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Abstract. Suffix arrays are a simple and powerful data structure for
text processing that can be used for full text indexes, data compression,
and many other applications in particular in bioinformatics. We describe
the first implementation and experimental evaluation of a scalable paral-
lel algorithm for suffix array construction. The implementation works on
distributed memory computers using MPI, Experiments with up to 128
processors show good constant factors and make it look likely that the
algorithm would also scale to considerably larger systems. This makes it
possible to build suffix arrays for huge inputs very quickly. Our algorithm
is a parallelization of the linear time DC3 algorithm.

1 Introduction

The suffix array [1,2], a lexicographically sorted array of the suffixes of a string,
has numerous applications, e.g., in string matching [1,2], genome analysis [3]
and text compression [4]. For example, one can use it as full text index: To
find all occurrences of a pattern P in a text T , do binary search in the suffix
array of T , i.e., look for the interval of suffixes that have P as a prefix. A lot
of effort has been devoted to efficient construction of suffix arrays, culminating
recently in three direct linear time algorithms [5,6,7]. One of the linear time
algorithms, DC3 [8] is very simple and can also be adapted to different models
of computation. An external memory version of the algorithm [9] already makes
it possible to construct suffix array for huge inputs. However, this takes many
hours and hence a scalable parallel algorithm might be more interesting. This is
the subject of the present paper. We describe the algorithm, pDC3, in Section 2
and experimental results in Section 3. Section 4 concludes with an outline of
possible additional questions.

Related Work

There are numerous theoretical results on parallel suffix tree construction (e.g., re-
fer to the references given in [10,11]). Suffix trees can be easily converted to suffix
arrays. However, these algorithms are fairly complicated. We are not aware of any
implementations. Recently, a trend is to use simpler suffix array construction algo-
rithms even as a means of constructing suffix trees. Parallel conversion algorithms
are described in [10]. The basic ideas for parallel suffix array construction based on
the DC3 algorithm are already given in [8,11] for several theoretical models of par-
allel computation. Here, we concentrate on the detailed description of a practical
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algorithm with particular emphasis on implementation and experimental evalua-
tion. We are only aware of a single implemented parallel algorithm for suffix array
construction [12]. This algorithm is practical but based on string sorting and thus
needs quadratic work in the worst case. From experiments with sequential algo-
rithms, it is also known that algorithms based on string sorting are not very fast
even for some real world inputs with long common prefixes (e.g. [13]). Furthermore
it seems that all processing elements (PEs) need access to the complete input. This
is an impediment for scaling to large numbers of PEs and large inputs since there
might not be enough space on distributed memory machines and since this implies
an execution time of Ω (n), i.e., the maximal speedup is bounded by a constant
independent of the number of PEs.

2 The pDC3 Algorithm

We use the shorthands [i, j] = {i, . . . , j} and [i, j) = [i, j−1] for ranges of integers
and extend to substrings as seen below. The input of a suffix array construction
algorithm is a string T = T [0, n) = t0t1 · · · tn−1 over the alphabet [1, n], that is
a sequence of n integers from the range [1, n]. For convenience, we assume that
tj = 0 for j ≥ n. For i ∈ [0, n], let Si denote the suffix T [i, n) = titi+1 · · · tn−1. We
explain the algorithm using pseudocode manipulating sequences of tuples. For
example, for T = abcdef, 〈(T [i, i + 2], i) : i mod 3 = 0〉 denotes 〈(abc, 0), (def, 3)〉.
The goal is to sort the sequence 〈S0, . . . , Sn〉 of suffixes of T , where comparison
of substrings or tuples assumes the lexicographic order throughout this paper.
The output is the suffix array SA[0, n) of T , a permutation of [0, n) satisfying
SSA[0] < SSA[1] < · · · < SSA[n−1]. Let p denote the number of processors (PEs).
PEs are numbered from 0 to p − 1.

At the most abstract level, the DC3 Algorithm is very simple and completely
independent of the model of computation: It first constructs the suffix array of
the suffixes starting at positions i mod 3 �= 0. This is done by reduction to the
suffix array construction of a string of two thirds the length, which is solved
recursively. Then this information is used to annotate the original input. With
this annotation, two arbitrary suffixes Si and Sj can be compared by looking
at T [i, i + 2] and the annotations at positions [i, i + 2]. For a more detailed
explanation refer to [11].

Fig. 1 gives a more detailed pseudocode which exposes parallelism and which
we will then refine to the full parallel algorithm. Line 1 extracts the information
needed for building the recursive subproblem which consists of two concatenated
substrings of length n/3 representing the mod1 suffixes and mod2 suffixes re-
spectively. This length reduction is achieved by finding lexicographic names for
triples of characters, i.e., integers that reflect the lexicographic order of these
character triples. To find these names, the triples (annotated with their position
in the input) are sorted in Line 2 and named in Line 3 using a subroutine to be
discussed. If all triples are unique, no recursion is necessary (Line 4). Otherwise,
Line 5 assembles the recursive subproblem, Line 6 solves it, and Line 7 brings it
into a form compatible with the output of the naming routine. Line 8 permutes
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Function pDC3 (T )
S:= 〈((T [i, i + 2]), i) : i ∈ [0, n), i mod 3 �= 0〉 1

sort S by the first component 2

P := name(S) 3

if the names in P are not unique then 4

permute the (r, i) ∈ P such that they are sorted by (i mod 3, i div 3) 5

SA12:= pDC3 (〈c : (c, i) ∈ P 〉) 6

P :=
�
(j + 1, SA12[j]) : j ∈ [0, 2n/3)

�
7

permute P such that it is sorted by the second component 8

S0:= 〈(T [i], T [i + 1], c′, c′′, i) : i mod 3 = 0, (c′, i + 1), (c′′, i + 2) ∈ P 〉 9

S1:= 〈(c, T [i], c′, i) : i mod 3 = 1, (c, i), (c′, i + 1) ∈ P 〉 10

S2:= 〈(c, T [i], T [i + 1], c′′, i) : i mod 3 = 2, (c, i), (c′′, i + 2) ∈ P 〉 11

S:= sort S0 ∪ S1 ∪ S2 using comparison function: 12

(c, . . .) ∈ S1 ∪ S2 ≤ (d, . . .) ∈ S1 ∪ S2 ⇔ c ≤ d
(t, t′, c′, c′′, i) ∈ S0 ≤ (u, u′, d′, d′′, j) ∈ S0 ⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, d′, j) ∈ S1 ⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, u′, d′′, j) ∈ S2 ⇔ (t, t′, c′′) ≤ (u, u′, d′′)

return 〈last component of s : s ∈ S〉 13

Fig. 1. High level pseudo code for pDC3

the resulting tuples into the order of the input string. Now, Lines 9–11 use the
input string and the result of the recursion to build 5-tuples and 4-tuples that
contain all the information needed to compare the suffixes they represent. These
are sorted in Line 12. Line 13 extracts the suffix array from the result.

The basic idea behind parallelization is that input, output, and intermedi-
ate tuple sequences are uniformly or almost uniformly distributed over all PEs.
Lines 1,7, 9–11, and 13 are then straight forward to parallelize. The only nec-
essary communication is between PE i and PE i + 1 to retrieve values that are
one or two places to the right in the sequence currently processed. Permuta-
tions (Lines 5 and 8) are mapped to personalized all-to-all communications with
variable message lengths but balanced or almost balanced total communication
volume at each PE. Sorting (Lines 2 and 12) can be implemented using any
parallel sorting algorithm. The naming step in Line 3 is interesting since its se-
quential implementation scans S assigning a fresh name to any new triple found.
On the first glance this looks inherently sequential. However consider replacing
the naming step by the following two lines.

Δ:= 〈[S[i] �= S[i + 1]] : 0 ≤ i < 2n/3〉
P :=

〈
(1 +

∑
j<i Δ[j], i) : 0 ≤ i < 2n/3

〉

The first line is a simple local computation. The second line computes a prefix
sum, an operation easily done in time O(n/p + log p). Finally, to implement
Line 4 in Fig. 1, PE p − 1 just needs to check whether the total sum over Δ was
n and broadcast this information to all PEs.
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This level of abstraction is the most appropriate for an analysis of the
algorithm.

Theorem 1. The suffix array of a string of size n can be computed in time
O(Tparsort(n, p) + Tallall(n/p, p) + f(p) log(n)) where Tparsort(n, p) is a bound on
the execution time of sorting n elements on p processors with the property
Tparsort(2n/3, p) ≤ 2

3Tparsort(n, p) + f(p) and Tallall(�, p) is a bound on the ex-
ecution time of personalized all-to-all communication such that no PE sends
or receives more than � words of data with the property that Tallall(2�/3, p) ≤
2
3Tallall(�, p) + f(p).

The term f(p) ∈ Ω (log p) in Theorem 1 is a bottleneck term that does not
decrease when the input size decreases.

Proof. (Outline) The algorithm goes through O(log n) levels1 of recursion. The
involved data volumes are decreasing geometrically. Thus, up to constant factors,
we can bound the total execution time of sorting, all-to-all, and local operations
by the cost of the first level of recursion, plus O(log n) times the bottleneck
term f(p). Further communication operations all take time O(log p) = O(f(p))
in each level of recursion.

The usual implementation of all-to-all directly delivers all messages to their
destination. It has Tallall(�, p) = O(�Tbyte + pTstart) on a machine with full inter-
connection network and time kTbyte + Tstart for point-to-point communication
of a message of size k.

In our implementation we have

Tparsort(n, p) = O
(
(n/p + p2) log p

)
+ Tallall(n/p, p)

using a simple variant of comparison based sample sort [14]: The input is first
sorted locally. Each PE takes O(p) sample elements. The sample is gathered and
sorted at a single PE. The sorted samples are used to obtain splitter elements
s1,. . . , sp−1 that are equally spaced in the sorted sample. These splitters are
broadcast to all other PEs. Define s0 = −∞ and sp = +∞. Now each processor
partitions the elements into buckets where the i-th buckets gets elements between
si and si+1. All Elements from bucket i are then sent to PE i using an all-to-all
personalized communication. Finally, each PE merges the received pieces of its
bucket. In summary, sorting is reduced to local sorting, multiway merging, and
further standard communication operations: gather of a small sample, splitter
broadcast, and a single personalized all-to-all communication.

We get a bottleneck term of f(p) = O
(
p2 log p + p2Tbyte + pTstart

)
and a total

execution time of

O
(
(n/p log p + (p2(log p + Tbyte) + pTstart) log n

)

1 One can get a slight improvement of the theoretical bound by switching to a sequen-
tial algorithm after O(log p) levels of recursion. But this is irrelevant from a practical
perspective.
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Asymptotically better bounds are obtained in [11] using more sophisticated
implementations of sorting and all-to-all. However, these algorithms are consid-
erably more complicated and in Section 3 we will give evidence that on machines
with a moderate number of processors no significant improvements can be ex-
pected from these theoretical algorithms.

All the required communication operations (point-to-point, prefix sum, broad-
cast, all-to-all, gather) are available in communication libraries such as MPI [15].

3 Experiments

We have implemented pDC3 with deterministic sample sort using C++ and
MPI [15]. Most measurements were performed on a HP Integrity rx2620 running
under Linux with 64 dual processor nodes using Itanium 2 processors with 1.5
GHz and 6 MByte Cache. The machine has 64 × 12 GByte of main memory.
The nodes are connected by a Quadrics QSNet II network with 800 MByte/s
communication bandwidth.

We have used the big real world inputs from [9]: The human genome, 3.125
GByte of books from the Gutenberg project, and 522 MByte of source code. In
addition, we use the artificial inputs an and (abc)n/3. Timing is started when all
PEs have initialized MPI and hold n/p characters of the input each.
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Fig. 2. The distribution of the execution time between sorting, communication and
the remaining local operations for the Gutenberg instance
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Fig. 3. Execution time of pDC3 compared to the sequential DC3 algorithm from [8]
and to the sequential algorithm from [13]

Fig. 2 shows the work performed for the Gutenberg input using 16–128 PEs
using one or two CPUs on each node. We see that sorting and merging takes
most of the time. Communication time (mainly all-to-all) takes only a small
fraction of the total execution time. However, it should be noted that low cost
machines with switched Gigabit Ethernet have an order of magnitude smaller
communication bandwidth than our machine. On such machines, communication
would take about half of the time. (Which might still be acceptable considering
that such machines are much cheaper). The overall work increases only slightly
when increasing the number of processors. This indicates good scalability. As to
be expected, using both CPUs increases internal work and total communication
time since the CPUs have to share the main memory and the network interface.

We cannot give speedups for big inputs since no single node has enough mem-
ory to solve the problem. Therefore Fig. 3 compares pDC3 with two sequential
algorithms for the source code instance. DC3 is the simple sequential linear time
implementation from [5].2 MF is one of the fastest practical algorithms [13].
With the minimal number of two processors our parallel algorithm already out-
performs the simple sequential algorithm significantly although it has a factor
Θ(log n) disadvantage in its asymptotic execution time. The break even point to
[13] is at four processors. The work per processor is about half as much as for
the external algorithm from [9] on a 2GHz Intel Xeon processor. Unfortunately,
a direct comparison with the parallel implementation from [12] is not possible
since this paper does not specify the clock speed of the machine used.

2 There are faster sequential implementations of DC3 by now [16] but they still do
not beat implementations such as [13].
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Table 1. Average (Ø) versus bottleneck (max) execution times of major parts of pDC3.
Timings in second. Top part: 64 × 1 CPU. Bottom part: 64 × 2 CPUs.

Input Size Total quicksort mergesort p-merge All2all Com sample
max Ø max Ø max Ø Ø Ø

Source 522 37.8 16.6 15.9 28.6 27.9 10.5 9.6 4.2 0.14 0.29
Genome 2928 282.0 160.3 115.0 182.6 178.7 62.8 58.0 22.2 0.36 1.24
Gutenberg 3125 254.6 124.0 119.5 197.4 195.6 68.1 66.5 22.2 0.36 1.30
an 3815 520.7 411.4 271.3 168.9 165.7 49.6 32.1 22.2 0.42 2.16
an 2000 259.7 202.2 130.6 85.2 83.4 25.8 16.6 11.5 0.37 1.78
(abc)n/3 2000 263.7 198.2 98.5 85.2 83.2 33.3 16.4 13.8 0.38 1.54
Source 522 24.2 7.8 7.4 14.9 14.4 6.2 5.3 4.9 0.23 0.37
Genome 2928 180.8 94.3 53.8 99.6 95.7 39.0 37.2 21.9 0.67 1.25
Gutenberg 3125 151.8 58.7 55.8 107.5 105.7 44.2 40.9 21.1 0.53 1.31
an 3815 280.9 193.1 120.0 99.0 96.1 45.0 26.6 21.2 0.91 2.12
an 2000 140.7 93.4 56.9 49.4 47.8 23.2 13.7 11.2 0.53 1.76
(abc)n/3 2000 146.1 92.3 42.7 49.5 47.8 30.9 13.5 13.4 0.56 1.49

Table 1 gives a more detailed breakdown of the execution time of pDC3 for
different inputs. The STL quicksort used for local sorting shows considerable
load imbalances, i.e., the slowest PE does much more work than the average PE.
This is not due to significantly different amounts of data assigned to PEs but
because quicksort has highly data dependent execution times in particular for
the artificial inputs like an. In contrast, if we use mergesort, there is much less
load imbalance. Here, the artificial inputs turn out to be easier to solve than
the real world inputs. There is also some load imbalance for the p-way merging
in sample sort for artificial inputs. However, this is not very critical since it only
means that some PEs do less work than in the worst case.

4 Conclusions

We have demonstrated that pDC3 is a practicable and scalable way to build huge
suffix arrays. Several practical improvements could be considered. pDC3 might
scale even to machines with thousands of processors if we use parallel sorting for
sorting the sample. The DC3 algorithm can be generalized to larger difference
covers that imply a different recurrence relation. Using this scheme in the first
level of recursion could save a constant factor of time for small alphabets. A
log n term in the execution time could be removed by switching from comparison
based sorting to integer sorting. However, we are not aware of an algorithm that
would really remove the log n in the worst case and would bring improvements
in practice. For example, the implementation from [8] gets slightly faster when
its linear time sorting algorithm is replaced by quicksort. There are also further
opportunities for tuning. For inputs that are so large that they do not even fit
in the main memory of a parallel computer, a parallel external algorithm could
be developed by combining the results of the present paper with [9].
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