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Abstract. This paper presents the implementation of MPICH2 over
the Nemesis communication subsystem and the evaluation of its shared-
memory performance. We describe design issues as well as some of the
optimization techniques we employed. We conducted a performance eval-
uation over shared memory using microbenchmarks as well as appli-
cation benchmarks. The evaluation shows that MPICH2 Nemesis has
very low communication overhead, making it suitable for smaller-grained
applications.

1 Introduction

The Message Passing Interface (MPI) standard has been designed to enhance
portability in parallel applications, as well as to bridge the gap between the per-
formance offered by a parallel architecture and the actual performance delivered
to the application. The level of achievable performance depends, however, on the
implementation. Two critical areas determine the overall performance level of an
MPI implementation. The first area is the low-level communication layer that
the upper layers of an MPI implementation can use as foundations. The second
area covers the communication progress and management. We designed an effi-
cient communication subsystem, called Nemesis, that features very low overhead
and is therefore suitable to serve as a basis for the MPICH2 software [1], an open
source implementation of MPI.

The design and implementation of the Nemesis communication subsystem
has been previously presented in [2]. In this paper, we describe how we ported
MPICH2 over Nemesis and show the performance benefits of MPICH2 Nemesis.
We also explain the improvements that have been made in the MPICH2 commu-
nication progress engine. The resulting MPICH2 software stack yields a very low
latency and high bandwidth and compares favorably with competing software.
The implementation also allows us to better assess both the overhead and the
performance of MPI.
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Section 2 gives an overview of the Nemesis communication subsystem. Sec-
tion 3 describes how this communication subsystem has been integrated in
MPICH2 as a new CH3 channel. We detail how we implemented several impor-
tant features of the MPI2 standard. The various optimizations that MPICH2
gained are also explained. Section 4 presents a performance evaluation using
shared-memory communication; in particular, we compare our implementation
with the MPICH2 shm channel and other MPI implementations. Section 5 con-
cludes this paper and discusses future work.

2 Overview of the Nemesis Communication Subsystem

In this section, we briefly describe the Nemesis communication subsystem. See [2]
for a complete description of the design and implementation.

The Nemesis communication subsystem was designed to be a scalable,
high-performance, shared-memory, multinetwork communication subsystem for
MPICH2. The goals for our design, in order of priority, were scalability, high-
performance intranode communication, high-performance internode communi-
cation, and multinetwork internode communication. The implication of ranking
the goals this way is that we strive to minimize the overhead for intranode com-
munication, even if this comes at some penalty for internode communication.

To achieve the goals of high scalability and low intranode overhead, we de-
signed Nemesis using lock-free queues in shared memory. Thus, each process
needs only one receive queue, onto which other processes on the same node can
enqueue messages without the overhead of acquiring a lock. Alternative designs
would be to use a pair of receive queues per pair of processes or to use a single
queue with a lock. On a large SMP, neither would be scalable, because of the
O(N2) number of queues needed or the contention on the lock, nor would they
be efficient, because of the overhead of polling multiple queues or the overhead
of acquiring and releasing a lock.

For internode communication, when a message is received from the network, a
polling function for that network module enqueues the message onto the process’s
receive queue. A network module has a send queue onto which messages to be
sent are enqueued. The send queue is analogous to a process’s lock-free receive
queue in that, when a process sends a message, it will enqueue the message onto
the appropriate queue, whether it is a queue for another process on the same
node, or a send queue for a network module. This simplifies the critical path
when sending a message: No special action is taken when sending a message to a
process on a remote node versus a process on the local node. Multiple networks
can be supported by implementing additional network modules. Our current
implementation supports internode communication over sockets and Myricom’s
GM message-passing system [3].

After analyzing our initial design, we applied several optimizations. To reduce
latency, we optimized the placement of the receive queue head and tail pointers and
added a shadow head pointer to reduce L2 cache misses. We also gathered variables
that are often used together in the same cache line to reduce the number of L1 cache
misses in the critical path. For small SMP nodes, we used a fastbox mechanism to
bypass the queues. A pair of buffers is allocated between each pair of processes.
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When sending a message, a process can bypass the queue by copying the message
into the fastbox, if it is free, and setting a flag indicating a message is waiting. The
receiving process then copies the message out of the fastbox and resets the flag. If
the fastbox is full when a process is sending a message, the regular queue mecha-
nism is used. This mechanism would not scale well for large SMPs and is used only
for SMPs with a small number of processors. To improve bandwidth, we imple-
mented architecture-specific memory copy functions. For ia32 and x86 64 archi-
tectures the memory copy function uses nontemporal store operations that bypass
the cache. More details on these optimizations can be found in [2].

3 Integration into MPICH2

The communication portion of MPICH2 is implemented in several layers, as
shown in Figure 1, and provides two ways to port MPICH2 to a communication
subsystem. The ADI3 layer presents the MPI interface to the application layer
above it, and the ADI3 interface to the device layer below it. MPICH2 can be
ported to a new communication subsystem by implementing a device.

The figure shows the device for the Quadrics network. The figure also shows
the CH3 device. The CH3 device presents the CH3 interface to the layer below
it, and provides another way for MPICH2 to be ported to a new communication
subsystem: by implementing a channel. This interface has fewer functions than
the ADI3 interface, making it significantly simpler to implement. Because the
interface is simpler, however, it may not be able to take advantage of certain
features provided by the communication subsystem, such as RDMA or collective
operations.

We chose to port MPICH2 over Nemesis by implementing a CH3 channel.
While our intent is to eventually implement an ADI3 device for Nemesis, imple-
menting a CH3 channel allowed us to rapidly create a prototype and evaluate
the implementation of Nemesis. We did, however, modify the CH3 layer in order
to allow certain optimizations of the Nemesis channel. In the rest of this section
we describe the basic design of the Nemesis channel and key optimizations.

Channels

Devices

MPICH2

shm nemesis

CH3

ADI3

sock

Quadrics

Fig. 1. Software layers of MPICH2

3.1 Basic Design of the Nemesis Channel

To send a message, the CH3 layer calls a send function implemented by the
channel, passing in a pointer to the message header a description of the data
to be sent and a pointer to an MPI request object. The description of the data
consists of an array of pointers and lengths (i.e., an IOV) that can be used to
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describe noncontiguous data. The Nemesis channel copies the header and data
into a Nemesis receive queue element, called a cell, and fills in a short Nemesis
header, then enqueues it on the appropriate receive queue or fastbox, or sends it
over the network to the appropriate remote node. If the CH3 message is larger
than a cell, multiple cells can be used, since the cells are delivered in FIFO order.

If not enough free cells are available to send an entire message, the IOV
describing the unsent data is saved in the request, which is then enqueued onto
a pending-send queue. When free cells are available, the messages on the pending-
send queue are sent out. When all the data described by the IOV has been sent,
the channel makes an up-call to CH3 to see whether there is more data to be sent.
If there is, the IOV is reloaded; otherwise the request is marked as complete.

To receive a message, the Nemesis channel polls the receive queue and fast-
boxes. In order to reduce the overhead of unnecessarily polling too many fast-
boxes, the Nemesis channel polls only active fastboxes, which are the fastboxes
of processes for which this process has posted a receive. Because fastboxes intro-
duce a second path for messages between two processes, sequence numbers are
used to maintain the order of messages.

When a cell is found, either in the receive queue or the fastbox, and there are
no pending receives for that source process, the channel makes an up-call to CH3
with a pointer to the message header. If there is data to receive, CH3 will return an
IOV along with a pointer to a request. The channel then copies the data from the
cell to the user buffer described by the IOV. If the IOV describes more data than is
contained in the cell, the IOV for the unreceived data is saved in the request, and
the request is saved as a pending-receive corresponding to the process that sent
the message. When the next cell from that process is received, the channel gets the
saved request, and the new data is copied from the cell to the user buffer described
by the IOV in the request. When all of the data described by the IOV has been
received, the channel makes an up-call to CH3 to either reload the IOV, if there is
more data to receive, or to mark the request as complete.

Because cells are allocated in shared memory, they are a limited resource.
Hence, it is important to process a cell and copy out its data as soon as possible,
so that it can be freed. This means that an unexpected message should be copied
out of its cells and into a temporary buffer, as opposed to leaving the data in the
cells until the receive has been posted. Unexpected messages are handled by the
CH3 layer in just this way. If an unexpected message is received, CH3 creates a
new request and passes back an IOV pointing to a newly allocated temporary
buffer. So, the channel takes the same action whether the received message is
unexpected or not. The message is copied out of the temporary buffer into the
user buffer once a receive matching the message has been posted.

3.2 Large Message Transfer Using Rendezvous

While the shared-memory queue is very efficient for transferring small- to medium-
sized messages, transferring large amounts of data through the queue may not be
the most efficient method. High-performance networks have RDMA capabilities
where data can be transferred directly from the user’s source buffer on one node to
the user’s destination buffer on another node, avoiding the data copies associated
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with using the queue. Some shared-memory machines, such as the SGI Altix, have
similar mechanisms for processes on the same node. Even without special mech-
anisms, using a queue may not be the most efficient method of transferring large
amounts of data between processes on the same node [4].

To support various mechanisms for transferring large messages, we defined
the Large Message Transfer (LMT) interface and added it to CH3. Avoiding the
queue can not only improve the bandwidth of the transfer but also reduce the
impact on the application’s data in the cache [4].

CH3 uses a rendezvous protocol when sending large messages, which ensures
that a matching receive has been posted before the message data is sent. The
rendezvous protocol is used primarily to avoid having to buffer the message if a
matching receive has not been posted. We designed the LMT interface to be used
together with the rendezvous protocol; the interface allows the channel to pig-
gyback information on the CH3 rendezvous messages. The channel implements
seven LMT functions, which are called by CH3.

For shared-memorycommunication, using the LMT interface, a shared-memory
region is allocated and attached to by the sending and receiving processes. Then,
using a double-buffering mechanism, the sending process copies the data into the
shared-memory region while the receiving process copies it out. Because we used a
memory copy function that uses nontemporal store operations, not only does this
result in a high bandwidth transfer, but it has a very low impact on the applica-
tion’s data in the cache of the receiving process. The LMT optimization improves
bandwidth for intranode communication by about 130 MiBps for large messages.

We have also used the LMT interface for the GM network module, which allows
the use of RDMA operations. In the socket network module, we also used the LMT
interface so that read() and write() operations can be issued to directly access
the application’s buffers, rather than copying the data through a cell.

3.3 Bypassing the Posted Receive Queue

We performed another optimization to improve the latency of small messages
by bypassing the CH3 posted receive queue in certain cases. In the current
implementation of CH3 when a receive is posted by the application, CH3 first
searches the unexpected message queue to see whether it has already received
a matching message. If a matching message is not found, the request is posted
on the posted receive queue. CH3 then calls the progress engine to check for
incoming messages. When a new message is received, CH3 looks for a matching
receive request by searching the posted receive queue and enqueues the message
in the unexpected queue if the message is not found.

Notice that if a receive is posted for which there is no matching message in the
unexpected message queue, and the matching message is waiting to be received on
the Nemesis receive queue or network, the receive request is queued on the posted
receive queue, only to be matched and dequeued in the next step when the progress
engine is called and the matching message received. Our optimization implements
a new function to call the progress engine with a receive request. As messages are
received from the Nemesis receive queue they are checked for a match with the
receive request. Only when no matching messages are found on the receive queue,
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is the request enqueued onto the posted receive queue. Note that if there already is
a request on the posted receive queue that can possibly match the same message as
the new receive request, we cannot use the optimization and, instead, add the new
request to the receive queue as in the original implementation. This optimization
reduced latency by about 18%, or 62 ns.

4 Performance Evaluation of MPICH2 over Nemesis

In this section we evaluate the shared-memory performance of our implementa-
tion of MPICH2 over the Nemesis communication subsystem. First we present
a microbenchmark evaluation on a 2 GHz dual-processor dual-core Opteron 280
machine with 2 GiB of memory. Then we present application benchmarks on an
SGI Altix 350 machine with 16 1.4 GHz Itanium 2 processors and 32 GiB of
memory. We configured MPICH2 with the --enable-fast option that disables
error checking and configured OpenMPI to disable error checking and support
for heterogeneous clusters, which should improve the performance for those im-
plementations. All implementations were compiled using -O3 optimization.

4.1 Latency and Bandwidth

We compare our implementation to LAM/MPI [5] version 7.1.2, OpenMPI [6]
version 1.1, MPICH-GM [7] version 1.2.6..14b, and MPICH2 version 1.0.3 con-
figured with the CH3 shm channel that communicates by using shared memory.
All these MPI implementation use shared-memory intranode communication.
Except where noted, the results for MPICH2 Nemesis have both the LMT and
posted receive queue bypass optimizations applied. We measured latency and
bandwidth using Netpipe [8]. Figure 2 shows these results.

The latency graph in Figure 2(a) shows two data series for MPICH2 Nemesis.
The results shown by the data series labeled “MPICH2 Nemesis no BP” were
taken without the posted receive queue bypass optimization. This optimization
improves latency by about 62 ns, resulting in a zero-byte latency of 341 ns. With
the optimizations applied, MPICH2 Nemesis has lower latency than the other
MPI implementations. Even up to 128 bytes, the MPICH2 Nemesis latency is
just over 500 ns.

Figure 2(b) shows the bandwidth comparison. Nemesis uses an optimized
memory copy routine that uses nontemporal store operations. Using the non-
temporal copy routine results in dramatically higher bandwidth for MPICH2
Nemesis compared to the other MPI implementations. The results shown by the
data series labeled “MPICH2 Nemesis no-LMT” were taken without applying
the LMT optimization to MPICH2 Nemesis. The LMT optimization improves
bandwidth by about 130 MiBps for large messages, resulting in a peak band-
width of over 1,500 MiBps. Notice that for MPICH2 Nemesis, at 16 KiB the
bandwidth of the non-LMT implementation is a little higher than the imple-
mentation with LMT. The reason is that at 16 KiB, the communication protocol
switches from eager to rendezvous and additional setup is performed for LMT.
The figure shows that MPICH2 Nemesis has higher bandwidth than the other
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Fig. 2. Shared-memory performance of MPI implementations

MPI implementations except for messages between about 16KiB and 256KiB.
We intend to perform additional tuning to improve the medium-sized message
bandwidth and find the optimal message size for the crossover from eager to
rendezvous protocol.

4.2 Instruction Count

One of the goals of our implementation is to streamline the critical path. One way
of measuring our success is by counting the number of instructions required to
send or receive a message. Using the PAPI[9] performance counter interface, we
measured the instruction count for send and receive eight-byte messages. When
measuring the instruction count for the receive operations, we wanted to avoid
counting instructions performed polling while waiting for the message to arrive
because the waiting time can vary quite a bit. To do this we added a delay equal
to the round trip time before starting to count instructions and performing the
receive. This ensured that the incoming message had arrived and was waiting at
the receive queue when MPI Recv was called. The table in Figure 3 shows these
results. All MPI implementations were compiled with the -O3 optimization level,
except for MPICH-GM, where the unoptimized code had fewer instructions.

The row labeled “MPICH2 Nemesis no BP” shows the instruction counts when
the posted receive queue bypass optimization was not applied. The results show
that this optimization reduces the combined send and receive instruction count by
almost half. With the optimization, the combined instruction count for MPICH2
Nemesis is less than22%thatofOpenMPI, less than50%thatofMPICH2CH3:shm
and MPICH-GM, and 55% that of LAM MPI. The instruction counts show that the
critical path in our implementation is already quite efficient, however, we believe
that we still can further streamline the critical path and improve cache utilization
which will reduce overall latency for small messages.

4.3 The Halo Benchmark

One of the benchmarks we used to predict the application performance ofMPICH2
Nemesis was the Halo benchmark [10]. This benchmark simulates a nearest neigh-
bor exchange of a 1 to 2 row and column “halo” from a 2D array. The authors of
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MPI Implementation MPI Send MPI Recv Total
OpenMPI 550 1,745 2,295
MPICH-GM 455 617 1,072
LAM MPI 436 472 908
MPICH2 CH3:shm 311 748 1,059
MPICH2 Nemesis no BP 241 712 952
MPICH2 Nemesis 241 259 500

Fig. 3. Instruction count for sending and receiving
a eight-byte message
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the Halo benchmark state that performance of the Halo benchmark correlates well
with the performance of their layered ocean model application. We ran the bench-
mark on the Opteron machine using four processes.

The Halo benchmark performs the halo exchanges by using several different al-
gorithms. The results in Figure 4 show the results for the algorithm that performed
best for each MPI implementation. The algorithm which used MPI SendRecv()
performed best in MPICH2 Nemesis, MPICH-GM and OpenMPI. In MPICH2
CH3:shm, the algorithm using MPI ISend() and MPI IRecv() performed best. In
LAM MPI, the best performance was seen when using the algorithm that used per-
sistent sends and receives, where the receives are posted before the send operations
are called. In the figure,we see thatMPICH2Nemesis performs considerably better
than the other implementations for all tile sizes. Of the others, MPICH2 CH3:shm
performs better than LAM MPI, MPICH-GM, and OpenMPI for small tile sizes.
For larger tile sizes MPICH-GM performs better than MPICH2 CH3:shm, LAM
MPI, and OpenMPI. The performance of this benchmark is dominated by latency
for small tile sizes and by bandwidth for large tile sizes. The factor of improvement
for MPICH2 Nemesis over the other implementations ranges from 1.5 to 2.6. This
suggests that MPICH2 Nemesis should perform well on applications that are sen-
sitive to latency or need high bandwidth.

4.4 The NAS Benchmarks

We evaluated the application-level performance of MPICH2 Nemesis using the
NAS benchmarks [11]. We wanted to evaluate how the low latency and high band-
width of MPICH2 Nemesis can benefit the parallel speedup of applications. To
emphasize the communication cost over the computation time, we used smaller
problem sizes, specifically, the class A problem size with the CG, MG, FT, SP,
BT, and LU benchmarks and the class B problem size for the IS benchmark. For
the IS benchmark the class A problem size was too small for 8 and 16 processes
and resulted in too much variation in the results. We decided not to use the EP
benchmark because there was very little communication.

To get results for a larger number of processes, we ran the benchmarks on
a 16-processor SGI Altix at the Ohio Supercomputer Center (OSC). On that
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machine MPICH-GM was not available; instead, we evaluated the SGI MPI im-
plementation. The Altix machine has features to allow one process to directly
access another process’s address space, which can allow for very efficient large
message transfers. However, these features were not enabled on the OSC ma-
chine. It is not clear how much of an impact the lack of these features has on
the performance of SGI MPI.

In our evaluation, all of the MPI implementations performed similarly.
Figure 5 shows the parallel efficiency for the class A BT and MG and class
B is benchmarks. We omit the graphs for the other results because of space
limitations. We see that for the BT and MG benchmarks the parallel efficiency
for all implementations is better than 0.95. For the IS benchmark, which has a
higher communication to computation ratio than the other benchmarks [12], we
see that the parallel efficiency decreases considerably with the number of pro-
cesses. Here too, we see that all of the MPI implementations perform similarly.
The parallel efficiency for any individual implementation differs less than 10%
from the average for up to 8 processes, and less than 20% from the average for
16 processes.

5 Discussion and Future Work

In this paper we have presented our new implementation of MPICH2 over the
Nemesis communication subsystem. We evaluated the shared-memory commu-
nication of our implementation on a 4-core Opteron machine using microbench-
marks. Our implementation achieved a zero-byte latency of 341 ns and a 128-byte
latency of just over 500 ns. The peak bandwidth of our implementation was over
1,500 MiBps. We also measured the number of instructions required to send and
receive MPI messages. MPICH2 Nemesis uses only 500 instructions to send and
receive an eight-byte messages. To evaluate application-level performance, we
used the Halo benchmark, which favors low-latency and high-bandwidth MPI
implementations, and saw a factor of improvement from 1.5 to 2.6 compared to



Implementation and Shared-Memory Evaluation of MPICH2 95

the other implementations we evaluated. Our evaluation using the NAS bench-
marks on a 16-processor Altix machine did not show large differences in parallel
efficiency between the different MPI implementations. These results show that
MPICH2 Nemesis has an efficient implementation of shared-memory communi-
cation, which achieves low latency and high bandwidth. Moreover, the results
indicate that MPICH2 Nemesis would be especially suitable for smaller-grained
applications which are sensitive to latency and bandwidth.

Future work on MPICH2 Nemesis is to implement Nemesis as a full ADI3
device, which should further improve performance. We also intend to implement
optimized collective communication operations that take advantage of shared
memory, as well as collective operation primitives provided by network interfaces.
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