
Efficient Allgather for Regular SMP-Clusters

Jesper Larsson Träff

C&C Research Laboratories, NEC Europe Ltd.
Rathausallee 10, D-53757 Sankt Augustin, Germany

traff@ccrl-nece.de

Abstract. We show how to adapt and extend a well-known allgather
(all-to-all broadcast) algorithm to parallel systems with a hierarchical
communication system such as clusters of SMP nodes. For small prob-
lem sizes, the new algorithm requires a logarithmic number of commu-
nication rounds in the number of SMP nodes, and gracefully degrades
towards a linear algorithm as problem size increases. The algorithm
has been used to implement the MPI Allgather collective operation of
MPI in the MPI/SX library. Performance measurements on a 72 node
SX-8 system shows that graceful degradation provides a smooth transi-
tion from logarithmic to linear behavior, and significantly outperforms a
standard, linear algorithm. The performance of the latter is furthermore
highly sensitive to the distribution of MPI processes over the physical
processors.

1 Introduction

An important and well-studied collective communication primitive for message-
passing systems is the allgather or all-to-all broadcast operation [6], in which
each processor has data which have to be distributed (i.e. broadcast) to all
other processors. This primitive has been extensively studied in a variety of
settings and, correspondingly, is known also as (for instance) total exchange [5,4],
catenation [3], and gossip [9]. We will use the term allgather here.

The allgather primitive is incorporated as a collective communication opera-
tion in the Message-Passing Interface (MPI) standard [11] in two flavors. The
MPI Allgather collective is regular in the sense that the size of the data to be
broadcast by each MPI process must be the same for all processes. The more
general, irregular MPI Allgatherv collective does not have this restriction, and
each process may contribute data of different size. A peculiarity of both MPI
primitives, however, is that the size of the data contributed by each process is
known by all processes in advance.

There has recently been much interest in improving the collective operations
in various MPI libraries, see for instance [1,10,12] (and the references therein).
Various allgather algorithms for MPI were discussed and evaluated in [2]. How-
ever, the collective operations in many MPI libraries are not adapted to systems
with hybrid, hierarchical communication systems such as clusters of SMP nodes
(see [7,8,10] for exceptions).

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 58–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Allgather for Regular SMP-Clusters 59

In this paper we give an improvement to a well-known allgather algorithm
which makes it suitable to the SMP case. In this context an SMP cluster is
simply a collection of multi-processor nodes interconnected by a communication
network. Communication between processors on the same node (typically via
shared memory) is assumed to be faster (lower latency, higher bandwidth) than
between processors on different nodes. Most importantly, the number of proces-
sors per node that can simultaneously communicate with processors on different
nodes is restricted, typically to only one processor, although some modern high-
performance interconnects offer multiple communication ports. We assume that
communication within nodes is homogeneous, and likewise that the interconnect
over the nodes is homogeneous, that is the cost of communication between any
two processors on two different nodes is independent of the location of the two
processors.

MPI is a process based model. Sets of processes are represented by so-called
communicators. The semantics of the MPI collectives is defined in terms of the
numbering of the processes in the given communicator. Since new communica-
tors can be defined arbitrarily from existing ones, no assumptions about the num-
bering of MPI processes residing on an SMP node can be made. In particular, it
cannot be assumed that the processes on a node form a consecutively numbered
subset. Since allgather is a symmetric operation, it is desirable that the perfor-
mance of MPI Allgather be independent of the numbering of the processes.

In this paper we are concerned with regular SMP clusters, where the SMP
nodes have the same number of processors. Additionally, the performance bounds
for the allgather algorithm requires each node to run the same number of MPI
processes. Again, since MPI allows arbitrary creation of new communicators,
also for regular clusters it is possible to create communicators that do not fulfill
this assumption. The algorithm can be used for the general case also, but can
incur load imbalance. Better performance could possibly be achieved by a ded-
icated, non-regular algorithm. The algorithm can also be used for the irregular
MPI Allgatherv collective, but for very irregular problems better performance
could possibly be achieved by a dedicated, irregular allgather algorithm.

2 An Allgather Algorithm with Graceful Degradation

We first present the regular allgather algorithm independent of MPI for systems
with a homogeneous communication system (non-SMP case). The new feature
which makes the algorithm better suited to clusters of SMP nodes is a smooth
transition from logarithmic to linear behavior as the problem size grows. We
term this feature graceful degradation.

We let p denote the number of processors, which are numbered from 0 to
p − 1. Each processor r has a block of data block[r] of size b. For the regular
allgather problem, b is the same for all processors. The total size of the allgather
problem at hand is m = pb. The task of the allgather operation is to collect all
blocks block[0], block[1], . . . , block[p − 1] on all processors (in that order). By
convention, for i ≤ j, we let block[i, j] denote the consecutive sequence of blocks

60 J.L. Träff

block[i], block[i + 1], . . . , block[j], and for j < i, we let block[i, j] denote the
“wrapped” consecutive sequence of blocks block[i], block[i + 1], . . . , block[p −
1], block[0], . . . , block[j].

The algorithm consists of a logarithmic phase, a linear phase, and a last round,
either of which can be empty. In the logarithmic phase, each processor in each
round doubles the number of blocks that it has collected. The algorithm used
in this phase is the catenation algorithm of [3] (whose communication pattern
is a regular, so-called circulant graph). The number of rounds of the logarithmic
phase is determined by K, which can be any integer less than or equal to �log p�.
In the linear phase, larger, consecutive chunks consisting of 2K input blocks are
pipelined through rings of processors, until in the last round a last chunk of size
strictly less than 2K blocks is sent and received by each processor. In each round
each processor sends and receives the same number of blocks. Below follows a
more precise description of the combined algorithm.

r + 2

linear round 0 linear round 1

r + 1

last round

r r + 4 s = r + 8

Fig. 1. The three phases of the combined allgather algorithm illustrated from a single
processors point of view. In the logarithmic phase processor r receives blocks of size
1, 2, 4 from processors r + 1, r + 2, r + 4 respectively. In the linear phase processor r
receives two blocks of size 8 from processor s = r + 8. In the last round the remaining
smaller block of size 5 is finally received from processor s.

1. In round k of the logarithmic phase, for k = 0, . . .K −1, processor r receives
blocks block[s, (s + 2k − 1) mod p] from processor s = (r + 2k) mod p and
sends blocks block[r, (r + 2k − 1) mod p] to processor (r − 2k) mod p.

2. Let s = (r + 2K) mod p, and t = (r − 2K) mod p, where K is the number
of rounds of the logarithmic phase. In round k of the linear phase, k =
0, . . . , �p/2K� − 2, processor r receives blocks block[(s + k2K) mod p, (s +
(k+1)2K −1) mod p] from processor s and sends blocks block[(r+k2K) mod
p, (r + (k + 1)2K − 1) mod p] to processor t.

3. In the case that �p/2K�2K > p, in the last round processor r receives blocks
block[(s+(�p/2K�− 1)2K) mod p, (s+ p− 2K − 1) mod p] from processor s
and sends blocks block[(r +(�p/2K�−1)2K) mod p, (r +p−2K −1) mod p]
to processor t.

The three phases of the combined algorithm are illustrated in Figure 1. Cor-
rectness follows, since in each round, each processor receives a consecutive seg-
ment of new blocks, and sends a consecutive segment of blocks received in the
previous round.

The number of rounds required is K + �p/2K� − 1, and the total number
of blocks sent and received per processor is p − 1 for a total communication
volume per processor of (p − 1)b = m − b. Each round entails either two com-
munication steps (a send and a receive) for uni-directional interconnects, or one

Efficient Allgather for Regular SMP-Clusters 61

communication step (a combined send-receive) for interconnects supporting full
bi-directional communication.

For K = �log p� the algorithm coincides with the algorithm in [3], and for
K = 0 with a trivial, linear time ring algorithm. By choosing K = �log(B/b)�
for some fixed intermediate buffer size the algorithm switches from logarithmic
to linear behavior before the size of the consecutive segments received and sent
in a round exceeds B. Thus, with increasing block size b the algorithm gracefully
changes from purely logarithmic to linear behavior.

3 Implementation on SMP Clusters

The allgather operation allows a simple hierarchical decomposition to exploit the
faster communication between processors on the same SMP node. The hierar-
chical allgather algorithm looks as follows.

1. Choose a local root on each SMP node
2. On all nodes gather input blocks to local root
3. Perform allgather over local roots
4. On all nodes broadcast result from local root

A straightforward implementation of this scheme would be inefficient for medium
and large problems, since non-root processes would sit idle throughout the all-
gather step. For the implementation of MPI Allgather an additional complica-
tion is caused by the fact that MPI processes are not necessarily consecutively
numbered within the SMP nodes. Thus the blocks gathered at the local roots in
the second step will either be nonconsecutive at the local root, or will have to be
stored consecutively in an intermediate buffer. Both solutions have undesirable
drawbacks.

For the broadcast (and the gather) operation, an SMP implementation would
presumably use shared memory. In many cases, shared memory used for commu-
nication between MPI processes has to be specially allocated outside of process
memory, and cannot be arbitrarily large.

By using the allgather algorithm of Section 2 each of these problems can
be effectively addressed for allgather problems up to a certain size. For now we
consider regular SMP systems with the same number of MPI processes per node.
We let N denote number of nodes, and n the number of processes per node such
that p = nN .

A shared memory buffer is used for the gather and broadcast operations, and
is chosen to be of a fixed, maximum size B. The number of logarithmic rounds
of the allgather algorithm is chosen as K = min(�log N�, �B/nb�), where nb is
the total size of the input blocks on each SMP node.

The hierarchical allgather algorithm is implemented as follows. A local root
process r is chosen for each SMP node, and allocates a shared memory commu-
nication buffer of size B. For each node the blocks block[i] for the processes on
the node are packed consecutively into the shared memory buffer using a node
local consecutive numbering of the processes. The local roots execute the all-
gather algorithm of Section 2 with the modification that after each round of the

62 J.L. Träff

linear phase, the blocks sent to processor t are unpacked into the result buffer
of all processes on the SMP node. After the last round, the broadcast is com-
pleted by unpacking the last segment of blocks. This implementation effectively
pipelines the allgather and the broadcast step of the hierarchical algorithm. We
note that for communication systems that support concurrent communication
and computation, unpacking of the blocks being sent to t into the result buffer
of the local root can be performed concurrently with sending these blocks and
receiving the next blocks from process s.

This algorithm can be used for allgather problems for which nb ≤ B, i.e. for
problems where the blocks of the processes on each SMP node can fit into the
shared memory buffer. For larger problems a linear ring algorithm can be used.
This should be implemented as follows. The MPI processes are sorted according
to their SMP node id. The index of each process in this sorted sequence is used
as virtual rank. In p − 1 rounds, each process with virtual rank r receives a
block from virtual process (r + 1) mod p and sends a block to virtual process
(r − 1) mod p.

For systems with large SMP nodes (say, more than 8 processors per node)
the transition from SMP algorithm to linear ring (which occurs when nb > B)
may be too coarse. This can be avoided by introducing a linear algorithm similar
to the linear phase for “medium sized” problems. The number of input blocks
that can be kept in the shared memory buffer is �B/b�, so the p processors are
divided into p/�B/b� virtual nodes each of size �B/b�. A local root is chosen for
each virtual node, and the linear phase of the allgather algorithm is executed
over the virtual roots.

4 Performance Evaluation

The SMP allgather algorithm has been incorporated into the MPI/SX implemen-
tation for NEC’s SX series of parallel vector computers [10]. In this section we
evaluate the implementation using the 72 node SX-8 system at HLRS (Hochleis-
tungsrechenzentrum, Stuttgart).

The basic performance of the combined algorithm for N = 36 nodes and
n = 1, 4, 8 processes per node is illustrated in Figure 2 by comparing it to a
linear ring algorithm. Running time is given as a function of the block size per
process b. For small blocks up to a few KBytes the improvement over the linear
algorithm is more than a factor of 3 for n = 1 process per node, and more than
13 for n = 8 processes per node. As block size increases the performance of the
combined algorithm converges towards that of the linear algorithm. For n = 8
processes per node the switch to linear ring occurs after 64 KBytes (per process;
the maximum shared memory buffer size is set to B = 1 MByte), and incurs a
performance decrease by a factor of two (thus, the additional linear algorithm
over virtual nodes described above would be worth considering).

The effect of graceful degradation towards the linear performance is further
illustrated in Figure 3. This compares the combined algorithm to an SMP im-
plementation of the logarithmic algorithm of [3], which switches to a linear ring

Efficient Allgather for Regular SMP-Clusters 63

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

 s
ec

on
ds

)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, New versus linear algorithm

New 1 proc/node
New 4 proc/node
New 8 proc/node
Linear, 1 proc/node
Linear, 4 proc/node
Linear, 8 proc/node

Fig. 2. The combined allgather algorithm with graceful degradation over ordered
(MPI COMM WORLD) communicator compared to the linear ring algorithm for N = 36
nodes and 1, 4, 8 processes per node

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

 s
ec

on
ds

)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, New versus ungraceful algorithm

New 4 proc/node
New 8 proc/node
Ungraceful, 4 proc/node
Ungraceful, 8 proc/node

Fig. 3. The combined allgather algorithm over MPI COMM WORLD compared to an algo-
rithm with without graceful degradation for N = 36 nodes and n = 4, 8 processes per
node

as soon as the gathered result cannot fit into the shared memory buffer. This
hybrid algorithm exhibits a very sharp jump in running time, which for n = 8
processes per node occurs at 8 KBytes, and is about a factor 7.

The potential sensitivity of a non-SMP algorithm to the numbering of of the
MPI processes over the SMP nodes is illustrated in Figure 4. The combined al-
gorithm (shown left) is compared to a linear ring algorithm over the MPI ranks
(shown right) for the ordered MPI COMM WORLD communicator and a communica-
tor in which the processes have been randomly permuted. In the latter case, the
successor and predecessor of process r (namely (r−1) mod p, and (r+1) mod p)
are almost always on a different SMP node, so in each communication round,
almost all n processes on each node attempt to communicate with a process on
another node, leading to serialization at the nodes. As expected, for n = 4 the
random communicator performance is from a factor 2 for small block sizes up to
almost a factor 4 for large block sizes worse than the ordered communicator. For
n = 8 the performance degradation ranges from a factor of 3 up to a factor of
6. For somewhat larger block sizes, the combined algorithm is insensitive to the

64 J.L. Träff

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

 s
ec

on
ds

)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, New algorithm, MPI_COMM_WORLD versus random

New 1, proc/node (MPI_COMM_WORLD)
New 4, proc/node (MPI_COMM_WORLD)
New 8, proc/node (MPI_COMM_WORLD)
New 1, proc/node (random communicator)
New 4, proc/node (random communicator)
New 8, proc/node (random communicator)

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
(m

ic
ro

 s
ec

on
ds

)

Size (Bytes/proc)

MPI_Allgather, 36 nodes, Linear algorithm, MPI_COMM_WORLD versus random

Linear, 4 proc/node (MPI_COMM_WORLD)
Linear, 8 proc/node (MPI_COMM_WORLD)
Linear, 4 proc/node (random communicator)
Linear, 8 proc/node (random communicator)

Fig. 4. The combined allgather algorithm (left) compared to non-SMP aware linear
algorithm (right) for ordered MPI COMM WORLD and random communicator for N = 36
nodes and n = 1, 4, 8 processes per node

MPI process distribution. The difference for n = 8 for small block sizes is due
to the fact that for the random communicator the gathered result does not form
a consecutive segment of blocks, and must be unpacked as p individual blocks.
On a vector machine like the NEC SX-8, copying of small blocks is penalized.

5 Concluding Remarks

We presented an allgather algorithm which combines well-known logarithmic
and linear round allgather algorithms, and efficiently makes use of potentially
limited intermediate communication buffer space. This makes the new algorithm
suitable for use in regular SMP clusters, in which the number of processors (and
MPI processes) per SMP node is the same for all nodes. The algorithm can be
implemented also for non-regular SMP clusters, and has been used for the im-
plementation of both MPI Allgather and MPI Allgatherv collectives. However,
for very irregular problem instances, dedicated irregular algorithms might give
better performance.

The combined algorithm was developed assuming single-port communication
of the SMP nodes. It is worth pointing out that both the logarithmic and the
linear phase can easily be generalized to the case where the SMP nodes have
k > 1 communication ports.

References

1. G. Almási, P. Heidelberger, C. Archer, X. Martorell, C. C. Erway, J. E. Moreira,
B. D. Steinmacher-Burow, and Y. Zheng. Optimization of MPI collective com-
munication on BlueGene/L systems. In 19th ACM International Conference on
Supercomputing (ICS 2005), pages 253–262, 2005.

2. G. D. Benson, C.-W. Chu, Q. Huang, and S. G. Caglar. A comparison of MPICH
allgather algorithms on switched networks. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface. 10th European PVM/MPI Users’ Group
Meeting, volume 2840 of Lecture Notes in Computer Science, pages 335–343, 2003.

Efficient Allgather for Regular SMP-Clusters 65

3. J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEE Trans-
actions on Parallel and Distributed Systems, 8(11):1143–1156, 1997.

4. P. Fraigniaud and E. Lazard. Methods and problems of communication in usual
networks. Discrete Applied Mathematics, 53(1–3):79–133, 1994.

5. S. M. Hedetniemi, T. Hedetniemi, and A. L. Liestman. A survey of gossiping and
broadcasting in communication networks. Networks, 18:319–349, 1988.

6. S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communi-
cation in hypercubes. IEEE Transactions on Computers, 38(9):1249–1268, 1989.

7. N. T. Karonis, B. R. Toonen, and I. T. Foster. MPICH-G2: A grid-enabled im-
plementation of the message passing interface. Journal of Parallel and Distributed
Computing, 63(5):551–563, 2003.

8. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. Mag-
PIe: MPI’s collective communication operations for clustered wide area systems.
In Symposium on Principles and Practice of Parallel Programming (PPoPP‘99),
volume 34 of ACM Sigplan Notices, pages 131–140, 1999.

9. D. W. Krumme, G. Cybenko, and K. N. Venkataraman. Gossiping in minimal
time. SIAM Journal on Computing, 21(1):111–139, 1992.

10. H. Ritzdorf and J. L. Träff. Collective operations in NEC’s high-performance MPI
libraries. In International Parallel and Distributed Processing Symposium (IPDPS
2006), page 100, 2006.

11. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

12. R. Thakur, W. D. Gropp, and R. Rabenseifner. Improving the performance of
collective operations in MPICH. International Journal on High Performance Com-
puting Applications, 19:49–66, 2004.

	Introduction
	An Allgather Algorithm with Graceful Degradation
	Implementation on SMP Clusters
	Performance Evaluation
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

