain and synchronizing a global time
clock [2] [3] [5]. Such pre-setup procedures create considerable overheads. We aim at
an efficient and secure broadcast protocol for sensor networks. A novel broadcast proto-
col is proposed based on the notions of intrusion-tolerance and mutual verification.

2 Intrusion-Tolerant Broadcast Protocol

Intrusion-Tolerant Broadcast(ITB) Protocol we propose here introduces a mechanism
to verify the behavior of neighbor nodes, detect and respond against threats during the

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 505–514, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

506 J.W. Lee and Y.-H. Lee

broadcast. Our goal is to flood the broadcast messages to the network without allowing
faked messages’ propagation. We target a large-scale wireless sensor network consisting
of a base station and a large number of sensor nodes. We use several terms to describe
the protocol as defined in Table 1.

Table 1. Glossary

Glossary Description

Level(l) physical hop distance from the base station
Level Key(LK) a value generated by one-way hash function

and distinct according to level(l)
Shared
Key(SK)

a symmetric key that is shared by all nodes.
Pre-installed key.

Private
Key(PrvK)

a private key of the base station. It is not
faked or generated by a node.

Level Synchro-
nization

the protocol to assign the time duration for
sending or receiving a message

Time interval time duration for sending or receiving spe-
cific protocol messages

BRTS Broadcasting Request To Send
BCTS Broadcasting Clear To Send
BM Broadcasting Message

2.1 Control Packet

The key idea of ITB protocol is that letting two-hop away nodes exchange the verifi-
cation information of broadcast messages and allowing the nodes to verify each other
before taking further actions. In order to realize the idea, we apply the concept of the
typical RTS/CTS handshaking of 802.11 medium access control protocol [4], which is
used to avoid collisions in wireless multi-hop networks. During RTS/CTS handshaking,
a node is affected by two-hop away nodes’ communication by receiving a RTS or a CTS
control packet. We take advantage of this concept to deliver the verification informa-
tion to two-hop away nodes in the routing path before delivering a data message. The
protocol proposes three packets, BRTS, BCTS, and BM, in its broadcast handshaking
mechanism. Consider a sensor node i which is l hops away from the base station and is
in the radio range of a upstream node k of hop distance l−1. When a broadcast message
is propagated from node k to node i, the packets that node i will send out in turn are:

BCTSl
i : ESK{MAC(BM l

i), LK l+1 }
BRTSl

i : ESK{MAC(BM l+1
i), LK l+2}

BM l
i : ESK{LK l} | EPrvK{Message}

In the packet formats, Ex{M} represents that message M is encrypted with a key
x. Note that MAC of BRTS and BCTS is Message Authentication Code of BM rather
than BRTS or BCTS themselves. Specially, the MAC in a BCTS that a node receives

ITB: Intrusion-Tolerant Broadcast Protocol in Wireless Sensor Networks 507

BRTSk
l-1 : ESK{MAC(BMk

l), LKl+1}

BMk
l-1: ESK{LKl-1} | EPrK{Message}

BCTSk
l-1 : ESK{MAC(BMk

l-1), LKl}

Memcmp

Node k on level l-1 Node i on level l Node j on level l+1
Time

downstream

BCTSj
l+1 : ESK{MAC(BMj

l+1), LKl+2}

BMi
l : ESK{LKl} | EPrK{Message}

BRTSk
l+1 : ESK{MAC(BMj

l+2), LKl+3}

BMj
l+1 : ESK{LKl+1} | EPrK{Message}

HashMAC

BCTSi
l : ESK{MAC(BMi

l), LKl+1}

BRTSi
l : ESK{MAC(BMi

l+1), LKl+2}

BMi
l : ESK{LKl} | EPrK{Message}

BCTSi
l : ESK{MAC(BMi

l), LKl+1}

BRTSi
l : ESK{MAC(BMi

l+1), LKl+2}

upstream

Fig. 1. Intrusion-Tolerant Broadcast Protocol in a single routing path

from upstream nodes will be used to verify a BM which the node will receive later. This
allows two-hop away nodes to make an agreement with each other. For MAC, the use
of collision-proof checksums is recommended for environment where a probabilistic
chosen-plaintext attack represents a significant threat [7]. We apply MD5 as a MAC
generation algorithm. Level Key(LK) is a verification key as an output of one-way hash
function. LK of upstream nodes is not easily guessed due to its one-wayness.

2.2 Broadcast Step

The base station starts broadcasting a message by firstly sending a BCTS to its ad-
jacent nodes. The reason that the base station firstly sends a BCTS is that each node
starts its protocol operation on receiving a BCTS from one of parent-level nodes as
shown in Figure 1. Originally CTS is a response of RTS. However, it is not possible for
the neighbor nodes of the base station to receive a BCTS from the base station because
the base station does not respond to any BRTS. Therefore, the protocol forces the base

508 J.W. Lee and Y.-H. Lee

station to generates an initial BCTS0
0 (Assume that the level of the base station is zero

and the ID of the base station is zero) that contains LK1 and a MAC of the first BM
to start a broadcast. After the initial BCTS packet sent, it is ready to start a general
forwarding cycle of sending a BRTS, receiving a BCTS and sending a BM.

Assume nodes i and j are two neighboring nodes with hop distances l and l + 1,
respectively. When node i is ready to forward the broadcast message, it first sends a
BRTS as follows:

Node i of level l broadcast−−−−−−→ Neighbors :

BRTSl
i : ESK{MAC(BM l+1

i), LK l+2}
After receiving BRTS from node i, all level l+1 nodes including node j prepare their

own BCTSs based on the received BRTS. Again, during appropriate time interval, node
j transmit its BCTS as below:

Node j of level l+1 broadcast−−−−−−→ Neighbors :

BCTSl+1
j : ESK{MAC(BM l+1

i), LK l+2}
As a neighbor of node j, node i can verify the BCTS packet sent from all level l+1

nodes as well by memory comparison. If the verification is completed without detecting
any faults, node i broadcasts the real message enveloped in a BM like below:

Node i of level l broadcast−−−−−−→ Neighbors :

BM l
i : ESK{LK l} | EPrvK{Message}

The protocol is illustrated pictorially in Figure 1. Note that, before forwarding the
broadcast message, node i has already sent a BCTS in response to the BRTS from its
parent node. Eventually node j hears this BCTS. Hence, node j of level l+1 receives
three packets from node i in the sequence of BCTS/BRTS/BM. Each packet embraces
LK l+1, LK l+2, and LK l respectively. From one-wayness of Level Key, LK l is used to
verify LK l+1 and LK l+2. If the verification is completed without detecting any faults,
the node officially accepts the broadcast message. Otherwise, the message is discarded
and no forwarding operation is taken.

2.3 Two-Hop Away Communication

The protocol of each node is started up on receiving a BCTS sent by a parent-level
node. However, a node does not have a way to verify this BCTS itself since the BCTS is
originally destined to grandparent-level nodes (two-hop away nodes which are nearer to
the base station, for instance, node j for node k in Figure 1) and the node does not have
any information of this BCTS. Hence, the node stores this BCTS naively and keeps it
unverified. The verification for a BCTS can be done by grandparent-level nodes. If this
BCTS is not valid, grandparent-level nodes stop to broadcast the main message packet,
BM and eventually a node does not receive the BM associated with the previously
received BCTS. A BM has also a clue to verify the previously received BCTS. The LK
of a BM is a key of verification for the received BCTS. Parent-level nodes cannot fake
a BM and a BCTS without grandparent-level nodes’ or child-leve nodes’ detection.

ITB: Intrusion-Tolerant Broadcast Protocol in Wireless Sensor Networks 509

3 Mutual Verification

In the protocol, each node receives three protocol packets from each of its upstream
nodes and broadcasts out three protocol packets to its downstream nodes. The protocol
provides a way to mutually verify each protocol packets. When the verification fails, a
sender restrains itself from sending out the broadcast message or a receiver discards the
received message. As a consequence, the broadcast operation stops along the broadcast-
ing path that fails in the verification. The verification operation in the protocol relies on
three computation actions, memory comparison, one-way hash function computation,
MAC computations. Memory comparison is a lightweight action as compared to one-
way hash function and MAC computation. Computational overhead of MAC computa-
tion is much more than that of one-way hash function. Therefore, a verification should
be done in a way that the results of MAC and one-way hash function computation are
stored to reduce the frequency of MAC and one-way hash function computation.

3.1 BCTS Verification

A BCTS packet is sent out on a recipient of a BRTS packet. There are three types of
BCTS’s that a node may receive. The first one is in an initial state that a node receives
the BCTS’s from its parent-level nodes. On receiving of the BCTS in the initial state,
a node starts the protocol by storing the information of the BCTS coming from parent-
level nodes. At this time the node dose not know whether the received information is
legitimate or not. Only the source node of the BRTS can verify the BCTS since the
payload of the BCTS should be identical to the payload of the corresponding BRTS.
If the verification succeeds, the source takes the next action of sending a BM. Once a
node receives the first BCTS, it can do the comparison to check out any BCTS received
successively in the same broadcast window if there are multiple neighbor nodes. Sub-
sequently, the node can receive a BRTS from a parent node in the upstream and enter
a broadcast window of sending out a responding BCTS. There might be the second
type of the BCTS that are originated from its sibling-level nodes. The verification for it
does not require one-way hash function computation. A node compares its own BCTS
with the ones from its sibling nodes. Lastly, there are a BCTS coming from child-level
nodes as a response of its BRTS. It should have the same content as the BRTS. Memory
comparison is good enough to verify them.

3.2 BRTS Verification

In the same way of the BCTS case, there are three types of BRTS packets that a node
receives from its neighboring nodes. On receiving the first BRTS from one of its parent-
level nodes, a node can verify the BRTS by comparing the LK field of the stored BCTS.
The LK in the BRTS should be the output of one application of one-way hash function
on the LK in the stored BCTS. If any verification is not succeeded, the node discards
the stored BCTS and the received BRTS from the source node and registers the source
node as a malicious node. Once a node succeeds in verification, the subsequent ver-
ifications are done by just comparison to reduce computational overhead. The other
two types of BRTS packets are from the sibling nodes and the child nodes. The BRTS

510 J.W. Lee and Y.-H. Lee

BCTSl : ESK{MAC(BMl), LKl+2}

BMl : ESK{LKl} | EPrvK{Message}

verify verify

Fig. 2. Mutual Verification

from the sibling nodes should be identical to the one the node is sending out and the
ones from the child nodes should have the correct LK (after one application of the hash
function). It is possible to find any discrepancy in the comparison of these BRTS with
the node’s own BRTS. However, besides noting the possible malicious behavior in the
neighboring nodes, the node with the verified BRTS can proceed to send out the broad-
cast message.

3.3 BM Verification

The verification of a received BM is done with the stored MAC and LK. When a node
receives a BM from one of parent-level nodes for the first time, it computes the MAC
for the whole message and decrypts the BM with the shared key, SK to extract LK. The
computed MAC should be the same as the stored MAC which is included in the previ-
ously received BCTS. In addition, the node runs one-way hash function twice with the
extracted LK and make a comparison with the stored LK of the received BCTS/BRTS.
If this verification fails, a node discard all protocol packets coming from the same node.
The notion of mutual verification is shown pictorially in Figure 2.

3.4 Effectiveness of the Protocol

We prove the effectiveness of the protocol through introducing a theorem based on three
propositions.

Proposition 1 (Concurrency). The neighbor nodes of node N receive the same mes-
sage at the same time when node N transmits the message.

Proposition 2 (Mutual Exclusion of Transmission). The neighbor nodes of node N
are not able to transmit any messages successfully at the same time when node N trans-
mits a message.

Proposition 3 (Watchdog). The neighbor nodes of node N are able to monitor node
N’s transmission under any collision avoidance protocols.

Theorem 1 (Mutual Verification). A node cannot modify and forward the relaying
messages successfully without being detected by one-hop away nodes if one-way func-
tion and MAC is secure.

ITB: Intrusion-Tolerant Broadcast Protocol in Wireless Sensor Networks 511

Proof. Assume there are three nodes in a routing path, which are node A, node B and
node C. Let say that node A is a source node, node B is a relay node and node C is a
destination node.

Suppose for contradiction that node B, an adversary that can modify a relaying mes-
sage without being detected by node A and successfully forward the modified message
to node C. As a result, node C receives a different message from the message that node
A sent to node B. A proof of effectiveness of our protocol is divided by two parts ac-
cording to the messages.

The behavior of node B on receiving a BCTS and a BM can be categorized as below;
Case I: On receiving a BCTS from node A,

– Scenario 1) Node B relays the received BCTS to node C
– Scenario 2) Node B modified the received BCTS and forwards it to node C

Case II: On receiving a BM from node A,

– Scenario 3) Node B relays the received BM to node C
– Scenario 4) Node B modified the received BM and forwards it to node C

Proof of Case I)
There are two scenarios for node B’s action to avoid node A’s detection in case that

node B receives a BCTS from node A. One is that node B naively relays the received
BCTS to node C. The other is that node B relays the received BCTS to node A and
forwards a modified BCTS to node C at the same time. Scenario 1 is intuitively correct
as the behavior of node B is correct. Let us consider Scenario 2. In order for node B
to send a modified BCTS successfully to node C without node A’s detection, it should
be able to broadcast two different messages simultaneously, the original BCTS to node
A and a modified BCTS to node C. However, this is contradiction of Proposition 1
and 2. Node A and node C exist within the radio range of node B, so node A receives
the message from node B if node C receives it and vice versa. Therefore, node A is
able to detect node B’s misbehavior when node B modifies and forwards a BCTS. As
a result of node A’s detection, it does not forward a BM, which means node B should
be able to create a BM that matches a modified BCTS in order to let node C trust
node B.

Proof of Case II)
In proof of part I, we prove node B cannot forward a modified message without node

A’s detection. When node B relays a correct BCTS and receives a correct BM from
node A, node B can choose the action like Scenario 3 and 4.

Scenario 3 is legitimate while Scenario 4 is needed to be proven. If node B receives a
BM from node A, the transmission role of node A is finished at this moment. Hence, we
can say node C has already received the correct BCTS from node B. If node B modifies
the BM and forwards it, node C can detect the modification by using the previously
received BCTS. Therefore, node B cannot disguise node A and node C at the same time
(Proposition 1 and 2), which is contradiction.

512 J.W. Lee and Y.-H. Lee

4 Evaluation

We now are interested in evaluating the cost of the ITB protocol and demonstrating its
applicability to the resource-constraint sensor devices. We quantify the computational
overhead a node pays to securely broadcast a message and simulate energy consumption
of the protocol. Communication and computational overheads will be considered and
we justify our claim with a simulation result of energy consumption. Let na denote the
average number of neighbor nodes for a node.

Communication Overhead. We define Communication Overhead to be the average
amount of data a node is required to transmit and receive for a broadcast. Firstly, we
discuss the number of communications a node is involved. In ITB protocol, the number
of outgoing communications per each node is constant while the number of incoming
communications is heavily dependent upon the number of neighbor nodes. Note that
three outgoing transmissions(including BCTS, BRTS, and BM) are just necessary for a
node to verify protocol packets and relay the broadcast message in ITB protocol. These
transmissions are all broadcasts so retransmission is not applied. Hence, message com-
plexity of outgoing communication is O(1). The number of incoming communications
is associated with the network density. A node receives one BCTS, one BRTS, and one
BM packet from a single parent-level node. A node also receives the same sort of pack-
ets from its sibling-level nodes and child-level nodes. Therefore, the average number of
incoming communications per node is calculated as 3 ·na. Hence, message complexity
of incoming communication is O(n) where n is the average number of neighbor nodes.

From the standpoint of the number of communications, ITB protocol requires three
more times number of outgoing and incoming communications than a simple flooding
broadcast protocol does. However additional amount of data transfer for the protocol
is only small bits excluding broadcast message body (Note that we assume the size of
LK and MAC reasonably is 64 and 128 bits, respectively). In conclusion, ITB proto-
col is efficient in terms of communication overhead as the size of broadcast message
increases.

Computational Overhead. Computational Overhead in ITB protocol is defined as the
number of cpu cycle counts running security algorithms such as memory comparison,
one-way hash function, and MAC. We analyze the expected number of such security
algorithms runs for broadcasting a single 6-byte message. Thanks to the deterministic
number of communications for a node, the computational overhead can be calculated
through analyzing the each algorithm.

In order to verify incoming messages’ validation a node makes a memory compar-
ison between stored information and newly receiving information. Clearly the number
of comparison is dependant upon the number of incoming messages since the com-
parison is used for verification. When a node is awaken by receiving a BCTS from a
parent-level node, it just stores the content of the BCTS without any comparison. As a
result of analysis of our algorithm, we obtain the total number of comparisons is less
than 12 · na − 5, where na is the average number of neighbor nodes. The numbers of
one-way hash function runs and MAC computations are obvious. They are counted four
times and two times runs for a single broadcasting message respectively. Let Cc, Ch,

ITB: Intrusion-Tolerant Broadcast Protocol in Wireless Sensor Networks 513

and Cm denote the cost of computing a single comparison, the cost of computing a sin-
gle hash function, and the cost of computing a single MAC computation, respectively.
The total cost of computational overhead is derived as below:

(12 · na − 5) · Cc + 4 · Ch + 2 · Cm (1)

The total computational cost is measured by the cpu cycle count of ITB algorithm.
From PowerTOSSIM cpu cycle profiling [8], we get cpu cycle counts (34 cycles for
memory comparison, 20228 cycles for one-way hash function, and 36437 cycles for
MAC computation). As we see in Figure 3(a), the number of CPU cycles slightly in-
crease as the number of neighbors increases. We claim that the computational cost of
ITB protocol does not heavily rely on the number of neighbors nodes since the number
of neighbor nodes affects only the number of memory comparisons. In conclusion, our
ITB protocol is designed in consideration of scalability and efficiency.

To justify our claims of computational overhead, we implement the protocol and run
it with MICA2 energy model (Refer to Table 2) to collect energy consumption data. We
perform the PowerTOSSIM to simulate our protocol with real implementation code for
MICA2 [8]. As can be seen in Figure 3(b), energy consumption caused by ITB protocol
does not proportionally increase as the network density increases, which prove that our
claims is reasonable.

Table 2. Energy Model for MICA2

model energy(mA)

CPU active 8.93
CPU idle 3.2
CPU init 3.2
Radio RX 7.03
Radio TX 21.48

LED 2.2

1 2 3 4 5 6 7 8 9 10
1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6
x 10

5

C
P

U
 c

yc
le

 c
ou

nt
s

Number of Neighbors (density)

Computational Overhead in ITB protocol

(a) Computational Overhead

1 2 3 4 5 6 7 8 9 10
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Neighbors (density)

E
ne

rg
y

C
on

su
m

pt
io

n
(m

A
)

Energy Consumption for ITB per a node

Total energy consumption
CPU
Radio
Led

(b) Energy Consumption

Fig. 3. Average amount of power consumption for ITB protocol per node

514 J.W. Lee and Y.-H. Lee

5 Conclusion

In this paper we have proposed Intrusion-Tolerant Broadcast Protocol to realize secure
broadcast via Mutual Verification mechanism. By using the proposed protocol, the base
station is able to disseminate important messages to the network without propagating
modified or garbage messages. Our protocol is secure in terms that any bad broadcasting
messages modified by a compromised node are not propagated more than two-hop away
from the compromised node. Our protocol makes any attacks of compromised node
detectable, verifiable and responsible. Our analysis showed that ITB protocol is quite
lightweight in a sense that communication and computational overhead are O(n), where
n is the average number of neighbor nodes(i.e., network density) respectively. Through
discussing a theorem, we demonstrated the effectiveness of ITB protocol.

References

1. Y. H. Lee, A. Deshmukh, V. Phadke and J. W. Lee, Key Management in Wireless Sensor
Networks, In Proc. of the First European Workshop (ESAS 2004), pages 190–204, 2004.

2. A. Perrig, R. Canetti, J. D. Tygar, D. Song, Efficient and secure source authentication for
multicast, in Network and Distributed System Security Symposium (NDSS’01), 2001.

3. A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, D. Culler, SPINS: Security Protocols for Sensor
Networks, Wireless Networks Journal (WINET), 8(5), pages 521–534, 2002.

4. A. E. F. Clementi, A. Monti and R. Silvestri, 802.11 Specification, in ACM-SIAM SODA’01,
2001.

5. D. Liu and P. Ning, Efficient Distribution of Key Chain Commitments for Broadcast Authenti-
cation in Distributed Sensor Networks, In Proc. of the 10th Annual Network and Distributed
System Security Symposium, pages 263–276, 2003.

6. A. Chakrabarti, A. Sabharwal and B. Aazhang, Multi-Hop Communication is Order-Optimal
for Homogeneous Sensor Networks, in Proceedings of the third international symposium on
Information processing in Sensor Networks, pages 178–185, 2004.

7. J. Kohl and C. Neuman, The Kerberos Network Authentication Service (V5), in RFC 1510,
1993.

8. V. Shnayder, M. Hempstead, B.-R. Chen and M. Welsh, PowerTOSSIM, http://www.eecs.
harvard.edu/ shnayder/ptossim/.

Authentication for Ubiquitous Multi Domain
in Pervasive Computing Using PMI�

Deok Gyu Lee1, Jong Sik Moon1, Jong Hyuk Park2, and Im Yeong Lee1

1 Division of Information Technology Engineering, Soonchunhyang University, #646,
Eupnae-ri, Shinchang-myun, Asan-si, Choongchungnam-do, Korea

{hbrhcdbr,comnik528,imylee}@sch.ac.kr
http://sec-cse.sch.ac.kr

2 Center for Information Security Technologies, Korea University, 5-Ka, Anam-Dong,
Sungbuk-Gu, Seoul, Korea
hyuks00@korea.ac.kr

Abstract. The Ubiquitous computer environment is thing which invis-
ible computer that is not shown linked mutually through network so
that user may use computer always is been pervasive. Intend computing
environment that can use easily as user wants and it is the smart envi-
ronment that user provides context awareness that is wanting computing
environment. This Ubiquitous computing contains much especially weak
side in security. Masquerade attack of that crawl that is quoted to user or
server among device that is around user by that discrete various comput-
ing devices exist everywhere among them become possible. Hereupon, in
this paper, proposed method that has following characteristic. Present
authentication model through transfer or device. Suggest two method
that realize authentication through device in case of moved to method
(MD: Multi Domain) that realize authentication through device in case
of moved user’s direct path who device differs.

Keywords: Pervasive Computing, Multi Domain, Authentication, PMI.

1 Introduction

Ubiquitous computing aims at an environment in which invisible computers in-
terconnected via the network exist. In this way, computers are smart enough to
provide a user with context awareness, thus allowing the user to use the comput-
ers in the desired way. Ubiquitous computing has the following features: Firstly,
a variety of distributed computing devices exist for specific users. Secondly, com-
puting devices that are uninterruptedly connected via the network exist. Thirdly,
a user sees only the personalized interface because the environment is invisible
to him. Lastly, the environment exists in a real world space and not in a virtual
one. However, the ubiquitous environment is weak in security. Since distributed
� This research was supported by the MIC (Ministry of Information and Communica-

tion), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Assessment).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 515–524, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

516 D.G. Lee et al.

computing devices are spread out in the environment, it is possible to launch
disguised attacks against the environment from a device authenticated by a user
or a server. Also, although a user approves of the installation of only authen-
ticated applications into the devices, there is a chance that a malicious code
will be transmitted to surrounding devices that do not have computing capabil-
ity. Since many ubiquitous computing devices do not provide efficient memory
protection, the memory where user information (authentication information) is
stored can easily be attacked. These problems can be resolved by using encryp-
tion or electronic signature for computing devices. But non-computing devices
cannot be protected using encryption codes or electronic signatures, which bring
up potential security issues. Also, when a device is moved out of the domain
into a new user space, user authentication must be performed smoothly in the
new space. This is so because a different device in the new user’s space can be
authenticated with the user authentication information in the new user space,
and not with the previous user authentication information[3][4][7][9]. It is this
paper’s purpose to propose an authentication model through the movement of
a smart device. The conceptualized model proposes two methods. One method
is to implement the authentication through a device when an individual small
device is moved into the multi domain. The other method is to implement the
authentication through a device when another device is moved into the single
domain. In this scheme, each device stores a different set of user authentica-
tion information. Minimum authentication information is stored in the smart
device, and most authentication information is stored in the computing device.
Since a smart device stores minimum authentication information, it transmits
and receives authentication information from the Hub which first provides it
with the authentication information. In this scheme, the Hub can be a user
or a server[8]. This paper thus consists of five chapters. Chapter 1 covers this
introduction. Chapter 2 covers requirements for authentication in ubiquitous
computing. Chapter 3 covers ubiquitous computing research trends. Chapter 4
covers authentication methods using a smart device in the multi domain and the
single domain. Chapter 5 compares existing ubiquitous researches and the pro-
posed methods to verify the efficiency of the proposed methods. Finally, Chapter
6 concludes the research.

2 Related Works

In 1993, Mark Weiser of PARC (Palo Alto Research Center), a prominent figure
in ubiquitous computing, took a look at the computer evolution in his paper
and saw computer technology development from the point of view of changes in
human relationships. The first wave was defined as mainframes, each shared by a
lot of people. The second wave was defined as personal computers, each shared by
one person. In his paper, the ubiquitous society was introduced. In society, a wide
range of people use computers without being aware of various internal computers.
This computer technology was defined as the third wave. His paper mentions a
calm technology that permeates our daily life through invisible interfaces, which

Authentication for Ubiquitous MD in Pervasive Computing Using PMI 517

will be our major computer interface technology. He predicted that this tech-
nological innovation would bring ubiquitous computing to life[4][5]. Ubiquitous
computing emphasizes the following researches. Since the ubiquitous computing
network connects PCs, AV equipment on a server-oriented network, informa-
tion electronic appliances, cellular phones, game consoles, control devices, and
various other devices, core technologies such as miniaturization, cellular phone
technology, technology for information electronic appliances, electronic control
technology, and networking control technology have risen to the front. Among
these, individual authentication technology and security technology have been
named as the technologies that will allow users to utilize computers in a secure
way. The research on authentication has been conducted as a national project in
many countries. However, no research has been done regarding the provision of
authentication in the multi-domain. The next part will cover general trends in
the ubiquitous computing environment, and will describe existing methods and
projects.

2.1 JARM Scheme

In 2002, Jalal’s proposed a method that supports the user authentication level
concept[3]. Different levels of user authentication information can be stored in
different devices, which mean that minimum user information can even be stored
in watches and smart rings. Medium-level user information can also be stored in
a smart device like a PDA. With this method, if a device is moved from one user
domain to another, the device can use the new user information in the new do-
main. However, the device cannot use the authentication information of the new
domain, which restricts users who move from one domain to another from using
the device. Therefore, with this method, all devices in one domain have authen-
tication information, and a user can be authenticated through a device and can
be authenticated against all devices using the level authentication information.
This method cites multiple steps when it comes to the authentication through
trust values for level authentication information. A device obtains a trust value
by using the authentication protocol suitable for each device. The method that
authenticates devices through trust values provides efficient authentication to a
smart device, but the method often requires a high-level device to confirm the
entire authentication or the smart authentication. If a middle-level device or a
high-level device above the smart device is lost or located elsewhere, the entire
authentication becomes impossible, thus requiring the redistribution of trust val-
ues to devices below that which was lost. The system is discussed in detail below.

1. The entire authentication information corresponds to the sum of trust values
from device 0 to device N .

2. If a device is moved or lost, the entire authentication against devices below
the lost device becomes impossible.

The JARM method can be described in detail as follows: In the ubiquitous com-
puting environment, a user can be authenticated through various devices. A

518 D.G. Lee et al.

user can be authenticated through one device, and little devices can be authen-
ticated during multiple steps. During the multiple-step authentication process,
authentication information is transmitted from higher-level devices to lower-level
devices. The biggest concern in this process is how to trust devices. For instance,
when a given password is used by a device, it is the choice of the device whether
to trust the given password to authenticate trusted entities or not. Trust values
can be transmitted to a device through its proper protocols. When a user wants
to use one particular authentication method, trust values can be widely used.
Examples for trust values in this method are shown below.
Cnet = 1− (1− C1) (1− C2) · · · (1− Cn)
Cnet becomes here the trust value of the user. And C1C2 · · ·Cn becomes also
a new appointment price of an each device. This method uses Kerberos, which
was used as the authentication method for existing distributed systems. However,
Kerberos has been adapted to suit the ubiquitous environment. Here, AD (Ac-
tive Domain) means a domain for authentication, and is configured as Kerberos.
This AD consists of three authentication components. The first component is
AS (Authentication Server), which supports SSO within the active domain. The
second component is TGS (Ticket-granting Server), which grants tickets that
allow a user access to the active domain. The third component is the database,
which stores all the information required for user authentication within the ac-
tive domain.

3 Requirements for Ubiquitous Computing

With the advent of human-oriented ubiquitous computing, which is described
as pervasive, or invisible computing, a user can concentrate on tasks without
being aware that he is using computers. Despite the many benefits of the digital
technology that ubiquitous computing utilizes, ubiquitous computing has unseen
problems. Without addressing these problems, ubiquitous computing cannot be
applied. Since a user uses many devices, user information can be copied in large
volume and can be transmitted to unauthorized devices. This illegitimately col-
lected user information can be used maliciously after changes on the network.
These features and the environment of ubiquitous computing have allowed for
a wide range of malicious attacks and uses, which are likely to become huge
obstacles to the development of ubiquitous computing. Thus, to overcome these
problems, the following requirements must be met when designing the ubiquitous
computing system.

Mobility: A user’s smart device that contains the authentication information
must be mobile and be used for all services.

Entity Authentication: Even when a user with SMA moves away from
DomainA, the user must be authenticated using the information of SMA

in DomainB.
Corresponding Entity Authentication: When DeviceB is located in

DomainA, the corresponding entity authentication verifies that DeviceB

and B are identical entities. This method implements the authentication

Authentication for Ubiquitous MD in Pervasive Computing Using PMI 519

for devices through the previous user’s entity when several devices are con-
nected to one domain. This method can provide a wide range of protection
functions.

Data Outgoing Authentication: When the outgoing data authentication is
provided by DomainA, DomainA can confirm that DeviceA is the actual de-
vice in DomainB that requests the outgoing data authentication. This authen-
tication method provides proof for the authentication data origin. However,
this method does not provide protection for data duplication or alteration.

Connection/Non-connection Confidentiality: DeviceB in DomainA must
provide connection confidentiality for the user data. DomainA receives B’s
information to obtain the final authentication from the higher-level device.
Non-connection confidentiality means that deviceB must provide confidential-
ity for the user data prior to the connection to a specific domain.

4 Proposed Scheme

In the previous chapters, we have gone over the existing ubiquitous environment,
JARM method, and PMI. Although many researches have been done regarding
ubiquitous computing, the most active area of research is on communication
rather than on security. Security is often researched only as part of the project,
not as the main research topic. This paper has selected the JARM method as
its research topic since the JARM method exclusively studies authentication in
ubiquitous computing. In reviewing current existing researches, the researcher
believes that several researches regarding security have been accomplished and
published. At the time of research, the researcher discovered that ubiquitous
computing must have mobility, entity authentication, corresponding entity au-
thentication, outgoing data authentication, and connection/non-connection con-
fidentiality as basic requirements. Thus, this paper proposes the adoption of PMI
to meet the requirements listed above and to implement the authentication for
the smart device. The ubiquitous computing devices lacked computing, storing,
and other capabilities. But since a device must meet the requirements discussed
earlier, applying PMI on top of the currently used encryption system will sat-
isfy the device capabilities and requirements. Since all devices can carry out the
authentication and access control with the PMI certificate, only activities au-
thorized to the devices will be allowed. I will also propose a method that uses a
PMI certificate for a device. The general system flow will be discussed after the
consideration for the proposed method is reviewed.

4.1 Consideration for Proposed Scheme

The goal of the proposed method is to provide a device retaining the user in-
formation of the previous domain even when the device is moved into the multi
domain. Thus, the following must be considered for the proposed method.

– A user device alone can be moved and this user device can be linked to
other devices: This means that when a user’s smart device is moved into the

520 D.G. Lee et al.

multi domain, the smart device can be linked to devices in the multi domain
to receive services. User information must therefore be extracted from the
smart device, as other devices exist for services only.

– A user device is authenticated through the Hub where all device information
is stored in the same space. This device is authenticated through the MDC
(Multi Domain Center) when moved to a different space: When a user device
is located in the user domain, the user device can be authenticated through
the Hub, which connects all user spaces. When the user device moves away
from the user space, the smart device can also be authenticated through the
user’s Hub. But when a smart device is moved, an authentication method
other than the Hub must be used. That method is to use the MDC, which
authenticates the smart device in the multi domain.

– Initial authentication information is granted to a smart device through a
user’s hub from MDC: During this process, an authorized user registers de-
vices in the user’s hub. If a user creates authentication information from the
MDC for the first time, the authentication information is stored in the hub
and to the smart device. At this point, higher-level MDC authenticates the
smart device using the created authentication information given to the user.

– At this step, the privacy of the user location is not considered.

User registration and device registration must be done in advance in the sin-
gle domain and the multi domain. These operations must be done in order for
the initial MDC to grant a PMI certificate to a user. The next operation is to
authenticate in the single and the multi domain. The authentication in the single
domain is shown below. Let us assume that Bob has spaces where he can move
around. Let us also assume that there are two active spaces for Bob: Bob1 and
Bob2, and these two active spaces are located in DomainA. When Bob’s DeviceB

moves away from Active Space 2 to Active Space 3, the single domain authen-
tication occurs. Bob’s SMB in Active Space 2 notifies his Hub of movement,
transmits the authentication information to DeviceB and the Hub, and requests
the authentication from Active Space 3. At this point, Active Space 2 sends the
SMB authentication information to Active Space 3 for efficient authentication.
Active Space 3 receives the request and compares the authentication information
from Active Space 2 and the one from the Hub, and then authenticates SMB

in Active Space 3. All these steps complete the single domain authentication. In
the multi-domain authentication, when user Bob moves to Alice’s DomainA, we
can use Alice’s DeviceA after getting SMB authenticated. In this case, Bob’s
SMB sends the movement signal to his Hub and requests the authentication
after the move to Alice’s Active Space. At this point, the authentication infor-
mation is requested through Alice’s Hub. Bob requests the authentication from
MDC through Alice’s Hub. If Bob’s information does not exist in MDC, the
authentication request is made against MDCM, which is a higher entity. In this
way, although an entity is not systematically contained in or connected to the
higher entity, the authentication using devices in other spaces can be completed
through the Internet.

Authentication for Ubiquitous MD in Pervasive Computing Using PMI 521

4.2 System Parameters

Next, system parameters used in this method are explained. Each parameter is
distinguished according to its components. The components create and transmit
the parameters.
– ∗ : (SM: SMart device, D: Device, SD: Single Domain, MDC: Multi Do-

main Center, A: Alice, B: Bob, MDCM: MDC Manager, ASC: Active Space
Center)

– Cerr∗ : public key of ∗ including Certification
– PCert∗ : public key of ∗ including PMI Certification
– n : PMI certification maximum issues number
– AP : Available Period r : user Hub generated random number
– i : user issued device E∗ () : ∗ key with Encryption
– pw : password R∗ : ∗ of authority
– ID∗ : ∗ of Identity H () : Secure Hash Function
– Hub∗ : ∗ of Hub

4.3 Proposed Scheme

The detailed flow of these proposed methods is described below. In the first
method, when a user moves to his domain with his smart device and attempts
to use devices in the new domain, the user is authenticated using the smart device
in which the user authentication information is stored. In the second method,
when a user moves to the multi domain and attempts to use devices there, the
user is authenticated using the smart device in which his user authentication
information is stored.

User Registration and Device Registration. A user must have authentica-
tion information for all devices in the initial stage to use the devices in the single
domain. A user receives a certificate from the MDC(Multi Domain Center), and
his devices are granted a PMI(Privilege Management Infrastructure) certificate
through a Hub. PMI certificates are granted according to the mutually agreed
methods with the MDC. Granted PMI certificates are stored in a smart device.
Step 1. The following processes are required to create DeviceA authentication

for User A. The MDC grants User A a certificate which allows User A
to create n number of PMI certificates. A PMI certificate consists of the
User A ID, privilege, and effective period of the certificate.
MDC → HubA : CertA[IDA, RA, n, AP]

Step 2. User A grants PMI certificates to DeviceA and SMA using the granted
certificate. The certificate contains the path to a higher-level certificate.
HubA → SDA (orDevice) : PCA = PCertA[IDA, H (CertA‖r) , i]‖AP
SDA : EPKDDC [PCA]
SDAinstall : Epw(orPIN)[EPKDDC [PCA]]

Step 3. User A informs the MDC of the certificate granted to his DeviceA.
Afterwards, User A’s PMI certificate is used, and User A is authenticated
using the PMI certificate path within SMA.
HubA → MDC : EPKDDC [H (CertA‖r) , r, i]

522 D.G. Lee et al.

Authentication in the Multi Domain. When SMA in DomainA moves to
DomainB and uses User A’s information to use DomainB and DeviceB, SMA

uses User A’s information as is.

Step 1. A movement signal is sent using DeviceA in DomainA. If HubA receives
the movement signal from SMA, it removes itself from the space list.
SDA → HubA : Signall (outgoing)
HubA : SDDeviceList→ Delete[SDA]

Step 2. HubA notifies the MDC that it is moving out of DomainA. If it moves
to a different MDC, it notifies MDCM.
HubA → MDC : (IDA, i)
MDC → MDCM : (IDA, i)

Step 3. After notification that SMA is finally located in DomainB, it requests
authentication from DeviceB in DomainB.
SDA → HubB : Signall (ongoing)
SDA : Epw[EPKDDC [PCA]] = EPKDDC [PCA]
SDA → DeviceB : EPKDDC [PCA]
DeviceB → HubB : EPKHubB

[PCB , EPKDDC [PCA]]
Step 4. HubB inDomainB verifies the authentication information fromDeviceB.

HubB : ESKHubB
[EPKHubB

[PCB, EPKDDC [PCA]]] = PCB, EPKDDC

[PCA]
HubB : PC′

B
.= PCB

Step 5. If the DeviceB authentication information is passed, HubB transmits
the authentication information to the MDC.
HubB → MDC : (IDB, EPKM DC [EPKDDC [PCA]‖IDB])

Step 6. The MDC verifies that the authentication information is generated from
DomainB User. If confirmed, the MDC approves the authentication for
SMA.
MDC : EPKDDC [PCA]‖IDB

MDC : PC′
A = PCertA[IDA, H (CertA‖r) , i]

Step 7. In DomainB, HubB accepts the received authentication for SMA, and
allows for the use of DeviceB in DomainB.

4.4 Comparison with Proposed Scheme and JARM Scheme

This chapter will attempt to analyze the proposed protocol by classifying the user
and device registration and the authentication in the multi domain, and compare
the protocol to the existing method. In the existing method, SMA is not au-
thenticated by moving to AS1. Therefore, the research in this paper seeks to put
emphasis on how to authenticate a user who wishes to use DeviceB by using user
information A when SMA is moved to DomainB. The existing methods attempt
to solve the problem by assigning different authentication information to the
devices. But the weak point of this approach is to require all devices to be avail-
able when the entire authentication information is obtained. This method raises a
problem in that authentication information cannot be obtained if a device is lost.

The proposed method and the existing method are compared below. The
details of the proposed method will also be discussed below.

Authentication for Ubiquitous MD in Pervasive Computing Using PMI 523

Mobility : A device containing authentication information that a user owns
can use all services. In the proposed method, a PMI certificate is included
in the device. Thus, the device can be moved away from the other devices,
and can also be linked to a different device.

Entity Authentication : Although a smart device is moved away from its
domain, the device in the multi domain can be authenticated using the pre-
vious user’s information. Mobility is guaranteed because a user device uses
its PMI certificate. However, if a certificate is not protected, it can be used
by malicious users who can also be authenticated. To resolve this issue, the
proposed method protects the PMI certificate by using device access and
certificate access protection mechanisms such as the password and PIN.

Corresponding Entity Authentication : When a device is located in
DomainA, corresponding entity authentication is provided to verify that
DeviceB and B are identical entities. This authentication method imple-
ments device authentication through the entity of the previous user when
multiple devices are connected to one domain. This authentication can pro-
vide different levels of protection. Even when a smart device is moved, the
authentication can be done using what is stored in the smart device. Also,
a PMI certificate, which is an internal certificate and identical to the cer-
tificate from User A, can be used when performing the corresponding entity
authentication.

Connection/Non-connection Confidentiality : DeviceB in DomainA must
provide confidentiality for user data in both DomainA and DomainB.
DomainA receives information from B and receives the final authentication
from the higher level. Non-connection confidentiality must provide data con-
fidentiality before DeviceB connects to a specific domain.

Table 1. Comparison with Proposed Scheme and JARM Scheme (© : offer, � : part
offer, × : non-offer)

item Mobility Entity Au-
thentication

Corresponding
Entity Au-
thentication

Data Outgo-
ing Authenti-
cation

Connection/Non-
Connection
Confidentiality

JARM
Scheme

© × × × ©

Proposed
Scheme

© © © � ©

4.5 Conclusion

Rapid expansion of the Internet has required a ubiquitous computing environ-
ment that can be accessed anytime anywhere. In this ubiquitous environment,
a user ought to be given the same service regardless of connection type even

524 D.G. Lee et al.

though the user may not specify what he needs. Authenticated devices that con-
nect user devices must be used regardless of location. If a device is moved to
another user space from a previous user space, the authentication must be per-
formed well in the transferred space. This is so because a device is not restricted
to the previous authentication information, but can use new authentication in-
formation in the new space. This paper attempts to solve the problems discussed
earlier by utilizing such entities as the Hub, ASC, and MDC in order to issue
PMI certificates to devices that do not have computing capability. This provides
higher-level devices the authentication information of the smart devices in or-
der to authenticate the movement of these smart devices. With this proposed
method, if a smart device requests the authentication after moving to the multi
domain, the authentication is performed against the devices in the domain where
the smart device belongs, and the smart device requests the authentication from
the MDC. In the user domain, the authentication is performed through the Hub.
However, the authentication is performed through MDC when a device is moved
to the multi domain environment. This proposed method, therefore, attempts
to solve the existing authentication problem. With regard to the topics of pri-
vacy protection, which is revealed due user movement key simplification (i.e.,
research on a key that can be used for a wide range of services), and the provi-
sion of smooth service for data requiring higher bandwidth, the researcher has
reserved them for future researches.

References

1. A. Aresenault, S. Tuner, Internet X.509 Public Key Infrastructure, Internet Draft,
2000. 11

2. ITU-T, Draft ITU-T RECOMMANDATION X.509 version4, ITU-T Publications,
2001. 5.

3. Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, and M. Dennis Mickunas,A
Flexible, Privacy-Preserving Authentication Framework for Ubiquitous Computing
Environments, ICDCSW ’02, pp.771-776, 2002

4. Mark Weiser,”Hot Topics: Ubiquitous Computing,” IEEE Computer, October 1993
5. M. Roman, and R. Campbell, GAIA: Enabling Active Spaces, 9th ACM SIGOPS

European Workshop, September 17th-20th, 2000, Kolding, Denmark
6. S. Farrell, R. Housley, An Internet Attribute Certificate Profile for Authorization,

Internet Draft, 2001.
7. anjay E. Sarma, Stephen A. Weis and Saniel W. Daniel, White Paper:RFID Sys-

tems, Security and Privacy Implications, AUTO-ID Center, MIT, Nov, 2002
8. Gen-Ho, Lee, Information Security for Ubiquitous Computing Environment, Sym-

posium on Information Security 2003, KOREA, pp 629-651, 2003
9. Sung-Yong Lee and Hyun-Su Jung, Ubiquitous Research Trend and Future Works,

Wolrdwide IT Vol. 3, No. 7, pp 1-12, 2002
10. Yun-Chol Lee, ”Home Networks Technology and Market Trend”, ITFIND Weeks

Technology Trend(TIS-03-20) No. 1098, pp22-33, 2003
11. Aura Project home page. http://www-2.cs.cmu.edu/ aura/
12. CoolTown home page. http://www.cooltown.hp.com
13. Portolano home page. http://portolano.cs.washington.edu/
14. TRON Project home page. http://www.tron.org/index-e.html

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 525 – 534, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Proxy-Based Service Discovery and Network Selection
in 6LoWPAN

Shafique Ahmad Chaudhry, Won Do Jung,
Ali Hammad Akbar, and Ki-Hyung Kim*

Graduate School of Information and Communication
Ajou University, Suwon, Korea

{shafique, yarang, hammad, kkim86}@ajou.ac.kr

Abstract. Low Power Wireless Personal Area Networks (LoWPANs) have
emerged as a catalyst technology for the realization of envisioned ubiquitous
paragon. Considerable efforts are being carried on to integrate these LoWPANs
with IP-based networks in order to make use of pervasive nature and existing
infrastructure associated with IP-based technology. Provisioning of service dis-
covery and network selection in such environments puts heavy communication
and processing overhead. The access to closest services localizes the communi-
cation and increases the total network capacity. We introduce directory proxy
agents to be deployed within LoWPANs in order to localize the service discov-
ery communication. We also propose algorithms to make sure that service users
are always connected to the closest proxy agent. The results show that our algo-
rithms help finding the closest services and reduce the traffic overhead for ser-
vice discovery considerably in LoWPANs.

1 Introduction

Low Power Wireless Personal Area Networks (LoWPANs) conform to the IEEE
802.15.4-2003 standard [1], which defines transmission and reception on the physical
radio channel (PHY), the channel access, PAN maintenance, and reliable data trans-
port (MAC). The IEEE 802.15.4 devices are characterized by low power, low band-
width, short range, and low cost. While IEEE 802.15.4 provides specifications for
physical and link layers, other alliances like ZigBee [2] are striving for defining the
upper layers over IEEE 802.15.4 especially for sensor networks. The 6LoWPAN [3],
a working group of the IETF [4], standardizes the use of IPv6 over IEEE 802.15.4.
The motivation for IP connectivity, in fact, is manifold: a) The pervasive nature of IP
networks allows use of existing infrastructure, b) IP based technologies, along with
their diagnostics, management and commissioning tools, already exist, and are proven
to be working, and c) IP based devices can more easily be connected to other IP net-
works, without the need for translation gateways etc.

Interworking of 6LoWPANs with IP networks brings in many challenges for ser-
vice discovery and network selection. The direct deployment of IP-based service

* Corresponding author.

526 S.A. Chaudhry et al.

discovery mechanisms on 6LoWPANs is not practical because of the drastic techno-
logical differences between both the technologies. The difference between packet
sizes of 6LoWPAN and IPv6 is one of them; given that the maximum transmission
unit for IPv6 is at least 1280 octets and it, therefore, cannot be mapped onto IEEE
802.15.4 frame which has 127 octets at physical layer. An IP-based service discovery
mechanism, like Service Location Protocol (SLP) [5], message could easily be greater
than available octets for application layer in IEEE 802.15.4. It means that a single
message will be transmitted as multiple packets; therefore, causing more traffic load
for bandwidth constrained 6LoWPANs.

The inherently broadcast based distributed service discovery mechanisms could
overload the 6LoWPANs with service discovery overhead, especially in a network
with a large number of nodes. The centralized service discovery mechanisms generate
less service discovery traffic but need dedicated service coordinators, which are sel-
dom available in the 6LoWPANs. This situation demands for an intuitive solution
which can localize the service discovery communication without the use of dedicated
service coordinators. This localization can be done by providing access to services
which are closest to the user. This proximity-based services access localizes the
communication, reduces the service discovery overhead and consequently increases
the total network capacity.

Simple Service Location Protocol (SSLP) [6] has been proposed to provide service
discovery mechanism in 6LoWPAN. It supports both the distributed as centralized
service discovery models but does not address the issues related to the proximity of a
service.

We propose a service discovery architecture that uses proxy agents for the directory
agent in SSLP to localize the service discovery communication and at the same time
help users to access the closer services. The introduction of proxy-agents softens the
requirement of having a dedicated directory agent and at the same time localizes
the service discovery communication. Directory Proxy Agents (DPAs) are inexpen-
sive LoWPAN devices which act as proxy to the DAs in SSLP. These DPAs maintain
and provide service information with the 6LoWPAN and IP-based networks. The
connectivity between 6LoWPAN and IPv6-based networks enables the users to find
and use local 6LoWPAN services as well as the services available in external IPv6-
based networks. Our simulation results show that our architecture not only helps find-
ing and using the closest services in inter-network environment but also considerably
reduces the traffic overhead, as compared to other protocols, for service discovery.

The rest of the paper is as follows. Section 2 describes the service discovery archi-
tecture models and SSLP. In section 3, we review existing service discovery protocols
and related work with an emphasis on 6LoWPANs. Interoperability of 6LoWPAN
with IPv6 is thoroughly discussed in section 4. We describe our proposed service
discovery architecture in section 5. In section 6 we present performance and evalua-
tion of our scheme and section 7 concludes the paper.

2 Service Discovery Architectures

Service discovery architectures can be categorized in two broad classes i.e., central-
ized or directory-based model and distributed or non-directory-based model.

 Proxy-Based Service Discovery and Network Selection in 6LoWPAN 527

In the directory-based model a dedicated component, known as service-coordinator
or Directory Agent (DA) maintains service information and process queries and an-
nouncements. The nodes, which offer a service, register their services with the DA by
sending a unicast Service Registration (SREG) message to the DA. The clients, who
need a service, search the service with the service coordinator by sending a unicast
service request (SREQ) message. In case DA has a matching service registered with
itself, it replies with a unicast service reply message, which also contains the address
of service provider node. DA periodically broadcasts an advertisement message to
notify other nodes about its existence. The directory-based architectures generate less
service discovery overhead and are suitable for the environments with large number
of services and network nodes.

The service discovery overhead has two major sources: a) Number of hops from
the source node to the destination node, b) Number of neighbors of any node. Both
these factors show more significance, when broadcast is used within the service dis-
covery process. In a directory-based architecture most of the communication, except
DA’s advertisement broadcast, is unicast. The service coordinator’s broadcast over-
head can also be reduced by connecting all the nodes to their closest DAs.

The non-directory based architecture does not have any DA. The client can find a
service using active or passive discovery mechanism. In the active discovery process,
the clients broadcast or multicast the SREQ. Each active neighbor of the client re-
ceives the SREQ, sends a unicast service reply SREP if it offers the required service,
and rebroadcasts the SREQ. Higher the number of neighbors, higher is the degree of
broadcast. The number of SREQ broadcasts also depends on the scope of service
discovery. In passive discovery mechanism, the servers broadcast their service adver-
tisements periodically and clients compare these advertisements with their service
needs. The non-directory based models show better performance in simple environ-
ments with few services.

3 Related Work

Service discovery is an actively researched area and has been studied largely in the
context of wireless and mobile ad-hoc network systems. Universal Plug and Play
(UPnP) [7], Jini [8], and Bluetooth [9] are some examples of existing industry stan-
dards. Each one of these architectures addresses different mixture of attributes, but
most are mainly designed for traditional IP-based home or enterprise networks [10].
The resource and communication environment in LoWPANs is very different than
traditional IP network making these architectures non-applicable to them.

The service discovery problem in sensor networks is different from traditional IP
network in various respects. For sensor networks, their data centric embedded nature,
relatively poor resources, emphasis on energy efficiency, and the lack of existing
standards combine to render traditional resource discovery approaches ineffective.
Dynamic Resource Discovery for Wireless Sensor Networks [11] defines the resource
discovery problem in sensor networks and outlines the challenges involved in it. A
peer to peer (P2P) service discovery architecture is proposed in [12]. Authors have

528 S.A. Chaudhry et al.

proposed a distributed architecture which relies on dynamically identified location
servers which provide a mapping between services and their locations. This work
creates an overlay over the sensor networks, the implementation of which over
6LoWPAN is impractical due to the resource limitations.

After describing all these works, we state that currently there is no considerable
service discovery architecture for 6LoWPANs except SSLP. SSLP supports both
directory-based and non-directory-based discovery models. In SSLP, the client appli-
cations are called User Agents (UA), the nodes which advertise services are called
Service Agent (SA) and service coordinator is called Directory Agent (DA). SSLP
also offers interoperability with IP networks under SLP by introducing a translation
agent (TA) which provides the translation of messages from SSLP to SLP and vice
versa. Fig.1. shows this interoperability between SSLP and SLP. SSLP does not pro-
vide any mechanism to localize the service discovery communication by connecting
to the nearest DA or by accessing the closest services.

Fig. 1. Interworking of SSLP with SLP

4 Interoperability Between 6LoWPAN and IPv6

In this section we shall describe the possible scenarios for service discovery and net-
work selection for a UA working in a 6LoWPAN, using interworked LoWPANs and
IPv6 networks. We assume 6LoWPAN supports SSLP for service discovery whereas
IP network supports SLPv2. To integrate a 6LoWPAN with IPv6 network a gateway
is needed which connects both these networks. When a UA sends a SREQ for a ser-
vice, if the service could be found in local network the SREP is sent locally, otherwise
the SREQ is forwarded to the gateway in order to find a match from external net-
works. There are three possible scenarios to process a SREQ, generated by a UA in
6LoWPAN:

• Both the networks support non-directory based architecture: As the
whole discovery mechanism is based on broadcast, huge amount of traffic
is generated that puts heavy overhead on the network. This overhead is
highly intolerable in 6LoWPANs, which already have low data rates.

 Proxy-Based Service Discovery and Network Selection in 6LoWPAN 529

• Only one network has directory-based architecture: This situation is
burdensome as there is no direct route setup between the UA and SA
which could exist in different networks. Moreover, an overhead of going
through gateway is always involved.

• Both the architectures support directory-based architecture: The
whole communication between two nodes in different networks can be
done through gateway. This approach needs a dedicated node with suffi-
cient resources to act as a DA for the 6LoWPAN. Unfortunately,
6LoWPAN nodes are characterized with limited resources, thus, lack the
capability to work as a dedicated DA.

After discussing all the apparent scenarios with their respective advantages and
disadvantages, we insist there is a need of a better architecture for service discovery
and selection in 6LoWPANs. The resource limited nature of 6LoWPANs demands a
service discovery architecture which can offer a trade-off between pure broadcast and
putting dedicated DAs within a 6LoWPAN.

5 Proxy-Based Service Discovery

Considering the resource limitations with 6LoWPAN, we introduce Directory Proxy
Agent (DPA) to be deployed in 6LoWPAN rather than placing a dedicated DA for
each 6LoWPAN. The DPA acts as a proxy for the DA, localizes the service discovery
communication, and resultantly, reduces the service discovery overhead.

We make use of the fact that 6LoWPAN nodes are inexpensive by deploying mul-
tiple DPAs, each responsible for a certain area, within a 6LoWPAN. All the DPAs
maintain Local Cache (LC), for services in its local proximity, as well as External
Network Cache (ENC) which represents the services with the neighbor IEEE 802.15.4
and IPv6 networks.

As shown in figure 2, three 6LoWPANs are connected to the external IPv6 net-
work through a gateway. The scope of each 6LoWPAN is limited to a certain prox-
imity and service directory services are offered by the DPA in that specified region.
These DPAs could be arranged in a hierarchical way i.e. they can communicate with
their peer DPAs as well as with the central DAs which might be the part of external
IPv6-based network. All the SAs within the 6LoWPAN register themselves with the
DPA. The DPA periodically broadcasts an advertisement message to notify its exis-
tence. As the DPA are deployed at specific locations, the service information main-
tained by them is also proximity-based.

Our architecture is independent of the underlying routing algorithms and can be
implemented on any routing algorithm with minimal changes. We have evaluated its
performance with AODV, however, we believe that availability of a hierarchical rout-
ing mechanism e.g. HiLoW [13] as underlying routing algorithm, will further improve
its performance. The major strength of using HiLoW is that if 16-bit address of the
service or destination node is known, it can be reached without using a routing table.
Once a UA knows the 16-bit address of the DPA or SA, it can start communicating
with that, without finding a route to the destination node.

530 S.A. Chaudhry et al.

Gateway /
Translation agent

DA for IP
network

6LoWPAN 1 6LoWPAN 2 6LoWPAN 3

Ordinary node Directory Proxy Agent

Fig. 2. DPA based service discovery architecture

Zigbee also supports hierarchical routing, especially in tree networks, routers move
data and control messages through the network using a hierarchical routing strategy.
In the same way a node without routing capacity can send the messages along the tree
using hierarchical routing.

DPAs share their caching information with each other periodically. This sharing of
information allows knowing about the services registered with the neighbor DPAs.
This periodic sharing of information reduces flooding which, otherwise, will be re-
quired to find services from the neighboring networks. The connectivity of a DPA
with the DA of IP network through the gateway facilitates to find services from IP
networks. DPAs may exchange the services information with central DA as well, in
order to maintain the information consistency.

5.1 Proximity-Based Service Access

Whenever a node wants to join a 6LoWPAN, it first tries to discover an existing
6LoWPAN. IEEE 802.15.4 specifies active and passive scanning procedures for this
discovery operation. By following either one of the scanning procedures, the new
device determines whether there is a 6LoWPAN in its personal operating space. Once
a PAN is found, next step is to connect with the DPA. After getting the address of the
DPA, the UA must find a route to DPA if an on-demand routing algorithm like
AODV is being used. In case a hierarchical routing algorithm being used, knowing
the address of DPA makes this UA capable of communicating with DPA. As the hier-
archical routing is available, there is no need to explicitly find and maintain routes
between the communicating nodes. If 16-bit short address of a node within
6LoWPAN is known, the path can be traversed by underlying routing mechanism.
Though hierarchical routing algorithms eliminate the route finding process, they do
not provide optimal routing path.

To access the closest services we make it essential that a UA is connected to the
nearest DPA. This condition is required to ensure that the service request is sent to the
closest DPA, which then replies with the nearest service’s information. To realize this
condition we propose neighbor assisted DPA discovery protocol. It uses DPA Dis-
covery Request (DDREQ) and DPA Discovery Reply (DDREP) messages. The mes-
sages are used as follows:

 Proxy-Based Service Discovery and Network Selection in 6LoWPAN 531

• DDREQ: The request message is used to ask the neighbors about their respective
DPAs. Initiated as a one hop-broadcast by the UA that needs to find the closest
DPA.

• DDREP: This is the reply message in response to a DDREQ. It contains the ad-
dress of the DPA as well as distance to the DPA in terms of hop count.

The protocol works as follows. Whenever a UA needs to send a request to DPA, it
checks with its single hop neighbors, by broadcasting DDREQ in one hop, the closest
DPA in terms of hop count. The neighbors reply with DDREP that contains the ad-
dress of closest DPA and distance to it in hop count. The nearest DPA, in terms of
hop count, is considered as the closest DPA. Once the address of DPA is known,
hierarchical routing makes it possible to send unicast messages between the UA and
the DPA. Whenever a UA needs a service, it sends a unicast SREQ to the DPA. If the
required service is registered with DPA, DPA responds with an SREP. UA then starts
communicating with SA to use the service. Neighbor assisted DPA discovery algo-
rithm helps in handling mobility of the UA as well. This protocol makes sure that the
UA stays connected with the existing DPA as long as it is the nearest one, even when
UA is moving. Fig. 3 illustrates the protocol.

Start

Stop

Broadcast RREQ
in single hop

closest = -1
dp = -1

Receive DDREP
from neighbor i

If HC(i,di) <
closest

closest = HC(i, di)
dp = AD(di)

Time <=
DDTIMEOUT

DDREQ : DPA discovery request message
DDREP(i) : DPA discovery reply

message from the node I
HC(i, di) : Hop count for the DPA from node i
AD(di) : Address of the DPA for node i

DDTIMEOUT: The max. time to wait for DDREP

T

F

F

T

Fig. 3. Neighbor assisted discovery protocol

begin procedure
list Findmatch (SREQi,LC)
best Findbestmatch(list)
send a SREP with best as SA to UA which initiated SREQi

end procedure

begin procedure Findbestmatch (list)
best first entry in the list
for all other entries in list

if (HC for current entry < HC for best)
best current entry

end if
next

end procedure

Legend: Findmatch(SREQi,LC) : The function which finds and returns a list of SAs
which meet the requirements against SREQ i

list : The list of SAs providing the required service
HC : Hop count

Fig. 4. Algorithm to find the closest service

532 S.A. Chaudhry et al.

When a DPA receives a SREQ, it finds a match against user requirements, from
LC. In case there are multiple matches the one with the minimum hop count is se-
lected. However, in the situation when two services are at equal distance, the service
with better performance is chosen. If the LC hit fails, the service is searched from the
ENC and the SREP, for the closest SA, is sent to the UA. The algorithm is shown in
fig.4.

6 Performance Evaluation

We have implemented our protocol in network simulator-2 (NS-2) by modifying the
AODV implementation. We have modified AODV to evaluate our propagation
schemes using ns-2. The simulation setup consists of 165 nodes, with a transmission
range of 15 meters, spread over an area of 380m × 60m. Every simulation run is for
100 seconds, with Constant Bit Rate (CBR) being the traffic type. Inter-packet trans-
mission delay varies between 0.05 and 0.5 seconds.

We examined various metrics including percentage of closest services found, cache
effect, number of control packets generated, remaining energy and service discovery
time. We evaluated our architecture’s working under different scenarios by varying
the DPA’s advertisement interval, which is the time between two consecutive adver-
tisement broadcasts by the DPA. Each node in the network tries to discover a service
after a certain time; we call it service discovery interval.

The results show that our architecture not only helps user to access the closest ser-
vices but also improves the service discovery time, mitigates the broadcasting over-
head, saving the nodes’ energy.

6.1 Proximity-Based Service Access

The usage of neighbor assisted DPA service discovery makes sure that UA is always
making request to the closest DPA. Fig. 5. show that sending a SREQ to the nearest
DPA considerably improves the access to the services which are in closest proximity.
In the absence of proximity information, as in SSLP, the DA returns the IP address of
a service which may not be the closest to the user. If the service is not registered with
the DPA, the caching information will be used and UA is replied with the address of
the service which is registered with the closest neighboring DPA.

Services Accessed in Closest Proximity

0
10
20
30
40
50
60
70
80
90

100

30
0

21
00

40
00

58
00

76
00

94
00

11
20

0

13
00

0

14
90

0

16
70

0

18
60

0

20
40

0

22
20

0

Total Number of SREQs

P
er

ce
n

ta
g

e

Without DPA

With DPA

Fig. 5. Services accessed in closest proximity

 Proxy-Based Service Discovery and Network Selection in 6LoWPAN 533

6.2 DPA’s Cache Effect

The role of cache is very essential and critical in the whole scenario. It is very impor-
tant to find the optimal size of cache as well as the refresh rate. We tried different
sizes and refresh rates. Fig. 6. shows that using the cache not only the local PAN
services are accessible through DPA but also great fraction of services available in
neighbors 6LoWPANs as well as with IP networks.

Cache Effect

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (Seconds)

P
ec

en
ta

g
e

Local Services

Neighbor PAN
Services

IP services

Fig. 6. DPA’s cache effect

6.3 Number of Generated Control Packets

We define control packets as sum of total number of SREQ, SREP and DPA adver-
tisement (DADV) messages. We varied the service discovery interval to examine its
effect on control traffic. The results show that AODV generated more control traffic
as compared to the situations where a DPA is available. This is mainly because of the
fact that when service discovery interval is increased, the existing entries for the SAs
are no more valid and services are searched again. Fig. 7 shows that the number of
control packet generated, when DPA advertisement was sent every 5 seconds, is less
than that of original AODV. The main reason is that when DPA advertises itself, the
path to DPA is maintained and no additional message passing is needed.

Nm ber of control packets

0

100

200

300

400

500

600

5 10 15 20 25 30

Service discovery interval

AODV

adv 10s

adv 5s

Fig. 7. Number of control packets

534 S.A. Chaudhry et al.

7 Conclusion

We introduce Directory Proxy Agents to be used in SSLP in order to relax the need of
a dedicated DA. We propose algorithms to find the services which are closest to the
user. The access to closest DPA and closest services minimize the service discovery
overhead, and improves network capacity. The integration of 6LoWPAN with IPv6
means the services are made available from anywhere, yet closest to the user.

References

1. IEEE LoWPAN Standard 802.15.4-2003 http://standards.ieee.org/getieee802/-802.15.html
2. ZigBee Alliance http://www.zigbee.org
3. IPv6 over Low Power WPAN Working Group http://www.ietf.org/html-.charters/6lowpan-

charter.html
4. Internet Engineering Task Force http://www.ietf.org/
5. Guttman, E., Perkins, C., Veizades, J., Day, M.: SLPv2 : Service Location Protocol, Ver-

sion 2. RFC 2608, Jun. 1999
6. Kim, K., Yoo, S., Kim, H., Park, S.D., Lee, J.: Draft-daniel-6lowpan “Simple Service loca-

tion Protocol (SSLP) for LoWPAN. draft-daniel-6lowpan-sslp-00 (work in progress) Jul.
9, 2005

7. Universal Plug and Play www.upnp.org/
8. www.jini.org/
9. http://www.bluetooth.com

10. Zhu, F., Mutka, W.M., Ni, L.M.: Service Discovery in Pervasive Computing Environ-
ments. IEEE Pervasive computing, (2005) page(s) 81-90

11. Tilak, S., Chiu, K., Abu-Ghazaleh, N.B., Fountain, T.: “Dynamic Resource Discovery for
Wireless Sensor Networks" IFIP-NCUS (2005)

12. Sethom, K., Afifi, H.: A New Service Discovery Architecture for Sensor Networks. Wire-
less Telecommunications Symposium, WTS, California, (2005)

13. Kim K., Yoo, S., Park, J., Park, S.D., Lee, J.: Hierarchical Routing over 6LoWPAN (HiLow).
draft-daniel-6lowpan-hilow-hierarchical-routing-00.txt (Work In Progress), (2005)

A Low-Power Hybrid ARQ Scheme for the
RFID System�

Inwhee Joe

College of Information and Communications
Hanyang University

Seoul, Korea
iwjoe@hanyang.ac.kr

Abstract. The RFID (Radio-Frequency Identification) system consists
of RFID tags and readers for contactless identification. Since RFID tags
rely on limited energy, low-power design is very important for the RFID
system. Also, the error rates tend to be high, because the link between the
reader and the RF tag is wireless and RFID tags and readers could have
mobility. To solve these two problems at the same time, we propose a
hybrid ARQ (Automatic Repeat Request) scheme with energy efficiency
for the RFID system. In our proposed scheme, the BCH channel coding
is used together with the optimal packet length in order to minimize the
energy consumption. From the results of performance evaluation, the
proposed hybrid ARQ scheme can maximize energy efficiency compared
to the ARQ scheme or channel coding alone, while satisfying the link
reliability.

1 Introduction

The RFID system is a part of AIDC (Automatic Identification and Data Cap-
ture) technology, which enables to read data by RF communication without any
contacts stored in tags, labels and cards with micro-chips built in them. The
RFID technology is expected to replace the current bar-code system. Now, it
is being discussed in the ISO (International Standard Organization) standard
specifications [4], where the physical and logical requirements are defined for a
passive RFID system operating in the 860 MHz - 960 MHz frequency range. The
RFID system comprises RFID tags and readers. A reader transmits information
to an RFID tag by modulating an RF signal. The tag receives both information
and operating energy from this RF signal.

A low-power design is required for the RFID system because RFID tags rely
on limited energy sources. Also, the error rates tend to be high, because the link
between the reader and the RF tag is wireless and RFID tags or readers could

� This work was supported in part by grant No. IITA-2005-C1090-0501-0022 from the
ITRC Support Program of the Ministry of Information and Communication, and in
part by grant No. KRF-2005-003-D00185 from the Basic Research Promotion Fund
of Korea Research Foundation.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 535–541, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

536 I. Joe

have mobility. According to the RFID standard, the CRC (Cyclic Redundancy
Check) method is used for error detection and a data frame is retransmitted
at the MAC (Medium Access Control) layer using the ARQ scheme, if there is
any transmission error between the reader and the RFID tag. Since this ARQ
scheme does not consider energy efficiency, it is not satisfactory for the RFID
system.

In this paper, we propose a novel low-power hybrid ARQ scheme to improve
the energy efficiency and link reliability at the same time for the RFID system
operating in the 900 MHz range, by combining the energy-efficient BCH code
and the ARQ scheme. In Section 2, we describe the proposed low-power hy-
brid ARQ scheme. In Section 3, we evaluate the performance of our scheme by
mathematical analysis and computer simulation. Finally, we conclude the paper.

2 Low-Power Hybrid ARQ Scheme

Even if the ARQ scheme provides high reliability in the wired channel, the
throughput drops rapidly in the wireless environment due to the increased fre-
quency of retransmission. To counter this effect, a hybrid ARQ scheme is intro-
duced by combining FEC (Forward Error Control) with ARQ schemes. However,
when the hybrid ARQ scheme is applied to the RFID system, energy efficiency
should be considered at the same time [2,3]. Here, We propose a low-power hy-
brid ARQ scheme using the BCH code and the optimal packet length. The BCH
code is used because it consumes less decoding energy compared to other FEC
schemes [1]. Also, the optimal packet length is used in terms of maximizing the
energy efficiency [1]. Fig.1 shows the main process in our low-power hybrid ARQ
scheme.

Fig. 1. Low-Power Hybrid ARQ Scheme

When data is transmitted first, it is encoded using the BCH code with the
initial error correcting capability t of 2. At the receiver, the FEC portion in the
proposed hybrid ARQ scheme first attempts to correct the transmission errors.
If an uncorrectable error pattern is detected, then the receiver asks for a retrans-
mission using ARQ. In this case, the data is encoded using the BCH code with

A Low-Power Hybrid ARQ Scheme for the RFID System 537

the increased value of t = 4. After that, if there is any transmission error again,
the error correcting capability t is increased to 8 for the last retransmission. The
total transmission number is limited to 3, because the energy throughput drops
rapidly according to the transmission number, which will be explained below.

If the error correcting capability t of the BCH code is 2, the packet length with
the highest energy efficiency is 700bits, which is the optimal packet length in the
sense of maximizing the energy efficiency. However, the closest value that can
be provided by the BCH generator is 1023 bits, not the exact value of 700bits.
When the BCH code is used with the error correcting capability of t, the packet
error rate (PER) is given by

PB =
n∑

i=t+1

(
n

i

)
pi

c(1− pc)n−i, (1)

where pc is the channel BER.

Fig. 2. Packet Error Rate vs. Channel BER as a function of BCH Code (t)

In the RFID system operating in the 900MHz, the radio range of the reader
is up to 10m ∼ 20m, and the corresponding channel bit error rate (BER) is
about 10−4 ∼ 10−3 in this case. Evaluated from Eq. (1), the PER with the BCH
code is shown in Fig. 2, if the optimal packet length is applied. In particular,
when the channel BER is about 10−4 ∼ 10−3 and t = 2, the PER with the BCH
code is nearly 10−9, which is low enough to meet the link reliability as an initial
transmission condition. Therefore, the initial value of the BCH error correcting
capability t is set to 2 from the analytical results above.

EThm =
k1(n− a− t)

m(k1n + Edec + k2)
(2)

538 I. Joe

Relm = (1− PB)Pm−1
B (3)

k1:Communication energy consumption (k1 = 1.8x10−6)
k2: Start-up energy consumption (k2 = 24.86x10−6)
Edec: Decoding energy (Edec=0.18μm)
n: Packet length
a: Header length (a= 16bits)

Eqs. (2) & (3) present the energy throughput and reliability as a function of
the transmission number m. For example, if the transmission number is m, it
means that there are m−1 retransmissions plus one successful transmission. The
evaluated results from Eqs. (2) & (3) are shown in Fig. 3 for the BCH code with
t=2 and the channel BER 10−4. The results present that the more transmission
number, the more reliability is increased gradually, while the energy throughput
is decreased dramatically.

Fig. 3. Energy Throughput and Reliability as a function of Transmission Number

Based on the results, the retransmission should be minimized, because the en-
ergy throughput drops rapidly as the transmission number increases. Therefore,
the total transmission number is limited to 3, as long as the link reliability is
also concerned at the same time. The initial value of the BCH error correcting
capability t is set to 2. If there is a transmission error, a data frame will be
retransmitted with the increased value of t = 4 to improve the link reliability
compared to the first transmission. Further, if there is an error again, the er-
ror correcting capability t of the BCH code is increased to 8, and the last data
transmission will be performed.

A Low-Power Hybrid ARQ Scheme for the RFID System 539

3 Performance Analysis and Simulation

In this section, we compare the performance of the proposed hybrid ARQ scheme
with the ARQ scheme or BCH coding alone. First, the energy efficiency is defined
as:

η = EnergyThoughput ·Reliability (4)

With this definition, the energy efficiency of the proposed hybrid ARQ scheme
can be derived as a function of the channel BER to compare with that of the
ARQ scheme or the BCH coding alone as follows:

ηHybrid =
k1(n− a− t)

m(k1n + Edec + k2)
· (1 − pt2 · pt4 · pt8) (5)

ηFEC =
k1(n− a− t)

m(k1n + Edec + k2)
·

t∑
i=0

(
n

i

)
pi

c(1− pc)n−i (6)

ηARQ =
k1(n− a− t)

m(k1n + Edec + k2)
· (1 − p3), (7)

where p = 1− (1 − pc)n.
Using Eqs. (5,6) and (7), the performance results can be plotted as shown in

Fig. 4. Whereas the energy efficiency of the ARQ scheme alone is substantially
lower than other two schemes, the energy efficiency of the proposed hybrid ARQ
scheme is almost the same as that of the BCH coding alone until the channel
BER is around 10−2. However, when the channel BER becomes worse than that,

Fig. 4. Performance Comparison in terms of Energy Efficiency

540 I. Joe

the proposed hybrid ARQ scheme can improve the energy efficiency significantly
compared to the BCH coding alone.

On the other hand, Fig. 5 compares the link reliability between the proposed
hybrid ARQ scheme and other two schemes. Our hybrid ARQ scheme provides
the most reliability all the time over the entire range of the channel BER. In
particular, when the channel BER is 10−4 ∼ 10−3 for the RFID system operating
in the 900 MHz, the reliability of the proposed hybrid ARQ scheme is higher
than any other schemes, even if the energy efficiency between the proposed hybrid
ARQ scheme and the BCH coding alone is very similar. However, the proposed
scheme is the only approach that can provide a reasonable energy efficiency even
for the worst channel conditions. In summary, we can conclude that the proposed
hybrid ARQ scheme is the best solution for maximizing the energy efficiency and
the link reliability at the same time.

Fig. 5. Performance Comparison in terms of Reliability

In addition, computer simulations are carried out using MATLAB to confirm
the analytical results above by comparing them with the simulation results. For
the proposed hybrid ARQ scheme, the performance is measured in terms of the

Table 1. Simulation Results

Transmission BER (Theory) BER (Simulation) Delay
1(t=2) 4.5x10−5 4.7x10−5 26ms
2(t=4) 8.7x10−7 9.1x10−7 51ms
3(t=8) 3.0x10−11 0 77ms

A Low-Power Hybrid ARQ Scheme for the RFID System 541

BER error performance and the delay as a function of the transmission number
for the packet length of 1023bits and the channel BER 10−4. As shown in Table
1, we can find out that the simulation results agree with the analytical results.

4 Conclusions

For the RFID system, energy efficiency and link reliability are main design factors
that should be considered. According to the RFID standard, the CRC method
is used for error detection and a data frame is just retransmitted at the MAC
layer regardless of energy efficiency, if there is any transmission error between the
reader and the RF tag. In this paper, we have proposed a low-power hybrid ARQ
scheme to deal with this issue. To improve the energy efficiency and reliability
at the same time, the energy-efficient BCH code is combined with the ARQ
scheme, leading to a novel hybrid ARQ scheme for the RFID system. Moreover,
the optimal packet length is used for the energy efficiency. From the results
of performance evaluation by analysis and simulation, we have shown that the
proposed hybrid ARQ scheme can maximize energy efficiency compared to the
ARQ scheme or channel coding alone, while satisfying the link reliability.

References

1. Inwhee Joe, “Optimal Packet Length with Energy Efficiency for Wireless Sensor
Networks,” Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 2955-2957, May 2005.

2. Z. SUN and X. JIA, “Energy Efficient Hybrid ARQ Scheme under Error Con-
straints,” Wireless Personal Communications, Vol. 25, pp. 307-320, July 2003.

3. K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, “Protocols for Self-Organization
of a Wireless Sensor Network,” IEEE Personal Communications Magazine, Vol. 7,
No. 5, pp. 16-27, October 2000.

4. ISO/IEC FDIS 18000-6, Radio-Frequency Identification for Item Management: Pa-
rameters for Air Interface Communications at 860 MHz to 960 MHz, July 2004.

5. Inwhee Joe, “A Novel Adaptive Hybrid ARQ Scheme for Wireless ATM Networks,”
ACM-Baltzer Wireless Networks Journal (WINET), Vol. 6, No. 3, pp. 211-219, June
2000.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 542 – 551, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multi-Granularities Counting Bloom Filter

Zhou Mingzhong1,2, Gong Jian1,2, Ding Wei1,2, and Cheng Guang1,2

1 Dept. of Computer Science and Technology, Southeast Univ.,
 Jiangsu, Nanjing 210096 China

2 Jiangsu Province Key Laboratory of Computer Networking Technology
{mzzhou, jgong, wding, gcheng}@njnet.edu.cn

Abstract. Counting Bloom Filter is an efficient multi-hash algorithm based on
Bloom Filter. It uses a space-efficient randomized data structure to represent a
set with certain allowable errors, and allows membership and multiplicity que-
ries over the set. Aiming at the set whose items frequencies following heavy-
tailed distribution, this paper presents a novel algorithm called Multi-
Granularities Counting Bloom Filter (MGCBF) based on Counting Bloom Fil-
ter. This algorithm applies hierarchical data structures through several counting
bloom filters to store the items frequencies information in the set. The time and
space complexities analysis of this algorithm illustrates that it can reduce the
space needed dramatically with the cost of little additional compute-time. And
the following experiments indicate this algorithm is more efficient than other
algorithms with same errors probability when the items frequencies of the target
set follow heavy-tailed distribution.

Keywords: heavy-tailed distribution; Bloom Filter; Counting Bloom Filter,
Multi-Granularities Bloom Filter(MGCBF).

1 Introduction

With the pervasion of the computer and also the network, it becomes more and more
serious to deal with the expanding data. Extracting useful information from very huge
dataset efficiently is one of most important research directions. Bloom Filter is a
space-efficient multi-hash algorithm created by B. Bloom in 1970’s[1], and it is
widely used in database and network applications [2]. But using original Bloom Filter
to satisfy the needs of all kinds applications is becoming impossible because of the
protean usages and quarries of data. Several algorithms based on original Bloom Fil-
ter come forth to fit the special needs of different applications [3][4][5].

In a great few of applications, some information of dataset need measuring is pro-
vided in advance (i.e. the size and the distribution). It can improve the performance of
data disposal dramatically by taking advantage of those transcendental information.
Heavy-tailed distributions (also known as power-law distributions) have been ob-
served in many natural phenomena including both physical and sociological phenom-
ena, for example, the size distribution of files transferring in network [6], the length
distribution of flows intercepted in some router for a period [7], et. al. Heavy-tailed
distribution means the most items frequencies are very small, while a very few items

 Multi-Granularities Counting Bloom Filter 543

frequencies is so large that the total number of their tuples takes a large proportion of
all tuples in the set. If the asymptotic shape of the distribution is hyperbolic, it is
heavy-tailed regardless of the distribution for small values of the random variable.

For the dataset whose items frequencies following heavy-tailed distribution, this
paper represents a novel algorithm based on Bloom Filter, called Multi-Granularities
Counting Bloom Filter (MGCBF), allowing membership and multiplicity queries for
individual items with quite few errors. Because the MGCBF takes advantage of the
characteristic of heavy-tailed distribution given by the dataset, it can reduce the stor-
age space (vs. CBF [3]) and calculating time (vs. SBF[4]), and improve the statistical
precision (vs. SCBF [5]). This algorithm can be used in all kinds of dataset whose
individual items frequencies following heavy-tailed distribution.

2 Previous Works

Bloom Filter are space efficient data structures whose size is m, allowing for mem-
bership queries over a given set S={s1,s2,…,sn}. The Bloom Filter uses k hash func-
tions, h1, h2,…, hk to hash elements into an array V of size m. Initially, all positions of
the array V are set to 0. For each element s, the bits at positions h1(s), hz(s), ..,,hk(s) in
the array are set to 1. Given an item q, its membership in the dataset can be checked
by querying the bits at positions h1(q), h2(q), ..,,hk(q). If and only if all those bits are
set to 1, it is reported that q∈S. This algorithm can cause false positive error for it
may be possible that not all bits at the positions h1(q), h2(q), ..,,hk(q) are set by the
item q. But no false negative error can be produced.

Counting Bloom Filter (CBF) is one of Bloom Filter’s extensions. And it is intro-
duced by L.Fan, P. Cao et. al. in [3]. This algorithm changes the bits in the array to
counters, allowing estimates of the multiplicities of individual keys with a small error
probability. When an element s want to insert, the counters at positions h1(s), h2(s),
..,,hk(s) in the array add 1, And it means that CBF not only supports items insertions
and queries like original Bloom Filter, but also can be used for items deletions. When
an element sj want to be eliminated from the set, the counters at corresponding posi-
tions in the array subtract 1 if all these counters’ values are bigger than or equal 1.
Otherwise it is reported that sj∉S. The CBF inherits false positive errors from Bloom
Filter, and also false negative errors are introduced if the counters space is not large
enough. The method of counters space estimation is illustrated in [3], and the errors
probability is also given.

S.Cohen and Y.Matias indicate Spectral Bloom Filter (SBF) in [4], which is an-
other extension of original Bloom Filter. This algorithm is based on CBF, which uses
a compact data structure to represent the counters array and a optimal method called
recurring minimum to reduce the errors probability. But the maintenance of this com-
pact data structure needs additional calculating time. And so the items frequencies
distribution of the dataset can influence the time of data structure maintenance. To the
dataset with same tuples number, the asymmetrical distribution of items frequencies
need more compute time than symmetrical ones. When the frequencies follow heavy-
tailed distribution, this situation is more deteriorated. The SBF does not give any
optimizations for this situation for it does not fit the needs of those type datasets.

544 M. Zhou et al.

Space Code Bloom Filter (SCBF) is an algorithm for network flow length statistics
proposed by S. Cohen and Y Matias in [5]. This algorithm can be used in other appli-
cations for the same requirements. The SCBF employs several Bloom Filters to esti-
mate the packets number of individual flows. To make the data structure more effi-
ciency, this algorithm is extended to a new algorithm called Multi-Resolution SCBF,
applying sampling and multiplies resolution layers methods to express the flows
whose packets number exceed some thresholds. The maximum likelihood estimation
(MLE) and mean value estimation (MVE) methods are adopted to gauge all flows
length information. Because of the real time requirement of network flow disposal,
this algorithm uses the method of sampling. And this method cannot measure the
items frequencies and their distribution accurately. It cannot satisfy the precise meas-
urement needs of some special applications.

3 The Multi-Granularities Counting Bloom Filter

The MGCBF employs a serial of CBFs (MGCBF={cbf0,cbf1, …, cbfh-1}), which use a
set of different counter granularities (C={1,c1,c2, …, ch-1}) to count the frequency of
individual items in the dataset. The time and space complexity are main problems
wanted to solve because of the long length of the sequence [2][3][4][5]. This algo-
rithm supports related items insertions, queries and deletions, for frequencies statisti-
cal dataset whose frequencies following heavy-tailed distribution.

Fig. 1. The MGCBF data structure

The prototype of this algorithm is introduced as following:
(1) When an item x wanted to add into MGCBF, the counters at positions h1

0(x),
h2

0(x), …, hk0
0(x) in the array V0 add 1. (V0 is the array structure of MGCBF’s

first CBF, cbf0. h1
0, h2

0, …, hk0
0 are the hash functions in cbf0. Without the loss of

generality, we suppose h1
0(x) h2

0(x) … hk0
0(x));

(2) The second step is checking the value h1
0(x). If h1

0(x)=c1, the counters at posi-
tions h1

0(x), h2
0(x), …, hk0

0(x) decrease c1, then the values in those counters are
changed to 0, h2

0(x)-c1, …, hk0
0(x)-c1; At the same time, the counters add 1 at po-

sitions h1
1(x),h2

1(x), …, hk1
1(x) in V1 which is the array of cbf1, that means

h1
1(x)+1, h2

1(x)+1, …, hk1
1(x)+1;

 Multi-Granularities Counting Bloom Filter 545

(3) And then checking the value h1
1(x). If h1

1(x)=c2, we operate the same action as 2)
in cbf1 and cbf2.. This action keeps doing until cbfh-1 is checked. When an item x
multiplicity query is need, we need get a minimum values in every layer CBF
which make up of a set: M(x)={min0(x),min1(x), …, minh-1(x)}, and then the fre-
quency of x in S is reported as following:

Counter(x) = min0(x)+min1(x)*c1+ …+ minh-1(x)* 1
1

−
=Π h

i ci (1)

The MGCBF use different layers to analyze the items frequencies in the target
dataset. The low frequently items only exist in low layers, while only very high fre-
quent items can exhibit at every layer. When the items frequencies follow heavy-
tailed distribution in the dataset, the arrays space reduces in power law as the layers
increasing because only very small items are with very high frequencies. Because the
counters in low layer CBFs’ data structures should only maintain very small and con-
trollable values, their space needed can reduce dramatically as the CBF. And multiply
granularities makes counters values of every layer relative small, which can restrict
the space needed in a small range. And so the storage resources needed in the
MGCBF is relative smaller than those of the CBF, but this method will introduce
additional time used for data structure maintenance and also the errors probability.
Because the influences of errors caused by high-level CBFs are more important than
those of low-level CBFs, the MGCBF applies an optimal method called recurring
minimum introduced in [4] in high-level CBFs (cbf1 and above) to reduce the errors
probability dramatically by with the cost of a small storage resources and compute
time. We will analyze the storage resource usages, calculating complexities and errors
ratios in the following section.

Fig. 2. Insertion algorithm in MGCBF

The pseudo-code of insertion items action in the MGCBF is illustrated in
Fig.2. The parameters used in that can be described as following: x1,…,xN: the incom-
ing packets sequence;cbf0, …, cbfh-1: the CBFs which construct the MGCBF, h is
number of stages; s_cbf1, …, s_cbfh-1: the second CBFs used in high-level of the
MGCBF; C={c0,c1,c2, …, ch-1}: the space of counting unit in every level;

546 M. Zhou et al.

M(xi)={min0(xi),min1(xi), …, minh-1(xi)}: the serial made up of minimum count of
the items xi in every stage; Count(xi): the tuples number of xi in the MGCBF.

4 Performance and Errors Analysis

The correct BibTeX entries for the Lecture Notes in Computer Science volumes can
be found at the following Website shortly after the publication of the book: Because
the Pareto distribution is one of widely used heavy-tailed distributions, this paper
employs a set whose items frequencies following a Pareto distribution to analyze the
performance and errors probability. And this paper also compares these characteristics
with those of the other two algorithms (CBF and SBF). Firstly, we suppose the items
frequencies of the target dataset S following a Pareto distribution whose cumulative
distribution function is]1[/11)(>−= ααxxF , and the individual items number in S is

set to n. Using the properties of the Pareto distribution [8], we can get the expectation
]1)[1/()(>−= αααxE . And so we can infer the tuples number in S is about

]1)[1/()(>−=× αααnxEn .

4.1 Performance Analysis

In this section, we will analyze the performance in three different directions: the space
complexity, the compute complexity and the error probability.

4.1.1 Space Complexity Analysis
When we suppose the most frequent item have P tuples in S, Equation (2) should be guaran-
teed if using the MGCBF:

∏ −

=
++⋅+≤ 1

1211

h

i iCCCCP (2)

And then the counters number ni in the array of cbfi can be estimated as the below
equation in the MGCBF data structure according to properties of the Patero distribu-
tion:

nCCCCnCCCCxFn
i

j i

i

j ii ⋅++⋅+=⋅++⋅+⋅>=
−−

=

−

= ∏∏
α1

1211

1

1211)(])1([

Because we apply recurring minimum method to reduce the errors probabilities in
high-level of the MGCBF, the space needed in level 2 and above is double of the
original structure. With the supposition of m/n= , the total space needed in level i can
be inferred by the above equation which we call mi:

αθ −−

=∏++⋅+⋅⋅⋅=)()2(log)(log
1

121122

i

j jiii CCCCCnCm

From this equation, we can calculate the all storage resource needed by the
MGCBF to dispose the S:

 Multi-Granularities Counting Bloom Filter 547

)]2(log)2()2(log[log

)(log

2

1

121122112

1
2

h

h

j j

h

i
iiMGCBF

CCCCCCCCn

CmM

⋅++⋅+++⋅+⋅=

=

−−

=

−

=

∏ ααθ

(3)

4.1.2 Compute Complexity Analysis
Firstly, we on the assumption that the mean time of one tuple’s insertion, query or
deletion in individual layers of the MGCBF is following: T0,T1,…,Th-1. According to
the cumulated distribution function (CDF) of the Pareto distribution, we can calculate
the ratio of items exist in cbfi :

α−−

=

−

= ∏∏ ++⋅+=++⋅+⋅> 1

1211

1

1211)(])1([
i

j i

i

j i CCCCCCCCxF

For the item whose frequency is],[
1211

1

1211 ∏∏ =

−

=
++⋅+++⋅+∈ i

j j

i

j j CCCCCCCCf ,

the mean compute time of every item:

∏ −

=

+++= 1

1
1

2
1)(i

j j

i

C

T

C

T
TiT

And then we can calculate the mean compute time of one tuple at following:

)]()()[(

)]()([)1(

1

1
1

2
1

1

1211

2

1211

1

2
1211111

∏
∏∏ −

=

−−

=
−−

=

−−−

++++++−+++

++++−+⋅−=

i

j j

ih

j j

h

j j
C

T

C

T
TCCCCCCCC

C

T
TCCCCTCT

αα

ααα

h

h

j j TCTCTT 11

12
1

11)(−−−

=
−− ∏+++= αα (4)

4.1.3 Errors Probability Analysis
The errors caused by the MGCBF can be divided into two parts: (1) the inherent er-
rors exist in the CBFs; (2) the errors caused by count numbers transferring in the
layers.

About the errors of the Bloom Filter, B.Bloom analyzed it in detail when he intro-
duced this algorithm [1]. When all n items of the target set S are inserted into the

array V whose size is m, the error probability is kmkneE)1(/−−= . And then we can

calculate the minimal value: k=ln2*m/n, that means nmk /)6185.0()2/1(= . This

error ratio can be controlled by modifying the values of k and n through estimating the
value m :

=m/n=6 k=4 E=0.0561 =m/n=8 k=6 E=0.0215
=m/n=12 k=8 E=0.00314 =m/n=16 k=11 E=0.000458.

The detail analysis about CBF errors probability in [4][5] indicated that the inher-
ent errors of the CBF are equivalent with the original Bloom Filter. The experiments
of [4] illustrated that the error probability can be reduce to 1/18 if using the method of

548 M. Zhou et al.

recurring minimum. And so the inherent errors probability can be controlled in a very
small region in the high-level of the MGCBF.

The transferring of count numbers in levels of the MGCBF makes it important to
reduce the error probability caused by this method. We can suppose the inherent er-
rors in cbf0, cbf1, …, cbfh-1 are E0, E1, …, Eh-1. And the total errors in cbfi can be re-
gard as the iterative of its lower levels, it can be express as Equation (5) :

)1()1)(1(1 1101 −− −−−−=′
ii EEEE (5)

And we can get the actual errors of every CBF of the MGCBF:
(E0’, E1’, …., Eh-1’) = (E0, 1(1-E0)(1-E1), …, 1-(1-E0)(1-E1)…(1-Eh-1))

From the equation above, we can conclude that the errors probabilities of items fre-
quencies estimations increase as the CBF levels increasing in the MGCBF. But the
errors probabilities of high-level are controlled in a very small region, and so the
errors probabilities of high frequent items does not increase remarkably.

4.2 Comparison with Other Algorithms

The MGCBF is designed for the dataset whose items frequencies follow heavy-tailed
distribution, and it can compactly use storage and compute resources. While the tradi-
tional algorithms do not use the known information, it can induce costs of statistical
information maintenance. In this section, the MGCBF will be compared with the
other widely used two algorithms: the CBF and the SBF in performance and errors
probabilities. Because the SCBF uses sampling and MLE estimations, the application
scope and statistical errors are absolutely different with the MGCBF, and so it is not
considered when we operate the comparison.

Using the CBF, the space needed is about PnPm 22 loglog ⋅⋅= θ for the cor-

rectness assurance [3][4]. And the SBF initializes the data structure with very little
space, and adjusts the space of data structure to satisfy the needs in real time [4]. The
SBF use the storage spaces more efficiently with the cost of compute time for main-
taining the data structure.

We set the parameters of the MGCBF as following: =m/n=12 k=8 P 65536
C1=C2=…=Ch=4 T1=T2=…=Th and =3. And we also set the mean compute time

for reassigning storage resources to Ta in the SBF, and the ratio of the counters whose
space should be assigned is .

According to the Equation (1), we can calculate the minimal value of h is hmin=8.
And so we can get the storage resources used by these three algorithms as Equation
(6) while the space complexity equation of the SBF is according to [4]. Because the
SBF uses table indexes to maintain the storage data structure, it is the most space
efficient algorithm of these three ones.

(6)

 Multi-Granularities Counting Bloom Filter 549

The MGCBF uses a hierarchical data structure to maintain the items information,
which means it needs more compute time than the CBF, while the SBF needs more
time to reassigned space for incoming items (that is to say Ta>>T1). We compare the
compute time of three algorithms in Equation (7). From these equations, we can
indicate that compute time the MGCBF needs only a little more than that the CBF
needed because of the heavy-tailed distribution of items frequencies in the target set.
But compute time of the SBF is much more rely on the parameters Ta and . We can
infer that the parameter)1,5.0[∈β , and so its compute time needed is far more

than the others.

 (7)

We check the errors probability of the cbfi in the MGCBF, and compare it with
those of the other two algorithms in Equation (8). The errors probabilities of these
three algorithms are very small because all of them use more space and hash functions
to guarantee the precision. And it is verified the inference in § 4.1.3 that the errors
probabilities may increase with the levels augment of the MGCBF but this increase is
controlled in a small scope. If we want to make the algorithms more efficient by re-
ducing the storage resources and hash functions, it will introduce more errors for all
these algorithms. But the precision of the MGCBF will not reduce more rapid than the
other twos.

 (8)

5 Experiments

This paper adopts five groups of datasets whose items frequencies following heavy-
tailed distributions, and analyzes these datasets with three algorithms (the CBF, the
SBF and the MGCBF) to compare and evaluate the performance and errors probabili-
ties of these algorithms. The datasets are the packets coming from Abilene-III
TRACE[9] and TRACE of the CERNET backbone. We apply the flow specification
of 5-tuple to counting the flows by their lengths. Fig 3-a illustrates the distributions of
five datasets: dif_num describes the individual items number in the datasets; mean
indicates the mean value of individual items frequencies; P95 depicts the frequency of
item in 95 percentile; and P99 depicts the frequency of item in 99 percentile;
Max_val is used to characterize the tuples’ number of the maximal frequent item in
the dataset. And so from the Fig. 3-a , we can conclude that the individual items

550 M. Zhou et al.

frequencies of all these five dataset follow heavy-tailed distribution though the items
numbers of these datasets are far from the same ones.

The data of the other figures of Fig.3 are normalized for the convenience of com-
parison. Fig.3-b describes comparison of three algorithms’ compute performance. The
performance of the MGCBF is more efficient than the SBF, and near the CBF, The
reason is that the SBF need more time for data structure maintenance, which is de-
picted in §4.1.3 in detail. The Fig.3-c indicates the MGCBF saves 60% storage re-
sources comparing with the CBF. Though the SBF is more space efficient than the
MGCBF, it needs more time for calculation. The error probability of the MGCBF is
almost same with that of the CBF in the Fig. 3-d, which indicates that the recurring
minimum method reduces the errors probabilities in the high-level CBFs dramatically.
The errors probabilities of the SBF are smaller than those of the other ones, but it is
not prefect as described in [4]. The reason may be that the experiments applied differ-
ent datasets and different hash functions. In generally, the experiments results verify
the correctness of conclusion inferred in §4.

a. Comparison of data distributions b. Comparison of compute complexities

 c. Comparison of storage resource d. Comparison of error probabilities

Fig. 3. Performance Comparison of the CBF SBF MGCBF using different datasets

6 Conclusion

This paper introduces a novel algorithm to count the number and multiplicities of
individual items in a set, which is called Multi-Granularities Counting Bloom Filter
(MGCBF). This algorithm is based on the Bloom Filter, and takes advantage of the
fact that the items frequencies follow heavy-tailed distribution in this target set. This

 Multi-Granularities Counting Bloom Filter 551

algorithm is more space efficient that traditional Counting Bloom Filter (CBF) with
little compute time and few errors probabilities. And comparing to the Spectral Bloom
Filter (SBF), this algorithm is more compute efficient with the cost of additional stor-
age resources. The MGCBF not only support insertions and queries of items, but also
support the items deletions, just like the SBF. And so the expansibility of the MGCBF
is comparative fine. Further more, the more information about the dataset we can get,
the subtler the parameters of the MGCBF we can set, and also the more precise results
we can receive.

Acknowledgments. This research is partially support by the National Basic Research
Program (called 973 Program), No. 2003CB314803; Jiangsu Province Key Labora-
tory of Network and Information Security BM2003201; the Key Project of Chinese
Ministry of Education under Grant No.105084 and the National High-Tech Research
and Development Plan of China No. 2005AA103011-1

References

1. B. Bloom, Space/Time trade-offs in hash coding with allowable errors. Commun.ACM.
Vol. 13, no.7, pp. 422-426, July 1970.

2. A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. In Pro-
ceedings of the 40th Annual Allerton Conference on Communication, Control, and Comput-
ing, 2002.

3. L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: A Scalable Wide-Area Web
Cache Sharing Protocol. IEEE/ACM Transactions on Networking, 8(3):281-293, 2000.

4. S. Cohen, Y. Matias. Spectral Bloom Filters. In Proceedings of the ACM SIGMOD 2003.
San Diego, California, USA. June, 2003.

5. A. Kumar, J. Xu, et al. Space-Code Bloom Filter for Efficient Per-Flow Traffic Measure-
ment. In IEEE Infocom 2004, Hongkong, China. March, 2004.

6. Zhang Y, Breslau L., V. Paxson and S. Shenker. On the Characteristics and Origins of Inter-
net Flow Rates. In Proceedings of ACM SIGCOMM, Aug. 2002, Pittsburgh, PA.

7. A. Shaikh, J. Rexford and K. G. Shin. Load-Sensitive Routing of Long-Lived IP Flows. In
Proceedings of the ACM SIGCOMM 1999.Cambridge, MA, USA. August , 1999.

8. The Pareto Distribution, http://www.ds.unifi.it/VL/VL_EN/special/special12.html, Dec,
2005.

9. The Abilene-III Trace Data – Illustrated, http://pma.nlanr.net/Special/ipls3.html, Dec, 2005.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 552 – 561, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Execution Environments
for Ubiquitous Computing Service

Seungkeun Lee

INRIA Rhône-Alpes
ZIRST 655 avenue de l’Europe, Montbonnot

38334 Saint Ismier cedex, France
sglee0901@gmail.com

Abstract. Ubiquitous service provides various functions to users by process of
context acquisition and reasoning from ubiquitous environments. These ser-
vices usually cooperate with other services for acquisition of context or pro-
viding service to users. In order to support the service execution, there are a lot
of researches which are designed based on OSGi framework. OSGi framework
supports the service execution environments and syntax based service match-
ing. In previous studies, they have not been able to support the service mobil-
ity and interoperability effectively. This study proposes a dynamic execution
environment for ubiquitous service which supports service mobility among
service gateway and service matching based on semantic information. The
proposed dynamic execution environment has advantages of interoperation and
integrating the heterogeneous devices by applying these standard interface
technologies and service discovery and dynamic service compositions using
semantic information.

1 Introduction

Service Environments are dynamic configurations of services available in physical
spaces for both collaborative and individual use. An important objective is to achieve
service environments that are open, transparent, adaptive and degrade gracefully with
respect to capabilities of the interactive devices available in the room. The term ubiq-
uitous refers to the objective that device technology preferably should be designed in
such a way that it melts into the periphery when not needed[1]. OSGi is an industry
plan regarding the standards for allowing sensors, embedded computing devices and
electronic appliances to access the Internet, and it provides a Java-based open stan-
dard programming interface for enabling communication and control between service
providers and devices within home and small business networks[2,3]. Whereas previ-
ous technologies focused on interoperation among devices, OSGi places emphases on
service delivery, allocation and management for the devices. Furthermore, linkage
services concerning Jini or UPnP can be deployed or interacted based on development
of OSGi-based applications. OSGi framework is already providing the service execu-
tion environment of ubiquitous services. An OSGi-based system has a structure for

 Dynamic Execution Environments for Ubiquitous Computing Service 553

distributing new services, and the structure consists of only the elements on the local
network, giving it relatively closed characteristics[3][4][5]. However, while service
management and distribution can be dynamically executed within such single OSGi
framework, there is insufficient support for applications with mobility among multiple
frameworks. Therefore, there must be sufficient consideration for mobility of the
users, devices and sensors among multiple OSGi frameworks in the expanded smart
space, calling for research efforts in services supporting such mobility. An OSGi-
based ubiquitous computing system has a structure for distributing new services, and
the structure consists of only the elements on the local network, giving it relatively
closed characteristics[6][7]. However, while service management and distribution can
be dynamically executed within such single OSGi framework, there is insufficient
support for applications with mobility among multiple frameworks[8]. And according
to movements of services among multiple frameworks, more precise service matching
mechanism is needed. This enables ubiquitous services to be accessed by semantic
rather than by syntax. The semantic based service matching enables Services to be
discovered, selected and composed automatically by other services. This study deals
with designing an OSGi-based framework using a mobile agent technology that sup-
ports mobility and duplication with status information in the distribution environment.
By supporting bundles in the form of a mobile agent, the designed framework also
supports mobility of the bundles within multiple OSGi system environments. There-
fore, it can support mobility of various elements such as services for specific compo-
nents or users as well as device drivers. we also design a ontology for service descrip-
tion and the matching and composition methods. In implementation of this research,
we use the OSGi framework’s open source Knopflerfish 1.3.3[9][10].

2 OSGi (Open Services Gateway Initiative)

OSGi is a non-profit organization that defines standard specifications for delivering,
allocating and managing services in the network environment. In its initial stage,
OSGi was focused on the home service gateway, but it has recently expanded from a
specific network environment to the ubiquitous environment. In turn, the objective of
OSGi has become implementation of the service gateway for diverse embedded de-
vices and their users[2][11].

The OSGi service framework is displayed in Fig. 1. The OSGi framework signifies
the execution environment for such services and includes the minimum component
model, management services for the components and the service registry. A service is
an object registered in a framework used by other applications. For some services,
functionality is defined by the interfaces they implement, allowing different applica-
tions to implement identical “service” types. The OSGi framework installs an OSGi
component called a “bundle” and supports a programming model for service registra-
tion and execution. Furthermore, the framework itself is expressed with a bundle,
which is referred to as a “system bundle”. Bundles are service groups using services
registered in the service registry as well as component units. Service implementation
is delivered to and allocated in the framework through a bundle, which is a physical
and logical unit. From the physical perspective, a bundle is distributed in a Java

554 S. Lee

archive file format (JAR) that includes codes, resources and manifest files. The mani-
fest file informs the framework of the bundle class execution path and declares Java
packages that will be shared with other bundles.

Platform (OS and hardware)

Java virtual machine

Bundle A
[...]

Bundle B
[...]

Bundle C
[...]

OSGi service framework

Service registry

Register

Service

Get

Get

Register

Install, start, stop,
update, uninstall

Internet

Fig. 1. OSGi Framework

The bundles can be registered in the service registry of OSGi framework. In this
case, bundles can be found by syntax based query to service registry. If a bundle sent
a query to service registry, service reference of required service is returned by syntax
matching. Service registry is a set of key-values which are information composed of
service interface name and service reference.

3 Semantic Based Service Description

Service Discovery can return a proper service reference in service registry based on a
query of service requestor. Service is registered in service registry using semantic
information. This semantic information is composed of service type, service input,
service output and service context. Service matching is done by matching of these
ontologies.

Service
Request

Service

Service type(Rt) Service type(St)

Service Input(Ri)

Service Output(Ro)

Service Context(Rc)

Service Input(Si)

Service Output(So)

Service Context(Sc)

Fig. 2. Service Matching using Ontology

The service type ontology represents a type which service can be. This is different
according to service domain. Service input/output is mapping into WSDL(Web Ser-
vice Description Language) interface for calling service. This service can call the
other service by sending of the parameters. These parameters include name, role, unit
and data type. Service context is defined for searching service which is more usable to

 Dynamic Execution Environments for Ubiquitous Computing Service 555

user. Service context include service location, approximation, openness. Figure 3
describes the service ontology for service description. For example, the homenetowk
service wants to find a control service of a light in a home. If two services are
matched using service type and grounding, the service discovery can provide a service
which is located in more closely to user. Service QoS are used in the automatic ser-
vice composition. This was introduced in another paper which was published in [12].

Output
Input

Parameter

Name

BusinessRole Unit

DataType

ResponseTime
Cost

Reliability

ServiceType
Transportation Service Domain

Home Automation Service Domain

e-Commerce Service Domain
Selling
Service

...

Service
GroundingService QoS Service

Restaurant

Gas Station

Shop

Product

1:N

1:N

1:N
1:N

1:1

1:1

1:1

1:1

1:11:1

1:1

1:1

1:1

1:1

1:1

1:1 1:1

1:1

1:N

1:N

1:N

Location

Open

Price Range

NearBy

Name

Fig. 3. Service Ontology for Service Description

Service matching is decided on ontology matching between service request and
service description. Table 1 describes the matching degree which means precision of
matching between service request and service description.

Table 1. The degree of ontology matching

Category Case Matching

"Exact" Req = Srv

“PlugIn" Req Svr
Ontology Matching

"Subsume" Req Svr

Intersection Req Svr
Approximate Matching

Dispoint Req Svr = Mismatch

556 S. Lee

4 System Design

The service execution environment consists of the service mobility manager and ser-
vice discovery. Figure 4 describes the overall system. The service mobility manager
provides the function of service mobility among execution environments. And, the
service discovery provides the service matching and composition based on semantic
based service description and ontology inference engine.

Fig. 4. The structure of the Service Mobility Manager

Semantic based service discovery is composed by service finder, plan generator,
agent manager and service register. Service finder can service reference which is
stored in service registry by service query from services. Service register manages
service registry which stores service description. Plan generator is more complex
component which can generate service composition plan. Agent manager make a
agent which manage an execution of composition plan. Service wants other service
with service request, service finder finds service reference with service description in
service registry. If service is found, service reference is passed to service. If service is
not found, this request is passed to plan generator. Plan generator makes a composi-
tion plan of service using service finder. A best composition plan is chosen among a
few composition plans and makes an agent which manages service execution of ser-
vice composition plan. This agent is registered in service register as a virtual service.
Algorithm 1 describes the process of generation of composition plan.

 Dynamic Execution Environments for Ubiquitous Computing Service 557

Service Mobility Manager consists of Service Serializer/Deseializer, SOAP Man-
ager. When the mobile bundle manager receives a mobility request from a bundle
service, it manages the service bundle’s lifecycle. The status information prior to
mobility is marshalled into XML by the ServiceSerializer, and the SOAPClient deliv-
ers the SOAP message to the destination. The class file is installed through the desti-
nation BundleInstaller, and the ServiceDeserializer resumes the service by unmarshal-
ling the SOAP message into an object.

Algorithm 1. Serviced Composition

public ServiceID compositeService(ServiceDescription
reqInput) {
 ….
ServicePlan[] servicePlan = new ServicePlan[100];
Input input = reqInput.getInput();
Output output = reqInput.getOutput();
//find service list which provides the requested result
ServiceID[] serviceID =
 serviceMatchaker.findService(output, reasoner);
for(int i = 0; i < serviceID.length; i ++) {
 //generation of service composition plan
 servicePlan[i] = serviceID[i];
 serviceChain[i] = makeServiceChain(servicePlan[i]);
}
//selection a best service plan
bestServicePlan =
 qosEvaluator.calculator(serviceChain);
//generation of agent which manage an execution service
composition paln
Agent agent =
 AgentFactory.createAgent(bestServicePlan);
//registration a virtual service as agent reference
agent.serviceID =
 viceRegister.registerService(reqInput);
....
}

We extend the status of bundle in OSGi which compose of ‘Resolved’, ‘Starting’,
‘Active’ and ‘Stopping’, adding ‘DEAD’, ‘Movable’, ‘Moved’. ‘Dead’ status is dif-
ferent from ‘Unistalled’ which means that bundles are omitted automatically. ‘DEAD’
is used for checking information of service before it is received move request. The
status of bundle is changed ‘Movable’ to ‘Moved’ for the service which is received
move request. ‘Move’ status is used for the process which OSGi framework sends
service to other OSGi framework. If OSGi framework would finish sending of service
to other OSGi framework, service status is changed to ‘Uninstalled’, and this bundle
is removed. Upon receipt of a mobility request, the service is switched to the mobility
request state and execution suspension is requested. The service receiving the request
returns after completing the action currently in process. If converted to the mobile
state, the status information is serialized into the XML format using the Serializer,
and service mobility is requested to the SOAPClient. The SOAPClient verifies the

558 S. Lee

destination and generates an SOAP message to call SOAPService to the destination. If
mobility is successful, the service currently being executed is deleted from the regis-
try. At the destination, the SOAPService waiting for the SOAP message receives the
URL information regarding the class location as well as the serialized data and deliv-
ers them to the MobileBundleManager. Prior to deserializing the received object, the
MobileBundleManager installs the bundle from a remote location through the Bun-
dleInstaller. Upon successful installation, the object is deserialized and restored to the
state prior to mobility. Finally, the service is converted to the RUNNABLE state and
registered at the service registry.

5 Experiment

We propose a dynamic service execution environment for ubiquitous computing ser-
vices. This environment is designed based on OSGi framework, and provide a seman-
tic based service discovery and service mobility. In this chapter, we tested these two
functions to prove the correctness of the environment. First, we tested semantic based
service discovery with service registry which maintain a thousand of service descrip-
tions. To view of results from execution environment, we implemented the diagnostic
tool which can watch the status of the execution environments. Figure 5 shows the
result which the execution environment can discover the correct services and the
service composition plan.

Fig. 5. The mobility of the MPlayer bundle

In order to test the service mobility proposed in this paper, an MPlayer bundle was
developed for playing MP3 music files. JVM and OSGi mobile agent framework
bundles were installed in a PDA and PC, respectively as an experiment environment
as shown in Fig 6.

 Dynamic Execution Environments for Ubiquitous Computing Service 559

Knopflerfish 1.3.3

Windows CE 2003

Java 1.3

iPAQ PXA255

Agent Manager
bundle

MP3 Play
Service

Knopflerfish 1.3.3

Windows XP

Java 1.4

Intel Pentium 4

Agent Manager
bundle

MP3 Play
Service

Internet

Migration

Fig. 6. The mobility of the MPlayer bundle

When a user listening to music from the MPlayer installed in the PDA moves into
the space where the PC is located, the MPlayer service was moved to the PC and the
file was resumed from the point where it had been playing from the PDA, providing a
continuous MPlayer service to the user.

Service Execution Environment BService Execution Environment A

Mobility ManagerMobility ManagerService Discovery

IP address(221.148.43.74")

Movable request + IP(165.246.43.107")

Service Serialization

Generation of SOAP Message

SOAP Message

Parsing SOAP Message

Class Downloading and
Service Loading

Service Status RecoveringService Description
(MP3MusicService , Actuator , NULL,

List , Boolean , 20 , 100 , 10)

Service Registration

Service Discovery

Request of Service
Description

 Service Description

Fig. 7. Movement of the MPlayer service

Figure 7 describes the movement process of music service using the proposed service
execution environment. If mobility manager received “move” request with IP address
(221.148.43.74) of execution environment of service, this mobility manager send a

560 S. Lee

request with own IP address. Mobility manager serialize the service and generate
SOAP message with a serialized service and a service description. This message is
sent to target mobility manager and interpreted by target mobility manager. Finally,
this service is registered by service register in service discovery. In this experiment,
the proposed service execution environment can provide service mobility among
execution environment and find a proper service reference exactly. According to a
few of experiments, this service matching mechanism can find a service exactly 76%
more than syntax matching of OSGi framework.

6 Conclusion

We designed the dynamic service execution environment for dynamic interaction
among services in ubiquitous environment. This system provides two important func-
tions. First is a semantic based service discovery. Previous OSGi framework provides
a syntax based service discovery. So, this environment provides a discovery of more
correct service reference and service composition plan automatically. Service compo-
sition plan is managed by agent. This agent is registered in service registry as a virtual
service. So, the other service can use this composition service plan easily. Second is
service mobility. Service mobility manager is inevitable in order to provide object
mobility among OSGi frameworks constituting the ubiquitous computing environ-
ment such as the home network. This paper proposed a bundle in the form of a mobile
service that can be autonomously executed in the OSGi framework, for which a mo-
bile service lifecycle and a service mobility management system were designed and
implemented for managing mobility. The designed mobile agent management system
was implemented in a bundle format to operate in the OSGi framework, and it also
allowed dynamic management of autonomous services to provide mobility in a more
efficient manner. These ubiquitous services on this designed environment can inter-
operate with other services of OSGi standard framework, because this system is de-
signed based on OSGi framework.

References

1. G. Jansson and P. Lönnqvist, “Ubiquitous Service Environments”, Special Theme: Ambi-
ent Intelligent, ERCIM News, 2001.

2. Open Services Gateway Initiative. http://www.osgi.org
3. D. Marples and P. Kriens, “The Open Services Gateway Initiative: An Introductory Over-

view,” IEEE Communications Magazine, Vol. 39, No. 12, pp.110-114, December 2001
4. C. Lee, D. Nordstedt, and S. Helal, “Enabling Smart Spaces with OSGi,” IEEE Pervasive

Computing, Vol. 2, Issue 3, pp.89-94, July_Sept. 2003
5. P. Dobrev, D. Famolari, C. Kurzke, and B. A. Miller, “Device and Service Discovery in

Home Networks with OSGi,” IEEE Communications Magazine, Vol. 40, Issue 8, pp.
86-92, August 2002

6. K. Kang and J. Lee, “Implementation of Management Agents for an OSGi-based Residen-
tial Gateway,” The 6th International Conference on Advanced Communication Technol-
ogy, Vol. 2, pp.1103-1107, 2004

 Dynamic Execution Environments for Ubiquitous Computing Service 561

7. F. Yang, “Design and Implement of the Home Networking Service Agent Federation Us-
ing Open Service Gateway,” International Conference on Integration of Knowledge Inten-
sive Multi-Agent Systems, pp.628-633, Sept._Oct. 2003

8. R. S. Hall and H. Cervantes, “Challenges in Building Service-Oriented Applications for
OSGi,” IEEE Communications Magazine, Vol. 42, Issue 5, pp.144-149, May 2004.

9. K. Chen and L. Gong, Programming Open Service Gateways with Java Embedded
ServerTM Technology, Addison Wesley, 2001

10. H. Zhang, F. Wang, and Y. Ai, “An OSGi and Agent Based Control System Architecture
for Smart Home,” Proceedings of IEEE Networking, Sensing, and Control, pp.13-18,
March 2005

11. Knopflerfish. http://www.knopflerfish.org
12. Seungkeun Lee, Sehoon Lee, Kiwoon Rim, Jeonghyun Lee, “The Design on Webservices

Framework Support Ontology Based Dynamic Service Composition, AIRS2005
(LNCS3689), 2005. 10.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 562 – 571, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Dynamic Trust Model Based on Naive Bayes Classifier
for Ubiquitous Environments

Weiwei Yuan, Donghai Guan, Sungyoung Lee*, and Youngkoo Lee

Department of Computer Engineering, Kyung Hee University, Korea
{weiwei, donghai, sylee}@oslab.khu.ac.kr, yklee@khu.ac.kr

Abstract. Computational models of trust have been proposed for use in ubiqui-
tous computing environments to decide whether to provide services to request-
ers which are either unfamiliar with service providers or do not have enough
access rights to certain services. Due to the highly dynamic and unpredictable
characteristic of ubiquitous environments, the trust model should make trust de-
cision dynamically. In this paper, we introduce a novel Naive Bayes classifier
based trust model which can dynamically make trust decision in different situa-
tions. The trust evaluation is based on service provider’s own prior knowledge
in stead of assuming variable weights and pre-defined fixed thresholds. This
model is also suitable to make decision when only limited information is avail-
able in ubiquitous environments. Finally we give the simulation results of our
model and the comparison with the related works.

1 Introduction

Ubiquitous computing environment consists of a massively networked world sup-
porting a population of diverse but cooperating mobile entities. The autonomous
operation among the contributing units is necessary due to lack of central control [1].
Traditional authentication and access control are effective only in situations where
the system knows in advance which users are going to access and what their access
rights are. Later on, computational models of trust were proposed for ubiquitous
computing environments which were capable of deciding on the runtime whether to
provide services to service requesters which are either unfamiliar with service pro-
viders or do not have enough access rights to certain services. Access decision in
ubiquitous computing environments has to rely on some kind of trust developed with
past interactions.

Trust is the measure of willingness to believe in an entity based on its competence
(e.g. goodness, strength, ability) and behavior within a specific context at a given
time. Previous trust models used various time-consuming approaches to evaluate the
trust value by considering different factors that may effect the trust decision. How-
ever, a common failing is that these models simply compared these painstaking gotten
trust values with one or two fixed pre-defined thresholds to make the final trust deci-
sion, which is not suitable for the highly dynamic ubiquitous environments. For

* Corresponding author.

 A Dynamic Trust Model Based on Naive Bayes Classifier 563

example, in a ubiquitous supported smart office, the thresholds for different services
providers to provide services may not be the same, e.g. the threshold for providing fax
service may be higher than the threshold for enabling copy machine service. For the
same service provider, its threshold to provide service may also change from time-to-
time, e.g. the threshold for scanner may be raised since it has been frequently mis-
operated by users recently. The change in threshold values is related to the changes in
acceptance level of service providers to the whole ubiquitous environment. The rais-
ing of the scanner’s threshold means that its acceptance level to the smart office has
been decreased due to the previous unsuccessful interactions with the users. Hence we
would dynamically make the decision due to the change in usage pattern.

The object of this paper is to propose a trust model in ubiquitous environments that
can dynamically make trust decision based on different situations and different ser-
vice providers. This paper sets the stage by introducing a novel Naive Bayes classifier
based trust model, which makes decision based on each entity’s own prior knowledge.
The main advantage of our trust model is that it avoids using only one or two pre-
defined fixed thresholds, and can dynamically update decisions according to each
service provider’s own judging standard. Moreover, our trust model can make use of
limited information in decision making, which is usually the case in a real scenario.

The rest of the paper is organized as follows. We briefly introduce related work in
Section 2. And we present the proposed trust model in detail in Section 3. Section 4
gives the simulation results. Finally, conclusions and future work are presented in
Section 5.

2 Related Work

Since mid 90s the research on the key role of trust management models has been
outlined in [2], [3], [4] to develop complex and dependable computer systems. In the
field of ubiquitous computing, research has paid much more attention to build
autonomous trust management as fundamental building block to design the future
security framework, such as [6], [12], [13], [14], [15].

A general concept of dynamic trust model in ubiquitous computing environments
had been given in [1]. In [5], the authors explained basic scenarios in ubiquitous com-
puting and modeling requirements of trust. A solution to evaluate trust from the past
experience was given in [7]. In [8], the authors proposed a role-based trust model in
ubiquitous environment, where recommendations were used to make decision. Trust
level, a measure of one’s belief in the honesty, competence and dependability to a
certain entity, was used to make decision in [9]. The trust was divided into 6 levels
and operators such as time and distance were used to evaluate the trust level. In [10],
the authors involved the concept of confidence, which reflects the communication
frequency between two entities, in the trust evaluation. Trust value and confidence
values were used to made the finally decision together. In [11], the authors proposed a
novel Cloud-Based trust model to solve uncertain problem. These works involved
great efforts to evaluate the trust values, however, when it comes to decision making

564 W. Yuan et al.

based on these trust values, they just simply compare with one or two thresholds,
which can not dynamically change due to the altering of the environments.

Our trust model provides improvement in earlier works by proposing a probabilis-
tic model which involves precise computation to update the decisions dynamically.
And the evaluation of the trust is also based on each entity’s own situation which can
better suit the ubiquitous environments.

3 Naive Bayes Classifier Based Trust Model

In our trust model, trust decision for unfamiliar service requesters is based on the
recommendations from other entities in ubiquitous environments. One of the example
scenarios is ubiquitous supported smart office as showed in Fig.1.

Fig. 1. Smart office supported by various ubiquitous units

The working procedure for the trust model to make decision is as follows: (1) Ser-

vice requester (iSr) sends a request to USEC server to apply certain service. USEC

server serves as service provider agent. (2) If iSr is not an acquaintance to service

provider (jSp) or it does not have enough priority to access the service, USEC server

will ask other entities who are now in a certain range of this smart office to give rec-

ommendations for iSr . (3) If entities who are requested to give recommendations have

past interaction history with iSr , they will act as recommender (kR) and give back

recommendations to USEC server, (4) USEC server makes trust decision according

to jSp ’s own judging standard based on the recommendations from the recommend-

ers together with its own knowledge.

 A Dynamic Trust Model Based on Naive Bayes Classifier 565

3.1 Factors Involved in Our Trust Model

There are totally five factors involved in our trust model.

Prior Probability. Prior probability reflects the acceptance level of certain service
provider. It corresponds to the service provider’s trusting beliefs for the whole
ubiquitous environment. The lower the prior probability is, the more unbelieving
the service provider is.

Definition 1. ()
jSpP y and ()

jSpP n are used to denote service provider jSp ’s

prior probability of acceptance and rejection respectively.

0,
()

0 0,
Sp j

k
m

P y m
m

⎧
⎪
⎨
⎪⎩

≠=
=

 () 1 ()Sp Spj j
P n P y= − ,

where , , ,j m k N k m∈ ≤ .Here m is the size of training sample; k is the size of accep-

tance sample. In case () ()
i jSp SpP y P y≠ , if i j= , it means we got one service pro-

vider in different situations. In this case, the same service provider has different ac-
ceptance levels for the environment due to the dynamic nature of service provider as
well as the surroundings ubiquitous environment. Otherwise, if i j≠ , it means that

they are different service providers. In case () ()
i jSp SpP y P y> (i.e. iSp has a higher

acceptance level when get same request), iSp is more likely to provide the service

when requested. This situation is similar to our social society, iSp is easier to believe

others comparing with jSp .

Trust Level. In our trust model, each entity is initially assigned a trust level
according to its identity. If no information is available about the trustworthiness of an
entity, it will be assigned as an unknown trust level. The trust level of an entity can be
adjusted dynamically according to its behavior.

Definition 2. ()kTl S is used to denote the trust level of entity kS , where k N∈ ,

()kTl S N∈ . Entity kS may be a recommender or service requester.

If))((k jTl S Tl S> (,k j N∈), kS is regarded as more reliable. However, in case

()kTl Sr is unknown trust level, kSr may probably be provided services which are un-

available to the service requester who has a little bit higher trust level than him. This
behavior also see parallels in our society, you may choose to trust an unfamiliar
stranger that has never done harm to you instead of an acquaintance that had unpleas-
ant interaction history with you.

566 W. Yuan et al.

Past Interaction History. Past interaction history is an entity’s prior knowledge (this
entity may be a recommender or service provider in our model) of acceptance to
certain service requester.

Definition 3. (,)i jPi S S is used to denote the past interaction history between enti-

ties iS and jS . Entity iS and jS may be service requester, service provider or recom-

mender.

()
0 ,

(,)

0 0,
i j

n m n
m

Pi S S m

m

− −
≠

=
=

⎧⎪
⎨
⎪⎩

 where , , ,i j m n N∈ , i j≠ , n m≤ .

Here m and n denote the total communication times and successful communication

times between iS and jS respectively. (,) [1,1]i jPi S S ∈ − .

We suppose that past interaction history has Gaussian distribution. If iS

never communicate with jS before, then (,) 0i jPi S S = . If iS and jS had unpleasant

interaction history, in previous work, (,)i jPi S S was set a positive small value. How-

ever, it means that the past interaction history for unknown entity is always worse
even than the very malicious entity, which is obviously not correct. Hence our model

set (,) [1, 0)i jPi S S ∈ − for malicious entities, which is more convenient to differentiate

unknown entities from malicious entities.

Time Based Evaluation. Intuitively, very old experiences of peers should have less
effect in recommendation over new ones. Thus we take into account the time based
evaluation.

Definition 4. (,)k iT R Sr is used to denote the time based operator for recommender

kR to service requester iSr .

,

0

(,)
R Sr mk i

k i

t t
T R Sr η

τ

−
=

Δ
, where ,k i N∈ ,

here ,R Srk i
t denotes the time when last communication between kR and iSr hap-

pened. Andη is time adapting operator. Suppose our measurement for time is based

on a time window[,]m nt t , let 0 m nt tτΔ = − .

Peer Recommendation. Peer recommendation is needed when service provider has

no or not enough information to make decisions. Apparently if kR had more

interactions with iSr , the recommendation of kR should be more importance for

decision making, which introduces the notion of confidence.

 A Dynamic Trust Model Based on Naive Bayes Classifier 567

Definition 5. (,)k iC R Sr is used to denote the confidence for recommender kR to ser-

vice requester iSr .

2

2
1 (())

(,) exp()
() 2 2 ()

k
k i

m mean M
C R Sr

std M std Mπ
−= − , ,i k N∈ ,

where M is an array of communication times. [] kM k m= , 1, 2, ...,k n= . Here km is

the communication times between kR and iS . We suppose that M has Gaussian distri-

bution.
We are now ready to use the above definitions to express the notion of peer rec-

ommendation.

Definition 6. Pr(,)k iR Sr is used to denote the peer recommendation from recom-

mender kR to service requester iSr .

0

() (,)
Pr(,) * (,) * *k k k i

k i k i
N k

Tl R n T R Sr
R Sr C R Sr

Tl m τ
=

Δ
, where ,k i N∈ ,

here km and kn are the total communication times and successful communication times

between kR and iSr respectively. NTl is the total trust levels.

The final recommendation is the aggregate of all the peer recommendations.

Definition 7. ()iR Sr is used to denote the aggregate of recommendation for iSr from all

the recommenders in the ubiquitous environment.

1
Pr(,)

()

n

k i
k

i

R Sr
R Sr

n
=
∑

= ,

where , ,k n i N∈ , n is the number of the recommenders in the environment.

3.2 Trust Decision Making

Using the factors mentioned in section 3.1, our trust model uses Naive Bayes classi-
fier twice to make the dynamic trust decision based on each service provider’s accep-
tance level. Naive Bayes classifier is a technique for estimating probabilities of indi-
vidual variable values, given a class, from training data and then to allow the use of
these probabilities for classify new entities.

The decision is first made without recommendations, and it only depends on the
service provider’s own prior knowledge. Sometimes, the service provider may not be
able to make the decision in the first decision, which means that the service requester
is unfamiliar with the service provider or it does not have enough priority to access
this service. Then recommendations given by other recommenders will be used to
make the final decision together with service provider’s own prior knowledge.

568 W. Yuan et al.

First Decision: When iSr gives a request to jSp , (,)i jh Sr Sp is used to denote jSp ’s

trust decision. Accept=1; Reject=0.

1
(,)

0

NB y NB n

i j

NB y NB n

V V
h Sr Sp

V V

≥
=

<

⎧⎪
⎨
⎪⎩

, (1)

where NB yV and NB nV are the acceptance and rejection value respectively.

Using Naive Bayes classier:

{ , }
argmax () () argmax () ()n nn m n mNB q m q m

v V v yes nom m

V P v P a v P v P a v
∈ ∈

= =∏ ∏ . (2)

Definition 8. If attribute A has Gaussian distribution, we use ()yf A and ()nf A to de-

note the probability of A when given acceptance and rejection respectively.

2

2

(())1
() exp()

() 2 2 ()
y

y
y y

A mean A
f A

std A std Aπ
−

= − ,

2

2
1 (())

() exp()
() 2 2 ()

n
n

n n

A mean A
f A

std A std Aπ
−= − ,

where ()ymean A and ()nmean A denote the mean of A when given acceptance and

rejection respectively. And ()ystd A and ()nstd A denote the standard deviation of A

when given acceptance and rejection respectively.

() (()) ((,))Sp i y i jNB y j
V P y P Tl Sr y f Pi Sr Sp= , (3)

() (()) ((,))Sp i n i jNB n j
nV P n P Tl Sr f Pi Sr Sp= , (4)

where (())iP Tl Sr y and (())iP Tl Sr n are the probability of ()iTl Sr when given accep-

tance and rejection respectively.

Final Decision: If (,)i jh Sr Sp =0 in the first step of decision, jSp will use (1) to make

trust decision again based on its own prior knowledge together with recommendations
gotten from recommenders, that is, to add the factor of recommendation in(2).

() () (()) ((,))Sp y Sr i y i jNB y j i
V P y f R P Tl Sr y f Pi Sr Sp= , (5)

() () (()) ((,))Sp n Sr i n i jNB n j i
V P n f R P Tl Sr n f Pi Sr Sp= . (6)

 A Dynamic Trust Model Based on Naive Bayes Classifier 569

As shown above, when making trust decision (both with and without recommenda-

tions), our trust model compares the value of NB yV and NB nV . Since the calculation of

NB yV and NB nV involves different factors as well as the prior probability, which re-

flects the current acceptance rate of jSp and varies from time-to-time, NB yV and NB nV

will keep on changing according to different situations.

4 Simulation Result

Using the method mentioned in section 3, we got the simulation results as showed in
Fig.2. For the brevity, we only give the simulation results of decision making

for jSp with recommendations from recommenders. The result of decision making

without recommendations is similar to this case.

(a) (b)

Fig. 2. Decision making with recommendations

Fig.2(a) shows the result of thresholds when iSr gives request to different service

providers who have same past interaction history with it, i.e. for different service

provider mSp and nSp , ,m n N∈ , (,) (,)i m i nPi Sr Sp Pi Sr Sp= . The thresholds here is

the intersection of formulas (5) and (6), if the trust value is above threshold, our
trust model will accept the request, otherwise, the request will be rejected. It is clear
from the result of Fig.2(a) that when different service providers get the same re-
quest, even the past interaction histories between service provider and service re-
quester are the same, the threshold is not a fixed value and it changes for different
service providers. This is because the acceptance levels of different service provid-
ers are not the same.

570 W. Yuan et al.

Fig.2(b) gives the result of thresholds when different service requesters 1Sr … kSr ,

k N∈ give requests to same service provider jSp . Since all the requesters are given

to the same service provider, jSp ’s acceptance level (i.e. prior probability) is same to

all the service requesters. At the same time, our simulation set whole the recommen-

dations given to different service requests to be the same, i.e., () ()m nR Sp R Sp=

1 m n k≤ ≠ ≤ , ,m n N∈ .However, Fig.2.(b) shows that the threshold keeps on chang-

ing. This is because of the variation in ()mTl Sr and (,)m jPi Sr Sp .

Our simulation results suggest that when requested by same service requester, dif-
ferent service providers or the same provider in different situations make different
trust decisions. It is impossible to find a fixed threshold to make trust decision since
the decision changed according to the entity’s own prior knowledge. The results also
give a look for the entity’s dynamic trust decision with the variation of different fac-
tors. When one entity makes trust decision according to different service requesters,
there is no fixed so-called threshold value for the service provider to make decision.
However, in previous trust models, pre-defined fixed thresholds were always used to
make decisions, it is obviously not suitable for the dynamic characteristic of ubiqui-
tous environment. By considering every service provider’s prior probability and its
own knowledge, our trust model is able to dynamically evaluate the threshold values
as shown in the simulation results. At the same time, since Naive Bayes classifier is a
statistical method, it is also suitable to make decision when limited information is
available, which is usually the case in ubiquitous environment.

5 Conclusion and Future Work

Our trust decision making avoids using simple thresholds, which were commonly
used in previous works. This makes our Naive Bayes classifier based trust model
more suitable to be used in ubiquitous computing environments since it can dynami-
cally make decision due to different situation as shown in the simulation results.
Meanwhile, compared with previous works, our trust evaluation is based on each
entity’s own prior knowledge in stead of using common evaluation and pre-defined
weight values, which effectively reduce the subjectivity by human opinions compare
with the other trust models. Our model also uses a reasonable way of evaluating rec-
ommendations by considering the surrounding environments of one certain entity.

We will add risk analysis in the coming work, since trust and risk always coupled
tightly with each other. Other works like how to choose reliable recommenders to
avoid unfair recommendations in ubiquitous trust model will also be involved in the
coming work. We also propose to implement our trust model to be used in CAMUS, a
middleware platform for a ubiquitous computing, in the future work.

Acknowledgment. This work is financially supported by the Ministry of Education
and Human Resources Development (MOE), the Ministry of Commerce, Industry and
Energy (MOCIE) and the Ministry of Labor (MOLAB) through the fostering project
of the Lab of Excellency.

 A Dynamic Trust Model Based on Naive Bayes Classifier 571

References

1. Marsh, S. P.: Formalising Trust as a Computational Concept. Ph.D. Thesis, University of
Stirling (1994)

2. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In Proc. of the 1996
IEEE Symposium on Security and Privacy, (1996) 164-173

3. Josang, A.: The right type of trust of distributed systems. In New security paradigms work-
shop, USA (1996) 119-131

4. English, C. and Nixon, P.: Dynamic Trust Models for Ubiquitous Computing Environ-
ments. In Proc. of the Fourth Annual Conference on Ubiquitous Computing, (2002)

5. Lamsal, P.: Requirements for modeling trust in ubiquitous computing and ad hoc net-
works. Ad Hoc Mobile Wireless Networks – Research Seminar on Telecommunications
Software, (2002)

6. Ranganathan, K.: Trustworthy Pervasive Computing: The Hard Security Problems. In
Proc. of IEEE Conference on Pervasive Computing and Communications, (2004)

7. Aime, M.D. and Lioy, A.: Incremental trust: building trust from past experience. In Proc.
of IEEE International Symposium on a World of Wireless Mobile and Multimedia Net-
works, Italy (2005) 603-608

8. Shand, B., Dimmock, N., Bacon, J.: Trust for Ubiquitous, Transparent Collaboration. In
Proc. of ACM: Special issue: Pervasive computing and communications, (2004) 711- 721

9. Liu, Z.Y., Jo, A.W., Thompson, R.A.:A Dynamic Trust Model for Mobile Ad Hoc Net-
Works. In Proc. of 10th IEEE International Workshop on Future Trends of Distributed
Computing Systems, (FTDCS'04) (2004) 80-85

10. Theodorakopoulos, G. and Baras, J.S.: Trust Evaluation in Ad-Hoc Networks. In Proc. of
the 2004 ACM workshop on Wireless security, USA (2004) 1-10

11. He, R., Niu, J.W., Yuan, M.: A Novel Cloud-Based Trust Model for Pervasive Computing.
In Proc. of the Fourth International Conference on Computer and Information Technology,
(2004) 693-670

12. Guha, R., Kumar, R., Raghavan, P.: Propagation of trust and distrust. In Proc. of Interna-
tional Conference on World Wide Wed, USA (2004) 403-412

13. Michiardi, P. and Molva, R.: A collaborative reputation mechanism to enforce node coop-
eration in mobile ad-hoc networks. In Proc. of IFIP Communication and Multimedia Secu-
rity Conference, Portoroz (2002) 107-121

14. Ganeriwal, S. and Srivastava, M.B.: Reputation-based framework for high integrity sensor
networks. In Proc. of ACM Workshop on Security of ad-hoc and sensor networks, USA
(2004) 66-77

15. Castelfranchi, C., Falcone, R., Pezzulo, G.: Trust in Information Sources as a source for
Trust: A Fuzzy Approach. In Proc. of the second international joint conference on Autono-
mous agents and multiagent systems, (2003) 89-96

Context-Role Based Access Control for
Context-Aware Application�

Seon-Ho Park1, Young-Ju Han1, and Tai-Myoung Chung2

1 Internet Management Technology Laboratory,
Department of Computer Engineering,SungKyunKwan University,

440-746, Suwon, Korea +82-31-290-7222
{shpark, yjhan}@imtl.skku.ac.kr

2 School of Information & Communication Engineering, Sungkyunkwan University,
440-746, Suwon, Korea +82-31-290-7222

tmchung@ece.skku.ac.kr

Abstract. The rapid growth of wireless network technology and the
deployment of mobile computing devices have enabled the construction
of pervasive computing environment. In pervasive computing environ-
ment, it is proliferated that many new applications that provide active
and intelligent services by context information are collected by pervasive
sensor devices. These new applications called context-aware applications
must require new security mechanisms and policies different from typical
ones. Specially, access control mechanism supports security policy that
is based on context information, in order to provide automating context-
aware services. So, this paper analyzes various access control mechanisms
and proposes a context-role based access control mechanism for context-
aware application.

1 Introduction

The development of computing and networking technology has changed existing
computing environment into the ubiquitous computing environment. In existing
computing environment, computing devices and applications are independent
each other and are separated from human activities and environmental states.
In ubiquitous computing environment, however, computing devices and appli-
cations can easily interoperate each other and interact with human activities
by context-awareness. Context-awareness means that one is able to use context
information. Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user
and application themselves.

From a security perspective, context-aware applications are a new challenge
for exploring security policies that are intended to control access to sensitive
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 572–580, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Context-Role Based Access Control for Context-Aware Application 573

resources. Traditional security policy and access control mechanisms are based on
only subject (users, processors) information. For example, in Access Control List
(ACL) [1] that is a very commonly used access control mechanism, permission to
access resources or services is controlled by checking for membership in the access
control list associated with each object. However, this method is inadequate
for context-aware applications of ubiquitous computing environment, because it
does not consider context information. Granting a user to access without taking
the user’s current context into consideration can compromise security as the
user’s access privileges not only depend on the identifier of the user, but also
on the user location and the users internal and environmental states. Thus, in
the ubiquitous computing environment, to support automatically secure context-
aware service and security policy based on varied context information, we must
take context based access control into consideration. And also, the tool that
manages efficiently complex security policy rule sets that contain various and
large context information must be implemented [2,3].

In this paper, we present a new access control model that is suitable for
context-aware applications in ubiquitous computing environment. The proposed
model is Context-Role Based Access Control (CRBAC) that extends the role-
based access control (RBAC) model. This model grants and applies permissions
to users according to current context information. The context-role based access
control model adds a notion of context-role to a traditional role based access
control. The context-role represents environment state of the system by a map-
ping context-roles and context information. By using the uniform notion of a
role to capture both user and context attributes, we will build an access control
model that is easy to use and understand.

The reminder of this paper is organized as follows: Section 2 presents funda-
mental notion and model of traditional role-based access control and generalized
role based access control mechanisms. Section 3 presents the proposed context-
role based access control model illustrates formal definition and operation of
context-role based access control. Section 4 presents a short evaluation and dis-
cussion about the model and its implementation. And section 6 concludes the
paper.

2 Backgrounds and Related Works

2.1 Role Based Access Control

Role Based Access Control (RBAC) [4,5,6,7] is a form of non-discretionary ac-
cess control that is designed for large, structured organizations. RBAC is an
alternative to traditional discretionary access control (DAC) and mandatory
access control (MAC). A major purpose of RBAC is to facilitate security admin-
istration and review. Many commercially successful access control systems for
mainframes implement roles for security administration. A principle motivation
behind RBAC is the ability to specify and enforce enterprise specific security
policies in a way that maps naturally to an organization’s structure. In RBAC,

574 S.-H. Park, Y.-J. Han, and T.-M. Chung

users are assigned to roles and roles are assigned to permissions. Because user-
role associations change more frequently then role-permission associations, in
most organizations, RBAC results in reduced administrative costs as compared
to associating users directly with permissions.

To understand the various dimensions of RBAC, Sandhu et al [6,7] define a
family of four conceptual models. First, RBAC0 (the basic model) is indicating
that it is the minimum requirement for any system that professes to support
RBAC. RBAC1 and RBAC2 both include RBAC0, but add independent fea-
tures to it. RBAC1 adds the concept of role hierarchies (situations where roles
can inherit permissions from other roles). RBAC2 adds constraints (which im-
pose restrictions on acceptable configurations of the different components of
RBAC). RBAC3 includes RBAC1 and RBAC2 and, by transitivity, RBAC0
[4,5,6,7].

RBAC is suited for large, structured organizations, for several reasons. First,
roles and role hierarchies can reflect an organization’s structure easily. So, RBAC
encourages well-structured security policies that make sense in the context of
the organization. Second, RBAC policies change very little over time, because
permissions are assigned to roles, not users. Even though users frequently change
jobs, the jobs them-selves seldom change [4,5,6,7]. But RBAC has a problem that
its roles are inherently subject-centric. So, it cannot be used to capture security-
relevant information from the environment which could have an impact on access
decisions [8,9].

2.2 Generalized Role Based Access Control

Michael J. Convington et al have proposed the Generalized Role Based Access
Control(GRBAC) model [8,9]. GRBAC is an extension of traditional Role-Based
Access Control. It enhances traditional RBAC by incorporating the notion of ob-
ject roles and environment roles, with the traditional notion of subject roles. An
environment role can be based on any system state that the system can accu-
rately collect. Object roles allow us to capture various commonalities among the
objects in a system, and use these commonalities to classify the objects into roles.

But GRBAC has some problems. First, GRBAC is not suitable for large and
complex organizations, because of defining too many roles in the system. Second,
RBAC loses its advantage of data abstractions by object role. RBAC abstract
user-level information from system level information by notion of permission is
relationship between objects and operations. In GRBAC, because object role
violates this relation-ship, the data abstraction could not be achieved. In addi-
tion, this problem violates user/role and role/permission associations. Finally,
GRBAC has an unnecessary overlapping that environment roles and object roles,
because certain physical environmental things can be also objects.

3 Context-Role Based Access Control Model

Traditional RBAC is very useful and offers an elegant solution to the problem of
managing complex access control rule sets. But traditional RBAC has a problem

Context-Role Based Access Control for Context-Aware Application 575

that its roles are inherently subject-centric. So, it cannot be used to capture
security-relevant information from the environment which could have an impact
on access decisions. GRBAC can be used to capture security-relevant information
from the environment. But, GRBAC has many problems as we mentioned in
section 2.2.

Context-Role Based Access Control Model (CRBAC) supports the context
based access control requirement of context-aware application in pervasive com-
puting environment. CRBAC uses context-role in order to apply context infor-
mation to access control decision. In this section, we first define Context-Role
Based Access Control and then describe its operation.

3.1 CRBAC Definition

Based on the formalization of the traditional RBAC model, we present a formal
definition of a CRBAC model. First of all, we describe following components of
CRBAC:

– U(users): A user is an entity whose access is being controlled. U represents
a set of user.

– C(context): C represents a set of context information in the system. C
captures the context information that is used to define context role. Context
information can be time, location, temperature, CPU usage, etc.

– R(roles): R represents a set of roles. A role has two roles that are user roles
and context roles.

– UR(user roles): UR represents a set of user roles. It is equal to ROLE in
traditional RBAC.

– CR(context roles): CR represents a set of context roles. The context role is
used to capture security-relevant context information about the environment
for use in CRBAC policies. The context role can contain time-related context
role, location-related context role, etc.

– P (permissions): P represents a set of permissions. Permission is an approval
to perform an operation on one or more CRBAC protected objects.

– S(sessions): S represents a set of sessions. A role is activated for user during
each session. Activated role is a mapping between user roles and context
roles.

CRBAC has three relations UA, PA, and CA that define the associations
between user roles, user, permission assignments and context roles.

– UA: UA is the mapping that assigns a user role to a user.
– CA: CA is the mapping that assigns a context role to a context.
– PA: PA is the mapping that assigns permissions to a role.

The CRBAC model is illustrated in Figure 1. The CRBAC model shows re-
lations and components of CRBAC model. Such relationships of components of
CRBAC model is defined formally. Formal Definitions of CRBAC:

576 S.-H. Park, Y.-J. Han, and T.-M. Chung

Fig. 1. Context-Role Based Access Control Model

– U, C, R, UR, CR, P, S(users, contexts, roles, user roles, context roles, per-
missions, sessions, respectively).

– UA ⊆ U × UR, a many-to-many mapping user-to-user role assignment
relation.

– assigned users(ur : UR) → 2U , the mapping of user role ur onto a set of
users. Formally: assigned users(ur) = u ∈ U |(u, ur) ∈ UA

– R ⊆ 2(UR× CR), the set of roles.
– PA ⊆ P × R, a many-to-many mapping permission-to-role assignment re-

lation
– assigned permissions(r : R) → 2P , the mapping of role r onto a set of

per-missions.
– user sessions(u : U) → 2S, the mapping of user u onto a set of sessions.
– session roles(s : S) → 2R, the mapping of session s onto a set of roles.

Formally: session roles(si) ⊆ r ∈ R|(session users(si), r) ∈ UA

3.2 Context Roles

The context role is used to capture security-relevant context information in CR-
BAC policies. Context means situational information. Almost any information
available at the time of an interaction can be seen as context information. Some
examples [10] are:

– Identity
– Spatial information (e.g. location, orientation, speed, and acceleration)
– Temporal information (e.g. time of the day, date, and season of the year)
– Environmental information (e.g. temperature, air quality, and light or noise

level)
– Social situation (e.g. who you are with, and people that are nearby)

Context-Role Based Access Control for Context-Aware Application 577

– Resources that are nearby (e.g. accessible devices, and hosts)
– Availability of resources (e.g. battery, display, network, and bandwidth)
– Physiological measurements (e.g. blood pressure, heart rate, respiration rate,

muscle activity, and tone of voice)
– Activity (e.g. talking, reading, walking, and running)
– Schedules and agendas

The context role shares many characteristics with user roles. So, context role
has role activation, role revocation, and role hierarchies. Figure 2 show an ex-
ample of role hierarchies of context role.

Fig. 2. Example of Context Role Hierarchies

In Figure 2,context role deal with two kind of context information that one
is location-related context and the other is time-related context. Each context
roles are hierarchically composed. And one context role may inherit from other
kind of context roles. In Figure 2, context role (18 ≤ T ≤ 21h, D ≥ 1.5m) inherit
from (Distance ≥ 1.5m) that is location-related context role and (5h ∼ 9h p.m.)
that is time-related context role. Other context roles could be also hierarchically
composed. For example, the temperature-related context role could have ”body
temperature” or ”room temperature”. Body temperature could also have ”high
temperature(over 37◦C)”, ”normal temperature(between 36◦C and 37◦C), or
low temperature(under 36◦C).

A request in traditional RBAC comes from a certain user who has a set of
roles associated with her. This association is achieved via that define what roles
U is allowed to take on based on the responsibilities and functions of U and
that the set of roles are transferred to U and can subsequently be used during
access requests. This is called role activation in RBAC. This role activation

578 S.-H. Park, Y.-J. Han, and T.-M. Chung

is also used for context roles. System administrator must define context roles
and specify context variables and conditions that must maintain the values of
the context variables for each context role. Then if an access request occurs,
to mediate the access request, the system must gather context information and
determine which of those context roles are active. Context role must require role
revocation property. Activated context role may be invalid when related context
state is changed. So policy rules for context role revocation should be carefully
established.

3.3 Transactions of CRBAC

User roles and context roles provide powerful tools capture and organize security-
relevant information about various users and context. But we still have not dis-
cussed how CRBAC is actually operated. In traditional RBAC, transactions are
used to mediate access control. A transaction specifies a particular action to be
performed in the system. A transaction of CRBAC is a tuple in the form of
< user role, context role, permission >. A policy database would consist of a
transaction listing, paired with a permission bit for each transaction. The per-
mission bit indicates whether the associated transaction is allowed or prohibited.
Each < transaction, permissionbit > is called a policy rule. For example, policy
rule would be represented as � child, (18h ≤ T ≤ 1h, D ≥ 1.5m), TV ON >
, ALLOW >. In this example, child, (18h ≤ T ≤ 21h, D ≥ 1.5m) and TV ON
are user role, context role and permission, respectively. And ALLOW is permis-
sion bit.

3.4 An Example of CRBAC in Context-Aware Environment

In this section, in order to illustrate the operation of CRBAC, an example of
context-aware application in ubiquitous computing environment is illustrated.
The environment of our example is an intelligent home that implements a home
network and Context-Aware infrastructure. The intelligent home is equipped
with various networked sensors/actuator devices such as cameras, microphones,
RFID based location sensors, and so on. This intelligent home presents new and
interesting security challenges. Given the sensitivity of context information that
is generated and stored in the intelligent home, security policies can potentially
be quite complex. A policy can restrict access to information or resources based
on several factors, including user attributes, the specific resource or the context
information. For example, users can be classified as ”parent” or ”child”, ”resi-
dent” or ”guest”, or even as ”people” or ”pet”. Then, access rights can depend
on the user’s classification, as well as the associated identity. In addition, access
control may be restricted based on the user’s location, or based on environmental
factors such as the time of day or temperature. For example, in the home, par-
ents may restrict their children’s access to the TV, allowing the watching of TV
between 6:00 p.m. and 9:00 p.m. and only while they are 1.5 meters away from
a TV. In this instance, the access control policy depends on context information
composed of location and time information. So, certain CRBAC policy rule can

Context-Role Based Access Control for Context-Aware Application 579

be created for restriction of children’s access to the TV. Security administrator
must specify user role, context role and permission for composition of trans-
action. The transaction for this example is composed as < child, (18h ≤ T ≤
21h, D ≥ 1.5m), TV ON >. Because this transaction is a condition to allow,
permission bit should be set to ALLOW . Consequently, policy rule is composed
as � child, (18h ≤ T ≤ 21h, D ≥ 1.5m), TV ON >, ALLOW >. This policy
rule must be stored in security policy base and checked at each time the request
of access control occurs.

4 Discussion and Evaluation

This paper introduced context roles and provided the context role based access
control model. The major strength of CRBAC model is its ability to make access
control decisions based on the context information. As we mentioned in section
2, traditional RBAC and Generalized RBAC does not appropriate for context-
aware systems. Because traditional RBAC is inherently subject-centric, it cannot
be used to capture security-relevant context from the environment which could
have an impact on access decisions. And Generalized RBAC has three problems.
The first problem is defining too many roles in the case of large system, the sec-
ond problem is difficult to abstract data, and the third problem is unnecessary
overlapping between object roles and environment roles. These problems make
security policy is complicated and system overhead is increased, because too
many security elements must be maintained. And because some object roles are
also defined as certain environment roles, object role is unnecessary. Grouping
objects may be more efficient than object roles. So Generalized RBAC does not
also appropriate to context-aware applications. CRBAC meets requirements for
the context-aware security service. Because role of CRBAC is composed subject
roles and context roles, CRBAC can be used to capture security-relevant context
from the environment which could have an impact on access decisions. And CR-
BAC maintains security principals that traditional RBAC originally possesses.

To successfully implement CRBAC in the context-aware environment, the
several issues should be considered. First, the confidentiality of the context in-
formation must be guaranteed in access control process and transmission of con-
text information. Compromised context information can cause a system make
incorrect access control decisions and can comprise the security of the systems.
Second, every time access control decision occurs, to check on activation of con-
text role is too expensive. So the system should implement an efficient means of
role entry testing for context roles.

5 Conclusion

In this paper, we introduced the Context-Role Based Access Control (CRBAC)
model that provides context-based access control for context-aware applications
in pervasive systems. And also, we explored traditional RBAC and Generalized
RBAC and pointed out problems of these mechanisms. CRBAC has extended

580 S.-H. Park, Y.-J. Han, and T.-M. Chung

traditional role-based access control including the concept of context role. We
are focused on solving the problem of secure and automatized service of context-
aware applications in pervasive systems. Our work shows a formal definition
of CRBAC, a notion and characters of context role, and a simple operation of
CRBAC by using simple example of intelligent home.

References

1. Vinay Ahuja and Vijay Halaharvi : ’Network and Internet Security’, IANE Pub-
lishing Company, 1999.

2. G. Zhang and M. Parashar: ’Context-aware dynamic access control for pervasive
computing’, In 2004 Communication Networks and Distributed Systems Modeling
and Simulation Conference (CNDS’04), San Diego, California, USA, January 2004.

3. Michael J. Convington, Wende Long, et al.: ’Securing Context-Aware Applications
Using Environment Roles’, SACMAT’01, Chantilly, Virginia, USA, May 3-4, 2001.

4. David F. Ferraiolo, D. Richard Kuhn, Ramaswamy Chandramouli, ’ Role-Based
Access Control’, Artech House, 2003.

5. Ravi S. Sandhu, Edward J. Coyne, et al.: ’Role-Based Access Control Models, IEEE
Computer, Volume 29, Number 2, pages 38-47, Feb. 1996.

6. Ravi S. Sandhu : ’Role based access control’ In Advances in Computers, volue 46.
Aca-demic Press, 1998.

7. David F. Ferraiolo, Ravi Sandhu, et al. : ’Proposed NIST Standard for Role-Based
Access Control’, ACM Transac-tions on Information and System Security, Vol. 4,
No. 3, Aug. 2001.

8. M. M. Moyer, M. J. Convington, et al. : ’Generalized role-based access control
for securing future applications’, In 23rd National Information Systems Security
Conference. (NISSC 2000), Baltimore, Md, USA, Oct. 2000.

9. Matthew J. Moyer and Mustaque Ahamad : ’Generalized role based access con-
trol’, Proceed-ings of the 2001 International Conference on Distributed Computing
Systems (ICDCS), Mesa, AZ, Apr. 2001.

10. Mari Korkea-aho : ’Context-Aware Applications Survey’, Internetworking Seminar,
Apr. 2000.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 581 – 590, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Context Communication for Providing Context-Aware
Application’s Independency*

Kugsang Jeong, Deokjai Choi, and Gueesang Lee

Department of Computer Science, Chonnam National University,
300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea

handeum@iat.chonnam.ac.kr, {dchoi, gslee}@chonnam.ac.kr

Abstract. The behavior of context-aware applications depends on various as-
pects of the surrounding context. Most context-aware applications are depend-
ent on middleware from the point of how to subscribe and query dynamically
changing contexts. This dependency prevents application developers from eas-
ily developing context-aware applications because these applications either re-
quire knowledge of the internal architecture of the middleware or the help of an
administrator. To relieve application dependency on middleware, we propose
context communication between applications and middleware. An application
communicates with middleware to register rules, which predefine interesting
contexts, and to request context queries to acquire information. The context
communication can allow application developers to spend time on developing
application logic and less time on middleware architecture or its administration.
We expect that our work will make it easier for developers to develop various
context-aware applications.

1 Introduction

One of the key aspects of ubiquitous computing is context awareness. Ubiquitous
computing in its early stage meant invisible interface computing with calm technol-
ogy [1]. Ubiquitous computing has been evolved into more advanced computing giv-
ing rise to new concepts and various technologies. One such technology is context-
aware computing. In context aware computing, applications are aware of contexts [2].
One example of context awareness is when an instructor enters a classroom to start a
lecture, a context-aware application recognizes that he will start a lecture in the room
and then projects a lecture file onto a screen. In the context-aware computing envi-
ronment, users such as instructors can make use of services which automatically do
tasks they would normally be required to do manually. Today context awareness is an
important concept for ubiquitous computing and many context-aware applications are
showing future possibilities for ubiquitous computing. With many more applications
emerging, ubiquitous computing will soon become a common reality.

* This research was supported by the Program for the Training of Graduate Students in Re-

gional Innovation which was conducted by the Ministry of Commerce Industry and of the
Korean Government Regional Innovation which was conducted by the Ministry of Commerce
Industry and Energy of the Korean Government.

582 K. Jeong, D. Choi, and G. Lee

Context-aware applications adapt their behavior to dynamically changing contexts
in environments. The middleware in ubiquitous computing infrastructures maintains
context information which are sensed by sensors and predefined. Context-aware ap-
plications use context information to evaluate current contexts. There are two types
for context-aware applications to adapt to current contexts: context trigger and context
query. Context trigger applications have their own contexts and perform specific
behaviors whenever a situation arrives at a predetermined context. Therefore context
decision-making is important for triggering an application. The Labscape application
of one.world infrastructure defines contexts as user’s location changes in order to
transfer experimental data to a computing device around a user whenever a user
moves to a new location [3]. Context query applications acquire necessary context
information from middleware during their runtime. The Context-Aware Mailing List
application obtains a list of members who are in the building, and delivers messages
only to them [2]. Context-aware computing architecture should support both context
trigger and query function to allow applications to adapt their behavior to dynamically
changing contexts.

In previous ubiquitous computing infrastructures supporting context-awareness
context trigger and query functions are dependent on middleware’s internal architec-
ture or its administration. In earlier stage, applications received and requested context
information from internal components that had context information which they are
interested in [2]. Even if application developers use a discovery service, they needed
to know the architecture of the middleware components. The next stage of infrastruc-
tures provided context information modeling which made it unnecessarily for applica-
tion developers to know the middleware architecture [4]. To obtain context informa-
tion, application developers should predefine rules based on context information
models. The rule based context trigger and query separate application developers’
concerns from the middleware architecture, but application developers still have de-
pendencies on middleware because context information model is not a common
model for sharing knowledge but a middleware-specific model and the registration of
predefined rules can be performed by an administrator. Recent infrastructures support
knowledge sharing context information model by using ontology [5, 6, 7, 8]. The
rules for context trigger and query are based on ontology based context information
model. They still need the help of administrators to register rules for context trigger
into middleware. And they request middleware to query context information through
remote invocation. The ways for context trigger and query described above may pre-
vent context-aware applications from being developed easily, so the context-aware
architecture should reduce the application’s dependency.

To minimize the dependency of context-aware application on middleware and at
the same time provide two types of context-aware applications, we propose context
communication between context-aware applications and middleware to register con-
text decision rules for context trigger and request context queries. Under our architec-
ture, application developers compose rules for making a context decision and register
them to the middleware through communication messages between applications and
middleware. The middleware then generates a context object that evaluates the con-
text decision rules and informs application of context information when the situation
satisfies the registered rules. So when application developers develop applications,
they do not have to modify middleware or know internal components at all. In case of

 Context Communication for Providing Context-Aware Application’s Independency 583

context query, the application delivers a query statement to a relevant context object
then the context object performs the query and transfers results to the application. All
application developers need to do is to create context decision rules to register and to
request a query to the context object and receive the results through communication
messages. Therefore this work helps application developers create various context-
aware applications easily, as needs arise to accelerate the evolution of ubiquitous
computing environment.

Section 2 summarizes related works from the point of how dependent applications
are on middleware. Then we describe our architecture and context communication in
Section 3 and Section 4. We show application examples using our architecture in
Section 5. Lastly Section 6 concludes our work.

2 Related Works

There are many infrastructures to support context-awareness for ubiquitous comput-
ing. In this section, we describe how they make a context decision for context trigger
and query context from the point of applications’ dependency on middleware.

Context Tool Kit provides context query and asynchronous events for context trig-
ger [2]. After obtaining widget location through discovery service, applications sub-
scribe to widget callback by using a specific method. Context decision is made by
application’s logic with all information issued from widgets. Applications can request
context information by query method. So application developers are dependent on
middleware’s components because they should know in advance internal components
like a location widget having context information which they are interested in. Also,
they have to use middleware-specific methods for context query.

One.world provides context query and asynchronous events [3]. It maintains tuples
based on data model to store and query information. Context query to tuples is per-
formed by the structured IO operations and its own query language. Context decision
is made by application’s logic with all asynchronous events issued from internal com-
ponents. Context trigger in one.world is also dependent on middleware’s components.
Context query uses internal components-independent query language based on tuples,
though it uses middleware-dependent data model and query language.

GAIA provides the event manager to deliver contextual events to applications in-
stead of explicit context decision function and the context service for queries with
first order logic [4]. As applications should know event channels which provide in-
formation to make a context decision, and rules for query should be registered manu-
ally to the registry, applications are dependent on GAIA.

In SOCAM [7], application developers should create pre-defined rules in a file for
context decision and pre-load them into context reasoning module in middleware.
These steps can not be done without administrator’s operation.

Some infrastructures can not provide both context trigger and context query while
they provide one of the two functions independent on middleware. The Context Bro-
ker also supports context query function based on its own inference rules but does not
support context decision function [5]. The Semantic Space provides context query
engine based on RDF Data Query Language so that applications are independent of
middleware. It does not, however, consider context decision function [6]. Context
Management System has contributed to decoupling application composition from

584 K. Jeong, D. Choi, and G. Lee

context acquisition [8]. To build a context-aware application in this architecture, an
application developer composes an application by selecting building blocks and sets
the context decision rules by using a tool. Context decision-making function is inde-
pendent of middleware, but it does not provide context query function.

3 Context-Aware Computing Architecture

Our context-aware computing architecture, UTOPIA, is our initial work for realizing
pervasive computing and is focusing on supporting not only application-defined con-
text decision-making but context query [9]. The architecture of UTOPIA is shown in
Figure 1. An application defines its application context as a context decision rule
based on shared ontology and then registers the rule to the Context Register. The
Context Register authenticates applications and accepts an application’s context rules.
The Context Object Generator generates an application-specific context object which
evaluates the application’s context rule. Whenever any situation in surrounding envi-
ronment is changed, the application context object evaluates whether changed situa-
tion meets the rule. The Shared Ontology Base stores all context information in envi-
ronments. The Event Provider signals context objects in order to re-evaluate the rule
whenever context information, which context objects are interested in, changes. The
Ontology Provider wraps sensed or predefined information into context information,
and provides the Shared Ontology Base with the information.

Fig. 1. UTOPIA Architecture

 Context Communication for Providing Context-Aware Application’s Independency 585

The context decision rule is a set of rules to describe the application context which
a specific application is interested in. The context decision rule has the form of ante-
cedent and consequent like isIn(?x, ?y) ^ Instructor(?x) ^ LectureRoom(?y) => Lec-
ture_start. The context query is to acquire necessary context information from mid-
dleware. The statement for context query conforms to the syntax of Bossam which is
one of an OWL query engine like query q is isIn(?x, room_410) and Students(?x);
[10].

UTOPIA evaluates an application’s context decision rules in order to determine
whether the application is interested in the current situation and responds to context
information query requested from the application. UTOPIA needs context communi-
cation between middleware and applications when applications register the rule into
UTOPIA, request context query, and middleware notifies application context and
responds to context query. The context communication described later in this paper is
one of ongoing works to complete the implementation of UTOPIA.

4 Context Communication

4.1 CRDP (Context Register Discovery Protocol)

The context register waits for a request from an application and authenticates the
application with an ID and password. The first step of an application is to contact the
Context Register of infrastructure. To achieve this, we have implemented a simple
Context Register Discovery Protocol.

The CRDP is a protocol that allows clients to dynamically obtain IP address and
port number of context register. It operates similarly to Dynamic Host Configuration
Protocol [11]. Application as a client broadcasts a discovery packet and context regis-
ter as a CRDP server responds by sending an offer packet includes IP address and port
number of Context Register.

Context Register Application

CRDP request

CRDP response

Authentication request

Authentication response

CR registration

CR status

Operations
1. Context Register Discovery
2. Authentication Process
3. CR Registration

broadcast
unicast

Fig. 2. Operations between Context Register and Application

586 K. Jeong, D. Choi, and G. Lee

After finding the location of Context Register, an application starts the authentica-
tion process. If the authentication is successful, an application can register its context
rule to the Context Register. At authentication, the Context Register must figure out
application’s address and port number to use when the Application Context Object
notifies context event to application. The Context Register then hands the context rule
and application’s location to the Context Object Generator. Figure 2 shows operations
between the Context Register and a new application.

4.2 CCP (Context Communication Protocol)

The CCP supports both context trigger and context query. Asynchronous context
notifications for context trigger are performed by subscribe/publish mechanism. A
context-aware application registers context decision rule into context register for
subscribing context. The application context object publishes contexts issued by mak-
ing a context decision according to rules. The application subscribes contexts from the
application context object. Context query is performed by request/respond mecha-
nism. An application sends query statements to application context object to request a
query. The application context object performs the query and sends the results to the
application. Table 1 shows sequence of CCP operations

Table 1. Sequence of CCP operations

Context Trigger Operation
1. an application registers context decision rules to Context Register
2. CR verifies the syntax of rules and send acknowledgement to the

application
3. application waits for contexts issued from Application Context Ob-

ject
4. Application Context Object publishes the result of context deci-

sion-making

Context Query Operation
1. an application sends query statements to Application Context Ob-

ject and wait for response
2. Application Context Object performs the query and send the re-

sults to the application

We propose text based context communication protocol, CCP, for communication
between applications and middleware. Context information is exchanged between a
co and an application in the form of a CCP message. Each message consists of a ver-
sion number indicating the version of CCP, and one of 4 types of CCP operation
which mean context decision rule registration, context notification, request and re-
sponse to context query. Each type of operation includes operation type and type-
specific contents. Figure 3 shows the format of each message.

 Context Communication for Providing Context-Aware Application’s Independency 587

a. CCP Message

b. Register Operation Message

c. Notification Operation Message

d. Request Operation Message

e. Response Operation Message

Fig. 3. CCP Formats

We have implemented CCP by using socket and JMS (Java Message Service) [12].
To register context decision rule, we used socket based communication to register
context decision rule and JMS to notify asynchronously contexts and request/respond
to context query. Applications as socket clients request rule registration to Context
Register which plays socket server’s role. From the point of JMS, applications are
subscribers for context which is published from an Application Context Object and
requesters for context query.

The JMS provides subscribe/publish mechanism using topic connection factory in
messaging system and request/response using queue connection factory. The Java
Naming Directory Interface to find objects through names associated with objects can
be used with the JMS. To communicate with middleware, applications need the name
of JNDI (Java Naming and Directory Interface) factory [13], names of topic connec-
tion factory and topic for subscribe/publish service, and names of connection factory
and queue for request/respond service. These information are predefined in middle-
ware and the context register maintains them in a pool. They are dynamically as-
signed to applications and Application Context Objects by Context Register. When
applications terminated, all information returned.

Context trigger is performed as followings. Applications obtain IP address and port
number of Context Register through context register discovery protocol. The Context
Register simply authenticates applications by id/password. After authentication, the
application registers context decision rules to Context Register by register operation
of CCP. The Context Register verifies the rules and sends applications acknowledge-
ment piggybacking names of JNDI factory, topic connection factory and topic, and
queue connection factory and queue for context query. Also the Context Register
sends the rule with names of topic connection factory and topic to Context Object
Generator. Then Context Object Generator generates an Application Context Object
which makes a context decision according to rules and notifies asynchronously con-
texts through topic publisher of JMS. Applications install a topic subscriber and sub-
scribe context notification from Application Context Object.

588 K. Jeong, D. Choi, and G. Lee

Context query is performed by request and respond operation after Application
Context Object is generated. Applications send query statements to Application Con-
text Object by request operation and wait for response by respond operation. If appli-
cations want to use only context query without context trigger, applications should
register null rule so that it generates Application Context Object for performing con-
text query.

5 Applications Using Context Communication

5.1 ULecture

ULecture is an application using both context trigger and context query communica-
tion. This application downloads a lecture material and projects it on the screen when
a lecture starts. Application’s context for ULecture is that a lecture starts at a lecture
room. Context query is used to find the location of lecture material to download.

Fig. 4. ULecture Application

The context decision rule for ULecture is the same described in section 3. When
being executed at first, ULecture registers the rule to Context Register with register
operation of CCP. After registration, ULecture installs a topic subscriber and waits for

 Context Communication for Providing Context-Aware Application’s Independency 589

context notification. In the middleware, an Application Context Object for ULecture
is generated and an event list for Ulecture is registered into Ontology Event Provider.
If a person enters a room, this context change is notified from sensor to Ontology
Provider, ontology event provider and ULecture’s Application Context Object in
sequence. Then Application Context Object performs a context decision-making. If
the person is an instructor and the room is a lecture room, context which the lecture is
beginning is triggered. So Application Context Object publishes predefined context
with instructor name and lecture room ID which are described as variables in the
rules.

ULecture listens to context and request context query to find the location of lecture
material with instructor’s name. The query statement is query q is teachLec-
ture(K.Jeong, ?x) ^ hasLecture(Room_410, ?x) ^ hasLectureFileURL(?x, ?y);. It
means what the file location of lecture material which K.Jeong instructor teaches at
room 410 is. The ULecture obtains the location of file from response of Application
Context Object, and downloads it and turns on the projector in lecture room to project
a file on the screen. We controlled a projector having infrared interface by using
uATMEGA16 kit [14] which can record infrared control signals. Figure 4 shows the
steps described above.

5.2 Context-Aware Mailing List

UAML is an application using context query, which is an upgraded version of one of
the applications of Context Tool Kit. While original application delivers messages
only to members of group who are currently in the building [2], our UAML can
change dynamically recipients according to the result of context query. This applica-
tion uses only context query, so it registers rules as a null. The Application Context
Object for UAML is generated without context decision making for context trigger.
CAML request context query according to user’s operation. For example, when a user
wants to deliver messages to members in room 410, the user just write query state-
ment to get a list of members and their mail addresses: query q isIn(?x, Room_410) ^
IAT(?x) ^ hasMailAddr(?x, ?y);. Then UAML send this statement to CAML context
object. Then CAML’s Application Context Object performs and responds to context
query. The UAML receives a list of the members and delivers messages to members
in a list.

6 Conclusion

Context-aware applications in previous ubiquitous computing infrastructures are de-
pendent on middleware. It means that applications should know middleware’s internal
components or need the help of an administrator to obtain context which they are
interested in. Application dependency on middleware prevents application developers
from easy development and deployment.

We proposed context communication supporting context trigger and context query
to reduce application dependency. Context communication is performed by CRDP
and CCP. The CRDP is to discover context register in middleware. The CCP is to
deliver asynchronous context notification and request/respond to context query. The

590 K. Jeong, D. Choi, and G. Lee

CCP has 5 operations: register, notify, request and respond. Applications should find
a Context Register by using CRDP to register context decision rules. After successful
registration, applications wait for context notification from Application Context Ob-
ject whenever context changes. Also applications can request context query to obtain
necessary context information. We implemented ULecture and CAML with CRDP
and CCP to show the effectiveness of context communication. Developers can de-
velop easily applications which use context trigger and context query through context
communication because they just predefine rules and query statements without re-
garding middleware’s internal components and its operation.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American. 265, pp. 94-10.
2. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications.

PhD Thesis, (2000)
3. Grimm, R.: System Support for Pervasive Applications. PhD Thesis, (2002)
4. Roman, M., Hess, C., Cerqueria R., Ranganathan, A., Campbell, R., Nahrsted, K.: Gaia: A

Middleware Platform for Active Spaces. IEEE Pervasive Computing (2002) 74-83
5. Chen, H.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD

Thesis, (2004)
6. Wang, X., Jin, S.D., Chin, C.Y., Sanka, R.H., Zhang, D.: Semantic Space: An Infrastruc-

ture for Smart Spaces. PERVASIVE computing (2004)
7. Gu, T., Pung H.K., Zhang, D.: A Service-Oriented Middleware for Building Context-

Aware Services. Journal of Network and Computer Applications (JNCA) Vol. 28. (2005)
1-18

8. Christonpoulou, E., Goumopoulos, C., Kameas, A.: An ontology-based context manage-
ment and reasoning process for UbiComp applications. Joint conference on Smart objects
and ambient intelligence: innovative context-aware services: usages and technologies.
(2005)

9. Jeong, K., Choi, D., Lee, G., Kim, S.: A Middleware Architecture Determining Applica-
tion Context using Shared Ontology. LNCS Vol. 3983 (2006)

10. Jang, M., Sohn, J.: Bossam: an extended rule engine for the web, Proceedings of RuleML,
LNCS Vol. 3323 (2004)

11. Droms, R.: Dynamic Host Configuration Protocol. RFC 2131, IETF (1997)
12. Java Message Service, http://java.sun.com/
13. Java Naming and Directory Interface, http://java.sun.com/
14. uATMEGA16, http://www.digihobby.co.kr/

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 591 – 600, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Heterogeneous Embedded MPSoC for Multimedia
Applications

Hong Yue, Zhiying Wang, and Kui Dai

College of Computer, National University of Defense Technology,
Changsha, Hunan, P.R.China 410073
yuehong_nudt@yahoo.com

Abstract. MPSoC are attractive candidate architectures for multimedia process-
ing as multimedia schemes generally can be partitioned in control-oriented and
data-dominated functions, which can all be processed in parallel on different
cores. This paper presents a heterogeneous embedded MPSoC for a wide range
of application fields with particularly high processing demands. It integrates
three processor cores and various interfaces onto a single chip, all tied to a 32-
bit AMBA AHB bus. The RISC core coordinates the system and performs some
reactive tasks, and the cluster composed by two DSP cores perform transforma-
tional tasks with more deterministic and regular behaviors, such as the small
and well-defined workloads in multimedia signal processing applications. The
DSP cores are designed based on Transport Triggered Architecture (TTA) to
reduce hardware complexity, get high flexibility and shorten market time. The
processor is fabricated in 0.18um standard-cell technology, occupies about
21.4mm2, and operates at 266MHz while consuming 870mW average power.

Keywords: Heterogeneous MPSoC, Transport Triggered Architecture, DSP,
Embedded Processor.

1 Introduction

Embedded multimedia applications can be categorized into control-oriented and data-
dominated, the computing platforms for multimedia processing always need to
effectively handle both control-intensive and data-intensive tasks. Recent RISC archi-
tectures have been enhanced for data-intensive tasks by incorporating single-cycle
multiply-accumulators, SIMD datapaths, or specific functional units [1] to have the
ability to perform data-intensive tasks, but the performance is still far behind that of a
DSP with similar computing resources [2]. This is because data-intensive tasks are
very distinct from general-purpose computations. Similarly, DSP is enhanced to have
some GPP features but it is not effective.

MPSoC are attractive candidate architectures for multimedia processing as multi-
media schemes in general can be partitioned in control-oriented and data-dominated
functions, which can all be processed in parallel on different cores. Each core can be
adapted towards a specific class of algorithms, and individual tasks can be mapped
efficiently to the most suitable core. The OMAP media processor of Texas Instru-
ments company and the Tricore processor series of Infineon company are both this
kind of processor [3][4].

592 H. Yue, Z. Wang, and K. Dai

In general, different approaches are adapted to accelerate execution on embedded
processors. In most cases, some kind of parallelization technique is employed on
different levels [5]. Even combination of these techniques is used. Another very pow-
erful means to accelerate multimedia processing is to adapt processors to specific
algorithms by introducing specialized instructions for frequently occurring operations
of higher complexity [6].

This paper presents a heterogeneous embedded MPSoC for both RISC and DSP
tasks. It is an upgrade version of the processor illustrated in [17]. It integrates three
processor cores and various interfaces onto a single chip, all tied to a 32-bit AMBA
AHB bus. One core is a RISC core which coordinates the system and performs reac-
tive tasks such as user interface; the other is a cluster composed by two novel VLIW
DSP cores designed based on Transport Triggered Architecture (TTA) which per-
forms data-intensive tasks with more deterministic and regular behaviors. Applica-
tions are mapped to the three cores according to the characteristics, small and well-
defined DSP algorithms are executed on DSP cores, and the others are executed on
RISC core.

This paper is organized as follows. In section 2, the proposed multi-core processor
architecture is presented. The DSP cores designed based on TTA are described in
section 3. In section 4, we will describe inter-processor cooperation in both the hard-
ware and software way in detail. In section 5, the simulation and implementation
results are reported. Section 6 concludes the paper.

2 SoC Architecture Overview

The SoC architecture, shown in Figure 1, comprises three cores that have been spe-
cifically optimized towards a particular class of tasks by employing different architec-
tural strategies. The RISC processor is a 32bit processor compliant with the SPARC
V8 architecture; it is optimized towards control-oriented tasks such as bitstream proc-
essing or global system control. The cluster composed by two TTA-DSP processor
cores is particularly optimized towards high-throughput DSP-style processing, such as
FFT, IDCT or filtering are both eight-issue VLIW architecture. The two cores are
both designed based on TTA architecture; they offers high data level parallelism and
high programming flexibility, more details are described in the next section.

A 32-bit AMBA AHB system bus [7] connects the three cores to off-chip SDRAM
memory and flash memory via a 32-bit memory interface, to JTAG interface for de-
bug, to SATA interface for access to the hard disk, and to the I/O bridge for access to
different peripherals. The direct change of data between TTA-DSP Cache and exter-
nal memory without placing a burden on the TTA-DSP cores is supported by the
DMA tunnels. A 64kB Scratch-Pad memory exists to store some constant data that
are used frequently in one procedure. If these data are always loaded from external
memory, it is very time-consuming. Buffer between TTA-DSP DCache and system
bus is to hide the memory access latency. The inter-processor communication is han-
dled by IPCI (Inter-Processor Communication Interface), the detailed mechanism will
be described in Section 4.

 A Heterogeneous Embedded MPSoC for Multimedia Applications 593

RISC
Processor

M
em

or
y

In
te

rf
ac

e

32bit AMBA AHB Bus
SDARM

busLCD
Controller

LCD
interface

TTA-DSP processor
Core 1

Icache

D
M

A
 D

at
aDcache

Buffer

D
M

A
 D

at
a

IPCI DMA
controller

DSP processor

64 KB
Scratch-Pad

Memory

Flash bus

I/O Device

SATA
Controller

I/O bridge

SATA
Interface

JTAG
Interface

JTAG

TTA-DSP processor
Core 2

Fig. 1. Dual-core system-on-chip architecture

3 TTA-DSP Cluster

The two TTA-DSP cores are both highly parallel DSP cores with VLIW architecture.
The processor core is designed based on TTA (Transport Triggered Architecture).
Simple design flow, customized function units and flexible data level programmabil-
ity make it very suitable for embedded DSP applications.

3.1 Transport Triggered Architecture

The main difference of TTA compared to traditional, operation triggered architecture
is the way the operations are executed. Instead of triggering data transports, in TTA
operations occur as a side effect of data transports, i.e., the execution begins when
data is written to operand registers. This design implies that one data transport is
needed to be explicitly appointed in the instruction. Figure 2 shows the basic TTA
processor architecture [8].

Instruction M
E

M

IFetch

Iecode

Interconnect

RU

FU

LSU

FU

D
ata M

E
M

Control path Data path

Fig. 2. TTA architecture

The data path of TTA is organized as a set of function units (FU) and register files
(RF). The data transfers between these units are done through an interconnection
network that consists of desired number of buses. The architecture is very flexible

594 H. Yue, Z. Wang, and K. Dai

because the number of FU, RF, RF ports, buses and bus connections can be changed
unlimitedly. For example, by adding buses and connections, more data transfers can
be executed in parallel and thus the execution time is reduced. The complier supports
all these changes [8].

In addition to the flexible basic architecture, TTA allows the designer to add appli-
cation specific operations into the instruction set [9]. This is a very efficient way to
improve performance since quite complicated operations may become trivial.

The user software tools for TTA processor development include a compiler to
translate high-level programming language into sequential code, a scheduler to sched-
ule the sequential code and produce parallel code, and a simulator to verify and evalu-
ate both the sequential and parallel codes. Then, a design space explorer can be used
to test different TTA configurations for the application. Finally, synthesizable Verilog
code can be automatically generated for the chosen configuration using the Processor
Generator.

3.2 TTA-DSP Cluster Architecture

The two TTA-DSP cores are both designed based on TTA according to the character-
istics of multimedia signal processing applications. They compose a cluster to process
data-oriented tasks. Using a multi-level multi-granularity instruction customization
algorithm [19], the instruction sets of the two cores are decided. Therefore, different
special function units are customized to execute some specific operations in two
cores. That also means special instructions are added to the instruction set. Figure 3
shows the architecture of the two TTA-DSP cores. Both cores have 4 integer function
units (IFU) and 2 floating-point function units (FFU), 2 load/store units (LSU), 2
integer register files (IRF) and 2 floating-point register files (FRF). Difference is that
one core has a TriU unit and another has an IdctU. TriU is a function unit specific for
trigonometric function calculation. It is designed based on CORDIC algorithm, so it
can calculate many trigonometric functions in 32 cycles instead of other time-
consuming or place-consuming ways [10]. And IdctU is an IDCT hardware engine to
process the whole IDCT algorithm. Only less than 64 cycles are needed to finish the
transform of an 8*8 block by adopting efficient algorithm and well-defined hardware
architecture. TriU and IdctU is shown in Figure4(a) and Figure4(c). All these function
units are connected to 8 buses. That implies 8 data transfers can be executed simulta-
neously provided that there is parallelism in the application.

To thoroughly exploit data level parallelism, SIMD data path is designed in the
IFU. IFU integrates rich integer functions. In addition to the basic operations such as
add, sub, multiply, subword operations and multimedia data manipulation operations
such as mix, shuffle, pack and unpack, are also implemented in it. It means that mul-
timedia instruction extension is done to the instruction set. Figure 4(b) shows the
structure of an IFU. 4 IFUs are set to avoid hardware resources conflict. So at the
same time, one IFU is executing multiply-accumulate, another IFU is executing add
operation of 8 bytes (4 bytes packed in one 32bit register adds another 4 bytes packed
in one 32bit register).

 A Heterogeneous Embedded MPSoC for Multimedia Applications 595

IFU0 IFU3 FFU1 TriU

LSU0 LSU1 IRF1

FFU0

Interconnection Network (8 buses)

…

IRF0 FRF0 FRF0

IFU0 IFU3 FFU1 IdctU

LSU0 LSU1 IRF1

FFU0

Interconnection Network (8 buses)

…

IRF0 FRF0 FRF0

Fig. 3. TTA-DSP architecture

PreProcessor
Exponent Calculator

Right Shifter

Multiplier

x y

>> >>
LU
T

MU
X

MU
X

MU
X

C
O

R
D

IC
 c

or
e

Left Shifter

Selector
PostProcessor

Final Result

CONFIG OPCODE X1 X2 X3

CTRL

RESULT STATUS

 INPUT BUS

PRETREATMENT

SUBWORD ADDER

+ + + +

SUBWORD MAC

× × × ×

MUX

MULTIMEADIA
EXTENSION LOGIC

UNIT
SHIFTER

SM SM SM

(a) TriU Structure (b) IFU Structure

Dynamic Ranging (Pre-shift)

0.5KB Table0
 (128 entries, 2 halfwords/entry)

u0 (u2, u4, u6)

ALU0 ALU3ALU2ALU1

Rearrangement Module

1KB Table1
 (128 entries, 4 halfwords/entry)

u1 (u3, u5, u7)

ALU4 ALU7ALU6ALU5

Rearrangement Module

Dynamic Ranging (Post-shift)

Dynamic Ranging (Pre-shift)

Dynamic Ranging (Post-shift)

r0 r3r2r1

Sub SubSubSub

r4 r7r6r5
Shifter

u0 u3u2u1u4 u7u6u5

Sign(u) Sign(u)

Phase indication signal

Phase indication signalAdd & shift

(c) IdctU structure

Fig. 4. Integer Function Unit Structure

In VLIW machines, the complexity of the register file grows rapidly as more and
more FU are integrated on a chip. For N concurrent FU, the area of the centralized
register files grows as N3, the delay as N3/2, and the power dissipation as N3 [11].

596 H. Yue, Z. Wang, and K. Dai

Thus, the register file will soon dominate the area, the delay and the power dissipation
in the multi-issue processors as the number of FU increases. To solve this problem,
TTA provides partitioned register files. 4 register files in TTA-DSP can be accessed
by any FU if needed. So the complexity decreased without performance penalty. And
data can be transferred from one FU to another directly for each FU has its own regis-
ters, so lots of middle results saving are bypassed. Experimental results indicate that 4
banked and a total of 64 registers of each can achieve a best performance/cost ratio.

3.3 Memory Subsystem

The two TTA-DSP cores share the same memory subsystem. L1 cache and large
partitioned register file is chosen in our design, because when interconnect overheads
are taken into account, sharing L2 cache among multiple cores is significantly less
attractive than when the factors of delay and area are ignored [15]. The L1 cache is
multi-banked and is high-bit address interleaved so that each bank has its own data
space and each core can get its data from a bank to reduce collisions. The write back
policy and 128 bits long cache lines are selected to achieve higher performance. A
compiler-managed buffer is supported to hide memory access latency. In addition, a
DMA tunnel is used to allow the memory and/or other peripherals such as I/O devices
to access the processed data directly without interrupting the processor.

4 Inter-processor Cooperation

This section will describe the inter-processor cooperation mechanism. The application
will be partitioned into two parts, and be mapped to the RISC core and TTA-DSP
cores by software. How to map, how to control the tasks begin and end, these control
problems are solved by hardware.

4.1 Software Support and Optimizations

Software support is important for heterogeneous MPSoC, because one application
must be divided into different parts according to their characteristics and be mapped
to different processor cores according to the core’s function.

A program analyzer is developed to do this work. It analyzes the input program,
and divided the program into multiple tasks. Then it extracts the characteristics of the
tasks. If the task is control-oriented, it will be mapped to the RISC processor; if the
task is computation-oriented, it will be mapped to one of the TTA-DSP cores. MCP
scheduling algorithm is adopted to further distribute the computation-oriented tasks
on two DSP cores [19]. When the program is output, some assembly-written sen-
tences have been added to distinguish these tasks. Hardware will identify the extra
instructions and control the tasks mapping.

For TTA-DSP cores, optimizing complier is available that support its hardware fea-
tures and perform code optimization, instruction scheduling, and VLIW parallelization.
Based on the complier, C programs can be easily mapped to the TTA-DSP hardware
architecture, whereas some computation-intensive core algorithms are typically written

 A Heterogeneous Embedded MPSoC for Multimedia Applications 597

in assembly language and scheduled by hand for full exploitation of all data path
features. The TTA-DSP compiler is being extended to support subword data types for
SIMD.

During the architecture definition phase of TTA-DSP cores, cycle-accurate simula-
tor have been developed for the optimization of architectural features and instruction
sets. The simulator continues to be used for application development. But the inte-
grated simulator for both RISC core and TTA-DSP is under way.

4.2 Hardware Inter-processor Communication Mechanism

A complete application begins to run on the RISC processor, for the control-oriented
part is always first executed, and the DSP kernel algorithms will be called and run on
the DSP cluster if needed. So the inter-processor communication is always happened
during application running. The RISC processor and the DSP cluster communicate via
an interrupt mechanism. This mechanism provides a flexible software protocol be-
tween the two parts.

There are 6 registers in IPCI used for the communication mechanism. Three are
from RISC to DSPs, another three are from DSPs to RISC. The two sets almost have
the same meaning. One register is command register, the interrupting processor can
use this register to pass a command to the interrupted processor. The second register
is data register, the interrupting processor can use this register to pass a data or an
address or status information to the interrupted processor. The third register is a flag
register. If the interrupt is responded, the flag will be cleared.

On writing to the command register, an interrupt is generated to the other processor
and the flag register is set. The interrupted processor must acknowledge the interrupt
by reading the data register (if necessary) and the command register for the associated
interrupt. The interrupt is reset and the flag register is cleared when the command is
read by the interrupted processor. If the interrupt is masked in the interrupt handler
when the command register is written, no interrupt is generated and sent to the proc-
essor. However, the flag is set. If the interrupt is unmasked at a later time, an interrupt
is generated to the processor.

5 Implementation Results

We have verified the proposed SoC from the micro-architecture design, to FPGA
prototyping and the standard-cell based silicon implementation.

5.1 Performance Evaluation

To fully exploit the data-level parallelism of TTA-DSP cores, some DSP kernel algo-
rithms in assembly code are hand written. The complete multimedia application simu-
lation on both cores is really hard work, it is under way. So this section only presents
the performance evaluation results of the TTA-DSP cores.

Figure 5 summarizes the performance comparisons between one TTA-DSP core,
the state-of-the-art high-performance DSP processor TI TMS320C64xx and the gen-
eral purpose embedded processor LEON3[14]. The results of TTA-DSP are get by our

598 H. Yue, Z. Wang, and K. Dai

simulator, and the results of TMS320C64xx are get by TI development environment
CCS2.0[12][13]. The results of LEON3 are get by LEON3 simulator[14]. All the 6
benchmarks are selected from TMS320C64x DSP Library [12]. The parameters of the
benchmarks are listed in Table 1. They are measured in execution cycles.

The simulation results show that the performance of TTA-DSP core is better than
that of the current popular DSP processors for various benchmarks, especially for the
algorithms which contain trigonometric computations. The performance is also much
better than that of the current popular general purpose embedded processors. The
most special case is IDCT program. Because there is IdctU function unit in the TTA-
DSP core, so the whole program is executed by one instruction. The performance is
extremely high.

The performance of two cores cooperation is much better than that of one single
core. The performance evaluation is in another paper [19].

Table 1. Benchmarks Description

No. Name Brief Description
1 FFT 16-bit 256 points radix 4 Fast Fourier Transform
2 FIR 16-bit samples for 16-sample 40-tap FIR filter

3 IDCT
Inverse Discrete Cosine Transform on 8*8 block
of 16-bit pixel data

4 MAT_MUL Multiply of two 4*4 matrix
5 IIR IIR filter of 500 output samples
6 MAXIDX Get the index of the maximum value of a vector

1

10

100

1000

10000

100000

MAT_MUL MAXIDX IDCT IIR FIR FFT

Cycles (log10Y) 1 TTA-DSP TMS320C64XX LEON3

Fig. 5. Performance Comparison with TMS320C64xx

Table 2 gives the read and write miss ratio for three of them under write back pol-
icy. For L1 cache system, the performance of TTA-DSP under write through and
write back policy are compared. Performance gains compared with write through
policy is also given in Table 2. From Table 2, it can be seen that write back policy can
achieve a better performance.

 A Heterogeneous Embedded MPSoC for Multimedia Applications 599

Table 2. The Read/Write miss ratio under write back policy and its performance gains

Benchmarks Read miss ratio Write miss ratio Performance gains
MAT_MUL 5.42 4.17 3.25%
MAXIDX 3.33 2.78 4.36%
IDCT 7.50% 0.00% 2.23%
IIR 0.05 2.09 8.27%
FIR 0.05% 0.78% 13.27%
FFT 4.76% 2.38% 4.35%

5.2 Silicon Implementation

We have implemented the SoC in Verilog RTL
code, which is verified with Modelsim. The
design is synthesized using Design Compiler
from Synopsys with the 0.18um standard-cell
library . The net-lists are then placed and routed
using SoC Encounter from Cadence for the
1P6M CMOS technology. Figure 6 gives the
layout of the proposed SoC. The area is about
21.4mm2 and it can operate at 266MHz and
consume 870mW average power.

6 Conclusions

This paper presents the design and the silicon implementation of the proposed hetero-
geneous embedded MPSoC for multimedia signal processing applications. It contains
a RISC processor and two DSP processor cores. The RISC core coordinates the sys-
tem and performs control-oriented tasks, and the DSP cores perform data-intensive
tasks with more deterministic and regular behaviors, in the form of optimized assem-
bly code. With effective mapping techniques, a wide range of multimedia signal proc-
essing applications can be fast executed on it. We are now studying the application
partition techniques on the three processors and the code optimization techniques for
TTA-DSP architecture. An integrated simulator and development environment for all
the cores are developed.

Acknowledgements

This work was supported by Chinese NSF project No. 90407022 and some other funds.
The authors would like to thank Andrea Cilio and his colleagues in Delft University of
Technology in Netherlands for their great help and support to our research work.

References

1. M. Levy, “ARM picks up performance,” Microprocessor Report, 4/7/03-01
2. R. A. Quinnell, “Logical combination? Convergence products need both RISC and DSP

processors, but merging them may not be the answer,” EDN, 1/23/2003

Fig. 6. Layout of the proposed
SoC

600 H. Yue, Z. Wang, and K. Dai

3. OMAP5910 Dual Core Processor – Technical Reference Manual, Texas Instruments,
Jan,2003

4. Siemens, “TriCore Architecture”. White Paper, 1998
5. Hans-Joachim Stolberg et al., “HiBRID-SoC: A Multi-Core System-on-Chip Architecture

for Multimedia Signal Processing Applications,” in Proc. DATE’03, pp.20008, March,
2003.

6. M. Berekovic, H.-J. Stolberg, M.B. Kulaczewski, P.Pirsch, et al., “Instruction set exten-
sions for MPEG-4 video,” J. VLSI Signal Processing Syst., vol. 23,pp. 27–50, October,
1999.

7. “ARM Ltd. AMBA Specification Rev. 2.0. [Online],” Available: www.arm.com
8. Corporaal H., “Microprocessor Architecture from VLIW to TTA,” John Wiley & Sons

Ltd., West Sussex, England, 1998
9. Hoogerbrugge J., “Code Generation for Transport Triggered Architecture,” PhD Thesis,

Delft University of Technology, Delft, The Netherlands, 1996
10. Hong Yue, Kui Dai, Zhiying Wang, “Key Technique of Float Point Function Unit Imple-

mentation based on CORDIC Algorithm”, in Proc. Annual Conference of Engineer and
Technology of China, pp.102-105, April 2005.

11. S. Rixner, W.J. Dally, B. Khailany, P. Mattson, et al., “Register organization for media
processing,” in Proc. HPCA-6, 2000, pp.375-386.

12. MS320C64x DSP Library Programmer's Reference, Texas Instruments Inc., Apr 2002
13. TMS320C55x DSP Programmer’s Guide, Texas Instruments Inc., July 2000
14. T. Kumura, M. Ikekawa, M. Yoshida, and I. Kuroda, “VLIW DSP for mobile applica-

tions,” IEEE Signal Processing Mag., pp.10-21, July 2002
15. Terry Tao Ye. 0n-chip multiprocessor communication network design and analysis. PhD

thesis, Stanford University, December 2003.
16. TTay-Jyi Lin, Chie-Min Chao, “A Unified Processor Architecture for RISC&VLIW DSP”,

GLSVLSI’05, 2005.
17. Hong Yue, Kui Dai and Zhiying Wang, “A Dual-core Embedded System-on-Chip Archi-

tecture for Multimedia Signal Processing Applications”, in Proc. ESA’06, June 2006.
18. M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid for message-passing sys-

tems,” IEEE Trans. Parallel & Distrib. Systems, vol. 1, no. 3, pp. 330–343, July 1990.
19. Hong Yue, Kui Dai, Zhiying Wang and Xuemi Zhao, “An instruction customization algo-

rithm for embedded application-specific heterogeneous multiprocessor”, Journal of Com-
puter Research and Development, being in reviewing

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 601 – 610, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Generated Implementation of a WLAN
Protocol Stack

Sergey Kolevatov1, Matthias Wesseling1, and Axel Hunger2

1 BenQ Mobile, Research & Development, Suedstrasse 8, 47475 Kamp-Lintfort, Germany
{serguei.kolevatov, matthias.wesseling}@benq.com

2 University of Duisburg-Essen, Professorship Computer Engineering, Bismarckstrasse 81,
Room BB 317, 47048 Duisburg, Germany

hunger@uni-duisburg.de

Abstract. A new concept is developed at BenQ Mobile. It allows to simplify
and speed-up a software development process, by separating it into two differ-
ent steps. With the first step it’s only necessary to describe an application in a
hardware independent way, and with the second step this description will be
transformed into a hardware specific application. That will allow the developers
to use the same high-level description for many different hardware platforms.
This paper describes the concept and shows how a WLAN protocol stack was
implemented by using this concept.

Keywords: Code generation, modeling language, system level hardware ab-
straction, WLAN.

1 Introduction

New communication standards are issued by the standard organizations at an increas-
ing rate. 3G (UMTS / WCDMA), multiple WLAN 802.11 specifications (from 11a to
11u) and Bluetooth are standards that have been released just during the past couple
of years. The complexity of both the application software and the hardware platform
architecture is increasing continuously. The implementation of software requires the
consideration of more and more restriction and optimization issues. It will become a
more and more expensive task to design, implement, test and maintain current appli-
cations. The number of required implementations grows with the number of the hard-
ware platforms to be supported.

There are already several design concepts available. Using these concepts allows to
shift development efforts from hardware (HW) to software (SW) domain. These con-
cepts are e.g. construction of different HW architectures, which provide some flexibil-
ity degree to programmers (HW platforms with configurable kernels, processor ar-
rays, conventional DSPs), using of special HW chips, which have a kind of a standard
kernel (an operating system) preinstalled, etc.

But the most promising design concept is the Software Defined Radio (SDR) [1,
2]. SDR in general means a combination of radio architecture and technology imple-
mented in a mobile terminal. An SDR platform supports different standards, operating

602 S. Kolevatov, M. Wesseling, and A. Hunger

modes, radio-bands and it is controlled by software. In compare to other concepts the
SDR concept has additional benefits, e.g. an SDR platform can be reprogrammed to
support future standards, it can support different communications standards on de-
mand (e.g. GSM, UMTS, CDMA, DECT) and the most important advantage is that
the SDR concept allows to reduce production costs.

However an implementation of several standards on SDR platforms may become a
very complex task, because of the huge number of mobile platforms and a great diver-
sity between them. Each HW platform has to be programmed individually and all
steps of the traditional software development flow must be performed. It puts the
main development effort on a programmer, causes high complexity and, correspond-
ingly, high costs (Fig. 1). A brief description of the traditional software development
concept is given in chapter 2.

Fig. 1. Implementation of a communication standard using the traditional software develop-
ment concept

A new concept was developed at BenQ Mobile. This concept splits the software de-
velopment process into two steps. In the first step it is only necessary to describe an
application in a hardware-independent way and in the second step this description will
be transformed into a hardware specific program code. These steps are shown in
chapter 3.

A technique, which can provide a similar solution in this field, is not known to the
authors.

2 Traditional Software Development Concept

Usually, a software development process passes several stages. A lot of general and
HW specific problems must be solved by a programmer, e.g. algorithm development,
algorithm adaptation, forming of data flow, organization of parallel calculations and
synchronization, testing, profiling and further optimization of overall performance.

These steps must be performed again, when the SW is ported to another HW plat-
form. As a result, a multiple number of SW development processes must be done. It

standard multiple number of different HW programming interfaces

WLANWLAN
BBBAAA

multiple number of software implementations

end product

multiple number of
software development

processes

A B

 Generated Implementation of a WLAN Protocol Stack 603

complicates and slows down an appearance of a standard in the end products on the
market.

3 New Software Development Concept

3.1 Overview

A new concept should reduce development complexity. Using it, a programmer
should only develop an application describing algorithms in a special language, which
does not require any implementation details. Other tasks should be automated
as much as possible. Ideally the aim is a thorough automation of the development
process.

Different standard specific algorithms (CDMA, TDMA and OFDM) can be easily
expressed in terms of functional primitives. An universal set of functional primitives
comprises the standard independent radio engine. An algorithm, described as a com-
position of different functional primitives, is called a platform independent program
representation (PIPR) and it may be mapped to any HW, which is supplied with a set
of primitives.

The primitives describe some basic operations, which are HW and standard inde-
pendent and may be easily reused. Contrary to this, the implementation of primitives
is HW dependent and should be defined for every target HW separately.

The new development concept allows to abstract from the HW specific coding and
it allows to use an universal set of functional primitives. The concept introduces the
source information, which consists of two parts:

− a hardware-independent SW specification (a PIPR application)
− a HW description file, which describes the details of a HW platform and imple-

mentation aspects.

As it was mentioned before the concept splits the software development flow into two
steps.

In the first step a system is being described as a PIPR application. This description
may be observed as a platform independent model. It cannot be executed on some
HW platform because of its abstractness. But, in distinction to other abstract models,
a PIPR application defines some restrictions and requirements in a concrete form (e.g.
scheduling restrictions, timing and memory requirements). This information doesn’t
make the description HW specific, but it allows the code generation system to create
the code, which exploits all the features of the target HW platform.

The result of the first step is a single model (a PIPR application) representing some
communication standard.

In the second step a concrete implementation of a PIPR application is being gener-
ated. In contrast to the first step, which is done manually, the second step can run
automatically.

At the output of the automatic transformation process a HW specific implementa-
tion of the application is obtained (Fig. 2).

604 S. Kolevatov, M. Wesseling, and A. Hunger

Fig. 2. Implementation of a communication standard using a new software development
concept

So, a number of target HW platforms doesn’t play any role for a software developer
anymore. The only thing, which is important, is that the target HW platform is sup-
plied with a set of primitives and a HW description file.

An overview of the information blocks, which constitute the input data, is given in
the following subchapters.

3.2 Aspects, Specified by the Concept

A standard specification is a many-sided description and it usually depicts some
communication protocol from many different perspectives.

It may describe e.g. protocol’s functionality, logical separation into communication
layers, protocol behavior (finite state machines, communicating processes), data proc-
essing algorithms, timing diagrams, data formats, interfaces, regulations, etc.

These things have in principle completely different nature. There are many possi-
bilities how to describe a protocol stack regarding its informal nature and a selection
of a certain description form is a scientific task.

The new software development concept does it the following way. The informal
nature of a communication standard specification was formalized via joining up of
homogenous elements into groups. The aspects, which have a crucial importance,
were determined and the following groups were created:

− functionality. This part actually defines the behavior of the whole system and it’s
built-up of functionalities of sub-structural elements. It should be a thorough defi-
nition. The functionality is only observed in connection with other elements, like
system logical structure and system interfaces.

− logical structure. This part describes how the functionality of the system is logi-
cally distributed within it. This part splits the system into logical modules. There are
mainly two different types of logical blocks: a functional logical block and a struc-
tural logical block. The functional logical blocks are used to describe behavior pat-
terns (called functions) or finite state machines (called processes). The structural
logical blocks are composite blocks, which always describe the interconnection of

standard multiple number of HW description files

WLANWLAN
BBBAAA

end product
single model
development

process

A B

multiple number of particular software implementations

PIPR application

automatic
transformation

process

 Generated Implementation of a WLAN Protocol Stack 605

some elements. The structural logical blocks may contain either processes or other
structural logical blocks (called sub-blocks). Structural logical blocks are hierarchi-
cally organized. At the top level of the hierarchy may exist only one structural
logical block called the system. The processes represent the bottom level of the hi-
erarchy. The logical connection lines are used to show the interconnection of logi-
cal blocks.

− interfaces. This part describes interfacing mechanisms of the system. Three differ-
ent types of interfaces are introduced: functional interfaces (abstract sets of mes-
sages, which are accepted by the particular logical module), data ports (structural
logical blocks, which are used to organize buffered data transfer between logical
modules) and trigger ports (logical abstractness, which is used to define the execu-
tion order of two blocks).

− requirements and restrictions. The concept defines timing requirements, least
memory requirements and scheduling restrictions.

− test cases. The concept also defines three types of test cases, which are used for
automatic validation of the system’s description and particular system implementa-
tions. The test cases are used to check the system consistency (semantic and infor-
mation consistency), description correctness and timing requirements.

3.3 Platform Independent Program Representation

The PIPR application describes the aspects that the new concept defines. The PIPR
application may be formally expressed by means of the mathematical language, but,
in order to simplify the automatic analysis and code generation procedure a special
form is used.

The PIPR application is represented as a set of different tuples. These tuples de-
scribe functions, processes, logical blocks, interfaces, timing requirements, test cases,
etc. To simplify the data processing the tuples may be represented in a format, which
is found to be the most suitable one, e.g. the XML format.

The most important part of the PIPR application is the definition of processes. The
processes represent the bottom level of structural hierarchy and they actually reflect a
lot of aspects (e.g. functionality, partitioning, interfaces, etc.) at the same time.

The formal definition of a process could be given as tuple <ST, X, T, …>, where

ST - a finite set of the process’s states
X - an input matrix of the process
T - a set of transition elements
… - other parameters, which are not important here

The set T stores tuples <g, j, k>. Every tuple defines a reference to a primitive (basic
operation) g, a reference j to the next element in the set T and the alternative reference
k to the next element in the same set. The matrix X defines the first tuple from the set
T, which must be executed under the certain conditions.

So, such definition of a process is HW independent, because it is expressed in
terms of primitives (basic operations), which, in their turn, are also HW independent.

606 S. Kolevatov, M. Wesseling, and A. Hunger

As a result, the whole PIPR application is HW independent, since it is built-up of
HW independent elements and it doesn’t define any HW specific features.

3.4 HW Description File

The second input information of the introduced concept describes the HW platform,
and it is used to adapt and optimize the generated implementation for this platform.
It’s necessary to notice, that this information is a description of HW from the pro-
grammer’s point of view and not from the HW structural design point of view. HW
structural descriptions provide a lot of detailed information, which is not required for
the software generation process.

In contrast, the HW description file is a totally new description form, which explic-
itly provides information required for the software generation process. This informa-
tion is given in a hierarchical form and it is split into two categories: the HW architec-
ture related information (HW model file) and the algorithm’s implementation infor-
mation (Implementation library file).

In the first category, the information about the number of processor cores, a vector
processing unit type, a number of supported HW threads, etc. is stored (Fig. 3).

hardware:
name = SB3010

processor:
name = DSP1
class = DSP

type = MIMD
no_of_thread = 32
data_size = 16
vector_unit = 4
vector_length = 32
chip_rate = 300

Fig. 3. A part of the HW model file

In the second category the information about execution times of every primitive,
memory and thread requirements, etc. is given. It’s also shown that some primitives
have several alternative implementations and some non-primitive functions are al-
ready available as HW specific modules (Fig. 4).

Thus, the HW description file provides not a detailed description of a HW struc-
ture, but only that information, which is necessary for organizing of the efficient
mapping of a PIPR application to a particular HW.

3.5 Starting Point

Before describing an application a decision about the programming (description)
language was done.

The concept’s description language was not developed that time and an idea of us-
ing common development tools was announced in the beginning.

 Generated Implementation of a WLAN Protocol Stack 607

There was a set of some well- and not-well known languages. All of these lan-
guages were intended to describe different things and had their own advantages and
disadvantages, so, selection of a particular language was a scientific process, which
required a definition of important criteria. The selected criteria were: language ab-
stractness, standardization, wide spread, development tool availability.

And the following languages corresponded to these criteria: UML [4], SDL [5] and
XML. The XML language was used to store the HW description file.

Fig. 4. A part of the implementation library file

This selection was only the starting point for the concept implementation and it
was only one of many different implementation possibilities. The selected languages
could not describe all the aspects of the concept (e.g. restrictions and requirements,
test cases, etc.) and the additional information and additional processing were needed.

The additional processing was changing the descriptions represented in these lan-
guages. It was removing some irrelevant information and was using the additional
information (e.g. restrictions and requirements, etc) to build the PIPR application.

3.6 Impacts

The new concept, one the one hand, simplifies and speed-ups the software develop-
ment process, on another hand, it provides a long-lived and HW independent applica-
tion specification, which can be reused for many hardware platforms and where port-
ing to the hardware architectures can be captured in an automated process. The func-
tionality of such an application can be easily upgraded or modified. Moreover, it re-
duces the development time and costs of a product.

 impllib:
name = SB3010

primitive:
name = addIntVec

cycle_count = 1058
mem_req = 3072
tread_req = 1
proc_class = DSP
intern_state = true

primitive:
name = getMsgVal

cycle_count = 2474
mem_req = 2048
tread_req = 1
proc_class = DSP
intern_state = true

cycle_count = 115
mem_req = 768
tread_req = 1
proc_class = DSP
intern_state = false

608 S. Kolevatov, M. Wesseling, and A. Hunger

4 Implementation of a Protocol Stack

4.1 Fundamentals

The usage of the new concept should be proved with the implementation of a protocol
stack. Some aspects of the new development flow had to be determined during the
implementation of a protocol stack’s model.

The protocol stack 802.11a (WLAN) [6] was chosen as a demo application. This is
already stable and widely spread standard, however, any other similar standard (Blue-
tooth, ZigBee, etc.) could be chosen to be a demo application.

The WLAN standard specification splits the protocol stack into two layers - the
MAC layer and the PHY layer. This paper describes the implementation of the MAC
layer. The information about the implementation of the PHY using the new concept
layer may be found in other sources [3].

4.2 Implementation of the MAC Layer

The starting point of the implementation was a creation of the MAC layer model (the
MAC layer model is referred further as a system). The functionality of the MAC layer
was analyzed and split into several parallel processes, which were responsible for the
realization of different tasks. These processes were depicted as UML state diagrams
and the whole system structure was described as an SDL block.

After that the UML diagrams were manually transformed into the SDL representa-
tion (into the SDL processes). The SDL processes were referring to some external
functions. These functions were observed as primitives, which had the HW specific
implementations.

The definition of interfaces was the important step, because the MAC layer was
cooperating with other elements (LLC, PHY and other layers) by means of the inter-
faces, which are, in general sense, connection points to the MAC layer’s environment.

The MAC layer sent and received messages through these connection points. But
the format of these messages inside the MAC layer and outside of it was different.
The messages outside the MAC layer were HW specific, and, they were converted
into a platform independent format while they were passing the connection points and
vice versa. These message conversion functions had HW specific implementation and
they were also observed as primitives.

The system was prepared for the first code generation procedure.

4.3 Code Generation

Originally one commercial tool was used for the code generation. The SDL descrip-
tion was passed to the input of the code generator (CG) and a C code was obtained at
the output of it. This code was included into the simulation framework and different
test cases were applied to it.

The generated code was able to provide a lot of nice options like graphical tracing
within the tool’s environment, automatic validation (with TTCN [7]), generation of
message charts, etc.

 Generated Implementation of a WLAN Protocol Stack 609

However, the performance of the code generated by this CG was completely unsat-
isfying. It was totally impossible to fulfill time requirements defined in the standard,
because the generated code was mainly intended for the simulation instead of a real-
time execution of a system. It used a highly-dynamic message scheduler, a very flexi-
ble process scheduler, very complex implementations of simple data processing op-
erations (e.g. assignment, addition of two numbers, etc.).

Even the use of the CG’s plug-in for microcontrollers, which produced a highly-
optimized C code, was not able to solve this problem. A creation of own CG had
became a solution.

The main difference between the own developed CG and the CGs used in the be-
ginning is that:

− the own developed CG observed the system not like a flexible SDL system, but as
a system, which had a fixed structure. It allowed the CG to use optimized scheduler
schemes, which could not be used with SDL systems;

− the own developed CG used a HW specific kernel;
− it avoided processing of different data types in the abstract way. Every data type

had to be handled by a corresponding primitive.

The own CG receives conceptual information about the model, processes it and real-
izes a philosophy of the new software development concept.

5. Profiling Technique and Results

The generated code was approved on different HW platforms and in different simula-
tion environments:

− PC (simulation in a framework, performance simulation, test cases)
− Infineon’s MuSIC DSP environment (ARM part) [8]
− Sandbridge’s SandBlaster 3010 DSP [9]

The real-time requirements were fulfilled during the performance simulation on the
SandBlaster DSP.

A profiling was done over two different operations. The first operation (OP1)
represents one of the use cases of the MAC layer when it sends an acknowledgement
message in response to the incoming data frame. This operation must be accom-
plished within a certain time interval. The numerical values are defined in the com-
munication standard specification [6].

The second operation (OP2) represents a simple message transfer from one parallel
process to another. There are no time requirements for this procedure, but it’s evident
that these values must be much smaller than the processing time of the OP1.

The new concept assumes that it will be possible to perform the automatic profiling
of some operation, without executing them. It requires the CG to know execution
times of all primitives and kernel functions used by these operations. This information
was not known that time, and it was not possible to perform automatic profiling. To
profile these operations the time measurements were done during the code execution.

610 S. Kolevatov, M. Wesseling, and A. Hunger

Two CGs provided an option to build-in a profiler into the generated code. But the
profiling results couldn’t be compared, since the CGs used different measuring meth-
ods. To make the profiling results comparable the measurement points were explicitly
defined within the system description, i.e. they belonged to the design of a protocol
stack.

The profiling results on the SandBlaster DSP are shown in the Table 1. Time in-
formation is given in processor’s clock (kilo) cycles and in milliseconds.

Table 1. Profiling results

OPERATION REQUIRED conventional CG own developed CG
 k cycle ms k cycle ms k cycle ms
OP1 ~1,2 ~0,016 ~15 000 ~200 ~1,05 ~0,014
OP2 - - ~880 ~12 ~0,5 ~0,006

It’s possible to see a huge performance difference between two implementations,
obtained with the help of the commercial tool and the own developed code generator.
Long execution times of the code generated by the commercial tool are due to the
high-flexibility and comprehensive facilities of the code generator.

6 Conclusions

The main result of the creation process is that the WLAN protocol stack described in
a high-level language (PIPR) was converted to an executable application. Several HW
specific implementations of the WLAN protocol stack were obtained and executed on
different HW platforms and in different simulation environments.

References

1. W. Tuttlebee et al., “Software Defined Radio: Enabling Technologies”, England, John
Wiley, 2002

2. Software Defined Radio Forum, Version 2.1 of the Technical Report on “Architecture and
elements of software defined radio systems”, February 2000

3. R. Hossain, M. Wesseling, C. Leopold, “Virtual Radio Engine: a programming concept for
separation of application specifications and hardware architectures”, in Proc. 14th IST Mo-
bile and Wireless Communications Summit, Dresden, June, 2005, in press.

4. ISO/IEC 19501, Unified Modeling Language (UML), ver. 1.4.2
5. Specification and Description Language (SDL), ITU Z.100 Standard
6. Wireless LAN, IEEE Std. 802.11a, 1999 Edition
7. Testing and test control notation version 3, TTCN-3, ITU Z.140 Standard
8. H.-M. Bluethgen et al., “Finding the optimum partitioning for multi-standard radio sys-

tems”, SDR Forum Technical Conference, California, November 2005
9. SandBlaster DSP, http://www.sandbridgetech.com/sb_3000.htm

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 611 – 620, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Address Mapping Scheme for High Parallelism
MEMS-Based Storage Devices*

Soyoon Lee and Hyokyung Bahn

Dept. of Computer Engineering, Ewha University, Seoul 120-750, South Korea
sounie@ewhain.net, bahn@ewha.ac.kr

Abstract. MEMS-based storage is an emerging storage media that has several
attractive features such as high-bandwidth, low-power consumption, and low
cost. However, MEMS-based storage has vastly different physical chara-
cteristics compared to a traditional disk. First, MEMS-based storage has
thousands of heads that can be activated simultaneously. Second, the media of
MEMS-based storage is a square structure which is different from the rotation-
based platter structure of disks. Third, the size of a sector in MEMS-based
storage is smaller than 512 bytes of a conventional logical block. In this paper,
we present a new address mapping scheme for MEMS storage that makes use of
the aforementioned characteristics. This new scheme exploits the complete
parallel feature of MEMS-based storage as well as the characteristics of the two
dimensional square structure. Simulation studies show that the new scheme
improves the performance of MEMS storage significantly by exploiting the
high parallelism of MEMS storage.

1 Introduction

Storage capacity consumption is increasing at an enormous rate, and new technology
and their by-products that try to satiate this storage appetite is being introduced
everyday. At the server end of the storage consumer spectrum, disk capacity is
increasing over 60% every year and cost of these devices seems to be coming down
just as fast [11]. On the other end, as mobile consumer electronic products become an
essential component in our everyday lives, the demand for increased storage capacity
in these products is growing as well. Flash memory has been introduced into the
market to serve such miniature consumer products. MEMS-based storage is a leading
candidate to answer demands for a wide range of storage systems ranging from
storage for small handheld devices to high capacity mass storage servers [4, 8, 12, 13,
17]. Since physical structure of MEMS-based storage is different from conventional
disks, a new address mapping scheme appropriate for this media is needed. In this
paper, we present a new address mapping scheme that exploits the high parallelism of
a MEMS-based storage device.

Table 1 compares the characteristics of a conventional disk, Flash memory, and
MEMS-based storage [11, 16]. A conventional disk represents storage for the server

* This work was supported by the Seoul R&BD program.

612 S. Lee and H. Bahn

Table 1. Characteristics comparison of a conventional disk, Flash memory, and MEMS-based
storage. Though the characteristics of conventional disk and Flash memory are examined from
the data sheet of current market products, the characteristics of MEMS storage are filled in from
the expected model since there is no real product as yet. Hence, for some items, relative
comparison may not be meaningful at this time.

 Conventional Disk NAND-type Flash
Memory

MEMS-based
Storage

Size (mm) 101.6×147.0 × 26.1 12.0 × 17.0 × 1.0 10.0 × 10.0 × 2.0
Density (GB/cm2) 0.14-0.24 0.49 1-10
Read access time (ms) 5-10 0.000025-0.025 0.56-0.80
Write access time (ms) 5-10 0.2-1.5 0.56-0.80
Shock resistance Low High High
Cost ($/GB) 0.21 45 3-10
Bandwidth (MB/s) 17.3-25.2 100 75.9-320
Power consumption High Low Low

end and Flash memory represents storage for the mobile end of the storage spectrum.
Some of the advantages of MEMS-based storage can be summarized as follows.

• First, density of MEMS-based storage is very high. In 1 cm2, shown in Figure 1,
MEMS-based storage can hold more than 3GBs. Given the same dimension as
conventional disks and/or Flash storage, the capacity of MEMS-based storage will
be much higher. This implies MEMS-based storage may be used for a wide range
of storage applications.

• Second, storage medium access time is stable and fast. Unlike Flash memory, read
and writes to MEMS-based storage is stable at a few hundred microseconds.
Access time for Flash memory, on the other hand, varies greatly depending on the
operation. While reads are very fast, writes can be so slow as to be greater than a
millisecond. Disks will continue to be limited to the ten’s of milliseconds due to
its mechanical limitation.

• Third, MEMS-based storage retains characteristics such as high bandwidth, shock
resistance, low power consumption, and low cost that is superior to conventional
disks and/or Flash memory making it a suitable storage medium for high capacity
servers as well as for mobile consumer devices.

The advantages listed above make MEMS-based storage a leading candidate as
tomorrow’s storage medium. However, the mechanism by which MEMS-based
storage operates has a couple of distinct characteristics [1, 2, 3, 4]. First, MEMS
storage has thousands of heads that can be activated simultaneously instead of just a
few as in disks. As shown in Figure 1, there is a single head associated with each
region, and there are thousands of regions in each device. These heads may be active
simultaneously. Second, the media of MEMS storage is a square structure, which is
different from the rotation-based platter structure of disks. Again, this may be noted
from Figure 1. The regions are where the data are stored, and note that these regions
are square. Third, the size of a physical sector in MEMS storage is an order of

 A New Address Mapping Scheme 613

Fig. 1. Physical structure of a MEMS-based storage device. There are thousands of regions on
the magnetic media and a read/write head for each corresponding region. The magnetic media
moves along two directional axes, x and y.

magnitude different from that of a conventional disk. While the sector size of a disk is
usually 512 bytes, the size of a physical sector in MEMS storage is 8 bytes.

We discuss the performance implications of these characteristics later in Section 3.
Due to these differences in characteristics, new system software technologies
appropriate for this media have been issues of recent research [2, 3, 15]. One of the
most important management mechanisms for improving MEMS storage efficiency is
the address mapping of logical blocks into physical sectors. In this paper, we present a
new address mapping scheme that exploits the aforementioned characteristics of
MEMS-based storage. We compare four address mapping schemes in terms of the
average access time and the average request delay through trace driven simulation
studies.

The remainder of this paper is organized as follows. Section 2 gives an overview of
existing studies related to MEMS-based storage. We describe new address mapping
schemes in Section 3, and show the experimental results in Section 4. Finally, Section
5 presents the conclusion of this paper.

2 Related Works

Several different MEMS storage projects are being conducted by major institutions
such as Carnegie Mellon University [7], IBM Zurich Research Laboratory [8], and
Hewlett-Packard Laboratories [9]. Though substantial physical differences exist
between MEMS storage models in these projects, they share the same basic design as
shown in Figure 1. A MEMS-based storage device consists of the magnetic media
(called media sled) that is divided into regions and groups of heads (called probe tips)

614 S. Lee and H. Bahn

used to access data on the corresponding region. To access data on a specific (x, y)
location, MEMS-based storage suffers a substantial distance-dependent positioning
time delay similar to disks. Unlike disks, however, the heads of MEMS-based storage
are fixed and magnetic media itself moves to access data on a specific location. The
movement of the media in the directions of x and y axes is independent and proceeds
in parallel. Thus, the positioning time for a specific (x, y) location can be determined
by the larger seek time of the x and y dimensions. In most current architectures, seek
times on the x dimension timeseek_x is dominant over seek times on the y dimension
timeseek_y because extra settling time must be included to timeseek_x, but not to timeseek_y.
Settling time is the time needed for the oscillations of the magnetic media to damp
out. This time is dependent on the construction of the magnetic media and the
stiffness of the spring that sustains the magnetic media [4]. Since media access is
performed in the direction of the y dimension after positioning, it requires constant
media velocity in the y dimension and zero velocity in the x dimension. Hence,
oscillation in the x dimension leads to off-track interference after seeking, while the
same oscillation in the y dimension affects only the bit rate of the data transfer [6].

3 Address Mapping Schemes for MEMS-Based Storage

Today’s storage interface abstracts a storage device as a linear array of fixed-size
logical blocks [6]. Details of the mapping of the logical block address to the physical
sector address are hidden. In the case of disks, the size of a logical block is 512 bytes
while a physical sector is usually close to this value. However, in MEMS-based
storage, the size of a physical sector is usually 8 bytes. Therefore, a new address
mapping scheme is needed. To utilize the parallel access feature of MEMS devices,
one logical block can be spread into multiple physical sectors across parallel-
operating heads so as to be accessed concurrently rather than sequentially. In this
paper, a typical logical block of 512 bytes is mapped to 8 byte sectors at the same
relative position in 64 different regions, which are accessed concurrently.

3.1 Columnar Mapping

As a simple approach, logical blocks can be placed in columnar ways. As shown in
Figure 2, adjacent logical blocks are mapped sequentially along the y-axis direction to
allow for successive accesses without repositioning. After logical blocks are placed at
the bottommost position of the y-axis, the next logical block is assigned to the
topmost position of the next column. To exploit multiple parallel-operating heads, a
logical block of 512 bytes is striped into 64 physical sectors at the same relative
position in different regions. Columnar mapping considers the large settling time that
is required to damp the sled’s oscillations in the x-axis direction. Unlike disks, settling
times of MEMS-based storage is relatively dominant in most seek times. Though the
settling time for a disk is 0.5 ms out of the total 1-15 ms seek times in general,
MEMS-based storage has 0.2 ms settling time out of the total 0.2-0.8 ms seek times
[2]. Since adjacent logical blocks are allocated sequentially along the y-axis direction,
accessing successive logical blocks does not need the settling time. (Refer to Section
2 that the settling time is required only after the movement for the x-axis direction and
not for the y-axis.)

 A New Address Mapping Scheme 615

3.2 Fully-Parallel Columnar Mapping

Parallel access feature of MEMS-based storage should be maximally exploited to
improve the system performance. Fully-parallel columnar mapping aims at
maximizing the number of concurrent reads/writes of adjacent logical blocks. This
can be done by mapping as many successive logical blocks as possible to the same
relative (x, y) positions in different regions.

However, simultaneous activation of multiple heads in MEMS-based storage
devices has some limitations. Due to power and heat considerations, it is unlikely that
all the heads can be activated at the same time. For example, in the CMU MEMS
storage model, only 1280 out of the total 6400 heads can be activated concurrently
[2]. As a result, in order to fully utilize the parallel activity of 1280 heads, up to 20
successive logical blocks can be striped into the same relative position at different
regions. This is calculated by 1280/64=20 because each logical block of 512 bytes
should also be striped into 8 byte sectors of the same relative position at 64 different
regions for parallel access. When this address mapping is used, the time of accessing
adjacent 20 logical blocks can be reduced to a single block access time in the best
case.

3.3 Snakelike Mapping

Like disks, the positioning time of heads in MEMS-based storage is a relatively large
component of the total access times. When a request contains a large number of
successive logical blocks, the head must read multiple columns, and this incurs
additional positioning time delay. When the columnar mapping is used, to access the
next block in the different column, the head should move from the bottommost
position of the y-axis to the topmost position. To minimize this repositioning time
delay, we use the snakelike address mapping scheme. In this scheme, odd columns
and even columns place the logical blocks in the reverse order. As shown in Figure 2,
the smallest logical block number of each odd column is placed at topmost and the
largest number at bottommost. On the contrary, in the case of even columns, the
smallest logical block number is placed at bottommost and the largest number at
topmost. Through snakelike mapping, we can expect the small positioning time delay
in case of large sequential accesses.

3.4 Fully-Parallel Snakelike Mapping

Fully-parallel snakelike mapping combines the ideas of fully-parallel mapping and
snakelike mapping. First of all, a logical block of 512 bytes is striped across 64
different regions and 20 adjacent logical blocks are mapped to the same relative
position at different regions. After this idea is adapted to the intra-position placement,
the scheme uses the snakelike mapping in the inter-position placement. In odd
columns, the smallest logical block number is placed at topmost and the largest
number is placed at bottommost. Reverse order is employed for even columns. As
shown in Figure 2, this scheme considers both minimizing the repositioning time
delay and maximizing the parallel access features.

616 S. Lee and H. Bahn

columnar

snakelike

LBN 5

LBN 6

LBN 7

LBN 8

LBN 9

LBN 0

LBN 1

LBN 2

LBN 3

LBN 4

LBN 5

LBN 6

LBN 7

LBN 8

LBN 9

LBN 0

LBN 1

LBN 2

LBN 3

LBN 4

LBN 9

LBN 8

LBN 7

LBN 6

LBN 5

LBN 0

LBN 1

LBN 2

LBN 3

LBN 4

LBN 9

LBN 8

LBN 7

LBN 6

LBN 5

LBN 0

LBN 1

LBN 2

LBN 3

LBN 4

LBN 180

LBN 160

LBN 140

LBN 120

LBN 100

LBN 0

LBN 20

LBN 40

LBN 60

LBN 80

LBN 180

LBN 160

LBN 140

LBN 120

LBN 100

LBN 0

LBN 20

LBN 40

LBN 60

LBN 80

LBN 100

LBN 120

LBN 140

LBN 160

LBN 180

LBN 0

LBN 20

LBN 40

LBN 60

LBN 80

LBN 100

LBN 120

LBN 140

LBN 160

LBN 180

LBN 0

LBN 20

LBN 40

LBN 60

LBN 80
fully-parallel columnar

fully-parallel snakelike

Fig. 2. Four different address mapping schemes. LBN denotes the Logical Block Number.

4 Experimental Results

In this section, we discuss the results from trace-driven simulations performed to
assess the effectiveness of the four address mapping schemes. The parameters for the
MEMS-based storage that we use for our experiments basically conform to the
MEMS storage model presented by Griffin et al. [2, 4]. This MEMS-based storage
device contains 6400 regions and each region has 2500 × 2440 bits in x × y
dimensions. In this model, there are 2500 × 27 sectors in each region as the size of a
sector is 80 bits (encoded data of 8 bytes) and servo information of 10 bits that
identifies the sector information exists between adjacent sectors as well as at the top
and bottom of the region as shown in Figure 3. Table 2 lists the detailed parameters of
MEMS-based storage that was used in our experiments.

We use both a synthetically-generated trace and a real world disk trace. In the case
of the synthetic trace, the inter-arrival times of requests conform to an exponential
distribution for a range of mean arrival rates to simulate various workload conditions.
The ratio of read and write operations is 67% and 33%, respectively, which are
commonly used values [2]. The request size is also exponential with a mean of 4KB,
and the logical block numbers of requests are uniformly distributed across the entire
device.

For real world traces, because there are no traces that have been obtained directly
from MEMS storage, we use the well-known Cello99 disk access trace. The
Cello99 traces were collected from the disk activity of a time sharing server on the
HP-UX operating system at Hewlett-Packard Laboratories. The Cello99 traces are
available at [18]. To explore a range of workload intensities, we scale the traced
inter-arrival times to produce a range of average inter-arrival times. For example, a
scaling factor of two generates a workload that is two times more intense than the
original trace.

 A New Address Mapping Scheme 617

Table 2. Experimental parameters of the MEMS-based storage device

Number of regions 6400
Number of heads 6400
Maximum concurrent heads 1280
Device capacity 3.2 GB
Physical sector size 8 bytes
Servo overhead 10 bits per sector
Bits per region 2500 2440
Settling time 0.22 ms
Average turnaround time 0.07 ms
Spring factor 75%
Media bit cell size 40 40 nm
Sled acceleration 803.6 m/s2
Sled access speed 28mm/s
Per head data rate 0.7 Mbit/s
Command processing overhead 0.2 ms/request
On-board cache memory 0MB
Request scheduling algorithm SPTF

When the total size of distinct blocks in the trace is larger than the 3.2 GB capacity

of a single MEMS device, we used multiple media sleds. The sleds move
simultaneously and their relative positions are unchanged. For request scheduling, we
used the SPTF (Shortest Positioning Time First) algorithm because it is the most well-
known scheduling algorithm for MEMS-based storage [2].

Figure 4 shows the average access times of the four address mapping schemes
when the synthetic workload and the Cello99 trace are used. The fully-parallel
snakelike mapping scheme outperforms the other three mapping schemes in terms of
the average access time. For the Cello99 trace, the performance improvement of the
fully-parallel snakelike mapping scheme against columnar mapping is as much as
80.5%. This is because concurrent read/write operations are maximized and at the

2500 bits

2440 bits
(27 sectors)

Region

Servo (10 bits)

Sector (80 bits)

Fig. 3. Data organization of MEMS-based storage in our experiments. There are 6400 regions in a
magnetic media sled and each region has 2500 × 2440 bits in x × y dimensions. The size of a
sector is 80 bits (encoded data of 8 bytes) and “servo information” of 10 bits that identifies the
sector information exists between adjacent sectors as well as at the top and bottom of the region.

618 S. Lee and H. Bahn

0

0.5

1

1.5

2

2.5

3

columnar fully-parallel
columnar

snakelike fully-parallel
snakelike

av
er

ag
e

ac
ce

ss
 ti

m
e(

m
s)

cello

synthetic

Fig. 4. Comparisons of average access time for the Cello99 and synthetic traces

0

20

40

60

80

100

1 500 1000 1500 2000 2500

mean arrival rate (Hz)

av
er

ag
e

re
sp

on
se

 ti
m

e(
m

s)

columnar

fully-parallel columnar

snakelike

fully-parallel snakelike

Fig. 5. Comparisons of average response time for the synthetic trace

same time positioning delays are minimized. Fully-parallel columnar mapping also
shows competitive performance. This implies that parallel access feature is more
important than repositioning delay in the average access time.

Figure 5 shows the average response times of the four address mapping schemes as
the mean arrival rate increases for the synthetic traces. Similar to the average access
time case, fully-parallel columnar mapping and fully-parallel snakelike mapping
performed better than columnar mapping and snakelike mapping by a large margin.
The performance gain of fully-parallel snakelike mapping against columnar mapping
is as much as 93.7%.

5 Conclusion

MEMS-based storage is anticipated to be used for a wide range of applications from
storage for small handheld devices to high capacity mass storage servers. In this
paper, we presented a new address mapping scheme for MEMS-based storage that
makes use of the physical characteristics of MEMS devices. The proposed scheme

 A New Address Mapping Scheme 619

exploits the complete parallel feature of MEMS-based storage as well as the
characteristics of the two dimensional square structure. Simulation studies have
shown that the proposed scheme improves the performance of MEMS-based storage
significantly in terms of the average access time and the average response time.
Specifically, the performance improvement of the proposed scheme is 80.5% in terms
of the average access time and 93.7% in terms of the average response time. We
expect that the proposed address mapping scheme will be effective when employed to
large server environments with heavy I/O requests such as multimedia and high
performance scientific application servers.

References

1. B. Hong, S. A. Brandt, D.D.E. Long, E.L. Miller, K. A. Glocer, and Z.N.J. Peterson,
“Zone-based Shortest Positioning Time First Scheduling for MEMS-based Storage
Devices,” Proc. 11th IEEE/ACM International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS’03), 2003.

2. J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Nagle, “Operating system
management of MEMS-based storage devices,” Proc. 4th Symposium on Operating
Systems Design and Implementation (OSDI’00), pp. 227-242, 2000.

3. H. Yu, D. Agrawal, and A. E. Abbadi, “Towards optimal I/O scheduling for MEMS-based
storage,” Proc. 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSS’03), 2003.

4. J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Nagle, “Modeling and performance
of MEMS-based storage devices,” Proc. ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 56-65, 2000.

5. B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling Algorithms for Modern
Disk Drives,” Proc. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 241-251, 1994.

6. S. W. Schlosser and G. R. Ganger, “MEMS-based storage devices and standard disk
interfaces: A square peg in a round hole?” Proc. 3rd USENIX Conference on File and
Storage Technologies (FAST’04), 2004.

7. Center for Highly Integrated Information Processing and Storage Systems, Carnegie
Mellon University, http://www.ece.cmu.edu/research/chips/

8. P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. I. Lutwyche, H. E.
Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, “The Millipede – More than one
thousand tips for future AFM data storage,” IBM Journal of Research and Development,
Vol.44, No.3, pp.323-340, 2000.

9. Hewlett-Packard Laboratories Atomic Resolution Storage, http://www.hpl.hp.
com/research/storage.html.

10. P. J. Denning, “Effects of scheduling on file memory operations,” Proc. AFIPS Spring
Joint Computer Conference, pp.9-21, 1967.

11. S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger, “Designing computer
systems with MEMS-based storage,” Proc. 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, Boston, Massachusetts,
2000.

12. B. Hong, “Exploring the usage of MEMS-based storage as metadata storage and disk
cache in storage hierarchy,” http://www.cse.ucsc.edu/~hongbo/publications/mems-
metadata.pdf.

620 S. Lee and H. Bahn

13. R. Rangaswami, Z. Dimitrijevic, E. Chang, and K. E. Schauser, “MEMS-based disk buffer
for streaming media servers,” Proc. International Conference on Data Engineering
(ICDE’03), Bangalore, India, 2003.

14. H. Yu, D. Agrawal, and A. E. Abbadi, “Tabular placement of relational data on MEMS-
based storage devices,” Proc. International Conference on Very Large Databases
(VLDB’03), pp. 680-693, 2003.

15. S. W. Schlosser, J. Schindler, A. Ailamaki, and G. R. Ganger, “Exposing and exploiting
internal parallelism in MEMS-based storage,” Technical Report CMU-CS-03-125,
Carnegie Mellon University, Pittsburgh, PA, 2003.

16. Samsung Flash Memory, http://www.samsung.com/products/semiconductor/
NANDFlash/SLC_LargeBlock/8Gbit/K9K8G08U1A/K9K8G08U1A.htm

17. L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. S. C. Lu, T.
Mukherjee, S. Santhanam, L. Abelmann, and S. Min, “Single-chip computers with
microelectromechanical systems-based magnetic memory,” Journal of Applied Physics,
Vol.87, No.9, pp.6680-6685, 2000.

18. Public Software, Storage Systems Department at HP Labs, http://tesla.hpl.hp.
com/public_software/

19. T. M. Madhyastha and K. P. Yang, “Physical modeling of probe-based storage,” Proc.
IEEE Symposium on Mass Storage Systems, 2001.

20. Dramaliev and T. M. Madhyastha, “Optimizing probe-based storage,” Proc. USENIX
Conference on File and Storage Technologies (FAST’03), pp.103-114, 2003.

Practice and Experience of an Embedded
Processor Core Modeling

Gi-Ho Park1, Sung Woo Chung2, Han-Jong Kim1, Jung-Bin Im1,
Jung-Wook Park3, Shin-Dug Kim3, and Sung-Bae Park1

1 Processor Architecture Lab SOC R & D Center, System LSI Division,
Semiconductor Business Yongin-City, Kyeonggi-Do, Korea

2 Division of Computer and Communication Engineering, Korea University,
Anam-Dong, Seongbuk-Gu, Seoul, Korea

3 Supercomputing Lab. Yonsei University, 134, Shinchon-Dong, Seodaemun-Gu,
Seoul, Korea

giho.park@samsung.com, swchung@korea.ac.kr,
{followjx, bin5000.im}@samsung.com, {pjppp, sdkim}@parallel.yonsei.ac.kr,

sung.park@samsung.com

Abstract. This paper presents our experience in developing an embed-
ded processor core model for an SOC design. We developed an ARM1136
processor simulation environment based on the ARM’s MaxCore tool
and the SimpleScaclar simulator. A MaxCore ARM1136 instruction ac-
curate (IA) model is developed to support application programmers for
the writing application programs from the early design stage. The Max-
Core ARM1136 processor model supports all ARMv4, ARMv5TE and
ARM v6 instruction sets with 418 LISA instructions. This MaxCore
IA Model can be integrated with the ARM’s MaxSim system level de-
sign environment to develop application softwares and perform architec-
ture explorations. A SimpleScalar ARM1136 cycle accurate (CA) model
is also developed by enhancing the existing SimpleScalar-ARM version
in the SimpleScalar 3.0. Most important micro-architectural features of
ARM1136 processor are implemented in the enhanced SimpleScalar sim-
ulator. The accuracy of the developed SimpleScalar-ARM 1136 simulator
is about 97% compared to ARM 1136 RTL simulation with the Dhrys-
tone benchmark (100 iterations).

1 Introduction

As the advance of process technology, hundreds of millions of transistors can be
integrated into a single chip. Architectural exploration with an accurate perfor-
mance model is essential in designing these complex chips. Performance simulator
enables the exploration of various design alternatives for the future complex SOC
(System on a Chip) design. Especially, the processor core is the most important
component in the SOC design.

We developed an ARM1136 processor simulation environment based on com-
mercially available tools and simulators. Those are the ARM’s MaxCore tool

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 621–630, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

622 G.-H. Park et al.

and the SimpleScalar simulator. The MaxCore tool is a processor core/IP mod-
eling environment provided by ARM (formerly AXYS Design Automation Inc.)
for the processor architecture exploration, software development and proces-
sor (re)configuration. The SimpleScalar simulator is one of most popular cycle-
accurate simulator used in the computer architecture research community. ARM
processor cores are the most popular processor cores in the SOC design these
days.

MaxCore IA model has been implemented to support ARM v4, v5TE and
v6 instruction sets based on the ARM’s (formerly AXYS) ARM v4 instruction
accurate model. The SimpleScalar simulator was enhanced to support ARM1136
processor architectural features. Those include the pipeline extension from 6
stages to 8 stages, the static branch prediction support, and the hit under miss
feature. We checked the validity and accuracy of the simulator with ARMulator
and ARM1136 RTL running test benchmarks. The Dhrystone benchmark [4] and
the EEMBC benchmark suite [5] are used as the test programs. The accuracy
of SimpleScalar based ARM1136 cycle accurate model is about 97% for the
Dhrystone benchmark for the 100 iteration execution with respect to the actual
ARM1136.

2 MaxCore IA Model Design

We use the ARM MaxCore processor modeling tool [1] for the ARM1136 IA
model development. The MaxCore is based on the LISA (Language for Instruc-
tion Set Architecture) and its LISA+ variant. All ARMv6 instruction sets (236
instructions) were implemented with 418 LISA instruction sets. ARM32 v6 in-
structions and Thumb mode instruction was described as 346 and 72 LISA in-
structions respectively. The number of the LISA instructions is larger than actual
number of ARM v6 instruction because different addressing modes for same in-
struction has been implemented as different instructions for the code reusability
and the easy of debugging. Average simulation speed of the developed MaxCore
IA model (Interactive model) is very fast, which is about 12 MIPS (Million In-
structions per Second) on a SUN Blade 2000 workstation having an UltraSparc
III 1.2GHz processor.

2.1 ARM11 MaxCore IA Modeling

ARM11 IA model was developed based on the ARM7 IA model (ARM v4 ISA
support) provided by ARM (formerly AXYS). ARM10 instruction (ARM v5TE
ISA) and ARM11 (ARMv6 ISA) are added to support complete ARMv6 ISA. We
refer the ARM Architecture Reference Manual [2] and the ARM1136 Technical
Reference Manual [3] to develop the IA Model.

The ARM11 IA simulator is implemented with the functional description of
each instruction written in the LISA. The functional behavior of each instruction
includes the behavioral model of the instruction, the instruction word decoding
information, the assembler syntax and reference to other operations with LISA.

Practice and Experience of an Embedded Processor Core Modeling 623

All ’operation’s are related to each other in a hierarchical manner and the re-
lation of the operations is described within the composition section of the each
operation. Each instruction is described as a class of ’operation’, so instruction
set is described as hierarchically ordered tree structure.

2.2 MaxCore Instruction Accurate Model Validation Methods

When we add an instruction, a couple of hand-coded simple assembly test pro-
grams are executed to check the validity of the modeling for the added instruc-
tion. The full test has been done with the EEMBC benchmarks suite [5] after
all instructions were modeled. The validation mechanism of MaxCore IA model
is shown in Fig. 1.

MaxCore IA model

EEMBC source

Porting for ARM

*.AXF (elf format)

Semihost (ANGEL)

ARMulator 1.3.1

Compile by RVCT 2.0.1

ANGEL syscall

Using RVD

Consol output
- Register value
- message

RVD IDE output
- Register value
- message

COMPARE !!!

Tool/Method

Component/Function

Source/code/Binary

MaxCore IA model

EEMBC source

Porting for ARM

*.AXF (elf format)

Semihost (ANGEL)

ARMulator 1.3.1

Compile by RVCT 2.0.1

ANGEL syscall

Using RVD

Consol output
- Register value
- message

RVD IDE output
- Register value
- message

COMPARE !!!

Tool/Method

Component/Function

Source/code/Binary

Fig. 1. MaxCore IA Test Flow

We use the ARM RealView Compilation Tool (RVCT) 2.0.1 to generate the
ARM executable binary file (*.axf, elf format) for the execution in both the AR-
Mulator and the MaxCore isim model, an interactive model of MaxCore ARM11
IA simulator. ARMulator is a functional emulator provided by ARM for the soft-
ware development. The MaxCore ARM11 model was verified by comparing the
value of the registers and the output messages generated by the test program as
shown in Fig. 2. After completion of test program, we compared the last instruc-
tion executed, value of registers and output of test program in both the MaxCore
ARM11 model (Upper part of Fig. 2) and the ARMulator ARM11 model (lower
part of Fig. 2).

This MaxCore IA model can be integrated with the ARM’s RealView MaxSim
system level design environment to develop application software. Though AR-
Mulator can be used to develop an ARM application programs for the ARM

624 G.-H. Park et al.

Fig. 2. MaxCore IA Model Validation with RDV

processor itself, we cannot check the interaction of the ARM processor and other
IP (Intellectual Property) block to be integrated into the SOC. We should de-
velop the software for an SOC after an FPGA (Field Programmable Gate Array)
or a reference board is available. Because the FPGA and the reference board is
not available in the early design stage, the schedule of overall project usually de-
layed due to the late software development. We can develop software programs
for the SOC to be designed in the early stage of the design with the developed
MaxCore ARM11 IA model by integrating it to the ARM’s RealView MaxSim
system level design environment.

3 SimpleScalar-CA Model Design

An ARM1136 cycle accurate (CA) model was developed based on the Sim-
pleScalar 3.0 simulator. We enhanced the SimpleScalar-ARM version in the
SimpleScalar 3.0, which is based on the ARM 7 processor. The SimpleScalar-
ARM model is used as a baseline simulator to develop the ARM11 processor
simulator.

However, we should modify the SimpleScalar-ARM model to reflect the dif-
ferences of architectural features between ARM7 and ARM1136. Those features
include the number of pipeline stages, the organization of execution units, write
buffers.

The followings are important features modified from the original SimpleScalar-
ARM to model the ARM1136 processor. We will call our developed ARM1136
simulator based on the SimpleScalar as SimpleScalar-ARM1136 in this paper.
One of most important changes from the original SimpleScalar is related to

Practice and Experience of an Embedded Processor Core Modeling 625

the pipeline structure. ARM1136 has an 8-stage pipeline: fetch1, fetch2, decode,
issue, execution1, execution2, execution3, and writeback as shown in Fig. 3. while
the SimpleScalar simulator has only 6-stages, fetch, decode, issue, execution,
writeback and commit.

Fig. 3. Pipeline Stages of ARM1136 Processor

– Extend fetch stage from one two fetch stages : In SimpleScalar-ARM, there is
only one fetch stage. The ARM1136 has two fetch stages, fetch1 and fetch2,
to perform the instruction fetching and branch prediction. In SimpleScalar-
ARM1136, fetch stage is extended to two stages based on the ARM1136
pipeline stage.

– Merging the commit stage into the writeback stage : In SimpleScalar-ARM
1136, commit stage is merged into writeback stage. We also adjust the branch
misprediction resolution mechanism appropriately for the modified pipeline
structure.

– Extend execution stage from one to three stages: In SimpleScalar-ARM,
only one execution stage plays a role of multiple execution stages by setting
execution latency and allowing multiple instructions in the execution unit.
However this mechanism cannot support data forwarding in the execution
stage. In SimpleScalar-ARM 1136, we explicitly divide one execution stage
into three execution pipeline stages for three kinds of execution units (ALU
pipeline, multiply pipeline and load/store pipeline). The ALU pipeline is
composed of Shift, ALU and Saturation stage. If an instruction includes
an operand to be shifted, it is performed in Shift stage. The ALU stage
calculates the operands and the Saturation stage saturates the output from
the ALU stage if necessary. The multiply pipeline and load/store pipeline

626 G.-H. Park et al.

is implemented as MAC1, MAC2, and MAC3 pipeline stage and address
calculation (ADD), DC1, and DC2 stage respectively. In the MAC1 stage
and the MAC2 stage, two operands are multiplied. In the MAC3 stage, the
output from the previous stage is accumulated. The Load/store pipeline
has ADD, DC1, and DC2 stages. In the ADD stage, load/store address
is calculated. If a shift operation is required to calculate the address in a
load/store instruction, the shift operation in the Shift stage of the integer
pipeline should precede load/store instruction. In other words, if a shift
operation is necessary for a load/store, the load/store instruction is implicitly
split into two instructions. One goes through the ALU pipeline and the other
goes through the load/store pipeline. In the DC1 and DC2 stage, the data
cache is accessed.

– Support static branch prediction mechanism: There is no static branch pre-
diction scheme in SimpleScalar-ARM. In our SimpleScalar-ARM1136, the
static branch prediction as well as the dynamic branch prediction is mod-
eled. The ARM1136 processor uses bimodal prediction for the dynamic
branch prediction and forward-taken/backward-untaken prediction for the
static branch prediction. In the first fetch stage, dynamic prediction is per-
formed using a BTAC (branch target address cache), which is similar to a
BTB (branch target buffer). In the second fetch stage, the static prediction
is performed if there is a miss in the BTAC.

– Interlock and data forwarding: In SimpleScalar-ARM(when in-order pipeline
is set), an instruction is issued only when after all data dependencies of the
previous instructions are resolved. In SimpleScalar-ARM1136, however, an
instruction is issued regardless of data dependencies. Instead, required res-
olutions of data dependencies are checked in each execution stage. If the
required data dependency has not been resolved, the instruction cannot pro-
ceed until the data dependency is resolved.

– Memory interface bandwidth: Mosts of modern processors have a write buffer
between an L1 cache and memory to decouple stores from the pipeline. In
SimpleScalar-ARM, the entry of the write buffer is not limited. We imple-
mented an 8-entry write buffer, which may affect performance very much.
The critical word first transfer feature is also modeled in SimpleScalar-
ARM1136. We also implemented the 64-bit wide internal bus between the
pipeline and the L1 cache, leading to two-word transfer at a time in case of
LDM (LoaD Multiple) or STM (STore Multiple).

– HUM (Hit Under Miss) feature: When SimpleScalar-ARM is set to run in
in-order, multiple data cache misses can go out to fetch the data from the
lower level memory. When a cache miss occurs, subsequent data cache access
can fetch data only if there is an empty entry in LSQ (load store queue).
In our SimpleScalar-ARM1136, however, only one data cache miss can fetch
data from the lower level memory to reflect the real ARM1136 processor
architecture. If there are multiple cache misses, pipeline is stalled until only
one cache miss remains.

Practice and Experience of an Embedded Processor Core Modeling 627

– STORE operation in the execution stage : In SimpleScalar-ARM, a store
operation is executed in writeback stage. In SimpleScalar-ARM 1136, a store
operation is executed in the execution stage to reflect the pipeline stall in
in-order pipeline with a write buffer.

Fig. 4. Graphic User Interface of CA model Simulator

3.1 SimpleScalar-ARM1136 Cycle Accurate Model Validation
Methods

We implemented a GUI (Graphic User Interface) for our SimpleScalar-ARM1136
simulator, as shown in Fig. 4 for efficient debugging and analysis of the
SimpleScalar-ARM1136 simulator. The GUI shows register values, pipeline sta-
tus and disassembled code to see the pipeline flows in the simulator.

To verify the accuracy, we compare the SimpleScalar-ARM 1136 with the
ARM1136 RTL simulation. We use the ARM RealView Compilation Tool (RVCT)
2.0.1 to generate the ARM executable binary file for the execution. We execute
the test program in ARM11 processorRTL simulation environment, SimpleScalar-
ARM CA model and ARM RealView ARMulator 1.3.1 as shown in Fig. 5. We com-
pare the output logs of these simulators to check the both functional correctness
and cycle accuracy of SimpleScalar ARM1136 model.

Following steps are used to check the functional correctness and cycle accuracy
of SimpleScalar-ARM1136 model.

1. Simple test programs with several instructions are written to verify the la-
tencies in ARM1136 TRM [3]. These programs are run to verify the added
features.

628 G.-H. Park et al.

SimpleScalar - ARM1136 model

C or ASM source

Porting for ARM

*.AXF (elf format)

Add Semihost code

RTL- validation

Compile by RVCT 2.0.1

ANGEL syscall

Convert to plain binary

Tool/Method

Component/Function

Output Log
- Pipeline status
- Cycle count
- Internal queue

Output
- Sscan file
- Validation log
- Bus signal

COMPARE !!!

Add Start &
Configuration code

Semihost (ANGEL)

ARMulator 1.3.1

Using RVD

RVD Trace Log

Marking known timing
Manually with TRM

Simplified Timing Table
VALIDATE !!!

REFER to !!!

Source/code/Binary

SimpleScalar - ARM1136 model

C or ASM source

Porting for ARM

*.AXF (elf format)

Add Semihost code

RTL- validation

Compile by RVCT 2.0.1

ANGEL syscall

Convert to plain binary

Tool/Method

Component/Function

Output Log
- Pipeline status
- Cycle count
- Internal queue

Output
- Sscan file
- Validation log
- Bus signal

COMPARE !!!

Add Start &
Configuration code

Semihost (ANGEL)

ARMulator 1.3.1

Using RVD

RVD Trace Log

Marking known timing
Manually with TRM

Simplified Timing Table
VALIDATE !!!

REFER to !!!

Source/code/Binary

Fig. 5. SimpleScalar CA Model Test Flow

2. The Dhrystone (1-iteration) benchmark is run on ARM1136 RTL,
SimpleScalar-ARM1136 and SimpleScalar-ARM.

3. When a feature is evaluated on a simulator, the feature is considered as
stable if it provides similar improvement/degradation for all three simulation
environments. In order to validation the stability of our simulators, we repeat
procedure (2) by turning off the branch predictor.

4. Procedure (2) and (3) are repeatedly done on the Dhrystone benchmarks for
100-iteration execution.

Fig. 6 shows the cycle count comparison between our SimpleScalar- ARM1136
model and ARM1136 RTL when we run the Dhrystone benchmark with 100 it-
eration. As architectural features of ARM1136 explained in the previous section,
are added to the original SimpleScalar-ARM simultor model, the accuracy is con-
verging and stable to ARM1136 RTL simulation results even though there were
some fluctuations. The left Y axis shows the number of cycles in our simulator
to run the Dhrystone benchmark. The cycle count of the Dhrystone benchmark
is 63,990 in ARM1136 RTL which has no error (0% error shown in the graph).
The right Y axis shows the accuracy error which is calculated as Error = (#
of execution cycles in simulator - 63,990) / 63,990. The accuracy of our final
SimpleScalar-ARM1136 simulator is 96.9 % compared to ARM 1136 RTL with
the Dhrystone benchmark (100 iterations).

3.2 Modeling Efforts and Accuracy

As we expected, the accuracy has been improved as we reflects the
micro-architectural features to the simulator. It is much easier to develop the

Practice and Experience of an Embedded Processor Core Modeling 629

51188

57589

63990

70389

76788

83187

89586

95985

102384

108783

115182

Number of cycles

ver 1 ver 2 ver 3 ver 4 ver 5 ver 6 ver 7 ver 8 ver 9 ver 10 ver 11 ver 12 ver 13

Versions of simulator

--40.0%

--20.0%

0.00%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%
Error

10.59% 8.40% 7.27% 10.91% 8.61%

3.01% 3.01%

Branch Predictor
Pipeline Extension

FWD Path/Interlock
Cache Parameter Fitting

Critical Word First Transfer
Features

HUM,
Write Buffer Modeling

Non-pipelined
Memory

HUM, Write buffer, etc,
Bug fixes

-6.51%

8.88%

3.06%

70.59%72.97%69.13%

51188

57589

63990

70389

76788

83187

89586

95985

102384

108783

115182

Number of cycles

ver 1 ver 2 ver 3 ver 4 ver 5 ver 6 ver 7 ver 8 ver 9 ver 10 ver 11 ver 12 ver 13

Versions of simulator

--40.0%

--20.0%

0.00%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%
Error

10.59% 8.40% 7.27% 10.91% 8.61%

3.01% 3.01%

Branch Predictor
Pipeline Extension

FWD Path/Interlock
Cache Parameter Fitting

Critical Word First Transfer
Features

HUM,
Write Buffer Modeling

Non-pipelined
Memory

HUM, Write buffer, etc,
Bug fixes

-6.51%

8.88%

3.06%

70.59%72.97%69.13%

Fig. 6. Accuracy of SimpleScalar CA Model

instruction accurate (IA) model than the cycle accurate model. The MaxCore
tool chain and the model provided from ARM (formerly AXYS) is very helpful
for us to model it. The validation of the instruction accurate model can be done
by simply checking the architectural status registers and output of benchmark
programs. The golden reference, the ARM RealView ARMulator, is also very
convenient to use for this purpose. We can find all information required for the
modeling with the ARM architecture reference manual and ARM1136 technical
reference manual.

Modeling for the cycle accurate (CA) model was much more difficult than that
for the instruction accurate (IA) model. First of all, it is very difficult to have
enough information for the ARM1136 micro-architectural features to achieve cy-
cle accuracy of our model. The validation of the model is also very difficult for
the CA model because the cycle count is not solely dependant on the proces-
sor core. We should have same system environment including memory system
for the golden reference and our model. Adjusting our simulation environment
including memory system architecture to existing RTL simulation environment
requires much efforts for us. It is mainly because the RTL simulation environ-
ment is built for the verification purpose rather than any cycle accuracy checking
purpose. If processor developing company, like ARM, provides a golden refer-
ence model designed for the cycle accuracy check to the architecture research
society especially for the academia without any financial burden, it will be very
helpful for the architecture researcher. It will be beneficial for themselves (the IP
generating company) because they can get new and efficient micro-architecture
ideas and simulation results based on their own processor/IP. Architect should
consider the accuracy of the simulator especially for the features related to their

630 G.-H. Park et al.

target architecture before using any architectural simulator if it is not provided
or certified by the company which designs the processor or IP.

4 Conclusions

We developed ARM1136 processor simulation environment using ARM RealView
MaxCore tool chains and SimpleScaclar simulator. MaxCore ARM1136 instruc-
tion accurate (IA) model supports all ARMv4, ARMv5TE and ARM v6 instruc-
tion sets with 418 LISA instructions. This fast MaxCore IA Model can be inte-
grated with ARM Realview MaxSim system level design environment to develop
application software in the early design stage. SimpleScalar-ARM1136 cycle ac-
curate (CA) model is developed by enhancing SimpleScalar-ARM version in the
SimpleScalar 3.0. Most important micro-architectural features of ARM1136 pro-
cessor are implemented in the enhanced SimpleScalar simulator. The accuracy of
SimpleScalar-ARM 1136 simulator is 96.9 % compared to ARM 1136 processor
with Dhrystone benchmark (100 iterations).

Based on our experience, it is very important to have a cycle accurate simu-
lation model to perform the micro-architectural research. The simulation results
can mislead researchers when the simulator is not very accurate. If it is difficult to
secure the very accurate architectural simulator, researchers should consider very
carefully for the accuracy of the simulator especially for the micro-architectural
features related closely to their target architecture.

References

1. AXYS Design Automation Inc., MaxCore Tools Training Material, 2003. 10
2. ARM, ARM Architecture Reference Manual, ARM DDI 0100E, 2000. 6
3. ARM, ARM1136JF-S and ARM1136J-Stm Technical Reference Manual, r0p2, ARM

DDI 0211D, 2003. 8
4. Reinhold P. Weicker, ”Dhrystone Benchmark: Rationale for Version 2 and Measure-

ment Rules,” SIGPLAN Notices Vol. 23,No. 8, 1998. 8, pp. 49-62
5. ”Embedded Microprocessor Benchmark Consortium” information available at

www.eembc.org
6. D. Burger, T.M.Austin, ”The SimpleScalar tool set, version 2.0,” Technical Report

TR-97-1342, University of Wisconsin Madison, 1997.

QoS Support for Video Transmission in
High-Speed Interconnects

A. Mart́ınez1, G. Apostolopoulos2, F. J. Alfaro1, J. L. Sánchez1, and J. Duato3

1 Dept. de Sist. Inform., Univ. de Castilla-La Mancha, 02071 - Albacete, Spain
{alejandro, falfaro, jsanchez}@dsi.uclm.es

2 CARV Lab., Inst. of Computer Science - FORTH, 71110 - Heraklion, Crete, Greece
georgeap@ics.forth.gr - Member of HiPEAC

3 GAP - DISCA, Univ. Politécnica de Valencia, 46071 - Valencia, Spain
jduato@disca.upv.es - Member of HiPEAC

Abstract. Multimedia traffic presents some special requirements that
are unattainable with a best-effort service. Current interconnect stan-
dards provide mechanisms to overcome the limitations of the best-effort
model, but they do not suffice to satisfy the strict requirements of video
transmissions. This problem has been extensively addressed at the gen-
eral networking community. Several solutions have arisen, but they are
too complex to be applied to high speed-interconnects. In this paper, we
propose a network architecture that is at the same time compatible with
the requirements of high-speed interconnects and provides video traffic
with the QoS it demands.

Keywords: QoS, Switch Design, Scheduling, Virtual Channels, Clusters.

1 Introduction

The last decade has witnessed a vast increase in the amount of information and
services available through the Internet. Clusters of PCs have emerged as a cost-
effective platform to implement these services. They provide service to thousands
or tens of thousands of concurrent users. These users usually demand specific
quality of service (QoS) requirements [1].

In the next section, we will introduce the InfiniBand and PCI AS high-speed
interconnect standards. These technologies provide mechanisms for QoS support
that consist of the segregation of the traffic in traffic classes (TCs), virtual chan-
nels (VCs), and a mechanism to map the TCs to the VCs and then provide
scheduling for the VCs. However, the scheduling algorithms proposed [2,3] are
fairly simplistic and fail to provide certain kinds of traffic with the requirements
they demand. For instance, video traffic is usually very concerned about jitter,
and much less about latency [4].

There has been a very substantial body of work on mechanisms for providing
QoS guarantees for packet switches1. Usually these works assume that the packet
1 We will use the terms packet switches and packet networks to refer to general net-

working technologies.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 631–641, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

632 A. Mart́ınez et al.

switch has significant amount of resources, in particular large random access
buffers. Moreover, in packet networks packets may be dropped when buffering
capacity is exceeded and latencies can be large. Thus, most of the scheduling
policies focus on controlling packet losses and delays. On the other hand, in high-
speed interconnects, switches are single-chip and, thus, have considerably more
limited resources, latencies are very small due to the small geographical extent
of the interconnect, and typically flow control is employed preventing packet
drops. As a result, the interconnect environment requires special attention when
developing QoS scheduling policies.

In this work, we introduce a QoS architecture that is tailored for the intercon-
nect environment. By moving the complexity of the packet scheduling to the host
network interfaces we are able to keep the packet processing in the switches very
simple. We show how with a simple QoS architecture, we can support the QoS
requirements of multiple different types of traffic: high-priority control traffic,
medium priority video traffic, and low priority best-effort. All the types of traf-
fic can coexist and receive the desired QoS without interfering with each other.
At the same time, we are able to achieve high utilization of the interconnect and
all these without requiring more than two queues per switch port. This allows
us a significant reduction in the switch complexity, which is critical if we want
to scale up the switch port densities.

The remainder of this paper is structured as follows. In the following section
the related work is presented. In Section 3 we present our strategy to offer
QoS support. Details on the experimental platform are in Section 4 and the
performance evaluation is presented in Section 5. Finally, Section 6 summarizes
the results of this study and identifies directions for future research.

2 Related Work

In this section, we will review the special characteristics of video traffic and its
requirements. Next, we will analyze the two most recent technologies for high-
speed interconnects (InfiniBand and PCI AS) and how they can provide QoS.
Finally, we will review some algorithms for the provision of QoS to multimedia
flows in general networking.

2.1 Video Traffic’s Characteristics and Requirements

Video sequences are composed of a set of video frames that are generated at
regular intervals. Compression algorithms produce frame patterns in which some
frames are smaller than others. More specifically, there are intra-coded frames,
which are basically normal pictures compressed with an algorithm like JPEG;
besides, there are inter-coded frames, which only encode the differences with
some neighbor frames. Therefore, frame size presents a lot of variability [5].

Ideally, the receiver should receive a complete frame exactly each inter-frame
interval (usually 40 milliseconds). This is measured by jitter, the variation of
the latency of two consecutive packets of the same flow [6]. This is important

QoS Support for Video Transmission in High-Speed Interconnects 633

because if frames arrive too late they are obviously useless, but if they arrive
too soon, they can overflow the reception buffer.

Furthermore, a latency of less than 100 milliseconds is desirable for interactive
video [4]. This includes video-conference and video on demand, when the watcher
has the ability to stop and peek through the sequence. Moreover, although there
is some tolerance to packet loss, it should be very reduced.

2.2 QoS Support for Multimedia Traffic in Packet Networks

Over the last years there has been extensive work on how to schedule resources
of a packet switch to provide guaranteed performance to traffic. The switch
resources that need to be scheduled are buffer space (usually at the outgoing
port) and link capacity. Both are managed through a service discipline. Typi-
cally, packet switch buffers are fairly large and support random access. When
buffers become full, packets are dropped. Thus, general packet switches can in-
troduce packet loss when their resources are oversubscribed. Performance guar-
antees usually include bounds on packet loss, delay, jitter, and transmission
rate or throughput. A large number of service disciplines have been proposed
(see [7] for an overview) each specifically targeted for providing certain types of
guarantees.

The service disciplines operate at the flow level and consequently can provide
different QoS guarantees to individual flows. An example of such flow oriented
QoS architectures is the QoS architecture of ATM [8] and the Integrated-Services
model [9] that was proposed for Internet QoS in mid-90s. Since such per-flow
scheduling can prove a bottleneck as the number of flows grows, aggregate-QoS
architectures have been proposed where QoS is provided collectively to all flows
that belong to a certain class of service. There are only a few such classes of
service, but flows now get only aggregate and not individual QoS. An example
of such a QoS architecture is Differentiated Services [10], which is used to provide
limited QoS in parts of the Internet today.

2.3 QoS Support in New High-Speed Interconnects

When compared with a generic packet switch, high-speed interconnect switches
have some important differences mostly because of their much simpler and com-
pact implementation. Firstly, flow control is commonly used to throttle the in-
coming traffic, and thus usually there are no packet drops due to running out
of buffer space. Buffers themselves may be smaller than what one would ex-
pect from a generic packet switch. Furthermore, access to these buffers may be
more restricted and random access may not be possible due to the strict time
limitations. Similarly, the number of different queues may be limited.

InfiniBand was proposed in 1999 by the most important IT companies to
provide present and future server systems with the required levels of reliability,
availability, performance, scalability, and QoS [2]. Specifically, the InfiniBand
Architecture (IBA) proposes three main mechanisms to provide the applications
with QoS. These are traffic segregation with service levels, the use of VCs (IBA

634 A. Mart́ınez et al.

ports can have up to 16 VCs) and the arbitration at output ports according to an
arbitration table. Although IBA does not specify how these mechanisms should
be used, some proposals have been made to provide applications with QoS in
InfiniBand networks [11].

On the other hand, PCI Express Advanced Switching (AS) architecture is
the natural evolution of the traditional PCI bus [3]. It defines a switch fabric
architecture that supports high availability, performance, reliability and QoS. AS
ports incorporate up to 20 VCs (16 unicast and 4 multicast) that are scheduled
according to some QoS criteria. Is is also possible to use a connection admission
control implemented in the fabric management software.

These proposals, therefore, permit to use a significant number of VCs to pro-
vide QoS support. However, implementing a great number of VCs would require
a significant fraction of silicon area and would make packet processing slower.
Moreover, there is a trend of increasing the number of ports instead of increas-
ing the number of VCs per port [12]. In general, the number of queues per
port can have a significant effect on the overall complexity and cost of the in-
terconnect switch. It is important to attempt to provide effective QoS with a
number of queues as small as possible. Indeed, our proposal addresses this very
effectively.

3 Architecture for QoS Support

Deadline2-based policies are among the most effective scheduling policies in
packet networks. These policies operate as follows: each packet is labeled with
a deadline and, thereafter, the switches solve all the scheduling and output con-
flicts choosing always the packet with the smallest deadline. This usually requires
that all the packets in the buffers are taken into account for scheduling and,
thus, random access buffers are needed. Another alternative is to set up heap
buffers, that always keep at the top the packet with the lowest deadline [13,14].
However, these implementations are too expensive for high-speed interconnects.
As far as we know, nobody has tried to adapt this kind of algorithms to this
environment.

Note that in packet networks (like Internet) the deadline would be recom-
puted at each hop. This is not reasonable in this case. For high-speed networks,
which span over a much shorter area, deadline would be computed once at the
interfaces.

When traffic is regulated, the switches can avoid random access buffers and
just take into account the first packet at each input buffer. The idea is that
traffic coming from the interfaces has already been scheduled and is coming in
descending order of deadlines. This being so, it is possible to just consider the
first packet at each queue, being confident that packets coming afterward have
higher deadlines.

2 We will use the term deadline as a tag contained in the header of packets used for
scheduling.

QoS Support for Video Transmission in High-Speed Interconnects 635

The behavior of the switch would be analogous to a sorting algorithm: if the
switch has as input sorted chains of packets and has to produce at the output a
sorted sequence, it only needs to look at the first packet of each input.

Let us have a look at the possible limitations of this algorithm:

– The traffic must be regulated. If a link is oversubscribed, we cannot guarantee
that flows will get the demanded QoS. However, regulation on the traffic is
always mandatory to provide strict guarantees on latency and throughput.

– The deadlines must not be recomputed. If we allowed the deadlines to change
during the life of the packet, we would not be able to assure that the order
established at the interfaces would be valid. However, in the high-speed in-
terconnects environment latencies are expected to be very short and there
is no need to recompute these deadlines.

– The packets are not coming always in order from the interfaces. The above
scheduling policy assumes that packets arrive from interfaces ordered ac-
cording to their deadlines. This may not be true all the time though. For
example, immediately after a packet with large deadline has departed from
the interface, a high priority small deadline packet arrives and is sent behind
the large deadline packet. This will violate our assumptions and degrade the
service offered to the high-priority packet. In order to limit the occurrences of
these out-of-order packets, we use a non-work conserving deadline scheduling
policy. For video traffic, an eligibility time (the minimum time when packets
are allowed to leave) is also provided to reduce jitter. In this way, by bound-
ing the cycle where packets are available for transmission, we can also bound
the maximum distance between the deadlines of two out-of-order packets. In
any case, as we will see in the evaluation section, the impact of out of order
packets is rather limited mostly due to the low latency of the interconnect
for regulated traffic.

In order to support control traffic, which is usually unregulated, we can safely
assume that it will never congest any link by itself. This kind of traffic usually
requires negligible bandwidth but demands low latencies. We can mix it with
video traffic by providing small deadline tags.

Best-effort traffic must also be supported. In this case, high bandwidth is
demanded and congestion may appear since this traffic is not regulated. There-
fore, in order to not disturb regulated traffic, it requires a separate VC. More-
over, absolute priority should be given to regulated traffic over unregulated
traffic.

Summing up, our proposal consists in a network architecture able to deal with
three different classes of traffic: control traffic, which demands little bandwidth
but low latency; video traffic, which demands guaranteed throughput, bounded
latency and low jitter; and best-effort traffic, which demands as much bandwidth
as possible. This is achieved with only two VCs and a feasible implementation
on a single chip, as is usually the case in high-speed interconnects.

636 A. Mart́ınez et al.

3.1 Generating Deadlines for Video Traffic

We propose a simple scheme to label video packets at the interfaces in order to
provide these requirements. Each packet that belongs to a particular frame would
receive a deadline covering the whole inter-frame period. This would smooth the
burst along this period of time (see Figure 1 for an example). In other words, the
first packet of the frame would receive a deadline near to the actual clock cycle,
while the last one would receive a deadline equal to the clock plus the inter-
frame time. The intermediate packets would be uniformly distributed between
these.

Fig. 1. Traffic shaping at network interfaces

In addition to deadlines, each packet would have an eligibility time. No packet
would be allowed to leave the interface before this time has passed, in order to
guarantee that the jitter would be as close to 0 as possible. We are computing
the eligibility time of a packet as its deadline minus a constant value. We have
found that 20 μs works well for this value.

With this strategy, buffers must have capacity for one whole frame per active
video connection in the worst case. Note that this amount is also required in a
work conserving alternative: the worst case is the same.

Therefore, the next packet to be chosen at a network interface would be
the one with the lowest deadline from those which are eligible (the eligibility
cycle has passed). This requires to keep two ordered queues at the interface,
one with non-ready packets, in eligibility order, and another with eligible packets,
in deadline order. This is affordable in these devices, since significant memory
and processing capacity are available here.

4 Simulation Conditions

We have performed the tests considering three cases. First, we have tested the
performance of our proposal, which uses 2 VCs at each switch port. It is referred
to in the figures as New 2 VCs. We have also performed tests with switches
using ideal, but impractically expensive random access buffers. In this case, it is
referred to in the figures as RAM buffers. Note that we assume the same delays
for the switch as in our proposal, which is not realistic, but serves us to examine
which is the impact of order errors. Finally, we have also tested a traditional

QoS Support for Video Transmission in High-Speed Interconnects 637

approach, based on the specifications of InfiniBand and PCI AS, with 4 VCs,
noted in the figures as Traditional 4 VCs. In this case, there is a VC for each
traffic class considered, both at the switches and at the network interfaces.

In the three cases, we have used 16 port switches, 8 Gbits/s links, and 8 Mbits
of total buffering at each switch. To cope with the inefficiencies of the scheduler
and packet segmentation overheads3, the crossbar core operates twice as fast as
the external lines (internal speed-up of 2.0).

The network used to test the proposals is a butterfly multi-stage interconnec-
tion network (MIN) with 64 end-points. The actual topology is a folded (bidi-
rectional) perfect-shuffle. We have chosen a MIN because it is a usual topology
for clusters. However, our proposal is valid for any network topology, including
both direct networks and MINs. No packets are dropped at the switches because
we use credit-based flow control at the VC level. However, if a video packet has
to wait more than 100 milliseconds at the interface, it is completely useless and
is, therefore, dropped.

In Table 1, the characteristics of the modeled traffic are included. Traffic con-
sists in three categories: network control, video, and best-effort. The first cate-
gory models short control messages that require short latency but demand neg-
ligible bandwidth. Video traffic is taken from actual MPEG-4 video sequences,
which produce a video frame each 40 milliseconds, approximately. This is very
bursty traffic and will heavily degrade the performance of the network. The
required results for video traffic according to [4] are guaranteed bandwidth, la-
tency below 100 milliseconds and jitter as short as possible. Finally, we have
modeled two classes of best-effort traffic: Best-effort and Background. The for-
mer demands as much bandwidth as possible, while the latter would require the
remaining bandwidth, if any.

Table 1. Traffic injected per host

TC Name % BW Packet size Notes

0 Network Control 1 [64,512] bytes self-similar
1 Video 49 [64,2048] bytes 750 KByte/s MPEG-4 traces
2 Best-effort 25 [64,2048] bytes self-similar, burst = 20
3 Background 25 [64,2048] bytes self-similar, burst = 20

The self-similar traffic is composed of bursts of packets heading to the same des-
tination. The packets’ sizes are governedby a Paretodistribution, as recommended
in [15]. In this way, many small size packets are generated, with an occasional large
size packet. The periods between bursts are modeled with a Poisson distribution.
If the burst size is long, it should show worst-case behavior because, at a given
moment in time, many packets are grouped going to the same destination.

3 Crossbars inherently operate on fixed size cells and thus external packets are tradi-
tionally converted to such internal cells.

638 A. Mart́ınez et al.

5 Simulation Results

In this section, we show the performance of our proposal. We have considered
three common QoS metrics for this performance evaluation: throughput, latency,
and jitter. Note that packet loss is only possible at the interfaces for video
packets, thereafter there is a credit-based flow control.

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

A
ve

ra
ge

la
te

nc
y

(μ
s)

Offered load

 0
 2
 4
 6
 8

 10
 12
 14

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

M
ax

im
um

la
te

nc
y

(μ
s)

Offered load

Fig. 2. Performance of Network Control traffic

The performance of Network Control traffic is shown in Figure 2. We can see
that the three alternatives offer good latency results, both average and maxi-
mum. The differences between the Traditional 4 VCs case and the two based
on deadlines come from the fact that in the latter ones only two VCs are used.
Therefore, the Network Control traffic shares the VC with the Video traffic. We
can conclude that this reduction of VCs is not causing problems, there is only a
rather small performance loss at high load.

On the other hand, the small differences that can be observed between our
proposal and the RAM buffers case are due to the order errors we discussed in
Section 3. However, we see that the impact of this issue is very limited, even
after mixing a few of high-priority packets with lots of low-priority video traffic.

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

A
ve

ra
ge

la
te

nc
y

(μ
s)

Offered load

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

M
ax

im
um

jit
te

r
(μ

s)

Offered load

Fig. 3. Performance of Video traffic

Figure 3 shows the performance of video traffic in terms of average latency
and maximum jitter. The deadline-based alternatives succeed in providing a

QoS Support for Video Transmission in High-Speed Interconnects 639

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

T
hr

ou
gh

pu
t

(%
)

Offered load
(a) Best-effort

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

T
hr

ou
gh

pu
t

(%
)

Offered load
(b) Background

Fig. 4. Performance of best-effort traffic

constant latency of 40 milliseconds for all the video frames independently of the
load. This is also reflected in jitter, which is low at all load levels. Note that this
results are referred to the full video frames. Individual packets have much lower
latency, of course. On the other hand, results for Traditional 4 VCs case are not
so good, because latency varies with load and at high load the latency and jitter
reach unacceptable values. Our two-VC scheme, with the traffic shaping based
on deadlines, offers much better performance with less VCs.

To finish this part of the study, we will look at best-effort traffic results (Fig-
ure 4). We can see that the two deadline-based alternatives offer much better
throughput to this kind of traffic than the Traditional 4 VCs architecture. More-
over, note that although we are using just one VC with our proposal for both
best-effort TCs, there is QoS differentiation between the two classes of best-effort
traffic: Best-effort traffic keeps good performance at high load, while Background
decays.

We can conclude at this point that our proposal offers as good latency for
Control Traffic as the other two options; offers as good jitter for video traffic
as the unfeasible RAM buffers architecture due to the traffic shaping, while the
Traditional 4 VCs case fails in this; and offers as good throughput as the other
alternatives for bursty, unbalanced best-effort traffic.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

T
hr

ou
gh

pu
t

(%
)

Video load

 1

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

A
ve

ra
ge

la
te

nc
y

(μ
s)

Video load

 10

 100

 1000

 10000

 100000

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

M
ax

im
um

la
te

nc
y

(μ
s)

Video load

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

New 2 VCs
RAM buffers
Trad. 4 VCs

M
ax

im
um

jit
te

r
(μ

s)

Video load

Fig. 5. Performance of full Video traffic injection

In the next experiment, we examine the capacity of the three alternatives to
deal with video traffic. We vary the load from 0 to full input injection of video
sequences, as can be seen in Figure 5. We observe that the Traditional 4 VCs

640 A. Mart́ınez et al.

case offers good performance up to a video load of 45%. Afterwards, latency is
so bad that packets start being dropped after having waited 100 millisecond at
the network interfaces. This decreases the throughput results. As a side effect,
jitter actually decreases when the load is very high and almost all the packets
that leave the interface have waited near 100 milliseconds.

On the other hand, the deadline based alternatives can cope with a video
load of 85% before the performance in terms of latency, jitter or throughput
is affected. Note that before that point, average and maximum latency is 40
milliseconds (for the full frames) and, therefore, jitter is very low.

6 Conclusions

In this paper, we propose a novel technique for supporting very efficiently deadline-
based scheduling policies in a high-speed interconnect. Based on these policies, we
are able to offer excellent performance compared with traditional solutions pro-
posed in specifications like InfiniBand or PCI AS. Moreover, we show that the per-
formance of our proposal is not far from what would be obtained using expensive
random access buffers. We are able to use only 2 VCs per port, reducing consider-
ably the cost and complexity of the interconnect switch. Even with only 2 VCs, we
are able to provide QoS differentiation between multiple different classes of traffic
and improve network utilization.

References

1. Miras, D.: A survey on network QoS needs of advanced internet applications.
Technical report, Internet2 - QoS Working Group (2002)

2. InfiniBand Trade Association: InfiniBand architecture specification volume 1. Re-
lease 1.0. (2000)

3. Advanced switching core architecture specification. Technical report, (available
online at http://www.asi-sig.org/specifications for ASI SIG members)

4. IEEE: 802.1D-2004: Standard for local and metropolitan area networks.
http://grouper.ieee.org/groups/802/1/ (2004)

5. Moving Picture Experts Group: Generic coding of moving pictures and associated
audio. Rec. H.262. Draft Intl. Standard ISO/IEC 13818-2 (1994)

6. Duato, J., Yalamanchili, S., Lionel, N.: Interconnection networks. An engineering
approach. Morgan Kaufmann Publishers Inc. (2002)

7. Guerin, R., Peris, V.: Quality-of-service in packet networks: basic mechanisms and
directions. Comput. Networks 31 (1999) 169–189

8. Forum, A.: ATM Forum traffic management specification. Version 4.0. (1995)
9. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture:

an Overview. Internet Request for Comment RFC 1633, Internet Engineering Task
Force (1994)

10. Blake, S., Back, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Services. Internet Request for Comment RFC 2475, Internet
Engineering Task Force (1998)

11. Alfaro, F.J., Sánchez, J.L., Duato, J.: QoS in InfiniBand subnetworks. IEEE
Transactions on Parallel Distributed Systems 15 (2004) 810–823

QoS Support for Video Transmission in High-Speed Interconnects 641

12. Minkenberg, C., Abel, F., Gusat, M., Luijten, R.P., Denzel, W.: Current issues
in packet switch design. In: ACM SIGCOMM Computer Communication Review.
(2003)

13. Ioannou, A., Katevenis, M.: Pipelined heap (priority queue) management for ad-
vanced scheduling in high speed networks. In: Proceedings of the IEEE Interna-
tional Conference on Communications (ICC’2001). (2001)

14. Yun, K.Y.: A terabit multiservice switch. IEEE Micro 21 (2001) 58–70
15. Jain, R.: The art of computer system performance analysis: techniques for experi-

mental design, measurement, simulation and modeling. John Wiley and Sons, Inc.
(1991)

Discrete Broadcasting Protocols for
Video-on-Demand

Chao Peng1,�, Hong Shen1, Naixue Xiong1, and Laurence T. Yang2

1 Graduate School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Tatsunokuchi, Ishikawa, 923-1292, Japan
p-chao@jaist.ac.jp

2 Department of Computer Science,
St. Francis Xavier University, Antigonish, B2G 2W5, Canada

Abstract. The Video-on-demand (VOD) service allows users to view
any video program from a server at the time of their choice. Broadcast-
ing protocols can be used to improve the efficiency of a VOD system.
The Harmonic Broadcasting Protocol has been proved to be bandwidth-
optimal, but it is not efficient for the local storage. In this paper, we
present the Discrete Broadcasting scheme, which can intelligently adjust
its solution according to available bandwidth and local storage in order
to achieve an ideal waiting time.

1 Introduction

In a Video-on-demand (VOD) system, a subscriber is expected to be able to
watch his favorite video program in the server at the time of his choice. Usually
such a system is implemented by a client-server architecture supported by certain
transport networks such as CATV, telecom, or satellite networks. Clients use web
browsers or set-top-boxes (STB) on their television sets. In a pure VOD system,
each user is assigned a dedicated video channel so that they can watch the video
they chose without delay and many VCR-like functions may be provided. But
in this case the cost is too expensive, because it will quickly use up all of the
available bandwidth on the VOD server when too many concurrent users are to
be accommodated at the same time.

To reduce the tremendous bandwidth and I/O requirements, many alterna-
tives have been proposed by sacrificing some VCR functions. Broadcasting is
one of such techniques and is mostly appropriate for popular videos that are
likely to be simultaneously watched by many viewers [9]. In this approach, the
server uses multiple dedicated channels to execute frequent retransmissions of a
“hot” video. Each client follows some reception rules to grab and store data from
appropriate channels so as to play the whole video continuously. What distin-
guishes broadcasting from other VOD distribution methods is that the server’s
� Supported by “Fostering Talent in Emergent Research Fields” program in Special

Coordination Funds for promoting Science and Technology by Ministry of Education,
Culture, Sports, Science and Technology.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 642–652, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Discrete Broadcasting Protocols for Video-on-Demand 643

broadcasting activity is independent of the number of viewers. The bandwidth
savings can be considerable since a few (10 or 20) very popular videos are likely
to account for nearly 80% of demands [2].

The simplest solution is to periodically broadcast the video on several chan-
nels, each differentiated by some time. By this method the server need at least
K channels in order to keep the waiting time below L/K (here L is the length
of the whole video). To enhance the efficiency in channel usage, many schemes
[2,4,5,6,7,8,10] have been proposed by imposing a large enough client receiving
bandwidth and an extra buffering space at the client side.

In this paper, we present the Discrete Broadcasting Protocol(DB), which can
intelligently adjust its solution according to available resources such as available
channels and local storage. It can reduce the average waiting time of a 120
minutes video to 3 minutes if we allocate a bandwidth of 4 times the consumption
rate. It can also be modified for VOD service even when the local storage is very
small. Some of our results have already been realized in industrial application
and have got a good performance.

2 Model and Analysis of VOD Broadcasting Protocols

The broadcasting problem in the VoD service can be described as the following:
In a VOD system, given a video of size S (Mb) and consumption rate c (Mb/s),
if the available bandwidth on the VOD server is B, the endurable delay for the
client is D and the available storage size of the client is M , we should find a
broadcasting scheme which can satisfy these tree constraints.

Usually we will bound the storage m and the delay d but minimize the band-
width b. We can also bound m and b but minimize d, but the method is the same.
What is different is the storage issue, yet it is often assumed to be unlimited
and been neglected. The following are the parameters we need to consider in a
VOD system.

The parameters of a given video
L The length of a video program, in seconds.
S The size of a video program, S = L · c, in Mb.
c The consumption rate, in Mb/s.

Performance parameters of the system
d The max delay for any client, in seconds.
b The bandwidth needed for the server, in Mb/s.
m The maximum storage used by any client, in Mb.

Constraint parameters of the system
D The endurable maximum delay , in seconds.
B The available bandwidth of the server, in Mb/s.
M The minimum local storage size, in Mb.

Figure 1 illustrates the basic ideas of VOD. Here we use a single tape with length
L and width c to denote a whole video which is Constant Bit Rate (CBR)

644 C. Peng et al.

Δti
i

� �L

c
{

�

�

b

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d︷︸︸︷ ︸︷︷︸
Δti

︸︷︷︸
Δtz

treq t0 t1 ti ti+1 tz

Δt1i

Δt2i

Δt3i

Δt4i

Δt1f

Δt1y

}
bf}
bi

}
by

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
∑

bk

A whole
video

The
broad-
casting
channel

K ·

Fig. 1. A general framework for VOD

� �L

c
{

�

�
Sub1

Sub2

Subi

SubK

c

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d︷︸︸︷ L/K︷ ︸︸ ︷treq t0

Fig. 2. The SBP Protocol

encoded, so its size is S = L ∗ c. At the server side, we will use a channel of
bandwidth b to broadcast this video. Suppose the client sends a request for this
video at time treq, and starts to consume this video at time t0, then the period
between this two points is the delay t0 − treq of this user. The maximum delay
experienced by any client of a video is the viewing delay d of this video.

To improve the efficiency, we can divide a whole video into small segments
(the segment starts at time ti is denoted as Δti) and arrange these segments into
the broadcasting channel according to a certain schedule. To guarantee that a
client can watch the video smoothly, the required segment Δti must be already
in the storage of the client’s STB at time treq + d + ti.

Thus we need to make sure that the segment Δti can be downloaded during the
period from treq to treq + d + ti. Sometimes there may be more than one such seg-
ments during this period, for example, there are three Δti during the period from
treq to treq + d+ ti in Figure 1. The client can choose to download the last appear-
ance Δt3i if he knows the schedule of all segments at the time he starts to download,
for this may in some cases decrease the storage requirement. But in most cases he
doesn’t have such knowledge, then he has to download it at its first appearance
Δt1i and store it for future consumption. For a certain video, we can calculate the
storage requirement. Refer to the shadow tape of the video in Figure 1, at time ti,
all segments at the left side have been consumed and can be cleared from the stor-
age, but some segments at the right side may have been downloaded or partially
downloaded and they will stay in the storage until they are consumed. The total
volume of these segments will reach a maximum value at some time, so it will be
the storage requirement for users enter at treq. Then the largest value among all
users enter at different time is the minimum storage requirement m for this video.

As an example, the Staggered Broadcasting Protocol (SBP) in [1] rebroadcasts
the whole video on b/c = K distinct channels (each with bandwidth c) at equal
time intervals L/K, and thus the maximum viewing delay will be L/K (Figure
2). So for a 7200sec video, we need 12 such channels to guarantee a 600sec =
10min viewing delay, which is not so efficient for bandwidth.

3 The Discrete Broadcasting Protocol for VOD

In our Discrete Broadcasting Protocol model, we first assume that the bandwidth
b allocated for the broadcasting channel will be a multiple of the consumption

Discrete Broadcasting Protocols for Video-on-Demand 645

rate c. Our second assumption is that a CBR video of length L will be divided
into n segments with same size L/n. Let’s arrange them by time order and use
Si(1 ≤ i ≤ n) to denote the ith segment.

In this simplified model, the maximum delay depends on the maximum dis-
tance between the beginning time of any two neighboring S1 segments. Since
all segments are equally sized, we can assume that this distance is k ∗ (L/n),
k ∈ N . Thus the maximum delay is near k∗(L/n) in the case that the client just
misses the first frame of the video when he starts to download. If the minimum
distance of any two neighboring S1 segments is also k ∗ (L/n), and the arriving
times of the clients are uniformly distributed, then the average delay will be∫ kL

n

0+ (kL
n − x)dx/kL

n = kL
2n .

To satisfy the smooth watching requirement, we need to make sure that the
client’s STB can find an Si during any period of length L∗ i/n which starts from
the begin of an S1. Then we can make sure that after a client start consume S1,
he can download a Si before treq + d+L ∗ (i− 1)/n (or find Si at then) when he
should start to consume Si. If we fix the distance between any two neighboring
S1 segments to be (L/n), then we need to put an Si in any period of length
L ∗ i/n and we can use a single channel of 1 ∗ c to broadcast S1.

Now let’s analyze the bandwidth requirement. Since we need to put an Si in
any period of length L∗ i/n, then S1 will occupy 1∗ c bandwidth, S2 will occupy
c ∗ 1/2 and Si will occupy c ∗ 1/i, we have that b ≥ c

1 + c
2 + ... c

i + ... + c
n =∑n

i=1
c
i = c ∗Hn.

Based on this analysis, we designed Algorithm1. Figure3 is the first 52 columns
of one result scheduling table of Algorithm1 when the available bandwidth is
4 ∗ c. We can see in Figure3 that the whole video is divided into 26 equal-
size segments. But according the analysis, the number of segments should be
max{n|
Hn� = 4} = 30. The gap lies in that every segments are equally-sized
and are broadcasted using the same bandwidth 1 ∗ c, so the scheduling table is
a discrete table. In such a discrete case, we cannot make sure that the distance
between any two neighboring Sis is exactly i. The reason is because there will
be a confliction when you try to put one segment at time t yet all 4 sub-channels
at that time slot are already occupied.

Algorithm 1. The Discrete Broadcasting Algorithm
SERVER:

1 Divide the whole video into n equal-size segments;
2 Put all S1 segments into the first sub-channel;
3 For i = 2 to n do
4 tcur = tnext = 0;
5 While the video is not finished do
6 Calculate the next time tnext to put Si;
7 If find a vacancy in (tcur, tnext] then put Si;
8 Else report error and exit;
9 tcur = tnext;
10 End while loop
11 End for loop

646 C. Peng et al.

CONSUMER:
1 Start downloading all segments;
2 If find segment S1 then start viewing S1;
3 For i = 2 to n do
4 If find segment Si in the local storage then
5 start viewing Si;
6 Else report error and exit;
7 For all segments Sk in the broadcast channel;
8 If k > i and Sk is not in the local storage then
9 Download Sk into the local storage;
10 End for loop

For example, see S14 in Figure3, its first appearance is at t10, so its next ap-
pearance should be at t24 for the most efficient case. But we find that all 4 sub-
channels at t24 slot are already occupied, thus we can only put it at t23. Such kind
of conflictions will happen more often as n increases. So L/max{n|
Hn� = b/c}
is a theoretic optimal lower bound for maximum waiting time and cannot be
achieved in most cases. Notice that there are some blank positions at the head,
but we cannot use them to accommodate more segments. Because if we put an
S27 there, we cannot find a vacancy for the next S27 since the columns from t5
to t52 are already full.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13S14S15S16S17S18S19S20S21S22S23S24S25S26

S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6 S6

S8 S8 S8

S9 S9 S9S12 S12

S16 S16

S18

S10 S10S15 S20S24 S7 S23 S11S13 S7 S21 S19 S25S11S14S13 S7

S14 S24 S7 S22 S26

S17 ⇒

� � �←

�

�
S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6 S6

S8 S8 S8

S9 S9 S9S12 S12

S16

S18

S10 S10 S10S15 S15S20S24 S21S19 S7 S17 S14 S26 S24S22 S11 S25 S7 S19 S17S21

S23 S13S24 S7 S23 S18S13

S11 S14

Fig. 3. The Full Discrete Broadcasting Protocol for VOD

Suppose the length of the video program to be broadcasted is 120min =
7200sec, then the length of each segment is 277sec if we adopt the table in
Figure3. Thus the maximum delay is 277sec = 4.6min and the average delay is
2.3min. If the format is high quality MPEG-II-compressed NTSC video at about
10Mbps, then we have r = 4 ∗ c = 40Mbps while m = 7200 ∗ 10 ∗ 8 ∗ 9/26 ≈
3115Mbytes ≈ 3.1Gbytes, the ration 9/26 is calculated from the table which
means that a user need to store at most 9 segments any time.

4 The Block Discrete Broadcasting Protocol

The scheduling table of DB will be very complex when n is large. So we present
the Block Discrete Broadcasting Protocol(BDB), which arranges a short BLOCK

Discrete Broadcasting Protocols for Video-on-Demand 647

table and then repeat broadcasting the segments according this BLOCK table.
Notice that there are some blank positions at the head of the table in Figure3,
we can utilize them by using the BLOCK table method. And we need not to
change the algorithm at the client side.

Algorithm 2. The Discrete Block Broadcasting Algorithm
SERVER:

1 Divide the whole video into n equal-size segments;
2 Put all S1 into the first sub-channel of the BLOCK;
3 For i = 2 to n do
4 tcur = tnext = 0;
5 While tcur < lBLOCK do
6 Calculate the next time tnext to put Si;
7 If tnext < lBLOCK then
8 If find a vacancy in (tcur, tnext] then put Si;
9 Else report error and exit;
10 Else
11 If find a vacancy in (tcur, lBLOCK] ∪ [0, tnext]
12 then put a segment Si there;
13 Else report error and exit;
14 tcur = tnext;
15 End while loop
16 End for loop
17 Repeat broadcasting BLOCK.

� �L

c
{

�

�� �One Cycle Block

4 · c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d

1253

treq t0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13S14S15S16S17S18S19S20

S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6

S6

S7 S7 S7S8 S8S8

S9 S9S9S10 S10

S18

S18

S12S13 S14

S16

S15

S11

S12

S17

S13

S14S15

S16

S19 S20

S19

S17

S11

Fig. 4. The Scheduling Table of the Discrete Broadcasting Protocol

Suppose the length of a BLOCK table is l columns. To satisfy the smooth
watching requirement, we need to make sure that the client’s STB can find an
Si during any period of length L ∗ i/n which starts from an S1. This means that
we have to put an Si in any i consecutive columns. Thus the space occupied by
Si will be no less than
 l

i� since this table will be repeatedly broadcasted. And
the lower bound of the number of segments in a BLOCK table with l columns
of Algorithm 2 will be: b ≥ l +
 l

2�+
 l
3�+ ...
 l

i�+ ...+
 l
n� =

∑n
i=1
 l

i� > l ∗Hn.
Figure 4 is one output BLOCK table of Algorithm 2. We divide the whole

video into n = 20 equal-size segments in this example and the length of the table
is also l = 20 columns. The deep-grey shadowed segments in the BLOCK table
show all those segments need to be downloaded for a client who sent a request at
time treq. Since H20 ≈ 3.60 and

∑20
i=1
 20

i � = 80, the table has achieved the lower

648 C. Peng et al.

bound. For a 120min = 7200sec video with c = 10Mbps, the maximum delay is
7200/20sec = 6min and the average delay is 3min. We can also calculate from
the table that r = 4 ∗ c = 40Mbps while m = 7200sec ∗ 10Mbps ∗ 9/(20 ∗ 8) =
4050Mbytes = 4.05Gbytes. Here we set l = n = 20, but this does not mean
that we should always set l = n. In contrary, we can adjust the value of l
to find the most efficient schema. Consider an example when b = 3 ∗ c, since
max{n|
Hn� = 3} = 10, we cannot divide the video into more than 10 segments
and load them into a scheduling table.

We start from n = 8, let l = 8 and we will have
∑8

i=1
 8
i � = 24. Fortunately a

table with 3 lines and 8 columns can accommodate exactly 24 segments. Using
Algorithm2, we construct the table in Figure 5. Now let’s try n = 9. If we

� �L

c
{

3c

⎧⎪⎨
⎪⎩

One Cycle Blockd
treq t0

�

�� �

S1 S2 S3 S4 S5 S6 S7 S8

S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3S3

S4 S4

S5 S5S6 S6S7

S7 S8

Fig. 5. A Block of BDB when n=8

� �L

c
{

3c

⎧⎪⎨
⎪⎩

� �One Cycle Blockd
treq t0

�

�

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4

S5 S5 S5 S5S6 S6 S6S7 S7 S7

S8 S8S9 S9

Fig. 6. A Block of BDB when n=9

let l = 9 then
∑9

i=1
 9
i � = 29. Yet a table with 3 lines and 9 columns can

accommodate only 27 segments. So we cannot construct such a BLOCK table.
Then let us extend the length of the table. We find that when l = 16 we have∑9

i=1
 16
i � = 48. While a table with 3 lines and 16 columns can accommodate

exactly 48 segments. Thus we can construct the BLOCK table in Figure 6.

5 Bound the Storage

We assume that there are enough local storage in all above schemes. And the
true local storage requirements of them are all above 35% and around 40%. But
sometimes in real applications we will encounter the problem of local storage
shortage. Suppose there is a STB whose storage size is 2Gbytes, which can
satisfy the requirement for any video with c ≤ 5Mbps and L ≤ 7200sec since
m ≤ 7200 ∗ 5 ∗ 40%/8 = 1800Mbytes. Now if there is a video with c = 10Mbps
and L = 7200sec, then L ∗ c = 9000Mbytes and m = 3150Mbytes > 2Gbytes.

If will still divide the video into n equal-size segments, then we can store
s = �n ∗ 2/9	 segments by using 2Gbytes. To guarantee the smooth watching of
this video, we need to make sure that the client can find an Si from the local
storage at time ti. We find that in most cases, the longer the distance between
any two neighboring Sis, the longer the time Si will be stored in the local storage.
If too many segments need to be stored, then the limited local storage will be
crammed sooner or later. The result is some segments must be discarded and
the video cannot be smoothly consumed.

Discrete Broadcasting Protocols for Video-on-Demand 649

So one method to depress the local storage requirement is trying to reduce the
distance between any two neighboring Sis when i is large. Let’s reconsider about
the BLOCK table, one characteristic of this table is that the maximum storage
required will never exceed S ∗ l/n. Since at a certain time when you are watching
Si, you need only to find the segments from Si+1 to Si+l−1. You need not to
consider about Si+l because it can always be found at the period from when you
start to watch Si+1 to when you finish Si+l, which is a whole cycle BLOCK. If
you find Si+l at exactly the time when is should be consumed, you can watch it
directly because its broadcasting rate is the same as its consumption rate. Else
you just load it into your local storage. Thus at anytime you need only to store
the current segment and the next l − 1 segments at most.

Of course this property is nonsense when l ≥ n, but it does make sense when
l � n. The following example in Figure7 show the point. In this example, we
divide the video into n = 19 equal-size segments and arrange them into a 6 ∗ 4
BLOCK table. Since the length is only l = 4 and

∑19
i=1
 4

i � = 24, we have to
use 6 ∗ c bandwidth so that the table can accommodate more segments. Now
according to the above analysis, the local storage requirement will be 9000 ∗
4/19 ≈ 1895Mbytes < 2000Mbytes. Since l � n in this BLOCK table and the

� �L

c
{

treq t0d

6 · c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1248......

�

�� � � � �� � � � �Cycle Cycle Cycle Cycle Cycle

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13S14S15S16S17S18S19

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4 S4S5 S5 S5 S5 S5S6 S6 S6 S6 S6S7 S7 S7 S7 S7

S8 S8 S8 S8 S8S9 S9 S9 S9 S9S10 S10 S10 S10 S10S11 S11 S11 S11 S11

S12 S12 S12 S12 S12S13 S13 S13 S13 S13S14 S14 S14 S14 S14S15 S15 S15 S15 S15

S16 S16 S16 S16 S16S17 S17 S17 S17 S17S18 S18 S18 S18 S18S19 S19 S19 S19 S19

Fig. 7. The Storage Efficient Scheme for VOD

local storage is limited, we need only to slightly adapt the algorithms at the
client side to satisfy the new requirement.

The deep-grey shadowed segments in the BLOCK table in Figure7 show all
those segments need to be downloaded for a client who sent a request at time
treq , the maximum delay is 7200/19sec = 379sec = 6.3min and the average
delay is 3.2min.

6 Performance Analysis and Comparison

The Pyramid Broadcasting Protocol(PB)[10] can provide shorter waiting time
than previous schemes with the same available bandwidth. This protocol parti-
tions an L-length video into n sequential segments of geometrical series increas-
ing sizes and multiplexes M different videos into each logical channel.

A user should download the first segment at the first occurrence and start
playing, then he will download the subsequent segment at the earliest possi-
ble time. To ensure smooth watching, each channel need plenty of bandwidth

650 C. Peng et al.

and the I/O rate is very high, while local storage requirement can reach more
than 70% of the whole video. To address these issues, the authors of [2] pro-
posed the Permutation-based Pyramid Broadcasting Protocol(PPB). In PPB,
each channel multiplexes its segments into p periodic bit streams and trans-
mits them in 1/p times lower rate. But the local storage requirement of PPB is
still high since the exponentially increasing speed may cause the last segment
to be as large as 50% of the whole video, and the synchronization mechanism
in it is very difficult to implement. So authors of [4] proposed the Skyscraper
Broadcasting Protocol (SB). In SB, fixed bandwidth c is assigned to each log-
ical channel. A video will be divided into n segments, the length of segments
are [1, 2, 2, 5, 5, 12, 12, 25, 25, 52...]. Each of these segments will be re-
peatedly broadcasted on its dedicated channel at the consumption rate c.
SB uses a value W as an upper bound to control the maximum size of each
segment.

A significant progress was achieved by [5], in which the Harmonic Broadcast-
ing Protocol(HB) was proposed. HB equally divides a video into n segments
[S = S1 % S2 % · · · % Sn], and each segment Si will be divided into i equal-size
subsegments [Si = S1

i % S2
i % · · · % Si

i]. Then HB allocates a single channel with
bandwidth Ci = c/i for each segment Si. Thus the maximum delay is the length
of the first segment d = L1 = L/n and the bandwidth is b = Hn · c.

The Stair Case Broadcasting Protocol (SCB) in [6] and the Fast Broadcasting
Protocol (FB) in [7] are based on HB. But in [8] it was observed that the user
in HB may not get all data it needs to consume on time. The authors of [8] also
proposed the Cautious Harmonic Broadcasting Protocol(CHB) and the Quasi-
Harmonic Broadcasting Protocol(QHB). CHB and QHB are based on the same
idea of HB, the new point is that they changed the arrangement of subsegments
so that the average waiting time can be reduced by a factor near 2. But for the
same Maximum Waiting Time, HB is still the best. Later they are proved to be
Bandwidth-Optimal by Engebretsen and Sudan in [3].

The Discrete Broadcasting Protocol (DB) we propose in Section 3 is similar
to HB. It can be deemed as the discrete version of HB. BDB is a simple version
of DB, it’s delay will be reduced when the BLOCK length is prolonged. But
its performance is already quite good even when l = n. The Figure 8 shows
the number of segments we can reach in DB, BDB and HB by using the same
Bandwidth. In Figure 9 we compare the best maximum delay we can achieve in
PB, SB, BDB, HB and the mean-delay of BDB by using the same Bandwidth.
In both figures we set l = n for BDB and we choose the best α value for PB. In
Section 4 we have discussed the solution of DB when the local storage is very
small compare with the video size. For common BDB which uses a BLOCK of l =
n, the maximum local storage requirement is around 40% of the whole video. But
if we shorten the length of the broadcasting BLOCK, we can decrease the local
storage requirement by the cost of increasing the bandwidth. Figure 10 shows
the local storage usage situation for two examples of the above two schemes.
The data are calculated from the scheduling BLOCK Tables from Figure4 and
Figure7 respectively. The following table compares the performance of these

Discrete Broadcasting Protocols for Video-on-Demand 651

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of segments: n

B
an

dw
id

th
 /

C
on

su
m

pt
io

n
R

at
e

(b
/c

)

Block Discrete
Discrete
Harmonic

Fig. 8. Bandwidth Ratio
v.s. Number of segments

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

6

Maximum Waiting Time (percentage:(d/L)*100%)

B
an

dw
id

th
 /

C
on

su
m

pt
io

n
R

at
e

(b
/c

)

Pyramid
Skyscraper
Block Discrete
Harmonic
BDB Average

Fig. 9. The b/c Ratio ver-
sus the max-delay

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

Time (Unit : the length of a segment)

S
to

ra
ge

 U
se

d
(

pe
rc

en
ta

ge
 to

 th
e

w
ho

le
 v

id
eo

)

BDB, b/c=4, l=n=20
BDB, b/c=6, l=4, n=19

Fig. 10. Storage used in
Figure4 and 7

Table 1. Performance and resources requirements comparison

HB SCB FB DB BDB PB PPB

Maximum Delay 4min 8min 8min 4.6min 6min 20min 30min
Average Delay 4min 4min 4min 2.3min 3min 10min 15min
Local Storage 3.4GB 2.1GB 4.2GB 3.8GB 3.6GB 6GB 6.75GB
Disk I/O rate 30Mbps 20Mbps 40Mbps 40Mbps 40Mbps 50Mbps 50Mbps

protocols. The sample video is a 120min-long MPEG-II-compressed NTSC video
at a consumption rate of about c = 10Mbps. The bandwidth is b = 40Mbps.

7 Conclusion

In this paper we present the efficient Discrete Broadcasting Protocol for VOD ser-
vice. We also work out the Block Discrete Broadcasting Protocol as an extension
of DB. Both DB and BDB can achieve lower average delay than the Harmonic
Protocol with the same bandwidth. Furthermore, HB cannot work when the local
storage is less than 37% of the whole video size. BDB can achieve a 6.3-minute
max delay when the local storage is around 20% of the whole video size by us-
ing a bandwidth of 6 times the consumption rate. The discrete characterisc also
makes our protocols more flexible and easy to implement.

References

1. K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide a
scalable and interactive video-on-demand service,” IEEE Journal on Selected Areas
in Communications, 14(5):1110-1122, Aug 1996.

2. C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation-based pyramid broad-
casting scheme for video-on-demand systems,” in Proc. International Conference
on Multimedia Computing and Systems, pages 118-26, June 1996.

3. L. Engebretsen and M. Sudan, “Harmonic broadcasting is optimal,” in Proc. 13th
annual ACM-SIAM SODA, San Francisco, California, Pages: 431-432, Jan 2002.

4. K. A. Hua and S. Sheu, “Skyscraper broadcasting: a new broadcasting scheme for
metropolitan video-on-demand systems,” in Proc. ACM SIGCOMM ’97 Confer-
ence, Cannes, France, pages 89-100, Sept 1997.

652 C. Peng et al.

5. L. Juhn and L. Tseng, “Harmonic broadcasting for video-on-demand service,”
IEEE Transactions on Broadcasting, 43(3): 268-271, Sept 1997.

6. L. Juhn and L. Tseng, “Stair case data broadcasting and receiving scheme for hot
video service,” IEEE Trans. on Consumer Electronics, 43(4), 1110-1117, Nov 1997.

7. L. Juhn and L. Tseng, “Fast data broadcasting and receiving scheme for popular
video service,” IEEE Transactions on Broadcasting, 44(1):100-105, Mar 1998.

8. J.-F. Paris, S. Carter and D. D. E. Long, “Efficient broadcasting protocols for video
on demand,” in Proc. MASCOTS ’98, Montral, Canada, pages 127-132, July 1998.

9. P.M. Smithson, J.T. Slader, D.F. Smith and M. Tomlinson, “The development of
an operational satellite internet service provision,” in Proc. IEEE GlobalCom’97,
pp. 1147-1151, Nov 1997.

10. S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand service
using pyramid broadcasting,” Multimedia Systems, 4(4):197-208, 1996.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 653 – 661, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multistage Authentication Scheme for Mobile Ad-Hoc
Network Using Clustering Mechanism*

Hyewon K. Lee1 and Jaeyoung Choi2

1 Korea Information Security Agency, Seoul, Korea
hkl@kisa.or.kr

2 School of Computing, Soongsil University, Seoul, Korea
choi@ssu.ac.kr

Abstract. While applicable fields of ad-hoc network become extensive, security
gets more attention, especially authentication. Threshold cryptography [7] al-
lows ad-hoc nodes to authenticate each other by cooperation of nodes. There are
many authentication schemes based on threshold cryptography, but these as-
sume pre-key distribution before network configuration. This paper proposes a
reliable multistage authentication scheme for clustering based wireless ad-hoc
networks. The secured key distribution mechanism is considered in contrast to
current schemes. Every node in networks is required to authenticate another be-
fore data transmission. The effectiveness of the proposed scheme is verified by
means of simulations.

1 Introduction

As nodes in ad-hoc network join or leave network dynamically and unconsciously, all
of them are exposed to critical security-related problems, especially authentication.
For authentication in ad-hoc network, [7] has proposed threshold cryptography algo-
rithm, which divides secret into n shares and distributes each share to individual node.
The secret is restored only when k or more than k shares are known, and attackers will
be able to threat network’s security system only when more than k genuine shares are
scraped. Several authentication schemes have been proposed [1-4] based on threshold
cryptography, but these do not consider key (or share) distribution and assume that
key is already learned before network configuration.

In this paper, we propose multi-level authentication strategy for cluster-based wire-
less ad-hoc network using threshold cryptography. In clustering ad-hoc network,
some nodes are elected as cluster-heads, and each cluster-head controls its cluster
from others independently. Our proposed scheme is composed of 4 authentication
stages as follows: key manager selection and authentication between key manager and
cluster-heads, authentication between cluster-heads, authentication between key clus-
ter-heads and common nodes, and authentication between corresponding nodes. When
two common nodes want to initiate data transmission, authentication between them
should go first. Especially, ID of each node is used on communication, which allows
powerful digital signature and blocks non-reputation.

* This work was supported by Korea Research Foundation Grant (KRF-2004-005-D00172).

654 H.K. Lee and J. Choi

This paper is organized as follows: section 2, some authentication schemes are de-
scribed and analyzed. Section 3 investigates a novel proposed scheme which exploits
authentication scheme for wireless ad-hoc nodes and digital signature. Performance
analysis and simulation results are presented in section 4. Section 5 draws the conclu-
sions.

2 Related Works

Ad-hoc network is a multi-hop network without any prepared base station. It is capa-
ble of building a mobile network automatically without any help from DHCP servers
or routers to forward or route messages. Applications of wireless ad-hoc network are
extensively wide, such as battle field or any unwired place; however, these are ex-
posed to critical problems related to network management, node’s capability, and
security because of absence of centralized controls, restricted usage on network re-
sources, and vulnerability of nodes which results from the special wireless ad-hoc
network’s character, shared wireless media. These problems induce ad-hoc network to
be weak from security attacks from eavesdropping to DoS. To guarantee secure au-
thentication is the main part of security service in ad-hoc network because networks
without secure authentication are exposed to exterior attacks.

2.1 Threshold Cryptography

In threshold cryptography algorithm, secret D is divided into n shares (D1, D2, ···, Dn)
using (1) and (2) [7]. It has following characteristics:

− With k or more than k Di shares, D can be computable.
− With k-1 or less than k-1 Di shares, D cannot be computable.

This threshold cryptography algorithm is based on polynomial interpolation given
k points in the 2-dimensional plane (x1, y1), (x2, y2), ···,(xn, yn) with different xis. Then,
there will be only one polynomial q(x) of degree k-1 which for all q(xi) = yi. For ex-
ample, k-1 polynomial is generated as (1) and each Di is evaluated as (2). The thresh-
old cryptography provides strong key management to security system because the
secret is still safe even if k-1 systems are attacked.

q(x)= a0 + a1x + a2x
2 + ··· + anx

n. (1)

D1 =q(1), ···, Di =q(i), ···, Dn =q(n). (2)

Several kinds of key distribution schemes for secured communication have been
devised to provide authentication [1-2]. These schemes employ distributed authentica-
tion mechanism [7] via cooperation of nodes, while they miss confidence of the nodes
which participate in authentication process. Also, the authors in [2] assume that public
and service keys are pre-distributed into certificate authority (CA) nodes on initial
network configuration. However, the pre-key-distribution scheme has problems in
that network should interoperate with infrastructure based networks and network
scalability is degraded.

 Multistage Authentication Scheme for Mobile Ad-Hoc Network 655

2.2 CGSR (Clusterhead Gateway Switch Routing)

Many routing protocols for ad-hoc networks are based on flat-tiered networks with no
central controls. However, flat-tiered configuration has bad efficiency when we think
of code division, channel access, routing and bandwidth allocation. In CGSR (Clus-
terhead Gateway Switch Routing) [8] protocol, 1-hop distant nodes organize a cluster,
and one cluster-head manages common nodes within the cluster. A common node
residing on two different clusters works as a gateway. All packets are forwarded via
cluster-head and gateway.

CGSR employs DSDV (Destination Sequence Distance Vector) [12] protocol and
inherits DSDV’s character for routing. Each node keeps cluster member table, which
contains information about cluster-heads for destination node. Cluster member tables
are periodically broadcasted to networks using DSDV. Once update message is re-
ceived, ad-hoc nodes update their cluster member table, respectively. When a node
receives any message from others, the node forwards it to a proper cluster-head using
its cluster member table and routing table.

(i) Key manager’s (KM) public key distribution, cluster head’s (CH) public
key registration and partial service key distribution

(ii) Partial key learning
(iii) Common node’s (CN) public key registration
(iv) Corresponding node’s key learning
(v) Communication between common nodes

Cluster1

Cluster2

Clustern

(i)

(ii)
(iii)

CNd

CHn

Cluster3

CH1

(ii)

(iii)

(i)

(i)

(ii)
(iv)

KM

CH3

CNa

(v)

CNb

CNc

(i) Key manager’s (KM) public key distribution, cluster head’s (CH) public
key registration and partial service key distribution

(ii) Partial key learning
(iii) Common node’s (CN) public key registration
(iv) Corresponding node’s key learning
(v) Communication between common nodes

Cluster1

Cluster2

Clustern

(i)

(ii)
(iii)

CNd

CHn

Cluster3

CH1

(ii)

(iii)

(i)

(i)

(ii)
(iv)

KM

CH3

CNa

(v)

CNb

CNc

Cluster1

Cluster2

Clustern

(i)

(ii)
(iii)

CNd

CHn

Cluster3

CH1

(ii)

(iii)

(i)

(i)

(ii)
(iv)

KM

CH3

CNa

(v)

CNb

CNc

Fig. 1. Configuration of ad-hoc network using clustering mechanism

3 Design of Securing Model for Mobile Ad-Hoc Network Using
Clustering Mechanism

In order to provide authentication irrespective of infrastructure and in order to resolve
pre-key-distribution problem, we consider multistage authentication scheme, which is
independent of current public networks. The proposed scheme adopts public key
infrastructure and threshold cryptography mechanism [7]. In public key system, a pair

656 H.K. Lee and J. Choi

of public and private keys is generated by each node. Public keys are distributed to
networks, while private keys are kept in each individual node. In threshold cryptogra-
phy, a secret is divided into n nodes and at least k valid shares are required to build
the genuine secret. Based on this simple idea, network service key is distributed to ad-
hoc networks, and more than k nodes will participate in the authentication process.

Fig. 1 illustrates the hierarchical configuration of ad-hoc network for proposed au-
thentication scheme. As explained above, a network is divided into clusters that each
cluster is composed of a cluster-head and common nodes in cluster-based network. A
cluster may be composed of only one node. For an instance, cluster1 has one cluster-
head (CH1) and three common nodes (CNa, CNb and CNc) in Fig. 1. A common node
residing on two different clusters works as a gateway to connect two individual clus-
ters. In Fig. 1, CNc and CNd operate as a gateway. A cluster-head helps packet rout-
ing, and packets will be routed via cluster-head and (or) gateway to reach proper des-
tination. A cluster-head may allocate address for common nodes within its cluster and
guarantee the uniqueness of address allocation. A common node may select one of the
nearest cluster-heads and belong to the cluster. The arrow lines in Fig. 1 specify sig-
nal message exchange between ad-hoc nodes, and the dotted lines specify that nodes
are logically connected.

The proposed authentication scheme works in four stages, such as authentication be-
tween key manager and cluster-heads, authentication between cluster-heads, authentica-
tion between cluster-head and common nodes and authentication between communica-
tion parties. Each authentication stage uses 3-way handshake message exchange. At
first, a key manager and cluster heads distributes their public key into network, respec-
tively. Then, the key manager divides its service key using interpolation and distributes
share to cluster heads securely. Each cluster head enters into partial learning stage, and
authentication for common node will start only if the partial key learning stage is done.
Detailed operation of proposed multistage authentication scheme is specified in Fig. 2,
where every node is assumed to build key pairs by itself. Thus, the proposed authentica-
tion scheme considers initial key distribution while currently proposed schemes are
based on pre-key-distribution. Because authentication is provided by cooperation of
several nodes, it helps to avoid one-point failure in network.

Fig. 2 shows the operation of the proposed scheme in detail. Upon a key manager
is elected among cluster-heads, it distributes its public key (PKKM) into network and
divides its service key (SKKM) into n shares to assign one share (SKKM_CH[i]) to a clus-
ter-head[i]. The random selection mechanism from [5] can be employed to elect a key
manager, and polynomial interpolation is used as explained in section 2.1 for key
distribution (a). Once a cluster-head gets its share, it exchanges authentication mes
sages with the other cluster-heads to verify each other. As more than k (0 k<n) au-
thentication messages are got, the cluster-head will get proper signature (b). Now, the
cluster-head broadcasts its public key into its cluster, which encourages a common
node to start authentication phase with the cluster-head. A common node exchanges
authentication messages with its cluster-head, and the cluster-head exchanges authen-
tication messages with other cluster-heads to get proper signature for the common
node (c). Only a common node verified by a cluster-head is able to initiate communi-
cation with others. To initiate communication with another party, authentication be-
tween end-nodes should go first, which gives destination’s public key to a source via
a cluster-head (or cluster-heads) (d).

 Multistage Authentication Scheme for Mobile Ad-Hoc Network 657

KM
CH[2]

CH[3]

CH[1]

(1) Authentication request message
{RVKM|IDKM|CH[i]|SKKM_CH[i]}PKCH[i]

KM
CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVKM|RVCH[i]|IDCH[i]|KM}PKKM

KM
CH [2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

CH[1]

CN[2]

CN[3]

CN[1]

(1) Authentication request message
{RVCH[1]|IDCH[1]|CN[i]}PKCN[i]

CH[1]

CN[2]

CN[3]

CN[1]

(2) Authentication reply message
{{RVCH[1]|RVCN[i]|IDCN[i]|CN[1]}PKCH[1]}PKKM

CH[1]

CN[2]

CN[3]

CN[1]

(3) Authentication message
{Signature of CN[i]}PKCN[i]

(a) Authentication phase between key manager (KM) and cluster-heads (CH)

(b) Authentication phase between cluster-heads (CHs)

(c) Authentication phase between cluster-head (CH) and common nodes (CN)

(1) Authentication request message
{RVCH[1]|IDCH[1]|CH[i]}PKCH[i]

CH[2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVCH[1]|RVCH[i]|IDCH[i]CH[1]}SKKM_CH[i]

CH[1]

CH[2]

CH[3]

(d) Authentication phase between communication parties

(1) Key request message for CN[4]

CH[1]

CN[1]

CN[3]

CH[2] CN[4]

CN[3]’s PK

, CN[4]’s PK

(2) Authentication request message
{RVCN[3]|IDCN[3]|CN[4]}PKCN[4]

CH[1]

CN[1]

CN[3]

CH [2] CN[4]

(3) Authentication reply message
{RVCN[3]|IDCN[4]|CN[3]}PKCN[3]

CH [1]

CN[1]

CN[3]

CH[2] CN[4]

KM
CH[2]

CH[3]

CH[1]

(1) Authentication request message
{RVKM|IDKM|CH[i]|SKKM_CH[i]}PKCH[i]

KM
CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVKM|RVCH[i]|IDCH[i]|KM}PKKM

KM
CH [2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

KM
CH[2]

CH[3]

CH[1]

(1) Authentication request message
{RVKM|IDKM|CH[i]|SKKM_CH[i]}PKCH[i]

KM
CH[2]

CH[3]

CH[1]

KM
CH[2]

CH[3]

CH[1]

(1) Authentication request message
{RVKM|IDKM|CH[i]|SKKM_CH[i]}PKCH[i]

KM
CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVKM|RVCH[i]|IDCH[i]|KM}PKKM

KM
CH[2]

CH[3]

CH[1]

KM
CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVKM|RVCH[i]|IDCH[i]|KM}PKKM

KM
CH [2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

KM
CH [2]

CH[3]

CH[1]

KM
CH [2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

CH[1]

CN[2]

CN[3]

CN[1]

(1) Authentication request message
{RVCH[1]|IDCH[1]|CN[i]}PKCN[i]

CH[1]

CN[2]

CN[3]

CN[1]

(2) Authentication reply message
{{RVCH[1]|RVCN[i]|IDCN[i]|CN[1]}PKCH[1]}PKKM

CH[1]

CN[2]

CN[3]

CN[1]

(3) Authentication message
{Signature of CN[i]}PKCN[i]

CH[1]

CN[2]

CN[3]

CN[1]

(1) Authentication request message
{RVCH[1]|IDCH[1]|CN[i]}PKCN[i]

CH[1]

CN[2]

CN[3]

CN[1]

CH[1]

CN[2]

CN[3]

CN[1]

(1) Authentication request message
{RVCH[1]|IDCH[1]|CN[i]}PKCN[i]

CH[1]

CN[2]

CN[3]

CN[1]

(2) Authentication reply message
{{RVCH[1]|RVCN[i]|IDCN[i]|CN[1]}PKCH[1]}PKKM

CH[1]

CN[2]

CN[3]

CN[1]

CH[1]

CN[2]

CN[3]

CN[1]

(2) Authentication reply message
{{RVCH[1]|RVCN[i]|IDCN[i]|CN[1]}PKCH[1]}PKKM

CH[1]

CN[2]

CN[3]

CN[1]

(3) Authentication message
{Signature of CN[i]}PKCN[i]

CH[1]

CN[2]

CN[3]

CN[1]

CH[1]

CN[2]

CN[3]

CN[1]

(3) Authentication message
{Signature of CN[i]}PKCN[i]

(a) Authentication phase between key manager (KM) and cluster-heads (CH)

(b) Authentication phase between cluster-heads (CHs)

(c) Authentication phase between cluster-head (CH) and common nodes (CN)

(1) Authentication request message
{RVCH[1]|IDCH[1]|CH[i]}PKCH[i]

CH[2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVCH[1]|RVCH[i]|IDCH[i]CH[1]}SKKM_CH[i]

CH[1]

CH[2]

CH[3]

(1) Authentication request message
{RVCH[1]|IDCH[1]|CH[i]}PKCH[i]

CH[2]

CH[3]

CH[1]

(1) Authentication request message
{RVCH[1]|IDCH[1]|CH[i]}PKCH[i]

CH[2]

CH[3]

CH[1]

CH[2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

CH[2]

CH[3]

CH[1]

(3) Acknowledgement message
RVCH[i]

CH[2]

CH[3]

CH[1]

CH[2]

CH[3]

CH[1]

(2) Authentication reply message
{RVCH[1]|RVCH[i]|IDCH[i]CH[1]}SKKM_CH[i]

CH[1]

CH[2]

CH[3]

(2) Authentication reply message
{RVCH[1]|RVCH[i]|IDCH[i]CH[1]}SKKM_CH[i]

CH[1]

CH[2]

CH[3]

CH[1]

CH[2]

CH[3]

CH[2]

CH[3]

(d) Authentication phase between communication parties

(1) Key request message for CN[4]

CH[1]

CN[1]

CN[3]

CH[2] CN[4]

CN[3]’s PK

, CN[4]’s PK

(2) Authentication request message
{RVCN[3]|IDCN[3]|CN[4]}PKCN[4]

CH[1]

CN[1]

CN[3]

CH [2] CN[4]

(3) Authentication reply message
{RVCN[3]|IDCN[4]|CN[3]}PKCN[3]

CH [1]

CN[1]

CN[3]

CH[2] CN[4]

(1) Key request message for CN[4]

CH[1]

CN[1]

CN[3]

CH[2] CN[4]

CN[3]’s PK

, CN[4]’s PK

(1) Key request message for CN[4]

CH[1]

CN[1]

CN[3]

CH[2] CN[4]

CN[3]’s PK

, CN[4]’s PK
CH[1]

CN[1]

CN[3]

CH[2] CN[4]

CN[3]’s PK

, CN[4]’s PK

(2) Authentication request message
{RVCN[3]|IDCN[3]|CN[4]}PKCN[4]

CH[1]

CN[1]

CN[3]

CH [2] CN[4]

(2) Authentication request message
{RVCN[3]|IDCN[3]|CN[4]}PKCN[4]

CH[1]

CN[1]

CN[3]

CH [2] CN[4]

CH[1]

CN[1]

CN[3]

CH [2] CN[4]

(3) Authentication reply message
{RVCN[3]|IDCN[4]|CN[3]}PKCN[3]

CH [1]

CN[1]

CN[3]

CH[2] CN[4]

(3) Authentication reply message
{RVCN[3]|IDCN[4]|CN[3]}PKCN[3]

CH [1]

CN[1]

CN[3]

CH[2] CN[4]

CH [1]

CN[1]

CN[3]

CH[2] CN[4]

Fig. 2. Proposed multistage authentication scheme

Whenever an authenticated node sends data packet, it attaches ID signed by desti-
nation’s public key, which allows the destination node to identify that the packet is
from genuine source node. As shown in Fig. 2, the ID learned from multistage authen-
tication, is generated by using destination node’s IP address and random hash func-
tion, and so each ID is definitely different from node to node, which allows much

658 H.K. Lee and J. Choi

Table 1. Symbols for Fig. 1 and Fig. 2

Symbol Description Symbol Description

KM Key manager KM_CH[i]
CH[i]’s share of service
key (partial key)

CH[i]
Pseudo name of cluster-
head

CN[i]
Pseudo name of common
node

KA Key generated by node A PK Public key

SK Private key M|N
Message M is cocate-
nated with message N

IDA|B
ID generated by node A
for destination B

RVA
Random value generated
by node A

{M}K
Message M is encrypted
by key K

stronger digital signature. Although some nodes, even worse cluster-heads including
key manager, are compromised, ID is completely different in accordance with source
node, destination node and random hash function, and hence data transmission be-
tween two parties is still safe. Latency for each authentication between nodes, such as
between key manager and cluster-head, between cluster-heads and so on, can be ex-
pressed as follows:

h(3d + 8s / b) Cauth h(3(d + r) + 8s / b). (3)

In (3), h is distance between nodes that are under authentication, d is processing
delay before message transmission, r is random processing delay where 0 r 1 and
8s/b is transmission time over single link of bandwidth b bps for a data message of
size s bytes [6].

4 Performance Evaluation

To evaluate overhead of securing ad-hoc scheme and proposed authentication scheme,
following simulations are performed. Our simulated network consists of 45 ~ 70 mo-
bile ad hoc nodes distributed in two dimensional region of size 500 500 m2. The
network is randomly generated with the constraint that the graph be fully connected.
Each node randomly moves with 2~5 m/s to random directions except cluster-heads.
Each node is equipped with a radio transceiver, which is capable of transmitting a
signal from 80 up to 120 meters over 2 Mbps wireless channel. The processing delay
for transmitting a message is randomly chosen between 5 ms and 10 ms. The propaga-
tion delay is 500 ms. The IEEE 802.11b MAC protocol is used for the data link layer,
while IP runs for the network layer. For clustering mechanism, we employ CGSR
protocol [8]. Each node is assumed to be supplied by a battery with enough power to
at least make it able to carry out a complete operation. Table 2 specifies network
characteristics. Total number of exchanged packet and total latency of authentication
are measured in both schemes.

 Multistage Authentication Scheme for Mobile Ad-Hoc Network 659

0

500

1000

1500

2000

2500

3000

45 50 55 60 65 70

Number of nodes (l)

N
um

be
r

of
 e

xc
ha

ng
ed

 p
ac

ke
t

(a) Total number of exchanged packet

0

500

1000

1500

2000

2500

3000

45 50 55 60 65 70

Number of nodes (l)

N
um

be
r

of
 e

xc
ha

ng
ed

 p
ac

ke
t

(a) Total number of exchanged packet

Fig. 3. Total number of exchanged packet for multi-stage authentication

Total number of exchanged packet and latency for multi-stage authentication are
illustrated in Fig. 3 and Fig. 4. As shown in Fig. 3 and Fig. 4, number of exchanged
packet and latency increases when the number of nodes in network increases, but the
increasing rate is not so aggravated. The proposed authentication scheme requires
slightly more messages, and it is somewhat slow in authentication. However, merely
10-second difference between securing ad-hoc scheme in [1] and proposed scheme is
found from the convergence rate in Fig. 5. The result of simulations shows that pro-
posed scheme provides more proper secure communication to mobile nodes than
current scheme with negligible expense.

Table 2. Characteristics of mobile ad-hoc test network

Parameter Value

Network size 500 * 500 m2

Number of nodes (l) 45, 50, 55, 60, 65, 70

Number of cluster-heads (n) 2/3 * l

Node’s speed 2-5 m/s

Node’s transmission range 80~120 m

Packet propagation time 500 ms

660 H.K. Lee and J. Choi

0

20

40

60

80

100

120

45 50 55 60 65 70

(b) Total latency for authentication

Number of nodes (l)

T
im

e
(s

)

0

20

40

60

80

100

120

45 50 55 60 65 70

(b) Total latency for authentication

Number of nodes (l)

T
im

e
(s

)

Fig. 4. Latency for multi-stage authentication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Time (s)

T
ot

al
 la

te
nc

y
(%

)

Percent of total latency for authentication over time for each scheme

l

l

l

l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Time (s)

T
ot

al
 la

te
nc

y
(%

)

Percent of total latency for authentication over time for each scheme

l

l

l

l

l

l

l

l

l

l

l

l

Fig. 5. Convergence rate of total latency for authentication over time for each scheme

 Multistage Authentication Scheme for Mobile Ad-Hoc Network 661

5 Conclusions

This paper proposes an efficient multistage authentication scheme for clustering based
ad-hoc network. Our proposed scheme is composed of 4 authentication stages as fol-
lows: key manager selection and authentication between key manager and cluster-
heads, authentication between cluster-heads, authentication between key cluster-heads
and common nodes, and authentication between corresponding nodes. When two
common nodes want to initiate data transmission, authentication between them should
go first. Especially, ID of each node is used on communication, which allows power-
ful digital signature and blocks non-reputation.

The result of simulations shows that the proposed scheme requires just a little more
packets and delay before data transmission than securing ad hoc scheme [1]; however,
these additional augmentations in delay become negligible when we think of advan-
tages from digital signature and non-reputation.

References

1. Zhou, L. and Hass, Z. J. : ‘Securing Ad-Hoc Networks’. IEEE Network Magazine, Vol.
13, No. 6, pp. 24–30 (1999)

2. Kong. J., Zerfos. P., Luo. H., Lu. S., and Zhang. L. : ‘Providing Robust and Ubiquitous
Security Support for Mobile Ad-Hoc Networks’. ICNP’01, pp. 251–260 (2001)

3. Frankel. Y., and Desmedt., Y. G. : ‘Parallel Reliable Threshold Multisignature’. Tech. Re-
port TR-92-04-02, Univ. of Wisconsin-Milwaukee (2002)

4. Desmedt. Y. and Frankel. Y. : ‘Threshold Cryptosystems’. LNCS 435, pp. 307–315 (1990)
5. Heinzelman. W. R., Chandrakasan. A., and Balakrishnon. H. : ‘Energy Efficient Commu-

nication in Protocol for Wireless Microsensor Networks’. IEEE Proc. Hawaii Int’l Conf.
Sys. SCI., pp. 1–10 (2000)

6. Kulik. J., Heinzelman. W. R., and Balakrishnon. H. : ‘Negotiation-Based Protocols for
Disseminating Information Dissemination in Wireless Sensor Networks’. Selected Papers
from Mobicom ‘99, pp. 169–185 (2002)

7. Shamir. A. : ‘How to Share a Secret’. Massachusetts Institute of Technology Communica-
tion of the ACM, 22(11), pp612–613, (1979)

8. Chiang, C., Wu, H., Liu, W. and Gerla, M. : ‘Routing in Clustered Multihop, Mobile wire-
less Networks with Fading Channel’. Proc. IEEE Singapore International Conference on
Networks, Singapore (1997)

9. Jordan, R. and Abdallah, C.T. : ‘Wireless Communications and Networking: an Over-
view’. Antennas and Propagation Magazine, IEEE (2002)

10. Yang, H., Luo, H., Ye, F., Lu, S. and Zhang, L. : ‘Security in Mobile Ad Hoc Networks:
Challenge and Solution’. IEEE Wireless Communications (2004)

11. Mishra, A., Nadkarni, K., Patcha, A. and Tech, V. : ‘Intrusion Detection in Wireless Ad
Hoc Networks’. IEEE Wireless Communications (2004)

12. Perkins, C. and Bhagwat, P. : ‘Highly Dynamic Destination Sequence Distance Vector
Routing (DSDV) for Mobile Computers’. Proceedings of ACM SIGCOMM’94, London,
U.K., pp.234–244 (1994)

Fast and Memory-Efficient NN Search in
Wireless Data Broadcast

Myong-Soo Lee and SangKeun Lee�

Korea University, Seoul, South Korea
{lms9711, yalphy}@korea.ac.kr

Abstract. It is observed, surprisingly, that existing nearest neighbor
search methods may not work well on mobile clients with very limited
memory space. To resolve this problem, a novel method for nearest neigh-
bor search is introduced in the context of a representative of indexes in
wireless data broadcast. In the proposed scheme, a mobile client performs
the nearest neighbor search in memory-efficient manner by making a se-
quential access to index packets according to their broadcast order over
a wireless channel. The performance evaluation demonstrates that our
approach outperforms existing ones considerably in terms of access time
without compromising tuning time.

1 Introduction

Nearest neighbor (NN) query is one of the most important queries in location-
based services. The example of an NN query is “Find the nearest neighbor ho-
tel.” [13]. Much literature is available on methods of solving NN query in spatial
databases. Recently, research has been presented on air indexes for NN query
in wireless data broadcast environments (e.g., R-tree for wireless broadcast [18],
D-tree [15], Hilbert curve index [17], and grid-partition index [18] etc.). In par-
ticular, the grid-partition index partitions the search space for NN queries into
grid cells and indexes all the objects that are potential nearest neighbors of a
query point in each grid cell. It is reported [18] that the grid-partition index
outperforms the other indexes in terms of energy conservation.

NN search method in the grid-partition index is proposed at [18] with the
implicit assumption that a mobile client has local storage space enough to hold
all of the potential nearest neighbors’ index packets to compute the distance
between a query point and each object during NN detection phase. Mobile clients,
however, may suffer from intrinsic limitation such as small user interface, limited
storage space, and scarce battery power. In this paper, we observe that the
original NN search methods with R-tree or the grid-partition index presented in
[18] may lead to long access time for NN queries with very limited space of local
storage, which is mainly caused by a lot of backtracking during NN detection.

� Corresponding author. This work was supported in part by MIC & IITA through
IT Leading R&D Support Project.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 662–671, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fast and Memory-Efficient NN Search in Wireless Data Broadcast 663

This backtracking incurs significant access latency because the client must wait
for next broadcast cycles to obtain potential objects.

Motivated from this observation, a new NN search method in wireless data
broadcast is proposed in the context of the grid-partition index [18]. The basic
idea is for a client to retrieve index packets for NN search according to their
broadcast order on the air. A similar philosophy and its impact on wireless
transaction processing was reported at our early work [11]. In the current work,
we examine the impact of sequential access on fast and memory-efficient NN
search in wireless data broadcast. The proposed method shows the following
nice evaluation results:

– Access efficiency is considerably improved by eliminating backtracking dur-
ing NN detection, and

– Energy conservation is comparable (or marginally superior) to the existing
one.

The subsequent sections of this paper are organized as follows. The proposed
methodology is explained in Section 2. Section 3 presents the performance eval-
uation. Section 4 concludes this paper.

2 Proposed Approach

This section focuses on supporting the NN search in wireless broadcast environ-
ments, in which clients are responsible for retrieving data by listening to the
wireless broadcast channel. To handle the issue of energy conservation of mobile
devices, a well-known data and index organization for air indexing technique,
called (1,m) indexing technique [8], is widely accepted. Throughout this paper,
thus, we employ the (1,1) indexing scheme for simplicity.

2.1 Background and Motivation

Grid-partition index is built on the pre-computed solution space that can be
represented by Voronoi Diagrams (VDs)[2]. Let O = {O1, O2, · · · , On} be a set
of points, the V oronoi Cell (VC) for Oi is defined as the set of points q in
the space such that dist(q, Oi) < dist(q, Oj), ∀j �= i. The VD for the running
example is depicted in Figure 1(a), where C1, C2, C3, C4, C5 and C6 denote the
VCs for the six objects, O1, O2, O3, O4, O5 and O6, respectively.

In the fixed grid-partition index (FP) [18], the search space is divided into
fixed-size grid cells. Figure 1(a) presents an example of the FP. The whole space
is divided into four grid cells, G1, G2, G3 and G4. Parameters, gx and gy, are
the fixed width and height of a grid cell, while Sx and Sy are the scales of the x-
and y-dimensions in the original space. The original space is thus divided into
Sx

gx
· Sy

gy
grid cells. Figure 1(b) presents the index structure for the FP (in this

example, Sx is omitted because of Sx=gx). The FP consists of two levels: the
upper-level index, which is built upon the grid cells, and the lower-level index,

664 M.-S. Lee and S.K. Lee

(a) A Running Example (b) Index Structure

Fig. 1. Example of the Fixed Grid-Partition Index

which is built upon the objects associated with each grid cell. The upper-level
index maps a query point to the corresponding grid cell, while the lower-level
index facilitates access to the objects associated with each grid cell. One packet
of the lower-level index (i.e., P1, P2 and P3) may have several pointers to data
buckets and coordinates.

With the fixed grid-partition index, an NN query is answered by executing the
following three steps: 1) locating the grid cell, 2) detecting NN, and 3) retrieving
data. The first step locates the grid cell in which the query point lies. We access
the upper-level index and get parameters, i.e., Sx, Sy, gx, gy. Then, given a query
point (qx, qy), we use a mapping function, adr(qx, qy) = � qy

gy
	 ·
Sx

gx
� + � qx

gx
	, to

calculate the address of the grid cell. In the second step, all the objects associated
with a grid cell are obtained, and the nearest neighbor is detected by comparing
their distances to the query point. As objects in the grid cell and the query point
are shown in Figure 1(a), the grid cell G2 is associated with objects, O1, O2, O3,
O4 and O5.

In a grid cell, the objects are sorted according to one dimension. Here, the
sorted sequence of the object is O1, O2, O3, O4 and O5. For an NN query, the
checking process continues in the increasing order of the distance between the
current object and the query point in the sorting dimension (dis sd). Initially,
the current shortest distance between objects and the query point min dis is set
to infinite. At each checking step, min dis is updated, if the distance between
the object being checked and the query point, cur dis, is shorter than min dis.
Then, the process continues until dis sd is longer than min dis. For this method,
the NN query is searched without evaluating all associated objects. In a grid cell
of grid-partition index, the objects are broken into two lists according to the
query point in the sorting dimension. The first list consists of the objects with
coordinates smaller than the query point, and the rest form the second list. The
two lists are checked alternatively, for searching the NN in a grid cell. Table 1
presents the process for the running example to detect NN. Note that the NN
search reads 7 (redundant) index packets: root (i.e., upper-level index), P1, P2,
P3, P1, P2 and lastly P1.

Fast and Memory-Efficient NN Search in Wireless Data Broadcast 665

Table 1. Processing NN search in the fixed grid-partition index

Step Object dis sd cur dis min dis

1 O4 0.2 1.5 1.5
2 O5 1 1.8 1.5
3 O3 1.2 1.7 1.5
4 O2 2.5 Stop .

Notice that, in the NN search method of the grid-partition index, mobile
clients have to store two lists which contain the information (e.g., ID, coordinate
and pointer to the data bucket) of all objects within a grid cell. Since, however,
a mobile client may not have enough memory space, these two lists may not
be stored at the client’s side. In this case, NN search may not be performed
effectively.

2.2 Our Approach

In order to alleviate the local memory constraint observed from [18], a novel
method for searching the NN is proposed in the context of the fixed grid-partition
index. The basic idea is to perform the NN search in order of the sorted sequence
in the grid cell rather than in order of the closest distance in the sorted dimension.
Since clients compute the distance between objects in packet and the query point
just by reading incoming packets, the proposed method can be used even with
very limited memory space of mobile clients.

Table 2. Processing NN search with our approach

Step Object dis sd cur dis min dis

1 O1 -3.5 3.7 3.7
2 O2 -2.5 2.7 2.7
3 O3 -1.2 1.7 1.7
4 O4 -0.2 1.5 1.5
5 O5 1 1.8 1.5

(* Notation (-) indicates that the object locates the left-side of the query point.)

Table 2 presents an example of the proposed method using Figure 1. As shown
in the table, the objects are searched sequentially in order of the position in a
grid cell. The search process continues until dis sd > min dis. In this example,
the objects are searched for in the order of O1, O2, O3, O4 and O5. Thus, an
NN search can be complete within the current broadcast cycle. Although the
proposed method reads most of index packets in a grid cell, as it will turn
out, the energy consumption is found to be “comparable” since it removes the
duplicate visits of packets during the search process (the performance evaluation
in Section 3 confirms this argument). With the running example in Figure 1, the
proposed method reads 4 index packets (the sequence is root, P1, P2, and P3).

666 M.-S. Lee and S.K. Lee

The detailed proposed algorithm is presented in Algorithm 1, which illustrates
the second “detecting NN” step that obtains objects associated with a grid cell,
and detects the NN by comparing their distances to the query point.

Algorithm 1. Nearest-Neighbor Search
Input: the query point p(x, y)
Output:the pointer to the data object
Procedure:
01: ptr := the pointer to the grid cell that contains the query point;
02: min dis := ∞ ;
03: flag := false;
04: for each packet pkt in the current grid cell do
05: Get the object point set set from pkt;
06: for each object point o(x, y) of set do
07: cur dis := the distance between o(x, y) and p(x, y);
08: dis sd := o.x - p.x;
09: if dis sd > min dis then
10: flag := true;
11: break;
12: if min dis > cur dis then
13: min dis := cur dis;
14: ptr := the pointer to the data object of o(x, y);
15: if flag == true then break;
16: return ptr;

3 Performance Evaluation

This section evaluates the performance of the proposed NN search method by
comparing it with the limited memory version of existing search methods in R-
tree and the fixed grid-partition (FP) [18]. This paper assumes mobile clients
are equipped with very limited memory space, therefore the modified NN search
methods in R-tree (BASE in R-tree) and the FP (BASE in FP) are presented
here for the comparison purpose.

– BASE in R-tree: As in the work [18], R-tree is broadcasted in width-
first order on air. For query processing, no matter where the query point is
located, the minimum bounding rectangles are accessed sequentially, while
impossible branches are pruned similarly in the original algorithm [13]. The
width-first order, however, asks the client to maintain the distance informa-
tion between all the nodes at the same level and the query point. In order to
emulate NN search on R-tree with limited memory space, the base memory
with the size of a single packet is assigned to mobile clients.

– BASE in FP: In order to emulate the existing search method in FP, the
client only stores the order of object’s ID to search an NN instead of main-
taining the information (ID, coordinate and pointer) of all objects. Conse-
quently, to evaluate the distance between an object and the query point, the

Fast and Memory-Efficient NN Search in Wireless Data Broadcast 667

client must read the index packet with the object. In order to emulate NN
search on in FP with limited memory space, the base memory with the size
of a single packet is assigned to mobile clients.

In the data broadcast scenario, for simplicity, a flat broadcast scheduler is
employed (i.e., each data object is broadcasted once per cycle in the ascending
order of x-dimension values). To multiplex the index and data on the broadcast
channel, we employ the (1,1) interleaving technique [8] where a complete index
is broadcasted at the beginning of the broadcast cycle, the period of time when
the complete set of data objects is broadcasted.

In the performance evaluation, two datasets, UNIFORM and SKEWED, are
used. In the UNIFORM dataset, 5,929 points are uniformly generated in a square
Euclidean space. The SKEWED dataset contains 5,922 cities and villages in
Greece. These are extracted from the point dataset available from [1]. The system
model in the simulation consists of a base station, a number of mobile clients,
and a broadcast channel. The packet size is varied from 64 bytes to 512 bytes.
In each packet, two bytes are allocated for the packet id. Two bytes are used for
one pointer and four bytes are for one coordinate. The size of a data object is
set at 1K bytes. These system parameters are very similar to those in the work
[18] except the memory space of mobile clients.

Two performance metrics are typically used to measure access efficiency and
energy conservation: access time and tuning time. They are defined as follows[3][8].

– Access time: the period of time elapsed from the moment a mobile client
issues a query to the moment the requested data is received by the client.

– Tuning time: the period of time spent by a mobile client staying active in
order to obtain the requested data.

3.1 Impact of Grid Size

This subsection evaluates the performance of the proposed method by varying
the number of grids in order to determine the best grid partition. Figure 2 shows
the performance for UNIFORM and SKEWED datasets while a packet has the
size of 128 bytes.

Figure 2(a) and (b) demonstrate the tuning time of compared search methods.
Although not obviously shown in the figure, in most cases, the larger the number
of grids is, the better is the tuning time. As the number of grids becomes larger,
the number of index packets related to each grid cell becomes smaller and the
upper-level index becomes larger. In the FP, the number of packet accesses of
upper-level index is one or two regardless of the size of upper-level index. Con-
sequently, the decreased number of index packets that should be visited, results
in better tuning time. The proposed method behavior is similar to the BASE in
FP in most cases except for the skewed data of a small number of grids. In the
BASE in FP, when the number of grids is smaller than 144, the number of index
packets of a grid cell becomes larger. Therefore, the probability of searching the
NN in the current broadcast cycle reduces. In this case, the tuning time increases

668 M.-S. Lee and S.K. Lee

(a) UNIFORM (b) SKEWED

Fig. 2. Tuning Time vs. Number of Grids

because index packets should be repeatedly visited during each broadcast cycle.
In these experiments, the best cell partition is found to be 144.

3.2 Impact of Packet Size

Figure 3 presents the access time for all methods. In this figure, the performance
is evaluated with different size of packets varying from 64 bytes to 512 bytes.
It can be seen that the BASE in R-tree suffers the worst performance, and in
most cases, the proposed method has superior performance. Since very limited
memory incurs many backtracking in R-tree, the BASE in R-tree has long access
latency.

(a) UNIFORM (b) SKEWED

Fig. 3. Access Time vs. Size of Data Packets

The improvement of the proposed method over the BASE in FP is 47% for
64 bytes and 9% for 512 bytes on average. In the BASE in FP, to compute the
distance between the object and the query point, the client must read the index
packet with the object. Thus, while searching an NN, the object of previous

Fast and Memory-Efficient NN Search in Wireless Data Broadcast 669

packet may be searched after searching the object of later packet in broadcast-
ing order. Since packets passed in the broadcast channel cannot be accessed, the
next broadcast cycle must be waited for. However, the proposed method is highly
likely to search the NN within the current broadcast cycle because clients evalu-
ate the distance as soon as they read the packet from the broadcast channel. In
particular, as the packet capacity becomes smaller, the BASE in FP requires the
more number of backtracking due to the increased number of packets in the grid
cell. Thus, the performance gap between the proposed method and the BASE in
FP increases.

Figure 4 presents the tuning time for all methods. Unexpectedly, as presented
in the figure, the proposed method and the BASE in FP have similar performance
in both datasets. In the BASE in FP, objects should be repeatedly visited to
compute the distance between objects and the query point in each broadcast
cycle. Hence, the larger broadcast cycle, the worse the tuning time. Therefore,
although the proposed method reads most of index packets in a grid cell, the
performance is comparable.

(a) UNIFORM (b) SKEWED

Fig. 4. Tuning Time vs. Size of Data Packets

3.3 Impact of Scalability

Figure 5 presents the performance scalability of all methods to the number of
data objects. The access and tuning time of methods are measured by fixing the
packet size to 128 bytes. The data are all uniformly distributed and the number
of grids is set to 100.

Figure 5(a) presents the access time, where the proposed method has superior
performance in most cases. The improvement of the proposed method over the
BASE in FP is 3% for 1,000 objects and 48% for 50,000 objects on average.
As the dataset becomes larger, the gap between the proposed method and the
BASE in FP increases. This is mainly because the BASE in FP requires more
backtracking for the large index packets related to each grid cell.

Figure 5(b) demonstrates the tuning time, where the proposed method has su-
perior performance in most cases. As the number of objects is lower than 10,000,

670 M.-S. Lee and S.K. Lee

(a) Access Time (b) Tuning Time

Fig. 5. Performance vs. Size of Dataset

the proposed method have comparable performance to the BASE in FP. As the
number of objects becomes larger than 10,000, however, the proposed method
outperforms the BASE in FP. In the BASE in FP, as the number of objects be-
come larger, the number of backtracking increases significantly. Therefore, more
broadcast cycles are necessary and the number of index packets increases that
should be visited in each broadcast cycle.

4 Conclusion

We have remarkably shown that the existing NN search methods in wireless data
broadcast, which are employed as a representative of indexes in NN search prob-
lem, may be unsuitable with very limited memory space. Motivated from this
observation, a novel NN search method has been presented in the context of grid-
partition index. Our approach benefits from the sequential access to incoming
index packets according to the order they appear over a wireless channel.

The conducted performance evaluation confirms the superiority of the sequen-
tial access manner. It is demonstrated that access time of the proposed method
outperforms the existing methodologies significantly. Tuning time of the pro-
posed method, which was expected to be bad, is found to be “comparable” to
the emulated version of an existing method, which is rather counter-intuitive. We
are currently performing further experiments with depth-first order broadcasting
of R-tree and optimal m on (1,m) indexing technique.

References

1. Spatial dataset. http://www.rtreeportal.org/datasets/spatial/greece/cities loc.zip.
2. M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 1996.
3. A. Celik, P. Ding, , and J. Holliday. Data broadcasting with data item locality and

client mobility. In Proceedings of the IEEE International Conference on Mobile
Data Management, page 166, 2004.

Fast and Memory-Efficient NN Search in Wireless Data Broadcast 671

4. M.-S. Chen, K.-L. Wu, and S. Yu. Optimizing index allocation for sequential data
broadcasting in wireless mobile computing. IEEE Transactions on Knowledge and
Data Engineering, 15(1):161–173, 2003.

5. B. Gedik, A. Singh, and L. Liu. Energy efficient exact kNN search in wireless broad-
cast environments. In Proceedings of the Annual ACM International Workshop on
Geographic Information Systems, pages 137–146, 2004.

6. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 47–54, 1984.

7. H. Hu, J. Xu, and D. L. Lee. A generic framework for monitoring continuous spatial
queries over moving objects. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 479–490, 2005.

8. T. Imielinski, S. Viswanathan, and B. Badrinath. Data on air: Organization and
access. IEEE Transactions on Knowledge and Data Engineering, 9(3):353–372,
1997.

9. R. Kravets and P. Krishnan. Power management techniques for mobile communica-
tion. In Proceedings of ACM/IEEE International Conference on Mobile Computing
and Networking, pages 157–168, 1998.

10. D. L. Lee, W.-C. Lee, J. Xu, and B. Zheng. Data management in location dependent
information services. IEEE Pervasive Computing, 1(3):65–72, 2002.

11. S. Lee, C.-S. Hwang, and M. Kitsuregawa. Using predeclaration for efficient read-
only transaction processing in wireless data broadcast. IEEE Transactions on
Knowledge and Data Engineering, 15(6):1579–1583, 2003.

12. W.-C. Lee and B. Zheng. DSI: A fully distributed spatial index for location-based
wireless broadcast services. In Proceedings of the IEEE International Conference
on Distributed Computing Systems, pages 349–358, 2005.

13. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queriess. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 71–79, 1995.

14. J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. Energy efficient index for querying
location-dependent data in mobile broadcast environments. In Proceedings of the
IEEE International Conference on Data Engineering, pages 239–250, 2003.

15. J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. The D-tree: An index structure for
planar point queries in location-based wireless services. IEEE Transactions on
Knowledge and Data Engineering, 16(12):1526–1542, 2004.

16. B. Zheng, W.-C. Lee, and D. L. Lee. Spatial queries in wireless broadcast systems.
Wireless Networks, 10(6):723–736, 2004.

17. B. Zheng, J. Xu, W.-C. Lee, and D. L. Lee. Spatial index on air. In Proceedings of
the IEEE International Conference on Pervasive Computing and Communications,
pages 297–304, 2003.

18. B. Zheng, J. Xu, W.-C. Lee, and D. L. Lee. Energy-conserving air indexes for near-
est neighbor search. In Proceedings of the International Conference on Extending
Database Technology, pages 48–66, 2004.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 672 – 681, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Proposal of TCP for IEEE 802.11 Wireless
Networks

Fábio C. M. Araújo1, Cláudia J. Barenco Abbas2, and L. Javier García Villalba3,*

1 Electrical Engineering Department, Faculty of Technology
University of Brasilia - UnB

70900 Brasília, Brazil
ufa@ieee.org

2 Departamento de Computación y Tecnología de la Información
Universidad Simón Bolívar - USB

Oficina MYS 213-B, Apartado Postal 89.000
Caracas, 1080 Venezuela

barenco@ldc.usb.ve
3 Grupo de Análisis, Seguridad y Sistemas (GASS)

Departamento de Sistemas Informáticos y Programación (DSIP)
Facultad de Informática, Despacho 431

Universidad Complutense de Madrid - UCM
C/ Profesor José García Santesmases s/n, Ciudad Universitaria

28040 Madrid, Spain
javiergv@sip.ucm.es

Abstract. The TCP was designed to work in an environment that is almost link
error free. So it supposes that any error during receiving data is due to conges-
tion. This assumption is not always true, especially in a wireless environment,
which has a high BER when compared to other medium like fiber and twisted
pair. This work describes a simple and backward compatible way to increase
the performance of TCP in wireless links. This solution is evaluated in a simu-
lated environment using the NS2 simulator and is based in informing the TCP
whenever the link is under high BER, so it can trigger the proposed algorithm
that will hold the transmission and save the congestion window status for late
recovery from the disconnection.

Keywords: TCP, 802.11, link error, wireless networking.

1 Introduction

Wireless environments is becoming widely used, as they have more flexibility in use
and can be more easily deployed in a already built place. With the increasing use of
wireless networks, people expect that the performance on these kind os networks be
the same as in conventional wired ones.

The main protocol used to control flow data and to give some reliability in trans-
mission over the Internet is the TCP [12], whenever the network is wired or wireless.

* Supported by the Spanish Ministry of Education and Science under Project TSI2005-00986.

 A New Proposal of TCP for IEEE 802.11 Wireless Networks 673

The TCP was designed to work on an environment that is almost link-error free, so it
supposes that any error during receiving data is due to congestion. This assumption is
not always true, especially in a wireless environment, which has a high BER when
compared to other medium like fiber and twisted pair.

With this assumption, TCP reacts wrongly in presence of a high error link, shrink-
ing its congestion window. This procedure leads to a poor throughput performance, as
the congestion window is decreased when it shouldn't, because there are still band-
width left to transmit.

In other words, the TCP error control is mainly centered in congestions losses, and
it does not take into account the transient random errors or temporary “black-outs”,
so typical in a wireless environment. Even though sometimes the congestion results in
burst drops, the recovery in case of congestion (smoothed windows increases to avoid
more congestion) is not an optimal solution in case of link errors.

This work describes a simple and backward compatible way to increase the per-
formance of TCP in wireless links. This solution will be evaluated in a simulated en-
vironment using the NS-2 simulator [8] and is based in informing the TCP whenever
the link is under high BER, so it can trigger the algorithm that will hold the transmis-
sion and save the congestion window status for late recovery from the disconnection.

The rest of this paper is organized as follows: In section 2, the TCP RENO [5] er-
ror control is described and its real effectiveness in wireless link. Section 3 explains
how the new approach for TCP, called TCP_Ufa, works. Simulation results and com-
parisons with TCP RENO are shown in section 4. Conclusion and future work are
described in section 5.

2 TCP RENO

The TCP RENO was chosen for this work because it is the most used TCP version
nowadays is based on it [7] [11] [1]. It basically uses the following error control
mechanisms:

• Slow Start: This algorithm controls the flow of the transmission using the
congestion window. It operates by observing that the rate at which new
packets should be injected into the network is the rate at which the acknowl-
edgments are returned by the other end. Each time an ACK is received, the
congestion window is increased by one segment. The sender can transmit up
to the minimum of the congestion window and the receiver window. When
that ACK is received, the congestion window is incremented from one to
two, and two segments can be sent. When each of those two segments is ac-
knowledged, the congestion window is increased to four. This provides an
exponential growth (it is not exactly exponential because the receiver may
delay its ACKs, typically sending one ACK for every two segments that it
receives).

• Congestion Avoidance: Congestion avoidance is a way to deal with lost
packets. This mechanism makes use of a threshold, usually called Slow Start
Threshold, or sshthresh. When congestion occurs (timeout or the reception of
duplicate ACKs), one-half of the current window size (the minimum between
congestion window and the receiver's window, but at least two segments) is

674 F.C.M. Araújo et al.

saved in ssthresh. Additionally, if a timeout occurs, congestion window is
configured to one segment (slow start). The transmission restarts in the expo-
nential growth phase (cwnd = cwnd * 2) until the sshthesh is reached. Once
this occurs, the congestion window size is increased linearly (cwnd = cwnd +
1). When segment acknowledgments are not received, the slow-start threshold
is set to half of the current congestion window size, and the algorithm restarts.

• Fast Retransmit: In this mechanism, the duplicate acknowledgment is used
to verify if the segment was lost or if it was delivered out of order. When an
out-of-order segment is received, TCP generates a DUPACK. The purpose of
this duplicate ACK is to let the other end know that a segment was received
out of order, and to tell it what sequence number is expected. TCP does not
know whether a duplicate ACK is caused by a lost segment or just a reorder-
ing of segments, so it waits for a small number of duplicate ACKs to be re-
ceived. It is assumed that if there is just a reordering of the segments, there
will be only one or two duplicate ACKs before the reordered segment is
processed, which will then generate a new ACK. If three or more duplicate
ACKs are received in a row, it is a strong indication that a segment has been
lost. TCP then performs a retransmission of what appears to be the missing
segment, without waiting for a retransmission timer to expire.

• Fast Recovery: When Fast Retransmit indicates that a segment is missing
(three or more duplicate ACKs), the congestion avoidance is performed, in-
stead of the slow start. In this situation, the ssthresh set to one-half the cur-
rent congestion window. The segment is retransmitted, but the congestion
window is configured to ssthresh plus 3 segments. This inflates the conges-
tion window (cwnd) by the number of segments that have left the network
and which the other end has cached. Each time a duplicate ACK is received,
the cwnd is increment by the segment size. This inflates the congestion win-
dow for the additional segment that has left the network. When a ACK of
new data is received (acknowledgment of the retransmission) the cwnd is set
to ssthresh value (half of the value it was before the loss). If there are dupli-
cate ACKs, the cwnd growth is linear.

These algorithms had shown themselves very useful in conventional networks, but
in wireless environment, they had some issues. Fast Retransmit makes use of slow
start, which in turn shrinks the window when a loss occur. If this loss was originated
from a error link, probably there is no need to decrease the transmit rate, since most
errors in wireless links are due to random transient or temporary “black-outs”. The
Fast Recovery algorithm can be efficient when just one segment gets lost in a trans-
mission window, but it is not optimized when multiple losses happen in a single win-
dow. In respect to these problems, many proposals were made. Ramakrishnam and
Floyd [9] proposed a Explicit Congestion Notification (ECN) at the IP layer in order
to trigger the TCP congestion control. Hence, TCP performance can be enhanced by
means of avoiding losses of data windows due to limited buffer space at the bottle-
neck router, and congestive collapse can be avoided also. However, by not receiving
an explicit notification the TCP sender will not be able to safely assume that a de-
tected drop was not caused due to congestion. Even more, this solution adds complex-
ity, as the routers in the route and the TCP itself must be ECN-enabled.

 A New Proposal of TCP for IEEE 802.11 Wireless Networks 675

There are other kind of proposals, in transport layer, as the Indirect TCP (I-TCP)
[2]. In this solution, the TCP connection is split in two: one between the mobile sta-
tion and the base station, and other between the base station and the fixed station. This
way, the errors in wireless link are hidden from the source TCP, as the base station in
on charge of the retransmission. Even more, the transmission rates are increased due
the low Round Trip Time (the proximity of the base station and the mobile host), re-
covering faster from congestion. However, splitting the connection makes the end-to-
end TCP semantics: the data sent by the fixed station must be acknwolegded before it
is delivered. If these packets do not reach the destination (for instance, the base sta-
tion's buffers overran), they will not be retransmitted. Moreover, the I-TCP also suffer
from erroneous wireless links, as the TCP does.

Another approach for TCP in wireless environment is Freeze-TCP [6]. Unlike the
I-TCP, Freeze TCP is a true end-to-end mechanism, which does not require any in-
termediaries, neither change in TCP code is required on the sender side. The modifi-
cations are restricted in mobile client TCP. It handles the task of identifying an
imminent disconnection due to a potential hand off, fading signal strength, or any
other problem arising due to wireless media and notifies the sender of any impending
disconnection by advertising a zero window size (ZWA- zero window advertisement)
and prevents the sender from entering into congestion avoidance phase. By getting the
advertised window as zero, the sender enters the persist mode and locks (freezes) all
the timers related to the session. And periodically sends the ZWP (Zero Window
Probes) until the receiver’s window opens up. Yet, Freeze-TCP is only useful, if a
disconnection occurs while the data is being transferred. It is not effective, in case of a
disconnection, when there is no transaction going on between sender and receiver.

WTCP [10] is another approach where the end-to-end semantics are preserved. In
this approach, the base station have a double stack (TCP+WTCP), and monitors the
connection. When the base station receives data segments from the transmitter, it
maintains an array with the sequence number of the data segments and their arrival
time. Each time that a segment is sent to the mobile station, the WTCP adds the time
that the segment lost in its buffer in the timestamp of the segment. This way, the
source will believe this segment has been sent after it really was. “Lying” to the sour-
ce is justified by the effect it would differently have on the RTT (round-trip time)
measurement and especially its variance: a packet that would be successfully trans-
mitted only after several retransmissions attempts would give a huge RTT sample. As
TCP uses a smoothed RTT estimation, it may take a long period to resettle down. The
base station acknowledges a segment to the fixed host only after the mobile host actu-
ally receives and acknowledges this same segment, what tends to maintain the end-to-
end semantics.

Considering duplicate ACKs and timeouts events, the base station manages local
retransmission of lost segments. In case of timeout, the transmission (congestion) win-
dow is reduced to one because the lost packet can be the the first of a burst loss, typical
of wireless links. On the other hand, for duplicate ACKs, the packet is simply retrans-
mitted without further process assuming that the receipt of duplicate ACKs is a proof
of the acceptable link quality. However, “Lying” maybe disadvantageous. As the Re-
transmission Time Out (RTO) value is close linked to RTT estimatives, packets could
stay a long time in the buffers of the base station because of the momentary bad quality
link. This scenario can lead the source to time out more often. The throughput would

676 F.C.M. Araújo et al.

deteriorate due to this wrong RTT estimation. Generally, split solutions often suffer
from high software overhead in case of duplication of protocol stack and often require
a lot of buffering capacity.

There are many other TCPs approaches for wireless links. More information on the
solutions mentioned here and new ones, refer to [13] and [3].

3 TCP_Ufa

The proposed solution is based on TCP RENO and operates in a simple way. Basi-
cally it verifies the quality of the link, and if it is not propicious for transmission, an
algorithm is triggered to avoid unnecessary changes on the congestion window.

Initially, the protocol would have two algorithms: one for long disconnections and
another for short disconnections, as the characteristics of different disconnection
times may affect the performance of the protocol.

When the probable interference time is high, the algorithm forces TCP to enter
Slow Start (cwnd = 1). The value of the present cwnd is stored. So, the TCP does not
need to wait for the RTO to enter Slow Start. Additionally, it avoids data to be in-
serted in a medium with a high error probability. When is sensed that the disconnec-
tion was end, TCP gets back with normal operation. The Slow Start algorithm was
chosen because it is a mandatory mechanism in modern TCPs [4].

In case the interference is short, the algorithm forces TCP to half the cwnd, as just
a burst of data would be lost, and Fast Recovery makes the data flow return to the
previous state relatively quickly.

If the medium is sensed to be relatively propitious to data traffic, TCP_Ufa will not
interfere in transmission in any way. The flowchart of TCP_Ufa is showed in figure 3.

Before the simulations were executed, it was necessary to determine at which point
the disconnection is considered short or long. So, a prior simulation was run to deter-
mine this point, comparing with TCP RENO. In the first run, TCP_Ufa was config-
ured to operate with only the short disconnection algorithm, and the disconnection
time increasing in every run. The results were depicted in figure 1. The same simula-
tions were run with TCP_Ufa configured only with the long disconnection algorithm
(figure 2).

1 2 3 4 5 6 7 8 9 10

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

Efficiency - Short Disconnection

Disconnection time (s)

E
ff

ic
ie

nc
y

(%
)

1 2 3 4 5 6 8 10 20 34 40 50

-0,50
0,00
0,50

1,00
1,50
2,00

2,50
3,00
3,50

4,00
4,50
5,00

5,50
6,00

Efficiency - long disconnection

Disconnection time (s)

Ef
fic

ie
nc

y
 (

%
)

Fig. 1 and 2. Short and long algorithm performance when compared with TCP RENO

 A New Proposal of TCP for IEEE 802.11 Wireless Networks 677

Up to 5 seconds of disconnection, the short disconnection algorithm shows a better
efficiency when compared with the long disconnection algorithm. From 6 seconds
and above, the results shows that long disconnection algorithm outperforms the short
one. So, the optimal point where the disconnection is considered long is from 6 sec-
onds and beyond.

Fig. 3. TCP_Ufa Flowchart

678 F.C.M. Araújo et al.

The interference prediction can be archived with an Auto-Regressive Model (AR),
with a model to predict the fading signal, using spectral estimation, linear prediction
and interpolation, like the one described in [4].

4 Simulation Results and Analysis

The TCP_Ufa implementation was made in NS-2 simulator. It was compared with
TCP RENO in identical situation. In the first set of simulations, a pseudo-random
disconnection pattern was created. The two protocols were confronted against these
pattern, with a increasing number of disconnection uniformly distributed in time. The
total simulation time was configured to 1000 seconds. Each simulation battery was
made with 10 simulations from where the mean and standard deviation were calcu-
lated. The pseudo-random disconnection pattern are in table 1:

Table 1. Disconnection pattern

15
8

31
7

19
16
12
4
9

28
11
6
7
9
8

10

Disconnections
Order Duration (s)

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

13th

14th

15th

16th

In each simulation battery, one disconnection from the table was added until the
last simulation battery had all the 16 disconnections in that order. So, a total number
of 160 simulations were ran. Table 2 shows the mean of transmitted bytes in each
simulation battery, and the efficiency when compared with TCP RENO.

The figures 4 and 5 show respectively the bytes received in each protocol, and the
efficiency of TCP_Ufa, when compared to TCP RENO. In figure 4, it is possible to
observe the oscillations of the TCPs behavior against the disconnections. The per-
formance variations of TCP_Ufa are due to different disconnection times in the
pseudo-random pattern, but it is possible to note that TCP_Ufa shows better perform-
ance in the presence of disconnection, when compared to TCP RENO. These results

 A New Proposal of TCP for IEEE 802.11 Wireless Networks 679

also show in figure 5 that TCP_Ufa have peaks of efficiency at large disconnections
(3rd, 5th and 10th).

Table 2. Simulation Results

Disconnection
number in 1000

seconds

Accumulated
Disconnection

Time (s)
TCP RENO (μ)

Standard
Deviation (σ)

TCP_Ufa (μ)
Standard

Deviation (σ)
Efficiency

(%)

1 15 4,624,879 1035 4,698,674 1456 1.595609
2 23 4,287,687 986 4,359,877 1235 1.683658
3 54 3,987,417 924 4,093,658 1756 2.664407
4 61 3,589,731 1054 3,674,598 1356 2.36416
5 80 3,498,745 1108 3,609,745 1875 3.172566
6 96 3,400,547 1047 3,494,898 1235 2.774583
7 108 3,356,981 983 3,435,687 1356 2.344547
8 112 3,331,568 854 3,411,751 1249 2.406765
9 121 3,286,546 905 3,366,999 1307 2.44795
10 149 3,146,874 1096 3,275,217 1568 4.078428
11 160 3,093,498 937 3,205,879 1147 3.632813
12 166 3,052,476 928 3,125,871 1409 2.404442
13 173 3,009,986 901 3,076,544 1286 2.21124
14 182 2,975,654 895 3,039,546 1253 2.147158
15 190 2,933,658 915 2,994,796 1352 2.084019
16 200 2,889,854 938 2,950,487 1292 2.098134

Fig. 4. Received bytes x number of disconnections
from the pattern

Fig. 5. TCP_Ufa efficiency x number of
disconnections

In the second set of simulation, the protocols passed in the same disconnection se-
quence, but this time with a non-controlled traffic, which generated congestion, be-
sides disconnections. These congestions were made raising the transmission rate
above the channel capacity, twice in the 1000 seconds simulation. The first conges-
tion was programed to happen between disconnections, and the second occurred just
after a disconnection. Again, a simulation battery consisted in a 10 equal 1000 sec-
onds simulations, and the mean and the standard deviation were calculated based on
the results of the battery. Initially, an disconnection/congestion-free environment were
simulated for comparison basis. So, a 25 seconds long congestion was added to the
above scenario. Another identical congestion was added again, configuring two con-
gestions during simulation, also with no disconnection. After that, a disconnection

680 F.C.M. Araújo et al.

pattern was added to the one-congestion environment. This congestion occurred on
the first half of the simulation, exactly between two disconnections (between 4th and
5th disconnection). Finally, another congestion was added, but this time, it would
occur just before (5 seconds) in the 10th disconnection. The results obtained are shown
in table 3. The figure 6 illustrates the efficiency of the TCP_Ufa for each scenario.

Table 3. Results for scenarios with congestion

Fig. 6. Scenario Comparison between TCP_Ufa and TCP RENO

In the first 3 scenarios, both of the protocols behave in a very similar way.
TCP_Ufa is set to not interfere with TCP RENO congestion control in absence of
disconnections. With the introduction of the disconnection pattern, some efficiency
differentiation starts to appear. In an one-congestion plus disconnections scenario,
there is a better performance of TCP_Ufa when compared to TCP RENO.

Finally, in the last scenario, there is a congestion that starts just before a disconnec-
tion. In this moment, both of the protocols starts the congestion process (transmission
restricted to congestion window and ssthresh halves). However, TCP_Ufa starts its
disconnection algorithm, shutting the transmission and storing the cwnd value, while
TCP RENO continue to shrink the window, thinking there is still a congestion in the
network. TCP_Ufa resume the transmission as it was in the moment of disconnection,
but TCP RENO begins to transmit with the ssthresh too low, delaying the achieve-
ment of a reasonable transmission rate. This explain the better performance of
TCP_Ufa, when compared with TCP RENO in these situations.

9.026.987 979 9.021.976 1152 -0,06
8.842.684 1.068 8.840.595 1.201 -0,02
8.598.479 1.073 8.599.653 1.456 0,01
7.219.877 1.108 7.412.583 1.254 2,67
6.628.246 1.085 6.884.656 1.230 3,87

Scenario TCP RENO (�)
Standard

Deviation (�) TCP_Ufa (�)
S tandard

Deviation(�) Efficiency (%)

Free
1 Congestion
2 Congestions
Disconnection pattern + 1 Congestion
Disconnection pattern+ 2 Congestions

 A New Proposal of TCP for IEEE 802.11 Wireless Networks 681

5 Conclusion and Future Work

This paper shows a new proposal for TCP RENO for a better performance in wireless
environments. This proposal is done in way of minimizing the modifications in TCP,
keeping the changes on the sender side, and using a computing low cost algorithm.
The presented protocol were designed on top of TCP RENO, in NS-2. One of the ma-
jor advantages of this new implementation is the compatibility with modern and older
TCP design. Just under severe interference, TCP_Ufa enters in action and even then,
just in sender side. This permit full legacy compatibility, as the end-to-end semantics
are preserved and there is no need of intermediate nodes. As a future work, TCP_Ufa
have to be tested in other situations over wireless links, like multimedia scenarios
(delay sensitive), bursty traffics, and multi-hop environments. Mobility should also be
verified. Another suggestion is to test TCP_Ufa with new kinds of applications, as in
this work only CBR was used. Finally, it is important to note that the TCP perform-
ance issue on wireless links is not yet solved, and there is no IETF defined standard to
permanently deal with this situation. A considerably number of solutions have been
proposed but none consolidated as a consense.

References

1. Bagal, P. : Comparative study of RED, ECN and TCP Rate Control. Tech. Report, 1999.
2. Bakre, A.; Badrinath, B.: Implementation and Performance Evaluation of Indirect TCP,

IEEE Transactions on Computers, vol. 46, no. 3, pp. 260-278, 1997.
3. Balakrishnan, H. et al: A Comparison of Mechanisms for Improving TCP Performance

over Wireless Links - ACM/IEEE Transactions on Networking, 1997.
4. Eyceoz, T. et al: Prediction of Fast Fading Parameters by Resolving the Interference Pat-

tern- Asilomar Conf. on Signals, Systems and Computers, 167-171, California, 1997.
5. Floyd, S.; Henderson, T.: The NewReno Modification to TCP's Fast Recovery Algorithm -

IETF RFC 2582, 1999.
6. Goff, T. et al: A True End-to-End Enhancement Mechanism for Mobile Environments,

INFOCOM 2000.
7. MacDonald, D. et al: Microsoft Windows 2000 TCP/IP Implementation Details.
8. Network Simulator 2 (NS-2). http://www.isi.edu/nsnam/ns/.
9. Ramakrishnan, K. et al: A Proposal to Add Explicit Congestion Notification (ECN) to IP.

RFC 2481, 1999.
10. Ratnam, K.; Matta, I.: WTCP: An Efficient Mechanism for Improving TCP Performance

over Wireless Links, Proc. IEEE Symposium on Computers and Communications, 1998.
11. Salim, J.; Ahmed, U.: Performance Evaluation of Explicit Congestion Notification (ECN)

in IP Networks – IETF RFC 2884, 2000.
12. Stevens, W.: TCP Slow Start, Congestion Avoidance, Fast Retransmission, and Fast Re-

covery Algorithms - RFC 2001, 1997.
13. Tsaoussidis, V. et al: Open issues on TCP for Mobile Computing, Journal of Wireless

Communications and Mobile Computing, John Wiley & Sons, Issue 1, Vol. 2, 2002.

Gradient-Based Autoconfiguration for Hybrid
Mobile Ad Hoc Networks

Longjiang Li1, Xiaoming Xu2,3, and Yunze Cai2

1 Department of Computer Science and Engineering, Shanghai Jiaotong University,
Shanghai 200030, P.R. of China

2 Department of Automation, Shanghai Jiaotong University,
Shanghai 200030, P.R. of China

3 University of Shanghai for Science and Technology, Shanghai 200093, P.R. of China
{e llj, xmxu, yzcai}@sjtu.edu.cn

Abstract. Autoconfiguration for mobile nodes is an important prob-
lem in hybrid mobile ad hoc networks (MANETs) where pure MANETs
are interconnected to the external Internet. The Dynamic Configura-
tion and Distribution Protocol (DCDP) is an efficient approach, which
extends DHCP to a stateless autoconfiguration protocol for wired and
wireless networks. However, the distribution randomness in the DCDP
results in an unbalanced distribution of address resources, which wastes
the limited network address space and, subsequently, incurs scalability
problems. In this paper, we propose a new approach, which can im-
plement a more balanced distribution of address resources than DCDP.
As the address distribution process continues, almost every node holds
address resources. Thus, a new node can obtain its address almost im-
mediately, when it joins the network. Finally, the simulation shows that
the proposed scheme outperforms the existing algorithms.

1 Introduction

In many practical scenarios [1] [2], mobile ad hoc networks (MANETs) are in-
creasingly seen as ”extensions” of infrastructure networks where pure MANETs
need to be connected to external wired network via the gateways. When a gate-
way is available, global scope address is needed.

Many autoconfiguration protocols have been proposed in recent years, but
most [3, 4, 5, 6, 7, 8, 9, 10, 11] of them focus on pure MANETs [12] [13]. Although
the methods for pure MANETs can be applicable to hybrid MANETs with a
little modification, the performance is usually not too good. In hybrid MANETs,
a gateway can act as the starting point of address allocation. Multiple gateways
also can improve the performance of networks through the coordination via wired
network, which is not available in pure MANETs. The Dynamic Configuration
and Distribution Protocol (DCDP) [14] is a effective autoconfiguration protocol,
which extends Dynamic Host Configuration Protocol(DHCP) [15] to a stateless
autoconfiguration protocol for wired and wireless networks. It does not depend
on multi-hop broadcasting, but the distribution randomness in the DCDP re-
sults in an unbalance distribution of address resources, which wastes the limited
network address space and, subsequently, incurs scalability problems.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 682–691, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc Networks 683

In order to overcome these drawbacks, we propose a new approach , which
tries to make the address distribution more balanced to improve the performance.
We also use the address pool as the basic unit of address resources just similar
as in [16]. In addition, a gradient distribution function is introduced to control
the distribution of address resources. A configured node can determine whether
to distribute address resources to other nodes using the gradient distribution
function without relying on global information. Since the address distribution
process does not rely on multi-hop broadcast, much communication overhead can
be saved. As the address distribution process continues, almost every node holds
address resources. Therefore, a new node can obtain its address almost immedi-
ately, when it joins the network. The address resources also can be utilized more
economically. When a node need leave the MANET, the node can transfer its ad-
dress capsulated in an address message to any one of neighboring nodes for reuse.

This paper is structured as follows. Next section introduces the basic idea
of the proposed approach, namely gradient-based address distribution proto-
col(GADP). Section 3 gives a succinct comparison between GADP and several
known approaches, which depicts the superiority of GADP over others. Section
4 presents some simulation results, which is equal to our analysis. Section 5
concludes the paper.

2 Gradient-Based Address Distribution

2.1 Basic Idea

The basic idea behind the proposed scheme is to set up a gradient to distribute
address resources over all nodes in a MANET. We also use the address pool as
the basic unit of address resources just similar as [16]. If a node has at least an
address pool, it can configure the first element in the address pool as its address.
If a node has been configured address, we say that it is a configured node,
otherwise an unconfigured node. An unconfigured node has no address resource.If
the node has a neighboring node which has redundant address resources, it may
send a request to the neighbor to obtain a free address as its address. If not, it
can broadcast queries within its one-hop scope periodically until one configured
neighbor replies or just wait for some other configured node emerging. For a
configured node, if it distributes part of its address resources to other nodes, its
address resources should decrease. In order to compensate the loss of its address
resources, the node also can ask a neighboring node, which is assumed to have
more amount of address resources, to distribute address resources to it. The
amount of address resources that are distributed between two neighboring nodes
may have the different values. In the binary splitting method, a configured node
can distribute half of its address resources to the requester, which is simplest.
Thus the binary splitting method is also adopted in this paper.

2.2 Binary Splitting Method

We use a 3-tuple: (prefix, start, level) to represent an address pool, where prefix
is the prefix of the address pool, start is the first address in the address pool

684 L. Li, X. Xu, and Y. Cai

and level indicates how many times the address pool can be split any more. It is
easy to see that the length of an address pool is equal to 2level. The scheme can
be compatible easily with IPv4 or IPv6 by customizing different prefix, which is
constant during the address allocation. When we only consider the case where
all nodes will be configured from the same node, because all nodes have the same
prefix, for convenience, we may neglect prefix and only use a 2-tuble: (start, level)
to represent an address pool.

A node can have several address pools, which are all recorded in a variable,
denoted by list. A configured node uses the start value of the first element in
the list, i.e. list[1].start, as its address.

Suppose the length of the whole available address space for the MANET is
K and then the address pool of the first node should be (0, K). In order to be
consistent, we use (-1,-1) to express that a node has not been configured yet.
Without loss of generality, we use a simple rule as followed to give an instantiated
version of the binary splitting idea.

Definition 1 (Binary Splitting Rule). (start, level) → (start, level − 1) ∨
(start|2(K−level), level− 1).

That is to say, that an address pool,(start, level), may be split into two address
pools, (start, level − 1) and (start|2(K−level), level− 1).

Note that start is coded in binary code and ”|” is a bitwise OR operation,
e.g. for a network with K = 3, (010, 1)→ (010, 0)∨(110, 0). An address pool can
be split, if only its level is greater than zero.

2.3 Gradient Distribution Function

DCDP leads to an unbalance distribution of address resources, because it adopts
opportunistic distribution of the address resources. Our scheme tries to minimize
this randomness.

Consider an ideal MANET. There is no loss of packet. It can be expressed as a
connected undirected graph, where all links are bidirectional. Each bi-directional
link is considered as the union of two simplex unidirectional links. We denote
the MANET by G(V, E) where V is the set of nodes and E is the set of edges.
Each node can have several address pools. A variable list is used to record all
its address pools. When a node receives an address request from anther node, it
must decide whether to distribute address resources to the requester. Consider
two neighboring nodes, B and A. Assume that A has sent a request to B for
an address allocation, i.e., A acts as a requester and B a server. B should run
a decision function f(B, A). If f(B, A) returns true, B will try to distribute
address resources to A. Otherwise, B will not.

Definition 2 (Gradient Distribution Decision Function). Node B runs
the decision function, f : V × V → [true, false], to decide whether to distribute
address resources to node A. Here,

f(B, A) =
{

true if F+(B) > F−(A),
false otherwise.

Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc Networks 685

where F+ : V �→ R and F− : V �→ R is two metrics to evaluate the amount of
address resources of a node. F+(B) is used when node B acts as a server, and
F−(B) is used when node B acts as a requester.

The definition 2 means that one node distributes some of its free address
resources to another only when its F+(.) is greater than F−(.) of the opponent.
Different implementations of F+(.) and F−(.) can lead to different solutions,
which may have different performances. Now we give two instances of them as
followed.

B1) F+(B) = F+(B) =
∑

u∈B.list u.level;
B2) F+(B) = B.list(1).level,

F−(B) =
∑

u∈B.list u.level.

Note that B.list holds all address pools of B. In B1), level values of B′ address
pools is summed up to get the metric. Although other solutions may be possible,
we do not use the total number of addresses that the node holds as the metric,
because it seems to be too large to handle. Fig. 1 shows an example where both
node A and B have two address pools and B.list(2).level > A.list(2).level >
B.list(1).level > A.list(1).level. In Fig. 1a, B1) is applied and f(B, A) return
true, so the address distribution from B to A is allowed. In contrast, B2) is ap-
plied and f(B, A) return false in Fig. 1b, so the address distribution is disallowed.
Since B1) often leads to the ”oscillating” phenomenon [18], we use the scheme
derived from B2) as the standard version of GADP. Due to space limitation, the
discussion of the ”oscillating” phenomenon is not shown.

Fig. 1. Two instances of the decision function a) It derives from B1; b) It derives from
B2.

2.4 Address Distribution Path

Given a distribution decision function, a node can decide whether to distribute
address resources to its neighbors. Now we can set out to discuss the whole
behavior of distribution process.

As stated before, if an unconfigured node,say A, knows that one of its neigh-
boring node, say B, has been configured, the node can send requests to the

686 L. Li, X. Xu, and Y. Cai

neighbor for a free address pool. B can run the distribution decision function to
distribute address resources to A and the B’s address resources may probably
thus decrease. If B has some neighbor, say C, which has more redundant address
resources, B also can ask C to compensate its loss. In fact, we propose that the
node chosen by B should have most address resources in B’s neighborhood and
at least more address resources than B. C can work in the same way.The pro-
cess continues until some node can not find any neighbor that has more address
resources than itself.

2.5 Mechanism for Network Partition and Merger

There are common two kinds of scenarios about network partition and merger.
The first scenario is that a MANET partitions and then the partitions merge

again. Since all nodes get their addresses from the process starting with the same
allocation initiator, all addresses are different from each other and there is no
conflict if the partitions become merged later.

The second scenario is that two or more separately configured MANETs
merge. The allocation may start with different allocation initiators. In hybrid
mobile ad hoc network, pure MANETs need to be connected to external wired
network via the gateways. If gateways are used to act as allocation initiator,
multiple gateways can obtain the different prefixes through the coordination via
wired network. If each node may attach the prefix as a part of its address, there
will be no duplicate address in all MANETs. Therefore, GADP is not sensitive
to network partition and merger.

In addition, our scheme also can be extended to the application in pure
MANETS. In such situation, allocation initiators should be generated with a
pseudo-random algorithm and more details can be found in [17].

3 Characteristics and Performance Comparison

In this section, GADP is compared with other several typical approaches to
stress its characteristics.

3.1 Perkins’s Protocol

In this protocol [7], each node selects an address by itself and employs DAD
mechanism (query-based DAD) to determine whether the selected address is
valid or not. No state is maintained. No address reclamation is needed. However,
broadcast adopted in conflict detection leads to high communication overhead,
high latency, and small scalability.

3.2 MANETconf

The protocol [4] maintains a global allocation state, so a new node can obtain
a free address to join the subnet. However, the state management and synchro-
nization to maintain global state incur high complexity, high communication
overhead, high latency, and low scalability.

Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc Networks 687

3.3 PACMAN Protocol

PACMAN [10] follows a hybrid approach and uses cross-layer information from
ongoing routing protocol traffic to provide an address assignment and carry out
the duplication address detection passively. A node running PACMAN assigns
an address to itself using a probabilistic algorithm. The protocol can support fre-
quent network partitioning and merging. The node configuration time is always
fixed (in the order of milliseconds), but the address conflict can take place with a
certain probability. Therefore, this protocol can be suitable for some applications
where address conflicts can be tolerated to some extent.

3.4 Our Scheme

In contrast, GADP can generate global unique addresses, if only the alloca-
tion starts with the unique address prefix. Since the multi-hop broadcast is not
needed, the communication overhead can be reduced very much. The allocation
process tends to balance the distribution of address resource, so almost every
node holds address resources at last. When a new node joins the MANET, it
can be expected to obtain its address almost immediately. When a node need
leave the MANET, the node can transfer its address capsulated in an address
message to any one of neighboring nodes for reuse. Finally, GADP does not rely
on routing protocols or certain topologies, so it can be extensible and suitable
for hybrid MANETs with unpredictable mobility of mobile nodes.

4 Evaluation

We implement query-based DAD [7], DCDP [14] together with GADP to com-
pare their performance. The simulation is based on Scalable Wireless Ad hoc
Network Simulator (SWANS version 1.0.6) [19]. Since topologies in MANETs
are dynamic and unpredicted, using an uniformly random topologies is more
appropriate.

Due to the scarcity of resources in MANETs such as bandwidth and en-
ergy, the communication overhead should be kept at a minimum. Because every
successfully received packet or sent packet, either unicast packet or broadcast
packet, must have consumed bandwidth (and power as well), we use the average
number of packets on each node, including what a single node receives or sends,
as the evaluation metric for communication overhead.

A node must be configured an unique address before participating in the net-
work function, so the configuration latency also should be kept at a minimum.
In query-based DAD, nodes participating in the allocation try a maximum of
three times for broadcast of duplicate address detection packet. The configura-
tion latency is related with the network size. While in GADP, except domain
initiators, every node tries infinitely to broadcast query packets until it receives
a reply from one of its configured neighbors. Since address resources need spend
time to reach each nodes, what we care most is how long a new node can be

688 L. Li, X. Xu, and Y. Cai

configured after the network has operated for some time. In order to be easy
to compare, the retry intervals for both are set to be the same and we use the
configuration latency of the last node, i.e.,the total configuration time minus the
time when the last node joins, as the evaluation metric for configuration latency.

4.1 Simulation Parameters

The random waypoint mobility model [20] is adopted in the simulation. Node
speeds are randomly distributed between zero and the maximum speed 10 m/s
and the pause time is consistently 30 seconds. The retry period is randomly be-
tween 5 and 10 seconds. We select a node at random and configure its address
(0, 0, 13). All other nodes join the MANET one by one. When all nodes are
configured, the simulation program stops running and prints the result. Each
simulation is repeated 10 times using different random-number generator initial-
izations and the graphs show the average value.

4.2 Simulation Results

Different Node Numbers. We vary the number of nodes, from 200 to 300,
within a fixed field (7000meter × 7000 meter). Fig. 2(a) shows the average num-
ber of packets, including what a single node receives or sends, with different node
numbers. The number of packets generated in query-based DAD is about 5 times
of that of GADP on average. And as the node density increases, the communica-
tion overhead of query-based DAD increases because the link number increases.
However, the communication overhead of GADP and DCDP decreases because
the neighboring nodes become more so that the number of retries to obtain ad-
dresses decreases. The communication overhead of GADP is less than that of
DCDP, because the distribution of address resources in GADP is evener than
that in DCDP.

Fig. 2(b) shows the relationship of the latency and the node number. As the
node number increases, the node density increases but the configuration time in

(a) Communication overhead (b) Configuration latency

Fig. 2. A simulation for different node numbers

Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc Networks 689

both GADP and DCDP decreases. The configuration time in GADP is less than
in DCDP and the curve of the configuration time in GADP is also smoother
than that in DCDP.

(a) Communication overhead (b) Configuration latency

Fig. 3. A simulation for different field sizes

Different Node Densities. In order to investigate the impact of different node
densities, we vary the diameter of the field from 4000 meter to 7500 meter and
keep the number of nodes to be 300. Fig. 3(a) shows the communication over-
head within different sizes of fields. As the density increases, the communication
overhead in both GADP and DCDP increases because the chance that a node
has a configured neighboring node decreases.

Fig. 3(b) shows the configuration latency within different sizes of fields. As the
density decreases, the latency in both GADP and DCDP also increases because
the neighboring nodes may become fewer and most nodes need move farther to
meet a configured node. Moreover, the latency in GADP increases slower than
that in DCDP. That is to say, a node can be configured faster in GADP than in
DCDP.

From the results in Fig. 2(b) and Fig. 3(b), we can arrive at a conclusion
that the latency in GADP depends on the node density but it is not sensitive
to the node number while the latency in query-based DAD increases for large
scale MANETs. GADP also has a better performance than DCDP because the
distribution of addresses in GADP is more balanced than in DCDP.

5 Conclusion and Future Work

We have presented an address autoconfiguration solution, abbreviated to GADP,
for hybrid mobile ad hoc networks, where some nodes play the role of gateways
and can be treated as the start point of the address allocation. GADP sets up a
gradient to distribute address resources over all nodes in a MANET. GADP in-
herits the merit of DCDP, and increases the balance of address resources. Unlike

690 L. Li, X. Xu, and Y. Cai

query-based DAD algorithm, GADP does not rely on the multi-hop flooding,
so it can reduce the overhead of address configuration significantly . Each node
runs locally a decision process to dispense address resources to other nodes,
which may lead to the balanced distribution of address resources over the whole
network. GADP is not sensitive to the network partitioning and merging. As
the allocation process progresses, almost each node holds free addresses and can
configure other nodes immediately. Therefore, we believe that it may be suitable
for large scale hybrid MANETs with low communication overhead, low latency,
and high scalability.

A major issue that has been ignored in this paper is security. A faulty node
perhaps can degrade the performance of address allocation, or even damage the
consistency of address distribution. For instance, if a faulty node does not abide
by the decision process or misbehaves in running the allocation function, a wrong
address possibly generated by the node may impact many other nodes, which
increases the probability of the address collision. If an adversary node which
knows the state of the system misbehaves deliberately, the robustness of GADP
may be suspicious in the worse case. Those problems illustrated above need more
research.

Acknowledgments

This paper is supported by the National Key Fundamental Research Program
(2002cb312200) and the National Natural Science Foundation of China
(60575036).

References

1. I.K. Park, Y.H. Kim, and S.S. Lee, ”IPv6 Address Allocation in Hybrid Mobile Ad-
Hoc Networks,” The 2nd IEEE Workshop on Software Technologies for Embedded
and Ubiquitous Computing Systems, May 2004, pp:58-62.

2. R. Wakikawa, J. Malinen, C. Perkins, A. Nilsson, and A. Tuominen, ”Global con-
nectivity for IPv6 mobile ad hoc networks,” IETF Internet Draft, draft-wakikawa-
manet-globalv6-04.txt, Oct. 2005.

3. M. Gunes and J. Reibel, ”An IP Address Configuration Algorithm for Zeroconf
Mobile Multihop Ad Hoc Networks,” Proc. Int’l. Wksp. Broadband Wireless Ad
Hoc Networks and Services, Sophia Antipolis, France, Sep. 2002.

4. S. Nesargi and R. Prakash, ”MANETconf: Configuration of Hosts in a Mobile Ad
Hoc Network,” Proc. IEEE INFOCOM 2002, New York, NY, Jun. 2002.

5. J.Boleng, ”Efficient Network Layer Addressing for Mobile Ad Hoc Networks,” Proc.
Int’l. Conf. Wireless Networks, Las Vegas, NV, Jun. 2002, pp: 271-77.

6. H. Zhou, L. M. Ni, M. W. Mutka, ”Prophet Address Allocation for Large Scale
Manets,” Proc. IEEE INFOCOM 2003, San Francisco, CA, Mar. 2003.

7. C. Perkins, J. T. Malinen, R. Wakikawa, E. M. Belding-Royer, and Y. Sun, ”IP
address autoconfiguration for ad hoc networks,” IETF Draft, 2001.

8. N. H. Vaidya, ”Weak Duplicate Address Detection in Mobile Ad Hoc Networks,”
Proc. ACM MobiHoc 2002, Lausanne, Switzerland, Jun. 2002, pp: 206-16.

Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc Networks 691

9. K. Weniger, ”Passive Duplicate Address Detection in Mobile Ad Hoc Networks,”
Proc. IEEE WCNC 2003, New Orleans, LA, Mar. 2003.

10. K. Weniger, ”PACMAN: Passive Autoconfiguration for Mobile Ad Hoc Networks,”
IEEE JSAC, Special Issue on Wireless Ad Hoc Networks, Mar. 2005.

11. Y. Sun and E. M. Belding-Royer, ”Dynamic Address Configuration in Mobile Ad
Hoc Networks,” UCSB tech. rep. 2003-11, Santa Barbara, CA, Jun. 2003.

12. K. Weniger and Z. Martina, ”Mobile Ad Hoc Networks - Current Approaches and
Future Directions”, IEEE Network, Karlsruhe Univ., Germany, July 2004.

13. J. Jeong, J. Park, H. Kim, H. Jeong, D. Kim, ”Ad Hoc IP Address Autoconfigu-
ration,” draft-jeong-adhoc-ip-ADDR-autoconf-04.txt, Jul. 2006.

14. A. Misra, S. Das, A. McAulley, and S. K. Das, ”Autoconfiguration, Registration,
and Mobility Management for Pervasive Computing, ” IEEE Personal Communi-
cations, Volume 8, Issue 4, Aug. 2001, pp: 24-31.

15. R.Droms, J. Bound., B. Volz, T. Lemon, C. Perkins, M. Carney, ”Dynamic Host
Configuration Protocol for IPv6 (DHCPv6),” Network Working Group RFC 3315,
Jul. 2003.

16. A. J. McAulley, and K. Manousakis, ”Self-Configuring Networks,” MILCOM 2000,
21st Century Military Communications Conference Proceedings, Volume 1, 2000,
pp:315-319.

17. L. Li, X. Xu, ”Optimistic Dynamic Address Allocation for Large Scale MANETs,”
Lecture Notes in Computer Science, Volume 3794, Dec. 2005, pp:794-803.

18. Z. Hu; B. Li, ”ZAL: Zero-Maintenance Address Allocation in Mobile Wireless Ad
Hoc Networks,” in: Proceedings of 25th IEEE International Conference on Dis-
tributed Computing Systems, Jun. 2005, pp:103-112.

19. R. Barr, JiST-Java in Simulation Time: User Guide and Tutorial. Mar. 2004.
20. J. Broch,J. Broch, D. Maltz, D. Johnson, Y. Hu, J. Jetcheva, ”A performance

comparison of multi-hop wireless ad hoc routing protocols,” in: Proceedings of the
Fourth Annual ACM/IEEE Inter-national Conference on Mobile Computing and
Networking, Oct. 1998, pp: 85-97.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 692 – 699, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model-Aided Data Collecting for
Wireless Sensor Networks

Chongqing Zhang, Minglu Li, and Min-You Wu

Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China

zhangchongqing@sjtu.edu.cn

Abstract. In this paper, we address the problem of collecting data from sensor
nodes using a model-aided approach. In our approach, a model is maintained by
a node and a replica of the model is maintained the base station. The base sta-
tion uses the replica model to estimate the actual measurement data of the sen-
sor node in usual time, and an actual measurement datum is sent to the base sta-
tion only when the error of the model’s corresponding estimation exceeds
allowable error bound. In such a way, energy can be saved by reducing the
transmission of actual measurement data. Experimental results show the effec-
tiveness of our approach.

Keywords: Wireless Sensor Networks, Model-aided, Data Collecting, Data
Fitting.

1 Introduction

Wireless sensor networks can offer us revolutionary new methods of accessing data
from real environment [1]. However, because of the limited power of sensor nodes,
collecting data is still a challenging work. For example, a Berkeley mote is only pow-
ered by two alkaline AA batteries [2]. Furthermore, it is infeasible to replenish the
energy of sensor nodes by replacing the batteries in many applications [1]. Therefore,
data collecting approaches of high energy-efficiency are strongly needed.

Motivated by the need of extending the network lifetime of energy-constrained
wireless sensor networks, there has been considerable research in the area of energy-
efficient data collecting in sensor networks and many techniques [3, 4, 5, 6, 7, 8, 9,
10, 14] have been proposed and developed. Among these techniques in-network ag-
gregation and compression are two noticeable techniques. Although the measures they
take are different, they are both trying to save energy by reducing the total amount of
data transmitted.

Aggregation [3] is an in-network query processing technique for wireless sensor
networks. By such a technique, for an aggregation query (e.g., the average rainfall of
the monitored area), sensor readings are accumulated into partial results that are com-
bined as messages propagate toward the base station. TinyDB [4] and Cougar [5] are
two examples of utilizing aggregation to reduce energy consumption. On the other
hand, compression attempts to take advantage of the correlation in the data and ex-
ploit coding techniques to reduce the size of data transmitted. For example, in [6],

 Model-Aided Data Collecting for Wireless Sensor Networks 693

Ganesan et al. used wavelet based approach to compress the sensor data; while in [7]
Chou et al. used distributed source coding to reduce the redundancy of the data to be
transmitted to the sink.

All sensor nodes are still needed to transmit their data both in aggregation and
compression. In [10], a model-aided approach was proposed to overcome this prob-
lem. However, the models adopted in this approach are fixed and not adaptive to the
phenomenal changes. In this paper, adaptive models are adopted to improve the
model-aided approach. In our approach, a predictive model Mi is induced by a sensor
node Ni using data fitting [12] and an identical model Mi’ is sent to the base station.
The base station utilizes Mi’ to estimate the actual measurement data of node Ni. At
the same time, Mi is used by node Ni to judge how the estimations of model Mi agree
with the actual measurement data. A measurement datum will be reported to the base
station only when the error of corresponding estimative figure exceeds allowable error
bound. In such a way, communication cost can be reduced and measurement error can
be controlled in an allowable range.

The rest of this paper is organized as follows. In section II, We give the WSN
model on which our research are based and present an overview of our approach. In
section III, we discuss our approach in detail. In section IV, the implementation issues
are discussed. Experimental results are presented in section V to show the effective-
ness of our approach. We conclude in section VI.

2 Overview of Approach

We give an overview of our approach using an example of monitoring the blood pres-
sure of patients in a hospital. Fig. 1 gives how the blood pressure of hypertension
patients changes in 24 hours [11]. DBP and SBP denote diastolic blood pressure and
systolic blood pressure, while SH and EH represent secondary hypertension and es-
sential hypertension. As the figure shows, the blood pressure does not change desulto-
rily. On the contrary, it fluctuates cyclically (with a period of 24 hours). The blood
pressure changes continuously and it reaches its highest and lowest points at ap-
proximately 8 o’clock AM and 2 o’clock PM. Our approach uses these rules to
achieve its energy-efficiency.

8 10 12 14 16 18 20 22 24 2 4 6
60

80

100

120

140

160

180
DBP-SH
DBP-EH
SBP-SH
SBP-EH

Fig. 1. Blood pressure curve in 24 hours [11]

694 C. Zhang, M. Li, and M.-Y. Wu

Fig. 2 gives an overview of our approach. The base station uses commands to re-
quest the sensor nodes to sense the patients’ blood pressure for a period of time T and
at a certain frequency f, with an error bound is allowed. As the figure shows, a pair
of models is maintained, with one model Mi distributed on node Ni and the other Mi’
on BS. Mi and Mi’ are always kept in synchronization. Model Mi is induced by a light-
weight algorithm running on Ni from the measurement data set. Assume at a time
instant t, a copy Mi’ of Mi is sent to BS. Then at next time instant t + 1, BS can utilize
model Mi’ to estimate the actual measurement data of the sensor node Ni. At the same
time, Ni still measures the blood pressure and compares the estimation Ei

t+1 of Mi with
the actual measurement data Xi

t+1. If |Ei
t+1 –Xi

t+1| ≤ (is the allowable error bound),
the measurement data Xi

t+1
 is not reported to BS, otherwise Xi

t+1
 is reported to BS.

 Time

St
at

e

Pg1 Pa2Pa1 Pg3

Pg2

 Fig. 2. Overview of Approach Fig. 3. Gradual changes versus abrupt changes

3 Principle of Approach

3.1 Predictability of Phenomena

The changes of natural phenomena follow some temporal and spatial rules. In this
paper we focus on the temporal rules of the changing processes of physical phenom-
ena. One temporal rule is that the changing process of a phenomenon may consist of
gradual phases and abrupt phases. An example is the air temperature in a garden. The
air temperature may change rapidly and violently in a short time, yet in most of the
time it changes slowly and smoothly. Figure 3 shows a changing process that has
gradual phases: Pg1, Pg2, Pg3, and abrupt phases: Pa1 and Pa2. During a gradual
phase, the state of the phenomenon changes gradually and continuously; while the
state of the phenomenon changes rapidly and discontinuously during an abrupt phase.

In many cases, the continuity and gradualness of a gradual phase make it possible
to predict the state after time t by the state before time t. For example, we can predict
the air temperature in an hour by how the air temperature changes before now. It is
this predictability that enables our approach to achieve its energy-efficiency. Exam-
ples of such kind of phenomena include: air temperature, air humidity, earth tempera-
ture, soil fertility, soil humidity, body temperature, blood pressure, health of machines
or buildings, pH value of lake water, concentration of pollutant, diffusion of contami-
nants, etc.

 Model-Aided Data Collecting for Wireless Sensor Networks 695

As for some phenomena, predicting the future state by previous state is very hard,
sometimes even impossible. For example, the irregularity of the noise in a workshop
makes it difficult to predict its intensity in the future. Our approach is not applicable
for monitoring such kind of phenomena.

3.2 Models

Problem Definition. For a sensor node Ni, given the measurement data {Xi
0, Xi

1, …,
Xi

t} before time instant t, an error bound , conclude a predictive model M that mini-
mizes Num(Ei

t+a: |Ei
t+a –Xi

t+a| ≤), where a ≥ 1.
However, at time instant t, {Xi

t+a, Xi
t+a+1…} are unknown. As a result, these data

cannot help us to figure out model M. What we can depend on is the data set {Xi
0,

Xi
1, …, Xit}. So what we should do is to derive a proper model M from {Xi0, Xi1,

…, Xit} and hope the prediction of M will agree with the actual future measure-
ment data.

The continuity and gradualness of a gradual phase make it can be represented as a
unitary function or several unitary functions with time as the independent variables.
Based on this, unitary functions with time as the independent variables are adopted as
models depicting how the monitored phenomenon changes in a gradual phase. As-
sume a unitary function f(x) for a phase Pg is derived at time instant t and sent to BS,
then BS can use f(x) to estimate the actual state after time instant t.

From above analysis, it can be seen the key problem of our approach is to derive
the function f(x) from limited measurement data. This problem can be viewed as a
data fitting problem [12]. There are generally three problems to solve: 1) identifying a
target function with unknown parameters, 2) identifying a proper data set and 3) de-
termining the unknown parameters of the target function. Problem 2 and 3 are an-
swered in following sections. Here we answer how to solve problem 1.

What target functions should be adopted is strongly application-dependent. As for
different applications, the target functions that should be adopted may be quite differ-
ent. If the change of the monitored phenomenon follows an obvious function type,
then we have an obvious choice. Otherwise, if the function f(x) is continuous and has
n + 1continuous derivatives on an open interval (a, b), then according to Taylor Theo-
rem [13], for x ∈ (a, b), f(x) can be represented as the summation of a polynomial of
(x – x0) and a remainder:

)(
!

)(
)(

!2

)(
)(''))((')()(

0
0

0
0000

2

xR
n

xx
xf

xx
xfxxxfxfxf

n

n
n +−++

−+−+=

(1)

where x0 ∈ (a, b). Based on this, polynomial functions can be adopted to fit the meas-
urement data if there is not an obvious choice.

Note that time also affects the selection of target functions. For example, it can
be seen from Fig.1 that the blood pressure curve takes on different shapes in differ-
ent time phases of a day. As a consequence, using only one function to model the
blood pressure curve of a whole day is not appropriate. The proper way is that

696 C. Zhang, M. Li, and M.-Y. Wu

different functions should be taken to model the blood pressure curve in different
time phases. By storing multiple target functions for different time phases on
nodes, proper functions can be selected according to the time when the model is
building.

Although unitary functions are adopted in this paper to represent how the moni-
tored phenomenon changes, this does not mean unitary functions are the only models
that can be used. We think adopting what modeling tool is highly application-
dependent.

4 Implementation of Approach

4.1 Building the Models

Identifying the data set concerns how to determine the number and location of the
data. At a time instant t, what is known to node Ni is the measurement data {Xi

0, Xi
1,

…, Xi
t} before t, and what we need to do is to derive a function that can predict the

measurement data after t. Generally speaking, data that are adjacent in time are more
correlated [15]. Based on this, we use the data measured in an interval before time t to
fit the target function. As for the length of the interval, on the premise of that the
target models can be constructed successfully; the length should be as small as possi-
ble. In the experiments presented in section V, an interval contains only 5 data, yet the
result is very satisfactory.

Suppose the chosen data set is (xi, yi), i = 1, 2, …, n, xi ≠ xj if i ≠ j. Let f(t) be the
target function and f(t) is expressed as:

)()()()(2211 tratratratf mm+++= (2)

where {r1(t)…rm(t)} is a group of predefined functions. {a1…am} is the coefficients
that need to be determined. Least square fitting [12] is adopted by MADG to deter-
mine {a1…am}. To do this, we need to make expression (2) get the least value.

=

−=
n

i
iim yxfaaJ

1

2
1])([),,((3)

According to the necessary conditions for an extremum: 0=∂
∂

ka
J , where k = 1, 2,

…, m, following group equation is derived:

=−

=−

= =

= =

0])()[(

0])()[(

1 1

1 1
1

n

i

m

k
iikkim

n

i

m

k
iikki

yxraxr

yxraxr

(4)

Group equation can be expressed as:

YRRAR TT = (5)

 Model-Aided Data Collecting for Wireless Sensor Networks 697

where

=

)()()(

)()()(

)()()(

21

22221

11211

nmnn

m

m

xrxrxr

xrxrxr

xrxrxr

R
, T

maaA),(1= and),(1 nyyY = .

(6)

By solving group equation (5), {a1…am} can be derived. If r1(t)…rm(t) are line-
arly independent, then RTR is reversible, and equation (5) has sole solution. In our
approach, this is guaranteed by always using polynomial functions as the target
functions.

4.2 Algorithm

In our approach, most of the work is done on sensor nodes. The base station simply
uses the models to compute the expected value. A node Ni performs operations shown
in Fig. 4 when a data is measured.

In the algorithm, data fitting is done only when there are enough data in the data
set. Lines 13 to 18 are used to guarantee the effectiveness of the model. This can
ensure the gain in performance if a correct model is used, and also the performance
does not degrade if there is not an accurate model.

5 Experimental Results

The performance of our approach (denoted as Model-Aided) was tested against other
two approaches. In one approach (denoted as Simple), all data are sent to the base

1: while measures a data X do {
2: Add measurement X to DataSet;
3: If X is the first data then {
4: set y = X as the model and send model to BS;
5: continue; }
6: E = estimate of model;

 7: If |E X| < then continue;
8: If Num(DataSet) < DataNum then {
9: set y = X as the model and send model to BS;

10: continue; }
11: f(x) = data fitting result;
12: bool = false;
13: For each data d in DataSet do {
14: E = estimate of f(x);
15: If | E d | > then {
16: bool = true;
17: set y = X as the model and send model to BS;
18: break; } }
19: If bool then continue;
20: Set f(x) as model and send model to BS; }

FFig. 4. Algorithm running on a node

698 C. Zhang, M. Li, and M.-Y. Wu

station. In the other approach (denoted as Cache), the latest measurement data Xl of a
node is cached by the node and the base station. A measurement data Xc is sent to the
base station only when the absolute value of the difference between Xl and Xc is big-
ger than error bound .

MicaZ motes [16] are used to test the performances of all approaches. Four motes
are deployed to monitor the air temperature in the garden outside of our laboratory.
We monitored the temperature for 5 days. The monitoring results of four motes are
quite similar. Fig. 5 shows the air temperature curve that is drawn from the data col-
lected by a node using approach Simple in 40 hours.

The number of transmitted packets is adopted to evaluate the performances of three
approaches. For sake of simplicity, a measurement datum or a model is both regarded
as a data packet. A node measures the air temperature every 1 minute. The allowable
error bound is 0.05 Celsius. Only linear functions are taken to fit the temperature data.
A dataset includes 5 data, i.e. data measured in 5 minutes.

Fig. 6 presents the comparative results of three approaches in cost which is evalu-
ated by the number of sent packets. From the figure, it can be seen that even the per-
formance of Cache is much better than Simple. By adopting models, our approach
achieves better performance further than Cache.

0 500 1000 1500 2000 2500
2

4

6

8

10

12

14

16

Time (minute)

Te
m

pe
ra

tu
e

(c
el

si
us

)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Time (minute)

C
os

t
(p

ac
ke

t)

Simple
Cache
Model-Aided

Fig. 5. Air Temperature Curve Fig. 6. Packets Sent of Three Approaches

0.05 0.1 0.15 0.2
100

200

300

400

500

600

700

Error Bound (celsius)

C
os

t
(p

ac
ke

t)

Cache
Model-Aided

Fig. 7. Error Bounds versus Cost

Fig. 7 reveals the comparative results of two approaches, Cache and Model-Aided,
against the error bound. Approach Simple is not compared because the costs of Sim-
ple are identical under different error bounds. In both Cache and Model-Aided, the
number of sent packets drops as the error bound increases. It can also be observed that
Model-Aided outscores Cache under all error bounds.

 Model-Aided Data Collecting for Wireless Sensor Networks 699

6 Conclusion

In this paper, temporal rules of the changing processes of natural phenomena are
exploited to improve the energy-efficiency of wireless sensor networks. By maintain-
ing replicated models on sensor nodes and the base station, energy can be saved by
reducing the data transmitted to the base station. In the next step, we plan to integrate
model-aided approach with spatial rules of natural phenomena and make full use of
spatio-temporal rules to heighten the energy-efficiency of wireless sensor network.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor Net-
works: A Survey," Computer Networks, Vol. 38, No. 4, pp. 393-422, March 2002.

[2] M. Horton, D. Culler, K. PIster, J. Hill, R. Szewczyk, and A. Woo, “MICA, The Com-
mercialization of Microsensor Motes,” Sensors, Vol. 19, No. 4, pp 40-48, April 2002.

[3] B. Krishnamachari, D. Estrin and S. Wicker, “The Impact of Data Aggregation in Wire-
less Sensor Networks,” DEBS, 2002.

[4] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A tiny aggregation ser-
vice for ad hoc sensor networks,” OSDI, 2002.

[5] Y. Yao and J. Gehrke, “Query processing in sensor networks,” CIDR, 2003.
[6] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann. An Evaluation

of Multi-resolution Search and Storage in Resource-constrained Sensor Networks. ACM
SenSys 2003.

[7] J. Chou, D. Petrovic, and K. Ramchandran, “A distributed and adaptive signal processing
approach to reducing energy consumption in sensor networks,” INFOCOM, 2003.

[8] B. Babcock and C. Olston, “Distributed Top-K Monitoring,” ACM SIGMOD 2003.
[9] A. Deligiannakis, Y. Kotidis and N. Roussopoulos, “Hierarchical In-Network Data Ag-

gregation with Quality Guarantees,” EDBT 2004.
[10] D. Chu, A. Deshpande, J. M. Hellerstein and W. Hong, “Approximate Data Collection in

Sensor Networks using Probabilistic Models,” ICDE 2006.
[11] C. Jin, Z. Qian, L. Chen, X. Wang, “Ambulatory blood pressure monitoring in secondary

hypertension,” Chinese Journal of Cardiology, Vol 27, No 3, pp. 50-53, May 1999.
[12] R. L. Burden, J. D. Faires, “Numerical Analysis,” Brooks Cole publishing company, De-

cember 2000.
[13] D. Hughes-Hallett, A. M. Gleason, P. F. Lock, D. E. Flath, et al, “Applied Calculus,”

Wiley, April 2002.
[14] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed diffusion: A scalable and ro-

bust communication paradigm for sensor networks,” MOBICOM 2000.
[15] I. F. Akyildiz, M. C. Vuran, O. B. Akan, “On Exploiting Spatial and Temporal Correla-

tion in Wireless Sensor Networks,” WiOpt 2004.
[16] Crossbow, Inc. Wireless sensor networks. http://www. xbow.com.

Low Latency and Cost Effective Handoff Based
on PBF Scheme in Hierarchical Mobile IPv6

Jongpil Jeong, Min Young Chung, and Hyunseung Choo�

Intelligent HCI Convergence Research Center
Sungkyunkwan University

440-746, Suwon, Korea
Tel.: +82-31-290-7145

{jpjeong, mychung, choo}@ece.skku.ac.kr

Abstract. In this paper, an efficient neighbor AR (Access Router) dis-
covery scheme and handoff procedure using neighbor information, called
the Pre-Binding Update and Forwarding (PBF) scheme, are proposed.
It allows each AR and Mobility Anchor Point (MAP) to know neigh-
boring ARs and MAPs, and therefore, a mobile node (MN) can perform
the handoff process in advance, using the proposed handoff mechanism.
It is important to note that the Inter-MAP domain handoff improve-
ment of the proposed scheme is up to about 57% and 33% for handoff
latency in comparison of the Hierarchical Mobile IPv6 (HMIPv6) and
the Hierarchical Mobile IPv6 with Fast handover (F-HMIPv6), respec-
tively. In HMIPv6, the total signaling cost rapidly increases in proportion
to the number of Correspondent Nodes (CNs) communicating with the
MN. Therefore this is combined with the Inter-MAP forwarding scheme,
which operates differently to HMIPv6. It does not transmit the Binding
Update (BU) message to the CNs and Home Agent (HA) when the MN
moves among adjacent MAPs, after the Pre-BU process for Inter-MAP
handoff. The proposed scheme demonstrates superior performance, which
the total signaling cost is smaller than that of the HMIPv6 scheme, until
8 forwarding steps. Therefore, it is sufficiently satisfied with the require-
ments of real-time applications, and seamless communication is expected.

1 Introduction

Eventually, Mobile IPv6 (MIPv6) [1,2] will become an essential part of Mobile
Internet. In addition, the Internet Engineering Task Force (IETF) considers Fast
Mobile IPv6 (FMIPv6) [3] and HMIPv6 [4], which enhances handoff performance
(latency and data loss), to provide localized mobility management for standard
Mobile IPv6. Mobile IPv6 handoff incurs high handoff latency, data loss, and
global signaling. Basically, FMIPv6 reduces handoff latency by link layer (L2)
triggers and prevents data loss by creating a bi-directional tunnel between a
mobile node’s previous subnet’s access router (oAR) and next subnet’s access

� Corresponding author.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 700–709, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Low Latency and Cost Effective Handoff Based on PBF Scheme 701

router (nAR). HMIPv6 prevents global handoff signaling by appointing a MAP
that acts like a local HA. In Mobile IPv6 and HMIPv6, no information is ex-
changed among ARs. Therefore, only after completing L2 handoff, an MN can
receive information regarding the AR, to which the MN will handoff via an agent
advertisement message. On-going communication sessions with other hosts are
impossible before completion of this handoff process, which is the major portion
of overall handoff latency [5,6].

In the proposed mechanism, an AR can learn information regarding its geo-
graphically adjacent ARs - typically, global address, L2 identifier, and the prefix
information of ARs that are currently being advertised. The current AR that the
MN is visiting would be able to inform the MN of the prefix information of ARs
to which the MN would likely handoff. If this is possible, the MN can start the AA
process for On-link Care of Address (LCoA) in the case of Intra-MAP handoff, and
LCoA and Regional Care of Address (RCoA) in the case of Inter-MAP handoff. Af-
ter completion of the Address Auto-configuration (AA) process, the MN transmits
an incomplete binding update message to a MAP, and then the MAP performs a
Duplicate Address Detection (DAD) process using this message. Through this sig-
naling flow, there is a remarkable decrease in handoff latency.

This paper is organized as follows. In Section 2, the previous schemes are
discussed for the analysis of handoff latency. The motivation of this work and
the new scheme are presented in Section 3, based on HMIPv6. In Section 4, the
performance of the proposed scheme is evaluated. Finally, this paper is concluded
in Section 5, presenting future directions.

2 Related Works

This section provides a brief overview of the differences to be taken into account
for the various approaches to reduce the handoff latency. The latency due to a
handoff using basic MIPv6 is directly proportional to the minimum round-trip
time required for a BU to reach either the HA, the CN or the oAR in case
forwarding from oAR is allowed. The interruption time starts the moment the
MN stops listening to the oAR and finishes when the first packet arrives via the
new route, from either the HA, CN or oAR [2].

Using the anticipated FMIPv6, handoff is prepared in advance. Assuming the
fast binding acknowledgement (F-BAck) is received via the oAR, i.e, the over-
lapping area is based on the mobile speed to make it possible, and then handoff
is performed, the latency is proportional to the difference between receiving the
F-BAck and the reception of the first packet forwarded to the nAR [3]. Fig. 1
depicts the FMIPv6. The handoff latency in HMIPv6 is the same as in the case of
MIPv6. However, instead of the proportional minimum round-trip time between
the MN and the HA or the CN and the oAR, when forwarding from previous
access router is enabled, it is proportional to the round-trip time between the
MN and the MAP or the oAR [4].

The combination of both FMIPv6 and HMIPv6, named Hierarchical Mobile
IPv6 with Fast handover (F-HMIPv6), introduces the difference in sending the

702 J. Jeong, M.Y. Chung, and H. Choo

MN oAR nAR

RtSolPr

HAck

HIPrRtAdv

F-BAck

F-BU

Packet rerouting

F-BAck

F-NA

Packets sending

Disconnect

+RTSolPr: Router Solicitation Proxy
+PrRTAdv: Proxy Router Advertisement
+F-BU: Fast Binding Update
+HI: Handover Initiate
+HAck: Handover Acknowledgement
+F-BAck: Fast Binding Acknowledgement
+F-NA: Fast Neighbor Advertisement

Fig. 1. Fast handover for Mobile IPv6 operation

MN oAR MAP

RtSolPr

HAck

HI

PrRtAdv

F-BAck

F-BU

Forward packets

F-BAck

F-NA

Deliver buffered packets

Disconnect

nAR

Connect

BU

Fig. 2. Hierarchical Mobile IPv6 with Fast handover (F-HMIPv6) operation

Fast Binding Update (F-BU) to the MAP instead to the oAR. This means that
the proxy router advertisement (PrRtAdv) and the Handover Initiate (HI) can-
not be transmitted simultaneously. The introduction of the hierarchy results in
the forwarding which is performed by the MAP; in the case of a symmetric
topology, this will result in an advantage [3,4,12]. Fig. 2 depicts the F-HMIPv6.

Another protocol integrating FMIPv6 and HMIPv6 [13], namely FMIPv6 for
HMIPv6 (FF-HMIPv6), is introduced. When MN moves within a MAP domain,
FF-HMIPv6 works almost identical to FMIPv6. The only difference is that the
MN sends a binding update (BU) to MAP (instead of HA in FMIPv6) after ar-
riving at nAR. When the MN moves beyond the MAP domain, it sends a fast BU

Low Latency and Cost Effective Handoff Based on PBF Scheme 703

(F-BU) to its previous MAP while arriving at nAR. Then, a bi-directional tun-
nel between previous MAP and nAR is created and packets destined to the MN
are forwarded via the tunnel until the MN completes the HMIPv6 handover at
its new MAP domain. FF-HMIPv6 differs from F-HMIPv6 [12]. F-HMIPv6 only
supports intra-MAP handovers. FF-HMIPv6 intra-MAP handover signaling is be-
tween oAR and nAR as inherited from FMIPv6 while F-HMIPv6 is between the
oAR and MAP, which requires a new message. On the other hand, FF-HMIPv6
imposes both FMIPv6 and HMIPv6 tunneling overheads during a handover.

3 The Proposed Protocol

3.1 PBF (Pre-binding Update and Forwarding)

In Mobile IPv6, after an MN moves from one subnet to another and performs
the AA process, the MN informs the current network of its global address. The
AR receiving this message verifies whether the MN’s address can be used by
the DAD. The ARs and MAPs know their respective neighboring AR’s address
information using the neighbor discovery scheme. When the MN senses that
it will perform handoff, it transmits a handoff solicitation message to the
current AR, and the AR transmits an advertisement message with options.
When the MN receives this message, it performs an AA process to the new CoA
in advance before the actual handoff, and transmits a Pre-BU message to the
AR, to which the MN will handoff. The Pre-BU message is the same as the
typical BU message with an additional reserved field of the mobility header.
The AR (AR and MAP in case of Inter-MAP domain handoff) performs the DAD
and records the address as an incomplete state of the MN’s address, meaning
that it will not be used for routing of the MN until the MN transmits the real
BU message after the actual handoff. After L2 handoff, the MN transmits the
BU message to the new MAP via the new AR. The new AR and MAP finish
the handoff process and directly progress routing by changing the MN’s address
in an incomplete state into a complete one, without the DAD process.

When the MN enters another regional network, it sends the BU to the first
AR of the subnet. The AR relays it to the MAP2 (new MAP), and the MAP2
sends it back to the MAP1 (old MAP). When the MAP2 receives its message, it
compares the one to the MAP list and finds the MN’s field. And it updates the
current MAP address of the MN. In other words, the MAP2 of the MN serves as
the HA at the home network and handles movements of the MN directly through
the registration to the HA and CNs until the maximum number of forwarding
link allowed (q). The packet encapsulation is implemented for the communica-
tion steps as follows. First, the CN transmits packets to the registered MAP1
of the MN. The MAP1 receives them and retrieves its next MAP address of
the MN. Second, MAP1 encapsulates packets and transmits them to the MAP2.
The MAP2 receives them and resolves the address of the next MAP. The MAP2
transmits them to the resolved address of the next MAP. These steps are itera-
tively done in the last MAP (MAPq). Finally, the MAPq decapsulates packets
and relays them to the registered AR of the MN. The AR receives those packets

704 J. Jeong, M.Y. Chung, and H. Choo

and transmits them directly to the MN. These steps have a slight burden in
terms of the tunneling cost per data packet. These steps are considered as fac-
tors in performance analysis. In this work, the maximum number of forwarding
links permitted between MAPs is not fixed but optimized for each MN, in order
to minimize total signaling cost. The optimal number is obtained based on the
operational difference between the existing and proposed scheme.

3.2 Signal Flows

Fig. 3 represent the signal flows of the proposed handoff process. Since the sig-
nal flow patterns in both Intra-MAP and Inter-MAP domain handoff cases are
similar, only the Inter-MAP domain handoff is described in detail.

1. The MN receives a beacon message from the nAR.
2. The MN transmits a (proxy) agent solicitation message that includes

the L2 identifier information of nAR to the current AR (oAR) to request
the nAR’s information (the address prefix and global address of the nAR).

3. In response to the agent solicitation message, the oAR verifies the neigh-
boring AR information using the L2 identifier in the message. If it retrieves
the requested information, the oAR transmits the MN a (proxy) agent
advertisement message that includes the requested information (address
prefix and global addresses of nAR and MAP2).

4. The MN performs the AA process and acquires the RCoA and LCoA.
5. The MN transmits a Pre-BU message to the nAR.

Fig. 3. Signal flows of Inter-MAP domain handoff

Low Latency and Cost Effective Handoff Based on PBF Scheme 705

6. The nAR performs the DAD processing of the LCoA. The nAR receiving
the Pre-BU message records the MN’s address as incomplete.

7. The nAR transmits the Pre-BAck message to the MN.
8. The MN also transmits a Pre-BU message to the MAP2 for the DAD

processing of RCoA.
9. Upon receiving it, the MAP2 performs the DAD process for RCoA.

10. The MN also transmits a forward notification message to the MAP1.
11. It requests the MAP1 to forward future packets arriving at the MAP1 to

the MAP2. The MN performs the L2 handoff.
12. The MAP2 is ready to buffer the packet destined to the MN. During the AA

and DAD processes, the MN still can receive packets from the oAR.
13. As soon as the completion of the L2 handoff, the MN transmits a BU to the

MAP2 via nAR.
14. ThenARandMAP2 receive themessage and changes theMN’s address state to

completed one. The MAP2 generates a MN list and transmits its RCoA to the
MAP1 after using this BU message. Using this message the MAP1 records
MAP2’s RCoA to MN’s list. Therefore, when the HA transmits the message,
it is delivered by this route. At this step, a MN’s location information does not
change with the HA and CNs. In addition, the MAP2 transmits the buffered
packet destined to the MN with a BAck message.

15. The MN transmits a Pre-BU message to the MAP3 for the DAD process-
ing of RCoA.

16. Upon receiving it, the MAP3 performs the DAD process for RCoA.
17. And then, the MN transmits a forward notification message to the

MAP2.
18. It requests the MAP2 to forward future packets arriving at the MAP2 to

the MAP3. The MAP3 is ready to buffer the packet destined to the MN.
19. The MN transmits a BU to the MAP3 via nAR.
20. The nAR and MAP3 receive the message and changes the MN’s address

state to completed one. In addition, the MAP3 transmits the buffered packet
destined to the MN with a BAck message.

21. Until 8 forwarding steps (q≤8) among MAPs, the MN receives the data and
transmits a BU message to the HA and CNs for normal routing.

22. The HA and CNs receive the message and transmits the BAck message to
the MN.

4 Performance Evaluation

4.1 Handoff Latency

In this section five schemes are compared, MIPv6, FMIPv6, HMIPv6, HMIPv6
with fast handover (F-HMIPv6) and the proposed scheme. A simulation study is
performed using ns-2 and its extensions [7,8], in order to evaluate the performance
of the proposed mechanism. Fig. 4 illustrates a network topology of our simulation
study [14,15]. The total simulation duration is 80 sec and a MN moves with 2 m/sec
crossing contiguous cells. It is assumed that each cell is an 802.11 network. It is

706 J. Jeong, M.Y. Chung, and H. Choo

Fig. 4. Network topology for the simulation

also assumed that traffic is UDP packets, the packet interval is 10 msec, and the
packet size is 256 bytes. The CN begins transmitting packets to the MN at 10 sec
after the simulation start time and finishes transmitting packets when simulation
is completed. For L2 trigger time, AA, and DAD, it is assumed that the L2 handoff
latency and address resolution time are 200 msec and 300 msec, respectively, and
the agent advertisement period is set to 1 sec. At t = 25 sec, an Intra-MAP domain
handoff occurs from AR1 and AR2, and at t = 60 sec, Inter-MAP domain handoff
occurs from AR2 within MAP1 to AR3 within MAP2.

First, the handoff latency is studied - the sum of the L2 and L3 handoff la-
tency. The handoff latency of basic Mobile IP is defined as the period between
the disconnection of the MN’s wireless link and reception of AR’s binding ac-
knowledgement by MN. It is used for Intra-MAP domain handoff. In Inter-MAP
domain handoff, handoff latency is the time from when MN triggers link-down
in the current network to when the MN receives HA’s first binding acknowledge-
ment after handoff.

As presented in Fig. 5, the basic MIPv6 demonstrates the largest Intra-
MAP domain handoff latency. The relationship between the FMIPv6 and the
F-HMIPv6 is the same trend as it is between the MIPv6 and HMIPv6. The dif-
ference is a reduction of address resolution time in handoff latency. When using
the fast handover scheme, a MN progresses the AA process in advance to re-
duce the latency related to address configuration. The proposed scheme presents
the minimum latency. For Inter-MAP domain handoff, HMIPv6 presents the
largest handoff latency. As in Intra-MAP domain handoff, the proposed scheme
also presents the minimum latency. Note that the Inter-MAP domain hand-
off improvement of the proposed scheme is very large. This is due to the fact
that the proposed scheme performs the AA and DAD processes in advance.
MIPv6 presents many packet losses due to the large handoff latency, and HMIPv6
presents decreased packet losses than the base MIPv6 through the advantages
of the MAP entity. The proposed scheme presents superior performance without

Low Latency and Cost Effective Handoff Based on PBF Scheme 707

Mobile IPv6 HMIPv6 FMIPv6 FHMIPv6 PBF
0

100

200

300

400

500

600

700

800

H
an

d
o

ff
 L

at
en

cy
 (

m
se

c)

Protocols

 Intra-MAP handoff
 Inter-MAP handoff

Fig. 5. The comparison of the handoff latency

packet loss. In the proposed scheme, the MAPs buffer and forward packets dur-
ing the handoff period, this improves overall performance. The reason that the
transmission time in the buffered packet decreases is that the transmission rate
of a buffer is different from that of the source. This can be incurred through the
use of an optimized buffering algorithm. Compared with MIPv6 and HMIPv6,
the proposed scheme also demonstrates superior performance. It is sufficiently
satisfied with the requirements of real-time application and seamless communi-
cation is expected when using the proposed scheme in L2 information exchange.

4.2 Modeling Total Signaling Cost

In this subsection, the performance of the proposed scheme based on HMIPv6
and HMIPv6 is compared and evaluated. There is a total signaling cost, which
influences performance, consisting of a location update and packet delivery
(Tunneling Cost) in the element. From analysis [9], the overall average signal-
ing cost function in the proposed scheme is obtained in the HMIPv6. First of
all, the HMIPv6’s total signaling cost is represented as CHMIPv6(k, λa, Tf) =
CHMIPv6

Location Update + CHMIPv6
Packet Delivery . where, k is the number of ARs under the

MAP, λa is the average packet arrival rate for each MN, Tf is the average time
each MN stays in each subnet before making a movement. It is assumed that the
MN moves from the MAP0 to the MAPq, and therefore, the total signaling cost
is calculated as CHMIPv6

TOTAL (k, λa, Tf , q) = q · (CHMIPv6
Location Update +CHMIPv6

Packet Delivery).
The total signaling cost in the proposed scheme is acquired as follows.

CPBF (k, λa, Tf) = CPBF
Location Update + CPBF

Packet Delivery

Then, the total signaling cost is calculated as shown below.

CPBF
TOTAL(k, λa, Tf , q) = CPBF

Location Update +
q∑

i=1

CHMIPv6
Packet Delivery

708 J. Jeong, M.Y. Chung, and H. Choo

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

T
o

ta
l S

ig
n

al
lin

g
 C

o
st

The number of forwarding links

 PBF
 HMIPv6

Fig. 6. The comparison of the total signaling costs

In Fig. 6, it is assumed that Tf = 4, λa = 0.3, and γ = 5, where, γ is the
number of CNs. In the proposed scheme, the MN calculates the total signaling
cost and compares it with the HMIPv6 total signaling cost. If the cost in the
proposed scheme is smaller than that of the HMIPv6 scheme, the MN does not
behave in home registration and CN registration but extends the forwarding
links to other MAPs. These steps are iteratively done until the proposed scheme
cost is greater than that of the HMIPv6 cost. The total signaling cost of the
proposed scheme is smaller than that of the HMIPv6 scheme, until 8 forwarding
steps (q≤8). However when q≥9, the proposed cost becomes greater than that
of the HMIPv6 cost, the MN transmits the registration message to the HA and
the CNs, and removes all the previous links among MAPs.

5 Conclusion

In this paper, an efficient neighbor AR discovery scheme and the handoff proce-
dure using the neighbor information, called the PBF scheme, are proposed. The
proposed neighbor ARs discovery scheme allows each AR and MAP to know its
neighboring ARs and MAPs, and therefore the MN can perform the handoff pro-
cess in advance. According to the simulation study, the proposed handoff mech-
anism demonstrates improved performance over existing mechanisms, due to the
fact that the proposed scheme performs AA and DAD processes in advance.

In HMIPv6, the signaling cost rapidly increases in proportion to the number
of CNs communicating with the MN when the MN moves among regional net-
works. Therefore the proposed scheme is combined with the Inter-MAP forward-
ing scheme, the proposed scheme does not transmit the BU to the CNs and the HA
when the MN moves among adjacent MAPs. Instead, the current location of the
MN is informed by transferring the modified BU to the previous MAP. According
to the results of the performance analysis, the number of forwarding links is deter-
mined, allowing up to approximately 8 regional networks without BU information.

Low Latency and Cost Effective Handoff Based on PBF Scheme 709

In a future study, detailed performance evaluation of the proposed approach is
expected. Also, by comparing numerical results and optimizing handoff latency,
we will study the method. And we will research the solution about the Layer 2
part and the heterogeneous network.

Acknowledgment

This research was supported by Ministry of Information and Communication,
Korea under ITRC IITA-2005-(C1090-0501-0019) and grant No. R01-2006-000-
10402-0 from the Basic Research Program Korea Science and Engineering Foun-
dation of Ministry of Science & Technology.

References

1. T. Narten et al., “Neighbor Discovery for IPv6,” Internet-Draft, October 2005.
2. D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6,” IETF RFC

3775, June 2004.
3. R. Koodli, “Fast Handovers for Mobile IPv6,” RFC 4068, July 2005.
4. H. Soliman and K. E1-Malki, “Hierarchical Mobile IPv6 mobility manage-

ment(HMIPv6),” RFC 4140, August 2005.
5. K. Omae, M. Inoue, I. Okajima and N. Umeda, “Performance Evaluation of Hi-

erarchical Mobile IPv6 Using Buffering and Fast Handover,” Technical Reports of
IEICE, IN2002-152, December 2002.

6. K. Omae, et al., “Hierarchical Mobile IPv6 Extension for IP-based Mobile Com-
munication System,” Technical Reports of IEICE, IN2001-178, February 2002.

7. The Network Simulator - ns-2, http://www.isi.edu/nsnam/ns
8. Website, http://mobqos.ee.unsw.edu.au/ robert
9. D. Choi and H. Choo, “Cost Effective Location Management Scheme in Hierarchi-

cal Mobile IPvv6,” Springer-Verlag Lecture Notes in Computer Science, vol. 2668.
pp. 144-154, May 2003.

10. J. Jeong, et al., “Improved Location Management Scheme Based on Autoconfigured
Logical Topology in HMIPv6,” ICCSA 2005, vol. 3480, pp. 291-300, May 2005.

11. S. Pack et al., “An Adaptive Mobility Anchor Point Selection Scheme in Hierar-
chical Mobile IPv6 Networks,” Technical Report, Seoul National University, 2004.

12. H. Jung et al., “A Scheme for Supporting Fast Handover in Hierarchical Mobile
IPv6 Networks,” ETRI Journal, vol. 27, Number 6, December 2005.

13. Y. Gwon et al., “Scalability and Robustness Analysis of Mobile IPv6, Fast Mobile
IPv6, Hierarchical Mobile IPv6, and Hybrid Mobile IPv6 Mobility Protocols Using
a Large-scale Simulation,” 2004 IEEE International Conference on Communica-
tions, vol. 7, pp 4087-4091, June 2004.

14. R. Hsieh et al., “Performance analysis on Hierarchical Mobile IPv6 with Fast-
handoff over End-to-End TCP,” In Proceeding of GLOBECOM, November 2002.

15. R. Hsieh et al., “A Comparison of Mechanisms for Improving Mobile IP Handoff
Latency for End-to-End TCP,” Proceedings of the Ninth Annual International
Conference on Mobile Computing and Networking, MOBICOM 2003, September
2003.

Distributed Classification of Textual Documents
on the Grid

Ivan Janciak1, Martin Sarnovsky2, A Min Tjoa3, and Peter Brezany1

1 Institute of Scientific Computing, University of Vienna, Nordbergstrasse 15/C/3
A-1090 Vienna, Austria

janciak@par.univie.ac.at, brezany@par.univie.ac.at
2 Department of Cybernetics and Artificial Intelligence, Technical University of

Kosice, Letna 9, Kosice, Slovakia
martin.sarnovsky@tuke.sk

3 Institute of Software Technology and Interactive Systems, Vienna University of
Technology, Favoritenstrasse 9-11/E188, A-1040 Vienna, Austria

tjoa@ifs.tuwien.ac.at

Abstract. Efficient access to information and integration of informa-
tion from various sources and leveraging this information to knowledge
are currently major challenges in life science research. However, a large
fraction of this information is only available from scientific articles that
are stored in huge document databases in free text format or from the
Web, where it is available in semi-structured format.

Text mining provides some methods (e.g., classification, clustering,
etc.) able to automatically extract relevant knowledge patterns contained
in the free text data. The inclusion of the Grid text-mining services
into a Grid-based knowledge discovery system can significantly support
problem solving processes based on such a system.

Motivation for the research effort presented in this paper is to use the
Grid computational, storage, and data access capabilities for text min-
ing tasks and text classification in particular. Text classification min-
ing methods are time-consuming and utilizing the Grid infrastructure
can bring significant benefits. Implementation of text mining techniques
in distributed environment allows us to access different geographically
distributed data collections and perform text mining tasks in paral-
lel/distributed fashion.

Keywords: Text Mining, Multi Label Text Categorization, Distributed
Text Mining, Grid Computing, JBOWL, GridMiner.

1 Introduction

The process of data mining is one of the most important topics in scientific and
business problems. There is a huge amount of data that can help to solve many
of these problems. However, data are often geographically distributed in various
locations. While text is still premier source of information on the web, the role
of text mining is increasing.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 710–718, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Classification of Textual Documents on the Grid 711

Fig. 1. Process of knowledge discovery in textual documents

Nowadays, the information overload means a big problem, so text mining
algorithms working on very large document collections take very long times on
conventional computers to get results. One approach to face this problem is
distributed computing - distributed text mining algorithms can offer an effective
way to mine extremely large document collections.

Motivation of this work is to use the Grid computational capabilities to solve
text mining tasks. Some of the methods are time-consuming and use of the
Grid infrastructure can bring significant benefits. Implementation of text mining
techniques in distributed environment allows us to perform text mining tasks,
such as text classification, in parallel/distributed fashion.

Knowledge discovery in texts is a variation on a field called knowledge discov-
ery in databases, that tries to find interesting patterns in data. It is a process of
semiautomatic non-trivial extraction of previously unknown, potentially useful
and non-explicit information from large textual document collection, as depicted
on Figure 1. A key element of text mining is to link extracted information to-
gether to form new facts or new hypotheses to be explored further by more
conventional means of experimentation. While regular data mining extracts the
patterns from structured databases of facts, text mining deals with problem of
natural language processing. The biggest difference between data mining and
text mining is in the preprocessing phase. Preprocessing of text documents is
completely different, in general, it is necessary to find a suitable way to transform
the text into an appropriate internal representation, which the mining algorithms
can work on. One of the most common internal representations of document col-
lection is the Vector Space Model [6]. Text mining phase is the core process of
knowledge discovery in text documents. There are several types of text mining
tasks as follows:

– Text categorization : assigning the documents into the pre-defined categories
– Text clustering : descriptive activity, which groups similar documents to-

gether
– Information retrieval : retrieving the documents relevant to the user’s query
– Information extraction : question answering.

Nowadays, text mining plays important role in the area of processing biomed-
ical databases that contain huge volume of textual documents. For example, one
of the current questions in genomics is to inspect which proteins interact with
others. There has been notable success in looking at which words co-occur in

712 I. Janciak et al.

articles that discuss the proteins in order to predict such interactions. The key is
not to search for direct occurrence of pairs in document, but to find articles that
mention individual protein names and keep track of which other words occur
in those articles, and finally look for other articles containing the same sets of
words. This method can yield surprisingly good results, even though the meaning
of the texts are not being discerned by the programs.

The structure of the rest of the paper is organized as follows. Section 2 dis-
cusses the classification of documents using multi-label classification. Section
3 describes the design of sequential and distributed versions of the text min-
ing service implemented using the knowledge discovery framework - GridMiner.
Experimental performance results are discussed in Section 4. Related work is
presented in Section 5 and we briefly conclude in Section 6.

2 Text Classification Based on a Multi-label Algorithm

Text Classification is the problem of assigning a text document into one or
more topic categories or classes based on document’s content. Traditional ap-
proaches to classification usually consider only the unilabel classification prob-
lem. It means that each document in collection has associated one unique class
label.

This approach is typical for data mining classification tasks, but in a number
of real-world text mining applications, we face the problem of assigning the
document into more than one single category. One sample can be labeled with
a set of classes, so techniques for the multi-label problem have to be explored.
Especially in text mining tasks, it is likely that data belongs to multiple classes,
for example in context of medical diagnosis, a disease may belong to multiple
categories, genes may have multiple functions, etc.

In general, there are many ways to solve this problem. One approach is to
use a multinomial classifier such as the Naive Bayes probabilistic classifier [4],
that is able to handle multi-class data. But most of common used classifiers
(including decision trees) cannot handle multi-class data, so some modifications
are needed. Most frequently used approach to deal with multi-label classification
problem is to treat each category as a separate binary classification problem,
which involves learning a number of different binary classifiers and use an output
of these binary classifiers to determine the labels of a new example. In other
words, each such problem answers the question, whether a sample should be
assigned to a particular class or not.

In the work reported in this paper, we used the decision trees algorithm based
on the Quinlan’s C4.5 [7]. A decision tree classifier is a tree with internal nodes
labeled by attributes (words), branches are labeled by weight of the attribute
in a document, and leafs represent the categories [1]. Decision tree classifies a
sample by recursively testing of the weights in the internal nodes until a leaf is
reached.

While this algorithm isn’t suitable to perform multi-label classification itself,
we use the approach of constructing different binary trees for each category.

Distributed Classification of Textual Documents on the Grid 713

Fig. 2. Design of sequential and distributed text mining services

The process of building many binary trees can be very time consuming when
running sequentially, especially on huge document collections. Due to the fact
that these binary classifiers are independent on each other, it is natural to find a
suitable way how to parallelize the whole process. Growing of these binary trees
is ideal for parallel execution on a set of distributed computing devices. Such a
distribution might be desirable for extremely large textual document collections
or large number of categories, which e.g. can be associated with a large number
of binary classifiers.

3 Architecture and Implementation of the Classification
Service

Building distributed text mining services is an inherently difficult and complex
task. To reduce the complexity, the first goal was to design a sequential version
of Text Classification Service based on the multi-label algorithm implemented
in the JBOWL library, which is discussed below.

3.1 JBOWL

JBOWL - (Java Bag-of-Words Library) [2] is an original software system devel-
oped in Java to support information retrieval and text mining. The system is

714 I. Janciak et al.

being developed as open source with the intention to provide an easy extensible,
modular framework for pre-processing, indexing and further exploration of large
text collections, as well as for creation and evaluation of supervised and un-
supervised text-mining models. JBOWL supports the document preprocessing,
building the text mining model and evaluation of the model. It provides a set
of classes and interfaces that enable integration of various classifiers. JBOWL
distinguishes between classification algorithms (SVM, linear perceptron) and
classification models (rule based classifiers, classification trees, etc.).

3.2 GridMiner

GridMiner [3] is a framework for implementing data mining services in the Grid
environment. It provides three layered architecture utilizing a set of services
and web applications to support all phases of data mining process. The system
provides a graphical user interface that hides the complexity of the Grid, but still
offers the possibility to interfere with the data mining process, control the tasks
and visualize the results. GridMiner is being developed on top of the Globus
Toolkit1.

3.3 Implementation

The interface of the sequential and distributed versions of the service defines two
main methods needed to build final model: BuildTextModel and BuildClassifica-
tionModel. While the first one is implemented as a pure sequential method, the
second one can build the final model distributing the partial binary classifiers.
This behavior of the service depends on its configuration. A simplified archi-
tecture of both versions is depicted in Figure 2. Moreover, other methods were
implemented to provide term reduction and model evaluation, but these meth-
ods were not used during the performance evaluation experiments discussed in
Section 4.

1. BuildTextModel - This method creates the Text Model from the docu-
ments in the collection. The model contains a document-term matrix created
using TF-IDF weighting [8], which interprets local and global aspects of the
terms in collection. The input of the method is a parameter specifying the
text model properties and the location of the input collection.

2. BuildClassificationModel - The Classification Model, as the result of the
decision tree classifier, is a set of decision trees or decision rules for each
category. This service method creates such a model from the document-term
matrix created in the previous method. The sequential version builds the
model for all categories and stores it in one file. The process of building
the model iterates over a list of categories and for each of them creates
a binary decision tree. The distributed version performs the same, but it
distributes the work of building individual trees onto other services, so called
workers, where partial models containing only trees of dedicated categories

1 http://www.globus.org

Distributed Classification of Textual Documents on the Grid 715

are created. These partial models are collected and merged into the final
classification model by the master node and stored in the binary file, which
can be passed to a visualization service.

4 Experiments

In this section, we present experiments performed on the local area network of
the Institute of Scientific Computing in Vienna. As the experimental test bed,
we used five workstations Sun Blade 1500, 1062MHz Sparc CPU, 1.5 GB RAM
connected by a 100MBit network.

Fig. 3. Logarithmic distribution of categories frequency in the Reuters-21578 dataset

4.1 The Training Dataset

The Reuters-21578 [5] document collection was used as the training data in
our experiments. It is de facto a standard dataset for text classification. Its
modification, ModApte split [1], consisting out of 9603 training documents in
90 categories and formatted in XML, was used in all tests. Figure 3 depicts the
logarithmic distribution of category frequencies in the Reuters-21578 collection.
It shows that there are only two categories that occur more than 1000 times in
the collection, while there is a lot of categories with frequency of occurrence less
than 10. The time needed to build binary classifiers for categories with highest
frequency of occurrence is significantly longer than the building time for the rest
of the categories. This is a key factor for tasks distribution and optimization. In
our case it is a decision how to assign partial categories and associated binary
decision trees construction to the worker nodes.

716 I. Janciak et al.

4.2 Performance Results

The main goal of the experiments was to prove, that the distribution of processes
mentioned above, can reduce the time needed to construct the classification
model. We started the experiments using the sequential version of the service,
in order to compare the sequential version with the distributed one. The time
to build the final classification model on a single machine using the ModApte
dataset was measured three times and its mean value was 32,5 minutes. Then
we performed the first series of the distributed service tests without using any
optimization of distribution of categories to the worker nodes. According to the
number of worker nodes, the master node assigned the equal number of cate-
gories to each worker node. The results, see Figure 4, show us the speedup of
building the classification model using multiple nodes. The detailed examina-
tion of the results and the document collection proved that the time to build a
complete classification model is significantly influenced by the working time of
the first node. Examination of the dataset and workload of particular workers
showed us that the first node always received a set of categories with the highest
frequency of occurrences in the collection. It means that other worker nodes al-
ways finished the building of their partial models in a shorter time than the first
one. It is caused by non-linear distribution of category occurrences as discussed
in Section 4.1. The most frequent category (category number 14) occurs in 2780
documents and it was always assigned to the first worker node. That was the
reason, why the first worker node spent much longer time to build-up the partial
model.

After the first series of tests, we implemented the optimization of distribution
of the categories to the worker nodes according to the frequency of category
occurrences in the documents. Categories were sorted by this frequency and
distributed to the worker nodes according to their frequency of occurrence, what
means that each node was assigned with equal number of categories, but with a
similar frequency of their occurrences.

We run the same set of the experiments as in the first series and the re-
sults showed us more significant speedup using less worker nodes, see optimized
bars in Figure 4. The best performance results were achieved using optimized
distribution on 5 worker nodes (5.425 minutes), which was comparing to single
machine computing time (32.5 minutes) almost 6 times faster. The minimal time
to complete classification model is limited by the time of processing of the most
frequent category - if this is assigned to a single worker node.

5 Related Work

In this section, we describe projects utilizing the Grid to perform advanced
knowledge discovery in textual documents. DiscoveryNet2 provides a service ori-
ented computing model for knowledge discovery, allowing the user to connect
to an use data analysis software as well as document collection that are made
2 http://www.discovery-on-the.net

Distributed Classification of Textual Documents on the Grid 717

Fig. 4. Performance results of the normal and optimized distribution of nodes work-
loads

available online by third parties. The aim of this project is to develop a uni-
fied real-time e-Science text-mining infrastructure that leverages the technolo-
gies and methods developed by the DiscoveryNet and myGrid3 projects. Both
projects have already developed complimentary methods that enable the analy-
sis and mining of information extracted from biomedical text data sources using
Grid infrastructures, with myGrid developing methods based on linguistic anal-
ysis and DiscoveryNet developing methods based on data mining and statistical
analysis. National Centre for Text Mining4 is also involved in research activi-
ties covering the Grid based text mining. Primary goal of this project is also
focused to develop an infrastructure for text mining, a framework comprised of
high-performance database systems, text and data mining tools, and parallel
computing.

6 Conclusions and Future Work

In this paper we presented a comparative study of sequential and distributed ver-
sions of classifiers based on decision trees. We proposed an idea how to distribute
the process of building a multi-label classification model in the Grid environment
by splitting the set of particular binary classifiers, needed to construct the final
models into the workpackages, that are computed in distributed fashion. The
results proved that the distributed version can bring significant benefits and
3 http://www.mygrid.org.uk
4 http://www.nactem.ac.uk

718 I. Janciak et al.

helps to reduce computing time needed to build the classification model. We
also implemented an optimized distribution of particular binary classifiers onto
the worker nodes, which had inconsiderable impact on the final time reduction
comparing to the non-optimized approach. On a different real-world datasets,
the speedup of the distributed version may be more significant. In our future
research effort, we plan to explore and extend this approach of distribution of
text classification services to other text mining tasks.

References

1. C. Apte, F. Damerau, and S. M. Weiss. Towards language independent automated
learning of text categorisation models. In Research and Development in Information
Retrieval, pages 23–30, 1994.

2. P. Bednar, P. Butka, and J. Paralic. Java library for support of text mining and
retrieval. In Proceedings of Znalosti 2005, Stara Lesna, pages 162–169, 2005.

3. P. Brezany, I. Janciak, A. Woehrer, and A Min Tjoa. Gridminer: A framework for
knowledge discovery on the grid - from a vision to design and implementation. In
Cracow Grid Workshop, Cracow, December 2004.

4. Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

5. D. D. Lewis. Reuters-21578 text categorization test collection distribution 1.0.
http://www.research.att.com/ lewis, 1999.

6. H. P. Luhn. A statistical approach to mechanized encoding and searching of literary
information. IBM Journal of Research and Developement, 4:309–317, 1957.

7. J. R. Quinlan. Learning first-order definitions of functions. Journal of Artificial
Intelligence Research, 5:139–161, 1996.

8. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24:513–523, 1988.

Towards Job Accounting in Existing Resource
Schedulers: Weaknesses and Improvements

Herbert Rosmanith, Peter Praxmarer, Dieter Kranzlmüller, and Jens Volkert

GUP, Joh. Kepler University Linz
Altenbergerstr. 69, A-4040 Linz, Austria/Europe

rosmanith@gup.uni-linz.ac.at

Abstract. The vision of having access to tremendous amounts of com-
putation and storage resources on demand, together with access to spe-
cial devices, similar to the availability of today’s power grids has been
formulated by Ian Foster and Carl Kesselman in [1] in 1997 and since
then has been known by the term Grid computing.

As this vision slowly became reality and we’re now at the verge to
having Grids production ready not only for scientific communities but
also for industrial partners security, accounting and billing are now major
concerns that need to be reflected and further improved.

This paper analyzes two of the major local resource managers, Condor
[2] and Torque[3], that are being used as local resource managers in the
major grid middlewares Globus [4,5,6,7,8] as well as in the gLite and
LCG [9,10] software stack with respect of being able to track malicious
jobs and enforce a site policy.

As weaknesses have been found we also present an approach that is
capable of truly tracking any kind of job.

1 Introduction

Local resource management systems (LRMS) such as Condor [2], Torque[3]
(based on OpenPBS), LSF[11], SGE [12], and others are responsible for schedul-
ing and co-allocating cluster resources to execute jobs in parallel on a number
of nodes. Furthermore they gather accounting information and have to enforce a
site policy. Site policies can be e.g. limiting a jobs runtime, its number of forked
processes etc.

For this to work it is essential that the LRMS is capable of monitoring a job
during all its lifetime and take appropriate actions if a job is violating the policy.

2 The Problem

We examined Torque [3] and Condor [2] with respect to monitoring a malicious
process that detaches from the control of the LRMS and thus circumvents any
accounting and billing mechanism applied by the LRMS. A scenario like this
allows the malicious process to consume more of the computational resources
than it was supposed to consume. In fact, this practically renders the accounting

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 719–726, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

720 H. Rosmanith et al.

and billing system useless, since it is not capable of gathering appropriate data
which is especially of interest when industry provides computational resources
where using it has to be paid for.

2.1 Torque

We found that Torque1 [3], and it’s predecessor OpenPBS [13] track a job by
means of its session id [14]. Thus, detaching a job from the control of the
pbs mom process can easily be done by changing the process’s session id.

The following code illustrates the steps necessary to accomplish it:

int fire_n_forget() {
switch(fork()) {
case -1:

exit(-1);
case 0:

close(0);
close(1);
close(2);
setsid();
while(1) {

// consume cpu
}

default:
break;

}
}

The above presented code closes all file descriptors, and forks a new process.
The resulting child process acquires a new session id by calling setsid() and
continues with consuming the cpu-time. The parent process which has been
actually tracked by the LRMS terminates and vanishes from accounting.

The result is that Torque considers the job being terminated although a child
process is still running. It is worth noting that calling fork() and setsid() are
unprivileged system calls and can be considered normal operations throughout
program execution.

With respect to the so-called jobmanagers that are part of the Grid middle-
ware and provide the interface between the gatekeeper and the local resource
management system it can be said that they also fail in detecting what has been
going on and thus report a successful job termination.

2.2 Condor

Condor is another important resource management system that has been devel-
oped at the University of Wisconsin [2,15]. Its features are extensive, allowing

1 Version 1.2.0p6.

Towards Job Accounting in Existing Resource Schedulers 721

distributed submission, job priorities, user priorities, submission of workflows
modeled as a directed acyclic graph of interdependent jobs. It supports PVM
and MPI jobs, as well as job checkpointing and migration for certain types of
jobs. Its functionality is provided through six so-called universes:

– Vanilla
– MPI
– PVM
– Globus
– Scheduler
– Standard

A detailed description of each universe can be found in [15]. In our further
examination we focus on the standard universe, which extends serial jobs by the
use of the following services [15]:

– Transparent process checkpoint and restart
– Transparent process migration
– Remote System Calls
– Configurable File-I/O buffering
– On-the-fly file compression/decompression

Within the standard universe a program is statically linked against the condor
library which provides a customized implementation of the Unix C-library. It is
customized in that way that most of the system calls are blocked or re-routed.
In particular, a program linked to this library is unable to perform a fork(), or
setsid() call. This makes Condor seemingly invulnerable to the attack performed
against the Torque batch scheduler as it is described above.

Nevertheless it is possible to make a program running in the standard universe
execute system calls. The idea is shown in the following listing:

int my_waitpid(int p1,void *p2,int p3) {
register int rc;
asm("\

mov %2,%%ebx\n\
mov %3,%%ecx\n\
mov %4,%%edx\n\
mov %1,%%eax\n\
int $128"
: "=r"(rc)
: "i"(__NR_waitpid), "m"(p1), "m"(p2), "m"(p3));

return rc_errno(rc);
}

The code presented above performs the waitpid() system call directly in as-
sembler. Since the my waitpid() function is not defined in the Condor C library
it is not replaced by a Condor approved implementation and thus goes into the
application code without modification.

722 H. Rosmanith et al.

Obviously, all other system calls can be implemented in a similar way, and
thus the mechanism provided by Condor also fails in preventing system calls.

In order to prove that it is really possible to leave the Condor monitoring
system we implemented an application that starts a child process on a Condor-
controlled cluster node which provides an interactive session while the parent
process has terminated. With the termination of the parent process the job has
terminated for Condor too, while the child process still consumes the CPU-time
unharmed.

3 Proposed Solution

As we have seen that the approaches undertaken by Torque as well as Condor
fail in preventing a malicious user to circumvent their job monitoring systems
a different approach is needed. While the mechanism provided by Torque can
be circumvented with rather small effort, circumventing Condor’s mechanism
requires more effort, but is still possible.

We draw the conclusion that it is not enough to provide a user space based
approach but instead need a facility running in kernel space that supports the
monitoring facility. As proof of concept, we implemented a loadable kernel mod-
ule for the Linux kernel, version 2.6.15, that redirects arbitrary interrupt vectors
to its own routines. Of special interest is software interrupt number 128 which
is called whenever a system call is performed. When the kernel module is loaded
it registers itself and redirects interrupt number 128 to its own implementation
which checks and records the requested system call and finally calls the original
implementation.

3.1 Implementation Notes

The implementation of this kernel module has been done in assembler for the IA32
architecture. A port to the AMD64 architecture is in progress. With the sidt (store
interrupt descriptor table) machine instruction a pointer to the IDT (interrupt de-
scriptor table) is acquired. An ISR (interrupt service routine) can be redirected
by overwriting the appropriate offset with the address of the new ISR (see [16] for
a description of the Linux kernel architecture). In its current implementation the
new ISR logs the requested system call and calls the original ISR.

It also would have been feasible to modify the syscall implementation within
the Linux source directly. A disadvantage of this approach is that it requires
patching and recompiling the Linux kernel. This would certainly reduce the
acceptance and thus has been avoided. Instead our solution can be dynamically
loaded as a kernel extension without modifying any of the existing kernel source
code.

3.2 Monitoring System Calls

The above presented kernel module can be used to monitor system calls from
user space. Its use is illustrated in Figure 1.

Towards Job Accounting in Existing Resource Schedulers 723

Fig. 1. Systemcall interaction

When the operating system boots, the kernel module is loaded and attaches
itself as system call proxy (syscpx). Upon start of a new job the jobmanager
subscribes itself at the syscpx using a character device. After the subscription
every process within a job created by the jobmanager is monitored while other
system processes are ignored. Furthermore it is possible to instruct the syscpx to
monitor only a defined subset of system calls (e.g. only setsid() and fork()). In
order to prevent a malicious jobmanager from intervening with other processes
the syscpx only allows a jobmanager to monitor and control processes which
have been created and forked by itself.

The syscpx monitors the activities of the registered job by notifying the mon-
itoring and controlling facility of the local resource manager about requested
system calls. In addition, the syscpx can be instructed to send a query to the
controlling facility to ask whether a process is allowed to perform the requested
system call. In this way the monitoring and controlling facility can enforce a
policy regarding the execution of system calls.

4 Related Work

With regard to accounting and monitoring most of the Unix systems, as well
as Linux, provide a process accounting [14] system. This facility collects various
data about the process id, memory use, execution time etc. of a running process

724 H. Rosmanith et al.

and stores it to a logfile after process termination. Although this data could be
quite useful for accounting purposes of grid jobs, it is more intended for system
administration purposes and has a number of disadvantages regarding the online
monitoring of a running job:

– The data about an accounted process is only fully available after the process
has terminated.

– All processes within the system are accounted. The data about a specific
subset must be extracted separately.

– A logfile has to be polled on a regular basis in order to retrieve the latest
changes.

A different tool provided by Unix-based operating systems is the ptrace system
call. It provides tracing and debugging facilities and allows a so-called tracing
process to control another process, the so-called traced process. Tracing is done
by attaching the tracing process to the traced process. With ptrace it would be
possible to monitor and intercept system calls on the traced process. However, its
use within a job monitoring system is limited since ptrace can only be attached
once to the same traced process. Thus a job monitored in this way, can not be
further analyzed for debugging purposes on demand by the user. A second major
problem is that ptrace slows the process execution. Projects that facilitate ptrace
for system call interception include [17,18,19,20], and others.

An interesting work is systrace [21], which similar to our work uses a module in
kernel space to intercept system calls and allows or disallows those calls according
to a policy. Furthermore it allows the creation of audit logs to support forensic
purposes and intrusion detection. The process of policy creation is also facilitated
by a graphical user interface.

While the approach is similar, systrace has been developed with enforcing sys-
tem security in mind, our tool - in comparison - is intended to support accounting
and billing systems of workload management systems.

As monitoring and enforcing policies within operating systems is an impor-
tant topic for implementing trusted systems, the SELinux project [22], and
the subsequent Linux Security Module [23] have been developed with this in
mind. The SELinux project implements ideas which have been previously inves-
tigated within the academic Flask kernel [24], and allows the implementation of
highly sophisticated system policies on a Linux system. Since Linux 2.6, auditing
support is included in the kernel, too. It has to be investigated whether the au-
diting system can provide enough information in a mode suitable for LRMS
requirements.

5 Conclusion

This paper describes how to simply circumvent the monitoring facilities of two
major workload management systems. It was found that current workload man-
agement systems fail in tracking this type of job mainly because their monitoring
mechanism solely operates in the user space.

Towards Job Accounting in Existing Resource Schedulers 725

The proposed solution thus extends the Linux kernel by a loadable kernel
module that gathers reliable data in the kernel space which subsequently can
be used by the workload management system for appropriate monitoring and
accounting of running jobs. The presented approach is also able to not only
monitor system calls, but also to intercept them, thus adding an additional layer
of control.

Acknowledgments

We thank our colleagues, especially Paul Heinzlreiter and Martin Polak, for their
support and fruitful discussions.

Availability

All source code is available on request from the authors.

References

1. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11(2) (1997) 115–128

2. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idle workstations. In: Pro-
ceedings of the 8th International Conference of Distributed Computing Systems.
(1988)

3. Torque resource manager 2.0. (http://www.clusterresources.com/pages/products/)
4. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable

virtual organizations. International J. Supercomputer Applications 15(3) (2001)
5. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The

International Journal of Supercomputer Applications and High Performance Com-
puting 11(2) (1997) 115–128

6. Foster, I., Kesselman, C., eds.: The grid: blueprint for a new computing infrastruc-
ture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)

7. Foster, I., Kesselman, C.: Computational grids. In: VECPAR. (2000) 3–37
8. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open

grid services architecture for distributed systems integration (2002)
9. gLite - Lightweight Middleware for Grid Computing. (http://www.glite.org/)

10. LCG - LHC Computing Grid Project. (http://lcg.web.cern.ch/LCG/)
11. LSF - Load Sharing Facility. (http://accl.grc.nasa.gov/lsf/)
12. Microsystems), W.G.S.: Sun grid engine: Towards creating a compute power grid.

In: CCGRID ’01: Proceedings of the 1st International Symposium on Cluster Com-
puting and the Grid, Washington, DC, USA, IEEE Computer Society (2001) 35

13. OpenPBS - The Portable Batch System Software. (http://www.altair.
com/software/)

14. Stevens, W.R.: Advanced programming in the UNIX environment. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA (1992)

15. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – a distributed job
scheduler. In Sterling, T., ed.: Beowulf Cluster Computing with Linux. MIT Press
(2001)

726 H. Rosmanith et al.

16. Mauerer, W.: Linux Kernelarchitektur. Hanser Fachbuchverlag (2003)
17. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A secure environment for un-

trusted helper applications. In: Proceedings of the 6th Usenix Security Symposium,
San Jose, CA, USA (1996)

18. Wagner, D.A.: Janus: an approach for confinement of untrusted applications.
Technical Report UCB/CSD-99-1056, EECS Department, University of Califor-
nia, Berkeley (1999)

19. Garfinkel, T.: Traps and pitfalls: Practical problems in system call interposition
based security tools. In: Proc. Network and Distributed Systems Security Sympo-
sium. (2003)

20. Jain, K., Sekar, R.: User-level infrastructure for system call interposition: A plat-
form for intrusion detection and confinement. In: NDSS, The Internet Society
(2000)

21. Provos, N.: Improving host security with system call policies. Proceedings of the
12th USENIX Security Symposium (2003)

22. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the
linux operating system. In: Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, Berkeley, CA, USA, USENIX Association (2001)
29–42

23. Smalley, S., Fraser, T., Vance, C.: Linux security modules: General
security hooks for Linux (2003) http://lsm.immunix.org/docs/overview/
linuxsecuritymodule.html.

24. Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., Lepreau, J.: The
Flask Security Architecture: System Support for Diverse Security Policies. In:
Proc. 8th USENIX Security Symposium, Washington, DC (1999)

Mapping Heavy Communication Workflows onto
Grid Resources Within an SLA Context

Dang Minh Quan

Paderborn Center of Parallel Computing, University of Paderborn, Germany

Abstract. Service Level Agreements (SLAs) are currently one of the
major research topics in Grid Computing. Among many system compo-
nents for supporting SLA-aware Grid jobs, the SLA mapping mechanism
receives an important position. It is responsible for assigning sub-jobs of
the workflow to Grid resources in a way that meets the user’s deadline
and as cheap as possible. With the distinguished workload and resource
characteristics, mapping a heavy communication workflow within SLA
context defines new problem and needs new method to be solved. This
paper presents the mapping algorithm, which can cope with the problem.
Performance measurements deliver evaluation results on the quality and
efficiency of the method.

1 Introduction

Mapping and running jobs on suitable resources are the core tasks in Grid Com-
puting. With the case of Grid-based workflows, where a single job is divided into
several sub-jobs, the majority of efforts for this issue concentrate on finding a
mapping solution in best effort manner[1,2,3]. In the SLA (Service Level Agree-
ment) context, where resources are reserved to ensure the Quality of Service
(QoS), mapping a workflow requires different mechanism. The literature recorded
some proposed solutions for this problem in [4,5,6]. Most of the proposed mecha-
nisms suppose a workflow including many sub-jobs, which are sequent programs,
and a Grid service having ability to handle one sub-job at a time. This is not suffi-
cient enough as sub-jobs in many existed workflows [7,8,9] are parallel programs,
and many High Performance Computing Centers (HPCCs) provide computing
service under single Grid service [10]. It is obvious that a HPCC can handle
many sub-jobs, which can be either sequent programs or parallel programs, at a
time. Moreover, all of them did not consider the case of having heavy communi-
cation among sub-jobs in the workflow. This paper, which is a continuous work
in a series of efforts supporting SLA for the Grid-based workflow [12,13,14], will
present a mechanism to handle all stated drawbacks.

1.1 Workflow Model

Like many popular systems handling Grid-based workflow [1,2,3], we also sup-
pose Directed Acyclic Graph (DAG) form of the workflow. User describes the
specification about the required resources to run sub-jobs, data transfer among

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 727–736, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

728 D.M. Quan

sub-jobs, the estimated runtime of sub-jobs and impose the expected runtime of
the whole workflow. User wants the system to finish running the whole workflow
in time. In the scope of this paper, the time is computed in slot. Each slot equals
with a specific period of real time. Figure 1 presents a concrete Grid workflow.
Each sub-job of the workflow has different resource requirements as described in
table 1.

Subjob 0

Subjob 5Subjob 4

Subjob 6
2

2

1

1 1

2

2

3

1

Subjob 1

Subjob 3Subjob 2

1

1

Fig. 1. A sample workflow

Table 1. Resource requirements for sub-
jobs

Sj ID CPU Storage exp runtime
0 18 59 1 6
1 16 130 3 8
2 20 142 4 5
3 22 113 4 8
4 18 174 2 9
5 20 97 3 14
6 16 118 1 4

It is noted that a sub-job of the workflow can be either a single program or
a parallel program and the data to be transferred among sub-jobs is very large,
usually in GB scale. The case of light communication among sub-jobs of the
workflow was handled in [14]

1.2 Grid Service Model

The computational Grid includes many High Performance Computing Centers
(HPCCs). We believe that only HPCCs have enough conditions to support SLA
for sub-jobs of the workflow. The resources in each HPCC are managed by
software called local Resource Management System (RMS). In this paper, the
acronym RMS is used to represent the HPCC as well as the Grid service of that
HPCC. Each RMS has its own resource configuration and this configuration is
usually different from other RMSs. Those differences include number of CPU,
number of memory, storage capacity, software, expert, service price, etc. To en-
sure that the sub-job can be executed within a dedicated time period, the RMS
must support advance resource reservation, for example CCS [10]. Figure 2 de-
picts a sample CPU reservation profile in such RMS. Queuing-based RMSs are
not suitable for our requirement, as no information about the starting time is
provided. In our system, we reserve three main types of resource: CPUs, storages
and experts. An extension to other devices is straightforward.

If two sequent sub-jobs are executed in the same RMS, it is not necessary to do
data transfer task and the time used for this task equal to 0. Otherwise, the data
transfer task must be performed. To make sure that a specific amount of data
will be transferred within a specific period of time, the bandwidth must also be
reserved. Unfortunately, up to now, there is no mechanism responsible for that
task in the worldwide network. Here, to overcome that elimination, we use central
broker mechanism. The link bandwidth between two local RMSs is determined

Mapping Heavy Communication Workflows onto Grid Resources 729

Number CPU available
1728

Number CPU
require

0 21 67 82

51
45

166

435
419
357

138

time

Fig. 2. A sample CPU reservation pro-
file of a local RMS

10MB/s

Bandwidth

0 21 50 65 138

time

100

Fig. 3. A sample bandwidth reserva-
tion profile of a link between two local
RMSs

as the average bandwidth between two sites in the network. Whenever having
a data transfer task on a link, the SLA broker will determine which time slot
is available for that task. During that specified period, the task can use the
whole bandwidth and other tasks must wait. Using this principal, the bandwidth
reservation profile of a link will look similar to the one as depicted in Figure 3. A
more correctly model with bandwidth estimation [11] can be used to determine
the bandwidth within a specific time period instead of the average value. In both
cases, the main mechanism is unchanged.

1.3 Mapping Mechanism Requirement

The formal specification of the described problem includes following elements:

– Let R be the set of Grid RMSs. This set includes a finite number of RMSs,
which provide static information about controlled resources and the current
reservations/assignments.

– Let S be the set of sub-jobs in a given workflow including all sub-jobs with
the current resource and deadline requirements.

– Let E be the set of data transfer in the workflow, which express the depen-
dency between the sub-jobs and the necessity for data transfers between the
sub-jobs.

– Let Ki be the set of resource candidates of sub-job si. This set includes all
RMSs, which can run sub-job si, Ki ⊂ R.

Based on the given input, a feasible and possibly optimal solution is sought,
which allows the most efficient mapping of the workflow in a Grid environment
with respect to the given global deadline. The required solution is a set defined
as

M = {(si, rj , start slot)|si ∈ S, rj ∈ Ki} (1)

A feasible solution must satisfy following conditions:

– The total runtime period of the workflow must be within the expected period
given by user.

– All Ki �= ∅. There is at least one RMS in the candidate set of each sub-job.
– The dependencies of the sub-jobs are resolved and the execution order re-

mains unchanged.

730 D.M. Quan

– Each RMS provides a profile of currently available resources and can run
many sub-jobs of a single flow both sequentially and parallel. Those sub-
jobs, which run on the same RMS, form a profile of resource requirement.
With each RMS rj running sub-jobs of the Grid workflow, with each time slot
in the profile of available resources and profile of resource requirements, the
number of available resources must be larger than the resource requirement.

In the next phase the feasible solution with the lowest cost is sought. The cost
of a Grid workflow is defined as a sum of four factors: money for using CPU,
money for using storage, cost of using experts knowledge and finally money for
transferring data between the involved resources. If two sequent subjobs run on
the same RMS, the cost of transferring data from the previous subjob to the
later subjob is neglected. It can be shown easily that the optimal mapping of
the workflow to Grid RMS with cost optimizing is a NP hard problem.

2 Related Work

In two separated works [5,6], Zeng et al and Iwona et al built systems to sup-
port QoS features for Grid-based workflow. In their work, a workflow includes
many sub-jobs, which are sequent programs, and a Grid service has ability to
handle one sub-job at a time. To map the workflow on to the Grid services,
they used Integer Programming method. Applying Integer Programming to our
problem faces many difficulties. The first is the flexibility in runtime of the data
transfer task. The time to complete data transfer task depends on the band-
width and the reservation profile of the link, which varies from link to link. The
variety in completion time of data transfer task makes the constraints presen-
tation very complicated. The second is that a RMS can handle many parallel
programs at a time. Thus, presenting the constraints of profile resource require-
ment and profile of resource available in Integer Programming is very difficult
to perform.

With the same resource reservation and workflow model, we proposed an al-
gorithm which mapping a light communication workflow to Grid resources in
[14]. The proposed algorithm uses Tabu search to find the best possible as-
signment of sub-jobs to resources. In order to shorten the computation time
caused by the high number of resource profiles to be analyzed and by the flexi-
bility while determining start and end times for the sub-jobs, several techniques
for reducing the search space are introduced. However, these techniques can-
not be applied to solve the problem in this paper because of different workload
context.

Metaheuristics such as GA, Simulated Annealing [15], etc were proved to be
very effective in mapping, scheduling problems. McGough et al also use them
in their system [4]. However, in our problem, with the appearance of resource
profiles, the evaluation at each step of the search is very hard. If the problem
is big with highly flexible variable, the classical searching algorithms need very
long time to find a good solution. In the scope of this paper, we apply several
standard Metaheuristics to our problem as means of comparing.

Mapping Heavy Communication Workflows onto Grid Resources 731

3 Planning Algorithm for Heavy Communication
Workflows

The input of the mapping procedure includes information about workflow and
information about RMSs. Information about workflow is provided in a file de-
scribing sub-jobs and a file describing the dependence. Information about RMSs
is stored in a relational database. They include the description of the resource
configuration in each RMS, the resource reservation profile of each RMS and
the bandwidth reservation profile of each link. The information is collected from
RMSs by the monitoring module. Based on this information, the system will do
mapping. The overall mapping mechanism, which is called H-Map, is presented
in Figure 4.

1. Determine candidate RMSs for each sub-job.
2. Determine assigning sequence for all sub-jobs of the workflow
3. Generate reference solution set
4. With each solution in reference set

Use specific procedure to improve the
solution as far as possible

5. Pick the solution with best result

Fig. 4. Mapping mechanism overview

3.1 Determining Candidate RMSs for Each Sub-job

Each sub-job has different resource requirement about type of RMS, type of
CPU, etc. There are a lot of RMSs with different resource configuration. This
phase finds among those heterogeneous RMSs the suitable RMSs, which can
meet the requirement of each sub-job. Each resource parameter of an RMS is
represented by number value and is stored in a separate column in the database
table. For example, with the parameter Operating System, Linux, Sun, Window,
Unix are represented by value number 1, 2, 3, 4 respectively. The co-relative
resource requirement parameter of a sub-job is also represented by number value
in the same manner. Thus, the matching between sub-job’s resource requirement
and RMS’s resource configuration is done by several logic checking conditions in
the WHERE clause of the SQL SELECT command.

3.2 Determining the Assigning Sequence of the Workflow

When the RMS to execute each sub-job, the bandwidth among sub-jobs was
determined, the next task is determining time slot to run sub-job in the specified
RMS. At this point, the assigning sequence of the workflow becomes important.
The sequence of determining runtime for sub-jobs of the workflow in RMS can
also affect the total runtime especially in the case of having many sub-jobs in
the same RMS.

732 D.M. Quan

In general, to ensure the integrity of the workflow, sub-jobs in the workflow
must be assigned basing on the sequence of the data processing. However, that
principle does not cover the case of a set of sub-jobs, which have the same
priority in data sequence and do not depend on each other. To examine the
problem, we determine the earliest and the latest start time of each sub-jobs of
the workflow in ideal condition. The time period to do data transfer among sub-
jobs is computed by dividing the amount of data to a fix bandwidth. The earliest
and latest start, stop time for each sub-job and data transfer depends only to the
workflow topology and the runtime of sub-jobs but not the resources context.
Those parameters can be determined by using conventional graph algorithms. A
sample of those data for the workflow in Figure 1, in which the number above
each link represents number of time slots to do data transfer, is presented in
Table 2.

assign_number of each candidate RMS =0
While m_size < max_size {
 clear similar set
 foreach sub-job in the workflow {
 foreach RMS in the candidate list {
 foreach solution in similar set {

if solution contains sub-job:RMS
 num_sim++
store tuple (sub-job, RMS, num_sim) in
a list }}

 sort the list
 pick the best result
 assign_number++
 If assign_number > 1
 find defined solution having the same
 sub-job:RMS and put to similar set
}}

Fig. 5. The algorithm generate reference
set

Table 2. Valid start time for sub-
jobs of workflow in Figure 1

Sub-job Earliest start Latest start
0 0 0
1 7 22
2 8 17
3 18 23
4 7 7
5 17 17
6 32 32

The ability of finding a suitable resource slot to run a sub-job depends on
number of resource free during the valid running period. From the graph, we
can see sub-job 1 and sub-job 4 having the same priority in data sequence.
However, from the data in table 2, sub-job 1 can start at max time slot 22 while
sub-job 4 can start at max time slot 7 without affecting the finished time of
workflow. Suppose that two sub-jobs are mapped to run in the same RMS and
the RMS can run one sub-job at a time. If sub-job 4 is assigned first at time slot
7, sub-job 1 will be run from time slot 16 thus the workflow will not be late. If
sub-job 1 is assigned first, in the worse case at time slot 22, sub-job 4 can be
run at time slot 30 and the workflow will late 23 time slots. Here we can see,
the latest time factor is the main parameter to evaluate the full affection of the
sequence assignment decision. It can be seen through the affection, mapping the
sub-job having smaller latest start time first will make the latency smaller. Thus,
the latest start time value determined as above can be used to determine the
assigning sequence. The sub-job having smaller latest start time will be assigned
earlier.

Mapping Heavy Communication Workflows onto Grid Resources 733

3.3 Generating Reference Solution Set

A solution is found by determining each sub-job of the workflow run by which
RMS. We do not consider time factor in this phase so a reference solution is
defined as a set of map sub-job:RMS with all sub-jobs in the workflow. Each
solution in the reference solutions set can be thought as the starting point for
local search so it should be spread as wide as possible in the searching space. To
satisfy the space spreading requirement, number of the same map sub-job:RMS
between two solutions must be as small as possible. The number of member
in the reference set depends on the number of available RMSs and number of
sub-jobs. During the process of generating reference solution set, each candidate
RMS of a sub-job has a co-relative assign number to count the times that RMS
is assigned to the sub-job. During the process of building a reference solution, we
use a similar set to store all defined solution having at least a map sub-job:RMS
similar to one in the creating solution. The algorithm is defined in Figure 5.

While building a solution, with each sub-job in the workflow, we select the
RMS in the set of candidate RMSs, which creates minimal number of similar
sub-job:RMS with other solutions in the similar set. After that, we increase the
assign number of the selected RMS. If this value larger than 1, which means
that the RMS were assigned to the sub-job more than one time, there must exist
solutions that contains the same sub-job:RMS and thus satisfying the similar
condition. We search those solutions in the reference set, which have not been
in the similar set, and then add them to similar set. When finished, the solution
is put to the reference set. After all reference solutions are defined, we use a
specific procedure to refine each of the solution as far as possible.

3.4 Improving Solution Quality Algorithm

Before improving the quality of the solution, we have to determine specific run-
time period for each sub-job and each data transfer task as well as the makespan
of the present solution. The start time of a data transfer task depends on the
finish time of the source sub-job and the state of the link’s reservation profile.
We use min st tran variable to present the dependence on the finish time of the
source sub-job. The start time of a sub-job depends on the latest finish time of
the related data transfer tasks and the state of the RMS’s reservation profile. We
use min sj tran variable to present the dependence on the latest finish time of
the related data transfer tasks. The task to determine timetable for the workflow
is done with the procedure in Figure 6.

For each sub-job of the workflow in the assigning sequence, firstly, we find all
the runtime period of data transfer task from previous sub-jobs to current sub-
job. This period must be later than the finish time of the source sub-job. Note
that with each different link the transfer time is different because of different
bandwidth. Then, we determine the runtime period of the sub-job itself. This
period must be later than the latest finish time of previous related data transfer
task. The whole procedure is not so complicate but time consuming. The time
consuming steps are the searching reservation profiles, and they make the whole
procedure long time consuming.

734 D.M. Quan

foreach sub-job k following the assign sequence {
 foreach link from determined sub-jobs to k{
 min_st_tran=end_time of source sub-job
 search reservation profile of link the
 start_tran > min_st_tran
 end_tran = start_tran+num_data/bandwidth
 store end_tran in a list
 }
 min_st_sj=max (end_tran)
 search in reservation profile of RMS running
 k the start_job > min_st_sj
 end_job= start_job + runtime
}

Fig. 6. Algorithm determine timetable for
workflow

while (num_loop < max_loop) {
 foreach subjob in the workflow {
 foreach RMS in the candidate list {
 if cheaper then put (sjid, RMS id, improve_value)
 to a list }}
 sort the list according to improve_value
 from the begin of the list{
 Compute time table to get the finished time
 If finished time < limit
 break
 }
 Store the result
 num_loop ++;
}

Fig. 7. Procedure to improve the solution
quality

The overall of solution quality improvement procedure is described in Figure
7. In one iteration, we can move only one sub-job to one RMS with the hope to
decrease the cost. So we only consider the move, which can decrease the cost.
With each solution we compute the time table, if it satisfies the deadline then
update the result.

4 Performance Evaluation

Performance experiment is done with simulation to check for the quality of the
mapping algorithms. The hardware and software used in the experiments is

Table 3. Experiment results of the H-Map algorithm

H-Map SA ILS GLS GA EDA
Wf Rt Cost Rt Cost Rt Cost Rt Cost Rt Cost Rt Cost

1 1 632.58 105 632.58 21 632.58 14 632.58 25 632.58 62 632.58

2 0.5 756.96 84 756.90 37 756.96 19 756.90 22 756.96 88 756.90

3 1 780.42 114 780.42 54 780.42 29 780.34 27 780.34 126 780.34

4 1 836.18 78 836.18 81 836.18 46 836.18 28 836.18 178 836.18

5 1 892.02 105 892.02 114 892.02 59 892.02 29 892.21 241 892.02

6 2 948.10 90 948.10 147 948.10 80 948.10 36 1005.27 390 947.86

7 1 1003.7 78 1003.99 201 1003.7 98 1003.99 36 1075.19 462 1003.7

8 2 1059.89 121 1059.89 250 1059.89 127 1059.89 32 1059.89 558 1059.89

9 2 1184.21 130 1184.21 307 1184.21 167 1184.21 44 1248.86 659 1183.92

10 2 1308.53 146 1332.53 398 1308.53 187 1308.53 47 1383.53 680 1308.53

11 3 1364.14 124 1376.42 502 1364.14 222 1377.63 52 1440.81 956 1364.42

12 2 1488.12 184 1551.74 462 1521.74 303 1501.95 51 1569.39 854 1536.74

13 7 1512.26 174 1512.26 620 1512.26 354 1566.09 56 1620.17 1136 1512.26

14 3 1567.74 162 1631.15 815 1567.74 392 1568.15 56 1663.81 1255 1601.15

15 6 1591.12 161 1675.67 876 1591.12 524 1621.67 70 1764.18 1663 1621.67

16 5 1786.56 180 1871.81 1394 1840.31 763 1843.55 85 1914.91 2845 1830.87

17 7 1889.78 197 1960.87 1695 1892.27 1258 1936.83 93 2028.06 4170 1961.30

18 10 2217.34 272 2276.33 2046 2283.67 1623 2256.53 1953 2406.97 10976 2276.33

Mapping Heavy Communication Workflows onto Grid Resources 735

rather standard and simple (Pentium 4 2,8Ghz, 2GB RAM, Linux Redhat 9.0,
MySQL). The whole simulation program is implemented in C/C++. The goal
of the experiment is to measure the feasibility, the quality of the solution and
the time needed for the computation. To do the experiment, 18 workflows with
different topologies, number of sub-jobs, sub-job specifications, amount of data
transferring were generated and mapped to 20 RMSs with different resource
configuration and different resource reservation context by 6 algorithms H-Map,
Simulated Annealing (SA), Guided Local Search (GLS), Iterated Local Search
(ILS), Genetic Algorithm (GA), Estimation of Distribution Algorithm (EDA)
[15]. The implementation of those algorithms is described in [16]. The final result
of the experiment is presented in table 3 with column Wf (Workflow) presents
the id of workflows, column Rt (Runtime) and Cost record the cost and run-
time of solutions generated by each algorithm correlative with each workflow
respectively.

The experiment results show that H-Map algorithm finds out higher qual-
ity solution with much shorter runtime than other algorithms in most cases.
Some of the metaheuristics such as ILS, GLS, EDA find out equal results with
small problems. But with big problem, they have exponent runtime and find out
unsatisfied results.

5 Conclusion

This paper has presented a method, which performs an efficient and precise as-
signment of heavy communication workflow to Grid resources with respect to
SLAs defined deadlines and cost optimization. In our work, the distinguished
character is that a sub-job of the workflow can be a sequent or parallel program
and a Grid service can handle many sub-jobs at a time. The performance eval-
uation showed that the proposed algorithm creates solution of equal or better
quality than most standard metaheuristics and needs significantly shorter com-
putation time. The latter is a decisive factor for the applicability of the method
in real environments, because large-scale workflows can be planned and assigned
efficiently.

References

1. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su, K. Vahi,
and M. Livny, ”Pegasus : Mapping Scientific Workflows onto the Grid”, Proceedings
of the 2nd European Across Grids Conference, Nicosia, Cyprus, January 28-30,
2004.

2. D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and G. R. Nudd, ”Local Grid Schedul-
ing Techniques Using Performance Prediction”, IEEE Proceedings - Computers
and Digital Techniques, 150(2), pp. 87–96, 2003.

3. R. Lovas, G. Dzsa, P. Kacsuk, N. Podhorszki, D. Drtos, ”Workflow Support for
Complex Grid Applications: Integrated and Portal Solutions”, Proceedings of 2nd
European Across Grids Conference, Nicosia, Cyprus, 2004.

736 D.M. Quan

4. S. McGough, A. Afzal, J. Darlington, N. Furmento, A. Mayer, and L. Young ,Mak-
ing the Grid Predictable through Reservations and Performance Modelling, The
Computer Journal, v.48 n.3, pp. 358–368, 2005

5. L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, H. Chang, QoS-
Aware Middleware for Web Services Composition, IEEE Transactions on Software
Engineering, v.30 n.5, pp. 311–327, may 2004

6. I. Brandic and S. Benkner and G. Engelbrecht and R. Schmidt, QoS Support for
Time-Critical Grid Workflow Applications, Proceedings of e-Science 2005

7. S. Ludtke, P. Baldwin, and W. Chiu, ”EMAN: Semiautomated Software for High-
Resolution Single-Particle Reconstructio” , Journal of Structure Biology, v. 128,
1999.

8. G. B. Berriman, J. C. Good, A. C. Laity, ”Montage: a Grid Enabled Image Mosaic
Service for the National Virtual Observatory” , ADASS, v. 13, 2003.

9. L. Richter, ”Workflow Support for Complex Grid Applications: Integrated and
Portal Solutions”, Proceedings of the 2nd European Across Grids Conference, 2004.

10. L. Burchard, M. Hovestadt, O. Kao, A. Keller, and B. Linnert, ”The Virtual Re-
source Manager: An Architecture for SLA-aware Resource Management”, Proceed-
ings of the IEEE CCGrid 2004, IEEE Press, pp. 126–133, 2004.

11. R. Wolski, ”Experiences with Predicting Resource Performance On-line in Com-
putational Grid Settings”, ACM SIGMETRICS Performance Evaluation Review,
v. 30 n. 4, pp. 41–49, 2003.

12. D.M. Quan, O. Kao, ”SLA negotiation protocol for Grid-based workflows”, Pro-
ceedings of the International Conference on High Performance Computing and
Communications (HPPC-05), LNCS 3726, pp. 505–510, 2005.

13. D.M. Quan, O. Kao, ”On Architecture for an SLA-aware Job Flows in Grid Envi-
ronments”, Proceedings of the 19th IEEE International Conference on Advanced
Information Networking and Applications (AINA 2005) , IEEE Press , pp. 287–292,
2005.

14. D.M. Quan, O. Kao, ”Mapping Grid job flows to Grid resources within SLA con-
text”, Proceedings of the European Grid Conference,(EGC 2005), LNCS 3470, pp.
1107–1116, 2005.

15. C. Blum, A. Roli, ”Metaheuristics in combinatorial optimization: Overview and
conceptual comparison”, ACM Computing Surveys, v. 35 n.3, pp. 268–308, 2003

16. D.M. Quan, ”A Framework for SLA-aware execution of Grid-based workflows”,
PhD thesis, University of Paderborn - Germany, 2006.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 737 – 742, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The SLA-Compatible Fault Management Model for
Differentiated Fault Recovery

Keping Long1, Xiaolong Yang1, 2 ,*, Sheng Huang2, Xin Yang2, and Yujun Kuang1

1 Research Centre for Optical Internet and Mobile Information Networks,
University of Electronic Science and Technology of China, Chengdu 610054, China

2 Chongqing University of Posts and Telecommunications, Chongqing 400065, China
{longkp, yangxl, huangs}@cqupt.edu.cn

Abstract. The paper proposes a SLA-compatible fault management model for
differentiated fault recovery after introducing SLA, service-differentiated and
existing fault recovery techniques, and gives the basic ideas, detailed processing
schemes and consideration of this model.

Keywords: Service Level Agreement(SLA), Fault Recovery, Quality of
Recovery.

1 Introduction

With the emergence of multifarious new Internet applications and the increasing of
diversified requirements of various customers, the capability to offer differentiated
services is considered as one of the key faculties of ISP networks. In addition, service
differentiation is a valuable opportunity for operators to increase their income from
their infrastructure, by selling high added-value services. So, how to provide and
manage differentiated services in single network becomes more and more significant,
the appropriate and effective model and schemes for service management are very
interesting. At this point, service level agreement (SLA) based differentiated service
management is a good candidate.

A service level agreement (SLA) [1, 2] is a formal contract between service provider
and its subscriber that contains the rights, obligation and punishment of both sides
during service provisioning, it has became to the most prevalent evaluation criterion
for telecommunication services in recent years. In a SLA, performance specifications
are the most important components, and these performance specifications are
described by service level specifications (SLSs). An SLS is a set of specific
performance parameters and their values that together define the service offered to a
traffic stream in a network. These performance parameters refer to service
availability, reliability, stability, fault recovery and so on. The performance
commitments of fault recovery are indispensable in every SLA. So, differentiated
fault recovery for different customers according to their demands (SLA) is very

* Contact Author: Xiaolong Yang (E-mail: yxl@uestc.edu.cn, Tel: +86-28-8320-7895, Fax:

+86-28-8320-7885) is currently with University of Electronic Science and Technology of
China, Chengdu 610054, China.

738 K. Long et al.

necessary and significant. In this article, we propose a SLA-compatible fault
management model for differentiated fault recovery, describe its detailed mechanisms
and procedures, and give some operations and concepts for the management and
maintenance of network resources and information databases.

2 Fault Recovery Schemes

In multi-layer networks, there have two types of existing fault recovery mechanisms:
single-layer recovery and multi-layer recovery, according to the cooperative
relationship among independent layers. Single-layer fault recovery schemes are
shown in Fig.1, it has two main types - protection and restoration. According to back-
up resources’ sharing relationship and recovery granularity, protection schemes can
be classified as dedicated protection, shared protection, link protection, path and sub-
path protection. And link, sub-path and path restoration are general approaches of
restoration schemes [3].

Fault recovery
schemes

RestorationProtection

Dedicated Shared

Link Sub path Path

Link Sub path Path

Fig. 1. Single-layer fault recovery schemes

In existing multi-layer recovery mechanisms, sequential recovery and integration
recovery are the two primary recovery approaches. The sequential multi-layer
recovery has three main schemes: bottom-up, top-down and diagnostic [4, 5]. Hold-
off timer and recovery token are the two typical recovery schemes of bottom-up
recovery mechanism.

In practical networks, each above fault recovery scheme has its own advantages
and disadvantages in recovery time, recovery success rate or optimal utilization of
resources.

3 The SLA-Compatible Differentiated Fault Management Model

Failure is unavoidable in any networks, so fault recovery is required. How to satisfy
various recovery demands of customers while optimizing the use of network
resources in current network infrastructure is the most concerned thing of service
providers. In this paper, we will propose a SLA-compatible fault management model

 The SLA-Compatible Fault Management Model 739

and mechanisms to support differentiated fault recovery. The main ideas of our fault
management model are: 1) Differentiated fault recovery treatment, select appropriate
recovery schemes for each interrupted service flow according to its SLA, these
selected recovery schemes can be single-layer or multi-layer. 2) The recovery
performance is measurable and controllable, and each recovery processing is
monitored on-line. The matched recovery schemes of each service can be adjusted or
re-matched if the actual measured performance can’t satisfy the committed one. 3)
Differentiated resources manage and assignment, differentiated resources assignment
schemes (like preemption) will be used when there has a competition of recovery
resources. 4) All SLA and recovery mechanism are administrable and operable,
including add, delete, modify and mapping. Fig.2. shows the architecture and main
components of our model. There are two planes: service plane and manage plane.
Service plane is consists of ISP service networks and various clients and their
equipments, this plane in charge of the path provisioning and transmission for
customer’s traffic. Manage plane has several important components including SLA
and Fault management processor, Manage information databases (SLA and recovery
schemes), performance measurer and monitor. These components work together to
provide an intelligent platform for the management and control of SLA, fault recovery
schemes and recovery processing.

Clients

ISP Backbone Networks

Clients

Requests

Inquire

Manage plane

Service plane

SLA database

SLA and fault
Management

processor

Fualt recovery
schemes database

Performance
Measurer and

Monitor

Map
Monitor

Operate

Feedback

Performance
commitment

Operate

Fig. 2. Architecture of proposed fault management model

3.1 The Mapping of SLA and Fault Recovery Schemes

In order to provide differentiated fault recovery based on SLA demands, there must
has mapping relationships between SLAs and fault recovery schemes. In our fault
management model, statistic performances of recovery schemes and are maintained in
fault manage database, like Table 1 shows (N, N1, … Nn > 0; 0 < M, M1, ... Mn <

740 K. Long et al.

100). According to the performance commitments of each SLA, one or more
appropriate fault recovery schemes will be selected to match this SLA, and these
mapping information are maintained in SLA database. When a failure occurs, the
interrupted service will be recovered by using the corresponding matched recovery
schemes. A typical mapping relationship between SLAs and fault recovery schemes
are shown in Table 2, “Matched recovery schemes ID” matches the recovery
schemes’ number in table 1.

Table 1. Performances of various recovery schemes

No. Name
Recover
y time

Success
rate

Backup resources

000 Best-effort restoration N ms M % -

001 Optical 1:1 dedicated protection N1 ms M1 % 100%
002 Optical M:N shared protection N2 ms M2 % (100N/M)%
003 IP/MPLS 1:1 path protection N3 ms M3 % 100%
004 IP/MPLS path restoration N4 ms M4 % -

005 IP/MPLS sub-path restoration N5 ms M5 % -

006 IP/MPLS link restoration N6 ms M6 % -
... …

Table 2. The mapping between SLA and recovery schemes

Recovery performance demands
SLA ID

Time Success rate Others
Matched recovery schemes ID
(Recovery sequence: first last)

SLA001 T1 ms P1 % - 001 003 -
SLA002 T2 ms P2 % - 002 004 -
SLA003 T3 ms P3 % - 004 005 006
SLA004 T4 ms P4 % - 003 006 -
SLA005 T5 ms P5 % - 001 004. 000
SLA006 T6 ms P6 % - 005 006 -
...

3.2 The Procedure of Recovery Processing

In the processing of differentiated fault recovery, the assignment of backup resources
before failing and the processing approaches after failing are very important. Fig.3
shows the flow chart of path provisioning before failing and Fig.4 shows the flow
chart of fault recovery after failing.

3.3 Differentiated Assignment of Recovery Resources

Resources competition may occur during the processing of path provisioning and fault
recovery while network’s traffic load is serious. In this situation, our model provides a
mechanism try to achieve differentiated use and assignment of recovery resources.

 The SLA-Compatible Fault Management Model 741

Traffic request
form clients

Existing SLA ?

Bcakup resources
pre-configure

Y

N Compute
working path

N

Y

Establish
service path

Serivce
beginning

Conpute
working and
backup path

SLA and
Recovery
Scheme

 Database

Fig. 3. The flow chart of path provisioning

Traffic path
fault

Existing SLA ?

N

Y

Determine
recovery
schemes

Do recovery
processing

Service
resumed

Effortfully
Recovery

Existing spare
resources ?

Y

No recovery

SLA and
Recovery
Scheme

 Database

Fig. 4. The flow chart of fault recovery

The main ideas of this mechanism are: 1) The interrupted service whose SLA has
more strict performance demands and higher price has the priority of using resources.
2) If recovery resources is deficient, the high-priority interrupted service can preempt
the resources belongs to the lower-priority one.

3.4 The Management and Maintenance of Databases

There are two databases in our model: SLA database and recovery schemes database.
SLA’s attributes, performance specifications and mapping relationships with recovery
schemes are kept in SLA database. And recovery performances of various fault
recovery schemes are stored in recovery schemes database. These two databases are
administrable and operable, manual or intelligent.

4 Conclusions

Nowadays, models and approaches for differentiated service provisioning are widely
concerned by research institutes and service providers. Differentiated fault recovery

742 K. Long et al.

as an important requirement of differentiated service provisioning is very significant.
In this paper, we proposes a SLA-compatible fault management model for
differentiated fault recovery, this model provides a set of feasible framework,
mechanisms and methods for differentiated fault recovery based on SLA.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China
(NSFC) under Grant No.90304004, Hi-Tech Research and Development Program of
China (863) under Grant No. 2005AA122310, the Program for New Century
Excellent Talents in University (NCET) of the Ministry of Education of China, the
Project of the Education Council of Chongqing (KJ060508, KJ060513), and the
Projects of the Science and Technology Council of Chongqing (2005BB2062,
2005AC2089).

References

[1] Verma D.C.; "Service level agreements on IP networks", Proceedings of the IEEE Volume
92, Issue 9, Sep 2004 Page(s): 1382 - 1388

[2] Fawaz, W. et al., "Service level agreement and provisioning in optical networks",
Communications Magazine, IEEE, Volume 42, Issue 1, Jan 2004 Page(s):36 - 43

[3] Jing Zhang; Mukheriee, B.; "A review of fault management in WDM mesh networks: basic
concepts and research challenges", IEEE Network, Volume 18, Issue 2, Mar-Apr 2004
Page(s): 41- 48

[4] Demeester, P et al., "Resilience in multilayer networks", IEEE Communications Magazine,
Volume 37, Issue 8, Aug.1999 Page(s):70 - 76

[5] Puype, B., Vasseur, J. et al.,"Benefits of GMPLS for multilayer recovery", IEEE
Communications Magazine, Volume 43, Issue 7, July 2005 Page(s):51 - 59

Towards SLA-Supported Resource Management

Peer Hasselmeyer1, Bastian Koller2, Lutz Schubert2, and Philipp Wieder3

1 C&C Research Laboratories, NEC Europe Ltd., 53757 Sankt Augustin, Germany
hasselmeyer@ccrl-nece.de

2 Höchstleistungsrechenzentrum Stuttgart,
Allmandring 30, 70550 Stuttgart, Germany

{koller, schubert}@hlrs.de
3 Research Centre Jülich, 52415 Jülich, Germany

ph.wieder@fz-juelich.de

Abstract. Achievements and experiences in projects with focus on re-
source management have shown that the goals and needs of High Perfor-
mance Computing service providers have not or only inadequately been
taken into account in Grid research and development. Mapping real-life
business behaviour and workflows within the service provider domain to
the electronic level implies focusing on the business rules of the provider
as well as on the complexity of the jobs and the current state of the
HPC system. This paper describes an architectural approach towards a
business-oriented and Service Level Agreement-supported resource man-
agement, valuable for High Performance Computing providers to offer
and sell their services. With the introduction of a Conversion Factory
the authors present a component that is able to combine the Service
Level Agreement, the system status, and all business objectives of the
provider in order to address the business needs of service providers in
the Grid.

1 Introduction

Current solutions for resource management of High Performance Computing
(HPC) environments were mainly developed neglecting the business needs and
goals of service providers. The introduction of Service Level Agreements (SLAs)
[1,9] provided an instrument to express business-related terms, but it became
clear that configuring the system only according to an SLA does not solve the
problem of automatic resource configuration at all.

The main purpose of SLAs is to define certain Quality of Service (QoS) pa-
rameters in a way that appropriate service levels can be maintained during in-
teraction with customers. SLAs are therefore an important tool for automatic
business enactment and QoS management, in particular monitoring the perfor-
mance of services and detecting violations. By using SLAs, the customer has a
document which states certain quality properties, in most cases bound to penal-
ties for the service provider failing to deliver this quality. But the creation of the
SLA, as well as the configuration of the system, is bound to different aspects.
The authors aim specifically at developing an architecture for SLA-supported

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 743–752, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

744 P. Hasselmeyer et al.

resource management which takes three major aspects into account: (a) The
complexity of the job which is bound to (b) the availability of resources on the
service provider’s system, and all based on (c) the respective Business Level
Objectives (BLOs) [7,10] of the provider.

Nowadays, the usage of SLAs requires translation of SLA terms. Those terms
are mostly stated as high level technical to low level technical terms and they can
be used to derive the configuration of the system. SLA-specific configurations
have to be based on the Business Level Objectives of the service provider while at
the same time they have to respect the current state of the system resources (e.g.
the load of the system). This state information is referred to as infrastructure
knowledge throughout the paper.

A number of approaches towards this goal have already been proposed. Inter
alia projects like TrustCoM [12] and NextGRID [11] use SLAs within the service
provisioning process, the latter e.g. for automatic generation of SLAs with re-
spect to Business Level Objectives which are translated into policies. Based on
this idea, we describe how infrastructure configuration can be automated taking
into consideration SLAs as well as the service provider’s environment.

The paper starts by describing a business scenario and presents an overview
how SLAs are currently handled at a service provider. Section 3 details the rela-
tionship between SLA contents and resource configuration. The architectural ap-
proach proposed in this paper is presented in Section 4, introducing the different
components of this system as well as explaining a generic mapping process. Sec-
tion 5 provides details on the usage of this approach for Service Level Agreement
negotiation as well as for system configuration purposes. Finally, the conclud-
ing section discusses limitations and advantages of the proposed architecture,
specifically related to potential upcoming implementations of the architecture
introduced here. Additionally, references to ongoing research are provided for
areas that are not in the focus of our work, but which are of essential impor-
tance once the proposed architecture is implemented.

2 Business Scenario

2.1 Description

The approach presented in this paper is based on actual business requirements
which we shall exemplify in the context of a scenario taken from the TrustCoM
project. In this scenario, an aircraft manufacturer intends to re-design the seats
of an existing air plane. As this task involves complex calculations, a third-
party HPC service is contracted to take over task-specific computations (i.e.
to execute a job). In the given example, the HPC provider allows customers
to run computational jobs at a specific Quality of Service. For this kind of
providers, configuration and maintenance of the underlying HPC infrastructure
is a particularly complex issue – specifically when performed autonomously and
when the respective task is unknown to the service provider, i.e. no a priori
configuration information exists that could be reused.

Towards SLA-Supported Resource Management 745

2.2 Limitations of Existing Solutions

Existing solutions commonly rely on the HPC provider to negotiate a contract
with a consumer, in case of the example with the aircraft manufacturer. If the
provider has no experience with that particular job, he has to perform a com-
plexity analysis of the task manually. The authors of this paper are aware of
the fact that such complexity analyses are hard to automate. We therefore only
sketch an idea of “semi”-automation of such analyses by using a database that
stores already calculated complexities (see Section 4). From the complexity in-
formation, an administrator has to derive the resource requirements for this
task – taking into consideration not only complexity but also provider-specific
knowledge about previous executions of a job (if available).

Having the complexity received from an Analyst, the provider’s Administra-
tor can usually (manually) map the requirements of the job to the provider’s
resources. As an extension to our example of re-designing the air plane’s seats,
let us assume that the job belongs to a (provider-defined) complexity class C.
The provider would use his knowledge of jobs with this complexity and calculate
the requirement of having, say, 64 nodes available for 24 hours to execute this
kind of job.

Fig. 1. A human-centric approach to resource configuration at service providers

It is important to mention that this kind of calculation reflects only the the-
oretical approach towards the manual mapping. In real business cases, such a
calculation is also influenced by the HPC providers policies (mainly the Business
Level Objectives). Business Level Objectives are abstract goal definitions of the
respective business party, generally defined by a Manager before any business

746 P. Hasselmeyer et al.

is conducted. Having an HPC provider, a BLO could for instance be “max-
imise workload on this machine”. The BLOs influence translation from SLAs to
configuration parameters, as in addition do information about the system and
potential constrains from the customer, who may, for the sake of the example,
request the job to be finished within three days. With this information the Ad-
ministrator can determine whether the “64 nodes” requirement can really be
fulfilled within the valid time period for this job or, depending on the provider’s
Business Level Objectives, whether he actually wants to fulfil it. Based on his
calculations, the Administrator can then configure the resources.

Current solutions require involvement of different parties to collect the neces-
sary information to execute the job according to the requirements of a customer.
Fig. 1 shows the different parties and tasks they carry out as described in this
section. It can be seen that this approach lacks automatic mechanisms to carry
out the previously outlined tasks.

3 Dependency of Resource Configuration on SLAs

In order to configure his resources in a sensible and efficient way, a service
provider has to take different facts into account. One set of aspects is defined by
Service Level Agreements. But SLAs are only one part of the whole picture. The
configuration of a system depends on other aspects as well: the Business Level
Objectives of the service provider, the complexity of the job and the current sys-
tem status. In the following we discuss how far SLAs influence the configuration
of the system.

Terms within SLAs can usually not be used directly for configuring the af-
fected resources. A Service Level Agreement can consist of a set of abstract
terms which, unfortunately, mean different things to different providers. The
term “performance”, for example, is defined differently by different parties and
it is therefore calculated and provided in different ways depending on the respec-
tive infrastructure. By going from abstract terms to the infrastructure layer, we
need a mapping of high level terms to a low (technical) level (resulting in an
Operational Level Agreement (OLA)). This mapping is inevitable as the ser-
vice provider has to understand what he needs to provide in order to fulfil the
conditions of an SLA in terms of processing power, processing time, etc.

We foresee an approach that integrates infrastructure and business-specific
knowledge to allow automatic and autonomous conversion of SLA terms into
configuration information. As discussed below, such a conversion process may
also support the management of the infrastructure during operation.

SLAs have strong impact on the configuration system, in particular if ser-
vice provision has to be dynamic and on-demand. TrustCoM and NextGRID
currently examine how Service Level Agreements can be created and used in a
way that is adequate for both customers and service providers. In these projects
SLAs are not negotiable. This simplifies selection and creation of SLAs, by using
e.g. a protocol and SLA representation like WS-Agreement [1], and enables the
use of databases to store (static) configuration information. However, studies of

Towards SLA-Supported Resource Management 747

real business use cases have shown that pre-defined configurations can only be
used in a limited set of scenarios, as the configuration of the service provider’s
system does not only depend on the Service Level Agreements, but also on the
job type(s) and the current workload.

Although, at the time of writing, Business Level Objectives like “utilise my
resources a hundred percent” or “get the maximum profit, while spending as little
money as possible”, are not supported by available resource management sys-
tems, current research activities to solve this problem are on-going in NextGRID,
TrustCoM, and the upcoming project BREIN [2]. For the purposes of this paper,
we assume that BLOs are represented as documents in a database and that they
can be retrieved easily. Additionally, a certain degree of knowledge of the service
provider’s infrastructure is required, e.g. whether and how the service provider
can execute the requested jobs in time. In summary, a configuration system that
builds on a “base” configuration represented by BLOs and the complexity anal-
ysis of a job seems like a promising approach towards SLA-supported resource
management.

4 Mapping Service Level to Operational Level
Agreements

The outlined scenario has high demands on the HPC provider’s capability of
configuring its resources on-the-fly. Related to the discussion in the previous
section, this one presents our architectural approach to mapping Service Level
Agreements to Operational Level Agreements.

4.1 An Architecture for SLA-Supported Resource Management

Current research in the Service Level Agreement area deals mainly with high-
level application-specific terms as SLA content (e.g. “time-to-complete” as used
in NextGRID). These terms are used since the customer should not know and
in most cases does not want to know the details of the service provider’s config-
uration. It is therefore mandatory to map those high level-terms to the low-level
technical layer usable for calculating the requirements on the system.

Our architecture (see Fig. 2) is an approach to automate the process of con-
figuring a service provider’s system based on:

– the BLOs of the service provider,
– the complexity of the job,
– the configuration knowledge of former job runs (stating something like: “for

this job, I need the following system resources”), and
– the Service Level Agreement itself.

The resulting set of OLAs will be the basis for the system configuration.
The translation of OLAs to actual system configurations is performed by the
Execution Management System (EMS). The EMS is not part of our proposed

748 P. Hasselmeyer et al.

Fig. 2. An architecture for SLA-supported resource management

architecture but the entity responsible for consuming and interpreting the Op-
erational Level Agreements.1

The proposed architecture consists of the Conversion Factory, the BLO
Database, the Knowledge Database, the Complexity Database, and the Converter.
The main component of our proposed architecture is the Converter. The Con-
verter instance is created based on the Business Level Objectives of the service
provider, the complexity of the job and the infrastructure knowledge. Business
Level Objectives represent the goals of the service provider. In an ideal world,
the service provider’s main goal would be to satisfy the customer’s needs. But in
the business world, both customers as well as service providers have additional
internal goals. All goals need to be observed when negotiating and executing a
business transaction.

The function of the Converter is to provide the information to (a) check
resource availability, (b) configure the system, and (c) monitor the status. Thus,
depending on changes of the provider’s infrastructure, the Converter needs to
perform basically the same task multiple times in order to optimally support
a business transaction. In particular monitoring is dependent on the business
relation (as it is different for each individual SLA).

We therefore introduce a “Conversion Factory” that instantiates individual
Converters. Each Converter is specific to the particular needs of a business rela-
tionship. For this purpose the Conversion Factory queries the different databases
to retrieve information about potentially available, pre-calculated complexities
or previous business transactions. In particular we see the need for a Knowl-
edge Database, a Complexity Database, and a BLO Database. The Knowledge
Database stores information about system requirements for different complexity
classes, generated by running “similar” jobs in the past. In addition, the Knowl-

1 The function of the EMS is analogous to that of the OGSA Execution Manage-
ment Services which “are concerned with problems of instantiating and managing,
to completion, units of work” [5].

Towards SLA-Supported Resource Management 749

edge Database in our approach represents an information service which also
provides data about the current status of the system. Realisations of the archi-
tecture described may obviously choose to implement such a service separately
or to exploit the respective service of the middleware in use. The Complexity
Database stores previously calculated complexities of jobs; it could, as far as
our scenario is concerned, contain the assignment of the complexity class C to
the aircraft manufacturer’s job. The BLO Database stores the Business Level
Objectives of the service provider.

Obviously, the Complexity Database does not contain all possible job-
complexity pairs. Complexity calculation of so far “unknown” jobs is therefore
needed. Generally, it is impossible to predict the behaviour (and hence complex-
ity) of an unknown application. Potential solutions include letting the job run
with a reduced quantity of resources to estimate the time requirements (relative
to the system’s capabilities) – however, such an approach neglects for example
the relationship between input data complexity and time requirements. Manual
processing will therefore be needed in most cases. This does nevertheless not
diminish the improvements brought about by our Converter.

While the Knowledge Database and the Complexity Database are exploited
to reduce the mapping complexity and thus speed up this process, the purpose
of the BLO Database is to provide information on the service provider’s goals
and their relative importance. As mentioned before, BLOs represent the policies
to be taken into consideration when generating configuration information. Such
priorities could directly influence configurations, e.g. with statements like “jobs
from companies X,Y,Z get higher/lower priority”.

Please note that, as opposed to the Knowledge and Complexity Databases
which are ideally populated automatically, the service provider wants to retain
control of the definition of its own BLOs. Automatic definition of BLOs does
therefore not seem to be a sensible option.

As described, the Converter is created based on the SLA, the Complexity, and
the infrastructure knowledge. It provides three interfaces:

1. Availability. This interface is used to check the availability of an offered
service for negotiation purposes.

2. Status. This interface provides monitoring data from the EMS converted to
SLA level terms to check the status of the service.

3. Configuration. Once an SLA is negotiated, this interface is used to convert
the SLA-specific parameters into valid configuration information usable as
input to the EMS based on the pre-configured conversion mechanisms.

Once instantiated, the Converter is available until either the negotiation pro-
cess fails or the service provisioning period expired.

4.2 The Mapping Process

This section gives an overview of the processes which are executed by the Conver-
sion Factory to create an appropriate Converter instance. The different processes
executed during the mapping process are:

750 P. Hasselmeyer et al.

– Complexity analysis of the job. When an SLA (respectively an “offer”)
is sent to the Conversion Factory, the complexity of the job is retrieved.
This can either be done by querying the Complexity Database or a (human)
analyst.

– Knowledge Database lookup. The Knowledge Database contains infor-
mation about the infrastructure and the available resources. In addition it
provides information about previous configurations of the system with re-
spect to different job complexities.

– Application of BLOs to the SLA (template). As our approach concen-
trates on the service provider domain, the customer is only implicitly relevant
(through the SLA – which to maintain is also in the service provider’s in-
terest). The process of creating the Converter instance is influenced by the
Business Level Objectives of the service provider.

5 Usage

The proposed architecture can be used to support SLA negotiation as well as
configuration of the service provider’s system. This chapter will give a short
overview of the capabilities of the Conversion Factory / Converter approach and
its expected use within a business interaction.

1. Negotiation. During the negotiation of a Service Level Agreement, the
service provider has to figure out whether it can fulfil a service request ac-
cording to the SLA terms. Our architecture supports this by checking the
availability of the requested resources according to SLA and infrastructure
status. The mapping and Converter creation process takes place as described
in Section 4.2. Using the Converter, the negotiation component of the ser-
vice provider can check the status of the system and thus the availability of
the resources with respect to the SLA, by using the provided interface (see
Section 4.1).

Coming back to our example scenario: The aircraft manufacturer asked
for re-designing the air plane’s seats within three days. We assume that the
Complexity Database has an entry for the respective job, telling the Con-
version Factory that the job’s complexity class is C. A Knowledge Database
query then translates C into a resource requirement of 64 nodes for 24 hours.
At this stage, the BLOs and the system’s status have to be taken into con-
sideration. As “time-to-complete” is set to three days, and given that the
respective HPC resources are available, the BLOs now determine the level of
service provided and communicated to the customer as the job is accepted.
In case the system’s schedule (or any BLO) does not allow the execution of
the job, the provider has to reject the request or create a counter-offer.

2. Configuration. Having made an agreement, the service provider has to con-
figure its system according to the Service Level Agreement, the BLOs, and the
job complexity. In case the Converter was already instantiated during negotia-
tion, it can be used to map the SLA terms to the infrastructure-specific (tech-
nical) parameters, which will be sent to the Execution Management System in

Towards SLA-Supported Resource Management 751

order to configure the systems. This configuration is subject to the BLOs of
the provider. Imagine the aircraft manufacturer being a “high priority” busi-
ness partner and the objective of the service provider is to provide “minimal
response time for high priority business partners“. This BLO would cause the
EMS to run the job as soon possible. In case of the customer being a “low prior-
ity” business partner (and assuming that the job is not a “rigid” [4] one), less
than 64 nodes may be allocated for more than 24 hours to keep resources in
reserve for higher priority customers.

3. Execution (Monitoring). With the introduction of the status interface,
we enable the service provider to use the Converter for monitoring during
the execution of the service. Getting the data from the EMS, the Converter
delivers the data mapped to SLA terms to the service provider’s manage-
ment system.

In case of high priority jobs, monitoring could be used for violation pre-
vention. If some of the allocated nodes fail, the EMS could be notified of an
impeding SLA violation. With that warning, the EMS can adjust the system
accordingly, e.g. by migrating (parts of) the job, to ensure the fulfilment of
the SLA.

6 Conclusions

In this paper we introduce an architecture for SLA-supported, half-automatic
resource management. The architecture reflects the business needs of the service
provider and aims at a more automatic and autonomous resource configuration
through the introduction of a Conversion Factory. To achieve this, Service Level
Agreements are mapped to provider-specific Operational Level Agreements with
the aid of formalised business goals (Business Level Objectives), complexity anal-
yses, and knowledge of previous configurations.

We are aware that the approach presented in this paper implies the availabil-
ity of sophisticated methods and algorithms to realise the logic of components
like the Conversion Factory and the Converter. Also the formalisation of SLAs,
OLAs, and BLOs is still subject of various research activities of varying maturity.

With respect to the classification of jobs the Γ model described in [6] and
the related scheduling architecture [3] may serve as a starting point towards the
realisation of the complexity analysis as well as the resource assignment and con-
figuration knowledge provision capabilities needed. Furthermore, our approach
calls for services to map SLAs to OLAs while observing the provider’s Business
Level Objectives. In this case the authors are confident that semantic techniques
as e.g. presented in [8] will help to provide appropriate solutions.

Acknowledgements

This work has been supported by the NextGRID project and has been partly
funded by the European Commission’s IST activity of the 6th Framework Pro-
gramme under contract number 511563. This paper expresses the opinions of

752 P. Hasselmeyer et al.

the authors and not necessarily those of the European Commission. The Euro-
pean Commission is not liable for any use that may be made of the information
contained in this paper.

The developments presented in this paper were also partly funded by the
European Commission through the IST programme under Framework 6 grant
001945 to the TrustCoM Integrated Project.

References

1. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-
Agreement) Version 2005/09, September 2005.

2. The BREIN project. Website, http://www.gridsforbusiness.eu.
3. K. Cristiano, R. Gruber, V. Keller, P. Kuonen, S. Maffioletti, N. Nellari, M.-Ch.

Sawley, M. Spada, T.-M. Tran, Ph. Wieder, and Wolfgang Ziegler. Integration of
ISS into the VIOLA Meta-scheduling Environment. In S. Gorlach and M. Dane-
lutto, editors, Proc. of the Integrated Research in Grid Computing Workshop, pages
357–366. Università di Pisa, November 28–30, 2005.

4. D. G. Feitelson and L. Rudolph. Toward convergence in job schedulers for par-
allel supercomputers. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, volume 1162 of LNCS, pages 1–26. Springer,
1996.

5. I. Foster, H. Kishimoto, A. Savva, et al. The Open Grid Services Architecture,
Version 1.0, January 2005. http://www.ggf.org/documents/GFD.30.pdf .

6. R. Gruber, P. Volgers, A. De Vita, M. Stengel, and T.-M. Tran. Parameterisa-
tion to tailor commodity clusters to applications. Future Generation Comp. Syst.,
19(1):111–120, 2003.

7. J. O. Kephart and D. M. Chess. The Vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

8. L. Li and I. Horrocks. A Software Framework for Matchmaking Based on Se-
mantic Web Technology. In Proc. of the Twelfth International World Wide Web
Conference (WWW 2003), Budapest, Hungary, May 20–24, 2003. ACM.

9. H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck. Web Service
Level Agreement (WSLA) Language Specification, 2003. http://www.research.
ibm.com/wsla/WSLASpecV1-20030128.pdf.

10. Ph. Masche, P. Mckee, and B. Mitchell. The Increasing Role of Service Level Agree-
ments in B2B Systems. In Proc. of WEBIST 2006 – 2nd International Conference
on Web Information Systems and Technologies, Setúbal, Portugal, April 11–13,
2006. To appear.

11. The NextGRID project. Website, 24 June 2006 http://www.nextgrid.org/.
12. The TrustCoM project. Website, 24 June 2006 http://www.eu-trustcom.com/.

Reliable Orchestration of Resources Using
WS-Agreement

Heiko Ludwig1, Toshiyuki Nakata2, Oliver Wäldrich3, Philipp Wieder4,
and Wolfgang Ziegler3

1 IBM TJ Watson Research Center, Hawthorne, NY, USA
hludwig@us.ibm.com

2 NEC, Central Research Laboratory, Tokyo, Japan
t-nakata@cw.jp.nec.com

3 Fraunhofer Institute SCAI, Department of Bioinformatics,
53754 Sankt Augustin, Germany

{oliver.waeldrich, wolfgang.ziegler}@scai.fraunhofer.de
4 Research Centre Jülich, 52425 Jülich, Germany

ph.wieder@fz-juelich.de

Abstract. Co-ordinated usage of resources in a Grid environment is
a challenging task impeded by the nature of resource usage and provi-
sion: Resources reside in different geographic locations, are managed by
different organisations, and the provision of reliable access to these re-
source usually has to be negotiated and agreed upon in advance. These
prerequisites have to be taken into account providing solutions for the
orchestration of Grid resources. In this document we describe the use of
WS-Agreement for Service Level Agreements paving the way for using
multiple distributed resources to satisfy a single service request. WS-
Agreement is about to be released as a draft recommendation of the
Global Grid Forum and has already been implemented in a number of
projects, two of which we will presented in this paper.

1 Introduction

1.1 Motivation to Use WS-Agreement

Today, the access to and use of services offered by a provider, e.g. use of re-
sources in a Grid environment, are usually governed by static agreements made
beforehand between the parties. The parties thus already have to be in contact
before the actual (business) interaction takes place. However, in a large Grid
environment with a large number of providers of different services and an even
larger number of service consumers this static approach is not feasible.

In contrast WS-Agreement [1] offers a reliable mechanism to create solid elec-
tronic agreements between different parties interested in setting up dynamic col-
laborations that include mutual obligations, e.g. between service provider and
service consumer. WS-Agreement thus fills the existing gap when trying to estab-
lish a dependable relation between these parties (that must not have established
a formal contractual relationship beforehand) enabling them e.g. to provide a

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 753–762, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

754 H. Ludwig et al.

service on one side and to consume this service at the other side while the formal
framework of this exchange is governed by a dynamic contract. WS-Agreement
empowers both parties to establish a dynamic electronic contract that governs
their ad hoc business connection set up to meet an actual need of one party with
a service provided by the other party. Once both sides have fulfilled their obliga-
tions specified in the agreement, the agreement is completed and both partners
have no longer mutual obligations from this agreement.

WS-Agreement is now in the state of a proposed recommendation which is
the last phase before becoming a recommendation of the Global Grid Forum
(GGF [5]). Nevertheless, it is already used in a number of projects - two of
them being presented in this paper - and has attracted attention from several
large communities like the telecommunications and IT industries organised in
the IPsphere Forum [7] or the partners in the European project EGEE [4].

1.2 WS-Agreement

The objective of the WS-Agreement draft specification, defined by the GRAAP
Working Group [6] of the GGF, is to provide a domain-independent and stan-
dard way to establish and monitor Service Level Agreements. The specification
comprises three major elements: (i) A description format for agreement tem-
plates and agreements; (ii) a basic protocol for establishing agreements, and (iii)
an interface specification to monitor agreements at runtime.

Agreements according to the specification are bilateral and set up between
two roles, the Agreement Initiator and the Agreement Responder. These roles
are independent of the roles of service provider, the domain that performs jobs
or other services, and service consumer. An agreement defines a dynamically-
established and dynamically-managed relationship between these parties. The
object of the relationship is the delivery of a service, e.g. the execution of a job
or the availability of compute resources, by one of the parties within the context
of the agreement. The management of this delivery is achieved by agreeing on the
respective roles, rights and obligations of the parties. The agreement may specify
not only functional properties for identification or creation of the service, but
also non-functional properties of the service such as performance or availability.

Fig. 1 outlines the main concepts and interfaces of the WS-Agreement speci-
fication. In the chosen example, the Agreement Responder is a service provider,
the Agreement Initiator the service consumer. An Agreement Responder ex-
poses an interface of an Agreement Factory, which offers an operation to create
an agreement and an operation to retrieve a set of agreement templates proposed
by the agreement provider. Agreement templates are agreements with fields to
be filled in. Templates help an Agreement Initiator to create agreements that
the agreement provider can understand and accept. The createAgreement op-
eration returns accept or reject, if a synchronous reply is expected. Otherwise,
in case of a longer decision-making process, the service responder can convey
the decision to an AgreementResponse interface that the Initiator exposes. If
the createAgreement operation succeeds, an agreement instance is created. The
agreement instance exposes the terms of the agreement as properties that can be

Reliable Orchestration of Resources Using WS-Agreement 755

Agreement Responder

Agreement
Factory

Agreement

Agreement

Agreement

Service Environment
(Job Scheduling and Execution)

Service Environment
(Job Client, Preparation)

Agreement Initiator

Agreement
Initiator
Client

Agreement
Response

getResourceProperty

createAgreement

Accept/Reject

getResourceProperty / Agreement State

Create agreement resource

Prepare Service Delivery

Accept/Reject (Asynchronous)

Prepare Service Consumption

Service Specific Interaction

e.g., stage in files

Agreement
Offer

Templates

Agreement
Templates

Fig. 1. Concepts and interfaces of WS-Agreement

queried. In addition, runtime states for the agreement as a whole and its individ-
ual terms can be inspected by the Initiator. All interfaces exposed by the parties,
Agreement Factory, Agreement and AgreementResponse are resources according
to the Web Services Resource Framework (WSRF) [13]. Upon acceptance of an
agreement, both service provider and service consumer have to prepare for the
service, which typically depends on the kind of service subject to the agreement.
For example, a service provider schedules a job that is defined in the agreement.
A service consumer will make the stage-in files available as defined in the agree-
ment. Further service specific interaction may take place between the parties
governed by the agreement.

The WS-Agreement draft specification defines the content model of both,
agreements and agreement templates as an XML-based language. Structurally,
an agreement consists of a name, a context section, and the agreement terms.
The agreement context contains definitorial content such as the definition of the
parties and their roles in the agreement. The agreement terms represent contrac-
tual obligations and include a description of the service as well as the specific
guarantees given. A service description term (SDT) can be a reference to an ex-
isting service, a domain specific description of a service (e.g. a job using the Job
Submission Description Language (JSDL [2], a data service using Data Access
and Integration Services, etc.), or a set of observable properties of the service.
Multiple SDTs can describe different aspects of the same service. A guarantee
term on the other hand specifies non-functional characteristics in service level
objectives as an expression over properties of the service, an optional qualifying
condition under which objectives are to be met, and an associated business value
specifying the importance of meeting these objectives.

756 H. Ludwig et al.

The WS-Agreement specification only defines the top-level structure of agree-
ments and agreement templates. This outer structure must be complemented by
means of expressions suitable for a particular domain. For example, a guarantee
term is defined as comprising the elements scope, qualifying condition, service
level objective, and business value. There are no language elements defined to
specify a service level objective. Parties have to choose a suitable condition lan-
guage to express the logic expressions defining a service level objective. Agree-
ment Templates contain the same content structure as agreements but add a
constraints section. This section defines which content of a template agreement
can be changed by an agreement initiation and the constraints which must be
met when filling in a template to create an agreement offer. A constraint com-
prises a named pointer to an XML element in the context or term sections of the
agreement and a constraint expression defining the set of eligible values that can
be filled in at this position. For example, an Initiator might be able to choose
between a number of options of a job or must specify the location of a stage in
file.

The remainder of the paper is organised as follows. In Section 2 we present two
implementations of WS-Agreement, followed by a summary of the experiences
made (Section 3). Based on these experiences we present the discussion of re-
quirements for negotiation of Service Level Agreements in Section 4. An overview
of further developments in the GRAAP-WG related to this paper concludes the
paper.

2 Implementations

2.1 Wide Area Business Grid

In this section, we describe a system using WS-Agreement in combination with
JSDL to express SDTs for complex, wide-area jobs. This system was developed
within the framework of the Japanese Business Grid Project [3] (2003-2005).
The project’s mission was to develop a business Grid middleware realising a
next generation business application infrastructure.

Overview of the system. The main objective in designing and implementing
the system has been to make it easy to deploy and run business applications like
a 3-tier Web application in a data centre. The main characteristics of the system
are:

– Job submission is realised by a job description using WS-Agreement and
JSDL, and the Application Contents Service (ACS).

– Brokering is used to allocate the necessary resources.
– Automatic deployment and configuration of programmes and data (including

the necessary preparation of hosting environments) is realised by a language
similar to the Configuration Description Language (CDL [8]), and the ACS.

– Management of heterogeneous resources is realised through Grid middleware
agents providing a common interface (resource virtualisation).

Reliable Orchestration of Resources Using WS-Agreement 757

Resource
Provider

ASP Provider

Global Grid Manager

Site1
Site2

Sales Info.
Client Info

Sales Info.
Client Info

Resource Provider

Resource Provider

Agrees to
serve Job1

Agrees to
serve Job2

ASP Man.

1)O
ffer a ‘G

lobal’

A
greem

ent O
ffer

Site A

Site C

Agreement1

Agreement2
8)E

P
R

to
G

lobal

A
greem

ent O
ffer

GGJM
(Could be
In Site A)

(Global Agreement Offer)

Resource Info for Job1

Resource Info. For Job2

Service
Description
Terms

Site B

2)Offer ‘s
ub’

Agreement Offer1

3)Accept

6)Offer ‘sub’Agreement Offer2
7)Accept

4)Offer ‘sub’
Agreement Offer2

5)Reject

Accumulate
info

Fig. 2. Wide Area Business Grid

Use of WS-Agreement and JSDL. We chose JSDL with extensions as
the domain-specific language used within the Agreement. The link between
JSDL constructs and WS-Agreement is realised through a convention specifying
that the content of the JSDL element JobName corresponds to WS-Agreement’s
ServiceName. We also extended the JSDL constructs in order to make the de-
scription of more complicated resource requirements easier. This resulted in two
types of resource description information for each job: (i) “Global” resource
information for describing the type of the job or providing general character-
istics of the job (e.g. whether to allow automatic load control or not) and (ii)
“local” resource information which describes the resource needed for each of
the components that make up a pool to carry out the job. Several jobs which
are related - such as a 3-tier Web application for a Web shop and a batch
job which calculates the sales info every weekend - can be included in a single
agreement.

Implementation of the Wide Area Business Grid. The agreement tem-
plate as described above is utilized in order to realise a wide-area business Grid.
The aim here is to make it possible to share IT resources based on the con-
tract/agreement among (i) distributed centres in an enterprise and (ii) trusted
partners’ data centres (resource providers), thus making it possible for an Ap-
plication Service Provider (ASP) to dispatch a complex job from a single portal,
as depicted on the left side of Fig. 2. The right side of this figure pictures a
scenario where an ASP wants to dispatch a complex job consisting of two 3-tier
Web applications spanning over two sites (resource providers). The sequence of
events which occur in this scenario is as follows:

758 H. Ludwig et al.

1. The Application Service Provider’s manager prepares an Agreement Offer
which contains resource descriptions of both Job1 for one site and Job2 for
another site, and sends the offer to the Global Grid Job Manager (GGJM).

2. The GGJM splits the Agreement Offer into two Agreement Offers, one for
each sub-job, and offers the Agreement for Job1 to site A.

3. Site A decides to accept the Job, creates agreement1 and returns the End-
point Reference (EPR) of the Agreement.

4. The GGJM stores the EPR of agreement1 internally and then offers the
Agreement Offer for Job2 to site B.

5. Site B decides to reject the offer.
6. GGJM offers the Agreement Offer for Job2 to site C.
7. Site C decides to accept the offer, creates agreement2 and returns its EPR.
8. The GGJM stores the EPR of agreement2, creates an agreement for the

complete job and returns it to the ASP manager.

The flexibility introduced by the combination of WS-Agreement and JSDL allows
to handle very complicated jobs in a wide-area distributed environment.

2.2 VIOLA Meta-scheduling Environment

The German VIOLA project [11] develops among other components a meta-
scheduling environment providing resource reservations based on WS-Agreement.
The immediate objective of this development is to co-allocate computational and
network resources in a UNICORE-based Grid, but we designed the environment
to support arbitrary types of resources and to be integrated into different Grid
middleware systems. The main integration effort to access other middleware,
like e.g. Globus, is to implement the client-side interface of the Meta-Scheduling
Service. Since it is beyond the scope of this paper to explain the system in detail
we refer to [12] for a complete architectural description of it and to [10] for the
definition of the negotiation protocol currently implemented.

Fig. 3 sketches the basic architecture of the meta-scheduling environment and
its integration into an arbitrary Grid middleware. The VIOLA Meta-Scheduling
Service communicates with a client application using WS-Agreement, it receives
a list of resources (pre-selected by a resource selection service which is not pic-
tured here), and it returns reservations for some or all of these resources. To
interact with varying types of scheduling systems we use the adapter pattern
approach. The role of an Adapter is to provide a single interface to the Meta-
Scheduling Service by encapsulating the specific interfaces of the different local
scheduling systems. Thus the Meta-Scheduling Service can negotiate resource
usage by exploiting a single interface independent of the underlying resource
type. To achieve this, the Meta-Scheduling Service first queries local scheduling
systems for the availability of the requested resources and then negotiates the
reservations across all local scheduling systems which, in order to participate in
the negotiation process, have to be capable and willing to

– let the Meta-Scheduling Service reserve resources in advance by offering data
about job execution start and stop times, and

Reliable Orchestration of Resources Using WS-Agreement 759

Fig. 3. High-level meta-scheduling architecture

– provide at least partial access to their local schedules, e.g. by publishing
information about available free time slots.

A prototype of the architecture shown in Fig. 3 has been implemented using
the UNICORE Grid middleware and this prototype is used within the VIOLA
testbed to demonstrate the execution of MPI jobs supported by the co-allocation
capabilities of the Meta-Scheduling Service. Furthermore a network resource
management system supporting advance reservation is integrated to enable the
reservation and scheduling of end-to-end network connections with a guaranteed
Quality of Service level.

3 Experience with Implementing WS-Agreement

By implementing WS-Agreement-based resource orchestration frameworks in the
two different projects we gained substantial experience which we continuously
feed into the standardisation process. In this section we examine some issues
that we think are of value for potential implementers of WS-Agreement.

3.1 Wide Area Business Grid

One of the objectives of Business Grid was to make the system dynamically
adapt to workload fluctuation. Specifying a range of CPU resources together
with SLA conditions using Guarantee Terms is one candidate to meet our goals,
but we wanted to let the user be able to specify the controlling of the SLA in a
flexible manner. To meet our goals, we use a combination of a statically allocated
resource range specified by an Agreement together with policies specified by ASP
managers. As a by-product, we currently do not use the Guarantee Terms. In
addition, some of the domain-specific terms are specified outside the Agreement.

760 H. Ludwig et al.

Implementation-specific issues worth mentioning are that the system uses
J2EE RI with Pointbase for persistent storage, the Globus Toolkit 4 for WSRF-
related services, and, since reserving resources on multiple sites can be a very
complex and time consuming task, we use the createPendingAgreement oper-
ation rather than the createAgreement one.

3.2 VIOLA Meta-scheduling Environment

Since the client automatically generates an Agreement Offer based on the input
of a user, the user cannot change explicitly the structure of an Agreement Offer.
With respect to the requirements of the VIOLA target domain (MPI jobs) this
is a feasible approach, but the application to other domains may change this.
An Offer specifies the required compute resources by using Service Description
Terms and the required Network QoS by using Guaranty Terms. On reception of
an Agreement Offer the Meta-Scheduling Service tries to co-allocate all required
resources and only in case of success an Agreement is created.

The negotiation process between the Meta-Scheduling Service and the Adap-
ters is implemented based on a proprietary protocol. This is done because the
WS-Agreement protocol does neither specify means to change an existing agree-
ment nor to cancel an agreement once it was created. This point is covered again
in Section 4. The creation of an agreement is done in a synchronous manner. In
our case it is feasible because one important goal in the development of the Meta-
Scheduling Service was to make the negotiation process between the subsystems
as effective as possible and therefore minimise the overhead of the negotiation
as much as possible.

4 Requirements for Negotiation of Service Level
Agreements

In this subsection, we describe our wish-list with respect to the current draft.
A smaller part is under consideration for the current WS-Agreement recom-
mendation while the bigger part will be addressed in subsequent versions of
WS-Agreement. A cancellation mechanism is required to meet a needs of
multi-site allocation use case for Business Grid. This is being integrated into
the current specification. With regards to re-negotiation, we feel that there is
a need to distinguish between two types of re-negotiation: (i) Re-negotiation is
done in the initial phase where the two parities negotiate on the Agreement terms
and (ii) re-negotiation is needed after an Agreement has reached the Observed
state.

Here we would like to discuss two issues for the latter re-negotiation type,
with the assumption that the current Agreement is in the Observed state dur-
ing the re-negotiation. There are two major features we think are necessary to
make WS-Agreement an even more useful specification for SLAs: a modifiable
expiration time and a modifiable list of resources. The first requirement is able
to satisfy requests arising from dynamic business conditions, where one party

Reliable Orchestration of Resources Using WS-Agreement 761

may want to extend or shorten the time that an Agreement will be effective.
The second requirement addresses situations - like the one described before in
the Business Grid example - where resources will be allocated within a certain
range specified in order to meet the SLAs. However, due to increasing resource
demand there may be cases in which the Agreement Initiator would like to plan
for enhancements to the current system. This could be done in the following two
alternative ways: Re-negotiation of the original Agreement or creation of a new
Agreement with references to the original Agreement.

The discussion of the items of the wish-list has recently been started in the
GRAAP working group. As a result of this discussion several small subgroups
(“design-teams”) have already been installed or will be installed soon. These
sub-groups focus on

– the further development of WS-Agreement to include e.g. cancellation and
re-negotiation,

– a protocol for a multi-step negotiation of agreements as used for example in
the VIOLA project,

– provision of other term languages, e.g. including network related terms, and
– terms related to reservation, e.g. start, duration, strategy.

5 Future Perspectives

Even before the WS-Agreement specification has become a proposed recommen-
dation of the GGF early adopters have already started using WS-Agreement
prototypes in several projects, e.g. Cremona [9]. It has also attracted attention
from several large communities, as described above, and we expect a broader
uptake once the specification is published as proposed recommendation.

The next major activity to be carried out is the demonstration of interop-
erability between different implementations of WS-Agreement. In parallel the
GRAAP Working Group will start to work on a negotiation protocol based on
WS-Agreement, where it is planned to include most of the features described
in Section 4. We already started discussion and work on the protocol for the
multi-step negotiation between resource provider and resource consumer. Fi-
nally, the third activity started recently is focusing on new term languages to
support a broader range of usage scenarios for WS-Agreement, e.g. expressing
domain-specific service level objectives for network or security.

Acknowledgements

Some of the work reported in this paper is funded by the German Federal
Ministry of Education and Research through the VIOLA project under grant
#01AK605L. This paper also includes work carried out jointly within the Core-
GRID Network of Excellence funded by the European Commission’s IST pro-
gramme under grant #004265. In addition, part of this work had been funded by
the Ministry of Economy, Trade, and Industry (METI), Japan with administra-
tive support by Information-Technology Promotion Agency (IPA), Japan. The

762 H. Ludwig et al.

authors would like to thank Hiro Kishimoto, Andreas Savva, Nobutoshi Sagawa,
Shinya Miyakawa for various discussions.

References

1. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-
Agreement), September 2005. 3 Apr 2006 <https://forge.gridforum.org/projects/
graap-wg/document/WS-AgreementSpecificationDraft.doc/en/26>.

2. A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pul-
sipher, and A. Savva. Job Submission Description Language (JSDL) Specification
v1.0. Grid Forum Document GFD.56, Global Grid Forum, November 2005.

3. The Business Grid Project. 30 Mar 2006 <http://www.ipa.go.jp/
english/softdev/sixth.html>.

4. EGEE – Enabling Grids for E-sciencE. 3 Apr 2006 <http://public.eu-egee.org/>.
5. GGF – The Global Grid Forum. 3 Apr 2006 <http://www.ggf.org>.
6. Grid Resource Allocation Agreement Protocol Working Group. 3 Apr 2006

<https://forge.gridforum.org/projects/graap-wg/>.
7. The IPsphere FORUM. 3 Apr 2006 <http://www.ipsphereforum.org/home>.
8. S. Loughran et al. Configuration Description, Deployment, and Lifecycle Manage-

ment (CDDLM) Deployment API. Grid Forum Document GFD.69, Global Grid
Forum, March 2006.

9. H. Ludwig, A. Dan, and B. Kearney. Cremona: An Architecture and Library for
Creation and Monitoring of WS-Agreements. In M. Aiello, M. Aoyama, F. Curbera,
and M. Papazoglou, editors, Proc. of the 2nd International Conference on Service
Oriented Computing (ICSOC 2004), pages 65–74. ACM Press, 2004.

10. A. Streit, O. Wäldrich, Ph. Wieder, and W. Ziegler. On Scheduling in UNICORE –
Extending the Web Services Agreement based Resource Management Framework.
In Proc. of Parallel Computing 2005 (ParCo 2005), Malaga, Spain, September 13–
16, 2005. To appear.

11. VIOLA – Vertically Integrated Optical Testbed for Large Application in DFN. 29
Mar 2006 <http://www.viola-testbed.de/>.

12. O. Wäldrich, Ph.Wieder, and W. Ziegler. A Meta-scheduling Service for Co-
allocating Arbitrary Types of Resources. In R. Wyrzykowski, J. Dongarra,
N. Meyer, and J. Wasniewski, editors, Proc. of the 2nd Grid Resource Manage-
ment Workshop (GRMWS’05) in conjunction with PPAM 2005, volume 3911 of
LNCS, pages 782–791. Springer, 2006.

13. OASIS Web Services Resource Framework (WSRF) TC. 3 Apr 2006 <http://www.
oasis-open.org/committees/wsrf>.

Dynamically Scheduling Divisible Load
for Grid Computing

Salah-Salim Boutammine, Daniel Millot, and Christian Parrot

GET / INT
Département Informatique

91011 Évry, France
{Salah-Salim.Boutammine, Daniel.Millot, Christian.Parrot}@int-evry.fr

Abstract. This paper presents an improved framework for an existing
adaptive method for scheduling divisible load. The proposed framework
delimits in a new way the application field of the method. This method
can be used to schedule parallel applications whose total workload is
unknown a priori, and can deal as well with the unpredictable execu-
tion conditions commonly encountered on grids. Some parameters which
quantify the dynamic nature of these varying execution conditions are
discussed in the paper.

Keywords: scheduling, divisible load, parallel application, grid, master-
worker, on-line, multi-round, heterogeneity, dynamicity.

1 Introduction

In many application domains, such as data mining or customer records process-
ing for instance, data from huge collections can be processed independently. Such
computation load can be arbitrarily divided among multiple computers and is
then called “divisible load”. For the execution of the corresponding applications,
the use of multiple computers is quite straightforward when these computers have
the same CPU and communication link speeds. On the contrary, scheduling the
computation is much more intricate when the execution platform is heteroge-
neous. The Divisible Load Theory (DLT [1, 2, 3, 4]) has proved to be able to
provide useful schedules in such a case.

In this paper, we consider applications that process a finite –but a priori
unknown– amount of data independently; the total workload is supposed arbi-
trarily divisible in chunks. Such applications are suitable for the master-worker
programming model. The master collects the data in an input buffer and until
it gets the last data item, it iteratively distributes chunks to the workers, then
collects the corresponding results from them. Clearly, for such a programming
model to be useful, the processing cost for a chunk by a worker must dominate
the corresponding communication costs between master and worker.

It has to be noted that although we consider “divisible load”, DLT cannot be
straightforwardly applied, as we suppose that the total workload of the appli-
cation is not known a priori. For this reason, only runtime algorithms can be
used.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 763–772, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

764 S.-S. Boutammine, D. Millot, and C. Parrot

We want such an application to terminate as soon as possible on a set of grid
resources, but we do not consider the fundamental problem of choosing the re-
sources to be used and the order in which they are served. We adopt a one-port
communication model without contention [5], and consider both computation
and communication latencies, due to the context of grid computing. Execution
parameters on a grid, such as available computing power or network bandwidth,
vary both in space (heterogeneity) and time (dynamicity). We assume that we
know all past values of these parameters and are unaware of the future ones. As
the makespan minimization problem is NP-complete when latencies are consid-
ered [6], it can only be heuristically dealt with.

In [7], we have presented the On-Line Multi-Round method (denoted "OLMR"
thereafter), an adaptive method that can be used for scheduling parallel applica-
tions when the total workload of the application is not known a priori and in the
dynamic context of grids. Assuming that a set of resources has been identified,
the method aims at distributing the tasks of a parallel application on this set
of resources optimally, in order to minimize the makespan of the application.
It focuses on scheduling during the “steady-state” phase [8], which lasts from
the time instant when each worker has received a first chunk up to the instant
when the master gets the final data item to be processed. From this time instant,
begins the “clean-up” phase. The problem of scheduling the remaining load is
suitable for DLT, as now the total workload is known: namely the amount of
data still present in the master input buffer. So, according to the optimality
principle, we can try and minimize the makespan by synchronizing the termi-
nation of the computation of all the workers. This, being possible only if the
master does not overload any worker too much during the “steady-state” phase,
which would cause a discrepancy too large for late workers to catch up during
the “clean-up” phase, thus preventing a synchronous termination of all workers.
This is precisely the aim of the OLMR method.

This paper is organized as follows. Section 2 presents related work. Section
3 gives an overview of the OLMR method. Section 4 successively details the
new framework for the scheduling algorithm and studies the conditions for the
method to succeed. Section 5 concludes the paper and outlines future work.

2 Related Work

The divisible load model (DLT [1, 2, 3, 4]) has been largely studied; it is the first
model that enables optimality proofs for scheduling methods in the context we
have chosen [1, 3, 9, 10]. This model is well suited to the problem of scheduling
the “clean-up” phase. On the contrary, it is not suited to scheduling the “steady-
state” phase, as the total workload is not known during this phase.

Several multi-round methods have been proposed in the literature [11, 12, 13].
On the one hand the iterated distributions of multi-round methods have the ad-
vantage (when using a one-port model without contention) of making the nodes
active earlier, and on the other hand they have the drawback of increasing the time
wasted by latencies (due to affine cost). Several strategies for distributing the load

Dynamically Scheduling Divisible Load for Grid Computing 765

to slaves have already been studied. First of all, some strategies fix the number
of rounds arbitrarily (multi-installment methods [11]). They are well suited to a
model with linear costs for homogeneous platforms. For heterogeneous platforms,
other strategies have been proposed, which are able to take account of the affin-
ity of costs when determining the load of the nodes for each round. For instance,
the workload which is delivered at each round by the UMR method [12] follows a
geometric progression whose common ratio is adjusted so that all the nodes work
for the same duration in each round and so that computation overlaps communica-
tion exactly. It is proved [12] that this method minimizes the total execution time;
provided that we know how to select the best set of nodes to be used. The PMR
method [13] introduces periodicity for the rounds (without imposing any particu-
lar value for the period) and requires that all nodes work during the whole period
and that computation overlaps communication exactly. It is proved [13] that this
method maximizes the amount of load processed by time unit.

Unfortunately none of these methods can be used when the total workload is
not known a priori or if the execution parameters vary in time. On the contrary,
the On-Line method presented by Drozdowski in [14] can deal with this situa-
tion. It proceeds incrementally and adjusts the size of the chunk to be sent to a
worker for each new round in order to try and maintain a constant duration for
the different rounds; so doing, it avoids contention at the master and limits dis-
crepancy between workers. But this method has the drawback that computation
never overlaps communication in any worker node, as the emission of the chunk
of the next round is at best triggered by the return of the result of the previous
one, with no possible anticipation.

The OLMR method presented in [7] improves on Drozdowski’s On-Line met-
hod it is based on by avoiding idle time of the computing resources. [7] compares
both methods in a static context. Under appropriate hypotheses, which are met
when execution parameters are stable (cf Lemma 6.1 in [14]), rounds are asymp-
totically periodic (as for the PMR method). Be additionnal hypotheses satisfied,
the OLMR method definitely minimizes the makespan.

3 Overview of the OLMR Method

When the total load is important compared to the available bandwidth between
master and workers, the workload should be delivered in multiple rounds [11,
12, 13]; and this is what OLMR does. It proceeds incrementally, computing the
size αi,j of the chunk to be sent to a worker Ni for each new round j, in order
to try and maintain a constant duration τ for the different rounds.

OLMR determines αi,j so as to make the distribution asymptotically periodic
with period τ , an arbitrarily fixed value, for all the workers. For worker Ni, let
σi,j−1 be the elapsed time between the begining of the emission of the chunk of its
(j − 1)th round and the end of the reception of the result corresponding to this
chunk. OLMR determines the value of αi,j as Drozdowski’s method does, i.e.

αi,j = αi,j−1 · τ

σi,j−1
. (1)

766 S.-S. Boutammine, D. Millot, and C. Parrot

That is it allocates comparatively bigger (resp. smaller) chunks to workers with
higher (resp. lower) performance. Hence, this method can take the heterogeneous
nature of computing and communication resources into account, without explicit
knowledge of execution parameters.

[14] shows that, in a static context, with affine cost models for communication,
the way αi,j is computed using equation (1) ensures the convergence of σi,j to
τ when j increases indefinitely. Being an estimation of the asymptotic period
used for task distribution, τ is also an upper-bound on the discrepancy between
workers. Being able to control this bound makes it possible to minimize the
makespan during the “clean-up” phase.

The following notations are used throughout the rest of the paper:

– N number of workers,
– γi start-up time for a computation by worker Ni,
– wi,j computation cost for a chunk of size 1 of the jth round by worker Ni,
– βi (resp. β′

i) start-up time for a communication from the master to Ni (resp.
from Ni to the master),

– ci,j (resp.c′i,j) transfer cost for a data (resp. result) chunk of size 1 of the jth

round from the master to worker Ni (resp. from Ni to the master).

As suggested in section 1, the values of the execution parameters of any worker
Ni — here wi,j , ci,j and c′i,j — depend on the round.

Chunks contain only data to be processed. For a chunk of size α, we denote
α′ (α) the size of the corresponding result, where function α′ () is supposed to
be increasing.

We assume that costs are roundwise affine in the size of chunks. Hence, for a
chunk of strictly positive size α (i.e. α ∈ IR+∗) of the jth round, we define the
cost of:

• sending the chunk to worker Ni α · ci,j + βi,

• processing the chunk on worker Ni α · wi,j + γi,

• receiving the corresponding result from worker Ni α′ (α) · c′i,j + β′
i.

We indicated in section 1 that the processing cost for a chunk should dominate
its communication costs. We choose to formulate this assumption as:

∀α ∈ IR+∗,

α · min
j∈IN∗ wi,j + γi ≥

(
α · max

j∈IN∗ ci,j + βi

)
+

(
α′ (α) · max

j∈IN∗ c′i,j + β′
i

)
(2)

for i = 1, N.

Equation (2) ensures that sending chunks of any size α to a worker Ni and
receiving the corresponding results of size α′ (α) costs less than processing these
chunks.

For each round j, OLMR divides the chunk sent to Ni into two subchunks "I"
and "II" of respective sizes αi,j and αi,j−αi,j . Dividing the chunks in two parts

Dynamically Scheduling Divisible Load for Grid Computing 767

Fig. 1. Overlapping between communication and computation with OLMR

Δ

Fig. 2. Example of intra-round starvation with OLMR

is enough in order to avoid idle time of the computing resources; as can be seen
in Fig.1, the division allows the computation to overlap the communications.
In order to compute αi,j , we use a value of σi,j−1 derived from the measure-
ment of the elapsed time (including both communications and computation) for
subchunk I of the previous round: σi,j−1. We will show that, thanks to this
anticipation in the computation of αi,j , we can avoid the inter-round starvation.

Unfortunately, while attempting to deal with inter-round starvations , there
is a risk of creating intra-round starvation between subchunks I and II (see the
idle period Δ on Fig.2). We explain below how to prevent both risks.

As we assume that (2) holds, intra-round starvation can be avoided if αi,j is
large enough for the processing of subchunk I to overlap the sending of subchunk
II of size αi,j − αi,j . Thus, there is no intra-round starvation if and only if

αi,j ≥ αi,j · ci,j + βi − γi

wi,j + ci,j
. (3)

Inter-round starvation between the jth and (j + 1)th rounds of Ni could occur
if, for round j, subchunk I happens to be too large compared to subchunk II
(see Fig.3).

Let νi,j be some real number dominating αi,j and αi,j+1:

νi,j ≥ max (αi,j , αi,j+1) . (4)

There is no inter-round starvation between the jth and (j + 1)th rounds of Ni if

αi,j · wi,j + α′ (αi,j) · c′i,j ≤ αi,j · wi,j − νi,j · ci,j+1 + γi − (β′
i + βi) . (5)

If
(
wi,j · Id + c′i,j · α′) has an inverse function, then (5) can be rewritten

αi,j ≤
(
wi,j · Id + c′i,j · α′)−1

(αi,j · wi,j − νi,j · ci,j+1 + γi − (β′
i + βi)) .

768 S.-S. Boutammine, D. Millot, and C. Parrot

Δ

Fig. 3. Example of inter-round starvation with OLMR

This inequality shows the need for an upper bound over the value of αi,j in order
to avoid inter-round starvation.

If we can choose αi,j satisfying inequations (3) and (5), then we avoid idle
periods of Ni. Fig.4 gives the OLMR scheduling algorithm.

while (the last data item has not been acquired) do
if (Reception from Ni of the result of subchunk I of its (j − 1)th round) then

• Get σi,j−1, ωi,j−1, c′
i,j−1 (and γi for the first result from Ni)

• Compute σi,j−1 . (cf. (6))
• Compute αi,j . (cf. (1))
• Compute αi,j . (cf. (8))
• Send a subchunk of size αi,j to Ni as subchunk I of its jth round
• Send a subchunk of size (αi,j − αi,j) to Ni as subchunk II of its jth round

end if
end while

Fig. 4. OLMR scheduler

Thanks to equation (1), the OLMR scheduler computes αi,j . Finally, nothing
remains but to determine αi,j and σi,j−1.

4 A Closer View of the Method

In order to determine the size of the chunk to be sent for the next round without
waiting for the result of the currently processed chunk, it suffices to replace the
measured value σi,j−1 in expression (1) by some computed value derived from
σi,j−1. But we only know the values of the execution parameters for the data
whose result have been received by the master. [7] shows that the value of σi,j−1
can be fixed as:

σi,j−1 = σi,j−1 + (αi,j−1 − αi,j−1)wi,j−1 + (αi,j−1 − 2 · αi,j−1) c′i,j−1 + γi. (6)

In this paper, we do not reconsider this result, but we improve the choice of the
value of αi,j .

The following theorem proposes a way to set the value of αi,j so that con-
straints (3) and (5) are both satisfied.

Dynamically Scheduling Divisible Load for Grid Computing 769

Theorem 1. Given αi,j , if γi, wi,j , ci,j, βi, c′i,j and β′
i satisfy (2) and

(αi,j − νij) · wi,j + γi ≥ νij · ci,j + βi (7)

for i=1,N.
Then, taking

αi,j = αi,j − νi,j , (8)

where νij satisfies (4), the workers will compute without any idle period during
the steady-state phase.

Proof. Thanks to (7), we have

(αi,j − νi,j) · (wi,j + ci,j) ≥ αij · cij + βi − γi

αi,j − νi,j ≥ αij · cij + βi − γi

wi,j + ci,j
.

Then using definition (8) of αi,j , we have

αi,j ≥ αi,j · ci,j + βi − γi

wi,j + ci,j
.

So constraint (3) is satisfied.
By definition (8), we have

νi,j · wi,j = (αi,j − αi,j) · wi,j .

By hypothesis (2), the last inequality can be rewritten as:

(νi,j · ci,j+1 + βi) +
(
α′ (νi,j) · c′i,j + β′

i

)− γi ≤ (αi,j − αi,j) · wi,j ,

αi,j · wi,j + α′ (νi,j) · c′i,j ≤ αi,j · wi,j − νi,j · ci,j+1 + γi − (β′
i + βi) .

As α′ () is increasing and νij satisfies (4), we have

αi,j · wi,j + α′ (αi,j) · c′i,j ≤ αi,j · wi,j − νi,j · ci,j+1 + γi − (β′
i + βi) .

That is, inequality (5) is satisfied.

Although different, hypotheses (2) and (7) both make the assumption that
processing should dominate communications. We can show that if

αij ≥ 2 · νij , (9)

then hypothesis (7) of Theorem 1 is satisfied; provided inequality (2) be satisfied.
In order to fix the value of αi,j according to constraint (5), we need a value for

νi,j . We can use statistical characteristics of the random variable αi which has the
value αik for the kth round of Ni. Let’s limit ourselves to order 1 and 2 moments
of the probability distribution of αi, respectively its mean m

k=j−j0,j−1
(αi,k) and

770 S.-S. Boutammine, D. Millot, and C. Parrot

standard deviation σ
k=j−j0 ,j−1

(αi,k) over its values for rounds j − j0, j − j0 +

1, j − j0 + 2, . . . , j − 1; for some j0.
We can choose

νi,j = m
k=j−j0,j−1

(αi,k) + λi · σ
k=j−j0,j−1

(αi,k) ∀j ∈ IN∗. (10)

As the amount of data processed during the steady-state phase is finite, there
necessarily exists a real number λi such that inequation (4) is true (for each Ni).

Proposition 1. Let us consider hypotheses of Theorem 1 are satisfied. If we
choose αi,j and νij according to (8) and (10) respectively, then the probability
that the workers will compute without any idle period during the steady-state
phase is greater than

1− 1
λi

2 .

The proof of this result is a direct consequence of the Bienaymé-Chebyshev’s
inequality.

When the values of the order 1 and 2 moments of the random variable αi are
fixed, the sufficient condition (9) can be verified provided sufficiently small values
of λi are used; precisely those that increase the probability to avoid inter-round
starvation.

Proposition 1 requires the knowledge of (λi)i=1,N . Even an heuristic estimate of
a convenient value of λi allows the use of this theorem. Nevertheless, OLMR may
still be used when these values (which characterize the dynamicity of execution pa-
rameters) are not known. Starting with arbitrary values (e.g. λi = 0 corresponding
to a stability assumption), the scheduler could, if necessary, adjust λi values at any
round according to information provided by the workers. Actually an inappropri-
ate value of λi used for some round will lead to an intra- or inter-round starvation
observableby the correspondingworker.The scheduler could then adjust this value
for the next round, according to the type of starvation observed by the worker.

Parameters τ and λi are characteristic of the evolution of the execution param-
eters. On the one hand, τ characterizes their speed of evolution. Practically, it is
the period that should be used for reconsidering their value. Parameter τ can be
adjusted according to the finest time scale characterizing the evolution of the ex-
ecution parameters. So doing, this evolution is taken account of (in average) over
the duration of a round. On the other hand, λi measures the amplitude of their
variations on such a period. The obvious dependence between τ and λi can take on
the most varied forms. For instance, we can have rapid variations (small τ) with
little consequence on the scheduling of the application (λi close to 0), or on the con-
trary slow variations (large τ) with important consequences on the scheduling (λi

far from 0).

5 Conclusion

This paper reminds of the principle of the OLMR method presented in [7] and
proposes an improved framework which delimits the application field of the

Dynamically Scheduling Divisible Load for Grid Computing 771

method in a new way. OLMR method optimizes the workload distribution in
order to minimize the makespan when executing parallel applications on shared
resources such as those of a grid. It can be used when the information that
scheduling algorithms traditionally need is lacking; so it can deal with the het-
erogeneity and dynamicity of the grid. Sufficient conditions have been stated for
full usage of the computing resources by means of avoiding idle time. In order
to design the OLMR method, we had to consider the characterization of the
dynamicity of the execution conditions. This led us to define N + 1 parameters:
τ and (λi)i=1,N .

As for PMR method [13], the use of the OLMR method must be coupled
with some mechanism able to optimally select the resources to be used. Such
resource selection can rely on heuristics, e.g. a greedy algorithm over the set
of nodes ordered according to decreasing bandwidth (bandwidth-centric alloca-
tion [15]). It can be done at each round or according to the dynamicity of the
execution parameters. OLMR method is susceptible to numerous developments,
either tending to confirm the results of this paper or aiming at enlarging its
potentialities. First of all, it is useful to check experimentally that, under the
hypotheses of our model, the method gives the expected results. For that, we
are currently developping simulation programs, using the SimGrid toolkit [16]
in order to study OLMR behavior in various conditions and make comparisons
with other methods. Furthermore, OLMR could be adapted in different ways:
in this paper, τ and λi have implicitly been considered as constant throughout
all the rounds, but this hypothesis restricts the degree of approximation (order
one) of the dynamicity that the scheduler takes into account. From one round
to the next, the value of τ could be adapted in order to take further account of
the evolution of heterogeneity and dynamicity that would be noticed.

References
[1] V. Bharadwaj, D. Ghose, V. Mani, and T.G Robertazzi. Scheduling divisible loads

in parallel and distributed systems. IEEE Computing Society Press, 1996.
[2] T.G. Robertazzi, J. Sohn, and S. Luryi. Load sharing controller for optimizing

monetary cost, March 30 1999. US patent # 5,889,989.
[3] T.G. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer,

36(5)(63-68), 2003.
[4] K. van der Raadt and H. Casanova Y. Yang. Practical divisible load scheduling

on grid platforms with apst-dv. In Proceeding of the 19th International Parallel
and Distributed Processing Symposium (IPDPS’05), volume 1, page 29b, IEEE
Computing Society Press, April 2005.

[5] O. Beaumont. Nouvelles méthodes pour l’ordonnancement sur plates-formes
hétérogènes. Habilitation à diriger des recherches, Université de Bordeaux 1
(France), December 2004.

[6] A. Legrand, Y. Yang, and H. Casanova. Np-completeness of the divisible load
scheduling problem on heterogeneous star platforms with affine costs. Technical
Report CS2005-0818, UCSD/CSE, March 2005.

[7] S. Boutammine, D. Millot, and C. Parrot. An adaptative scheduling method for
grid computing. In Proceedings of the 11th international Euro-Par Conference
(Euro-Par 2006), Springer-Verlag, 2006.

772 S.-S. Boutammine, D. Millot, and C. Parrot

[8] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. Steady-state scheduling of
multiple divisible load applications on wide-area distributed computing platforms.
Int. Journal of High Performance Computing Applications, 2006, to appear.

[9] J. Sohn, T.G. Robertazzi, and S. Luryi. Optimizing computing costs using divis-
ible load analysis. IEEE Transactions on Parallel and Distributed Systems, 9(3),
March 1998.

[10] T.G. Robertazzi. Divisible load scheduling. http://www.ece.sunysb.edu/˜tom/
dlt.html.

[11] V. Bharadwaj, D. Ghose, and V. Mani. Multi-installment load distribution in tree
networks with delays. IEEE Transactions on Aerospace and Electronic Systems,
31(2):555–567, 1995.

[12] Y. Yang and H. Casanova. UMR: A Multi-Round Algorithm for Scheduling Di-
visible Workloads. IEEE Computing Society Press, April 2003.

[13] O. Beaumont, A. Legrand, and Y. Robert. Optimal algorithms for scheduling
divisible workloads on heterogeneous systems. Technical Report 4595, INRIA, Le
Chesnay(France), October 2002.

[14] M. Drozdowski. Selected problems of scheduling tasks in multiprocessor computing
systems. PhD thesis, Instytut Informatyki Politechnika Poznanska, Poznan, 1997.

[15] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-
centric allocation of independent task on heterogeneous platform. Technical Re-
port 4210, INRIA, Rhône-Alpes, Grenoble(France), June 2001.

[16] H. Casanova, A. Legrand, and L. Marchal. Scheduling distributed applications: the
simgrid simulation framework. In Proceedings of the 3th International Symposium
on Cluster Computing and the Grid (CCGrid03), IEEE Computing Society Press,
2003.

Computational Efficiency and Practical
Implications for a Client Grid

Nianjun Zhou and Richard Alimi

IBM
150 Kettletown Road, Southbury, Connecticut 06488–2685, USA

{jzhou, ralimi}@us.ibm.com

Abstract. Client grid computing models based on participation of non-
dedicated clients have been popular for computationally intensive tasks.
Two fundamental requirements of these models are efficiency and ac-
curacy. Common implementations use 1) checkpointing mechanisms for
higher efficiency and 2) redundancy to achieve accurate results. In this
paper, we formulate client grid computation using stochastic models and
analyze the effects of checkpointing and redundancy in relation to per-
formance. We first quantify the computation times required for a task
with and without checkpointing, then the relationship between result
accuracy and redundancy. Finally, we give a sensitivity analysis for pa-
rameters relating to client availability, checkpointing, and redundancy to
provide guidelines on design and implementation of client grid systems.

1 Introduction

Grid computing is a well-developed computational model used for resource-
intensive or distributed computations. One such model, termed Public-Resource
Computing [1], uses commonly available machines as part of a grid for research-
oriented projects. People can “donate” the spare resources on their personal
computers. Notable implementations include BOINC [2], which runs projects
including SETI@home [3], and World Community Grid [4]. United Devices [5]
markets Grid MP which provides a similar grid platform and is also employed
by World Community Grid. We term these computational models client grids
to differentiate them from models composed of dedicated machines. The client
grid uses a single management center, and many clients which perform work on
behalf of the grid, but are not dedicated to it. There are computational jobs
that must be completed, each having its own priority. Each job is divided into
a set of tasks which are executed by clients. Tasks running on clients typically
run at low priority so they will not interfere with the client’s normal work.
Since clients are not dedicated and their reliability and characteristics are gen-
erally unknown few performance and accuracy guarantees can be made by the
grid. The management center must also be cautious of the results collected from
clients.

This computational model’s performance has not, to the authors’ knowledge,
been explored analytically. Designers and administrators would benefit from

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 773–782, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

774 N. Zhou and R. Alimi

modelling performance based on configuration parameters and client availabil-
ity and reliability. Understanding these parameters and the factors that dictate
performance are important to an efficient client grid solution.

Resource allocation and incentives in grid environments have been extensively
studied. Many schemes and implementations for resource allocation [6, 7, 8] as
well as studies concerning economics and incentives [9, 10, 11, 12] are available.
Our model does not yet account for these issues since it is well known from
existing client grid implementations [2, 4] that people do contribute spare re-
sources. In the future, however, our model could be extended to include these
considerations and analyze the degree to which people donate resources.

Checkpointing, an implementation of distributed snapshots [13], is important
to many grid environments. It has been widely implemented and deployed [5, 4,
2,3,6]. Performance of individual checkpointing mechanisms has been evaluated
[14], but their benefit in the context of general client grid computation has not
been analyzed.

Result verification is one aspect that has been explored. Because clients can-
not be trusted, the management center must verify results returned to it. Some
projects deployed on BOINC use a technique called homogeneous redundancy
[15]. This method distributes redundant copies of a task to “numerically equiv-
alent” clients, thus giving a higher probability that results for divergent compu-
tations will match. Other methods [16] apply to fault-tolerant computations in
which results for a set of tasks are combined to produce a single result within
a certain accuracy. Our paper assumes the strict case which requires a certain
number of results for a single task to match exactly.

This paper contributes the first attempt known by the authors to analyze
client grid performance as a function of task characteristics and both availability
and reliability of clients. Although the work itself is theoretical, it is grounded
in the authors’ experiences in client grid design, implementation, and knowledge
of the World Community Grid project. The results can provide guidelines for
application designers to effectively port applications to the grid.

We begin with an explanation of the problem and assumptions in Sects. 2 and
3. Important characteristics of the grid architecture are captured, with some
simplifying assumptions. Our analysis is presented in Sects. 4 and 5. Sect. 4
is devoted to analyzing client task processing, while Sect. 5 considers task re-
dundancy at the management center. Sect. 6 provides a practical analysis of
adjustable or observable parameters and how they relate to performance and
accuracy. Finally, Sect. 7 summarizes our contributions and gives directions for
future analysis in client grid computing.

2 Problem Formulation

When a client is available to do work, it queries the management center. The
management center assigns a task to the client which executes it. Upon com-
pleting the task, the client returns the result to the management center. There
are factors which make implementation and analysis challenging. First, clients
are not dependable since they can be powered off, busy with other work, or

Computational Efficiency and Practical Implications for a Client Grid 775

disconnected from the network. Tasks can save state periodically by a mecha-
nism known as checkpointing. Second, results returned from clients may not be
blindly trusted for reasons such as network transmission errors, faulty or over-
clocked hardware, or even manual tampering [15]. They are verified by redundant
execution.

We begin by analyzing the time required by a client to complete a single task.
We then determine the total computational time required for a task as it relates
to task redundancy.

3 Stochastic Models

3.1 Client Availability

Each client has an up state in which it is available, and down state in which it
is idle. We assume that upon entering the up state, the time before the client
returns to the down state is distributed according to an exponential distribution,

p(t) =
1

Tup
e
− t

Tup for t ∈ [0,∞) .

We denote the average time the client spends in the up state as Tup and the
average time spent in the down state as Tdown. The exponential distribution is
used here because it is both commonly used and simple. We assume i.i.d distri-
butions for client availabilities, and that all clients have the same computational
power.

Clients execute tasks in the up state. When the client enters the down state,
it immediately stops executing its current task and does nothing until it enters
the up state again. Each client can only store a single task at a time. That is, the
client must request a task, execute it, then return the result before requesting
another task. For this reason, we assume that a client is always connected to
the network in the up state. Allowing a client to queue tasks then provides no
advantage. Actual implementations will benefit by allowing the client to queue
downloaded tasks, but analysis of this capability is left as future work.

A task requires a fixed amount of computation time. A checkpointing mech-
anism can also be implemented where the state of the computation of the task
is saved at fixed intervals and the execution of the task can resume from the
last saved state when the client re-enters the up state. Without a checkpointing
mechanism, the task must be restarted from scratch.

4 Grid Client Analysis

4.1 Accountable Time for a Single Task

The term accountable time denotes the computational time that the client actu-
ally spends on this task while in the up state. Note that this is not equivalent to
computational time required to complete the task. The client may have had to

776 N. Zhou and R. Alimi

restart the task from scratch because it did not complete successfully the previ-
ous time. If the task supports checkpointing, then the task will be restarted from
the last saved state. We begin by analyzing the case where the task does not
implement checkpointing, then extend the results to handle the latter situation.

Without Checkpointing. Without a checkpointing mechanism, the client
must be in the up state long enough to complete the entire task. The task
takes td computational time to complete. We also define the ratio α = td

Tup
. The

probability that a single execution of the task fails is then

pfail =

td∫
0

1
Tup

e
− t

Tup dt = 1− e−α . (1)

We now determine the expected accountable time spent during a failed ex-
ecution. The probability of entering the down state at time τ given that the
execution of the task fails is a conditional probability distribution pdown(τ) =

e
− τ

Tup

Tup(1−e−α) for τ ∈ [0, td) (Considering that the probability of being in the up
state for duration shorter than td is 1 − e−α). The expected accountable time
used for the failed execution is then

tfail =

td∫
0

τpdown(τ) dτ = Tup

(
1− e−α − αe−α

1− e−α

)
. (2)

Theorem 1. The average accountable time required to complete a single task
without checkpointing is

tacct = td

(
eα − 1

α

)
. (3)

Proof. Let i be the value of a random variable I denoting the first successful ex-
ecution after i − 1 failures. I is then distributed geometrically with probabilities
psucc(i) = pi−1

fail (1− pfail) for i ∈ [1,∞). The accountable time is given by the func-
tion td+(i− 1) tfail. We take the expected value, then substitute in (1) and (2). ��

With Checkpointing. With a checkpointing mechanism, the task can be
restarted from the last saved state rather than from scratch. The time interval
between checkpoints is denoted as tc and we require
 td

tc
� successful executions.

We define γ to be the checkpoint frequency, γ = tc
td

.

Theorem 2. The average accountable time required to complete a single task
with checkpointing is

tacct ≈ td

(
eγα − 1

γα

)
. (4)

Proof. Because the exponential distribution is memoryless, we can replace td in
(3) with tc to get the accountable time required for each chunk. Multiplying by

 td

tc
� gives tc

(
eγα−1

γα

)

 td

tc
� as the total accountable time. Approximating td

tc
≈

 td
tc
� if td >> tc, then produces the desired result. ��

Computational Efficiency and Practical Implications for a Client Grid 777

4.2 Average Client Time for a Single Task

We have calculated the time spent on the task while the client is in the up state,
but ignored the down state. If we denote the percentage of time the client spends
in the down state by s (thus, s = Tdown

Tdown+Tup
) then the expected time required to

complete a task after being assigned to a client becomes tclient = tacct
1−s . Without

checkpointing, this expression is

tclient =
td

1− s

(
eα − 1

α

)

and with checkpointing it becomes

tclient =
td

1− s

(
eγα − 1

γα

)
.

5 Management Center Analysis

5.1 Task Redundancy and Computational Time

We begin by analyzing the redundancy required for an individual task. The
target is a relationship between task result quality and completion time. Though
there are many types of corruption that can occur, we only concentrate on two.
The first type is corruption caused by hardware or network transmission errors,
and the second is sabotage or some other correlated corruption. In either case,
the management center will accept client results for a task until q of them match,
at which point it will decide on a final result for the task. We seek a value for
the task redundancy q such that the probability the task result is correct is
sufficiently high. We assume a task is not assigned to the same client multiple
times.

Random Corruption. The first type of corruption, hardware and network
transmission errors, is simple to analyze. The number of possible errors is vir-
tually infinite, and we assume the probability of each occurring is equally likely.
The probability that two individual client results actually match is then es-
sentially zero. Formally, there is a single correct result R and a set of corrupt
results {R′

1, R
′
2, . . . , R

′
N} where N is virtually infinite. We assert that under

the assumption that only random hardware and transmission errors occur, the
required redundancy for a single task is q = 2 and the probability that the se-
lected task result is corrupt is pcorrupt = 0. The expected number of redundant
copies sent out is then c = 2

1−ε where ε represents the proportion of corrupt
results to correct results.

Correlated Corruption. We now consider the second type of corruption. We
assume that only two distinct results R and R′ are returned for a single task.
Such instances have been attributed [16] to people attempting to improve their

778 N. Zhou and R. Alimi

“score” by modifying their clients to process tasks faster. A certain percent-
age δ ∈ [0, 1) of the clients return the corrupt result R′, while (1− δ) of the
clients return the correct result R. At the point when it decides on a final task
result, the management center will have received either q of result R or q of
result R′. It will select that result and the task will be marked complete. We
now relate the probability of choosing the corrupt result R′ to parameters δ
and q.

Theorem 3. Given task redundancy q, the probability that the management cen-
ter chooses a corrupt client result for a task is

pcorrupt(q) = δq

q−1∑
i=0

(
i + q − 1

i

)
(1− δ)i

. (5)

Proof. The probability of completing the task after receiving (i + q) client results
is (

i + q − 1
i

){
δi(1− δ)q + δq(1− δ)i

}
for i ∈ [0, q − 1] . (6)

We extract from this expression the probability that the result R′ is selected
after (i + q) are returned. Then, pcorrupt(q, i) = δq

(
i+q−1

i

)
(1− δ)i for i ∈ [0, q−1].

Summing this expression over i ∈ [0, q−1] gives the total probability the corrupt
result R′ is selected as the task result. ��

Eq. (5) provides a way to choose the task redundancy q such that pcorrupt(q)
is sufficiently low. We can now calculate the expected number of copies of the
task sent out using (6):

c(q) = q +
q−1∑
i=0

i

(
i + q − 1

i

){
δi(1− δ)q + δq(1− δ)i

}
. (7)

Computational Time. We can now quantify the total average client time
required to complete a single task

ttask = c(q) ∗ tclient . (8)

Note that this is the amount of client computational time, not the wall clock
time. This distinction is important since tasks are executed in parallel. From (7)
and (5), we can first relate a single task completion time with the redundancy
selected, and furthermore, relate to the accuracy required for the accepted result.
More discussion can be found discussion of Fig. 2 in Sect. 6.

6 Practical Implications

We now look at the main results and what they mean to client grid implementa-
tions. We begin by looking at the effects that checkpointing and client availability

Computational Efficiency and Practical Implications for a Client Grid 779

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 5 10 15 20 25 30

F
ac

to
r

γ

α=2.0
α=1.0
α=0.5

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

t a
cc

t /
 t d

α

γ=1.0
γ=0.5
γ=0.3
γ=0.1

(a) (b)

Fig. 1. (a) checkpoint improvement and (b) client availability

have on task completion time, then move to task redundancy. From our working
knowledge, existing client grid implementations typically do not select values
for checkpointing and redundancy parameters based on any formal arguments.
The following analyses are intended to help designers and administrators make
decisions in selecting parameters that give both performance and accuracy.

6.1 Checkpointing and Client Availability

Calculating the ratio of tacct with checkpointing to tacct without checkpointing
gives us the improvement factor eγα−1

γ(eα−1) shown in Fig. 1 (a). As task size td
grows larger in relation to the client’s average up-time Tup, it is increasingly more
beneficial to implement a checkpointing mechanism that checkpoints as often as
possible. One must ensure, however, that the checkpointing mechanism does not
require so much overhead that it becomes wasteful. Based on these results, one
can balance the improvement factor with the checkpointing frequency γ.

It is also useful to look at accountable time as a function of the client’s avail-
ability. From (4) we derive the ratio tacct

td
= eγα−1

γα shown in Fig. 1 (b). The effect
on accountable time is drastic in the case of no checkpointing (γ = 1), but drops
significantly as checkpointing increases. This ratio gives an idea for how fre-
quently one might want to checkpoint a task based on typical client availability
statistics.

6.2 Task Redundancy

Result integrity is typically of high importance, but it would be useful to obtain
high integrity without unnecessarily impacting performance. We consider here
the case of correlated corruption as discussed in Sect. 5.1.

In order to specify the task redundancy q, one must understand the probability
of corruption given candidate values for q. Eq. (5) is shown in Fig. 2 (a). One
extremely nice feature is that probability of corruption decreases extremely fast

780 N. Zhou and R. Alimi

 0

 0.05

 0.1

 0.15

 0.2

 2 4 6 8 10 12 14

p c
or

ru
pt

(q
)

q

δ=0.2
δ=0.1

δ=0.05
δ=0.025

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14

c(
q)

q

δ=0.2
δ=0.05

(a) (b)

Fig. 2. (a) task redundancy and (b) expected copies sent out

as redundancy increases. The plot indicates that q = 2 or q = 3 are ususally
sufficient as long as at least 9

10 (thus, δ ≤ 1
10) of the clients are trustworthy.

Looking at (7) shown in Fig. 2 (b), we also see that the expected number of
tasks actually sent out appears to scale linearly. Further, the number of extra
tasks sent out is not too much more than q, even with relatively large (for a
typical client grid environment) values of δ.

7 Summary and Future Work

We have established the basis for stochastically analyzing client grid efficiency
and given practical results that can be applied to actual implementations. Our
results quantify average computational time required by clients for individual
tasks in relation to client availability. We have also quantified the reliability that
can be expected from client grid computations under two types of corruption. As
stated, our work establishes a basis for analysis of client grid systems. However,
it can be extended to account for other common occurrences and trends.

An exponential distribution is used to model times between state changes in
the client. This may not, however, be the actual behavior. A more accurate prob-
ability distribution might be obtainable only from an existing implementation,
or an analysis could be done for arbitrary distributions.

Another extension is to allow heterogeneous clients each classified by power
and availability. This might be easily analyzed as a set of independent client
grids, each containing clients of similar classification.

If we allow for types of tasks other than computational tasks (for example,
network-intensive tasks), then it would also be useful to look at other types of
resources such as network bandwidth or storage.

Client task queuing features are becoming more popular in client grid imple-
mentations. This capability allows a client to download a set of tasks (up to
some threshold) when possible so the client is not necessarily starved for work

Computational Efficiency and Practical Implications for a Client Grid 781

if disconnected from the network for a long period of time. The up state is split
into two: up-connected and up-disconnected. An appropriate stochastic model
needs to be developed for switching between these three states and determining
times spent in each state.

Job completion times are extremely important for client grid environments.
Multiple jobs compete for grid resources, and it is useful to quantify their indi-
vidual completion times. We have preliminary results for job completion times
as a function of job parameters and client behavior, but would like to extend
them to determine feasibility and assignment of job parameters given completion
deadlines. These results will appear in a future publication.

The management center is responsible for storing task input files and client
result files until a final task result can be generated. With a large number of tasks,
the storage requirement can be quite large. If the management center were to use
a scheduling scheme that completed individual tasks sooner, task input files and
extraneous client result files could be purged sooner as well. It would therefore
be useful to quantify the disk usage for various scheduling schemes in relation
to client resource usage.

The authors are involved in development of a client grid infrastructure within
IBM, while other team members are actively involved in World Community
Grid [4]. With these unique perspectives and the considerations listed in this
section, we aim to improve our model and ensure the accuracy of our assumptions
in practical implementations.

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home:
An experiment in public-resource computing. Commun. ACM 45(11) (2002) 56–61

2. Berkeley Open Infrastructure for Network Computing (BOINC): (http://
boinc.ssl.berkeley.edu/)

3. SETI@home: (http://setiathome.ssl.berkeley.edu/)
4. World Community Grid: (http://www.worldcommunitygrid.org/)
5. United Devices: (http://www.ud.com/)
6. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idle workstations. In: Pro-

ceedings of the 8th International Conference of Distributed Computing Systems.
(1988)

7. Foster, I., Kesselman, C.: The globus toolkit. (1999) 259–278
8. Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A dis-

tributed resource management architecture that supports advance reservations and
co-allocation. In: Proceedings of the International Workshop on Quality of Service.
(1999)

9. Buyya, R.: Economic-based Distributed Resource Management and Scheduling for
Grid Computing. PhD thesis, Monash University, Melbourne, Australia (2002)

10. Clearwater, S.H., ed.: Market-based control: a paradigm for distributed resource
allocation. World Scientific Publishing Co., Inc., River Edge, NJ, USA (1996)

11. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource
allocation strategies for the computational grid. International Journal of High
Performance Computing Applications 15(3) (2001) 258–281

782 N. Zhou and R. Alimi

12. Wolski, R., Brevik, J., Plank, J.S., Bryan, T.: Grid resource allocation and control
using computational economies. In Berman, F., Fox, G., Hey, A., eds.: Grid Com-
puting: Making The Global Infrastructure a Reality. John Wiley & Sons (2003)

13. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1) (1985) 63–75

14. Pruyne, J., Livny, M.: Managing checkpoints for parallel programs. In: Work-
shop on Job Scheduling Strategies for Parallel Processing (IPPS ’96), Honolulu,
HI (1996)

15. Taufer, M., Anderson, D., Cicotti, P., III, C.L.B.: Homogeneous redundancy: a
technique to ensure integrity of molecular simulation results using public comput-
ing. In: IPDPS. (2005)

16. Germain-Renaud, C., Playez, N.: Result checking in global computing systems. In:
ICS ’03: Proceedings of the 17th Annual International Conference on Supercom-
puting, New York, NY, USA, ACM Press (2003) 226–233

Developing a Consistent Data Sharing Service
over Grid Computing Environments�

Chang Won Park1, Jaechun No2, and Sung Soon Park3

1 Intelligent IT System Research Center
Korea Electronics Technology Institute

Bundang-gu, Seongnam-si, Korea
2 Dept. of Computer Software

College of Electronics and Information Engineering
Sejong University, Seoul, Korea

3 Dept. of Computer Science & Engineering
College of Science and Engineering
Anyang University, Anyang, Korea

Abstract. Data replication is an important issue in computational grid
environments where many data-intensive scientific applications require
high-performance data accesses to remote storages. However, providing
the consistent data replication service for computational grid environ-
ments is not an easy task because it requires a sophisticated technique
to minimize I/O and communication latencies incurred during data copy
steps to the remote clients. We have developed a replication architec-
ture that is combined with data compression to reduce I/O and network
overheads, with the help of data base. In this paper we describe the
design and implementation of our replication architecture and present
performance results on Linux clusters.

1 Introduction

The consistent data replication mechanism is a critical issue in computational
grid environments where a large amount of data sets generated from large-
scale, data-intensive scientific experiments and simulations are frequently shared
among geographically distributed scientists [1,2,3]. In such an environment, the
data replication technique significantly affects performance by minimizing the
remote data access time. However, developing an efficient data replication tech-
nique is not an easy task because it may occur lots of I/O and network overheads
during data copy steps to the remote clients. Furthermore, most of data repli-
cation techniques do not provide the consistent data replication service.

The usual way of managing consistent data replicas between distributed sites
is to periodically update the remotely located data replicas, as implemented in
Globus toolkit [4,5]. This method is implemented under the assumption that
the data being replicated is read-only so that once it has been generated would
not it be modified in any grid site. This assumption is no longer true in such

� This work was supported in part by a Seoul R&BD program.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 783–792, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

784 C.W. Park, J. No, and S.S. Park

a case that a remote site may modify or update the data replicated to its local
storage. If another remote site tries to use the same data replicated on its storage
before the data is updated with the new one, then the data consistency between
distributed sites would fail and thus the scientist would get wrong results.

We have developed a replication architecture that enables the geographically
distributed scientists to safely share large-scale data sets. Using the metadata
stored in database, our architecture provides a high-level, easy to use API (Appli-
cation Programming Interface) for the data retrieval. Also, the metadata allows
to combine a high-performance parallel I/O, called MPI-IO [6], to data compres-
sion to minimize I/O and network overheads, while hiding the detailed structure
to users.

In order to support the consistent data replication service, our architecture sup-
ports two kinds of data replication methods, called owner-initiated data replica-
tion and client-initiated data replication. In the owner-initiated data replication,
the data owner who owns the application data sets starts the data replication to
share the data sets with remote clients. In the client-initiated data replication, the
client who needs the data sets starts the data replication by connecting the data
owner. Since, instead of being written to files, all the necessary data attributes and
compression-related metadata are stored in database, our data replication archi-
tecture can easily be ported to any grid computing environments.

The rest of this paper is organized as follows. In Section 2, we discuss an
overview of our software architecture. In Section 3, we present the design and
implementation of our compression and replication methods. Performance results
on the Linux cluster located at Sejong University are presented in Section 4.
We conclude in Section 5.

2 Software Architecture for Data Replication

We describe the design and implementation of our replication architecture. We
group the remote clients, according to the data sets to be shared, in order to
minimize the effort in integrating the data replicas spread over the remote clients.

2.1 Client Grouping

Figure 1 shows an overview of our replication architecture. Our replication ar-
chitecture supports the client grouping to eliminate unnecessary communication
overheads. By making client groups, our architecture can easily detect the other
clients who share the same data replicas and can let them take the new copy of
the modified data, without affecting other clients.

The client grouping is performed by using the metadata stored in data base
located at the data owner. The data base tables are organized to seven tables; ap-
plication registry table, run registry table, data registry table, file registry table,
process registry table, client registry table, and replication registry table.

When a client wants to receive the data replicas from the data owner at the
first time, he should register to the metadata database table by clicking on the
run registry table, data registry table, and file registry table to select the data

Developing a Consistent Data Sharing Service 785

Fig. 1. Client grouping

sets of interest. If there is a group who has already registered to share the same
data sets, the new client will then be a member of the existing group. Otherwise,
a new group where the new client belongs to is created by taking the new group
ID in the client registry table. Also, the replication registry table is appended
to reflect the new client registration.

Figure 1 shows two remote client groups created based on the data replicas.
Each client in a group is identified with groupID and clientID, such as (g0, c0)
for the first client and (g0, c1) for the second client in Group g0.

The communications for the metadata and real data are separately performed
through the different communication ports. I/O forwarder is responsible for the
real data communication and invokes the MPI-IO process to perform I/O. The
metadata requester is responsible for transferring the metadata accessed from
the metadata database table located at the data owner.

3 Data Compression and Replication

In order to achieve high-performance I/O and communication bandwidth, we
use MPI-IO and data compression. The consistency between the distributed
data replicas is achieved by applying either the client-initiated data replication
method, or the owner-initiated data replication method.

3.1 Data Compression

With the aim of reducing I/O and communication overheads, our replication ar-
chitecture combines MPI-IO with data compression using lzrw3 algorithm. After

786 C.W. Park, J. No, and S.S. Park

Fig. 2. Data replication combined with compression

merging the I/O data domain in MPI-IO, if the data compression is applied, the
compression library is then linked to the replication architecture. Otherwise, the
native file system I/O call is used. The compression-related metadata, such as the
compressed global size, number of processes involved in the compression, local
compressed file length, and starting file offset of each process, are stored in the
data registry table, file registry table, and process registry table, respectively.

Figure 2 describes the data compression steps taken in replicating the data
sets to the remote clients belonging to two groups, g0 and g1. After determining
the I/O domain of each process at step a, the data sets are compressed at step b.
Since the compressed file length of each process becomes unpredictable, it should
be propagated among the processes to calculate the starting local file offset. The
data attributes and compression-related metadata are stored into the metadata
database table at step c and the compressed real data are stored in the file at
step d.

Suppose that a remote client requests the data sets from the data owner at
time ti. If the data sets being requested have already been compressed, the data
sets are then retrieved from the file using the compression-related metadata
selected from the metadata data base table at steps e and f.

The compressed real data sets and the corresponding metadata are transferred
to the requesting client, by I/O forwarder and metadata requester, at steps g
through j. After receiving the compressed data sets, the I/O forwarder invokes
MPI-IO processes at step k, using the metadata received by the metadata re-
quester(step l), and the compressed data sets are stored in the local storage of
the requesting client at step m.

Developing a Consistent Data Sharing Service 787

Fig. 3. Owner-initiated replication

3.2 Owner-Initiated Data Replication

In the owner-initiated data replication, when user generates data sets at the data
owner, our architecture replicates them to the remote clients to share the data
sets with the data owner. Also, when a remote client changes the data replicas
stored in its local storage, it broadcasts the modifications to the members in the
same group and to the data owner for replica consistency. Figure 3 shows the
steps taken in the owner-initiated replication.

At time ti, since the client A and client B want to receive the same data sets, a
and b, from the data owner, they are grouped into the same client group. When
an application generates the data sets at time tj , a and b are replicated to the
client A and client B.

Suppose that the client A modifies the data replicas at time tk. The client
A requests for the IP address of other members in the same group, sends the
modified data sets to them, and waits for the acknowledgements.

When the data owner receives the modified data, it updates them to the local
storage and sets the status field of the replication registry table to ”holding” to
prevent another client from accessing the data sets while being updated. When
the data owner receives the notification signal from the client who initiated the
data modification, it sets the status field to ”done”, allowing another client to
use the data replica.

The owner-initiated data replication approach allows remote clients to share
the data replicas safely, provided that they find out the corresponding status
field is set to ”done”. Moreover, even though a remote client crashes, it doesn’t
affect the data consistency since as soon as the data replicas are modified the
change is immediately reflected to the data owner and to the other clients in

788 C.W. Park, J. No, and S.S. Park

Fig. 4. Client-initiated replication

the same group. However, if the data modification to the data replicas happens
frequently, the heavy communication bottleneck then incurs even if no one else
would use the data sets modified.

3.3 Client-Initiated Data Replication

Figure 4 shows the client-initiated data replication where only when the modified
data replicas are needed by users are those data replicas sent to the requesting
client and to the data owner. Unlike in the owner-initiated data replication,
there is no data communication when users on the data owner produce the
application data sets. If a client needs to access the remote data sets stored
in the data owner, he will then get the data replica while registering to our
architecture.

In Figure 4, after the application generates the data sets at time ti, the client
A and client B request for the data sets, a and b, to the data owner at time tj .
Because they want to receive the same data sets, they become members of the
same client group.

Suppose that client A modifies the data replica at time tk. He just sends a
signal to the data owner to update the corresponding status field of the data set
with the IP address of client A.

At time tm, suppose that the client B accesses the data replica stored in its
local storage but not having been updated by client A. In order to check the
replica consistency, client B first requests the status information of the data
replica from the data owner. The data owner finds out that the data set has
been modified by client A and requests the data from client A. Client A sends
the modified data to the data owner and to the client B, and then waits for the

Developing a Consistent Data Sharing Service 789

acknowledgements from both. After the data owner updates the modified data
set and sets the status field to ”done”, it sends back an acknowledgement to the
client A.

In the client-initiated data replication approach, the data replicas are sent to
the remote clients only when they actually need the data sets. Therefore, unlike
the owner-initiated data replication approach, the client-initiated data replica-
tion does not cause unnecessary data communication. However, if a client who
keeps the modification of the data replica crashes before the data modification
is updated to the data owner and to the other members of the same group, a
significant data loss will then happen.

4 Performance Evaluation

In order to measure the performance of replicating costs to remote clients, we
used two Linux clusters, located at Sejong university. Each cluster consists of
eight nodes having Pentium3 866MHz CPU, 256 MB of RAM, and 100Mbps
of Fast Ethernet each. The operating system installed on those machines was
RedHat 9.0 with Linux kernel 2.4.20-8.

The performance results were obtained using the template implemented based
on the three-dimensional astrophysics application, developed at the University
of Chicago. The total data size generated was about 520MB and among them,
400MB of data were generated for data analysis and for data restart, and then

Fig. 5. Execution time for replicating vi-
sualization data on the remote clients as a
function of time steps for accessing remote
data sets. Two client groups were created,
each consisting of two nodes.

Fig. 6. Execution time for replicating
compressed visualization data on the
remote clients as a function of time
steps for accessing remote data sets.
Two client groups were created, each
consisting of two nodes.

790 C.W. Park, J. No, and S.S. Park

Fig. 7. Execution time for replicating vi-
sualization data on the remote clients as a
function of time steps for accessing remote
data sets. Two client groups were created,
each consisting of eight nodes.

Fig. 8. Execution time for replicating
compressed visualization data on the
remote clients as a function of time
steps for accessing remote data sets.
Two client groups were created, each
consisting of eight nodes.

the remaining 120MB of data were generated for data visualization. The data
sets produced for data visualization are used by the remote clients, thus requiring
to perform data replications to minimize data access time.

In order to evaluate two replication approaches, a randomly chosen remote
client modified 30MB of replicas at time steps 5, 10, and 15, respectively,
and spread those replicas to the data owner and to the clients, according to
the owner-initiated data replication and to the client-initiated data replication.
At each time step, a maximum execution time measured among the remote
clients was selected as a performance result. This time includes the cost for
metadata accesses to the data owner, real data communication, and I/O
operations.

In Figure 5, we created two client groups, each consisting of two nodes. At each
time step, a client accesses either 30MB of replicas stored in the local storage,
or 30MB of remote data sets stored on the data owner in such a case that the
data sets required are not replicated to the local storage.

In the owner-initiated replication, as soon as an application produces data
sets at time step 0, all the remote clients receive the necessary visualization data
sets to replicate them to the local storage. These replicas are used until the
modification to the replicas happens at time steps 5, 10, and 15, respectively.

When the replicas stored in the local storage are used, the execution time for
accessing visualization data sets drops to almost 3 seconds needed for commu-
nicating the corresponding data properties, such as file name, data type, and
status information to check replica consistency, with the data owner.

Developing a Consistent Data Sharing Service 791

If the modification to the replicas happens at time steps 5, 10, and 15, the
modified replicas are then broadcast to the data owner and to the clients in the
sample group, thereby increasing the execution time for accessing remote data
sets.

In the client-initiated replication, since there is no replica stored in the client
side until time step 4, each remote client should communicate with the data
owner to receive the data sets needed. From time step 5, since each client can
use the data replicas stored in its local storage, the execution time for accessing
data sets dramatically drops to almost 3 seconds.

When the replicas are modified at time steps 5, 10, and 15, the client-initiated
approach just sends to the data owner the IP address of the client modifying
the replicas, and thus it takes no more than 3 seconds to access metadata.
However, in Figure 5 we can see that, at time steps 6, 12, and 14, another client
tries to access the modified replicas, thus incurring the data communication
and I/O costs to update the replicas to the requesting client and to the data
owner.

Without data replication, the data communication for accessing the remote
data sets is consistently carried out at the clients, affecting the performance.

In Figure 6, we replicated the compressed data sets on the two client groups,
each consisting of two nodes. The total data size being transferred was about
20MB, showing almost 30% of reduction in the data size. Due to the data com-
pression, the I/O times for retrieving the compressed data sets from the data
owner and for writing them to the remote clients are significantly reduced. We
asynchronously propagated the compressed file length between I/O processes to
calculate the starting file offset of the next process. We found out that it took
about 100msec, thus not significantly affecting the I/O time.

The communication time for transferring the compressed data sets to the
remote client is also decreased. However, because we use a single I/O forwarder
to merge the compressed data sets from multiple MPI-IO processes, the reduction
in the communication time is not as large as we expected. As a future work, we
plan to develop a striped communication in which multiple I/O forwarders can
connect the remote clients to transfer the evenly divided data sets.

In Figure 7, we increased the number of nodes in each group to eight. Using
the owner-initiated data replication, we can see that as the number of nodes
in each group increases the execution time for replicating remote data sets also
goes up due to the increment in the communication overhead to broadcast the
replicas to the data owner and to the other clients.

On the other hand, as can be shown in Figure 7, the client-initiated data repli-
cation shows not much difference in the execution time to receive the modified
data sets because less number of nodes than in the owner-initiated data repli-
cation is involved in the communication. In Figure 8, we performed the same
experiments as described in Figure 7, using the compressed data sets. As shown
in Figure 8, both replication methods clearly show the reduced execution time
with data compression.

792 C.W. Park, J. No, and S.S. Park

5 Conclusion

We have developed a data replication architecture to build a consistent data
sharing environment over the geographically distributed scientists. In order to
reduce the I/O and communication costs in replicating the data sets on the
remote clients, we used MPI-IO and data compression, and then they showed
the clear benefits in the execution time. Also, in order to maintain the consis-
tency in case of replica modifications or updates, we developed two kinds of
data replication methods. In the owner-initiated data replication, the replica-
tion occurs when applications generate the data sets in the data owner location.
In the client-initiated data replication, only when the data sets are needed by
a remote client are the necessary data sets replicated to the requesting client.
Due to the data broadcast, the owner-initiated data replication approach shows
the increased communication overhead when the number of nodes per group be-
comes large. On the other hand, the client-initiated data replication shows the
constant communication cost even with the increased number of nodes per client
group.

References

1. B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kesselman, J.
Leigh, A. Sim, A. Shoshani, B. Drach, and D. Williams. High-Performance Remote
Access to Climate Simulation Data: A Challenge Problem for Data Grid Technolo-
gies. SC2001, November 2001

2. R. Moore, A. Rajasekar. Data and Metadata Collections for Scientific Applications.
High Performance Computing and Networking (HPCN 2001), Amsterdam, NL, June
2001

3. A. Chervenak, E. Deelman, C. Kesselman, L. Pearlman, and G. Singh. A Metadata
Catalog Service for Data Intensive Applications. GriPhyN technical report, 2002

4. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke. The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets. Journal of Network and Computer Applications, 23:187-200,
2001

5. A.Chervenak, R. Schuler, C. Kesselman, S. Koranda, B. Moe. Wide Area Data
Replication for Scientific Collaborations. Proceedings of 6th IEEE/ACM Interna-
tional Workshop on Grid Computing (Grid2005), November 2005.

6. R. Thakur and W. Gropp. Improving the Performance of Collective Operations in
MPICH. In Proceedings of the 10th European PVM/MPI Users’ Group Conference
(Euro PVM/MPI 2003), September 2003

Analysis of Interoperability Issues Between
EGEE and VEGA Grid Infrastructures

Bartosz Kryza1, �Lukasz Skita�l1, Jacek Kitowski1,2, Maozhen Li3,
and Takebumi Itagaki3

1 Academic Computer Center CYFRONET-AGH, Nawojki 11, Cracow, Poland
{bkryza, lskital, kito}@agh.edu.pl

2 Institute of Computer Science, AGH University of Science and Technology,
Mickiewicza 30, Cracow, Poland

3 School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH, UK
{Maozhen.Li, T.Itagaki}@brunel.ac.uk

Abstract. Recent Grid initiatives brought a few large Grid infrastruc-
tures deployed over the world. However most of themare not easily interop-
erable and creation of Virtual Organizations that could include resources
from a couple of different Grid systems is practically impossible.

In this paper, we present an analysis of issues that need to be re-
solved when providing interoperability between heterogenous Grid envi-
ronments. The analysis is based on the example of EGEE and VEGA
Grid systems middleware integration. A universal interoperability layer
is proposed – called Grid Abstraction Layer – that will enable integration
of these two Grid systems as well as other Grid environments and allow
for creation of multi-Grid Virtual Organizations.

1 Introduction

Nowadays, Grid systems are being applied to a variety of domains of human life
from scientific computations, biology and medicine to business. As usually at
the beginning of new technology emergence the ongoing activities are diversified
into different directions, making adoption of Grid systems in real life applications
both fuzzy and difficult. The recent standardization efforts undertaken by Global
Grid Forum [1] are expected to make it more convenient and less detail driven.
Standards such as Open Grid Services Architecture (OGSA) and Web Services
Resource Framework (WSRF) have been proposed to facilitate various Grids
interoperable by employing service-oriented architectures.

One of the obstacles identified at present is the lack of unified way of referring
to resources, both those from the Grid and from the application domains, address-
ing problems of semantic interoperability. This issue is included into the research
area by several European projects related to Semantic Grid, like InteliGrid [2], On-
toGrid [3] and K-Wf Grid [4], among others. The main idea of these attempts is to
provide a Virtual Organization [5] with a formalism for describing the domain and
its relation with the Grid resources as well as a knowledge base that would man-
age these descriptions. Often ontologies are proposed as a way of describing the
content of Virtual Organizations and use of knowledge bases that manage these

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 793–802, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

794 B. Kryza et al.

descriptions – thus reusing the results of Semantic Web [6] and tailoring them to
the peculiarities of grid environments. One of the good examples of using intelli-
gence techniques to capture and manage knowledge resources for next generation
Web and decision making in a cooperative framework is Knowledge Grid ([7,8,9]),
which incorporates grid computing ideas to offer intelligent services.

Another difficulty found by the users is variety of grid environments, that are
being developed rather independently. They can be treated as interfaces for the
users, like for example Globus [10,11] or Unicore [12,13], each of them offering
a kind of system interoperability. Their dissimilar foundations result in different
features and functional discrepancy, with important distinctions between subse-
quent versions. Nevertheless, the environments are starting to be widely used in
scientific and business projects built upon a selected grid environment, like LCG
[14], EGEE [15], TeraGrid [16], CoreGrid [17], BalticGrid [18], China National
Grid (CNGrid) [19], and many others. Despite of the standardization efforts,
a need for syntactic and structural interoperabilities between the existing grid
environments have been strongly required in order to benefit seamlessly from
distributed resources and services provided by the computing environments.

The purpose of the paper is to identify and discuss interoperability issues
arising while dealing with different grid technologies with focus on gLite for
EGEE and Vega Grid Operating System (GOS) for CNGrid. The organization
of the paper is as follows: first a short overview of the related work is given,
followed by gLite and CNGrid features description. Then a proposal of their
interoperability is introduced with several possible realizations defined. Finally
a summary and overview of the ongoing work is given.

2 Grid Interoperability Efforts

Interoperability between different Grid systems has been an issue for some time
now, mostly due to several large Grid infrastructures which were managed by
incompatible Grid middleware software. A notable attempt has been subject of
an EU-IST GRIP project [20], concerned with integration of two major Grid
middleware frameworks – Globus [11] and Unicore [13] . The proposed solution
included translation of job requests from UNICORE to Globus and mapping of
UNICORE user certificates to Globus proxy certificates [21]. The implemented
translation layer did not require any changes to the middleware components
themselves. The problem of assigning resources to particular requests (e.g. lim-
ited by a particular Virtual Organization) has been solved by wrapping a whole
Globus Virtual Organization concept into a UNICORE Usite concept. In Snelling
et al. [22] an interesting list of a minimal set of Grid services that is necessary
for interoperability namely: authentication services, job brokering and resource
discovery is presented. It omits from this set such issues as data management
and performance monitoring. In Stockinger et al. [23] a discussion of integra-
tion of data management systems between CrossGrid and DataGrid projects is
described. The work included integration of replica location services on both
global Grid and local storage levels as well as integration of data access cost
prediction at local storage systems. Malawski et al. [24] describes approaches to

Analysis of Interoperability Issues Between EGEE and VEGA 795

integrating CrossGrid middleware and applications based on Globus Toolkit 2.4
with the service oriented OGSA architecture. The similar approach, concerning
LCG 2.6 and Globus Toolkit 4 interoperability, is reported in [25], for potential
application for complex biomedical studies. Some existing approaches to grids
interoperability are limited to user level [26] in order to make selection of the
requested grid environment. The abstraction model for a grid execution frame-
work, published recently [27] is useful for both making the grids interoperable
at different level and practical interoperability implementations.

The ongoing EGEE project aims to provide the biggest Grid infrastructure
in Europe with production quality, spanning 39 countries with over 200 sites
including over 20,000 CPU and on average 10,000 concurrent jobs per day [28],
to a bunch of various scientific applications. The gLite grid middleware is being
developed by EGEE as a successor of the CERN’s LCG grid middleware [14].
LCG has proved its utility value in several European projects, like CrossGrid,
providing scientists with a production testbed [29] and European DataGrid [30].
Its follow up - EGEE2 - started on April 2006 will continue the effort on gLite
development and infrastructure evolution.

On the other hand, the ongoing CNGrid project, supported by the National
High-Tech R&D Program (the 863 program), aims to provide the biggest Grid
infrastructure in China. Up to now, there are totally nine high performance
computing centers having been built with a total computing capacity of 17
Tflops. These CNGrid nodes are interconnected by network backbones (CER-
NET, which is the China Education and Research Network, and CSTNet). Hosts
in these centers include Dawning 2000/3000, Galaxy 3, Sunway, Tsinghua Tong-
fang PC-Cluster, HKU Gideon 300 cluster, etc. [31]

The issue on the interoperation of EGEE and CNGrid has received some at-
tention from the Grid communities of the two sites. For example, the recently
funded EUChinaGrid project [32,33] is carrying out some work in this area.
However, the interoperability work to be fulfilled by EUChinaGrid will be lim-
ited due to the instrument nature of the project. Another, very recent, effort on
Grid interoperation was the establishment of Grid Interoperability Now (GIN)
including representatives from EGEE, PRAGMA and TeraGrid communities
[34]. GIN concentrates on preparing a show-case of interoperation between these
Grids by providing a testbed for evaluating the interoperability issues between
the mentioned Grids. This includes VO authorization and authentication, job
submission, data management and monitoring. In the context of Virtual Or-
ganizations the assumption for now is that all interoperating Grids must use
Virtual Organization Management Service (VOMS) [35].

3 Overview of EGEE and VEGA Grid Middleware
Platforms

The EGEE (Enabling Grid for E-Science in Europe) and VEGA (Versatile ser-
vices, Enabling intelligence, Global uniformity and Autonomous control) are by
far the biggest Grid infrastructures in Europe and China respectively.

796 B. Kryza et al.

The EGEE middleware, called gLite [36], is based on LCG-2 (Large Hadron
Collider Grid) suite developed at CERN. gLite is essentialy based on the pre-WS
Globus Toolkit 2.4. The architecture of gLite is divided into 6 classes of services
and components:

– Grid Access - including Command Line and Application Programming in-
terfaces,

– Job Management Services - which provide several services for job submission,
and accounting,

– Data Services - provide the users and application with data discovery and
transfer functionality,

– Security Services - which cover the functionality of authentication, autho-
rization and auditing,

– Information and Monitoring Services - includes monitoring of network, hard-
ware resources and job execution as well as service discovery,

– Helper Services - serves as a place for adding additional services like Network
Bandwidth Allocation service or Agreement Service.

On the other hand, the VEGA middleware [37], especially its core component
called Grid Operating System (GOS), has been implemented according to the
OGSA specification and using Globus Toolkit 3 as the basis of the system. It
emerged from the network of Dawning superservers deployed in the most impor-
tant Chinese supercomputing centers [38]. In VEGA, the architecture reflects
the OGSA three layers that is: Application Layer, Platform Layer and OGSI
Layer. The lowest, OGSI Layer is based on GT3 and Web Services. The top
OGSA layers contain such components as:

– User interface and programming tools - this includes GSML based portals
and Abacus programming language,

– Grid-level Task Management - is based on the concept of grip (GRId Pro-
cess), and provides framework for executing and scheduling of such jobs,

– Global Data Management - provides abstraction over GT3 data services
GASS and GridFTP,

– Address Space Management - provides mapping between abstract concepts
from VEGA GOS as grip or agora to physical grid resources,

– Agora Management - management of Virtual Organizations registered in the
Grid.

4 Interoperability Between EGEE and VEGA

The main motivation for providing the interoperability between VEGA and
EGEE is to enable creation of inter-Grid Virtual Organizations that would reuse
the vast computational and storage resources of the EGEE and VEGA Grid in-
frastructures.

The major requirement here, is to enable creation and support for basic Grid
use cases in a inter-Grid Virtual Organization. In gLite, the VOMS (Virtual

Analysis of Interoperability Issues Between EGEE and VEGA 797

Table 1. The equivalence of key functional components of EGEE and VEGA

EGEE component VEGA component Functionality

Computing Element GRAM job submission
Workload Management System Grip Management resource brokering
R-GMA MDS-2 information services
FiReMan and Data Movement VegaFS data management
VOMS Agora VO management
Cmd line interface GSML Portal user interface
gLite Security GSI security

Organization Manangement System) stores some additional information on each
user or group such as roles and rights. This information could be extended to
provide information on roles and rights to access other Grid resources - and still
remain transparent to the end user. In VEGA the Agora management framework
[39] is also very flexible, as it is based on a theoretical EVP model (Effective,
Virtual, Physical) where every community (Virtual Organization) can be defined
using 4-tuples of the form: (Subject, Object, Context, Policy).

Another important assumption is to allow users of the two Grid environments
to use their native user interfaces in a way they are used to. However in order
to provide this functionality, some intervention into the respective middleware
layers is necessary. Basically, in the case of any two grid environments the set
of components whose functionality must be mapped in between consists of: au-
thentication, authorization and Virtual Organization mapping; job submission;
information services; data discovery and transfer; and monitoring.

The core components of EGEE and VEGA that will need to be mapped in
order to achieve the interoperability are depicted in Table 1.

The proposed idea for interoperability between the mentioned two Grid envi-
ronments is in creating an intermediate abstraction layer, called Grid Abstrac-
tion Layer (GAL), that will act as an intermediary for all kinds of requests that
can be made between the Grids. The interoperability layer will provide virtual
equivalents of all basic Grid components that should allow reusing the shared
Grid resources by users of the native Grids in the most invisible way. It is planned
that GAL layer will reuse existing standards and recommendations such as JSDL
[40] for job description or CIM [41] for resource description. GAL will also make
integration and creation of multi-Grid Virtual Organizations easier for other
Grid environments. The GAL layer will maintain mappings of all kinds of Grid
resources that are reused between the Grid infrastructures. Most importantly,
that includes mapping of jobs and their descriptions that are being executed
in the other Grid environment, mapping of files stored in both Grid’s storage
space and user authentication and authorization mapping. It is also envisioned
that ontologies will be used for description of hardware resource mappings and
for matchmaking purposes. Of course, in order to provide the end users with
full transparency of the two Grids, some extension or modification of their mid-
dleware is necessary. In the case of gLite this can be achieved to some extent

798 B. Kryza et al.

Fig. 1. A job submission scenario from EGEE to VEGA

by provision of fake Computing and Storage Elements that will appear to the
gLite core components as usual services, although they will interoperate with
the GAL layer in order to forward requests to the VEGA Grid system. Another
option would be to extend existing core components of gLite such as Workload
Management System (WMS) with the capability of submitting the jobs to GAL
layer, however, since WMS is a central point of the gLite middleware this could
become difficult due to administrative issues.

5 Example Scenario Analysis

Let’s try to analyze a seemingly simple case of submitting a job by an EGEE
user, that will be scheduled for execution on a VEGA Grid node (Figure 1).

5.1 Login and Proxy Generation

The first step the gLite user has to make in order to perform any action is
to login to some Command Line Interface (CLI) node (A). Afterwards he has
to create a temporary proxy certificate using voms-proxy-init (B,C), which will
be used for requests performed on users behalf. The proxy will also be used
to authorize users requests at several points of the job submission with Vir-
tual Organization Management System (VOMS). In case of EGEE and VEGA
the same certificates can be used, since both these environments depend on
the Globus Security Infrastructure (GSI), provided that the sites trust each
other.

Analysis of Interoperability Issues Between EGEE and VEGA 799

5.2 Job Submission

The next step is submission of the job to the Workload Management System
(WMS) (D), using command glite-job-submit. The WMS finds the best matching
Computing Element for execution of the job (E). Let’s now assume that in this
case, WMS chooses a fake Computing Element (CE) which forwards all jobs
to the GAL layer for execution in the VEGA Grid environment (F). At this
point GAL will convert the job request from gLite’s JDL to a GGF standard
Job Submission Description Language (JSDL) [40]. This step is motivated by
the idea that the GAL should also enable in the future integration of other
Grid environments than gLite and VEGA. The GAL figures out, based on the
parameters of the job such as users VO membership and required resources, that
it will be submitted to the VEGA Grid. The job is then submitted to the VEGA
resource broker or translated directly to Resource Specification Language (RSL)
[42] and submitted to some particular VEGA Grid node - by means of the local
Grid Resource Allocation Manager (GRAM) interface. Now, while the job is
being executed (I), it requests the Input File. In gLite, a job can request input
data in two basic ways. One is to use a script, that executed just before the actual
job execution, transfers the file using gLite CLI command glite-get. The other
way is to use the gLite I/O API directly in the job code. In either case, the VEGA
Grid site, that belongs to the inter-Grid Virtual Organization - should provide
wrappers of these command in order for jobs to be executed fully transparently.
Such library, when called by the job, will contact the Grid Abstraction Layer,
and ask it to provide the requested file - in this case by indicating the proper lfn
file name. In this case, GAL will contact gLite’s Replica Catalogue (L) to obtain
the location of the best replica (M) and then contact the proper Storage Element
(N) to transfer the file to the local storage where the job is being executed in the
VEGA Grid (P). Finally the job is executed and output file is produced to some
local storage of VEGA Grid (R). Of course, at any time during the job execution,
the user should be able to monitor the status of the job using the command
glite-job-status. In such case the CLI contacts the Logging&Bookkeeping (L&B)
database (S), that in gLite stores all information about past and current jobs,
which should be kept up to date with the information about the job being
executed in the VEGA Grid by the fake Computing Element.

5.3 Obtaining Job Results

After the job execution is finished, the user requests the output produced by the
job by issuing command glite-job-output (T) and the CLI connects to the L&B
component in order to get the location of the data produced by the particular
job. The L&B returns to the CLI the location of the output data generated by
the job and CLI transfers the data to the users’ local storage using GridFTP
protocol. Afterwards, the fake CE element is called by the GAL layer and informs
the WMS that the job has been completed and how to access the produced data.
More complicated case is when the job executed in VEGA Grid would produce
a file that would be registered somewhere in the VegaFS [43]. This file should

800 B. Kryza et al.

then be made accessible to the gLite user through the fake Storage Element
component (U). In order to provide this functionality such fake Storage Element
would have to be informed about the creation and registration of files in the
VEGA Grid file system through the GAL layer (V, W). Since the SE node
provides a Local Replica Catalogue of files that are stored in it, it should be
possible to implement it in such a way that it would provide a view on the files
accessible in the VEGA Grid storage. Alternatively, in the case of job execution,
the job could also use the gLite Proxy wrapper for the glite-put command and
thus store the file directly in some gLite Storage Element through the GAL layer.

6 Conclusions and Future Work

In this paper we have presented an idea for interoperability of two Grid infras-
tructures, namely EGEE and VEGA, at the middleware level. The identification
of components that need to be mapped between the two Grid environments was
performed and specified. Discussion of different approaches to integration of the
EGEE and VEGA was presented, including an outline of possible challenges
and drawbacks. An example of a job submission scenario from EGEE to VEGA
Grid was sketched, along with detailed identification of potential problems and
challenges, such as authorization, authentication and data management . Addi-
tionally, a Grid Abstraction Layer component, acting as an intermediary between
the Grid environments was introduced. The envisioned solution will be generic
enough to enable other Grid environments to reuse the results of this work in
future Grid interoperability efforts.

The future work will include careful design and implementation of the GAL
layer along with any missing abstraction models of Grid concepts - such as for
instance the concept of Virtual Organization or data registered in the Grid. Also,
several wrapper libraries and services for both gLite and VEGA that will enable
the actual interoperation of the resources in the EGEE and VEGA grid systems
will be developed. In particular, implementation of Computing and Storage Ele-
ments for the purpose of forwarding the Grid requests from gLite to VEGA Grid
through the Grid Abstraction Layer will be provided.

Acknowledgements

This research has been done in the framework of EU IST-034363 Gredia project.
AGH University of Science and Technology grant is also acknowledged.

References

1. http://www.ggf.org/
2. Intelligrid project homepage, http://www.inteligrid.com/
3. Ontogrid project homepage, http://www.ontogrid.org.ontogrid/
4. K-Wf Grid project homepage, http://www.kwfgrid.net/

Analysis of Interoperability Issues Between EGEE and VEGA 801

5. Foster, I., Kesselman, C., and Tuecke, S., The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, Int.J. Supercomputer Applications, 15(3)(2001).

6. http://www.w3.org/2001/sw/
7. Zhuge, H., The Knowledge Grid, World Scientific Publishing Co., Singapore, 2004.
8. Zhuge, H., The Future Interconnection Environment, IEEE Computer, 38 (4)(2005)

27-33.
9. Zhuge, H., China’s E-Science Knowledge Grid Environment, IEEE Intelligent Sys-

tems, 19 (1) (2004) 13-17.
10. Foster, I., and Kesselman, C., The Globus project: a status report, Proc.

IPPS/SPDP’98 Heterogeneous Computing Workshop, 4-18, 1998.
11. GLOBUS Project website, http://www.globus.org
12. Erwin, D., (ed.) Joint Project Report for the BMBF Project Unicore Plus, ISBN

3-00-011592-7, 2003.
13. UNICORE Project website, http://www.unicore.org
14. The LHC Computing Grid, http://lcg.web.cern.ch/
15. The Enabling Grids for E-sciencE (EGEE), http://public.eu-egee.org/
16. http://www.teragrid.org/
17. The European Research Network on Foundations, Software Infrastructures and Ap-

plications for large scale distributed, GRID and Peer-to-Peer Technologies (Core-
Grid), http://www.coregrid.net/

18. The BalticGrid Project, http://www.balticgrid.org/
19. China National Grid (CNGrid), http://www.cngrid.org/en index.htm
20. GRIP Project website, http://www.grid-interoperability.org
21. Rambadt, M., and Wieder, P., UNICORE - Globus: Interoperability of Grid In-

frastructures, Proc. Cray User Group Summit 2002.
22. Snelling, D., van den Berghe, S., von Laszewski, G., Wieder, P., MacLaren, J.,

Brooke, J., Nicole, D., and Hoppe, H.-C., A UNICORE Globus Interoperability
Layer, Online, http://www.grid-interoperability.org/D4.1b draft.pdf

23. Stockinger, K., Stockinger, H., Dutka, L., Slota, R., Nikolow, D., Kitowski, J.,
Access Cost Estimation for Unified Grid Storage Systems, 4th International Work-
shop on Grid Computing (Grid2003), Phoenix, AZ, USA, November 17, 2003, IEEE
Computer Society Press, 2003.

24. Malawski, M. Bubak, M., Zajac, K., Integration of the CrossGrid Services into
the OGSA Model, in: Bubak, M., et al. (Eds.), Proc. Cracow’02 Grid Workshop,
Dec.11-14, 2002, Cracow, Poland, ACC Cyfronet AGH, 2003, Cracow, pp. 140-147.

25. Tirado-Ramos, A., Groen, D., Sloot, P.M.A., Exploring OGSA Interoperability
with LCG-based Production Grid for Biomedical Applications, in: Bubak, M.,
(eds.) Proc. Cracow’05 Grid Workshop, Nov.20-23, 2005, Cracow, Poland, ACC
Cyfronet AGH, 2006, Cracow, in press.

26. P. Lindner, E. Gabriel and M. Resch, GCM: a grid configuration manager for
heterogeneous grid environments, Int.J.Grid and Utility Computing, 1(1)(2005)
4-12.

27. Amin, K., von Laszewski, G., Hategan, M., Al-Ali R., Rana, O., and Walker, D.,
An Abstraction model for a Grid Execution Framework, Euromicro J. Systems
Architecture, 2005, in press.

28. Laure E., Production Grids Infrastructure Enabling eScience, CESNET Conf.,
March 6-8, 2006, Prague, Czech Repulic

29. Development of a Grid Environment for Interactive Applications (CrossGrid),
http://www.crossgrid.org/

30. The European DataGrid (DataGrid), http://www.eu-datagrid.org/

802 B. Kryza et al.

31. Guangwen Yang, Hai Jin, Minglu Li, Nong Xiao, Wei Li, Zhaohui Wu,Yongwei
Wu, Feilong Tang, Grid Computing in China. Journal of Grid Computing 2(2):
193-206 (2004).

32. EUChinaGrid Project homepage, http://www.euchinagrid.org/.
33. EUChinaGrid Project Deliverable D5.1: Project Presentation,

http://www.euchinagrid.org/docs/EUChinaGRID-Del5.1v1.3.pdf
34. Catlett C., Grid Interoperation Now DRAFT Charter, http://

forge.ggf.org/sf/go/doc3216?nav=1
35. Alfieri R., Cecchini R., Ciaschini V., dell’Agnello L., Frohner A., Gianoli A.,

Lorentey K. and Spataro F., VOMS, an Authorization System for Virtual Or-
ganizations., In Proc. of European Across Grids Conference, 2003, Santiago de
Compostela, Spain, pp. 33-40, LNCS 2970, Springer, 2004

36. EGEE Consortium, EGEE Middleware Architecture, EU Deliverable DJRA1.4,
Available at https://edms.cern.ch/document/594689

37. Zhiwei Xu, Wei Li, Li Zha, Haiyan Yu and Donghua Liu, Vega: A Computer
Systems Approach to Grid Computing, In Journal of Grid Computing: GCCO3:
A Spotlight of Grid Computing, June 2004, pp. 109-120, Volume 2, Number 2,
Springer-Verlag

38. Xu Z., Sun N., Meng D. and Li W., Cluster and Grid Superservers: The Dawning
Experiences in China., In Proc. 2001 IEEE Intrnl. Conf. on Cluster Computing
(CLUSTER 2001) 8-11 October 2001, Newport Beach, CA, USA,

39. Wang H, Xu Z., Gong Y. and Li W., Agora: Grid Community in Vega Grid, In
Proc. of Second International Workshop on Grid and Cooperative Computing,
GCC 2003, Shanghai, China, December 7-10, 2003, Part 1, pp. 685-691, 2003,
Springer

40. Anjomshoaa et. al., Job submission Description Language, Version 1.0, GFD-R.056,
Available at http://forge.gridforum.org/projects/jsdl-wg

41. Quirolgico S., Assis P., Westerinen A., Baskey M. and Ellen Stokes, Toward a
Formal Common Information Model Ontology., WISE Workshops, pp. 11-21, 2004,
Springer

42. The Globus Resource Specification Language RSL v1.0., Online, http://www-
fp.globus.org/gram/rsl spec1.html

43. Wei Li, Jianmin Liang and Zhiwei Xu, VegaFS: A Prototype for File-Sharing Cross-
ing Multiple Administrative Domains., In Proceedings of IEEE International Con-
ference on Cluster Computing, 1-4 December 2003, Kowloon, Hong Kong, China,
IEEE Computer Society, pp. 224-231, 2003

Temporal Storage Space for Grids�

Yonny Cardenas, Jean-Marc Pierson, and Lionel Brunie

LIRIS CNRS UMR 5205, INSA de Lyon
{yonny.cardenas, jean-marc.pierson, lionel.brunie}@liris.cnrs.fr

Abstract. A distributed system like grid can be viewed as hypothetical
infinite storage system for storing large data entities. Frequently these
large data entities can not be stored in one unique location. In this paper
we propose a temporal storage space managed as a collaborative cache
system where clients have a perception of this space as an unlimited tem-
poral storage capacity. They use the temporal storage space to share and
to reuse large data entities in a distributed way. Temporal storage space
is composed of a set of autonomous caches that work cooperatively with
individual caches are generic cache services deployed inside organizations
and a specialized service to coordinate global operations that facilitate
the cooperation between caches. Implementation issues of a prototype in
Globus Toolkit 4 are discussed.

Keywords: grid caching, collaborative cache, grid data access, temporal
storage.

1 Introduction

Distributed systems support different models of distributed computations. Fre-
quently, a significant quantity of data must be reused and shared between dif-
ferent locations. An important proportion of data must thus be moved from dif-
ferent places but typically these data are used only for a limited period of time.
This data movement, without global coordination, tends to use inefficiently an
important quantity of computing and network resources. In this respect an ad-
vanced system is necessary to support temporal data dissemination in distributed
systems.

Distributed system like grid [1] can be viewed as an hypothetical infinite stor-
age system that allows to store large data entities (terabytes and more). Since
these data are in constant growth, it is necessary to manage the data volume in a
dynamic way. The distributed data management system proposed in peer-to-peer
systems where the size of data objects is relatively small and data copy prolifer-
ation expected or tolerated is undesirable or expensive. Grid data management
solutions such as Storage Resource Broker SRB [2] that provides uniform ac-
cess to distributed data and Data Replication Service DRS [3] that integrates
data services for replica operations do not support automatic management of
distributed temporal data.
� This work is supported by the Région Rhône-Alpes project RAGTIME and the

French Ministry for Research (ACI GGM).

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 803–812, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

804 Y. Cardenas, J.-M. Pierson, and L. Brunie

In this work, the focus is put on the automatic operation and organization of
large volumes of temporal data for reuse and sharing. We propose a temporal
data management system for distributed environments based on a new collabo-
rative caching approach. Contrary to traditional collaborative caching [4] where
the cooperation is limited to data resolution, the collaborative cache capaci-
ties are extended to manage distributed temporal data in our approach. Several
caches cooperate to place and manage large data entities. In this work we assume
that datasets updates and consistency mechanisms are not required since most
scientific data entities are accessed in read-only manner [3].

The contributions of this paper include: 1) a generalization of the function-
ality required for reuse and share of distributed temporal data in the grid; 2)
a description of an approach to grid caching based on an extension of collabo-
rative cache capabilities; 3) a description of a Temporal Storage System (TSS)
to operate and coordinate temporal data which is a practical implementation of
our grid caching approach; and 4) a description of an implementation prototype
of the TSS in the Globus Toolkit 4 [5] (GT4) environment.

2 Grid Caching Approach

Caching is recognized as one of the most effective techniques to manage tempo-
rary data. A cache is a place where data can be stored temporary so that they
are easily and quickly available in the near future. Caching includes the replace-
ment strategies for determining which data should be kept in the cache. In this
respect cache is a system that controls automatically data objects contained for
a limited period of time in a storage resource [6].

The main objective of cache is to reduce the need to get data from original
sources. Similarly, cache permits to reuse and share data by different clients,
thus data resources are used more efficiently. To scale cache capabilities, several
collective cache schemes have been proposed for distributed systems [4]. These
collaborative cache approaches have been developed for web traffic on Internet
which has different characteristics in contrast to traffic in a grid. The main
difference is related with the size of data objects which are relatively small in
web, hence the data copy proliferation is expected or tolerated. Several peer-
to-peer data management mechanisms are based on this characteristic [7]. In
contrast to web environment, grid may manage large data entities, currently
terabytes and soon petabytes: These data entities are expensive to store and
transfer, data copy proliferation in grid is thus undesirable.

In traditional web collaborative caching, groups of caches work together for re-
trieving a particular data entity, the potential cooperative scalability is reduced to
data resolution. Grid supports distributed models of computation that need more
capabilities such as storing working data anywhere in the distributed system.

Dynamic interactionrequirements indistributedsystemsalso raisean important
question about distributed caching; how to deal with caches which do not collabo-
rate ? Organizations have diverse and sophisticated temporal storage mechanisms
but they usuallywork isolated.Grid technology needs to integrate these specialized

Temporal Storage Space for Grids 805

mechanisms to scale cache capabilities. A fundamental assumption of conventional
collaborative cache approaches is that the deployment and dynamic interaction of
caches across administrative domains is not constrained. Grid technology is the re-
sult of agreements to provide basic interoperability standards to help cooperative
cache systems to be deployed in multi administrative distributed systems.

A new collaborative cache approach is necessary to adapt caching to require-
ments of temporary data management in grid. We propose a grid caching ap-
proach based on three principles: Autonomy, Collaboration, Coordination.

The autonomy principle aims at gathering different and specialized tem-
poral storage mechanisms that can be managed with cache techniques which
are not originally designed to work collaboratively. This principle establishes
that each cache is autonomous and may apply particular technologies, control
techniques, and policies for internal data resources management.

The autonomy principle has two dimensions: technical and administrative.
Technical because collaborative cache approach aggregates high capacity of tem-
poral data storage from heterogeneous and specialized mechanisms. And admin-
istrative, because these mechanisms are administrated by different corporations.
Thus each corporation shares storage resources keeping the internal control and
functionality.

Our approach aggregates independent entities or caches. Each entity has spe-
cialized capacities and dexterity that it shares with others caches. We build a
distributed temporary data system as a federation of autonomous caches.

The collaboration principle aims at extending the cache capabilities in two
dimensions: internal and external in reference to cache location in the distributed
system. Internally, temporary data sharing level between corporative applica-
tions is extended introducing cache service concept. Cache service is an external
mechanism that operates and manages temporal data that are used by wide va-
riety of clients inside a corporation. Cache service provides standard operations
to reuse and share temporal data between applications inside an organization.
Externally, the collaborative cache approach does not restrict its interactions to
data resolution. Since it interacts to execute other data management operations.

The cache service works as a temporary data gateway between corporative
location and the external distributed system. Thus a cache service exposes stan-
dard cache operations outside the corporation, to other cache services. There-
fore collaborative cache increases the cooperation capabilities expanding cache
interactions to all cache operations. Cache service concept is the result of col-
laboration principle, a generic abstraction of the cache mechanism. We define a
cache service as an independent and generic entity that offers temporal storage
to internal and external applications and services [8].

The coordination principle operates and controls interactions between
caches to manage the collaborative cache scheme [4]. Cache interaction capa-
bilities are organized to implement a collaborative cache system. Similarly to
the collaboration principle, the coordination principle is supported by exposed
operations in each cache service. With this principle each cache must support
coordination operations that permit to control and operate the inter-cache ac-

806 Y. Cardenas, J.-M. Pierson, and L. Brunie

tions. In this way it is possible to build the collective mechanisms that federate
distributed caches as a uniform cache system [9].

To support the collective coordination mechanisms each cache service imple-
ments special monitor and control operations. To monitor, each cache service
provides information for other services to support inter-cache data sharing, e.g.
description of cache data content. Additionally cache services provide informa-
tion on their own configuration and behavior (which replacement policy is in
use, how full is the cache, ...). To control, each cache service adjusts dynam-
ically its configurable parameters for interaction with other caches. Similarly,
control mechanism establishes collective configuration parameters such as cache
information exchange, collective data resolution or data global placement.

3 Temporal Storage Space (TSS)

Wepropose theTemporal Storage Space (TSS)which is a datamanagement system
that dynamically operates and coordinates distributed temporal data. TSS is used
for sharing and reusing data between members of the distributed system. Clients
have the perception that TSS has an unlimited capacity for storing temporal data:
These clients delegate temporal data distribution and administration to TSS. The
Temporal Storage Space (TSS) is designed following the principles of autonomy,
collaboration and coordination (described previously in section 2). Thus, TSS is
a distributed virtual space that is built as a collaborative cache system where a
group of caches work together to gather temporal storage resources dynamically.

TSS is formed from a group of Local Cache Services (LCS) (described in sec-
tion 3.1) and one Collective Coordinator Service (CCS) (described in section 3.2)
which are deployed at multiple organization domains. LCSs come together to
build the temporal storage space as illustrated in figure 1.

LOCAL
CACHE

SERVICE

LOCAL
CACHE

SERVICE

CLIENT
(Retrieve)

LOCAL
CACHE

SERVICE

LOCAL
CACHE

SERVICE

Organization
Domain

COLLECTIVE

SERVICE

TEMPORAL STORAGE
SPACE

COORDINATOR

CLIENT

(Publish)

Data

Data

Fig. 1. Temporal Storage Space with LCS and CCS

Temporal Storage Space for Grids 807

3.1 Local Cache Service (LCS)

The Local Cache Service (LCS) is the component that implements the cache
service locally inside each organization. LCS exposes local cache functionalities
to external system and works as a gateway for data access between the local
organization and the external system. It resolves data queries from applications
using local internal catalog which is updated periodically with summaries from
other LCSs.

LCS translates external data access operations to internal cache operations
and vice versa. It includes basic metadata in its catalog using a database system,
which is used to extend internal cache query resolution capacity. LCS imple-
ments conventional interfaces inside an organization and standard interfaces for
external interactions. LCS offers functionalities inside organizations where it is
deployed, e.g. a health center deploys a LCS that is used for the health center
internal applications. On the other hand, the same LCS offers cache function-
alities to external organizations in a grid virtual community e.g. the same LCS
deployed in the health center will offer cache functionalities to LCSs of other
organizations in the same healthgrid virtual community.

Working in a collaborative mode, the LCS requests remote LCSs to execute
publish and retrieve operations(3.3). Regularly each LCS sends reports of its
data content to all LCSs. LCS sends periodically cache information reports to
CCS.

3.2 Collective Coordinator Service (CCS)

The Collective Coordinator Service (CCS) is a specialized service that coordi-
nates the interactions between LCSs. In this way, it implements TSS specific
coordination functionalities. CCS implements operations to indicate locations
to place data between different sites of the distributed system. CCS uses metrics
to evaluate which location will be selected to place the Data Entity. Sophisti-
cated placement algorithms can base the placement selection on multiple metrics,
combining them in a single or hybrid metric. Placement algorithms permit to
affect the operation and objective of TSS, for example, efficient resources use,
increasing access performance, load balancing, data copy proliferation, etc. A
discussion about these sophisticated placement algorithms are beyond the scope
of this paper. In this work we use a simple mechanism for placement determina-
tion that is based on cache storage capacity. Cache storage capacity refers to the
level of availability of the individual LCS storage resource. It can be calculated
in a variety of ways, including number and size of data entities and access per
second. Storage capacity is calculated from cache report. CCS updates its col-
lective internal catalog with cache information provided by LCS. The collective
catalog consistency is supported with periodic reports from LCS.

The CCS resolves LCS requests for distributed placement of particular data
entities. It checks the information in its collective internal catalog in order to
extract information useful to make a decision about distributed data placement
in TSS.

808 Y. Cardenas, J.-M. Pierson, and L. Brunie

3.3 LCS and CCS Operations

This section describes how the LCS and CCS support three main operations
defined for the temporal storage space: data publish, retrieve, and placement.
The operations described in this section make references to grid implementation
using GT4 middleware.

DataPublishOperationpermits clients to put data into the TSS. Figure 2(a)
illustrates the exchange protocol behind the publish operation. Before the client
prepares the optional metadata to registry with data in LCS, it uses basic and ex-
tensible XML schema to register the metadata. The client sends a request to LCS
for data placement into virtual storage space giving an explicit description of the
data (metadata)(1). The LCS executes its placement policy to establish if it can
store data locally or if it must use any external storage (2). If the data must be
stored externally, the LCS sends a message to the CCS asking for global distributed
placement (3). The CCS executes the global placement policy based on its collec-
tive internal catalog and it returns the selectedLCSwhere to place the data(4).The
LCS sends a request to remote LCS for external data placement (5).The LCS starts
the data transfer process using the GridFTP service (6). The GridFTP servers per-
form the data transfer between sites(7). The remote LCS checks periodically the
status of each data transfer request to ensure that each file was transferred success-
fully (8). LCS periodically builds a data content report, then it sends this report
to CCS and all LCSs. Each LCS updates its catalog with this external cache infor-
mation for future data resolutions (9).

Data Retrieve Operation permits clients to get data from TSS. Figure
2(b) illustrates the protocol of the retrieve operation. The client sends a data
request to LCS (1). The LCS queries its local internal catalog to establish the
data location. If the data are stored in remote LCS, LCS creates a data requests
to remote LCS where data are localized (2). The remote LCS starts the transfer
process using the GridFTP service (3). The GridFTP transfer service performs
the data transfer between sites(4). In the local site, LCS checks periodically the
status of each transfer request to ensure that each file is transferred successfully
(5). Finally, the LCS delivers data to client (6).

Data Placement Operation is executed by CCS to decide the distributed
placement of data. Each LCS builds periodically a data content report then
the LCS sends this report to CCS. This way, CCS collects cache information
of all LCSs(1). CCS uses this information to determine global data placement.
To support this process CCS maintains the collective internal catalog, which
contains cache information about all LCSs.

3.4 TSS Information

The TSS needs information for collaborative cache operation, describing the
main elements of collaborative cache such as storage, data, cache and transfers.
Cache information provides a description of each element itself and its behavior.
We classify these information as element entity and element activity respectively.
Element entity information includes static information about elements such as

Temporal Storage Space for Grids 809

1

9

5

7

3

4

62

Transfer
Data

(GridFTP)

SERVICE

CACHE

LOCAL

Local
Internal
Catalog

(Local Site)

8

Transfer
Data

(GridFTP)

SERVICE

CACHE

LOCAL

9

(Coordinator Site)

CLIENT

(Publish)

SERVICE

COLLECTIVE

Internal
Collective

Catalog

COORDINATOR

(Remote Site)

Local
Internal
Catalog

2

4

3

1 6

5 5

Transfer
Data

(GridFTP)

SERVICE

CACHE

LOCAL

(Local Site)

Local
Internal
Catalog

Transfer
Data

(GridFTP)

SERVICE

CACHE

LOCAL

(Remote Site)

Local
Internal
Catalog

(Retrieve)

CLIENT

(a) Publish operation (b) Retrieve Operation

Storage
Resource

Storage
Resource

Storage
Resource

Storage
Resource

Fig. 2. LCS and CCS operations

an identification and configurable attributes or parameters. Element activity
information includes dynamic information such as behavior and actions.

TSS manages information about the following elements: storage, data, cache
and transfers.

Storage Information: It is information about storage resource. Storage en-
tity information includes characteristics such as type of device, storage capacity,
rate transfer, delay, filesystem. Storage activity information includes information
about use of storage resources: storage in use, available space.

Data Information: Data entity information describes individually each data
object, this includes identification and description structure of data registered.
Data entity specifies permitted actions on data content. An unique identifier is
established for each registered data entity which can be based on Logical File
Name (LFN) or Universal Resource Identifier (URI). Cache service clients use
unique identifier as key to make operations related with data entities. Data entity
information is used for managing individual data object: access type, share level,
authorization, This information is established at data registry operation. Data
entity information may include optional information such as metadata. Meta-
data represent semantic content of data entity, including references to external
specific and detailed metadata or metadata services. Cache service registers es-
sential metadata pieces for general semantic classification: target applications,
data provenance, software version, algorithms, parameters and short annota-
tions. This metadata can be used for data discovery mechanism to improve
retrieval operation. Initial metadata is supplied by the provider client who pub-

810 Y. Cardenas, J.-M. Pierson, and L. Brunie

lishes or registers data entity in cache. In life time other clients add more meta-
data following evolution of the data entity use. The metadata can be exchanged
between LCS to improve retrieval operations.

Data Activity registers all actions realized on each data entity individually.
The actions include creation, access, update, transfer, and the conditions when
these actions were performed: time, client type, location of resources used, etc.
Optionally, provider clients can register expected data activity such as location
of information access for particular data entity. This information can be used
by coordination layer for collective data placement. Each LCS registers data
activity for each data entity registered in its service. Cache manages data activity
to improve the level of sharing and reusing in distributed system. Data activity
gives a notion of data importance because those data that have more movements
and accesses are believed to be more important [9].

Cache layer uses data entity and data activity to manage data locally, for
example the replacement policy is applied on a set of data objects checking their
data activity.

Cache Information: Cache entity registers information about individual
cache installation such as cache service reference, site deployment, configura-
tion and resources. Cache entity information permits CCS to establish essential
characteristics of group caches.

Cache Activity registers all actions realized by each LCS individually. This
is information about dynamic cache service behavior. Cache activity shows in-
dividual and dynamic cache service status and performance. This information
includes: storage capacity in use, cache hit and miss ratio, replacements ratio,
number of intercache data request generated and served, etc. Cache activity in-
formation is extracted from monitoring data activity of individual LCS about its
data entities. It is registered by each LCS in internal catalog and it is exchanged
for collective coordination actions.

Transfer information is related mainly with time expected to deliver data
objects between cache services. Transfer entity describes logical interconnection
end-to-end between caches, this includes achievable transfer bandwidths, cost
and availability. Transfer activity includes dynamic information such as perfor-
mance and latency. Transfer activity is established from specialized services that
provide information about resource performance in the distributed environment.
Alternatively transfer activity can be obtained by the cache service by monitor-
ing their own activity. Historical information concerning data transfer rates is
used as a predictor of future transfer times.

4 Prototype

We have developed a prototype of the LCS and CCS that support the main
functionalities described in section 3. Both are implemented as independent grid
services. LCS is a generic and configurable cache that manages local storage re-
source at location where it is deployed, configurable local parameters are: storage
capacity available, data entity time to life, replacement method, etc. LCS sup-
ports dynamic replacement of cache method (LRU, LFU and Size)[4].

Temporal Storage Space for Grids 811

LCS prototype manages cache information using a database management sys-
tem. It stores minimal optional metadata about data entity supplied by data
provider using a pre-established XML format. It coordinates the data transfers
with GridFTP invocation and delegation service. As grid service, LCS exposes its
operations to receive requests from other LCS to implement the extended cache
collaboration. LCS prototype can be invoked directly by user applications, LCSs
or other grid services to publish or retrieve data.

The first CCS prototype is a basic implementation of grid service described
in section 3.2 It registers periodically cache information reports such as used
cache capacity from LCS. Optionally CCS can monitor the capacity of remote
LCS. CCS registers the cache information in internal catalog. It processes syn-
chronously the requests of LCS for collective data placement. In this version
CCS uses a simple algorithm to select LCS to place the specific data entity: It
selects the LCS with the most available storage capacity. Algorithms and more
complex metrics can be implemented that use CCS catalog cache information.

LCS prototype is deployed in three French laboratories of GGM Project [10]:
LIRIS, IRIT, and LIFL located in Lyon, Toulouse and Lille respectively. The
CCS prototype is deployed in Lyon.

The prototype is designed based on the Web Services Resources Framework
(WSRF) [11] standards to support interoperability. It is implemented using mid-
dleware Globus Tool Kit version 4.0 (GT4) [5]. Currently we are testing the
operational functionality of the prototype. We plan to make performance mea-
surements for large files transfer and increased number of data file placement
requests between LCS and CCS.

5 Related Work

Our goal is to develop a general-purpose system that provides a flexible cache
service at different level. By contrast, several other data systems take a different
approach and provide higher-level data management capabilities using highly in-
tegrated functionality. These systems include Storage Resource Broker (SRB) [2].
SRB provides distributed clients with uniform access to diverse storage resources.
It has notion of uniformity but has not autonomous administration for replicas
placement, copies proliferation control, and internal resource optimization.

Data Replication Service(DRS) [3] is a high level data management service.
It is a service that coordinates others services such as GridFTP, RLS, RFT and
Delegation. It is designed as a grid service and implemented with WSRF stan-
dards. It can be used with different metadata catalog services. It coordinates
the operations with data replicas, but it does not perform global data manage-
ment, does not optimize placement and data copies resolution, nor it guarantees
data consistency. Transparency is not achieved since clients are aware of the
replication, and must supply all details for replica operations.

Distributed Parallel Storage System (DPSS) [12] is a mechanism for network
data cache. It is used to access massive amounts of data. It is a temporal stor-
age system that works as a virtual disk for remote clients. DPSS reduces the

812 Y. Cardenas, J.-M. Pierson, and L. Brunie

impedance or contention between different data storage systems. Internally it
works as a large buffer and supports concurrent data access. DPSS can work
as federative system for different storage systems, but it does not manage data
distribution between different sites. DPSS does not establish a global view of
data in the distributed system and it does not have any notion of collaboration.

6 Conclusion

We have described a temporal storage space (TSS) used to share and to reuse large
data entities in distributed system like grid. This virtual space gives the perception
of unlimited storage capacity. Users in distributed system delegate temporal data
administration to this storage service. We presented the main components of TSS
proposal: a group of distributed caches, collective coordination mechanism, cache
information interchange, and cache operations. We described how the distributed
data placementmanagement is supported by TSS using these components.We also
presented the implementation of the system based on interaction of two specialized
services: Local Cache Service (LCS) and Collective Cache Service (CCS). We made
a detailed description of the main operations for access data (publish and retrieve),
and coordination operation for distributed data placement.

References

[1] Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An
open grid services architecture for distributed systems integration (2002)

[2] San Diego Supercomputer Center (SDSC): Storage resource broker (srb).
http://www.sdsc.edu/srb (2003)

[3] A. Chervenak R. Schuler, C. Kesselman, S.K.B.M.: Wide area data replication
for scientific collaboration. In: 6th IEEE/ACM International Workshop on Grid
Computing - Grid 2005, Seattle, Washington, USA, IEEE ACM (2005)

[4] Wang, J.: A survey of web caching schemes for the internet. ACM Computer
Communication Review 25 (1999) 36–46

[5] Globus Project: The globus project. http://www.globus.org (2002)
[6] Barish, G., Obraczka, K.: World wide web caching: Trends and techniques (2000)
[7] Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-

bution technologies. ACM Comput. Surv. 36 (2004) 335–371
[8] Y. Cardenas, J. Pierson, L.B.: Service de cache pour les grilles de calcul. In:

Extraction des connaissances: Etat et perspectives, Toulouse, France, Editions
Cepadues (2005) 199–202

[9] Y. Cardenas, J. Pierson, L.B.: Uniform distributed cache service for grid comput-
ing. In: Sixteenth International Workshop on Database and Expert Systems Ap-
plications (DEXA 2005), Copenhagen, Denmark, IEEE Computer Society (2005)
351–355

[10] Grid for Geno-Medicine Project: Grid for geno-medicine. http://liris.cnrs.fr/
projets/liris/projets/ggm (2004)

[11] Global Grid Forum (GGF): Web services resource framework (wsrf).
http://www.globus.org/wsrf (2003)

[12] Tierney, B., Johnston, W., Lee, J.: A cache-based data intensive distributed
computing architecture (2000)

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 813 – 822, 2006.
© Springer-Verlag Berlin Heidelberg 2006

e-AIRS: An e-Science Collaboration Portal for
Aerospace Applications

Yoonhee Kim1, Eun-kyung Kim1, Jeu Young Kim1, Jung-hyun Cho1, Chongam Kim2,
and Kum Won Cho3

1 Dept. of Computer Science, Sookmyung Women’s University,
Seoul, Korea

{yulan, kimek, wldud5, abaekho}@sookmyung.ac.kr
2 School of Mechanical and Aerospace Engineering, Seoul National University,

Seoul, Korea
chongam@snu.ac.kr

3 Supercomputing Application Technology Dept. KISTI Supercomputing Center,
Daejon, Korea

ckw@kisti.re.kr

Abstract. Computational simulation in fluid dynamics often requires high
performance and massive data intensive process. In addition, advanced
expertise to manage complicated simulation processes with various
environmental conditions in order to obtain reasonable results is essential but
not easy to achieve. This paper presents an e-Science Aerospace Integrated
Research System (e-AIRS) that aims to use Grid technology to establish an
integrated and collaborative environment to enable distributed computational
simulation and remote experiments for remote scientists in aerospace area. e-
AIRS provides easy-to-use portal services to manage workflow-based
experiment process from application design, execution, monitoring, and
visualization for Grid applications.

Keywords: aerospace, CFD, collaboration, portal.

1 Introduction

Most research activities related to e-Science[13] in many countries often include
massive, computationally expensive and data intensive processes in astrophysics,
particle physics, biology, chemistry, engineering application, environmental
engineering and medical science. Space Technology (ST) field which is a vigorous
area among engineering application parts in the inside and outside of the country,
with the purpose of offering an environment that allows aerospace researchers reduces
efforts and avoid overlapping investment by connecting numerical researchers and
experimental data in the aerospace field as well as achieves remote visualization. Due
to lack of appropriate and automatic collaborative methods in aerospace, it takes time
on obtaining adequate tools and performing experiments using limited experimental
equipments. Moreover, geometrical separation among research institutions and their
unskilled co-works frequently result in duplicate investments. Therefore, it is urgent
to arrange an infrastructure for aerospace researchers which permits not only work

814 Y. Kim et al.

under the integrated environment and share results but also continue working and
analyze results remotely. To offer an integrated environment that links nationwide
experiment tools with controlling computers and makes it possible for ST researchers
to cooperate with each other as well as carry out remote numerical experiments, this
activity is going to sum up related state-of-the-art technologies and focuses on
developing required core software.

What scientists in the area of engineering and scientific computing mainly need is
a grid-enabled portal [18], by which they are able to deploy applications easily
without concern with the complex details of grid technologies. Specifically, a portal
can be viewed as a Grid-based problem solving environment that allows scientists to
access distributed resources, and to monitor and execute distributed Grid application
from a web browser. With graphical user interfaces, the portal is an integrated
development environment based on grid services. Since our e-AIRS is based on portal
system for enabling aerospace researchers to securely and remotely access and
collaborate on the analysis of aerospace vehicle design data, primarily the results of
wind-tunnel testing and numeric (e.g., computational fluid-dynamics: CFD) [5] model
executions. This system provides an environment for Aerospace research scientists to
make as easy as possible to use. They are actively involved from the beginning when
we design overall architecture and design user interface of each step.

This paper describes the e-AIRS portal, which serve as a web interface to
computational grids to access remote data files and remote services. We describe an
e-Science Aerospace Integrated Research Systems (e-AIRS). It provides a
development environment for geometrical mesh generation, computation, monitoring
and visualization. The main feature of the e-AIRS is effective integration of several
computational tools into graphical user interfaces implemented in the web portal.

2 Related Work

DAME [11][16] is an e-Science pilot project, demonstrating the use of the GRID [14]
to implement a distributed decision support system for deployment in maintenance
applications and environments. DAME will develop a generic test bed for Distributed
diagnostics that will be built upon grid-enabled technologies and web services. The
generic framework will be deployed in a proof of concept demonstrator in the context
of maintenance applications for civil aerospace engines. The project will draw
together a number of advanced core technologies, within an integrated web services
system:

DAME will address a number of problems associated with the design and
implementation of On-line decision support systems. The most significant of these
are access to remote resources (experts, computing, knowledge bases etc),
communications between key personnel and actors in the system, control of
information flow and data quality, and the integration of data from diverse global
sources within a strategic decision support system.

The new web services model for information brokerage on the Internet offers an
inherently pragmatic framework within which to address these issues. DAME will
exploit emerging open standard web service architectures over a GRID network to

 e-AIRS: An e-Science Collaboration Portal for Aerospace Applications 815

demonstrate how the data management aspects of maintenance support systems can
be handled within a unified knowledge broker model.

DAME is an EPSRC[8] funded e-Science pilot project. It will demonstrate how
Grid technology can facilitate the design and development of decision support
systems for diagnosis and maintenance, in which geographically distributed resources,
actors and data are combined within a virtual organization.

The DAME project exploits the emerging OGSI/OGSA[5][6][12] Grid service
architecture to demonstrate how the data management aspects of maintenance support
systems can be handled within a unified knowledge broker model. A proof of concept
demonstrator is being built around the business scenario of a distributed aircraft
engine maintenance environment, motivated by the needs of Rolls-Royce and its
information system partner Data Systems and Solutions.

The GECEM[9] project aims to use and develop Grid technology to enable large-
scale and globally-distributed scientific and engineering research. The focus of the
project is collaborative numerical simulation and visualization between the UK and
Singapore from which experience will be gained in the use of Grid technology to
support research in the context of an ‘extended enterprise’. In addition to these high-
level objectives, the project also looks to develop Grid-enabled capability and
products for use by the wider community. This paper reports on the current status of
the GECEM project and discusses a prototype Grid integrating resources at the BAE
Systems Advanced Technology Centre near Bristol, the Welsh e-Science Centre
(WeSC)[15] in Cardiff, and the University of Wales, Swansea (UWS). This Grid is
capable of taking a model geometry generated at BAE Systems, transferring it to
UWS where it is meshed. The meshed geometry is then transferred to WeSC where it
is used to solve a computational electromagnetic problem and visualized.

GEODISE[10] will provide Grid-based seamless access to an intelligent
knowledge repository, a state of the art collection of optimization and search tools,
industrial strength analysis codes, and distributed computing and data resources.

3 e-AIRS Portal

The e-AIRS portal, released for the first time in Jan 2006, builds upon the core
features in the GridSphere [1] portal framework to provide developers with a
framework for developing Grid-enabled portlets. The GridSphere portal framework
provides an open-source portlet based Web portal. Indeed, the overall view of
development within the GridSphere framework has been generally positive. It
provides common portlets as standard, and these can be extended or added to in the
form of new portlets. The portlets are implemented in Java and built upon reusable
Java Server Pages (JSP) based user interface components, called action components.

Our main goal is to establish the powerful and user friendly collaboration
environment to aerodynamic researchers. The e-AIRS portal provides the main
interface through which services are accessed. User can access all e-AIRS software
and hardware resources will be via a portal. This will hide the complexity of the
system from the end-user. In addition, it also provides an interface to mesh
generation, calculation and monitoring of such applications on remote resources, and
collaborative visualization, exploration, and analysis of the application results.

816 Y. Kim et al.

Fig. 1. An e-AIRS architecture

Our portal contains two major portlets. One is the “Computational Service” (CS
Service) portlet. Like Fig. 1 shows, CS Service portlet has three main components:
“Mesh Generation Service”, “CFD solver service”, and “Monitoring and
Visualization Service”. This portlet provides service to select data files and
computation resources, submit jobs to remote machines and transfer files for mesh
generation and CFD simulation. All geometries, meshes, solvers and post-processing
instructions are prescribed either interactively using the graphical user interface. The
CS service offers pre-processor (e-AIRSmesh) and post-processor (e-AIRSview) as
necessary steps for numerical calculation, and enables numerical analysis with high
performance numerical tools. In that e-AIRSmesh and e-AIRSview were developed in
java applet forms, this service is feasible without installing any other programs only if
internet is accessible. Moreover, user can check process of calculation and result with
portal. The CS service supports a problem-solving environment the enables a user to
perform unstructured mesh generation in platforms, and to perform the visualization
of grid data and visual steering of the solution.

Fluid dynamics studies now affect engineering and design wherever the flow of
gases or liquids is significant. For that reason, CFD has become one of the most
dynamic and innovative sectors of technical computing market segment. And because
it requires large compute resources, executing CFD applications in parallel has helped
the growth of supercomputing resources over recent years.

The other major portlet is “Remote Wind Tunnel Service” portlet. This portlet is
performing a wind tunnel experiment through portal interface without visiting an
institute and keeping an experiment process. Users of this actual experimental service
can use web portal as interface communicating with operator. Detailed information on
each subject will be discussed in following sections.

3.1 Mesh Generation Service: e-AIRSmesh

The Mesh Generation Service is to do the pre-process which is the first phase of
numerical analysis process for CFD. The generation of a grid or mesh about any

 e-AIRS: An e-Science Collaboration Portal for Aerospace Applications 817

geometry is often the most difficult phase of the CFD process and is anticipated to be
the most time consuming part of the entire process for new users. Since our mesh
generation tool, an e-AIRSmesh, is based on portal system as Java applet which
provides user-friendly interface. It brings together most of the portal’s preprocessing
technologies in one environment. Its purpose is to make a geometry object, a mesh
object, and to control boundary conditions of aerodynamic form. The approach
adopted for parallel mesh generation is based upon a geometrical partitioning of the
domain. The complete domain is divided into a set of smaller sub-domains and a
mesh is generated independently in each sub-domain. The combination of the sub-
domain meshes produces the mesh for the complete domain.

Fig. 2. e-AIRSmesh

The aerodynamic shape optimization problem solved in this work can be
understood as a problem of obtaining an airfoil shape - represented by a set of
parameters known as design variables - that will minimize/maximize a performance
index subject to a set of specified constraints. An example of an objective might be
the minimization of drag; an example of a constraint might be to satisfy a certain
lift.

3.2 CFD Solver Service

CFD is one of the main research strategies for fluid dynamics. This experience
includes the solution of unusual and difficult problems such as the prediction of the
unsteady forces generated by passing vehicles, the generation of wind-noise, and the
flow of blood in medical devices. Two CFD solvers were developed, Fortran-based
and Cactus-based, while numerical calculation service uses the solver based on
Fortran. The Cactus-based solver is prepared as a prerequisite work for the extension
of this project to workflow environment. The solver module calculates the results in
terms of displacements and stresses for each load case. To provide access to a Grid

818 Y. Kim et al.

execution environment to which e-AIRS applications can be submitted. This
execution environment is responsible for scheduling the application and returning the
results to the portal. The simulations require the user of large meshes and the use of
significant computational resources. We can provide a complete solution or help you
staff obtain the tools and expertise to bring the solution process in-house.

The forms that are used to select data files and resources, and initiate execution
are, in fact, a set of portlets. The portlet has three main components: file selection ,
resource discovery, and job submission. This portlet will commit the resources
and the files selected to access the CFD solver service. The CFD simulation codes
are submitted using the Grid Resource Allocation and Management (GRAM) by
Globus Toolkit. The resource list allows a user to select a machine. It procedure as
follows:

1. Divide the global mesh data into multiple parts and transfer them to distributed
compute power location in e-AIRS;

2. Run the solver program; and
3. Collect result data set and combine them. Upon the completion of a job, the

server collects the outputs of the tasks, aggregates them and stores the final results in
the data storage for user.

3.3 Monitoring and Visualization Service

Fig. 3 shows the GUI in our web portal of job monitoring. A user can monitor a latest
status of submitted job in this display. Users are easily able to check the current status
from the system and intermediate result of currently running job. Basically, status of
jobs that is running in grid resources will be monitored by using Globus Resource
Allocation Manager (GRAM) which provided by Globus. If a job is submitted to a
computing server it’s in the ‘PREPARE’ state while sitting in the queue waiting to be
executed. In case of normal completion the job status is ‘DONE’, otherwise the job is
‘INRPT’, ‘ERR’ or ‘FAILED’.

The user can also view a convergence graph file of a job. These features allow
greater control on the job executions. A user can monitor the progress of a job
accurately; hence the user can make a decision whether to stop the current execution.
Such interactive exchanges can close the loop on simulation experiments by providing
visualization of intermediate results and then allowing scientists to respond by
manipulating the simulation, while it is running.

One of the most important steps in simulation is how to display results to users. We
have e-AIRSview (Fig. 4) system to display result of simulation. An integrated post-
processor program, e-AIRSview, comes packaged with the e-AIRS portal. Fig. 4 is an
example of the graphics produced by the e-AIRSview. It was developed as stand-
alone application for aerospace simulation result viewing software. When the
computational simulation finishes (on remote machines), all output data will be
transferred to a storage server. In this stage, location of these files will again be
recorded in DB. Thus for each calculation, input parameters, location of output data
with some extra information, e.g., owner, date, are all recorded in DB. User can
download the results of the finite element analysis graphically for each completed job.

 e-AIRS: An e-Science Collaboration Portal for Aerospace Applications 819

Fig. 3. Monitoring Service UI in e-AIRS

Fig. 4. e-AIRSview

Currently, e-AIRSview is downloading image from the storage (execution server)
to portal (client) and loading all data in to the memory before it actually display
image. To resolve this problem we are trying to developed new display system that is
suitable in web.

3.4 Remote Experimental Service

Remote Wind Tunnel Service is performing a wind tunnel experiment through portal
interface without visiting an institute and keeping an experiment process. The client
of the wind tunnel service can use web portal as interface communicating with
operator. The client enters conditions of an experiment on a portal interface. Operator
then performs the experiment based on these. The particle images made by CCD
camera are transported to the PIV server. The PIV server outcomes vector field of

820 Y. Kim et al.

velocity. The result is saved in storage. Clients can get the information of performing
experiments or their results through the portal. The experiment session have three
statuses, new/on-going/finished. When client requests an experiment, the status of the
session is new. Operator enters the schedule of the experiment and changes the status
into on-going. After the experiment completed, operator uploads the result files and
changes the status into finished. Clients can observes experiment process at real time
through portal, is notified by email when experiment finished. Experiment is based on
PIV, supported by KARI’s subsonic wind tunnel.

The goal of e-AIRS is to construct the environment that clients get numerical value
analysis, if experiments are possible, clients request experiment performing and are
offered the result that compares numerical value analysis with wind tunnel experiment
result. Clients would have the effect of improving the reliability by comparing
through this environment. Besides necessity of the viable teleconference gathers
strength in order to check the duplicate research and achieve a collaborative research.
This means the system should offer the collaboration environment to research groups
for separate portal use. This paper set sights on constructing system that is offered the
collaboration environment based on access grid system. To construct access grid each
research institute needs to build AG nod and possess it, set up from a conference
room nod to PC level PIG [17]. This offers personal use of analyzing and comparing
with experiment results and group use of discussing and sharing research results with
other researchers/research groups. Now collaboration environment construction
approaches a basic stage through a simple installation and test by using AG toolkit
[3]. Future research and development will construct collaboration environment of
sharing files, information and viable tools.

4 Collaborative Visualization Environment

Users want to compare actual experimental data with simulated output or to compare
between actual experimental data. The simulations of aerospace science run on very
large supercomputers and the collaborative research teams can be distributed across
both intra and inter-continental networks. Support for multiple concurrent users is
also an important aim. We show how distributed groups can view simultaneously a
visualization of results of simulation and can steer the application into a single
seamless collaboration environment. Fig. 5 shows an example of using AG. This
utilizes the power of Access Grid (AG) in being able to coordinate multiple channels
of communication within a virtual space. The AG infrastructure is one of the most
widely used technologies for collaborative computing in the scientific community. It
provides for a rich communication environment that goes beyond teleconferencing
and standard desktop-to-desktop videoconferencing to enable group-to-group
interaction and collaboration. The AG architecture is open, extensible, scalable, and
leverages established standards. Each AG node can be equipped with multiple video
cameras for video transmission and multiple microphones for audio transmission. AG
nodes meet in ‘AG venues’ to simplify the complicated software interactions that
bring the separate nodes together. In the venue, participants can share applications,
files, desktops, browsers, and video for large teams to exchange data across sites [19].

 e-AIRS: An e-Science Collaboration Portal for Aerospace Applications 821

Fig. 5. Snapshots of Video & Audio Collaboration Service using AG venue client

5 Conclusion

The e-AIRS is still in the early stages of development. However, a simple prototype
of the e-AIRS described in this paper has been implemented and demonstrated. We
have presented the e-AIRS portal based on a combination of GridSphere and our own
e-AIRS portlet applications. It serves a convenient research environment independent
of time and space. In addition, our portal will make it easy to access research devices.
This will make the non-experts produce their own research data more conveniently.

We have also presented main modules of our framework, which are designing, job
steering, jobs and resource monitoring and visualization. Job steering submits an
application to resource for its execution, that is, dispatches the jobs to suitable
resources and aggregates the jobs outputs. Monitoring handles access control to Grid
resources and monitors jobs over allocated resource. The e-AIRS eases a user from
the need to understand the complexity of a grid system.

For future work of this research, we are going to develop parametric control engine
service, which helps expedite establishment of various experimental environment
using e-AIRS. We are also tracking the development of Web Services Resource
Framework (WSRF) and related web service standards. Our approach appears less
well suited to situations in which arbitrary web services need to be composed together
to create applications on-the-fly.

References

1. http://www.gridsphere.org/gridsphere/gridsphere
2. http://www.kari.re.kr/
3. http://www.accessgrid.org/
4. http://www.cfd-online.com/
5. GGF http://www.ggf.org/documents/GFD.53.pdf
6. I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,

F. Siebenlist, R. Subramaniam, J. Treadwell, J. Von Reich. The Open Grid Services
Architecture, Version 1.0. Informational Document, Global Grid Forum (GGF), January
29, 2005.

822 Y. Kim et al.

7. http://www.dantecdynamics.com/piv/princip/index.html
8. http://www.epsrc.ac.uk/default.htm
9. David W. Walker, Jonathan P. Giddy, Nigel P. Weatherill, Jason W. Jones, Alan Gould,

David Rowse, and Michael Turner. “GECEM: Grid-Enabled Computational
Electromagnetics”, In: Proc. UK e-Science All Hands Meeting 2003, page 436-443,
September 2003.

10. http://www.geodise.org/
11. http://www.cs.york.ac.uk/dame/
12. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. “The physiology of the grid: An open grid

services architecture for distributed systems integration, open grid service infrastructure”
wg, global grid forum, June 2002.

13. http://escience.or.kr/
14. http://www.gridcomputing.com/
15. http://www.wesc.ac.uk/
16. T. Jackson, J. Austin, M. Fletcher, M. Jessop. "Delivering a Grid enabled Distributed

Aircraft Maintenance Environment (DAME)", In: Proceedings of the UK e-Science All
Hands Meeting 2003.

17. http://agcentral.org/help/glossary/pig
18. http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/pb_whitepaper.pdf
19. Shared Applications Programmers Manual http://www-unix.mcs.anl.gov/ fl/research/

accessgrid/documentation/SHARED_APPLICATIONS_MANUAL/ProgrammersManual_
SharedApplicationsHTML.htm

A Parallel Plug-In Programming Paradigm�

Ronald Baumann1,2, Christian Engelmann1,2, and Al Geist2

1 Department of Computer Science
The University of Reading, Reading, RG6 6AH, UK

2 Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164, USA

{r.baumann, c.engelmann}@reading.ac.uk,
{baumannr, engelmannc, gst}@ornl.gov

http://www.csm.ornl.gov

Abstract. Software component architectures allow assembly of appli-
cations from individual software modules based on clearly defined pro-
gramming interfaces, thus improving the reuse of existing solutions and
simplifying application development. Furthermore, the plug-in program-
ming paradigm additionally enables runtime reconfigurability, making it
possible to adapt to changing application needs, such as different ap-
plication phases, and system properties, like resource availability, by
loading/unloading appropriate software modules. Similar to parallel pro-
grams, parallel plug-ins are an abstraction for a set of cooperating in-
dividual plug-ins within a parallel application utilizing a software com-
ponent architecture. Parallel programming paradigms apply to parallel
plug-ins in the same way they apply to parallel programs. The research
presented in this paper targets the clear definition of parallel plug-ins
and the development of a parallel plug-in programming paradigm.

1 Introduction

Today, parallel and distributed scientific computing is a tool that enables re-
searchers world-wide to solve large-scale problems in many different research
areas, such as climate, nanotechnology, quantum chemistry, nuclear fusion, and
astrophysics. Scientific high-end computing (HEC) utilizing tens-to-hundreds of
thousands of processors enables new scientific breakthroughs in these areas us-
ing computational simulations (simulated experiments) of real-world problems.
HEC exploits multi-processor parallelism of scientific algorithms on a large scale
using common parallel programming paradigms, such as single program multi-
ple data (SPMD) and multiple program multiple data (MPMD). The scientific
computation is performed by a set of cooperating individual processes or tasks
communicating via message passing and/or remote method invocation as part
of a parallel scientific application.
� This research is sponsored by the Mathematical, Information, and Computational

Sciences Division; Office of Advanced Scientific Computing Research; U.S. Depart-
ment of Energy. The work was performed at the Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 823–832, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

824 R. Baumann, C. Engelmann, and A. Geist

Software component architectures, such as Harness [1,2] and the Common
Component Architecture (CCA) [3,4], allow assembly of scientific applications
from individual software modules based on clearly defined programming inter-
faces, thus improving the reuse of existing solutions and simplifying application
development. Furthermore, the plug-in programming paradigm additionally en-
ables runtime reconfigurability making it possible to adapt to changing appli-
cation needs, such as different application phases, and system properties, like
resource availability, by loading/unloading appropriate software modules.

Component architectures and plug-in programming are well understood tech-
nologies for non-parallel system architectures. HEC applications are inherently
parallel requiring adaptation of these technologies to parallel and distributed
system architectures. Past research focused on the following two approaches:

– In Harness, the component framework itself runs in a distributed virtual
machine (DVM) fashion, where all processes cooperate in a virtual machine
environment. This approach enables assembly of SPMD and MPMD appli-
cations from components, but requires the DVM to setup all components
based on locality. It is not very scalable, but applications are easy to im-
plement due to the support for global component setup. Fault tolerance is
addressed through plug-in checkpoint/restart mechanisms using the DVM
as a highly available backbone for management and storage.

– In CCA, the component framework itself runs in a parallel (SPMD) fashion,
where each process individually is able to manage its own set of components.
This approach also enables assembly of SPMD and MPMD applications from
components, but requires each component framework instance to setup its
components based on locality. It is very scalable, but applications are difficult
to implement due to the required local component setup. Fault tolerance is
addressed trough application checkpoint/restart mechanisms.

The notion of parallel plug-ins evolved from research within the Harness
project. Similar to parallel programs, parallel plug-ins are an abstraction for a
set of cooperating individual plug-ins communicating via message passing and/or
remote method invocation as part of a parallel scientific application. Parallel pro-
gramming paradigms (SPMD/MPMD) apply to plug-ins in the same way they
apply to programs. Parallel plug-ins within Harness are effectively realized by
utilizing the distributed virtual machine. Within CCA, parallel plug-ins are ef-
fectively realized by implementing parallel programs consisting of plug-ins. Up
until now, both approaches avoided a clear definition of parallel plug-ins as it
was not well understood.

The research presented in this paper targets the clear definition of paral-
lel plug-ins and the development of a parallel plug-in programming paradigm
that combines both approaches in order to further improve reuse of existing
solutions and to simplify application development. Harness is being used as a
proof-of-concept research vehicle to prototype parallel plug-in management and
experimental parallel plug-ins.

In the following sections, we first briefly discuss past and ongoing related re-
search and development efforts. Secondly, we present a clear definition of parallel

A Parallel Plug-In Programming Paradigm 825

plug-ins, their programming models (types) and their programming requirements
(communication, coordination, and fault tolerance). We continue with a descrip-
tion of our prototype implementation for two distinct scientific application sce-
narios. This paper concludes with a short summary of the presented research
and a discussion future work.

2 Related Work

The research in Harness [1,2] is a collaborative effort among Oak Ridge National
Laboratory (ORNL), University of Tennessee, Knoxville, and Emory University
focusing on the design and development of technologies for flexible, adaptable, re-
configurable, lightweight environments for heterogeneous parallel and distributed
scientific metacomputing.

As part of the Harness project, a variety of experiments and system prototypes
were developed to explore lightweight pluggable runtime environments, assembly
of scientific applications from software modules, highly available DVMs, fault-
tolerant message passing, fine-grain security mechanisms, and heterogeneous re-
configurable communication frameworks.

Currently, there are three different Harness system prototypes, each concen-
trating on different research issues. The teams at ORNL [5,6,7,8] and at the
University of Tennessee [9,10,11,12] provide different C variants, while the team
at Emory University [13,14,15,16] maintains a Java-based alternative.

Conceptually, the Harness software architecture consists of two major parts:
a runtime environment (RTE) and a set of plug-in software modules. The multi-
threaded RTE manages the set of dynamically loadable plug-ins. While the RTE
provides only basic functions, plug-ins may provide a wide variety of services
needed in fault-tolerant parallel and distributed scientific computing, such as
messaging, scientific algorithms, and resource management. Multiple RTE in-
stances can be aggregated into a DVM.

Our research in parallel plug-ins focuses on the C-based lightweight Harness
RTE from ORNL [7] using its dynamic, heterogeneous, reconfigurable commu-
nication framework (RMIX) [6] plug-in for fault-tolerant message passing and
remote method invocation.

RMIX allows software components to communicate using various remote met-
hod invocation (RMI) and remote procedure call (RPC) protocols, such as ONC
RPC, by facilitating dynamically loadable provider plug-ins to supply differ-
ent protocol stacks. While the RMIX base library contains functions that are
common to all protocol stacks, like networking and thread management, RMIX
provider plug-ins contain protocol stack specific functions for connection man-
agement, message formats, and data encoding. Since it is up to the provider
plug-ins to reuse RMIX base library functions, implementations may range from
lightweight to heavyweight. Moreover, client- and server-side object stubs are
very lightweight and protocol independent as they only perform an adaptation
to the RMIX system. In addition to standard synchronous RMI/RPC mech-
anisms, RMIX also offers advanced RMI/RPC invocation semantics, such as

826 R. Baumann, C. Engelmann, and A. Geist

asynchronous and one-way. RMIX is not a high-performance message passing
system. Its RMI/RPC mechanisms are designed for loosely-coupled systems.

The Harness-RMIX plug-in contains the RMIX base library as well as client-
and server-side object stubs of the Harness RTE. Stubs for Harness plug-ins
are implemented as separate plug-ins. Since the Harness RTE supports plug-in
dependencies, a plug-in requiring RMIX automatically loads its stub plug-in(s),
which subsequently loads the RMIX plug-in.

The already mentioned Common Component Architecture (CCA) [3,4] is a
component-based approach targeted at the needs of large-scale, complex, high-
end, scientific simulations. CCA relies on a standardized component framework
model for scientific applications based on an interface description language for
component interfaces, a port model for unified component interaction, core com-
ponent framework services, a framework configuration API and a framework
repository API. Several CCA framework implementations exist that serve dif-
ferent areas of interest for scientific applications. Furthermore, a set of CCA
components exist as well as a number of CCA-based scientific applications.

It is our hope that the work presented in this paper will be eventually incorpo-
rated in some form into production-type component architectures for scientific
HEC, such as the Common Component Architecture, to further improve reuse
of existing solutions and to simplify application development.

Other related past and ongoing research and development efforts include
lightweight plug-in design patterns [17], a various number of pluggable compo-
nent frameworks (e.g. the Open CORBA Component Model Platform [18,19]),
as well as recent accomplishments in RTEs for parallel and distributed system
architectures, such as Open RTE [20].

3 Parallel Plug-Ins

The intent of our research presented in this paper is to merge plug-in program-
ming technologies with pluggable component frameworks for parallel architec-
tures using common parallel programming models and appropriate design pat-
terns in order to provide better reuse of existing solutions as well as easier
scientific application development.

A parallel plug-in can be defined as a set of individual plug-ins cooperating in
a parallel architecture to perform a common task, such as solving a computation
or providing a service. Participating individual plug-ins may be located on the
same or on distributed computational resources, and communicate with each
other for task control and data transfer purposes. Similar to a parallel program,
a parallel plug-in is a parallel programming abstraction, where the same parallel
programming models, such as SPMD and MPMD, apply.

While the execution environment of a parallel program is a parallel or dis-
tributed operating system, parallel plug-ins reside within a component frame-
work for parallel architectures, i.e., within a parallel program. They provide a
componentized approach for building parallel applications by offering parallel
building blocks with clearly defined interfaces.

A Parallel Plug-In Programming Paradigm 827

In the past, parallel plug-ins have been effectively realized by by utilizing a
pluggable DVM environment or by implementing parallel programs consisting
of individual plug-ins. Both approaches dealt with the necessary coordination of
individual cooperating plug-ins by using either distributed control [8] or localized
control [3], while avoiding a clear definition of parallel plug-ins. In both cases,
it is up to the plug-in component programmer to take care of task control and
data transfer without access to appropriate design patterns.

3.1 Parallel Plug-In Types

A parallel plug-in consists of one or more individual plug-ins that add features
and capabilities to the runtime environment of a component framework as part of
a parallel application. The following parallel plug-in types (see Figure 1) can be
defined based on number, location, and purpose of involved individual plug-ins:

– The singleton (or service) plug-in is a special case of parallel plug-in as it
involves only one individual plug-in at one node within the context of a
parallel application.

– The SPMD (or replicated) plug-in follows the known SPMD parallel pro-
gramming model and involves more than one node within the context of a
parallel application. The same plug-in code is replicated to different nodes
and applied to different data.

– The MPMD (or distributed) plug-in follows the known MPMD parallel pro-
gramming model and involves more than one node within the context of a
parallel application. Different plug-in codes are distributed to different nodes
and applied to different data.

3.2 Parallel Plug-In Communication

Communication is essential for parallel plug-ins. Similar to parallel programs,
parallel plug-ins communicate using message passing and/or RMI/RPC in or-
der to coordinate individual tasks and to transfer necessary data. In order to
identify individual collaborating plug-ins within a parallel plug-in, naming and
message/invocation routing is needed.

Message passing systems, such as PVM [21] and MPI [22], typically only
provide naming and routing mechanisms for individual processes of a parallel
application and not for individual plug-ins. Message tags may be used to identify
individual plug-ins within an individual process. However, a separate plug-in
naming service is needed in order to support dynamic adaptation, i.e., dynamic
loading and unloading of parallel plug-ins.

RMI/RPC systems typically provide a naming and routing mechanism for
exported objects or program parts. Individual plug-ins that are part of a parallel
plug-in may be exported as objects or program parts using a RMI/RPC system
for naming and routing of invocations. Furthermore, local services of individual
component framework processes may be exported as objects or program parts
as well to enable remote access to basic component framework services, such as
loading and unloading of plug-ins.

828 R. Baumann, C. Engelmann, and A. Geist

Fig. 1. Parallel Plug-in Types

3.3 Parallel Plug-In Coordination

Coordination of individual plug-ins that are part of a parallel plug-in is needed
to perform loading, unloading, task and data distribution, and fault tolerance
mechanisms. This coordination is accomplished via separate coordination (ser-
vice) plug-ins and via the parallel plug-in itself using the communication sub-
system with its plug-in naming scheme to address individual plug-ins.

In order to load a parallel plug-in, the used component framework itself or
a separate service plug-in contacts individual component framework processes
and loads the appropriate individual plug-in based on the parallel plug-in type.
Unloading a parallel plug-in is implemented in the same way.

A Parallel Plug-In Programming Paradigm 829

Task and data distribution can be performed by the parallel plug-in itself if
it supports self configuration. However, in order to simplify parallel plug-in and
application development, a separate service plug-in may be used to execute task
and data distribution based on the parallel plug-ins programming model, i.e.,
by automatically partitioning data and/or assigning tasks.

Similarly, fault tolerance mechanisms, such as checkpoint/restart, may be per-
formed by the parallel plug-in itself if supported, but may also be coordinated
by a separate service plug-in based on a design pattern that matches the fault
behavior and fault tolerance requirements of the parallel plug-in.

3.4 Parallel Plug-In Fault Tolerance

Fault tolerance is typically realized in three steps: detection, notification, and
reconfiguration. In parallel computing, detection and notification are typically
performed by the communication system using timeouts to detect faults and the
naming scheme to identify faulty communication endpoints.

A parallel plug-in may be reconfigured using the same techniques as for paral-
lel programs, with the exception that reconfiguration takes place within the par-
allel plug-in programming scope. Parallel plug-in state may be regularly stored
on stable storage in the same way a parallel program checkpoint is stored. Upon
failure, the entire parallel plug-in or parts of it (individual plug-ins) may be
restarted on different nodes. Loss of state due to failures may be ignored if the
application is able to continue without extensive reconfiguration [23].

As already mentioned earlier, fault tolerance mechanisms for parallel plug-ins
may be encapsulated into a separate service plug-in based on a design pattern
that matches the fault behavior and fault tolerance requirements of the parallel
plug-in. Furthermore, such a service plug-in may directly interface to existing
fault tolerance technologies, such as checkpoint/restart layers.

4 Prototype Implementation

A proof-of-concept prototype has been implemented as part of a Master’s the-
sis [24] using the Harness RTE as a research vehicle.

The Harness RTE offers a lightweight backbone to load and unload individual
plug-ins into a multi-threaded process residing on a single node. Multiple Harness
RTEs located on the same or different nodes are used as a lightweight backbone
to load and unload parallel plug-ins utilizing a parallel parallel plug-in manager
for coordination and the Harness-RMIX plug-in for communication.

In the following, we describe the developed parallel plug-in manager and our
efforts in implementing a parallel plug-in design pattern for two distinct scientific
application scenarios.

4.1 Parallel Plug-In Manager

The parallel plug-in manager (PPM) is itself a service plug-in and provides par-
allel plug-in management services for both parallel plug-in programming models,

830 R. Baumann, C. Engelmann, and A. Geist

SPMD and MPMD. These services include: loading, unloading, task and data
distribution, and fault tolerance support.

The PPM loads a parallel plug-in by starting and contacting a set of Harness
RTEs via remote method invocation to load a specific individual Harness plug-in.
The set of available nodes is given by the user. The number of involved Harness
RTEs must be equivalent or more than the number of individual plug-ins needed.
A round robin schedule may be used in a more sophisticated solution to allow
oversubscribtion of nodes.

Loading a parallel plug-in introduces the problem of partial success, i.e., not
all individual plug-ins were loaded due to unavailability of resources (plug-in,
Harness RTE, or node). If there are more nodes available than needed, the PPM
retries to load an individual plug-in at a different location.

The parallel plug-in loading fails if not all required individual plug-ins were
loaded. This decision entirely depends on the parallel plug-in to load and is
guided by the user by configuring the PPM appropriately.

Task and data distribution depending on the parallel plug-in programming
model may be performed as part of the parallel plug-in loading procedure. Fur-
thermore, fault tolerance mechanisms are supported via the PPM by offering
restart of failed parallel plug-in parts.

4.2 Monte Carlo Integration

The first proof-of-concept parallel plug-in has been implemented using the SPMD
programming model performing a Monte Carlo integration algorithm in a bag-
of-tasks fashion. The developed parallel plug-in consists of a Monte Carlo inte-
gration algorithm, where each individual plug-in performs an equal share of the
overall computation. The PPM loads the parallel plug-in on all available nodes,
while accepting partial loading success.

Fault tolerance has been implemented using a separate service plug-in to
reload failed plug-ins upon notification. The Monte Carlo integration share of
a failed plug-in is repeated entirely. The degree of fault tolerance is n− 1, i.e.,
n− 1 out of n Harness RTEs may fail.

4.3 Image Processing

The second proof-of-concept parallel plug-in has been implemented using the
MPMD programming model performing a sequence of image processing algo-
rithms in a pipeline fashion. The developed parallel plug-in consists of a set of
individual plug-ins, each performing a different computation and forwarding its
result to the next plug-in. The PPM loads the parallel plug-in on the necessary
number of nodes. It does not accept partial loading success.

Fault tolerance has been implemented using a separate service plug-in to
reload failed plug-ins and to reconfigure the pipeline upon notification. Each
plug-in stores its results temporarily until completion has been acknowledged
by the next plug-in in the pipeline. The image processing algorithm of a failed
plug-in is repeated for all unacknowledged results. The degree of fault tolerance

A Parallel Plug-In Programming Paradigm 831

is 1, i.e., 1 Harness RTE may fail. The degree may be increased significantly
using stable storage for intermediate results.

5 Conclusion

With this paper, we presented results of our recent research in a parallel plug-in
programming paradigm for software component architectures in parallel and dis-
tributed scientific high-end computing. We defined the parallel plug-in abstrac-
tion, associated programming models, and resulting programming requirements.
We demonstrated similarities and differences between parallel plug-ins and pro-
grams with regards to their programming models and execution environments.
We described a Harness-based proof-of-concept prototype of a parallel plug-in
manager and of parallel plug-ins for two distinct scientific application scenarios.
Further implementation details have been published in a Master’s thesis [24].

Our research indicates that the parallel plug-in programming paradigm pre-
sented in this paper is an appropriate design template for software component
architectures in parallel and distributed scientific high-end computing.

It is our hope that the work presented in this paper will be eventually incor-
porated in some form into production-type component architectures, such as the
Common Component Architecture, to further improve reuse of existing solutions
and to simplify application development.

References

1. Geist, G.A., Kohl, J.A., Scott, S.L., Papadopoulos, P.M.: HARNESS: Adaptable
virtual machine environment for heterogeneous clusters. Parallel Processing Letters
9(2) (1999) 253–273

2. Beck, M., Dongarra, J.J., Fagg, G.E., Geist, G.A., Gray, P., Kohl, J.A., Migliardi,
M., Moore, K., Moore, T., Papadopoulous, P., Scott, S.L., Sunderam, V.: HAR-
NESS: A next generation distributed virtual machine. Future Generation Com-
puter Systems 15(5–6) (1999) 571–582

3. Common Component Architecture Forum: Home Page. Available at http://www.
cca-forum.org (2006)

4. SciDAC Center for Component Technology for Terascale Simulation Software
(CCTTSS): High-Performance Scientific Component Research: Accomplish-
ments and Future Directions. Available at http://www.cca-forum.org/db/
news/documentation/whitepaper05.pdf (2005)

5. Oak Ridge National Laboratory, Oak Ridge, TN, USA: Harness project. Available
at http://www.csm. ornl.gov/harness (2006)

6. Engelmann, C., Geist, G.A.: RMIX: A dynamic, heterogeneous, reconfigurable
communication framework. In: Lecture Notes in Computer Science: Proceedings of
International Conference on Computational Science (ICCS) 2006, Part II. Volume
3992., Reading, UK (May 28-31, 2006) 573–580

7. Engelmann, C., Geist, G.A.: A lightweight kernel for the Harness metacomputing
framework. In: Proceedings of 14th Heterogeneous Computing Workshop (HCW)
2005, Denver, CO, USA (April 4, 2005)

832 R. Baumann, C. Engelmann, and A. Geist

8. Engelmann, C., Scott, S.L., Geist, G.A.: Distributed peer-to-peer control in Har-
ness. In: Lecture Notes in Computer Science: Proceedings of International Con-
ference on Computational Science (ICCS) 2002. Volume 2330., Amsterdam, The
Netherlands (April 21-24, 2002) 720–727

9. University of Tennessee, Knoxville, TN, USA: Harness project. Available at http://
icl.cs.utk.edu/harness (2006)

10. University of Tennessee, Knoxville, TN, USA: FT-MPI project. Available at
http://icl.cs.utk.edu/ftmpi (2006)

11. Fagg, G.E., Bukovsky, A., Vadhiyar, S., Dongarra, J.J.: Fault-tolerant MPI for the
Harness metacomputing system. In: Lecture Notes in Computer Science: Proceed-
ings of International Conference on Computational Science (ICCS) 2001. Volume
2073. (2001) 355–366

12. Fagg, G.E., Bukovsky, A., Dongarra, J.J.: Harness and fault tolerant MPI. Parallel
Computing 27(11) (2001) 1479–1495

13. Emory University, Atlanta, GA, USA: Harness project. Available at http://www.
mathcs.emory.edu/harness (2006)

14. Kurzyniec, D., Wrzosek, T., Sunderam, V., Slominski, A.: RMIX: A multiprotocol
RMI framework for Java. In: Proceedings of IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS) 2003, Nice, France (April 22-26, 2003)
140–145

15. Kurzyniec, D., Sunderam, V.S., Migliardi, M.: PVM emulation in the Harness
metacomputing framework - Design and performance evaluation. In: Proceedings
of International Symposium on Cluster Computing and the Grid (CCGRID) 2002,
Berlin, Germany (May 21-24, 2002) 282–283

16. Sunderam, V., Kurzyniec, D.: Lightweight self-organizing frameworks for meta-
computing. In: Proceedings of IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC) 2002, Edinburgh, Scotland (July 24-26,
2002) 113–124

17. Mayer, J., Melzer, I., Schweiggert, F.: Lightweight plug-in-based application devel-
opment. In: Lecture Notes In Computer Science: Revised Papers from the Inter-
national Conference NetObjectDays on Objects, Components, Architectures, Ser-
vices, and Applications for a Networked World (NODe’02). Volume 2591., Erfurt,
Germany (October 7-10, 2002) 87–102

18. Object Management Group, Inc: CORBA Component Model. Available at
http://www.omg.org/technology/documents/formal/components.htm/ (2006)

19. ObjectWeb Consortium: OpenCCM - The Open CORBA Component Model Plat-
form. Available at http://openccm.objectweb.org/ (2006)

20. OpenRTE Team: OpenRTE project. Available at http://www.open-rte.org (2006)
21. Geist, G.A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchek, R., Sunderam,

V.S.: PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, Cambridge, MA, USA (1994)

22. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference. MIT Press, Cambridge, MA, USA (1996)

23. Engelmann, C., Geist, G.A.: Super-scalable algorithms for computing on 100,000
processors. In: Lecture Notes in Computer Science: Proceedings of International
Conference on Computational Science (ICCS) 2005. Volume 3514., Atlanta, GA,
USA (May 22-25, 2005) 313–320

24. Baumann, R.: Design and development of prototype components for the Harness
high-performance computing workbench. Master’s thesis, Department of Computer
Science, University of Reading, UK (March 6, 2006)

Hybrid MPI-Thread Implementation on a Cluster
of SMP Nodes of a Parallel Simulator for the
Propagation of Powdery Mildew in a Vineyard

Gaël Tessier1, Jean Roman1, and Guillaume Latu2

1 INRIA Futurs and LaBRI UMR 5800, ScAlApplix project
Université Bordeaux 1 and ENSEIRB, 33405 Talence Cedex - France

http://www.labri.fr/projet/scalapplix
2 LSIIT UMR 7005, Université Strasbourg 1

67412 Illkirch Cedex - France

Abstract. This paper describes a new hybrid MPI-thread implementa-
tion of a parallel simulator for the propagation of a parasite in a vineyard.
The model also considers the structure, the growth and the susceptibility
of the plant. Two spatial scales are distinguished for the dispersal of the
fungus. A realistic discrete model was used for the local and neighbour-
ing dispersal, and a stochastic model integrates distribution laws for the
long-range dispersal over the parcel. An algorithmic description of the
new parallel simulator is given and real life numerical experiments on an
IBM SP5 are provided, using up to 128 processors.

1 Introduction

This paper deals with the simulation of a biological host-parasite system: pow-
dery mildew is a fungus parasite of grapevine. The propagation of the parasite
involves a large number of multiscale mechanisms between the environment, the
host and the pathogen. Many epidemiological studies have been performed on
this topic, using dispersal models based on differential calculus such as in [7] and
[9]. Yet, the dynamics of the spread of epidemics is still not well known.

The main purpose of this work is to integrate knowledge obtained during
experiments and to reproduce the events that interact in this complex system,
so as to understand better its dynamics and to have a more effective control of
epidemics. Our original approach consists in modeling both the architecture and
the growth of the vinestocks, and the dispersal of the parasite over the vineyard.
By coupling these two models, we produce realistic simulations of the biological
system. Initially, a sequential simulator considering only one grapevine has been
developed. Since the simulation requires a large amount of calculations, we have
designed a parallel version able to simulate the spread of epidemics over a parcel;
its characteristics and performances were previously described in [2], [8].

Nowadays, massively parallel high performance computers are generally de-
signed as networks of SMP nodes. Each SMP node consists of a set of processors
that share the same physical memory, to fully exploit shared memory advan-
tages, a relevant approach is to use an hybrid MPI-thread implementation. The

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 833–842, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

834 G. Tessier, J. Roman, and G. Latu

rationale that motived this new hybrid implementation was that the communica-
tions within a SMP node can be advantageously substituted by direct accesses to
shared memory between the processors in the SMP node using threads. As a con-
sequence, the MPI communications are only used between processors that host
threads from different MPI processes. We achieve to reduce the global amount
of data exchanged over the network by using shared memory and by modifying
the original algorithm.

The remainder of the paper is organized as follows: Sect. 2 describes a brief
review of the biological system and of the biomathematical model, Sect. 3 de-
scribes our hybrid implementation and Sect. 4 provides a performance analysis
of the simulation. Finally, Sect. 5 gives some biological results from a real life
simulation and some conclusions.

This interdisciplinary work is a collaboration between the INRIA Futurs
ScAlApplix project and the LSIIT UMR 7005 for the computer science field,
the INRA UMR Santé Végétale in Villenave d’Ornon for the biological investi-
gations and the MAB UMR 5466 for the mathematical models.

2 Description of the Biological Model

2.1 Biological Model

We consider the simulation of a single season, from January to the beginning of
September with a time step of one day. Location and onset of primary infection
are some input parameters of the simulation.

Vinestocks are hierarchical plants modeled by binary trees. Each node of the
tree represents an element of the plant, and contains information on its spatial
and biological state. Powdery mildew (see [1]) is a fungus that spreads thanks
to microscopic airborne spores. Its biological cycle consists of: the infection of a
leaf or of a cluster by spores; a latency period during which the rising colony is
only growing; a sporulation phase during which spores are released by wind.

As for the dispersal of spores, which is a key step of computations, two scales
have been distinguished:

neighbouring dispersal - in a local domain englobing the source stock and
its direct neighbours, the spores are spread within dispersal cones thrown from
each sporulating colony. If some spores reach one edge of the rectangular paral-
lelepiped delimiting the volume of the grapevine, they either fall on the ground,
or are transmitted to the contiguous grapevine, or are dispersed over the vine-
yard depending on the exit side;
long range dispersal - at long range, dispersal is computed stochastically.
Random drawings following distribution laws yield displacements to spread spo-
res over all the stocks of the parcel.

One iteration of the simulation on a single grapevine consists of several steps:
fetching of the variables describing the environmental conditions, vineyard man-
agement practices, growth and apparition of organs, primary infection at the
given date and dispersal of spores within the plant. The dispersal of spores

Hybrid MPI-Thread Implementation on a Cluster of SMP Nodes 835

turns out to be the most costly part of computations. From each sporulating
colony, spores are spreaded within a dispersal cone. For efficiency, the volume
delimiting the grapevine was cut out with a discrete mesh of parallelepipeds
called voxels [6]. This avoids to consider each leaf of the binary tree to determine
the set of leaves that intercept the cone as shown in Fig. 1.

the spread
origin of

dispersal
cone

Fig. 1. Dispersal cone in a grapevine; only bold voxels intercept the cone

In comparison with the previous biological model used in [2], some modifi-
cations and improvements have been provided; an important one is the possi-
bility for leaves to carry multiples lesions. This significantly increases the num-
ber of dispersal cones, hence the amount of computations and the volume of
data exchanged during the neighbouring dispersal. The algorithmic complex-
ity of the local dispersal within a vinestock grows as O(#leaves · log(#leaves)),
where #leaves is the total number of leaves in the vinestock.

2.2 Previous Parallel Simulator

The parallelization was based on an SPMD [3] approach. The field was modelled
as a 2D mesh of vinestocks and the set of stocks attributed to a processor, called
local_stocks, was determined according to a 2D-cyclic distribution [3]. Then, an
iteration of the simulation was split into three important phases as in Fig. 2.

for vine in local_stocks do
vine_computations

end for
neighbouring_dispersal
long_range_dispersal

Fig. 2. Algorithm of a parallel iteration after budding

vine_computations corresponds to the operations performed on a single
grapevine, except that dispersal cones that exit the vine volume by lateral sides
are added to the adequate cone lists for the neighbouring dispersal. Other exiting
spores are accumulated in the vine data structure for later long-range dispersal.

The number of cones or spores cannot be predicted; algorithmic complexities
of neighbouring_dispersal and long_rang_dispersal could only be evalu-
ated dynamically. Also, since a process does not calculate the list of processes

836 G. Tessier, J. Roman, and G. Latu

that have contiguous stocks with its own, MPI_Alltoall communications are
performed during these both dispersals: each process exchanges with other ones
the dispersal cones that are transmitted between contiguous stocks and the
spores that are spreaded at long range over the whole field.

3 Using of an Hybrid MPI-Thread Programming

One main performance problem of the first parallel implementation was the
increasing part of time for synchronizations and communications, as shown
in [2], making the efficiency drop with large numbers of processors. Indeed,
as any grapevine can disperse spores on any other one, communications are
MPI_Alltoall-like. The cost of such operations and synchronizations increases
highly along with the number of processors involved in the simulation.

To overcome this problem, an hybrid approach mixing processes and threads
has been implemented. Some other works have integrated OpenMP threads in
parallel MPI implementations ([5]) but far less used POSIX threads which are
more flexible though.

The idea is to benefit from the high speed of shared memory accesses by
replacing n monothreaded processes in the previous simulator by n/p processes,
each one containing p simulation threads that compute the growth of stocks
and colonies and the dispersal of spores, and one master thread responsible for
inter-process MPI [4] communications. On the one hand, the number of processes
involved in global communications will be smaller, on the other hand, threads
in a same process can exchange data via the shared memory, avoiding MPI
communications.

3.1 Design of the Parallel Algorithm

Both master and simulation thread codes are iterative over the time steps. During
each iteration, synchronizations are necessary: in each process, the master thread
has to wait for the end of some calculations in order to send local data to other
processes. Similarly, simulation threads have to wait for the completeness of
communications in order to perform calculations on received data. Listings 1.1
and 1.2 present the general structure of an iteration code for communication and
simulation threads.

Before explaining in details the different steps of computations and communi-
cations, we describe briefly the variables and the data structures in each process.
Each process knows the number of processes n_procs involved in the simulation,
and each one runs one communication thread and n_threads simulation ones.
local_vines is the set of stocks assigned to the process and each simulation
thread is attributed a private subset of that one, called thread_vines.

neighbour_cones is an array of n_procs arrays of dispersal cones (source, di-
rection, number of spores). Its kth entry refers to the list of cones from grapevines
in local_vines that have to be spreaded over the stocks of the MPI process
of rank k. Also recv_cones is an array of n_procs −1 arrays where cones from
other processes are received.

Hybrid MPI-Thread Implementation on a Cluster of SMP Nodes 837

ldist_spores is an array of n_threadsarrays. Its kth entry is an arraywith the
field dimensions: it has as many lines as rows in the parcel and as many columns
as stocks in the rows. Each one of its elements is associated to the stock of same
coordinates in the field. An element in this array is the number of spores received
by the corresponding stock during the long range dispersal from all others in the
set thread_vines of the simulation thread k in the current process.

Listing 1.1. Communication thread

get_paramaters ()
barrier_wait (GET_PARAM)

barrier_wait (CALC_LOC)
comm_disp_neighbour ()

barrier_wait (COMM_NEIGHBOUR)

barrier_wait (CALC_NEIGHBOUR)
comm_disp_longdist ()

barrier_wait (COMM_LONGDIST)

barrier_wait (CALC_LONGDIST)
update_system_variables ()

Listing 1.2. Simulation thread

barrier_wait (GET_PARAM)
for v ine in thread_vines do

ev o lu t i on (v ine)
l o c a l_d i s p e r s a l (v ine)

end for
barrier_wait (CALC_LOC)

calc_disp_neighbour_local ()
barrier_wait (COMM_NEIGHBOUR)

calc_disp_neighbour ()

spread_spores_longdist ()
barrier_wait (CALC_NEIGHBOUR)

barrier_wait (COMM_LONGDIST)
calc_disp_longd i st ()

barrier_wait (CALC_LONGDIST)

Hereafter, we will describe each function calls of Listings 1.1 and 1.2.
get_parameters consists in reading input files to fetch global data describing

the environment, such as temperature, wind speed and direction. . .
evolution performs to the management practices of viticulture system (shoot

topping, leave cutting for example) and the growth and the apparition of organs
in grapevines.

local_dispersal computes the dispersal of spores from each sporulating colony
within dispersal cones.

When a cone reaches a lateral side of the delimiting volume of the stock, it
has to continue its way in the neighbour stock. The MPI process to which it will
be sent, is determined. Then the characteristics of the cone are written in the
corresponding array in neighbour_cones data structure.

Moreover, when the cone exits the volume of the stock by the above edge,
its spores are accumulated in a counter of the stock to be spread through long
range dispersal.

comm_disp_neighbour sends to and receives from each other process the
cones in the arrays neighbour_cones and recv_cones.

838 G. Tessier, J. Roman, and G. Latu

calc_disp_neighbour_local is called during the communication of neighbour
dispersal cones. Each simulation thread traverses the entry of neighbour_cones
for its own process. This entry corresponds to the cones that were transmitted
between neighbour stocks that are both allocated to the same process. In this
way, it allows at least a partial overlap of the communications by computation.

Note that a dispersal cone can be transmitted from one stock to a contigu-
ous one but not again to another neighbour. If the cone passes through two
grapevines, its spores are finally accumulated for long range dispersal.

calc_disp_neighbour does the same as the previous calculation step, except
that input cones are in the arrays recv_cones received from other processes.

spread_spores_longdist considers each stock in thread_vines. For each one,
the corresponding simulation thread performs two Gaussian random drawings
that yield a displacement in the referential of the field. It either identifies a target
stock or the outside of the field. In the first case, the spores accumulated in the
source stock are written in ldist_spores.

comm_disp_longdist merges the arrays in ldist_spores in the first entry,
by adding the numbers of spores that correspond to the same target stock. The
merge result is sent to all other processes and the arrays received from them
are merged. At the end of the communication, an element in the first array of
ldist_spores is the number of spores received by the corresponding stock from
all others in the parcel.

calc_disp_longdist takes as input the merged array constructed during the
communication. Each simulation thread computes the dispersal of spores on each
stock in its thread_vines array.

update_variables eventually updates some global variables, increments the
current day or indicates the end of the simulation to the simulation threads.

3.2 Data Distribution

As in the initial simulator, stocks are allocated to processes and we have kept a
2D block-cyclic distribution. A set of stocks almost uniformely distributed over
the parcel is attributed to each process. As a region in the neighbourhood of a
primary foci of infection generates more dispersal cones and then computations,
this distribution tends to balance the computations between the processes if the
blocks are small.

On the other hand, to benefit from the overlap of communications in the func-
tion calc_disp_neighbour_local, it is important to have as many contiguous
stocks as possible allocated to a process, that means big blocks. The chosen size
is square blocks of four stocks.

Inside a process, a simple static 1D block distribution has been implemented
between threads for the moment.

The load-balancing was first completely static and rested upon the quality of
the initial distribution. The need of a dynamic load-balancing between threads
appeared during the performance evaluations. Its implementation will be dis-
cussed in the next section.

Hybrid MPI-Thread Implementation on a Cluster of SMP Nodes 839

4 Performance Analysis

The hybrid parallel simulator is implemented with MPI [4] and POSIX threads.
A platform located at Université Bordeaux 1 (Talence, FRANCE) was used

for the numerical experiments. This high performance parallel cluster consists of
13 nodes of 8 IBM P575 Power 5 DualCore processors connected by a Federation
switch. Up to 128 processors were used for the simulations. Several aspects were
evaluated during our benchmarks:
– the load-balancing revealing the need of a dynamic strategy;
– the influence of the ratio n_threads/n_procs confirming the efficiency of

the hybrid programming;
– the scalability, which is a key point for the performance of a parallel program.

4.1 Load-Balancing

Like in the initial simulator, the evolution of stocks is very fast and costs about
the same for every grapevine. So it is rather well-balanced between processes
and threads, and counts for a little part of computation time.

On the contrary, local_dispersal cost highly depends on the severity of dis-
ease. Preleminary tests underlined the load-imbalance that was responsible for
the disappointing initial performance. Indeed, due to synchronization barriers,
the length of a computation step is the one of the simulation thread that car-
ries out most of the calculations. To illustrate this point, a simulation was run
with four processes, each one with four simulation threads. Elapsed times in the
different computation steps were cumulated over the whole simulation in each
thread. Table 1 shows the minimum and maximum cumulated times for these
steps in one of the processes, the variation between theses times and in the last
column, the importance of this variation relative to the total simulation time.

Bold times hilight the most costly computation steps: local and neighbouring
dispersal. Their load-imbalance is very important, particularly relative to the
total time. Because of that, this configuration with four processes of four threads
was less efficient that the one with sixteen monothreaded processes.

So, a dynamic load-balancing mechanism was implemented for the local dis-
persal. Each simulation thread gets exclusively one vinestock in which it

Table 1. Minimum and maximum times for computation steps between threads of one
process during the simulation (242 days) of a 32×32 parcel

Computation step min time (s) max time (s) (max-min)/total
Evolution 13.3 21.9 (+65%) 1.5 %
Local_dispersal 127.4 264.5 (+108 %) 23 %
Calc_disp_neighbour_local 141.6 224.0 (+58 %) 14 %
Calc_disp_neighbour 49.4 108.2 (+119 %) 10 %
Spread_spores_longdist 0.018 0.0193 (+7%) 0%
Calc_disp_longdist 1.68 2.36 (+40%) 0.1 %
Total simulation 584

840 G. Tessier, J. Roman, and G. Latu

computes the local dispersal, and so on until every stocks in local_vines has
been considered. As a result, minimum and maximum times for the local disper-
sal in the same simulation became 212.5 s and 220.9 s (compared with 127.4 s and
264.5 s). Furthermore, time was also gained at the following barrier of synchro-
nization, hence reducing times for the calc_disp_neighbour_local to between
49.8 s and 104.1 s. However, this step remains unbalanced. Its dynamic load-
balancing will be studied in a future version, and it will require some important
changes in data structures for the neighbouring dispersal. Finally, the total sim-
ulation time was reduced to 497.6 s instead of 584 s.

4.2 Influence of the Ratio n_threads/n_procs

A series of simulations were performed on a 32×32 parcel with different con-
figurations from 1 to 16 threads per process and with 16 to 128 processors.
Table 2 reports the total simulation times for these different configurations. We
do consider here a number of processors equal to n_procs × n_threads.

Bold times are the best performances for different number of processors. These
performances are better from 12 % to 23 % than the mono-threaded ones and
from 20 % to 47 % than the 16-threaded ones. It appears that best results are ob-
tained with “intermediate” number of threads: generally four threads per process
which means four processes per nodes.

The examination of the refined profilings explain theses results. Indeed, the
cumulated times over the simulation for the local dispersal in each simulation
thread follow a similar evolution to the total simulation time, as shown in Tab 3.

It is about the same evolution for the cumulated times of the two steps
calc_disp_neighbour_local and calc_disp_neighbour.

As presented in Sect. 4.1, an effective load-balancing mechanism has been
added to the local dispersal. So, these increasing times for high numbers of
threads per process are not only due to bad distribution or load-imbalance.

Table 2. Total simulation times for different configurations on a 32×32 parcel

Number of processors
n_threads per process

1 2 4 8 16
16 567.6 515.8 497.6 567 626.8
32 349.5 293.6 280.5 467.2 485.6
64 221.1 177.9 154.9 206.7 300.3
128 137.1 105.4 126.2 168.9 200.4

Table 3. Maximum cumulated times for the local dispersal for the simulation of a
32×32 parcel with 16 processors

n_threads per process
1 2 4 8 16

263.6 231.6 220.9 256.7 296.7

Hybrid MPI-Thread Implementation on a Cluster of SMP Nodes 841

12816 6432

4−threaded
monothreaded

16−threaded
 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 3. Comparison of relative efficiency between the monothreaded, 4-threaded and
16-threaded parallel simulators

In fact, during this computational step, the n_threads simulation threads
successively reserves stocks until all local stocks have been considered. While
computing the dispersal, they write in the n_procs arrays of neighbour_cones
the dispersal cones that are transmitted between neighbour stocks. To avoid
write concurrency problems in the arrays, each thread reserves a line in the
n_procs arrays. Both reservations of stocks and lines are implemented with
mutual exclusion mechanisms. As the number of threads per process increases,
the concurrency does so and the exclusion mechanisms are more often used.

Further development will include finding a solution to our concurrent accesses
problem.

4.3 Scalability

Scalability was the main performance issue of the previous parallel simulator
with only MPI-communications. It has been improved with the hybrid MPI-
threads simulator. By comparing relative efficiency of the monothreaded and
four-threaded parallel simulators, results turn out to be quite good. Figure 3
represents the relative efficiency of these two configurations of the simulator.

However, it should be noticed that, due to the modifications of the biomathe-
matical model, in particular the ability of leaves to carry multiple lesions, com-
putation time represents an higher part of total simulation time. Transitional
phase during which the epidemics is developing can present important load-
imbalance between processes, making now the computation times not inversely
proportional to the number of processors. Finally, the attribution of primary in-
fection stocks and the load-imbalance between threads during the neighbouring
dispersal explain the drop of efficiency with some configurations (see Sect. 4.1).

5 Biological Results and Conclusion

In terms of performances, the results are quite good. The improvements to com-
munication, load-balancing and scalability have been observed during the exper-
iments thanks to the modifications brought to the simulator.

Nevertheless, they are not perfect. The main improvement that seems to be
necessary at the moment, is a good load-balancing of computations. It includes
two points: a full dynamic load-balancing between threads of a same process for

842 G. Tessier, J. Roman, and G. Latu

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Fig. 4. Percentage of infected stocks in function of the percentage of infected leaves in
the parcel during the simulation of a 32×32 parcel

all computation steps; and a better static distribution between processes, that
takes into account the amount of calculations induced by a primari foci and its
neighbouring region.

As for the biological results, calibration of the model has been carried on
further. Figure 4 shows the evolution of the percentage of infected stocks in
function of the percentage of infected leaves in the parcel during a real simulation.

Such results characterize the dispersal degree of the epidemics and correspond
to field data: when 15 % of the leaves in the field are infected, in average 80 %
of the stocks are infected, as we can observe on this simulation output.

References

1. Bulit (J.) et Lafon (R.). – Powdery mildew of the vine. In : The powdery mildews,
éd. par Academic press, London. – DM Spencer, 1978.

2. Calonnec (A.), Latu (G.), Naulin (J.-M.), Roman (J.) et Tessier (G.). – Parallel
Simulation of the Propagation of Powdery Mildew in a Vineyard. In : 11th Inter-
national Euro-Par Conference. pp. 1254 – 1263. – Springer Verlag, sept 2005.

3. Grana (Ananth), Gupta (Anshul), Karypis (George) et Kumar (Vipin). – Introduc-
tion to Parallel Computing. – Addison Wesley, 2003, Second Edition édition. ISBN
2-201-64865-2.

4. MPI Forum. – Message Passing Interface MPI Forum Home Page. Available from
http://www.mpi-forum.org/.

5. Nikolaos Drosinos and Nectarios Koziris. – Performance Comparison of Pure MPI
vs Hybrid MPI-OpenMP Parallelization Models on SMP Clusters. In : IPDPS. –
IEEE Computer Society, 2004. ISBN 0-7695-2132-0.

6. Samet (Hanan). – The Design and Analysis of Spatial Data Structures. – University
of Maryland, Addison-Wesley Publishing Company, 1989. ISBN 0-201-50255-0.

7. Shigesada (Nanaka) et Kawasaki (Kohkichi). – Invasion and the range expansion of
species: effects of long-distance dispersal. In : Proceedings of BES Annual Sympo-
sium 2001 ’Dispersal’, chap. 17, pp. 350–373. – Blackwell Science (in press), 2002.

8. Tessier (G.). – Simulation parallèle de la propagation de l’oïdium dans une parcelle
de vigne. In : RenPar’16. – avril 2005.

9. Zawolek (M. W.) et Zadocks (J. C.). – Studies in Focus Development: An Optimum
for the Dual Dispersal of Plant Pathogens. Phytopathology, vol. 82, n 11, 1992, pp.
1288–1297.

Exploring Unexpected Behavior in MPI�

Martin Schulz1, Dieter Kranzlmüller2, and Bronis R. de Supinski1

1 Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

P.O. Box 808, L-560, Livermore, CA 94551, USA
schulzm@llnl.gov, bronis@llnl.gov

2 Institute of Graphics and Parallel Processing (GUP)
Joh. Kepler University Linz

A-4040 Linz, Altenbergerstr. 69, Austria/Europe
dk@gup.jku.at

Abstract. MPI has become the dominant programming paradigm in
high performance computing partly due to its portability: an MPI appli-
cation can run on a wide range of architectures. Unfortunately, portabil-
ity in MPI is only guaranteed for compiling codes; it does not necessarily
mean that an MPI program will actually result in the same behavior on
different platforms. The MPITEST suite provides a series of micro ker-
nels to test MPI implementations across different systems. All codes of
MPITEST conform to the MPI standard; however, their behavior is im-
plementation dependent, potentially leading to unexpected results. In
this paper we introduce MPITEST and present examples from the test
suite along with their surprising results and consequences on a series
of platforms. The goal of this work is to demonstrate this problem in
general and to raise awareness in the MPI user community.

1 Motivation

The Message Passing Interface (MPI) [6] is the most widely used programming
paradigm for parallel and high performance computing. It provides programmers
with a comprehensive interface for exchanging messages between application
tasks, yet can be used with only a few primitives. An important feature for the
programmer is its portability, which promises the use of a single MPI application
across a wide range of architectures.

Yet, in practice the portability of MPI is only guaranteed during compilation
of the code, and not during its execution. Even though the MPI standard defines
the runtime behavior of the individual primitives, it does not necessarily mean
that an MPI program will actually result in the same behavior on different plat-
forms. This can lead to unexpected results on new platforms or the manifestation
of previously dormant bugs. In particular, less experienced users are vulnerable
to these traps.
� Part of work was performed under the auspices of the U.S. Department of Energy

by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. UCRL-PROC-222368.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 843–852, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

844 M. Schulz, D. Kranzlmüller, and B.R. de Supinski

We present MPITEST (http://www.gup.uni-linz.ac.at/mpitest/), a
benchmark suite that helps users to explore such potential problems and com-
pare the impact of individual constructs across different machines. It contains
a series of micro kernels that conform to the MPI standard, but may lead to
unexpected behavior, which is not portable in the sense of execution behavior
across different platforms. In this paper we present a number of surprising results
and potential consequences of examples from the MPITEST suite on a series of
platforms. Our primary goal is to raise awareness of this problem in the MPI
user community.

We begin with a general overview of MPITEST and describe our experimental
setup in Section 2. We then introduce three examples of MPITEST benchmarks
in Sections 3, 4, and 5. We conclude with a discussion of the impact that these
issues have for code portability.

2 The MPITEST Suite: Overview and Setup

Many benchmark suites exist to help users evaluate MPI performance across
platforms. These are either sets of micro benchmarks, like SKAMPI [7] or Sphinx
[3,2], or sets of application kernels, like the NAS parallel [1] or the ASCI Pur-
ple [5] benchmarks. However, aside from basic MPI functionality correctness
microbenchmarks, no comprehensive benchmark suite exists that covers non-
performance related characteristics of MPI implementations.

We close this gap with MPITEST, a test suite that targets corner cases in the
MPI standard and portability issues in MPI implementations. It currently con-
tains codes that investigate nondeterminism, receive ordering, and asynchronous
communication. In the remainder of this paper we present one representative
code from each of these classes. For maximum flexibility, each of the test codes
can be customized using additional compile-time and runtime parameters.

To ease the development and to ensure consistent parameter handling, startup,
and output formats, each benchmark is based on a common library developed as
part of MPITEST. This library implements the actual main routine; reads and
evaluates runtime parameters; is responsible for printing headers that include
machine configuration, benchmark parameters, and overall timing; and provides
common services like timing routines.

For an easier and more homogeneous execution of MPITEST benchmarks
across a heterogeneous set of platforms, we also developed a test harness as part
of MPITEST that detects the target platform and automatically creates the
necessary execution environment. This harness is integrated with the MPITEST
build setup and includes the necessary scripts for batch submission and inter-
active startup, handling of all command line parameters, and a uniform and
archivable result file storage. Combined with the uniform output format in the
MPITEST library we ensure a long-term storage of the all relevant information
necessary for later result evaluation and reproduction.

MPITEST is designed to be very portable and we have implemented it on a
large number of systems. For the experiments in the following sections we used

Exploring Unexpected Behavior in MPI 845

Table 1. Machine configurations

Berg Thunder BG/L SGI
CPU Type Power4 Itanium-2 PowerPC 440 MIPS R12000
Clock freq. 1.3 GHz 1.4 GHz 700 MHz 400 MHz
CPUs/Node 8 4 1 or 2 128 (CC-NUMA)
Nodes 4 1024 65536 1
Memory/Node 256 GB 8 GB 512 MB 64 GB
Interconnect Federation Quadrics Custom NUMAflex

Switch Elan–4 Networks

four machines at LLNL and GUP/JKU: Berg, an IBM Power–4 cluster; Thunder,
an Itanium-2 cluster; BG/L, the Blue Gene/L system; and SGI, an SGI Origin
3800 installation. The exact system parameters are listed in Table 1.

3 Wildcard Receives

As a first example and typical case of unexpected behavior, we have chosen so-
called wild card receives. This kind of receives, where the receiving task accepts
a message from any sender, are a natural way to introduce nondeterminism into
a program and quite common in today’s MPI applications. A typical example
of such a scenario is shown in Figure 1. Both tasks Q and R send a message to
task P, while task P posts two wildcard receives accepting messages from any
task. Depending on the timing of tasks Q and R, the latencies in the network, as
well as the implementation of the MPI library, the first receive in P can match
either the message sent by Q or by R. Both scenarios are legal executions.

However, the degree of nondeterminism and the number of actually observed
permutations depends on the characteristics of the hardware and its usage. Thus,
codes debugged on only one platform might always reveal only a certain subset of
executions. Specific situations, e.g. those leading to incorrect behavior, may not
occur during testing. However, such sporadic errors may suddenly occur, partic-
ularly when slightly changing the code (e.g., by disabling debugging statements)
or if the code is ported to another machine.

P

Q

R

P

Q

R

Fig. 1. Nondeterministic behavior at wildcard receives

846 M. Schulz, D. Kranzlmüller, and B.R. de Supinski

Wait for constant time
Buffer[0]=rank
MPI_Send(Buffer,receive task)

N-1 Sender

for i = [0,N [
{

MPI_Recv(MPI_ANY_SRC)
Add sender ID to string

}
Print string with receive order

1 Receiver

Fig. 2. Pseudo code for nondeterministic receives

4123675

3412657

2341765

1234765
 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

1234567
1423765

42137654123765

2134567

2453761
2315467

3124567

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Co-processor Mode Virtual Node Mode

Fig. 3. Nondeterministic behavior of portable programs on different hardware archi-
tectures: Thunder (left), BG/L (right)

Implementation
Figure 2 illustrates the MPITEST program that focuses on nondeterministic
receives [4]. All but one task send a message to a fixed receiver after waiting for
a random time. That one task receives all incoming messages and records the
order in which they appear. We repeat this process for a large number of times
and then choose random samples from all experiments.

Observations
The two graphs in Figure 3 show which permutations of the receive order (en-
coded on the Y-axis) have been observed for 10000 sample executions on Thunder
and BG/L. The BG/L graph also shows the difference between the machine’s
two main execution modes: Co-Processor mode (one CPU per node dedicated
for communication - shown left) and Virtual-Node mode (both CPUs on each
node used for computation - shown right). All experiments were run with seven
sending and one receiving task, which offers 7! = 5040 different executions.

These graphs show that the observed receive orders on these two platforms are
substantially different. On Thunder four distinct receive orders dominate, while

Exploring Unexpected Behavior in MPI 847

on BG/L a larger number of (different) orders can be observed (especially in
Virtual-Node mode). Further, on BG/L a significant difference can also be seen
even on the same machine when comparing the execution under the two different
modes. Using Virtual-Node mode, the diversity is much larger. Considering that
codes are often developed on clusters or on BG/L using the simpler (default) Co-
Processor mode before performing scaling experiments in Virtual-Node mode,
bugs due to race conditions may easily escape detection.

4 Message Ordering and Overtaking Messages

Another example of unexpected behavior occurs with message overtaking. In
MPI, the message ordering is guaranteed based on the following statement in
the standard’s specification [6]:

Section 3.5, Semantics of point-to-point communication
“Messages are non-overtaking: If a sender sends two messages in succession to
the same destination, and both match the same receive, then this operation
cannot receive the second message if the first one is still pending. If a receiver
posts two receives in succession, and both match the same message, then the
second receive operation cannot be satisfied by this message, if the first one is still
pending. This requirement facilitates matching of sends to receives. It guarantees
that message-passing code is deterministic, if tasks are single-threaded and the
wildcard MPI ANY SOURCE is not used in receives.”1

It is clear that if this rule would not be enforced, programs would be non-
deterministic even without wildcard receives (see Section 3). In this case, any
program that sends two messages from one task to the other (with the same
message tag) would lead to nondeterministic behavior, such that the execution
delivers different results with the same input data. This would introduce all the
problems of nondeterminism to any program that does not tag each message
uniquely, making program development difficult and program execution unpre-
dictable and unreliable.

For this reason, MPI introduced the non-overtaking rule, which needs to be
guaranteed by the underlying MPI implementation. Unfortunately, keeping the
ordering intact also introduces a certain overhead and may affect performance.
Therefore, vendors of MPI implementations have to be careful when implement-
ing this feature and it is not clear, if every implementation actually guarantees
non-overtaking in all cases.

Implementation
The following test tries to verify the non-overtaking feature of a particular MPI
implementation. The code is illustrated in Figure 4, and obviously at least two

1 However, these semantics don’t prevent indirect overtaking, e.g. when a task P sends
two messages, one first to task Q and another one to task R, while task Q forwards
the message upon reception to task R as well. In this case, it is possible that either
the message from task P or the message from task Q arrives first at task R.

848 M. Schulz, D. Kranzlmüller, and B.R. de Supinski

for i = [0, 5 [
MPI_Isend(long_message,0)

for i = [0, 5 [
MPI_Isend(short_message,0)

MPI_Waitsome(N-1, requests)
Verify send order

1 Sender

MPI_Recv(MPI_ANY_SRC)
Check arrival order

1 Receiver

Fig. 4. Pseudo code for message overtake experiments

tasks are needed. Task 1 implements a sender, which transfers messages of dif-
ferent length to task 0. The messages include a variable, which contains the
ordering number of the particular message. In order to check, whether the order
is disrupted, messages of different length (very long messages of 1 MByte and
short messages of 1 Byte) are interleaved, such that a series of long messages
may still be in progress when the short messages are issued.

Messages are issued using the non-blocking MPI Isend operation since it al-
lows messages to be transmitted in an order different from their issue order. As-
suming the MPI implementation is optimized for latency hiding, it could transfer
shorter messages, while longer messages are still in the queue. As a result, the
ordering of messages at MPI Isend may be disrupted. Consequently, for our test
case, the receiver side would have to correct the ordering such that the general
non-overtaking rule of MPI is not violated.

Observations
The observations for this example are divided into two cases. In case 1, we
observed the order of the messages at the receiver in order to verify, if the MPI
specification is violated. In all our experiments, this has never been the case,
which indicates that ordering is implemented correctly on all tested systems.

In case 2, we verified the order of outgoing messages at the sending task. When
using only 2 tasks, where each message has to use exactly the same route from
sender to receiver, we did not observe any out of order messages at the sender.
However, by scaling up the number of tasks, out-of-order message transfer took
place. As an example on the SGI, we used 16 MPI tasks with a message length
of 1 MByte, and we observed 29% of out-of-order send operations. This is a clear
indication that SGI’s MPI implementation applies some kind of optimization to
the sending task, while still enforcing the correct order at the receiver.

5 Large Windows for Asynchronous Receives

The MPI standard guarantees in–order message delivery for any communication
channel, i.e., messages sent between two tasks using the same communicator and

Exploring Unexpected Behavior in MPI 849

Q

P

MPI_Irecv MPI_Waitany

MPI Send

Fig. 5. Multiple outstanding receives

for i= [0, N [
{

Buffer[0]=i
MPI_Send(Buffer, recv. task)

}
1 Sender

for i = [0,M [
req[i]=MPI_Irecv()

for i = [0,N [
{

MPI_Waitany(req array)
Print(Recveived value, i)
req[recvd]=MPI_IRecv()

}

1 Receiver

Fig. 6. Pseudo code for varying receive windows

message tag. However, this guarantee only refers to the time when the receive
is posted, not when messages are actually received by the application. While
this is not relevant for blocking receives, it can cause problems for asynchronous
non-blocking operations when multiple receives are concurrently active.

Figure 5 shows an example. Task P posts four asynchronous receives that are
matched with four sends from task Q. According to the MPI standard, the order
of the messages is preserved with respect to the order in which the receives are
posted. The order in which the user receives the messages, i.e., the corresponding
MPI Waitany finishes, however, can vary.

Implementation
To stress the above scenario, MPITEST contains a micro kernel that can vary
the number of concurrent receives. The pseudo code is shown in Figure 6. A
sending task sends N messages to a receiver with a message ID in the body. The
receiver firsts posts M asynchronous receives and then receives all N messages
from the sender. For this, the receiver uses MPI Wait any to query the next

850 M. Schulz, D. Kranzlmüller, and B.R. de Supinski

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Berg (Power4)

M/ReqWin = 10

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Thunder (IA-64)

M/ReqWin = 10

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Berg (Power4)

M/ReqWin = 100

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Thunder (IA-64)

M/ReqWin = 100

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Berg (Power4)

M/ReqWin = 1000

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Thunder (IA-64)

M/ReqWin = 1000

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Berg (Power4)

M/ReqWin = 10000

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000

M
es

sa
g
e

ID
s

in
 s

en
d
 o

rd
er

Message IDs in receive order

Thunder (IA-64)

M/ReqWin = 10000

Fig. 7. Send vs. receive order on Berg (left) and Thunder (right) with varying receive
window width: 10, 100, 1000, and 10000 (from top to bottom)

Exploring Unexpected Behavior in MPI 851

available message, records the message ID contained in the message body, and
then reposts the corresponding receive operation.

Observations
For this micro kernel, we plot the message order in which the message was sent
vs. the order in which it was received. In the ideal case, i.e., with a complete
in-order delivery, the result should be a straight line. Figure 7 shows the results
of the code on two representative platforms: Berg and Thunder.

For small receive windows, both platforms behave similarly and close to the
expected in-order case. There are, however, several messages that get completed
out-of-order. With an increasing message window, the behavior of the two plat-
forms differs significantly. On Berg, the graph gets shifted upward by the size
of the message window. This means that MPI always completes the last request
in the window first, and since this request is restarted once completed, all other
receives are stalled. Only once all messages have been transmitted, MPI receives
the old messages in the remainder of the request array. On Thunder, on the other
hand, larger request windows up to 1000 requests behave similar to the small
window case. For very large windows, however, the behavior changes drastically
into a seemingly chaotic, but reproducible state.

6 Conclusions

The utilization of MPI for many parallel applications has led to a wide acceptance
of MPI in the community. However, the MPI standard leaves some freedom for
implementations on particular platforms. While this may not cause any problems
in the majority of cases, there are some pitfalls with the possibility for substantial
effects on correctness and reliability.

The MPITEST suite is a first step towards methodically testing MPI imple-
mentations for these issues. With a combination of test cases and experimental
setups, users can evaluate the behavior of MPI implementations. This test suite
should increase the awareness of the possibility of such unexpected behavior and
provide feedback to implementors about the compliance (or lack thereof) to the
MPI standard and/or user expectations.

The issues explored by MPITEST also indicate that user application testing
on a small set of platforms is unlikely to cover the set of possible message order-
ings, regardless of how many times the application tests are performed. Thus,
subtle errors can persist in applications for extended periods. Additional work
can complement MPITEST to provide users with greater assurance of the cor-
rectness of their applications by increasing and randomizing the message orders
covered [8].

We are continuing to expand the test suite with new test cases being devel-
oped over time or provided by the community. The package itself will eventually
be available for download from the project webpage at http://www.gup.uni-
linz.ac.at/mpitest/, such that interested users can easily check their own MPI im-
plementations or contribute to MPITEST. Feedback from the application users
community is clearly needed and welcome at mpitest@gup.jku.at.

852 M. Schulz, D. Kranzlmüller, and B.R. de Supinski

References

1. D. Bailey, T. Harris, W. Saphir, R. V. der Wijngaart, A. Woo, , and M. Yarrow. The
NAS parallel benchmarks 2.0. Report NAS-95-020, NASA Ames Research Center,
Moffett Field, CA, Dec. 1995.

2. B. de Supinski. The ASCI PSE Milepost: Run-Time Systems Performance Tests. In
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), June 2001.

3. B. de Supinski and N. Karonis. Accurately Measuring Broadcasts in a Compu-
tational Grid. In Proceedings of the 8th IEEE International Symposium on High-
Performance Distributed Computing (HPDC), pages 29–37, 1999.

4. D. Kranzlmüller and M. Schulz. Notes on Nondeterminism in Message Passing
Programs. In Proceedings of the 9th European PVM/MPI Users’ Group Meeting,
pages 357–367, Sept. 2002.

5. Lawrence Livermore National Laboratory. The ASCI purple benchmark codes.
http://www.llnl.gov/asci/purple/benchmarks/limited/code list.html, Oct. 2002.

6. Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface
Standard. Technical Report, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/.

7. R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A Detailed, Accurate
MPI Benchmark. In Proceedings of the 5th European PVM/MPI Users’ Group
Meeting, pages 52–59, Sept. 1998.

8. R. Vuduc, M. Schulz, D. Quinlan, B. de Supinski, and A. Sæbjørnsen. Improving
Distributed Memory Applications Testing By Message Perturbation. In Proceedings
of Parallel and Distributed Systems: Testing and Debugging (PADTAD), July 2006.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 853 – 862, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Zone-Oriented Byzantine Agreement on Zone-Based
Wireless Ad-Hoc Network

Chien-Fu Cheng1, Shu-Ching Wang2,* , and Tyne Liang1

1 Department of Computer Science, National Chiao Tung University,
1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.
{cfcheng, tliang}@cs.nctu.edu.tw

2 Department of Information Management, Chaoyang University of Technology,
168, Jifong E. Rd., Wufeng, Taichung County, Taiwan 413, R.O.C.

scwang@cyut.edu.tw

Abstract. A wireless ad-hoc network system may suffer from various types of
hardware failure. In order to enhance the fault-tolerance and reliability of the
wireless ad-hoc networks, we revisit the Byzantine Agreement problem in the
zone-based wireless ad-hoc network in this paper. The proposed protocol is
called as the Zone-Oriented Agreement Protocol (ZOAP) which can make each
fault-free mobile processor reach an agreement value to cope with the faulty
component in the zone-based wireless ad-hoc network.

Keywords: Byzantine agreement, fault-tolerance, distributed system, zone-
based wireless ad-hoc network, malicious fault.

1 Introduction

The wireless ad-hoc networks have attracted significant attentions recently due to its
features of infrastructure less, quick deployment and automatic adaptation to changes
in topology. Therefore, wireless ad-hoc network suits for military communication,
emergency disaster rescue operation, and law enforcement [2].

We know that the reliability of the mobile processor is one of the most important
aspects in wireless ad-hoc networks. In order to provide a reliable environment in a
wireless ad-hoc network, we need a mechanism to allow a set of mobile processors to
agree on an agreement value [7]. The Byzantine Agreement (BA) problem [4], [5],
[6], [8], [9], [10] is one of the most fundamental problems to reach an agreement
value in a distributed system.

The BA requirement can be satisfied when the following constraints are met:

(Agreement): All fault-free processors agree on an agreement value.
(Validity): If the source processor is fault-free, then all fault-free processors

agree on the initial value sends by the source processor.

The traditional BA problem was focused on the fixed and well-defined network
[4], [5], [6], [8], [9], [10]. However, the network structure of wireless ad-hoc network
is not fixed, and it can change its topology at any time by the feature of mobility.

* Corresponding author.

854 C.-F. Cheng, S.-C. Wang, and T. Liang

Hence, the tradition solutions for the BA problem were not suited for the wireless ad-
hoc network.

In this study, we re-visit the BA problem in the zone-based wireless ad-hoc
network. The detailed description of network structure will be presented in section
2.2. The proposed protocol is called as the Zone-Oriented Agreement Protocol
(ZOAP). ZOAP can make each fault-free mobile processor in the zone-based wireless
ad-hoc network reach an agreement value.

The rest of this paper is organized as follows. Section 2 will serve to introduce the
definitions and conditions of the ZOAP in a zone-based wireless ad-hoc network.
Then, in Section 3, we shall introduce the BA protocol ZOAP. The new BA protocol
ZOAP will be brought up and illustrated in Section 4. Finally, in Section 5, we shall
present the conclusion.

2 The Definitions and Conditions for BA Problem

The detailed definitions and conditions for BA problem are shown in this section.
They are the failure type of a fallible mobile processor, network model, number of
rounds required in the "message-exchange phase" and the constraints.

2.1 The Failure Type of a Fallible Mobile Processor

The symptoms of mobile processor failure can be classified into two categories:
dormant fault and malicious fault (also called as Byzantine fault) [5]. The dormant
faults of a fallible mobile processor are crashes and omission. A crash fault happens
when a processor is broken. An omission fault takes place when a processor fails to
transmit or receive a message on time or at all. However, the behavior of a mobile
processor with malicious fault is unpredictable. If the BA problem can be solved with
mobile processor with malicious fault, the BA problem can be also solved with
mobile processor with dormant fault.

2.2 The Network Model

In this study, the BA problem is discussed in a zone-based wireless ad-hoc network,
such as the network structure in Joa-Ng and Lu's [3]. An example of zone-based
wireless ad-hoc network is shown in Fig. 1. Each mobile processor in the network can
be identified as unique, and can get its zone id through the Global Positioning System
(GPS). Let N be the set of all mobile processors in the network and |N|= n, where n is
the number of mobile processor in the network. Let Z be the set of all zones in the
network and |Z|= z, where z is the number of zones in the underlying network and z≥
4. If there are at least μi /2 malicious faulty mobile processors in Zi, then Zi will be
the malicious faulty zone. Here, Zi is the i-th zone, and μi is the number of mobile
processors in Zi, 0≤ i ≤ z. If the gate way processor of the zone Zi is faulty, then Zi will
also be the malicious faulty zone. Let Zm be the maximum number of malicious faulty
zones allowed. If there is no mobile processor in the i-th zone, then Zi is the away
zone.Let Za be the maximum number of away zone.

 Zone-Oriented Byzantine Agreement on Zone-Based Wireless Ad-Hoc Network 855

2.3 The Number of Rounds of Message Exchange Required by ZOAP

The term "round" denotes the interval of message exchange between any pair of
processors [1], [4], [5], [8], [9], [10]. Fischer and Lynch [1] pointed out that t +1
(t= (n-1)/3) rounds are the minimum number of rounds to get enough messages to
achieve BA. The unit of Fischer and Lynch [1] is processor, but the unit of the zone-
based wireless ad-hoc network is zone. So that, the number of required rounds of
message exchange in the zone-based wireless ad-hoc network is Zm +1 (Zm= (z-
1)/3)). The detailed description of the “message-exchange phase” will be presented
in section 3.1.

 2.4 The Constraints of ZOAP

The number of processors with malicious fault allowed in the network depends on the
total number of processors. For example, in Lamport et al. [4], the assumption of
failure type of the fallible processor is malicious and the unit of the network is
processor. So, the constraint of Lamport et al. [11] is n>3fm (fm is the maximum
number of malicious faulty processors allowed). However, Siu et al. [8] find that the
correct constraint on number of processors required should be n> (n-1)/3 +2 fm. Due
to the proposed protocol ZOAP is designed for the zone-based wireless ad-hoc
network with fallible processors, and the unit of the network is zone. Hence, the
constraints of the ZOAP is z> (z-1)/3 +2Zm+Za.

Fig. 1. An example of zone-based wireless ad-hoc network

3 Zone-Oriented Agreement Protocol (ZOAP)

In this section, the detailed description of our proposed protocol Zone-Oriented
Agreement Protocol (ZOAP) is shown here.

There are three phases in our protocol ZOAP, and they are the “message-exchange
phase”, “decision-making phase”, and the “extension-agreement phase”. The number
of rounds required for running ZOAP is Zm +1 (Zm= (z-1)/3)). And, ZOAP can
tolerate Zm malicious faulty zones, where z> (z-1)/3 +2Zm+Za. The protocol ZOAP is
shown in Fig. 2.

856 C.-F. Cheng, S.-C. Wang, and T. Liang

Fig. 2. The BA Protocol Zone-Oriented Agreement Protocol (ZOAP)

3.1 Message-Exchange Phase

At the first round of "message-exchange phase" (r=1), the source processor sends its
initial value vs using encryption technology to all other mobile processors. Hence,
each mobile processor in the source mobile processor's zone can receive the initial
value vs from source mobile processor directly. For other mobile processors which are
not in the source mobile processor's zone, the source processor can send its initial
value by relaying through the gateway processor. Hence, the mobile processors in the
different zone can also receive the messages from the source processor.

 Zone-Oriented Byzantine Agreement on Zone-Based Wireless Ad-Hoc Network 857

After the first round of message exchange (r>1), each mobile processor without
source processor sends the values at level r-1 in its mg-tree (the detailed desc-
ription of the mg-tree is presented in Appendix) to each zone’s processors, if the
value at level r-1 is i , then replace the value i+1 as the transmitted value, where
1 i Zm –1 (The value i is used to report the absent value.). At the end of each
round, the receiver processor uses function RMAJ (Function RMAJ is shown in Fig.
2) on it received values which from the same zone to get a single value. And each
receiver processor stores the received messages and function RMAJ value in its
mg-tree.

3.2 Decision-Making Phase

In the "decision-making phase", each processor without source processor removing
the vertices with repeated names in order to avoid the influence from a faulty
processor from repeating in an mg-tree. Then, using function VOTE on the root s of
each processor's mg-tree. The agreement value VOTE(s) is obtained. The function
VOTE only counts the non-value 0 (excluding the last level of the mg-tree) for all
vertexes at the r-th level of an ic-tree, where 1 r Zm+1. The condition 1, condition
4, and condition 5 in the function VOTE are similar to conventional majority vote [5].
The condition 2 is used to remove the influence by a malicious faulty processor. The
condition 3 is used to describe the existence of an absentee. The detail descriptions of
function VOTE is shown in Fig. 2.

3.3 Extension-Agreement Phase

The goal of the “extension-agreement phase” is to allow return processor to compute
an agreement value which is the same as other fault-free mobile processors’
agreement value. In the “extension-agreement phase”, each return processor receives
the agreement values from other mobile processors which join whole the “message-
exchange phase”. The VOTE function is used on the values received to obtain the
agreement value. The return processor can then obtain the same agreement value as
other fault-free mobile processors. The reason is that each fault-free mobile processor
can reach an agreement value if z> (z-1)/3 +2Zm+Za. Hence, there are at least z- (z-1-
Za)/3 -Za zones that are fault-free and have the same agreement value. That is, in the
worst case, a return processor can receive z- (z-1-Za)/3 -Za copies of the same value,
which is large then (z-1-Za)/3 . Therefore, a return processor can then decide the
agreement value bye using the function VOTE.

4 An Example of Executing ZOAP

In this section, an example of executing the proposed protocol ZOAP is shown here.
A zone-based wireless ad-hoc network is shown in Fig. 1.

The worst case of the BA problem is that the source processor with malicious
faults. For example, suppose Ps is the source processor, which means Ps may transmit
different values to different zones. In order to reach an agreement value among fault-

858 C.-F. Cheng, S.-C. Wang, and T. Liang

free mobile processors in our example, ZOAP needs 3 (9-1)/3) +1) rounds of
message exchange in the “message-exchange phase”.

4.1 Message-Exchange Phase

At the first round of the “message-exchange phase”, the source processor Ps sends its
initial value to all mobile processors in the zone-based wireless ad-hoc network. The
message stored by each zone’s fault-free processors at the first round of “message-
exchange phase” is shown in Fig. 3. At the r-th (r>1) round of message exchange,
except for the source processor, each processor sends it’s RMAJ values at the (r-1)th
level in its mg-tree to all other mobile processors without source processor. Then, each
receiver processor applies RMAJ to its received messages from the same zone and
stores the received values and the RMAJ values at the corresponding vertices at level r
of its mg-tree. However, some of processors may move away from the network in this
phase. So, other mobile processors in the network could not receive the messages from
the mobile processors which are not in the network. As shown in Fig. 4, any mobile
processor in the network would not receive the message from the mobile processors Pf,
Pg, and Pk. The mg-trees of fault-free mobile processor Pa at the second and third round
in the “message-exchange phase” are shown in Fig. 5 and Fig. 6.

Fig. 3. The mg-tree of each processor at the first round

Fig. 4. Pf, Pg ,and Pk move away from the network in the “message-exchange phase”

 Zone-Oriented Byzantine Agreement on Zone-Based Wireless Ad-Hoc Network 859

Function

RMAJ

Fig. 5. The mg-tree of processor Pa
at the second round of the
“message-exchange phase”

ZONE ZONE

ZONE ZONE ZONE

ZONE ZONE ZONE

ZONE

a

b

dc

h

e

s

i

j

l

k

m

o

pn

t
r

q

Fig. 9. The mobile processor Pk
return to the network before the
beginning of “extension-agreement
phase”

Fig. 6. The final mg-tree of
mobile processor Pa

Fig. 7. Mg-tree with-
out repeated vertices

(VOTE(s) = 0,0,0, 0,0,0,0,0,1) = 0

Fig. 8. Mobile processor Pa uses function
VOTE to compute its agreement value 0

Fig. 10. Return processor Pk uses
Function RMAJ and Function
VOTE to compute the agreement
value

860 C.-F. Cheng, S.-C. Wang, and T. Liang

4.2 Decision-Making Phase

In the decision making phase, each fault-free mobile processor deletes the vertices
with repeated names. An example of deleting the vertices with repeated names is
shown in Fig. 7. Finally, using the function VOTE to root the value s for each mobile
processor’s mg-tree (VOTE(s)= (VOTE(s1), VOTE(s2), VOTE(s3), VOTE(s4),
VOTE(s5), VOTE(s6), VOTE(s7), VOTE(s8), VOTE(s9)) =0), an agreement value 0
can be obtained, as shown in Fig. 8. We can compare the root s value of fault-free
processor in Z1 in Fig. 3, we can find that the root value of the fault-free mobile
processors in Z1, is replaced by 0. That is, after executing the BA protocol ZOAP, all
the fault-free mobile processors which joint whole the “message-exchange phase” and
decision making phase can agree on an agreement value 0.

4.3 Extension-Agreement Phase

In the “extension-agreement phase”, each mobile processor which joints whole
“message-exchange phase” sends its agreement value to all return processors. Then,
return processor using function RMAJ and function VOTE to compute its agreement
value. Fig. 9 shows processor Pk moves back to the network before the beginning of
the “extension-agreement phase”. Fig. 10 shows the return processor Pk receives other
mobile processors’ agreement and using function RMAJ and function VOTE to
compute the same agreement value 0.

Table 1. The comparison sheet of various protocols with different network structure

Network Structures
Fully connected network General network Ad-Hoc Network

Lamport et al. [4] V
Siu et al. [8] V V
ZOAP V V V

Table 2. The number of rounds required in the "message-exchange phase"

 The Number of Processor Required Constraint

Lamport et al. [4] t+1, t= (n-1)/3 n > 3fm

Siu et al. [8] t+1, t= (n-1)/3 n > (n-1)/3 +2fm

ZOAP Zm+1, Zm= (z-1)/3 z > (z-1)/3 +2Zm+Za

 fm is the maximum number of faulty processors in the network.

Table 3. Some instances of the number of rounds required in the fixed network

The number of rounds required
n=512, z=64 n=512, z=32 n=512, z=16

Lamport et al. [4] 171 171 171
Siu et al. [8] 171 171 171
ZOAP 22 11 6

Fixed network: the topology of the network is not changeable.

 Zone-Oriented Byzantine Agreement on Zone-Based Wireless Ad-Hoc Network 861

5 Conclusion

In this paper, we revisit the BA problem in a zone-based wireless ad-hoc network
with fallible processor. Since the traditional fixed network such as fully connected
network, broadcasting network, and general network are all special case of the zone-
based network. If the protocol can solve the BA problem in a zone-based wireless ad-
hoc network, the protocol also can solve the BA problem in the fully connected
network, broadcasting network, and general network. Table 1 shows the comparison
sheet of various protocols with different network structures.

For performance, due to the traditional BA protocol [4], [5], [6], [8], [9], [10] could
not solve the BA problem in the zone-based wireless ad-hoc network. Therefore, we
compare the performance of our protocol with pervious protocols in the fixed
network. For example, if there 512 processors fall into 64 zones. The protocols
proposed by Lamport et al. [4], and Siu et al. [8] need 171 ((n-1)/3 +1) rounds of
message exchange to reach an agreement value in the network too. However, ZOAP
only needs 22 ((z-1)/3 +1) rounds of message exchange to reach an agreement value.
Therefore, the performance of ZOAP is more efficient than previous results [4], [5],
[6], [8], [9], [10] when the network is divided into zones. Table 2 shows the number
of rounds required of some previous protocols and Table 3 shows some instances of
the number of rounds required for various protocols.

References

1. M. Fischer, and N. Lynch: A Lower Bound for the Assure Interactive Consistency.
Information Processing Letters, Vol. 14. No. 4. (1982) 183-186.

2. X. Hong, K. Xu, and M. Gerla: Scalable routing Protocols for Mobile Ad Hoc Networks.
IEEE Network, Vol. 16. No. 4. (2002) 11-21.

3. M. Joa-Ng and I.T. Lu: A Peer-to-Peer Zone-Based Two-Level Link State Routing for
Mobile Ad Hoc Networks. IEEE Journal on Selected Areas in Communications, Vol. 17.
No. 8. (1999) 1415-1425.

4. L. Lamport, R. Shostak, and M. Pease: The Byzantine Generals Problem. ACM Trans.
Programming Language Systems, Vol. 4. No. 3. (1982) 382-401.

5. F.J. Meyer and D.K. Pradhan: Consensus with Dual Failure Modes. IEEE Trans. Parallel
and Distributed Systems, Vol. 2. No. 2. (1991) 214-222.

6. G. Neiger: Distributed consensus revisited. Information Processing Letter, Vol. 49. (1994)
195-201.

7. Silberschatz, P.B. Galvin, G. Gagne: Operating System Concepts. 6th. Ed., John Wiley &
Sons, Inc., (2002).

8. H.S. Siu, Y.H. Chin, and W.P. Yang: A Note on Consensus on Dual Failure Modes. IEEE
Trans. Parallel and Distributed System, Vol. 7. No. 3. (1996) 225-230.

9. S.C. Wang, Y.H.Chin and K.Q. Yan: Byzantine Agreement in a Generalized Connected
Network. IEEE Trans. Parallel and Distributed Systems, Vol. 6. No. 4. (1995) 420-427.

10. K.Q. Yan, Y.H. Chin and S.C. Wang: Optimal Agreement Protocol in Malicious Faulty
Processors and Faulty Links. IEEE Trans. Knowledge and Data Engineering, Vol. 4. No.
3. (1992) 266-280.

862 C.-F. Cheng, S.-C. Wang, and T. Liang

Appendix

When a fault-free mobile processor receives the message sent from the source
processor, it stores the received value, denoted as val(s), at the root of its mg-tree as
shown in Fig. 3. In the second round, each processor transmits the root value of its
mg-tree to itself and all the other zones. If mobile processors in Z1 send message
val(s) to Z2, then mobile processors in Z2 store the function RMAJ value of the
received messages from zone Z1, denoted as val(s1), in vertex s1 of its mg-tree.
Generally, message val(s1….z), stored in the vertex s1…z of an mg-tree, implies that
the message just received was sent through the source processor, the processors of
zone Z1,…, the processors of Zz; and the processors in Zz is the latest processors to
pass the message. An example of mg-tree with two levels and three levels are shown
in Fig. 5 and Fig. 6.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 863 – 873, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Priority-Enabled Optimization of Resource Utilization
in Fault-Tolerant Optical Transport Networks*

Jacek Rak

Gdansk University of Technology, Narutowicza 11/12
80-952 Gdansk, Poland
jrak@pg.gda.pl

Abstract. In this paper, a novel SCMTO heuristic algorithm of establishing sur-
vivable connections in wide-area networks, that jointly optimizes the level of
resource utilization as well as the time of connection restoration, is proposed.
The algorithm is dedicated to multipriority traffic. Two service classes are as-
sumed, referred to as low and high priority, respectively. Unlike typical optimi-
zation methods, SCMTO algorithm also guarantees fast service restoration by
processing the high-priority connections with the author’s a posteriori optimi-
zation, based on the Largest-First graph coloring heuristics.

The algorithm was evaluated for the US Long-Distance Network. The results
show that with only little capacity utilization degradation, fast restoration can
be achieved. Compared to the results of the typical a priori optimization,
the obtained average values of connection restoration time were up to 20%
shorter (and even up to 41% for the high-priority traffic only). They were
achieved together with reduction in resource utilization ratio up to 48%.

Presented solutions are dedicated to WDM-based high-performance optical
communications network architectures.

1 Introduction

Nowadays we observe an increasing dependency of society on large-scale complex
networked systems. This amplifies the importance of assuring the network survivabil-
ity, defined as the capability of a system to fulfill its mission in a timely manner, in
the presence of attacks, failures or accidents [2, 8]. This paper investigates the surviv-
ability issues of end-to-end connections in optical wide-area networks, where, due to
wavelength division multiplexing (WDM), each network link consists of a set of chan-
nels (wavelengths), each one capable of transmitting the data independently at peak
electronic speed of a few Gbps. A failure of any network element may thus lead to
large data and revenue losses [9]. Survivability is achieved by introducing redundancy.
It means that for the main path of a connection, referred to as active path, there are
additional (redundant) paths, called backup paths (or shortly backups), to protect the
connection in case of a certain failure scenario [5, 6, 10, 13, 14]. The most common is

* This work is partially supported by the Ministry of Education and Science, Poland, under

the grant 3 T11D 001 30.

864 J. Rak

the protection against a single network element failure (i.e. a single link or a single
node). Survivable networks are based either on dedicating backup resources in ad-
vance (referred to as protection or preplanned scheme) or on dynamic restoration [10,
13, 14]. Concerning the scope of protection/restoration, path, region or link protec-
tion/restoration is typically used [5, 6, 11, 13].

However, assuring survivability by establishing backup paths results in an exces-
sive level of resource (link capacity) utilization. This in turn limits the number of
connections that may be established. Typical technique of reducing the link capac-
ity utilization ratio, here referred to as the a priori approach, is based on sharing
the backup paths [3, 6, 13]. However, this capacity-effective optimization finds
backups that are often not the shortest ones, since, under such sharing, the costs of
links do not reflect well the real link lengths. Long backups make in turn the task of
connection restoration time-consuming [14]. Nowadays, optimization that is
capacity-effective, but causes the restoration process take much time, is often not
acceptable. Network operators are interested in assuring fast connection restoration
(especially with regard to important connections), even for the price of worse link
capacity utilization ratio.

Although the issues of assuring fast restoration of broken connections as well as
the optimization of link capacity utilization have been separately investigated by
many research groups, they still have not been extensively studied jointly. In general,
it is not possible to achieve minima for both the functions. Depending on the im-
portance of the criteria, one always has to find a compromise.

The objective of the paper is to propose the SCMTO algorithm optimizing the net-
work resource utilization which simultaneously provides fast restoration of important
connections. The model is dedicated to multipriority traffic (two service classes are
assumed). Based on the demanded guarantee on fast service restorability, connections
are assigned low or high priorities, respectively. According to the proposed algorithm,
utilization of backup path resources, allocated for the high-priority connections, is
optimized using the author’s a posteriori technique, that is based on the Largest-First
graph coloring heuristics. This optimization, described in Section 2.2, provides fast
connection restoration together with medium level of link capacity utilization. In
order to better utilize the backup path link capacities, the proposed SCMTO algorithm
uses the typical capacity-effective a priori optimization routine, described in Section
2.1, for all the low-priority connections.

To the best knowledge of the author, this is the first paper to propose the algorithm,
dedicated to the multipriority traffic, that jointly optimizes the average restoration
time values as well as the ratio of resource utilization. The results show that, when
using the proposed a posteriori optimization of resource utilization, with only little
capacity utilization degradation, fast restoration can be achieved and the resource
utilization kept at the low level.

The rest of the paper is organized as follows. Section 2 shows the principles of op-
timizing the backup path resource utilization. The author’s a posteriori technique is
described in detail. The proposed SCMTO algorithm is given in Section 3. Section 4
presents the modeling assumptions. The results, obtained for the US Long-Distance
Network, are described in Section 5 and include: the lengths of backup paths, the
values of connection restoration time and the level of link capacity utilization.

 Priority-Enabled Optimization of Resource Utilization 865

2 Optimization of Link Capacity Utilization

Typical methods optimizing the ratio of link capacity utilization are generally based
on the concept of sharing the link capacities that are reserved for backup paths. If, for
each connection, provisioning 100% of the requested capacity after a failure is re-
quired, then capacity of a link channel, reserved for backup purposes, may be shared
among different backups, if the respective protected parts of active paths are mutually
disjoint1 [4, 6]. Indeed, backup capacities may be shared, if they are to protect against
different failure scenarios (which are not expected to occur simultaneously).

Considering the optimization strength, there are three main variants [6]. In-
tra-demand sharing implies sharing the link capacities of backup paths that protect
disjoint parts of an active path of the same connection. Inter-demand sharing denotes
sharing the backup paths that protect disjoint parts of active paths of different connec-
tions. Parallel intra- and inter-demand sharing is the most capacity efficient optimi-
zation, combining the features of both intra- and inter-demand sharing.

2.1 A Priori Optimization of Resource Utilization

A typical optimization technique, presented in [4, 6], here referred to as the a priori
approach, is performed before finding a given backup path. It is applied when calcu-
lating the cost ξij of each network link lij. If the backup path for the kth connection of
capacity r(k) is to be found, then the cost ξij of each link lij is determined as:

∞
−≥>⋅−

≤
=

otherwise

mrfandmrifsmr

mrif
k

ij
k

ij
k

ij
k

ij
k

ij
k

k
ij

k

ij
)()()()()()(

)()(

)(

0

ξ

(1)

where: r(k) is the requested capacity; fij is the unused capacity of a link lij;
 sij is the length of a link lij; mij

(k) is the capacity reserved so far at lij that may be shared.

If, for a link lij, the requested capacity r(k) is less or equal to the capacity already re-
served for backups and may be shared, then the link cost ξij is set to 0. However, if
the demanded capacity r(k) is greater then the capacity mij

(k) that may be shared, but
there is enough unused capacity fij, then the link cost ξij is determined by the extra
capacity that is to be reserved at lij and also often reflects the length sij of this link.
Otherwise it is set to infinity. After having calculated the costs of all the network
links, the backup path is then found as the cheapest one (regarding the aggregated
sum of costs of the used links), with help of any algorithm of path finding (e.g.
Dijsktra’s [1]).

Since, under the a priori optimization, the obtained costs ξij of backup path links
(Eq. 1) do not reflect well the real lengths of links, the established backups are often
not the shortest ones. Summarizing, the a priori resource utilization optimization is
capacity-efficient, but, due to increasing the length of backup paths, makes the proc-
ess of connection restoration take much time. This in turn confines its applicability to
connections of low priority (i.e. with low guarantee on fast service restorability).

1 Depending on the kind of protection (either against a single link, or a single node failure)

these parts of active paths must be mutually link- or node-disjoint, respectively.

866 J. Rak

2.2 The Proposed A Posteriori Optimization of Resource Utilization

The author’s heuristic algorithm of establishing Survivable Connections with
the a POsteriori optimization of link capacity utilization (SCPO), shown in Fig. 1,
simultaneously provides fast connection restoration. Fast restoration of connections is
achieved here due to not increasing the length of backup paths. After performing
the optimization, backups remain unchanged due to parallel:

• performing the a posteriori optimization after the active and backup paths of all
the connections in the network are tried to be found and installed,

• confining the scope of optimization to the single network link.

Input: A set K of demands to establish survivable connections, each of capacity r(k)

 1 Establish connections by sequentially processing the demands from K as follows:
 For each demand k:
 1.1 Find* and install its active path

 1.2 Find* and install its backup path(-s)

2 After having processed all the demands from K, apply the a posteriori optimization
of backup path link capacity utilization, as follows:

 For each network link lij:
 2.1 Divide the set Bij of backup paths, installed on channels of a link lij, into the subsets Bij

s

such that:
− each subset contains backups that may share capacity one another**
− the number of subsets Bij

s for a link lij is minimized.
 2.2 For each subset Bij

s:
2.2.1 delete link channel allocations for the backups of Bij

s, made in Step 1.2
2.2.2 apply sharing by allocating one common channel for all the backups of a given

 Bij
s (allow sharing with regard to all the backups of the subset Bij

s).

* Perform the following:
a) calculate the matrix Ξ of link costs (i.e. for each link lij set its cost ξij to the link length sij, if the amount

of unused capacity fij is not less than r(k); otherwise set ξij to infinity). If a backup path is to be found
then, in order to assure that the backup path is link-disjoint with the respective active path, set
the costs ξij of links, used by the active path, to infinity

b) find the path, using any algorithm of path finding (e.g. Dijkstra’s [1])
c) if finding the path is infeasible due to the lack of resources, then reject the demand and delete all the

previously installed paths of the demand, else install the found path
** Any type of sharing is allowed. Inter- or intra-demand sharing is used most commonly.

Fig. 1. SCPO algorithm

The problem of optimally dividing the set Bij of backup paths of each link lij into
the subsets Bij

s (Step 2.1 of the SCPO algorithm) is NP-hard [7], as it is equivalent to
the vertex coloring problem of an induced graph of conflicts Gij. In such a graph:

• the vertices denote backup paths that run through a link lij,
• there is an edge between a given pair of vertices p and r of Gij, if and only if

the respective backup paths cannot share a common channel (i.e. when parts of
the protected active paths are not disjoint each other) or when sharing a channel
between such backups is not the aim of optimization (for instance an edge, de-
noting backups protecting the same (different) connection(s), must be added, if
intra-(inter-)demand sharing is not needed, respectively).

 Priority-Enabled Optimization of Resource Utilization 867

Due to the computational complexity reasons, during experiments the Largest-First
(LF) heuristics [7], having the polynomial computational complexity, was used to color
the vertices of each induced graph Gij. Using the vertex coloring algorithm, any two
neighboring vertices in Gij

 must be assigned different colors. After applying the coloring
routine to Gij, all the vertices that obtained the same color, represent backup paths that
belong to one particular subset Bij

s. They protect mutually disjoint parts of active paths
and thus may share a common channel at lij. The total number of colors used for Gij
determines the number of channels of a link lij that will become allocated for backup
paths after applying the Step 2.2 of the SCPO algorithm.

Summarizing, the proposed a posteriori optimization provides fast connection res-
toration, but, due to confining the optimization scope to the single link, is less capac-
ity-effective, compared to the a priori technique. It is thus the most suitable for opti-
mizing the backup resources, utilized for connections requiring fast restoration.

3 SCMTO Algorithm of Establishing Survivable Connections

The proposed algorithm of establishing Survivable Connections for Multipriority
Traffic with Optimization (SCMTO), shown in Fig. 2, uses both the described optimi-
zation approaches. Based on the demanded guarantee on fast service restorability,
connections are assigned low or high priorities, respectively. The main objective of
the algorithm is to optimize the network resource utilization. However, for high-
priority connections it also provides fast connection restoration. That is why
the SCMTO algorithm performs the a priori optimization for low-priority connections
and the a posteriori optimization for connections of high priority.

Input: A set D of demands to establish survivable connections, each of capacity r(d)

 1 Divide the set D of demands into two subsets: K and L such that subset K contains
the high-priority demands and subset L contains the low-priority demands

 2 Try to establish connections for all the demands from K by applying the SCPO algorithm
 3 For each demand from L try to establish a connection with simultaneously applying

the a priori optimization (for backup path finding only)

Fig. 2. SCMTO algorithm

It is worth mentioning that the SCMTO algorithm applies the a posteriori optimi-
zation to all the established backups of high-priority connections at once at each
network link, but processes the low-priority connections with the a priori optimiza-
tion sequentially (one after another). The proposed algorithm is dedicated to
the preplanned survivability scheme and may be used for all cases of protection
scope as well as for all types of failures. However, here only protection against a
single link failure is considered. In order to simplify the comparisons, the standard
metrics of distance as well as the common Dijkstra’s shortest path algorithm [1] are
used in the paper for all cases of path finding. However, the proposed method may
be easily applied for other metrics and algorithms of path finding. The traffic is as-
sumed to be static here, meaning that the set of connection requests is given in ad-
vance, but this technique may be also applied for the case of dynamic traffic as well.

868 J. Rak

4 Modeling Assumptions

The experiment was performed for the U.S. Long-Distance Network, presented in
Fig. 3, consisting of 28 nodes and 45 bidirectional links. Due to the size of the network,
only computations with the use of SCMTO heuristic algorithm were feasible2. Simula-
tions, performed using the author’s network simulator, dedicated to optical networks
and implemented in C++, were to measure the link capacity utilization ratio and
the values of connection restoration time. Connection restoration time was measured
according to [10, 14, 15] and comprised: time to detect a failure, link propagation delay,
time to configure backup path transit nodes and time of message processing at network
nodes (including queuing delay). All the links were assumed to have 32 channels.
Channel capacity unit was considered to be equal for all the network links. Network
nodes were assumed to have a full channel (wavelength) conversion capability.

1

2

5

3

4

7

8

16

13

12

10

11

15

19

22

21

18
20

25
17

14

26

23

28

27

24

96

Fig. 3. U.S. Long-Distance Network

For each connection, the following properties were assumed:

• protection against a single link failure (each of the failure states consisted of
a failure of one link at a time, the rest being fully operational)

• a demand of resource allocation equal to the capacity of one channel
• provisioning 100% of the requested bandwidth after a failure (preplanned

scheme)
• a demand to assure unsplittable flows (both for primary and backup paths)
• the distance metrics and Dijkstra’s shortest path algorithm [1] in all path computations
• the three-way handshake protocol of restoring the connections (the exchange of
LINK FAIL, SETUP and CONFIRM messages), described in [14].

Repeat 30 times the following steps:

 1 Randomly choose 30 pairs of source s and destination d nodes.
 2 Try to establish the connections by applying the SCMTO algorithm.
 3 Store the level of link capacity utilization and the lengths of the backups.
 4 30 times simulate random failures of single links. For each failure state, restore

connections that were broken and note the values of connection restoration time.

Fig. 4. Research plan

2 Integer Linear Programming formulations of the NP-complete problem of finding optimal

active and backup paths for the path protection scheme, can be found in [11].

 Priority-Enabled Optimization of Resource Utilization 869

During a single research, described in Fig. 4, one particular variant of optimization
strength as well as one type of protection scope were provided for all the connections.
The numbers of low and high-priority demands were assumed to be statistically equal.

5 Modeling Results

5.1 Backup Path Length

Fig. 5 shows the average lengths of backup paths for all variants of optimization
strength as well as for various scopes of protection. The results prove that when ap-
plying the author’s a posteriori optimization for the high-priority connections, the
average backup path length is not increased and remains at the same level as in case
no optimization is performed. Fast restoration of such connections is thus guaranteed.
On the contrary, after applying the most capacity-effective a priori optimization for
the low-priority connections, the length of backup paths is often far from optimal.
The obtained backup paths are up to 65% longer, compared to the results of the pro-
posed a posteriori optimization.

For the multipriority traffic scheme, an acceptably low average increase of backup
path length was observed (up to 29,8%). In general, this increase depends on the num-
ber of high-priority connections (here 50%) among all the established connections.

Path protection scheme

4717,24717,2

3703,83703,8

4168,4 4168,4

3703,83703,8

1500

2500

3500

4500

5500

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

ba
ck

up
 p

at
h

le
ng

th
 [k

m
]

Link protection scheme

2219,5

2326,5

3261,4
3661,0

2881,42685,6

2219,5 2219,5 2219,5
1500

2500

3500

4500

5500

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

ba
ck

up
 p

at
h

le
ng

th
 [k

m
]

1

6 , 6 16 , 6 15 , 1 95 , 1 9
5 , 1 95 , 1 95 , 1 95 , 1 9

o p t i m i z a t i o n s t r e n g t h

b
a

c
k

u
p

p

a
t

h

le
n

g
t

h

[
in

lin

k
s

]

a priori optimization
(low -priority traf fic only)

a posteriori optimization
(high-priority traffic only)

multipriority traf fic

Fig. 5. Average length of backup path as a function of optimization strength

5.2 Restoration Time Values

Figs. 6 ÷ 7 show the cumulative distribution function of restoration time for both all
variants of optimization strength and various scopes of protection, while Fig. 8
the respective average values. It is worth mentioning that the mean values of restora-
tion time for the proposed a posteriori optimization (high-priority traffic only) were
always similar to the shortest ones, achieved when no optimization was performed
(about 25 and 50 ms for link and path protection, respectively). When compared to
the results of the a priori optimization, it takes even about 41% less time on average
(25,05 against 41,85 ms for the link protection scheme and the parallel intra- and
inter-demand sharing) to restore a high-priority connection, when the a posteriori

870 J. Rak

optimization is used. For the multipriority traffic scheme, the use of SCMTO algo-
rithm resulted in the average reduction in restoration time values up to 20%, com-
pared to the results of the a priori technique only.

Intra-demand sharing

0

1

1 51 101 151

restoration time [ms]

p
ro

b
ab

ili
ty

Inter-demand sharing

0

1

1 51 101 151

restoration time [ms]

p
ro

b
ab

ili
ty

Parallel intra- and
inter-demand sharing

0

1

1 51 101 151

restoration time [ms]

p
ro

b
ab

ili
ty

1

6 , 6 16 , 6 15 , 1 95 , 1 9
5 , 1 95 , 1 95 , 1 95 , 1 9

o p t i m i z a t i o n s t r e n g t h

b
a

c
k

u
p

p

a
t

h

le
n

g
t

h

[
in

lin

k
s

]

a priori optimization
(low -priority traf fic only)

a posteriori optimization
(high-priority traf fic only)

multipriority traf fic

Fig. 6. Cumulative distribution function of restoration time for various optimization strengths
(path protection scheme)

Intra-demand sharing

0

1

1 51

restoration time [ms]

p
ro

b
ab

ili
ty

Inter-demand sharing

0

1

1 51 101

restoration time [ms]

p
ro

b
ab

ili
ty

Parallel intra- and
inter-demand sharing

0

1

1 51 101

restoration time [ms]

p
ro

b
ab

ili
ty

1

6 , 6 16 , 6 15 , 1 95 , 1 9
5 , 1 95 , 1 95 , 1 95 , 1 9

o p t i m i z a t i o n s t r e n g t h

b
a

c
k

u
p

p

a
t

h

le
n

g
t

h

[
in

lin

k
s

]

a priori optimization
(low -priority traf fic only)

a posteriori optimization
(high-priority traf fic only)

multipriority traf fic

Fig. 7. Cumulative distribution function of restoration time for various optimization strengths
(link protection scheme)

Path protection scheme

49,80 49,85

61,15 61,49

51,35 51,42

10

20

30

40

50

60

70

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

re
st

or
at

io
n

tim
e

[m
s]

Link protection scheme

41,85
37,05

24,67 25,0524,7324,70
10

20

30

40

50

60

70

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

re
st

or
at

io
n

tim
e

[m
s]

1

6 , 6 16 , 6 15 , 1 95 , 1 9
5 , 1 95 , 1 95 , 1 95 , 1 9

o p t i m i z a t i o n s t r e n g t h

b
a

c
k

u
p

p

a
t

h

le
n

g
t

h

[
in

lin

k
s

]

a priori optimization
(low -priority traf fic only)

a posteriori optimization
(high-priority traffic only)

multipriority traf fic

Fig. 8. Average values of restoration time as a function of optimization strength

 Priority-Enabled Optimization of Resource Utilization 871

The results also show that the value of restoration time depends on the protection
scope and the length of the backup path to be activated. Additionally, the overall
value of restoration time gets increased by reconfigurations of transit nodes of shared
backups, that must be performed when restoring each connection [14]. The stronger
the optimization is, the more transit nodes of backup paths are to be reconfigured.

Table 1. Confidence intervals of 95 % for the mean values of restoration time [ms]

 intra-
demand
sharing

inter-
demand
sharing

parallel intra- and
inter-demand sharing

low-priority traffic only 1,68 2,03 2,01
high-priority traffic only 1,68 1,75 1,75 path protection

multipriority traffic 1,68 1,89 1,87
low-priority traffic only 1,12 1,85 2,04
high-priority traffic only 0,99 1,01 0,99 link protection

multipriority traffic 1,08 1,45 1,53

5.3 Level of Link Capacity Utilization

Fig. 9 shows the average values of link capacity utilization for all variants of optimization
strength as well as for various scopes of protection. It proves that the proposed
a posteriori optimization routine remarkably reduces the level of link capacity utilization

Path protection scheme

14,9214,92

18,8318,83

13,8113,81

0

8

16

24

32

40

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

lin
k

ca
pa

ci
ty

 u
til

iz
at

io
n

[%
]

Link protection scheme

34,31

26,45

15,51 14,49

34,31

29,19

22,41 21,16

0

8

16

24

32

40

no optimization intra-demand inter-demand parallel intra- and
inter-demand

optimization strength

lin
k

ca
pa

ci
ty

 u
til

iz
at

io
n

[%
]

1

6 , 6 16 , 6 15 , 1 95 , 1 9
5 , 1 95 , 1 95 , 1 95 , 1 9

o p t i m i z a t i o n s t r e n g t h

b
a

c
k

u
p

p

a
t

h

le
n

g
t

h

[
in

lin

k
s

]

a priori optimization
(low -priority traf fic only)

a posteriori optimization
(high-priority traffic only)

multipriority traf fic

Fig. 9. Average level of link capacity utilization as a function of optimization strength

Table 2. Confidence intervals of 95 % for the mean values of link capacity utilization [%]

 intra-
demand
sharing

inter-
demand
sharing

parallel intra- and
inter-demand sharing

low-priority traffic only 0,84 0,61 0,61
high-priority traffic only 0,84 0,68 0,68 path protection

multipriority traffic 0,84 0,66 0,66
low-priority traffic only 1,07 0,64 0,64
high-priority traffic only 1,11 0,99 0,98 link protection

multipriority traffic 1,08 0,78 0,76

872 J. Rak

for high-priority connections (up to 38 % for the link protection scheme and
the parallel intra- and inter-demand sharing), compared to the ”no optimization” case.
The a priori optimization technique, applied to low-priority connections, is, however,
always more capacity-effective.

For the multipriority traffic scheme, when using the proposed SCMTO algorithm,
the level of link capacity utilization was reduced up to 48% (link protection scheme),
compared to the ”no optimization” case.

6 Conclusions

The common a priori optimization of backup path resource utilization, despite being
the most capacity-efficient, does not assure fast restoration of connections. However,
when using the author’s a posteriori optimization, fast connection restoration can be
achieved for the price of little degradation of capacity utilization.

Finally, for the multipriority traffic, by applying the a priori optimization to all
the low-priority connections, and the proposed a posteriori optimization in all other
cases, the SCMTO algorithm achieved the significant reduction in resource utilization
ratio (up to 48%). Compared to the a priori optimization only, it achieved restoration
times up to 20% shorter (and even up to 41% for the case of high-priority traffic
only).

References

1. Dijkstra, E.: A Note on Two Problems in Connection with Graphs. Numerische Mathe-
matik, 1 (1959) 269-271

2. Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T., Mead, N. R.: Sur-
vivable Network Systems: An Emerging Discipline. Technical Report
CMU/SEI-97-TR-013. Carnegie Mellon University, Software Engineering Institute (1997)
(Rev. 1999)

3. Hauser, O., Kodialam, M., Lakshman, T. V.: Capacity Design of Fast Path Restorable Op-
tical Networks. IEEE INFOCOM, Vol. 2 (2002) 817-826

4. Ho, P-H., Tapolcai, J., Cinkler, T.: Segment Shared Protection in Mesh Communications
Networks With Bandwidth Guaranteed Tunnels. IEEE/ACM Transactions on Networking,
Vol. 12, No. 6 (2004) 1105-1118

5. Kawamura, R.: Architectures for ATM Network Survivability. IEEE Communications Sur-
veys, Vol. 1, No. 1 (1998) 2-11

6. Kodialam, M., Lakshman, T. V.: Dynamic Routing of Locally Restorable Bandwidth Guar-
anteed Tunnels Using Aggregated Link Usage Information. IEEE INFOCOM (2001) 376-
385

7. Kubale, M. et al.: Models and Methods of Graph Coloring. WNT (2002) (in Polish)
8. Mead, N. R., Ellison, R. J., Linger, R. C., Longstaff, T., McHugh, J.: Survivable Network

Analysis Method. Technical Report CMU/SEI-2000-TR-013. Carnegie Mellon University,
Software Engineering Institute (2000)

9. Mukherjee, B.: WDM Optical Communication Networks: Progress and Challenges, IEEE
Journal on Selected Areas in Communications, Vol. 18, No. 10 (2000) 1810-1823

10. Molisz, W.: Survivability Issues in IP-MPLS Networks. Systems Science, Vol. 31, No. 4
(2005) 87-106

 Priority-Enabled Optimization of Resource Utilization 873

11. Molisz, W., Rak, J.: Region Protection/Restoration Scheme in Survivable Networks, 3rd
Workshop on Mathematical Methods, Models and Architectures for Computer Network Se-
curity (MMM-ACNS’05) St. Petersburg, Russia, Springer-Verlag, LNCS, Vol. 3685 (2005)
442-447

12. Qiao, Ch. et al.: Novel Models for Efficient Shared Path Protection. OFC (2002) 545-547
13. Ramamurthy, S., Mukherjee, B.: Survivable WDM Mesh Networks, Part I - Protection.

IEEE INFOCOM (1999) 744-751
14. Ramamurthy, S., Mukherjee, B.: Survivable WDM Mesh Networks, Part II - Restoration.

Proc. IEEE Integrated Circuits Conference (1999) 2023-2030
15. Ramamurthy, S., Sahasrabuddhe, L., Mukherjee, B.: Survivable WDM Mesh Networks.

IEEE Jounral of Lightwave Technology, Vol. 21, No. 4 (2003) 870-883

SHIELD: A Fault-Tolerant MPI for an
Infiniband Cluster

Hyuck Han, Hyungsoo Jung, Jai Wug Kim, Jongpil Lee, Youngjin Yu,
Shin Gyu Kim, and Heon Y. Yeom

School of Computer Science and Engineering,
Seoul National University,

Seoul, 151-744, South Korea
{hhyuck, jhs, jwkim, jplee, yjyu, sgkim, yeom}@dcslab.snu.ac.kr

Abstract. Today’s high performance cluster computing technologies de-
mand extreme robustness against unexpected failures to finish aggres-
sively parallelized work in a given time constraint. Although there has
been a steady effort in developing hardware and software tools to increase
fault-resilience of cluster environments, a successful solution has yet to be
delivered to commercial vendors. This paper presents SHIELD, a prac-
tical and easily-deployable fault-tolerant MPI and management system
of MPI for an Infiniband cluster. SHIELD provides a novel framework
that can be easily used in real cluster systems, and it has different design
perspectives than those proposed by other fault-tolerant MPI. We show
that SHIELD provides robust fault-resilience to fault-vulnerable cluster
systems and that the design features of SHIELD are useful wherever
fault-resilience is regarded as the matter of utmost importance.

Keywords: Checkpoint, Consistent recovery, Fault-tolerance, MPI,
Infiniband.

1 Introduction

Nearly all parallel applications running on high performance cluster systems are
vulnerable to either hardware or software failures. Applications, especially long-
running jobs such as a numerical solver in aerodynamics or a CPU-intensive
simulator in computational biology, require cluster systems on which they run
to be fault-resilient. A single failure that occurs in either the software or hard-
ware can damage entire applications, rendering important computation results
useless.

Even though today’s cutting-edge technologies in high performance computing
provide strong support to make building tera-scale cluster systems possible, the
required fault-resilience technology unfortunately has not matured enough to
overcome failures. Despite decades of research on fault-tolerant systems, many
systems remain susceptible to failures. This is because fault-resilience protocols
cannot always achieve the performance predicted by theoretical solutions due to
unexpected failures during runtime which were not considered during the initial
development stage.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 874–883, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster 875

It is difficult to build a generic fault-tolerant framework that can be applied to
all types of systems, partly due to the increasing complexity of both hardware
and software systems. The diversity of hardware and software systems places
a heavy burden on a software architect designing and implementing a fault-
tolerant system. This complicated work drives us to choose an existing system
and to construct a real (or specialized) fault-tolerant system for Infiniband [5].

The primary goal of this paper is to design and implement an easily-deployable
and practical fault-tolerant MPI system on InfiniBand. To achieve our goal,
certain requirements must be satisfied. First, it must be derived from a well-
known MPI standard implementation to ensure wide acceptance and compliance.
Second, it must not impede the average user when executing MPI applications.
Third, the kernel should not have to be modified. To meet these requirements,
(1) the MPI application must run without any modifications, (2) fault-tolerance
must be transparent to users, (3) many simultaneous faults must be tolerated,
and (4) the system must be scalable.

To this end, we present SHIELD, a fault-tolerant system for MPI based on
MVAPICH2 [8]. SHIELD utilizes application-level checkpointing but is nearly
user-transparent. Adding fault-tolerance to the MPI library using application-
level checkpointing does not lay a burden on MPI application developers because
it requires no modifications of application codes. SHIELD inherits the strengths
of our previous work M3 [6], such as multiple fault-tolerance, light-weight job
management system, and transparent recovery, while addressing its weaknesses.

The remainder of the paper is organized as follows. Section 2 discusses back-
ground information and related works. Section 3 introduces the system archi-
tecture. Section 4 concentrates on the implementation of the system. Section 5
presents experimental results. Section 6 concludes the paper.

2 Background and Related Works

2.1 Fault-Tolerance Protocols

Much research on fault-tolerant techniques usually focus on the checkpointing
and rollback recovery protocol, which tends to be very theoretical. Checkpointing
can be divided into two categories depending on where it takes place: application-
level checkpointing and kernel-level checkpointing. Kernel-level checkpointing
shows superior performance and requires no modification of application source
codes. It, however, lays the burden on system administrators, because either
additional kernel modules must be deployed or a checkpointable kernel must be
rebuilt and deployed. Application-level checkpointing, although its performance
does not compare favorably to that of kernel-level checkpointing, is desirable
because it requires no changes to the kernel and is easy to use.

A checkpoint can also be either user-transparent or user-aware. In a user-
transparent checkpoint system, the user is oblivious to the checkpoint library,
and therefore does not need to modify application codes. On the other hand, in
a user-aware checkpoint system, the user must decide where taking a checkpoint
will incur the least overhead and modify the code accordingly.

876 H. Han et al.

SHIELD performs checkpointing at the MPI library level, and implements
application-level and user-transparent checkpointing to keep as much load off
the user as possible.

2.2 Related Works

Ourpreviousworks,MPICH-GF [11] andM3, provide fault-tolerance to twowidely
used standards of communication: Ethernet and Myrinet. MPICH-GF modified
MPICH-G2 to add fault-tolerance to TCP/IP, and M3 modified MPICH-GM to
add fault-tolerance to Myrinet.

The management system and MPI library of the MPICH-GF system depend
on the Globus Toolkit, which implies that MPICH-GF is not applicable to cluster
systems without Globus Toolkit. Moreover, because the management system
of MPICH-GF is hierarchical, faults of any managers in any level lead to lose
all computation. While M3 is able to achieve commendable performance, it is
vulnerable to faults that can bring the whole system to a halt. SHIELD removes
this point of failure while maintaining the performance.

Co-Check MPI [10] was the first attempt to make MPI applications fault-
tolerant. Like SHIELD, Co-Check needs applications to checkpoint synchronously.
The limitation of Co-Check is that it is dependent on the Condor library and its
own version of MPI, known as tuMPI.

MPICH-V [1] is a fault-tolerant MPI implementation designed for very large
scale clusters using heterogeneous networks. The design of MPICH-V is based
on uncoordinated checkpoint and distributed message logging. One of the short-
comings of MPICH-V is that it reaches only about half the performance of
MPICH-P4. MPICH-V2 [2] features a fault tolerant protocol designed for homo-
geneous network large scale computing (typically large clusters). MPICH-V2 was
designed to remove the most limiting factor of the pessimistic message logging
approach: reliable logging of in-transit messages. The drawback of MPICH-V2
is that it incurs too much overhead.

Fault Tolerant MPI (FT-MPI) [3] is an implementation of the MPI 1.2 message
passing standard that offers process-level fault tolerance. FT-MPI uses optimized
data type handling, an efficient point to point communications progress engine,
and highly tuned and configurable collective communications. FT-MPI survives
the crash of n-1 processes in a n-process job and can restart them, much like
SHIELD. However, in FT-MPI, it is up to the application to recover the data
structures and the data of the crashed processes.

3 Architecture of SHIELD

Design issues explained in this section should be taken into account when de-
signing fault-tolerant MPI systems for Infiniband cluster systems. The issues
include consistent distributed checkpoint protocols, effective methods for reduc-
ing checkpoint overhead, and capabilities of management systems.

SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster 877

Pre−allocated
DMAable Buffer

Pre−allocated
DMAable Buffer

RDMA Write

Buffer Copy

Buffer Copy

MPI_Send MPI_Recv

Infiniband
Channel

Search the unexpected
message queue

Critical Section

(a) For Small Messages

Pre−allocated
DMAable Buffer

Pre−allocated
DMAable Buffer

RNDZ_START

MPI_Send MPI_Recv

Infiniband
Channel

Search the unexpected
message queue

Register user buffer as
DMAable memory

Newly registered
DMAable memory

Register user buffer as
DMAable memeory

Newly registered
DMAable memory

RDMA Read

Pre−allocated
DMAable BufferPre−allocated

DMAable Buffer
FIN

Critical Section

(b) For Medium Messages

Pre−allocated
DMAable Buffer

Pre−allocated
DMAable Buffer

RNDZ_SEND

MPI_Send MPI_Recv

Infiniband
Channel

Search the unexpected
message queue

Register user buffer as
DMAable memeory

Newly registered
DMAable memory

Register user buffer as
DMAable memeory

Newly registered
DMAable memory

RDMA Read

Pre−allocated
DMAable BufferPre−allocated

DMAable Buffer
FIN

Pre−allocated
DMAable Buffer

Pre−allocated
DMAable Buffer

Pre−allocated
DMAable Buffer

RTS

CTS

Critical Section

(c) For Large Messages

Fig. 1. Three Types of Communication Patterns

3.1 Distributed Checkpoint Protocol

To design a robust and consistent distributed checkpoint protocol of parallel
processes running on cluster systems, we can choose one of two widely-used
protocols - coordinated checkpointing and message logging with checkpointing
protocols. Our previous research works [11,12] show that message logging can-
not outperform coordinated checkpointing, especially when parallel processes
exchange a great deal of messages with each other. We adopt the coordinated
checkpointing technique because Infiniband or Myrinet cluster systems are likely
to execute parallel applications that frequently exchange large messages with
each other.

In cluster environments without a software- or hardware-based oracle, it is
important to ensure that no in-transit messages in exist in the communication
channels. In order to be guaranteed from in-transit messages, our system uses
barrier messages, which is similar to CoCheck’s [10] Ready Message.

MVAPICH has three communication patterns depending on the size of mes-
sages. Figure 1 shows the communication protocol for small messages that are
less than 32kb, medium messages between 32kb and 128kb, and large messages
greater than 128kb. In all cases, the red dotted lines represent critical sections,
in which no checkpoint should be taken.

Small messages are transferred using RDMA Write operations on the preal-
locted DMAable memory. No checkpoint should be taken during the execution
of RDMA Write operations. Where SHIELD differs from M3 is how it handles
the transfer of medium and large messages. For medium and large messages,
control messages such as RNDZ START, FIN, Ready-To-Send(RTS), Clear-To-
Send(CTS), and RNDZ SEND are transferred in the same way small messages
are sent, but transmission of the payload is initiated by the receiver using RDMA
Read operations. M3 supports only RDMA Write while SHIELD supports both
RDMA Write and Read. Therefore, unlike in M3, the receiver must know the vir-
tual memory address of the sender and the remote key for resolving the address.
This presents a significant distinction from the architecture of M3.

After the sender registers buffers as DMAable memory, RNDZ START for
medium messages and RNDZ SEND for large messages are transmitted to the

878 H. Han et al.

receiver with the virtual address and the remote key for resolving the mapping
between the virtual and the physical address. The virtual address and the remote
key become invalid and unrecoverable after recovery from failure. Accordingly,
critical sections in medium and large messages should contain the transmission
of RNDZ START, RNDZ SEND, and FIN messages as well as the payload.

When all MPI processes have confirmed that they are not in their critical
sections, they send small barrier messages to other processes. The receipt of bar-
rier messages means no in-transit messages exist in the communication channel.
Therefore, after receiving barrier messages from all other MPI processes, each
MPI process can take a checkpoint locally, and this checkpoint is consistent.

3.2 Job Management System

The job management system manages and monitors parallel processes running
on multiple nodes and their running environments. The main function of the
management system is to detect failures and to support recovery from failures.
To detect and recover from failures, a process separate from the MPI processes
must be executed to monitor the MPI processes, conventionally called local
job managers. To monitor local job managers, a leader job manager can be
executed.

In our previous work, Local Job Manager failures can be recovered from, but
Leader Job Manager failures could cause the system to crash. To overcome this
problem, we incorporate a leader election algorithm into the recovery procedure.
All Local Job Managers periodically send heartbeats to the Leader Job Man-
ager, and the Leader Job Manager responds to each heartbeat. When a Local
Job Manager does not receive a response from the Leader Job Manager, it sus-
pects that the Leader Job Manager has failed. If a consensus is reached among
Local Job Managers that the Leader Job Manager has failed, the Local Job
Manager with the highest rank is chosen to be the temporary leader using the
bully algorithm [4]. The temporary leader restarts the Leader Job Manager on a
remote, unused node. Because MPI processes continue their computation while
the Local Job Managers recover the Leader Job Manager, this does not incur
additional overhead to the running time.

The management system of SHIELD can support a job suspend/resume mech-
anism. Most cluster systems use third party schedulers such as PBS, LSF, and
LoadLeveler, which require users to submit a job description file with the num-
ber of required CPUs, the name of the executable file, and the execution time
to the scheduler. Wrong estimation of the execution time can result in loss of
computation or computing resources if the the scheduler aborts the job before it
finishes or lets a faulty process execute for an inordinate amount of time. To ac-
count for these cases, our system allows jobs to be suspended. When the Leader
Job Manager receives a special signal such as SIGTERM, the Leader Job Manager
orders all participants to take a checkpoint and to terminate themselves. After-
wards, the user or system administrator can resume suspended jobs, if necessary,
from the last checkpoint. This mechanism greatly alleviates the drawbacks of job
schedulers such as low utilization and high completion time.

SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster 879

4 Implementation

4.1 Fault Tolerant Components of MPI Library

The MPI library of SHIELD is composed of four components: (1) the check-
point/restart library, which is used to periodically save checkpoint images that
are used during recovery, (2) the consistent distributed snapshot module, which
ensures that checkpoint images are consistent, (3) ReFS [7], a file system that
prevents files from being corrupted by failures, and (4) the recovery module,
which restores the system to the last consistent state before failure.

Zandy’s checkpoint/restart library [13], which allows the user program’s state
to be saved without modifications to the user’s source code, was modified to fit
the standards set by MVAPICH. ReFS, a user-transparent recoverable file system
for distributed computing environments, was integrated into SHIELD to protect
files from being corrupted by failures. The recovery module was designed specifi-
cally to fit the needs of Infiniband. To ensure that the whole system is consistent,
all MPI processes, not just the failed process, are restarted. All processes execute
the following procedure after fetching the last consistent checkpoint: (1) Open
the HCA, create a completion queue, and create queue pairs; (2) Re-register
existing buffers as DMAable memory; (3) Send communication information to
the Leader Job Manager through Local Job Managers; (4) Receive communica-
tion information of other processes from the Leader Job Manager; (5) Establish
communication channels with other processes.

5 Experimental Results

5.1 Experimental Environment

The experiments were performed on 8 nodes equipped with dual Intel Xeon 3.0
GHz CPU and 4 GB RAM running Red Hat Linux Enterprise 3 with 2.4.21
kernel. We assess SHIELD’s characteristics by running LU and BT of the Nu-
merical Aerodynamics Simulation (NAS) Parallel Benchmark 2 suite. We then
gauge the practicality of our system by applying it to a parallel application that
are currently being run on commercial clusters.

5.2 Experimental Results

The nature of a fault-tolerant system dictates that there be additional steps
taken during the execution of a process. In SHIELD, these extra steps include
starting and coordinating Job Managers, saving a checkpoint image, transferring
the checkpoint image to a stable storage device, and recovering from failures.

Benchmarks. Table 1 shows the normalized running times of LU and BT. “No
Ckpt” refers to the running time of applications using MVAPICH2-0.6.0. “Local
Disk Only” signifies that checkpoints were saved on only the local disk. “Local
Disk To NFS” refers to saving the checkpoint image on the local storage device

880 H. Han et al.

Table 1. Normalized Running Time of Benchmarks

No Ckpt Local Disk Local Disk to NFS NFS Only
bt.A.4 1 1.27 1.45 1.71
bt.B.4 1 1.29 1.44 1.87
lu.A.4 1 1.09 1.29 1.52
lu.B.4 1 1.14 1.30 1.88
lu.A.8 1 1.16 1.28 1.60
lu.B.8 1 1.04 1.15 2.18
lu.A.16 1 1.25 1.39 1.67
lu.B.16 1 1.26 1.37 2.16

before transferring it to a remote storage. The variable m in Equation 1 was
set as 1 for all experiments. Future research will develop a method to determine
the optimum value of m in different environments. “NFS Only” is when the
checkpoint image is transferred directly to the remote storage device. As can
be seen in the table, except for “NFS Only,” the performance of SHIELD is
comparable to the performance of non-fault-tolerant MVAPICH2.

Table 2. Benchmark Results

Startup Cost (sec) Synchronization (sec) Disk Overhead (sec)
lu.A.4 4.5467 0.0031 1.5966
lu.A.8 7.8027 .0.004 1.36
lu.A.16 9.1353 0.005 1.3

Table 2 shows the specific overheads of SHIELD. The startup cost is the time
required for MPI processes to exchange communication information with each
other. The disk overhead is the time required to save a checkpoint image. To
ensure that the checkpoint image is consistent, the MPI processes must be syn-
chronized before the checkpoint image can be taken. LU and BT were executed
with various checkpoint frequencies to result in one checkpoint per experiment.

Real-world Applications. Benchmarks can measure performance but cannot
be used to assess whether the system is practical. Therefore, tests were run using
a communication- and computation-intensive parallel application used in com-
mercial clusters to determine the applicability of SHIELD to real-world clusters.

mm par[9] is a molecular dynamics simulatior developed by the Korea Insti-
tute of Science and Technology Information (KISTI). mm par is parallelized to
enhance performance. Each processor owns N/P particles, where N is total num-
ber of particles and P is total number of processors. This requires a processor
to have particle positions updated before calculation, leading it to communicate
with all other processors. As a result, the communication cost is significant.

Table 3 shows the running time of each mode and the normalized overhead.
mm par was executed with a checkpoint frequency adjusted to allow just one
checkpoint to occur. The performance of SHIELD compares favorably to that of
MVAPICH2. Due to the large checkpoint image size (832 MB), writing the check-
point image to disk took longer than with the benchmarks. However, because the

SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster 881

Table 3. Real World Application

Running Time (sec) Normalized Running Time
No Ckpt 3582 1.0

Local Disk Only 3621 1.01089
Local Disk to NFS 3648 1.01843

execution time of the application is much longer, the checkpoint overhead is still
barely noticeable. Because the MPI process continues its computation while the
Local Job Manager transfers the checkpoint image to the stable storage device,
the difference between “Local Disk Only” and “Local Disk to NFS” is minimal.

Recovery from Failures

0

2

4

6

8

10

12

14

16

P rocess Failure Node Failure

sec
on

ds

(a) Single Failure

Recovery from Multiple Failures

0

1

2

3

4

5

6

7

2 4 6

of Failed Processes

sec
on

ds

(b) Multiple Failures

Fig. 2. Overhead of Recovery from Failures

The cost of recovery is presented in Figure 2. As described in Section 3.2,
SHIELD can recover from multiple process and node failures. The cost of recov-
ering from node failures is higher than that of recovering from process failures
because a new process is spawned in a new node, and the checkpoint image has
to be retrieved from the stable storage device. In the case of multiple simulta-
neous failures, all processes restart after the final failure. Therefore, the cost to
recover from multiple failures is not proportional to the number of failures.

mm par uses files to log simulation results. For it to recover correctly from
failure, the files used must be in the same state they were before failure, i.e.,
files must also be checkpointed. SHIELD allows the application to recover from
failures by supporting file checkpointing with ReFS.

5.3 Discussion

Because the startup and recovery overheads only appear at the beginning of a
process and after a failure, its effect on the system is considerably less than that
of the checkpoint overhead, which occurs periodically. Disk overhead, or the time
required to write the checkpoint image to disk, is proportional to the size of the
checkpoint image, which is determined by the memory size of the MPI process,
The overheads for synchronization and transfer of checkpoint images are related
to the number of processes participating in the parallel computation. Because
today’s cluster environments are furnished with high-speed networks and high-
performance storage servers, the overheads for synchronization and transfer of

882 H. Han et al.

Table 4. Cost of Leader Election

of Processes Consensus (sec) Election (sec)
2 0.000852 0.000093
4 0.003936 0.000144
8 0.004776 0.000167
16 0.209537 0.000427
32 3.298679 0.003513

checkpoint images are low enough to be tolerated as shown in Table 2 and our
previous work, M3.

Dummy MPI processes were spawned to test the overhead of the Leader Elec-
tion procedure. The cost tends to grow as the number of Local Job Managers
increases because more messages have to be exchanged to reach a consensus.
These messages do not affect the MPI processes because they are exchanged
on the Ethernet network while the MPI processes communicate on InfiniBand.
Table 4 shows that even with 32 nodes, the overhead is still small.

6 Conclusion

Current fault-resilience techniques for high-performance clusters’ reliability are
impractical in the context of actual runtime overheads they incur. This paper
presents SHIELD, a fault-tolerant system for MPI, to protect parallelized pro-
grams from unexpected failure incidents. SHIELD exerts favorable performance
results and guarantees a robust fault-resilience property even under various fail-
ure conditions. Using experiments with real applications, our results show that
SHIELD is very efficient when it is used in failure-free conditions and that the
consensus and leader election algorithms that deal with multiple failures have
low overhead as well, making SHIELD practical in real cluster systems. Although
the experiments were conducted on a relatively small Infiband cluster, we may
safely assume that SHIELD is suitable for large applications because scalabil-
ity is dependent on the job management system and the MPI implementation,
and both of these are scalable in SHIELD. SHIELD’s job management system
is based on M3’s job management system and MVAPICH2, both of which have
been shown to be scalable.

We conclude (1) that SHIELD can be an outstanding fault-tolerant solution
for high-performance InfiniBand clusters and (2) that design features of the
SHIELD framework provide useful advice to software architects when design-
ing or implementing their own fault-tolerant frameworks to be applied to their
existing parallel programming systems.

Acknowledgment

The ICT at Seoul National University provides research facilities for this study.

SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster 883

References

1. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov, MPICH-V:
Toward a Scalable Fault Tolerant MPI for Volatile Nodes Proceedings of the 2002
ACM/IEEE Supercomputing Conference, 2002.

2. B. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P. Lemarinier, and M. Mag-
niette, MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging Proceedings of the 2003 ACM/IEEE Supercom-
puting Conference, 2003.

3. G.E. Fagg and J. Dongarra, FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World Proceedings of the 7th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 2000.

4. H. Garcia-Molina, Elections in a Distributed Computing System IEEE Transac-
tions on Computers. , 1982.

5. InfiniBand Trade Association, InfiniBand Architecture Specification, Release 1.2.
http://www.infinibandta.org, 2004.

6. H. Jung, D. Shin, H. Han, J.W. Kim, H.Y. Yeom, and J. Lee, Design and Imple-
mentation of Multiple Fault-Tolerant MPI over Myrinet Proceedings of the 2005
ACM/IEEE Supercomputing Conference, 2005.

7. H.S. Kim and H.Y. Yeom, A User-Transparent Recoverable File System for Dis-
tributed Computing Environment Challenges of Large Applications in Distributed
Environments (CLADE 2005), 2005.

8. J. Liu, J. Wu, S.P. Kini, P. Wyckoff, and D.K. Panda, High Performance RDMA-
based MPI Implementation over InfiniBand ICS ’03: Proceedings of the 17th
annual international conference on Supercomputing, 2003.

9. K.J. Oh and M.L. Klein, A General Purpose Parallel Molecular Dynamics Simu-
lation Program Computer Physics Communication, 2006.

10. G. Stellner, CoCheck: Checkpointing and Process Migration for MPI Proceedings
of the International Parallel Processing Symposium, 1996.

11. N. Woo, H. Jung, H.Y. Yeom, T. Park, and H. Park, MPICH-GF: Transparent
Checkpointing and Rollback-Recovery for Grid-Enabled MPI Processes IEICE
Transactions on Information and Systems, 2004.

12. N. Woo, H. Jung, D. Shin, H. Han, H.Y. Yeom, and T. Park, Performance Evalu-
ation of Consistent Recovery Protocols Using MPICH-GF Proceedings of the 5th
European Dependable Computing Conference, 2005.

13. V. Zandy ckpt http://www.cs.wisc.edu/ zandy/ckpt/

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 884 – 893, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Priority-Based Event Message Scheduling in Distributed
Virtual Environment

Seokjong Yu

Dept. of Computer Science, Sookmyung Women's University,
Chungpa-dong, Yongsan-gu, Seoul 140-742, Korea

yusjong@sookmyung.ac.kr

Abstract. Event message processing is important in DVE because collaboration
among distributed participants is exploited only by sharing event messages over
the network. Existing DVE systems process event messages in FCFS algorithm
based on the occurrence time of event, and do not reflect the priority of event. It
implies how serious an event is to the receivers, and is dependent on the type of
event, and the location of event occurrence, and so on. This paper proposes a
new event scheduling algorithm in DVE introducing this priority information of
event. The advantage of the suggested algorithm is the improvement of system
response time to user’s interaction, compared with previous FCFS scheduling,
especially when high DOI events occur. It considers event occurrence time as
well as the priority simultaneously not so as to cause starvation situations of
low DOI events. For performance evaluation, this work has measured and com-
pared average waiting time of events in event queue.

1 Introduction

Distributed virtual environment(DVE) is a 3D model-based virtual world that sup-
ports collaborative activities among clients distributed over the network, and there are
important application fields such as online game, tele-conferencing, and virtual com-
munity[1, 2, 3, 4]. MMORPG(Massively Multiplayer Online Role-Playing Game) is
one of successful DVE application, which enables more than hundreds of thousands
of people to collaborate one another over the network[5, 6]. In DVE, response time
until a user receives back a feedback after he/she interacts with a system is a key
element to evaluate the performance and satisfaction index of the system. For main-
taining the consistency of DVE, all state changes caused by user’s behaviors, called as
events, should be sent to others in a form of event message packet via a central
server[2, 4]. Event message traffic tends to increase proportionally to the number of
users participating in DVE. In client-server model, all event messages are sent to
others via a central server, and, to reduce the amount of message traffic, less meaning-
ful messages among them are filtered by message filtering algorithm before they are
forwarded.

Area of Interest(AOI) models[2, 4, 7, 8] and dead reckoning[3, 4] are popular mes-
sage filtering methods widely used in DVE. AOI model is able to reduce event mes-
sage traffic flexibly by controlling the size of AOI based on the situation of system

 Priority-Based Event Message Scheduling in Distributed Virtual Environment 885

load. Traditional DVE systems commonly process message traffic by FCFS(First
Come First Served) policy, which handles event messages sequentially according to
the order of the time they arrived at event queue[1, 2, 3, 4]. This method could be not
fair in some situation in DVE. For example, because FCFS policy does not consider
the priority level of each event, some important events related to user interactions
should be waiting long time until they are finished if the server is pre-occupied by
other casual events arrived earlier. Especially, if a bottleneck situation occurs in the
server by heavy message traffic, waiting delay time of messages get much longer, and
users might feel system responding slowly unless events for user’s interaction are
processed immediately. To improve this limitation of existing DVE using FCFS pol-
icy, this paper proposes a novel event scheduling policy in DVE, called as the priority
event scheduling, introducing the priority concept of event.

In section 2, related works are presented, and in section 3, priority-queue schedul-
ing is described. In section 4, the proposed model is evaluated by experiments com-
paring with FCFS one.

2 Distributed Virtual Environment

DVE is a cyberspace shared by multiple participants distributed over the network [1,
2, 3, 4]. Virtual worlds and participants of DVE are presented in 3D graphical objects,
and avatar, user’s agent, plays a role in expressing the behavior and presence of a
participant to others [4, 7]. DVE provides multiple participants with environments for
collaboration, competition, and communication in the application fields of
MMORPG, tele-conference, and virtual city[1, 2, 3, 5, 6].

2.1 Event Sharing Model

Event is an accident that is occurred in DVE directly or indirectly by a participant’s
behavior. Event message is used to inform the occurrence of the accident to the re-
lated participants, and it contains the information on the producer, behavior type, and
values of an event. Event sharing is mandatory and important because DVE must be
consistent to all participants to perform distributed collaboration. The consistency of
DVE is maintained by continuous exchange of event messages over the network.
Therefore, A scalable DVE should cope with the possible number of participants so as
not to degrade the performance of system [4, 8, 10]. Event message filtering is neces-
sary to keep DVE handling a proper level of message traffic. Spatial partitioning[2, 4,
7] and dead reckoning[3, 4] belong to popular message filtering algorithms.

In client-server model, each client connects to central server, and the central server
take charge of relaying and filtering event messages among clients. This model is easy
to implement and filter message traffic in DVE, but it has a problem that causes a bot-
tleneck situation because of single central server, and it might cause the crash of whole
DVE system. In Peer-to-Peer model[4], event messages are transmitted to other clients
directly instead of server message relay. This reduces message latency time, but there
is limitation on increasing the number of simultaneous participants. Peer-Server model

886 S. Yu

has been implemented in ATLAS[3], which introduces message multicasting to re-
duce message traffic. In this model, there is a crucial constraint that multicasting is
available in limited domain of the Internet. Distributed server model[11] becomes de
facto standard of message relay model, which manages DVE by distributed servers. It
is advantageous to extend DVE into large-scale, but, instead, it demands additional
communication load among distributed servers when a participants crosses the
boundaries between partitioned worlds of DVE[3]. Spatial partitioning is a method
that is widely used to improve the scalability of DVE. It divides an entire DVE into
several sub-regions to reduce system loads for maintaining DVE to be consistent [1,
2, 4]. One of spatial partitioning methods is AOI, which is an area on which a partici-
pants focuses to listen events around him/her, and events occurred outside AOI are
discarded. AOI can improve the scalability of DVE by filtering less important mes-
sage traffic effectively. AOI models is categorized into fixed and movable types by its
mobility, and divided into hexagonal, rectangle, circle, and irregular types by its
shape[1, 2, 3, 8]. Hexagon cell has been implemented in NPSNET, a military simula-
tion system[4].

2.2 Population Distribution

In DVE using client-server structure, event message is sent to the central server and
forwarded sequentially to other participants. If message traffic is produced more than
server’s capacity, users might suffer from a bottleneck situation in server and event
message forwarding are delayed. Message traffic overload is highly related to local
population density. Because when an event occurs in a crowded environment. More
message traffic is created than normal situation. According to the studies about popu-
lation distribution in DVE, there are three possible distributions: uniform, skewed,
and clustered distributions[8]. Unlike uniform distribution, skewed and clustered ones
belong to the cases that are likely to cause a server bottleneck[11]. As researches
trying to solve this problem, there are AOI resizing[2] and load balancing among
distributed servers[8, 10].

Fig. 1. Degree of Interest in AOI : high, medium, low, and none

 Priority-Based Event Message Scheduling in Distributed Virtual Environment 887

3 Priority-Based Event Message Scheduling

In existing AOI models[7], single criteria to process events is occurrence time of
event. This work focuses on the priority of event(degree of interest: DOI) as shown in
Fig. 1, which has not been considered before in DVE field. This paper classifies
events of DVE into two groups: urgent events for direct interaction, and common
events for indirect interaction. If a user operates a menu, gestures, or talks to
neighbors, this is where events for direct interaction happen. However, if a user sees
someone moving from a distance, it is a kind of indirect interactions. The former is
events with high DOI, The latter is ones with low DOI. The problem is that existing
models process events based only on single criteria of the occurrence time, and the
importance of events are neglected. In particular, if message traffic reaches maximum
capacity of server, all event messages are postponed for a bottleneck situation in the
server. In this case, effect on direct interaction events is more serious than indirect
one. This is why we consider the priority of event as well as the occurrence time.
Now, this paper introduces algorithms of two event scheduling models, and compares
which one is more efficient when processing event messages.

3.1 Single Queue Event Scheduling

Fig. 2 is a simulation example of event scheduling that events are processed by tradi-
tional AOI models with single event queue. All the events in the queue are processed
by FCFS(first come first served) policy. Since the server’s capacity during

Fig. 2. Single queue scheduling (Mlimit=30, QTaverage=31.2)

888 S. Yu

processed by FCFS policy. Since the server’s capacity during one cycle is limited,
excessive events than this capacity have to be delayed until the next server cycle. This
paper defines a new concept, called ‘event collision’, which is a situation that an
event arrives at the server while processing other event messages. The more often
event collision happens, the more longer processing delay time is. In Fig. 2a, the nota-
tion of '8(1)' means the 'workload (priority level)' of an event message waiting for
processing at the server. In Fig. 2a, to process three messages without delay, the
server requires at least 24 processing unit per cycle. The total penalty for processing
delay is calculated as all remaining workloads * level penalty. In this work, level
penalty are defined, by the principle of high penalty to high level, as penalties 3, 2,
and 1 are imposed on workloads of level 1, 2, and 3, respectively. In Fig. 2b, new
workloads arrive at the queue and workload 22 with level 3, 22(3), remains after the
cycle t1. The server processes old workload 22(3) and new ones 16(1), 6(2), 15(3) at
cycle t2. At cycle t3, workloads 8(1), 6(2), 15(3) remained from cycle t2, and new
workloads 10(1), 12(2), 15(3) are waiting for being processed by the server. In this
way, if more event messages are queued than server’s capacity, the waiting time of
events increases gradually. After all the event messages are processed during cycle t8
by single queue scheduling(Mlimit=30), average waiting time of events is
31.2(=281/9).

3.2 Priority Queue Event Scheduling

To improve efficiency of traditional AOI models using single event queue, this paper
proposes a new event scheduling algorithm in DVE field based on the priority, which
classifies the priority of events into high, medium, and low levels according to DOI of
a participant. DOI is a common way to measure the level of interest that a user pays
attention to the surroundings. One easy way to calculate DOI is to use the information
of distance and orientation between a subject(a participant) and an object(other par-
ticipant, or virtual object). Like the proposed model, if event messages are processed
only by the priority of event regardless of the occurrence time of event, some of low
DOI events might suffer starvation situation. To prevent from this situation and give
more fairness to the algorithm, the proposed algorithm is designed to consider both
the information of priority and occurrence time of event together. when processing
events of DVE.

Unlike previous model using single event queue, in the proposed model event mes-
sage are inserted into multi-level queues according to the DOI, or priority. In other
words, each event is queued into the corresponding queues(Q1, Q2, and Q3) according
to the DOI. Events in priority queue is to be served from top level queue to low level
one by its order. Therefore, high DOI events are processed first than low DOI ones.
With the example in Fig. 3, the detail procedures of priority queue scheduling is as
follows. High DOI events in Q1(event queue#1) are processed first by the server, and
medium DOI ones in Q2(event queue#2)and low DOI ones in Q3 (event queue#3)are
served after Q1. As shown in the example of single queue scheduling in Fig. 2, the
server’s processing capacity per one cycle is restricted to Mlimit. That is to say, the
sever can process events in the order from Q1 to Q2 and Q3 until the processing capac-
ity per cycle, Mlimit, is exhausted. Remained workloads after a cycle ti must wait until
the next cycle ti+1. To prevent from a starvation situation for the priority-oriented

 Priority-Based Event Message Scheduling in Distributed Virtual Environment 889

policy of the algorithm, after each processing cycle, all remained events in each queue
move up to its right upper level queue except Q1 as follows (Q3->Q2, Q2->Q1).

Fig. 3. Priority Queue Scheduling (Mlimit=30, QTaverage=26.7)

At the next cycle, old events (waited for one cycle) will be added with new comers
events, and they are processed by the server in the same way as the previous stage.

By applying this principle to message processing, the algorithm is able to reduce
queue waiting time of direct interactive events with high DOI and to improve system
responsiveness. As described in Fig. 2 and Fig. 3, average queue waiting times, QT,
of single and priority queue models after 8 cycles are 31.2 and 26.7, respectively. It
implies that the proposed priority event scheduling is more efficient than single queue
method by reducing 14.42% of queue waiting time. Reduction rate of queue waiting
time is computed as follows.

%42.14
2.31

7.262.31 =−==
single

prioritysingle
reduced QT

QT-QT
QT (1)

Fig. 4 lists the algorithm of the priority queue scheduling.

Algorithm (Priority queue scheduling)
Mlimit : maximum number of messages that the server is able t
o process during a time interval, v.
AOIi : an i-th AOI group composed of a set of participants t
o be received an event message from a participanti.
Mi,j: number of event messages which occurred in sub-layers

890 S. Yu

Li,j of AOIi, for 1≤j≤3
Mtotal(t)= Mi,j(t), total number of event messages occurred
from all AOIs at time t, for 1≤i≤n and 1≤j≤3.
Ma,j(t) = Mi,j(t), total number of event messages occurred
from layer j of all AOIs, for 1≤i≤n and 1≤j≤3.
while(t++) {
 for (j=1; j<=3; j++)
 add Ma,j(t) into Qj.
 process messages as much as Mlimit from Q1 to Q3 order.
 move up remained messages to one level upper queue as (
Q3->Q2, Q2->Q1)}

Fig. 4. Algorithm of priority event scheduling

4 Performance Evaluation

To evaluate the performance of the proposed algorithm, queue waiting time of event
message has been measured using both single queue and priority queue scheduling.
According to the priority of event, each event message receives waiting penalty at
every cycle whenever the waiting time increases. High DOI event receives high pen-
alty(3), and medium and low DOI ones receive medium(2) and low(1) ones, respec-
tively. Single queue scheduling processes events from front to rear of the queue using
only their occurrence time, regardless of the importance. However, in the priority
queue scheduling, events are inserted into three priority queues according to the pri-
orities, and events are processed from Q1 to Q3 as much as the capacity of server per
one cycle. Table 1 outlines the characteristics of two experimental algorithms.

Table 1. Characteristics of two comparison models

Event schedul-
ing
type

Event processing
criteria

of
event

queues

Queue waiting penalty
to layer 1, 2, and 3

Single queue
scheduling

occurrence time 1 3:2:1

Priority queue
scheduling

occurrence time
+ DOI

3 3:2:1

Total queue waiting time of events is calculated as the following formula.

++=))()()((332211 wiQTwiQTwiQTQTtotal (2)

for 0 ≤ i ≤n, n= number of AOI group, where w1, w2, and w3 are queue time penalty to
level 1, 2 and 3, respectively. As a comparison factor to two algorithms, average
queue waiting times have been measured, with changing the ratio of high DOI event
messages(occurred from layer 1) from 0% to 90%. The measurement is performed,
assuming that total number of AOIs is 10, and maximum number of participants is
150. Sample event messages has been supposed to be generated only in uniform
distribution, and experiments with skewed and clustered ones has been remained for
future researches.

 Priority-Based Event Message Scheduling in Distributed Virtual Environment 891

Table 2 and graphs of Fig. 5 created from the experimental data describe the
change of queue waiting time over the ratio of high DOI event messages. Fig. 5a, 5b,
and 5c show queue waiting times measured from experiments using two comparison
algorithms while the ratio of high DOI event messages has been changed from 20%,
50%, to 80%. When high DOI ratio is 20%, difference of queue waiting time between
two methods are 539.30, and it implies that 29% of queue waiting time is reduced by
priority queue scheduling. Likewise in cases of 50% and 80%, priority queue schedul-
ing has reduced 17% and 5% of queue waiting times, compared with single queue
scheduling. Averagely, the proposed algorithm has required 19% less queue waiting
time than traditional one. From this experimental results, it is confirmed that priority
queue scheduling is more efficient and rational than single queue method.

Table 2. Measurement of queue waiting time

high DOI
ratio

Single queue
scheduling

(S)

Priority
queue

scheduling
(P)

Difference
(S-P)

Reduction
ratio

((S-P)/S)

0% 1798.60 1204.63 593.98 33%

10% 1903.75 1344.70 559.05 29%

20% 2055.25 1515.95 539.30 26%

30% 2206.43 1685.50 520.93 24%

40% 2427.93 1934.43 493.50 20%

50% 2632.85 2176.90 455.95 17%

60% 2848.13 2486.15 361.98 13%

70% 3114.30 2817.15 297.15 10%

80% 3321.43 3150.33 171.10 5%

90% 3686.58 3578.43 108.15 3%

Average 2599.52 2189.42 410.11 19%

(a) queue waiting time (high DOI ratio = 20%)

892 S. Yu

(b) queue waiting time (high DOI ratio = 50%)

(c) queue waiting time (high DOI ratio = 80%)

(d) average queue waiting time

Fig. 5. Measurement of queue waiting time

 Priority-Based Event Message Scheduling in Distributed Virtual Environment 893

5 Conclusion

The ultimate purpose of DVE is to enable geographically distributed people to col-
laborate one another by efficient utilization of system resources such as network
bandwidth and CPU computation time. To minimize the amount of network band-
width consumption, many DVEs have developed various message filtering tech-
niques, for example, AOI and dead reckoning. Traditional single queue scheduling
has potential problems that urgent events related to direct interactions among close
participants are not processed on time because of heavy message traffic of other cas-
ual events. The priority event scheduling proposed in this paper is a novel filtering
method for the purpose of improving the limitation of existing algorithm. As shown in
the performance evaluation section, it has been confirmed that it is useful to shorten
system response time by reducing about 19% of queue waiting time of event mes-
sages. In addition, the proposed scheduling model supports event migration of events
between queues so as not to cause stavation of low priority events in the queue.

Acknowledgements

This Research was supported by the Sookmyung Women's University Research
Grants 2006.

References

[1] J.W. Barrus, R.C. Waters, and D.B. Anderson, "Locales and Beacons: Efficient and Pre-
cise Support for Large Multi-User Virtual Environments," Proceedings of the IEEE Vir-
tual Reality Annual International Symposium, pp. 204-213, 1996.

[2] C. M. Greenhalgh, and S. D. Benford, "MASSIVE: A Distributed Virtual Reality System
Incorporating Spatial Trading," Proceedings of 15th International Conference on Distrib-
uted Computing Systems, Los Alamitos CA, ACM Press, pp. 27-34, 1995.

[3] D. Lee, M. Lim, S. Han, "ATLAS A Scalable Network Framework for Distributed Vir-
tual Environments," ACM Collaborative Virtual Environment (CVE2002), Bonn Ger-
many, pp. 47-54, 2002.

[4] S. Singhal, M. Zyda, "Networked Virtual Environments," ACM Press, New York, 1999.
[5] Lineage. http://www.lineage.com/.
[6] Ultima online. http://www.uo.com/.
[7] T. K. Capin, I. S. Pandzic, N. Magnenat-Thalmann, and D. Thalmann, "Networking Data

for Virtual Humans," Avatars in Networked Virtual Environments, Wiley, 1999.
[8] C.S. John, M. Lui, F. Chan, "An Efficient Partitioning Algorithm for Distributed Virtual

Environment Systems," IEEE Transactions on Parallel and Distributed Systems, Vol. 13,
No. 3, pp. 193- 211, 2002.

[9] J. Huang, Y. Du, and C. Wang, "Design of the Server Cluster to Support Avatar Migra-
tion," IEEE VR2003, Los Angeles, USA, pp.7-14, 2003.

[10] E. F. Churchill, D. Snowdon, "Collaborative Virtual Environments: An Introductory Review
of Issues and Systems," Virtual Reality, Vol. 3, No. 1, Springer-Verlag, pp. 3-15, 1998.

[11] B. Ng, A. Si, R. W.H. Lau, F. W.B. Li, "A Multi-Server Architecture for Distributed Vir-
tual Walkthrough," Proceedings of the ACM symposium on Virtual Reality Software and
Technology , pp. 163-170, 2002.

inVRs - A Framework for Building Interactive
Networked Virtual Reality Systems

Christoph Anthes and Jens Volkert

GUP, Institute of Graphics and Parallel Programming
Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria

canthes@gup.uni-linz.ac.at

Abstract. In the recent years a growing interest in Collaborative Vir-
tual Environments (CVEs) can be observed. Users at different locations
on the Globe are able to communicate and interact in the same virtual
space as if they were in the same physical location. For the implemen-
tation of CVEs several approaches exist. General ideas for the design of
Virtual Environments (VEs) are analyzed and a novel approach in the
form of a highly extensible, flexible, and modular framework - inVRs -
is presented.

1 Introduction

Virtual Reality (VR) has become a technology which is widely used in the area
of research projects and in industry. Many different application domains exist
which can be categorized in visualizations, simulations and VEs. Visualizations
are mainly used in the area of industrial design, medicine, chemistry and astro-
physics. A variety of simulations like vehicle, plane and ship simulations exist and
are most common within the military sector. VEs are used for applications like
construction scenarios, safety training, virtual meeting places or phobia treat-
ment. Although the applications of these different domains may use a variety of
approaches for navigation and interaction, all of these application areas overlap
in many aspects and require similar VR hardware and software. For example vi-
sualizations rely on menu driven interaction while VEs normally focus on natural
interaction with 3D input devices.

In every application specific functionality has to be tailored which makes it a
challenging task to design and develop a general framework that allows for all
kinds of VR applications. The approach we present covers the general require-
ments needed in Networked Virtual Environments (NVEs). It provides clearly
structured interaction, navigation and communication mechanisms while keep-
ing up the flexibility needed to develop specific applications within the domain
of VEs and NVEs.

This section has given a brief overview of the different types of VR applica-
tions. The next section will take a look at various approaches to develop VEs and
explain their advantages and disadvantages. Section three will clearly identify
the characteristics of a VE as we understand it. And in section four an overview

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 894–904, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

inVRs - A Framework 895

over the inVRs framework is given. The following sections explain the function-
ality of the inVRs interfaces and modules in more detail and explain their use
in NVEs. The final sections conclude the paper and give an outlook into future
work.

2 Related Work

Designing VEs is a challenging task. One has to take the areas of Human Com-
puter Interaction (HCI) and hardware- and software design into account. The
development of VEs can be approached in different ways, which all carry their
advantages and disadvantages.

Customizable GUI intense systems like EON or VIRTools approach the design
of the VE via drag and drop mechanisms. This requires predefined communica-
tion mechanisms and relatively static structures inside the system, which allow
for the easy design of general VEs. It difficult to extend these mechanisms to
easily solve the more domain specific problems.

Another approach relies on the usage of scripting languages like TCL or
Python and the extension of the VR System by writing plugins in C++ or
C. DIVE [6] for example uses TCL and allows to write plugins in C. ALICE [7]
makes use of Python as a scripting language. These approaches make it easy for
users to develop their own networked VR systems, but restrict the user fully to
the mechanisms of the APIs. Through the nature of VR applications, using a va-
riety of HW setups and having different application areas and application types,
monolithic systems like the ones described above can not satisfy all of the needs.

Many VR applications are developed fully from scratch using OpenGL and
the CAVELib or scene graph APIs like Inventor [14], OpenGL Performer [13],
OpenSceneGraph or OpenSG [12] for displaying and structuring the VE. This
approach requires an extensive amount of time and cost since most components
of the VE have to newly be designed. Other approaches provide abstraction for
input and output devices like VRJuggler [4] or they support network communi-
cation for a specific scene graph like in CAVERNSoft[9].

Numerous research has been done in the area of NVEs and CVEs. Good
overviews on these topics are given in [10] and [11] on a technical level. They
describe how NVEs have to be designed to be scalable, responsive and interactive.

3 Characteristics of VEs

An NVE can be defined as a VE in which several users on different VR systems
interact in real time. These VR systems can be in the same location or can
be geographically dislocated. A VE as we understand it is user centered, the
navigation is typically set to a walk mode. Natural interaction is predominant,
and parameter changes for application control are possible, but they are not as
important as in visualizations for example.

Typical VEs exist in the field of safety training, which can contain a high
amount of simulation processing, for example, to visualize the spreading of fire

896 C. Anthes and J. Volkert

and smoke. Another common application area for VEs would be architecture
walkthroughs which contain very little interaction and rely heavily on good and
intuitive navigation modes. Virtual meeting rooms focus on communication as-
pects and application sharing. Arts and entertainment projects are as well very
common in the field of VEs. Psychology looks into two different aspects of VEs.
The psychologists are interested in analyzing human performance within a VE
as a way to gather more information about human behaviour in virtual worlds
or they try to incorporate VR technology for a variety of medical treatments
such as phobia treatment and burn injury treatment. Figure 1 shows some ex-
ample VEs from the field of catastrophe simulation, architectural design, and
entertainment which use navigation and parts of the core module of the inVRs
framework.

Fig. 1. Three example applications using parts of the inVRs framework

4 inVRs Architecture

The inVRs architecture is a highly modular system, which allows the inde-
pendent usage of its different modules and interfaces as separate libraries. It
can act as a full VR framework if the modules are connected together with
the central system core module. The architecture provides three independent
modules for interaction, navigation, and networking, an additional system core
module, and two interfaces for the abstraction of input devices and output
devices.

The interaction and navigation modules are based on high level abstractions
which consist of expandable and interchangeable components. The high level
approach in the networking module allows for a variety of networking topologies
which can be implemented by modifying or exchanging the networking module.
Abstraction of input and output allows for a variety of devices which can be used
with the inVRs architecture. The inVRs libraries are fully written in standard
C++ and make use of platform independent Open Source libraries, therefore it
is possible to run an inVRs application on Windows, Unix or Irix. The current
implementation uses OpenSG as a scene graph and OpenAL for audio output.

inVRs - A Framework 897

Fig. 2. An overview of the inVRs framework

An overview of the inVRs framework showing the interfaces, modules and com-
ponents of the system core module is given in Figure 2.

5 Interfaces

Two categories of interfaces exist in the inVRs framework. The input interface
takes care of various VR input devices, while the output interface generates
output for a scene graph abstraction layer which can be connected to a variety of
scene graphs in order to generate stereoscopic images of VR graphics HW. Other
output devices like audio systems and motion platforms can also be accessed by
using of the output interface.

5.1 Input Interface

The input interface provides an abstraction layer for a variety of input devices.
These input devices are split up into their components resulting in three differ-
ent categories: buttons, axes and sensors. Every input device can be represented
by a combination of these components. Axes generate linear values between two
thresholds, buttons generate boolean values and can trigger callback functions,
e.g. if a button is pressed or released, and sensors generate three dimensional
position values with additional rotational information. A collection of the com-
ponents of different input devices is wrapped into a logical controller object,
which can be accessed later by the navigation module and the interaction mod-
ule. The controller object can be configured via an XML configuration scheme.
This XML file describes which component of the physical input device is mapped
onto which attribute of the logical controller. A logical controller can for exam-
ple consist of two buttons and two axes of a mouse as well as five keys from the
keyboard. Several controller setups can be defined and exchanged dynamically
during runtime. If newly developed devices are to be used as an inVRs input
device the input interface library has to be enhanced by following the concept

898 C. Anthes and J. Volkert

Fig. 3. Mapping of devices and components on the controller

of hardware devices, logical components, and a logical controller. In Figure 3 a
mapping of some devices and their components on the XML-specification of the
controller is illustrated.

5.2 Output Interface

The output interface is used for graphics and audio rendering. As an audio li-
brary currently only OpenAL is supported but other libraries are planned as
well. The graphical rendering makes use of OpenSG as a scene graph and the
CAVE Scene Manager [8], a tool built upon OpenSG, which is used for the easier
access to multiple window displays. Between the scene graph layer and OpenSG
an additional interface layer is implemented which abstracts the access to trans-
formations and bounding volumes in the scene graph. This layer is introduced
to support other scene graph systems like OpenSceneGraph, Inventor, OpenGL
Performer or low level APIs like OpenGL.

6 Modules

The inVRs framework consists of modules for interaction, navigation and net-
work communication, which can be used either independently as libraries or can
be individually connected to the system core module. Additional modules like
the tools module provide useful functionality, such as graphical effects or collab-
oration support and visualization. Each of the modules is designed as a separate
library which has a clearly defined interfaces to the system core module. An ap-
plication using only parts of the inVRs framework can implement this interface
and use a module without using the core structure. An example would be the
connection between the navigation module and the system core. The navigation
module provides a transformation matrix as an output which is mapped by the

inVRs - A Framework 899

system core on the camera transformation and can be distributed by the network
automatically to other participants. By using the navigation module separately
it is possible to map the transformation matrix as a steering input for a vehicle
in a application without making use of any of the other modules.

6.1 System

The system module is the central module of the inVRs framework. In this
module the logical database of the VE - the World Database - is stored, its
counterpart the User Database stores information about the local user and the
remote users participating in the VE. Discrete events which are used to commu-
nicate between the databases and the other modules are handled by the Event
Manager. A Transformation Manager takes care of the continuous transforma-
tions and manipulations of objects in the VE. To provide a general interface
to the other modules commonly used functionality like a platform independent
timer, logging mechanisms and debug output are also managed in the system
module.

World Database. The data structures needed for the representation and ma-
nipulation of the VE are stored in singleton pools inside the World Database com-
ponent. This database contains objects of the types environment, tile, entity and
entity transformation. A VE consists of a set of environments, which are used for
structuring regions. A city or a house could be stored as an environment. Each of
these environments contain a set of tiles which could be for example elements of
a street or rooms inside a house. The tiles and environments have a rectangular
shape and are mainly used for helping the developer structure the environment.
Having a hierarchical structure helps the scene graph below enormously with frus-
tumculling.Another advantage in structuring theVE in thismanor canbe found in
the area of NVEs. By having a structure like the one described above the VE could
be distributed on several servers [1]. To allow for full flexibility, entities which rep-
resent the objects used for interaction purposes can be placed arbitrarily inside the
VE using entity transformation nodes. The whole setup of the World Database is
stored inside XML definition files and can be loaded dynamically during runtime.
To design applications it is possible to receive 3D geometries from modelers and
arrange them in the XML files. The VE can be altered without changing any ap-
plication code or any modification of the 3D geometries. With such a mechanism
the world setup is fully flexible and configurable. Figure 4 gives an overview of the
arrangement of environments, tiles and entities.

User Database. This database contains information about the local user and
the other remote participants of the NVE. A user can be identified by their
unique ID which is generated by a combination of the IP address, port and
process number. The user is represented in the VE by an avatar, which has sev-
eral animation cycles (e. g. for walking). This data as well as the user position
is stored in the User Database. An extension for artificial intelligences which
controls characters in the VE would also store the information about these char-
acters in the User Database.

900 C. Anthes and J. Volkert

Fig. 4. Environments with tiles and entities

Event Manager. The Event Manager is the communication unit of the in-
VRs framework which deals with discrete events. Events are generated by the
interaction module, they can be received via the network module or they can
be generated from another arbitrary user defined component. The components
and modules that want to receive the events have to register at the Event Man-
ager using a piping mechanism. In the Event Manager, events are stored in an
event queue and can be if necessary reordered or dropped which is useful in
the case of late arrival of network messages. The Event Manager distributes
the events in its queue to the different modules where they are interpreted
and executed. Additionally the locally generated events are sent to the net-
work module if available and are distributed among the other participants of the
NVE.

Transformation Manager. The Transformation Manager controls the trans-
formation of objects inside the VE. It takes input from the interaction module,
the networking module, the navigation module and other user generated mod-
ules which change the layout of the VE. Whereas the Event Manager processes
and distributes discrete data, the Transformation Manager processes continuous
transformation data and applies these changes in the World Database and the
User Database. Using several input streams (e.g. from the interaction module and
the network), it is possible to support concurrent object manipulation. Trans-
formation data is stored in several queues which allow for different mechanisms
to generate resulting transformations. For example, in the case of concurrent
object manipulation the latest transformation, initiated by a remote user could
be merged together with a transformation of the local user, which lies a few
milliseconds in the past, to calculate the position of the actual object. Another
method would be using the latest transformation of the local user and merge
it with an extrapolated transformation, which is based on a list of the latest
transformations of the remote user. If the navigation module is set to relative
transformation mode the actual position is added to the relative transformation
to calculate the users position. An additional collision detection module for ex-
ample, can interfere in the Transformation Manager. In the case of navigation

inVRs - A Framework 901

a collision between the users avatar and the environment is detected the colli-
sion module can prevent the users representation from moving further in that
direction.

6.2 Navigation

Often navigation is seen as a part of interaction. It has been researched with a
focus on different navigation methodologies and their effect on human perfor-
mance by Bowman et. al. [5]. In the inVRs framework navigation or travel is
defined as an individual module which is independent from the interaction mod-
ule. The navigation module provides a variety of travel modes through the VE by
mapping the input from the abstract controller of the Input Interface on a com-
bination of models of speed, direction and orientation. These navigation models
each generate independent output which is based on the chosen model. Speed
for example could be constant if a button is pressed or it could be increased
and decreased depending on axial values. The different navigation, orientation
and speed models are interchangeable during runtime and are with the help of
the controller abstraction fully independent of the input devices. They only take
abstract sensors, axes and buttons as input. The navigation module can provide
two different types of output. It can generate a full transformation matrix for
the camera in absolute coordinates or it can generate a transformation matrix
without taking the last position into account. The such a transformation matrix
can be used as an input for a physics engine and act as an impulse for a vehicle
simulation. More detail on the different navigation models can be found in [2].
Taking into account that the same abstract controller is used for the navigation
module and the interaction module and the different navigation models are in-
dependent from each other the application designer has to carefully choose his
desired interaction and navigation modes to avoid conflicts. For example using
the same button for the input device for acceleration and for picking up objects
will lead to an undesired application behaviour.

6.3 Interaction

Interaction can be separated into the two tasks of object selection and object ma-
nipulation. In the context of the inVRs framework each of the interaction tasks
is split into subtasks. Object selection consists of the actual selection process and
the positive or negative confirmation of the selection. The manipulation consists
of the actual manipulation and the termination of the manipulation. These four
interaction processes are implemented by interaction techniques which can be
exchanged during runtime.

The interaction is designed as a deterministic finite automaton (DFA) A de-
fined by the 5-tuple (Q, Σ, δ, q0, F). With Q = {q0, q1, q2} as the threes states of
interaction, where q0 = F is the initial and final state of interaction, in which the
user simply navigates through the VE or is idle. For every state in Q a transition
function δ̂ exists which is defined as

δ̂ : Q×Σ∗ → Q

902 C. Anthes and J. Volkert

with Σ∗ as the Kleene Closure of Σ. The transitions δ̂(q, a) = q′ are the dif-
ferent interaction techniques for selection, unselection, selection confirmation,
manipulation or manipulation termination. Some variations of these techniques
are initially provided by the framework like raycasting as a selection technique
for picking objects. They can easily be enhanced by the user. The input alpha-
bet Σ consists of abstract input from the controller in combination with state
information from the World Database and the User Database. Figure 5 shows
the interaction DFA.

Fig. 5. Interaction state machine

6.4 Network

The networking module is responsible for the distribution of events and continu-
ous information among the other participants of the NVE. Continuous informa-
tion like position data, transformation data or data generated by the tracking
system is streamed via UDP. Events have to be reliable and therefore are sent
via TCP. They are less common than the continuous data. The actual imple-
mentation of the networking module provides a low level p2p-system, which
allows for users to connect to any host in the system. The data of the newly
connected peer is then broadcasted to the other peers and and vice versa. Using
p2p-architectures guarantees very low latencies but causes high network traffic
and is not very scalable. It should be sufficient for smaller link-ups with 5 to
10 users but it is not a large scale approach. Other approaches like the one de-
scribed in [3] and [1] are harder to implement but guarantee a highly improved
scalability. This approach could be integrated in the network module on a higher
level on top of the existing p2p architecture.

6.5 Miscellaneous Tools

An additional tools module which does not provide core functionality for the
creation of a working NVE has been designed. The tools inside this module
include graphical effect packages like swarming algorithms, particle systems, and
water simulation. For presentation purposes predefined camera paths are a useful
addition. During tasks involving collaboration an additional part of the tools
module allows visualization of movements and actions of the remote participants.

inVRs - A Framework 903

Height maps and basic physics in the field of rigid body dynamics simplify the
creation of architectural walkthroughs, construction scenarios and safety training
applications.

7 Conclusions

This paper has given a brief overview of the inVRs architecture and introduced
it’s different modules and interfaces. The high flexibility of different input and
output devices is generated through the usage of the interfaces. It is focused on
the development of VEs and NVEs and does not specifically support the cre-
ation of visualizations. The inVRs framework presented in this paper provides a
well structured framework for the design of NVEs in general. Basic functionality
like navigation, interaction and world structuring is accessible for the applica-
tion designer by using the inVRs libraries or by altering the XML-configuration
files.

The advantages of the inVRs framework lie in the abstraction of input and
output, and a clear structure for communication of discrete and continuous data.
Centralized replicated databases of the the user and VE data guarantee for a
high responsiveness. Clear definition of navigation and interaction methodologies
allow high reusability and expandability of navigation models and interaction
techniques.

The framework does not support advanced animation, scripting possibilities,
or menu driven interaction. It provides the core functionality needed in most VR
applications especially in NVEs. Application specific functionality still has to be
individually developed.

8 Future Work

In the future the modules have to be enhanced. Different high level network
architectures have to be implemented in the network module to guarantee an
improved scalability. The framework can be extended with a visualization mod-
ule which will allow the support of different data formats and provide a variety
of visualization techniques. A physics module would be interesting for training
environments or vehicle simulation but is very challenging to design with net-
work support. Developing an external editor for configuring the XML definitions
and performing the layout of the VE would allow application designers without
any VR and programming experience to develop basic VR applications or to
design and enhance advanced domain specific applications.

Acknowledgments

Several of our colleagues contributed to this work, most notably Helmut Bressler,
Roland Landertshamer and Johannes Zarl at the ZID and GUP of Johannes
Kepler University.

904 C. Anthes and J. Volkert

References

1. Christoph Anthes, Paul Heinzlreiter, Adrian Haffegee, and Jens Volkert. Message
traffic in a distributed virtual environment for close-coupled collaboration. In
PDCS, pages 484–490, San Francisco, CA, USA, September 2004.

2. Christoph Anthes, Paul Heinzlreiter, Gerhard Kurka, and Jens Volkert. Navigation
models for a flexible, multi-mode vr navigation framework. In VRCAI, pages
476–479, Singapore, June 2004.

3. Christoph Anthes, Paul Heinzlreiter, and Jens Volkert. An adaptive network ar-
chitecture for close-coupled collaboration in distributedvirtual environments. In
VRCAI, pages 382–385, Singapore, June 2004.

4. Allen Douglas Bierbaum. Vr juggler: A virtual platform for virtual reality appli-
cation development. Master’s thesis, Iowa State University, Ames, Iowa, 2000.

5. Douglas A. Bowman, David Koller, and Larry F. Hodges. Travel in immersive
virtual environments: An evaluation of viewpoint motioncontrol techniques. In
Virtual Reality Annual International Symposium (VRAIS), pages 45–52, 1997.

6. Christer Carlsson and Olof Hagsand. Dive - a platform for multiuser virtual envi-
ronments. Computers and Graphics, 17(6):663–669, 1993.

7. Matthew Conway, Randy Pausch, Rich Gossweiler, and Tommy Burnette. Alice:
A rapid prototyping system for building virtual environments. In ACM CHI ’94
Conf. Human Factors in Computing, Conf. Companion, volume 2, pages 295–296,
April 1994.

8. Adrian Haffegee, Ronan Jamieson, Christoph Anthes, and Vassil N. Alexandrov.
Tools for collaborative vr application development. In ICCS, pages 350–358, May
2005.

9. Jason Leigh, Andrew E. Johnson, and Thomas A. DeFanti. Issues in the design of
a flexible distributed architecture for supportingpersistence and interoperability in
collaborative virtual environments. In Supercomputing’97, 1997.

10. Michael R. Macedonia and Michael J. Zyda. A taxonomy for networked virtual
environments. IEEE MultiMedia, 4(1):48–56, Jan-Mar 1997.

11. Maja Matijasevic. A review of networked multi-user virtual environments. Tech-
nical report tr97-8-1, Center for Advanced Computer Studies, Virtual Reality and
Multimedia Laboratory, University of Southwestern Lousiana, USA, 1997.

12. Dirk Reiners. OpenSG: A Scene Graph System for Flexible and Efficient Realtime
Rendering for Virtual and Augmented Reality Applications. PhD thesis, Technische
Universität Darmstadt, Mai 2002.

13. John Rohlf and James Helman. Iris performer: A high performance multiprocessing
toolkit for real-time3d graphics. In SIGGRAPH, pages 381–394. ACM Press, July
1994.

14. Paul S. Strauss. Iris inventor, a 3d graphics toolkit. In A. Paepcke, editor, 8th
Annual Conference on Object-Oriented Programming Systems, Languages,and Ap-
plications, pages 192–200, Washington, D.C., United States, 1993. ACM Press.

JaDiMa: Java Applications Distributed
Management on Grid Platforms

Yudith Cardinale, Eduardo Blanco, and Jesús De Oliveira

Universidad Simón Boĺıvar,
Departamento de Computación y Tecnoloǵıa de la Información,

Apartado 89000, Caracas 1080-A, Venezuela
{yudith, eduardo}@ldc.usb.ve,jesus@bsc.co.ve

Abstract. This paper describes JaDiMa (Java Distributed Machine), a
collaborative framework to construct high performance distributed Java
applications on grid platforms. JaDiMa is a system that automatically
manages remote libraries used in a Java application. It leverages on the
advantages of portability, modularity, object oriented model and flexi-
bility of Java, while incorporating well known techniques of communi-
cation and security. JaDiMa allows users to compile and execute Java
applications which use distributed libraries, without the need of keep-
ing them in the developer and user hosts. The result is a simple and
efficient distributed environment upon which applications and data are
easily shared and highly portable amongst heterogeneous platforms and
multiple users. We describe an implementation of JaDiMa as part of
suma/g, a Globus-based grid environment. We also show experiences of
executing an application, which uses libraries for managing graph and
network data, on several scenarios with suma/g and JaDiMa.

Keywords: Collaborative Environments, High Performance Java Appli-
cations, Grid Platforms, Distributed Library Management, Compilation
and Execution.

1 Introduction

Grid platforms increase the possibility of environments in which multiple users,
geographically distant, may share data, pieces of software, computation resources,
and even specialized devices [1]. In this direction, it is very common that pro-
grammers use several library components developed by third parties to achieve
the global goal required by an application. Following the principle of reusability,
it is much more efficient for developers to delegate specific functionalities to al-
ready available software, extensively proven and developed exclusively for such
function, and concentrate themselves in the resolution of their specific problem.

However, when the pieces of reusable code are distributed (e.g. in a grid plat-
form), developers have to find and obtain the suitable libraries, then reference
them in their applications so that the compilation process can be accomplished.
In addition, end user must have the same libraries in order to be able to execute

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 905–914, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

906 Y. Cardinale, E. Blanco, and J. De Oliveira

the application. In general, these applications are distributed along with libraries
on which they depend on. This implies that reused pieces of software must remain
local to the compilation and execution environment. In a distributed environ-
ment, this approach presents serious disadvantages: i) waste of disk space, when
a library is used by several applications, or when only a small portion of this
library is used; ii) difficulty in handling and updating the versions of the library,
by leaving, in the hands of the developers and end users, the responsibility of
updating its local versions with newer ones; and iii) in the case of development
of scientific applications for grids, libraries are only required for local compila-
tion, since the application is not going to be executed locally but in some of the
remote execution nodes of the grid platform. Downloading the libraries locally
only for compilation represents a waste of space and time for developers.

Motivated by these considerations, we have focused on developing a Java-
based framework, called JaDiMa (Java Distributed Machine, sourceforge.net/
projects/jadima), a collaborative platform to construct high performance Java
applications on grid platforms. JaDiMa is a system that automatically man-
ages remote libraries used in a Java application. It leverages on the advantages
of portability, modularity, object oriented model and flexibility of Java, while
incorporating well known techniques of communication and security (i.e., SOAP
protocol and X.509 certificates). The result is a simple and efficient distributed
environment upon which applications and data are easily shared and highly
portable among heterogeneous platforms and multiple users, therefore motivat-
ing the reusability and sharing of libraries by inexperienced and advanced pro-
grammers. JaDiMa allows users to compile and execute Java applications using
distributed libraries, without the need of keeping them in the developer hosts.

We describe an implementation of JaDiMa as part of suma/g [2], a Globus-
based middleware. suma/g is a grid platform specifically targeted at executing
Java bytecode on Globus grids. We also show experiences of executing an ap-
plication, which uses libraries for managing graph and network data, on several
scenarios with suma/g and JaDiMa.

2 JaDiMa Architecture

The design of JaDiMa is oriented to satisfy requirements such as: easy to install,
configure and use; flexibility, adaptability and modularity; platform indepen-
dence; transparency; high performance and scalability; and security. Following
sections describe how JaDiMa satisfies these requirements.

2.1 Components

Our design and implementation can be roughly separated into four components:
Repository, Publishing Agent, Compilation Agent and Execution Agent; corre-
sponding respectively to administration of libraries, their publication, the compi-
lation and the execution of applications that require published libraries. Figure 1
presents the general scheme of JaDiMa architecture.

JaDiMa: Java Applications Distributed Management on Grid Platforms 907

Fig. 1. JaDiMa Architecture

Library Repository
The Library Repository component is in charge of managing the remote libraries
that will be used in compilation and execution processes defined in JaDiMa.
For each published library, the Repository will maintain three different but re-
lated data sets: i) the actual class implementations provided by the publishing
user, which will be used in the execution phase, ii) the stubs, which will be used
during the compilation process, and iii) the library documentation (API).

Publishing Agent
The library publishing process in JaDiMa consists of two phases: i) Automatic
generation of stubs. A stub is automatically generated for each class of the library
and is compiled using JaDiMa Compilation Agent in order to solve dependencies
with other previously published libraries. The stubs will be used by the develop-
ers to compile their applications; and ii) Transmission of stubs, documentation
and packages of the libraries from the publishing node to the Repository.

Compilation Agent
The Compilation Agent is in charge of obtaining application dependency infor-
mation provided by the developer, and making requests to specified Repositories
in order to obtain library stubs. Through a graphical interface, the programmer
can query the information about the published libraries on different Repositories
and select those he needs; then the graphical interface automatically generates
the metadata file that describes the application dependencies.

Execution Agent
The Execution Agent is in charge of setting up the environment in which an
application can be transparently executed. When an execution is requested, the

908 Y. Cardinale, E. Blanco, and J. De Oliveira

user has a JaDiMa compiled application (that contains a set of stubs for each
library used) and a dependency file used to initialize jdmClassLoader. When
the application references classes from remote libraries, the jdmClassLoader
locates and downloads, from Repositories, the actual definition of these classes,
replacing their stubs. Hence, the Execution Agent ensures a normal execution of
the application. Note that this scheme makes possible that only the subset of
classes within the library actually used by the application are downloaded to the
execution platform. By using our proposed version numbering [3], it is possible
to obtain improved library versions that do not affect the execution.

2.2 Class Pre-fetching and Caching

In order to reduce the communication time, and thus to improve the performance
during the execution, we have implemented a scheme of class pre-fetching. The
Execution Agent keeps information representing associations amongst the ap-
plication classes according to a temporal relationship. This relationship defines
sets of classes referenced within a time interval. Whenever an application is exe-
cuted, this information is updated by averaging the elapse times at which a class
is referenced, from the beginning of the execution. With this information, the
Execution Agent defines clusters of classes referenced within a time interval of
δ. Hence, when a class is referenced and is not present in the execution node, all
the classes that belong to its cluster are requested. Information of class associ-
ations is returned to the client at the end of the execution, such that it can be
submitted in future executions. Class pre-fetching module is defined as a thread,
so it can be executed concurrently with the application.

The Execution Agent manages the persistence of the downloaded classes in a
local cache. This means that after execution, remotely loaded classes remain in
the Execution Agent. In this way, it is possible to reduce communication delay
and overhead in future executions. The implementation of cache policies are
considered with a plug-in scheme that reinforces JaDiMa adaptability.

3 JaDiMa on SUMA/G

In this section we describe a scheme to integrate JaDiMa to a Globus-based
grid platform, called suma/g. JaDiMa features (such as transparency, secu-
rity, accessibility, scalability and high performance), in addition to its execution
model makes it ideal to leverage execution requirements in grid environments.
We identify some benefits of incorporating JaDiMa in grid platforms:

– Grid services could be updated simultaneously in multiple nodes with no
intervention of system administrators. These services will be automatically
updated with newer and corrected versions of used packages, by using the
JaDiMa versioning scheme which guarantees version compatibility.

– Grid users share software easily, supported by centralized administration of
libraries. By providing access to Repositories, JaDiMa is virtually distribut-
ing every published library to each execution node on the grid.

JaDiMa: Java Applications Distributed Management on Grid Platforms 909

– Grid users save time, bandwidth, and disk space. They may develop their
applications locally to latter execute them on the grid. The use of library
stubs makes possible for users to relay in JaDiMa mechanisms for library
administration. Hence programmers may only download the stubs needed
in the compilation process. When requesting the execution on a grid node,
these stubs will travel as a part of the application to the selected Execution
Agent where they will be substituted for most recent and compatible library
versions.

3.1 SUMA/G Overview

suma/g (Scientific Ubiquitous Metacomputing Architecture/Globus) [2] is a
grid platform that transparently executes Java bytecode on remote machines.
It extends the Java execution model to grid platforms; in particular, classes and
data are dynamically loaded.

suma/g middleware was originally built on top of commodity software and
communication technologies, including Java and CORBA [4]. It has been grad-
ually incorporating Globus general services by using the Java CoG Kit [5]. su-
ma/g architecture is depicted in Figure 2.

Fig. 2. suma/g Architecture

The basics of executing Java programs in suma/g are simple. Users can
start program execution through a shell running on the client machine. They
can invoke either sumag Execute, corresponding to the on-line execution mode,
or sumag Submit, which allows off-line execution (batch jobs). At this time a
proxy credential is generated (by using GSI) that allows processes created on be-
half of the user to acquire resources, without additional user intervention (single
sign-on). Once the suma/g core receives the request from the client machine,
it authenticates the user (through GSI), transparently finds a platform for ex-
ecution (by querying the MDS), and sends a request message to that platform.
An Execution Agent at the designated platform receives an object represent-
ing the application and starts, in an independent JVM, an Execution Agent
Slave, who actually executes the application. The sumagClassLoader is started

910 Y. Cardinale, E. Blanco, and J. De Oliveira

in that new JVM, whose function is to load classes and data during the execution.
Supported classes and input files sources, and output destinations, include: a)
the machine (client) where the application execution command is run and, b) a
remote file server on which the user has an account. A pluggable schema allows
for implementing several protocols to manage classes and files (e.g., CORBA,
sftp, gridFTP).

In case of invoking sumag Execute service, user has only to specify the main
class. The rest of classes and data files are loaded at run-time, on demand.
Standard input and output are handled transparently, as if the user were running
the bytecode in the local machine. For the sumag Submit service, the client
transparently packs all classes together with input files and delivers them to
suma/g; the output is kept in suma/g until the user requests it. A Proxy
is designated to act on behalf of the client to supply classes and data to the
Execution Agent.

3.2 Extending the SUMA/G Execution Model with JaDiMa

The integration of JaDiMa on suma/g extends its execution model by adding
a new class source: JaDiMa Repositories. In order to integrate JaDiMa to
suma/g, it was necessary to:

– Adapt the security scheme of JaDiMa to the GSI scheme. This requirement
could be reached easily. suma/g users have a X.509 certificates from which
a proxy is generated on each execution. As the proxy is a “reduced version”
of X.509 certificate, it is totally compatible with JaDiMa security scheme,
which is based on those certificates. Hence, no modification was necessary
to achieve this requirement. JaDiMa receives a X.509 certificate or a proxy
and does not distinguish one from the other.

– Incorporate the jdmClassLoader functionality to the sumagClassLoader. To
achieve this requirement it was necessary to modify the sumagClassLoader
in order to add stubs management for allowing to detect library stubs and
request actual libraries from pre-defined Repositories.

Figure 3 shows the suma/g extended execution model. According to suma/g
traditional execution model, sumagClassLoader gets classes from the Client (in
case of Execute service), or from a designated Proxy (in case of Submit service),
or from remote accounts specified by users. With JaDiMa some classes can be
got from remote Repositories. The elements denoted with pentagons represent
additions to the original mechanism:

a. On the client side there are library stubs on which the application depends
on. These stubs are transferred to the suma/g Execution Node as they are
referenced, exactly as it happens with application classes.

b. sumagClassLoader verifies each class loaded to determine if it is a stub.
c. In case a stub is loaded, sumagClassLoader requests the actual class to the

specified Repository (it is specified in the stub).

JaDiMa: Java Applications Distributed Management on Grid Platforms 911

Fig. 3. suma/g Execution Model Extended with JaDiMa

4 An Experience: Using JUNG Library

JUNG [6] (Java Universal Network/Graph) is an open-source software library
that provides a language for the modeling, analysis, and visualization of graph
and network data. The main packages used by JUNG are COLT (http://cern.ch/
hoschek/colt/), commons-collections (http://jakarta.apache.org/commons/
collections/), and xerces (http://xml.apache.org/).

We have executed a JUNG-based application in a distributed platform: su-
ma/g core components running on a double processor 1.8 GHz, 1GB; an Execu-
tion Agent running on a dedicated cluster of PC’s, double processor 800 MHz,
512 MB, 100 Mbps Ethernet; a JaDiMa Repository on MySQL back-end in a
1.5MHz, 750 MB; a JaDiMa Repository on SQLServer back-end in a double
processor 600MHz, 1GB, 100 Mbps Ethernet; and a suma/g Client running on
a 2.2GHz, 1GB, 768Kbps network connection.

We tested 3 scenarios in order to get performance information: i) the execu-
tion takes place using suma/g original execution model, e.i. with no JaDiMa
support, all classes are transfered from Client to Execution Agent; ii) the li-
braries used by the application are published at JaDiMa Repositories close to
suma/g deployment site; and iii) as the second one, but with JaDiMa facili-
ties activated, e.i. class pre-fetching and caching. In all of them, the client and
the execution node were in different networks. Table 1 shows total execution
time, class loading time, and time proportion spent loading classes, for each
scenario.

The results show that with the third scenario the total execution time is
reduced in 20% with respect the first scenario. The second scenario shows the
worst performance because it is necessary to transfer stubs from the Client to
the Execution Agent, and then actual classes from Repositories.

912 Y. Cardinale, E. Blanco, and J. De Oliveira

Table 1. Total execution and class load time for each scenario

Scenario Class Loading Total Execution Proportion
Time σ Time σ Proportion σ

suma/g 12.40 s 6.73 30.70 s 9.26 38 % 0.08
suma/g + JDM 18.79 s 3.52 35.80 s 5.18 52 % 0.03
suma/g + JDM + facilities 9.97 s 1.58 26.90 s 3.98 37 % 0.03

5 Related Work

For high performance applications, reusability offers a benefit to construct
component-based applications. In collaborative frameworks, such as computa-
tional grids, those components could be distributed through the platform. How-
ever, the current grid enabled tools present many limitations to support com-
pilation, distribution, deployment, and execution of these applications. JaDiMa
overcomes some of these limitations and provides a framework to build
component-based Java applications in which the components are distributed.

Apache Maven [7] and Krysalis Centipede [8] extend the functionalities of
compilation common tools (i.e. ant and make) to allow distributed management
of libraries at compilation time. As well as JaDiMa, both projects can auto-
matically download jar files (according to the package dependencies specified at
the configuration files) from remote Web repositories. The entire packages are
mirrored in a local repository, while JaDiMa downloads only stubs to the local
host. In JaDiMa, web repositories are not mandatory because JaDiMa sup-
ports several communication protocols. Apache Maven and Krysalis Centipede
can replace the packages for new versions during the compilation only if this
is specified on the dependency file. Based on our proposed versioning specifica-
tion, jdmClassLoader can load new library versions at runtime, which does not
affect the execution flow. With respect to security, JaDiMa allows fine-grain
access control by defining access permissions to packages or libraries instead of
repositories. Security in Apache Maven and Krysalis Centipede is managed at
the communication protocol level.

DistAnt [9] and GridAnt [10] specifically address the problem of helping
users deploy their applications on the grid resources. They extend Ant with
grid specific tasks, which users can employ to define their application’s deploy-
ment workflow (e.g., compiling; authentication; resource location; code and data
packaging, transport and unpackaging/installation, etc.). These tools can be
combined with Apache Maven to leverage in the compilation activities. They
operate at a higher level than JaDiMa; however, they are oriented to iso-
lated application deployment, instead of the compilation and execution sup-
port for distributed applications provided by JaDiMa. As well as JaDiMa,
GridAnt uses X.509 certificates for user authentication, authorization and
delegation.

There are several projects oriented to remote execution of Java programs on
grid platforms. Some examples are Addistant [11], Unicorn [12], Javelin++ [13],
JNLP [14], Bayanihan [15], HORB [16] and suma/g [2].

JaDiMa: Java Applications Distributed Management on Grid Platforms 913

Addistant is a system which enables the distributed execution of software orig-
inally developed to be executed on a single JVM, so that some objects of that
software are executed on a remote host. That means, it provides functional dis-
tribution on multiple JVM. The Addistant execution model is contrary JaDiMa
model because it allows the execution on a single platform (sequential or parallel)
of applications with distributed components. JaDiMa does not modify the orig-
inal execution model of applications. Developers using Addistant have to specify
(in a policy file) the host where instances of each class are allocated and how
remote references are implemented. According to that specification, Addistant
automatically transforms the bytecode at load time by generating proxy classes,
which take charge of making remote references at run-time. JaDiMa uses stubs
at compilation time and the substitution for actual classes is made transparently
at run-time.

Unicorn, Javelin++, Bayanihan, HORB and suma/g define architectures us-
ing Java to harness the vast processing power on the Internet for distributed
computing applications. Users can either make use of the suite of applications
provided by the systems or upload their own applications to the server together
with the data to be processed. These tasks are distributed (may be in parallel)
to idle hosts logged on to the corresponding servers. Most of these projects in-
volve the need of using specific programing models and run-time environments
for distributing and invoking remote Java classes. JaDiMa runs unmodified
Java applications. None of those projects support compilation activities, then
they could leverage on JaDiMa compilation power.

6 Conclusions and Future Work

JaDiMa provides an adequate collaborative framework to construct high per-
formance Java applications on distributed platforms. JaDiMa is a system that
automatically manages remote libraries used in a Java application. On the other
hand, suma/g execution model is very attractive to users, since the grid is used
in the same fashion a local JVM is used.

We have shown a feasible integration of JaDiMa to suma/g platform, keeping
the advantages of both systems. We extended the JVM model to provide seam-
less access to distributed high performance resources and support the reusabil-
ity of distributed software components. The suma/g+JaDiMa execution model
meets Java user expectations, facilitating application porting to the grid, since
applications can be run first on local machines, then executed on the grid without
any change to classes. This execution model improve application performance by
reducing class transfer overhead.

Plans for future work include conducting experiments with other kinds of
applications (e.g., different combination of packages distribution), as well as ex-
ploring alternatives of stubs management on suma/g to eliminate stub transfer
from the client to the execution node. This will reduce the communication over-
head during the execution.

914 Y. Cardinale, E. Blanco, and J. De Oliveira

References

1. Berman, F., Fox, G., Hey, A., eds.: Grid Computing: Making the Global Infras-
tructure a Reality. Wiley (2003)

2. Cardinale, Y., Hernández, E.: Parallel Checkpointing on a Grid-enabled Java Plat-
form. Lecture Notes in Computer Science 3470 (2005) 741 – 750

3. Cardinale, Y., Blanco, E., DeOliveira, J.: JaDiMa: Arquitectura de Máquina Vir-
tual para la Construcción de Aplicaciones JAVA en Plataformas Grids. In: XXXI
Conferencia Latinoamericana de Informática (CLEI-2005), Colombia (2005)

4. Cardinale, Y., Curiel, M., Figueira, C., Garćıa, P., Hernández, E.: Implementation
of a CORBA-based metacomputing system. Lecture Notes in Computer Science
2110 (2001) Workshop on Java in High Performance Computing.

5. von Laszewski, G., Foster, I., Gawor, J., Smith, W., Tuecke, S.: CoG Kits: A
Bridge between Commodity Distributed Computing and High-Performance Grids.
In: ACM Java Grande 2000 Conference, San Francisco, CA (2000) 97–106

6. O’Madadhain, J., Fisher, D., Nelson, T., Krefeldt, J.: JUNG: Java Universal Net-
work/Graph Framework (2003) http://jung.sourceforge.net/index.html.

7. Apache Software Foundation: Apache Maven Project (2005) http://maven.
apache.org/.

8. Krysalis Community Project: Krysalis centipede (2004) http://krysalis.org/
centipede/.

9. Goscinski, W., Abramson, D.: Distributed Ant: A system to support application
deployment in the grid. In: Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing (GRID’04). (2004)

10. Amin, K., von Laszewski amd Mihael Hategan, G., Zaluzec, N.J., Hampton, S.,
Rossi, A.: GridAnt- A Client-Controllable Workflow System. In: Proceedings of
the 37th Hawaii International Conference on System Sciences. (2004)

11. Tatsubori, M., Sasaki, T., Chiba, S., Itano, K.: A Bytecode Translator for Dis-
tributed Execution of ”Legacy” Java Software. In: Proceedings of the 15th Euro-
pean Conference on Object Oriented Programming (ECOOP 2001). Volume 2072.,
Budapest, Hungary, Springer-Verlag (2001)

12. Ong, T.M., Lim, T.M., Lee, B.S., Yeo, C.K.: Unicorn: voluntary computing over
Internet. ACM SIGOPS Operating Systems Review 36 (2002) 36–51

13. Neary, M.O., Brydon, S.P., Kmiec, P., Rollins, S., Cappello, P.: Javelin++: Scala-
bility issues in global computing. In: Proceedings of the ACM 1999 conference on
Java Grande, San Francisco, California (1999) 171–180

14. Zukowski, J.: Deploying Software with JNLP and Java Web Start (2002)
http://java.sun.com/developer/technicalArticles/Programming/jnlp/.

15. Sarmenta, L.F.G., Hirano, S.: Bayanihan: building and studying web-based vol-
unteer computing systems using java. Future Generation Computer Systems 15
(1999) 675–686

16. Satoshi, H.: HORB: Distributed Execution of Java Programs. In: Proceedings
of the International Conference on Worldwide Computing and Its Applications.
(1997) 29–42

Reducing Data Replication Overhead in DHT Based
Peer-to-Peer System

Kyungbaek Kim and Daeyeon Park

Department of Electrical Engineering & Computer Science,
Division of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
kbkim@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

Abstract. DHT based p2p systems are appeared to provide scalable storage ser-
vices with idle resource from many unreliable clients. If a DHT is used in storage
intensive applications where data loss must be minimized, quick replication is
especially important to replace lost redundancy on other nodes in reaction to fail-
ures. To achieve this easily, the simple replication method directly uses the con-
sistent set such as the leaf set and the successor list. However, this set is tightly
coupled to the current state of nodes and the traffic needed to support this repli-
cation can be high and bursty under churn.

This paper explores efficient replication methods that only glimpse the con-
sistent set to select a new replica. We propose two types of replication methods
: Quorum based replication and Availability based replication. The replicas are
loosely coupled to the consistent set and can eliminate the compulsory replica-
tion under churn. Results from a simulation study suggest that our methods can
reduce network traffic enormously and achieve high data availability in a DHT
based p2p storage system.

Keywords: Peer-to-Peer, Replication, Data availability.

1 Introduction

In these days, peer-to-peer systems have become an extremely popular platform for
large-scale content sharing, even the p2p based file systems appear. Unlike client/server
model based storage systems, which centralize the management of data in a few highly
reliable servers, peer-to-peer storage systems distribute the burden of data storage and
communications among tens of thousands of clients. The wide-spread attraction of this
model arises from the promise that idle resources may be efficiently harvested to pro-
vide scalable storage services. To promise that, a lot of research papers discussed the
Distributed Hash Table (DHT) based p2p routing algorithms [1] [2] [3] [4] and we call
the p2p system which uses the DHT based p2p routing algorithm the structured p2p
system.

These structured p2p systems achieve the efficient and bounded lookup for the re-
quested object. However, they poorly support the acceptable levels of data availabil-
ity [11] [12]. The main problem is the ad hoc manner in which p2p systems are con-
structed. In contrast to traditional systems, peer-to-peer systems are composed of com-
ponents with extremely heterogeneous availabilities - individually administered host

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 915–924, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

916 K. Kim and D. Park

PC’s may be turned on and off, join and leave the system, have intermittent con-
nectivity, and are constructed from low-cost low reliability components. For exam-
ple, one recent study of a popular peer-to-peer file sharing system[7] found that the
majority of peers had application-level availability rates of under 20% and only 20%
nodes have server-like profiles. In such an environment, failure is no longer an excep-
tional event, but is a pervasive condition. At any point in time the majority of hosts in
the system are unavailable and those hosts that are available may soon stop servicing
requests.

Many structured p2p systems use the simple replication method to cope with the
massively failures of nodes [5] [6] [8]. This simple approach exploits the consistent
set of the successive nodeIDs such as successor list of chord [1] and leaf set of pas-
try [2]. Basically, these sets are used to conserve the routing information to cope with
the failures and when any node joins or leaves, the consistent set of every node which
detects the change of the membership must update to preserve the current state of the
p2p system. Because of this consistent and automated update, many systems use this set
to replicate the responsible objects of each node for the simple lookup and the simple
data management. However, this simple approach makes high network traffic because
of the dynamic membership of the p2p system. For example, if the size of the consistent
set is 8 and the p2p system needs 6 replicas for the target data availability, when one
new node changes its state, the 8 nodes which are the members of the consistent set
of the new node should update their consistent sets. In this case, the simple replication
approach is tightly coupled to the consistent set and 6 replicas should be updated with-
out any relation of the current data availability or the node characteristics. According
to this behavior, the heavily dynamic membership change of p2p systems causes the
compulsory data replication and generates very high network traffic for this replication.
Because of this heavy replication overhead, until now, DHT algorithms are not widely
used in commercial systems yet.

In our paper, we suggest the efficient replication methods to achieve the highly
durable p2p storage system with small maintenance cost. The replicas are loosely cou-
pled to the consistent set and they are interleaved on the consistent set to reduce the
compulsory copies which occur under churn. The method with this concept is called
the Quorum based replication. In this replication, each node keeps the number of repli-
cas more than the target quorum to achieve target data availability. Moreover, we exploit
the node availability and select more reliable nodes as replicas to delay the replication
and to reduce the network cost. This Availability based replication calculates the data
availability whenever the consistent set changes and guarantees the high data availabil-
ity by the numerical value. This replication should predict the node availability of each
node. To do this, each node manages its availability and advertises it to all members
of the consistent set by piggybacking it to the periodic ping message which has been
already used to detect node failures on the consistent set.

Our replication methods need additional information for replicas and interleave the
replicas. Unlike the simple replication, sometimes, each node does not have the objects
which are serviced by the right next neighbors such as successor or predecessor of
chord [1]. In this case, each node should contain the information for the replicas of
all members on the consistent set to guarantee the correct data routing whenever any

Reducing Data Replication Overhead 917

node fails or leaves. Because of this complication of replication methods, subtle data
management should be needed under churn.

We evaluate the effect of our replication method for the p2p system by using an
event driven simulation. We compare the network traffic for various target availability
and various node characteristics between the simple replication and the proposed repli-
cation. We show that our methods enormously reduce the network traffic to achieve the
same target availability.

The rest of this paper is organized as follow. Section 2 briefly presents the DHT based
p2p system and problems of the simple replication. Section 3 presents our proposed
replication methods for the durable p2p storage system. The performance evaluation is
on section 4. We mention other related works in section 5. Finally, we conclude this
paper on section 6.

2 Background

There are many DHT based p2p algorithms such as chord, pastry, tapestry and can.
Each node in the DHT based p2p system gets a 128-bit node identifier (nodeID). The
nodeID is used to indicate a node’s position in a circular ID space and it is assumed that
nodeIDs are generated such that the resulting set of nodeIDs is uniformly distributed
in the 128-bit ID space. Each node is responsible for storing and servicing the objects
which are on the range between its node and a neighbor node. This object range of a
node changes dynamically under churn. Assuming a network consisting of N nodes,
the DHT based p2p system can route to the numerically closest node to a given object
key in less than O(log2N) steps.

These algorithms can lookup any data efficiently with DHT, but when the massively
node failures occurs and spoils the information of DHT without any notification, this
efficient lookup can not guarantee the correctness. To cope with the massively node
failures, they use the consistent set such as the successor list of chord and the leaf set
of pastry. This consistent set of a node is composed of the neighbor nodes which locate
numerically near to the node on ID space. This set is tightly coupled to the current state
of nodes and when any node joins or leaves, the consistent set of every node which
detects the change of the membership must update to preserve the current state of the
p2p system. The p2p system guarantees the correctness unless all members of consistent
set fail simultaneously.

This consistent set is used for not only the routing correctness but also the data
availability on durable p2p storage systems such as p2p file systems [5] [6] and p2p file
sharing systems [8]. Data Availability means the total availability when the multiple
nodes have the data. This availability is obtained by subtracting the probability of that
all nodes which have the data leave from 1. That means if only one node is alive, the
data is available. Like the figure 1(a), one node replicates stored objects to the neighbor
nodes which are the member of consistent set until the replicas are enough to achieve
target data availability. This simple replication guarantees the simple data availability
management and the simple lookup under churn easily and automatically. Because the
consistent set has the current state of nodes and updates immediately under churn, the
p2p system keeps the target data availability automatically. Moreover, because neighbor
nodes of a node already have the replicas of its objects, even if this node leaves, the

918 K. Kim and D. Park

Fig. 1. Simple replication in DHT based p2p

neighbor node automatically replaces it as a servicing node for its object range without
additional object copies.

However, the simple replication causes the more maintenance traffic under churn.
If the number of replicas is N and a node leaves, the new N + 1 replicas are needed
for the affected nodes. In figure 1(b), when a node B leaves, the nodes A, C, D, F
which already have the replicas on node B should make new replicas and node D which
is newly responsible for the object range of node B makes the replica for this range
additionally. Moreover, when a node joins, each affected node copies the objects to
it as a new replica like figure 1(c). In this case, when node B joins and leaves very
frequently, the compulsory data replications occurs and the heavy data traffic wastes
even if the dynamic behavior of node B can not affect the data availability. According
to this simple behavior and the heavy churn of the p2p participants, the data traffic
needed to support the simple replication is very high and bursty.

3 Proposed Idea

3.1 Quorum Based Replication

The simple replication method basically uses the concept of the quorum. The quorum
means that the fixed minimum number of members of a set which must be present for
its objective to be valid. That is, if the number of the replica for an object is more than
the target quorum, the p2p system considers that the object is available under massive
failures. However, this simple method directly uses the consistent set such as a successor
list or a leaf set which is tightly coupled to the state of the current network. Under
churn, to keep the right information of the network, the affected node should update its
consistent set and the members of this set change very dynamically. Consequently, the
simple replication method is affected by the change of the consistent set and needs too
much traffic to keep the availability of an object. Sometimes, this compulsory copy for
the replica is meaningless to the availability because the new replica leaves soon.

To prevent this compulsory copy, we modify the replication method which is loosely
coupled to the consistent set. Like the figure 2, we add the new information; the replica-
tion set that indicates which node replicates the object. The range of this set is same to
the consistent set, but the update of this set occurs individually. Like the simple method,
the replication only occurs when the number of replicas is fewer than the target quorum.
However, if the leaving node is not a member of the replication set, there is no need to

Reducing Data Replication Overhead 919

Fig. 2. Metadata for our replication methods

find a new replica and the p2p system can reduce the compulsory copies. When a node
needs a new replica, it selects the numerically closest node from it, because the edge of
the consistent set may change more easily and more frequently than the inner side.

When a new node joins, it gets not only routing information such as DHT and con-
sistent set but also the replication set. Unlike the simple method, a new node already
knows the information of replicas and the data copy only occurs for the object range
which is responsible for it. Other nodes whose consistent sets are affected by the new
node check whether the replication is needed and if it is, the node makes a new replica.
However, because in the general DHT p2p the size of the consistent set is bigger than
the number of replicas, the replication does not occur frequently and the replication set
can interleave the replicas on the consistent set. This behavior increases the chance to
reduce the compulsory copies.

3.2 Availability Based Replication

The quorum based replication considers that each node has the same availability and it
tries to keep the number of replicas above the target quorum to achieve the target data
availability. However, if a new replica is assigned by the node which has low availability,
this node may leave soon and we need another new replica. If we select a new replica
with the node availability, we can select the more available node as a replica and can
reduce the overhead. To achieve this, the consistent set has the availability information
of all members like figure 2.

We assume that the node availability is the prediction value how long a node is
alive after it joins the p2p system, because in other research[7] the long lived nodes
generally have the large bandwidth and the big computing power. The figure 3 shows
this availability prediction mechanism. We use the Mean Time To Failure and the Mean
Time To Recover to estimate the node availability. MTTF is the average value how long
a node is alive after it joins and MTTR is the average value how long a node is sleep
after it leaves. We can get MTTF and MTTR by using the last join time, the last leave
time. Unlike MTTR, we periodically update the MTTF by using the current time and the
join time because MTTF can change during a node join the p2p system. The average
value of MTTF and MTTR is obtained by the sum of the weighted value estimation
process. According to these values, we compute the node availability with the equation,
MTTF/(MTTF + MTTR).

The availability information is computed by each node and each node advertises this
information to all members of the consistent set by using the piggyback method. To
detect the node failure, a node sends a ping message to all member of the consistent set.

920 K. Kim and D. Park

Fig. 3. Node availability prediction

We piggyback the availability information to this ping message and each node manages
the consistent set with the node availability.

Like the quorum based replication, the availability based replication use the repli-
cation set to make that the replicas are loosely coupled to the consistent set. The main
difference of these replications is the selection of a new replica. In this approach, the
replication only occurs when the data availability is below the target availability. If the
leaving node is not a member of the replication set, there is no need to replicate the data.
Otherwise, if it is a member, we select the most available node among non-members of
the replication set as a new replica.

When a new node joins, the basic operation is similar to the quorum based replica-
tion. The routing table, consistent set and replication set are copied and the other nodes
whose consistent sets are affected by the new node decide whether they make new
replicas. However, because the availability based replication takes care of selecting new
replicas by computing the availability, if all members of a consistent set have averagely
low availability, it need more replicas than the quorum based replication. Sometimes
this behavior takes more bandwidth, but when nodes leave, this subtle replication can
reduce much more bandwidth than the quorum based replication.

3.3 Management of the Replication Set

Unlike the simple replication, our replications interleave the replicas on the consistent
set. When a node fails and its neighbor gets the lookup request, this neighbor may not
have the replicas for the requested object. In this case, the neighbors must forward the
request to the replicas of the failed node for the routing correctness. To do this, each
node should have the replication sets of all members of its consistent set by piggyback-
ing this information to the periodic ping message for its consistent set.

Moreover, we should consider that the change of the object range affects the repli-
cation set. When a new node joins and a target node gets this join request, the ob-
ject range of the target node is divided into two object range and the new node is
responsible for one of them. In this case, the new node simply copies the replication
set and adds the target node as a new replica because it already has the object for

Reducing Data Replication Overhead 921

(a) Total data traffic

(b) Join data traffic (c) Leave data traffic

Fig. 4. Data Traffic with various number of replicas

this range. When a node leaves or fails, its neighbor node is responsible for its ob-
ject range. In this case, both replication sets of the failed node and its neighbor node are
merged.

4 Evaluation

4.1 Simulation Setup

We make our p2p simulator which emulates the node behavior on the application layer.
We implement the previous DHT based p2p algorithm, Pastry. We apply the simple
replication and our new replications to the pastry. We use the 160 bit ID space and use
2000 nodes to organize the p2p system. The size of the consistent set is 16 and the
number of replicas is variable from 8 to 14. The target availability for the availability
based replication is decided by the number of replicas. We use the Poisson distribution
to make the dynamic characteristics of nodes and use the exponential distribution to
assign join/leave duration of a node. According to this Poisson distribution, 80% of
total nodes have short lifetime and frequently join/leave and only 20% of total nodes
have the reliable server-like profile. Recent research [7] measures the life distribution
of the p2p nodes and its result is similar to our distribution, and we can tell that our
distribution is similar to the real world.

4.2 Reduction of Data Traffic

The figure 4 shows the comparison of average data traffic per a node with various repli-
cation methods. As we expect, the simple replication needs much more data traffic to

922 K. Kim and D. Park

(a) Total data traffic

(b) Join data traffic (c) Leave data traffic

Fig. 5. Data Traffic with various node characteristics

achieve the same data availability than our replications. The quorum based replication
reduces the data traffic by about 40% and the availability based replication reduces the
data traffic by about 60%.

To find out the detailed effect of our replications, we separate the join data traffic
from the leave data traffic. When a node joins, the affected nodes update their replicas
and we call the needed traffic the join data traffic. When a node leaves, the needed
data traffic is called the leave data traffic. In the figure 4(b) and figure 4(c), the simple
replication uses the similar amount of traffic for join and leave. The main reason is that
the replication is tightly coupled to the consistent set and in both type of the changes,
the similar amount of compulsory copies is needed to support the simple replication.
However, in our two replications, the join data traffic is less than leave data traffic. The
replication set is loosely coupled to the consistent set and when a join occurs, a node
can decide which it makes a new replica. According to this behavior, the replicas are
interleaved on the replication set and we can reduce the number of compulsory copies
when a new node joins.

However, like figure 4(c), the quorum based replication needs similar amount of
leave data traffic to the simple replication. The quorum based replication does not con-
sider the node characteristics and some new replicas leave the system early after they are
chosen by the other nodes. The figure 4(c) shows that the availability based replication
solves this problem and needs less leave data traffic than the quorum based replica-
tion. On the other hand, the availability based replication computes the data availability
whenever the membership changes. According to this, it takes more care of selecting
new replicas and it needs more join data traffic than the quorum based replication until
the number of replicas is similar to the size of the consistent set.

Reducing Data Replication Overhead 923

4.3 Effect of Node Dynamicity

The previous results show that our replications reduce the data traffic needed to achieve
the high data availability. In this result, we try to find out the effect of our replica-
tions on the various node characteristics. The figure 5 shows the needed data traffic for
each replication method when the mean of the Poisson distribution changes from 2 to
7. When the mean value increases, the average life time of a node increases. In this
simulation, the target number of replica is 8. In the figure 5(a), when the mean value in-
creases every replication method takes less data traffic, because there are more reliable
nodes and they do not join/leave frequently.

As described on previous results, our replications can save more data traffic for any
cases. We pay attention to the difference between the quorum based replication and
the availability based replication. Generally, the availability based replication reduces
more traffic, however when the mean value is 2, the quorum based replication saves
more data traffic. The main reason of this fact is the join data traffic in figure 5(b).
As we mentioned, the availability based replication takes more care of selecting the
new replicas when a new node joins. When the most of nodes join/leave frequently this
subtle care needs more replicas than the quorum and takes much more traffic.

5 Related Work

The commercial p2p file sharing systems leave the data replication up to the popularity
of the data. The popular data is replicated on many clients and the data availability of
this data is very high. However, the unpopular data are stored on few clients and it is
very hard to find this data because of very low data availability. To make the p2p storage
system durable, the smart data replication methods is needed and the each inserted data
is available for any time and has the similar data availability.

In the paper[9], they stores the replicas on the random nodes on the ID space and
periodically checks their availability. This behavior reduces the compulsory copy be-
cause the replication has no relation to the consistent set. However, this approach takes
too much control traffic to keep the node availability of all replicas for every object
on the system. Moreover, they do not use the consistent set and the change of the data
availability caused by the node failure is detected slowly. The paper [10] shows that the
erasure coding approach reduces the traffic of the replication by using the computing
power. This approach is orthogonal to our approaches and we can use this coding with
our replication methods.

6 Conclusion

We explore the efficient replication methods to make the DHT based p2p storage system
more durable. Our replication methods are loosely coupled to the consistent set such as
a successor list of chord and a leaf set of pastry and interleave the replicas on it. Because
the consistent set updates the current state of nodes automatically, we can update the
data availability immediately under churn. Moreover, we use the node availability to
select more reliable replicas and we can reduce more data traffic when a node leaves.

924 K. Kim and D. Park

According to these behaviors, the DHT based p2p storage system with our replication
methods achieves the high data availability with small data traffic. This can encourage
that the DHT based p2p algorithms are applied to the durable storage system.

References

1. I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan. Chord: a scalable peer-
to-peer lookup service for internet applications, In Proceedings of ACM SIGCOMM 2001,
August 2001.

2. A.Rowstron and P.Druschel. Pastry: scalable, decentralized object location and routing for
large-scale peer-to-peer systems, In Proceedings of Middleware, November 2001.

3. B.Y.Zhao, J.Kubiatowicz, and A.Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing, UCB Technical Report UCB/CSD-01-114, 2001.

4. S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker. A scalable content-addressable
network, In Proceedings of ACM SIGCOMM 2001, 2001.

5. P. Druschel and A. rowstron. PAST: A large-scale, persistent peer-to-peer storage utility, In
Proceedings of HotOS VIII, May 2001.

6. F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage
with CFS, In Proceedings of SOSP 2001, Oct 2001.

7. S. Saroiu et al. A measurement study of peer-to-peer file sharing systems, In Proceedings of
MMCN 2002, 2002.

8. K.Kim and D.Park. Efficient and Scalable Client Clustering For Web Proxy Cache, IEICE
Transaction on Information and Systems, E86-D(9), September 2003.

9. R. Bhagwan, K. Tati, Y. Cheng, S. Savage and G. M. Voelker. Total Recall: System Support
for Automated Availability Management, In Proceedings of NSDI 2004, 2004

10. R. Bhagwan, S. Savage, and G. M. Voelker. Replication Strategies for Highly Available Peer-
to-peer Storage Systems, In Proceedings of FuDiCo, June 2002.

11. C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dynamic Peer Networks :
Pick Two, In Proceedings of HotOS-IX, May 2003.

12. R. Bhagwan, S. Savage, and G. M. Voelker. Understanding Availability, In Proceedings of
IPTPS 03, 2003.

Improving Resiliency Using Capacity-Aware
Multicast Tree in P2P-Based Streaming

Environments�

Eunseok Kim1, Jiyong Jang1, Sungyoung Park1, Alan Sussman2,
and Jae Soo Yoo3

1 Department of Computer Science and Interdisciplinary Program of Integrated
Biotechnology, Sogang University, Seoul, Korea

{wannajump, jiyong97, parksy}@sogang.ac.kr
2 UMIACS and Department of Computer Science, University of Maryland, USA
3 School of Electrical and Computer Engineering, Chungbuk National University,

Cheongju Chungbuk, Korea

Abstract. This paper presents a capacity-aware multicast tree con-
struction scheme for P2P-based live streaming environments (R-CAT).
The R-CAT builds resilient multicast trees by considering the capacity
of participating nodes and locating the high capacity nodes toward the
upper parts of the trees. The resulting trees become shallow and more
resilient since the number of affected nodes is minimized when nodes
leave or fail. We have implemented R-CAT on top of Splitstream, a high
bandwidth streaming system using Pastry, and evaluated our scheme in
terms of packet loss rate and end-to-end delay. The performance results
show that R-CAT is more resilient and provides lower end-to-end delay
under various group dynamics.

1 Introduction

Video streaming services over the Internet have recently received great attentions
and are becoming an important traffic class as the broadband Internet is widely
available. As the number of participants is increased and the devices for the
streaming become more ubiquitous, a highly scalable and flexible infrastructure
is needed to support the large-scale services with unpredictable group dynam-
ics. The inherent nature of peer-to-peer(P2P) infrastructure such as CAN[10],
Chord[9], or Pastry[4] allows service developers to use the P2P services for build-
ing large-scale streaming services over the Internet[2][3][5] using their scalable
and self-organizing features.

The P2P-based streaming systems can be broadly classified into two categories
based on how the multicast tree is constructed and maintained: centralized or
distributed. In the centralized approach[2], a centralized server collects and main-
tains the information of all participating peers and distributes the corresponding

� This work was supported by the Brain Korea 21 Project in 2006 and grant No.
R01-2003-000-10627-0 from the KOSEF.

M. Gerndt and D. Kranzlmüller (Eds.): HPCC 2006, LNCS 4208, pp. 925–934, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

926 E. Kim et al.

tree information (i.e., information for parent node and children nodes) to each
peer. Since the whole information is maintained at the single server and the
tree is constructed by using all relevant information, an efficient and optimal
multicast tree can be generated. Despite the fact that this approach provides
an efficient and optimal solution to building multicast tree, it can hardly be
used in large-scale environments because of the lack of scalability. In the dis-
tributed approach[3][5], each peer maintains the information of its parent and
children nodes only and builds the multicast tree from the local information
it collects. Based on the collected information, the multicast tree can be self-
organized to reflect current conditions. Some systems such as SplitStream[3]
split the media stream into separate stripes and multicast each stripe over a
separate tree. This ensures that the forwarding load is distributed across all
nodes and also increases the resiliency at the cost of redundancy. Although the
generated tree is not guaranteed to be optimal, this approach is more suitable
for large-scale, dynamic live streaming environments that we are targeting in
this paper.

On the other hand, while conventional P2P-based streaming systems have
mainly focused on either reducing end-to-end delay using proximity information
or making the services robust by creating multiple multicast trees, they fail to
address the problems caused by the heterogeneous and asymmetric nature of
Internet resources. It has been reported in previous research efforts[1][6][7] that
a large portion of P2P traffic is asymmetric and the node capacities are skewed.
Considering that the nodes with good computing power and high bandwidth
(i.e., high capacity nodes) are typically stable and provide better performance
compared to the low capacity nodes, it is likely that we can build a more resilient
tree by locating high capacity nodes at the upper part of a tree.

In this paper, we present a capacity-aware multicast tree construction scheme
for P2P-based live streaming environments (R-CAT) that allows us to build re-
silient multicast trees by considering the capacity of participating nodes and
locating the high capacity nodes toward the upper parts of the trees. The re-
sulting trees become shallow and more resilient since the number of affected
nodes is minimized when nodes leave or fail. We have implemented R-CAT on
top of Splitstream[3], a high bandwidth streaming system using Pastry[4], and
evaluated our scheme in terms of packet loss rate and end-to-end delay. The
performance results show that R-CAT is more resilient and provides lower end-
to-end delay under various group dynamics.

The organization of this paper is as follows. Section 2 outlines the overall ar-
chitecture of R-CAT in more detail. Section 3 presents the benchmarking results
and performance analysis. Section 4 summarizes and concludes the paper.

2 Resilient Capacity-Aware Multicast Tree

In this section, we present an overview of tree construction schemes used in
R-CAT design and discuss the R-CAT algorithms in detail.

Improving Resiliency Using Capacity-Aware Multicast Tree 927

Table 1. Gnutella-like Capacity Distribution

Capacity Level Percentage of Nodes
1x 20%
10x 45%
100x 30%
1000x 4.9%
10000x 0.1%

2.1 Assumptions

We assume that all nodes in a peer-to-peer network have the similar capacity dis-
tribution to that of Gnutella [7][11] as shown in Table 1. As we can see from Table 1,
there are few high-capacity nodes in the network and the capacities of most nodes
are within low to medium level. It is also assumed that each node i has a maximum
capacity Ci and an available capacity Cai, where Ci is always greater than or equal
to Cai. The maximum capacity in this case is a capacity assigned to each node de-
rived from the Gnutella-like capacity distribution. The available capacity of a node
is defined as the capacity for uploading streaming data, which is the ability to for-
ward streaming data to other nodes. This is further described as the degree of a
node, where the degree of a node represents the floor of the result by dividing the
outgoing link bandwidth by the encoding rate of the stream[1]. For example, if we
assume that a node has an outgoing link bandwidth of 120 kbps and the encoding
rate of 100 kbs, the degree of that node is 1 degree, which means that this node can
support one child at the full encoding rate. For simplicity, each node is assumed to
have enough capacity for downloading streaming data.

The multicast tree in R-CAT is composed of parents, grand-parents, and
children. An undirected edge exists between a parent and a child. An end-to-end
delay between a parent node i and a child node j is described as dij . Nodes can
form a multicast group and the members of each group periodically exchange
routing messages and heartbeat messages.

2.2 Algorithm

The R-CAT algorithm is composed of three main components to improve the
resiliency of multicast tree: information gathering algorithm, parent selection
algorithm, and victim selection algorithm.

The information gathering algorithm is used for each node to collect and
maintain the latest information of its children. The parent selection algorithm
is used to select an appropriate parent using the capacity information of a new
node when it joins into a multicast tree. If the prospective parent (i.e., a parent
node receiving the join request message) cannot afford to accommodate the new
node, it forwards the join request message to its parent so that high capacity
node can be located at the upper part of a tree. The victim selection algorithm
is used when a parent node reaches its maximum out-degree bound. In this case,
the parent node has to choose a victim node to improve the resiliency of the
multicast tree. In what follows, we present each algorithm in detail.

928 E. Kim et al.

Information Gathering Algorithm. Gathering precise information of the
neighboring nodes is a key to making better policy decisions and designing an
efficient algorithm. Considering that more frequent exchanges of messages be-
tween nodes can provide more accurate information but with more overhead, it
is sometimes difficult to design an efficient information gathering algorithm with
little overhead.

The information gathering algorithm in R-CAT is invoked either when a new
node joins into a multicast tree or when existing nodes exchange heartbeat mes-
sages to check the health of other nodes. For example, when a new node joins, it
forwards a join request message to its prospective parent with the node informa-
tion piggybacked into the message. If the parent node can afford to accommodate
the new node, it transmits the ACK message back to the joining node with its
information piggybacked. Moreover, when a parent node exchanges heartbeat
messages with its child node, the corresponding information is piggybacked with
the heartbeat messages.

The piggybacked information includes the capacity of a node, aliveness, good-
ness value, and the number of sub-children in the tree. Followings are the defi-
nitions of each information.

Ci : maximum capacity of node i

hi : direct children set of node i

Ai = 1− 1
Ci + k

, aliveness of node i(k : scaling factor) (1)

Si =
∑
j∈hi

Sj + 1 , total number of sub-children of node i (2)

Gi = Ai × Si , goodness value of node i (3)

The capacity of node i, Ci, represents the maximum number of children that a
node can accommodate. Since any node cannot afford to accommodate children
nodes exceeding its maximum capacity, |hi| ≤ Ci is always guaranteed. In the
equations, the direct children set is a set of children nodes directly connected
to a parent node i, and the sub-children set is a set of all the children and sub-
children nodes rooted at a parent node i. The aliveness factor, Ai, is defined
by using Ci. Since it is generally accepted that the nodes with higher capacities
are more stable than the nodes with lower capacities, the reciprocal value of
Ci can be used to represent the aliveness of a node. The scaling factor k is the
constant value to calibrate the Ci value. The goodness value Gi of node i is an
indication of fitness to be used in parent selection algorithm and victim selection
algorithm. This value is calculated by multiplying the node’s aliveness factor and
the total number of sub-children nodes, which means that any node with larger
sub-children nodes or higher aliveness factor will have better goodness value.

Parent Selection Algorithm. In a typical P2P-based streaming environment,
when a new node joins to a multicast tree, a parent selection algorithm is acti-
vated to select an appropriate parent for the joining node.

Improving Resiliency Using Capacity-Aware Multicast Tree 929

The parent selection algorithm in R-CAT is based on a simple idea that the
shallow tree minimizes the effects of node dynamics and is more stable than
a tree with longer depth. When a prospective parent receives a join request
message from a new node, it first checks the capacity of the new node and
decides whether it can accommodate the new node as its children or not. If
the prospective parent doesn’t have enough capacity to support the incoming
node, it forwards the join request message to its parent and repeats the same
steps in order to select an appropriate parent. We call this climbing. On the
other hand, if the prospective parent has enough capacity to accommodate the
new node, it registers the new node as a child node. If the prospective parent
has enough capacity but the overall capacity exceeds the maximum capacity, a
victim is selected by the victim selection algorithm and the selected victim is
pushed down until the request is accepted.

req

1

C =90

C =42

C =23
C =14 C =25 C =16C =37

climbing−up :
push−down : 0

1 2

3 4 5 67

C =5

Fig. 1. Climbing and Push Down in Parent Selection

Figure 1 depicts how this algorithm works. Assume that node 7 joins to the
tree by sending a join request message to the prospective parent node 3. Once
the node 3 receives the message, it compares its capacity (i.e., capacity 2) with
that of node 7 (i.e., capacity 3). Since the capacity of the incoming node exceeds
the capacity of the prospective parent, the join request message is climbed up to
the parent of node 3 (i.e., node 1). Now that the capacity of node 1 (i.e., capacity
5) is larger than that of the incoming node (i.e., capacity 3), the node 7 can be
one of children nodes rooted at node 1. However, adding node 7 under node 1
exceeds the maximum out-bound capacity, and the victim selection algorithm is
activated to choose a victim node to be pushed down until the capacity can be
accommodated.

It should be noted that the the two techniques (i.e., climbing up and push
down) used in this algorithm favor high capacity nodes and put them toward
the upper part of the tree, which makes the multicast tree more resilient.

930 E. Kim et al.

3

0

C =12

C =11

C =29

2

0

1

9

4 5

Selected as

req

 a victim

C =2

Fig. 2. Victim Selection

Victim Selection Algorithm. As described in the parent selection algorithm,
the victim selection algorithm is invoked when the prospective parent has enough
capacity but the overall capacity exceeds its maximum capacity, thereby needs
to select a victim node to be pushed down. In R-CAT, the goodness value of a
child node and the delay between a parent and a child are two essential metrics
used to select a victim node. In order to measure the fitness of a victim node,
we defined a metric called resiliency as shown in Equation 4. Since the bigger
goodness value and smaller delay value can maximize the resiliency, this metric
indicates the ability of reducing packet loss and end-to-end delay in dynamic
multicast group.

Hi , the set of children that node i can choose

∀hi ∈ Hi , |hi| ≤ Ci

Ri = max
hi∈Hi

⎛
⎝∑

j∈hi

(Gj − λdij)

⎞
⎠ (4)

h∗
i = argmax

⎛
⎝ ∑

j∈hi, hi∈Hi

(Gj − λdij)

⎞
⎠ (5)

victim =
(
h′

i

⋃
j
)
− h∗

i (6)

Based on the Equation 4, a parent node can build an optimal children set, h∗
i ,

that maximizes the goodness and minimizes the delay between the parent and

Improving Resiliency Using Capacity-Aware Multicast Tree 931

the child as shown in Equation 5. When the optimal children set, h∗
i , is chosen

by the victim selection algorithm, the victim is selected as shown in Equation 6,
where h′

i is the original children set and j is the new child node.
The key idea behind this algorithm is that (1) by choosing a victim node that

minimizes the delay between a parent node and a child node, the end-to-end
delay from a root node to a leaf node can be reduced; (2) by choosing a victim
node that maximizes the goodness, we can possibly exclude nodes with larger
sub-children group or better stability metric from the victim candidate list. The
trade-off parameter λ is introduced to weigh the importance of the delay factor
in the equations.

Figure 2 shows an example of this algorithm. Assume that node 9 transmits
a request message to node 0 to join. Since the node 0 has enough capacity to
accommodate the node 9 but the overall capacity exceeds the maximum capacity,
the victim selection algorithm is activated and the node 0 has to decide a victim
node among node1, node2, and node 9. If we assume that the scaling factor k in
Equation 1 is 1, the goodness value of each node is 0.67, 0.5, and 2.0, respectively.
Therefore, if we further assume that the delay factor is same for all nodes, the
node 0 has to select node 1 as a victim node based on the Equations 4, 5, 6.

3 Performance Evaluation

This section presents the performance of R-CAT and compares it with that of
Splitstream. For the experiments, we implement our approach over FreePastry
[12], a well-known Pastry simulator, and compare the performance in terms of
packet loss and end-to-end delay. The simulation is conducted on Pentium 4
(2.2G CPU) running Linux and is averaged over 10 iterations with the following
parameters.

First, for the node capacity distribution, the values in Table 2 are used. These
are the modified values from [1] by removing the case for unknown hosts (i.e.,
hosts with unknown measurements). Table 2 shows that almost half of the nodes
are free riders (i.e., nodes at the leaf and thereby contributing no resources), and
very few nodes have high capacities.

Second, for the arrival, departure, and failure processes of P2P nodes, we use
six categories from case 0 to case 5 for the simulation, with the case 0 being
the static case (i.e., no arrival, departure, and failure) and the case 5 being
the highly dynamic case. In case 5, we assume that almost 1% out of the total

Table 2. Node Capacity Distribution

Node Degree Bound Percentage (%)
0 (Free Riders) 56

1 21
2 9.5

3-19 5.6
20 7.9

932 E. Kim et al.

number of nodes leave from or join to the network based on the previous results
in [7] and [11]. The Gnutella failure rates reported in [13] are also used for the
simulation. The simulation is conducted over 10,000 nodes and all nodes are
brought up when the simulation is started and other nodes start to join or leave
by a Poisson process.

In what follows, the performance of R-CAT and the comparison with Split-
stream are presented.

3.1 Packet Loss

Given that the reliable transfer protocol is used for streaming services, packets
can be lost because of the node’s dynamics (i.e., leave, join, failure) or the bot-
tlenecks at the inner nodes of the tree. Therefore, measuring the packet loss is
a valuable metric to decide whether the multicast tree is resilient or not.

R−CAT
SplitStream

 0

 6,000

 8,000

 10,000

 12,000

54321

(t
h

o
u

sa
n

d
)

Test case

Total lost packet

 2,000

 4,000

(a) Total Lost Packets (b) Packet Loss Changes

Fig. 3. Simulation Results for Packet Loss

Figures 3(a) and 3(b) illustrate the total number of lost packets of R-CAT
and Splitstream for 5 test cases (case 1 to case 5), and their progresses of losing
packets. As we can see from Figures 3(a) and 3(b), the number of lost packets in
R-CAT is about 50% that of Splitstream. This can be explained by the simple
fact that the parent selection algorithm and victim selection algorithm used in
R-CAT favor high-capacity nodes, which results in locating them at the upper
part of multicast tree. This in turn creates more shallow and resilient tree, where
packets can be transfered more reliably with less packet loss.

3.2 End-to-End Delay

The average end-to-end delay, together with the packet loss rates, is an important
factor to measure the resiliency of a multicast tree, and to decide the quality of
streaming data. As we can see from Figure 4, the average end-to-end delay of
R-CAT is smaller than that of Splitstream for all 6 test cases, which is also the
result of shallow tree.

Improving Resiliency Using Capacity-Aware Multicast Tree 933

Since the buffering behavior in the client node is not correctly modeled in
R-CAT, it is impossible to check the effects of end-to-end delay for the video
quality. However, this result can be an implicit indication of good video quality
and also an indirect metric of measuring the resiliency of a multicast tree.

R−CAT
SplitStream

 10,000

 10,400

 10,600

 10,800

543210

di
st

an
ce

Test case

Average delay

 9,800

 10,200

Fig. 4. Average End-to-End Delay

4 Conclusion

Existing P2P-based streaming systems have been developed without focusing on
the heterogeneity of node’s capacity. Since they are largely focused on reducing
the end-to-end delay, the resulting systems provide good video quality in a rel-
atively stable environment. As the P2P computing environments become larger
and their traffic workloads move toward more dynamic environments, building a
resilient multicast tree for a highly dynamic environment has been a challenging
design issue for large-scale P2P applications such as P2P-based live streaming
systems.

In this paper, we have presented an overview of R-CAT schemes and its al-
gorithms, and evaluated its performance by comparing it with that of Split-
stream. The benchmarking results showed that the R-CAT outperformed the
Splitstream in terms of packet loss rate and average end-to-end delay. These re-
sults mainly attribute to the outcome of shallow, capacity-aware multicast tree
generated by the parent selection algorithm and victim selection algorithm in
R-CAT.

Due to space limitations, the overhead analysis of R-CAT has been omitted
from the paper. However, the preliminary results showed that the worst case
overhead in R-CAT is almost 30%-40% in highly dynamic environments and this
is mainly due to the control message overheads used for improving the resiliency
of multicast tree such as climbing and push down. Although these overheads can
be amortized by large improvement in resiliency, continuous efforts need to be
made to reduce the control overheads.

Currently, we are working on more detailed analysis using real traffic work-
loads and parameters. Further research about efficient, scalable membership pro-
tocol is needed to better optimize the membership protocol, and thereby reduce
the overall overheads.

934 E. Kim et al.

References

1. K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Feasibility of Sup-
porting Large-scale Live Streaming Applications with Dynamic Application End-
points,” ACM Computer Commun. Rev. pp.107–120, Aug. 2004.

2. N. Padmanabhan, J. Wang, A. Chou, and K. Sripanidkulchai, “Distributing
Streaming Media Content Using Cooperative Networking,” ACM NOSSDAV, May
2002.

3. M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,
“SplitStream: High-bandwidth Multicast in a Cooperative Environment,” SOSP
2003, October 2003.

4. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems,” IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pp.329–350, Nov. 2001.

5. H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming Live Media over a
Peer-to-Peer Network,” Technical Report, Stanford University, Aug. 2001.

6. K. Sripanidkulchai, B. Maggs, and H. Zhang, “An Analysis of Live Streaming
Workloads on the Internet,” ACM IMC 2004, pp.41–54, Oct. 2004.

7. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, “Making
Gnutella-like P2P Systems Scalable,” ACM SIGCOMM 2003, pp.407–418, Aug.
2003.

8. T. Nguyen, D. Tran, and S. Cheung, “Efficient P2P Dissemination in a Homo-
geneous Capaciy Network Using Structured Mesh,” International Conference on
Multimedia Services Access Networks, June 2005.

9. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A Scal-
able Peer-to-Ppeer Lookup Service for Internet Applications,” ACM SIGCOMM
2001, pp.149–160, Aug. 2001.

10. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable
Content-Addressable Network,” ACM SIGCOMM 2001, Aug. 2001.

11. S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of Peer-to-Peer
File Sharing Systems,” Multimedia Computing and Networking (MMCN), Jan.
2002.

12. FreePastry, http://freepastry.rice.edu/
13. R. Mahajan, M. Castro, and A. Rowstron, “Controlling the Cost of Reliability in

Peer-to-Peer Overlays,” IPTPS 2003, 2003.

Author Index

Abbas, C.J.B. 672
Ahn, J. 71
Akbar, A.H. 525
Al-Dubai, A. 330
Alfaro, F.J. 631
Alimi, R. 773
Anastopoulos, N. 180
Anker, T. 380
Anthes, C. 894
Apostolopoulos, G. 631
Araújo, F.C.M. 672
Arronategui, U. 240
Athanasaki, E. 180

Bae, H.-Y. 350
Bahn, H. 611
Bang, Y.-C. 447
Baumann, R. 823
Bayvel, P. 477
Belardini, P. 1
Bella, G. 11
Bertoli, C. 1
Beyls, K. 220
Blanco, E. 905
Boutammine, S.-S. 763
Bozza, F. 11
Brezany, P. 710
Brunie, L. 803
Brunner, P. 170
Bunge, H.-P. 31

Cai, Y. 682
Cardenas, Y. 803
Cardinale, Y. 905
Celaya, J. 240
Cha, G.-I. 350
Chae, K. 280
Chang, J.-W. 487
Chaudhry, S.A. 525
Chen, L. 290
Chen, X. 290
Cheng, C.-F. 853
Cheng, G. 542
Cho, J.-H. 813
Cho, K.W. 813

Choe, B.-S. 426
Choi, B. 416
Choi, D. 581
Choi, J. 653
Choi, J.-Y. 495
Choi, W. 81
Choo, H. 360, 447, 467, 700
Chung, I. 81
Chung, M.Y. 467, 700
Chung, S.-H. 310
Chung, S.-W. 621
Chung, T.-M. 572
Corsaro, S. 1

D’Ambra, P. 1
D’Hollander, E.H. 220
Dai, K. 300, 591
Dai, T.T. 260
De Maio, A. 11
De Oliveira, J. 905
de Supinski, B.R. 843
Del Citto, F. 11
Ding, W. 542
Doh, I. 280
Dolev, D. 380
Dou, Y. 61
Duato, J. 631

Engelmann, C. 823
Ernst, J. 21

Fahringer, T. 170
Fan, B. 61
Filippone, S. 11
Freeman, L. 160

Gao, N. 390
Geist, A. 823
Gong, J. 542
Guan, D. 562
Guo, J. 300
Gurd, J.R. 160

Han, H. 874
Han, J. 290

936 Author Index

Han, K.-H. 495
Han, Y.-J. 572
Hasselmeyer, P. 743
Hieu, C.T. 260
Hong, C.S. 260
Horn, G. 190
Hsu, Y. 320
Huang, M. 390
Huang, S. 737
Huck, K. 200
Hung, S.-K. 320
Hunger, A. 601

Iannotta, M. 210
Im, J.-B. 621
Itagaki, T. 793

Janciak, I. 710
Jang, J. 925
Jeong, H. 426
Jeong, J. 700
Jeong, K. 581
Jin, S. 340
Joe, I. 535
Joung, J. 426
Jun, K. 416
Jung, H. 874
Jung, S.-I. 350
Jung, W.D. 525

Kang, D.-J. 350
Kang, S. 416
Kim, B.C. 370
Kim, C. 813
Kim, E. 925
Kim, E.-K. 813
Kim, H.-J. 621
Kim, H.-S. 495
Kim, I.-G. 495
Kim, J.W. 874
Kim, J.Y. 813
Kim, K. 915
Kim, K.-H. 525
Kim, M. 447
Kim, M.-J. 350
Kim, M.K. 457
Kim, Sc. 400
Kim, S.-D. 148, 621
Kim, S.G. 874

Kim, Sw. 400
Kim, Y. 813
Kim, Y.-H. 350
Kim, Y.-K. 487
Kirkpatrick, S. 380
Kitowski, J. 793
Kolevatov, S. 601
Koller, B. 743
Kourtis, K. 180
Koziris, N. 180
Kranzlmüller, D. 719, 843
Kryza, B. 793
Kuang, Y. 737

Latu, G. 833
Lee, D.G. 515
Lee, G. 581
Lee, H.C. 457
Lee, H.-K. 653
Lee, I.Y. 515
Lee, J. 148, 874
Lee, J.W. 148, 505
Lee, J.Y. 370
Lee, M.-S. 662
Lee, O. 81
Lee, S. 552, 562, 611
Lee, S.K. 662
Lee, T.-J. 360, 467
Lee, Y. 81, 562
Lee, Y.-H. 505
Li, H. 41
Li, L. 41, 200, 682
Li, M. 692, 793
Li, S. 436
Li, Z. 290
Liang, T. 853
Liu, Y. 436
Liu, Z. 91
Long, K. 737
Lu, S. 61
Lu, X. 406
Ludwig, H. 753
Luján, M. 160

Malony, A.D. 200, 230
Mancini, E. 210
Mart́ınez, A. 631
Mart́ınez, R. 190
Mehl, M. 138
Millot, D. 763

Author Index 937

Mohr, M. 31
Moon, J.S. 515
Morris, A. 230

Nakata, T. 753
No, J. 783

O, J. 148
Oeser, J. 31
Oie, Y. 51
Ould-Khaoua, M. 330

Pang, M. 41
Park, C.W. 783
Park, D. 915
Park, G.-H. 621
Park, H. 360
Park, J.H. 515
Park, J.-M. 280
Park, J.-W. 621
Park, S. 310, 925
Park, S.-B. 621
Park, S.-H. 572
Park, S.S. 783
Park, T.J. 370
Parrot, C. 763
Pathan, A.-S.K. 270
Peng, C. 642
Pierson, J.-M. 803
Praxmarer, P. 719

Quan, D.M. 727
Quintana-Ort́ı, E.S. 110
Quintana-Ort́ı, G. 110

Rajasekaran, S. 129
Rak, J. 863
Rak, M. 210
Remón, A. 110
Rhee, K.H. 250
Rodionov, A.S. 101
Rodionova, O.K. 101
Roman, J. 833
Romdhani, I. 330
Rosmanith, H. 719
Ryu, H. 426

Sakurai, K. 250
Sánchez, J.L. 631
Sarnovsky, M. 710

Schubert, L. 743
Schulz, M. 843
Shen, H. 642
Shende, S. 230
Skita�l, �L. 793
Sødring, T. 190
Song, M. 129
Spear, W. 230
Sussman, A. 925

Tang, A. 91
Tessier, G. 833
Tjoa, A.M. 710
Truong, H.-L. 170
Tsuru, M. 51

Usman, A. 160

Villalba, L.J.G. 672
Villano, U. 210
Volkert, J. 719, 894

Wäldrich, O. 753
Wang, Q. 390
Wang, S.-C. 853
Wang, X. 340, 390
Wang, Z. 300, 591
Weinsberg, Y. 380
Wesseling, M. 601
Wieder, P. 743, 753
Wu, J. 119, 436
Wu, K. 119
Wu, M.-Y. 692

Xia, C. 91
Xiong, N. 642
Xu, K. 119, 436
Xu, X. 682

Yamamoto, H. 51
Yang, J.-P. 250
Yang, L.T. 642
Yang, X. 61
Yang, X. 737
Yeom, H.Y. 874
Yoo, J.S. 925
Yoon, I.-S. 310
Yoon, Y.-R. 467
Youn, C. 81

938 Author Index

Yu, S. 884
Yu, Y. 874
Yuan, W. 562
Yue, H. 591

Zapata, A. 477
Zhang, C. 41, 692
Zhang, L. 91

Zhao, F. 406
Zhao, J. 406
Zhou, M. 542
Zhou, N. 773
Zhu, P. 406
Zhuang, Y. 290
Ziegler, W. 753

	Frontmatter
	Introducing Combustion-Turbulence Interaction in Parallel Simulation of Diesel Engines
	An Enhanced Parallel Version of Kiva--3V, Coupled with a 1D CFD Code, and Its Use in General Purpose Engine Applications
	A Distributed, Parallel System for Large-Scale Structure Recognition in Gene Expression Data
	Cluster Design in the Earth Sciences Tethys
	A Streaming Implementation of Transform and Quantization in H.264
	A Parallel Transferable Uniform Multi-Round Algorithm in Heterogeneous Distributed Computing Environment
	Clustering Multicast on Hypercube Network
	Checkpointing and Communication Pattern-Neutral Algorithm for Removing Messages Logged by Senders
	The Design of a Dynamic Efficient Load Balancing Algorithm on Distributed Networks
	Distributed Resource Allocation for Stream Data Processing
	Network Probabilistic Connectivity: Expectation of a Number of Disconnected Pairs of Nodes
	Parallel LU Factorization of Band Matrices on SMP Systems
	A Tree-Based Distributed Model for BGP Route Processing
	A Novel Scheme for the Parallel Computation of SVDs
	Cache-Optimal Data-Structures for Hierarchical Methods on Adaptively Refined Space-Partitioning Grids
	CSTallocator: Call-Site Tracing Based Shared Memory Allocator for False Sharing Reduction in Page-Based DSM Systems
	Performance Evaluation of Storage Formats for Sparse Matrices in Fortran
	Performance Monitoring and Visualization of Grid Scientific Workflows in ASKALON
	Exploring the Capacity of a Modern SMT Architecture to Deliver High Scientific Application Performance
	A Statistical Approach to Traffic Management in Source Routed Loss-Less Networks
	Model-Based Relative Performance Diagnosis of Wavefront Parallel Computations
	Self-optimization of MPI Applications Within an Autonomic Framework
	Discovery of Locality-Improving Refactorings by Reuse Path Analysis
	Integrating TAU with Eclipse: A Performance Analysis System in an Integrated Development Environment
	Scalable Architecture for Allocation of Idle CPUs in a P2P Network
	A Proactive Secret Sharing for Server Assisted Threshold Signatures
	An Efficient ID-Based Bilinear Key Predistribution Scheme for Distributed Sensor Networks
	A Key-Predistribution-Based Weakly Connected Dominating Set for Secure Clustering in DSN
	Pairwise Key Setup and Authentication Utilizing Deployment Information for Secure Sensor Network
	HAND: An Overlay Optimization Algorithm in Peer-to-Peer Systems
	A High Performance Heterogeneous Architecture and Its Optimization Design
	Development and Performance Study of a Zero-Copy File Transfer Mechanism for VIA-Based PC Cluster Systems
	DPCT: Distributed Parity Cache Table for Redundant Parallel File System
	On High Performance Multicast Algorithms for Interconnection Networks
	A Proactive Distributed QoS Control Framework for Cluster Web Site
	Design and Implementation of Zero-Copy Data Path for Efficient File Transmission
	Virtual Hierarchy Synthesis for Hybrid Mobile Ad Hoc Networks
	Design and Analysis of High Performance TCP
	On a NIC's Operating System, Schedulers and High-Performance Networking Applications
	A Microeconomics-Based Fuzzy QoS Unicast Routing Scheme in NGI
	Adaptive Online Management for Congestion Control in QoS Sensitive Multimedia Services
	BGPSep_D: An Improved Algorithm for Constructing Correct and Scalable IBGP Configurations Based on Vertexes Degree
	DiffServ--Aware MPLS Scheme to Support Policy--Based End--to--End QoS Provision in Beyond 3G Networks
	Effect of Flow Aggregation on the Maximum End-to-End Delay
	Heterogeneous QoS Multicast and Its Improvement on Edge-Based Overlay Networks
	On Multicasting Steiner Trees for Delay and Delay Variation Constraints
	Periodic Message Scheduling on a Switched Ethernet for Hard Real-Time Communication
	Optical Traffic Grooming Based on Network Availability
	Do We Really Need Dynamic Wavelength-Routed Optical Networks?
	Design and Implementation of Middleware and Context Server for Context-Awareness
	Security and Privacy Analysis of RFID Systems Using Model Checking
	ITB: Intrusion-Tolerant Broadcast Protocol in Wireless Sensor Networks
	Authentication for Ubiquitous Multi Domain in Pervasive Computing Using PMI
	Proxy-Based Service Discovery and Network Selection in 6LoWPAN
	A Low-Power Hybrid ARQ Scheme for the RFID System
	Multi-Granularities Counting Bloom Filter
	Dynamic Execution Environments for Ubiquitous Computing Service
	A Dynamic Trust Model Based on Naive Bayes Classifier for Ubiquitous Environments
	Context-Role Based Access Control for Context-Aware Application
	Context Communication for Providing Context-Aware Application's Independency
	A Heterogeneous Embedded MPSoC for Multimedia Applications
	Generated Implementation of a WLAN Protocol Stack
	A New Address Mapping Scheme for High Parallelism MEMS-Based Storage Devices
	Practice and Experience of an Embedded Processor Core Modeling
	QoS Support for Video Transmission in High-Speed Interconnects
	Discrete Broadcasting Protocols for Video-on-Demand
	Multistage Authentication Scheme for Mobile Ad-Hoc Network Using Clustering Mechanism
	Fast and Memory-Efficient NN Search in Wireless Data Broadcast
	A New Proposal of TCP for IEEE 802.11 Wireless Networks
	Gradient-Based Autoconfiguration for Hybrid Mobile Ad Hoc Networks
	Model-Aided Data Collecting for Wireless Sensor Networks
	Low Latency and Cost Effective Handoff Based on PBF Scheme in Hierarchical Mobile IPv6
	Distributed Classification of Textual Documents on the Grid
	Towards Job Accounting in Existing Resource Schedulers: Weaknesses and Improvements
	Mapping Heavy Communication Workflows onto Grid Resources Within an SLA Context
	The SLA-Compatible Fault Management Model for Differentiated Fault Recovery
	Towards SLA-Supported Resource Management
	Reliable Orchestration of Resources Using WS-Agreement
	Dynamically Scheduling Divisible Load for Grid Computing
	Computational Efficiency and Practical Implications for a Client Grid
	Developing a Consistent Data Sharing Service over Grid Computing Environments
	Analysis of Interoperability Issues Between EGEE and VEGA Grid Infrastructures
	Temporal Storage Space for Grids
	e-AIRS: An e-Science Collaboration Portal for Aerospace Applications
	A Parallel Plug-In Programming Paradigm
	Hybrid MPI-Thread Implementation on a Cluster of SMP Nodes of a Parallel Simulator for the Propagation of Powdery Mildew in a Vineyard
	Exploring Unexpected Behavior in MPI
	Zone-Oriented Byzantine Agreement on Zone-Based Wireless Ad-Hoc Network
	Priority-Enabled Optimization of Resource Utilization in Fault-Tolerant Optical Transport Networks
	SHIELD: A Fault-Tolerant MPI for an Infiniband Cluster
	Priority-Based Event Message Scheduling in Distributed Virtual Environment
	inVRs -- A Framework for Building Interactive Networked Virtual Reality Systems
	{\sc JaDiMa}: Java Applications Distributed Management on Grid Platforms
	Reducing Data Replication Overhead in DHT Based Peer-to-Peer System
	Improving Resiliency Using Capacity-Aware Multicast Tree in P2P-Based Streaming Environments
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

