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Preface

Since its inception in 1994 as a European PVM user’s group meeting, Eu-
roPVM/MPI has evolved into the foremost international conference dedicated to
the latest developments concerning MPI (Message Passing Interface) and PVM
(Parallel Virtual Machine). These include fundamental aspects of these message
passing standards, implementation, new algorithms and techniques, performance
and benchmarking, support tools, and applications using message passing. De-
spite its focus, EuroPVM/MPI is accommodating to new message-passing and
other parallel and distributed programming paradigms beyond MPI and PVM.
Over the years the meeting has successfully brought together developers, re-
searchers and users from both academia and industry. EuroPVM/MPI has con-
tributed to furthering the understanding of message passing programming in
these paradigms, and has positively influenced the quality of many implementa-
tions of both MPI and PVM through exchange of ideas and friendly competition.

EuroPVM/MPI takes place each year at a different European location, and
the 2006 meeting was the 13th in the series. Previous meetings were held in
Sorrento (2005), Budapest (2004), Venice (2003), Linz (2002), Santorini (2001),
Balatonfüred (2000), Barcelona (1999), Liverpool (1998), Cracow (1997), Munich
(1996), Lyon (1995), and Rome (1994). EuroPVM/MPI 2006 took place in Bonn,
Germany, 17 – 20 September, 2006, and was organized jointly by the C&C
Research Labs, NEC Europe Ltd., and the Research Center Jülich.

Contributions to EuroPVM/MPI 2006 were submitted in May as either full
papers or posters, or (with a later deadline) as full papers to the special session
ParSim on “Current Trends in Numerical Simulation for Parallel Engineering En-
vironments” (see page 356). Out of the 75 submitted full papers, 38 were selected
for presentation at the conference. Of the 9 submitted poster abstracts, 6 were cho-
sen for the poster session. The ParSim session received 11 submissions, of which
5 were selected for this special session. The task of reviewing was carried out
smoothly within very strict time limits by a large program committee and a num-
ber of external referees, counting members from most of the American and Euro-
pean groups involved in MPI and PVM development, as well as from significant
user communities. Almost all papers received 4 reviews, some even 5, and none
fewer than 3, which provided a solid basis for the program chairs to make the final
selection for the conference program. The result was a well-balanced and focused
program of high quality. All authors are thanked for their contribution to the con-
ference. Out of the accepted 38 papers, 3 were selected as outstanding contribu-
tions to EuroPVM/MPI 2006, and were presented in a special, plenary session:

– “Issues in Developing a Thread-Safe MPI Implementation” by William Gropp
and Rajeev Thakur (page 12)

– “Scalable Parallel Suffix Array Construction” by Fabian Kulla and Peter
Sanders (page 22)
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– “Formal Verification of Programs That Use MPI One-Sided Communica-
tion” by Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev
Thakur and William Gropp (page 30)

“Late and breaking results”, which were submitted in August as brief ab-
stracts and therefore not included in these proceedings, were presented in the
eponymous session. Like the “Outstanding Papers” session, this was a premiere
at EuroPVM/MPI 2006.

Complementing the emphasis in the call for papers on new message-passing
paradigms and programming models, the invited talks by Richard Graham,
William Gropp and Al Geist addressed possible shortcomings of MPI for emerg-
ing, large-scale systems, covering issues on fault-tolerance and heterogeneity,
productivity and scalability, while the invited talk of Katherine Yelick dealt
with advantages of higher-level, partitioned global address space languages. The
invited talk of Vaidy Sunderam discussed challenges to message-passing pro-
gramming in dynamic metacomputing environments. Finally, with the invited
talk of Ryutaro Himeno, the audience gained insight into the role and design of
the projected Japanese peta-scale supercomputer.

An important part of EuroPVM/MPI is the technically oriented vendor ses-
sion. At EuroPVM/MPI 2006 eight significant vendors of hard- and software for
high-performance computing (Etnus, IBM, Intel, NEC, Dolphin Interconnect So-
lutions, Hewlett-Packard, Microsoft, and Sun), presented their latest products
and developments.

Prior to the conference proper, four tutorials on various aspects of message
passing programming (“Using MPI-2: A Problem-Based Approach”, “Perfor-
mance Tools for Parallel Programming”, “High-Performance Parallel I/O”, and
“Hybrid MPI and OpenMP Parallel Programming”) were given by experts in
the respective fields.

Information about the conference can be found at the conference Web-site
http://www.pvmmpi06.org, which will be kept available.

The proceedings were edited by Bernd Mohr, Jesper LarssonTräff and Joachim
Worringen. The EuroPVM/MPI 2006 logo was designed by Bernd Mohr and
Joachim Worringen.

The program and general chairs would like to thank all who contributed to
making EuroPVM/MPI 2006 a fruitful and stimulating meeting, be they tech-
nical paper or poster authors, program committee members, external referees,
participants, or sponsors.

September 2006

� � � �

� ���� ��
� �� �

� �

Bernd Mohr
Jesper Larsson Träff
Joachim Worringen

Jack Dongarra
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Too Big for MPI?

Al Geist

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

gst@ornl.gov

In 2008 the National Leadership Computing Facility at Oak Ridge National
Laboratory will have a petaflop system in place. This system will have tens of
thousands of processors and petabytes of memory. This capability system will
focus on application problems that are so hard that they require weeks on the
full system to achieve breakthrough science in nanotechnology, medicine, and
energy. With long running jobs on such huge computing systems the question
arises: Are the computers and applications getting too big for MPI? This talk
will address several reasons why the answer to this question may be yes.

The first reason is the growing need for fault tolerance. This talk will re-
view the recent efforts in adding fault tolerance to MPI and the broader need
for holistic fault tolerance across petascale machines. The second reason is the
potential need by these applications for new features or capabilities that don’t
exist in the MPI standard. A third reason is the emergence of new languages
and programming paradigms on the horizon.

This talk will discuss the DARPA High Productivity Computing Systems
project and the new languages, Fortress, Chapel, Fortress, and X10 being devel-
oped by Cray, Sun, and IBM respectively.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 1, 2006.
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System component failure - hardware and software, permanent and transient -
are an integral part of the life cycle of any computer system. The degree to which
a system suffers from these failures depends on factors such as system complex-
ity, system design and implementation, and system size. These errors may lead
to catastrophic application failure (termination of an application run with a CPU
failure), silent application errors (such as network data corruption), or application
hangs (such as when network interface card (NIC) malfunction), all wasting valu-
able computer time. For certain classes of computer systems, dealing with these
failures is a requirement to provide a simulation environment reliable enough to
meet end-user needs. Also, the more automated these solutions are, requiring min-
imal or no end-user intervention, the more likely they are to be used to achieve the
required application stability. Dealing with failure, or fault tolerance, while min-
imizing application performance degradation, is an active research area, with no
consensus as to what are optimal solution strategies, or even what failures need
to be considered. Errors include items such as transient data transmission errors
(dropped or corrupt packets), transient and permanent network failures (NIC),
and process failure, to list a few. The current MPI standard addresses a limited
number of failure scenarios, with application termination being the default re-
sponse to failure. While the standard provide a mechanism for users to override
this default response, it does not define error codes that provide information on
system level failures - hardware or software. None-the-less, these need to be ad-
dressed to provide end-users with systems that meet their computing needs. Build-
ing on experience gained in the LA-MPI, FT-MPI, and LAM/MPI projects, the
Open MPI collaboration has implemented, and is continuing to implement op-
tional solutions that deal with a number of failure scenarios, to decrease the appli-
cation mean-time-to-failure rate, to acceptable rates. The types of errors currently
being dealt with include transient network data transmission errors, transient and
permanent NIC failures, and process failure. The talk will discuss fault detection,
fault recovery methods, and the degree to which applications need to be modified
to benefit from these, if any. In addition, the performance impact of these solutions
on several applications will be discussed.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 2, 2006.
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MPI has been a successful parallel programming model. The combination of per-
formance, scalability, composability, and support for libraries has made it rela-
tively easy to build complex parallel applications. However, MPI is by no means
the perfect parallel programming model. This talk will review the strengths of
MPI with respect to other parallel programming models and discuss some of the
weaknesses and limitations of MPI in the areas of performance, productivity,
scalability, and interoperability. The talk will conclude with a discussion of what
extensions (or even changes) may be needed in MPI, and what issues should be
addressed by combining MPI with other parallel programming models.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 3, 2006.
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After two-year-long discussion, we are about to start the Peta-Scale Supercom-
puter project. The target performance is currently 10 Peta FLOPS for a few
selected codes and one Peta FLOPS for major applications. It will start opera-
tion in March, 2011, and then its capability will be enlarged in 2011. Finally, it
will be completed in March, 2012. The project will end in March, 2013.

This project includes two important items in software development: grid mid-
dleware and application software in Nano Science and Life Science. The devel-
opment in grid middleware is planed because the supercomputer center which
will operate the Peta-scale supercomputer is planed to provide services not for a
specific institute or application area like the Earth Simulator but for general uses
as a national infrastructure. Nano and Life sciences are the major application
areas we are going to put emphases on as well as industrial applications.

We are starting to select the target applications to make a benchmark suite
in various scientific and industrial applications. We are also discussing concept
design and will finalize it in Summer, 2006. I will introduce the project plan and
application area, especially in Life science, in detail at the conference.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 4, 2006.
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Clusters and MPP’s are traditional platforms for message passing applications,
but there is growing interest in more dynamic metacomputing environments.
The latter are characterized by dynamicity in availability and available capacity
– of both nodes and interconnects. This talk will discuss fundamental challenges
in executing message passing programs in such environments, and analyze the
issue of adaptivity from the resource and application points of view. Pragmatic
solutions to some of these challenges will then be described, along with new
approaches to dealing with the aggregation of multidomain computing platforms
for distributed memory concurrent computing.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 5, 2006.
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For nearly a decade, the Message Passing Interface (MPI) has been the domi-
nant programming model for high performance parallel computing, in large part
because it is universally available and scales to thousands of processors. In this
talk I will describe some of the alternatives to MPI based on a Partitioned Global
Address Space model of programming, such as UPC and Titanium. I will show
that these models offer significant advantages in performance as well as pro-
grammer productivity, because they allow the programmer to build global data
structures and perform one-sided communication in the form of remote reads
and writes, while still giving programmers control over data layout. In particu-
lar, I will show that these languages make more effective use of cluster networks
with RDMA support, allowing them to outperform two-sided communication on
both microbenchmarks and bandwidth-limited computational problems, such as
global FFTs. The key optimization is overlap of communication with computa-
tion and pipelining communication. Surprisingly, sending smaller messages more
frequently can be faster than a few large messages if overlap with computation
is possible. This creates an interesting open problem for global scheduling of
communication, since the simple strategy of maximum aggregation is not always
best. I will also show some of the productivity advantages of these languages
through application case studies, including complete Titanium implementations
of two different application frameworks: an immersed boundary method package
and an elliptic solver using adaptive mesh refinement.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 6, 2006.
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MPI-2 introduced many new capabilities, including dynamic process manage-
ment, one-sided communication, and parallel I/O. Implementations of these fea-
tures are becoming widespread. This tutorial shows how to use these features by
showing all of the steps involved in designing, coding, and tuning solutions to
specific problems. The problems are chosen for their practical use in applications
as well as for their ability to illustrate specific MPI-2 topics. Complete examples
will be discussed and full source code will be made available to the attendees.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 7, 2006.
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Jülich, Germany

{b.mohr, f.wolf}@fz-juelich.de

Extended Abstract. Application developers are facing new and more compli-
catedperformance tuningandoptimizationproblemsasarchitecturesbecomemore
complex. In order to achieve reasonable performance on these systems, HPC users
need help from performance analysis tools. In this tutorial we will introduce the
principles of experimental performance instrumentation,measurement, and analy-
sis, with an overview of the major issues, techniques, and resources in performance
tools development, as well as an overview of the performance measurement tools
available from vendors and research groups.

The focus of this tutorial will be on experimental performance analysis, which
is currently the method of choice for tuning large-scale, parallel systems. The
goal of experimental performance analysis is to provide the data and insights re-
quired to optimize the execution behavior of applications or system components.
Using such data and insights, application and system developers can choose to
optimize software and execution environments along many axes, including execu-
tion time, memory requirements, and resource utilization. In this tutorial we will
present a broad range of techniques used for the development of software for per-
formance measurement and analysis of scientific applications. These techniques
range from mechanisms for simple code timings to multi-level hardware/software
measurements. In addition, we will present state of the art tools from research
groups, as well as software and hardware vendors, including practical tips and
tricks on how to use them for performance tuning.

When designing, developing, or using a performance tool, one has to decide on
which instrumentation technique to use. We will cover the main instrumentation
techniques,whichcanbedividedintoeitherstatic,duringcodedevelopment,compi-
lation,or linking,ordynamic,duringexecution.Themostcommoninstrumentation
approachaugmentssourcecodewithcalls to specific instrumentation libraries.Dur-
ing execution, these library routines collect behavioral data. One example of static
instrumentation systems that will be covered in details is the MPI profiling inter-
face,which is part of theMPI specification, andwas defined to provide amechanism
for quick development of performance analysis system for parallel programs. In ad-
dition, we will present similarwork (POMP, OPARI) that has been proposed in the
context of OpenMP. In contrast to static instrumentation, dynamic instrumenta-
tion allows users to interactively change instrumentation points, focusing measure-
mentsoncoderegionswhereperformanceproblemshavebeendetected.Anexample
of such dynamic instrumentation systems is the DynInst project from the Univer-
sity of Maryland and University of Wisconsin, which provides an infrastructure to

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 8–9, 2006.
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helptoolsdevelopers tobuildperformancetools.Wewill compareandcontrastthese
instrumentation approaches.

Regardless of the instrumentation mechanism, there are two dimensions that
need to be considered for performance data collection: when the performance
collection is triggered and how the performance data is recorded. The triggering
mechanism can be activated by an external agent, such as a timer or a hardware
counter overflow, or internally, by code inserted through instrumentation. The
former is also known as sampling or asynchronous, while the latter is sometimes
referred as synchronous. Performance data can be summarized during runtime
and stored in the form of a profile, or can be stored in the form of traces. We
will present these approaches and discuss how each one reflects a different bal-
ance among data volume, potential instrumentation perturbation, accuracy, and
implementation complexity. Performance data should be stored in a format that
allows the generality and extensibility necessary to represent a diverse set of
performance metrics and measurement points, independent of language and ar-
chitecture idiosyncrasies. We will describe common trace file formats (Vampir,
CLOG, SLOG, EPILOG), as well as profile data formats based on the eXten-
sible Markup Language (XML), which is becoming a standard for describing
performance data representation.

Hardware performance counters have become an essential asset for application
performance tuning. We will discuss in detail how users can access hardware
performance counters using application programming interfaces such as PAPI
and PCL, in order to correlate the behavior of the application to one or more of
the components of the hardware.

Visualization systems should provide natural and intuitive user interfaces,
as well as, methods for users to manipulate large data collections, such that
they could grasp essential features of large performance data sets. In addition,
given the diversity of performance data, and the fact that performance problems
can arise at several levels, visualization systems should also be able to provide
multiple levels of details, such that users could focus on interesting yet complex
behavior while avoiding irrelevant or unnecessary details. We will discuss the
different visualization and presentation approaches currently used on state of
the art research tools, as well as tools from software and hardware vendors.

The tutorial will be concluded with discussion on open research problems.
Given the complexity of the state of the art of parallel applications, new per-
formance tools must be deeply integrated, combining instrumentation, measure-
ment, data analysis, and visualization. In addition, they should be able to guide
or perform performance remediation. Ideally, these environments should scale to
hundreds or thousands of processors, support analysis of distributed computa-
tions, and be portable across a wide range of parallel systems. Also, performing a
whole series of experiments (studies) should be supported to allow a comparative
or scalability analysis. We will discuss research efforts in automating the process
of performance analysis such as the projects under the APART working group
effort. We conclude the tutorial with a discussion on issues related to analysis
of grid applications.
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Effectively using I/O resources on HPC machines is a black art. The purpose
of this tutorial is to shed light on the state-of-the-art in parallel I/O and to
provide the knowledge necessary for attendees to best leverage the I/O resources
available to them.

In the first half of the tutorial we discuss the software involved in parallel
I/O. We cover the entire I/O software stack from parallel file systems at the
lowest layer, to intermediate layers (such as MPI-IO), and finally high-level I/O
libraries (such as HDF-5). The emphasis is not just on how to use these layers,
but ways to use them that result in high performance. As part of this discussion
we will present benchmark results from current systems.

The second half of the tutorial will be hands-on, with the participants solving
typical problems of parallel I/O using different approaches. The performance of
these approaches will be evaluate on different machines at remote sites, using
various types of file systems. The results are then compared to get a full picture
of the performance differences and characteristics of the chosen approaches on
the different platforms.

Basic knowledge of parallel (MPI) programming in C and/or Fortran is as-
sumed. For the second half, each participant should bring his own notebook
computer, running either Windows XP or Linux (x86). A limited number of
loan notebook computers are available on request.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 10, 2006.
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Most HPC systems are clusters of shared memory nodes. Such systems can be
PC clusters with dual or quad boards, but also ”constelation” type systems with
large SMP nodes. Parallel programming must combine the distributed memory
parallelization on the node inter-connect with the shared memory parallelization
inside of each node.

This tutorial analyzes the strength and weakness of several parallel program-
ming models on clusters of SMP nodes. Various hybrid MPI+OpenMP pro-
gramming models are compared with pure MPI. Benchmark results of several
platforms are presented. A hybrid-masteronly programming model can be used
more efficiently on some vector-type systems, but also on clusters of dual-CPUs.
On other systems, one CPU is not able to saturate the inter-node network and the
commonly used masteronly programming model suffers from insufficient inter-
node bandwidth. The thread-safety quality of several existing MPI libraries is
also discussed. Case studies from the fields of CFD (NAS Parallel Benchmarks
and Multi-zone NAS Parallel Benchmarks, in detail), Climate Modelling (POP2,
maybe) and Particle Simulation (GTC, maybe) will be provided to demonstrate
various aspect of hybrid MPI/OpenMP programming.

Another option is the use of distributed virtual shared-memory technologies
which enable the utilization of ”near-standard” OpenMP on distributed memory
architectures. The performance issues of this approach and its impact on existing
applications are discussed. This tutorial analyzes strategies to overcome typical
drawbacks of easily usable programming schemes on clusters of SMP nodes.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, p. 11, 2006.
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Abstract. The MPI-2 Standard has carefully specified the interaction
between MPI and user-created threads, with the goal of enabling users to
write multithreaded programs while also enabling MPI implementations
to deliver high performance. In this paper, we describe and analyze what
the MPI Standard says about thread safety and what it implies for an im-
plementation. We classify the MPI functions based on their thread-safety
requirements and discuss several issues to consider when implementing
thread safety in MPI. We use the example of generating new context ids
(required for creating new communicators) to demonstrate how a sim-
ple solution for the single-threaded case cannot be used when there are
multiple threads and how a näıve thread-safe algorithm can be expen-
sive. We then present an algorithm for generating context ids that works
efficiently in both single-threaded and multithreaded cases.

1 Introduction

With SMP machines being commonly available and multicore chips becoming the
norm, the mixing of the message-passing programming model with multithread-
ing on a single multicore chip or SMP node is becoming increasingly important.
The MPI-2 Standard has clearly defined the interaction between MPI and user-
created threads in an MPI program [5]. This specification was written with the
goal of enabling users to write multithreaded MPI programs easily, without un-
duly burdening MPI implementations to support more than what a user might
need. Nonetheless, implementing thread safety in MPI without sacrificing too
much performance requires careful thought and analysis.

In this paper, we discuss issues involved in developing an efficient thread-safe
MPI implementation. We had to deal with many of these issues when designing
and implementing thread safety in MPICH2 [6]. We first describe in brief the
thread-safety specification in MPI. We then classify the MPI functions based on
their thread-safety requirements. We discuss issues to consider when implement-
ing thread safety in MPI. In addition, we discuss the example of generating con-
text ids and present an efficient, thread-safe algorithm for both single-threaded
and multithreaded cases.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 12–21, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Issues in Developing a Thread-Safe MPI Implementation 13

Thread safety in MPI has been studied by a few researchers, but none of
them have covered the topics discussed in this paper. Protopopov et al. discuss a
number of issues related to threads and MPI, including a design for a thread-safe
version of MPICH-1 [8,9]. Plachetka describes a mechanism for making a thread-
unsafe PVM or MPI implementation quasi-thread-safe by adding an interrupt
mechanism and two functions to the implementation [7]. Garćıa et al. present
MiMPI, a thread-safe implementation of MPI [3]. TOMPI [2] and TMPI [10] are
thread-based MPI implementations, where each MPI process is actually a thread.
A good discussion of the difficulty of programming with threads in general is
given in [4].

2 What MPI Says About Thread Safety

MPI defines four “levels” of thread safety: MPI THREAD SINGLE, where only one
thread of execution exists; MPI THREAD FUNNELED, where a process may be multi-
threaded but only the thread that initialized MPI makes MPI calls;
MPI THREAD SERIALIZED, where multiple threads may make MPI calls but not si-
multaneously; and MPI THREAD MULTIPLE, where multiple threads may call MPI
at any time. An implementation is not required to support levels higher than
MPI THREAD SINGLE; that is, an implementation is not required to be thread safe.
A fully thread-compliant implementation, however, will support
MPI THREAD MULTIPLE. MPI provides a function, MPI Init thread, by which
the user can indicate the desired level of thread support, and the implemen-
tation can return the level supported. A portable program that does not call
MPI Init thread should assume that only MPI THREAD SINGLE is supported. In
this paper, we focus on the MPI THREAD MULTIPLE (fully multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPI calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. MPI also says that it is the user’s responsibility to prevent races
when threads in the same application post conflicting MPI calls. For example,
the user cannot call MPI Info set and MPI Info free on the same info ob-
ject concurrently from two threads of the same process; the user must ensure
that the MPI Info free is called only after MPI Info set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

3 Thread-Safety Classification of MPI Functions

We analyzed each MPI function (about 305 functions in all) to determine its
thread-safety requirements. We then classified each function into one of several
categories based on its primary requirement. The categories and examples of
functions in those categories are described below; the complete classification can
be found in [1].
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None Either the function has no thread-safety issues, or the function has no
thread-safety issues in correct programs and the function must have low over-
head, so an optimized (nondebug) version need not check for race conditions.
Examples: MPI Address, MPI Wtick.

Access Only The function accesses fixed data for an MPI object, such as the
size of a communicator. This case differs from the “None” case because an
erroneous MPI program could free the object in a race with a function that
accesses the read-only data. A production MPI implementation need not
guard this function against changes in another thread. This category may
also include replacing a value in an object, such as setting the name of a
communicator. Examples: MPI Comm rank, MPI Get count.

Update Ref The function updates the reference count of an MPI object. Such a
function is typically used to return a reference to an existing object, such as a
datatype or error handler. Examples: MPI Comm group, MPI File get view.

Comm/IO The function needs to access the communication or I/O system in
a thread-safe way. This is a very coarse-grained category but is sufficient to
provide thread safety. In other words, an implementation may (and probably
should) use finer-grained controls within this category. Examples: MPI Send,
MPI File read.

Collective The function is collective. MPI requires that the user not call collec-
tive functions on the same communicator in different threads in a way that
may make the order of invocation depend on thread timing (race). There-
fore, a production MPI implementation need not separately lock around the
collective functions, but a debug version may want to detect races. The
communication part of the collective function is assumed to be handled
separately through the communication thread locks. Examples: MPI Bcast,
MPI Comm spawn.

Read List The function returns an element from a list of items, such as an
attribute or info value. A correct MPI program will not contain any race that
might update or delete the entry that is being read. This guarantee enables
an implementation to use a lock-free, thread-safe set of list update and access
operations in the production version; a debug version can attempt to detect
improper race conditions. Examples: MPI Info get, MPI Comm get attr.

Update List The function updates a list of items that may also be read.
Multiple threads are allowed to simultaneously update the list, so the update
implementation must be thread safe. Examples: MPI Info set,
MPI Type delete attr.

Allocate The function allocates an MPI object (may also need memory alloca-
tion such as with malloc). Examples: MPI Send init, MPI Keyval create.

Own The function has its own thread-safety management. Examples are “global”
state such as buffers for MPI Bsend. Examples: MPI Buffer attach,
MPI Cart create.

Other Special cases. Examples: MPI Abort and MPI Finalize.

This classification helps an implementation determine the scope of the thread-
safety requirements of various MPI functions and accordingly decide how to
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Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution

implement them. For example, functions that fall under the “None” or “Access
Only” category need not have any thread lock in them. Appropriate thread locks
can be added to other functions.

4 Issues in Implementing Thread Safety

A straightforward implication of the MPI thread-safety specification is that an
implementation cannot implement thread safety by simply acquiring a lock at
the beginning of each MPI function and releasing it at the end of the function: A
blocked function that holds a lock may prevent MPI functions on other threads
from executing, which in turn might prevent the occurrence of the event that is
needed for the blocked function to return. An example is shown in Figure 1. If
thread 0 happened to get scheduled first on both processes, and MPI Recv simply
acquired a lock and waited for the data to arrive, the MPI Send on thread 1 would
not be able to acquire its lock and send its data, which in turn would cause the
MPI Recv to block forever.

In addition to using a more detailed strategy than simply locking around every
function, an implementation must consider other issues that are described below.
In particular, it is not enough to just lock around nonblocking communication
calls and release the locks before calling a blocking communication call.

4.1 Updates of MPI Objects

A number of MPI objects, such as datatypes and communicators, have reference-
count semantics. That is, the user can free a datatype after it has been used in
a nonblocking communication operation even before that communication com-
pletes. MPI guarantees that the object will not be deleted until all uses have
completed. A common way to implement this semantic is to maintain with each
object a reference count that is incremented each time the object is used and
decremented when the use is complete. In the multithreaded case, the reference
count must be changed atomically because multiple threads could attempt to
modify it simultaneously.

4.2 Thread-Private Memory

In the multithreaded case, an MPI implementation may sometimes need to use
global or static variables that have different values on different threads. This
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cannot be achieved with regular variables because the threads of a process
share a single memory space. Instead, one has to use special functions pro-
vided by the threads package for accessing thread-private memory (for example,
pthread getspecific).

For example, thread-private memory is needed for keeping track of the “nest-
ing level” of MPI functions. MPI functions may be nested because the imple-
mentation of an MPI function may call another MPI function. For example, the
collective I/O functions may internally call MPI communication functions. If an
error occurs in the nested MPI function, the implementation must not invoke
the error handler. Instead, the error must be propagated back up to the top-
level MPI function, and the error handler for that function must be invoked.
This process requires keeping track of the nesting level of MPI functions and not
invoking the error handler if the nesting level is more than one. (The implemen-
tation cannot simply reset the error handler before calling the nested function
because the application may call the same function from another thread and
expect the error handler to be invoked.) In the single-threaded case, an imple-
mentation could simply use a global variable to keep track of the nesting level,
but in the multithreaded case, thread-private memory must be used.

Since accessing thread-private data requires a function call, implementations
must ensure that such access is minimized in order to maintain good efficiency.

4.3 Memory Consistency

Updates to memory in one thread may not be seen in the same order by an-
other thread. For example, some processors require an explicit write barrier to
ensure that all memory-store operations have completed in memory. The lock
and unlock operations for thread mutexes typically also perform the necessary
synchronization operations needed for memory consistency. If an implementa-
tion avoids using mutex locks for higher performance, however, and instead uses
other mechanisms such as lock-free atomic updates, it must be careful to ensure
that the memory updates happen as desired. This is a deep issue, a full discus-
sion of which must include concepts such as sequential consistency and release
consistency and is beyond the scope of this paper. Nonetheless, it suffices to say
that an implementation must ensure that, for any object that multiple threads
may access, the updates are consistent across all threads, not just the thread
performing the updates.

4.4 Thread Failure

A major problem with any lock-based thread-safety model is what happens when
a thread that holds a lock fails or is deliberately canceled (for example, with
pthread cancel). In that case, no other thread can acquire the lock, and the ap-
plication may hang. One solution is to avoid using locks and instead use lock-free
algorithms wherever possible (such as for the Update List category of functions
described in Section 3).
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4.5 Performance and Code Complexity

A tradeoff in performance and code complexity exists between using a single,
coarse-grained lock and multiple, finer-grained locks. The single lock is relatively
easy to implement but effectively serializes the MPI functions among threads. A
finer-grained approach, using either multiple locks or a combination of locks and
lock-free methods, risks the occurrence of deadly embrace (when two threads
each hold one of the two locks that the other thread needs) as well as consider-
able code complexity. In addition, if the finer-grained approach requires multiple
locks, each operation may be more expensive than if a single lock is used. MPI
functions that can avoid using locks altogether by using lock-free methods, such
as the functions in the Update List or Allocate categories, can provide a mid-
dle ground, trading a small amount of code complexity for more concurrency in
execution.

4.6 Thread Scheduling

Another issue is avoiding “busy waiting” or “spin locks.” In multithreaded code,
it is common practice to have a thread that is waiting for an event (such as
an incoming message for a blocking MPI Recv) to yield to other threads, so
that those threads can perform useful work. Thread systems provide various
mechanisms for implementing this, such as condition variables. One difficulty
is that not all events have the ability to wake up a thread; for example, if a
low-latency method is being used to communicate between different processes in
the same shared-memory node, there may be no easy way to signal the target
process or thread. This situation often leads to a tradeoff between latency and
effective scheduling.

5 An Algorithm for Generating Context Ids

In this section, we use the example of generating context ids to show how a simple
solution for the single-threaded case cannot be used when there are multiple
threads. We then present an efficient algorithm for generating context ids in the
multithreaded case.

5.1 Basic Concept and Single-Threaded Solution

A communicator in MPI has a notion of a “context” associated with it, which
is invisible to the user. This notion is implicit in a communicator and pro-
vides a safe communication space so that a message sent on a communicator is
matched only by a receive posted on the same communicator (and not any other
communicator).

Typically, the context is implemented as an integer that has the same value
on all processes that are part of the communicator and is unique among all com-
municators on a given process. For example, if the context id of a communicator
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‘X’ on a process is 42, all other processes that are part of X must use 42 as the
context id for X, and no other communicator on any of these processes may use
42 as its context id. Processes that are not part of X, however, may use 42 as
the context id for some other communicator.

Whenever a new communicator is created (for example, with MPI Comm create
or MPI Comm dup), the processes in that communicator must agree on a context
id for the new communicator, following the constraints given above. In the single-
threaded case, generating a new context id is easy. One approach could be for each
process to maintain a global data structure containing the list of available context
ids on that process. In order to save memory space, the list can be maintained as
a bit vector, with the bits indicating whether the corresponding context ids are
available. A new context id can be generated by performing an MPI Allreduce
with the appropriate bit operator (MPI BAND). The position of the lowest set bit
can be used as the new context id.

5.2 Näıve Multithreaded Algorithm

The multithreaded case is more difficult. A process cannot simply acquire a
thread lock, call MPI Allreduce, and release the lock, because the threads on
various processes may acquire locks in different order, causing the allreduce
operation to hang because of a deadly embrace.

One possible solution is to acquire a thread lock, read the bit vector, release
the lock, then do the MPI Allreduce, followed by another MPI Allreduce to
determine whether the bit vector has been changed by another thread between
the lock release and the first allreduce. If not, then the value for the context
id can be accepted; otherwise, the algorithm must be repeated. This method is
expensive, however, as it requires multiple MPI Allreduce calls. In addition, two
competing threads could loop forever, with each thread invalidating the other’s
choice of context value.

5.3 Efficient Algorithm for the Multithreaded Case

We instead present a new algorithm that works efficiently in both single-threaded
and multithreaded cases. We have implemented this algorithm in MPICH2 [6].
For simplicity, we present the algorithm only for the case of intracommunicators.
The pseudocode is given in Figure 2.

The algorithm uses a bit mask of context ids; each bit set indicates a context
id available. For example, 32 32-bit integers will cover 1024 context ids. This
mask and two other variables, lowestContextId and mask in use, are stored
in global memory (shared among the threads of a process). lowestContextId
is used to store the smallest context id among the input communicators of the
various threads on a process that need to find a new context id. mask in use
indicates whether some thread has acquired the rights to the mask.

The algorithm works as follows. A thread wishing to get a new context id first
acquires a thread lock. If mask in use is set or the context id of the thread’s
input communicator is greater than lowestContextId, the thread uses 0 as the
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/* global variables (shared among threads of a process) */
mask /* bit mask of context ids in use by a process */
mask_in_use /* flag; initialized to 0 */
lowestContextId /* initialized to MAXINT */

/* local variables (not shared among threads) */
local_mask /* local copy of mask */
i_own_the_mask /* flag */
context_id /* new context id; initialized to 0 */

while (context_id == 0) {
Mutex_lock ()
if (mask_in_use || MyComm ->contextid > lowestContextId ) {

local_mask = 0
i_own_the_mask = 0
if (MyComm ->contextid < lowestContextId ) {

lowestContextId = MyComm -> contextid
}

}
else {

local_mask = mask
mask_in_use = 1

i_own_the_mask = 1
lowestContextId = MyComm ->contextid

}
Mutex_unlock ()

MPI_Allreduce (local_mask , MPI_BAND )

if (i_own_the_mask ) {
Mutex_lock ()

if (local_mask != 0) {
context_id =

location of first set bit in local_mask
update mask
if (lowestContextId == MyComm ->contextid ) {

lowestContextId = MAXINT;
}

}
mask_in_use = 0
Mutex_unlock ()

}
}
return context_id

Fig. 2. Pseudocode for generating a new context id in the multithreaded case (for
intracommunicators)



20 W. Gropp and R. Thakur

local mask (for allreduce) and sets the flag i own the mask to 0. Otherwise, it
uses the current context-id mask as the local mask (for allreduce) and sets the
flags mask in use and i own the mask to 1. Then it releases the lock and calls
MPI Allreduce.

After MPI Allreduce returns, if i own the mask is 1, the thread acquires the
lock again. If the result of the allreduce (local mask) is not 0, it means all
threads that participated in the allreduce owned the mask on their processes
and therefore the location of the first set bit in local mask can be used as the
new context id. If the result of the allreduce is 0, it means that some thread did
not own the mask on its process and therefore the algorithm must be retried.
mask in use is reset to 0 before releasing the lock.

The logic for lowestContextId exists to prevent a livelock situation where
the allreduce operation always contains some threads that do not own the mask,
resulting in a 0 output. Since threads in our algorithm yield ownership of the
mask to the thread with the lowest context id, there will be a time when all the
threads of the communicator with the lowest context id will own the mask on
their respective processes, causing the allreduce to return a nonzero result, and
a new context id to be found. Those threads will disappear from the contention,
and the same algorithm will enable other threads to complete their operation.

In this algorithm, the case where different threads of a process may have the
same input context id does not arise because it is not legal for multiple threads
of a process to call collective functions with the same communicator at the same
time, and all the MPI functions that need to create new context ids (namely,
the functions that return new communicators) are collective functions.

We note that, in the single-threaded case, this algorithm is as efficient as
the basic algorithm described in Section 5.1, because the mutex locks can be
commented out and no extra communication is needed as the first allreduce itself
will succeed. Even in the multithreaded case, in most common circumstances,
the first allreduce will succeed, and no extra communication will be needed.

Further Improvements. A refinement to this algorithm could be to allow
multiple threads to have disjoint masks; if the masks are cleverly picked, most
threads would find an acceptable value even if multiple threads were concurrently
executing the algorithm. Another refinement could be to use a queue of pending
threads ordered by increasing context id of the input communicator. Threads
that are high in this queue could wait on a condition variable or other thread-
synchronization mechanism that is activated whenever there is a change in the
thread with the lowest context id, either because a thread has found a new
context id and is removed from the queue or because a new thread with a lower
context id enters the function.

6 Conclusions and Future Work

Implementing thread safety in MPI is not simple or straightforward. Careful
thought and analysis are required in order to implement thread safety correctly
and without sacrificing too much performance. In this paper, we have discussed
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several issues that an implementation must consider when implementing thread
safety in MPI. Some of the issues are subtle, but nonetheless important.

The default ch3:sock channel (TCP) in the current version of MPICH2 (1.0.3)
is thread safe. It, however, needs to be configured and built separately for
thread safety, with the configure option --enable-threads. In the next re-
lease, 1.0.4, the default build of the ch3:sock channel will support thread safety,
but thread safety will be enabled only if the user calls MPI Init thread with
MPI THREAD MULTIPLE. If not, no thread locks will be called, so there is no
penalty. We are also working on performance improvements to the thread sup-
port in MPICH2 and extending thread safety to all the communication channels.

Although many MPI implementations claim to be thread safe, no comprehen-
sive test suite exists to validate the claim. We plan to develop a test suite that
can be used to verify the thread safety of MPI implementations.
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Abstract. Suffix arrays are a simple and powerful data structure for
text processing that can be used for full text indexes, data compression,
and many other applications in particular in bioinformatics. We describe
the first implementation and experimental evaluation of a scalable paral-
lel algorithm for suffix array construction. The implementation works on
distributed memory computers using MPI, Experiments with up to 128
processors show good constant factors and make it look likely that the
algorithm would also scale to considerably larger systems. This makes it
possible to build suffix arrays for huge inputs very quickly. Our algorithm
is a parallelization of the linear time DC3 algorithm.

1 Introduction

The suffix array [1,2], a lexicographically sorted array of the suffixes of a string,
has numerous applications, e.g., in string matching [1,2], genome analysis [3]
and text compression [4]. For example, one can use it as full text index: To
find all occurrences of a pattern P in a text T , do binary search in the suffix
array of T , i.e., look for the interval of suffixes that have P as a prefix. A lot
of effort has been devoted to efficient construction of suffix arrays, culminating
recently in three direct linear time algorithms [5,6,7]. One of the linear time
algorithms, DC3 [8] is very simple and can also be adapted to different models
of computation. An external memory version of the algorithm [9] already makes
it possible to construct suffix array for huge inputs. However, this takes many
hours and hence a scalable parallel algorithm might be more interesting. This is
the subject of the present paper. We describe the algorithm, pDC3, in Section 2
and experimental results in Section 3. Section 4 concludes with an outline of
possible additional questions.

Related Work

There are numerous theoretical results on parallel suffix tree construction (e.g., re-
fer to the references given in [10,11]). Suffix trees can be easily converted to suffix
arrays. However, these algorithms are fairly complicated. We are not aware of any
implementations. Recently, a trend is to use simpler suffix array construction algo-
rithms even as a means of constructing suffix trees. Parallel conversion algorithms
are described in [10]. The basic ideas for parallel suffix array construction based on
the DC3 algorithm are already given in [8,11] for several theoretical models of par-
allel computation. Here, we concentrate on the detailed description of a practical
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algorithm with particular emphasis on implementation and experimental evalua-
tion. We are only aware of a single implemented parallel algorithm for suffix array
construction [12]. This algorithm is practical but based on string sorting and thus
needs quadratic work in the worst case. From experiments with sequential algo-
rithms, it is also known that algorithms based on string sorting are not very fast
even for some real world inputs with long common prefixes (e.g. [13]). Furthermore
it seems that all processing elements (PEs) need access to the complete input. This
is an impediment for scaling to large numbers of PEs and large inputs since there
might not be enough space on distributed memory machines and since this implies
an execution time of Ω (n), i.e., the maximal speedup is bounded by a constant
independent of the number of PEs.

2 The pDC3 Algorithm

We use the shorthands [i, j] = {i, . . . , j} and [i, j) = [i, j−1] for ranges of integers
and extend to substrings as seen below. The input of a suffix array construction
algorithm is a string T = T [0, n) = t0t1 · · · tn−1 over the alphabet [1, n], that is
a sequence of n integers from the range [1, n]. For convenience, we assume that
tj = 0 for j ≥ n. For i ∈ [0, n], let Si denote the suffix T [i, n) = titi+1 · · · tn−1. We
explain the algorithm using pseudocode manipulating sequences of tuples. For
example, for T = abcdef, 〈(T [i, i + 2], i) : i mod 3 = 0〉 denotes 〈(abc, 0), (def, 3)〉.
The goal is to sort the sequence 〈S0, . . . , Sn〉 of suffixes of T , where comparison
of substrings or tuples assumes the lexicographic order throughout this paper.
The output is the suffix array SA[0, n) of T , a permutation of [0, n) satisfying
SSA[0] < SSA[1] < · · · < SSA[n−1]. Let p denote the number of processors (PEs).
PEs are numbered from 0 to p − 1.

At the most abstract level, the DC3 Algorithm is very simple and completely
independent of the model of computation: It first constructs the suffix array of
the suffixes starting at positions i mod 3 �= 0. This is done by reduction to the
suffix array construction of a string of two thirds the length, which is solved
recursively. Then this information is used to annotate the original input. With
this annotation, two arbitrary suffixes Si and Sj can be compared by looking
at T [i, i + 2] and the annotations at positions [i, i + 2]. For a more detailed
explanation refer to [11].

Fig. 1 gives a more detailed pseudocode which exposes parallelism and which
we will then refine to the full parallel algorithm. Line 1 extracts the information
needed for building the recursive subproblem which consists of two concatenated
substrings of length n/3 representing the mod1 suffixes and mod2 suffixes re-
spectively. This length reduction is achieved by finding lexicographic names for
triples of characters, i.e., integers that reflect the lexicographic order of these
character triples. To find these names, the triples (annotated with their position
in the input) are sorted in Line 2 and named in Line 3 using a subroutine to be
discussed. If all triples are unique, no recursion is necessary (Line 4). Otherwise,
Line 5 assembles the recursive subproblem, Line 6 solves it, and Line 7 brings it
into a form compatible with the output of the naming routine. Line 8 permutes
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Function pDC3 (T )
S:= 〈((T [i, i + 2]), i) : i ∈ [0, n), i mod 3 �= 0〉 1

sort S by the first component 2

P := name(S) 3

if the names in P are not unique then 4

permute the (r, i) ∈ P such that they are sorted by (i mod 3, i div 3) 5

SA12:= pDC3 (〈c : (c, i) ∈ P 〉) 6

P := (j + 1, SA12[j]) : j ∈ [0, 2n/3) 7

permute P such that it is sorted by the second component 8

S0:= 〈(T [i], T [i + 1], c′, c′′, i) : i mod 3 = 0, (c′, i + 1), (c′′, i + 2) ∈ P 〉 9

S1:= 〈(c, T [i], c′, i) : i mod 3 = 1, (c, i), (c′, i + 1) ∈ P 〉 10

S2:= 〈(c, T [i], T [i + 1], c′′, i) : i mod 3 = 2, (c, i), (c′′, i + 2) ∈ P 〉 11

S:= sort S0 ∪ S1 ∪ S2 using comparison function: 12

(c, . . .) ∈ S1 ∪ S2 ≤ (d, . . .) ∈ S1 ∪ S2 ⇔ c ≤ d
(t, t′, c′, c′′, i) ∈ S0 ≤ (u, u′, d′, d′′, j) ∈ S0 ⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, d′, j) ∈ S1 ⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, u′, d′′, j) ∈ S2 ⇔ (t, t′, c′′) ≤ (u, u′, d′′)

return 〈last component of s : s ∈ S〉 13

Fig. 1. High level pseudo code for pDC3

the resulting tuples into the order of the input string. Now, Lines 9–11 use the
input string and the result of the recursion to build 5-tuples and 4-tuples that
contain all the information needed to compare the suffixes they represent. These
are sorted in Line 12. Line 13 extracts the suffix array from the result.

The basic idea behind parallelization is that input, output, and intermedi-
ate tuple sequences are uniformly or almost uniformly distributed over all PEs.
Lines 1,7, 9–11, and 13 are then straight forward to parallelize. The only nec-
essary communication is between PE i and PE i + 1 to retrieve values that are
one or two places to the right in the sequence currently processed. Permuta-
tions (Lines 5 and 8) are mapped to personalized all-to-all communications with
variable message lengths but balanced or almost balanced total communication
volume at each PE. Sorting (Lines 2 and 12) can be implemented using any
parallel sorting algorithm. The naming step in Line 3 is interesting since its se-
quential implementation scans S assigning a fresh name to any new triple found.
On the first glance this looks inherently sequential. However consider replacing
the naming step by the following two lines.

Δ:= 〈[S[i] �= S[i + 1]] : 0 ≤ i < 2n/3〉
P :=

〈
(1 +

∑
j<i Δ[j], i) : 0 ≤ i < 2n/3

〉

The first line is a simple local computation. The second line computes a prefix
sum, an operation easily done in time O(n/p + log p). Finally, to implement
Line 4 in Fig. 1, PE p − 1 just needs to check whether the total sum over Δ was
n and broadcast this information to all PEs.
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This level of abstraction is the most appropriate for an analysis of the
algorithm.

Theorem 1. The suffix array of a string of size n can be computed in time
O(Tparsort(n, p) + Tallall(n/p, p) + f(p) log(n)) where Tparsort(n, p) is a bound on
the execution time of sorting n elements on p processors with the property
Tparsort(2n/3, p) ≤ 2

3Tparsort(n, p) + f(p) and Tallall(�, p) is a bound on the ex-
ecution time of personalized all-to-all communication such that no PE sends
or receives more than � words of data with the property that Tallall(2�/3, p) ≤
2
3Tallall(�, p) + f(p).

The term f(p) ∈ Ω (log p) in Theorem 1 is a bottleneck term that does not
decrease when the input size decreases.

Proof. (Outline) The algorithm goes through O(log n) levels1 of recursion. The
involved data volumes are decreasing geometrically. Thus, up to constant factors,
we can bound the total execution time of sorting, all-to-all, and local operations
by the cost of the first level of recursion, plus O(log n) times the bottleneck
term f(p). Further communication operations all take time O(log p) = O(f(p))
in each level of recursion.

The usual implementation of all-to-all directly delivers all messages to their
destination. It has Tallall(�, p) = O(�Tbyte + pTstart) on a machine with full inter-
connection network and time kTbyte + Tstart for point-to-point communication
of a message of size k.

In our implementation we have

Tparsort(n, p) = O(
(n/p + p2) log p

)
+ Tallall(n/p, p)

using a simple variant of comparison based sample sort [14]: The input is first
sorted locally. Each PE takes O(p) sample elements. The sample is gathered and
sorted at a single PE. The sorted samples are used to obtain splitter elements
s1,. . . , sp−1 that are equally spaced in the sorted sample. These splitters are
broadcast to all other PEs. Define s0 = −∞ and sp = +∞. Now each processor
partitions the elements into buckets where the i-th buckets gets elements between
si and si+1. All Elements from bucket i are then sent to PE i using an all-to-all
personalized communication. Finally, each PE merges the received pieces of its
bucket. In summary, sorting is reduced to local sorting, multiway merging, and
further standard communication operations: gather of a small sample, splitter
broadcast, and a single personalized all-to-all communication.

We get a bottleneck term of f(p) = O(
p2 log p + p2Tbyte + pTstart

)
and a total

execution time of

O(
(n/p log p + (p2(log p + Tbyte) + pTstart) log n

)
1 One can get a slight improvement of the theoretical bound by switching to a sequen-

tial algorithm after O(log p) levels of recursion. But this is irrelevant from a practical
perspective.
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Asymptotically better bounds are obtained in [11] using more sophisticated
implementations of sorting and all-to-all. However, these algorithms are consid-
erably more complicated and in Section 3 we will give evidence that on machines
with a moderate number of processors no significant improvements can be ex-
pected from these theoretical algorithms.

All the required communication operations (point-to-point, prefix sum, broad-
cast, all-to-all, gather) are available in communication libraries such as MPI [15].

3 Experiments

We have implemented pDC3 with deterministic sample sort using C++ and
MPI [15]. Most measurements were performed on a HP Integrity rx2620 running
under Linux with 64 dual processor nodes using Itanium 2 processors with 1.5
GHz and 6 MByte Cache. The machine has 64 × 12 GByte of main memory.
The nodes are connected by a Quadrics QSNet II network with 800 MByte/s
communication bandwidth.

We have used the big real world inputs from [9]: The human genome, 3.125
GByte of books from the Gutenberg project, and 522 MByte of source code. In
addition, we use the artificial inputs an and (abc)n/3. Timing is started when all
PEs have initialized MPI and hold n/p characters of the input each.
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Fig. 3. Execution time of pDC3 compared to the sequential DC3 algorithm from [8]
and to the sequential algorithm from [13]

Fig. 2 shows the work performed for the Gutenberg input using 16–128 PEs
using one or two CPUs on each node. We see that sorting and merging takes
most of the time. Communication time (mainly all-to-all) takes only a small
fraction of the total execution time. However, it should be noted that low cost
machines with switched Gigabit Ethernet have an order of magnitude smaller
communication bandwidth than our machine. On such machines, communication
would take about half of the time. (Which might still be acceptable considering
that such machines are much cheaper). The overall work increases only slightly
when increasing the number of processors. This indicates good scalability. As to
be expected, using both CPUs increases internal work and total communication
time since the CPUs have to share the main memory and the network interface.

We cannot give speedups for big inputs since no single node has enough mem-
ory to solve the problem. Therefore Fig. 3 compares pDC3 with two sequential
algorithms for the source code instance. DC3 is the simple sequential linear time
implementation from [5].2 MF is one of the fastest practical algorithms [13].
With the minimal number of two processors our parallel algorithm already out-
performs the simple sequential algorithm significantly although it has a factor
Θ(log n) disadvantage in its asymptotic execution time. The break even point to
[13] is at four processors. The work per processor is about half as much as for
the external algorithm from [9] on a 2GHz Intel Xeon processor. Unfortunately,
a direct comparison with the parallel implementation from [12] is not possible
since this paper does not specify the clock speed of the machine used.

2 There are faster sequential implementations of DC3 by now [16] but they still do
not beat implementations such as [13].
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Table 1. Average (Ø) versus bottleneck (max) execution times of major parts of pDC3.
Timings in second. Top part: 64 × 1 CPU. Bottom part: 64 × 2 CPUs.

Input Size Total quicksort mergesort p-merge All2all Com sample
max Ø max Ø max Ø Ø Ø

Source 522 37.8 16.6 15.9 28.6 27.9 10.5 9.6 4.2 0.14 0.29
Genome 2928 282.0 160.3 115.0 182.6 178.7 62.8 58.0 22.2 0.36 1.24
Gutenberg 3125 254.6 124.0 119.5 197.4 195.6 68.1 66.5 22.2 0.36 1.30
an 3815 520.7 411.4 271.3 168.9 165.7 49.6 32.1 22.2 0.42 2.16
an 2000 259.7 202.2 130.6 85.2 83.4 25.8 16.6 11.5 0.37 1.78
(abc)n/3 2000 263.7 198.2 98.5 85.2 83.2 33.3 16.4 13.8 0.38 1.54
Source 522 24.2 7.8 7.4 14.9 14.4 6.2 5.3 4.9 0.23 0.37
Genome 2928 180.8 94.3 53.8 99.6 95.7 39.0 37.2 21.9 0.67 1.25
Gutenberg 3125 151.8 58.7 55.8 107.5 105.7 44.2 40.9 21.1 0.53 1.31
an 3815 280.9 193.1 120.0 99.0 96.1 45.0 26.6 21.2 0.91 2.12
an 2000 140.7 93.4 56.9 49.4 47.8 23.2 13.7 11.2 0.53 1.76
(abc)n/3 2000 146.1 92.3 42.7 49.5 47.8 30.9 13.5 13.4 0.56 1.49

Table 1 gives a more detailed breakdown of the execution time of pDC3 for
different inputs. The STL quicksort used for local sorting shows considerable
load imbalances, i.e., the slowest PE does much more work than the average PE.
This is not due to significantly different amounts of data assigned to PEs but
because quicksort has highly data dependent execution times in particular for
the artificial inputs like an. In contrast, if we use mergesort, there is much less
load imbalance. Here, the artificial inputs turn out to be easier to solve than
the real world inputs. There is also some load imbalance for the p-way merging
in sample sort for artificial inputs. However, this is not very critical since it only
means that some PEs do less work than in the worst case.

4 Conclusions

We have demonstrated that pDC3 is a practicable and scalable way to build huge
suffix arrays. Several practical improvements could be considered. pDC3 might
scale even to machines with thousands of processors if we use parallel sorting for
sorting the sample. The DC3 algorithm can be generalized to larger difference
covers that imply a different recurrence relation. Using this scheme in the first
level of recursion could save a constant factor of time for small alphabets. A
log n term in the execution time could be removed by switching from comparison
based sorting to integer sorting. However, we are not aware of an algorithm that
would really remove the log n in the worst case and would bring improvements
in practice. For example, the implementation from [8] gets slightly faster when
its linear time sorting algorithm is replaced by quicksort. There are also further
opportunities for tuning. For inputs that are so large that they do not even fit
in the main memory of a parallel computer, a parallel external algorithm could
be developed by combining the results of the present paper with [9].
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9. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. In: Workshop on Algorithm Engineering & Experiments,
Vancouver (2005) 86–97

10. Iliopoulos, C.S., Rytter, W.: On parallel transformations of suffix arrays into suffix
trees. In: 15th Australasian Workshop on Combinatorial Algorithms (AWOCA).
(2004)
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Abstract. We used formal-verification methods based on model check-
ing to analyze the correctness properties of one existing and two new
distributed-locking algorithms implemented by using MPI’s one-sided
communication. Model checking exposed an overlooked correctness issue
with the first algorithm, which had been developed by relying only on
manual reasoning. Model checking helped confirm the basic correctness
properties of the two new algorithms, while also identifying the remain-
ing problems in them. Our experience is that MPI-based programming,
especially the tricky and relatively poorly understood one-sided commu-
nication features, stand to gain immensely from model checking. Consid-
ering that many other areas of concurrent hardware and software design
now routinely employ model checking, our experience confirms that the
MPI community can benefit greatly from the use of formal verification.

1 Introduction

Concurrent protocols are notoriously hard to design and verify. Experience has
shown that virtually all nontrivial protocol implementations contain bugs such as
deadlocks, livelocks, and memory leaks, despite extensive care taken during de-
sign and testing. Most of these bugs are basic design errors due to “unexpected”
(untested) concurrent behaviors. Therefore, it stands to reason that if finite-state
models of these protocols are created and exhaustively analyzed for the desired
formal properties, robust protocol implementations would result. The technol-
ogy for such finite-state modeling, property description, and exhaustive analysis
developed over the past three decades—known as model checking [2]—has been
successfully applied to numerous software and hardware systems. Model check-
ing is now an integral part of the Windows Device Driver Development Kit [1].
Virtually all cache-coherence protocols developed and deployed in modern mi-
croprocessors have been verified by using model checking. However, although
concurrency and concurrent-programming bugs in parallel scientific program-
ming are similar to those in other areas, we find little evidence of model checking
being applied to verify parallel scientific programs.
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In this paper, we conduct case studies that show the promise of the appli-
cation of model checking in the area of parallel scientific programming using
MPI. In particular, we focus on MPI one-sided communication [10]. Being (rel-
atively) recently introduced and implemented, MPI one-sided communication
is insufficiently understood and documented. One-sided communication involves
shared-memory concurrency, which is known to be inherently harder to reason
about than the message-passing concurrency of traditional MPI. One-sided com-
munication exacerbates verification complexity because it guarantees only weak
ordering semantics with respect to loads and stores, which can freely reorder
within a given synchronization epoch. This paper demonstrates that, by using
model checking, bugs in MPI programs that use one-sided communication can
be caught easily, while expending only modest amounts of human and computer
time.

After presenting background on MPI one-sided communication in Section 2,
we provide an overview of model checking in Section 3. We then describe the
design of an existing distributed byte-range locking algorithm [17] and its formal
verification through model checking (Section 4). Model checking helped uncover
the serious problem of a potential deadlock, which the authors of the algorithm
were unaware of. Model checking also found a more benign problem of extra
(zero-byte) sends in the algorithm, which might lend itself to an implementation-
dependent correction using MPI Iprobe and posted receives. However, this prob-
lem may well turn into a memory leak. We then present two other designs of
the same algorithm, formally verify them using model checking, and provide
empirical observations to interpret these model-checking results (Section 5). In
Section 6, we conclude with a discussion of future work.

To our knowledge, nobody has applied model checking to analyze programs
that use MPI one-sided communication. Siegel and Avrunin have used model
checking to verify programs that use basic MPI point-to-point communication
[13,14]. Kranzlmüller used a formal event-graph based method to help under-
stand MPI program executions [6]. Matlin et al. used the SPIN model checker
to verify parts of the MPD process manager used in MPICH2 [9].

2 MPI One-Sided Communication

For lack of space, we review only the features of MPI one-sided communication
relevant to this paper. One feature in MPI one-sided communication allows pro-
cesses to gain exclusive access to communication windows in a block of code
bracketed by MPI_Win_lock and MPI_Win_unlock calls [10]. Read and write
accesses can be performed by a process holding exclusive access to a window
through MPI_Put and MPI_Get. The main semantic difficulty stems from these
put and get calls being not required to obey their syntactic program order in
terms of when they are performed. It is well known (see, e.g., [15]) that such
ordering guarantees are crucial to the correctness of even simple concurrent
protocols such as Peterson’s mutual exclusion. The specification of one-sided
communication in MPI further exacerbates the issue by introducing a complex
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set of informally stated rules that can easily lead to contradictory interpreta-
tions.1 Common mistakes users make include nesting synchronization epochs on
the same window object (such as a win lock/unlock within a fence), doing read-
modify-writes via a get-modify-put in the same synchronization epoch (even
though gets and puts are defined to be nonblocking), and doing a put and a
get to/from the same memory location in the same synchronization epoch. For
example, the broadcast algorithms in Appendix B and C of [8] are incorrect
because they rely on MPI Get being a blocking function, which it is not. In im-
plementations that take advantage of the nonblocking nature of MPI Get, such as
MPICH2 [16], the code will, indeed, go into an infinite loop. Since MPI one-sided
communication can be implemented in a variety of ways [4], the result of making
such mistakes is often implementation dependent: the program may work fine
on some implementations and not on others.

3 Model Checking

Model checking is a term that has acquired an overloaded meaning. It essentially
is the activity of exhaustively examining all possible behaviors of a model of a
concurrent program (akin to wind-tunnel testing of scale models of airplanes).
We consider finite-state model checking where the model of the concurrent sys-
tem is expressed in a modeling language—Promela [5] in our case (all the pseu-
docodes expressed in this paper have an almost direct Promela encoding once
the MPI constructs have been accurately modelled). By exhaustively executing
the concurrent-system model, a model checker reveals its entire state-transition
structure and is able to establish temporal properties, such as “always P” and
“A implies eventually Q” with respect to this structure. The state graphs we
generate are a result of the interleaved execution of various processes or threads.
A fundamental problem with model checking is that reachable state graphs are
exponential in the number of concurrent processes. The past three decades of
research has, essentially, focused on getting a good handle on this exponential
growth, so much so that astronomically large finite-state spaces—or often even
many classes of infinite state spaces—can be handled by model checkers. De-
spite the very large state spaces of the MPI models discussed in this paper, our
model checking runs finished within acceptable durations (often in minutes) on
standard workstations.

4 Formal Verification of Byte-Range Locking

In [17], Thakur et al. present an algorithm implemented by using MPI one-sided
communication (with passive-target lock-unlock synchronization) for coordinat-
ing a collection of parallel processes contending for byte-range locks. We first
describe the algorithm briefly, followed by a description of how we model checked
1 A collaborative project between the University of Utah and Argonne is addressing

the issue of elucidating as well as formalizing this specification.
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it. Because of space limits, we cannot present the full pseudocode of the original
algorithm; the reader may refer to the original paper [17] for details.

4.1 The Byte-Range Locking Algorithm

Each process keeps in a single common memory window (lockwin) its state
consisting of a flag (initialized to 0) and the start and end values for the
byte range (initialized to -1). A flag of 0 indicates that the process does not
have the lock, while 1 indicates that it either has acquired the lock or wants to
acquire the lock. A process updates its state and reads others’ states by acquiring
exclusive access to lockwin and making MPI_Put and MPI_Get calls. Since the
processes acquire exclusive access, the actions of any one process on lockwin
are guaranteed to be atomic with respect to the actions of other processes.

In order to acquire the lock, a process sets its flag to 1, updates its start
and end values, and gets the corresponding values of other processes. It then
checks whether any other process has set a conflicting byte range and has a flag
value of 1. If it does not find such a process, it assumes that it has acquired the
lock. Otherwise, it assumes that it does not have the lock, resets its flag to 0
via another lock-put-unlock, and blocks on a zero-byte MPI_Recv call, waiting
for a process that has the lock to wake it up with a zero-byte send. The process
will retry the lock after receiving the message. To release a lock, a process again
acquires exclusive access, resets its flag to 0 and its start and end offsets to -1,
and gets the values of other processes. If it finds a process with a conflicting
byte-range (ignoring the flag), it sends a zero-byte message (via MPI_SEND) to
wake up that process.

4.2 Checking the Byte-Range Locking Algorithm

To model the algorithm, we first needed to model the MPI one-sided commu-
nication constructs used in the algorithm and capture their semantics precisely
as specified in the MPI Standard [10]. For example, the MPI Standard speci-
fies that if a communication epoch is started with MPI Win lock, it must end
with MPI Win unlock and that the put/get/accumulate calls made within this
epoch are not guaranteed to complete before MPI Win unlock returns. Further-
more, there are no ordering guarantees of the puts/gets/accumulates within an
epoch. Therefore, in order to obtain adequate execution-space coverage, all per-
mutations of put/get/accumulate calls in the epoch must be examined. However,
the byte-range locking algorithm uses the MPI LOCK EXCLUSIVE lock type, which
means that while a certain process has entered the synchronization epoch, no
other process may enter until that process has left. This makes the synchro-
nization epoch an atomic block and renders all permutations of the calls within
it equivalent from the perspective of other processes. Modeling the byte-range
locking algorithm itself was relatively straightforward. (This experience augurs
well for the checking of other algorithms that use MPI one-sided communication,
as one of the significant challenges in model checking lies in the ease of model-
ing constructs in the target domain using modeling primitives in the modeling
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language.) The complete Promela code used in our model checking can be found
online [11].

When we model checked our model with three processes, our model checker,
SPIN [5], discovered an error indicating an “invalid end state.” Deeper probing
revealed the following error scenario (explained through an example, which as-
sumes that P1 tries to lock byte-range 〈1, 2〉, P2 tries to lock 〈3, 4〉, and P3 tries
to lock 〈2, 3〉):

– P1 and P3 successfully acquire their byte-range locks.
– P2 then tries to acquire its lock, notices conflict with respect to both P1 and

P3, and blocks on the MPI_Recv.
– P1 and P3 release their locks, both notice conflicts with P2, and both perform

an MPI Send, when only one send is needed.

Hence, while P2 ends up successfully waking up and acquiring the lock, the
extra MPI Sends may accumulate in the system. This is a subtle error whose
severity depends on the MPI implementation being used. Recall that the MPI
Standard allows implementors to decide whether to block on an MPI Send call.
In practice, a zero-byte send will rarely block. Nonetheless, an implementation
of the byte-range locking algorithm can address this problem by periodically
calling MPI_Iprobe and matching any unexpected messages with MPI_Recvs.

We then modeled the system as if

2 [10,20,1]
1 [10,20,1]

3 Acquire

4 [−1,−1,0]

5 Send

6 [10,20,1]
7 [10,20,0]

9 [10,20,1]

Receive8

[10,20,0]11

13 Receive
10 [10,20,0]

Receive12

P1 P2

Fig. 1. A deadlock scenario found
through model checking

these extra MPI Sends do not exhaust
the system resources and hence do not
cause processes to block. In this case,
model checking detected a far more se-
rious deadlock situation, summarized in
Figure 1. P1 expresses its intent to ac-
quire a lock in the range 〈10, 20〉 (1),
with P2 following suit (2). P1 acquires
the lock (3), finishes using it and relin-
quishes it (4), and performs a send to
unblock P2 (5). Before P2 gets a chance
to change its global state, P1 tries to
reacquire the lock (6). P1 reads P2’s
current flag value as 1, so it decides to
block by carrying out events (10) and
(12). At this point, P2 changes its global
state, receives the message sent by P1 (8), and proceeds to reacquire the lock
(9). P2 reads P1’s current flag value as 1, so it decides to block by carrying out
events (11) and (13). Both processes now block on receive calls, and the result
is deadlock. We note that the authors of the algorithm were unaware of this
problem until the model checker found it!
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5 Correcting the Byte-Range Locking Algorithm

We propose two approaches to fixing this deadlock problem and describe our
experience with using model checking on these solutions.

Alternative 1. One way to eliminate deadlocks is to add a third state to the
“flag” used in the algorithm. This is shown in the pseudocode in Figure 2. In the
original algorithm, a flag value of ‘0’ indicates that the process does not have the
lock, while a flag value of ‘1’ indicates that it either has acquired the lock or is
in the process of determining whether it has acquired the lock. In other words,
the ‘1’ state is overloaded. In the proposed fix, we add a third state of ‘2,’ with
‘0’ denoting the same as before, ‘1’ now denoting that the process has acquired
the lock, and ‘2’ denoting that it is in the process of determining whether it
has acquired the lock. There is no change to the lock-release algorithm, but the
lock-acquire algorithm changes as follows.

When a process wants to acquire a lock, it writes its flag value as ‘2’ and
its start and end values in the memory window. It also reads the state of the
other processes from the memory window. If it finds a process with a conflicting
byte range and a flag value of ‘1,’ it knows that it does not have the lock. So it
resets its flag value to ‘0’ and blocks on an MPI Recv. If no such process (with
conflicting byte range and flag=1) is found, but there is another process with a
conflicting byte range and a flag value of ‘2,’ the process resets its flag to ‘0,’ its
start and end offsets to -1, and retries the lock from scratch. If neither of these
cases is true, the process sets its flag value to ‘1’ and considers the lock acquired.
An assessment of this protocol using model checking is presented later in this
section.

Alternative 2. This approach uses the same values for the flag as the original
algorithm, but when a process tries to acquire a lock and determines that it does
not have the lock, it picks a process (that currently has the lock) to wake it up and
then blocks on the receive. For this purpose, we add a fourth field (the pick field)
to the values for each process in the memory window (see Figure 3). The process
about to block must now decide whether to block. This decision is based on two
factors: (i) Has the process selected to wake it up already released the lock? and
(ii) Is there a possibility of a deadlock caused by a cycle of processes that wait
on each other to wake them up? The latter can be detected and avoided by using
the algorithm in Figure 4. The former can be easily determined by reading the
values returned by the MPI_Get on line 26. If the selected process has already
released the lock, a new process must be picked in its place. We simply traverse
the list of conflicting processes until we find one that has not yet released the
lock. If no such process is found, the algorithm tries to reacquire the lock. Note
the added complexity of going through the list of conflicting processes and doing
put and get operations each time. However, if this loop is successful and the
process blocks on MPI_Recv, we can save considerable processor time in the case
of highly contentious lock requests as compared with Alternative 1.
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1 Lock_acquire (int start , int end)
2 {
3 val[0] = 2; /* flag */ val[1] = start; val[2] = end;
4 while (1) {
5 /* add self to locklist */
6 MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin );
7 MPI_Put (&val , 3, MPI_INT , homerank , 3*myrank , 3, MPI_INT , lockwin );
8 MPI_Get(locklistcopy , 3*(nprocs -1), MPI_INT , homerank , 0, 1,
9 locktype1 , lockwin );

10 MPI_Win_unlock(homerank , lockwin );
11 /* check to see if lock is already held */
12 conflict = flag1 = flag2 = 0;
13 for (i=0; i < (nprocs - 1); i ++) {
14 if ((flag == 1) && (byte ranges conflict with lock request ))
15 { flag1 = 1; break; }
16 if ((flag == 2) && (byte ranges conflict with lock request ))
17 { flag2 = 1; break; }
18 }
19 if (flag1 == 1) {
20 /* reset flag to 0, wait for notification , and then retry */
21 MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin );
22 val[0] = 0;
23 MPI_Put(val , 1, MPI_INT , homerank , 3*myrank , 1, MPI_INT , lockwin );
24 MPI_Win_unlock(homerank , lockwin );
25 /* wait for notification from some other process */
26 MPI_Recv(NULL , 0, MPI_BYTE , MPI_ANY_SOURCE , WAKEUP , comm , &status );
27 /* retry the lock */
28 Lock_acquire(start , end); }
29 else if (flag2 == 1) {
30 /* reset flag to 0, start/end offsets to -1, and then retry */
31 MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin );
32 val[0] = 0; /* flag */ val[1] = -1; val[2] = -1;
33 MPI_Put(val , 3, MPI_INT , homerank , 3*myrank , 3, MPI_INT , lockwin );
34 MPI_Win_unlock(homerank , lockwin );
35 /* retry the lock */
36 Lock_acquire(start , end); }
37 else {
38 MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin );
39 val[0] = 1;
40 MPI_Put(val , 1, MPI_INT , homerank , 3*myrank , 1, MPI_INT , lockwin );
41 MPI_Win_unlock(homerank , lockwin );
42 /* lock is acquired */
43 break;
44 }
45 }
46 }

Fig. 2. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 1)

Assessment of the Alternative Algorithms. We model checked these al-
gorithms using SPIN, which helped establish the following formal properties of
these algorithms:

– Absence of deadlocks (both alternatives).
– Communal progress (that is, if a collection of processes request a lock, then

someone will eventually obtain it). Alternative 2 satisfies this under all fair
schedules (all processes are scheduled to run infinitely often), whereas Alter-
native 1 places a few additional restrictions to rule out a few rare schedules
(details in [12]).
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1 Lock_acquire (int start , int end)
2 {
3 int picklist[num_procs ];
4 val[0] = 1; /* flag */ val[1] = start; val[2] = end;
5 val[3] = -1; /* pick */
6 while (1) {
7 /* add self to locklist */
8 MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin );
9 MPI_Put (&val , 4, MPI_INT , homerank , 4*myrank , 4, MPI_INT , lockwin );

10 MPI_Get(locklistcopy , 4*(nprocs -1), MPI_INT , homerank , 0, 1,
11 locktype1 , lockwin );
12 MPI_Win_unlock(homerank , lockwin );
13 /* check to see if lock is already held */
14 cprocs_i = 0;
15 for (i=0; i < (nprocs - 1); i ++)
16 if ((flag == 1) && (byte range conflicts with Pi ‘s request )) {
17 conflict = 1; picklist[cprocs_i] = Pi; cprocs_i ++; }
18 if (conflict == 1) {
19 for(j=0; j < cprocs_i; j++) {
20 MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, lockwin );
21 val[0] = 0; val[3] = picklist[j];
22 /* reset flag to 0, indicate pick and pick_counter */
23 MPI_Put (&val , 4, MPI_INT , homerank , 4*myrank , 4, MPI_INT , lockwin );
24 MPI_Get(locklistcopy , 4*(nprocs -1), MPI_INT , homerank , 0, 1,
25 locktype1 , lockwin );
26 MPI_Win_unlock(homerank , lockwin );
27 if (picklist[j] has released the lock || detect_deadlock ())
28 /* repeat for the next process in picklist */
29 j++;
30 else {
31 /* wait for notification from picklist[j] */
32 MPI_Recv (NULL , 0, MPI_BYTE , MPI_ANY_SOURCE , WAKEUP , comm ,
33 MPI_STATUS_IGNORE );
34 break; /* retry the lock */ }
35 }
36 /* if the entire list has been traversed , retry the lock */
37 }
38 else
39 break; /* lock is acquired */
40 }
41 }

Fig. 3. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 2)

1 detect_deadlock() {
2 cur_pick = locklistcopy[4 * myrank + 3];
3 while(i < num_procs) {
4 /* picking this process means a cycle is completed */
5 if(locklistcopy[4 * cur_pick + 3] == my_rank ) return 1;
6 /* no cycle can be formed */
7 else if(locklistcopy[4 * cur_pick + 3] == -1) return 0;
8 else cur_pick = locklistcopy[4 * cur_pick + 3];
9 }

10 }

Fig. 4. Avoiding circular loops among processes picked to wake up other processes in
Alternative 2

We note that neither of these alternatives eliminates the extra sends, but, as de-
scribed in Section 4, an implementation can deal with them by using MPI_Iprobe.
That said, Alternative 2 considerably reduces these extra sends, as it restricts
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the number of processes that can wake up a particular process compared with
Alternative 1. The exact performance tradeoffs of these algorithms will be de-
termined as part of our future work. We are still seeking algorithms that avoid
deadlock, avoid extra sends, and are efficient.

6 Conclusions and Future Work

We have shown how formal verification based on model checking can be used to
find actual deadlocks in published algorithms that use the MPI one-sided com-
munication primitives. We have also discussed how this technology can help shed
light on a number of related issues such as forward progress and the possibility of
there being unconsumed messages. We presented and analyzed two deadlock-free
algorithms for byte-range locking and verified their characteristics.

Nonetheless, our work in this field is still in its early stages. Capitalizing on
the maxim that formal methods can have their biggest impact when applied to
constructs that are relatively new or are under development, we plan to formalize
the entire set of MPI one-sided communication primitives. This can help develop
a comprehensive approach to verifying programs that use the MPI one-sided
constructs. As future case studies, we will analyze other algorithms, such as the
scalable fetch-and-increment algorithm described in [3]. We plan to explore the
use of automated tools to extract models from MPI programs, instead of creating
them by hand. We also plan to explore the advantages of using other modeling
languages, such as +CAL [7], and investigate the possibility of directly model
checking MPI programs, instead of their extracted formal models.
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Abstract. Selecting the close-to-optimal collective algorithm based on
the parameters of the collective call at run time is an important step
in achieving good performance of MPI applications. In this paper, we
focus on MPI collective algorithm selection process and explore the ap-
plicability of the quadtree encoding method to this problem. We con-
struct quadtrees with different properties from the measured algorithm
performance data and analyze the quality and performance of decision
functions generated from these trees. The experimental data shows that
in some cases, the decision function based on a quadtree structure with a
mean depth of 3 can incur as little as a 5% performance penalty on aver-
age. The exact, experimentally measured, decision function for all tested
collectives could be fully represented using quadtrees with a maximum of
6 levels. These results indicate that quadtrees may be a feasible choice for
both processing of the performance data and automatic decision function
generation.

1 Introduction

The performance of MPI collective operations is crucial for good performance
of MPI application which use them [1]. For this reason, significant efforts have
been put on design and implementation of efficient collective algorithms both
for homogeneous and heterogeneous cluster environments [2,3,4,5,6,7,8]. Perfor-
mance of these algorithms varies with the total number of nodes involved in
communication, system and network characteristics, size of data being trans-
ferred, current load, and if applicable, the operation that is being performed as
well as the segment size which is used for operation pipelining. Thus, selecting
the best possible algorithm and segment size combination (method) for every
instance of collective operation is important.

To ensure good performance of MPI applications, collective operations can be
tuned for the particular system. The tuning process often involves detailed pro-
filing of the system possibly combined with communication modeling, analyzing
the collected data, and generating a decision function. During run-time, the deci-
sion function selects close-to-optimal method for a particular collective instance.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 40–48, 2006.
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This approach relies on the ability of the decision function to accurately predict
algorithm and segment size to be used for the particular collective instance. Al-
ternatively, one could construct an in-memory decision system which could be
queried/searched at the run-time to provide the optimal method information.
In order for either of these approaches to be feasible, the memory footprint and
the time it takes to make decisions need to be minimal.

This paper studies the applicability of the quadtree encoding method as a
storage and optimization technique within the MPI collective method selection
process. We assume that the system of interest has been benchmarked and that
detailed performance information exists for each of available collective commu-
nication algorithm. With this information, we focus our efforts on investigating
whether the quadtree encoding is a feasible way to generate static decision func-
tions as well as, to represent the decision function in memory.

The paper proceeds as follows: Section 2 discusses existing approaches to the
decision making/algorithm selection problem; Section 3 describes the quadtree
construction and analysis of quadtree decision function in more detail; Section 4
presents experimental results; Section 5 concludes the paper with discussion of
the results and future work.

2 Related work

The MPI collective algorithm selection problem has been addressed in many
MPI implementations.

In the FT-MPI [9], the decision function is generated manually using visual
inspection method augmented with Matlab scripts used for analysis of the exper-
imentally collected performance data. This approach results in a precise albeit
complex decision functions. In the MPICH-2 MPI implementation, the algorithm
selection is based on bandwidth and latency requirements of an algorithm, and
the switching points are predetermined by the implementers [5]. In the tuned
collective module of the Open MPI [10], the algorithm selection can be done
in either of the following three ways: via compiled decision function, via user-
specified command line flags, or using rule-based run-length encoding scheme
which can be tuned for particular system.

In this work, we treat the information about the optimal collective implemen-
tation on a system as a bit pattern which we encode using a similar technique
to an image encoding process. We then use the encoded structure to generate
decision function code. To the best of our knowledge, we are the only group
which has approached the MPI collective tuning process in this way.

3 Quadtrees and MPI Collective Operations

We use the collective algorithm performance information on a particular system
to extract the information about the optimal methods and construct a decision
map for the collective on that system. An example of a decision map is displayed
in Table 1. The decision map which will be used to initialize the quadtree must
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be a complete and square matrix with a dimension size that is a power of two,
2k × 2k. Complete decision map means that tests must cover all message and
communicator sizes of interest. Neither of these requirements are real limitations,
as the missing data can be interpolated and the size of the map can be adjusted
by replicating some of the entries.

Table 1. Decision map example. The axis information relates to the decision maps in
Figure 1.

Communicator size Message size Algorithm Segment Method
(y-axis) (x-axis) size index

3 1 Linear none 1
3 2 Linear none 1
... ... ... ... ...
128 64KB BinaryTree 8KB 13

Once a decision map is available, we initialize the quadtree from it using user
specified constraints such as accuracy threshold and maximum allowed depth of
the tree. The accuracy threshold is the minimum percentage of points in a block
with the same “color”, such that the whole block is “colored” in that “color”.
The quadtree with no maximum depth set and threshold of 100% is an exact
tree. The exact tree truthfully represents the measured data. A quadtree with
either threshold or maximum depth limit set allows us to reduce the size of
the tree at the cost of prediction accuracy. Limiting the absolute tree depth
limits the maximum number of tests we may need to execute to determine the
method index for specified communicator and message size. Setting the accuracy
threshold helps smooth the experimental data, thus possibly making the decision
function more resistant to inaccuracies in measurements.

A property of any decision tree is that an internal node of the tree corresponds
to an attribute test, and the links to children nodes correspond to the particular
attribute values. In our encoding scheme, every non-leaf node in the quadtree
corresponds to a test which matches both communicator and message size values.
The leaf nodes contain information about the optimal method for the particular
communicator and message size ranges. Thus, leaves represent the rules of the
particular decision function. In effect, quadtrees allow us to perform a recursive
binary search in a two-dimensional space.

3.1 Generating Decision Function Source Code

We provide functionality to generate decision function source code from the ini-
tialized quadtree. Recursively, for every internal node in the quadtree we generate
the following code segment:

if (NW) {...} else if (NE) {...} else if (SW) {...} else if (SE) {...} else {error}.1
The current implementation is functional but lacks optimizations, i.e. ability to

1 NW, NE, SW, and SE correspond to north-west, north-east, south-west, and south-
east quadrants of the region.



MPI Collective Algorithm Selection and Quadtree Encoding 43

merge conditions with same color2. The conditions for boundary points (min-
imum and maximum communicator and message sizes) are expanded to cover
that region fully. For example, the rule for minimum communicator size will be
used for all communicator sizes less than the minimum communicator size.

3.2 In-memory Quadtree Decision Structure

Alternative to generating the decision function source code is maintaining an
in-memory quadtree decision structure which can be queried during the run
time.

An optimized quadtree structure would contain 5 pointers and 1 method field,
which could probably be a single byte or an integer value. Thus, the size of a
node of the tree would be around 44B on 64-bit architectures3. Additionally, the
system would need to maintain in memory the mapping of (algorithm, segment
size) pairs to method indexes as well. The maximum depth decision quadtree we
encountered in our tests had 6 levels. This means that in the worst case, the 6-
level decision quadtree could take up to 47−1

4−1 = 5461 nodes, which would occupy
close to 235KB of memory. However, our results indicate that the quadtrees with
3 levels can still produce reasonably good decisions. Three-level quadtree would
occupy at most 3740B and as such could fit into 4 1KB pages of main memory.
Even so, the smaller quadtree if cached would still occupy significant portion of
the cache. Based on these memory requirements we decided not to implement
the in-memory quadtree-based decision structure yet, and to focus our efforts on
decision function source code generation.

4 Experimental Results and Analysis

Under the assumption that the collective operations parameters are uniformly
distributed across communicator size and message size space, we expect that the
average depth of the quadtree is the average number of conditions we need to
evaluate before we can determine which method to use. In the worst case, we
will follow the longest path in the tree to make the decision, and in the best case
the shortest.

The performance data for broadcast and reduce collective algorithms was
collected on Grig cluster located at the University of Tennessee at Knoxville and
Nano cluster located at the Lawrence Berkeley National Laboratory.

4.1 Broadcast Decision Maps

Figure 1 shows six different quadtree decision maps for a broadcast collective
on the Grig cluster. We considered five different broadcast algorithms (Linear,
2 The code segment generated for each internal node contains at least 21 lines – 5

lines for conditional expressions, 10 lines for braces, a line for error handling, and at
least a line per condition.

3 In this analysis, we ignore data alignment issues which would lead to even larger size
of the structure.
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Binomial, Binary, Splitted-Binary, and Pipeline),4 and four different segment
sizes (no segmentation, 1KB, 8KB, and 16KB). The measurements covered all
communicator sizes between 2 and 28 processes and message sizes in 1B to
384KB range.
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Fig. 1. Broadcast decision maps from Grig cluster. Different colors correspond to dif-
ferent method indexes. The trees were generated by limiting the maximum tree depth.
The x-axis scale is logarithmic. The crossover line for 1-level quadtree is not in the
middle due to the “fill-in” points used to adjust the original size of the decision map
from 25 × 48 to 64 × 64 form.

The exact decision map in Figure 1 exhibits trends, but there is a considerable
amount of information for intermediate size messages (between 1KB and 10KB)
and small communicator sizes. Limiting the maximum tree depth smoothes the
decision map and subsequently decreases the size of the quadtree. Table 2 shows
the mean tree depth and related statistics for the decision maps presented in
Figure 1.

4.2 Performance Penalty of Decision Quadtrees

One possible metrics of merit is the performance penalty one would incur by
using a restricted quadtree instead of the exact one. To compute this, one can
use the performance information for methods suggested by the restricted tree
for particular set of communicator and message size values, and compare them
to the performance results for methods suggested by the exact tree.

The reproducibility of measured results is out of scope of this paper, but we
followed the guidelines from [11] to ensure good quality measurements. Even
so, the “exact” decision function corresponds to a particular data set, and the

4 For more details on these algorithms, refer to [8].
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performance penalty of other decision functions was evaluated against the data
that was used to generate them in the first place.

Figure 2 shows the performance penalty of decision quadtrees from Figure 1
and the Table 2 summarizes the properties and performance penalties for the
same data. The analysis shows that even for noisy decision map in Figure 1, a
3-level quadtree would have less than 9% performance penalty on average, while
the exact decision could be represented with a total of 6 levels.
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Fig. 2. Performance penalty of broadcast decision function from Grig cluster. Colorbar
represents relative performance penalty in percents. White color means less than 5%,
yellow/light gray is between 10% and 25%.

4.3 Quadtree Accuracy Threshold

In Section 3.1 we mentioned that an alternative way to limit the size of quadtree
is to specify the tree accuracy threshold.

Figure 3 shows the effect of varying the accuracy threshold on the mean
performance penalty of a reduce quadtree decision function on two different
systems. On both systems, the mean performance penalty of the reduce decision
was below 10% for an accuracy threshold of approximately 45%. This threshold
corresponds to the quadtree structures of maximum depth 3. This means that the
quadtree decision which would on average potentially cause a 10% performance
penalty would be evaluated at most in 3 expressions.

4.4 Accuracy Threshold vs. Limiting Maximum Depth

Figure 4 shows the mean performance penalty of broadcast and reduce decisions
on Grig cluster (See Figures 1, 2, and 3, and Table 2) as a function of the mean
quadtree depth for quadtrees constructed by specifying accuracy threshold and
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Table 2. Statistics for broadcast decision quadtrees in Figure 1. The number of leaves
corresponds to the number of regions we divided the (communicator size, message
size) space into. The number of lines in decision function includes lines containing only
braces, error handling, etc.

Tree Depth Performance Penalty [%] Number of Function size
Max Min Mean Min Max Mean Median Leaves [# of lines]

1 1 1.0000 0.00 346.05 37.11 0.00 4 24
2 2 2.0000 0.00 436.02 18.63 0.00 16 82
3 2 2.9655 0.00 436.02 08.83 0.00 58 330
4 2 3.8554 0.00 391.53 06.29 0.00 166 932
5 2 4.7783 0.00 356.47 05.41 0.00 442 2,496
6 2 5.6269 0.00 000.00 00.00 0.00 973 5,505
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Fig. 3. Effect of the accuracy threshold on mean quadtree depth and performance
penalty

maximum depth. The results indicate that in the cases we considered, construct-
ing the decision quadtree by restricting the maximum depth of the tree directly
incurs a smaller mean performance penalty than the tree of similar mean depth
constructed by setting the accuracy threshold.

The results for the broadcast decision function show that when the quadtree is
deep enough to cover almost the whole initial data set, the tree constructed using
an accuracy thresholds achieves the smaller mean performance penalty. This is
not the case for the quadtree-based reduce decision functions most likely due to
the fact that this decision function was smoother to start with, so smoothing it
with an accuracy threshold had no further positive effects. Still, we believe that
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the example of the broadcast decisions indicates that the accuracy threshold
setting could be used to avoid over-fitting the data when the tree depth is not a
concern.

5 Discussion and Future Work

In this paper, we studied the applicability of a modified quadtree encoding
method to the algorithm selection problem for the MPI collective function op-
timization. We analyzed the properties and performance of quadtree decision
functions constructed by either limiting the maximum tree depth or specifying
the accuracy threshold a the construction time.

Our experimental results for broadcast and reduce collectives, show that in
some cases, the decision function based on a quadtree structure with a mean
depth of 3, incurs less than a 5% performance penalty on the average. In other
cases, deeper trees (5 or 6 levels) were necessary to achieve the same performance.
However, in all cases we considered, a quadtree with 3 levels would incur less than
a 10% performance penalty on average. Our results indicate that quadtrees may
be a feasible choice for processing the performance data and decision function
generation.

In this work we chose not to explore the performance of the in-memory
quadtree decision systems due to relatively large memory requirements associ-
ated with storing the tree. The performance of an in-memory system will depend
greatly on the implementation efficiency and the application access pattern. It is
possible that in some cases and or in combination with other methods, it could
achieve very good performance. We plan to explore this issue in more depth in
the future.

One of the limitations of the quadtree encoding method is that since the
decision is based on a 2D-region in communicator size - message size space, it
will not be able to capture decisions which are optimal for single communicator
values, e.g. communicator sizes which are power of 2. The same problem is
exacerbated if the performance measurement data used to construct trees is too
sparse.

The decision map reshaping process to convert measured data from n × m
shape to 2k ×2k affects encoding efficiency of the quadtree. In our current study,
we did not address this issue, but in future work we plan to further improve the
efficiency of the encoding regardless of initial data space.

The major focus of future research will be comparing the quadtree-based
decision functions, to the ones generated using run-length encoding and standard
decision tree algorithms such as C4.5.
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3. Rabenseifner, R., Träff, J.L.: More efficient reduction algorithms for non-power-
of-two number of processors in message-passing parallel systems. In: Proceedings
of EuroPVM/MPI. Lecture Notes in Computer Science, Springer-Verlag (2004)

4. Chan, E.W., Heimlich, M.F., Purkayastha, A., van de Geijn, R.M.: On optimizing
of collective communication. In: Proceedings of IEEE International Conference on
Cluster Computing. (2004) 145–155

5. Thakur, R., Gropp, W.: Improving the performance of collective operations in
MPICH. In Dongarra, J., Laforenza, D., Orlando, S., eds.: Recent Advances in
Parallel Virtual Machine and Message Passing Interface. Number 2840 in LNCS,
Springer Verlag (2003) 257–267 10th European PVM/MPI User’s Group Meeting,
Venice, Italy.

6. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MagPIe:
MPI’s collective communication operations for clustered wide area systems. In:
Proceedings of the seventh ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming, ACM Press (1999) 131–140

7. Bernaschi, M., Iannello, G., Lauria, M.: Efficient implementation of reduce-scatter
in MPI. Journal of Systems Architure 49(3) (2003) 89–108
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Abstract. We describe and experimentally compare four theoretically
well-known algorithms for the parallel prefix operation (scan, in MPI
terms), and give a presumably novel, doubly-pipelined implementation
of the in-order binary tree parallel prefix algorithm. Bidirectional inter-
connects can benefit from this implementation. We present results from
a 32 node AMD Cluster with Myrinet 2000 and a 72-node SX-8 parallel
vector system. The doubly-pipelined algorithm is more than a factor two
faster than the straight-forward binomial-tree algorithm found in many
MPI implementations. However, due to its small constant factors the
simple, linear pipeline algorithm is preferable for systems with a mod-
erate number of processors. We also discuss adapting the algorithms to
clusters of SMP nodes.

Keywords: Cluster of SMPs, collective communication, MPI implemen-
tation, prefix sum, pipelining.

1 Introduction

The parallel prefix or scan operation is a surprisingly versatile primitive and
a basic building block in massively parallel algorithms for a variety of different
problems, as shown by research in the 80ties and 90ties [2,5]. Scan primitives are
also included among the collective operations of the Message Passing Interface
(MPI) [10], as an inclusive operation MPI Scan, and with the MPI-2 standard [3],
also as an exclusive operation MPI Exscan.

The parallel prefix operation can be explained as follows. Let p be the number
of Processing Element(PE)s numbered consecutively from 0 to p − 1, and let a
sequence of p elements xi with an associative, binary operation ⊕ be given.

The inclusive parallel prefix operation computes for each PE j, 0 ≤ j < p, the
value

⊕j
i=0 xi = x0 ⊕ x1 ⊕ · · · ⊕ xj , with the convention that

⊕j
i=j xi = xj (a

one element sum is just that one element).
The exclusive parallel prefix operation computes for each PE j, 0 < j < p,

except PE 0 the value
⊕j−1

i=0 xi. With this definition, no neutral element for the
operation ⊕ is required.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 49–57, 2006.
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For use with the scan (and other reduction) collectives, MPI provides a num-
ber of standard, binary operations like summation, maximum, Boolean and bit-
wise operations etc. on standard datatypes like integers, doubles, and so forth. In
addition the user can define new associative operations on structured, possibly
non-contiguous datatypes. Instead of a parallel prefix on a single element per
process, the MPI scan operations work element-wise on vectors of elements. The
number of elements in the vector is given by a count argument in the call of
MPI Scan/MPI Exscan.

2 The Scan Algorithms

In this section we describe four standard algorithms for the parallel prefix op-
erations, and discuss their implementation in MPI. We focus exclusively on
the inclusive scan operation, but the discussion applies mutatis mutandis to
MPI Exscan. We assume single-ported communication in a fully connected net-
work. Communication cost is α + βm for a communication involving m data
elements. We use three variants of this model: a) half-duplex where each com-
municating PE can either send or receive a message, b) telephone model, where a
matched pair of PEs can communicate bidirectionally, and c) full-duplex where
a PE can simultaneously send data to one PE and receive data from a possibly
different PE. An m element ⊕ computation takes γm time of local work.

All algorithms will work in (implicitly) synchronized rounds and exchange
data packets of equal length. Hence, the number of communication rounds and
the amount of data sent and received by each PE or the total communication
volume normally suffice to characterize the algorithms.

We use the shorthand ⊕[j..k] for
⊕k

i=j xi.

2.1 Binomial Tree

Let n = 
log2 p�. The binomial tree algorithm consists of an up-phase and a
down-phase each of n rounds. In round k, k = 0, . . . , n − 1 of the up-phase each
PE j satisfying j ∧ (2k+1 − 1) = 2k+1 − 1 (where ∧ denotes “bitwise and”)
receives a partial result from PE j − 2k (provided 0 ≤ j − 2k). Afterwards,
PE j − 2k is inactive for the remainder of the up-phase. The receiving PEs
add the partial results, and after round k have a partial result of the form
⊕[j − 2k+1 + 1..j]. In the down-phase we count rounds downward from n to
1. A PE j with j ∧ (2k − 1) = 2k − 1 sends its partial result to PE j + 2k−1

(provided j + 2k−1 < p) which can now compute its final result ⊕[0..j + 2k−1].
The communication pattern is shown in Figure 1.

The number of communication rounds is 2
log p�, and the total communi-
cation volume is bounded by 2pm since in each round half the PEs become
inactive. Since each PE is either sending or receiving data in each round, with
no possibility for overlapping of sending and receiving due to the computation
of partial results, the algorithm can be implemented in the half-duplex model.
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2.2 Simultaneous Binomial Tree

Starting from round k = 0, in round k, PE j sends its partial result to PE j +2k

(provided j + 2k < p) and receives a partial result from PE j − 2k (provided
0 ≥ j − 2k). The partial results are added. It is easy to see that after round k,
PE js partial result is ⊕[max(0, j −2k+1 +1)..j]. PE j can terminate when both
j − 2k < 0 (nothing to receive) and j + 2k ≥ p (nothing to send). This happens
after log p� rounds. This algorithm goes back (at least) to [4], and is illustrated
in Figure 1.
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Fig. 1. The communication patterns for the simple binomial (left) and the simultaneous
binomial (right) tree algorithm for p = 13

The total communication volume is bounded by log p�pm since (almost) all
PEs are active in all rounds. Since each PE is both sending and receiving data
from two different PEs, the analysis assumes the full-duplex model. In [6] it is
shown that the algorithm can be generalized to exploit k-ported communication.

A different algorithm with the same characteristics, but based on a butterfly
communication pattern is used in the mpich2 MPI implementation. For this
algorithm the telephone model of communication suffices but it has unbalanced
computational load — in each round, half the PEs compute two partial results.

2.3 Linear Pipeline

The third algorithm arranges the PEs in a linear pipeline. PE j, 0 < j < p − 1,
receives the result ⊕[0..j − 1] from PE j − 1, adds xj , and sends the result
⊕[0..j] to PE j + 1. The last PE finishes after p − 1 communication rounds at
time (p − 1)(α + βm + γm) + γm. Dividing the m elements into b blocks, which
are sent along the linear pipeline one after the other, the time at which PE
p − 1 finishes becomes (p − 1)(α + β′m/b) + (b − 1)(α + β′m/b) + γm/b. After
the first block has arrived at PE p − 1, a new block can be delivered in every
round, assuming full-duplex communication, since PE j can send the current
block and receive the next one simultaneously. Thus b − 1 rounds are required
after the initial delay to finish the scan. Here β′ is a constant between β and
β +γ, which depends on the possible amount of overlap between communication
and computation. Balancing α and β′ terms depending on b, the optimal block
size can be found as b =

√
β′/α

√
m.

The linear pipeline was also discussed and implemented in [11].
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2.4 Pipelined Binary Tree

The fourth algorithm arranges the PEs in a binary tree T with in-order number-
ing. This numbering has the property that the PEs in the subtree T (j) rooted at j
have consecutive numbers in the interval [�, . . . , j, . . . , r] where � and r denote the
first and last PE in the subtree T (j), respectively. The algorithm has two phases.
In the up-phase, PE j first receives the partial result ⊕[�..j − 1] from its left child
and adds xj to get ⊕[�..j]. This value is stored for the down-phase. PE j then re-
ceives the partial result ⊕[j + 1..r] from its right child and computes the partial
result ⊕[�..r]. PE j sends this value upward without keeping it. In the down-phase,
PE j receives the partial result ⊕[0..�− 1] from its parent. This is first sent down
to the left child and then added to the stored partial result ⊕[�..j] to form the
final result ⊕[0..j] for j. This final result is sent down to the right child.

With the obvious modifications, the general description covers also nodes that
need not participate in all of these communications: Leaves have no children. Some
nodes may only have a leftmost child. Nodes on the path between root and left-
most leaf do not receive data from their parent in the down-phase. Nodes on the
path between rightmost child and root do not send data to their parent in the up-
phase. The communication pattern and examples of trees are shown in Figure 2.

Let the height n of the tree denote the length of the longest root-to-leaf path.
The number of rounds for both up- and down-phases are at most 2n−1 each. The
total communication volume per phase is bounded by (p − 1)m. The algorithm
assumes only half-duplex communication.

It is a standard observation (e.g. [7]) that each PE is (in each phase) only ac-
tive in three consecutive rounds. Hence, successive up-phases (and down-phases)
can be pipelined. More specifically, if the m element vectors can be divided into b
blocks (and the operation ⊕ on the m element vectors can likewise be blocked),
each phase can be done in 3(b − 1) + 2n − 1 rounds: the 2n − 1 rounds is the
delay for the first block delivered at the root (or at the lowest leaf), with a new
block delivered at every third round. Since the partial results computed by PE
j in the up-phase is either needed by j or immediately sent upwards, there is no
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Fig. 2. From left to right: The basic schedule of the doubly pipelined algorithm. A
balanced binary tree with in-order numbering. Two ways to build a binary tree from
a cluster of six SMPs.
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need for intermediate buffering between up- and down-phases. A single buffer of
size m/b for receiving a single intermediary block therefore suffices also for the
pipelined implementation. In our cost model, an m element prefix sum can be
computed in time O(n+m) using an optimal block size of Θ(

√
m/n). Note that

using a balanced binary tree we have n = log(p + 1)� − 1.
For bidirectional communication networks in the telephone model the

two pipelined phases can be combined. This can reduce the number of rounds
by up to a factor of two. Depending on its position in the tree, a PE will first
perform a certain number d of rounds working only on upward traffic while wait-
ing for the first packet of downward data.1 After this fill phase, it enters into a
steady state in which it exchanges in each round one block of data either with
its parent or with one of its children. After 3b−d rounds of the steady state, the
up-phase blocks have been completed, and in d rounds of the drain phase the
last blocks of the down-phase are processed. We call this algorithm the doubly
pipelined prefix algorithm.

The largest delay is incurred for the rightmost leaf PE in the binary tree,
which has to wait for 2(2n − 1) rounds for the first block to arrive. A new block
arrives every third round, so the total number of rounds becomes 3(b−1)+4n−2,
or almost a factor two better than the 6(b − 1) + 4n − 2 rounds required for the
up- and subsequent down-phase of the two-phase algorithm.

Instead of pipelining, the same asymptotic running time is achieved by the
algorithm in [1] which by repeated halving splits the m elements into p blocks,
on which simultaneous scans are carried out by edge-disjoint binomial trees. This
algorithm assumes that p is a power of two (with a trivial generalization), and
also in terms of constant factors the algorithm is worse than the doubly pipelined
prefix algorithm.

3 Performance Evaluation

The algorithms from Section 2 have currently been implemented for the case of
one MPI process per node. The algorithms have been benchmarked on a 32-node
AMD cluster with Myrinet 2000 (with the GM-library), and the 72 node SX-8
parallel vector supercomputer at HLRS (Hochleistungsrechenzentrum Stuttgart,
Germany). We compare five algorithms, namely

– binomial tree
– simultaneous binomial trees
– linear pipeline
– pipelined binary tree
– doubly pipelined prefix algorithm

Results are shown in Figure 3 which shows the achieved throughput as a
function of problem size m for fixed number of processes. For the pipelined
1 In a complete binary tree, this waiting time is proportional to the number of parent

connections one has to follow until reaching the leftmost root-leaf path in the tree.
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algorithms, the block size has been chosen proportional to
√

m/n with experi-
mentally determined constants depending on α and β.

On both systems the simultaneous binomial tree algorithm is best for small
message lengths (m up to about 50 KBytes for the Myrinet cluster, and up to
about 1 MByte for the SX-8 system). For very small messages, it is up to a factor
of two better than all other algorithms and it dominates the plain binomial tree
algorithm for all input sizes. Beyond this threshold, on the Myrinet cluster the
linear pipeline is superior, also to the pipelined binary tree algorithms. For 31
nodes it is about a factor 2 faster than the doubly pipelined prefix algorithm,
which is again better than the simple pipelined binary tree algorithm, although
by less than the factor of two predicted by the theoretical analysis. As the number
of processors grow, the doubly pipelined algorithm can eventually be expected
to outperform the linear pipeline, as shown by the scalability plot in Figure 4.
The performance degradation for message sizes around 2MB is due to a protocol
change at the size of the pipeline block m/b, and can be eliminated by more
careful tuning.

On the NEC SX-8 the pipelined binary tree algorithms give significantly better
throughput than binomial and simultaneous binomial tree algorithms, although
the difference between the pipelined and the doubly pipelined algorithms (about
a factor 1.4 faster for large problems) is smaller than expected from the theo-
retical analysis. Nevertheless, the capability for full-duplex communication can
be exploited by the doubly pipelined prefix algorithm. But also on the SX-8 the
highest throughput is achieved by the linear pipeline (about a factor 1.4 faster
than the doubly pipelined algorithm).

4 Adaptation to the SMP Case

The parallel prefix algorithms were developed assuming a homogeneous commu-
nication network. For clusters of SMP nodes this assumption does not hold, and
severe node contention can result if many PEs per SMP node must in the same
round send and/or receive data from other nodes. In particular the simultaneous
binomial tree algorithm will inevitably suffer from this kind of node contention.

Now we discuss several possible improvements for the case that there are P
SMP (nodes) with pi consecutively ranked PEs in SMP i.

For small inputs and/or very slow inter-SMP communication, a simple hier-
archical decomposition works well: First compute a parallel prefix within each
SMP. Then perform a parallel (exclusive) prefix over the SMPs using the result
of the last PE on each SMP. Finally, within each SMP, add the global result to
each local result. This algorithm has the advantage that at any time at most one
PE per SMP is performing inter-SMP communication.

For large inputs it is better to arrange all the PEs into a single tree taking care
that inter-SMP communication is small. This way, the time for intra-SMP prefix
computation will not appear in the term of the execution time that depends on
the input size m. We propose two basic ways to do this which are depicted in
the right part of Figure 2: One is to build local trees of depth O(log pi) on each
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plot); Bottom: 36 nodes of the NEC SX-8 (logarithmic plot).

SMP and to build a binary tree of local trees as follows: The root PE of a left
successor in the SMP tree has the leftmost PE of its parent SMP as its parent in
the PE tree. Analogously, a right successor has a rightmost PE as its parent. Now
suppose pi = p/P for all SMPs. We get a PE tree of height (1+o(1)) log n

p log P .
At most three PEs in each SMP perform inter-SMP communication. The total
volume of inter-SMP communication is ≤ 2mP .
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cluster for a large problem of 36 MBytes. Completion time of the slowest PE is shown
as a function of the number of processors for p = 3, 5, . . . , 31. Running time of the linear
pipeline increase linearly with the number of processors, whereas the doubly pipelined
exhibits a jump each time a new level is added to the binary tree.

At the cost of increasing the inter-SMP communication to about 3mP , we
can decrease the height of the tree to log(P + 1)� + max0≤i<P log pi� − 1 and
reduce the number of PEs with inter-SMP communication to at most two per
SMP: The leftmost PEs gi of each SMP form a global balanced binary tree of
height h = log(P + 1)� − 1 with the following properties: An in-order traversal
meets growing PE numbers. Only leaves have no left successor. All PEs without
a right child are only on the rightmost path through the tree. The remaining
PEs of each SMP form a local tree of height log pi� − 1 rooted at some node ri.
If global tree PE gi has no right successor in the global tree, its right successor
is ri. If gi for i > 0 has no left successor in the global tree, its left successor will
be ri−1. It is easy to verify that the resulting tree has the claimed properties.

5 Summary

We described and implemented five algorithms for the MPI scan collectives.
As shown by the performance evaluation, a production quality MPI should use
a hybrid approach, using the simultaneous binomial tree algorithm for small
problems, and for large problems switching to either the linear pipeline or the
doubly pipelined algorithm depending on the number of processors. To the best
of our knowledge our implementation is the first implementation of a pipelined
binary tree scan algorithm. The doubly pipelined algorithm is new. Efficiently
mapping communication trees to SMPs is already described for broadcasting in
[8]. However our method to maintain the canonical numbering of the PEs as an
in-order numbering of the tree is new.



Parallel Prefix (Scan) Algorithms for MPI 57

For the design and determination of block sizes a linear cost function was
assumed. This is a simplified assumption, and more accurate cost models could
lead to better results. In [9] the prefix-sums problem is studied in the LogP
model from a different perspective (what is the largest number of xis that can
be reduced in a given time?). The resulting algorithms are complex, so there is
a trade-off between accuracy and implementation concerns.
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Abstract. We show how to adapt and extend a well-known allgather
(all-to-all broadcast) algorithm to parallel systems with a hierarchical
communication system such as clusters of SMP nodes. For small prob-
lem sizes, the new algorithm requires a logarithmic number of commu-
nication rounds in the number of SMP nodes, and gracefully degrades
towards a linear algorithm as problem size increases. The algorithm
has been used to implement the MPI Allgather collective operation of
MPI in the MPI/SX library. Performance measurements on a 72 node
SX-8 system shows that graceful degradation provides a smooth transi-
tion from logarithmic to linear behavior, and significantly outperforms a
standard, linear algorithm. The performance of the latter is furthermore
highly sensitive to the distribution of MPI processes over the physical
processors.

1 Introduction

An important and well-studied collective communication primitive for message-
passing systems is the allgather or all-to-all broadcast operation [6], in which
each processor has data which have to be distributed (i.e. broadcast) to all
other processors. This primitive has been extensively studied in a variety of
settings and, correspondingly, is known also as (for instance) total exchange [5,4],
catenation [3], and gossip [9]. We will use the term allgather here.

The allgather primitive is incorporated as a collective communication opera-
tion in the Message-Passing Interface (MPI) standard [11] in two flavors. The
MPI Allgather collective is regular in the sense that the size of the data to be
broadcast by each MPI process must be the same for all processes. The more
general, irregular MPI Allgatherv collective does not have this restriction, and
each process may contribute data of different size. A peculiarity of both MPI
primitives, however, is that the size of the data contributed by each process is
known by all processes in advance.

There has recently been much interest in improving the collective operations
in various MPI libraries, see for instance [1,10,12] (and the references therein).
Various allgather algorithms for MPI were discussed and evaluated in [2]. How-
ever, the collective operations in many MPI libraries are not adapted to systems
with hybrid, hierarchical communication systems such as clusters of SMP nodes
(see [7,8,10] for exceptions).

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 58–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper we give an improvement to a well-known allgather algorithm
which makes it suitable to the SMP case. In this context an SMP cluster is
simply a collection of multi-processor nodes interconnected by a communication
network. Communication between processors on the same node (typically via
shared memory) is assumed to be faster (lower latency, higher bandwidth) than
between processors on different nodes. Most importantly, the number of proces-
sors per node that can simultaneously communicate with processors on different
nodes is restricted, typically to only one processor, although some modern high-
performance interconnects offer multiple communication ports. We assume that
communication within nodes is homogeneous, and likewise that the interconnect
over the nodes is homogeneous, that is the cost of communication between any
two processors on two different nodes is independent of the location of the two
processors.

MPI is a process based model. Sets of processes are represented by so-called
communicators. The semantics of the MPI collectives is defined in terms of the
numbering of the processes in the given communicator. Since new communica-
tors can be defined arbitrarily from existing ones, no assumptions about the num-
bering of MPI processes residing on an SMP node can be made. In particular, it
cannot be assumed that the processes on a node form a consecutively numbered
subset. Since allgather is a symmetric operation, it is desirable that the perfor-
mance of MPI Allgather be independent of the numbering of the processes.

In this paper we are concerned with regular SMP clusters, where the SMP
nodes have the same number of processors. Additionally, the performance bounds
for the allgather algorithm requires each node to run the same number of MPI
processes. Again, since MPI allows arbitrary creation of new communicators,
also for regular clusters it is possible to create communicators that do not fulfill
this assumption. The algorithm can be used for the general case also, but can
incur load imbalance. Better performance could possibly be achieved by a ded-
icated, non-regular algorithm. The algorithm can also be used for the irregular
MPI Allgatherv collective, but for very irregular problems better performance
could possibly be achieved by a dedicated, irregular allgather algorithm.

2 An Allgather Algorithm with Graceful Degradation

We first present the regular allgather algorithm independent of MPI for systems
with a homogeneous communication system (non-SMP case). The new feature
which makes the algorithm better suited to clusters of SMP nodes is a smooth
transition from logarithmic to linear behavior as the problem size grows. We
term this feature graceful degradation.

We let p denote the number of processors, which are numbered from 0 to
p − 1. Each processor r has a block of data block[r] of size b. For the regular
allgather problem, b is the same for all processors. The total size of the allgather
problem at hand is m = pb. The task of the allgather operation is to collect all
blocks block[0], block[1], . . . , block[p − 1] on all processors (in that order). By
convention, for i ≤ j, we let block[i, j] denote the consecutive sequence of blocks
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block[i], block[i + 1], . . . , block[j], and for j < i, we let block[i, j] denote the
“wrapped” consecutive sequence of blocks block[i], block[i + 1], . . . , block[p −
1], block[0], . . . , block[j].

The algorithm consists of a logarithmic phase, a linear phase, and a last round,
either of which can be empty. In the logarithmic phase, each processor in each
round doubles the number of blocks that it has collected. The algorithm used
in this phase is the catenation algorithm of [3] (whose communication pattern
is a regular, so-called circulant graph). The number of rounds of the logarithmic
phase is determined by K, which can be any integer less than or equal to 
log p�.
In the linear phase, larger, consecutive chunks consisting of 2K input blocks are
pipelined through rings of processors, until in the last round a last chunk of size
strictly less than 2K blocks is sent and received by each processor. In each round
each processor sends and receives the same number of blocks. Below follows a
more precise description of the combined algorithm.

r + 2

linear round 0 linear round 1

r + 1

last round

r r + 4 s = r + 8

Fig. 1. The three phases of the combined allgather algorithm illustrated from a single
processors point of view. In the logarithmic phase processor r receives blocks of size
1, 2, 4 from processors r + 1, r + 2, r + 4 respectively. In the linear phase processor r
receives two blocks of size 8 from processor s = r + 8. In the last round the remaining
smaller block of size 5 is finally received from processor s.

1. In round k of the logarithmic phase, for k = 0, . . .K −1, processor r receives
blocks block[s, (s + 2k − 1) mod p] from processor s = (r + 2k) mod p and
sends blocks block[r, (r + 2k − 1) mod p] to processor (r − 2k) mod p.

2. Let s = (r + 2K) mod p, and t = (r − 2K) mod p, where K is the number
of rounds of the logarithmic phase. In round k of the linear phase, k =
0, . . . , 
p/2K� − 2, processor r receives blocks block[(s + k2K) mod p, (s +
(k+1)2K −1) mod p] from processor s and sends blocks block[(r+k2K) mod
p, (r + (k + 1)2K − 1) mod p] to processor t.

3. In the case that p/2K�2K > p, in the last round processor r receives blocks
block[(s+(
p/2K�− 1)2K) mod p, (s+ p− 2K − 1) mod p] from processor s
and sends blocks block[(r +(
p/2K�− 1)2K) mod p, (r +p−2K −1) mod p]
to processor t.

The three phases of the combined algorithm are illustrated in Figure 1. Cor-
rectness follows, since in each round, each processor receives a consecutive seg-
ment of new blocks, and sends a consecutive segment of blocks received in the
previous round.

The number of rounds required is K + p/2K� − 1, and the total number
of blocks sent and received per processor is p − 1 for a total communication
volume per processor of (p − 1)b = m − b. Each round entails either two com-
munication steps (a send and a receive) for uni-directional interconnects, or one
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communication step (a combined send-receive) for interconnects supporting full
bi-directional communication.

For K = 
log p� the algorithm coincides with the algorithm in [3], and for
K = 0 with a trivial, linear time ring algorithm. By choosing K = 
log(B/b)�
for some fixed intermediate buffer size the algorithm switches from logarithmic
to linear behavior before the size of the consecutive segments received and sent
in a round exceeds B. Thus, with increasing block size b the algorithm gracefully
changes from purely logarithmic to linear behavior.

3 Implementation on SMP Clusters

The allgather operation allows a simple hierarchical decomposition to exploit the
faster communication between processors on the same SMP node. The hierar-
chical allgather algorithm looks as follows.

1. Choose a local root on each SMP node
2. On all nodes gather input blocks to local root
3. Perform allgather over local roots
4. On all nodes broadcast result from local root

A straightforward implementation of this scheme would be inefficient for medium
and large problems, since non-root processes would sit idle throughout the all-
gather step. For the implementation of MPI Allgather an additional complica-
tion is caused by the fact that MPI processes are not necessarily consecutively
numbered within the SMP nodes. Thus the blocks gathered at the local roots in
the second step will either be nonconsecutive at the local root, or will have to be
stored consecutively in an intermediate buffer. Both solutions have undesirable
drawbacks.

For the broadcast (and the gather) operation, an SMP implementation would
presumably use shared memory. In many cases, shared memory used for commu-
nication between MPI processes has to be specially allocated outside of process
memory, and cannot be arbitrarily large.

By using the allgather algorithm of Section 2 each of these problems can
be effectively addressed for allgather problems up to a certain size. For now we
consider regular SMP systems with the same number of MPI processes per node.
We let N denote number of nodes, and n the number of processes per node such
that p = nN .

A shared memory buffer is used for the gather and broadcast operations, and
is chosen to be of a fixed, maximum size B. The number of logarithmic rounds
of the allgather algorithm is chosen as K = min(
log N�, 
B/nb�), where nb is
the total size of the input blocks on each SMP node.

The hierarchical allgather algorithm is implemented as follows. A local root
process r is chosen for each SMP node, and allocates a shared memory commu-
nication buffer of size B. For each node the blocks block[i] for the processes on
the node are packed consecutively into the shared memory buffer using a node
local consecutive numbering of the processes. The local roots execute the all-
gather algorithm of Section 2 with the modification that after each round of the
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linear phase, the blocks sent to processor t are unpacked into the result buffer
of all processes on the SMP node. After the last round, the broadcast is com-
pleted by unpacking the last segment of blocks. This implementation effectively
pipelines the allgather and the broadcast step of the hierarchical algorithm. We
note that for communication systems that support concurrent communication
and computation, unpacking of the blocks being sent to t into the result buffer
of the local root can be performed concurrently with sending these blocks and
receiving the next blocks from process s.

This algorithm can be used for allgather problems for which nb ≤ B, i.e. for
problems where the blocks of the processes on each SMP node can fit into the
shared memory buffer. For larger problems a linear ring algorithm can be used.
This should be implemented as follows. The MPI processes are sorted according
to their SMP node id. The index of each process in this sorted sequence is used
as virtual rank. In p − 1 rounds, each process with virtual rank r receives a
block from virtual process (r + 1) mod p and sends a block to virtual process
(r − 1) mod p.

For systems with large SMP nodes (say, more than 8 processors per node)
the transition from SMP algorithm to linear ring (which occurs when nb > B)
may be too coarse. This can be avoided by introducing a linear algorithm similar
to the linear phase for “medium sized” problems. The number of input blocks
that can be kept in the shared memory buffer is 
B/b�, so the p processors are
divided into p/
B/b� virtual nodes each of size 
B/b�. A local root is chosen for
each virtual node, and the linear phase of the allgather algorithm is executed
over the virtual roots.

4 Performance Evaluation

The SMP allgather algorithm has been incorporated into the MPI/SX implemen-
tation for NEC’s SX series of parallel vector computers [10]. In this section we
evaluate the implementation using the 72 node SX-8 system at HLRS (Hochleis-
tungsrechenzentrum, Stuttgart).

The basic performance of the combined algorithm for N = 36 nodes and
n = 1, 4, 8 processes per node is illustrated in Figure 2 by comparing it to a
linear ring algorithm. Running time is given as a function of the block size per
process b. For small blocks up to a few KBytes the improvement over the linear
algorithm is more than a factor of 3 for n = 1 process per node, and more than
13 for n = 8 processes per node. As block size increases the performance of the
combined algorithm converges towards that of the linear algorithm. For n = 8
processes per node the switch to linear ring occurs after 64 KBytes (per process;
the maximum shared memory buffer size is set to B = 1 MByte), and incurs a
performance decrease by a factor of two (thus, the additional linear algorithm
over virtual nodes described above would be worth considering).

The effect of graceful degradation towards the linear performance is further
illustrated in Figure 3. This compares the combined algorithm to an SMP im-
plementation of the logarithmic algorithm of [3], which switches to a linear ring
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Fig. 3. The combined allgather algorithm over MPI COMM WORLD compared to an algo-
rithm with without graceful degradation for N = 36 nodes and n = 4, 8 processes per
node

as soon as the gathered result cannot fit into the shared memory buffer. This
hybrid algorithm exhibits a very sharp jump in running time, which for n = 8
processes per node occurs at 8 KBytes, and is about a factor 7.

The potential sensitivity of a non-SMP algorithm to the numbering of of the
MPI processes over the SMP nodes is illustrated in Figure 4. The combined al-
gorithm (shown left) is compared to a linear ring algorithm over the MPI ranks
(shown right) for the ordered MPI COMM WORLD communicator and a communica-
tor in which the processes have been randomly permuted. In the latter case, the
successor and predecessor of process r (namely (r−1) mod p, and (r+1) mod p)
are almost always on a different SMP node, so in each communication round,
almost all n processes on each node attempt to communicate with a process on
another node, leading to serialization at the nodes. As expected, for n = 4 the
random communicator performance is from a factor 2 for small block sizes up to
almost a factor 4 for large block sizes worse than the ordered communicator. For
n = 8 the performance degradation ranges from a factor of 3 up to a factor of
6. For somewhat larger block sizes, the combined algorithm is insensitive to the
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Fig. 4. The combined allgather algorithm (left) compared to non-SMP aware linear
algorithm (right) for ordered MPI COMM WORLD and random communicator for N = 36
nodes and n = 1, 4, 8 processes per node

MPI process distribution. The difference for n = 8 for small block sizes is due
to the fact that for the random communicator the gathered result does not form
a consecutive segment of blocks, and must be unpacked as p individual blocks.
On a vector machine like the NEC SX-8, copying of small blocks is penalized.

5 Concluding Remarks

We presented an allgather algorithm which combines well-known logarithmic
and linear round allgather algorithms, and efficiently makes use of potentially
limited intermediate communication buffer space. This makes the new algorithm
suitable for use in regular SMP clusters, in which the number of processors (and
MPI processes) per SMP node is the same for all nodes. The algorithm can be
implemented also for non-regular SMP clusters, and has been used for the im-
plementation of both MPI Allgather and MPI Allgatherv collectives. However,
for very irregular problem instances, dedicated irregular algorithms might give
better performance.

The combined algorithm was developed assuming single-port communication
of the SMP nodes. It is worth pointing out that both the logarithmic and the
linear phase can easily be generalized to the case where the SMP nodes have
k > 1 communication ports.
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Abstract. MPI Allgather is an important collective operation which is
used in applications such as matrix multiplication and in basic linear al-
gebra operations. With the next generation systems going multi-core, the
clusters deployed would enable a high process count per node. The tra-
ditional implementations of Allgather use two separate channels, namely
network channel for communication across the nodes and shared memory
channel for intra-node communication. An important drawback of this
approach is the lack of sharing of communication buffers across these
channels. This results in extra copying of data within a node yielding
sub-optimal performance. This is true especially for a collective involv-
ing large number of processes with a high process density per node. In the
approach proposed in the paper, we propose a solution which eliminates
the extra copy costs by sharing the communication buffers for both intra
and inter node communication. Further, we optimize the performance
by allowing overlap of network operations with intra-node shared mem-
ory copies. On a 32, 2-way node cluster, we observe an improvement
upto a factor of two for MPI Allgather compared to the original imple-
mentation. Also, we observe overlap benefits upto 43% for 32x2 process
configuration.
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1 Introduction

Clusters of commodity PCs are being increasingly deployed for high-end com-
puting owing to their high performance-to-price ratios. Infact, many top 500
supercomputers are large scale clusters. These high-end systems are typically
equipped with more than one processor per node such as a 2-way/4-way/8-way
SMP or NUMA architecture. Also, the next generation systems feature multi-
core support enabling more processes to run per processor. Already systems with
dual-core and quad-core support have entered the high performance computing
� This research is supported in part by Department of Energy’s Grant #DE-FC02-

01ER25506; National Science Foundation’s grants #CCR-0204429, #CCR-0311542
and #CNS-0403342; grants from Intel and Mellanox; and equipment donations from
Intel, Mellanox, AMD, Apple, Advanced Clustering and Sun Microsystems.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 66–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Shared Memory and RDMA Based Design 67

arena. This is expected to increase in future with even higher multi-cores being
inducted to build ultra-scale clusters.

Message Passing Interface (MPI) [9] has evolved as the de-facto programming
model for writing parallel applications. MPI provides many point-to-point and
collective primitives which can be leveraged by these applications. Many paral-
lel applications [7] employ these collective operations. MPI Allgather is one such
important operation which is used in applications involving matrix multiplica-
tion, solving differential equations and in basic linear algebra operations. Thus,
optimizing the performance of this operation on the emerging next generation
cluster architecture presents an important problem.

Recently, InfiniBand has emerged as one of the leaders in the high performance
networking domain [4]. It provides RDMA which enables a process to directly
write data to a remote process’s address space. We have shown the benefits of using
this feature for various collective operations such as MPI Barrier, MPI Allgather,
MPI AlltoAll [5] [8] [11] [10]. But, these approaches are optimal for one process
running per node. With the next-generation systems going multi-core, it is essen-
tial to choose the fastest communication methods offered by the underlying sys-
tem and network interconnect for efficient collective operations. In the existing ap-
proaches, collective communication is performed by utilizing two different chan-
nels, shared memory channel for intra-node communication and network chan-
nel for communication across the nodes. The major drawback of this approach
is that as these two channels do not share the communication buffers, multiple
copies are involved in the whole operation. This significantly degrades the per-
formance on large clusters especially with multiple processes running on a single
node. Also, since these channel do not have common buffers, overlapping commu-
nication across shared memory and network is difficult to accomplish.

In this paper, we propose a combined shared memory and RDMA based de-
sign which overcomes the problem outlined above. The copy costs are eliminated
in our design by allowing the data buffers to be shared for both communication
within the node and across the nodes. Our design extends the traditional re-
cursive doubling algorithm for Allgather to accommodate more processes per
node. Also, since the communication buffers in our design are shared, there is a
benefit of overlapping of intra- and inter-node communication. We have imple-
mented our designs and integrated them into MVAPICH [6] which is a popular
MPI implementation for InfiniBand used by more than 365 organizations world-
wide. We have evaluated our designs on two different cluster configurations. For
a 32x2 configuration, our design improves the latency of the MPI Allgather by
a factor of two. Further, we observe that the overlapping network and shared
memory communication improves the performance upto 43% in the latency of
MPI Allgather.

The rest of the paper is organized in the following way. In Section 2, we
provide the background of our work. In Section 3, we explain the motivation
for our scheme. In Section 4, we discuss detailed design issues. We evaluate our
designs in Section 5 and talk about the related work in Section 6. Conclusions
and Future work are presented in Section 7.
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2 Background

2.1 Recursive Doubling Algorithm for Allgather

In this algorithm, a pair of processes exchange data for every step. The total
number of steps in the algorithm is of the order of log(p) where p is the number
of processes in the operation. Also, the data involved for each step doubles as
the operation progresses, hence the name recursive doubling. The total commu-
nication time of this algorithm is:

Trd = ts ∗ log(p) + (p − 1) ∗ m ∗ tw (1)

Where,
ts = Message transmission startup time, tw = Time to transfer one byte, m
= Message size in bytes and p = Number of processes. MPICH [3] [12] uses
Recursive doubling algorithm for power of two and up to medium size messages.
For non-power of two processes, Bruck’s Algorithm [2] is used for small messages.
In this paper, we consider only the power of two case and hence we focus on the
recursive doubling technique.

2.2 InfiniBand Overview

The InfiniBand Architecture [6] defines a switched network fabric for intercon-
necting processing and I/O nodes. In an InfiniBand network, hosts are connected
to the fabric by Host Channel Adapters (HCAs). InfiniBand utilities and features
are exposed to applications running on these hosts through a Verbs layer. In-
finiBand Architecture supports both channel semantics and memory semantics.
In channel semantics, send/receive operations are used for communication. In
memory semantics, InfiniBand provides Remote Direct Memory Access (RDMA)
operations, including RDMA Write and RDMA Read. RDMA operations are
one-sided and do not incur software overhead at the remote side. Regardless
of channel or memory semantics, InfiniBand requires that all communication
buffers to be registered. This buffer registration is done in two stages. In the
first stage, the buffer pages are pinned in memory (i.e. marked unswappable). In
the second stage, the HCA memory access tables are updated with the physical
addresses of the pages of the communication buffer.

2.3 Point-to-Point MPI Operations in MVAPICH

The two main protocols used for MPI point-to-point primitives are the eager and
rendezvous protocols. In the eager protocol, the message is copied into commu-
nication buffers at the sender and destination process before it is copied into the
user buffer. These copies are not present if rendezvous protocol is used. However,
in this case an extra handshake is required to exchange user buffer information
for zero-copy of the message. In this paper we deal with small to medium mes-
sages which are sent using the eager protocol and thus copy operation is involved
at both the sender and the receiver. For intra-node communication, a separate
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shared memory channel is used for communication. In MVAPICH, the shared
memory channel involves each MPI process on a local node attaching itself to
a shared memory region at the initialization phase. This shared memory region
can then be used amongst the local processes to exchange messages and other
control information. Each pair of the local processes has its own send and receive
queues. Small and medium messages are sent eagerly, where as a packetization
approach is used for large messages.

3 Motivation

Node 2 Node 3

Node 1Node 0

STEP 2

Network Buffers

Shared Memory Buffers

Shared Memory Channel
STEP 3

STEP 1

Network Channel

STEP 2

Network Channel

Shared Memory Channel
STEP 3

STEP 1

Fig. 1. Separate communication buffers

The traditional implementa-
tion of MPI Allgather for
multi-way SMP-based clus-
ters uses MPI point-to-point
operations. Depending on the
pair of processes communi-
cating, these operations use
either the network channel
or the shared memory chan-
nel for communication. Con-
sider a scenario where eight
processes are involved in All-
gather with two processes per
node as shown in Figure 1.
The total number of steps in-
volved in the operation is 3
which is log(8).

Depending on which pair is communicating at a step, the communication ei-
ther proceeds over one of the two channels. Also, these two channels are designed
separately and consequently do not allow sharing of buffers across the channels.

In the example considered, the first two steps involve the inter-node commu-
nication over the network channel. The third step involves the shared memory
channel. Please note that we have taken this sequence of operations to illustrate
the main idea. The network and shared memory operations can be scheduled in
a different order depending on how the processes are launched on these nodes.
As seen from the figure, separate sets of pinned buffers are associated with
each channel for transmitting the data. As a result, though all the data for a
given step has arrived at a node from other processes, it cannot be copied to
every process local to the node. This is important in Allgather which involves
an All-to-All broadcast of data. The reason why the data cannot be copied is
because the network buffers are exclusive to a network channel and only the
process communicating via this channel can access these buffers. Hence, a sep-
arate shared memory channel is needed resulting in extra copying of the data.
Also the total amount of data exchanged increases linearly with the total number
of processes participating in the operation. Thus, on a large cluster with more
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than one process per node, the copy costs play a dominant role degrading the
performance of the collective operation. Another aspect to be taken into consid-
eration is that since the buffers are not shared across the channels, overlapping
shared memory and network communication becomes difficult to do. This further
degrades the performance of this all-to-all operation.

This leads us to the following two questions:
1)What mechanisms are needed to optimize MPI Allgather for the emerging

multi-core/multi-way InfiniBand Clusters?
2)How can we schedule the operations so as to easily allow overlap of network

and shared memory operations?
We address these questions in this paper.

4 Design and Implementation

The basic idea used in our approach is to use a common memory segment both
for intra and network communication. This memory segment is shared across all
the processes local to the node. Further, this segment is pinned so that it can
be accessed directly by the NIC for the network operation. We now outline the
main steps involved in our approach.

Our Approach: We extend the recursive doubling algorithm discussed earlier to
be performed across the nodes rather than across the processes. In this fashion,
a single message is exchanged per a pair of nodes irrespective of how many
processes are scheduled on a node. This is accomplished by making all the local
processes write their data into the shared memory segment in the initial step.
This is the step 0 as shown in the Figure 2. Once all the processes have written
the data into this buffer, the data exchange starts over the network. In the first
step, node pairs 0, 1 and 2, 3 exchange the data. Note that the data exchanged
in this step is one fourth the size of the total data. After this step, the second
step as shown in the Figure 3 begins. The size of the data exchanged in this step
is doubled as seen from the figure. The pairs which are involved in this exchange
are now 0, 2 and 1, 3. Once this step is completed, each node has the data from
all the processes. In the final step, which is the step four, the data is copied out
of the shared memory segment.

As can be seen from the above example, in our approach the data is exchanged
across the nodes in a recursive pair-wise fashion with a single data transfer
operation between each pair of nodes. The number of steps would be equal to
log(n) where n is the number of nodes involved in the operation. In the example
considered, the number of steps is log(4) which is two. Note that by providing
a common set of buffers for both network and intra-node data transfers, we
eliminate the extra copying that would otherwise occur.

Overlap benefits: The main benefits of having a shared buffer is the potential
of overlap between the network operations and the memory copy operations. By
referring to the same Figures 2 and 3, it can be observed that the data arrived
in step 1 of the operation can be copied to the processes’ buffers concurrently
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with network operation in step 2. Thus, we need not wait till all the network
operations are completed before the data is copied out of the shared memory
segment. For a large scale cluster, this benefit is significant as both the size of the
data involved is large and also there are more steps involved in the algorithm.

STEP 0STEP 0

(Shared Memory copy)
STEP 0 STEP 0

STEP 1
(Network Channel)

STEP 1
(Network Channel)

Node 1

Node 2
Node 3

(Shared Memory copy)

Node 0

Fig. 2. Steps 0,1

STEP 3 STEP 3

STEP 2

(Network Channel)

STEP 2

(Network Channel)

(Shared Memory copy)
STEP 3 STEP 3

(Shared Memory copy)

Node 0
Node 1

Node 2 Node 3

Fig. 3. Steps 2,3

Implementation Details: The initial implementation step in our approach
is creating a shared memory segment per node. This is done by making all
the processes local to a node do a mmap of a shared file. After this step, this
shared segment is pinned so that data can be accessed directly by the NIC for
the network operation. In our design, the shared buffer is pinned by all the
processes. This enables all the processes to issue network operations from this
memory segment. RDMA is used for network data transfers as it is proven to
be an efficient method for inter-node communication. In our implementation,
we let one given process issue the network operations from a node. This can
be easily accomplished as the processes have local ranks ranging from 0 to p-1
where p is the total number of processes per node. We choose the process with
local rank 0 to issue network operations. Note that the addresses of this memory
segment are exchanged before the Allgather is initiated. The data notification
is done by doing a RDMA write of a one byte flag. These flags are also shared
within a node and thus all the processes local to the node can poll for data
arrival. This is useful for achieving overlap between network and shared memory
copy operations. For synchronizing between the processes within a node another
separate set of flags are used.

5 Performance Evaluation

In this section we compare the performance of the new scheme proposed in the
paper with the already existing approach. The comparison is made by measuring
the Allgather latency for the two schemes across different message sizes and for
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two different cluster configurations. The test was conducted for 1000 iterations
for each message size. The abbreviations used for the comparison are as follows:

– new: The new shared-memory and RDMA based solution proposed in the
paper.

– original: The original algorithm using MPI point-to-point operations

5.1 Experimental Testbed

We have carried tests on two different clusters:
1) Cluster A: Each node in this testbed has dual Opteron 2.4 GHz processors,

1024 KB L2 cache. They are equipped with MT25204 InfiniBand HCAs with
PCI-Express interfaces.

2) Cluster B: Each node in this cluster is a Xeon 2.66 GHz processor with
512 KB L2 cache. Each node is connected with MT23108 InfiniBand HCA with
PCI-X interface.

5.2 Latency of MPI Allgather

As the results indicate our approach outperforms the original approach for the
different cluster configurations considered. For Cluster A we observe benefits
upto a factor of 1.47 and 1.39 for 32 and 64 processes as indicated by Figures
4 and 5 respectively. On cluster B, we observe an improvement by a factor of
1.97 and 1.82 for the considered configurations, 16x2, 32x2. These are shown in
Figures 6 and 7 respectively.

We have also measured the impact of overlap of network operations and shared
memory communication on these clusters. The non-overlap approach is imple-
mented by making the processes copy the data from the shared buffers at the
end after the network operations are completed. But, for the overlap case the
processes copy the data as soon as it arrives and concurrently issue network
operations. This is the approach taken in this paper. With the shared buffer
RDMA design proposed the overlap improves the performance of the collective
upto 30% for Cluster A and 43% for Cluster B as shown in the Figures 8 and 9.

6 Related Work

Utilizing shared memory for implementing collective communication has been a
well studied problem in the past. In [13], the authors proposed to use remote
memory operations across the cluster and shared memory within the cluster
to develop efficient collective operations. They apply their solutions to Reduce,
Bcast and Allreduce operations on IBM SP systems. In our approach we con-
sider a different collective Allgather which has different communication pattern
and present the results on commodity clusters. In [1], the authors implement
collective operations over Sun systems. In [14], the authors improve the per-
formance of send and recv operations over shared memory and also apply the
techniques for group data movement. We have also designed and implemented
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collectives, MPI Barrier, MPI AlltoAll, MPI Allgather, [5] [8] [11] [10]based on
RDMA. However, these collectives are optimized for a single process running on
a node.

7 Conclusions and Future Work

MPI Allgather is an important collective operation which is used in applications
such as matrix multiplication and in basic linear algebra operations. The next
generation systems feature multi-core architecture enabling a high process count
per node. The traditional implementations of Allgather use two separate chan-
nels, namely network channel for communication across the nodes and shared
memory channel for intra-node communication. Since there is no buffer shar-
ing across these channels, the performance achieved is sub-optimal due to the
extra copying of data within a node. This is true especially for a collective in-
volving large number of processes with a high process density per node. In the
approach proposed in this paper, we eliminate the extra copy costs by sharing
the communication buffers for both intra and inter node communication. Also,
we optimize the performance by allowing overlap of network operations with
intra-node shared memory copies. On a 32, 2-way node cluster, we observe an
improvement upto a factor of two for MPI Allgather compared to the original
implementation. We also observe overlap benefits upto 43% for 32x2 process con-
figuration. For our future work, we plan to evaluate our design with multi-core
enabled clusters and also study the application-level impact.
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Abstract. Modern network communication libraries that leverage Re-
mote Directory Memory Access (RDMA) and OS bypass protocols, such
as Infiniband [2] and Myrinet [10] can offer significant performance ad-
vantages over conventional send/receive protocols. However, this perfor-
mance often comes with hidden per buffer setup costs [4]. This
paper describes a unique long-message MPI [9] library ‘pipeline’ pro-
tocol that addresses these constraints while avoiding some of the pitfalls
of existing techniques. By using portable send/receive semantics to hide
the cost of initializing the pipeline algorithm, and then effectively over-
lapping the cost of memory registration with RDMA operations, this
protocol provides very good performance for any large-memory usage
pattern. This approach avoids the use of non-portable memory hooks
or keeping registered memory from being returned to the OS. Through
this approach, bandwidth may be increased up to 67% when memory
buffers are not effectively reused while providing superior performance
in the effective bandwidth benchmark. Several user level protocols are
explored using Open MPI’s PML (Point to point messaging layer) and
compared/contrasted to this ‘pipeline’ protocol.

1 Introduction

RDMA capable interconnects are widely used in high performance computing
(HPC) systems. While these interconnects provide for high bandwidth and low
latency messaging, they also pose unique challenges to HPC software designers.
The Message Passing Interface (MPI) standard [9] [7], one of the most widely
used HPC messaging paradigms, generally abstracts these issues from the paral-
lel programmer. However, implementations of this standard and other messag-
ing middleware must address these challenges to achieve balanced performance
across a wide variety of application communication patterns.

One such challenge is the requirement by most RDMA interconnects that
memory be explicitly registered with the interconnect and pinned by the OS.
Memory registration is often an expensive operation requiring a trap to the OS
and an additional linear cost that is a function of the number of pages in the

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 76–85, 2006.
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memory region. Various techniques exist to minimize the impact of memory
registration but each make specific assumptions about application behavior or
system usage. Typical approaches involve caching registrations for later reuse,
but many applications do not effectively reuse communication buffers. Addition-
ally, the application may invalidate the cached buffer, which places constraints
on the return of cached pages to the OS.

In this paper we describe a high performance user level RDMA protocol which
minimizes the impact of memory registration while avoiding the pitfalls of other
techniques. This protocol provides good performance while minimizing resource
usage. In addition, this protocol makes no assumption about application behavior
thereby providing improved performance for certain applications. This protocol
and others were implemented and evaluated in the context of Open MPI [6].

The remainder of this paper is organized as follows. Section 2 provides an
overview of Infiniband, the RDMA interconnect used in our research. Next, sec-
tion 3 discusses different approaches to minimize the impact of memory regis-
tration, while section 4 discusses our user-level pipeline protocol. Open MPI’s
support for multiple techniques is discussed in Section 5. Results are discussed
in Section 6, followed by related work in Section 7. Conclusions and future work
are discussed in Section 8.

2 Infiniband

Infiniband, similar to Myrinet GM and iWARP [5], provides both RDMA and
OS bypass facilities. RDMA enables data transfer from the address space of an
application process to a peer process across the network fabric without requiring
involvement of the host CPU. Infiniband RDMA operations support both two-
sided send/receive and one-sided put/get semantics. Each of these operations
may be queued from the user level directly to the host channel adapter (HCA)
for execution, bypassing the OS to minimize latency and processing requirements
on the host CPU.

Infiniband does place some constraints on these operations. As data is moved di-
rectly between the host channel adapter (HCA) and user level source/destination
buffers, these buffers must be registered with the HCA in advance of their use.
Registration is a relatively expensive operation which locks the memory pages as-
sociatedwith the request, therebypreserving the virtual to physicalmappings. Ad-
ditionally, when supporting send/receive semantics, pre-posted receive buffers are
consumed in order as data arrives on the host channel adapter (HCA). Since no at-
tempt ismadetomatchavailablebuffers to the incomingmessagesize, themaximum
size of a message is constrained to the minimum size of the posted receive buffers.

Infiniband shares many characteristics with other common RDMA intercon-
nects including Myrinet GM and emerging standards such as iWARP. The
common requirement for explicit memory registration, local knowledge of peer
registrations prior to initiating an RDMA operation, and the associated issues
with effectively managing these registrations motivated the work described in
the following sections.
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3 RDMA

To overcome the expense of registering memory with the interconnect, appli-
cation and library developers have used several techniques. A simple solution
is to restrict all RDMA operations to a static memory region. This allows the
application to register the memory region once and amortize this cost over a po-
tentially large number of RDMA operations. While this does help in hiding the
costs of the memory registration, it restricts the application to a static memory
region. For many applications this usage model is inappropriate and results in
copy in/out of the registered memory. For larger messages copy costs quickly
become a bottleneck.

Another approach is to register memory on demand. The target and source
buffers are registered prior to the RDMA operation and then deregistered upon
completion of the operation. This approach allows the MPI library to RDMA
from any memory region providing a true zero copy transfer but at a high mem-
ory registering cost prior to each RDMA operation.

A third approach, first explored in MPICH-GM [1] and later in MVAPICH
[8], avoids the high cost of copying in/out of a static memory region and in
some use cases allows the cost of registering the memory region to be amortized
over multiple RDMA operations. Prior to the RDMA operation the memory
region is registered and the registration is then cached locally. Subsequent RDMA
operations first query the cache for a matching registration and if found uses
this registration to immediately initiate the RDMA operation. For applications
which regularly reuse source and target buffers for RDMA operations the cost
of the initial registration is effectively amortized over these subsequent RDMA
operations. A drawback to this approach is that some applications may not
effectively reuse source and target buffers incurring a high cost for each RDMA
operation. Additionally, cached buffers may be frequently invalidated by the
application. Message buffers allocated by the application, registered and cached
by the MPI layer, and later returned to the OS by the application must be
removed from the cache at the MPI layer. Reuse of these cached registrations
would result in silent corrupted data transfers due to changes in the page table
mappings on subsequent allocations. Current approaches to addressing this issue
involve either non-portable memory hooks and/or linker tricks to intercept sbrk,
munmap, and/or free to insure that returned pages are removed from the cache,
or simply disabling the return of pages to the OS by the allocator.

Hardware based approaches as found in Quadrics [3] eliminate the need to
register memory entirely. While avoiding the high cost of registration this ap-
proach increases the complexity of the interconnect and therefore the cost, and
also involves kernel modifications to support the ghost page tables resident on
the NIC.

This paper describes an alternate approach which allows RDMA operations
from arbitrary memory regions while maintaining high performance, and
makes no assumption about the applications reuse of source and target buffers.
Send/Recv operations are employed to cover the cost of initializing the RDMA
pipleline, and memory is dynamically registered in smaller pieces and RDMA
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operations are overlapped with memory registration/deregistration.This pipeline
protocol is described in further detail in the following section.

4 RDMA Pipeline Protocol

The pipeline protocol begins by eagerly sending the first part of the message data,
up to a configurable eager limit, along with a MATCH header using send/receive
semantics, as illustrated in Figure 1,

Sender Receiver

match + eager data

MPI Message
Eager Data

Eager Limit

match ()

Fig. 1. Sending Eager Data with Match Header

Upon receiving and matching the header to a posted receive (figure 2, the
receiver responds with an ACK to the source and begins registering, up to a con-
figurable pipleline depth, blocks (RDMA fragments) of the target buffer across
the available RDMA capable HCAs. The size of each block is constrained by
the maximum configured RDMA size for each interconnect. As each registration
in the pipeline completes, an RDMA target fragment READY control message
is sent to the source to initiate a registration of the source RDMA fragment
followed by an RDMA write on the block.

Next, send/receive semantics are used to send data from the eager limit up
to the initial RDMA write offset, returned by the peer with the rendezvous
ACK (figure 3), striping this data across all available interconnects. This unique
pipeline feature hides the cost of initializing the pipeline.

From Figure 4 we see that as RDMA READY control messages are received
at the source, the corresponding block of the source buffer is registered and an
RDMA write operation is initiated on the current block. On local completion
at the source, an RDMA FIN message is sent to the peer. Registered blocks
are deregistered (released) upon local completion or receipt of the RDMA FIN
message. If required, the receipt of an RDMA FIN messages may also further
advance the RDMA pipeline.

This protocol effectively overlaps the cost of registration/deregistration with
RDMA writes. Resources are released immediately and the high overhead of a
single large memory registration is avoided. Additionally, this protocol results
in improved performance for applications which may not reuse buffers for MPI
operations effectively.
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match + eager data

match ()

prepare( frag 1)

prepare( frag 2)

ACK match

READY Frag 1

READY Frag 2

prepare( frag 3)

READY Frag 3

Pipeline
Depth

Fig. 2. Receiver Registers RDMA Target Fragments

5 Other RDMA Protocols

In addition to the RDMA pipeline protocol, which is enabled by default, Open
MPI supports additional techniques for managing RDMA registrations. These ap-
proaches have been developed to contrast the relative merits of each, and allow the
behavior to be tuned at run-time to best match the application characteristics.

5.1 RDMA Cache

Open MPI provides the capability to optionally register memory on first use and
cache these registrations for later re-use. When this approach is used, the entire
source/destination buffer is registered and a single RDMA operation is initiated
on receipt of an ack from the peer. If multiple network interfaces are available,
the message is divided across the available interfaces, and a single operation is
initiated on each interface.

While other MPI implementations prevent physical pages from being released
to the OS, Open MPI provides the capability to use memory hooks to inter-
cept the deallocation of memory and it’s return to the OS. When pages are
returned to the OS via sbrk/munmap, the pages are checked and any matching
entries de-registered. This prevents future use of an invalid memory registration
while allowing memory to be returned to the host operating system. Intercept-
ing memory deallocation introduces additional overhead and additional research
into reducing this overhead is ongoing.

5.2 RDMA Caching Pipeline

A hybrid approach was developed to explore the benefit of caching individual
registrations within the RDMA pipeline protocol. In this approach, the pipeline
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Fig. 3. Sender Sends Data up to the RDMA Offset to Cover Pipeline Initialization
Costs

protocol described in section 4 is modified to cache each registration as it oc-
curs in the pipeline. Subsequent pipeline RDMA operations from the same or
overlapping buffer space then re-use the cached registrations. Registrations are
aligned to the segment size to further promote reuse.

This hybrid approach leverages the pipeline protocol for good performance
in the case of low buffer reuse, and achieves performance closer to the RDMA
cache when existing registrations can be re-used. The drawback to the introduc-
tion of the cache is the added requirement for memory hooks to intercept the
deallocation of memory as described above.

6 Results

This section presents a comparison of the different protocols in Open MPI. We
first demonstrate the performance of the pipeline protocol as a function of buffer
reuse in terms of bandwidth. Next, we examine effective bandwidth among mul-
tiple peers using different communication patters via the Effective Bandwidth
Benchmark [11]. In general, our results provide comparisons of the pipeline pro-
tocol to:

copy in/out - Standard send/recv semantics with copy in/out of pre-registered
buffers

leave pinned (memory hooks) - Registration cache described in section 5.1 with
memory hooks to intercept memory deallocations.

leave pinned (disable sbrk) - Registration cache described in section 5.1 with re-
turn of pages to OS disabled.

pipeline - Pipeline protocol described in section 4
pipeline leave pinned (memory hooks) - Caching pipeline described in section 5.2

with memory hooks to intercept memory deallocations
pipeline leave pinned (disable sbrk) - Caching pipeline described in section 5.2

with return of pages to OS disabled.
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Fig. 4. Sender Prepares and RDMA Writes a Fragment

6.1 Experimental Setup

Our experiments were performed on a 256 node cluster consisting of dual In-
tel Xeon X86-64 3.4 GHz processors with a minimum 6GB of RAM, Mellanox
PCI-Express Lion Cub adapters connected via a Voltair switch. The Operating
System is Linux 2.6.9-11 and the MPI library is Open MPI 1.1 stable.

6.2 Bandwidth

The following graphs illustrate the performance of the pipeline protocol as a
function of buffer reuse. As Figure-5(a)1 illustrates, with no buffer reuse, the
standard pipeline protocol achieves a speedup of up to 67 percent over the reg-
istration cache. This can be attributed to the pipeline protocol effectively over-
lapping the cost of registration with RDMA. In contrast, with no buffer reuse,
the caching protocol is limited by the high cost of registration. The copy in/out
protocol provides performance almost equal to that of the pipeline protocol but
it is important to note that this protocol limits the application ability to overlap
communication with computation by intensively using the CPU and memory
bus.

An interesting metric is the amount of reuse required for the caching protocol
to achieve performance comparable to the pipeline. Figure-5(b) illustrates the
bandwidth achieved for each protocol as a function of the number of times the
buffer is reused, for an arbitrary fixed message size (8 Mbytes). As the graph
illustrates, the buffer must be reused on the order of 40-50 times before the

1 Lion Cub SDR HCA’s in 4X PCI-Express slot.
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caching protocol achieves performance equivalent to the standard pipeline. Note
that the hybrid caching pipeline ramps up much earlier, as the registrations are
overlapped with RDMA and re-used on subsequent invocations of the pipeline.
This approach improves bandwidth over the standard pipeline as we defer the
cost of deregistration until memory is released by the application.

6.3 Effective Bandwidth Benchmark beff

The Effective Bandwidth Benchmark (beff ) was used to examine protocol effect
on bandwidth in more complex communication patterns. In this benchmark 8
nodes were used to communicate message sizes up to 8 MBytes in size (Lmax)
using different communication patterns. In this benchmark the benefits of the
pipeline protocol are apparent. When the memory cache is used (leave pinned) in
conjunction with the pipeline protocol the total bandwidth achieved outperforms
all the other protocols by a significant margin, this is even the case for a single
send/recv operation as the pipeline leave pinned protocol need not deregister
any memory where the standard pipeline protocol does. The memory cache alone
(using a single RDMA operation) does not perform as well because beff only
reuses buffers 3 times by default. The high up front cost of registering the entire
buffer is not effectively amortized over so few number of reuse. The pipeline
protocol with memory cache is able to provide superior performance as buffer
reuse is not required to achieve high bandwidth on the first operation, subsequent
operations which reuse these buffers avoids memory registration thereby further
enhancing performance.

7 Related Work

The pipeline protocol discussed in this paper shares some characteristics of the
protocol developed in MPICH-GM although this did not influence the authors
work and differs in several key ways. The PML protocol does not eagerly register
memory upon transmission of the initial rendezvous as in MPICH-GM. Instead
the receiver initializes the RDMA pipeline and the sender covers this cost via
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Table 1. beff results

beff Lmax beff beff ping-pong
at Lmax at Lmax bandwidth
rings& rings
random only

MByte/s MByte/s MByte/s MByte/s
accumulated
- pipeline 1536 8 MB 4794 4812 710
- pipeline leave pinned (memory hooks) 1815 8 MB 5299 5324 735
- pipeline leave pinned (disable sbrk) 1640 8 MB 5209 5216 714
- leave pinned (memory hooks) 1407 8 MB 4012 4029 599
- leave pinned (disable sbrk) 1418 8 MB 3992 3975 603
- copy in/out 1395 8 MB 3133 3130 683
per process
- pipeline 192 599 601
- pipeline leave pinned (memory hooks) 227 662 665
- pipeline leave pinned (disable sbrk) 205 651 652
- leave pinned (memory hooks) 176 502 504
- leave pinned (disable sbrk) 177 499 497
- copy in/out 174 392 391

sending a portion of the buffer after receipt of the rendezvous acknowledgment.
The PML protocol therefore conserves resources (registered memory) and de-
lays the high cost of registration until the message is matched on the receiver.
In addition the PML protocol will optionally cache memory registration which
allows the MPI library to take advantage of buffer reuse while providing good
performance in the absence of reuse.

ARMCI [12] also uses an RDMA pipeline although it differs significantly from
the PML pipeline protocol. The ARMCI protocol overlaps RDMA operations
with copy in/out of pre-registered buffers. This protocol does not provide the
benefit of zero-copy and will result in a larger memory footprint due to the use
of pre-registered buffers.

8 Conclusions and Future Work

RDMA capable interconnects pose unique challenges that require careful con-
sideration to achieve balanced performance and scalability across a wide range
of application communication patterns. The results of this work indicate the
RDMA pipeline protocol effectively addresses these concerns, by hiding the cost
of initializing the RDMA ’pipeline’ protocol, and overlapping the dynamic regis-
tration and deregistration of memory buffers with data transfer. This approach
avoids the issues associated with maintaining a registration cache, which re-
quires non-portable memory hooks to either intercept deallocations, or disable
the return of pages to the OS. Additionally, the pipeline protocol reduces the
memory footprint and resource requirements of the application over the caching
approach.
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The hybrid pipeline protocol which cached registrations as they occurred in
the pipeline provided promising results over the dynamic pipeline. However, the
caching approach is still constrained by the above issues. Additional work to
address these issues would involve effectively managing cache size, investigating
the potential for efficient notification from the OS on changes to registered pages,
and improving the performance of cache cleanup/deregistration.

This material is based upon work supported by Subcontract No. 12783-001-05
49 issued to Rice University from the Regents of the University of California (Los
Alamos National Laboratory). Los Alamos National Laboratory is operated by
the University of California for the National Nuclear Security Administration of
the United States Department of Energy under contract W-7405-ENG-36.

Project support was provided through ASC/PSE and ASC/S&CS programs.
LA-UR-06-1268.
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Abstract. This paper presents the implementation of MPICH2 over
the Nemesis communication subsystem and the evaluation of its shared-
memory performance. We describe design issues as well as some of the
optimization techniques we employed. We conducted a performance eval-
uation over shared memory using microbenchmarks as well as appli-
cation benchmarks. The evaluation shows that MPICH2 Nemesis has
very low communication overhead, making it suitable for smaller-grained
applications.

1 Introduction

The Message Passing Interface (MPI) standard has been designed to enhance
portability in parallel applications, as well as to bridge the gap between the per-
formance offered by a parallel architecture and the actual performance delivered
to the application. The level of achievable performance depends, however, on the
implementation. Two critical areas determine the overall performance level of an
MPI implementation. The first area is the low-level communication layer that
the upper layers of an MPI implementation can use as foundations. The second
area covers the communication progress and management. We designed an effi-
cient communication subsystem, called Nemesis, that features very low overhead
and is therefore suitable to serve as a basis for the MPICH2 software [1], an open
source implementation of MPI.

The design and implementation of the Nemesis communication subsystem
has been previously presented in [2]. In this paper, we describe how we ported
MPICH2 over Nemesis and show the performance benefits of MPICH2 Nemesis.
We also explain the improvements that have been made in the MPICH2 commu-
nication progress engine. The resulting MPICH2 software stack yields a very low
latency and high bandwidth and compares favorably with competing software.
The implementation also allows us to better assess both the overhead and the
performance of MPI.
� This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38,
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Section 2 gives an overview of the Nemesis communication subsystem. Sec-
tion 3 describes how this communication subsystem has been integrated in
MPICH2 as a new CH3 channel. We detail how we implemented several impor-
tant features of the MPI2 standard. The various optimizations that MPICH2
gained are also explained. Section 4 presents a performance evaluation using
shared-memory communication; in particular, we compare our implementation
with the MPICH2 shm channel and other MPI implementations. Section 5 con-
cludes this paper and discusses future work.

2 Overview of the Nemesis Communication Subsystem

In this section, we briefly describe the Nemesis communication subsystem. See [2]
for a complete description of the design and implementation.

The Nemesis communication subsystem was designed to be a scalable,
high-performance, shared-memory, multinetwork communication subsystem for
MPICH2. The goals for our design, in order of priority, were scalability, high-
performance intranode communication, high-performance internode communi-
cation, and multinetwork internode communication. The implication of ranking
the goals this way is that we strive to minimize the overhead for intranode com-
munication, even if this comes at some penalty for internode communication.

To achieve the goals of high scalability and low intranode overhead, we de-
signed Nemesis using lock-free queues in shared memory. Thus, each process
needs only one receive queue, onto which other processes on the same node can
enqueue messages without the overhead of acquiring a lock. Alternative designs
would be to use a pair of receive queues per pair of processes or to use a single
queue with a lock. On a large SMP, neither would be scalable, because of the
O(N2) number of queues needed or the contention on the lock, nor would they
be efficient, because of the overhead of polling multiple queues or the overhead
of acquiring and releasing a lock.

For internode communication, when a message is received from the network, a
polling function for that network module enqueues the message onto the process’s
receive queue. A network module has a send queue onto which messages to be
sent are enqueued. The send queue is analogous to a process’s lock-free receive
queue in that, when a process sends a message, it will enqueue the message onto
the appropriate queue, whether it is a queue for another process on the same
node, or a send queue for a network module. This simplifies the critical path
when sending a message: No special action is taken when sending a message to a
process on a remote node versus a process on the local node. Multiple networks
can be supported by implementing additional network modules. Our current
implementation supports internode communication over sockets and Myricom’s
GM message-passing system [3].

After analyzing our initial design, we applied several optimizations. To reduce
latency, we optimized the placement of the receive queue head and tail pointers and
added a shadow head pointer to reduce L2 cache misses. We also gathered variables
that are often used together in the same cache line to reduce the number of L1 cache
misses in the critical path. For small SMP nodes, we used a fastbox mechanism to
bypass the queues. A pair of buffers is allocated between each pair of processes.



88 D. Buntinas, G. Mercier, and W. Gropp

When sending a message, a process can bypass the queue by copying the message
into the fastbox, if it is free, and setting a flag indicating a message is waiting. The
receiving process then copies the message out of the fastbox and resets the flag. If
the fastbox is full when a process is sending a message, the regular queue mecha-
nism is used. This mechanism would not scale well for large SMPs and is used only
for SMPs with a small number of processors. To improve bandwidth, we imple-
mented architecture-specific memory copy functions. For ia32 and x86 64 archi-
tectures the memory copy function uses nontemporal store operations that bypass
the cache. More details on these optimizations can be found in [2].

3 Integration into MPICH2

The communication portion of MPICH2 is implemented in several layers, as
shown in Figure 1, and provides two ways to port MPICH2 to a communication
subsystem. The ADI3 layer presents the MPI interface to the application layer
above it, and the ADI3 interface to the device layer below it. MPICH2 can be
ported to a new communication subsystem by implementing a device.

The figure shows the device for the Quadrics network. The figure also shows
the CH3 device. The CH3 device presents the CH3 interface to the layer below
it, and provides another way for MPICH2 to be ported to a new communication
subsystem: by implementing a channel. This interface has fewer functions than
the ADI3 interface, making it significantly simpler to implement. Because the
interface is simpler, however, it may not be able to take advantage of certain
features provided by the communication subsystem, such as RDMA or collective
operations.

We chose to port MPICH2 over Nemesis by implementing a CH3 channel.
While our intent is to eventually implement an ADI3 device for Nemesis, imple-
menting a CH3 channel allowed us to rapidly create a prototype and evaluate
the implementation of Nemesis. We did, however, modify the CH3 layer in order
to allow certain optimizations of the Nemesis channel. In the rest of this section
we describe the basic design of the Nemesis channel and key optimizations.

Channels

Devices

MPICH2

shm nemesis

CH3

ADI3

sock

Quadrics

Fig. 1. Software layers of MPICH2

3.1 Basic Design of the Nemesis Channel

To send a message, the CH3 layer calls a send function implemented by the
channel, passing in a pointer to the message header a description of the data
to be sent and a pointer to an MPI request object. The description of the data
consists of an array of pointers and lengths (i.e., an IOV) that can be used to
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describe noncontiguous data. The Nemesis channel copies the header and data
into a Nemesis receive queue element, called a cell, and fills in a short Nemesis
header, then enqueues it on the appropriate receive queue or fastbox, or sends it
over the network to the appropriate remote node. If the CH3 message is larger
than a cell, multiple cells can be used, since the cells are delivered in FIFO order.

If not enough free cells are available to send an entire message, the IOV
describing the unsent data is saved in the request, which is then enqueued onto
a pending-send queue. When free cells are available, the messages on the pending-
send queue are sent out. When all the data described by the IOV has been sent,
the channel makes an up-call to CH3 to see whether there is more data to be sent.
If there is, the IOV is reloaded; otherwise the request is marked as complete.

To receive a message, the Nemesis channel polls the receive queue and fast-
boxes. In order to reduce the overhead of unnecessarily polling too many fast-
boxes, the Nemesis channel polls only active fastboxes, which are the fastboxes
of processes for which this process has posted a receive. Because fastboxes intro-
duce a second path for messages between two processes, sequence numbers are
used to maintain the order of messages.

When a cell is found, either in the receive queue or the fastbox, and there are
no pending receives for that source process, the channel makes an up-call to CH3
with a pointer to the message header. If there is data to receive, CH3 will return an
IOV along with a pointer to a request. The channel then copies the data from the
cell to the user buffer described by the IOV. If the IOV describes more data than is
contained in the cell, the IOV for the unreceived data is saved in the request, and
the request is saved as a pending-receive corresponding to the process that sent
the message. When the next cell from that process is received, the channel gets the
saved request, and the new data is copied from the cell to the user buffer described
by the IOV in the request. When all of the data described by the IOV has been
received, the channel makes an up-call to CH3 to either reload the IOV, if there is
more data to receive, or to mark the request as complete.

Because cells are allocated in shared memory, they are a limited resource.
Hence, it is important to process a cell and copy out its data as soon as possible,
so that it can be freed. This means that an unexpected message should be copied
out of its cells and into a temporary buffer, as opposed to leaving the data in the
cells until the receive has been posted. Unexpected messages are handled by the
CH3 layer in just this way. If an unexpected message is received, CH3 creates a
new request and passes back an IOV pointing to a newly allocated temporary
buffer. So, the channel takes the same action whether the received message is
unexpected or not. The message is copied out of the temporary buffer into the
user buffer once a receive matching the message has been posted.

3.2 Large Message Transfer Using Rendezvous

While the shared-memory queue is very efficient for transferring small- to medium-
sized messages, transferring large amounts of data through the queue may not be
the most efficient method. High-performance networks have RDMA capabilities
where data can be transferred directly from the user’s source buffer on one node to
the user’s destination buffer on another node, avoiding the data copies associated
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with using the queue. Some shared-memory machines, such as the SGI Altix, have
similar mechanisms for processes on the same node. Even without special mech-
anisms, using a queue may not be the most efficient method of transferring large
amounts of data between processes on the same node [4].

To support various mechanisms for transferring large messages, we defined
the Large Message Transfer (LMT) interface and added it to CH3. Avoiding the
queue can not only improve the bandwidth of the transfer but also reduce the
impact on the application’s data in the cache [4].

CH3 uses a rendezvous protocol when sending large messages, which ensures
that a matching receive has been posted before the message data is sent. The
rendezvous protocol is used primarily to avoid having to buffer the message if a
matching receive has not been posted. We designed the LMT interface to be used
together with the rendezvous protocol; the interface allows the channel to pig-
gyback information on the CH3 rendezvous messages. The channel implements
seven LMT functions, which are called by CH3.

For shared-memorycommunication, using the LMT interface, a shared-memory
region is allocated and attached to by the sending and receiving processes. Then,
using a double-buffering mechanism, the sending process copies the data into the
shared-memory region while the receiving process copies it out. Because we used a
memory copy function that uses nontemporal store operations, not only does this
result in a high bandwidth transfer, but it has a very low impact on the applica-
tion’s data in the cache of the receiving process. The LMT optimization improves
bandwidth for intranode communication by about 130 MiBps for large messages.

We have also used the LMT interface for the GM network module, which allows
the use of RDMA operations. In the socket network module, we also used the LMT
interface so that read() and write() operations can be issued to directly access
the application’s buffers, rather than copying the data through a cell.

3.3 Bypassing the Posted Receive Queue

We performed another optimization to improve the latency of small messages
by bypassing the CH3 posted receive queue in certain cases. In the current
implementation of CH3 when a receive is posted by the application, CH3 first
searches the unexpected message queue to see whether it has already received
a matching message. If a matching message is not found, the request is posted
on the posted receive queue. CH3 then calls the progress engine to check for
incoming messages. When a new message is received, CH3 looks for a matching
receive request by searching the posted receive queue and enqueues the message
in the unexpected queue if the message is not found.

Notice that if a receive is posted for which there is no matching message in the
unexpected message queue, and the matching message is waiting to be received on
the Nemesis receive queue or network, the receive request is queued on the posted
receive queue, only to be matched and dequeued in the next step when the progress
engine is called and the matching message received. Our optimization implements
a new function to call the progress engine with a receive request. As messages are
received from the Nemesis receive queue they are checked for a match with the
receive request. Only when no matching messages are found on the receive queue,
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is the request enqueued onto the posted receive queue. Note that if there already is
a request on the posted receive queue that can possibly match the same message as
the new receive request, we cannot use the optimization and, instead, add the new
request to the receive queue as in the original implementation. This optimization
reduced latency by about 18%, or 62 ns.

4 Performance Evaluation of MPICH2 over Nemesis

In this section we evaluate the shared-memory performance of our implementa-
tion of MPICH2 over the Nemesis communication subsystem. First we present
a microbenchmark evaluation on a 2 GHz dual-processor dual-core Opteron 280
machine with 2 GiB of memory. Then we present application benchmarks on an
SGI Altix 350 machine with 16 1.4 GHz Itanium 2 processors and 32 GiB of
memory. We configured MPICH2 with the --enable-fast option that disables
error checking and configured OpenMPI to disable error checking and support
for heterogeneous clusters, which should improve the performance for those im-
plementations. All implementations were compiled using -O3 optimization.

4.1 Latency and Bandwidth

We compare our implementation to LAM/MPI [5] version 7.1.2, OpenMPI [6]
version 1.1, MPICH-GM [7] version 1.2.6..14b, and MPICH2 version 1.0.3 con-
figured with the CH3 shm channel that communicates by using shared memory.
All these MPI implementation use shared-memory intranode communication.
Except where noted, the results for MPICH2 Nemesis have both the LMT and
posted receive queue bypass optimizations applied. We measured latency and
bandwidth using Netpipe [8]. Figure 2 shows these results.

The latency graph in Figure 2(a) shows two data series for MPICH2 Nemesis.
The results shown by the data series labeled “MPICH2 Nemesis no BP” were
taken without the posted receive queue bypass optimization. This optimization
improves latency by about 62 ns, resulting in a zero-byte latency of 341 ns. With
the optimizations applied, MPICH2 Nemesis has lower latency than the other
MPI implementations. Even up to 128 bytes, the MPICH2 Nemesis latency is
just over 500 ns.

Figure 2(b) shows the bandwidth comparison. Nemesis uses an optimized
memory copy routine that uses nontemporal store operations. Using the non-
temporal copy routine results in dramatically higher bandwidth for MPICH2
Nemesis compared to the other MPI implementations. The results shown by the
data series labeled “MPICH2 Nemesis no-LMT” were taken without applying
the LMT optimization to MPICH2 Nemesis. The LMT optimization improves
bandwidth by about 130 MiBps for large messages, resulting in a peak band-
width of over 1,500 MiBps. Notice that for MPICH2 Nemesis, at 16 KiB the
bandwidth of the non-LMT implementation is a little higher than the imple-
mentation with LMT. The reason is that at 16 KiB, the communication protocol
switches from eager to rendezvous and additional setup is performed for LMT.
The figure shows that MPICH2 Nemesis has higher bandwidth than the other
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Fig. 2. Shared-memory performance of MPI implementations

MPI implementations except for messages between about 16KiB and 256KiB.
We intend to perform additional tuning to improve the medium-sized message
bandwidth and find the optimal message size for the crossover from eager to
rendezvous protocol.

4.2 Instruction Count

One of the goals of our implementation is to streamline the critical path. One way
of measuring our success is by counting the number of instructions required to
send or receive a message. Using the PAPI[9] performance counter interface, we
measured the instruction count for send and receive eight-byte messages. When
measuring the instruction count for the receive operations, we wanted to avoid
counting instructions performed polling while waiting for the message to arrive
because the waiting time can vary quite a bit. To do this we added a delay equal
to the round trip time before starting to count instructions and performing the
receive. This ensured that the incoming message had arrived and was waiting at
the receive queue when MPI Recv was called. The table in Figure 3 shows these
results. All MPI implementations were compiled with the -O3 optimization level,
except for MPICH-GM, where the unoptimized code had fewer instructions.

The row labeled “MPICH2 Nemesis no BP” shows the instruction counts when
the posted receive queue bypass optimization was not applied. The results show
that this optimization reduces the combined send and receive instruction count by
almost half. With the optimization, the combined instruction count for MPICH2
Nemesis is less than22%thatofOpenMPI, less than50%thatofMPICH2CH3:shm
and MPICH-GM, and 55% that of LAM MPI. The instruction counts show that the
critical path in our implementation is already quite efficient, however, we believe
that we still can further streamline the critical path and improve cache utilization
which will reduce overall latency for small messages.

4.3 The Halo Benchmark

One of the benchmarks we used to predict the application performance ofMPICH2
Nemesis was the Halo benchmark [10]. This benchmark simulates a nearest neigh-
bor exchange of a 1 to 2 row and column “halo” from a 2D array. The authors of
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MPI Implementation MPI Send MPI Recv Total
OpenMPI 550 1,745 2,295
MPICH-GM 455 617 1,072
LAM MPI 436 472 908
MPICH2 CH3:shm 311 748 1,059
MPICH2 Nemesis no BP 241 712 952
MPICH2 Nemesis 241 259 500

Fig. 3. Instruction count for sending and receiving
a eight-byte message
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Fig. 4. Results of the Halo
benchmark using four processes

the Halo benchmark state that performance of the Halo benchmark correlates well
with the performance of their layered ocean model application. We ran the bench-
mark on the Opteron machine using four processes.

The Halo benchmark performs the halo exchanges by using several different al-
gorithms. The results in Figure 4 show the results for the algorithm that performed
best for each MPI implementation. The algorithm which used MPI SendRecv()
performed best in MPICH2 Nemesis, MPICH-GM and OpenMPI. In MPICH2
CH3:shm, the algorithm using MPI ISend() and MPI IRecv() performed best. In
LAM MPI, the best performance was seen when using the algorithm that used per-
sistent sends and receives, where the receives are posted before the send operations
are called. In the figure,we see thatMPICH2Nemesis performs considerably better
than the other implementations for all tile sizes. Of the others, MPICH2 CH3:shm
performs better than LAM MPI, MPICH-GM, and OpenMPI for small tile sizes.
For larger tile sizes MPICH-GM performs better than MPICH2 CH3:shm, LAM
MPI, and OpenMPI. The performance of this benchmark is dominated by latency
for small tile sizes and by bandwidth for large tile sizes. The factor of improvement
for MPICH2 Nemesis over the other implementations ranges from 1.5 to 2.6. This
suggests that MPICH2 Nemesis should perform well on applications that are sen-
sitive to latency or need high bandwidth.

4.4 The NAS Benchmarks

We evaluated the application-level performance of MPICH2 Nemesis using the
NAS benchmarks [11]. We wanted to evaluate how the low latency and high band-
width of MPICH2 Nemesis can benefit the parallel speedup of applications. To
emphasize the communication cost over the computation time, we used smaller
problem sizes, specifically, the class A problem size with the CG, MG, FT, SP,
BT, and LU benchmarks and the class B problem size for the IS benchmark. For
the IS benchmark the class A problem size was too small for 8 and 16 processes
and resulted in too much variation in the results. We decided not to use the EP
benchmark because there was very little communication.

To get results for a larger number of processes, we ran the benchmarks on
a 16-processor SGI Altix at the Ohio Supercomputer Center (OSC). On that
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machine MPICH-GM was not available; instead, we evaluated the SGI MPI im-
plementation. The Altix machine has features to allow one process to directly
access another process’s address space, which can allow for very efficient large
message transfers. However, these features were not enabled on the OSC ma-
chine. It is not clear how much of an impact the lack of these features has on
the performance of SGI MPI.

In our evaluation, all of the MPI implementations performed similarly.
Figure 5 shows the parallel efficiency for the class A BT and MG and class
B is benchmarks. We omit the graphs for the other results because of space
limitations. We see that for the BT and MG benchmarks the parallel efficiency
for all implementations is better than 0.95. For the IS benchmark, which has a
higher communication to computation ratio than the other benchmarks [12], we
see that the parallel efficiency decreases considerably with the number of pro-
cesses. Here too, we see that all of the MPI implementations perform similarly.
The parallel efficiency for any individual implementation differs less than 10%
from the average for up to 8 processes, and less than 20% from the average for
16 processes.

5 Discussion and Future Work

In this paper we have presented our new implementation of MPICH2 over the
Nemesis communication subsystem. We evaluated the shared-memory commu-
nication of our implementation on a 4-core Opteron machine using microbench-
marks. Our implementation achieved a zero-byte latency of 341 ns and a 128-byte
latency of just over 500 ns. The peak bandwidth of our implementation was over
1,500 MiBps. We also measured the number of instructions required to send and
receive MPI messages. MPICH2 Nemesis uses only 500 instructions to send and
receive an eight-byte messages. To evaluate application-level performance, we
used the Halo benchmark, which favors low-latency and high-bandwidth MPI
implementations, and saw a factor of improvement from 1.5 to 2.6 compared to
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the other implementations we evaluated. Our evaluation using the NAS bench-
marks on a 16-processor Altix machine did not show large differences in parallel
efficiency between the different MPI implementations. These results show that
MPICH2 Nemesis has an efficient implementation of shared-memory communi-
cation, which achieves low latency and high bandwidth. Moreover, the results
indicate that MPICH2 Nemesis would be especially suitable for smaller-grained
applications which are sensitive to latency and bandwidth.

Future work on MPICH2 Nemesis is to implement Nemesis as a full ADI3
device, which should further improve performance. We also intend to implement
optimized collective communication operations that take advantage of shared
memory, as well as collective operation primitives provided by network interfaces.
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Abstract. Modern MPI applications have diverse communication re-
quirements, with trends showing that they are moving from static com-
munication requirements to more dynamic and evolving communication
requirements. However, MPI libraries, which integrate MPI applications
with the hardware, are not flexible enough to accommodate these diverse
needs. This lack of flexibility leads to degraded performance of the appli-
cations. In this paper, we present the design of a protocol development
framework and an MPI library implemented using our proposed frame-
work that support compile-time and boot-time protocol configuration, as
well as runtime protocol reconfiguration based on dynamic application
requirements. Experimental results on the initial prototype of this design
show that this prototype is able to dynamically reconfigure at runtime
to optimize bandwidth under changing MPI requirements.

1 Introduction

Different MPI applications have diverse communication characteristics and thus
varying protocol demands. The HPC machines on which these applications run
similarly have networks with varying hardware interface requirements and again
varying protocol demands. Further, MPI communication characteristics vary at
runtime. For example, recent work has shown that different protocol implemen-
tations are appropriate based on the percentage of application preposted MPI
receives [1]. Specifically, applications that prepost most of their large receives
can gain substantial benefits from an eager rendezvous protocol; however eager
rendezvous protocols waste substantial network bandwidth when most receives
are not preposted. Application message preposting behavior can vary widely;
this implies that no one protocol optimization decision is appropriate for all
applications.

To optimize for these varying application and hardware demands, system
software needs to provide application- and architecture-specific optimizations. In
this paper, we describe a protocol architecture called MPI/CTP for application-
and hardware-specific protocol reconfiguration in MPI, and present preliminary
numbers from a prototype MPI implementation. These results illustrate the
� This work was supported under contract Sandia University Research Program con-

tract number 190576 and DOE Office of Science grant DE-FG02-05ER25662.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 96–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



MPI/CTP: A Reconfigurable MPI for HPC Applications 97

ablity of this architecture to adapt to changing MPI protocol requirements at
runtime. In the remainder of this paper, section 2 presents background on the
framework we use to implement our prototype, and section 3 presents the design
of our reconfigurable MPI protocol. Section 4 then presents performance results
obtained using a prototype implementation of this framework, and sections 5
and 6 present related work, conclusions, and directions for future work.

2 Cactus and CTP

Our work on protocol reconfiguration in MPI is implemented as an enhancement
to the Configurable Transport Protocol (CTP), which in turn is implemented
in the Cactus composite protocol framework. In this section, we briefly describe
Cactus and CTP. A detailed description of Cactus and its execution structure
can be found in [2], of the message abstraction used by Cactus in [3], and of
CTP itself in [4] and [5].

2.1 Cactus

Cactus is a system for constructing highly-configurable protocols for networked
and distributed systems. Individual protocols in Cactus, generally termed com-
posite protocols, are constructed from fine-grained software modules called micro-
protocols that interact using an event-driven execution paradigm. Each
microprotocol implements a different function of the protocol. Instances of these
microprotocols binds event handlers to protocol-specific events to effect protocol
processing.

Processing of structured messages by microprotocol-defined event handlers
comprises the basic programming model of Cactus. Events are used to signify
state changes of interest, such as “message arrival from the network”. When such
an event occurs, all event handlers bound to that event are executed. Events can
be raised explicitly by microprotocol instances or implicitly by the composite
protocol runtime system.

The Cactus runtime system provides a variety of operations for managing
events and event handlers. In addition to traditional blocking events, Cactus
events can also be raised with a specified delay to implement time-driven ex-
ecution, and can be raised asynchronously. Other operations are available for
unbinding handlers, creating and deleting events, halting event execution, and
canceling a delayed event. Finally, synchronization and coordination of execu-
tion activities in Cactus is accomplished through event-based barriers that may
be associated with data items. These barriers are used to coordinate activities
across multiple microprotocols.

The main features provided by the Cactus message abstraction are named
message attributes, and the event-based barrier mechanism described above.
These dynamically created message attributes are a generalization of traditional
message headers. Messages are sent up or down the protocol stack and deallo-
cated using event-based barriers associated with each message, in which context
the barriers are generally referred to as send bits and deallocate bits, respectively.
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2.2 CTP

CTP is a message-oriented configurable transport protocol written in the Cactus
framework, primarily for use on local-area and wide-area Internet (e.g. Ether-
net) connections. CTP includes a wide range of microprotocols for operating
in this environment, including microprotocols implementing for acknowledge-
ments (PositiveAck), retransmissions (Retransmit), forward error correction
(ForwardErrorCorrection), and a range of congestion control mechanisms and
policies (WindowedFlowControl, TCPCongestionControl, etc.). Using these and
other microprotocols, researchers have implemented CTP configurations that
support TCP-like, UDP-like, and SCTP-like semantics.

Microprotocols in CTP handle a set of predefined events, particularly those
that indicate message availability from the network or an application. Two pri-
mary events are used for processing outgoing messages - MessageFromUser in-
dicates that a new arbitrary-sized message is available for transmission, while
SegmentToNet events are generated by fragmentation/reassembly microproto-
cols that fragment messages into segments for transmission over the network.
Similarly, receive-side processing includes SegmentFromNet and MessageFromNet
events, which again correspond to fragmented packets and reassembled messages.
Each microprotocol can binds these handlers, set message attributes as appropri-
ate, and sets send and/or deallocate bits to indicate that it is willing to permit
the message to be transmitted (to the user or over the network) and/or deleted.

3 MPI/CTP Design

We have designed new microprotocols for CTP that enable it to be used for
sending and receiving messages with MPI matching and ordering semantics. In
addition, we implemented these changes to CTP in such a way that microproto-
cols can be selectively enabled and disabled in response to changing application
needs. Initially, our work on reconfiguration has focused on changing between
different rendezvous protocols based on various local and remote performance
information, as recent work has shown that this can have a substantial impact
on available MPI message-passing bandwidth [1].

3.1 Basic Functionality

Our implementation of MPI/CTP includes a variety of additions, particularly
new microprotocols, new message attributes, and careful interaction with ex-
isting CTP microprotocols. The new microprotocols implement different MPI-
specific protocol algorithms and the new message attributes are used to carry
MPI-specific information for these microprotocols. The following sections de-
scribe these extensions. A diagram illustrating these changes is shown in
figure 1.
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Fig. 1. MPI/CTP Architecture

MPI Support Microproto-
col. Because CTP origi-
nally used TCP-like mes-
sage demultiplexing based
on port numbers instead
of MPI matching seman-
tics, we first had to in-
troduce protocols that cus-
tomized CTP to support
MPI matching semantics.
The MPISupport micropro-
tocol is responsible for
implementing basic MPI
matching semantics in CTP
by receiving post requests
from the applications through
the CTP control interface
and making posted and un-
expected queues available
to other microprotocols for
their use. An API to these lists is provided for other MPI/CTP microproto-
cols to use as necessary. In addition, MPISupport handles miscellaneous local
requests that do not require message generation and processing, for example
calls to MPI Wait(). Note that MPISupport introduces a new MPIWait event to
CTP to signal threads blocked on synchronous MPI calls.

In the current MPI/CTP prototype implementation, MPISupport does not
provide true zero-copy semantics because of limitations in the CTP protocol
framework. In particular, CTP driver protocols always copy data into buffers
prior to any demultiplexing decisions or MPI/CTP-level protocol processing be-
ing done. We are currently extending the CTP framework with early demulti-
plexing capabilities to address this limitation.

Message-Handling Microprotocols. MPI/CTP includes message-handling micro-
protocols for sending MPI messages over the network. MPI/CTP currently in-
cludes 3 microprotocols sending and receiving MPI-oriented messages: Eager,
Rendezvous, and EagerRendezvous; these correspond to common techniques for
sending short (Eager) and long (Rendezvous/ EagerRendezvous MPI
messages.

Like most CTP microprotocols, each microprotocol implements handlers for
the SegmentFromUser and SegmentFromNet events to enable them to process
messages. In response to messages from the application to send, these micro-
protocols may send the message immediately or send a request-to-send (RTS) to
facilitate later transmission. Likewise, in response to SegmentFromNet events,
they may doing nothing and rely on preexisting CTP microprotocols to handle
acknowledgements, or they may send or schedule transmission of data to the
requester if the received packet is an RTS or CTS.
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The MPI/CTP microprotocols also set send and deallocate bits to coordinate
message transmission and deallocation with other CTP microprotocols, and set
message attributes to transmit control information. We have added a hand-
ful of new message attributes for the MPI-specific microprotocols, particularly
RTS/CTS, rank, tag, and communicator fields.

Interactions with Existing Microprotocols. By writing MPI functionality as an ex-
tension to CTP, MPI/CTP configurations retain fill access to other CTP
microprotocols that provide functionality that may be desirable in some cases. For
example, the PositiveAckmicroprotocol can be used to acknowledge message re-
ceipt in a short-message protocol without having to reimplement and reoptimize
acknowledgement functionality. Similarly, microprotocols such asRetransmit and
WindowedFlowControl allow MPI/CTP protocol configurations to work
seamlessly in long-haul and lossy networks. Because all such functionality in CTP
is optional, MPI/CTP configurations running over standard high-speed reliable
fabrics (e.g. Myrinet) need not pay the price for this functionality.

3.2 Adaptation

Protocol adaptation (sometimes referred to as the “protocol switch”) in
MPI/CTP is implemented by a combination of microprotocol reconfiguration
and filtering code in message-passing microprotocols.Only those message-passing
microprotocols that are configured into a given MPI/CTP configuration (and
hence have bound appropriate event handlers) can process a message, allowing
different message-transmission algorithms to be configured and reconfigured at
a coarse scale. MPI/CTP uses this level of protocol switch, namely reconfigura-
tion, between microprotocols that process similar messages, for example between
the Rendezvous and EagerRendezvous message-processing microprotocols.

More fine-grained protocol adaptation on a message-by-message basis, specif-
ically the message size-based protocol switch, is done by parameterization. In
particular, each message-passing protocol is designated as either a long-message
or short-message protocol, a global shared variable that designates the switch-
point between long and short messages is exported by MPISupport, and each
configured microprotocol only handles an outgoing message if it is of the appro-
priate size. Note that this requires that only one short and one long message
protocol be configured into MPI/CTP at a given time.

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate our MPI/CTP design, we implemented a simple prototype of the
MPI point-to-point calls using the design described in section 3. This implemen-
tation runs on Myricom GM, supports all of the various MPI point-to-point calls,
but does not yet support MPI collective communications. As mentioned in sec-
tion 3.1, this prototype does not support zero-copy because of CTP framework
limitations. Addressing both of these limitations are planned for future work.
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Fig. 2. Untuned MPI/CTP Message-passing Bandwidth; note that MPI/CTP cur-
rently includes a extra copy because of implementation framework limitations and
that MPICH/GM fails in gm alloc for messages larger than 128KB

We tested two different elements of our MPI/CTP prototype, namely ba-
sic message-passing bandwidths with different protocols and compared to those
of current production-quality implementations, and message-passing bandwidth
for fixed-size messages with protocol reconfiguration based on the percentage of
messages preposted at the receiver. We tested these scenarios between two dual-
processor 2.2 GHz Pentium III Xeon machines with Myrinet Lanai7 adapters.
Each machine ran Linux kernel version 2.4.2 and GM 2.1.1. We compared band-
widths of our implementation versus those of OpenMPI 1.0.2 and MPICH/GM
1.2.6.

4.2 MPI/CTP Overhead

Figure 2 shows the basic bandwidth performance of our prototype implementa-
tion. As can be seen in figure 2(a), our prototype achieves approximately 81% of
the point-to-point bandwidth of the OpenMPI or MPICH/GM implementations.
The performance difference is due to the costs of extra copies that the existing
CTP framework currently imposes on our prototype. Eliminating these copies
should make MPI/CTP bandwidth-competitive with OpenMPI.

Figure 2(b) shows how MPI/CTP bandwidth varies by percentage of pre-
posted receives with 32KB messages. As can be seen, the standard rendezvous
protocol outperforms an eager rendezvous protocol when the 80% or less of re-
ceives are preposted. For carefully written applications where most receives are
preposted, it is well known [1] that an eager large-message protocol can achieve
better performance. This effect can be easily seen in MPI/CTP.

4.3 MPI/CTP Protocol Reconfiguration

To test the ability of MPI/CTP to optimize MPI behaviour through dynamic
protocol reconfiguration, we enabled MPISupport to reconfigure which long mes-
sage protocol MPI/CTP used based on feedback from the receiver on the average
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Fig. 3. Untuned MPI/CTP Message-passing Bandwidth

percentage of receives preposted there. MPISupport then dynamically changed
between the EagerRendezvous and Rendezvous long message protocols by bind-
ing and unbinding handlers in each microprotocol at runtime; cutoffs for the
protocol switch were determined ahead of time based on the information shown
in figure 2(b).

Figure 3 shows that reconfiguration in MPI/CTP allows it to dynamically
adjust its behavior based on remote application behavior, thereby optimizing
available MPI protocol bandwidth. As MPI/CTP becomes more carefully tuned,
we expect this to allow applications to achieve better MPI performance by dy-
namically reconfiguring protocol behavior based on application needs.

5 Related Work

There has been a variety of related work done on component-based MPI imple-
mentations and reconfiguration in protocol frameworks. Most recently, Open-
MPI has implemented a component-based MPI framework that allows for easy
customization of the MPI library at program startup based on, for example,
hardware characteristics [6]. In OpenMPI’s component architecture, however,
components selected during initialization cannot easily be be switched to other
implementations, and configuration and componentization is relatively course-
grained. MPICH similarly supports an abstract device interface to enable MPI
support for a range of different hardware devices. Neither of these systems,
however, support the kind of fine-grained, online MPI protocol reconfiguration
supported by our MPI/CTP design and prototype.

H-CTP [7] is, like MPI/CTP, a Cactus-based transport protocol aimed at
high-end systems, in this case, Grid systems. In particular, H-CTP shows
advantages of configurability in Grid computing environments by customizing
transport protocol based on application requirements at link time. H-CTP can-
not, however, change functional or QoS properties of the protocol at runtime
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based on dynamic communication characteristics as done in MPI-CTP. In
addition, H-CTP does not directly support MPI semantics in, for example,
matching.

6 Conclusion and Future Work

In this paper,we presented the design of a protocol architecture, called
MPI/CTP, for application- and hardware-specific protocol reconfiguration in
MPI, Using a prototype, we have shown how such protocol reconfiguration al-
lows an MPI implementation to deal with dynamic application behavior, for ex-
ample changing percentages of preposted receives, and to reconfigure at runtime
based on this changing behavior. We are not aware of any other MPI implemen-
tation that can make such dramatic changes to protocol behavior at runtime in
response to changing application behavior.

In the future, we plan to enhance and reimplement portions of MPI/CTP to
optimize performance, as well as create a full-fledged MPI implementation that
can be used for further research on dynamic protocol optimization in MPI. Such
optimizations include changing collective implementations at runtime or offload-
ing different portions of MPI/CTP based on different application and hardware
demands. We also plan to use our prototype as a basis for implementing MPI in
the configurable operating system we are currently developing in collaboration
with Sandia National Labs and Louisiana State University [8].
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Abstract. The MPI-2 standard defines functions for Remote Memory
Access (RMA) by allowing one process to specify all communication
parameters both for the sending and the receiving side, which is also re-
ferred to as one-sided communication. Having experienced parallel pro-
gramming as a complex and error-prone task, we have developed the MPI
correctness checking tool MARMOT covering the MPI-1.2 standard and
are now aiming at extending it to support application developers also for
the more frequently used parts of MPI-2 such as one-sided communica-
tion. In this paper we describe our tool, which is designed to check the
correct usage of the MPI API automatically at run-time, and we also
analyse to what extent it is possible to do so for RMA.

Keywords: MPI, Parallel Programming Tools, Analysis, One-sided
communication, RMA.

1 Introduction

The Message Passing Interface (MPI) is a widely used standard for writing par-
allel programs in a convenient and efficient manner. Version 2 of the MPI stan-
dard [19] extends the functionality of the MPI-1.2 standard [18] significantly,
adding about 200 functions to the already previously defined 129 functions. Sev-
eral vendors offer implementations of MPI-2 and there are already open source
implementations such as mpich2 or Open MPI [7,9,16], which cover at least some
of the new features or even the full MPI-2 standard.

In order to facilitate the development of applications with dynamically chang-
ing data access patterns where the data distribution is fixed or slowly changing,
the MPI-2 standard introduces the concept of the so-called one-sided commu-
nication for Remote Memory Access (RMA). Allowing one process to specify
all the communication parameters for both the sender and the receiver avoids
the need for global computations or explicit polling for potential communication
requests. Thus, one process can access data in another process’s own memory
without the latter one knowing which data needs to be accessed or updated by
which remote process.

Due to the complexity of parallel programming, in general, and the difficult se-
mantics of one-sided communication, in particular, there is a demand for analysis
and debugging tools to help users develop correct and portable MPI applications.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 105–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Related Work

Fortunately, there are powerful tools to help application developers, be it (par-
allel) debuggers, memory checking or correctness tools, special MPI libraries or
other tools that may perform a runtime or post-mortem analysis:

1. The freely available debugger gdb [3], which is also used with its graphical
front-end ddd [1], has currently no support for MPI, but it can be attached
to one or several, possibly already running MPI processes. The same can be
done with special memory-checking debuggers like valgrind [5]. More conve-
nient are parallel debuggers, such as the well-known commercial debuggers
Totalview [4] or DDT [2].

2. The second approach is to provide a special debug version of the MPI library
(e.g. mpich or NEC-MPI). This version is not only used to catch internal er-
rors in the MPI library, but also to detect some incorrect usage of MPI by the
user, e.g. a type mismatch of sending and receiving messages or mismatched
collective operations [6,20].

3. Another possibility is to develop tools dedicated to finding problems within
MPI applications at runtime, examples of which are the introduction of ir-
reproducibility, deadlocks, incorrect management of resources such as com-
municators, groups, datatypes etc. or the use of non-portable constructs. At
present, three different message-checking tools are under more or less active
development: MPI-CHECK [17], Umpire [21] and MARMOT [12,11,14,13].
MPI-CHECK is currently restricted to Fortran code and performs argument
type checking or finds problems such as deadlocks [17]. Like MARMOT,
Umpire [21] uses the PMPI profiling interface.

4. The fourth approach is to perform a post-mortem analysis by collecting all
information on MPI calls in a trace file. After program execution, this trace
file is analysed by a separate tool or compared with the results from previous
runs [15]. An example of this is the Intel Message Checker (IMC) [10].

3 Description of MARMOT

MARMOT is a library that uses the so-called PMPI profiling interface to in-
tercept MPI calls and analyse them during runtime. It just has to be linked to
the application in addition to the underlying MPI implementation, without any
modification of the application’s source code nor of the MPI library.

MARMOT supports the complete MPI-1.2 standard. Not all possible tests
(such as consistency checks) are implemented yet as the development of our
tool is still ongoing. MARMOT’s output is a human-readable log file indicating
errors and warnings, a graphical viewer is in progress. The tool can be used with
any standard-conforming MPI implementation. MARMOT is tested on different
Linux platforms, using different compilers and different MPI implementations
(mpich, LAM/MPI, vendor MPIs, etc.). Functionality and performance tests
are performed with test suites, microbenchmarks and real applications [11,14].
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The following errors occur most frequently in MPI programming. Some of
these errors may be tolerated by specific MPI implementations or by specific
platforms. MARMOT tries to catch as many of them as possible:

– Deadlocks: In general, deadlocks are caused by the non-occurrence of some-
thing else, for example mismatched send/receive operations or mismatched
collective calls. MARMOT contains a mechanism to automatically detect
deadlocks and notify the user where and why they have occurred.

– Data races: Potential race conditions can be caused by various reasons, e.g.
by the use of a receive call with wildcards, by the use of random numbers,
or by the fact that nodes do not behave exactly the same. At present, MAR-
MOT indicates the use of wildcards, but it does not construct dependency
graphs to view the different possible executions nor does it use methods like
record and replay to identify and track down bugs in parallel programs [15]
or to compare different runs.

– Mismatches: Mismatches in arguments of one call can be detected locally,
e.g. wrong type or number of arguments. Mismatches are also seen in argu-
ments involving more than one call, e.g. in send/receive pairs or in collective
calls, or in pairs of synchronising calls for one-sided communication.

– Resource handling: For the support of the MPI-1.2 standard, MARMOT
has implemented its own book-keeping of the MPI resources (communica-
tors, groups, datatypes, etc.). This is necessary for verifying the proper con-
struction, usage and destruction of these MPI resources as they are “opaque”
objects and therefore implementation-dependent. The MPI-2 standard intro-
duces new opaque objects such as info objects MPI Info or window handles
MPI Win to be used in the one-sided communication calls. New objects can
be implemented in the same way as the MPI-1.2 objects.

– Memory and other resource exhaustion: Non-blocking calls such as
MPI Isend etc. can complete without issuing a matching test or wait call.
However, the number of available request handles is limited (and imple-
mentation defined). Therefore requests should always be freed, as should
allocated communicators, datatypes, etc. MARMOT gives a warning when
a request is reused, and also when there are active or non-freed requests left
at the MPI Finalize.

Another issue is reusing memory that is still in use, for example by read-
ing/writing from/into a buffer by an unfinished send/receive operation. This
type of error can also occur when using one-sided communication. MAR-
MOT does currently not perform any checks whether a buffer can be reused
safely because the transmission of data has completed. This kind of check is
a subtle task that requires some insight into an MPI implementation.

– Portability: The MPI standard leaves many decisions to the implementors,
for example how to implement opaque objects and handles to these objects,
whether to implement collective calls as synchronising calls, whether to make
the implementation thread-safe or not, whether RMA functions are blocking
or not, etc. Relying on such non-portable constructs may resolve in deadlocks
or other errors when using a different MPI implementation.
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4 Description of MPI One-Sided Communication

Version 2 of MPI [19] provides a high-level interface to Remote Memory Ac-
cess (RMA) that achieves two effects: communication of data from sender to
receiver and synchronisation of sender with receiver. The first one is provided
by the MPI Put, MPI Get and MPI Accumulate functions for remote write, read
and update, resp. (see 5.2). The second one is achieved through a number of
synchronisation calls distinguishing between active and passive target communi-
cation (see 5.3)

For the RMA mechanism, the MPI-2 standard introduces a new kind of opaque
object: MPI Win, a handle to a window in a process’s existing memory that is
made accessible to remote processes. Therefore, a third category of RMA calls
is needed for the construction and destruction of these objects (see 5.1).

In total, Chapter 6 on One-Sided Communication in the MPI-2 standard doc-
ument lists 14 calls. However, there are also some calls hidden in other chapters
of the standard that are relevant to RMA and have to be implemented in our
tool to fully cover the functionality for one-sided communication, mainly error
handlers for windows, attribute caching functions (see 5.4) and memory allo-
cating calls, which finally results in about 30 functions to be implemented (see
Table 1 and Table 2).

5 Possible Checks

In the following section, we consider the possible checks for the RMA functions
in more detail (for a concise overview see also Table 1 and Table 2).

5.1 Initialisation

A process may specify a window of existing memory that is exposed to remote
memory accesses from the other processes within the intracommunicator group.
Windows consist of a number of bytes, starting at a base address, and are con-
structed using the MPI Win create and MPI Win free functions. Both these calls
are collective and must therefore be called on all processes in our communica-
tor to avoid deadlocks. Every process may specify a completely different target
window concerning its location, size, displacement unit and info arguments. The
same area in memory may also be associated with different windows. The at-
tributes cached with a window can be retrieved with the MPI Win get attr and
MPI Win get group functions (see 5.4). It is the user’s responsability to ensure
that the target window fits the specifications of the remote accesses and that
there are no concurrent communications to distinct, overlapping windows.

We check the parameters of MPI Win create and MPI Win free for correct-
ness, e.g. that, in the former call, the window size is a nonnegative integer, that
the displacement unit size is a positive integer, that the info argument or the
communicator are valid and, in the latter call, that the window argument is
valid. The validity of communicators and windows can be checked similarly to
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Table 1. Classification of RMA functions (initialisation, communication and synchro-
nisation)

category noncollective collective checks
initialisation MPI Win create collective error / deadlock;

parameters: size nonneg. int,
disp unit pos. int,
comm valid, info valid;

MPI Win free collective error / deadlock;
parameters: window valid;
pending RMA;

communication MPI Put parameters:
origin count / datatype,
target rank / disp / count /
datatype, window;
access epoch for window;

MPI Get parameters:
origin count / datatype;
target rank / disp / count /
datatype, window;
access epoch for window;

MPI Accumulate parameters:
origin count / datatype;
target rank / disp / count /
datatype, operator, window;
access epoch for window;

synchronisation: MPI Win fence collective error /deadlock;
parameters: assert, window;

active target MPI Win start matching pairs
(origin: complete,
target: post);
parameters: group, assert,
window;

& matching pair (start);
MPI Win complete parameters: window;

MPI Win post matching pairs
(target: wait or test,
origin: start);
parameters: group, assert,
window;

& matching pair (post);
MPI Win wait parameters: window;
or matching pair (post);
MPI Win test called again after success;

parameters: window;
passive target MPI Win lock matching pair (unlock);

window exposed;
window created with no lock;
parameters: lock type, rank,
assert;

& matching pair (lock);
MPI Win unlock parameters: rank, window;
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Table 2. Classification of RMA functions (error handlers, etc)

category noncollective checks

error handlers MPI Win create errhandler

MPI Win get errhandler parameters: window;
MPI Win set errhandler parameters: window, errhandler;
MPI Win call errhandler parameters: window;

attribute caching MPI Win get group parameters: window;
MPI Win create keyval

MPI Win free keyval parameters: keyval;
MPI Win get attr parameters: window, keyval;
MPI Win set attr parameters: window, keyval,

attribute;
MPI Win delete attr parameters: window, keyval;
MPI Win get name parameters: window;
MPI Win set name parameters: window, name;

transfer of handles MPI Win f2c parameters: window;
MPI Win c2f parameters: window;

memory allocation MPI Alloc mem parameters: size, info;
MPI Free mem

MPI-1 calls, e.g. whether they have been constructed properly or have already
been freed.

MPI Win free can only be called after the RMA is completed, i.e. after the syn-
chronisation calls MPI Win fence or MPI Win wait, MPI Win complete or
MPI Win unlock have been called to match previous calls to MPI Win post,
MPI Win start or MPI Win lock. MARMOT can verify whether there are any
pending RMA function calls left when the window is to be freed.

Users may improve the performance of windows by using MPI Alloc mem and
MPI Free mem for allocating and freeing memory, esp. on shared-memory sys-
tems [8]. For the alloc call, we can verify that the size of memory is a nonnegative
integer and that the info argument is valid.

5.2 Communication

Three different RMA calls are supported: MPI Get, MPI Put and MPI Accumulate
take a reference to a window and a rank to address the target process for remote
read, write and update. By origin we denote the process that performs the call,
and by target we denote the process in which the memory is accessed. Target
and origin may be identical. The get, put and accumulate calls are similar to
the execution of a send by the target and receive by the origin process and vice
versa, combining the data from sender and receiver in the case of an accumulate
call. These three calls are non-blocking and complete both at the origin and at
the target when a synchronisation call is issued on the involved window (see 5.3).

For all these callswe can checkwhether the window, the origin count or datatype
and the target rank, displacement, count or datatype are valid. Additional
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requirements have to be fulfilled by the datatype arguments: For the put func-
tion, the target datatype may not specify overlapping entries in the target buffer,
and the message must fit in the target buffer, which must fit in the target window.
For the get function, the origin datatype may not specify overlapping entries in
the origin buffer, and the message must fit in the origin buffer, the target buffer
must be contained in the target window. For the accumulate call, each datatype
argument must be a predefined datatype or a derived datatype, where all basic
components are of the same predefined datatype. Both origin and target datatype
must be derived from the same predefined datatype, and the target datatype must
not specify overlapping entries. The target buffer must fit in the targetwindow. For
the get, put and accumulate calls, the target datatype must not contain absolute
addresses, only relative displacements.

The MPI Accumulate call takes an additional operator handle argument to
specify the kind of update that is performed on the data: we verify that it is one
of the predefined operations for MPI Reduce or the newly defined MPI REPLACE
operation. On the other hand, the MPI-2 standard is unclear on whether MPI -
REPLACE is a valid reduction operator for MPI-1 functions such as MPI REDUCE
(and friends). Therefore we also implement a warning whether this operator is
used in an MPI call other than MPI Accumulate.

We also verify that the communication calls only occur within an access epoch
for the window involved, i.e. within an epoch that is started and ended by syn-
chronisation calls on the window. Distinct access epochs for a window at the
same process must be disjoint whereas epochs pertaining to different windows
may overlap.

It is erroneous to have conflicting accesses to the same memory location in a
window, e.g. by concurrent RMA communication or local operations, with only
one exception: Several concurrent accumulate operations may update the same
location in memory, the outcome being as if the accumulate calls had appeared
in some serial order.

5.3 Synchronisation

RMA communication can be synchronised using two modes:

– active target communication, where both the origin and the target process
are explicitly involved in the communication, i.e. the target process partici-
pates in the synchronisation (thus not having truly one-sided communication
anymore). In active target communication, a target window can only be ac-
cessed within an exposure epoch, i.e. an epoch that is started and completed
by the target process. Access epochs on the origin side and exposure epochs
on the target side match one-to-one. Distinct exposure epochs for the same
window at a process must be disjoint but such an exposure epoch may over-
lap with exposure epochs on other windows or with access epochs for the
same or other windows.

– passive target communication, where only the origin process is explicitly
involved in the communication, i.e. the target process does not execute a
synchronisation call and there is no concept of an exposure epoch.
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Fig. 1. Active (fence, start/complete/post/wait) and Passive (lock/unlock) Target
Communication

Figure 1 illustrates the different synchronisation modes. The collective call
MPI Win fence should both precede and follow communication calls (e.g. get)
to delimit the access and exposure epochs on the origin and target processes for
active target communication. For performance optimisation, it may be prefer-
able to apply active target communication only to pairs of communicating pro-
cesses. MPI Win start and MPI Win complete pairs start and terminate the
access epochs while the MPI Win post and MPI Win wait or MPI Win test pairs
mark the exposure epochs. It is erroneous to call MPI Win test again once the
call has returned a true flag. The group arguments in the start and post calls
specify which processes have remote memory access. The post and start calls
must match as well as the start/complete and post/wait/test pairs.

For passive target communication, pairs of MPI Win lock and MPI Win unlock
provide shared or exclusive access to the target window. It is erroneous to have
a window locked and exposed at the same time. We can also verify whether a
window is attempted to being locked although the no locks info argument was
provided at its creation time.

The assert argument in the post, start, fence and lock calls may be used
for performance optimisation. It is erroneous to provide incorrect assert values
(see Table 3). Implementations are, however, free to ignore the assert argument.

Table 3. Legal assert values for synchronisation calls

call legal assert values (bit vector of zero or more of:)

MPI Win start MPI MODE NOCHECK

must be specified in start if and only if
specified in each matching post

MPI Win post MPI MODE NOCHECK, MPI MODE NOSTORE, MPI MODE NOPUT

NOCHECK must be specified in post if and only if
specified in each matching start

MPI Win fence MPI MODE NOSTORE, MPI MODE NOPUT,
MPI MODE NOPRECEDE, MPI MODE NOSUCCEED

if NOPRECEDE or NOSUCCEED are specified on one process
it must be specified on all processes in the group

MPI Win lock MPI MODE NOCHECK
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We also check, where applicable, whether the other arguments passed to the
synchronisation calls, such as window, group, rank, lock type, are valid.

5.4 Error Handling and Attribute Caching

Table 2 shows an overview of the error handling and attribute caching calls.
There is not much potential for possible errors in these calls. We can verify the
correctness of arguments such as the window, keyval, errorhandler, etc.

6 Conclusions and Future Work

In this paper, we have presented the MARMOT tool, which analyses the be-
haviour of an MPI application during runtime and checks for errors frequently
made in the use of the MPI API. We have unravelled some of the key features
of the MPI RMA interface and have analysed it with regard to potential errors
that can be made by application developers. In most cases these errors can be
detected by tools such as MARMOT following the approach taken for MPI-1.
Since there is currently no real application using RMA available to us our expe-
rience with the tool is limited to simple test cases. The lack of applications is,
on one hand, probably due to the fact that the semantics of the RMA API are
not easy to understand, and, on the other hand, that the performance of this
new functionality may not be satisfying yet.

Future work on MARMOT includes an extension of its functionality to cover
the complete MPI-2 standard and to support hybrid applications written in
OpenMP and MPI. Another goal is to improve the performance and scalabality
of the tool, especially for communication-intensive applications.
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Abstract. This paper proposes an interface that will allow MPI 2 dy-
namic programs – those using MPI SPAWN, CONNECT/ACCEPT, or
JOIN – to provide information to parallel debuggers such as TotalView
about the set of processes that constitute an individual application. The
TotalView parallel debugger currently obtains information about the
identity of processes directly from the MPI library using a widely ac-
cepted proctable interface. The existing interface does not support MPI
2 dynamic operations. The proposed interface supports MPI 2 dynamic
operations, subset debugging, and helps the parallel debugger assign
meaningful names to processes.

1 Introduction

MPI style parallel applications can comprise anywhere from one to many thou-
sands of processes running on anything from a single user’s workstation to the
largest supercomputing clusters. Regardless of the scale of the application, when
it fails to behave as expected and a developer sits down to debug it the first
thing that they need to do is get their parallel debugger attached to their par-
allel program. This means that the debugger has to connect to not one but
many processes running on both local and remote nodes. To the user this is a
simple command or a simple ‘click’ in the interface of a parallel debugger like
TotalView. The parallel debugger is able to fufill this request becuase the MPI
library provides information about what processes running on both local and
remote nodes constitute the parallel application.

This paper proposes a new interface between MPI processes and the TotalView
parallel debugger that will enable users to debug applications taking advantage
of the MPI 2 dynamic process capabilities to spawn new processes or combine
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two separately started parallel applications into one application. The dynamic
nature of these applications provides a complex challenge to the debugger. Not
only does the set of processes change over time but the performance focus of MPI
leads vendors to favor highly asynchronous MPI library designs. The information
that the debugger needs to get the debugging session started is something the
MPI library is designed to keep distributed and balanced.

This new interface builds upon the foundation of and lessons learned from the
current MPI -1 TotalView process acquisition interface1 and the current MPI-1
TotalView message queue display interface[2] both of which have been almost uni-
versally adopted by MPI vendors over the past 9 years. To understand the new in-
terface it helps to review the current process aquisition interface at a general level.

To attach to a parallel program TotalView first needs to attach to the starter
process. This gives it the ability to halt and resume the process, set breakpoints
and both read from and write to the program state. The debugger establishes
– on the basis of these capabilities – an interface with the MPI library used
by the application. If the debugger attaches to the starter before the starter
program has created the parallel job the debugger runs the starter to the point
that the parallel job exists but has not yet run user code. At this point the
debugger reads a specified data structure in the starter process that holds a list
of the MPI processes and information such as the network address of the node
on which each process is running.

The user can then be prompted with a list of all the processes and can make
an initial decision on which processes need to be actively debugged. In order to
attach to the remote processes that the user selected TotalView needs a remote
debugging agent, called a tvdsvr, on each node that hosts one or more selected
processes. These are started by the debugger itself, often using ssh. The tvdsvr
processes attach to each of the selected MPI processes and communicate back
over the network to the debugger. At this point the user is attached to their
parallel job. Any processes that were not chosen for debugging are now released
to start running user code. The developer can now examine and control the
selected set of processes. At any point during the debugging session the user
can change the selected set of processes, choosing to look at more or less of the
ongoing parallel job.

This interface, which is essentially an agreed upon format for a table in mem-
ory that the debugger reads directly and a bit of synchronization around startup,
has been widely adopted and is extremely successfully by any measure. Its lim-
itation is that it is predicated on the notion that the set of processes, once
established, is static. MPI 2 dynamic processes undermine that assumption.

2 Design Goals

This interface makes fundamental information about the identity of processes
participating in MPI static or dynamic programs available to the debugger so
1 Reference code and interface header files can be found in the MPICH[1] implementa-

tion or can be obtained by contacting Etnus for an up to date version of the interface
specification.
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that it can attach to more than just one process of the job. This is being designed
within the context of the TotalView parallel debugger, but the challenges of iden-
tifying processes in a MPI 2 dynamic program are generally applicable to parallel
debuggers as a class and the expectation is that this interface could be adopted by
other debuggers. MPI 2 dynamic programs are those that use the dynamic pro-
cess calls, MPI COMM SPAWN, MPI COMM CONNECT, MPI COMM ACCEPT,
and MPI COMM JOIN defined in chapter 5 of the MPI 2 standard.[3] However,
there are a few other requirements that this interface needs to satisfy.

MPI implementors work to provide the greatest possible performance available
and the proposed interface must limit the impact on MPI performance.

The new interface cannot be a step backwards in terms of functionality and
needs to support important parallel debugger features like subset attach.

Users need to be able to debug MPI jobs that have deadlocked and hung or
that are terminated and exist only as corefiles. This means that the interface
needs to allow the debugger to gather the information it needs without running
the application or MPI library.

There are wide variety of different resource managers and job launchers in
use. It is possible to imagine that TotalView could just interface with them.
However we believe this provides no solution for ‘singleton’ MPI applications
and would be needlessly complex for CONNECT / ACCEPT jobs that are started
by multiple starters and managed as separate entities by resource managers.

Finally the new interface needs to provide the user with the information that
the user will need to make sense of a parallel job. In an MPI 1 job each process
is reliably and naturally named by its rank in the communicator MPI COMM -
WORLD. MPI 2 itself does not provide for a global and stable naming scheme
from the perspective of the developer who is looking at their code. MPI processes’
names for one another are only understood in the context of communicators and
communicator handles are purely local. To allow for comparison of results from
one run to another with the same input data and program logic, the user will
need a way to ‘address’ their MPI 2 processes in a repeatable way. This paper
proposes a stable naming scheme which can be used in debuggers and other
tools. The interface will ensure that sufficient information is presented to the
debugger for the debugger to construct a meaningful and repeatable name for
each process.

3 Design

3.1 Overview

The MPI library itself will maintain a list of processes that are part of the
job. As processes are created, CONNECT to, JOIN, or are detached from the
program this list of processes will be updated by the MPI library. This list is
called the proctable. The proctable is distributed across a variable number of
MPI processes.
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The parallel debugger will be able to read this table from the program using
the same mechanisms that it uses to perform other debugging operations.

The MPI library will change the value of a synchronization variable before
making changes to the proctable data structures and will reset it afterwards.
The MPI library will then call a special stub function to notify the debugger
that some dynamic process event caused the proctable to change.

If the debugger is attached to the root process of the dynamic process collec-
tive then the newly created MPI processes will be temporarily held to allow the
debugger the opportunity to attach to them before the end of MPI INIT.

3.2 Proctable Elements

The proctable contains two kinds of information for each listed process. System
context information is needed for the debugger to locate each listed process and
potentially be able to attach to it for debugging. MPI context information is
needed to uniquely and reliably name each listed process. System information
for each process listed in the proctable will include things like: host name or IP
address, process or task ID, program name. MPI context information for each
process listed in the proctable will include: the rank of each process within its
own MPI COMM WORLD, a unique identification for that MPI COMM WORLD,
information about how that MPI COMM WORLD came to be part of this job.
For the case of MPI COMM WORLDs created by a SPAWN operation they can be
identified with the following tuple (unique ID of the MPI COMM WORLD of the
parent root process, rank of parent root process in that MPI COMM WORLD,
sequence of the SPAWN command among those rooted on that same process).
MPI COMM WORLDs that are started independently and then connected to-
gether need to be given unique ids in this interface that are external to the MPI
(e.g. something that is a function of the mac address, PID, and time-stamp of
the launcher process).

3.3 Proctable Organization

The proctable is distributed across a set of the MPI processes, called the di-
rectory processes. These processes each contain a subset of the full proctable.
A single MPI process may be listed in multiple directory processes; each MPI
process is listed in at least one directory process.

In order to reconstruct the proctable the debugger needs to locate all the
directory processes and combine their process entry information. Locating the
directory processes is done through a set of processes called meta directory
processes. Meta directory processes each contain a list of directory processes
and a list of other meta directory processes. Each directory process must be
listed in one meta directory process. The meta directory processes must reference
one another such that they form a strongly connected graph. Starting from
any meta directory process the debugger must be able to locate the full set of
meta directory processes. There can be as few as one meta directory process.
Meta directory processes can also be directory processes, in fact is is possible
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that an implementation would choose to have all directory processes also be
meta directory processes. Both directory and meta directory processes are MPI
processes.

Meta directory processes are separated in this interface from directory pro-
cesses because meta directory processes are expected to receive and handle
proctable change notification messages from other processes. MPI library im-
plementors may decide that they don’t wish to have all the directory processes
assume this responsibility. In this case they can have a much smaller set of
processes play the role of meta directory processes. Only this narrower set of
processes needs to assume the overhead that is involved in processing proctable
change messages.

The debugger always needs to be able to identify the meta directory processes.
The user should not need to know which process or processes are serving as meta
directory processes. So all MPI processes (including all directory processes) will
have information about one meta directory process. The user can then connect
TotalView to any process of a MPI job and TotalView should be able to discover
all the other processes through that one meta directory process.

The intent is that 1 ≤ M ≤ D � R where M is the number of meta directory
processes, D is the number of directory processes, and R is the number of MPI
processes.

3.4 Operations on the Distributed Proctable

The primary operation that the debugger will need to do on the distributed
proctable is list it out. Assuming, for example, that TotalView starts by being
attached to any one of the user’s MPI process. TotalView then finds the infor-
mation about the meta directory process that this process references. TotalView
then attaches to that meta process and gathers its information. If there are other
meta directory processes TotalView walks the graph, attaching to each in turn
and gathering a cumulative list of directory processes. Having gathered a full list
of directory processes TotalView attaches to any of them that it has not already
attached to (remember that meta directories can be directories as well). At this
point TotalView is attached to the full list of directory processes and now has
the full list of the users MPI processes at hand.

In order to receive notification of proctable changes TotalView will need to
remain attached to all of the meta directory processes. If the user does not require
notification TotalView can detach from all but one MPI process and still be able
to pick up changes to the proctable when the user requests (by reattaching to
the meta directories locating and attaching to the directories and rereading
the proctable information).

MPI library operations on the proctable must be carefully designed to allow
for performance at large-scales. For example, modifying the entries in a proctable
should involve as few processes as possible – at most, a meta directory process, a
directory process, and the processes in the collective action (SPAWN, CONNECT,
ACCEPT). It is certainly preferable to involve far less than this (e.g., only the
directories and the root process from a SPAWN or representative processes from
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each of CONNECT and ACCEPT). Since meta directory and directory processes
may also be MPI processes involved in the user’s application, it is also critical
that the interface not require the participating processes to block on the directory
process’ response.

During normal startup one process might be the meta directory and one or
more processes are designated directory process. Information can be propagated
as needed to set this up during INIT.

During a SPAWN collective there are two examples that must be considered.
If the spawning collective group includes a directory process then that directory
gets the information for the newly created processes during the SPAWN collec-
tive. A change notice is sent to the meta directory. When the meta directory is
able to process the notification it calls a stub routine to notify TotalView that
the process table has changed.

If the spawning group does not contain a directory process then one of the
group gathers data on its peers and becomes a directory process. This can be
done during the SPAWN collective call. The new directory then sends notification
to its meta directory process that it has assumed the new status and that a
change occurred. The meta directory adds the new directory to its list and calls
the stub notification routine for TotalView.

If two separately started jobs are joined with CONNECT and ACCEPT both
jobs will have their own preexisting proctable structures. During the CONNECT
/ ACCEPT collectives the processes participating in the CONNECT / ACCEPT
exchange meta directory information. Then one process on each side sends that
information (the identity of the other sides meta directory processes) to its ‘own’
meta directory. When the meta directories each add the new peer to their list
of other meta directory processes they make the entire MPI application on the
other side of the CONNECT / ACCEPT operation part of the proctable.

CONNECT and ACCEPT can be called within an existing job. If this happens
a new connection may be established within the set of meta directory processes
but the underlying proctable remains essentially unchanged. Thinking of this
as a graph operation, a new pair of vectors are added to an already connected
graph but the total set of connected verticies doesn’t change.

JOIN operations are almost identical to CONNECT / ACCEPT in terms of
operations on the proctable.

3.5 Reading the Proctable

The program will expose one or more global loader symbols that TV will use to
identify the location in memory to look at to find the information exposed by
this interface.

The data will be stored in a structured way that will not depend on the
program providing type information to the debugger. It can become complex for
MPI vendors and users to handle the MPI library itself in such a way that the
type information is preserved.

One example of an encoding that would meet the above requirement would
be a simple pointer to a null terminated string. All the required information
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could be encoded into this string. Slightly more complex structures of pointers,
integers, and strings that have better properties for efficient maintenance will
likely be used.

3.6 Synchronization Between the MPI and the Debugger

During startup the processes will wait for the debugger before proceeding. This
can be done using a gate variable in INIT that the debugger has to attach to
trigger, or by having a barrier in INIT that the processes all need to reach before
running past INIT , or using other mechanisms that achieve the same result.

Synchronization should occur at SPAWN calls if and only if the debugger is
attached to the root process of the dynamic process collective. Similar synchro-
nization should occur with CONNECT / ACCEPT , in this case however the
newly related MPI processes should be held in the remote collective call, again
if and only if the debugger is attached to the root process of the local collective
operation.

The MPI library will declare and may check but not set a process level global
variable that the debugger can set to notify the MPI process that it is being
debugged.

The MPI library will maintain, on a per process level, a variable that the
debugger can check to see if the proctable data-structures are being modified.

When the process needs to notify the debugger that an event has occurred it
will call an agreed upon stub function. If the debugger wishes to know that this
function has been called it can put a hidden breakpoint at that location. This
notification will occur on one meta directory when the proctable has changed. It
will occur on the root process of a dynamic process collective to notify TotalView
that new processes are available and are being held so that the debugger can
attach.

4 Naming Scheme for MPI 2 Proccesses in External
Tools

A parallel debugger needs a way to identify the many processes being debugged
to the user. Each MPI process has a handle to just one MPI COMM WORLD,
within that MPI COMM WORLD each MPI process has a well defind, unique
rank. In order to fully and unambiguously specify the process the user needs
to have both this rank and a clear way to refer to the MPI COMM WORLD.
For scripting and comparing the behavior or the program from one run to the
next the name that the debugger gives to each MPI COMM WORLD should not
depend on factors outside the control of the program. In section 3.2 we specified
that the proctable will retain information about the MPI process that acted as
the root for a newly spawned MPI COMM WORLD. This information can be
used to construct a name for that new MPI COMM WORLD that is unique and
descriptive of the specific sequence of SPAWN operations that lead to its creation.
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5 Conclusion

The interface discussed here should be useful to any MPI library implementing
MPI 2 dynamic processes and any tool designed to work with programs taking
advantage of MPI 2 dynamic process features. We will be working first to proto-
type the MPI library side of the interface in both Open MPI[4] and MPICH 2[5].
At the same time the parallel debugger side of the interface will be prototyped
in the TotalView parallel debugger. The design will then be documented based
on the experiences and lessons learned in the course of these initial prototyping
efforts. This is intended to be an open interface and we welcome input from
other MPI and tool developers.
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Abstract. Communication between processes in a distributed environment is 
implemented using either shared memory or message passing paradigm. The 
message passing paradigm is used more often due to the lesser hardware 
requirements. MPI is a standardized message passing API with several 
independent implementations. Specification and verification of distributed 
systems is generally a challenging task. In this paper we present a case study of 
specification and verification of MPI based software using abstract state 
machines (ASMs).  

Keywords: MPI software modeling, MPI software verification, abstract state 
machines (ASMs). 

1   Introduction 

Modern scientific applications perform large number of computations in order to 
simulate complex natural processes or to analyze dependencies among huge data sets. 
Such a complex calculation can usually be efficiently split into several more or less 
independent calculations that can be executed in parallel. 

In order to realize distributed computation scientific community relies on two most 
popular message passing frameworks: parallel virtual machine (PVM) [1] and 
message passing interface (MPI) [2]. Both frameworks support heterogeneous 
computing environment, synchronous and asynchronous communication and dynamic 
process creation. The main difference is the fact that PVM is both standard and 
implementation while MPI is an API definition opened for different implementations 
with richer set of communication primitives. 

During the implementation of MPI based distributed systems some difficulties may 
arise as a result of the excessive synchronous or carelessly used asynchronous 
communications. Excessive use of synchronous communication in the complex 
process topologies may easily lead to numerous deadlock occurrences. The source of 
deadlock is usually hard to detect using plain debuggers because of deadlock’s 
irregular occurrence pattern. Even though synchronous communication can easily 
lead to deadlock and reduces overall parallelism, it is very useful for coordination 
among processes. 
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The use of asynchronous communication contributes to overall parallelism but can 
lead to a large number of possible process execution and communication sequences. 
Some of the sequences may not conform to the overall specification of the system and 
can be difficult to trace in the stochastic system execution. 

In order to reason about complex systems featuring asynchronous communication 
it can be fruitful to model the system prior to its implementation. The system model 
should faithfully represent all the aspects of a given specification and provide a 
valuable insight into the complex system behavior. Also, the system model should be 
easily refined from the most general form to its specific implementation. 

In this paper we use Abstract State Machine Language (AsmL) [3] in order to 
model distributed algorithm for mutual exclusion [4], which we implemented while 
using MPI. We also prove some of the properties of the algorithm on bounded number 
of states using Spec Explorer tool [5] against the AsmL model. 

In Section 2 we quote previous work on modeling MPI based software. A brief 
description of ASMs and AsmL is given in Section 3. In Section 4 we show the 
modeling technique for representing distributed algorithms using AsmL and the 
relation of the model to the corresponding MPI implementation. 

2   Previous Work 

Modeling and verification of MPI based software has been practisized using the 
Promela language and the model checker SPIN [6]. Theorems were stated that could 
be used to avoid space explosions and still prove the absence of deadlock. This was 
accomplished by converting asynchronous communication to synchronous and then 
checking the synchronous communication for deadlock occurrences. 

Virtual machine for the PVM system has been described in [7] using mathematical 
notion of ASMs. That was a pure theoretical approach to the specification of the 
virtual machine. The specification can be extended to specify the behavior of MPI 
communication because of the similarities in the two frameworks. In this paper we do 
not use the cited approach, but instead provide a method for specifying basic MPI 
communication using the AsmL language. The benefits of using AsmL lie in the 
existence of tools for executing the given models, and the possibilities of 
conformance testing using these tools. 

3   Abstract State Machines 

Abstract state machines [8], also known as Evolving Algebras (EA) are introduced in 
order to make system specification and specification refinement easier to deal with. 
They can be used to faithfully describe sequential [9] and parallel algorithms [10] at 
their natural level of abstraction, because for every such an algorithm there exists an 
ASM which represents it up to the elementary step. 

The state S of an ASM M is a static algebra consisting of the set X (superuniverse 
of S), the signature  containing all the function names, and the interpretations of all 
the function names f∈  where f:Xr X (r represents the function arity). When 
representing computer systems all states of the ASM M share the same superuniverse 
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and the same set of function names, while the function interpretations change in 
different states. The evolution of one state to another is defined by using a simple 
transition rule “If Condition then Update”. Update denotes a finite set of assignments 
of the form f(t1,..,tn):=t, where f is one of the function names in  with arguments 
t1,…,tn.  

Basic ASM is defined by its initial state and the set of transition rules. There are 
numerous extensions to this definition suitable for modeling of different types of 
systems that are not further explicated here. 

AsmL is the language that simplifies modeling using ASMs because it offers a 
richer set of constructs than the simple transition rule set, but all of these constructs 
eventually compile to the transition rule set. Although the elements of the AsmL 
language are intuitive and self explanatory, a short description of some of them is 
given in the rest of the paper where needed. 

4   Modeling MPI Processes, a Case Study 

In order to partly specify the behavior of MPI programs we present a case study in 
which we have designed AsmL model of an algorithm for mutual exclusion, which is 
afterwards implemented using MPI.  

The algorithm is described in Subsection 4.1, while the procedure for modeling 
MPI processes is described in Subsection 4.2. In subsection 4.3 we explicate the 
transformation of the mutual exclusion algorithm to the AsmL model and show the 
guidelines for the refinement of this model towards its MPI implementation. We have 
verified some of the key properties of the AsmL model, as shown in subsection 4.4. 

4.1   Distributed Algorithm for Mutual Exclusion 

Distributed algorithm for mutual exclusion [4] is designed to order the events in 
distributed systems. A distributed system includes processes that communicate using 
asynchronous message passing. An event is characterized as either sending or 
receiving a message.  

The goal of the algorithm is to provide exclusive access (safety property) to a 
resource for a given number of processes. If every process that is granted the resource 
eventually releases it, then every request for a resource is eventually granted (liveness 
property). Each process executing the algorithm maintains its local logical clock and a 
request queue. The value of the local clock is increased after every event and sent as a 
timestamp (Tm) within every message. The request queue is used to store all the 
requests for the resource that arrive from other processes. The algorithm for mutual 
exclusion is given by the following rules: 

R1) In order to request resource, the process pi sends the message 
M=(Tm,pi,request) to every other process and to its request queue. 

R2) After the receipt of the M=(Tm,pi,request) the process pj puts the message 
into its request queue and sends  timestamped acknowledgement to pi. 

R3) When releasing the resource, the process pi removes the message M=(Tm, pi, 
request) from its request queue and sends the message M=(Tn, pi, release 
resource) to all processes. 
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R4) When the process pj receives release resource message from the process pi it 
removes all the requests of the form M=(Tm,pi,request) from its request 
queue. 

R5) Resource is granted to the process pi when there is a request (Tm, pi, request) 
in its request queue ordered before (by the relation ) any other request in 
the same queue, and the process pi received at least one message timestamped 
later then Tm from all the other processes. 

4.2   Modeling of MPI Semantics Using AsmL 

MPI based distributed system consists of initially undetermined number of processes. 
The number of communicating processes may dynamically change as a result of the 
implemented algorithm. In order to model such an environment using ASMs, each 
state of the resulting ASM must contain information about all processes and the 
values of each process’s address space. Even more, each of the processes should be 
uniquely identified with its process number, according to the MPI specification. 

In order to implement this semantics in AsmL language we define an AsmL 
process class that represents processes in the system. Methods of the AsmL process 
class are atomic actions that can be executed by the MPI process. Every instance of 
the AsmL process class represents one MPI process. Since instance creation is 
possible in any phase of the parallel algorithm, in this manner it is possible to model 
dynamic creation of processes. 

Every atomic action of the process that is implemented using the class method can 
be restricted by a precondition in order to define acceptable sequences of actions. 
When modeling the class of processes that execute the following exemplary sequence 
of actions: 

Add(), Subtract(), Add (), Subtract() 

we produce the following AsmL code, where keyword require denotes the 
precondition of the action (method): 

class process() 
var state as Boolean=true 
Add() 
require state=true 
  state:=false 

Subtract() 
   require state=false 
   state:=true 

This AsmL model represents a set of processes in which every process is allowed 
to execute one action (AsmL method) at a time. 

Modeling interprocess communication with AsmL can be done by modeling a 
separate software entity that conforms to the MPI specification and mediates all of the 
communication. Alternative approach is to enforce MPI communication policies 
directly into the processes and their methods. 

In this paper we use the latter approach because detailed modeling of the separate 
component would increase the complexity of the overall system for both 
implementation and execution analysis. 

When modeling MPI function calls (sends and receives) of any process we create a 
method in the AsmL process class for each call. Execution sequence containing the 
given MPI function call is guided using method preconditions. We do not distinguish 
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between different types of intermediate buffers (user and system buffer) because from 
the system state exploration point of view these two are the same. In order to provide 
message buffering we introduce an AsmL sequence named messageQueue which is 
used to buffer all the messages in the order in which they arrive. Every process that 
receives data contains messageQueue through which it receives all its messages. Each 
message is represented with an AsmL structure which contains information that 
identifies the sender, the tag and the useful data itself. 

The representation of blocking buffered sends (MPI_SEND and MPI_BSEND) is 
modeled by the following AsmL method: 

BufferedSend() 
  require state=DESIRED_STATE 
  receiver.messageQueue+=[Message(myId,Tag,data)] 
  state:=MESSAGE RECEIVED 

where DESIRED_STATE denotes the state of the system which is followed by the 
modeled buffered send. 

The non-blocking sends can be represented with the same AsmL code because the 
only difference from the blocking sends is that other actions can be performed while 
the message is being copied from the application buffer to the intermediate buffer. 
This would imply that the message is certainly residing in the intermediate buffer only 
after the communication is successfully tested (usually with MPI_WAIT) for 
completion. In order to skip modeling of both unblocking send and testing for 
completion we can, without any loss in later simulation, assume that message is 
copied to the buffer when MPI_WAIT is called. In that way we must only model 
MPI_WAIT call as a buffered blocking send and skip the modeling of the non-
blocking send call (MPI_ISEND). 

In order to represent MPI_SSEND and MPI_RSEND blocking sends one must 
assure that the matching receives are posted before the sending process can continue 
its execution. This can be done by adding a special precondition to the AsmL method 
implementing these sends. 

The AsmL representation of MPI receives is done by introducing two methods for 
both blocking and non-blocking receives. The first method is used to announce that 
there exists a posted receive, while the second method is used to actually receive data 
from the intermediate buffer. The announcement of the message receive is needed in 
order to trigger the execution of MPI_SSEND and MPI_RSEND. 

All the receive message announces are stored into a set of announces (one set for 
each process), and the AsmL methods that implement this behavior are: 

AnnounceMessageReceive() 
   require state=DESIRED STATE 
   me.announces+={Announce()} 
   state:=DESIRED STATE + RECEIVE ANNOUNCED 

ReceiveMessage() 
   require messageQueue contains message 
   (1)require STATE IN WHICH MPI WAIT IS POSTED 
   (2)require DESIRED STATE + RECEIVE ANNOUNCED 
   applicationBuffer=getMessage(messageQueue) 
   state:=MESSAGE RECEIVED 
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After the message receive is announced, and if it is the case of blocking receive, 
then the only method that can be called is ReceiveMessage (other methods have 
preconditions which should restrict it from execution). The ReceiveMessage method 
for the blocking receive doesn’t contain the precondition having the (1) label, while 
the same method for non-blocking receive disregards the precondition labeled (2) in 
the above code segment. 

4.3   AsmL Model of the Distributed Algorithm for Mutual Exclusion 

When representing distributed algorithms it is very rewarding to pick the most 
abstract description of states and transitions between them, and then refine it with 
more detailed specification. We decided to pick three basic states for each of the MPI 
processes. The states and possible transitions between them for one of the processes 
are presented in Fig. 1. 

When the process is in the state having then it is granted the resource. Only one 
process can be in the state having at any time. The state requesting denotes that a 
process is not having the resource but it has requested it by sending appropriate 
messages to the other processes. After releasing the resource, but before placing new 
requests to obtain it again, every process may perform some calculations. These 
calculations should not involve the resource, and the state of the process in which 
these calculations may be performed is labeled sleeping.  

We implemented every process and its internal state, which may be one of the 
values {having, requesting, sleeping},  by the following AsmL constructs: 

enum tState 
  sleeping requesting having 
class process() 
  var state as tState 
  var clock, nOfReceivedAck as Integer 

where every process has an internal variable state which may take any value from the 
set of the enumerated type tState. Besides storing the state, every process must be 
extended with variable that keeps tracking of the local time (local clock function). In 
order to implement the rule R5) every process should track the last timestamp it 
received from all other process. Since that information would increase the number of 
states in the whole system we introduce the counter of acknowledge messages. When 
a process receives acknowledge message from all the other processes than it is 
obvious by the rule R2) that it received at least one message from everyone (at least 
that acknowledge) that is stamped later than its request. 

 
 
 
 
 
 

Fig. 1. Basic states of the process 
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There are two additional data structures that should be added to each process: one 
is a message queue for modeling intermediate MPI buffer, and the other is a request 
queue used by the mutual exclusion algorithm. We used the messageQueue AsmL 
sequence in order to represent intermediate buffer as described in subsection 4.2, and 
an AsmL set requestQueue to encode the request queue. The request queue may be 
described as an AsmL sequence instead of a set, but that would impose additional 
restriction on the algorithm in which no distinction among different request orderings 
is made. Both messageQueue and requestQueue are added to the process class: 

class process() 
  var messageQueue as Seq of sMessage 
  var requestQueue as Set of sMessage 

The elements of the messageQueue and the requestQueue are structures of the type 
sMessage that are used to describe messages exchanged by processes. The type 
sMessage is defined (using AsmL) as follows: 

structure sMessage 
  var clock as Integer 
  var sendingProcess as Integer 
  var messageType as tMessageType

enum tMessageType 
  requestResource 
  releaseResource 
  acknowledge 

where clock is used as a timestamp, sendingProcess indicates the sender of the 
message, and messageType determines the type of the message. There are three 
message types being passed by the distributed system that are identified in the 
enumerated type tMessageType. In order for every process to obtain the resource, it 
must send a requestResource (REQ) message to every other process as defined by the 
algorithm (rule R1). Upon the receipt of the requestResource message every process 
must respond with an acknowledge (ACK) message (rule R2). When the process is 
granted the resource and is about to release it, it notifies other processes with a 
releaseResource (REL) message (rule R3). 

The description of distributed system implementing mutual exclusion algorithm is 
given by determining process execution. The execution is defined as a sequence of 
actions (implemented by AsmL class methods) that are guarded by preconditions. In 
this paper we describe AsmL methods sendRequestResource and acceptMessage. It is 
important to note that both methods employ only asynchronous MPI communication. 

AsmL implementation of the actions sendRequestResource and acceptMessage 

sendRequestResource() 
 require state=tState.sleeping 
 state:=tState.requesting 
 step foreach iProcess in processes where iProcess<>me 
   iProcess.messageQueue+=[NewRequest] 
 requestQueue+=[NewRequest] 
 clock+=1,nOfReceivedAck:=0 

acceptMessage() 
 require Size(messageQueue)>0 and state=tState.requesting 
 messageQueue:=Tail(messageQueue) 
 clock:=max(messageQueue(0).clock+1,clock+1) 
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 match messageQueue(0).messageType 
  REQ: requestQueue+={messageQueue(0)} 
       sender.messageQueue+=[NewAcknowledge] 
  REL: requestQueue-=request(sender) 
  ACK: nOfReceivedAck+=1 

When a process needs to enter its critical section, it executes the method 
sendRequestResource, which can be triggered only if the executing process is in the 
state sleeping. During the execution of the method new requests are placed in the 
message queues of all the other processes. The state and internal clock of the process 
are also modified. It can be observed that every message passing is not implemented 
by its own method (guarded by preconditions). In that way we decreased the number 
of methods in a class and improved readability of the model. Nevertheless, the given 
model can be easily extended to match the one message - one AsmL method 
translation described in the subsection 4.2. At the end of the method the number of 
received acknowledges is initialized. 

The method acceptMessage is allowed to execute when intermediate buffer 
messageQueue contains at least one message. The execution of the method depends 
on the type of the message and is determined by the rules R2) and R4). Regardless of 
the message type, the message is deleted from the intermediate buffer and the local 
clock of the process is updated. If the requestResource message is in the intermediate 
buffer, then it is moved to the requestQueue. When acknowledge message is received, 
the acknowledge counter (nOfReceivedAck) is incremented. Servicing the 
releaseResource message is accomplished by removal of the appropriate request from 
the requestQueue. 

The given AsmL specification of the algorithm can be easily refined to the MPI 
implementation. The method sendRequestResourceMPI is a straightforward 
refinement of the method sendRequestResource.  

void sendRequestResource() 
  assert !(state==tState.sleeping); 
  state=REQUESTING; 
  for( iProcess=1; iProcess<=nProcesses; iProcess++) 
   if(!iProcess=myRank) 
    MPI_BSend(request,1,Sizeof(request),iProcess, 
    TAG,MPI COMM WORLD,waitObject); 
  AddToQueue(NewRequest,requestQueue); 
  clock++; nOfReceivedAck=0; 

The use of the messageQueue is replaced by the buffered send MPI_BSEND and a 
new function AddToQueue is introduced since the queue operations must be explicitly 
implemented. Instead of method precondition, an assertion is used in order to prevent 
execution of the method if the process is not in the appropriate state.  

4.4   Verification of Algorithm Properties 

Verification of the mutual exclusion algorithm properties is performed on the labeled 
transition system (LTS) which is generated from the AsmL model using Spec 
Explorer tool. LTS is an ordered quadruple (s0, S, L, R) where s0 is the initial state of 
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the system, S is a set of all the states in the system, L is a set of actions and R is a 
proper subset of SLS ×× . Every triple (s1,a,s2) denotes that there exists a state s1 in 
which action a can be executed, and execution of the action a in state s1 transforms 
this state to the state s2. 

The algorithm for mutual exclusion should satisfy safety and liveness properties 
given in the subsection 4.1. 

A full verification of the given mutual exclusion algorithm is not possible using 
state exploration tools because the number of the states in the system is infinite. 
Infiniteness is caused by the constant increasing of the local clocks in the processes. 
In order to perform the verification we set an upper limit on the clock value and 
disregard all the states in which clock of any of the processes exceeds the given limit. 

When checking the safety property in the Spec Explorer tool we defined the 
following stopping condition for state exploration in order to detect safety violation: 

exists pi in processes where pi.state=having and  
   (exists pj in processes where pi<>pj and  
    pj.state=having) 

After the breadth-first exploration of 40000 states in the system of 4 processes, the 
safety violation was not detected. In Fig. 2 the result of state space exploration is 
given for the system of two processes explored up with clocks limited to 9. The states 
are grouped by internal state of each of the processes.  It can be observed that there is 
no explored state in which more that one process is granted the resource. 

Checking the liveness property is usually accomplished by specification of the 
property in temporal logic such as CTL, and verifying the CTL formula using a model 
checker. The Spec Explorer tool doesn’t support model checking of CTL properties, but 
 

 

Fig. 2. Space exploration result for two processes grouped by the internal state of the process 



132 I. Grudenic and N. Bogunovic 

 

the state groupings (Fig. 2) shows that the liveness property is satisfied. This is due to 
the fact that every state is reachable from any state in the finite number of steps. 

5   Conclusion and Future Work 

In this paper we depicted a method for modeling basic MPI constructs using AsmL 
language, in order to elicit convincing arguments for analyzing complex systems that 
way. Some pointers for refinement of the model towards the implementation are given 
as well. At the end of the paper we illustrated verification of safety and liveness 
properties using regular state space exploration tool Spec Explorer. 

In our case study we have focused on the asynchronous distributed mutual 
exclusion algorithm to confirm the feasibility of the applied formal method. There 
exists a procedure for modeling MPI software using Promela language that enables 
verification of complex CTL specifications. We utilized a different approach, because 
the refinement of ASM specification is easier and the AsmL models are much simpler 
to work with. In the future we plan to focus on "dirtier" parts of the MPI system. We 
would like to provide a complete ASM description of the expected behavior of the 
MPI communication subsystem that would make possible conformance testing of 
various MPI implementations. 
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Abstract. There is a growing interest in deploying MPI over very large
numbers of heterogenous, geographically distributed resources. FT-MPI
provides the fault-tolerance necessary at this scale, but presents some
issues when crossing multiple administrative domains. Using the H2O
metacomputing framework, we add cross-administrative domain inter-
operability and “pluggability” to FT-MPI. The latter feature allows us,
using proxies, to transparently replace one vulnerable module - its name
service - with fault-tolerant replacements. We present an algorithm for
improving performance of operations over the proxies. We evaluate its
performance in a comparison using the original name service, OpenL-
DAP and current Emory research project HDNS.

Keywords: FT-MPI, H2O, metacomputing, fault-tolerance, hetero-
geneity.

1 Introduction

Over the course of the last ten years, clusters running some implementation of
MPI have become some of the most popular supercomputing platforms. Recently,
there has been a growing interest in clustering resources that feature extensive
geographical distribution across multiple Administrative Domains (ADs). This
raises the issue of fault-tolerance. FT-MPI [7] differs from other solutions to the
fault-tolerance problem [3,4,6,10,5], in that it allows the application itself to re-
store it’s own state, instead of relying on automated - but potentially unscalable
- solutions like global distributed checkpointing. This makes it an interesting so-
lution for highly geographically distributed, heterogenous resources with a need
for customized, lightweight recovery mechanisms.

However, FT-MPI is currently confined to single ADs. Also, bottlenecks and
potential single points of failure (SPoFs) become an issue when deploying it
over slower AD interconnects. One of the critical modules is the FT-MPI name
service (NS). We have previously addressed these points [2,1] by developing a
proxy-based solution which allows FT-MPI administrators to use any NS of their
own choice (including any fault tolerance features available with it). Further, we
use features of the H2O metacomputing framework [8] to span multiple ADs
without the need for individual accounts on each system.
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In this paper, we focus on improving performance of operations over the prox-
ies. We demonstrate the ability of our approach to transparently and scalably
switch between different NSs. We will also present performance test data for the
improved algorithms using different backend NSs.

2 Design Overview

2.1 Basic FT-MPI Architecture

A running FT-MPI virtual machine (VM) deploys one FT-MPI runtime per
node and a number of daemons to assist it in setting up and managing jobs: a
startup-daemon on each node (semi-critical), one or more notifier daemons (non
critical), and a single naming daemon (figure 1).

Fig. 1. a typical running FT-MPI system

Each VM needs exactly one naming daemon (however, a single NS instance
can manage multiple VMs). It provides a custom NS and serves a crucial role
in VM buildup, job startup and job recovery. Specifically, the FT-MPI runtime
uses it to keep records on VM and job membership. To ensure data consistency,
editing of records for job and task state in the NS is done by the FT-MPI runtime
of single leader node. The leader edits these records during the error recovery
phase to clean up job and task state. FT-MPI runtimes on other nodes are then
notified of the changes through a system of callbacks. Leaders are elected through
a custom call in the NS.

We note the following issues with the daemon in the currently available version
of FT-MPI: 1) it constitutes a potential SPoF, as it is highly state-retaining and
critically important for the general functioning of the VM, 2) it is also a possible
choke-point when communicating over slow AD interconnects (this issue was
recently addressed [13] and an adapted recovery algorithm should be added to
future releases of FT-MPI) and 3) it does not support features like replication
and load balancing, which would be desirable to improve scalability at very large
VM sizes. We note that many generic name servers currently available do offer
these features.
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2.2 Extensions to the FT-MPI Architecture

We use proxies to bridge between the custom FT-MPI NS protocol an any generic
NS, enable an operator of an FT-MPI VM to use a NS of his own choice :

– instead of directly contacting the NS, components of FT-MPI contact a proxy
which resides on the gateway between the single AD and the “outside world”;
this proxy acts as a “front-end ” to the real NS, translating FT-MPI protocol
calls to a format that is understood by the real, “back-end ” name service;
the front-end does not retain internal state - thus, failures can be handled
through simple measures like a trivial replication scheme or a restart

– all nodes on a single AD retain an open connection to the NS front-end for
that AD, and each NS front-end retains a single connection with the NS
back-end (hierarchical message forwarding)

– the NS front-end is implemented as a H2O “pluglet” making it fully remotely
deployable by operators on any machine that runs an H2O kernel

The setup is best illustrated by the example in figure 2.

Fig. 2. An FT-MPI VM using proxies and a generic back-end NS

This approach allows FT-MPI to use one of a wide range of “off the shelf”
NSs available. Many of these provide important fault-tolerance and performance
features lacking from the current FT-MPI NS (load distribution, replication,
checkpointing etc.).
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The proxies are implemented in Java. This allowed us to use JNDI, the Java
Naming and Directory Interface, which provides uniform access to a diverse set of
NSs, ranging from LDAP to DNS. Any provider can make a NS “JNDI-enabled”
by implementing a Service Provider Interface (SPI). All interaction with the NS
is fully transparent to the user. Thus, using JNDI allows us to make access to
the backend generic w.r.t. different NSs.

2.3 Concurrency, Atomicity and JNDI

FT-MPI assumes a centralized, single-threaded NS which queues all incoming
requests on receive. A number of its calls resolve compound operations like in-
crement, compare and set etc. in a single atomic call. However, 1) the new design
we propose has front-ends running in parallel and accessing the back-end concur-
rently and 2) certain single (atomic) calls in the NS have to be resolved through
multiple primitives in JNDI, requiring separate lookups and subsequent binds.
This introduces the possibility for concurrency problems, e.g. race conditions.

JNDI primitives. We previously discussed a solution through the use of remote
unreliable locks, composed from basic JNDI primitives[1]. We will show that it is
possible to handle a majority of NS interactions without the use of said locks by
exploiting the NSs single-update / multiple-callback architecture. To accomplish
our goals, JNDI provides us with the following (relevant) atomic primitives:

– bind(name,object): binds object, which can contain an arbitrary number of
fields to name; returns success or failure; appropriate exception is thrown if
name is already bound

– rebind(name,object): replaces the current object bound to name by object,
or acts identical to bind in case name hasn’t been bound yet; returns success
or failure

– lookup(name): returns the object bound to name; an appropriate exception
is thrown in case of problems

JNDI also supports a callback mechanism, enabling us to register and “listen”
for updates to the NS, very much like the original FT-MPI NS.

Leader election. The most important part of custom functionality to im-
plement is the leader election system. Once a leader gets elected, all editing
of records for job and task state is done through him, eliminating the prob-
lem of concurrency. The FT-MPI NS implements leader election as a “grab
the token” type of contest. The NS provides a custom call of the general form
swap(token,old_leader,contender) which swaps the ownership of token from
old_leader to contender if the current owner of token is old_leader. In other
words: the first contender node to get its message handled by the NS gets to
swap ownership of the token (and become leader) whilst a failure message is
returned to the others on all subsequent messages.



FT-MPI, Fault-Tolerant Metacomputing and Generic Name Services 137

An adapted election algorithm. Given the primitives available to us, we per-
form leader election by implementing “grab a token” as “bind a token”. For each
token which is swapped during the lifetime of the VM, an object is stored in the
NS with an election_count keeping track of how many swaps have already been
performed on it. This token is read during the initialization phase of the proxy
and the counter is locally cached for later use. When an election takes place, all
contender nodes send the appropriate message to their respective proxies and
the following sequence of actions is performed:

1. the proxies each increase the cached leader counter for token by one, once -
for all contenders who share the same proxy, the contest is resolved locally
at the proxy

2. each proxy, for its respective local winner, attempts to bind an object under
the name ”<token>_<counter>” - the node for which the bind succeeds
is the winner node, all others are loser nodes

3. the proxy acting for the winner node rebinds token with the new ownership
data (triggering a callback) - the winner token becomes the leader and the
outcome is relayed back to the new leader node - meanwhile, the proxies
handling the calls for the respective loser nodes wait for a callback on a
rebind for token, eventually relaying the outcome to their respective loser
nodes as normal

4. if something goes wrong during the winner’ actions in step 3 (non-atomic),
this means something is wrong with the proxy, the gateway on which it re-
sides, or its network connection; all of these will get nodes in their respective
AD into trouble and register with the FT-MPI runtime as an error - the
FT-MPI runtime will then recommence the recovery procedure (including a
potential new leader election) as normal

This leaves us only with the problem of compound operations: what if something
goes wrong with the leader in the middle of a compound operation? JNDI only
allows for atomic operations on a single object at a time. This would lead to
inconsistencies in the backend. We deal with this problem by using a single state
object which contains pointers to all objects involved in the compound operation.
We do not directly write to the objects themselves, but to a copy, keeping the old
state intact until all actions in the compound operation have been performed.
When ready, a rebind of the index record turns everything over to the new state
within a single operation. This may leave spurious objects in the NS, but these
can easily be cleaned up by an independent garbage removal process.

Results. Advantages of this approach are 1) the ability to drastically reduce
dependence on remote locks, enhancing performance by reducing the amount
of JNDI calls that would normally be needed, and 2) the ability to do partial
local resolution of the leader election process at the proxy, bringing down the
amount of effective calls going out to the back end NS. This reduces the potential
for choke-points on connections between different ADs and helps spreading load
for very large, geographically dispersed VMs. Also, the number of callbacks is
similarly reduced to one per proxy instead of one per node.
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3 Evaluation

Setup and Experiments. To demonstrate the ability of our setup to trans-
parently switch between multiple NS backends,we performed a comparative ex-
periment on two nodes: one in Atlanta (Georgia), USA, the other situated in
Antwerp, Belgium. The node in Atlanta is a 4 CPU 2.8 GHz Pentium 4 with
1GB memory running Mandriva Linux 2006. The node in Antwerp is a 1.90GHz
Pentium 4 with 256MB memory running Suse Linux 7. This setup was used in
order to simulate the conditions which the design is aimed at: geographically dis-
tributed, heterogenous resources. The node in Atlanta ran the original FT-MPI
NS, OpenLDAP or HDNS depending on the test case. The node in Antwerp ran
a basic client program in both cases, plus the front-end in the case of the new
design.

We ran a number of performance tests comparing the original NS with two
alternatives: the LDAP-based OpenLDAP using the Berkeley DB, and HDNS
[12]. HDNS is a naming service initially developed for the Harness Project[11].
While developing the SPI, a completely new version of HDNS has been designed
and implemented. Both of the NSs tested support distribution and a number
of features like fault-tolerance and persistency, which are not available in the
original FT-MPI NS.

The following experiments were performed to evaluate scalability in terms of
transaction size and frequency: 1) insert and read back entries with progressively
growing payloads (10-900 B, using 100 B steps from 100 to 900 B) and 2) insert

Fig. 3. Evolution of wall-clock time with increasing payload and # opera-
tions(read/write)
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and read batches with a progressively growing number of equal-sized entries into
the NS - measure wall-clock time for both cases. Ultimately, we want the new
NS to be as scalable and stable as the original. We tested the performance of
insertion and deletion without locks, allowed by the leader election mechanism
described above.

Results. We note that all experiments successfully ran to conclusion and left
the back-end in a consistent state. From a practical point of view, we noticed that
changing between OpenLDAP and HDNS was very easily accomplished. None
of these experiments required any kind of code change or recompile of either
the original FT-MPI code, or the Java-code for the proxies. A few changes to a
configuration file and command-line parameters suffice to change NS back-ends
from one experiment to another.

Looking at the figures, we conclude that the ability to do insertion without
locking (though still less efficient than the original NS) provides us with a no-
table performance improvement over previous experiments in which we did use
locking [1], the performance gain consistently being around 40%. It should prove
interesting to do further research on improving performance of compound inser-
tion operations, bringing figures even closer to those of the original NS. We also
note that HDNS performs rather well as a backbone, outperforming OpenLDAP
on both insert and read operations in both experiments. On read operations it
even succeeds at slightly outperforming the original NS. We are currently in-
vestigating possible reasons for this remarkable behavior. Further, both graphs
show linear growth on both insert and read for both experiments, proving that
our design remains scalable and stable.

4 Conclusions

In this paper, we have discussed issues concerning the deployment of FT-MPI
for large scale computations on highly geographically distributed, heterogenous
resources. We have shown that “vanilla” FT-MPI poses some limitations in this
area due to the nature of its naming service. We have presented a design, leverag-
ing JNDI, which address these issues by enabling operators of an FT-MPI setup
to “plug in” their own name services. This feature is highly desirable as existing
“off the shelf” name services often do provide numerous features for improved
fault tolerance and performance.

We have discussed an algorithm which allows us to implement a leader election
system without locking, and note that it is possible to minimize the amount of
locking in general. This results in a significant performance gain over previous
implementations, both in terms of the amount of JNDI primitives needed and
the amount of data transferred over connections between multiple administrative
domains. We have presented experimental results which 1) confirm the efficacy
of this approach, as well as 2) show the effective ability to transparently change
between different back-ends, as demonstrated by our use of both LDAP and
HDNS back-ends without significant changes.
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Abstract. The number of processors embedded on high performance
computing platforms is growing daily to satisfy users desire for solving
larger and more complex problems. Parallel runtime environments have
to support and adapt to the underlying libraries and hardware which
require a high degree of scalability in dynamic environments. This paper
presents the design of a scalable and fault tolerant protocol for sup-
porting parallel runtime environment communications. The protocol is
designed to support transmission of messages across multiple nodes with
in a self-healing topology to protect against recursive node and process
failures. A formal protocol verification has validated the protocol for
both the normal and failure cases. We have implemented multiple rout-
ing algorithms for the protocol and concluded that the variant rule-based
routing algorithm yields the best overall results for damaged and incom-
plete topologies .

1 Introduction

Recently, several high performance computing platforms have been installed with
more than 10,000 CPUs such as Blue-Gene/L at LLNL, BGW at IBM and
Columbia at NASA [5]. Unfortunately, as the number of components increases,
so does the probability of failure. To satisfy the dynamic requirement of such a
dynamic environment (where the available number of resources is fluctuating) a
scalable and fault-tolerance framework is needed. Many large-scale applications
are implemented on top of message passing systems for which the de-facto stan-
dard is the Message Passing Interface (MPI) [10]. MPI implementations require
support of parallel runtime environments, which are extensions of the active
operating system services, and provide necessary functionalities (such as nam-
ing resolution services) for both the message passing libraries and applications
themselves. However, currently available parallel runtime environments are ei-
ther not scalable or inefficient in dynamic environments. The lack of scalable
and fault-tolerance parallel runtime environments motivates us to design and
implement such a system. A scalable and fault-tolerant communication protocol
that can be used as a basis for constructing higher level fault-tolerant parallel
runtime environment is described in this paper. The basic ability of the designed
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protocol is to transfer messages across multiple (multicast and broadcast rather
than unicast) nodes efficiently, while protecting against recursive node or process
failures.

The structure of this paper is as follows. The next section 2 discusses related
work. Section 3 introduces the scalable and fault-tolerant protocol, while the
section 4 presents the formal protocol verification. Experimental results are given
in section 5, followed by conclusions and future work in section 6.

2 Related Work

Although there are several existing parallel runtime environments for different
types of systems, they do not meet some of the major requirements for MPI
implementations: scalability, portability and performance. Typically, distributed
OS and single system image systems are not portable while the nature of Grid
middle-wares has performance problems.

The MPICH implementation [8] uses a parallel runtime environment called
Multi-purposed daemon (MPD) [3] for providing scalability and fault-tolerant
through a ring topology for some operations and a tree topology for others.
Runtime environments of other MPI implementations, such as Harness [1] of
FT-MPI [6], Open RTE [4] of Open MPI [7] and LAM of LAM/MPI [2], do not
currently provide both scalable and fault tolerance solutions for their internal
communications.

The scalability and fault-tolerance issues have been addressed in several net-
working areas. However, those approaches could not be used or they are not
efficient in the parallel runtime environments. Structured peer-to-peer network-
ing based on distributed hash tables such as CAN [11], Chord [14], Pastry [13]
and Tapestry [15] was designed for resource discovery. They are only optimized
for unicast messages. Techniques used in sensor or large scale ad-hoc networking
based on gossiping (or epidemic algorithm) [9] [12] mainly focus on information
aggregation.

3 Scalable and Fault-Tolerant Protocol

The protocol in this paper is not aware of MPI implementation. It aims to sup-
port parallel runtime environments of various message passing implementations.
However, currently work is in progress to integrate it in a fault-tolerance imple-
mentation of message passing interface called FT-MPI as well as in the modular
MPI implementation called Open MPI.

The protocol is based on a k-ary sibling tree topology used to develop a self
healing tree topology. The k-ary sibling tree topology is a k-ary tree, where k
is number of fan-out (k ≥ 2), and the nodes on the same level (same depth on
the tree) are linked together using a ring topology. The tree is primary designed
to allow scalability for broadcast and multicast operations that are typically
required during MPI application startup, input redirection, control signals and
termination. The ring is used to provide a well understood secondary path for
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(a)

Broadcast

Unicast / Multicast

(b)

Fig. 1. (a) Binary sibling tree topology (b) Message rerouting in case of failure

transmission when the tree is damaged during failure conditions (simplest multi-
path extension). In addition, typical k-ary tree only needs a single link or node
failure to become bisectional, while the k-ary sibling tree can tolerate up to k
failures. Fig. 1(a) illustrates an example of the binary (k=2) sibling tree. Each
node needs to know the contact information of at most k+3 neighbors (i.e.
parent, left, right and their children). The number of neighbors is kept to a
minimum to reduce the state management load on each node. Both the tree
and the ring topologies allow for neighbors addressing to be computed locally.
Usually, we expect the k parameter to remain constant for the lifetime of the
topology. The contact information of each node in some cases can be calculated
locally for some tightly coupled systems or may be stored in an external directory
service such as a name service of FT-MPI, a general purpose registry (GPR) of
Open MPI or even a LDAP server for loosely coupled systems. The tree will
automatically repair itself depending on an external recovery policy (i.e. when
and how to repair it) specified by the user. The details of protocol is specified
in section 3.1. The routing control of the protocol is discussed in section 3.2.

3.1 Protocol Specification

Service Specification: The goal of the protocol is to deliver messages across
multiple nodes while protecting against different types of node and/or process
failures. The protocol currently provides two kinds of message delivery service,
which are broadcast (1 to n) and multicast (1 to m, where m ≤ n1 ). The
broadcast service uses the k-ary tree to send messages in normal circumstance.
It will use the neighbor nodes to reroute the messages in the failure cases as
shown in Fig. 1(b). The multicast service treats the k-ary sibling tree as a graph.
It uses best effort to deliver messages with the shortest path from a source to
destinations in both normal and failure situations.

Environment Assumption: The protocol assumes that any failures are Fail-
stop rather than Byzantine i.e. if a process or a node crashes, it should be
1 A unicast message is a special case of multicast where m=1.
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unreachable rather than pretend that it is still alive. After each failure, at least
one neighbor of each node should be alive. Otherwise the k-ary tree will become
bisectional, and no routing of messages between the two section of the tree will
be possible. This assumption can be removed, if we allow each node to contact
a directory service (considered as a stable resource) to overcome the orphan
situation. The protocol also assumes that the transmission channel in which the
protocol is executed can detect and recover from transmission errors (e.g. based
on TCP and/or reliable UDP).

Protocol Vocabulary: There are 3 distinct kinds of messages: hello for the
initialize message, which constructs the k-ary sibling tree; mcast for the multicast
messages and bcast for the broadcast messages.

Message Format: The general message format of the protocol starts with a
version number followed by a message type (i.e. the control fields hello, mcast
and bcast). The hello message format consists of the above fields followed by
an originator of the message indicated by SrcID. The bcast message format
also contains data with the size DataSz. The mcast message consists of above
mentioned fields followed by #Dest, DestInd, DestList and TranList. The #Dest
is the number of destinations. The DestInd is an index, which points to the
current destination in the DestList. The TranList is a transit list which contains
the list of IDs of all the transit nodes in the tree to prevent looping and for
back-tracking purposes.

Procedure Rules: The procedure rules can be separated into two steps: ini-
tialization and routing.

The initialization step of the procedure rules was described as follows: “Each
node will register itself to the directory service (DS) and get its logical ID. It
builds a logical topology and asks for the contact information of its neighbors
from the DS. Once ready, it will start sending hello packet to its parent and its
left neighbor. If the node is the right most in its level, it will also send hello to
the left most node of the same level”. After exchanging these hello messages,
the communication channel between them will be established.

The procedure rules for routing a packet of the protocol were described as
follows: “A node uses best effort to deliver messages following the shortest pos-
sible path. Sending a message procedure is dependent on the message type. If
the message type is bcast, the node will send the message to all of its children.
If a child died, it will reroute the message to all children of the child. This is
done using an encapsulation technique. The node will encapsulate the broadcast
message into a multicast message and send to its grandchildren. The grandchil-
dren will decapsulate the multicast packet and continue to forward the broadcast
message. However, if the message type is mcast, the next hop is chosen from a
valid neighbor node which has the highest priority. 2 A node is said to be valid
if and only if the node is not in the transit list and it is still alive. If there is no

2 An implementation of the protocol may use a dynamic programming technique to
improve performance by keeping the priority of neighbors for each destination in a
look-up table.
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possible next hop, the message will be sent back to the previous sender (i.e. back-
tracking). When a node receives a message, it will first determine the header. If
the message type is hello, it will do the initialization step. If the message type is
bcast, it will forward to its children and handle node failure as mentioned above.
If the message type is mcast and the node is not one of the destinations, it will
add itself to the transit list and send it on to the next node. If the node is one of
the destinations, but not the last one, it will remove itself from the destination
list (DestList), decrease the destination count (#Dest), choose the next desti-
nation and update the destination index (DestInd), add itself to the transit list
and send it to the next node.”

Algorithm 1. Compute estimated cost
Procedure : Compute cost
1: cost ⇐ 0 ; nextHop ⇐ srcID
2: while nextHop �= destID do
3: if myLevel = destLevel then
4: Choose left or right
5: else if myLevel > destLevel then
6: nextHop ⇐ myParentID
7: else
8: if ChildIDi is an ancestor of destID then
9: nextHop ⇐ ChildIDi

10: else
11: Choose left or right, which one is closer to an ancestor of destID in myLevel
12: end if
13: end if
14: cost ⇐ cost +1
15: end while
16: return cost
Procedure : Choose left or right
1: if (hopLeft ≤ hopRight) ∧ (destID �= myRightID) then
2: nextHop ⇐ myLeftID
3: else
4: nextHop ⇐ myRightID
5: end if

3.2 Routing Algorithm

This section discusses the routing technique used for multicast messages (which is
also used by broadcast routing during failures). The goal of the routing algorithm
is to find the shortest possible route in both normal and failure situations with
only local knowledge stored at each node. The next hop is chosen from the
highest priority node of its valid neighbors. The first algorithm (as shown in
Algorithm 1) uses a rule based method to estimate a cost from the current node
to the destination. The highest priority node is a neighbor which has the lowest
cost (hop count). The rule is specified in such a way that a message will always
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go in a direction toward the destination. The second algorithm is a variant of
the first algorithm, where it allows to go in a direction that does not directly
route towards the destination if there is a shorter path to the destination from
the current node. For example, instead of routing from left to right, it could
be faster to go up a few levels, then go right and go down to the destination.
The complexity of both algorithms is O(logk n), where n is number of nodes and
k is number of fan-outs. Routing with the shortest path may not be the best
solution in a failure situation. The direction of the message may be changed too
often such that the message is moving further from the destination. The third
algorithm intends to prevent this situation by using knowledge of previously
detected dead nodes from the header to compute the cost. The third method
uses a graph-coloring technique of breath first search, which explores only alive
neighbor nodes. However, this algorithm requires complexity O(n + (k + 3)),
where n is number of nodes and k is number of fan-outs.

4 Protocol Verification

The main reason for the verification is to ensure that the design of the protocol
did not exhibit any potential problems. The protocol has been modeled with
the PROMELA [16] specification language, which is the input of the SPIN [17]
verification tools. PROMELA (Process Meta Language) is a non-deterministic
language, which provides a method for making abstractions of distributed system
protocols. It supports dynamic creation of concurrent processes, both synchro-
nous and asynchronous message passing via communication channels, message
loss and duplicate simulation and several other features. SPIN is a model checker
for asynchronous systems using an automata-theoretical. It checks for deadlocks,
livelock (non-progress cycles) and non-reachable states in the entire state space.
It can verify and simulate several correctness properties. If an error is found,
SPIN will provide a counterexample to show a circumstance that can generate
the erroneous state.

4.1 Specifying the Protocol in PROMELA

Due to the fact that the PROMELA language is based on point to point com-
munication, there must be as many channels as nodes in order to model the
broadcast system. Each node will exclusively receive messages only through this
channel. They will use corresponding channel associated with the node to send
messages. All the nodes will wait in a loop with the do repetition construct. The
root node starts sending the initial messages. If a node gets a message, it will
check the message type and execute portions of code corresponding to procedure
rules in Section. 3.1. For simplicity reason, we use a new feature of SPIN ver-
sion 4 which can include embedded C code fragments (with PROMELA’s c code
construct) to compute node depth, neighbor IDs etc. The link failure is simu-
lated with non-deterministic selection capability of the if selection construct.
The SPIN verifier and simulator will randomly choose the status (up or down)
of links between a node and its neighbors while the node is trying to send a
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message on to the next hop. In order to speed up the verification process, we
reduce the size of state space by using an atomic construct to atomically exe-
cute its code section which represents internal computation without interleaved
execution with other processes.

4.2 Verification Results

The results were conducted on a PentiumIII 550MHz, with Spin 4.2.6 on Linux.
The search depth bound was 10,000 and the memory limit was 512 MB. A
deadlock was discovered from the original modeling. However, after closer exam-
ination, it turns out that TCP buffer size of the communication channel in the
modeling was too small. When the deadlock problem was solved, no deadlock,
livelock, invalid end state, unreachable codes and assertion violation were found
during verification.

5 Experimental Results

The protocol performance was evaluated in both normal and failure modes. In
the case of no failure, it is obvious that the average number of hops for multicast
messages decreases when the number of fan-outs increases (i.e. closer to a flat
tree). On the other hand, the average number of steps to complete the message
transfer for broadcast increases when the number of fan-outs increases (except
that 3-ary is better than 2-ary due to more parallelism).
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Fig. 2. Message transmission during failure situations. (a) Unicast (b) Broadcast.
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During the failure mode, the dead nodes (D) are obtained from combinations
of all possible nodes (N) i.e.

(
N
D

)
, where source node �∈ D. Fig 2(a) illustrates

that both variant rule-based and dead node aware algorithms are scalable with
unicast messages (multicast to one destination). The higher values of fan-out
yields the worst performance, especially with the basic rule-based algorithm,
because it has more chances to go in a direction toward a dead node. Fig 2(b)
depicts that a dead node has only a small effect on the performance of a broad-
cast message. The results show that the basic and variant rule-based algorithms
produce performance close to the dead node aware algorithm, but the rule-based
algorithms are much simpler to the model e.g. a broadcast3 with a single dead
node on an AMD 2GHz machine, the simulation time of dead node aware is 15
minutes, while the basic and variant rule-based took only about 30 seconds.

6 Conclusions and Future Works

The scalable and fault tolerant protocol for parallel runtime environments was
designed and developed to support runtime environments of MPI implementa-
tions. The design of the protocol has been formally proven to work under both
normal and failure modes. The performance results indicate that the variant rule-
based algorithm is the best choice in terms of the shortest path (and simulation
computation time as well).

There are several improvements that we plan for the near future. Making the
protocol aware about the underlying network topology (in both LAN and WAN
environments) will greatly improve the overall performance for both broadcast
and multicast message distribution. This is equivalent to adding a function cost
on each possible path and integrating this function cost to the computation of the
shortest path. A faster and more accurate re-routing algorithm is in development.
At a longer term, we expect this protocol to be the basic message distribution of
the runtime environment within the FT-MPI and Open MPI runtime systems.
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Abstract. Independence of special elements, transparency and scalability are 
very significant features required from the fault tolerance schemes for modern 
clusters of computers. In order to attend such requirements we developed the 
RADIC architecture (Redundant Array of Distributed Independent 
Checkpoints). RADIC is an architecture based on a fully distributed array of 
processes that collaborate in order to create a distributed fault tolerance 
controller. This controller works without special, central or stable elements. 
RADIC implements the fault tolerance activities, transparently to the user 
application, using a message-log rollback-recovery protocol. Using the RADIC 
concepts we implemented a prototype, RADICMPI, which contains some 
standard MPI directives and includes all functionalities of RADIC. We tested 
RADICMPI in a real environment by injecting failures in nodes of the cluster 
and monitoring the behavior of the application. Our tests confirmed the correct 
operation of RADICMPI and the effectiveness of the RADIC mechanism. 

1   Introduction 

Message-passing is a common paradigm used to create parallel algorithms. 
S7tandards like PVM and MPI have been largely adopted by programmers in order to 
implement such algorithms for executing in clusters.  

The usage of cluster structures based on commodity parts; the simplicity of the 
message-passing paradigm; and the development of MPI implementations like 
LAMPI and MPICH, have contributed to the popularization of MPI. A typical user of 
this new class of system is interested in programming his/her algorithms without any 
concern about the operation of the cluster structure. Such users are typically interested 
in getting more performance and rarely take into consideration that some part of the 
cluster may fail during the application execution.  Because MPI uses a fail-stop 
semantic, a node failure typically produces a crash into an MPI application, forcing 
the user to restart the execution from its beginning.  

Several projects as Starfish [1], Egida [2], FT-MPI [3], MPI-FT [4],  MPI/FT [5], 
MPICH-V [6], LAM/MPI [7], LA-MPI [8] and more recently OpenMP [9] have 
proposed solutions to reduce the impact of a failure by allowing the restart of the 
application from a point before the failure instead of its beginning. Rollback-recovery 
protocols [10,11] are the basis for the fault tolerance mechanism of such 
implementations. Nevertheless they largely differ in the way they interact with the 
                                                           
* This work was supported by the MEyC-Spain under contract TIN 2004-03388. 
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cluster architecture and with the parallel application. In order to differentiate one 
implementation from another, we select three features that are very important in the 
modern cluster and that are simultaneously linked to the behavior of the fault 
tolerance scheme, the cluster structure and the parallel application.  

The first feature is how much the operation of the fault tolerant scheme is 
transparent to programmers. A non transparent scheme demands to the programmer 
the inclusion specific commands in the code in order to control the fault tolerance 
structure. Besides this scheme increases the software engineering costs, it requires 
changes in algorithms already coded and often demands that the programmer has a 
high level of knowledge about the cluster architecture in order to correctly use the 
available fault tolerance resources. This makes transparency a feature highly desirable 
for the fault tolerance schemes. 

The scalability is another important feature of a fault tolerance mechanism. In 
order to attend such requirement, a fault tolerance scheme must operate without using 
central elements or global coordination between processes, because such items create 
a strong constraint to the scalability. So, the usage of distributed elements to build a 
scalable fault tolerance structure is desirable, when not mandatory. Furthermore, the 
scalability naturally limits the rollback-recovery protocols that may be selected to 
build a fault tolerance scheme. 

Finally, the independence of stable resources in order to implement the fault 
tolerance scheme is very important for clusters based on commodity-off-the-shelf 
computers. Fault tolerance schemes based on a rollback-recovery protocol typically 
store checkpoints and message-logs in stable-storage elements which are critical and 
expensive in practice. Furthermore, these elements increase the final cluster cost 
provided that several of them must exist in order to not constraint the scalability. 

Table 1. Comparison between several fault-tolerant MPI projects. (T=transparency;  
I= Independency of stable elements; S=Scalability)  

MPI project T I S Comment 
LAM/MPI - - - Uses coordinated checkpoint and requires user interference. 
MPICH-V1  + - - Requires central and stable elements 
MPICH-V2  + - - Requires central and stable elements 
MPI-FT  - - - Use of special MPI directives 
Starfish - - - Uses global checkpoint 
MPICH-V/CL  + - - Requires central and stable elements. Global checkpoint 
Egida + - - A framework for Rllbck. Rcovr. prot., not a entire FT system 
MPI/FT  - - - Centralized coordinator 
FT-MPI  - - - Application must manage the recovering 
RADICMPI + + + Transparent/fully distributed. No stable elements required 

The features we stated above (scalability, efficiency and independence of dedicated) 
have a straight relationship with the cluster architecture and its interaction with the 
parallel application in the presence of failures. Table 1 relates these features with some 
recent projects about fault tolerance in MPI. We assumed all these three features as 
requirements that must be attended by any message-passing implementation dedicated 
to modern clusters and developed RADIC (Redundant Array of Distributed Independent 
Checkpoints) [12]. RADIC is a generic fault tolerance architecture that specifies the 
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behavior of the cluster structure in the presence of node failures in order to assure the 
correct completion of a parallel application. 

We created a MPI implementation RADICMPI that differs from other fault tolerant 
MPI implementations because it attends simultaneously to three requisites discussed 
above. It transparently implements a fault tolerant mechanism which does not require 
any central or stable elements to operate. The fault tolerance mechanism is fully 
distributed throughout the same nodes used by the parallel application and it does not 
constraint the scalability. 

The remaining of this paper is organized as follows. In section 2, we explain 
RADICMPI and the operation of the RADIC architecture. Section 3 contains some 
results obtained with a prototype of our architecture. Finally, section 4 offers our 
concluding remarks and lists the future works. 

2   RADICMPI and the RADIC Architecture 

The operation of RADIC is based on an array of system processes that collaborate in 
order to create a distributed fault tolerance controller, or RADIC controller. Such 
processes are fully distributed throughout the cluster nodes in which the parallel 
application processes are placed. RADICMPI implements some standard MPI 
directives in order to transparently embed the RADIC controller in a MPI application 
without any modifications in the application code. 

The RADIC controller performs all typical activities that any fault tolerance 
scheme based on rollback-recover must execute. Such set of activities differs 
according to the type of rollback-recovery protocol used. Nevertheless, independently 
of the chosen protocol, there are three elementary activities required by any fault 
tolerance scheme: a) collects information that will be used to recover from failures 
(checkpoint and message-logs); b) detects failures; and c) recovers faulty application 
processes assuring that the application may continue. 

Although RADIC architecture was not developed having any particular rollback-
recovery protocol in consideration, it should be noted that only the receiver based 
pessimistic message-log protocol imposes no constraint to the scalability [10]. This 
occurs because in such protocol no coordination or interdependency between 
processes is required to take checkpoints of a process or to recover a process from a 
failure. That was the motivation for using the receiver-based pessimist protocol in our 
RADICMPI implementation. 

In RADIC, all the activities required by the rollback-recovery protocol are 
executed through the collaboration between the two set of processes of the RADIC 
controller: protector processes and observer processes. The total number of RADIC 
processes in the system is determined by the following rule: there is one protector for 
each node used by the parallel application and there is one observer attached to each 
parallel application process. The protector and the observers of a node always are 
connected to a protector in a neighbor node. Fig. 1a depicts a sample cluster with a 
set of eight application processes (P1 to P8) with their respective observers (O1 to 
O8). Each node has a protector process (T1 to T8). The arrow lines indicate the 
communication relationship between the RADIC elements. 

The set observers attached to the application processes manage all messages 
delivering between the processes. Each observer also implements the checkpoint and 
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message-log mechanisms for the application process to which it is attached. The set of 
protectors a) implements the failure detection; b) operates like a distributed storage 
mechanism for the checkpoints and c) message-logs, and also recovers faulty processes.  

Observers 
The first observer responsibility is to manage the message delivering for the 
application process to which it is associated. In order to perform such activity, each 
observer owns a table, namely radictable, which contains all information that allows 
it to exchange messages with the other application processes.  The radictable has a 
line for each application process and each line contains the following fields: the 
address of the process in the cluster, a counter for the messages sent from the 
observer to another application process, a counter for the messages received by  
the observer from another application processes and the address of the protector of 
the process. Table 2 depicts the radictable of the observer 2 at Fig. 1. 

The radictable is built using the following mechanism: at the startup, every 
observer communicates its number, its node address and its protector node address to 
a leader observer. Using such information, the leader observer builds the radictable 
and transmits it to all other observers in the system. From this point on, each observer 
manages its own radictable independently. An observer uses the message counters of 
its radictable as identifiers for the messages exchanged between its application 
process and another application process. Each time that a message is successfully 
exchanged between two observers, the sender observer increments its sent counter in 
the destination line of its radictable. Similarly, the destination observer increments 
the message received counter regarded to the sender line in its radictable. Together 
with the protector address field, these counters are used for fault recovering purposes 
as we will explain soon. 

Table 2. Structure of the radictable of the observer 2 of Fig. 1 

Process rank Process address Sent counter Received counter Protector address 
1 Addr1 3 2 Addr2 
2 Addr2 0 0 Addr3 
… … … … … 

The second observer functionality is to collect the fault tolerance information 
(checkpoints and message-logs) from its application process and to transmit such 
information to its protector. The Fig. 1a depicts how observers and protector may be 
associated in a cluster with eight nodes, in which each observer is associated to only 
one protector. Another configuration could be used with, for example, several 
observers connected to one protector or more than one protector for each observer. 
The only restriction is that an observer must never use the protector in its own node. 
With this strategy, the RADIC controller implements the redundancy that dispenses 
the use of a stable-storage element in order to store the checkpoints and message-logs 
of a process. The mechanism works as follows. 

According to the checkpoint policy, each observer takes checkpoints of itself and of 
its application process, and transmits these checkpoints to its protector (in a neighbor 
node). Similarly, in accordance with the message-log policy, each observer transmits 
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the message-logs to its protector. Therefore, the information required to recover a 
process from a failure is managed by the protector in the neighbor node of the observer. 

If the protector of an observer fails, the observer immediately fetches another 
protector in the cluster. According to this fetch algorithm, if the protector of an 
observer fails, the observer uses its radictable to find the address of the neighbor of 
its old protector. If such neighbor is unreachable, the observer runs throughout the 
radictable looking for the subsequent neighbors until a new protector is contacted. 

The straight relationship between an process and its neighbor protector brings the 
question about what would happen if the neighbor protector of a faulty process fails 
before such faulty process is recovered, i.e., if both, the application process and its 
protector fail concurrently. 

Before describing how RADIC manage this situation, we should make some 
considerations: firstly, node failures are rare in practice; secondly, in pessimistic 
message-log protocols a process recovering is independent of the state of the other 
application processes, therefore the recovery time of a process is, in the worst case, 
equal to the checkpoint interval. 

(a) (b) 

Fig. 1. a) Example the RADIC architecture in a cluster. The arrow lines indicate the 
relationship between observers (O) and protectors (T). b) Same cluster after a failure in the 
nodes N2 and N6. The pair P2/O2 recovers in N3 (the original protector used by the observer 
O2) and the pair P6/O6 recovers in N7 (the original protector used by the observer O6). 

Basing on the first consideration, we may conclude that the probability of a 
concurrent failure in a node and in its protector is much lower that the probability of 
the individual failure of these nodes. Nevertheless, in order to protect the system 
against such combined fault, an observer must use more that one protector to store its 
fault tolerance information. Therefore, the checkpoints and message-logs of a process 
will survive to a concurrent failure in a process in one of its protectors. Such way of 
thinking could be extended if we consider that a process and its both protectors could 
concurrently fail. However, since the probability of such failure is even lower than the 
one in the first case, the cost of replicating the fault tolerance information in several 
protectors might not compensate the increasing in the system robustness. 

Finally, the third observer functionality is to manage several activities related to its 
application process recovering. The first activity is to establish a new protector 
because a pair process/observer always is recovered in the node of the protector they 
were using before the failure and an observer may never use the protector of its own 
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node. The algorithm the observer uses to fetch a new protector when it recovers is the 
same used when a protector fails. Fig. 1b represents the cluster after a failure in two 
nodes, N2 and N6. Observers O2 and O6 establish new protectors since they recover 
in the same node they were using before the fault. 

When a process and its observer recover from a fault, the observer uses the 
message counter in its radictable to manage the message log in order to correctly get 
the messages its process requests. Similarly, the survivor observers will use the 
receive counters in their radictable to discard the repeated messages that a recovering 
process might send. 

Protectors 
The protectors of the RADIC controller establish a virtual neighborhood between the 
nodes of the cluster by means of a watchdog/heartbeat mechanism. Using such 
mechanism, any protector can detect failures in one of its neighbors. Therefore, any 
protector plays two roles related to failure detection: one as a heartbeat sender and the 
other as a watchdog. For example, in Fig. 1a, the protector T2 play two roles: it is the 
watchdog of T1 and the heartbeat sender of T3. Each watchdog protector also uses 
the heartbeat/protocol to inform to its heartbeat sender who is the protector to which 
it is sending heartbeats. So, T1 knows that T3 is the watchdog of T2; T2 knows that 
T4 is the watchdog of T3 and so on. This information will be used in case by the 
recovering mechanism explained in the next paragraphs. 

To understand how the protector manages node failures, we suppose a failure in 
the node N2. In such case, the heartbeat element of T1 will detect that its watchdog 
neighbor (T2) is unreachable. Similarly, the watchdog element of T3 will also detect 
the T2 is not sending heartbeats. So, T1 and T3 start their recovering mechanisms. 

T1 will use the former watchdog of T2 as its new watchdog neighbor, i.e., T1 will 
connect to T3. T3 in turn, will execute a greater set of activities. The first, and more 
simple, is to accept T1 as its new heartbeat sender. The second is to accept all 
observers that where using T2 as a protector (just O1 in the cluster of Fig. 1a). 
Finally, T3 will recover all application processes (together with their respective 
observers) that were in the node N2, using the stored checkpoints of such processes. 
After recovering, the observers assume the rest of the recovering activity. The Fig. 1b 
depicts the final architecture of our sample cluster after two faults: in the node N2 and 
in the node N6. 

3   Implementation Details and Experiments 

The current RADICMPI version implements a subset of MPI functions, namely: 
MPI_Init, MPI_Finalize, MPI_Send, MPI_Recv, MPI_Sendrecv, MPI_Wtime, 
MPI_Get_processor_name, MPI_Comm_rank, MPI_Comm_size, and 
MPI_Type_size. RADICMPI comes as a library (radicmpi.a) and a runtime 
environment in order to compile (radiccc) and run (radicrun) the programs. 

The observers run as threads of the application processes. The radicc script used to 
compile the application code links the observer objects with the application objects in 
the link time. The observer main thread starts when the application process executes 
the MPI_Init call. The protectors execute as separated processes created by the 
radicrun script. 
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Our implementation was developed in C++ and tested in a homogeneous cluster of 
twelve 1.9GHz Athlon-XP2600 with 256MB and 40GB local disk, running Linux 
Fedora Core 2 with kernel 2.4.22-1.2199-8, interconnected by a 100BaseT Ethernet 
switch. The checkpoints were performed using the BLCR (Berkeley Labs 
Checkpoint/Restart) library version 0.4.2. 
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Fig. 2. Execution of our matrix-multiplication program with faults injected in different 
execution times 

We conducted the tests using a ping-pong program to evaluate the correct 
operating of our implementation and a master-worker matrix multiplication program 
for performance studies. The Fig. 2 depicts the example of one execution of the 
matrix-multiplication with faults injected in the node of the process P3 at 75% and 
90% of the total execution time without failures for a situation with checkpoints of 60 
seconds. RADICMPI manage the recover of P3 in the node of the process P4. This 
explains the enlargement of the execution time of such processes. 

4   Conclusions 

In this paper we described RADICMPI, an implementation used to efficiently manage 
the fault tolerance in clusters. RADICMPI dispenses from the use of central 
stable-storages by replicating the critical information throughout the cluster nodes 
used by the parallel application. Such strategy reduces the cost and simultaneously 
increases the efficiency of the cluster. 

RADICMPI works as a library that implements some standard MPI directives and 
transparently embeds the fault tolerance activities of the RADIC architecture in such 
directives. The great advantage of this mechanism is that a programmer just has to 
recompile her/his application code with the RADICMPI library in order to execute 
using the RADIC architecture. 

The future works are oriented to increase the number of MPI directives of 
RADICMPI, specially the MPI non-blocking functions. We also will work in the 
performance improvement of the implementation, taking special attention to reduce 
the impact of the rollback-recovery protocol mechanism. 
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Abstract. In this paper we describe an mpiJava extension that imple-
ments a parallel checkpointing/recovery service. This checkpointing/re-
covery facility is transparent to applications, i.e. no instrumentation is
needed. We use a distributed approach for taking the checkpoints, which
means that the processes take their local checkpoints independently. This
approach reduces communication between processes and there is not need
for a central server for checkpoint storage. We present some experiments
which suggest that the benefits of this extended MPI functionality do
not have a significant performance penalty as a side effect, apart from
the well-known penalties related to the local checkpoint generation.

1 Introduction

Parallel checkpointing algorithms are important in parallel environments where
long-term parallel processes are executed. These algorithms can be classified into
two main groups:coordinated and uncoordinated, according to the approach used
to coordinate the capture of local checkpoints [1], i.e. the state of single nodes.
In the coordinated approach, it is necessary to synchronize all processes in order
to produce a consistent (normally centralized) global checkpoint. In the uncoor-
dinated approach, the processes take their local checkpoints independently. As
a consequence, some of the checkpoints may not belong to any consistent global
checkpoint. In order to reduce the number of useless checkpoints, the processes
may exchange information about their checkpointing activities. This informa-
tion is mainly piggy-backed on the messages sent between processes. Under this
scheme, processes can take forced checkpoints to avoid orphan messages, and log
in-transit messages. The algorithms based on communication-induced protocols
are called quasi-synchronous [2].

In a previous work [3], we proposed a distributed checkpointing protocol as a
combination of the protocols described in [4] and [5]. The protocol described in [4]
logs in-transit messages in order to be able to re-send them during the recovery
process. On the other hand, the protocol described in [5], focuses on avoiding
orphan messages by taking checkpoints that have not been scheduled previously
(forced checkpoints) based on a communication-induced checkpointing protocol.
Those protocols provide fault-tolerance in asynchronous systems, and assume

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 158–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Extended mpiJava for Distributed Checkpointing and Recovery 159

that each ordered pair of processes is connected by a reliable, directed logical
channel whose transmission delays are unpredictable but finite.

In this paper we describe an extension to the mpiJava functionality that im-
plements the combined checkpointing protocol. This quasi-synchronous protocol
was implemented on the JNI wrappers, at each point-to-point communication
method (send/receive), without changing the mpiJava API. It means that check-
pointing and recovery facilities are transparent to applications. That is, the ex-
tended mpiJava is used without making any changes to the application code.
Additionally, we present a case study in which we implement this algorithm.
We show the results of some experiments that suggest that the benefits of this
extended MPI functionality does not imply a significant performance penalty.

There are several works that implement parallel checkpointing/recovery or
migration schemes in combination with communication libraries such as PVM
and MPI. Most of these proposals use a coordinated approach [6,7,8,9]. MPICH-
V2 [10] is a fault tolerant MPICH version that implements an uncoordinated
protocol. However, a centralized checkpoint server is used to control logging
messages. The algorithm we implemented does not need a centralized component
because each node decides independently whether a forced checkpoint is needed.

2 Extended mpiJava

We have extended mpiJava functionality to include the control information
needed to decide when forced checkpoints have to be taken and when to log
messages. We added procedures “send protocol” and “receive protocol” (related
to the combined protocol) at each point-to-point communication method with-
out changing their interfaces. It means that the extended mpiJava preserves the
same mpiJava API. Specifically, “send protocol” and “receive protocol” were
added at Comm package, where all point-to-point communication methods are
defined. We implemented a new package called Ckpt to define and manage data
structures of the combined protocol (see Figure 1). In this package there are two
important procedures, initialize and take checkpoint, which are described
below.

Intercomm

Intracomm
Comm

Status

Group

Ckpt

MPI

Request

Datatype

Prequest

Package mpi

Graphcomm

Cartcomm

Fig. 1. Principal classes of the extended mpiJava

The initialize procedure is executed before any “send” or “receive”. It
initializes the data structures used by the checkpointing protocol. This procedure
is called by MPI.Init, which is the first mpiJava method invoked by each process.
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The take checkpoint procedure takes the checkpoints, either normal or
forced. It first increases the checkpoint number corresponding to the current
process (its logical clock). Then, for each message, it checks whether the mes-
sage is not an in-transit one, in which case the message is suppressed from the
message log. Finally, the current state should be saved. A copy of the checkpoint
number array and a copy of the log are also saved in stable storage.

The mpiJava send procedure is the wrapper of mpi send routine. The “send
protocol” registers the event “send” and executes the actual mpi send routine. The
current message is logged in the v log, while procedure take checkpoint, as ex-
plained above, identifies the messages that may become in-transit during recovery.

Procedure mpiJava send(m, dest rank)
known received[dest rank][dest rank] := +1;
sent to[dest rank] := true;
append (m, known received[dest rank][dest rank], dest rank) to v log
// Send message m to process dest rank
actual mpi send(m, dest rank, greater, ckpt, taken, known received);
end procedure

The mpiJava receive procedure is the wrapper of the mpi receive routine.
The “receive protocol” executes the actual mpi receive routine and takes forced
checkpoints (if necessary) to avoid orphan messages during a potential recov-
ery. ckpt[source rank] is the logical clock of process with rank= source rank
when message m was sent. This procedure is more complex because it actually
checks the control information and has to consider several cases. A detailed de-
scription of this procedure follows:

Procedure mpiJava receive (m, source rank)
// Receives message m from process source rank
actual mpi receive(source rank, m, r greater, r ckpt, r taken, r known received);
// Evaluating control information to avoid orphan messages
if (∃ rank : (sent to[rank] ∧ r greater[rank]) ∧ (ckpt[source rank] > ckpt[my rank]) ∨

(r ckpt[my rank] = ckpt[my rank] ∧ r taken[my rank]))
then take checkpoint // forced checkpoint

end if
switch

case ckpt[source rank] > ckpt[my rank] do
ckpt[my rank] := ckpt[source rank]; greater[my rank] := false;
forall rank �= my rank do greater[rank] := r greater[rank] end do;

end case
case ckpt[source rank] = ckpt[my rank] do

forall rank do greater[rank] := greater[rank] ∧ r greater[rank] end do;
end case
// case ckpt[source rank] < ckpt[my rank] do nothing

end switch;
forall rank �= my rank do

switch
case r ckpt[rank] > ckpt[rank] then

ckpt[rank] := r ckpt[rank]; taken[rank] := r taken[rank];
end case
case r ckpt[rank] = ckpt[rank] then

taken[rank] := taken[rank] ∨ r taken[rank]
end case
// case r ckpt[rank] < ckpt[rank] do nothing

end switch;
end do;
JNI deliver(m); // gives message m to the application
known received[my rank, source rank] := known received[my rank, source rank] + 1;
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forall (rank x, rank y) do known received[rank x, rank y] :=
max(known received[rank x, rank y], r known received[rank x, rank y]);

end do
end procedure

We added a new method named InitAndRecoverNative at the MPI package,
which should be called during the recovery process. InitAndRecoverNative is
similar to InitNative except that the first one calls method ReadCheckpoint,
which is in charge of re-sending all in-transit messages stored in checkpoint files.
Method ReadCheckpoint is part of the package Ckpt.

3 A Case Study: Checkpointing Service on a Java-Based
Grid Platform

In this section we describe the checkpointing service implemented on suma/g1

[11], a distributed platform that transparently executes both sequential and par-
allel Java programs on remote machines. It extends the Java execution model to be
used on Globus-based grid platforms. The Execution Agents of suma/g are JVMs
that can be deployed in Globus worker nodes. These agents provide checkpoint-
ing services by using an extended JVM that is able to capture local checkpoints
(currently, we use the extended JVM described in [12]). There are two key com-
ponents: SUMAgCkpMonitor and SUMAgRecover. The Execution Agent starts the
application, as well as the SUMAgClassloader and the thread SUMAgCkpMonitor
in the extended JVM. If a fault occurs, the SUMAgRecover is invoked for restoring
the application execution from its last consistent global checkpoint.

Figure 2 shows the interactions between SUMAgCkptMonitor and the extended
mpiJava wrappers in a node. This scheme is followed for all processes of the par-
allel application. SUMAgCkpMonitor periodically takes checkpoint, in an asyn-
chronous way (step 1 in figure 2). Every time an asynchronous checkpoint is
taken, SUMAgCkptMonitor calls method take checkpoint to update and save
control information (steps 2 and 3).

For each “send” or “receive” communication call executed by the applica-
tion (step 4), the extended mpiJava wrappers update the control information
(i.e, data structures used by the combined checkpointing protocol), as shown
in step 5 in figure 2. In case of a “receive” call, the receive protocol decides
if a forced checkpoint is needed in order to avoid orphan messages (step 6). In
this case, take checkpoint method saves the control information and the state
of application threads. To save state of application threads it is necessary to
make an upcall to SUMAgCkpMonitor (steps 7 and 8). After send protocol or
receive protocol is executed, the actual mpi send or mpi receive routine is
executed (step 9).

3.1 SUMA/G Recovery Process

If a failure occurs in the platform while an application is running, an excep-
tion is caught by the SUMAg Proxy. suma/g launches the recovery algorithm
1 http://suma.ldc.usb.ve
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described in [3] which determines the last consistent global checkpoint (step 1
in Figure 3). When a new execution platform is identified, a recovery process
is initiated on each node of the parallel application. A SUMAgRecover thread
is initiated on each node, one per process in the parallel application (step 2).
Each SUMAgRecover reads the state of threads from checkpoint files and restores
threads execution (step 3), executes method InitAndRecoverNative (step 4)
to re-start MPI and re-send all in-transit messages (step 5). Eventually, each
process will receive corresponding in-transit messages (step 6) and the execution
will continue normally.

4 Experimental Results

We evaluated the overhead produced by the extended mpiJava wrappers on
two parallel programs. We used a modest platform to make the measurements,
specifically several small clusters of 143 MHz SUN Ultra 1 workstations running
Solaris 7, with 64 MB Ram, connected through a 10Mbps switched Ethernet
LAN. The first program, called “Pi Number”, is simple and calculates π. The
processes keep the set of digits obtained during the execution, so the check-
point size increases during the execution. The second program is a kernel of a
real application, called “Acoustic Par”, which solves an acoustic wave propaga-
tion model on a homogeneous, two dimensional medium. Its checkpoint size is
constant during the execution.

We measured the total execution time invoking (Tckp) and without invoking
(Tnockp) the checkpointing service. The net checkpointing overhead and check-
pointing overhead percentage are given by Ockp and O%ckp.

Ockp = (Tckp − Tnockp) O%ckp =
(Tckp−Tnockp)

Tnockp
∗ 100

In table 1 each row represents a single execution. The checkpoints were taken
every 2 minutes. The overhead (O%ckp) exhibited when the checkpoint service
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is active increases with the number of processors. This is mainly due to the
checkpoint calls and the distributed checkpointing protocol. Note that the Tnockp

for the “Pi Number” application increases as the number of processes increases.
This is due to the fact that all processes roughly carry out the same amount of
work, regardless of the number of processes. Even though this is not a typical
parallel program, this example can help measure the checkpointing overhead.
On the other hand, the execution time of “Acoustic Par” reduces as the number
of processors is increased.

In these experiments the higher checkpointing overhead is 6.11%. However,
we have measured how much of that overhead is due to the extended mpiJava.
Tables 2 and 3 show the measurements taken from the master node P0 of each
application. TThrMonitor is the time taken by SUMAgCkpMonitor to save the state
of the threads by calling extended JVM facilities. Tsave(Fgeneral) is the time, also
taken by SUMAgCkpMonitor, spent on saving the checkpoint information (such
as number of threads, name of main thread, thread names, etc.). The time to
save the control information is Tactmpijava, while Tsave(Mintransit) represents
the total time to log all in-transit messages in stable storage. Tsend and Treceive

represent the accumulated time of “send protocol” and “receive protocol” pro-
cedures respectively during the execution. Table 2 also shows the average size of
in-transit messages (Mintransit) and total number of sent (Msent) and received
(Mreceived) messages. In case of ”PI number”, P0 does not send any message,
thus we show Tsend in Pi �= P0 only as a reference. The total overhead of extended
mpiJava wrappers is denoted as OmpiJavaExt and is calculated as follows:

OmpiJavaExt = Tactmpijava + Tsave(Mintransit) + Tsend + Treceive

Last column of table 3 shows OmpiJavaExt and its percent from total check-
pointing overhead (Ockp). Note that the overhead of the extended mpiJava only
represents 15%.
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Table 1. Total execution time for the parallel programs

App name # of proc Tnockp(1) Tckp(2) Checkpoints Ockp O%ckp

# min size (KB) max size (KB) (min)
2 6.74 m 7.1 m 3 1 131 0.36 5.1%

Pi Number 4 7.31 m 7.77 m 3 1 139 0.48 5.92%
6 7.68 m 8.18 m 4 1 142 0.5 6.11%
2 5.45 m 5.51 m 2 1 1 0.06 1.1%

Acoustic Par 4 3.56 m 3.65 m 2 1 1 0.09 2.47%
8 2.64 m 2.71 m 2 1 1 0.07 2.58%

Table 2. Overhead of Extended mpiJava taken from master node (P0)

App name # of # of TT hrMonitor Tsave Tactmpijava Mintransit Tsave(Mintransit)
proc. ckpts (Fgeneral)

2 3 274 msec 42 msec 3 msec 220B 40 msec
Pi Number 4 3 392 msec 42 msec 3 msec 255B 42 msec

6 4 405 msec 42 msec 4 msec 410B 45 msec
2 43 msec

Acoustic Par 4 2 73 msec 8 msec 2 msec 3KB 7 msec
8 54 msec

Table 3. Overhead of Extended mpiJava taken from master node (P0) (cont)

App name # of Msent Tsend Mreceived Treceive Ockp OmpiJavaExt

proc. (O%mpiJavaExt)
2 0.8 msec 2000 1.5 msec 360 sec 44.5 sec (12%)

Pi Number 4 0 (on Pi �= P0) 4000 2.9 msec 480 sec 47.9 sec (10%)
6 6000 4.6 msec 500 sec 53.6 sec (11%)
2 140 0.01 msec 102 0.07 msec 60 sec 9.08 sec (15%)

Acoustic Par 4 280 0.08 msec 204 0.15 msec 90 sec 9.23 sec (10%)
8 350 0.08 msec 274 0.09 msec 70 sec 9.17 sec (13%)

5 Conclusions

We present an implementation of an uncoordinated checkpointing/recovery pro-
tocol on mpiJava. The implemented checkpointing/recovery facility is transpar-
ent to applications. We use a distributed approach for taking the checkpoints,
which means that the processes take their local checkpoints independently. This
approach reduces communication between processes and a central server for
checkpoint storage is not needed. This checkpointing/recovery facility does not
need any instrumentation of the source code but it needs an extended JVM for
local checkpoint generation.

We have tested this extended mpiJava functionality and the results suggest
that this approach does not involve a significant performance overhead, especially
when compared with the overhead of taking the local checkpoints. However,
experiments with big parallel applications are important to corroborate these
results. We expect more parallel mpiJava applications to become available in
the public domain for continuing to test the checkpointing facility presented. In
the future we are going to implement this facility on the rest of the mpiJava
functions, such as the broadcast.



Extended mpiJava for Distributed Checkpointing and Recovery 165

References

1. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34 (2002)
375–408

2. Manivannan, D., Singhal, M.: Quasi-Synchronous Checkpointing: Models, Char-
acterization, and Classification. IEEE Transactions on Parallel and Distributed
Systems 10 (1999) 703 – 713

3. Cardinale, Y., Hernández, E.: Parallel Checkpointing Facility in a Metasystem. In:
Proceedings of Parallel Computing Conference (PARCO’01), Naples, Italy (2001)

4. Mostefaoui, A., Raynal, M.: Efficient message logging for uncoordinated check-
pointing protocols. Technical Report 1018, Institut de recherche en informatique
et systemes aleatoires (IRISA) (1996)

5. Helary, J., Mostefaoui, A., R. Netzer, Raynal, M.: Communication-based preven-
tion of useless checkpoints in distributed computations. Technical Report 1105,
Institut de recherche en informatique et systemes aleatoires (IRISA) (1997)

6. Stellner, G.: Cocheck: Checkpointing and process migration for MPI. In: 10th
International Parallel Processing Symposium. (1996)

7. Sankaran, S., Squyres, J.M., Barrett, B., Lumsdaine, A., Duell, J., Hargrove, P., Ro-
man, E.: The Lam/Mpi Checkpoint/Restart Framework: System-Initiated Check-
pointing. International Journal of High Performance Computing Applications 4
(2005) 479–493

8. Zhang, Y., Xue, R., Wong, D., Zheng, W.: A Checkpointing/Recovery System
for MPI Applications on Cluster of IA-64 Computers. In: ICPP 2005 Workshops.
International Conference Workshops. (2005) 320–327

9. N. Woo, H. Y. Yeom, T.P.: MPICH-GF: Transparent Checkpointing and Rollback-
Recovery for Grid-enabled MPI Processes. IEICE Transactions on Information and
Systems, Special Section on Hardware/Software Support for High Performance
Scientific and Engineering Computing E87-D (2004) 1820–1828

10. Bouteiller, A., Cappello, F., Herault, T., Krawezik, G., Lemarinier, P., Magniette,
F.: MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging. In: Proceedings of High Performance Networking
and Computing (SC2003). (2003)

11. Cardinale, Y., Hernández, E.: Parallel Checkpointing on a Grid-enabled Java Plat-
form. Lecture Notes in Computer Science 3470 (2005) 741 – 750

12. Bouchenak, S.: Making Java applications mobile or persistent. In: Proceedings of
6th USENIX Conference on Object-Oriented Technologies and Systems. (2001)



Running PVM Applications on
Multidomain Clusters

Franco Frattolillo

Research Centre on Software Technology
Department of Engineering, University of Sannio, Italy

frattolillo@unisannio.it

Abstract. ePVM has been developed to enable PVM applications to
run across multidomain clusters made up of computing nodes belonging
to non-routable private networks, but connected to the Internet through
publicly addressable IP front-end nodes. However, ePVM cannot relieve
programmers of the classic burden tied to the problems related to the
deployment of PVM runtime libraries and program executables among
computational resources belonging to distinct administrative domains.
This paper presents ehPV M , a lightweight software infrastructure that
enables programmers to deploy ePVM applications among computational
resources belonging to multidomain clusters. Thus, ePVM programmers
can run their applications without having to use grid software toolkits or
resources providers whose configurations usually result in being tedious
and time-consuming activities.

1 Introduction

ePVM [1,2] is an extension of PVM [3] purposely developed to enable PVM ap-
plications to run across multidomain clusters made up of computing nodes be-
longing to non-routable private networks, but connected to the Internet through
publicly addressable IP front-end nodes. In particular, ePVM enables program-
mers to build “extended virtual machines” (EVMs) made up of sets of clusters.
Each cluster can be a set of interconnected computing nodes provided with pri-
vate IP addresses and hidden behind a publicly addressable IP front-end node.
During computation, it is managed as a normal PVM virtual machine where
a master pvmd daemon is started on the front-end node, whereas slave pvmds
are started on all the other nodes of the cluster. However, the front-end node
is also provided with a specific ePVM daemon, called epvmd, which allows the
cluster’s nodes to interact with the nodes of all other clusters of the EVM, thus
creating a same communication space not restricted to the scope of the PVM
daemons belonging to a single cluster, but extended to all the tasks and daemons
running within the EVM. In fact, ePVM enables both publicly addressable IP
nodes and those ones hidden behind publicly addressable IP front-end nodes of
the clusters in the EVM to be directly referred to as hosts. This means that the
hosts belonging to an EVM, even though interconnected by a two-levels physical
network, can run PVM tasks as in a single, flat distributed computing platform.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 166–173, 2006.
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ePVM has also taken advantage of some marginal implementation improve-
ments [4], and has been provided with a parallel file system, called ePIOUS [5],
which represents the optimized porting of PIOUS [6] under ePVM. The porting
has been developed taking into account the two-levels physical network topology
characterizing the cluster grids built by ePVM. As a consequence, it can exploit
the basic ePVM ideas and architecture to provide ePIOUS with a file caching
service that can speed up file accesses across clusters.

However, despite its capability to run large-scale applications on heteroge-
neous cluster grids, the ePVM system cannot relieve programmers of the usual
burden of using parallel programming systems for high performance applications,
such as, for example, MPI [7]. In fact, such burden is essentially determined by
the problems related to the deployment of PVM runtime libraries and program
executables among computational resources belonging to distinct administrative
domains. Such problems are further complicated by the heterogeneity of mul-
tidomain environments, which are usually based on diverse hardware platforms,
operating systems, access policies, and middleware systems [8].

This paper presents a lightweight software infrastructure, called ehPV M ,
which enables programmers to deploy ePVM applications among computational
resources belonging to multidomain clusters. In particular, ehPV M implements
simple services that make such resources, which can be also hidden from the In-
ternet, available to dynamically load and run ePVM applications. Thus, ePVM
programmers can run their applications without having to use grid software
toolkits or resources providers whose configurations usually result in being te-
dious and time-consuming activities [8,9].

The paper is structured as follows. Section 2 describes ehPV M . Section 3 de-
scribes how ePVM applications can be deployed by exploiting ehPV M . Section
4 reports conclusion remarks.

2 The ehPV M Software Infrastructure

ehPV M is a flexible and lightweight Java software infrastructure able to sup-
port the deployment of ePVM applications among computational resources be-
longing to clusters interconnected by heterogeneous multidomain, non-routable
networks. It has been designed as a customizable collection of components, and
it can aggregate or cross-access varied computational resources spanning distinct
administrative domains, networks and institutions.

ehPV M has been developed in Java in order to achieve two main goals:

– to gain maximum compatibility across heterogeneous computing resources;
– to provide fine-grained access control mechanisms that allow users to utilize

computing resources without compromising their integrity.

However, ehPV M also implements an actual support for resource-dependent
functionalities as well as provides features that allow the hiding of heterogeneity
from programmers.

ehPV M can build and dynamically reconfigure a “minimal” metacomputer
on which ePVM applications can be deployed and run. Such a metacomputer
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can harness computing resources directly available on the Internet as well as
those belonging to multidomain, non-routable private networks, i.e. computing
nodes not provided with public IP addresses, but connected to the Internet
through publicly addressable IP front-end nodes. Therefore, even though all the
computing nodes building the metacomputer result in being actually arranged
according to a hierarchical physical network topology consisting of two levels
(the level of the publicly addressable IP nodes and the level of the not publicly
addressable IP nodes belonging to non-routable private networks), they virtually
appear as arranged according to a flat network topology (see Figure 1).

Computing nodes can be PCs, workstations or units of parallel systems inter-
connected by heterogeneous or dedicated networks. However, ehPV M supplies
all the basic services that enable programmers to deploy ePVM applications on
the underlying physical computational and network resources in a transparent
way. To this end, the metacomputer results in being abstractly composed of
computational nodes interconnected by a flat virtual network and unambigu-
ously identified by integer values automatically assigned at the metacomputer
start-up.

The nodes hidden from the Internet or connected by dedicated, fast networks
can be grouped in macro-nodes, which thus abstractly appear as single, more
powerful, virtual computing units. In fact, the metacomputer is assumed to be
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made up of at least one macro-node, called the main macro-node, which groups
all the publicly addressable IP nodes taking part in the metacomputer.

Each node maintains status information about the runtime organization of
the metacomputer, such as information about the identity and liveness of the
other nodes. To this end, the hierarchical physical organization of the metacom-
puter allows each node to keep and update only information about the configu-
ration of the macro-node which it belongs to, thus promoting scalability, since
the updating information has not to be exchanged among all the nodes of the
metacomputer.

Each macro-node is managed by a special task, called Coordinator (C), which:

– runs onto the publicly addressable IP node of each non-routable, private
network interconnecting other non-directly addressable IP nodes;

– creates the macro-node by activating nodes within the private network that
it manages;

– takes charge of updating the status information of each node grouped by the
macro-node;

– monitors the liveness of nodes to dynamically change the configuration of
the macro-node;

– carries out the automatic “garbage collection” of the crashed nodes in the
macro-node.

– acts as a gateway for system communications towards the nodes belonging
to the macro-node.
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Fig. 3. The publish/subscribe information service

The metacomputer is controlled by the Coordinator of the main macro-node,
called Root, which is directly interfaced with the user through the Console, by
which the configuration of the metacomputer can be dynamically managed (see
Figure 1). To this end, a node wanting to make its computing power available
to ehPV M has to run a server, called Node Manager (NM), which takes charge
of interacting with the Console as well as running further software components
that enable the node to participate in the metacomputer (see Figure 2).

The Console can only interact with the NMs running on publicly addressable
IP nodes, i.e. the nodes belonging to the main macro-node. Therefore, when a NM
hosted by a node running a Coordinator receives a command from the Console,
such as, for example, a “configuration” command, it has to forward it to the
NMs of the nodes grouped by its macro-node. To this end, the NM contacts
the Coordinator of its macro-node, which exploits the configuration information
stored in a specific XML file to forward the received command to the NMs of the
nodes inside the macro-node. In fact, information contained in the XML file is
initially provided by the administrator of the nodes grouped by the macro-node,
and then dynamically updated by the Coordinator (see Figure 2).

ehPV M also provides a simple “publish/subscribe” information service im-
plemented by two servers: the Resource Manager (RM) and the NM (see Figure
3). In particular, each macro-node has an RM, which can be allocated onto one
of the nodes belonging to the macro-node. A RM is periodically contacted by
the NMs of the nodes belonging to the macro-node and wanting to publish in-
formation about the CPU power and its utilization or the available memory or
the communication performance. Information is collected by the RM and made
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then available to the “subscribers”, which are the Coordinators belonging to
the metacomputer. Thus, each Coordinator can know the maximum comput-
ing/communication power made available by its macro-node. Furthermore, this
information is also made available to the Root, which can thus know the power
of all the macro-nodes making up the metacomputer. This allows the user to
know the globally available computing power and reserve a part of it by issuing
a subscription request to the Console. Then, the Console can ask the RM of the
main macro-node for selecting and reserving only the required computing re-
sources. The result of this process is an XML file containing system information
to create a metacomputer without having to consult anew the RM.

3 Deploying ePVM Applications

ehPV M implements an architecture that can host dynamically loaded software
components. To this end, it supplies a Java runtime environment in the form
of a component container. In fact, components can be uploaded by users who
have appropriate permissions, while the administrators of the nodes aggregated
by ehPV M retain complete and fine-grained control over the computing and
network resources they manage.

Coordinators, NMs and RMs are all implemented as services directly run by
the Java Virtual Machine (JVM) at the ehPV M start-up. In particular, each
NM may request the JVM to link a dynamic native library. More precisely, a
NM can transparently resolve and link at runtime the appropriate version of a
library precompiled for different platforms by following a four-steps scheme. In
particular, the NM:

1. obtains the library path referred to the code repository;
2. resolves the actual Java “resource” name by combining information about

the library path, requested library name, and detected platform type;
3. stages the resource to a temporary local file;
4. loads the library from that file.

To this end, NMs assume an automatic platform detection type based on
the classification adopted by PVM [3]. Furthermore, ehPV M assumes that the
loaded resources may originate from an arbitrary URL.

To run an ePVM application, the only files that must be present at the nodes
aggregated by ehPV M are: the ePVM daemons, the ePVM runtime library,
and the application itself [1,2] (see Figure 4). In fact, ePVM has not external
dependencies except for the standard C library, and this makes precompiled
versions of these files portable within a single platform type. Therefore, to set
up the ePVM runtime, the Console requests NMs to load the ePVM daemons
and runtime library. Then, NMs take charge of staging and starting up the
appropriate platform-specific versions of the ePVM daemons, fetching them from
a network code repository. To this end, it is worth noting that the execution of
the “set up” command requested by the Console is managed by ehPV M as a
normal command, according to what shown in Figure 2. This means that only
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Fig. 4. The deployment of an ePVM application

the NMs belonging to the publicly addressable IP nodes can directly load the
ePVM runtime, whereas the NMs running on nodes inside macro-nodes can load
the runtime through their Coordinators.

It is worth noting that node administrators have only to authorize the deploy-
ment, but they have not to configure the ePVM runtime, since NMs can stage
and start up the appropriate platform-specific versions of the ePVM daemons
and runtime library. Furthermore, users are allowed to execute ePVM applica-
tions on computing nodes where they have not a login account but instead, only
restricted ehPV M access. As a consequence, the setup procedure implemented
by ehPV M hides heterogeneity from users as well as releases node administra-
tors from the responsibility to install or configure additional software except for
the ehPV M support itself.

The ePVM runtime setup is followed by the application deployment (see Fig-
ure 4). To this end, the application binary has to be stored in a specific directory,
designated by the ePVM daemons, of the file system of each node. Therefore,
the Console can ask NMs for loading the application binary from a URL code
base that the user may specify along with the executable name. As illustrated in
Figure 4, the execution request coming from the Console is handled by publicly
IP addressable NMs, which use their already described capabilities to fetch the
platform-specific versions of the application and save them in files local to nodes.
Then, these NMs ask their Coordinators for forwarding the execution request to
NMs running on the nodes inside macro-nodes, thus enabling the deployment of
the application on all the nodes aggregated by the metacomputer.

After the deployment of the application, each NM can directly invoke the
ePVM daemons to launch the application from the local file. However, to pro-
vide protection against malicious code, NMs can assess whether the deployed
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application can be trusted. To this end, NMs can base their decisions upon the
code source and/or user who requested the execution, according to the basic Java
security model. In particular, NMs can restrict the code source to designated
places that can be specified as URL base paths and/or verify code signatures
and/or use flexible authentication mechanisms to determine user identity.

Finally, it is worth noting that the functionalities implemented by ehPV M
are mainly related to the application and environment start-up, and thus have
only a minimal effect on the ePVM performance already documented in [1,2].

4 Conclusions

This paper has presented ehPV M , a lightweight software infrastructure that
enables programmers to easily deploy ePVM applications among computational
resources belonging to multidomain clusters. ehPV M supplies flexible services
that can make resources hidden from the Internet available to dynamically load
and run ePVM applications. Thus, ePVM can take advantage of important func-
tionalities that can be attained with no changes to its implementation and with
only marginally lowered performance, as demonstrated by preliminary tests.
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Abstract. Running large MPI-applications with resource demands ex-
ceeding the local site’s cluster capacity could be distributed across a num-
ber of clusters in a Grid instead, to satisfy the demand. However, there
are a number of drawbacks limiting the applicability of this approach:
communication paths between compute nodes of different clusters usu-
ally provide lower bandwidth and higher latency than the cluster inter-
nal ones, MPI libraries use dedicated I/O-nodes for inter-cluster com-
munication which become a bottleneck, missing tools for co-ordinating
the availability of the different clusters across different administrative
domains is another issue. To make the Grid approach efficient several
prerequisites must be in place: an implementation of MPI providing high-
performance communication mechanisms across the borders of clusters,
a network connection with high bandwidth and low latency dedicated
to the application, compute nodes made available to the application ex-
clusively, and finally a Grid middleware glueing together everything. In
this paper we present work recently completed in the VIOLA project:
MetaMPICH, user controlled QoS of clusters and interconnecting net-
work, a MetaScheduling Service and the UNICORE integration.

Keywords: MetaMPICH, Grid, Co-allocation, UNICORE, Network
QoS.

1 Introduction

1.1 The VIOLA Project

The work presented here is carried out in the context of VIOLA [1] (Vertically
Integrated Optical testbed for Large Applications), a co-operative project with a
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consortium of 12 partners from German research labs, universities and industry,
lead by DFN, the German NREN. VIOLA is funded by the German federal
ministry of education and research BMBF. The project has set up an optical
testbed in North-Rhine-Westfalia with an extension to Bavaria. Main objectives
are evaluation and testing of advanced networking equipment and technologies in
a close-to-production environment and development of software for user-driven
dynamical provisioning of network bandwidth and quality-of-service. A set of
initially four applications with high communication demands has been selected
to provide real-life requirements and to stress-test the network. Three of them
are performing distributed simulations with MPI-based codes on the currently
five Linux- and Solaris-based clusters in the testbed. The clusters are attached to
the testbed with multiple Gigabit-Ethernet adapters, in most cases one adapter
in each node of the cluster. The clusters are interconnected over the testbed via
10 Gigabit-Ethernet. Given this complex and bandwidth-rich environment, it is
obvious that a scalabe high-performance MPI-implementation with wide-area
support is a prerequisite for efficient use of the testbed. Also, Grid middleware
is required to orchestrate the various resources and to provide reliable, secure
and seamless access to them. For the former, the RWTH has extended their
Metacomputing MPI-implementation MetaMPICH [12], for the latter we have
integrated a MetaScheduling Service into the Grid system UNICORE [15]. In
VIOLA the MetaScheduling Service does not orchestrate Web Services as the
applications are not wrapped in services and the orchestration is made for a
synchronous start. However, as described in Section 6 future versions of the
MetaScheduling service will also support workflows - or choreography - of two
or more Web Services.

1.2 Related Work

Besides MetaMPICH, there are other MPI implementations enabling the cou-
pling of compute resources over wide-area networks, most notably PACX-MPI
[4], MPICH/Madeleine [3], and MPICH-G2 [10]. The features that differentiate
MetaMPICH from some or all of these approaches are the startup mechanism
using a single configuration file, the choice between two different methods to
couple clusters (routers and multidevice), and the fact that it is not tied to a
specific grid system. There are also a number of approaches for co-allocation of
resources like KOALA, CSF, GridWay or products like MP Synergy or Moab.
However, most of them are not providing advance reservation and neither reliable
SLAs nor co-allocation of compute resources with the interconnecting network
guaranteeing a user-requested QoS. In the UNICORE Plus project [7] a proof-
of-concept implementation of a MetaScheduling Service based on a proprietary
negotiation protocol has been implemented. It supports PACX-MPI as MPI li-
brary, the the CCS (Computing Center Software) [14] as reservation system for
advance reservation of compute resources. Our system uses some of the ideas of
the UNICORE Plus development (e.g. making the functionality accessible via a
UNICORE client plugin), but is besides that a completely independent design
and implementation. Related projects based on optical Grid testbeds are e.g. the
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Japanese g-lambda project or the Polish CLUSTERIX project. These projects
use different middleware and have a different focus, but co-operation has been
launched to exchange developments made and to work on interoperability.

1.3 Remainder of the Paper

The remainder of the paper is organised as follows. In Section 2 we present the
MetaMPICH library developed at RWTH. The VIOLA MetaScheduling environ-
ment is described in Section 3, followed by the description of the MetaMPICH
integration in both the MetaScheduling Service and the UNICORE system in
Section 4. Experiences made are discussed along a use case we present in Sec-
tion 5. An overview about further developments for the MetaScheduling envi-
ronment and the MetaMPICH library in Section 6 concludes the paper.

2 MetaMPICH

Based on MPICH1 [9], MetaMPICH was originally developed to couple MPPs
from different vendors in the Gigabit Testbed West project [8]. Since those sys-
tems internally had very fast networks, but only dedicated I/O-nodes for external
communication, a router-based communication architecture was chosen, as de-
picted in the left part of Figure 1. We call each of those coupled systems a meta
host in the context of meta computing.

In a second stage, MetaMPICH was extended to support the emerging class
of PC-based cluster systems with high-performance interconnects like SCI [17].
MetaMPICH has been optimised for coupling such clusters, as published in [12].
One advantage of the router approach was the possibility to couple an arbitrary
number of cluster nodes via fast, dedicated external connections to achieve higher
scalability and higher bisectional bandwidth between the systems.

However, when coupling clusters via the high-bandwidth VIOLA network,
the communication performance between clusters is limited by the speed with
which the I/O-nodes can handle the traffic. Since all compute nodes within the
VIOLA project are connected to the VIOLA WAN, it becomes preferable to let
the application processes communicate directly with each other. To enable this,
we implemented a new architecture for MetaMPICH.

The result is shown in the right part of Figure 1. It is called the multidevice
architecture, because it enables the usage of multiple MPICH communication
drivers (called devices) side-by-side. Note that every node of system A can send
data directly to every node of system B and vice versa. That way, this approach
allows to run large applications that benefit from the dedicated internal clus-
ter networks and from the connecting high-performance optical network at the
same time. Nevertheless, in order not to lose the flexibility of a router driven
communication, which is the only choice in some environments, MetaMPICH
also supports setups combining router-based and multidevice coupling.

The needs of the VIOLA project also led to several other improvements of
MetaMPICH: Support for Myrinet was added by integrating code from the
MPICH-GM distribution. The device for TCP/IP communication, ch usock,
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Fig. 1. Communication Architectures of MetaMPICH

was made instantiable to be able to use it for cluster-internal communication
as well as for coupling clusters at the same time. The syntax of the meta con-
figuration file [13], with which a coupled system is configured, was extended to
support several new requirements, e.g. automated startup of server processes for
remote parallel I/O.

3 VIOLA MetaScheduling Environment

The MetaScheduling Service (MSS) has beed developed to ensure that all re-
sources necessary for executing the distributed applications are available. The
MSS receives the information on resources needed for an application from the
UNICORE client via an agreement proposal [2] containing the specification of
resources and QoS. The MSS then starts the negotiation process with the local
Resource Management Systems (RMS) of these resources, where the compute
resources are managed by the local scheduling systems and the network resources
by the ARGON (Allocation and Reservation in Grid-enabled Optic Networks)
system. Due to the heterogenous nature of the employed RMS we used a set of
adapters to suport the MSS during the negotiation process by providing a stable
interface to the different RMS (see Fig. 2). The negotiation process consits of
four main phases:

1. querying the local RMS for free slots to execute the application within a
preview period

2. determining a common time slot
3. if such a time slot exists, perform a reservation request of this slot on behalf

of the user;
otherwise restart the query with a later start time of the preview period

4. check whether the reservation was made for the correct time slot on all
systems, if yes, we are done;
otherwise restart the query with a later start time of the preview period.

The successful negotiation and reservation is sent back as agreement to the
UNICORE client which then continues processing the job as usual. Once the
job starts at the negotiated starting time the MSS collects the IP addresses of
the compute nodes finally allocated by the local RMS. The IP addresses are
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used to generate the meta-configuration file as described in Section 4 below and
are communicated to the network RMS ARGON which in turn is then able to
manage the end-to-end connections with the requested QoS.
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Fig. 2. The meta-scheduling architecture

4 Grid Middleware Integration

4.1 Integration into the MetaScheduling Service

In this section we describe how the MSS supports the preparation of the run-
time environment for MetaMPICH applications. As mentioned in Section 3 an
important functionality of the MSS is the coordinated allocation of multiple
resources (e.g. compute and network) at different sites. Compute reservations
mainly consist of the number of required nodes at a compute site, the dura-
tion, an executable and the start time for the reservation. Network reservations
specify a network service, which consists of a set of point-to-point connections,
the bandwidth for each connection, the duration and a start time of the service.
Further on, each connection is specified by two connection endpoints (source
and destination), where each endpoint is associated with one compute site in
the VIOLA network, respectively with the router that represents this compute
site in the network.

The process of negotiating the execution time for a MetaMPICH applica-
tion allocating the required resources was already described in Section 3. Af-
ter submission of all reservations the MSS continuously monitors the partial
reservations. When all reservations entered the state running (active), the MSS
queries the compute RMS in order to determine which nodes (IP addresses of
the nodes) where finally assigned to a reservation. This information is collected
and aggregated by the MSS, and is then published as runtime configuration to
all subsystems.

Publishing this runtime configuration to the network RMS ARGON comprises
the completion of the reservation data in terms of which compute nodes (list of
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IP addresses) belong to each connection endpoint defined in the reservation. This
address data is used at the network layer to create access control lists (ACL) at
the routers in order to enable the compute nodes belonging to a MetaMPICH
job to communicate with each other using the QoS level specified in the network
reservation. Therefore the ARGON system implements a bind functionality that
allows completing reservation data of existing reservations at runtime.

The runtime configuration data is used in a different way for compute re-
sources. Here an XML configuration file is created on each cluster, which contains
the nodes (a list of IP addresses) that belong to a reservation for every site. This
configuration file then is used together with the job description submitted by
UNICORE to generate a MetaMPICH configuration during the startup process
of the application, as further described in Section 4.2.

4.2 UNICORE Integration

As the underlying Grid software, UNICORE is responsible for several tasks dur-
ing the lifetime of a MetaMPICH application:
– providing a user interface for specification of the Meta-Job,
– interacting with the MetaScheduling Service to allocate the requested re-

sources,
– management of the job: start and monitor the sub-jobs on the individual

clusters, retrieve and present the job output.

The first and second task are performed by the UNICORE user-client by
means of a Metacomputing-plugin, developed specifically for this purpose. The
third is one of the core UNICORE server responsibilities. Managing MetaMPICH
jobs did not require changes of this server, but just some user-level wrapper
scripts for starting the MPI-application.

The Metacomputing-plugin is an extension of UNICORE’s graphical user-
client, that lets the user specify the MetaMPICH job in a convenient way: In
a main panel, the user specifies the duration and favored start time of the job
and selects the clusters, on which the individual sub-jobs shall run. In a com-
munication matrix, the number of MetaMPICH router-pairs (which defaults to
0) and the required bandwidth between each pair of clusters can be specified.
Then for each sub-job, the user enters the executable, the number of MPI-tasks
and various other optional configuration parameters in a separate form.

The job description entered via the plugin is sent along with the job encoded
in XML. At job startup time, when the actually allocated nodes are known,
the MetaMPICH configuration-file is created on each of the participating clus-
ters, based on the XML job description and the IP-addresses provided by the
MetaScheduling system.

The startup of the MetaMPICH application is also different from the standard
way, where a single execution of ’mpirun’ will start the sub-jobs on all clusters
via ssh. In the UNICORE integrated version, each MetaMPICH sub-job is repre-
sented as a UNICORE sub-job and is started individually by the local scheduling
system of the cluster. The advantages are that no ssh-logins between the clusters
are required and that the sub-jobs can be monitored individually by UNICORE.
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5 Use Case: Distributed Algebraic Multi Grid Solver

Solving huge, linear, sparse systems of equations is an important subtask in
many simulation codes, e.g. of computational fluid mechanics, structural me-
chanics or semiconductor device simulation [16], [5]. Typically, the efficiency of
a such simulation code is restricted by the efficiency of the linear solver used.
Algebraic multigrid methods provide a well established, state-of-the-art solver
technology for wide classes of applications. They are optimal since they turn
out to be numerically scalable : the time for solving a problem in a certain class
grows only linearly with the problem size. The AMG solver technology has been
made available in the VIOLA Grid for all simulation codes where the solver of
a linear system is a numerical bottleneck. We have shown that the VIOLA Grid
is suitable for these industrial simulation codes.

Fig. 3. Throughput for data redistribution on two clusters. The throughput for integers
is lower than for the doubles as more messages of smaller length have to be sent for
the integer data.

Especially, when considering problem sizes which are expected to become
relevant in the nearest future. The parallelization of algebraic multigrid methods
requires various communication patterns and therefore is a real challenge for the
network and the communication software. When starting the solver process, huge
amounts of data describing the problem to be solved have to be distributed to the
computing MPI processes. The most important factor here is the transfer rate
of the network. After having distributed the problem data, a hierarchy of coarse
and fine grids has to be calculated. In this setup phase the network latencies
become more important. The reason is an increased number of messages which
are at the same time of much smaller length than in the redistribution phase.
For the same reason the network latencies become the most important in the
solution phase.

An existing parallel, MPI-based algebraic multigrid code has been ported to
the VIOLA Grid using MetaMPICH. It could be demonstrated that the through-
put of the network can be exploited for the program phase dealing with the
redistribution of the problem data, provided that enough processors are used.
In addition, the timings show that in the Compute Grid VIOLA the redistrib-
ution of a sparse matrix problem is always an option: typically, the time of the
redistribution of a larger problem is strictly less than the time for solving it.
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Fig. 4. Scaling test using two clusters

Fig. 5. Scaling test using three clusters

Fig. 4 and 5 show the results of scaling tests for AMG when connecting two
and three PC-Clusters respectively using MetaMPICH. The PC-Clusters are up
to 80 km apart. For a scaling test the problem size per processor is kept fixed.
Scaling factors are defined by dividing the time of the larger problem on the
larger number of processors by the time used for the smaller problem on one
processor. Therefore, scaling factors of one are ideal, whereas scaling factors of
n imply a restriction to a factor of 1/n of the maximum efficiencies that can
be anticipated for the larger problem. The scaling factors (Fig. 5) for the total
time and the solving time are very satisfactory. The scaling factors for the setup
however indicate that restriction of communication in the setup will have to be
investigated further [11]. The total scaling factors are not bogged down by the
scaling factors of the setup as the time for the solution phase is dominating.

6 Future Perspectives

Methods improving the interoperability of MetaMPICH are currently in devel-
opment, namely a new device that can use other MPI implementations for com-
munication inside a meta host and support for the Interoperable MPI (IMPI)
standard. To improve application performance, the implementation of optimized
collective communication operations for wide-area networks and support for MPI
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process topologies are planned. The results of the VIOLA project wrt orches-
tration of services including support for user-driven dynamical provisioning of
network bandwidth and quality-of-service will be adopted and made available
on a European level in the EU funded LUCIFER project. While the current
version of the VIOLA Grid testbed expects the user to describe the resource
demands of his application using the UNICORE client and do a pre-selection
of resources satisfying this demand, we are working in several other projects
to have applications providing this information. E.g. together with the Swiss
EPFL an interface for a resource Broker responsible for generating a candidate
set of potentially suitable resources to run an application has been defined and
is currently implemented [6]. Furthermore, the MetaScheduling Service will be
made available for GT4 or gLite based Grid environments in the near future. It
will then support reliable orchestration and reservation across Grids based on
different middleware.
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Abstract. MetaMPICH is an MPI implementation which allows the
coupling of different computing resources to form a heterogeneous com-
puting system called a meta computer. Such a coupled system may con-
sist of multiple compute clusters, MPPs, and SMP servers, using different
network technologies like Ethernet, SCI, and Myrinet. There are several
other MPI libraries with similar goals available. We present the three
most important of them and contrast their features and abilities to one
another and to MetaMPICH. We especially highlight the recent advances
made to MetaMPICH, namely the development of the new multidevice
architecture for building a meta computer.

Keywords: MPI, Grid Computing, Meta Computing, MPICH, Multi-
device Architecture.

1 Introduction
Since several years ago, there is a strong trend in the scientific computing com-
munity towards distributed high performance computing. By coupling multiple
computing resources to a single meta computer, a higher degree of parallelism can
be achieved and thereby larger problem instances can be solved. Such a coupled
system is heterogeneous by nature, e.g. regarding administration policies, net-
work technologies, and communication performance between different processes.
This heterogeneity leads to specific issues which do not have to be dealt with
if homogeneous systems are used. As MPI is currently the most important API
for implementing parallel programs, several MPI libraries have been developed
which try to address these issues in an efficient and user-friendly manner.

In this paper, we compare and contrast four different MPI implementations
that support heterogeneous systems, one of which, MetaMPICH, is being de-
veloped at the Chair for Operating Systems, RWTH Aachen University. As
they are under active development and have already been used for running
large-scale parallel applications, we chose MPICH-G2 [1], PACX-MPI [2], and
MPICH/Madeleine [3] as our examples besides MetaMPICH. Several other
projects are of interest in this context, e.g. MagPIe [4], IMPI [5], and STAMPI
[6], but they are not covered in this paper.
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We compare the MPI implementations with regard to several topics that are
of high importance for heterogeneous systems: the method by which the coupling
is done, approaches to support different architectures and networks, methods of
grid integration, and the way in which the system’s heterogeneity is exploited to
support efficient data communication. To keep this paper focused, we concentrate
on the important features of each implementation and do not provide extensive
benchmark results. A detailed benchmark comparison between PACX-MPI and
MPICH/Madeleine can be found in [7].

This paper is organized as follows: In Section 2, we describe MPICH-G2,
PACX-MPI, and MPICH/Madeleine with regard to the above mentioned topics.
In Section 3, we present MetaMPICH, especially the new features that have
recently been added to it. Section 4 describes experiences with the usage of
MetaMPICH and Section 5 concludes the paper.

2 Approaches to Meta Computing

For the scope of this paper, we view a meta computer as being composed of
coupled entities called meta hosts, which may be clusters, MPPs, or SMP servers.
Figure 1 shows the three possible methods for coupling: using dedicated router
processes communicating over an additional interlinking network (a), all-to-all
connectivity between application processes (b), or connecting meta hosts via
gateway nodes which are part of two coupled entities (c). A description of the
advantages of each coupling method can be found in Section 3.1, Section 3.2,
and Section 2.3, respectively.

a)

Meta Host A Meta Host B

Routers b)

Meta Host A Meta Host B

All−to−All

c) Gateway

Meta
Host A Host B

Meta

Fig. 1. Coupling Methods for Heterogeneous Network Architectures

We have identified the following approaches to support multiple networking
technologies inside a meta computer (see Figure 2): Building the support into the
driver layer of the MPI implementation (a), using an external communication li-
brary providing access to multiple networks (b), and using an additional layer on
top of other MPI libraries (d and e). For those MPI implementations which are
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based on MPICH [8] (like MPICH-G2, MPICH/Madeleine, and MetaMPICH),
the first approach means to have multiple ADI (Abstract Device Interface) de-
vices built into the library, each of which supports the message transfer via a
different underlying mechanism. This is what we call a multidevice architecture.

For grid integration, a Grid-enabled MPI implementation can either be tied to
a specific grid system or provide its own method to configure a meta computer,
which then has to be integrated with a resource management system.

Two different methods for efficient communication in a heterogeneous system
may be provided: transparent, optimizing as much as possible without breaking
the source code compatibility with other MPI implementations, or intransparent,
by providing additional means for the developer to adapt the application to the
meta computer topology while sacrificing compatibility.

a)

Process
MPI−Application

Local Network Global Network

MPI  Library

Device B

(e.g. MetaMPICH)

Device A
(ch_smi) (ch_usock)

c)

Process
MPI−Application

Interlinking

Network
MPI  Library
(MetaMPICH)

Native Device

Router Process

MetaMPICH

Tunnel Tunnel

Native Device

(e.g. ch_smi)

Local Network

b)

Process
MPI−Application

Local Network Global Network

MPI  Library

Communication Library

(e.g. MPICH/Madeleine)

(e.g. Madeleine)

d)

Process
MPI−Application

Interlinking

Network

Meta Adaptation Layer
(e.g. PACX)

MPI  Library MPI  Library

Router
Daemon

(arbitrary) (arbitrary)

Local Network

e)

Process
MPI−Application

Meta Adaptation Layer

MPI  Library
(arbitrary)

(e.g. MPICH−G2) Network

Local Network

Global

Fig. 2. Layer View on Approaches to Support Multiple Networking Technologies

2.1 MPICH-G2

MPICH-G2 is designed to couple parallel systems using arbitrary MPI libraries
over wide-area-networks via the Globus Toolkit. Globus is responsible for tasks
like authentication and process creation on all participating machines. MPICH-
G2 in itself is implemented as an ADI device (the globus2 device), which provides
processes with all-to-all connectivity via the Globus system.
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By relying on other MPI implementations for communication inside of a part
of the coupled system (see Figure 2e), MPICH-G2 does not have to support
network technologies directly. Thus, much flexibility is gained at the expense
of some communication overhead. A lot of work has been performed to imple-
ment topology-aware collective communication operations based on a multilevel
tree model [9] (transparent exploitation of heterogeneity). The description of the
system regarding this model is also made available to an MPI application pro-
grammer via communicator attributes to assist in (intransparently) optimizing
the application for a given topology.

2.2 PACX-MPI

PACX-MPI is not a self-contained MPI implementation, but rather a tool for
adding meta computing capability to existing MPI libraries. Thereby, the PACX-
MPI library is located between the user application and the native cluster MPI
implementation. In case of local communication, the message is just handed over
to the underlying MPI library. But, in case of inter-cluster communication, the
message is forwarded to dedicated router daemons (Figure 2d). These routers,
residing on two special I/O-nodes of each participating cluster (one for outgoing
and one for incoming messages), can then send the message to the respective
remote cluster.

Since PACX-MPI is utilizing an underlying vendor MPI library, its approach
is slightly similar to MPICH-G2 in this context. But unlike MPICH-G2, inter-
cluster connections are explicitly established between the router daemons only
and not between all participating nodes. By exploiting the often well-adjusted
vendor MPI implementation for local communication and by taking the con-
nection between meta hosts into account as a possible bottleneck, PACX-MPI
transparently provides optimized collective communication operations.

2.3 MPICH/Madeleine

In contrast to MPICH-G2 and PACX-MPI, MPICH/Madeleine is not used to
couple underlying MPI libraries. Instead, it relies on the Madeleine communica-
tion library, which provides connectivity between processes running on different
parts of the meta computer (Figure 2b). Therefore, for a cluster to be used in
an MPICH/Madeleine system, the cluster interconnect must be supported by
Madeleine. The glue between the upper layers of MPICH and the Madeleine
library is the ch_mad ADI device. The developers of MPICH/Madeleine chose
not to follow a multidevice approach like that described in Section 3.2, because
they assumed that it would require a lot of integration work to make multiple
devices coexist, a claim that is repeated in [7].

For coupling meta hosts, MPICH/Madeleine provides support for the all-to-
all and the gateway approach. The latter avoids using a slow network between
clusters, but the gateway approach is not suitable for wide-area distributed com-
puting, because there must be one node which is part of two meta hosts. The
system is configured via configuration files with a very simple syntax. Unlike
MPICH-G2, MPICH/Madeleine is not tied to a specific grid system. A means
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to intransparently exploit the heterogeneity of the meta computer is provided
by an additional array of pre-defined communicators.

3 MetaMPICH

MetaMPICH is part of MP-MPICH, which is an ongoing development project
at our chair. In its original architecture [10], it allowed to couple MPPs and later
clusters of PCs to meta computers via router processes (Figure 1a). This feature
is described in Section 3.1. It is now complemented by the new multidevice
architecture which is detailed in Section 3.2.

One core concept of MetaMPICH is to have a single, central configuration
entity for the whole meta computer, the so-called meta configuration file [11]. A
part of an exemplary meta configuration file is shown in Figure 3. With this file,
it is possible to configure the system in a very detailed way. Unlike the configura-
tion files of MPICH/Madeleine, which contain only host names (a shortcoming
criticized in [7]), a meta configuration file differentiates between hosts and net-
work interfaces and can easily handle multiple NICs of the same type in the
same machine. This way of configuring the system gives users a maximum of
control over the configuration and allows to precisely match the configuration
on the underlying hardware.

NUMHOSTS 2 # meta computer with 2 meta hosts

OPTIONS

SECONDARY_DEVICE ch_usock ( # secondary device configuration

PORTBASE=2200,

NETMASK=192.168.2.0/24 # use 2nd TCP/IP net

)

...

METAHOST metahost_a { # start of meta host definition

type = ch_smi; # meta host is an SCI cluster

nodes = node01(134.130.62.12, # node with multiple NICs for

192.168.2.100), ... # connection between meta hosts

...

}

...

CONNECTIONS

PAIR metahost_a metahost_b 0 - # connected via secondary device

... # (0 router connections)

Fig. 3. Part of a meta configuration file

Like MPICH-G2 and MPICH/Madeleine, MetaMPICH provides MPI ap-
plication programmers with a tool to intransparently optimize their code for
the underlying heterogeneous system via the predefined MPI communicator
MPI_COMM_LOCAL, which contains all application processes running on the same
meta host [12].
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MetaMPICH does not enforce the usage of a specific grid system (like MPICH-
G2). In fact, it can be used without grid middleware at all, if the services pro-
vided by such software are not needed, e.g. for ad-hoc-coupling of local compute
resources, something which MPICH/Madeleine is also especially suited for.

3.1 The Router-Based Architecture

The first version of MetaMPICH implemented a router architecture for coupling
the meta hosts, because the target platforms were MPP systems with dedicated
I/O-nodes for external communication. These nodes were used to run the router
processes (Figure 2c). When MetaMPICH was extended to support clusters of
PCs later on, the router architecture still proved to be suitable. These clusters
had high-performance interconnects and were part of a Fast Ethernet LAN.
As the router connection over this LAN was a communication bottleneck when
coupling clusters (see Section 4), the emerging Gigabit Ethernet technology was
used to couple dedicated I/O-nodes of the clusters via router processes.

Routers can be used to build distributed meta computers with meta hosts
hidden behind a firewall, because the concept eliminates the need to give all
nodes of a cluster system access to an external network. Those issues regarding
the coupling of private networks via gateways and proxies are also discussed
in [13] concerning PACX-MPI and MPICH-G2. The MetaMPICH implementa-
tion of the router concept provides bundling of network interfaces (similar to
PACX-MPI) to increase bandwidth between meta hosts as well as static load
balancing among multiple router connections between two meta hosts to offload
the I/O-nodes. In contrast to PACX-MPI, a single router process is responsi-
ble for incoming and outgoing messages, but those can be handled by different
threads, if desired.

3.2 The Multidevice Architecture

Recently, we complemented the router-based architecture of MetaMPICH by im-
plementing the multidevice approach shown in Figure 2a, which provides users
of MetaMPICH with a new and unique way for coupling compute resources. The
first step was to enable build configurations with multiple devices: Whereas an
MPICH installation can contain a single device only and thus can communi-
cate just over a single data transfer mechanism (e.g. one network technology),
MetaMPICH can now be built with multiple devices linked together. The net-
work to be used can then be chosen when starting the application. Moreover,
MetaMPICH supports a plugin mechanism to dynamically load the needed de-
vice at startup time.

The next step of development was to extend the idea of choosing one of mul-
tiple devices at startup time to the possibility of using several devices simulta-
neously at runtime. Although the original MPICH already includes rudimentary
support for multiple devices, up to now, this feature has merely been used to
implement special-purpose devices, e.g. for loop-back functionality.
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However, our approach is in fact the implementation of two coexistent and in-
dependent communication devices on each meta host. While the primary device
is cluster-specific, enabling each meta host to benefit from its internal high-speed
network, the secondary device couples the meta hosts. E.g., if two SCI clusters
are coupled via Ethernet, the ch smi device [14] provides intra-cluster connec-
tivity, whereas the ch usock device (communication via sockets) is responsible
for communication between processes running on different clusters (see Figure
3). To enable this, some work had to be performed to really separate the devices
from one another, because originally they were developed under the assumption
to be the only device in use.

MPICH devices expect runtime configuration information (e.g. process ranks)
in the form of command line parameters. These are constructed by some startup
mechanism (e.g. shell script or grid system) or must be supplied by the user when
starting each process individually. In multidevice configurations, the command
line parameters are passed to the primary device, whereas the parameters for
the secondary device are internally constructed from the meta configuration
file. They are then passed to the secondary device as “artificial” command line
parameters, so that a device can use the same form of parameter passing when
being used as primary or secondary device.

We were cautious to not break the compatibility to MPICH, so that devices
written for MPICH can still be integrated into MetaMPICH to support new
network architectures. The success of this attempt is proved by the fact that
afterwards we were easily able to support the deployment of Myrinet clusters in
the VIOLA network (see Section 4) by taking the code from the MPICH-GM
distribution from Myricom1.

By making use of a secondary device, it is possible to build routerless meta
computers, i.e. configurations in which all meta hosts communicate via the sec-
ondary device. Additionally, to give the users as much flexibility as possible,
mixed configurations can be set up, in which some meta hosts are coupled via
router processes and some via a secondary device. To our knowledge, there has
not been any grid-enabled MPI implementation offering these combination of
coupling methods yet. If there is no router connection defined between two meta
hosts, they are automatically connected via the secondary device, if one has
been configured before (see Figure 3). To be able to use the ch usock device
as a secondary device for meta hosts which also use it internally, this device
has been made instantiable, i.e. multiple instances of it can coexist and be used
concurrently.

4 Grid Integration and Performance

Using MetaMPICH’s configuration file for building a meta computer has two
main advantages: It provides fine-grained control over the details of the system
and it is independent of a specific grid management system. The drawback is that
some work has to be performed to integrate MetaMPICH with a grid system,
1 http://www.myri.com.
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which can then automatically configure a meta computer and prevent the users
from having to write their own meta configuration files.

This work was done for the VIOLA project [15], whose goal is to implement
and operate a computational grid based on various computing centers in Ger-
many, which are linked by a high-speed optical WAN. To enable a transparent
view on the grid resources for the applications, the VIOLA grid uses the UNI-
CORE middleware [16]. This middleware allows the user to submit computing
jobs without the need to configure the jobs individually for the target systems.
In order to not only use a remote resource separately (e.g. a remote cluster), but
also to distribute large applications across all the grid resources (e.g. the local
and various remote clusters), MetaMPICH and an additional Meta-Scheduler
[17] have been integrated into the UNICORE framework.
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While being used for running distributed parallel applications on the VIOLA
systems, the multidevice architecture showed its main advantage over the router
approach: Establishing router connections over a high-bandwidth network (e.g.
the VIOLA WAN) is like introducing an artificial bottleneck into the meta com-
puter, because of the limited speed with which the router nodes can handle the
traffic. Because the VIOLA systems have an all-to-all connectivity to each other
via the optical network, a secondary device can be used instead to couple them.
Our performance measurements showed that in this case the available bandwidth
between the meta hosts scaled linearly with the number of application processes,
because the fast external VIOLA network was never saturated.

In general, such a situation arises when the network between the meta hosts
can sustain a much higher bandwidth than can be utilized by a single router
connection over that network. Figure 4 shows this for a Fast Ethernet connection
between two SCI clusters. We measured the aggregate throughput between the
clusters with mpptest [18] by letting pairs of processes exchange data, with one
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process running on each cluster. Additionally to providing lower bandwidth,
the router processes utilize one processor on each cluster which is then lost for
running application processes. Of course, the available bandwidth between the
meta hosts can be increased with multiple router connections, but then, even
less processors can run application processes.

5 Conclusion and Outloook

In this paper, we presented the features of MetaMPICH in the context of other
MPI implementations with similar goals. MetaMPICH offers two methods of
coupling clusters and single machines: the first is based on router processes
and the second on a multidevice architecture. Both coupling methods may be
combined side-by-side in a meta system containing three or more meta hosts.
Compared to the other MPI implementations we mentioned, MetaMPICH is
the only one that supports heterogeneity by integrating multiple ADI devices.
The new multidevice architecture showed its scalability when running parallel
applications on a high-bandwidth optical WAN.

Currently under development for MetaMPICH is a new device that utilizes
an underlying MPI library for communication, giving MetaMPICH capabilities
similar to MPICH-G2 and PACX-MPI in that area. To improve application per-
formance, the implementation of optimized collective operations and support for
the MPI process topology mechanism is planned. Because this paper is focused
on features, we plan to publish a thorough benchmark comparison of the MPI
implementations described herein.
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Abstract. An enterprise has not only a single cluster but a set of geographically 
distributed clusters – they could be used to form an enterprise grid. In this paper 
we show based on our case study that enterprise grids could be efficiently used 
as parallel computers to carry out high-performance computing.   

1   Introduction  

Many parallel programs can benefit from running even on a small cluster [4, 12], 
which can be commonly found in many enterprises. If an enterprise owns many of 
such clusters, it could be efficient to connect them together via a fast network to form 
a multi-cluster system even though they are geographically dispersed. This kind of 
systems, generally referred as an enterprise grid [3], can potentially act as a parallel 
computer to carry out high-performance computing. 

Communication latency and the heterogeneous nature of enterprise grids make 
high performance executions of parallel programs a challenging task. Heterogeneity 
of an enterprise grid can come from both computers and networks. First, an individual 
cluster may be made up of heterogeneous computers (with different processors and 
memories) – intra-cluster heterogeneity; and even if different clusters of an enterprise 
grid are internally homogeneous they could differ from each others – inter-cluster 
heterogeneity. The mismatch of processing speeds in different computers and 
different clusters may cause process coordination problems and therefore it affects the 
execution performance of the programs. Second, the LAN connecting computers in 
one cluster may be different from that of another. Besides, the clusters of the 
enterprise grid are usually connected by a much slower WAN and therefore 
communication bottlenecks usually occur at the inter-cluster communications, making 
achieving any speedup of parallel programs impossible. The improved networking 
technology in recent years has lowered the gap in the communication speed of LANs 
and WANs, which could lead to execution performance gains.  

The aim of this paper is to report on the outcome of our study into the execution 
performance of MPI parallel applications on an enterprise grid. First, we study 
whether it is feasible to employ geographically distributed computer clusters of an 
enterprise to carry out high-performance parallel computation. Second, we show how 
to improve the execution performance of parallel programs on heterogeneous clusters 
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of the enterprise by a simple technique of dynamic load balancing using the source 
initiative strategy.  

2   Related Work 

The study into parallel processing on enterprise grids can be generally classified into 
two categories and the major aspect distinguishing them is co-allocation – the 
simultaneous allocation of computers of different clusters for running a single parallel 
job. The first category investigates parallel job scheduling without co-allocation 
which is targeted to provide a high throughput for multi-cluster systems [5]. The 
second category investigates parallel job execution with co-allocation on multiple 
clusters, which is targeted to provide a high performance execution of parallel 
applications [2, 6]. Our research belongs to the latter category. 

[6] provides a detailed simulation carried out to study the influence of inter-cluster 
communication on the performance of co-allocation based execution. It shows a 
bandwidth-centric job communication model for different jobs scheduling policies 
with co-allocation. However, the execution performance of parallel programs, has not 
been addressed in their study.  

The execution performance study of eight parallel applications running on wide-
area clusters is shown in [2]. The measurement had taken into account the latency and 
bandwidth differences between local- and wide-area networks. It had also presented 
several optimization techniques for the selected applications running on wide-area 
clusters. The parallel applications were implemented restrictively in Orca [1] and 
executed with the support of fast broadcasting communication provided by the Orca 
runtime system. In contrast, our study employs MPI and computer clusters running 
with a commodity-based operating system such as Linux. 

3   Enterprise Grid Setup 

We set up an enterprise grid, the Deakin Enterprise Grid (DEG), comprising two PC 
clusters located on the two different campuses of our School. Each cluster has 16 PCs 
connected by a 100Mbps Ethernet. However, the two clusters have different 
processors speeds and memory sizes, which allow us to study inter-cluster 
heterogeneity. The Geelong computers are based on a 350MHz Pentium Processor 
and 383Mb RAM whereas the Melbourne computers are based on a 800MHz Pentium 
Processor and 512Mb RAM. These two clusters located 80km apart are linked 
together via an ATM-based MAN (155Mbps microwave link). Currently, all the 
computers are running the RedHat Linux operating system. LAM/MPI [7] is used to 
support the development and execution of MPI parallel applications. 

4   MPI Applications 

We selected for our experiments a set of MPI parallel applications from the domains 
of both parallel benchmarks and real world parallel applications. These applications 
are the representative programs in the areas of computational science, engineering and 
bioinformatics. They are characterized by a wide range of computation and 
communication attributes of parallel programs. 
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4.1   NAS Parallel Benchmarks 

The NAS Parallel Benchmarks (NPB) suite [8] has been widely used to objectively 
measure and compare the performance of parallel computer systems. It consists of a 
set of eight programs derived from computational fluid dynamics codes, of which the 
NAS 2.4 version can be used as MPI applications and run on computer clusters. They 
can be categorized into computation- or communication-bound.  

We have found that out of the eight NAS programs, EP (Embarrassingly Parallel), 
LU (LU solver), BT (Block Tridiagonal solver) and MG (MultiGrid) can represent a 
broad range of communication patterns of parallel applications that can commonly be 
found in many real world applications. Thus, these four programs are selected for our 
experiments. Since the NAS benchmark programs are designed to study parallel 
computation with static load balancing only, these programs must be compiled for a 
specific grid size and number of processes when a benchmarking is to be carried out. 

4.2   Parallel FastDNSml 

Maximum likelihood is a useful but highly computation-intensive technique that can 
analyze relationships among genes and DNA sequences of phylogenetic trees. One 
well established and commonly used code for maximum likelihood phylogenetic 
inference is the fastDNAml program. There is also its MPI parallel implementation 
[10], which we used in our study. 

The parallel fastDNAml consists of a set of processes. A master which constructs 
the trees to be evaluated, workers which do the evaluation and branch length 
optimization, and a foreman which manages all the workers. This programming 
paradigm can support a program-level dynamic load balancing in clusters. 

4.3   MPI-Povray 

Ray-tracing is a compute-intensive rendering technique that has been widely used in 
many areas such as computer graphics and games, film animations and automobile 
engineering. MPI-Povray [11] is a parallelized version of POVRAY [9] – the most 
popular ray-tracer. It is functioned by distributing works amongst a number of 
processing elements and the communication between the processing elements is 
achieved by the MPI message passing. Basically, the application follows the 
master/worker parallel programming paradigm where a master process divides an 
image of a trace into smaller blocks and assigns the blocks to many worker processes.  

4.4   Classification of Program Attributes of the Selected Applications 

The execution behavior of the selected parallel applications is determined by a 
number of program attributes including computation, communication, memory and 
topology. For example, the computation attribute of the programs is governed by the 
program size; the communication attribute depends on the communication volume 
and pattern; the memory attribute affects the size of memory spaces allocated from 
computers; and the topology attribute defines the size (process number) and the 
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structure (process connections defined by communication volume and communication 
pattern) of the programs. These attributes of the four selected NAS parallel 
benchmarks, parallel fastDNAml and MPI-Povray are shown in Table 1. 

Table 1. Attributes of the selected applications [12] 

Attributes Program 
Computation Comm. Volume Comm. Pattern Topology 

EP Computation-Bound Negligible Point-to-point Any 
LU Computation-Bound Medium Point-to-point Power-of-2 
BT Communication-Bound High Collective Square-of-n 
MG Communication-Bound High Collective Power-of-2 

fastDNAml Computation-Bound Low Point-to-point Any 
MPI-Povray Computation-Bound Low Point-to-point Any 

5   Execution Measurements 

We studied two dimensions of heterogeneity in enterprise grids: inter-cluster network 
and inter-cluster computers, and their influence on the execution performance of 
parallel applications. In the experiments, the processes of a parallel application were 
co-allocated (one process per computer) on the two DEG clusters to gain a higher 
level of parallelism and by this to hopefully achieve better execution performance. 
Clusters CG

n (Geelong) and CM
n (Melbourne) had n computers in each cluster.  

The first set of experiments was carried out using the four selected NPB programs. 
The objectives were to demonstrate the feasibility of high-performance computing on 
enterprise grids, and to study the influence of the program’s computation and 
communication characteristics on its execution through the use of benchmarks. 

The second set of experiments was carried out using two real parallel applications: 
fastDNAml and MPI-Povray. The objectives were to support our claim that high-
performance computing can be practically conducted on enterprise grids. Also, in 
contrast to a static load balancing approach adopted in the NAS programs, a simple 
but effective program-level dynamic load balancing approach adopted in these two 
applications was studied to provide better execution performance of the programs. 

5.1   Execution of NAS Parallel Benchmarks on DEG 

We choose the problem size of class B for the NAS programs to make sure that the 
execution memory requirement can be met without memory swapping. We could not 
satisfy fully the topology requirement. EP, LU and MG can run effectively with a 
topology of a power-of-2 number of processes. However, BT performs best when it 
runs with a square number of processes. We carried out the experiments using a 
power-of-2 number of computers for each selected NAS program learning from our 
experiments that the loss of performance for executing BT with a power-of-2 number 
of computers will not distort the experiment outcomes significantly. 

The first experiment aimed to profile the inter-cluster communication overhead of 
parallel programs with various communication requirements. Different co-allocation 
ratios of 16 computers in DEG (CG

n and CM
16 - n where n = 0, 2,…16) were used and 
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the execution time of the programs was measured. The results presented in Table 2 
show that the performance of computation-bound parallel programs: EP and LU, 
executed on the enterprise grid is comparable to that achieved when executing on a 
single-cluster, which however is bounded by the slowest cluster, CG. It is visible that 
unless all computers of the fast cluster could be allocated, using computers of both 
clusters (co-allocation) influences the execution performance only slightly.  

Table 2. Executions of NAS Programs with different co-allocation ratios in the DEG 

Co-allocation Ratio Execution Time of NAS Programs (min) 
No. of Computers in  CG

n No. of Computers in CM
16 - n EP LU BT MG 

16 0 37.3 41.8 47.1 37.9 
14 2 37.4 41.9 48.9 45.5 
12 4 37.3 42.2 59.8 47.9 
10 6 37.4 42.4 58.7 53.9 
8 8 37.7 44.5 61.3 61.0 
6 10 37.3 45.2 61.7 47.7 
4 12 37.8 41.8 62.3 57.7 
2 14 37.2 40.7 49.6 43.4 
0 16 16.6 27.9 33.3 30.0  

For communication-bound parallel programs: BT and MG, inter-cluster comm-
unication overhead is the highest when computers are evenly allocated in CG and CM. 
In this case it is preferable to use either of the two clusters (hopefully the faster one) 
rather than to exploit co-allocation. Inter-communication negatively influences the 
execution performance of the enterprise grid. 

However, even in the case of the user who cannot receive the requested number of 
16 computers of the fast cluster but only received n, and used also 16 – n much 
cheaper computers of the slower cluster, there is evident improvement of the 
execution performance. This is better visible in the case of the user who can afford 
computers of the faster cluster. In summary, co-allocation works well in these cases. 

The second experiment aimed to compare the execution performance of the NAS 
parallel programs on the single- and multi-clusters of DEG. For the case of the grid, 
we evenly allocated computers from CG and CM since it represents the worst case 
situation (with highest inter-cluster communication overhead). 

To demonstrate how to use clusters effectively in an enterprise grid, we compared 
the execution time of the NAS parallel programs running on CG

n and CM
n against  

CG
n/2 + CM

n/2; and on CG
n and CM

n against Cg
n + Cm

n where n = 2, 4,…16. CG
n/2 + 

CM
n/2 represents the situation where neither of CG nor CM has all n requested 

computers available for such parallel program execution and therefore symmetric co-
allocation is used. We studied as whether the execution performance of a parallel 
program running on CG

n/2 + CM
n/2 is at least as good as that of running on the slowest 

single-cluster, CG
n. On the other hand, CG

n + CM
n represents the situation when there 

are more than n requested computers (we assume 2n) available in DEG and thus they 
can be used to increase the level of parallelism. We studied as whether the execution 
performance of a parallel program with higher level of parallelism can be improved 
despite the inter-cluster communication cost. The result of the comparisons is 
presented in Figures 1(a, b, c and d). 
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Fig. 1a. Improvement of EP 
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Fig. 1b. Improvement of LU 

C
g

2

C
g

4

C
g

8

C
g

16

C
m

16

C
m

2

C
m

4

C
m

8

C
g

16
 +

 C
m

16

C
g

8  
+ 

C
m

8

C
g
1
 +

 C
m

1

C
g

2  
+ 

C
m

2

C
g

4  
+C

m
4

0

50

100

150

200

250

300

350

400

2 4 8 16 32

No. of Com puters

E
xe

cu
ti
o
n
 T

im
e 

(m
in

)

Geelong Cluster Melbourne Cluster Multi-Cluster

 

Fig. 1c. Improvement of BT 
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Fig. 1d. Improvement of MG 

 

For computation-bound programs: EP and LU, their execution performance on 
CG

n/2 + CM
n/2, is comparable to that of on the slow cluster, CG

n, and their execution 
performance on CG

n + CM
n is almost two times better than that of on CG

n. For 
communication-bound programs: BT and MG, although their execution performance 
on CG

n/2 + CM
n/2 is worse than that of on CG

n and CM
n especially for big  n, their 

execution performance on CG
n + CM

n is still better than that of on CG
n and CM

n. 

5.2   Execution of Parallel FastDNAml and MPI-Povray on DEG 

We adopted a problem size of 50 taxa of genes (a sample data file used in [10]) for 
Parallel fastDNAml and a problem size of 50 frames animation of 640x480 pixels 
image for MPI-Povray. Both Parallel fastDNAml and MPI-Povray are considered 
computation-bound parallel programs – they share communication characteristics 
with LU. They also support a program-level source initiative load balancing 
mechanism provided by the master/slave parallel programming paradigm.  

Table 3 shows the execution performances of Parallel fastDNAml and MPI-Porvay 
using different co-allocation ratios of 16 computers in DEG (CG

n and CM
16 - n where  

n = 0, 2,…16). The results show the execution performance gained by balancing the 
workloads on computers of CG and CM, where a computer of CM is over two times 
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more powerful than that of CG, outweighs the added inter-cluster communication cost. 
The table also shows that increasing the number of computers of the fast cluster 
improves the overall execution performance of the application. 

Table 3. Executions of  parallel fastDNAml and MPI-Povray with different co-allocation ratios 
in the DEG 

Co-allocation ratio Execution Time (min) 
No. of Computers in Cg

n No. of Computers in Cm
16 - n fastDNAml MPI-Povray 

16 0 173.3 110.3 
14 2 160.8 92.3 
12 4 147.9 77.7 
10 6 138.9 69.4 
8 8 129.2 61.2 
6 10 122.2 54.6 
4 12 114.6 50.1 
2 14 108.6 45.7 
0 16 105.3 41.2 

We compared the execution time of fastDNAml and MPI-Povray running on CG
n 

and CM
n against CG

n/2 + CM
n/2; and on CG

n and CM
n against CG

n + CM
n, where n = 2, 

4,…16. Fig. 2 and Fig. 3 show that the execution performances of both fastDNAml 
and MPI-Porvray on CG

n/2 + CM
n/2 are significantly better than that of on CG

n; and 
their execution performances on CG

n + CM
n are over two time better than that of on 

CG
n and significantly better than that of on CM

n. 
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Fig. 2. Improvement of fastDNAml 
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Fig. 3. Improvement of MPI-Povray 

An analysis of Table 3, Fig. 2 and Fig. 3 also shows that adding any available 
number of computers k, where k < n, of the fast cluster to the slow cluster that 
originally supports a parallel application by (n – k) computers, where n  16,  can 
improve the execution performance of the application. Thus, there is some tradeoff 
for the user of the slow cluster to pay the cost of using some computers of the fast 
cluster to improve the execution performance. The same is experienced by the user of 
the fast cluster who could improve the execution performance by increasing the level 
of parallelism and importing services of computers of the slower cluster. 
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6   Conclusions 

The results of the study into the feasibility of using enterprise grids to execute parallel 
applications and improve their overall execution performance demonstrate that 
computer co-allocation on multiple clusters for high performance is feasible and 
sound. For inter-cluster network heterogeneity, our experiments on the NAS parallel 
benchmarks have demonstrated that not only computation-bound parallel programs: 
EP and LU can work well in such an environment, but communication-bound parallel 
programs: BT and MG can also benefit from increased level of parallelism (executed 
on more computers) and thus improve the execution performance despite the inter-
cluster communication cost. For inter-cluster computers heterogeneity, our 
experiments on the Parallel fastDNAml and MPI-Povray have demonstrated that the 
execution improvement gained through balancing the workloads on computers of 
heterogeneous clusters can outweigh the inter-cluster communication cost. 
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Abstract. The processing of MPI-IO operations can be controlled via
the MPI API using file hints, which are passed to the MPI library as MPI
info objects. A file hint can affect how the MPI library accesses the file on
the file system level, it can set buffer sizes, turn special optimizations on
and off or whatever parameters the MPI implementation provides. How-
ever, experience shows that file hints are rarely used for reasons that will
be discussed in the paper. We present a new approach which dynamically
determines the optimal setting for file hints related to collective MPI-IO
operations. The chosen settings adapt to the actual file access pattern,
the topology of the MPI processes and the available memory resources
and consider the characteristics of the underlying file system. We evalu-
ate our approach which has been implemented in MPI/SX, NEC’s MPI
implementation for the SX series of vector supercomputers.

Keywords: MPI-IO, collective operations, self-adaptation, file hints.

1 Introduction

MPI-IO [3] is the part of the MPI-2 standard that defines an API for parallel
file access from within an MPI application. The two most relevant API elements
that MPI-IO offers, and which are not offered by the standard APIs for file I/O
such as POSIX, are collective I/O and the notion of file views, which allow the
flexible definition of non-contiguous file accesses. These two features simplify
the I/O-related code of the application, while at the same time offer significant
potential for optimization by the MPI library.

A few fundamental techniques for such optimizations exist and are widely
used. However, the parameters of these techniques have static default values
which in many cases adversely impacts the performance due to the resulting
access patterns on the file system level. Although most of these parameters can
be set by the MPI application via file hints passed to the MPI library as MPI Info
objects, experience shows that file hints are rarely ever used. The reasons for this
are manifold: firstly, the algorithms and thus the effect of these parameters are
often complex and beyond the understanding of the typical application or library
programmer1. Next to this, the fact that these parameters are not performance
1 Not in the sense that he wouldn’t be able to understand, but rather unwilling to

take care.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 202–211, 2006.
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portable, not necessarily portable between different MPI implementations and
their effects being highly dependent on the characteristics of the I/O system
used make it very unattractive to the MPI user to care at all for their possible
settings. Instead, we consider it the job of the MPI library to determine the
optimal settings for these parameters automatically.

In this paper, we present an adaptive and dynamic approach for the refine-
ment of these optimization parameters that have been implemented in MPI/SX,
NEC’s MPI implementation for the SX series of supercomputers. It provides
flexible algorithms and aims to set related parameters to values which generate
access patterns optimally matching with the performance characteristics and
access semantics of the underlying file system. We discuss the current status of
optimizations for collective and non-contiguous MPI-IO operations in the next
section, followed by a more detailed discussion of our motivation in section 2.
This leads us to the presentation of the chosen optimization approaches in sec-
tion 4. Section 5 presents results of performance measurements which compare
the new technique with the standard approach.

2 Motivation

MPI/SX is NEC’s MPI-2 implementation for the SX series of vector computers.
It includes MPI-IO based on the ROMIO MPI-IO library, but has been adapted
and tuned since then. We observed performance below the expected values for
different access patterns that are used in b eff io [8] on a large SX-8 system with
NEC’s GFS file systems. A chosen file hint could improve the performance for
some access patterns, but lead to decreases in other patterns. We recognized that
such manual optimizations are not reasonable for the MPI user, and decided to
let the MPI library care for this.

For the initial approach as presented in this paper, we chose the SX vec-
tor computer together with the GFS file system as the target platform. NEC
GFS2 [6] is a file system optimized for large-scale SANs (Storage Area Net-
works) based on Fibre Channel networks. It provides NFS client access, but uses
third-party transfer to optimize large block transfers. This means that file access
below 64KiB will be processed via the standard NFS v3 protocol, while for larger
blocks, the client only receives the block numbers from the server and uses this
information to transfer the file data directly via the Fibre Channel interconnect.

2.1 Access Semantics

The fact that a GFS file system is visible as a NFS file system has the advantage
that no special software is required on the client side for file system access. NFS
client software is installed by default on all operating systems used in a HPC
computing center. GFS client file system drivers that uses third-party transfer
for increased performance is available for Linux and SUPER-UX and can be
used on systems that are connected to the Fibre Channel SAN.

2 Not related to the GFS file system provided by RedHat Linux.
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However, NFS is not a POSIX compliant file system due to its non-coherent
client side caching and other limitations of the stateless server architecture.
Considerable efforts are required to make sure that MPI-IO on top of NFS
complies with the semantics defined in the MPI-IO standard when processes
from multiple nodes access the same file: each read or write access needs to be
locked with NFS block size granularity (4KiB), and buffers have to be flushed
explicitly via a fcntl() call.

2.2 Performance Characteristics

To get the baseline performance of a typical SX node accessing a GFS file system
on POSIX-level, we ran the iozone benchmark [5] with a single process for access
sizes from 4KiB to 128MiB. The performance for initial reads peaks at about
500MiB/s (close to the hardware limit) with a block size of 16MiB, and for
the same access size at 340MiB/s for writes. However, when having to lock
and synchronize each access as described in the previous section, this block size
increases to 128MiB.

Only for read accesses, caching increases the performance by about 20%. For
50% of the peak bandwidth, the access size has to be about 2MiB for uncoor-
dinated access, but nearly 8MiB for locked and synchronized access. For access
sizes below 64KiB, the bandwidth is about 10MiB/s without any caching effects.

2.3 Scaling Characteristics

With MPI-IO, it is typical that all processes of an application access the same
file concurrently. However, most file systems are not optimized for this access
pattern. Instead, they assume that many processes access many different files
at the same time. Therefore, and together with the problem of the NFS access
semantics in general, we need to be aware of how the GFS file system behaves
in this respect. It is also relevant to know how the bandwidth scales with the
number of processes and/or nodes. We measured the scaling characteristics using
the b eff io benchmark and cite the accumulated bandwidth with an access size
of 64MiB (Schunk) for the access types separate where each process operates
on its own file (label multiple files) and segmented where all processes access
disjoint locations in the same file (label single file) in Figure 1. We scaled the
number of nodes from 1 to 32, and tested with a single MPI process per node
(label 1 proc) and with 8 MPI processes per node (label 8 proc). Please note
that we need to lock and synchronize file access in this test.

It shows that for the access type separate, we only need enough concurrent
processes to saturate the hardware at 500MB/s. However, with all processes
accessing a single file, the necessary locking and flushing adds overhead which
limits the peak bandwidth to 380MB/s. The bandwidth even decreases for a
large number of processes (here at 128 processes) due to the contention at the
lock server.
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Fig. 1. Scaling of file access bandwidth of a single GFS file system for access types
separate and segmented

3 Related Work

The basic optimization technique for collective read and write access in MPI-IO
is two-phase I/O [9], which is similar in concept to collective buffering [4]. It
is efficient for non-contiguous file views where it transforms each process’ non-
contiguous I/O request (described by an arbitrary number of (offset, length)
tuples) into a small number of contiguous I/O requests which are performed by
an adjustable number of aggregator processes (AP), which are chose from the
group of MPI processes that perform the collective access. After having read a
contiguous range of the file, these APs exchange data with all other processes to
provide them with the data from the file corresponding to the original request. As
this technique transforms a potentially large number of fine-grained concurrent
file accesses into a small number of ordered coarse-grained file accesses plus data
exchange via MPI messages, it provides substantial performance improvements.
Self-adaptive optimization has been applied to determining the optimal algo-
rithm for collective communication in MPI [11,1], although these approaches are
not in practical use. In contrast, the adaptivity of numerical software libraries [2]
has proved to be a very successful approach, and is critical to achieve high per-
formance on different platforms. We are aware of one MPI-IO implementation [7]
which contains similar optimizations. These optimizations can be controlled by
file hints i.e. to differentiate between sparse and dense collective file access. How-
ever, self-adaptive means of setting these or other file hints are not described.
Also, this MPI-IO implementation is targeted exclusively at IBM’s GPFS file
system.
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4 Self-adaptive Hint Setting

The most widely used implementation of MPI-IO is ROMIO [10], which is ac-
tively maintained and is part of current MPI implementations, both open-source
and vendor-specific. MPI/SX uses a modified and optimized ROMIO as a base
for the MPI-IO part. In this section, we discuss how the file hints related to
collective I/O (defined in the MPI standard and available in ROMIO) influence
the way the collective MPI-IO call is processed, and present our approach to dy-
namically adapt the parameters related to these hints for optimized performance
of the current access.

4.1 Number of Processes for Two-Phase I/O

The file hint cb procs3 can be set to an integer value to indicate how many
APs should be accessing the file for collective non-contiguous file access via
two-phase I/O. The default value of this hint is the number of processes in the
appendant communicator, and the user will rarely ever think of setting this to
a different value.

We have observed that a static setting of this value is not optimal. For small
access sizes in a multi-node environment, it is better to let few processes perform
a few, but larger I/O operations to reduce the relative locking overhead and
exploit the higher bandwidth for larger access sizes and MPI messages. As a
simple measure, we specify a minimal I/O size for each AP which reduces
the number of APs for small access sizes. However, we also have to consider
concurrency and thus do not reduce the number of APs too much. For accesses
that are large enough, we use at most 4 APs per node.

Finally, the access ranges of the APs are aligned to the NFS block size to
avoid lock contention.

4.2 Placement of Aggregator Processes

A very complex file hint is cb config list. It is designed to allow the individual
placement of APs on specific nodes which may e.g. have special I/O systems or
faster I/O facilities than other nodes. The nodes are referenced by their MPI
names which makes it hardly applicable in batch processing environments where
the names of the execution nodes are not known in advance.

For this reason, and because the GFS file system is always configured sym-
metrically (all nodes of a system have identical connections toward the storage
systems), we chose to not support this option. Instead, we assign the task of
being an AP to the MPI processes in a round-robin manner over the nodes.
This is closely related to the setting of the cb procs file hint as it is done
right after having determined the required number of APs for the current I/O
operation.

3 The name of this file hint in ROMIO is cb nodes, but was changed in MPI/SX as it
counts processes and not nodes.
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4.3 Decision Between Collective and Individual I/O

Even if the user calls a collective MPI-IO function, the MPI library does not
automatically use the optimized collective file access routines described above.
Instead, it decides between the different I/O strategies based on the actual ac-
cess pattern. The default optimization approach in ROMIO is to check if any
two access ranges overlap. If yes, two-phase I/O is chosen; if no, each process
performs the file access individually. This decision process can be controlled by
setting the file hint cb read for read access respectively cb write for write ac-
cess to one of the three values enable, disable or automatic. The default content
is automatic which behaves as described. Statically setting these file hints to
either enable or disable would require that the user has exact knowledge of the
access pattern generated by the application. Choosing the wrong content can
significantly reduce the I/O performance.

For similar reasons as described in section 4.1, we consider a static setting
to be inappropriate anyway. But also the automatic setting based on the al-
gorithm described above is not optimal as there are situations where the I/O
accesses of all processes do not overlap but two-phase I/O still has advantages.
In MPI/SX, a NFS file is locked with NFS block size granularity (4KiB) to en-
sure full consistency for multi-node operation. Individual file accesses can not
be coordinated, and if file adjacent accesses are not aligned with the NFS block
size, processes have to wait on locks to become available. When collectively ac-
cessing the file with two-phase I/O, the file accesses of the APs can properly be
aligned to avoid any waiting time. Next to this, also for non-overlapping access
ranges, two-phase I/O allows to avoid overloading the file system with many
small requests as discussed above.

Of course, two-phase I/O is not always the best approach. If the access ranges
are not adjacent, but are separated by gaps, two-phase I/O will become more
ineffective with increasing gap size in relation to the effective data size. Therefore,
we perform a more detailed analysis of the access pattern than simply testing for
any overlaps. Our analysis returns information on the ratio between gaps and
data in the collective access range. The decision between collective and individual
I/O is made based upon a fixed threshold for this ratio.

4.4 Buffer Size for Collective Buffering

A very important factor for the performance is the size of file buffers required for
techniques like two-phase I/O. The size of the file buffer determines the block
size of the file access, and this has a strong correlation with the bandwidth as
shown in Section 2.2. Looking at the GFS baseline performance, it would be
possible to use the minimum of 128MB and the actual access range as buffer
size. However, it is not known to the MPI library if this amount of memory
is available on the node. If the node starts paging out memory because of the
allocation of file buffers, the application performance effectively decreases. On
the other hand, fixing the default buffer size at some lower bound will waste
performance in many cases in which a larger buffer size would not harm the
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application performance because sufficient memory resources are available. As
discussed before, the possibility to let the user set the buffer size is of little
practical value.

Instead, we again implemented a dynamic approach. Because two-phase I/O
is (for large requests) processed in multiple iterations, and typical applications
perform multiple I/O operations during their execution, we iteratively determine
a suitable buffer size. Our approach starts with the buffer size at a lower bound
(2MB in our case), and measures the effective bandwidth of the iteration of the
two-phase I/O. It then increases the buffer size for the next iteration, and com-
pares the bandwidth achieved with the increased buffer size with the bandwidth
of the previous iteration. If the bandwidth increased, it continues to increase
the buffer size to an upper bound. If the bandwidth stayed about the same, the
buffer size is left unchanged. Otherwise, it goes back to the previous buffer size.

We keep the state of this dynamic buffer size determination persistent between
I/O calls, together with information on the I/O call itself. As soon as we find the
optimal buffer size, we stick with it as long as the size of the I/O calls stays about
the same. A significant change of the size of the I/O call or the installation of
a new file view indicates that the application enters a new phase, and therefore
the file buffer size calibration is triggered again. Next to this, we recalibrate
the buffer size after a fixed number of collective I/O calls to ensure continued
optimization by adapting to possibly changed conditions.

5 Performance Evaluation

This section shows the results of some typical test cases where we compare the
static default setting of the parameters with the self-adaptive setting of MPI/SX.

5.1 Scaling Collective Write Operations

Figure 1 indicates that the accumulated file system performance decreases when
a single file is accessed by an increasing number of processes concurrently. In this
test case, we let a varying number of processes store a fixed amount of data in a
file. We compare three approaches: each process serves as an AP and accesses
the same amount of data in the file (called symmetric, default in ROMIO);
the number of APs is set to the number of nodes in use via an explicit file
hint (explicit); finally, we let MPI/SX perform the scheduling adaptively (adap-
tive). We show the relative performance differences for fixed file sizes of 50MiB
and 5GiB between the adaptive and symmetric respectively explicit setting
of the cb procs in Fig. 1 for different process counts and 1 or 8 processes
per node (ppn). It shows that the adaptive setting is sometimes only slightly
worse (nearly within the measuring noise), but offers significant performance
advantages for certain cases (here for large process counts) without any user
interaction.



Self-adaptive Hints for Collective I/O 209

Table 1. Relative performance differences of adaptive vs. symmetric and explicit set-
ting of the cb procs file hint for 1 process per node (1 ppn) and 8 processes per node
(8 ppn). Negative differences indicate performance degradation through adaptivity.

adaptive vs. symmetric adaptive vs. explicit
filesize 50 MiB filesize 5 GiB filesize 50 MiB filesize 5 GiB

processes 1 ppn 8 ppn 1 ppn 8 ppn 1 ppn 8 ppn 1 ppn 8 ppn
4 4.0% n/a 0.5% n/a -2.7% n/a 23.2% n/a
8 -1.5% -4.2% 11.3% 4.1% 5.5% 12.6% -22.1% missing
32 n/a 39.0% n/a -11.0% n/a 24.8% n/a -12.3%
64 n/a -2.8% n/a 123.6% n/a 0.6% n/a 106.7%

5.2 Collective Write of Adjacent Blocks

The access pattern used in this test case is a call to MPI File write all where
the 16 processes write blocks of 1500 bytes to adjacent, non-overlapping offsets.
The static algorithm would thus choose to let each process perform its individual
write operations. The adaptive algorithm detects that the accesses are non-
overlapping and adjacent (in this case, without any gaps), and chooses two-
phase I/O. Because of the small data size, all I/O is performed by one process
without any lock contention. The distribution of lock acquisition latencies for
both techniques is shown in Table 2.

Table 2. Key values for latency of lock operations (milliseconds)

variant minimum maximum average 99th quantile
static 2.154 208.493 22.376 160.597
adaptive 2.277 5.024 3.113 5.024

The distribution of the latencies for the static algorithm show that significant
lock contention happens, while the adaptive approach delivers latencies within
a very narrow range of 3ms. Due to this effects, the bandwidth for adaptive
algorithm increases by a factor of 8 for write access and by a factor of 3 for read
access. To achieve the same behaviour with ROMIO, the user needs to provide
the file hints cb nodes=1 and cb write=yes. This setting, however, leads to
significant performance penalties for many other access patterns.

5.3 Collective Large Block Access

To document the advantage of the adaptive buffer size setting, we compare the
bandwidth for collective non-contiguous file access as measured by the b eff io
benchmark with a fixed buffer size of 8MiB and the self-adaptive buffer size.
The initial buffer size is set to 2MiB and was observed to typically increase to
32MiB. For very large accesses, it sometimes increases further (the maximum
buffer size is set to 128MiB). Table 3 illustrates the performance gains of 50%
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and more achieved for these large-block accesses (64MiB) for a single process
and for 64 processes. The remaining parameters are identical for both test, i.e.
a single APwas running on each node.

Table 3. Performance improvement for large block transfers with adaptive buffer sizing
(total bandwidth in MB/s for scattered access in b eff io with 64MiB block size)

variant single process 64 process on 8 nodes
static 204.4 205.6
adaptive 298.9 354.4

5.4 Choice of I/O Technique

A customer code (which can not be disclosed) running on an NEC SX-8 instal-
lation with GFS has a 3-dimensional regular data decomposition and writes this
distributed data into a single file. The I/O was originally tunneled through a
single process using MPI communication and native I/O operations. It was then
changed to perform parallel I/O using MPI-IO. However, the chosen approach
was still very naive and resulted in repeated calls of MPI File write all() for
a contiguous file view. This means, the data access of the processes in the file is
not overlapped. We evaluated a test case with 16 processes running on 2 nodes.
Without this optimization, the test case required about 7.5 minutes to complete
as all processes effectively performed individual I/O operations which caused
contention at the lock server. With the optimized decision between collective
and individual I/O described in Section 4.3, the completion time was below 2
minutes because the I/O technique that was then used (collective buffering)
avoids lock contention and performs less file accesses with larger blocks.

6 Conclusions

We have shown that it is possible to replace the cumbersome manual setting of
file hints with self-adaptive algorithms to optimize collective I/O. By analyzing
the actual access pattern more thoroughly, and taking into account the process
topology and file system characteristics, these algorithms are able to optimize the
basic techniques for collective I/O for most of the tested access patterns achiev-
ing the same or better performance than can be achieved by setting file hints
manually, which requires detailed knowledge of the inner workings of MPI-IO.
For testing and special benchmarking purposes, the user can always deactivate
the self-adaptivity of the file hints by setting them to a fixed value.

The presented ideas are valid for other MPI-IO implementations as well. Gen-
erally, we consider self-adaptivity an important quality of an MPI implementa-
tion. Therefore, we aim at providing self-adaptive algorithms for other hints as
well, like for non-collective I/O or one-sided communication. This will make the
sweet spot for performance cover not only specific communication and applica-
tion scenarios, but all situations that an MPI application can create.
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Abstract. We explore several methods utilizing system-wide shared
memory to improve the performance of MPI-IO, particularly for non-
contiguous file access. We introduce an abstraction called the datatype
iterator that permits efficient, dynamic generation of (offset, length) pairs
for a given MPI derived datatype. Combining datatype iterators with
overlapped I/O and computation, we demonstrate how a shared mem-
ory MPI implementation can utilize more than 90% of the available disk
bandwidth (in some cases representing a 5× performance improvement
over existing methods) even for extreme cases of non-contiguous data-
types. We generalize our results to suggest possible parallel I/O perfor-
mance improvements on systems without global shared memory.

Keywords: Parallel I/O, shared memory, datatype iterator, non-contig-
uous access, MPI-IO.

1 Introduction

The rich MPI derived datatype facility can describe arbitrary regions of in-
memory and in-file data. Via this facility, an application using MPI-IO may
issue I/O operations that are non-contiguous in memory and/or in a file[1].
Previous work has explored optimizing these operations via data sieving[2], the
two-phase collective optimization[2], list I/O[3], and datatype I/O[4], primarily
in the context of commodity clusters. The first two optimizations are broadly
available through the open source ROMIO implementation distributed as part
of MPICH2[5].

In a data sieving read, each process repeats this cycle: read the next large
contiguous chunk of file data into a working buffer and extract the pieces needed
by the MPI read operation. Each cycle typically transfers a subset of the data
covered by the associated datatypes. Writes are similar, except locks serialize
access to each chunk, and a read-modify-write may be necessary for each chunk.
(ROMIO uses data sieving for non-interleaved collective I/O operations.)

In the two-phase collective optimization, a subset of processes are designated
aggregators. All processes construct lists of (offset, length) pairs (flattening their
memory and file datatypes), and send flattened file datatypes to the aggregators.

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 212–221, 2006.
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For each chunk all processes use flattened memory datatypes to transfer an
appropriate subset of their data to or from the aggregators via MPI messages,
and the aggregrators use the flattened file datatypes to transfer the data to
or from the working buffer. The messages serve not only to transfer the data,
but also to synchronize the processes and ensure that I/O is complete before
accessing the working buffer.

In list I/O, the MPI-IO implementation flattens the memory and file datatypes
to lists of (offset, length) pairs. These lists are then communicated (concurrently
with the data on a write) to a new list I/O interface in the filesystem, where it
may apply techniques such as data sieving to optimize the operation.

Since the memory and file lists can be quite long for non-contiguous datatypes,
datatype I/O replaces the lists with two compact datatype representations ex-
tracted from the MPI derived datatypes specified by the MPI-IO call. As in list
I/O, these compact representations are communicated (concurrently with the
data on a write) to a new datatype I/O filesystem interface.

In this work we investigate algorithms for optimizing MPI-IO in the context
of a shared memory computer. As participants in the DARPA High Productivity
Computer Systems initiative[6], researchers at Sun Microsystems, Inc., have been
exploring the use of shared memory in petascale computer systems[7]. Exploiting
shared memory in the MPI-IO implementation offers an opportunity to improve
I/O performance without altering how applications express I/O operations.

2 Exploiting Shared Memory

In a global shared memory system the filesystem typically has direct access to both
user memory and I/O devices, and it is efficient to transfer data independently
from control information. Further, the data transfer step in the two-phase collec-
tive optimization can be performed via shared memory, bypassing the packing,
copying, and unpacking operations usually required to implement MPI messages.
We extended ROMIO with new I/O methods that exploit shared memory.

mmap. In a shared memory system it is relatively efficient to use the POSIX
mmap operation to map a file directly into the address space of several processes.
In contrast, mmap on a cluster might require additional bookkeeping and data
transfer overhead to provide distributed shared memory. In the mmap I/O
method, processes must synchronize initially to compute and set the new file
length, but then can proceed independently using a data sieving-like algorithm:
map a file chunk, then use the flattened datatypes to copy data into or out of
the mapped chunk. The advantage over data sieving is that pages of the file are
shared in memory; thus I/O transfers happen only once. The disadvantage is
that memory management hardware limitations require existing file contents to
be read before each write operation, even when overwriting an entire page.

Collective shared data. In the ROMIO two-phase collective, processes ex-
change data with aggregators via MPI messages. In the collective shared data
method, we arrange for aggregators to have direct access to every process’s
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address space.1 Each aggregator copies data between its working buffer and ap-
propriate application memory locations in other processes without costly MPI
messages. The locations in application memory and the working buffer are iden-
tified via the flattened datatypes. In contrast to the message-based collective,
the processes need only synchronize at the very start and very end of the MPI-IO
operation, no matter how many cycles through the working buffer are needed to
complete the operation.

Collective shared buffer with flattened datatypes. In the collective shared
buffer methods, we arrange for each process to have direct access to every ag-
gregator’s working buffer. Each process uses the flattened datatypes to copy its
own application data to or from working buffers in the appropriate aggregators.
With a single working buffer per aggregator it is necessary for all processes to
synchronize before beginning their copy operations (to wait for the read or write
of the previous chunk to complete) and after their copy completes (to notify the
aggregators of copy completion and that it is safe to initiate the read or write
of the next chunk). We eliminated one synchronization step by splitting each
working buffer into multiple sub-buffers and performing I/O asynchronously.
On each cycle of a write operation, for example, the aggregators: (1) wait for
I/O to complete on the next sub-buffer, (2) synchronize with all processes, and
(3) initiate I/O on the just-completed sub-buffer. We measured a 40-90% perfor-
mance improvement for our collective shared buffer algorithms on the FLASH
I/O benchmark (Section 3.3) by enabling sub-buffering.

Collective shared buffer with dynamic offset/length generation. This
method replaces the flattened datatypes with dynamic (offset, length) genera-
tion. A problem with flattening is that the entire list must be generated before
any actual I/O can begin. Also, the flattened list may be large and thus compete
for space in the processor cache with the application data being transferred.

We introduced a new abstract data type called a datatype iterator, represent-
ing a cursor into a specific MPI datatype. The function dtc next advances the
cursor to the next contiguous block in the associated datatype and returns the
(offset, length) for that block. dtc extent tell and dtc size tell return the
extent or size within the datatype corresponding to the current cursor position.
dtc extent seek and dtc size seek position the cursor to a specific extent or
size within the datatype.

The datatype iterator concept is similar in some ways to the segments used to
transfer a datatype subset (partial processing) in MPICH2’s dataloops, although
segments seem not to have been applied to MPI-IO[8]. Datatype iterators are
also similar to the flattening-on-the-fly technique (like dataloops but with added
optimizations useful for vector processors) of listless I/O, which specializes the
MPI pack/unpack interfaces to perform partial processing[9]. However, our da-
tatype iterator interface appears to be unique: it allows a data transfer where

1 Our experimental implementation uses shmget/shmat to attach a single shared mem-
ory region to every process. Each process (or aggregator, for collective shared buffer)
allocates its application data (or working buffer) in a contiguous subset of the region.
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both source and destination buffers are non-contiguous, and factors out separate
seek and tell operations while still supporting partial processing.

The key data structure in the datatype iterator implementation is a stack
with depth equal to the maximum nesting level of the derived datatype. Each
stack element tracks the current position within the corresponding nested derived
datatype. The basic algorithm for advancing the cursor descends the derived da-
tatype tree to look ahead to the next contiguous block of bytes. If the lookahead
is contiguous to the current accumulated block, add it and continue; otherwise,
remember the lookahead for the next call and return the accumulated block.

The main processing loop for the collective shared buffer with dynamic off-
set/length generation algorithm is similar to that with flattened datatypes (in-
cluding use of asynchronous I/O). However, no flattening is necessary before
starting the main loop; instead, each process constructs datatype iterators for
its own file and memory datatypes. The core of the “copy data” step for a write
operation (the pseudocode below) demonstrates the power of datatype iterators.
The code copies data directly from the (possibly non-contiguous) application
buffer to the (possibly non-contiguous) destination locations in the shared work-
ing buffer without the need to pack and/or unpack data in an intermediate
buffer (in contrast to the direct pack ff technique of [10]). Further, a contiguous
datatype is not a special case: the code works efficiently for both contiguous and
non-contiguous datatypes.

while (file_off + file_len <= end_off) {
// Entire file block still fits in current chunk

while (file_len >= mem_len) { // Mem block fits in file block
src = app_buf + mem_off;
memcpy(dest, src, mem_len); // Copy remaining mem block
file_off += mem_len;
file_len -= mem_len;
dest += mem_len;
(mem_off, mem_len) = dtc_next(mem_dtc); // Next mem block

}
while (mem_len >= file_len) { // File block fits in mem block
dest = temp_buf + file_off - start_off;
memcpy(dest, src, file_len); // Copy remaining file block
mem_off += file_len;
mem_len -= file_len;
src += file_len;
(file_off, file_len) = dtc_next(file_dtc); // Next file block
if (file_off + file_len > end_off)
break;

}
} // Elided: post-loop handling of tail end of file block

Another illustrative paradigm is the pseudocode to position the memory and file
datatype cursors to match the start of the current file chunk:
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dtc_extent_seek(file_dtc, start_off);
file_size = dtc_size_tell(file_dtc);
dtc_size_seek(mem_dtc, file_size);

The use of datatype iterators considerably simplifies the implementation of the
two-phase collective I/O method. Using lines of code as a proxy for complexity,
we compared our two collective shared-buffer implementations. The list-based
routine required 952 lines (with 1210 lines of supporting functions), while the
datatype iterator-based routine required 358 lines (with 617 lines of supporting
functions, including the datatype iterator implementation), an overall savings of
62% for datatype iterators. It seems reasonable to expect similar savings for a
non-shared-memory-based two-phase collective algorithm.

3 Performance Evaluation

To evaluate the performance of our new shared memory-based I/O methods
against other existing methods, we ran three MPI-IO benchmarks. Our bench-
mark hardware is a Sun FireTM 6800 server with 24 processors at 1.2 GHz and
96 GBytes of RAM. Four Sun StorEdgeTM T3 disk arrays are connected via four
dedicated 1 Gbit Fibrechannel host adapters. We used the Sun StorageTekTM

QFS 4.5 filesystem[11] and the SolarisTM 9 operating system. The filesystem
is configured with metadata on one disk array and data striped across the re-
maining three disk arrays using a 512 MByte disk allocation unit per array.
Aggregate peak read or write bandwidth to the three data arrays does not ex-
ceed 300 MBytes/second. Some of the benchmark problem sizes are small enough
to fit within the RAM cache of the disk arrays, so we explicitly disabled this
cache for a fairer comparison to larger problems that do not fit in cache.

QFS offers both buffered I/O (caches file blocks in system memory, then copies
or maps them to/from user memory) and direct I/O (host adapter copies file
blocks directly between user space and disk array). Direct I/O usually delivers
higher performance than buffered for writes and for reads of data not already
present in buffer cache (lower bookkeeping overhead and one fewer copy oper-
ation) but requires user code to align file offsets. List I/O, datatype I/O, and
mmap are by their nature restricted to buffered I/O. As a baseline, we measured
both buffered and direct I/O results for data sieving and the ROMIO two-phase
collective I/O methods, but only direct I/O for the remaining, higher-performing
methods. QFS does not support datatype I/O; results for other buffered I/O
methods suggest datatype I/O would have similar performance to those methods.
In some cases we omit list I/O or data sieving results because their performance
was so poor that the corresponding runs took too long to complete.

We required an MPI implementation that included ROMIO’s implementa-
tion of MPI-IO and supported a shared memory transport on our test plat-
form. LAM 7.1.1[12] seemed to be the only available implementation meeting
both requirements at the time of our experiments. We implemented datatype
iterators directly inside LAM, avoiding the public MPI interfaces for inspecting
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datatypes. We upgraded ROMIO to version 1.2.4 with additional flattening code
from version 2005-06-09[5]. All code was compiled for a 64-bit execution model.

For each method, we picked one set of tuning parameters (primarily working
buffer size, number of sub-buffers, and number of aggregators), chosen to ob-
tain the best results across the selected range of problem types and sizes. The
collective shared buffer with dynamic generation method required the least ag-
gregate working buffer space of the collective methods and seemed least sensitive
to parameter changes.

Each reported result is the average over three runs. Time constraints prevented
us from flushing the filesystem buffer cache between runs, and one benchmark
pre-reads file contents into the buffer cache before beginning measurements.
Therefore, the results for I/O methods utilizing buffered reads include time to
access the buffer cache but not time to transfer data from disk.

3.1 ROMIO 3D Block Test

The ROMIO 3D block test (coll perf.c), included in the ROMIO test suite, mea-
sures bandwidth to a 600×600×600 array of integers stored in an 824 MByte file.
Each process uses a contiguous memory datatype, but the portion of the array
file accessed by each process is determined by a block distribution (MPI DIS-
TRIBUTE BLOCK).

Figure 1 shows our results. When the number of processes is not an integer’s
cube, data is distributed unevenly among the processes, accounting for several
zig-zags in the graphs. As expected, buffered methods outperform direct on
reads, but suffer from cache management overhead and extra copying on writes.
Among direct methods, the collective shared buffer with dynamic generation
method achieves the best read and write performance with little sensitivity to the
uneven data distribution. Data sieving has the poorest direct I/O performance;
repeated access to the same disk block causes extra disk seeks and must be
serialized for writes.

3.2 Tile Reader Benchmark

The tile reader benchmark[13] implements tiled access to a two-dimensional
dense dataset. A tile represents an individual display unit; displays are arranged
in an array to collectively present a large image to a human viewer. Each tile
is 1024×768 pixels with 24 bits per pixel; the tiles overlap by 128 pixels verti-
cally and 270 pixels horizontally to improve edge merging. Each process reads
its corresponding tile from the file to a contiguous memory buffer.

Figure 2 presents results for array sizes from 2×2 to 6×4 with correspond-
ing file sizes 7 to 37 MBytes. (The number of processes is the product of the
two dimensions.) Buffered methods again benefit from a warm filesystem buffer
cache to outperform direct methods. Among direct methods, the collective shared
buffer with dynamic generation method consistently outperforms the other di-
rect methods (even on small problems), and on larger problems achieves over
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Fig. 1. ROMIO 3D block test performance results

100% of the available bandwidth.2 Data sieving lags in performance due to re-
peated reads of the same disk block.

3.3 FLASH I/O Benchmark

The Argonne/Northwestern FLASH I/O benchmark (derived from the FLASH
adaptive mesh refinement application[14]) substitutes synthetic data for the
original computation, but makes the identical sequence of MPI-IO calls. Each
2 How is this possible? The collective I/O methods read the overlapping data regions

from the file only once, yet the benchmark counts the overlapping regions multiple
times: aggregate bytes read = number of processes × data per process.
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Fig. 2. Tile reader performance results

process contains 80 blocks. Each block is a three-dimensional array of data ele-
ments with each surface extended by four ghost cells. Each data element contains
24 variables. Data elements (but not ghost cells) are checkpointed to a file. In the
file, data is rearranged so all values of variable 0 are stored first, then variable
1, and so on. Both file and memory datatypes are non-contiguous; each value
is 8 bytes and is not contiguous in memory with other values of the same vari-
able. (For our largest problem size the list-based I/O methods use an aggregate
O(109) list entries requiring twice the memory of the data they describe.)

We explored scalability along two dimensions. The top graph in Figure 3 re-
ports results for a fixed number of processes (22) but a varying block size; file
sizes range from 165 MBytes to 15 GBytes. The bottom graph reports results for
a fixed block size (20×20×20) but a varying number of processes; file sizes range
from 469 MBytes to 2.8 GBytes. The graphs show the collective shared buffer
with dynamic generation method scaling well on both dimensions and provid-
ing the best performance. For the larger process counts it achieves over 90% of
the available disk bandwidth, reflecting a 5× improvement over the best exist-
ing method (two-phase collective). The buffered methods are limited by cache
management overhead and extra copying and have the poorest performance.

4 Conclusion

We explored several new methods to improve MPI-IO in a shared memory com-
puter system. A method that utilizes a shared working buffer, a single aggregator,
overlaps I/O and computation via a generalized double-buffering scheme, and
reduces startup cost to generate (offset, length) pairs dynamically offered the
best aggregate performance for several application I/O patterns.
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More generally, we rediscovered two important principles for obtaining good
streaming I/O performance: (1) Reduce startup overhead and begin I/O early.
(2) Overlap I/O and computation whenever possible. Our new abstraction, the
datatype iterator, follows (1): initialization is cheap in contrast to the potentially
high cost to generate (offset, length) lists. The sub-buffering mechanism we used
in our collective shared buffer I/O methods follows (2).

We utilized the datatype iterator only in a shared memory system. Since
the ROMIO two-phase collective uses lists extensively, and our research shows
that datatype iterators in conjunction with overlapped I/O and computation can
produce better performance with fewer lines of code than lists, an interesting area
for future work would be the use of datatype iterators in traditional clusters.
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Abstract. The enormous advance in computational power of supercom-
puters enables scientific applications to process problems of increasing
size. This is often correlated with an increasing amount of data stored
in (parallel) filesystems. As the increase in bandwith of common disk
based i/o devices can not keep up with the evolution of computational
power, the access to this data becomes the bottleneck in many applica-
tions. memfs takes the approach to distribute i/o data among multiple
dedicated remote servers on a user-level basis. It stores files in the accu-
mulated main memory of these i/o nodes and is able to deliver this data
with high bandwidth.

We describe how memfs manages a memory based distributed filesys-
tem, how it stores data among the participating i/o servers and how it
assigns servers to application clients. Results are given for a usage in a
grid project with high-bandwidth wan connections.

Keywords: Parallel i/o, Memory filesystem.

1 Introduction

With the increasing problem size of supercomputer applications, the amount
of accessed data grows faster than the bandwith of modern disk-based i/o de-
vices. To avoid a bottleneck in data access, there is a great demand on high-
performance i/o solutions.

Traditional filesystems that store i/o data on single harddisks like nfs are
limiting the i/o performance to the bandwidth of the single i/o bus. Parallel
filesystems like gpfs [1] and pvfs2 [2] improve the performance by using mul-
tiple nodes for data storage and by allowing concurrent access. These systems
have in some situations the drawback that nodes are coupled to form a filesys-
tem statically. This is adequate for static environments but becomes a difficult
administrative task for reconfigurable environments like grids, especially if data
is distributed over clusters on different locations.

To support the development of portable and performant parallel applications
the middleware needs to provide efficient i/o mechanisms. mpi defines a standard
for i/o in [3]. romio [4] is an advanced implementation of this standard, which is

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 222–229, 2006.
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used in many mpi implementations, e.g. in mpich [5]. romio uses the ”abstract
device interface for parallel i/o” adio [6] to create an abstraction layer of the
underlying filesystem. Filesystems that implement an adio device can be used
by romio for mpi-io calls.

In the viola project [7], a german network testbed for grid applications,
several clusters are connected by dedicated 10 GBit/s optical wan connections.
For parallel applications, mp-mpich [8], a special mpi implementation for grid
applications, is used to spawn a mpi program over several cluster sites. In viola,
dedicated and specialized i/o clusters are used to perform high-bandwidth i/o
initiated by i/o clients on different compute clusters.

To exploit the high bandwidth of optical connections disk-based storage is
often not adequate as it can not deliver the high bandwidth. With memfs we
developed a distributed parallel virtual filesystem in main memory that can
satisfy very high bandwidth demands. memfs can be easily used in reconfigurable
grid environments on a demand basis as memfs i/o servers are part of the user-
level mpi program dedicated to parallel i/o, but working transparently to the
user program.

Section 2 introduces the design of memfs, describing the filesystem design and
multiserver aspects with client-server mapping, data distribution and file locking
for consistency reasons. Section 3 shows the current state of our development,
presenting performance results. In Section 4 our work is placed in the context
with other projects and developments. Section 5 concludes with a summary and
future plans.

2 Design

In this section we describe the design of memfs for high bandwith remote parallel
i/o. The development of a performant interface for parallel remote i/o is divided
into two parts and implemented as two separate adio devices. tunnelfs [9] is
used to enable transparent access to remote data in a grid. memfs is used to
store i/o data in the main memory of local or remote nodes. This section presents
the design of the memfs multiserver environment.

2.1 MEMFS Filesystem

The memfs filesystem is designed to store data efficiently in the main memory
of one or multiple i/o nodes. It consists of a filetable and the files with the i/o
data. The filetable administers the files in the filesystem and contains the in-
formation necessary to access the individual files. A file contains besides its i/o
data all metadata needed to read and write its content, such as the filename
with which it can be accessed and the access mode. The i/o data is managed in
blocks that are allocated and deallocated dynamically by using malloc and free.
The metadata is stored on all i/o servers by opening each file on every server.
The i/o block size is variable for each file and can be passed to the filesystem
as a parameter when opening the file. The memfs adio device implements all
functions as requested by the adio interface. memfs is explicitly designed for
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Fig. 1. Layers of the tunnelfs servers and memfs. Multiple memfs servers communi-
cate over main and service threads. Clients communicate with servers over the network
using the tunnelfs device.

usage in mpi-io grid applications and can only be used with mpi-io calls. There-
fore memfs is optimized for a small amount of large temporary files accessed by
multiple clients in parallel.

2.2 Multiserver Architecture

memfs can be started on an arbitrary number of nodes in the grid. With mp-
mpich, the mpi implementation we used, it is possible to start separate programs
(user program and i/o server program) and to specify at program startup which
grid nodes should be used with each program. Additionally, with a modification
to mp-mpich we are able to hide the i/o servers from the user program, i.e. the
user program still works with its mpi comm world on the user nodes.

memfs creates a distributed filesystem in the main memory of all memfs
server nodes. Multiple i/o servers are able to handle requests concurrently. Each
server is capable of handling any adio request from any client. Currently we use
a static client to server mapping, which is described in section 2.3.

The maximum amount of data stored in memfs is limited by the accumulated
available main memory of the i/o server nodes. The user who starts the applica-
tion is responsible for limiting data written to memfs to this amount. Usually
the server processes and the application clients are started on different nodes of
the grid, so the memory allocation of the i/o servers does not affect the available
memory for the clients.

To support a distributed filesystem each memfs server process starts two
threads, a main thread and a service thread. The main thread receives and han-
dles all requests from the memfs adio device issued by an i/o client. For most
requests data has to be transfered to or read from one or more other memfs
servers as the filesystem is distributed over all servers. In these cases the main
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Fig. 2. Roundrobin client - server mapping for multiple files

thread sends out requests to other servers. A service thread is responsible for
acting upon the requests of memfs main threads running on other servers. It
continuously listens for these requests and performs the requested operations.
When the main thread has received replies for all outstanding requests it returns
the results to the client, finishing the operation.

The communication protocol between two servers as illustrated in Fig. 1 is
designed in a simple way to avoid deadlocks: The main thread of a server is only
allowed to communicate with the service threads of other servers and a service
thread is only allowed to handle requests, it cannot issue requests itself. The
single memfs servers are not currently multithreaded, so there can be only one
active adio client request per server.

As memfs stores data solely in the main memory of the participating nodes
it is only available during job execution time. Data that needs to be accessed
after job termination must be stored on a persistent filesystem. However, the
design of memfs is flexible, so it can be used as a fast caching filesystem with
appropriate enhancements.

2.3 Client-Server Mapping

When running in conjunction with tunnelfs we enable different mapping
schemes of clients to servers for each file opened with memfs. A mapping is
an assignment such that a client contacts one specific server for all mpi-io re-
quests and also receives the results of each request from this server. A simple but
non-efficient mapping is the globalmaster assignment, where all clients are as-
signed to one memfs server. This approach does not parallelize client requests,
because the globalmaster server can only handle one request at a time. The
standard mapping of memfs is the round robin assignment, where clients are as-
signed to servers in a ring manner. This results in an even mapping of clients to
servers. Previous assignments are regarded, so the overall number of clients as-
signed to each server is nearly equal. See Figure 2 for a case where two i/o servers
get assigned the same number of clients for both files together. A round robin
assignment allows to parallelize the requests from clients, as different clients
can contact different servers for their requests concurrently. A sophisticated
data distribution scheme between memfs servers is necessary to achieve a high
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parallelization of client requests. Since in our current version each memfs server
still handles requests serialized, it is important that different clients mostly ac-
cess data on different servers.

2.4 Data Distribution

Files in memfs are distributed to all servers to support parallelism between file
accesses of different clients. Currently, we use simple striping between all servers
for data distribution. The separate stripes of a file can be accessed by different
clients in parallel. The stripe size can be set by each application, since the optimal
size is dependent of the file access scheme of the applications’ client processes.
In an optimal case the i/o data writen and read by a client is completely stored
on the server it is assigned to. With striping this can only be reached for simple
data access schemes of clients. Therefore we will develop more sophisticated data
distribution schemes in the future.

2.5 File Locking

The mpi standard defines several conditions under which sequential consistency
has to be guaranteed by the filesystem. Sequential consistency for i/o means that
for a write operation of client 1 and a read operation of client 2 (see Fig. 3) on
the same part of a file the read operation either returns the unchanged data
before the write operation or the changed data, but not a mixture of both. In a
distributed filesystem write accesses to overlapping regions of a file need to be
serialized to guarantee sequential consistency. memfs uses a locking mechanism
to serialize those requests. The locks are currently managed centrally by one
server for each file. In the future, we will work on more sophisticated and scalable
locking schemes. The memfs locking mechanism distinguishes between write
and read accesses. Multiple read accesses to overlapping data regions can be
performed concurrently, as no file data is changed. When a write operation is
performed neither read nor other write accesses are allowed on the same file
region, so they are queued for later execution.

Furthermore locking is only necessary when overlapping file regions are ac-
cessed by different clients and at least one of those accesses is a write request.
The access scheme of mpi applications however is often restricted to disjunct file
regions. For those disjunct accesses no locking mechanism is required to achieve
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sequential consistency. The application developer can specify whether the appli-
cation clients use disjunct or overlapping filesystem accesses by setting an mpi
info object. Higher i/o performance can be achieved if the disjunct mode is set
because then no overhead through file locking occurs.

3 Results

memfs in conjunction with tunnelfs was evaluated by measuring the i/o per-
formance between different clusters in the viola network. i/o servers and clients
where physically separated by an up to 100 kilometres wan. All server processes
were run on one cluster and all clients on one or more other clusters. The server
cluster has 6 4-way nodes and supports the use of Myrinet as an internal network
device for server-to-server communication, while communication with remote
clusters is done through the 10 Gbit/s wan accessed by 6 GigE network cards,
limiting the achievable bandwidth to 750 MB/s. All results were collected with
a mpi benchmark program, that measures the performance of standard mpi-io
operations. In this benchmark each client writes data to a shared file with the
different mpi-io operations and then reads the written data back. Currently each
client writes to a disjunct file region, so the locking mechanism described in 2.5
was turned off to improve performance. The results shown in Figure 4 (a) were
collected by writing and reading 100 MB of data per client. As the figure shows,
we nearly reach the maximum of 750 MB/s by placing at least 12 servers on the
server cluster (2 server processes per 4-way node) and an equivalent number of
clients on another cluster. In Fig. 4 (b) the number of servers and the number of
clients is set to a constant value of 6, while the filesize is varying. The stripe size
is fixed to 100 MB. The figure shows that the best performance is reached when
each server holds exactly one striping block (6 * 100 MB = 600 MB filesize),
due to the fact that each client then writes and reads data from exactly one i/o
server. Larger files show no significant degregation.

4 Related Work

Creating a filesystem in the main memory is a well known approach for accelerat-
ing local i/o. A ”Network RamDisk” was developed by Flouris and Markatos [10],
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creating a distributed filesystem in the main memory of multiple nodes. The Net-
work Ramdisk uses tcp/ip instead of mpi calls for communication, disabling the
use of a high-speed special purpose network interconnect like Myrinet. Further-
more the Network Ramdisk does not support distributing the filesystem over
several clusters as used in viola. With the increasing use of clusters for high-
performance computing many distributed file systems have been developed in
the last years. Examples are The General Parallel Filesystem gpfs [1] from IBM
and the Lustre file system [11] from Cluster File System, Inc., both designed for
very high scalability and performance, or the Google File System [12], explicitly
designed for the requirements of Google’s applications. Examples for open-source
distributed file systems are gfs [13] from Red Hat and pvfs2 [2], which supports
an interface for defining file data distribution schemes. All these file systems for
clusters have in common that they store data on multiple hard disks accessed
in parallel, achieving high i/o performance. But all of them are designed for
usage in a static cluster environment, requiring administrative setup of server
nodes. Our development in contrast is designed for usage in reconfigurable grid
environments, where i/o servers and clients are coupled on a per-job basis.

5 Conclusion and Future Work

We developed a distributed filesystem for main memory that can be accessed
by standard mpi-io calls through the adio interface. By introducing the multi-
server version of memfs the aggregated main memory and network bandwidth
of multiple cluster nodes can be used for storage of application data. By using
mpi calls for all communication between nodes our approach is independent of
the underlying network interconnect. With the implemented adio device memfs
can be used by any mpi-io application. With tunnelfs we have designed a flex-
ible infrastructure for high-bandwidth i/o that can be adapted to applications’
i/o needs on a per-job level. With memfs we added the benefit of flexible user-
controlled i/o server configuration based on available ressources rather than a
static setup environment, and achieve high performance.

Currently further development of memfs focuses on performance optimiza-
tion, including more efficient and adaptable distribution schemes for the client-
server mapping as well as a more sophisticated data distribution than simple
striping with a constant stripe size. A possible extension will be the use of
memfs as a caching system for high-bandwidth i/o during application runtime.
Data then can be migrated by memfs to a persistent filesystem to become avail-
able after job termination.
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Abstract. Parallel computation outputs intermediate data periodically,
and typically the outputs are accessed for visualization in remote oper-
ation. To realize this kind of operations with derived data types among
computers which have different MPI libraries, a Stampi library was pro-
posed. For effective data-intensive I/O, a PVFS2 file system has been
supported in its remote MPI-I/O operations by introducing MPICH as
an underlying MPI library. This mechanism has been evaluated on in-
terconnected PC clusters, and sufficient performance has been achieved
with huge amount of data. In this paper, architecture, execution mech-
anism, and preliminary performance results are reported and discussed.

Keywords: MPI-I/O, Stampi, MPI-I/O process, derived data type,
PVFS2.

1 Introduction

Stampi was originally developed to support seamless MPI communications among
different MPI libraries by deploying a wrapper interface library on a native MPI
library to intermediate MPI communications among different MPI libraries [1]. It
also supports MPI-I/O operations both inside a computer and among computers
which have different MPI libraries [2].

Among parallel scientific applications, several kinds of I/O interfaces which
support a portable data format such as NetCDF [3] were proposed and used. A
parallel I/O interface of the NetCDF library named parallel NetCDF (hereafter
PnetCDF) [4] was developed with the help of an MPI-I/O interface in vendor’s
MPI library or MPICH [5]. Although the PnetCDF library succeeded in parallel
I/O operations, the same operations among computers which have different MPI
libraries each other have not been available. To realize this mechanism, a remote
MPI-I/O mechanism of a Stampi library was proposed as an underlying MPI-I/O
library. In the PnetCDF library, MPI-I/O functions and MPI functions which
create derived data types have been replaced with corresponding Stampi’s MPI
functions, and derived data types with ROMIO [6] were supported in the remote
MPI-I/O operations. For collective I/O, multiple MPI-I/O processes are invoked
on PC nodes of a Linux PC cluster. Unfortunately, its performance is poor with
such multiple processes on an NFS file system by using ROMIO’s MPI-I/O
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functions. To improve the performance, PVFS2 [7] has been introduced in the
remote MPI-I/O mechanism. Remote MPI-I/O operations by using ROMIO with
PVFS2 provide sufficient performance even if derived data types are used.

In the rest of this article, architecture and execution mechanism of Stampi,
typically details of the remote MPI-I/O mechanism with derived data types, are
discussed in Section 2. Preliminary performance results are reported in Section
3. Related work is discussed in Section 4, followed by conclusions in Section 5.

2 Remote MPI-I/O with Derived Data Types

In this section, details of architecture, execution mechanism, and sequence in
I/O operations of the library are explained.

2.1 Architecture

Architecture of the I/O mechanism is illustrated in Figure 1. Stampi’s interme-
diate library which has an MPI API is implemented on a native MPI library
to relay messages between user processes and an underlying native MPI library,
communication library, and I/O systems. High performance MPI communica-
tions inside a computer are available by using the native library. While in MPI
communications among different MPI libraries, user’s counterpart MPI processes
are invoked on computation nodes of a remote computer with a remote shell com-
mand (rsh or ssh) when a spawn function in the MPI-2 standard is called. Then
data communication is carried out by TCP socket connections. If the computa-
tion nodes are not able to access outside directly, a router process is invoked on
a server node (an IP-reachable node) to relay message data. Then MPI commu-
nications among different MPI libraries are available through it.

 Computation nodes 

Server node (IP-reachable node)

 Router 
 process 
 (Stampi) 

 TCP/IP 

Disk

 Router 
 process 
 (Stampi) 

 TCP/IP 

Disk

 Computation nodes 

< Local computer > < Remote computer >

 TCP/IP 
 UNIX 

I/O

 User process / MPI-I/O 
 process (Stampi)

 Intermediate library 
(Stampi)

 Native MPI 
 PVFS,
 PVFS2 

 User process 

 TCP/IP 
 UNIX 

I/O 

 Intermediate library 
(Stampi)

 Native MPI 

 PVFS,
 PVFS2 

Fig. 1. Architecture of an MPI-I/O mechanism in Stampi

In addition to the communication mechanism, MPI-I/O functions are available
both inside a computer (local MPI-I/O) and among computers (remote MPI-
I/O). The target remote computer and so on are specified in an info object as
key values at run time, and the intermediate library identifies which operation
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is appropriate according to the values. In the local MPI-I/O, I/O operations
with a native MPI-I/O library are carried out. If the library is not available,
UNIX I/O functions are used instead of it. While remote MPI-I/O operations
are carried out by invoking MPI-I/O processes on a remote computer with the
similar mechanism used in the MPI spawn function. The invocation is carried out
when MPI File open() is called inside user processes. The MPI-I/O processes
play I/O operations on a target computer by using a native MPI-I/O library
or by using UNIX I/O functions if the native one is not available through the
intermediate library according to I/O requests from user processes.

2.2 Execution Mechanism

Next, an execution mechanism of the I/O system is explained. Schematic dia-
gram of it is depicted in Figure 2. Firstly, a user issues Stampi’s start-up com-

 Server node 

2. fork

3. start-up

: Router process

: Stampi starter

9. fork

1. issue
   a start-up command

5. connect
6. spawn

10. connect11. connect

12. ack

Computation nodes 

user
process 8. start-up

: MPI starter (e.g. mpirun)

4. start-up

Local computer Remote computer

PVFS2

. . .
I/O nodes

. . .

7. remote
   start-up MPI-I/O

process

Fig. 2. Execution mechanism of remote I/O operations

mand (Stampi starter; jmpirun), then it calls an underlying native MPI start-up
command (MPI starter) such as mpirun. Besides, a router process is also cre-
ated by the Stampi starter if computation nodes are not IP-reachable nodes.
The MPI starter invokes user processes later. Once MPI File open() is called
in the user processes, either the Stampi starter or the router process invokes
another Stampi’s starter process on a remote computer which is specified in an
info object with the help of a remote shell command. Secondly, the starter kicks
off MPI-I/O processes and a router process if computation nodes of the remote
computer are not IP-reachable nodes, and a communication path is established
among the user processes and MPI-I/O processes. The MPI-I/O processes open
a file which is specified in the user processes.

To have higher throughput in collective operations with multiple MPI-I/O
processes on different nodes, an attempt to use ROMIO’s MPI-I/O functions
with PVFS2 support has been done in the remote I/O mechanism. Each MPI-
I/O process calls Stampi’s MPI-I/O functions, and they call associated ROMIO’s
MPI-I/O functions. On a PVFS2 file system, the ROMIO’s functions with PVFS2
support provide sufficient performance.
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In the end of I/O operations, MPI File close() is called in the user processes.
An I/O request and associated parameters of the function are transfered to the
MPI-I/O processes, and they close the file at first. Later, they are terminated
and the communication path is closed.

As those mechanisms are capsuled in the Stampi’s seamless intermediate li-
brary, users need not pay attention to the complex mechanisms.

2.3 Execution Sequence of I/O Operations

As an example, time step of execution of MPI File write all() with a de-
rived data type is illustrated in Figure 3. In creating a derived data type, firstly

JMPI_Isend()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

 . .

MPI_Recv()

< User processes >

returned values

< MPI-I/O process >

parameters

1

2

 . .

 add data type to list
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MPI_Recv()

MPI_Unpack()
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JMPI_Wait()

MPI_Type_commit()

MPI_Pack()

MPI_Type_hvector()

MPI_Type_commit()
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MPI_Send()

MPI_Type_vector()

 add data type to list

(a)

JMPI_Isend()
JMPI_Wait()
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JMPI_Wait()
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PVFS2
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 synchronization
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4

MPI_File_write_all()

MPI_Unpack()
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Fig. 3. Execution steps of (a) creation of a derived data type and (b) MPI-I/O oper-
ations with a derived data type

MPI Type vector() and MPI Type commit() are called in user processes. During
these function calls, several parameters such as an old data type, displacement
of each data block, and block length are stored in a list-based data type ta-
ble prepared by a Stampi library. Thus, as much complex the data type is, the
more the table is created. Finally, a target derived data type is created, and
associated parameters are stored in the table and transfered to corresponding
MPI-I/O processes. Once the parameters are stored in the same style table in
the MPI-I/O processes, they also create the same data type except that they use
MPI Type hvector(). Later they return a status value whether the operation is
completed successfully or not.

In the MPI-I/O operations, user processes issue a collective MPI-I/O function
call, then synchronization among them is carried out. If a derived data type is
used, user processes extract parameters from their tables. Later, I/O request
and associated parameters such as a file name are transfered to corresponding
MPI-I/O processes. Later, they call a native MPI-I/O library such as ROMIO,
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and high performance I/O operation is carried out. Finally, a status value and
so on are returned to the corresponding user processes.

3 Performance Evaluation

To evaluate the remote I/O operations with derived data types, performance
was measured on interconnected PC clusters. Specifications of the clusters are
summarized in Table 1. Each cluster had one server node and four computation

Table 1. Specifications of PC clusters which were used in performance evaluation,
where server and comp in bold font denote server node and computation nodes,
respectively

PC cluster-I PC cluster-II
server DELL PowerEdge800 × 1 DELL PowerEdge1600SC × 1
comp DELL PowerEdge800 × 4 DELL PowerEdge1600SC × 4
CPU Intel Pentium-4 3.6 GHz × 1 Intel Xeon 2.4 GHz × 2
Chipset Intel E7221 ServerWorks GC-SL
Memory 1 GByte DDR2 533 SDRAM 2 GByte DDR 266 SDRAM
Disk 80 GByte (Serial ATA) × 1 73 GByte (Ultra320 SCSI) × 1 (server)
system (all nodes) 73 GByte (Ultra320 SCSI) × 2 (comp)
NIC Broadcom BCM5721 (on-board) Intel PRO/1000-XT (PCI-X)
Switch 3Com SuperStack3 Switch 3812 3Com SuperStack3 Switch 4900
OS Fedora Core 3 RedHat Linux 7.3
kernel 2.6.12-1.1381 FC3smp (server) 2.6.12-1.1381 FC3smp (server)

2.6.11 (comp) 2.6.11-1SCOREsmp (comp)
Network tg3 version 3.43f (server) Intel e1000 version 6.0.54 (server)
driver tg3 version 3.23 (comp) Intel e1000 version 5.6.10 (comp)
MPI MPICH version 1.2.7p1

nodes. Interconnection between the Gigabit Ethernet switches of the clusters
was made with 1 Gbps bandwidth via a Gigabit Ethernet switch, Allied Telesis
CentreCOM GS908GT.

In a PC cluster-II, PVFS2 (version 1.3.2) was available by dedicating disk
spaces (73 GByte each) of four computation nodes. Thus 292 GByte (4 × 73
GByte) was available for the file system. During this test, default stripe size (64
KByte) of it was selected. A router process was not invoked in this test because
each computation node was an IP-reachable node.

In this test, performance values of remote I/O operations with derived data
types were measured with new and old libraries. In the remote I/O operations,
user processes were created on the PC cluster-I, and MPI-I/O processes were
invoked on the PC cluster-II to have access to its PVFS2 file system.
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MPI-I/O functions were evaluated with derived data types in three block sizes,
16384, 65536, and 262144. The derived data types were constructed from an inte-
ger data type (MPI INT) by MPI Type vector() as shown in Figure 4. Measured

comm_size = MPI_Comm_size(MPI_COMM_WORLD);

comm_rank = MPI_Comm_rank(MPI_COMM_WORLD);

nints = datasize/comm_size;

blkcnt = 16384;

MPI_Type_vector(nints/blkcnt, blkcnt, blkcnt*comm_size, MPI_INT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_set_view(fh, blkcnt*sizeof(int)*comm_rank, MPI_INT, filetype,

‘‘native’’, info);

Fig. 4. Pseudo code for creating a derived data type

values are shown in Figure 5. In read operations, I/O throughput values in the
old case are saturated around 40 MB/s for a single process, and 32 MB/s for
two and four processes. While the values in the new case are around 48 MB/s,
44 MB/s, and 48 MB/s for a single process, two processes, and four processes,
respectively. The similar improvement was observed in the new case for write
operations. This was due to effective data I/O using PVFS2 functions in ROMIO
by introducing an MPICH library in the MPI-I/O processes. Multiple MPI-I/O
processes were created on the same number of PC nodes (one MPI-I/O process
on each node) in this case, and collective I/O was realized. While the old case
provided poor performance because only a single MPI-I/O process was invoked
and it used UNIX I/O functions. Besides, serialization of I/O requests from user
processes also degraded its performance. From these results, it is confirmed that
performance was improved in the new library. It is also noticed that there was
not significant difference in performance values for the new library with respect
to block size.

4 Related Work

ROMIO provides MPI-I/O operations by using the ADIO interface [8] which
provides a common I/O interface to wide variety of I/O systems. Noncontiguous
and collective I/O with derived data types is optimized with data sieving and
two-phase I/O [9]. MPI-I/O operations to a remote computer where MPICH
is available are realized with the help of RFS [10]. An RFS request handler
on a remote computer receives I/O requests from client processes and calls an
appropriate ADIO library. Another implementation for effective noncontiguous
MPI-I/O is listless I/O which is implemented in NEC’s MPI/SX library [11].
The listless I/O avoids overheads to represent noncontiguous data types. On
the other hand, Stampi itself is not an MPI implementation, and it provides an
intermediate library among different MPI libraries by using TCP socket com-
munications for seamless MPI operations on heterogeneous environment. Stampi
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Fig. 5. I/O throughput in remote I/O operations by using new and old MPI-I/O
libraries, where new and old denotes new and old ones, respectively. Besides, read and
write denote MPI File read all() and MPI File write all(), respectively. Numbers
in parentheses are block sizes in derived data types.

realizes MPI communications and MPI-I/O operations not only inside the same
MPI library but also among different libraries without any attention to hetero-
geneity in underlying communication and I/O systems.

5 Conclusions

Remote MPI-I/O operations with derived data types on a PVFS2 file system
have been realized in Stampi with the help of its remote I/O mechanism. With
this library, multiple MPI-I/O processes were created on the same number of
nodes each, and effective collective I/O was available. Its I/O performance was
improved with the help of PVFS2 functions by using ROMIO in its MPI-I/O
processes compared with that of an old library by using UNIX I/O functions.

As a future work, additional support of derived data types such as a distrib-
uted array and implementation of the Stampi library in the PnetCDF library as
an underlying MPI-I/O library are considered.
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Abstract. MPI derived datatypes allow users to describe noncontiguous memory 
layout and communicate noncontiguous data with a single communication 
function. This powerful feature enables an MPI implementation to optimize the 
transfer of noncontiguous data. In practice, however, many implementations of 
MPI derived datatypes perform poorly, which makes application developers 
avoid using this feature. In this paper, we present a technique to automatically 
select templates that are optimized for memory performance based on the access 
pattern of derived datatypes. We implement this mechanism in the MPICH2 
source code. The performance of our implementation is compared to well-written 
manual packing/unpacking routines and original MPICH2 implementation. We 
show that performance for various derived datatypes is significantly improved 
and comparable to that of optimized manual routines. 

Keywords: MPI, derived datatypes, MPI performance optimization. 

1   Introduction 

MPI derived datatypes [7] enable users to describe noncontiguous memory layouts 
compactly and to use this compact representation in MPI communication functions. 
Derived datatypes also enable an MPI implementation to optimize the transfer of 
noncontiguous data. For example, if the underlying communication mechanism 
supports noncontiguous data transfers, the MPI implementation can communicate the 
data directly without packing it into a contiguous buffer. On the other hand, if packing 
into a contiguous buffer is necessary, the MPI implementation can pack the data and 
send it contiguously.  

In practice, however, many MPI implementations perform poorly with derived 
datatypes—to the extent that users often resort to packing the data manually into a 
contiguous buffer and then calling MPI. Such usage clearly defeats the purpose of 
having derived datatypes in the MPI Standard. Since noncontiguous communication 
occurs commonly in many applications (for example, Fast Fourier transform, array 
redistribution, and finite-element codes), improving the performance of derived 
datatypes has significant value. 

The performance of derived datatypes can be improved in several ways. 
Researchers have used data structures that allow a stack-based approach to parsing a 
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datatype, rather than making recursive function calls, which are expensive [4], [11], 
[12]. These works improved the performance of derived datatypes to the level of 
performance with naïve manual implementations for packing noncontiguous data. 
(We do better than that in this paper.) Wu et al. [13] improved the performance of 
MPI derived datatypes by taking advantage of the features in InfiniBand to overlap 
packing and unpacking a message with network communication.  

The performance of derived datatypes can be improved further by using optimized 
algorithms for packing and unpacking of data. Many implementations of derived 
datatypes use loops in packing/unpacking noncontiguous data. Utilizing data locality 
in these loops by applying loop optimizations, which a developer cannot easily do 
without advanced knowledge of memory hierarchy design and optimizations, is 
beneficial. This area is the focus of our study. These techniques are useful for MPI 
implementations on various network channels and the performance gain is not limited 
to fast networks. Our previous work [1] presents the scope of performance 
improvement by using MPI’s profiling interface (PMPI). In this paper, we present 
automatic selection of optimized packing/unpacking templates within the MPICH2 
source code, based on data access patterns, data size, and memory architecture. 
Ogawa et al. [9] used optimized templates in improving MPI performance for 
instantiating partial-evaluation code selection in order to reduce software overhead. 
We, in contrast, use templates to optimize memory performance. 

The rest of this paper is organized as follows. In Section 2, we present the design 
of our optimization mechanism. In Section 3, we describe the implementation details 
in selecting optimized templates dynamically. In Section 4, we present our 
experimental results, followed by conclusions in Section 5. 

2   Optimization Mechanism 

To choose optimized templates automatically, we developed a systematic approach. 
Our method first retrieves the data access pattern of a derived datatype from user’s 
definition and verifies whether performance improvement is possible with 
optimizations for a derived datatype before applying them. If improvement is 
possible, our optimization method uses an analytical model [2] to predict memory 
access cost and to find optimization parameters with the lowest access cost. These 
parameters are passed to templates to pack/unpack noncontiguous data.  

Overall procedure of optimizing an MPI communication function using derived 
datatypes has two steps. In the first step, we verify whether a datatype is optimizable 
or not, and find optimization parameters. In the second step, MPI communication 
function calls optimized templates automatically. 

In MPI programs, after defining a derived datatype, it has to be committed by 
calling MPI_Type_commit. We modified the implementation of the 
MPI_Type_commit function to verify whether optimization is possible. The 
modified implementation first retrieves the data access pattern, which includes the 
type of the user-defined datatype, old datatype, strides between consecutive memory 
accesses, size of the data items, and depth of the derived datatype. If the old datatype 
is another derived datatype (that is, when a derived datatype is nested), 
MPI_Type_commit retrieves these values for that inner datatype as well. We use 
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the datatype decoder functions of MPI-2, namely MPI_Type_get_envelope and 
MPI_Type_get_contents to retrieve the pattern. The overhead of decoding 
datatypes by using these functions is low.  

In order to determine whether a datatype is optimizable or not, the modified 
MPI_Type_commit function verifies a series of heuristics that cause cache misses. 
It verifies whether the datatype is contiguous or noncontiguous, examines whether the 
data size is more than cache size, and then calculates the factor of cache and TLB 
reuse. The optimization method reverts back to the original implementation if it 
determines that the performance cannot be improved at any of these verifications. We 
use an optimization flag (is_optimizable) to keep track of the results of these 
verifications. If the performance can be improved, MPI_Type_commit determines 
the optimization parameters and sets the flag is_optimization to 1.  

We developed optimized templates to pack/unpack noncontiguous data by using 
various loop optimization methods. In our current implementation, these templates 
use cache blocking [5], loop unrolling, array-padding optimizations, and software-
level prefetching [8].  

Various parameters are required in using these optimizations. Examples of 
optimization parameters are: block size for cache blocking, number of padding 
elements for array padding, and prefetching distance for software-level prefetching. In 
our approach, we first select these optimization parameters based on heuristics. To 
determine if these parameters are optimal, we developed a simple, fast, and accurate 
memory-access-cost prediction model [2]. This model verifies whether the memory 
access cost is reduced with the selected parameters. A new set of optimization 
parameters are selected if the cost is not optimized and the prediction model verifies 
for lowered cost again. 

Examples of optimization parameter selection are as follows. For cache-blocking 
optimization, the block size is selected in a way that each block fits into the cache 
memory and virtual-to-physical address mappings of that block fit in the TLB 
(Translation Look-aside Buffer). For software prefetching, the number of loop 
iterations needed to overlap a prefetching memory access is called the prefetching 
distance [8]. Assuming memory access latency is l, and the work per loop iteration is 
w, the prefetch distance is ceiling (l/w). The main loop that packs data is unrolled for 
all the references that reuse cache lines that are prefetched. An epilogue loop is called 
without prefetching to execute the last few iterations that do not fit in the main loop. 
We use a special gcc function __builtin_prefetch to issue these prefetch 
instructions. A special flag, –mcpu, has to be set to compile MPI source code.  

In the second step, when the MPI_Send function is called to send the data, if the 
is_optimization flag is 1, the MPI_Send calls optimized packing templates 
using the optimization parameters. These templates are also used when the user calls 
MPI_Pack or MPI_Unpack to pack or unpack noncontiguous data.  

3   Performance Results 

We used three sets of benchmarks to evaluate the performance of our optimized 
implementations.  
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1. Simple derived datatypes: We chose fixed derived datatypes defined by the 
SKaMPI benchmark [10]. They describe a memory layout consisting of a number 
of units of a basic datatype. The number of units depends on the size of data, the 
size of basic datatype, and strides. We used vector and indexed datatypes.  

2. Nested derived datatypes: We use the nested derived datatypes described by Ross 
et al. in [11]. These datatypes represent a collection of elements from a 3D array. 
When a 3D array is stored in row-major order, accessing the YZ face and all the 
YZ faces of the array in X direction is noncontiguous and has poor locality when 
the size of the YZ face is more than the cache or TLB sizes. We tested a nested 
datatype describing a 3D cube of YZ planes in the X direction with a vector of 
vectors (vector of YZ planes in an array). 

3. NAS benchmarks: Lu et al. [6] modified four NAS benchmarks to apply MPI 
derived datatypes for noncontiguous data communication. Among these, LU, BT, 
and SP have small data transfers and do not benefit from memory optimizations. 
In the MG benchmark, the data transfers in the comm3 function are 
noncontiguous and are implemented as packing-then-sent by a sender process and 
receive-then-unpacking by a receiver. The datatypes described in the modified 
code are nested datatypes that represent vectors of vectors. We also tested the 
performance of the matrix transpose operation from the NAS parallel 
benchmarks’ Fourier Transform (FT) program, using MPI derived datatypes. To 
describe the transpose operation with a derived datatype, we use a datatype that is 
a vector of vectors (vector of columns in an array). 

Except for the NAS MG benchmark, we obtained the performance results of all 
other benchmarks with an MPI_Send/Recv ping-pong operation. In this operation, 
a process sends a noncontiguous message that is described by the MPI derived 
datatypes, and a destination process receives it contiguously. The destination process 
then sends back the data with the same derived datatype and is received at the first 
process contiguously. The time is measured at the first process and halved to find the 
communication cost for one complete data transfer. We ran 20 iterations of each 
program and calculated the minimum time. We present the performance as transfer 
rate (MB/s) to normalize the results. The size of the message used in the ping-pong 
operation is divided by the measured time to find the rate. For the NAS MG 
benchmark, we compare the execution time of the benchmark.  

We compare the performance results for three implementations: manually packing 
data and sending it (no derived datatypes), MPICH2 version 1.0.3 (unoptimized), and 
our optimized implementation of the MPICH2 code. The manually implemented pack 
and unpack codes are written to represent the way a good programmer would write 
them. Ross et al. [11] showed that the implementation of derived datatypes in 
MPICH2 outperform those implemented in LAM/MPI. Therefore, we directly 
compare our results with MPICH2. We compile all manual codes and MPI 
installations with gcc version 3.2.3 with the flags -O6. 

To test the portability of our optimized implementations, we ran these experiments 
on two different clusters: a 350-node Linux cluster (jazz) at Argonne National 
Laboratory and an 84-node Sun cluster (sunwulf) at Illinois Institute of Technology. 
The nodes of jazz have a 2.4 GHz Pentium-4 processor with 1 GB of memory. These 
processors have 512 KB of built-in L2 cache, with a 64 byte cache line and 8-way 
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associative, a TLB of 128 entries, and a page size of 4 KB. The network interconnect 
of this cluster is Fast Ethernet. Each node of the sunwulf cluster is a Sun Blade-100 
workstation with one 500MHz UltraSparc-IIe CPU. The L1 cache is 16 KB, with a 
16-byte cache line size. The L2 cache has a capacity of 8 MB and its line size is 64 
bytes. It has a TLB of 48 entries with 4 KB page size. The network interconnect of 
sunwulf is Gigabit Ethernet.  

Figure 1 shows the performance (rate of sending/receiving data in MB/s) of 
programs using messages formed by vector and indexed datatypes on the jazz 
cluster. Figure 2 shows the performance of the same programs on the sunwulf 
cluster. On both clusters, when the message size is larger than cache size, the 
performance of the original MPICH2 implementation degrades sharply compared to 
the manual implementation for both vector and indexed datatypes. With the 
optimized implementation, this performance is in the same level as that of optimized 
manual codes. These figures also show that the overhead of optimized 
implementations is low.  

 

 
Fig. 1. Bandwidth measurements for vector (left) and indexed (right) datatype on jazz 

 

 
Fig. 2. Bandwidth measurements for vector (left) and indexed (right) on sunwulf 

Figure 3 shows the performance of programs communicating messages formed 
using nested derived datatypes representing a 3D-cube on the jazz cluster and Figure 4 
shows that on the sunwulf cluster. On both clusters, the original MPICH2 performs  
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similar to manual and optimized implementations for smaller data sizes. As the 
message size (size of 3D cube) becomes larger compared to the L2 cache size, the 
performance degrades for MPICH2, whereas the optimized implementation maintains 
superior performance similar to that of the optimized manual program.  

 

Fig. 3. Bandwidth measurements for the 3D-cube experiment on jazz 

 

Fig. 4. Bandwidth measurements for the 3D-cube experiment on sunwulf 

Figures 5 and 6 show the performance of the NAS MG benchmark on jazz and 
sunwulf clusters, respectively. We measured the execution time of the MG benchmark 
by using 4, 8 and 16 processors with B and C class workloads. The execution time 
with MPICH2 is higher than that of the original MG benchmark implementation 
(manual). With optimized MPICH2, the execution time is up to 8% (on average 6%) 
lower than that of manual implementation, and up to 25% (on average 13%) lower 
than that of unmodified MPICH2 on the jazz cluster. On the sunwulf cluster, for 8 and 
16 processors, the execution time is up to 12% (on average 7.3%) less than that of the 
manual implementation. Here, manual implementation is the original NAS MG 
benchmark, which is not optimized for cache blocking and prefetching. Our optimized 
MPI derived datatype implementation benefits from using cache blocking in the 
nested datatypes in the MG benchmark.  

Figures 7 and 8 show the performance (rate in MB/s) of the matrix transpose 
subroutine of NAS FT benchmark on jazz and sunwulf clusters, respectively. When  
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the message size is larger than the L2 cache size, the rate degrades severely for 
unmodified MPICH2 because of the large number of cache misses caused by poor 
data locality. The optimized MPICH2 implementation benefits from using cache 
blocking in this program. The performance gain is in the range of 50–60% on jazz 
cluster and 50–114% on the sunwulf cluster. 

 

Fig. 5. Execution time of the NAS MG benchmark on jazz (left) and on sunwulf (right) 

 

Fig. 6. Execution time of the NAS MG benchmark on sunwulf 

 

Fig. 7. Bandwidth measurements for matrix transpose experiment on jazz 
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Fig. 8. Bandwidth measurements for matrix transpose experiment on sunwulf 

4   Conclusions and Future Work 

In this paper, we presented a technique to optimize the performance of MPI derived 
datatypes. Poor data access performance in dealing with noncontiguous data has been 
a major performance bottleneck of in packing and unpacking of MPI derived 
datatypes. Many optimization methods are available in the literature to optimize the 
data-access performance. However, predicting the optimization parameters with low 
overhead and automatically applying these optimization strategies is a challenging 
research issue. We developed models for predicting memory-access cost [2] that can 
help in dynamically applying optimizations. By combining optimization methods with 
a memory access model, we have introduced in this paper an approach to optimize 
memory performance automatically. The optimized implementation of MPI derived 
datatypes chooses packing templates that are optimized for advanced hierarchical 
memory systems of modern machines. These templates are parameterized with 
various architecture-specific parameters (for example, block size and TLB size), 
which are determined separately for different systems. By using these optimized 
templates, we obtained significantly higher performance than the existing MPICH2 
implementation and manual packing/unpacking by the user. This result is significant 
because it will improve the performance of MPI_Pack/Unpack and MPI 
communication functions in many applications that use MPI derived datatypes in 
performing noncontiguous communication. We have shown that our optimized 
implementations are applicable on multiple architectures (Intel and Sun). 

The optimizations described in this paper are not yet incorporated into the 
MPICH2 release, but we plan to do so. We are also looking at other applications of 
automatically selecting optimization parameters using the analytical prediction model. 
For example, in scientific applications, major portion of their run time is spent in 
executing loops. Using optimized templates can improve the performance of those 
loops. We are also working on incorporating prefetching strategies within PVFS [3] to 
improve the performance of data movement. 

Acknowledgments. This work was supported in part by the National Science 
Foundation under NSF grants CNS-0509118, CNS-0406328, EIA-0224377, EIA-
0130673, and in part by the Mathematical, Information, and Computational Sciences 
Division subprogram of the Office of Advanced Scientific Computing Research, 
Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38. 



246 S. Byna et al. 

References 

1. Surendra Byna, William Gropp, Xian-He Sun, and Rajeev Thakur, “Improving the 
Performance of MPI Derived Datatypes by Optimizing Memory-Access Cost,” In 
Proceedings of IEEE International Conference on Cluster Computing, December 2003. 

2. Surendra Byna, Xian-He Sun, William Gropp and Rajeev Thakur, “Predicting Memory-
Access Cost Based on Data-Access Patterns,” In Proceedings of IEEE International 
Conference on Cluster Computing,  September 2004. 

3. Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur, “PVFS: A 
Parallel File System for Linux Clusters,” In Proceedings of the 4th Annual Linux 
Showcase and Conference, pages 317--327, Atlanta, GA, 2000, USENIX Association. 

4. William Gropp, Ewing Lusk, and Deborah Swider, “Improving the Performance of MPI 
Derived Datatypes,” In Proceedings of the Third MPI Developer's and User's Conference, 
MPI Software Technology Press, pp. 25–30, March 1999. 

5. M. Lam, Edward E. Rothberg, and Michael E. Wolf, “The Cache Performance of Blocked 
Algorithms,” In Proceedings of the Fourth International Conference on Architectural 
Support for Programming Languages and Operating Systems, pp. 63–74, April 1991. 

6. Q. Lu, J. Wu, D. Panda and P. Sadayappan, “Applying MPI Derived Datatypes to the NAS 
Benchmarks: A Case Study,” Technical Report OSU-CISRC-4/04-TR19, Ohio State 
University. 

7. Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard”, Version 
1.1, June 1995. http://www.mpi-forum.org/docs/docs.html. 

8. T. Mowry and A. Gupta, “Tolerating Latency Through Software-controlled Prefetching in 
Shared-memory Multiprocessors,” Journal of Parallel and Distributed Computing, Volume 
12,  Issue 2, June 1991. 

9. H. Ogawa and S. Matsuoka, “OMPI: Optimizing MPI Programs using Partial Evaluation,” 
In Proceedings of IEEE/ACM Supercomputing Conference, Pittsburgh, November 1996. 

10. Ralf Reussner, Jesper Larsson Träff, and Gunnar Hunzelmann, “A Benchmark for MPI 
Derived Datatypes,” In Recent Advances in Parallel Virtual Machine and Message Passing 
Interface, 7th European PVM/MPI Users’ Group Meeting, volume 1908 of Lecture Notes 
in Computer Science, pages 10-17, 2000. 

11. R. Ross, N. Miller, and W. Gropp, “Implementing Fast and Reusable Datatype 
Processing,” In Recent Advances in Parallel Virtual Machine and Message Passing 
Interface, 10th European PVM/MPI Users’ Group Meeting, volume 2840 of Lecture Notes 
in Computer Science, pages 404-413, 2003. 

12. Jesper Larsson Träff, Rolf Hempel, Hubert Ritzdorf, and Falk Zimmermann, “Flattening 
on the Fly: efficient handling of MPI derived datatypes. In Recent Advances in Parallel 
Virtual Machine and Message Passing Interface, 6th European PVM/MPI Users’ Group 
Meeting, volume 1697 of Lecture Notes in Computer Science, pages 109-116, 1999. 

13. Jiesheng Wu, Pete Wyckoff, Dhabaleswar Panda, “High Performance Implementation of 
MPI Derived Datatype Communication over InfiniBand,” In Proceedings of the 18th 
International Parallel and Distributed Processing Symposium, 2004. 



Improving the Dynamic Creation of Processes in MPI-2
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Abstract. The MPI-2 standard has been implemented for a few years in most
of the MPI distributions. As MPI-1.2, it leaves it up to the user to decide when
and where the processes must be run. Yet, the dynamic creation of processes, en-
abled by MPI-2, turns it harder to handle their scheduling manually. This paper
presents a scheduler module, that has been implemented with MPI-2, that deter-
mines, on-line (i.e. during the execution), on which processor a newly spawned
process should be run. The scheduler can apply a basic Round-Robin mechanism
or use load information to apply a list scheduling policy, for MPI-2 programs with
dynamic creation of processes. A rapid presentation of the scheduler is given,
followed by experimental evaluations on three test programs: the Fibonacci com-
putation, the N -Queens benchmark and a computation of prime numbers. Even
with the basic mechanisms that have been implemented, a clear gain is obtained
regarding the run-time, the load balance, and consequently regarding the number
of processes that can be run by the MPI program.

1 Introduction

In spite of the success of MPI 1.2 [4], one of PVM’s features has long been missed in
the norm: the dynamic creation of processes. The success of Grid Computing and the
necessity to adapt the behavior of the parallel program, during its execution, to changing
hardware, encouraged the MPI committee to define the MPI-2 norm. MPI-2 includes
the dynamic management of processes (creation, insertion in a communicator, com-
munication with the newly created processes. . . ), Remote Memory Access and parallel
I/O. Although it has been defined in 1998, MPI-2 has lasted to be implemented and
only recently did all major MPI distributions include MPI-2. The notable exception is
LAM-MPI, which has provided an implementation for a few years.

Neither MPI 1.2 nor MPI-2 do define a way to schedule the processes of a MPI
program. The processor on which each process will execute and the order into which
the processes could run are left to the MPI runtime implementation. Yet, in the dy-
namic case, a scheduling module could help deciding, during the execution, onto which
processor each process should be physically started. This kind of scheduler has been
implemented for PVM [7]. This paper presents such an on-line scheduler for MPI-2.

This contribution is organized as follows: section 2 presents the MPI-2 norm, re-
garding dynamic process creation, as well as the MPI distributions that implement it,
and how one can schedule such MPI-2 programs. Section 3 presents a simple on-line
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scheduler, and how it gathers on-line information about the MPI-2 program and the
computing resources. Finally, Sec. 4 shows how the scheduler manages to balance the
load between the processors for three test applications, and the direct improvement on
native LAM-MPI strategies, in terms of number of processes that can be managed, of
load balance and of execution time. Section 5 concludes this article.

2 Dynamic Creation of Processes in MPI-2

This section provides a short background on on-line scheduling of dynamically created
processes in a MPI program. Section 2.1 introduces some distributions that implement
MPI-2 features and details the MPI Comm spawn primitive. Section 2.2 presents how
to schedule such spawned processes.

2.1 MPI-2 Support

Distributions. There are an increasing number of distributions that implement MPI-2
functionalities. LAM-MPI [8] is the first MPI distribution that has implemented MPI-2.
Together with it, LAM ships some tools to support the run-time in a dynamic plat-
form: the lamgrow and lamshrink primitives allow to provide the runtime with
information about entering or leaving processors in the MPI virtual parallel machine.
MPI-CH is a most classical MPI distribution, yet its implementation of MPI-2 only
dates back to January, 2005. Open-MPI is a new MPI-2 implementation based on the
experience gained from the development of the LAM-MPI, LA-MPI, PACX-MPI and
FT-MPI projects [2]. HP-MPI is a high-performance MPI implementation delivered by
Hewlett-Packard, that implements MPI-2 since December, 2005.

Dynamic spawn. MPI-2 provides an interface that allows creating processes during the
execution of a MPI program, and letting them communicate by message passing. Al-
though MPI-2 provides more functionality, this article is restricted to the dynamic man-
agement of processes and only MPI Comm spawn will be detailed here (more infor-
mation may be found in [5] for instance).
MPI Comm spawn is the newly introduced primitive that creates new processes

after a MPI program has been started. It receives as arguments the name of an exe-
cutable, that must have been compiled as a correct MPI program (thus, with the proper
MPI Init and MPI Finalize instructions); the possible parameters that should be
passed to the executable; the number of new processes that should be created; a commu-
nicator, which is returned by MPI Comm spawn and contains an inter-communicator
so that the newly created processes and the parent may communicate through classical
MPI messages. Other parameters are included, but are not relevant to this work.

In the rest of this article, a process (or a group of processes) will be called spawned
when it is created by a call to MPI Comm spawn, where the process that calls the
primitive is the parent and the new processes are the children.

2.2 On-Line Scheduling of Parallel Processes

The extensive work on scheduling of parallel programs has yielded relatively few results
in the case where the scheduling decisions are taken on-line, i.e. during the execution.
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Yet, in the case of dynamically evolving programs such as those considered with MPI-2,
the schedule must be computed on-line.

The most standard technique is to keep a list of ready tasks, and to allocate them to
idle processors. Such an algorithm is called list scheduling. The theoretical grounds of
list scheduling relies on Graham’s analysis [3]. Let T1 denote the total time of the com-
putation related to a sequential schedule, and T∞ the critical time on an unbounded
number of identical processors. If the overhead OS induced by the list scheduling
(management of the list, process creation, communications) is not considered, then
Tp ≤ T1/p + T∞, which is nearly optimal if T∞ � T1. Note that list scheduling
only uses some basic information of “load” about the available processors, in order to
allocate tasks to them when they turn idle or underloaded. The scheduler presented in
the next section uses such list mechanisms.

3 A Scheduler for MPI-2 Programs

The scheduler is constituted of two main parts: a daemon, that runs during the execution
of the application and redefined MPI primitives, to handle the task graph and enable the
communication between the MPI processes and the scheduler (Sec. 3.1); and a resource
manager (Sec. 3.2). The scheduler must maintain a task graph, in order to compute the
best schedule of the processes, a list of ready tasks, and information about the load of the
computing resources. The resources manager is responsible for feeding the scheduler
with information about the load.

3.1 The Scheduler

The redefined MPI-2 primitives send (MPI) messages to the scheduler process to notify
it of each event regarding the program. The scheduler waits for these messages, and
when it receives one, it processes the necessary steps: update of the task graph; evolution
the state of the process that sent the message; possible scheduling decision.

In this work, scheduling decisions are taken at process creation only: neither pre-
emption neither migration are used by the scheduler, so that there is no relevant event for
the scheduler between the creation and the termination of a process. Upon termination
of a process, the scheduler only updates its task graph to eliminate the task descriptor
associated to the process.

At process creation, the newly created process(es) has(have) to be assigned a proces-
sor where it will be physically forked, preferably the less loaded one.

Figure 1 shows the interactions between MPI-2 processes and the scheduler during
the dynamic creation of processes. The redefined call to MPI Comm spawn by the
parent process will establish a communication (arrow (1)) between the parent and the
scheduler, to notify the creation of the processes and the number of children that will
be created (in the diagram, only one process is created). After receiving the message,
the scheduler updates its internal task graph structure, decides on which node the child
should physically be created (based, for instance, on information provided by the re-
source manager), and returns the physical location of the new process to the parent
(arrow (2)). The parent process, that had remained blocked in a MPI Recv, receives
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Fig. 1. Interactions between MPI-2 processes and scheduler

the location and physically spawns the child (arrow (3)). The child process will then
execute and when it finishes, (i.e. calls the redefined MPI Finalize), it will notify
the scheduler (arrow (4)). The scheduler receives the notification and updates the task
graph structure.

A very simple scheduling strategy that this scheduler provides a Round Robin allo-
cation of the processes: in the case where it does not have any load information, it is the
best choice. Yet, to offer better on-line schedules, a Resource Manager is also provided.

3.2 The Resource Manager

The dynamic resource management includes two main modules: a distributed load mon-
itor that retrieves load metrics from the resources and a manager that coordinates the
load monitors and centralizes the information collected by them. The scheduler uses the
information to decide how to make effective use of the resources.

Load Monitor. The load monitor consists in daemons that are physically spawned by
the resource manager on all the available resources. After being spawned, each monitor
cyclically retrieves the usage metrics and gets ready to serve requisitions of the resource
manager.

The usage metrics collected by the load monitor are stored in a LRU buffer, so that
the oldest values are thrown away when needed. The load, on a given moment, is consid-
ered as being the average of the values in the buffer. This mechanism, known as Single
Moving Average, is used on Time Series Forecast Models based on the assumption that
the oldest values tend to a normal distribution [6]. The average also smoothes the effect
of floating variations of the load, that does not characterize the instant resource usage.

Resource Manager. The resource manager module is responsible for the coordination
of the load monitors and for keeping a list of the resources updated and ordered by their
usages. In order to minimize bottlenecks, communication between the resource man-
ager and the monitor happen on random intervals. The resource manager also offers an
interface that makes it possible to use third-party resource managers or monitors. This
can be useful for the interaction with other resource managers such as those offered
by grid middlewares like Globus [1]. As a simple metrics of the load, the experiments
presented hereafter use the CPU usage, multiplied by the average number number of
processes run in the last interval.
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4 Improving the Creation of Processes with On-Line Scheduling

This section presents and discusses the results obtained with the proposed, simple
scheduler, on three test programs: The Fibonacci computation, the N -Queens prob-
lem and a simple computation of prime numbers. All experiments have been made with
LAM-MPI version 7.1.1, on a Linux-based cluster. The Fibonacci and the N -Queens
computations are used to illustrate how one can improve the number of processes that
can be spawned with a better schedule (Sec. 4.1). Clearly, this is obtained by a better
distribution of the processes, due to a better Round-Robin allocation, when compared
with the native LAM-MPI solution. Section 4.2 improves even more for an irregular
computation by the use of list-scheduling based on load measurement; the computation
of the number of primes in an interval has been used as a synthetic benchmark.

4.1 Round-Robin Algorithm — Spawning More Processes

The Fibonacci Computation. Figure 2 shows how the MPI-2 processes are scheduled
on a set of 5 nodes, using a simple Round-Robin strategy implemented in our scheduler,
on three different executions of Fibonacci(n) for n = 7, 10 and 13. The total number
of spawned processes (np) is indicated in the figure. Table 1 gives the numerical values
associated to this graphical representation.
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our solution. The results are given for Fibonacci(7) (41 processes), Fibonacci(10) (177 processes)
and Fibonacci(13) (753 processes). Each time when no grey bar appear, no process has been
scheduled on the node.

Two main results are illustrated by this experiment: first, LAM’s native strategy
to allocate the spawned processes is limited: in LAM, there is a native Round Robin
mechanism that works well when multiple processes are created by a unique spawn.
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Table 1. Number of processes by node, in each one of the three Fibonacci computations presented
in Fig. 2, for the native LAM scheduler and for the Round Robin scheduler. Five nodes of the
cluster have been used.

n=7 - np=41 n=10 - np=177 n=13 - np = 753
Node Number n0 n1 n2 n3 n4 n0 n1 n2 n3 n4 n0 n1 n2 n3 n4

Native LAM 41 0 0 0 0 177 0 0 0 0 ERROR
RoundRobin 9 8 8 8 8 36 36 35 35 35 151 151 151 150 150

After having created the first process, the remaining ones will be spawned on succes-
sive available nodes. Yet, when the application spawns several processes one by one in
successive MPI Comm spawn calls, all of them will be allocated to the same node, as
shown by the Fibonacci experiment (see Table 1). On the contrary, the simple Round
Robin strategy of our scheduler enables a perfect load balance without any intervention
of the programmer. Second, due to this native scheme, LAM quickly gets overwhelmed
by the number of processes: Fibonacci(13) should create 753 processes. LAM does not
support such number of processes in the same node because it hits a limit of file de-
scriptors. According to LAM-MPI user’s mailing list, this limit can increase very fast
because it is dependent of many factors like system-dependent parameters or number
of opened connections.

The N -Queens Computation. The same experiments with the N -Queens program yielded
similar results. Since the Fibonacci program basically performs a single arithmetic sum,
we did not provide timing results and only used it to illustrate the load balance. In the
case of the N -Queens program, the CPU-time is non-negligible and is shown in Fig 3.
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The standard backtracking algorithm used to solve the N -Queens problem consists
in placing recursively and exhaustively the queens, row by row. With MPI-2, each place-
ment consists in a new spawned task. The algorithm backtracks whenever a developed
configuration contains two queens that threaten each other, until all the possibilities
have been considered. A maximum depth is defined, in order to bound the depth of the
recursive calls. In this test case, the depth has been limited to 1, so that all N tasks are
spawned one-by-one since the beginning of the application: thus, a Round-Robin can
be performed on the N spawned tasks. As expected, the Round-Robin strategy enables
a good speed-up. When LAM is used to run the same application, the native scheduling
allocates all spawned processes on the same node, without any parallel gain.

Notice that Fig. 3 does not give any result for 4, 8, 10, 11 and 13 nodes. Actually,
the N -Queens test fails for these numbers of nodes, probably due to an internal error in
our scheduler. This problem does not invalidate the interest in providing a good Round-
Robin mechanism to MPI-2 spawned processes.

4.2 List-Scheduling — Using Dynamic Load Information

Primality Computation is used to test the scheduler with information about the load on
each node, in order to decide where to run each process. In this program, the number of
prime numbers in a given interval (between 1 and N ) is computed by recursive search.
As in the Fibonacci program, a new process is spawned for each recursive subdivision
of the interval. Due to the irregular distribution of prime numbers and irregular effort to
test a single number, the parallel program is natively unbalanced.

Figure 4 shows the run-times vs. the workload, as measured by the size N of the in-
terval, with the Round-Robin and List strategies. In the latter case, the resource manager
has been used in order to obtain on-line information about the load of the processors.
The Round-Robin algorithm maintains a natural load balance between the processors,
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and the List strategy grants that any under-loaded processor executes more processes.
Thus, in both cases, the resources are better employed.

As can be seen, in the case of this irregular computation, the use or our on-line list
scheduler with load information enables a consistently better run-time than with Round-
Robin, even when the statistical fluctuations are taken into account. Also, it can be seen
that the time lasted when used the Round-Robin scheduling increases steady against a
smoother increase when using the Resource Manager.

5 Contribution and Future Work

The new functionalities of MPI-2 are highly promising for MPI users who want to ben-
efit from next generation architectures. The possibility of dynamically spawning new
processes is specially interesting. This article shows that an extra scheduling daemon,
in charge of managing the spawned processes, enables a direct improvement on:

– the load balance of the applications, whether with Round-Robin or by load-balancing
schemes based on list scheduling;

– the total number of processes that may be supported by the run-time.

A simple Round-Robin already allows to obtain better results than the native LAM-MPI
implementation. A load balancing mechanism is even more powerful.

This promising results show that with very few efforts, a global scheduling tool could
be designed and integrated to a MPI distribution, in order to support the execution of dy-
namic applications, programmed with MPI, in grids. The proposed solution is portable
beyond LAM-MPI, since is only uses MPI-2 calls to implement the daemons1. The ex-
periments presented here have been made with a simple implementation based on the
redefinition of MPI’s standard primitives, but its integration inside an open-source dis-
tribution is straightforward.

Special thanks: this work has been partially supported by HP Brazil, CAPES and
CNPq.
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Abstract. This paper presents communication strategies for support-
ing efficient non-blocking Java communication on clusters. The commu-
nication performance is critical for the overall cluster performance. It is
possible to use non-blocking communications to reduce the communica-
tion overhead. Previous efforts to efficiently support non-blocking com-
munication in Java have led to the introduction of the Java NIO API.
Although the Java NIO package addresses scalability issues by providing
select() like functionality, it lacks support for high speed interconnects.
To solve this issue, this paper introduces a non-blocking communica-
tion library to efficiently support specialized communication hardware.
This library focuses on reducing the startup communication time, avoid-
ing unnecessary copying, and overlapping computation with communica-
tion. This project provides the basis for a Java Message-passing library
to be implemented on top of it. Towards the end, this paper evaluates
the proposed approach on a Scalable Coherent Interface (SCI) and Gi-
gabit Ethernet (GbE) testbed cluster. Experimental results show that
the proposed library reduces the communication overhead and increases
computation and communication overlapping.

1 Introduction

There is a growing interest shown by scientific and enterprise community in
commodity clusters. The reason is that they deliver outstanding parallel perfor-
mance at a competitive cost. A cluster consists of computing nodes connected
together by a network fabric—usually a high-performance interconnect like SCI,
Myrinet, or GbE. Scalability is a key factor to confront new challenges in cluster
computing—it depends heavily not only on the network fabric, but also on the
communication middleware.

This growing need of efficient communication middleware has led the commu-
nity to devote significant efforts on this subject, although almost exclusively on
native protocols. A thorough work focused on native protocols is that of Verstoep
et al. [1], where several implementation issues are studied in order to obtain an
efficient use of Myrinet. In this study, a non standard user level communication
interface is implemented varying reliability protocols, maximum transfer unit,
multicast protocols and studying Serial Direct Memory Access (SDMA)-based
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versus Processor Input/Output (PIO)-based message passing and remote-memory
copy. The proposed approach inherits some optimizations from [1].

Despite the dominance of native protocol optimizations, the increasing inter-
est in Java for high performance computing has recently increased the need for
efficient Java communication middleware. This efficiency is of critical importance
on clusters, especially on System Area Networks (SANs). In such environments,
the overall performance is quite sensitive to the communication overhead [2]. As
Java does not provide direct SAN protocols support, socket libraries and IP em-
ulation layers have to be implemented on top of the high performance low-level
SAN protocols. Moreover, communication is a major bottleneck in parallel Java
applications. Thus, supporting efficient non-blocking communication on clusters,
especially on SANs, appears to be a key objective to improve Java communica-
tion efficiency. As High Performance Cluster support has been traditionally fo-
cused on the blocking Java Remote Method Invocation (RMI) a follow-up aimed
at supporting efficient non-blocking Java communications on clusters appears to
be a promising research topic. This paper reports on the results obtained from
the implementation of a non-blocking Java communication library with High
Performance Cluster support.

1.1 Related Work

Previous efforts at obtaining non-blocking Java communications, NBIO (http:
//www.eecs.harvard.edu/~mdw/proj/java-nbio/) and Jaguar [3] have led to
the introduction of some facilities in Java NIO to address scalability issues in
server applications. Current efforts in non-blocking Java communications are
more oriented to support communication for higher level libraries rather than
constitute a messaging system per se. Therefore, their importance is centred
around their projects. This is the case for mpjdev [4] used in HPJava [5] and
of xdev used in a Java messaging-passing system, MPJ Express [6]. The xdev
library is highly scalable due to the use of Java NIO and an efficient buffering
scheme [7], supporting also Myrinet communications. mpiJava [8] is an object-
oriented Java wrapper library to MPI implementations providing similar perfor-
mance to native MPI implementations. Thus, non-blocking primitives present
in native MPI implementations can be used efficiently in Java. Another Java
Message-passing library that support non-blocking communication and Myrinet
clusters is MPJ/Ibis [9].

2 Efficient Communication Libraries on Clusters

In the context of High Performance Cluster Computing the use of Network
Interface Cards (NICs) is an attractive option as they offload communication
processing from the host CPU. This helps in freeing up valuable CPU cycles for
application processing. Moreover, higher performance in terms of both latency
and bandwidths can be reached with these network fabrics, although this perfor-
mance is usually only obtained by using their own efficient protocols. Figure 1
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shows an overview of some protocols on SCI and GbE. Given components are
colored in dark grey, whereas contributions presented in this paper are depicted
in light grey.

Fig. 1. Overview of communication libraries on popular cluster interconnects

Regarding SCI, the IRM driver interacts directly with the hardware, whereas
SISCI provides resource management and a higher level API. This library im-
plements basic mechanisms to share memory segments between nodes and to
transfer data between them. SCILib is a communication protocol that offers
unidirectional message queues. Depending on the message size SCILib presents
three communication protocols: inline, short (both one-copy protocols) and long
(zero-copy protocol). Mbox is a library that provides with remote interrupt mech-
anisms, so the target side can wait explicitly for an event or register a callback
routine, whereas the initiator side triggers the event. SCI SOCKET [10] is a
High Performance Socket implementation on SCI obtaining startup times as low
as 4μs on commodity clusters.

Regarding GbE, its socket implementations are usually not very efficient. Var-
ious projects tried to reduce the overhead of these protocols by means of High
Performance Sockets implementations—much like SCI SOCKETS on SCI. These
High Performance Sockets projects are usually lightweight communication pro-
tocols focused on reducing latency by removing buffering overheads and protocol
processing. In this context, some efforts include FastSockets [11], SOVIA [12],
Sockets over GbE [13], and GAMMAsockets [14].

3 Designing Java Communication Libraries on Clusters

A non-blocking Java communication library, named NBComm, has been designed
for efficient use of Java on clusters. This library abstracts the lower network
layer and supports higher middleware libraries or runtime systems. As a result,
such systems and libraries can be easily ported to different interconnects. This
implementation constitutes the basis for a Java Message-passing library, as it
provides a communication library with efficient non-blocking primitives along
with good performance on different cluster interconnects.
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SCINBCommNBComm

+init() (args:java.lang.String[] ): void

+id() (): int

+isend(buf:Buffer,dstID:int,tag:int): Request

+irecv(buf:Buffer,srcID:int,tag:int): Request

+finish(): void

NIONBComm

Request

+iwait(): void

Fig. 2. NBComm API

This library is focused on reducing latency, avoiding unnecessary copying, and
computation/communication overlapping. Figure 2 shows its object diagram,
which consists of NBComm, the abstract communicator class that defines the gen-
eral behaviour of the communication methods, and two implementation classes,
SCINBComm and NIONBComm, for supporting different communication libraries. In
this case, SCINBComm follows a native approach, implementing communications
in native code over SCILib with a lightweight Java layer on top of it, whereas
NIONBComm is a pure Java NIO-based solution. These classes implement the gen-
eral behaviour in function of the underlying communication libraries: init()
initialises the communicator object and finish() finalizes the communicator
object; id() gets the identification for each process; iwait() waits for the com-
pletion of a communication; and isend() and irecv() perform communication
using a direct ByteBuffer (a Java NIO buffer) which belongs to the class Buffer.
These buffers can be accessed directly, and more efficiently, from native appli-
cations as they may reside outside of the normal garbage-collected heap. The
Buffer class is similar to the Java NIO Buffer.

Listing 1.1. Non-blocking communications code example

public static void main ( S t r ing args [ ] ) throws Exception{
int tag=10, s i z e =10, capac i ty =40;
int [ ] data = new int [ s i z e ] ;
NBComm nbComm = NBCommFactory .getNBComm(” s c i ” ) ;
nbComm. i n i t ( args ) ;
int myId = nbComm. id ( ) ;
int peer = 1−myId ;
Bu f f e r buf = new Buf f e r ( Buf ferFactory . ge tBu f f e r ( capac i ty ) ) ;
i f (myId==0){

buf . wr i t e ( data , 0 , data . l ength ) ;
Request req = nbComm. i send ( buf , peer , tag ) ;
req . iwa i t ( ) ;

} else i f (myId==1) {
Request req = nbComm. i r e c v ( buf , peer , tag ) ;
req . iwa i t ( ) ;
buf . read ( data , 0 , data . l ength ) ;

}
nbComm. f i n i s h ( ) ;

}
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Listing 1.1 shows a code example of a parallel application that uses SCINBComm
(getNBComm("sci")). This application performs a non-blocking point-to-point
communication. The init() and finish() functions serve as barrier because
these methods do not return the control to the application until all processes
involved in the parallel application have reached those points.

4 Implementing Efficient Non-blocking Communication

NBComm uses a dedicated thread for communication (receptor thread) which is
responsible for receiving messages. This thread is implemented in SCINBComm in
native code whereas in pure Java for NIONBComm. Listing 1.2 shows its operation
pseudocode.

There are two possible ways to implement message arrival notification de-
pending on the implementation. The first, the native solution, is through a
callback() function or through an event that is registered for being triggered
every time a message arrives. The second, the pure Java solution, is checking
arrival notification using Java NIO Selector. Each message is uniquely identified
by <srcid,tag>, and irecv() requests posted and not actually received are in
the posted messages linked list.

Listing 1.2. Pseudocode of the receptor thread operation

WHILE NBComm. f i n i s h ( ) i s not c a l l e d
IF pending messages = 0 THEN

wait until message a r r i v a l n o t i f i c a t i o n
END IF
r e c e i v e message header
check i f t h i s message i r e c v has been posted
IF posted THEN

r e c e i v e message data in the i r e c v Bu f f e r buf
d e l e t e i r e c v post from posted messages

ELSE
r e c e i v e message data in temporal bu f f e r
add r e c e i v ed post to posted messages

END IF
no t i f y the message r e c ep t i on to the wait ing r equ e s t s

END WHILE

A problem in this implementation is that NBComm subclasses replicate some
code as it appears as Java code in NIONBComm and as native code in SCINBComm.
Thus, this code can not be factorized in the superclass NBComm making it harder
to maintain the source code. A proposed solution consists of moving the in-
terconnection hardware support to a lower API level (Java sockets) and using
NIONBComm over these low level libraries.
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4.1 Java Sockets with SAN Support

In order to support high performance interconnection technologies on Java sock-
ets, a High Performance Java socket implementation, called Java Fast Sockets
(JFS), has been developed. JFS aims to be efficient and portable by providing
two alternative solutions using pure Java and JNI wrappers to low-level SAN
protocols. In the presence of these SAN protocols, JFS uses the JNI approach.
Otherwise, it uses the pure Java solution. Moreover, the use of the new Java
NIO capabilities, such as new data containers (direct ByteBuffer), new I/O
channels, selectors and selection keys, can optimize performance in JFS. Finally,
by setting the default SocketImplFactory to a factory that returns JFS sockets,
every socket operation in an application can transparently use JFS.

4.2 Native Java Communication Support

In the design of native support of SCINBComm and in JFS, both libraries use
communication mechanisms implemented by the underlying libraries. High Per-
formance Clusters usually provide several protocols depending on the message
size, as communication performance depends on the trade-off between latency
and protocol processing overhead. Thus, one-copy protocol trades off high CPU
load for low latency, whereas zero-copy protocol cuts down system load (high
bandwidth rates with low CPU loads). A sensible choice between protocols in-
volves using one-copy protocol for latency sensitive applications, and zero-copy
protocol for applications with high bandwidth requirements. On SCI, native li-
braries resort to SCILib, implementing the non-blocking semantic on top of this
blocking layer by means of threads. The protocol choice can be configured by
the user.

5 Performance Evaluation

In this section an evaluation of NBComm implementations is presented. Addition-
ally, mpiJava non-blocking communication over MPICH on GbE has also been
tested for comparison purposes. SCI-MPICH [15] is not supported by mpiJava
in our testbed. In order to evaluate the performance, half of the round trip time
of a ping-pong test (hereafter called latency) is measured. Moreover, two specific
non-blocking communication benchmarks including a communication/computa-
tion overlapping test and an overlapping communications test are used.

5.1 Experiment Configuration

Our testbed consist of two dual-processor nodes (PIV Xeon at 2.8 GHz with
hyper-threading disabled and 2GB of memory) interconnected via SCI and GbE.
The SCI NIC is a D334 card plugged into a 64bits/66MHz PCI, whereas the
GbE is a Marvell 88E8050 with an MTU of 1500 bytes. The OS is linux CentOS
4.2 with kernel 2.6.9 and compilers gcc 3.4.4 and Sun JDK 1.5.0 05. The SCI
libraries are SCI SOCKETS/DIS 3.0.3. mpiJava version 1.2.5 runs on top of
MPICH 1.2.5.
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Fig. 3. Measured latencies and bandwidths of NBComm implementations

5.2 Performance Results

Figure 3 shows experimentally measured latencies and bandwidths of NBComm
implementations on SCI and GbE as a function of the message length. The
bandwidth graph (right side) is useful to compare long-message performance,
whereas latency graph (left side) serves to compare short-message performance
(note that their scale is logarithmic). In order to analyse the overhead imposed
by NBComm, experimental results from SCILib (library used by SCINBComm), JFS,
and Java sockets (libraries used by NIONBComm) are shown in Figure 4.

The two lower graphs of Figure 4 show the latency and bandwith of NIONBComm
using GbE. In addition, the graphs also show the latency and bandwith of the
raw Java sockets. The difference between the performance of NIONBComm and
Java sockets shows the imposed overhead. This overhead is aproximately 60μs
in terms of latency. As can be seen from the two upper graphs in Figure 4,
SCINBComm obtains lower startup time than NIONBComm over JFS on SCI. The
overheads in latency imposed by the NBComm layer are around 40μs and 58μs over
SCILib and JFS respectively. Bandwidth performance is quite similar except for
messages larger than 256KB where the pure Java implementation outperforms
the native implementation. As expected, SCINBComm obtains better results in
general than NIONBComm using JFS on SCI. However, the performance gain is due
to the use of JNI. JFS has an asymptotic bandwidth similar to native sockets and
startup times as low as 8μs. Some experimentally measured examples of latency
reduction have been observed: a 64Kb message in the SCI testbed where the
reception is posted after receiving the message has tisend = 156μs, tsend = 308μs,
tirecv = 3μs, trecv = 308μs and tiwait = 2μs. The sender process obtains a time
gain of 152μs (49%), apart from not having to wait to send, and the receiver
process obtains a time gain of 303μs.

The CPU overlap test determines the amount of software overhead involved
in sending and receiving messages. The benchmark code consists of inserting
gradually increasing computation between the calls that initiate and complete a
non-blocking send or receive operation. By determining the maximum amount
of computation that can be overlaped with communication the computation/-
communication overlapping parameter can be obtained. This assumes that the
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Fig. 4. Measured latencies and bandwidths of NBComm vs. underlying libraries

computation cost does not affect the measured communication time. The results
obtained by benchmarking 1Kb messages show that a 37% of the communica-
tion time can be overlapped with computation in SCINBComm. A 6% and a 40%
performance improvement is obtained for NIONBComm and mpiJava respectively.
Native-based solutions provides a higher degree of computation/communication
overlapping.

The overlapping communications test benchmarks the overlap of communi-
cation with additional communication. Rather than filling idle CPU time with
computation, as in the previous test, it can be used to send additional messages.
It has been experimentally observed that sending 8 simultaneous 1Kb messages
helps achieve a latency reduction of 44% in SCINBComm, a 33% in NIONBComm,
and a 49% in mpiJava.

6 Conclusions

Communication performance is critical for the overall system cluster perfor-
mance. In this scenario non-blocking communications can significantly reduce the
communication overhead. Nevertheless, the definition of an efficient non-blocking
Java communication library with cluster support poses an important number of
implementation issues. These can be summarized in designing the solution for
receiving messages, notify the arrival of messages, the study of the efficiency of
data movements and the API definition. This Java communication library can
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use Java sockets implementations or native communication libraries specialized
for SAN systems. This paper has presented a non-blocking Java communication
library (NBComm) that resolves efficiently numerous design issues aforementioned
and provides cluster support. This library aims at reducing the startup time
of communications, avoiding unnecessary copying and overlapping computation
and communication. In the design of the library a thread is devoted to receive
messages (receptor thread). The approach followed also ensures that unnec-
essary copying is avoided writing directly to a buffer of type direct ByteBuffer
and DMA is used for messages longer than 8KB. This library implements differ-
ent solutions depending on the underlying communication libraries—SCINBComm
is implemented for using SCI native communication libraries and NIONBComm for
using Java sockets. A High Performance Java socket implementation JFS can also
be used as communication layer for NIONBComm, providing additionally access to
SCI for this solution.

The use of non-blocking communication can gain significant improvements
with respect to the use of blocking communication in parallel applications. It
has been experimentally assessed that non-blocking communication is specially
advantageous, obtaining latency reductions and overlapping computation with
communication, yielding communication overhead reductions up to 50%.
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Abstract. The Message Passing Interface (MPI) is the de facto stan-
dard for writing message passing applications. Much of MPI’s power
stems from its ability to provide a high-performance, consistent interface
across C, Fortran, and C++. Unfortunately, with cross-language consis-
tency at the forefront, MPI tends to support only the lowest common
denominator of the three languages, providing a level of abstraction far
lower than typical C++ libraries. For instance, MPI does not inherently
support standard C++ constructs such as containers and iterators, nor
does it provide seamless support for user-defined classes. To map these
common C++ constructs into MPI, programmers must often write non-
trivial boiler-plate code and weaken the type-safety guarantees provided
by C++. This paper describes several ideas for modernizing the C++ in-
terface to MPI, providing a more natural syntax along with seamless
support for user-defined types and C++ Standard Library constructs. We
also sketch the C++ techniques required to implement this interface and
provide a preliminary performance evaluation illustrating that our mod-
ern interface does not imply unnecessary overhead.

1 Introduction

Ever since its standardization as a message passing API, the Message Passing In-
terface (MPI) [1] has rapidly become the most popular API for writing message
passing applications. MPI’s popularity is partly due to its ability to support C,
Fortran and C++ [7]. To provide such language interoperability, MPI presents a
language-independent communications interface that can be realized with con-
crete bindings in all three languages. While C and Fortran provide a similar
level of abstraction and support for user-defined types, C++ supports a much
higher level of abstraction, due to language features such as object-oriented pro-
gramming through classes, generic containers through templates, and operator
overloading. These features lend themselves to a more expressive interface than
that provided by MPI. The following code illustrates how a modern C++ interface
can simplify the use of MPI, by allowing the user to transmit even complicated
data types—here, a list of lists—with the same syntax and semantics as primitive
data types:

std::list<std::list<int> > lst;
mpi::Send(lst, dest, tag, comm);

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 266–274, 2006.
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std::list<std::list<int> > ls; // initialize ls
int num lists = ls.size();
MPI Send(&num lists, 1, MPI INT, dest, tag, comm);
std::list<std::list<int> >::iterator out iter = ls.begin();
while (out iter != ls.end()) {

std::vector<int> buffer(out iter−>begin(), out iter−>end());
MPI Send((void∗)&buffer.front(),out iter−>size(), MPI INT, dest, tag, comm);
++out iter;

}

Fig. 1. Interfacing C++ with MPI

The equivalent code written for the existing MPI interface is shown in Fig-
ure 1. Serialization of std::list<std::list<int> > is performed manually, because
MPI is unable to cope with linked lists.1

We present several ideas for modernizing the MPI interface in C++ with-
out incurring unnecessary penalties due to abstraction. To achieve our goals,
we apply Generic Programming techniques. By contrast, previous efforts such
as MPI++ [5] and OOMPI [2] relied on object-oriented techniques to achieve
the same goals. Generic Programming is an emerging software development
paradigm that equally emphasizes efficiency and re-usability. While early uses
of the Generic Programming paradigm were restricted to sequential libraries
such as the Standard Template Library (STL), the success of these libraries has
fueled an interest in developing generic high performance scientific computing
libraries [3].

2 A Modern C++ Interface

A modern C++ interface to MPI should retain the flavor of MPI, but provide
support for the idioms common to modern C++ programs, including seamless
support for user-defined types and the containers and iterators of the STL. We
describe how a modern C++ interface to MPI would express point-to-point and
collective operations and how it might interact with user-defined types.

2.1 Point-to-Point Interface

A C++ point-to-point interface can improve over the existing MPI point-to-point
interface in several ways. First, since type information can be deduced using C++
template mechanisms, the MPI Datatype argument is no longer required. Second,
certain function parameters (such as the number of elements being transmitted)
can be provided with default values, so they may be omitted by the user. Third,

1 The method described in Figure 1 is one amongst many ways to serialize containers.
The other methods of serializing containers are at least as arcane as the one shown.
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in true C++ fashion, we can permit communication of STL containers, iterator
ranges, and user-defined data types through the same mechanism. Finally, the
void∗ values used to pass references to data into the existing MPI interface can be
replaced with C++ references, improving type safety. The following code transfers
a std::list from rank 1 to rank 0. In this example, the interface abstracts away the
need to (de-)serialize the list and communicate the size, type, and dimensionality
of the data.

// Sender: Rank 0 // Receiver : Rank 1
std:: list <int> data; std:: list <int> data;
/∗ fill data list ∗/ mpi::Recv(data, 0, msg tag);
mpi:: Send(data, 1, msg tag);

In C++, iterators are generalizations of pointers that are used to interface
between containers and algorithms. The following code sample transfers contents
of an iterator range from rank 0 to rank 1. Here, the sender parses integers from
standard input (cin) using an istream iterator, sending the results to rank 1,
which receives the data into an std::vector. This example also demonstrates that
non-blocking communication can be carried out in much the same way as in the
existing MPI interface.

// Sender: Rank 0 // Receiver : Rank 1
mpi:: Send(istream iterator <int>(cin), std:: vector <int> data;

istream iterator <int>(), mpi:: Request req =
1, mst tag); mpi:: Irecv (std:: back inserter (data),

0, msg tag);
// Do some other work
req. Wait();

2.2 Collectives

In addition to point-to-point operations, MPI provides a rich set of collective op-
erations. A modern C++ interface to MPI can improve these collectives using the
same techniques applied to point-to-point operations. For instance, the following
code reads a line of input from the user on the rank 0 process and broadcasts
the result to all processes:

string input;
if (comm.rank() == 0) std::cin >> input;
mpi::Broadcast(input, 0, comm);

Several MPI collectives, such as MPI Reduce and MPI Scan, have an operation
parameter that specifies how values from different processes will be combined.
Varying the operation parameter can produce different results, such as comput-
ing the product or global minimum of the values stored on each process. Follow-
ing current C++ practice as established by the STL, collectives should accept a
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struct employee record {
std::string employee name;
int employee id;
std::list<std::string> address;

};
template<class Archiver>

void serialize(Archiver & ar, employee record & rec, const unsigned int version) {
ar & rec.employee name & rec.employee id & rec.address;

}

Fig. 2. Serializing User-defined Datatypes

function object argument that performs the requested operation. The STL pro-
vides function objects for many common reduction operations, including sums
(std::plus), products (std::multiplies), and logical combinators (std::logical and,
std::logical or); a modern C++ interface to MPI would provide additional func-
tion objects that match the remaining reduction operations provided by MPI.
More importantly, users must be free to define their own functions and function
objects for reduction, either for user-defined or built-in C++ types. The follow-
ing example computes the longest string prefix common to my string on every
processor:

string common prefix(const string& s1, const string& s2) {
if (s1.size() <= s2.size())

return string(s1.begin(), mismatch(s1.begin(), s1.end(), s2.begin()).first);
else return common prefix(s2, s1);

}
string global common prefix = mpi::Allreduce(my string, &common prefix);

2.3 User-Defined Types

Section 2.1 illustrates how a modern interface can support containers and it-
erators with a simple abstract interface. However, this interface needs to be
extended to support all data types, including user-defined types. To support the
most complicated data types requires serialization. We adopt the interface pro-
vided by the Boost Serialization Library (BSL) [4], both for its simplicity and
its built-in support for the containers and iterators of the STL.

Figure 2 illustrates how one would provide serialization functions for a user-
defined type. Serializing employee record by hand is non-trivial, requiring code
to serialize strings of unknown lengths and linked lists. However, defining the
serialization behavior for the BSL is rather simple, requiring only the definition
of a serialize() function template. serialize() accepts an Archiver argument and
a reference to the object that will be (de-)serialized. The function body itself
describes which data members are to be serialized and de-serialized. The oper-
ator & is bi-directional and acts like the output streaming operator<< during
serialization and input operator>> during de-serialization.
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struct primitive tag {};
struct serialized tag {};
struct container tag : serialized tag {};
template <typename T> struct object traits {typedef serialized tag object category;};
template <>

struct object traits<int> {
typedef primitive tag object category;
static inline MPI Datatype get mpi type() { return MPI INT; }

};
template <typename T, typename Alloc>

struct object traits<std::vector<T, Alloc>>{typedef container tag object category;};

Fig. 3. Traits Classes and Mapping to MPI Datatypes

The Archiver is the class that determines the exact means by which data is
serialized and de-serialized. Archiver is a template parameter because there are
many ways to archive data. For instance, to serialize data for transmission via
MPI, one could either use the binary archiver provided by the BSL or implement
a new archiver based on MPI Pack/MPI Unpack. An auxiliary benefit of defining
serialize() for user-defined types is the ability to (de-)serialize via other BSL
archivers, for storing objects into files in a variety of formats.

3 Implementation Strategies

A modern C++ interface to MPI can seamlessly support primitive, library-defined,
and user-defined data with a simple, concise syntax familiar to C++ program-
mers. However, the benefits of such an interface are lost if abstraction penalties
affect performance. In particular, communicating primitive datatypes through
this mechanism should be as fast as raw MPI. In this section, we elaborate on
the C++ mechanisms that can be used to realize our interface.

3.1 Function Specialization

A modern C++ MPI interface should provide a uniform interface to all datatypes
regardless of whether they need to be serialized or not. To deliver the best per-
formance possible for each datatype, we must pick the most specialized function
for each datatype at compile time. For example, if the datatype being sent is an
int, then we send it as a MPI INT, whereas a list of integers would need to be
serialized and transmitted as MPI BYTE.

We can apply certain C++ template idioms common to Generic Programming
to ensure that the most specialized functions are chosen at compile time, in par-
ticular, traits classes and tag dispatching. Traits classes are a means of extracting
information from types at compile time. Information is encoded in traits classes
in the form of nested types, which allows them to be queried at compile time.
Serialization information can be extracted from the object traits class, illustrated
in Figure 3. For primitive data types the nested get mpi type() function provides
the MPI Datatype that corresponds to each primitive C++ type.
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template <typename T>
inline void Send(const T& var, int dest, tag tag, MPI Comm comm) {

typedef typename object traits<T>::object category object category;
send impl(var, dest, tag, object category());

}
template <typename T>
void send impl(const T& var, int dest, tag tag,

MPI Comm comm, primitive tag) {
MPI Send ((void∗)var, 1, object traits<T>::get mpi type(), dest, tag, comm);

}
template <typename T>
void send impl(const T& var, int dest, tag tag,

MPI Comm comm, serialized tag) {
// Serialize var and then MPI Send

}

Fig. 4. Tag Dispatching Using Type Traits

Tag dispatching queries traits at compile time to choose the most specialized
implementation for a call to a given user-level function. Figure 4 demonstrates
tag dispatching for the Send() operation. There are two underlying
implementations for this version of Send(). The first send impl() is used for prim-
itive datatypes, which directly invokes MPI Send with the corresponding MPI
datatype. The second send impl() is used for objects that need to be serialized.
The top-level Send() function selects among the two send impl() implementations
by passing the object category for type T as the final parameter, in effect using
the tag types primitive tag and serialized tag as a compile-time switch.

3.2 Collectives

The collectives described in Section 2.2 provide functionality beyond what is
available with existing MPI collectives. For instance, the common string prefix
example is an Allreduce() over strings, but each string must be serialized for
transmission via MPI. Thus, our C++ interface to MPI collectives requires re-
implementation of MPI’s collective operations for serialized data types.

To ensure that the new implementations of these collective operations are as
efficient as the existing MPI implementation’s collectives, function specialization
can be used. For instance, consider how the following two calls to Allreduce()
would be implemented most efficiently with the existing MPI interface:

int local int = ... , result;
mpi::Allreduce(local int, result, std::plus<int>());
struct hash int { int operator()(int x, int y); };
mpi::Allreduce(local int, result, hash int());

In this first case, we are computing the sum of the integers stored in each
process. This operation can be implemented most efficiently with a single call
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MPI Allreduce(..., MPI INT, MPI SUM, ...), which is likely optimized within the
existing MPI implementation. In the second case, we are still performing re-
duction on integers, but we have provided a user-defined function object. Here,
we can still take advantage of any communication optimizations provided by
MPI Allreduce(), but instead of passing a built-in MPI operation such as MPI SUM,
we will create our own with MPI Op create().

4 Performance

Throughout the paper, we have claimed that our modernized C++ interface will
not incur any performance penalties for primitive datatypes. To test the validity
of our claims, we implemented a subset of the point-to-point interface described
and compared the NetPIPE latency and bandwidth numbers with those of raw
MPI. We added two new tests to NetPIPE that use our interface with primitive
and serialized types. The serialized sends involved replacing the char type used
for communication buffers in NetPIPE with a simple Char class, which is a
lightweight wrapper over a char value that requires serialization.
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Fig. 5. NetPIPE numbers for our modernized C++ interface to MPI and MPI

Tests were run on the Odin cluster at Indiana University, in which each com-
pute node contained 8 GB of RAM and two AMD Opteron processors running at
2 Ghz, each with a 1 MB cache. The compute nodes are connected by Mellanox
Infiniband cards. The Odin cluster is running Red Hat Enterprise Linux with
kernel version 2.6.9-22.0.1.ELsmp, GCC version 3.4.4, and Open MPI 1.0.1.

Performance results are shown in Figure 5. The NetPIPE latency and band-
width numbers with our modern MPI interface exactly match those of raw MPI
when transmitting primitive types. When data requires serialization, both la-
tency and bandwidth are affected. This is because serialization incurs additional
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cost of calls to the serialize function, two memory copies and one extra (MPI Send,
MPI Recv) pair to communicate data size. However, the performance results for
serialized communication shown in Figure 5 are preliminary and can be vastly
improved. We used a vanilla Binary Archive class in our experiments. Instead, a
customized MPI Archive class that can pack data into a MPI implementation’s
underlying data format would greatly reduce serialization costs. Also, the Char
example demonstrates the worst case scenario for serialization as there are mil-
lions of tiny objects that need to be serialized.

5 Related Work

Many attempts at providing a higher level of abstraction for MPI within C++,
such as MPI++ [5] and OOMPI [2], are based on object-oriented design and
implementation techniques. These libraries also support user-defined data types
and provide a more clean and concise interface to MPI from C++. Skjellum et
al. provide a comprehensive object-oriented analysis of MPI [6].

Object-oriented techniques have some limitations that can impact both the
usability and the performance of libraries. Object inheritance is used heavily
to provide an uniform programming interface. Thus, to send or receive a user-
defined type such as employee record (Figure 2), one must derive it from a given
abstract base class, overriding one or more of its virtual methods. However,
this presupposes that the user-defined type in question can be modified: if the
type comes from another library (e.g., the std::vector type from the C++ Stan-
dard Library), or for some reason cannot derive from the abstract base class
(e.g., because it is not allowed to have a virtual function table), that type can-
not be used with the library. In our approach, we apply Generic Programming
techniques to transmit any user-defined type without altering the type itself.
Moreover, virtual functions incur run-time penalties, both due to indirection re-
quired and due to missed opportunities for compiler optimization. By contrast,
we avoid these additional levels of indirection through the use of traits and tag
dispatching.

6 Conclusions

We have shown that the C++ interface to MPI can be modernized in several ways.
This interface can provide a more natural C++ syntax for message passing, with
seamless support for user-defined data types and the programming style encour-
aged by the STL. Moreover, this interface can be provided without sacrificing
performance when transmitting primitive types, so that the modern C++ inter-
face only incurs a performance penalty for serialization only when serialization is
necessary. In the future, we hope to implement the remaining ideas in this paper,
especially the interface to collective operations using function objects. We will
also investigate ways to reduce the overhead associated with serialization and
improve the performance of non-blocking operations.
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Abstract. MPI is routinely used for writing parallel applications, but
it is not commonly used for writing long-running parallel services, such
as parallel file systems or job schedulers. Nonetheless, MPI does have
many features that are potentially useful for writing such software. Using
the PVFS2 parallel file system as a motivating example, we studied the
needs of software that provide persistent parallel services and evaluated
whether MPI is a good match for those needs. We also ran experiments
to determine the gaps between what the MPI Standard enables and what
MPI implementations currently support. The results of our study indi-
cate that MPI can enable persistent parallel systems to be developed
with less effort and can provide high performance, but MPI implemen-
tations will need to provide better support for certain features. We also
describe an area where additions to the MPI Standard would be useful.

1 Introduction

Achieving good performance on today’s high-end computers involves effectively
utilizing a variety of network interconnects, a large number of compute resources,
and high-quality algorithms. Application developers make heavy use of libraries
and tools to manage this complexity while still delivering high performance. For
their work, Parallel application writers commonly choose the message-passing
model, embodied by the MPI Standard [10]. MPI defines a rich API that can be
used across many disparate hardware platforms and provides many useful fea-
tures such as datatype packing, collective communication, nonblocking commu-
nication, and dynamic process management. High-quality MPI implementations
further provide heterogeneous communication and deliver high performance.

Parallel system services, as opposed to applications, are usually not written
in MPI. One would imagine, however, that MPI’s portability, performance, and
features should make it an attractive candidate for implementing parallel system
services as well. Why, then, don’t services use MPI? Could they? We investigate
these issues in detail in this paper. For concreteness, we use the parallel file
system PVFS2 [12] as an example for studying the needs of such software. We
have been heavily involved in the development of PVFS2 and are familiar with
its requirements. PVFS2 and its predecessor, PVFS [2], represent a decade of
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parallel file system research and engineering. PVFS2 was written to deliver high
performance at scales of hundreds of servers and tens of thousands of clients and
has done so on some of the world’s fastest and largest classes of supercomputers,
such as IBM BG/L, Cray XT-3, and large Linux clusters.

We first give a brief overview of PVFS2 and its architecture. Then, using
PVFS2 as an example, we study the needs of software for persistent parallel
services and examine how well MPI is equipped to meet those needs. We find in
most cases that the MPI Standard supports the features we need. Some helpful
features, however, are not available in some commonly deployed MPI implemen-
tations. We also describe an area that would benefit from additions to the MPI
Standard.

2 PVFS2: A Persistent Parallel Service

A persistent parallel service is system software that manages multiple hardware
components to provide a single logical resource for use by parallel applications.
It is persistent in the sense that it exists beyond the life of a single application,
typically running for weeks or months at a time. A parallel file system is an
example of a persistent parallel service.

PVFS2 [12] is a high-perfor-

Fig. 1. PVFS2 architecture: pvfs2-client

forwards kernel-level requests to
pvfs2-server processes running on the
servers. In turn, pvfs2-server deals with
managing data on storage devices.

mance parallel file system being
developed as a joint project by Ar-
gonne National Laboratory, Clem-
son University, and the Ohio Super-
computer Center. PVFS2 comprises
multiple persistent servers. File stri-
ping across these servers enables
multiple clients to access different
parts of a file in parallel, resulting in
high performance. PVFS2 software
on the client side hides all these de-
tails from the client and instead pre-
sents a single logical view of a file.

PVFS2 provides many features
such as native support for popular
networking technologies (e.g. Myri-
net, InfiniBand, and TCP/IP), mul-
tiple APIs (POSIX, MPI-IO), user-
controlled striping of files across

nodes, a well-defined interface for describing new data distribution schemes,
support for heterogeneous clusters, and distributed metadata. It uses commod-
ity network and storage hardware and is easy to install (no kernel patch). The
familiar UNIX file tools (such as ls, cp, and rm) can be used on PVFS2 files
and directories.
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In the following sections, we use PVFS2 as an example to study the common
needs of persistent parallel services and then investigate how well MPI supports
those features.

3 Service Identification

Any persistent service needs to handle the im- T_0

T_1

T_2

config file

Servers

Client

Fig. 2. Client establishing con-
nections to PVFS2 servers. The
client has to consult a configura-
tion file and connect to one of the
PVFS2 servers before discovering
where the other servers are.

portant issue of locating the servers. For tra-
ditional network services, the IP address and
port number are often listed in a configura-
tion file. PVFS2 follows a similar approach.
The configuration files for PVFS2 servers list
all the servers that form the parallel file sys-
tem. Each server reads this list at startup. A
PVFS2 client uses its own configuration file to
locate PVFS2 servers (see Figure 2). This file
resembles a Unix /etc/fstab file and provides
the network address of any one of the PVFS2
servers, a mount point on the client system,
and a few other parameters. The client inquires
with the listed server about the file system, ob-
tains a complete listing of all the servers, and
then begins interacting with the file system.

If PVFS2 used MPI, it could use MPI’s fea-
tures that enable service identification. The MPI name publishing interface
(MPI PUBLISH NAME, MPI LOOKUP NAME) provides a method for clients and
servers to exchange information. Clients could use a well-known key to discover
an initial contact point. This key would provide service discovery that is in-
dependent of the underlying network interconnect or the MPI implementation.
Clients would be insulated from server changes, be it a different port, host, or
even interconnect, without system administrators needing to update client-side
configuration files. MPI might still need some sort of configuration information,
but at least we would be able to concentrate that information into a single source,
instead of one source for MPI and another for PVFS2.

In practice, however, MPI implementations currently do not support this func-
tionality as well as needed. For this functionality to be usable, MPI implementa-
tions must support name publishing and resolution across independently started
MPI processes – PVFS2 servers are not restarted with every new client applica-
tion. We ran tests with several commonly deployed MPI implementations and
found that they support this mode of operation, but only under certain condi-
tions (summarized in Table 1). For example, the processes must be part of the
same MPD ring in MPICH2 [11], and Open MPI [7] programs require special
measures when launching the orted daemons. This additional component (MPD
or orted) must also be persistent and able to tolerate node failure.
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Table 1. Capabilities of MPI implementations. An ideal implementation would have
a Y in all columns.

MPICH2 Open MPI BGL-MPI
Feature 1.0.3 1.0.1 V1R2M1
Published name appears to other singleton processes N N N
Connect/Accept work under singleton MPI INIT N N N
MPI COMM JOIN works under singleton MPI INIT Y N N
Does not require a previously established MPI envi-
ronment (e.g. lamboot, MPD, others) N N N

MPI datatype processing supports heterogeneous ar-
chitectures

N N N

Support for external32 N N N

4 Establishing Connection

After clients have discovered what services are running, they need to connect
to those services. The traditional Unix socket model has the familiar TCP
accept/connect handshake. Other protocols have analogous mechanisms.
PVFS2 uses an abstraction that is layered on top of the connection mechanisms
of multiple networks, providing portability.

The use of MPI could simplify this process greatly. MPI’s dynamic process
functionality supports two different ways for clients to establish communication
with servers. One approach has the server process call MPI COMM ACCEPT,
waiting for a corresponding client-side call to MPI COMM CONNECT.
MPI COMM JOIN provides another approach for two processes that already
share a UNIX network socket to establish MPI communication. In both cases, the
functions returns an MPI intercommunicator, over which the clients and servers
can communicate. Furthermore, the accept/connect functions in MPI are collec-
tive. A group of clients can connect to a group of servers at the same time, and
the resulting intercommunicator can be used for communication between any
client and any server.

These MPI functions provide a simpler interface than do the corresponding
Unix socket ones, abstracting away details such as allocating a socket and setting
protocol-specific values in data structures. In addition, they are portable: the
MPI implementation takes care of implementing the connection mechanism over
the underlying network protocol, freeing the system software developer from the
effort.

Taking an MPI approach to client connections introduces a few challenges,
however. The accept/connect method needs the name of an open MPI port. If the
name-publishing interface in an MPI implementation works across independently
launched MPI programs (as described in Section 3), MPI PUBLISH NAME and
MPI LOOKUP NAME can be used to obtain the MPI port name. Otherwise,
unwieldy implementation-specific strings would have to be passed around by
hand. MPI COMM JOIN does not have a dependency on the name-publishing
interface. For situations where the name publishing approach is not feasible,
this allows a UNIX socket and familiar IP and port locations to be used for
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service identification. The socket is used only for the initial handshake; all other
communication goes over the native transport used by the MPI implementation.

5 Fast Data Transfer

A persistent parallel service needs fast data transfer between clients and servers.
PVFS2 has a few specific needs in this area.

– It needs fast communication of data between clients and servers over a num-
ber of different networking technologies, using the fastest protocol for each
network, for example TCP over Ethernet, GM or MX over Myrinet, the
native InfiniBand protocol over InfiniBand.

– For control messages between client and server (not for data), it needs sup-
port for heterogeneity, because clients and servers could run on different ar-
chitectures. For example, Argonne’s IBM BG/L system has a mix of PPC64,
PPC32, and IA32 nodes.

– It needs support for communicating noncontiguous data efficiently.
– It needs support for asynchronous communication.

A substantial amount of code has been written in PVFS2 to support these needs.
PVFS2 uses an abstraction called the Buffered Message Interface (BMI) [3] for
portable high-performance communication over multiple networks. For control
messages, PVFS2 defines an encoding scheme that converts all commands to
a fixed-length, little-endian format, which allows PVFS2 clients and servers to
have any mix of byte endianess or word size. (Defining this encoding correctly
took many iterations.) PVFS2 implements its own way of communicating non-
contiguous data, which required several thousand lines of code.

MPI is a perfect fit for all these requirements. MPI provides a portable inter-
face for communication, and MPI implementations do the job of implementing
that interface efficiently on the underlying network. The MPI Standard sup-
ports heterogeneous communication through the use of MPI datatypes. MPI
implementations, however, vary in their support for heterogeneity. For example,
MPICH-1 does support heterogeneous mode architectures, whereas MPICH-2
and Open MPI at present do not. The MPI Standard is limited in that there is no
universal way to express certain sized types, such as 64-bit integers, and PVFS2
file handles are 64-bit values. Nonetheless, we could use MPI LONG LONG, which
is often 64 bit; if not, we could use two MPI INT types. MPI also supports com-
munication of noncontiguous data through derived datatypes. Additionally, the
MPI TYPE CREATE STRUCT routine provides a way to create a user-defined
MPI datatype out of arbitrary application data types. MPI implementations,
however, have historically not performed well on derived datatypes. Nonethe-
less, various research efforts have demonstrated that derived datatypes can be
implemented in a way that delivers good performance [13,15]. We hope MPI
implementations will devote effort to optimizing derived datatypes. MPI also
supports nonblocking communication, which allows us to overlap communica-
tion with disk I/O.
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These features of MPI make it ideally suited for use in data communication,
although better support is needed from implementations in the areas of commu-
nication between heterogeneous nodes.

6 Fault Tolerance

Any persistent parallel software needs to be resilient against faults as far as
possible. The robustness depends on how well the software itself is designed and
implemented and on the robustness of the external components that the software
uses.

In a cluster environment, each PVFS2 server represents a potential point of
failure, and error recovery becomes an important consideration. To that end,
the PVFS2 system operate in a stateless manner: there are no locks to revoke or
leases to offer, and client tracking is not necessary. This stateless nature makes
recovering from server failure much easier. PVFS2 can retry operations in order
to hide transient problems. If a server failure occurs, PVFS2 operations will time
out and return an error to the caller. If a server has been restarted (by hand or
perhaps by a failover script), the newly restarted server will be able to service
the client request.

If PVFS2 were implemented by using MPI, it would require the MPI imple-
mentation to be resilient against failure. The MPI Standard itself does not say
much about fault tolerance; it is left as a quality of the implementation. But
MPI does have some features that can help in writing resilient programs. For
example, MPI has a well-defined mechanism for error returns from functions,
and users can specify their own error handlers. The default error handler is that
the entire job aborts on error, but users can change that to “errors return” or
define their own error handler. MPI also has the notion of intercommunicators
for two groups of processes (for example, clients and servers) to communicate.
When two independently started processes connect to each other and communi-
cate over the intercommunicator, the failure of one process need not cause the
other process to die.

Most MPI implementations, unfortunately, are not robust against errors. For
example, if the connection between two processes is lost, the entire MPI job may
abort; or if a single process is killed, the entire MPI job may get killed. This
kind of failure will not be good for a parallel file system that uses MPI. Although
there are some efforts at building fault-tolerant MPI implementations [1,6], more
work is needed in this area.

Another area where MPI can help is in the parity calculation for a software-
RAID like approach providing fault-tolerance for data stored on the parallel
file system. Gropp et al. [8] proposed a lazy redundancy scheme that makes
use of both MPI-IO consistency semantics and the MPI collective functions
MPI REDUCE SCATTER and MPI REDUCE. Implementing this scheme becomes
much easier when PVFS2 servers are based on MPI, because the servers could
simply use these collective calls (more on this in Section 7).
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The processes providing the parallel service can only communicate with each
other once they have established an MPI communicator. At one extreme we
could establish many two-process communicators. Having all these communi-
cators makes the system resilient to failure. If a process dies, communication
can be carried out over a different communicator. On the other hand, so many
communicators greatly complicates any all-to-all or one-to-many messaging al-
gorithms. At the other extreme we could establish an all-encompassing commu-
nicator spanning all processes. In exchange for simplified communication, such
a system would be more fragile. If any process died, the surviving process would
need to detect that failure and coordinate the creation of a new all-encompassing
communicator Further, we would need this reconstruction process to maintain
the properties of MPI communicators (context, fixed identifiers) that make them
so useful.

7 Collective and Aggregate Operations

In PVFS2, many operations require

Fig. 3. An aggregate operation lets a single
create request initiate creation of the meta-
data entry and datafile entries on each server.
The servers could potentially be better con-
nected to each other than clients (as in a
WAN), yielding fewer messages, better per-
formance, and lower latency.

multiple steps performed across
many servers. Creating a new file
requires instantiating a single meta-
data entry and a data file entry on
each server. Removing a file requires
removal of the corresponding meta-
data and directory entries, followed
by removal of the data file from each
server. A stat system call needs to
collect partial file size information
from each server before returning
the total size of a file.While the
client code makes just one function
call for these operations, the under-
lying library carries out a one-to-
many operation. The client library posts these messages as nonblocking sends to
the servers and waits for their response.

An alternative approach would have clients send a single “create file” message
to one of the servers and have servers then orchestrate actions on the client’s
behalf, as described in [4]. This approach simplifies the synchronization of opera-
tions and leads to the natural use of structured communication patterns such as
broadcasting an operation request by using a tree-based algorithm as shown in
Figure 4(b). We call these higher-level messages “aggregate operations” because
they result in a collection of operations across multiple servers.

Aggregate operations also make deployment over the wide-area more efficient.
We can easily imagine a topology where the servers are located near to each other
while the clients may be quite far away, network-wise. These aggregate messages
mean fewer network round trips between clients and servers and lower latency.
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(a) Independent file removal. 8
timesteps

(b) Collective file removal. 3
timesteps

Fig. 4. File removal requires deletion of the data file on each server. The indepen-
dent approach has little room for optimization, requires careful coordination to keep
metadata consistent, and needs O(N) timesteps to complete. The collective approach
simplifies metadata updates and requires only O(log(N)) timesteps.

The servers can exchange messages with each other over their local network and
send a single response over the long-haul, high-latency link.

MPI is well known for its collective operations, such as broadcast, allreduce, and
scatter/gather. Many implementations have optimized collective operations [14].
The collective communication operations in MPI are defined to be collective over
a communicator; all processes in the communicator must call them. In an appli-
cation, this requirement is easy to meet. In PVFS2, however, the servers do not
know which client will issue the collective operation, for example, which client will
want to delete a file. PVFS2 needs to be able to respond to unpredictable client
requests. In an MPI environment, servers would naturally post nonblocking col-
lective calls or a broadcast with a “wildcard” (ANY SRC) root that would be spec-
ified later. These calls, however, do not exist in MPI; MPI collectives are blocking
calls. While there was a proposal in the MPI-2 Forum for nonblocking collectives,
these did not make it into the final standard. The MPI forum decided those who
needed nonblocking collectives could implement them with a thread which in turn
called the blocking collective equivalent. In a server environment, however, spawn-
ing a thread for each potential client becomes untenable as the number of clients
scales to the thousands and beyond. Some implementations have extensions that
support these features, for example, in IBM’s MPI [9] (although it has been depre-
cated). We are investigating the issue of how nonblocking (or wildcard) collectives
could be supported as an extension to MPI, what their semantics would be, and
how they could be implemented efficiently. Further, we will have to address how to
provide an efficient collective implementation while also solving the fault tolerance
issues brought up in Section 6. We plan to develop a prototype implementation to
explore these issues.

8 Conclusions

Writing parallel system software can be a significant undertaking. A production
parallel file system such as GPFS, GFS, Lustre, or PVFS2 takes many years to
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develop and stabilize. Much of this effort goes into implementing many of the
features that MPI already supports, and this duplicate effort could be avoided.
While there are some challenges in implementing system software using MPI
today, they are due mainly to the limitations of MPI implementations rather
than deficiencies in the MPI Standard itself. At the same time, the addition of
nonblocking collectives to MPI would make it an even more natural basis for
building parallel system software.

The requirements we have discussed apply to more than just PVFS2 or other
parallel file systems. For example, resource managers could use MPI dynamic
process functions to launch parallel jobs (via MPI COMM SPAWN), and system
monitoring daemons could use MPI datatypes and support for heterogeneous
communication to monitor disparate resources. Desai et al. [5] used MPI to
implement a variety of system-level application utilities, such as file staging, file
synchronization, and a parallel shell.

We note that using MPI for implementing persistent system services does not
restrict user applications to being MPI applications. The PVFS2 client could
determine whether MPI has been initialized (by calling MPI INITIALIZED) and
then call MPI INIT if it hasn’t been. Clients and servers can then communicate
using MPI even if they were not started as MPI programs. (Again, all imple-
mentations need to support this feature of MPI, called “singleton init.”). We
would expect that MPI-using applications would call MPI INIT before making
any system service calls. It would of course be an error for an application to call
MPI INIT twice.

In summary, we would like to implement PVFS2 using MPI. We hope MPI im-
plementers will take up the challenge and develop high-quality implementations
that can be used to develop system software such as a parallel file system.
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Abstract. Large-scale MPI programs must work with dynamic and het-
erogeneous resources. While many of the involved issues can be handled
by the MPI implementation, some must be dealt with by the applica-
tion program. This paper considers a master/slave application, in which
MPI processes internally use a different number of threads created by
OpenMP. We modify the standard master/slave pattern to allow for dy-
namic addition and withdrawal of slaves. Moreover, the application dy-
namically adapts to use processors for either processes or threads. The
paper evaluates the support that MPI-2 provides for implementing the
scheme, partly referring to experiments with the MPICH2 implementa-
tion. We found that most requirements can be met if optional parts of
the standard are used, but slave crashes require additional functionality.

Keywords: dynamic process management, malleability, adaptivity, hy-
brid MPI/OpenMP, master/slave pattern.

1 Introduction

Traditionally, MPI programs have used a fixed number of homogeneous pro-
cesses. Modern architectures and especially grids, in contrast, are characterized
by dynamic and heterogeneous resources: Nodes can crash, be withdrawn by
the scheduler in favor of higher-priority jobs, or join a running computation
after having finished a previous task. Moreover, different nodes may comprise a
different number of processors.

The ability of applications to dynamically adapt to a changing number of
processors is often denoted as malleability. This term goes back to Feitelson and
Rudolph [1], who classify jobs as rigid, moldable, evolving, or malleable. Both
evolving and malleable jobs change the number of processors during execution,
evolving jobs for internal reasons such as requesting additional processors for a
complicated subcomputation, and malleable jobs in reaction to changes caused
by the environment.

Many architectures combine shared-memory within the nodes and distributed-
memory in-between the nodes. They can be programmed in a hybrid style, using
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MPI processes that are composed of threads. Whether or not the processors
of a node are more profitably used for processes or threads, depends on the
application. It may be useful to change this assignment dynamically. We call
this feature process-thread adaptivity.

This paper evaluates the support for malleability and process-thread adaptiv-
ity that is provided in MPI-2, mainly through the dynamic process management
functions. We base our discussion on a hybrid MPI/OpenMP application from
the simulation domain, which is described in Sect. 2. The application uses a mas-
ter/slave scheme, in which slaves correspond to MPI processes that internally
deploy a different number of OpenMP-threads.

Previous work by the same authors has shown that additional processes can
be dynamically incorporated into this application [2]. The present paper adds
the aspect of process-thread adaptivity, and discusses the case of slaves leaving
the computation prematurely. We show that MPI-2 provides sufficient support
for process-thread adaptivity if the implementation covers some optional parts
of the standard. Evolving programs are supported as well, but the case of a
slave leaving the computation abruptly can not be handled appropriately, and
we discuss possible workarounds.

Sect. 2 of the paper starts with an outline of the application, including par-
allelization and deployment of hybrid processes. Then, Sect. 3 explains at an
algorithmic level our modifications of the master/slave scheme to handle dy-
namic and heterogeneous resources. The realization of this scheme in hybrid
MPI-2/OpenMP is the topic of Sects. 4–6: Sect. 4 recalls the program structure
for incorporating additional processes, Sect. 5 discusses process-thread adaptiv-
ity, and Sect. 6 is devoted to node withdrawals. Related work is reviewed in
Sect. 7, and the paper finishes with conclusions in Sect. 8.

2 Application and Experimental Setting

The example program, called WaterGAP, computes current and future water
availability worldwide [2]. WaterGAP partitions the surface area of continents
into equally-sized grid cells. Based on input data for climate, vegetation etc.,
it simulates the flow of water, both vertically (precipitation, transpiration) and
horizontally (routing through river networks), over a period of several years. The
program has been written in C++.

WaterGAP uses two levels of parallelism: a master/slave scheme implemented
with MPI at the outer level, and data parallelism implemented with OpenMP-
threads at the inner level [2]. The master/slave scheme relies on the observation
that the set of grid cells is naturally partitioned into basins that do not exchange
water with other basins. Thus, the overall computation is divided into indepen-
dent tasks that correspond to one basin each. Task sizes are known in advance,
but range from a few very large tasks to many small ones.

Scalability of the master/slave scheme is limited, since the program can not
run faster than the time needed to compute the largest basin. Therefore, data
parallelism is used to speed up the computation of large basins internally. Data
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parallelism yields lower speedups than master/slave parallelism [2], i.e., if a
multi-processor node is assigned one large basin, it finishes earliest when us-
ing a multi-threaded process. If the same node is assigned several small basins,
it finishes earlier when using several single-threaded processes. Therefore, we use
a different number of threads for different processes.

Experiments were carried out on the compute cluster of the University of
Kassel, a Linux cluster that comprises a large number of double-processor nodes,
and one eight-processor node. On this architecture, a maximum speedup of 22
was achieved with 32 processors [2]. Here, the largest basin was computed by
a multi-threaded process, other large basins were computed by double-threaded
processes, and the small basins were computed by single-threaded processes.

In all experiments, we used the Portland Compiler, and the MPICH2 [3]
implementation of MPI-2 (release 1.0.3, process manager mpd, compiled with
Portland compiler). Experiments were carried out both interactively and through
the batch system. We experimented with both C and C++ bindings of the MPI
functions.

3 Dynamic and Heterogeneous Master/Slave Scheme

The standard master/slave scheme uses one master and several slaves. The mas-
ter starts computation by sending a task to each slave. Whenever a slave has
finished its task, it reports the result back to the master and gets the next task,
until all tasks have been processed. We modify the scheme to incorporate:

– dynamic arrival of slaves,
– arrival of more powerful slaves that can take over expensive tasks, and
– sudden or announced withdrawal of slaves.

The first case is easy to handle at an algorithmic level: the master adds the
slave to its pool of communication partners, and sends a task. The other two
cases require task reassignment. While one can think of very sophisticated and
efficient schemes, we restrict our considerations to a simple scheme here that is
sufficient to identify and study essential requirements for MPI support:

After creation, a new process connects to the master and requests work. The
master assigns the tasks by size, starting with the largest task. To keep track of
the state of computation, it stores for each process: task currently assigned to,
size of this task (in grid cells), and number of processors. The latter is sent to
the master with the slave’s work request.

Although tasks are assigned strictly in order of decreasing size, an assignment
may be a better or worse fit. A good fit maps a large basin to a process with many
processors, or a small basin to a process with a single processor. Architecture-
specific thresholds specify the meaning of terms large etc. In our setting, basins
are classified as large, medium, or small, depending on the number of grid cells;
slaves are classified as powerful (8 processors), normal (2 processors), or weak
(1 processor). We speak of a good fit for combinations large-powerful, medium-
normal, and small-weak.
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One case of a bad fit assigns a large basin to a weak slave (combinations
large-weak, large-normal, and medium-weak). Here, the slave starts computing,
but when a more powerful slave arrives later on, the master reassigns the basin.
As MPI-2 provides no means for the master to signal this event to the first slave,
the slave occasionally asks whether there was a reassignment. If so, it abandons
its work and requests a next task from the master.

The reverse case that a small or medium basin is assigned to a powerful slave
(combinations small-powerful, small-normal, and medium-powerful), occurs only
when all larger basins have already been assigned before. Hence, after receiving
the basin, the slave splits itself up into multiple processes. One process computes
the basin, and the others request more work from the master, i.e., become sepa-
rate slaves. The splitting generates weak processes when the assigned basin is
small, and normal processes when it is medium.

Moreover, tasks are reassigned when the master learns that a slave has died,
and will therefore not finish its task, or when the task pool is empty, but some
results have not been received yet. When several slaves are computing the same
basin and one has found the result, the others are abandoned as soon as they
report back.

One case needs particular consideration: reassignment of a large basin (from
a dead slave) after powerful slaves have been split up into groups of weak ones.
The master stores the grouping of processes, keeping the original process as a
leader. To assign a task to the group, it requests all processes except the leader
to exit (when they report having finished their present task). Then, it assigns
the task to the leader, who spawns new threads.

4 Dynamic Integration of Processes

A program version that allows for dynamic integration of slaves has been de-
scribed by us [2]. It uses an additional process, called server, that invokes the
accept function and helps in communicator construction. All communication
is accomplished through intracommunicators that connect two processes each:
master and slave, or master and server. The construction of a single communica-
tor for all processes proved difficult, since communicator constructor functions
are blocking and collective. Busy slaves can not call these functions, except in
a separate thread, which would interfere, however, with the internal OpenMP
structure for data parallelism.

All occurrences of MPI::COMM_WORLD had to be replaced by pairwise commu-
nicators. Since there is no MPI::ANY_COMM, the master waits for a message from
any communicator with loop

while (!isMessage) {
rank = (rank + 1) % total;
isMessage = comms[rank].Iprobe(...);

}

where comms is an array of all intracommunicators.
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5 Process-Thread Adaptivity

The modified master/slave scheme poses two requirements:

– A slave that runs on a multi-processor node must be able to dynamically
spawn either processes or threads on the same node.

– A slave must be able to exit computation after receiving a termination re-
quest from the master.

For the first requirement, a slave must know how many processors it owns. Al-
though the OpenMP function omp_get_num_procs yields the number of physical
processors, it is possible that only part of them are available to the application.
Thus, information must be passed from the resource manager (e.g. batch sys-
tem) to the MPI application. MPI-2 defines a constant MPI::UNIVERSE_SIZE for
that purpose, but leaves it to the implementation to set its value or not. The
MPICH2 implementation sets the value to parameter usize of mpiexec. We use
this parameter to provide to each slave the number of processors it owns.

Spawning the corresponding number of threads is a simple call to the OpenMP
function omp_set_num_threads.Processes are spawned with MPI::Comm::Spawn.
The new processes can not rely on MPI::UNIVERSE_SIZE, but get the number of
processors from their parent, through an argument of the spawn function. These
processes also differ from the processes started with mpiexec in that they are con-
nected to their parent with a communicator. We close this communicator imme-
diately, and then handle all processes the same way.

Threads are always spawned on the same node. Processes, in contrast, may be
spawned on any node that is available to the MPI system. This placement may be
inappropriate as the system can not take the existence of threads into account
(especially if they have not been created yet). To keep track of the available
resources, we always spawn processes on the same node as their parent. MPI-2
supports that with the reserved info key host, which is an optional part of the
standard again.

The second issue (slaves exit computation) is easy to resolve. As will be further
discussed in the next section, the slave first disconnects from the rest of the
program, by closing the master-slave intracommunicator, and then calls Finalize.
Since this function is collective over the set of connected processes only, the slave
returns immediately.

6 Termination of Processes

For evolving processes, i.e., program-initiated termination, the exit of slaves is
easy. The principle has already been explained in the last paragraph. It relies
on the fact that a slave is connected to the rest of the program through a sin-
gle communicator between master and slave only. All other communicators are
closed immediately after their creation. Thus, the slave can disconnect, without
enforcing any other process to participate in this blocking and collective opera-
tion. Note that a process is connected to all processes in MPI::COMM_WORLD, but
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we start each process with a separate call to mpiexec, and so MPI::COMM_WORLD
is a singleton.

After termination, the master must exclude the slave from its pool of commu-
nication partners, since Iprobe does not work with a null communicator. Also,
the basin must be reassigned to another slave. With this scheme, a slave may
leave computation at any time, either in reaction to a termination request by
the master, or on request of the resource manager (provided that the resource
manager can pass the request to the slave).

Implementation of malleability, in contrast, is problematic. When a slave sud-
denly dies, it is not able to call Disconnect nor Finalize. The MPI standard
states that ”‘if a process terminates without calling Finalize, ... the effect on
connected processes is not defined”’. Thus, it may happen that a single faulty
process brings the whole application down.

According to our experiments, the MPICH2 implementation is more robust.
When a slave dies, the master’s message-waiting loop (see Sect. 4) continues
without any problem, just not receiving messages from the dead slave anymore.
We tested this feature by running each process in a separate window, killing
one with Ctrl-C (during a computation phase), and observing the output. The
behavior was the same in the batch system, with an exit call in one slave’s code.

Using the reassignment scheme described in Sect. 3, the program manages
to compute all tasks and generate the complete output. Nevertheless, we did
not find a correct way to finish the program. The MPI standard requires that
each process calls Finalize, which is a collective and blocking operation over
connected processes. While a slave can disconnect from the rest of the program
and terminate as described above, the master can not disconnect from a dead
slave. Consequently, its call to Finalize does not return. The standard defines
the function MPI::Abort to kill processes, but the behavior of this function is
not specified in detail. In our experiments, this function did not return either.
The only way we found to let the program return, was to omit the Finalize call
from the master. Then termination works fine, except for an error message, but
this workaround of course conflicts with the standard.

The termination problem can probably be solved by clarifying the behavior
of MPI::Abort. An alternative solution relies on a communicator clean function
that eliminates all dead processes from the communicator, i.e., live processes are
disconnected from dead ones, and dead processes do not need to take part in any
future collective operation. Such a function may either be provided by the MPI
API, or be invoked implicitly by the MPI implementation. The implicit variant
is already provided by Fault Tolerant MPI or FT-MPI [4]. It comfortably solves
our termination problem since after cleaning, the master can call Finalize. In
FT-MPI, communication functions return an error code after a communication
partner has crashed. This mechanism solves a second problem: notification of the
master in the event of slave death. As the master regularly contacts all slaves
in the message-waiting loop, it learns about the crash soon and can reassign the
basin immediately. Unfortunately, FT-MPI supports only part of MPI-2.
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7 Related Work

The process termination aspect of malleability has been discussed under the
heading of fault tolerance, e.g. in a survey paper by Gropp and Lusk [5], and in
FT-MPI [4].

Much work on malleability was carried out in the scheduling community,
where it was shown that malleability significantly improves system throughput in
both supercomputers and grids [6,7]. Two approaches for making MPI programs
malleable have been followed: 1) checkpointing, i.e., interrupting the program,
saving its state, and later restarting it with a different number of processes [7],
and 2) folding, i.e., using a fixed number of processes, and coping with changes
in the number of processors by varying the number of processes per processor [8].
We are not aware of other experience reports on making an application malleable
with the MPI-2 dynamic process management routines.

Outside MPI, research on handling node crashes with the master/slave scheme
has been done with PVM [9] and Java [10]. The more general divide-and-conquer
pattern is considered by Wrzesińska et al., in a Java-based framework [11]. They
suggest a scheme to avoid redoing work that another process already did before
crashing. None of this work considers multi-threaded processes or process-thread
adaptivity.

Except for malleability, hybrid MPI/OpenMP programming is well under-
stood [12,13], including dynamic variations in the number of threads per process
for better load balancing [14].

8 Conclusions

This paper has discussed MPI-2 support for dynamic and heterogeneous pro-
cesses, on the basis of a hybrid master/slave application. The master/slave
scheme was modified to dynamically add processes, and reassign tasks when
powerful slaves arrive or slaves exit. We observed that MPI-2 supports integra-
tion of slaves and process-thread adaptivity, provided that the implementation
covers optional parts of the standard: the constant MPI::UNIVERSE_SIZE and
the info key host. Termination, in contrast, requires active participation of a
slave, or functionality beyond the MPI standard to eliminate dead slaves from a
communicator, and to notify the master after slave crashes.

In experiments, the malleable program performed better than the original
one, mainly because it started before all desired resources were available. Mal-
leability and process-thread adaptivity come at the price of higher programming
overhead and a performance penalty. For the master/slave example, the program-
ming overhead was reasonably low, but this may be different for applications
that require algorithmic changes such as data redistribution. The performance
penalty is due to the overhead for additions and withdrawals of nodes, the need
to use pairwise communicators instead of MPI_COMM_WORLD, the bookkeeping
overhead at the master, and task reassignment costs. Our application has a high
computation-to-communication ratio, and thus the overhead was not an issue.
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Future research may address improvements of the simple master/slave scheme
referred to in this paper. For instance, the master may restrict use of multi-
threaded slaves to basins that would otherwise delay the overall computation. It
may also cooperate with the resource manager to get a forecast of resources. No-
tification of slaves after reassignment may use one-sided communication instead
of pairwise communication-based polling. Furthermore, checkpointing may be
integrated. Finally, the scheme may be refined to handle the case that the mas-
ter dies. Sophisticated master/slave patterns may be implemented in a skeleton
library, which may extend to other malleable patterns.
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Abstract. We discuss the mesh-partitioning load-balancing problem for
non-homogeneous communication systems, and investigate whether the
MPI process topology functionality can aid in solving the problem. An
example kernel shows that specific communication patterns can benefit
substantially from a non-trivial MPI topology implementation, achieving
improvements beyond a factor of five for certain system configurations.
Still, the topology functionality lacks expressivity to deal effectively with
the mesh-partitioning problem. A mild extension to MPI is suggested,
which, however, still cannot exclude possibly sub-optimal partitioning
results. Solving instead the mesh-partitioning problem outside of MPI
requires knowledge of the communication system. We discuss ways in
which such could be provided by MPI in a portable way. Finally, we
formulate and discuss a more general affinity scheduling problem.

1 Introduction

Applications involving large datasets are often parallelized using a data parti-
tioning approach, as in mesh-based solution of partial differential equations. This
leads to the following mesh-partitioning problem: A large mesh, represented as
an undirected, weighted problem graph G = (V, E, w) with edge (and possibly
vertex) weights w is to be mapped onto a smaller set of processors P , such as
to minimize application run time. This is approximated by minimizing com-
munication costs, which are assumed to be a function of the value of the edge
cut (sum of weights of edges in G crossing processor boundaries), while keeping
computational load evenly distributed. Although this commonly used model is
at best an approximation to the communication cost optimization problem (e.g.
network contention is very hard to capture, communication volume may easily
be overestimated, etc., see [4]), we will stick to it here.

Assuming a homogeneous, fully connected system, a common approach to
solving the mesh-partitioning problem is to partition G into |P | approximately
equal-sized subsets, minimizing the value of the edge cut, i.e. finding a mapping
π : V �→ P such that ∑

π(u) �=π(v)

w(u, v) is minimal (1)

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 293–302, 2006.
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under the balancing condition (which can be relaxed) that

|π−1(p)| ≤ |V |/|P |� (2)

This graph partitioning problem is NP-complete [3], but many good heuristics
exist [2,5,8,11], and are implemented in a number of libraries [7,10,16,17].

Most of these algorithms can be extended to handle non-homogeneous proces-
sor computing powers, but it is more difficult to handle systems with non-homo-
geneous communication systems, for instance with a mesh or torus topology, or
with a hierarchical structure like clusters of SMP nodes. The simple graph par-
titioning approach is not adequate here, since vertices of G with “heavy” edges
might end up on processors connected by “weak” communication links. There is
obviously no way a graph partitioner can exclude this possibility without addi-
tional knowledge of the underlying system. Different approaches to tackling this
problem have been proposed and discussed.

In [16] the authors model the communication system as a complete host graph
H = (P, C, c) with a cost function c on edges (p0, p1) ∈ C reflecting the “cost” of
communication between processors p0 and p1. Deriving the costs c(pi, pj) is not
straightforward and to some extent even application-dependent. The authors
favor a quadratic path length (QPL) metric, leading to a network cost matrix
(NCM) penalizing connections going over many hops of the physical network.
The mapping problem is then defined as a generalization of the partitioning
problem (1): Find π : V �→ P such that∑

π(u) �=π(v)

w(u, v)c(π(u), π(v)) is minimal (3)

subject to the balancing condition (2).
To solve this problem, they extend their homogeneous multi-level heuristic

by mapping the coarsest problem graph to the host graph in an approximately
optimal way (the exact solution is equivalent to the quadratic assignment problem
and again NP-complete). The Kernighan-Lin heuristic used to derive partitions
of the finer problem graph levels is modified to take the modified cost function
and the resulting larger set of potential moves into account.

The same model of the communication system is used in [9]. However, they
first start with a complete conventional partitioning, and then use the host graph
to guide an incremental improvement of the partitioning. Still other heuristics
for solving the mapping problem were given in [5,6,10]. In contrast, the Dynamic
Resource Utilization Model (DRUM) [1] uses measurements to derive a hierar-
chical scalar characterization of compute nodes, merging both computing power
and network bandwidth into a single “power” value per node. As the hierarchy
is explicit in the abstract model, general-purpose partitioners such as Zoltan [17]
can be instrumented to use specific partitioning strategies at each level [1].

In all cases cited above, the description of the hardware architecture and
the related network performance parameters have to be set up manually. The
network models discussed so far represent compromises, aiming to be simple
enough for the underlying optimization approach. The NCM ignores hierarchical
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structures, thus excluding level-specific partitioning. On the other hand, the
averaging DRUM model loses some fine-grained local structure and seems less
suited for e.g. mesh architectures.

Applications requiring graph partitioning are frequently using the Message-
Passing Interface (MPI) for process communication. MPI, being strictly a com-
munication interface, has no functionality for solving the mesh-partitioning
problem. Since the MPI interface has no notion of “cost” of communication, MPI
also cannot supply the knowledge of the underlying system required to construct
the weighted host graph needed by a partitioning/mapping package. However,
the internal assumptions about the underlying system present in any MPI imple-
mentation could potentially be made useful to solve the mesh-partitioning prob-
lem. This could be done either implicitly via the graph topology functionality of
MPI, using the two-stage approach to the mesh-partitioning problem discussed
and evaluated in sections 2 and 3. An orthogonal solution, discussed in Section 4,
is to make the assumptions of the MPI implementation explicitly accessible in an
abstract, portable and non-constraining fashion, to be used to construct the de-
sired host graph for a mapping package. Finally, in Section 5, we take a broader
view and ask if graph partitioning does not solve a too narrow problem altogether.

2 Mesh-Partitioning with MPI Process Topologies

Although not capable of solving the mesh-partitioning problem, MPI defines
functionality to solve a process re-mapping problem that could be used as the
second stage in a two-stage approach: first partition the mesh into |P | subsets
Vi, i = 0, . . . |P | − 1 assuming a homogeneous communication system, second
find an optimal mapping of the |P | subsets onto the set of processors.

The graph topology functionality of MPI [12, Chapter 6] makes it possible
to specify a non-weighted communication graph, abstracting the communication
pattern of the |P | processes. The MPI implementation in turn can use this
information to create a new communicator representing a process remapping
which is best suited for the given communication graph on the given system.
It is up to the MPI implementation to provide a suitable remapping (which
could be just the identity mapping). While the two-stage approach has often
been discussed, e.g. in [16], using the MPI topology functionality for the second
process remapping step has apparently not been considered previously.

Assuming that the MPI implementation at hand has a non-trivial implemen-
tation of the topology functionality, the problem arises how to specify the com-
munication graph of the |P | processes. Putting an edge between two processes
whenever there is an edge in G between two partitions is likely to lead to a
communication graph overstating weak connections, possibly to the point of be-
ing a complete graph without information. Using edge weights corresponding
to communication load between partitions would be an informative alternative,
but is unfortunately not permitted by the MPI functionality. Instead, an edge
could be put if the total weight of edges between two partitions exceeds a certain
threshold.
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Node0 Node1 Node2 Node3 Node0 Node1

Fig. 1. Algorithm with hybercubic communication pattern. Communication intensity
and/or volume decrease with increasing hypercube dimension. Heavier edges denote
heavier communication. Left: optimal mapping of the algorithm onto a 2 + 2 + 2 + 2
processor SMP cluster. Right: optimal mapping onto a 4 + 4 processor cluster.

As the examples below will show both the threshold solution and the two-
stage approach itself have limitations. We assume an SMP system with a marked
difference in communication performance between processes on the same vs. on
different SMP nodes. Similar examples can be constructed for systems with
other, non-homogeneous interconnects.

The first example shows that unweighted graphs and thresholds are too weak
to enforce an optimal mapping, unless complete knowledge of the underlying
system is available, thus defying the idea of a portable, system-independent so-
lution to the mesh-partitioning problem: Selecting the correct threshold a priori
without knowledge of the target system configuration is not possible.

Example 1. Consider a hypercube algorithm with strong communication along
dimension 0, less strong along dimension 1, etc. that we want to map onto an
SMP system. Clearly, the processors should be mapped such that as many of
the lower-dimensional, heavily communicating edges are inside SMP nodes, with
higher-dimensional, weaklier communicating edges between nodes, cf. Figure 1.

Consider first the two-dimensional case of 4 processes to be mapped onto a
2 + 2 processor cluster. Selecting a threshold resulting in edges along dimension
0 only, would make it possible for the MPI implementation to place pairs of
connected processors on the same node, such that the heaviest communication
takes place inside SMP nodes. On the other hand, selecting a lower threshold and
having edges both along dimension 0 and dimension 1 would make it impossible
for the MPI implementation to make the right decision since each process would
be marked as communicating with two other processes.

Moving to three dimensions, for a 4 + 4 processor cluster the best threshold
would put edges along dimension 0 and 1. For a 2 + 2 + 2 + 2 processor cluster
the best threshold would put edges only along dimension 0. �

The problem is aggravated for systems with more than two layers of commu-
nication. In such cases even with knowledge of the underlying system, it is in
general not possible with an unweighted graph to provide enough information
to the MPI implementation to permit an optimal solution.

Hierarchical structures are found e.g. in multi-physics codes, where coupling
within the “single-physics” cores occurs much more often than across sub-problem
boundaries. If such problems are part of a larger application, we get yet another
weaker level of coupling. Concrete examples are found in climate research, where
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Fig. 2. Weighted 8 node tree (left). The optimal partition (middle) has cut weight
2a+b. No matter how the 4 sets of this partition are mapped onto the 2+2 processors,
at least one a-edge crosses SMP nodes. A worse partition with cut weight 2a+3b (right)
can be mapped such that the weight of edges crossing SMP nodes is only 3b.

different models are coupled to achieve a more comprehensive global model [15].
For instance, we may have 3D/3D coupling of flow and chemistry components for
both air and ocean, each coupling to their respective spatial neighbor partitions
and a coupling occurring with lower frequency via the ocean/air interface.

A natural modification of the MPI graph topology mechanism would be to
allow weighted graphs to model the intensity of communication along the edges.
As the next examples show, the two-stage approach is strictly weaker than a
direct solution of the processor mapping problem: A graph partitioner without
knowledge of the target system (as modeled by the host graph) cannot compute
the most suitable partition for the system.

Example 2. We consider a weighted tree of 8 nodes as shown in Figure 2. There
are two different edge weights a and b with a > b. The minimum cut partition
has cut weight 2a + b but is not optimal for mapping onto a 2 + 2 processor
SMP cluster, since at best an a and a b edge cross between nodes. Instead,
the suboptimal partition with cut weight 2a + 3b is better suited, since the
weight of the edges between processes on different SMP nodes can be arranged
to be only 3b. For appropriate values of bandwidth and edge weights, the ratio
in communication load between the two partitionings can become arbitrarily
large. �

Example 3. Example 2 may seem artificial. Figure 3 shows that the two-stage
approach can give arbitrarily bad results even for mesh-based graphs. �

From the examples two conclusions can be drawn:

1. The non-weighted MPI topology functionality does not provide enough in-
formation for optimal process remapping in case of different communication
requirements between different processes. This could easily be remedied by
allowing weighted communication graphs in the MPI functionality. This and
other problems (lack of scalability, lack of control of optimization criterion,
etc.) was discussed in [14].

2. Even with weighted graphs the two-stage approach to mesh-partitioning may
deliver arbitrarily bad solutions. In [16], the two-stage approach is shown to



298 G. Berti and J.L. Träff
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Fig. 3. Left: “Jagged” mesh. Middle: Homogeneous optimal 4-way partitioning. Right:
Optimal partitioning for a 2+2 SMP cluster {P0, P1}, {P2, P3}, having minimal cou-
pling between both SMP nodes.

be worse by a factor of about 2-3 on average for benchmark meshes on cluster
architectures, using weighted edge cut as measurement (no actual timings
are given).

Even though the two-stage approach is inferior to a direct solution, it can be
a viable and user-friendly option in cases where the partitioning of the problem
is fixed, as the next section will show.

3 An Application Kernel

To illustrate the possible performance benefits achievable by mesh partitioning
using the (theoretically sub-optimal) two-stage approach with the final process
remapping done by the MPI topology functionality, we consider a communication
kernel with the hypercube communication pattern described in Example 1. This
pattern is assumed to be the outcome of the first stage mesh partitioning, and
the second stage consists in a process remapping to fit the target system. This
is carried out by defining a communication graph which can be input to MPI to
perform the appropriate process remapping. The kernel is written such that the
process to processor mapping implied by MPI COMM WORLD (where MPI processes
are distributed consecutively in increasing MPI rank order over the SMP nodes)
is unsuited for SMP systems: the most frequent communication will be between
processes on different nodes. In the kernel the communication frequency along
hypercube edges increases exponentially with decreasing dimension of the edge.
Increase factor as well as size of the data sent along the dimensions can be varied,
but will not be of concern here.

In order to gain any effect a non-trivial implementation of the MPI graph topol-
ogy functionality is required. This is fulfilled by MPI/SX [13], and the measure-
ments shown in Table 1 have been conducted on a four node, 32 processor NEC
SX-8 system. The difference in communication bandwidth between processes on
the same SMP node and processes on two different nodes is about a factor of two,
but more importantly, if several processes on a node attempt to communicate with
processes on other nodes at the same time, the communication is serialized. Thus,
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Table 1. Running time (in micro-seconds) for the hypercube kernel on an NEC SX-8.
The first two columns describe the SMP configuration, and the remainder give the
running time on various MPI process distributions: MPI COMM WORLD communicator,
a random communicator, and communicators created by the topology functionality.
Here topo[i] denotes a communication graph with edges along hypercube dimensions
0, . . . , i − 1. The largest improvements over MPI COMM WORLD the distribution is shown
in bold, and ranges from a factor of two to a factor of more than 5.

Processes Distribution WORLD random topo[1] topo[2] topo[3] topo[4] topo[5]

8 8 5632 5620 5627 5958 5639
4 + 4 21021 22399 6653 6517 20987

2 + 2 + 2 + 2 18402 20379 6223 6221 18970
16 8 + 8 321742 223179 66703 55329 68053 321769

4 + 4 + 4 + 4 221754 185305 62101 51588 65404 222387
1 + 7 + 1 + 7 291283 212762 166729 160646 166331 291008
2 + 6 + 2 + 6 265642 225786 65491 159097 65844 295374
3 + 5 + 3 + 5 239661 221891 170463 157388 164895 271440

8 + 4 + 4 320393 218326 68943 53494 66942 320363
32 8 + 8 + 8 + 8 1090388 1197901 460068 228929 251979 532812 1093170

mapping heavily communicating processes to the same node is doubly beneficial.
As detailed in Example 1, in the absence of edge weights in the MPI topology
functionality, graph edges must be chosen to reflect the SMP system. Too few
edges (e.g. only along hypercube dimension 0) can give sub-optimal improvement,
and too many edges makes too many processes indistinguishable such that a good
remapping cannot be guaranteed.

Table 1 gives some results of running the kernel on various number of processes
and distributions over the SMP nodes. In each case good results are achieved
when each subcube of the communication graph fits onto one SMP node. Bad
results are generally achieved when the subcubes are too large for the SMP nodes
(e.g. column topo[4], corresponding to communication graphs with 16 process
subcubes to be mapped onto 8 process SMP nodes), and good or even best
results are achieved with smaller sized subcubes than the size of the SMP nodes
(most of the best results are in column topo[2]). The best overall improvements
exceed a factor 5 for distributions with 16 and 32 processes.

4 Portable MPI Topology Introspection

As shown, using the MPI topology functionality to solve the mesh-partitioning
problem has inherent limitations, even if weighted graphs would be allowed. The
alternative is to do the mesh-partitioning completely outside of MPI. This requires
information on the communication system, either a priori, by measuring, or both.
Measuring alone is of limited value on a loaded system, and in general has difficul-
ties capturing effects of contention (cf. end of Section 5 for possible solutions).

Instead, we propose to leverage the implicit knowledge on the system which
is present in any MPI implementation (no matter how rudimentary). For an
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MPI communicator we model the part of the communication system used by
the processes in the communicator as a complete graph with multiple weight
functions. Nodes correspond to processes, with edge weights modeling either
the number of abstract hops between two processes, or the relative bandwidth,
or relative latency, . . . . A hop measures the number of communication layers
between two processes. Processes on the same node of an SMP cluster would
be one hop distant (the number of hops from a process to itself being 0), and
processes on different node would be two hops distant. In a 1D linear array, each
process (in MPI COMM WORLD) has two neighbors which are one hop away, two
neighbors that are two hops away and so on.

We believe that it is possible to make this abstract representation available
to an MPI application (e.g. mesh-partitioner) in a meaningful and portable way,
regardless of the actual system. We suggest the following functionality.

– Functions returning the number of neighbors of the calling process that are
exactly n hops away, the list of such neighbors, and the maximal hop distance
to any other process in the communicator.

– Functions returning the hop distance, relative bandwidth and relative latency
between the calling process and any other process in the communicator.
Relative bandwidth, e.g., could be expressed as the ratio to the bandwidth for
the process communicating with itself. This issue is bound to be contentious.

– A function returning the maximum number of simultaneous communication
operations to processes at a given hop distance.

– Possibly more involved functions for estimating the effects of contention, e.g.
returning the load of the communication path between the calling process
and any other process in the communicator, given that (a) the two processes
are the only processes communicating, (b) the load under the worst bisection
with the two processes belonging to different parts.

These proposals are portable in the sense that each processor is only required
to be able to return information about its own neighborhood (relative to the
given communicator). A trivial implementation is possible, and would map all
processes as being one hop away.

This functionality would clearly make it possible to build the concrete graphs
as used in the NCM approach [16], or to construct hierarchical models like
DRUM, as well as other imaginable representations. For instance, a hierarchical
graph can be built by an application as follows:

1. Get all neighbors with hop distance 1,
2. Compute local graph components
3. While the graph is not connected:

(a) introduce a new hierarchical node for the current component
(b) Get all neighbor graph components for the next larger hop distance n
(c) Compute the resulting larger components



What MPI Could (and Cannot) Do for Mesh- Partitioning 301

5 Beyond Partitioning: Affinity Scheduling

The discussion so far assumed that a host graph H = (P, C) is given. In gen-
eral, however, H is only a subgraph of the (available part of the) global machine
graph HG, and is selected by a system scheduler, typically based on the number
of compute nodes specified by the user. This places the burden of specifying an
adequate subset of the machine on both the user (who may not know about it),
and the scheduler (who does not know about the application). Giving the sched-
uler more knowledge about the resource requirements of an application, it could
choose an optimal subset of the machine matching high-level user preferences:

– The user could demand just enough processors to finish within one hour
– The application is partitioned into largely independent tasks and can there-

fore be distributed to weakly connected nodes
– It is found that the application will not achieve good parallel performance

on the currently available set of nodes, and it is scheduled for a later time

These tasks cannot by solved in the narrow frame of graph mapping. Instead,
we propose to consider the following optimal subgraph scheduling problem: Given
the time dependent global machine graph HG(t) = (PG(t), CG(t)), t > 0 (“free
processors at time t”), a utilization cost function K = K(P, τ, t) (cost for using
processor set P ⊂ PG(t) for duration interval [t, t + τ ]), and a user preference
function Φ = Φ(K, t) (preference of finishing the task until time t with total cost
K), find a starting time t0 and a mapping π : V �→ PG(t0) such that

Φ (K(π(V ), t0, Tapp), t0 + Tapp) is minimized (Tapp = Tapp(π(V )) (4)

Here, the total (expected) time Tapp is an application-specific performance es-
timation based on the partitioning and the available network (sub)topology. In
(4), a hidden constraint is that the subgraph HG(t) must be available for all
times t = t0 + τ, 0 ≤ τ ≤ Tapp(π(V )).

For homogeneous architectures, K(P, τ, t) = αPτ and Φ(K, T ) = KT would
be reasonable choices. Changing Φ, a user could slant the result in favor of
cheaper or faster computation. Information about HG(t) is generally available
only in the system scheduler, thus, a solution to problem (4) would have to
access this information. Using scheduler information together with actual net-
work measurements might also permit to estimate the bandwidth available to
new applications, thus combining the advantages of static and dynamic network
information.

6 Summary

We investigated two orthogonal paths to solving the mesh-partitioning prob-
lem for systems with a non-homogeneous communication system. A two-stage
approach, consisting of ordinary graph partitioning followed by a remapping re-
lying on the MPI topology functionality, and probably requiring the least change
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on behalf of the application, is limited by the restriction to non-weighted commu-
nication graphs of the MPI standard. As an orthogonal approach, we discussed
additional, portable, system-independent MPI functionality, which could aid the
application programmer in constructing the desired graph model of the system
to be used as input to sophisticated mesh-partitioners. An artificial, but not
unrealistic kernel showed the large potential gains by performing an appropriate
process mapping.

References

1. K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,
J. Faik, J. E. Flaherty, and L. G. Gervasio. New challenges in dynamic load
balancing. Appl. Numer. Math., 52(2–3):133–152, 2005.

2. C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving net-
work partitions. In 19th ACM/IEEE Design Automation Conference (DAC), pages
175–181, 1982.

3. M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

4. B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.
Parallel Computing, 26:1519–1534, 2000.

5. B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs. In
Proceedings of the 1995 ACM/IEEE Supercomputing Conference, 1995.

6. B. Hendrickson, R. Leland, and R. V. Driessche. Skewed graph partitioning. In
Proc. 8th SIAM Conference on Parallel Processing for Scientific Computing, 1997.

7. G. Karypis. METIS. http://www-users.cs.umn.edu/~karypis/metis/.
8. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. Bell System Technical Journal, 49:291–307, 1970.
9. I. Moulitsas and G. Karypis. Architecture aware partitioning algorithms. Technical

Report DCT Research Report 2006/02, Digital Technology Center, University of
Minnesota, Jan. 2006.

10. F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In High-
Performance Computing and Networking (HPCN), Europe, volume 1067 of Lecture
Notes in Computer Science, pages 493–498. Springer-Verlag, 1996.

11. J. E. Savage and M. G. Wloka. Parallelism in graph-partitioning. Journal of
Parallel and Distributed Computing, 13:257–272, 1991.

12. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.
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Abstract. Automatic trace analysis is an effective method for identifying com-
plex performance phenomena in parallel applications. However, as the size of par-
allel systems and the number of processors used by individual applications is con-
tinuously raised, the traditional approach of analyzing a single global trace file,
as done by KOJAK’s EXPERT trace analyzer, becomes increasingly constrained
by the large number of events. In this article, we present a scalable version of the
EXPERT analysis based on analyzing separate local trace files with a parallel tool
which ‘replays’ the target application’s communication behavior. We describe the
new parallel analyzer architecture and discuss first empirical results.

1 Introduction

Event tracing is a well-accepted technique for post-mortem performance analysis of
parallel applications. Time-stamped events, such as entering a function or sending a
message, are recorded at runtime and analyzed afterwards with the help of software
tools. For example, graphical trace browsers like VAMPIR [1] and PARAVER [2], allow
fine-grained investigation of execution behavior using a zoomable time-line display.

However, in view of the large amounts of data usually generated, automatic off-line
trace analyzers, such as the EXPERT tool from the KOJAK toolset [3,4], can provide
relevant information more quickly by automatically searching traces for complex pat-
terns of inefficient behavior and quantifying their significance. In addition to usually
being faster than a manual analysis performed using trace browsers, this approach is
also guaranteed to cover the entire event trace and not to miss any pattern instances.

Unfortunately, sequentially analyzing a single trace file does not scale to applications
running on thousands of processors. Even if access locality is exploited, the amount
of main memory might not be sufficient to store the current working set of events.
Moreover, the amount of trace data might not even fit into a single file, which already
suggests to perform the analysis in a more distributed fashion.

In this paper, we describe how the pattern search can be done in a more scalable way
by exploiting both distributed memory and parallel processing capabilities available on
modern large-scale systems. Instead of sequentially analyzing a single global trace file,
we analyze separate local trace files in parallel by replaying the original communication
on as many CPUs as have been used to execute the target application itself.

We start our discussion with a review of related work in Section 2, followed by
an overview of our trace analyzer’s new parallel design in Section 3, where it is also
compared to the previous sequential design. Then, in Section 4, we discuss the parallel
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pattern-analysis mechanism in more detail, before we show preliminary experimental
results that already demonstrate the improvement over the sequential analysis in Sec-
tion 5. Finally, in Section 6 we conclude the paper and outline further improvements.

2 Related Work

Wolf et al. [5] review a number of approaches addressing scalable trace analysis. Dy-
namic periodicity detection in OpenMP applications [6] avoids recording redundant per-
formance behavior, while the frame-based SLOG trace-data format [7] supports scalable
visualization. Important to our particular approach has been the distributed trace analy-
sis and visualization tool VAMPIR Server[8], which provides parallel trace access mech-
anisms, albeit targeting a ‘serial’ human client in front of a graphical trace browser as
opposed to fully automatic and parallel trace analysis. A tree-based main memory data
structure for event traces called cCCG [9] allows potentially lossy compression of trace
data while observing specified deviation bounds.

Non-trace-based on-line performance tools, such as Paradyn [10] or Periscope [11],
that analyze performance data in real-time address scalability by employing hierarchical
networks for efficient reduction and broadcast operations between back-end processes
and the tool front-end. The particular way patterns are specified and implemented in EX-
PERT was stimulated by the APART Specification Language (ASL) [12], which provides
a formal notation to describe performance properties of parallel applications. Other
ASL-inspired work includes JavaPSL [13], a Java version of ASL, and the aforemen-
tioned Periscope tool. KappaPI 2 [14] sequentially searches trace files of message-
passing applications for patterns very similar to those used in our approach, but in
KappaPI 2 emphasis is put on generating recommendations on how to improve the
performance using knowledge of bottleneck use cases.

3 Overview of Parallel Trace Analysis

Instead of sequentially analyzing a single and potentially large global trace file, we an-
alyze multiple local trace files in parallel based on the same parallel programming par-
adigm as the one used by the target application. For the sake of simplicity, we currently
have restricted ourselves to handle only single-threaded MPI-1 applications, which im-
plies that our parallel analyzer is an MPI-1-based program as well. The analyzer is
executed on as many CPUs as have been allocated for the target application, allowing
to run it within the same batch job as the application itself. Using an allocation with a
different (smaller) number of CPUs for the analysis would require a separate batch job
introducing typically significant additional waiting time in the performance analysis
workflow. Figure 1 depicts the analysis workflow along with responsible components
in comparison to the sequential analysis implemented by EXPERT.

The parallel analyzer itself uses a distributed memory approach, where each process
reads only the trace data that was recorded for the corresponding process of the target
application. This specifically addresses scalability with respect to wider traces, this is,
those from larger numbers of processes. Since longer traces can be handled by selective
tracing — i.e., by recording events only for code regions of particular interest — we
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Fig. 1. Schematic overview of the new parallel analysis work flow (a) in comparison to the previ-
ous sequential analysis (b). Stacked rectangles denote multiple instances of files or applications
executed in parallel.

assume that the local trace data can be completely held in the main memory of the
compute nodes. This has the advantage of having efficient random-access to individual
events, whereas this is often not the case when dealing with a global trace file.

The actual analysis can then be accomplished by performing a parallel replay of
the application’s communication behavior. The central idea behind this replay-based
analysis approach is to analyze a communication operation using an operation of the
same type. For example, to analyze a point-to-point message, the event data necessary
to analyze this communication is also exchanged in point-to-point mode between the
corresponding analysis processes. To do this, the new analysis traverses local traces in
parallel and meets at the synchronization points of the target application by replaying
the original communication. How this idea can be used to search for complex patterns
of inefficient behavior will be described in more detail in Section 4.

The event records stored in the individual per-process trace files use local identifiers
to refer to static program entities, such as source-code regions or MPI communicators.
Therefore, these local identifiers are mapped onto unique, global identifiers for the ex-
change of trace data between analysis processes. In the sequential analysis this map-
ping is part of the Merge step. In the parallel approach, this is similarly accomplished
by performing a preprocessing step using a separate program that sequentially unifies
the definitions of the per-process traces and generates a global definitions file that is
shared between all analysis processes. To avoid reading the entire local trace files to
extract definition records, we have modified the KOJAK measurement system to write
definition and event records into separate files. The Unification step also creates a set
of mapping tables that the analysis processes use to convert local into global identifiers
while reading their local event data.
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Each parallel analysis process only calculates a subset of the overall analysis report.
Therefore, these local reports have to be combined into a single output file after the
analysis has completed. In our current prototype, the individual analysis processes write
their results to local files, which are then merged into a global CUBE output file [15]
during a separate postprocessing Combine step.

These sequential pre- and postprocessing steps can be optimized in several ways,
among which the most promising option is their integration into the analyzer and con-
comitant parallelization to minimize costly file I/O operations. However, detailed dis-
cussion of these optimizations is beyond the scope of this paper.

4 Message Passing Pattern Analysis

The replay-based analysis approach can be used to search for a large number of inef-
ficiency patterns. Our current prototype supports the full range of MPI-1 performance
metrics offered by the original sequential EXPERT tool, with the exception of Late Re-
ceiver, Messages in Wrong Order that is rarely significant in practice. A representative
subset of these patterns is diagrammed in Figure 2. Their detection algorithms will be
used to illustrate the parallel analysis mechanism below.
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Fig. 2. Patterns of inefficient behavior

4.1 Point-to-Point Communication

As an example for inefficient point-to-point communication, we consider the so-called
Late Sender pattern. Here, a receive operation is entered by one process before the
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corresponding send operation has been started by the other. The time lost due to this
pattern is therefore the difference between the timestamps of the enter events of the MPI

function instances which contain the corresponding message send and receive events.
The complete Late Sender pattern consists of four events, specifically the two enter
events and the respective message send and receive events.

During the parallel replay, the detection of this performance problem is triggered by
the point-to-point communication events involved (i.e., send and receive). That is, when
a send event is found by one of the processes, a message containing this event as well as
the associated enter event is created. This message is then sent to the process represent-
ing the receiver using a point-to-point operation. To ensure the correct matching of send
and receive events, we use equivalent tag and communicator information to perform the
communication.

When the receiver reaches the receive event, the aforementioned message containing
the remote constituents of the pattern is received. Together with the locally available
constituents (i.e., the receive and the enter events), a Late Sender situation can be de-
tected by comparing the timestamps of the two enter events and calculating the time
spent waiting for the sender. This approach relies on the availability of a synchronized
clock: otherwise linear interpolation of timestamps [16] is used, but alternative methods
of time correction are being considered.

The detection of the Late Receiver pattern is very similar and straightforward to im-
plement. However, to avoid sending redundant messages while executing the detection
algorithms for the different performance problems related to point-to-point communica-
tion, we exploit specialization relationships between patterns and reuse results obtained
on higher levels of the hierarchy. This is implemented using a sophisticated event no-
tification and call-back mechanism similar to the publish-and-subscribe approach pre-
sented in [4]. For this pattern the severity is calculated by the receiver but attributed
to the sender’s location. To avoid the additional overhead of transferring the calculated
waiting time back to the sender, it is stored as a remote result at the receiving process.

By contrast, detecting the Late Sender, Messages in Wrong Order pattern is more
difficult. This pattern describes the situation that during a Late Sender pattern, another
message is waiting to be received by the same destination but which was sent earlier.
To detect it, we would need a global view of the messages currently in transit while
assessing the Late Sender situation, which is not available in a parallel implementation.
Therefore, each analysis process keeps track of the last occurrences of the Late Sender
pattern found in its local trace using a ring buffer. If a receive event is encountered
during the replay, we compare the timestamps of the corresponding send event and those
of the buffered Late Sender occurrences. If the Late Sender’s send operation starts after
the send event associated with the current receive, the Late Sender instance is classified
as a Wrong Order situation and removed from the buffer. Note that this approach does
not guarantee to find all occurrences of this pattern, although empirical results suggest
that the coverage of our method is sufficient in practice.

4.2 Collective Communication and Synchronization Operations

The second important type of communication operations are MPI collective operations.
As an example of a related performance problem, we discuss the detection of the Wait



308 M. Geimer et al.

at N×N pattern, which quantifies the waiting time due to the inherent synchronization
in N-to-N operations, such as MPI Allreduce.

While traversing the local trace data, all processes involved in a collective operation
will eventually reach their corresponding collective exit events. After verifying that it
relates to an N-to-N operation, accomplished by examining the associated region iden-
tifier, the analyzer invokes the detection algorithm, which determines the latest of the
corresponding enter events using an MPI Allreduce operation. After that, each process
calculates the local waiting time by subtracting the timestamp of the local enter event
from the timestamp of the enter event obtained through the reduction operation. The
group of ranks involved in the analysis of the collective operation is easily determined
by re-using the communicator of the original collective operation.

Very similar algorithms can be used to implement patterns related to 1-to-N, N-to-1
and barrier operations. As with point-to-point operations, a single MPI call is used to
calculate the asscociated waiting times. Only barrier operations, for which the analyzer
also calculates asymmetries that occur when leaving the operation, require two calls.

5 Results

To evaluate the effectiveness of parallel analysis based on a replay of the target appli-
cation’s communication behavior, a number of experiments with our current prototype
implementation have been performed at a range of scales and compared with the se-
quential EXPERT tool. To facilitate a fair comparison, a restricted version of EXPERT

was used that provides only the functionality of our parallel prototype, i.e., support for
MPI-2, OpenMP, and SHMEM pattern analysis was disabled.

Measurements were taken on the IBM BlueGene/L system at Forschungszentrum
Jülich (JUBL), which consists of 8,192 dual-core 700 MHz PowerPC 440 compute
nodes (each with 512 MBytes of memory), 288 I/O nodes, and p720 service and lo-
gin nodes each with eight 1.6 GHz Power5 processors [17]. The system was running
the V1R2 software release with GPFS parallel filesystem configured with 4 servers. A
dedicated partition consisting of all of the compute nodes was used for the parallel
analyses, whereas the sequential programs (pre- and postprocessing, and EXPERT) ran
on the lightly-loaded login node. Two applications with quite different execution and
performance characteristics have been selected for detailed comparison.

The ASC benchmark SMG2000 [18] is a parallel semi-coarsening multigrid solver,
which uses a complex communication pattern. The MPI version performs a lot of non-
nearest-neighbor point-to-point communication operations (and only a negligible num-
ber of collective communication operations) and can be considered to be a stress-test
for the memory and network subsystems of a machine. To investigate weak scaling
behavior, a fixed 64×64×32 problem size per process with five solver iterations was
configured, resulting in a nearly constant application run-time as additional CPUs were
used. Because the number of events traced for each process increases with the total
number of processes, the aggregate trace volume increases faster than linearly.

The second case, PEPC-B [19], uses a locally-developed parallel tree code for com-
puting long-range forces in N-body particle systems applied in this case to beam-plasma
interactions. With a fixed problem size consisting of one million charged particles
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updated for 10 steps, increasing the number of CPUs reduces overall run-time as a
demonstration of strong scaling behavior. By contrast to the SMG2000 benchmark,
it uses a significant proportion of collective communication and synchronization
operations.

Figure 3 charts wall-clock execution times for the uninstrumented applications and
their analysis with a range of process numbers on JUBL. The 8-fold doubling of process
numbers necessitates a log–log scale to show the corresponding range of times, partic-
ularly for the old sequential analysis (which furthermore becomes impractical for the
largest traces). The figure shows the total time needed for the parallel analysis includ-
ing the aforementioned sequential steps, the time taken by the parallel analysis without
sequential steps, and the time taken by the parallel replay itself without file I/O. Due
to the often considerable variation in the time for file I/O (e.g., depending on overall
filesystem load) the times reported are the best of several measurements.

While the set of execution traces from 1,024 PEPC-B processes only reached
400 MBytes aggregate size (56 million events in total), the corresponding execution
traces from 1,024 SMG2000 processes were 10 GBytes (a total of 1,886 million events).
The largest set of execution traces from 16,384 SMG2000 processes amounted to
230 GBytes (over 40,000 million events in total). Both applications have communi-
cation characteristics that result in individual process traces being considerably smaller
or larger than the average.

File I/O can be seen to command increasing proportions of the analysis time, how-
ever, future versions of the parallel analysis will reduce this overhead by parallelizing
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Fig. 3. Execution times for SMG2000 (left) and PEPC-B (right) and their analysis using the se-
quential EXPERT and new prototype at a range of scales. Linear scaling is the bold dotted line.



310 M. Geimer et al.

Fig. 4. Analysis report for ASC SMG2000 on 16,384 processors of BlueGene/L highlighting the
distribution of the Wait at N x N performance metric in the SMG.Setup MPI Allreduce on the
physical machine topology distribution (left) and MPI process topological distribution (right).
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the currently sequential pre- and postprocessing steps and thereby eliminating the need
to read and write intermediate data files. By contrast, the actual procedure of replaying
and analyzing the event traces, the focus of this paper, exhibits a satisfactory scaling be-
havior up to very large configurations. On account of its replay-based nature, the time
needed for this part of the analysis procedure depends on the communication behavior
of the target application. Since communication is a key factor in the scaling behavior of
the target application as well, similarities can be seen in the way both curves evolve as
the number of processes increases.

Notably, the total time for the new analysis approach is already more than one or-
der of magnitude faster than the sequential analysis based on EXPERT, which makes it
possible to examine wider (and longer) parallel traces in a reasonable time.

While SMG2000 is a reasonable test case for examining the scaling behavior of
performance analysis to large scales, as a well-optimized benchmark application, the
analysis results are of little interest (see Figure 4). On the other hand, PEPC-B is a rel-
atively new application which has recently been scaled in size and the performance
report shows that communication and load imbalance have become increasingly impor-
tant issues.

6 Conclusion and Future Work

We have presented a novel approach for automatically analyzing event traces of large-
scale applications based on exploiting the distributed memory capacity and the parallel
processing capabilities of modern supercomputing systems. Instead of sequentially an-
alyzing a single and potentially large global event trace file, we analyze separate local
trace files with an analyzer, that is a parallel application in its own right, replaying the
target application’s communication behavior. This approach has been elaborated to im-
plement the detection algorithms for a variety of performance problems related to the
use of the MPI-1 parallel programming interface. In the future, we plan to add support
for additional APIs, such as OpenMP and MPI-2, and will investigate using a smaller
number of processes for the replay analysis than were used for the measurement, to
provide greater analysis flexibility.

To evaluate the scalability of our approach, we have performed experiments with
different applications using our prototype implementation on up to 16,384 CPUs. Al-
though the overall analysis time is currently dominated by the sequential parts of the
procedure and associated file I/O, the new approach is already more than one order of
magnitude faster than the sequential analysis carried out by the EXPERT tool, thereby
enabling analyses at scales that have been previously inaccessible.

Since the remaining sequential overhead can be reduced by integrating and paral-
lelizing the pre- and postprocessing parts to eliminate the need to read and write in-
termediate data files, these early results point to further improvements that can be re-
alized based on the new approach, as we focus on these parts of the analysis work
flow. The all-in-memory analysis (perhaps using cCCGs) will also be explored for
opportunities to facilitate the detection of new and more complex performance
problems.
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Abstract. To enable a scalable parallel application to view its global
performance state, we designed and developed TAUg, a portable run-
time framework layered on the TAU parallel performance system. TAUg
leverages the MPI library to communicate between application processes,
creating an abstraction of a global performance space from which profile
views can be retrieved. We describe the TAUg design and implemen-
tation and show its use on two test benchmarks up to 512 processors.
Overhead evaluation for the use of TAUg is included in our analysis.
Future directions for improvement are discussed.

Keywords: parallel, performance, runtime, MPI, measurement.

1 Introduction

Performance measurement of parallel applications balances the need for fine-
grained performance data (to understand relevant factors important for improve-
ment) against the cost of observation (measurement overhead and its impact on
performance behavior). This balance becomes more delicate as parallel systems
increase in scale, especially if the scalability of the performance measurement
system is poor. In practice, measurements are typically made for post-mortem
analysis [1,2], although some tools provide online monitoring[3] and analysis for
purposes of performance diagnosis [4,5] and steering [6,7,8,9]. For any perfor-
mance experiment, the performance measurement system is an intimate part of
the application’s execution and need/cost tradeoffs must take this into account.

Scalable efficiency necessitates that performance measurements be made con-
currently (in parallel threads of execution) without centralized control. The run-
time parallel performance state can be considered to be logically a part of the
application’s global data space, but it must be stored distributively, local to
where the measurements took place, to avoid unnecessary overhead and con-
tention. Measurement tools for post-mortem analysis typically output the final
performance state at the end of program execution. However, online tools require
access to the distributed performance state during execution.
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Fig. 1. TAUg System Design

In this paper, we consider the problem of runtime support for application-level
access to global parallel performance data. Our working assumption is that the
importance of online performance data access is decided by the application, but
will depend directly on the efficiency of the solution. It is equally important that
the solution be as portable as possible, flexible enough to accommodate its use
with different parallel computation scenarios, and scalable to large numbers of
processes. The main challenges are in defining useful programming abstractions
for coordinated performance data access, and in creating necessary infrastructure
that meets portability and efficiency objectives.

We describe a solution for use with the TAU parallel performance system
called TAUg. The TAUg design targets MPI-based applications (see §2) and
utilizes MPI in its default implementation (see §3) for portability and scalabil-
ity. The initial version of TAUg was tested with ASCI benchmarks sPPM and
Sweep3D and a synthetic load balancing simulation. The results are reported in
§4. Discussion of the TAUg approach and our future goals are discussed in §5.
Related work is in §6, and §7 gives concluding remarks.

2 Design

In our approach to the TAUg system design, we first identified the desired oper-
ational abstraction, and second, considered how best to implement it with MPI.
Figure 1 shows these two perspectives. The bottom part of the figure repre-
sents what TAU produces as a profile for each process. The TAU profile is an
aggregation of individual thread profiles. TAUg provides the abstraction of a
globally-shared performance space, the TAUg global profile. The dashed lines
represent the promotion of each process profile into this space. TAUg uses MPI
to create this global abstraction on behalf of the application.
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2.1 Views and Communicators

In TAU, events are defined for measurement of intervals (e.g., entry and exit
events for subroutines) or atomic operations (e.g., memory allocation events). In
TAUg, the global performance space, representing all events (interval and atomic
events) profiled on all processes and threads, is indexed along two dimensions.
The first dimension is called the TAUg (global) performance view, and represents
a subset of the performance profile data being collected (i.e., a subset of the TAU
profiled events). In our initial implementation, a view can specify only one event,
whose profile gives the performance for that event measured when the event is
active. The other dimension is called the TAUg (global) performance commu-
nicator, and represents a subset of the MPI processes in the application. The
notion of the TAUg communicator is that only those processes within the com-
municator will share TAUg performance views, so as to minimize perturbation
of the application.

2.2 Programming Interface

TAUg is designed to be a simple, lightweight mechanism for sharing TAU per-
formance data between MPI processes. The only prerequisites for using TAUg
are that the application already be using MPI and TAU. The three methods in
the API are designed to be in the same style as MPI methods. These methods
are callable from Fortran, C or C++.

An application programmer uses TAUg by first defining the global perfor-
mance views and communicators. The method TAU REGISTER VIEW is used to
specify a global performance view. This method takes as an input parameter
the name of a TAU profiled event, and has an output parameter of an ID for
the view. TAU REGISTER VIEW need only be called by processes that will use the
view with TAUg communicators they define.

The method TAU REGISTER COMMUNICATOR is used to create a global perfor-
mance communicator. It takes two input parameters; an array of process ranks
in MPI COMM WORLD and the size of the array. The only output parameter is the
newly created communicator ID. Because of MPI requirements when creating
communicators, TAU REGISTER COMMUNICATOR must be called by all processes.
The following code listing shows an example of how the TAU REGISTER VIEW and
TAU REGISTER COMMUNICATOR methods would be used in C to create a global
performance view of the event calc() and a global performance communicator
containing all processes.

int viewID = 0, commID = 0, numprocs = 0;
TAU_REGISTER_VIEW("calc()", &viewID);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
int members[numprocs];
for (int i = 0 ; i < numprocs ; i++) { members[i] = i; }
TAU_REGISTER_COMMUNICATOR(members, numprocs, &commID);

Having created all the global performance views and communicators needed
to access the global application performance, the application programmer calls
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the method TAU GET VIEW to retrieve the data. This method takes a view ID and
a communicator ID as input parameters. It also takes a collective communica-
tion type as an input parameter. The idea here is to allow TAU communicators
to pass profile data between themselves in different ways. The supported com-
munication types are TAU ALL TO ONE, TAU ONE TO ALL and TAU ALL TO ALL. If
TAU ALL TO ONE or TAU ONE TO ALL are used, a processor rank in MPI COMM WORLD
will represent the source or sink for the operation1. There are two output para-
meters which specify an array of doubles and the size of the array. TAU GET VIEW
need only be called by the processes which are contained in the specified TAU
global performance communicator. The following code listing shows an example
of how the TAU GET VIEW method would be used in C.

double *loopTime;
int size = 0, myid = 0, sink = 0;
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
TAU_GET_VIEW(viewID, commID, TAU_ALL_TO_ONE, sink,

&loopTime, &size);
if (myid == 0) { /* do something with the result... */ }

In summary, this application code is requesting that all processes send perfor-
mance information for the event calc() to the root process. The root process,
for example, can then choose to modify the application behavior based on the
running total for the specified event.

3 Implementation

TAUg is written in C++, and comprises a public C interface consisting of only
the three static methods described in Section 2.2. The complete interface for the
API is listed here:

void static TAU_REGISTER_VIEW (const char* event_name,
int* viewID);

void static TAU_REGISTER_COMMUNICATOR (int members[],
int size, int* commID);

void static TAU_GET_VIEW (int viewID, int commID,
int type, int sink, double** data, int* outSize);

The TAU REGISTER VIEW method creates a new global performance view struc-
ture, and stores it internally. The new view ID is returned to the calling method.
The TAU REGISTER COMMUNICATOR method creates new MPI group and commu-
nicator objects which contain the input process ranks, assumed to be relevant
in MPI COMM WORLD. It then stores the MPI communicator ID and all the com-
municator parameters internally, and returns the new communicator ID (not to
be confused with the MPI communicator type) to the calling method.

The TAU GET VIEW method first looks up the global performance view and
communicator in the internal structures. At the same time, the code converts
1 If the TAU ALL TO ALL type is specified, the source/sink parameter is ignored.



TAUg: Runtime Global Performance Data Access Using MPI 317

the source/sink process rank from MPI COMM WORLD to its rank in the global per-
formance communicator. The method then accesses TAU to get the profile data
for the global performance view. The profile data includes the inclusive and ex-
clusive timer values, number of calls and number of subroutines (events called
from this event). This data is then packaged in an MPI type structure and sent
to the other processes in the global performance communicator using collective
operations. Either MPI Allgather, MPI Gather or MPI Scatter is called, de-
pending on whether the application wants TAU ALL TO ALL, TAU ALL TO ONE or
TAU ONE TO ALL behavior, respectively. In the initial implementation, an array
of only the exclusive timer values is returned to the user as a view result.

4 Experiments

4.1 Application Simulation

TAUg was integrated into a simple simulation program to demonstrate its ef-
fectiveness in dynamically load balancing an MPI application. This simulation
is intended to replicate general situations where factors external to the applica-
tion are affecting performance, whether it be hardware differences or other load
interference on a shared system. In this experiment, the application program
simulates a heterogeneous cluster of n processors, where n/2 of the nodes are
twice as fast as the other n/2 processors.

Initially, each MPI process is designated an equal portion of the work to ex-
ecute. After each timestep, the application code queries TAUg to get a global
view of the application performance. Processes which are slower than the aver-
age are given a reduced workload, and the processes which are faster than the
average are given an increased workload. This process is iterated 20 times. The
application was tested with 5 configurations. Initially, an unbalanced version of
the application was tested and compared to a dynamically balanced version. It
soon became apparent that different lengths of performance data “decay” are
necessary to detect when the load has become balanced, so that the faster nodes
are not overburdened simply so that the slower nodes can catch up. Therefore,
three more configurations were tested, which used only the previous 1, 2, and 4
timesteps, respectively. Using the unbalanced application as a baseline for the
32 processor simulation, the dynamically balanced simulation is 15.9% faster,
and the dynamically balanced simulation which only considers the previous 1
timestep is 26.5% faster. Longer running simulations show similar speedup.

This simple example demonstrates that TAUg can be used to implement the
knowledge portion of a load balancing algorithm. In general,load imbalance is
reflected in performance properties (execution time and even more detailed be-
havior), but is caused by and associated with application-specific aspects (such
as poor grid partitioning). TAU can be used to measure both performance and
application aspects. TAUg then provides an easy-to-use interface for retrieving
the information in a portable way.
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Fig. 2. Comparison of sample execution times from modified and unmodified sPPM,
and fraction of time spent in TAUg. Examining the Y-axis on the right to compare total
runtime measurements, the application is not significantly affected by the addition of
TAUg.

4.2 Overhead and Scalability: sPPM and Sweep3D

The sPPM benchmark[10] solves a 3D gas dynamics problem on a uniform Carte-
sian mesh using a simplified version of the PPM (Piecewise Parabolic Method)
code.We instrumented sPPMwithTAU, andTAUg callswere added to get a global
performance view for each of 22 subroutines in the application code, for each of 8
equal sized communicators.The sPPMbenchmark iterates for 20double timesteps,
and at the end of each double timestep, sPPM was modified to request global per-
formance data for each global performance view / communicator tuple. 2

We ran sPPM on MCR, a 1,152 node dual P4 2.4-Ghz cluster located at
Lawrence Livermore National Laboratory. Using a weak scaling test of up to 64
processors, TAUg total overhead never exceeds 0.1% of the total runtime, and
the application is not significantly perturbed. Figure 2 shows the comparison of
the modified and unmodified sPPM performance.

ASCI Sweep3D benchmark [11] is a solver for the 3-D, time-independent, neu-
tron particle transport equation on an orthogonal mesh. Sweep3D was instru-
mented with TAU, and TAUg calls were added to get a global performance view
for one of the methods in the application code and one communicator consisting
of all processes. The Sweep3D benchmark iterates for 200 timesteps, and at the
end of each timestep, Sweep3D was modified to request global performance data
for the global performance view / communicator tuple.

2 This resulted in 22 calls to TAU GET VIEW since only one subroutine event can be in a
view in the current version.
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Fig. 3. Fraction of TAUg overhead as measured in Sweep3D in a strong scaling
experiment

We ran Sweep3D on ALC, a 960 node dual P4 2.4-Ghz cluster located at
Lawrence Livermore National Laboratory. During a strong scaling test of up
to 512 processors, TAUg total overhead never exceeded 1.3% of the total run-
time, and the application was not significantly perturbed. Figure 3 shows the
comparison of the modified Sweep3D performance to the TAUg overhead.

5 Discussion and Future Work

There are several issues to discuss with respect to the current TAUg system as well
as areas where we are interested in improving the TAUg design and implementa-
tion. Currently, TAUg limits global access to the exclusive value of a single event
for a single metric. We will add support for specifying multiple events in a TAUg
viewand an all tag for easily specifying all events. Similarly, hardwareperformance
counter information may be useful to many applications using TAUg, such as float-
ing point operations or cache misses. This information is currently available in
TAUg, but only one metric is available at a time. TAU supports tracking multi-
ple concurrent counters, and TAUg will be extended to support this as well. We
also will allow TAU GET VIEW to be called with an array of views.

The TAUg communication patterns cover what we felt were common use cases.
However, they translate into collective MPI operations in TAUg. We believe
there will be value to supporting TAUg send and receive operations, to allow
more pairwise performance exchange, still within a TAU communicator. This
will also allow the opportunity for blocking and non-blocking communication
to be used in TAUg. We will also experiment with one-sided communication in
MPI-2 to reduce the effects of our current collective operation approach.
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Presently, TAUg returns only the raw performance view to the application.
We plan to implement TAUg helper functions to compute profile statistics that
are typically offered post-mortem (e.g., mean, min, max, and standard deviation
for a performance metric). One particularly useful function would take two com-
patible view results and calculate their difference. This would help to address a
problem of calculating incremental global performance data from the last time
it was viewed.

6 Related Work

TAUg has similarities to research in online performance analysis and diagno-
sis. Autopilot [6] uses a distributed system of sensors to collect data about an
application’s behavior and actuators to make modifications to application vari-
ables to change its behavior. Peridot [12] extends this concept with a distrib-
uted performance analysis system composed of agents that monitor and evaluate
hierarchically-specified “performance properties” at runtime. The Distributed
Performance Consultant in Paradyn [5], coupled with MRNet, provides a scal-
able diagnosis framework to achieve these goals. Active Harmony [13] takes one
step further to include a component that automatically tunes an application’s
performance by adjusting application parameters.

While TAUg can be used to achieve the same purpose of performance diagnosis
and online tuning, it focuses as a technology only on the problem of portable
access to global performance data. In this way, its use is more general and can
be applied more robustly on different platforms.

7 Conclusion

Measurement of parallel program performance is commonly done as part of a
performance diagnosis and tuning cycle. However, an application may desire to
query its runtime performance state to make decisions that direct how the com-
putation will proceed. Most performance measurement systems provide little
support for dynamic performance data access, much less for performance data
inspection across all application processes. We developed TAUg as an abstrac-
tion layer for parallel MPI-based applications to retrieve performance views from
a global performance data space. The TAUg infrastructure is built on top of the
TAU performance system which generates performance profiles for each appli-
cation process. TAUg uses MPI collective operations to provide access to the
distributed performance data.

TAUg offers two important benefits to the application developer. First, the
TAUg programming interface defines the TAU communicator and view abstrac-
tions that the developer can use to create instances specific to their runtime
performance query needs. The TAU GET VIEW function will return the portion of
the global performance profiles selected by the communicator and view parame-
ters. As a result, the developer is insulated from the lower level implementation.
Second, the use of MPI in TAUg’s implementation affords significant portability,
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and the scalability of TAUg is only limited by the scalability of the local MPI
implementation. Any parallel systems supporting MPI and TAU are candidates
for use of TAUg.

It is true that TAUg will necessarily influence the application’s operation. We
provide some analysis of the overhead generated by TAUg in our benchmark
tests. However, the impact of TAUg will depend directly on how the application
chooses to use it. This impact is true both of its perturbation of performance
as well as its ability to provide the application with performance knowledge for
runtime optimization.
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Abstract. With parallel file I/O we are faced with the situation that
we do not have appropriate tools to get an insight into the I/O server
behavior depending on the I/O calls in the corresponding parallel MPI
program. We present an approach that allows us to also get event traces
from the I/O server environment and to merge them with the client trace.
Corresponding events will be matched and visualized. We integrate this
functionality into the parallel file system PVFS2 and the MPICH2 tool
Jumpshot.

Keywords: Performance Analyzer, Parallel I/O, Visualization, Trace-
based Tools, PVFS2.

1 Introduction

We now see more and more applications that deploy parallel I/O at different
abstraction levels. They use a parallel file system from sequential or parallel
programs with regular read/write calls or they already implement parallel I/O
with libraries at the level of MPI-IO or even higher. Often, the time spent for
file I/O is a significant percentage of the program’s execution time and thus
optimization is an important issue.

Parallel I/O is a complex concept. It involves client processes which usually
form a parallel program using MPI for message passing and MPI-IO for disk
access. Every I/O call refers to a set of servers which provide a parallel file
system for persistent data storage. Usual concepts deploy a striping scheme (i.e.
RAID-0 level) to distribute the data of a logical file onto physical files on several
disks. Distribution functions control where the data goes to. Thus, for every I/O
call in the program the client library determines on which server the needed byte
chunks are located and issues appropriate requests to these servers. As we have
parallel client processes and parallel server processes we see a set of message
transfers over the network with every I/O activity in the program [4].

The mapping of clients and servers onto the nodes of a cluster is crucial for
the overall performance we can get from I/O-bounded applications. In order to
optimize this mapping we need to get concise performance measures from our
client/server environment. There are tools that visualize the performance of the
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I/O servers, like e.g. Karma that comes with PVFS2. Karma is an on-line tool
that shows the I/O activity during a short sample time period. Unfortunately
there is no tracing facility integrated, thus values cannot easily be saved for
further investigation.

The main problem that prevents us from getting a deeper insight into our
environment’s behavior is the fact that there are no tools that can visualize the
servers’ activities in depence of the clients’ I/O calls. We would like to see the
relations of the two of them in order to improve certain aspects of parallel I/O.
This of course must be supported by a trace-based tool environment as we need
the data for analysis after program completion.

What would be the benefits of such a tool? First, the I/O system developers
can use it in order to improve internal concepts of their middle-ware. Bottle-
necks in the implementation will be visible that would otherwise be hidden. For
application programers it will be interesting to see the effects of their I/O calls
with respect to server activity. They can change the distribution function of the
files in order to balance the load on the servers manually. Future mechanisms
could use these results for automatic rebalancing of the file distribution.

What data should the tool present to us? Currently, trace visualizers show
relevant events of client processes on so-called time lines. We want to add lines
for the I/O servers of our environment and visualize them together with the
client processes’ time lines. As for MPI the idea behind the I/O API was to
make it similar to the message passing API. Thus, reading is like receiving and
writing like sending. Regular tools show the relations of sending and receiving
e.g. with arrows in a trace visualization tool. We would like to have the same
for reading and writing and the corresponding system activities.

At the moment there are no such tools for several reasons: First, there is
no tracing of I/O servers. Second, even with traces being provided, we need a
correlation to the events in the client processes. This asks for adaptations on
both sides. Third, there is no appropriate tool available that can visualize both
information sets in an adequate way.

This is where our project starts: We develop and implement a tool environ-
ment that can visualize client and server I/O activities at the same time and
correlate them. The implementation is based on PVFS2 in combination with
MPICH2 and Jumpshot.

The remainder of this paper is structured as follows: Section 2 will describe
related work and the state-of-the-art. Section 3 will explain the environment
followed by Section 4 that gives an overview over the project. Section 5 will
describe the components of our tool environment and Section 6 will show an
example.

2 Related Work and State-of-the-Art

With parallel computing we find two classes of tool concepts which are used for
different purposes: First there are on-line tools. They use a monitoring system
to get data out of the running application and/or instrument this application.
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Data is immediately used for several purposes: we can either display them (e.g.
with a performance analyzer) or use them for controlling the application (e.g.
with a load balancer). Usually data is not stored. A well-known representative
of this class is Paradyn [8,5]. Second, we have off-line tools. They present data
after program completion (or with a considerable delay during program run). In
order to do so the monitoring systems and instrumentations write event traces
to files that are used afterwards as data base. Representatives are TAU [11,10],
the Intel Trace Analyzer (formerly marketed as Vampir) [2], XMPI [15], and
Jumpshot [9]. Our work is for the family of trace-based tools, in particular for
performance analysis. So we will concentrate on these aspects here.

With performance analysis tools (on- and off-line) there was considerable
progress in the last recent years. In particular we see a focus towards automatic
detection of bottlenecks. The working group Apart (Automatic Performance
Analysis: Real Tools) [1] has investigated this issue in depth and several tool
enhancements were developed over the years. Visualization gets more sophisti-
cated and several tools allow to compare traces from different program runs. We
see also other sources of information being integrated into the trace: TAU en-
ters events from performance counters and measures provided by the operating
system.

What is still missing are two things: An explicit tracing and visualization
of the I/O system’s behavior and a correlation of program events and system
events. We will refer to these features as multi-source tracing and semantical
trace merging.

With trace-based tools we see two typical and crucial problems: Time synchro-
nization of events from sources at different physical locations and total size of
the trace files. Both issues are important and there is research available on each
of them. However, in our project we postpone these problems as we concentrate
first on new categories of functionality.

3 The Parallel I/O Environment

Our environment is composed of two packages: PVFS2 [12], which provides the
parallel file system, and MPICH2 [6], which implements MPI and some tools.
MPICH2 comprises MPE which includes the tracing environment for MPI pro-
grams and the Jumpshot tool for trace visualization. Our enhancements will
bring modifications to several of these packages.

To better understand the details of a running MPICH2/PVFS2 system let us
have a closer look at PVFS2 itself. PVFS2 has a layered architecture illustrated
in Figure 1. Interfaces for the layers use a non-blocking semantics. The user-level
interface provides a high abstraction to a PVFS2 file system. Currently, there
are integrations with MPI-IO and the kernel VFS available. The system inter-
face API provides functions for the direct manipulation of file system objects
and hides internal details from the user. Invoking a request starts a dedicated
statemachine processing the operation in small steps. Statemachines break com-
plex requests into several states each representing an atomic operations. Clients
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Fig. 1. PVFS2 software architecture

and servers can interlock the execution of these operations to obtain a time-
shared processing of different requests. A specific execution order is chosen to
ensure that a client crash has no impact on the metadata consistency.

The layers incorporate two caches, which store informations about the direc-
tory hierarchy and object attributes to avoid redundant server requests. The
job layer consolidates the lower layers into one interface and maintains thread
functions for these layers. Data of a larger I/O operation is directly transferred
between two endpoints by Flow. An endpoint is one of memory, network, or per-
sistency layer. Flow takes care of the data transmission itself once the endpoints
are specified. The Buffered Message Interface (BMI) provides a network inde-
pendent interface. Clients communicate with the servers by using the request
protocol, which defines the message layout for every request. BMI can use dif-
ferent communication methods, currently TCP, Myricom’s GM and Infiniband.
On the server side a main process decodes incoming requests and starts a new
instance of the request’s dedicated statemachine. Trove is the persistency layer
providing methods for manipulation of key/value pairs (used for metadata) and
data streams. BMI, Flow and Trove are modular and the actual implementation
can be chosen by the user. Currently, there is only one Trove module available,
database plus file (DBPF), which stores metadata in Berkeley databases and
data in Unix files. See [13] for details on PVFS2 internals.

Looking at the figure we can identify different processes: the server processes
and processes that contain the client library. The latter are the processes of our
parallel program and are linked with the MPI-library. As for tracing this has the
following consequence: We can get traces from the client processes via the MPE
tracing facility of MPICH2. Traces are written in clog2/slog2 format. What we
want to have in addition is a trace of the server processes that shows PVFS2
activities at the module level, i.e. in particular of the Trove module, as it does
the real file I/O to disk, but also the other modules are of interest. The next
section will give details on this.
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4 Project Overview

The project goal can be described as follows: In order to have a combined view
onto client and server activities we must be able to get traces during program
runtime from both of them. In order to see the server activities induced by an
MPI-IO call we must relate the two traces. Visually this will be done by adding
arrows between the events of clients and servers. Technically we will merge the
two traces before arrow integration. In order to visualize client and server traces
at the same time we must have an appropriate tool.

Figure 2 shows the block structure of our concept. MPI client processes which
are linked to the PVFS2 client library get already traced by the MPICH2/MPE
environment. We now need to have traces for the servers, too. We will use a simi-
lar approach as for the clients (described below). In both case we get at first clog2
node local traces that are merged to slog2 traces for all clients and all servers
respectively. These two traces now get merged and visualized concurrently in
the Jumpshot tool.

The list of issues to be covered in order to visualize this double trace with
additional arrows comprises the following points:

– Generate a single trace from the server processes.
– Forward information from the clients to the servers that allow to find corre-

sponding MPI-IO and Trove calls later on.
– Merge the two traces from all clients and all servers.
– Add arrow elements to the combined trace.
– Distribute client and server activities over time lines in the visualizer.

The implementation of our enhancements takes places at various locations:
We need to instrument the PVFS2 server code and add own code to the client
library. Server trace generation will be described later. For the two slog2 trace
files we have several tools implemented to manipulate them. They are included
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Trace
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Trace
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Trace

MPI−IO

LAN Jumpshot

slog2tools
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Fig. 2. Architecture of the tool environment
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in our package slog2tools that will be released in summer 2006. As Jumpshot just
visualizes time lines without knowing anything about their meaning and context
we could even live without any modifications of this tool. However, for better
adaptation to our project goals we slightly enhance the GUI. As this is work in
progress it will not be described here.

5 Tool Components

This section will give a more detailed overview over implemented components
and enhancements.

Double Trace Generation. We need two event traces, one from the parallel pro-
gram, the other from the parallel file system. For the client processes we use
the MPICH2/MPE environment that provides trace generation and visualiza-
tion with Jumpshot. As for the servers we use a small trick: we start the PVFS2
server environment as an MPI program. This gives us the potential to generate
traces from the server pocesses in clog2 format and merge them to a single slog2
format trace after program completion. A small patch allows us to perform this
execution via MPI. As the server environment runs permanently, the client pro-
gram however does not, we still need a small patch to start and stop the server
tracing and trigger the final trace conversion. The server trace has at least the
same time segment as the client trace.

I/O Server Events. The I/O servers have a complex internal structure and there
are several places in the code where a tracing could be advantageous. From all the
software layers in PVFS2 we will at the moment concentrate on the Trove layer.
It is responsible for the disk access and thus is related to the load of physical I/O.
The tricky issue here is that one client request causes several activities in several
servers that will overlap with other activities from other requests. The orders of
execution might be changed and the requests trigger different events in different
layers. It is of extreme importance to always keep track of what event belongs to
which request. We instrument the server environment to write relevant events from
all major modules to the trace. For technical details refer to [7].

Trace Merging. Both traces have now to be merged. The program trace is limited
in its extend whereas for the servers’ trace we have to provide a mechanism
to select the correct section of all traced events. Remember that they act as
daemons, i.e. have a start and stop time that is not related to that of the MPI
program. The two corresponding parts found we have to merge them into a single
trace. In addition we need some adaptation of the time lines of the clients’ and
the servers’ trace. We end up with a single trace that has as many horizontal
time lines as we had client and server processes.

This combined trace can already be visualized by Jumpshot. The tool shows
just the horizontal line with their events and does not distinguish between lines
that belong to user processes and to I/O server processes. No connecting ar-
rows between client and server events are included in the trace. Due to the
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asynchronous request processing in the servers we will see overlapping event vi-
sualizations that prevent us from getting a clear view onto the server behavior.

Relate Abstraction Layers. We want to see the relation between program calls
and server activities by drawing arrows between the corresponding events. For
this to be possible we need the appropriate information to be added into the
traces. The concept is as follows: For every MPI-IO call issued we generate a
unique call ID and make sure that this information is also written to the client
processes’ trace. When passing requests from a client to the servers these IDs
have to be transferred, too. Normally the server is not interested in the MPI-IO
call the request was generated from, however, now the situation changes. For
every server activity of interest that gets recorded in the trace we need to know
to which MPI-IO call it belongs. Thus, the call IDs need to be written to the
server trace together with the regular event informations. After having the traces
merged we can now easily detect corresponding events from clients and servers.
Conceptionally this is simple, however, the modification of two environments like
MPICH/MPE and PVFS2 is a challenge. Obviously the changes would be easy
to do while doing a redesign of at least PVFS2 together with its client server
request protocol. For technical details refer to [3].

Beautifying the Output. Finally we see client and server events and many arrows
in our trace visualization. Due to the asynchronous nature of the servers we have
many overlaps with the server events. We added another tool that distributes
the overlapping events from one timeline onto as many timelines as are needed
in order not to have any more overlaps. This results in a nice visualization. For
technical details refer to [14].

Trace merging, arrow generation, and the distribution of overlapping events
onto several timelines are performed at the level of the slog2 trace files. Thus,
no code changes needed to be done with Jumpshot. In order to get trace in-
formation and to forward call IDs from clients to server we had to modify the
PVFS2 implementation on many places. There is however no modification at the
MPICH2 level.

6 A First Example

A first example is shown in the screen dump in Figure 3. The program that
produced these events is just a simple MPI program running in two processes and
doing write calls. On the left side you see the information that Jumpshot displays
in a pop-up window when you click on the MPI call and the corresponding
arrows. The right window shows the Trove events (i.e. disk write activities)
triggered by an MPI call in another process. We display here only write events
on the client and server side. All other events are supressed. We can see clearly,
that a single MPI-IO call results in a set of Trove calls being triggered. Other
PFVS2 server activities are recorded, too and give a deeper insight into the
servers’ activities. For clearness they are not shown here.
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Fig. 3. Two MPI processes invoke write calls (upper two lines) and thus induce trove
acticities in the PVFS2 layers (lower two lines). Arrows show the relations between
these events.

7 Conclusion and Future Work

The paper presents a new approach to analyze the I/O related performance
aspects in an MPICH2/PVFS2 environment. We design and implement an en-
hancement to PVFS2 that allows us to get meaningful trace information out of
the server processes. Server traces get merged with client traces and additional
information is added to the trace: We connect corresponding MPI-IO calls and
events in the persistency layer of PVFS2 (Trove). Thus, we can observe which
calls at program level trigger which activities at system level.

The complete environment is already functional. All components are imple-
mented and interact, however, we still need some time for tuning the components
and intensive tests with applications.

In a next step we will integrate the Karma on-line performance values into
the server trace such that with the visualization of the events we can afterwards
also review important I/O performance values.
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Abstract. In evaluating new high-speed network interfaces, the usual metrics of 
latency and bandwidth are commonly measured and reported. There are 
numerous other message passing characteristics that can have a dramatic effect 
on application performance that should be analyzed when evaluating a new 
interconnect. One such metric is overhead, which dictates the networks ability 
to allow the application to perform non-message passing work while a transfer 
is taking place. A method for measuring overhead, and hence calculating 
application availability, is presented. Results for several next-generation 
network interfaces are also presented. 

Keywords: MPI, Overhead, Availability, High Performance Computing, High 
Speed Networks. 

1   Introduction 

Scaling efficiency of parallel applications in many instances depends on the ability to 
overlap communication with computation. If there is sufficient computation to 
overlap with communication, the application becomes insensitive to the bandwidth 
provided by the network. Overlap is also beneficial for inherently communication 
bound codes. In this instance the overhead of preparing the next messages can be 
overlapped with the transmission of the messages already in the send queue. In MPI 
application codes, the non-blocking send and receive calls are the primary means of 
achieving overlap. Unlike other MPI communication metrics, e.g. latency and 
bandwidth, there is a lack of readily available open-source micro-benchmarks that 
measure MPI overhead for non-blocking calls. This paper presents a method for 
measuring overhead and application availability and then applies this method to 
several current state-of-the-art high-performance network interfaces. It is not within 
the scope of this paper to explain why some interconnects and protocols provide low 
overhead and high availability. 
                                                           
* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin 

Company, for the United States Department of Energy's National Nuclear Security 
Administration under contract DE-AC04- 94AL85000. 
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2   Method 

There are multiple methods an application can use to overlap computation and 
communication using MPI. The method assumed by this paper is the post-work-wait 
loop using the MPI non-blocking send and receive calls, MPI_Isend() and 
MPI_Irecv(), to initiate the respective transfer, perform some work, and then wait for 
the transfer to complete using MPI_Wait(). This method is typical of most 
applications, and hence makes for the most realistic measure of a microbenchmark. 
Periodic polling methods have also been analyzed [1], but that particular method only 
makes sense if the application knows that progress will not be made without periodic 
MPI calls during the transfer. Overhead is defined to be [2]: 

 
… the overhead, defined as the length of time that a processor is engaged in the 
transmission or reception of each message; during this time, the processor cannot 
perform other operations.  

 
Application availability is defined to be the fraction of total transfer time1 that the 

application is free to perform non-MPI related work.  

Application Availability = 1 – (overhead / transfer time) (1) 

Figure 1 illustrates the method used for determining the overhead time and the 
message transfer time. For each iteration of the post-work-wait loop the amount of 
work performed (work_t), which is overlapped in time with the message transfer, 
increases and the total amount of time for the loop to complete (iter_t) is measured. If 
the work interval is small, it completes before the message transfer is complete. At 
some point the work interval is greater than the message transfer time and the 
message transfer completes first. At this point, the loop time becomes the amount of 
time required to perform the work plus the overhead time required by the host 
processor to complete the transfer. The overhead can then be calculated by measuring 
the amount of time used to perform the same amount of work without overlapping a 
message transfer and subtracting this value from the loop time. 

The message transfer time is equal to the loop time before the work interval 
becomes the dominant factor. In order to get an accurate estimate of the transfer time, 
the loop time values are accumulated and averaged, but only those values measured 
before the work interval starts to contribute to the loop time. These values used in the 
average calculation are determined by comparing the iteration time to a given 
threshold (base_t). This threshold must be set sufficiently high to avoid a pre-mature 
stop in the accumulation of the values used for the average calculation, but not so 
high as to use values measured after the work becomes a factor. The method does not 
automatically determine the threshold value. It is best to determine it empirically for a 
given system by trying different values and observing the results in verbose mode. A 
typical value is 1.02 to 1.05 times the message transfer time. 
                                                           
1 Per the MPI non-blocking call definitions, the MPI_Wait() call only signifies that for a send 

the buffer can be reused and for a receive the data can be accessed in the receive buffer [3]. 
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Figure 1 also shows an iteration loop stop threshold (iter_t). This threshold is not 
critical and can be of any value as long as it is ensured that the total loop time is 
significantly larger than the transfer time. A typical value is 1.5 to 2 times the transfer 
time. In theory, the method could stop when the base_t threshold is exceeded, but in 
practice it has been found that this point can be too close to the knee of the curve to 
provide a reliable measurement. In addition, it is not necessary to calculate the work 
interval without messaging until the final sample has been taken. 

 

Fig. 1. A conceptual illustration of the post-work-wait loop time (iter_t) of a given message 
size for each iteration of the algorithm, with the work performed (work_t) increasing for each 
iteration. The message transfer time calculation threshold (base_t) and the iteration stop 
threshold (iter_t) are also shown along with the point at which the overhead calculation is 
taken. 

3   Platforms 

Overhead and availability was measured on a variety of platforms, summarized in 
Table 1. All of the platforms except Red Storm are Linux clusters using the respective 
vendor’s commercial software stacks. The Thunderbird cluster’s MPI software stack 
has been modified and parameters have been set to reduce the memory required by 
the MPI stack at a scale of several hundred to a thousand processes. These 
modifications do affect the real-world application performance, but it is unknown 
how those modifications affect the MPI overhead microbenchmark used in this 
analysis. The Red Storm platform uses the Catamount lightweight kernel [4], with 
low-level communications implemented using the Portals API [5]. All of the 
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platforms use MPICH 1.x for their implementation of MPI, although several of these 
implementations have been optimized for their respective network interface.  In 
particular, many vendors have optimized the collective communication routines. The 
Quadrics software stack uses a patched kernel, which allows optimizations benefiting 
overhead and host availability performance. 

Table 1. Overview of Test Platforms 

 Red Storm Thunderbird CBC-B Odin Red Squall 
Interconnect Seastar 1.2 InfiniBand InfiniBand Myrinet 10G QsNetII 
Manufacturer Cray Cisco/Topspin PathScale Myricom Quadrics 
Adaptor Custom PCI-Express 

HCA 
InfiniPath Myri-10G Elan4 

Host Interface HT 1.0 PCI-Express HT 1.0 PCI-Express PCI-X 
Programmable 
coprocessor 

Yes No No Yes Yes 

MPI MPICH-1 MVAPICH InfiniPath MPICH-MX MPICH 
QsNet 

4   Results 

From a practical perspective, application availability is usually not a concern for small 
message sizes, as there is little to be gained trying to overlap computation with 
communication when transfer times are relatively small. Most applications will only 
try to overlap computation when they know the message size is sufficiently large. 
However, as an academic exercise, it still may be interesting to view availability for a 
small message as it provides information on how an interface’s characteristics change 
at a protocol boundary, such as the switch from a short message protocol to a large 
message protocol. If an application writer is trying to optimize to a given platform, 
he/she may want to know where the protocol boundaries are and modify the code to 
better suit the platform. Overlap may also be beneficial to codes that need to send 
multiple small messages at a time. In this case, overlap allows preparation of the next 
message to be put in the queue while the messages already in the queue are being 
transmitted. However, this is the message throughput metric and is not within the 
scope of this study. 

Figure 2 illustrates the MPI_Isend() overhead as a function of message size for the 
platforms tested2. Figure 3 shows application availability. The overhead for the Red 
Storm, Odin (Myri-10G) and Red Squall (Elan4) interconnects is relatively constant 
for all message sizes. As such, application availability increases with message size 
until it is nearly 100% for large message transfers. The Thunderbird (InfiniBand) and 
CBC (InfiniPath) interconnects show a high overhead for large message transfers, 
with a corresponding drop in application availability. It should be noted that the 
InfiniPath network has a relatively low overhead for small transfers, which allows for 
that interconnect to achieve its high, advertised message throughput rate. 
                                                           
2 Note that this figure uses a logarithmic axis for overhead. 
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Fig. 2. Overhead as a function of message size for MPI_Isend() 

 

Fig. 3. Application availability as a function of message size for MPI_Isend() 

MPI receive performance is charted in Figures 4 and 5. In general, receive 
performance is similar to the send performance for all of the interconnects tested. The 
Odin (Myri-10G) cluster does exhibit a more noticeable drop in application 
availability until the 32K byte message size, which is presumably a protocol 
boundary. After this point availability increases to an asymptotic value of 100%. 
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Fig. 4. Overhead as a function of message size for MPI_Irecv() 

 

Fig. 5. Application availability as a function of message size for MPI_Irecv() 

5   Related Work 

A significant amount of prior work has been done to measure and study the effect of 
overhead on application performance [1], [6], [7], [8] and [9]. Lawry [1] analyzes 
application availability, but the analysis and results are for a fixed message size and 
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the results are a function of the polling interval. The other previous work does not 
quantify the overhead as a function of message size, but rather looks at its effect on 
application performance.  An additional contribution of this paper is a comparison of 
overhead results for relatively new networking technologies, such as Red Storm’s 
SeaStar, Pathscale’s InfiniPath, and Myricom’s Myri-10G. 

6   Conclusion 

Simple ping-pong micro-benchmarks do not accurately capture all of the capabilities 
of a high-performance network.  Host overhead and the ability to overlap computation 
with communication are important performance characteristics that can have a direct 
impact on an application’s scalability. Two networks that have similar latency and 
bandwidth performance can vary significantly in their ability to provide overlap. 

This paper presented a method for measuring overhead and application availability 
for high-speed networks using MPI and then applied the method to five test platforms, 
each with a different network interface. Performance for MPI send and MPI receive 
operations was presented. In general, the send and receive characteristics for a given 
interconnect were similar. The Red Storm, Odin (Myri-10G) and Red Squall (Elan4) 
platforms demonstrated a relatively small overhead as a function of message size, and 
thus showed high application availability for all message sizes. The CBC (InfiniPath) 
platform demonstrated excellent small message overhead, but for large messages 
overhead increased linearly with message size and application availability was very 
low. The Thunderbird (InfiniBand) cluster demonstrated good small message 
overhead, but like the CBC cluster large message overhead is high and application 
availability is low. 

7   Future Work 

It is the intent of the authors to make the source to the code used in this study 
generally available and downloadable from an open web site, with the hope that this 
will allow overhead and application availability to become a common micro-
benchmark used in the evaluation of interconnects. We also expect that this will 
encourage contributions from the community to make the code more robust and 
accurate. 
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Abstract. Benchmarking MPI is a contentious subject at best. Micro-
benchmarks are used because they are easy to port and, hypothetically,
measure an important system characteristic in isolation. The unfortunate
reality is that it is remarkably difficult to create a benchmark that is a
fair measurement in the context of modern system. Software optimizations
and modern processor architecture perform extremely efficiently on bench-
marks, where it would not in an application context. This paper explores
the challenges faced when benchmarking the network in a modern micro-
processor climate and the remarkable impacts on the results that are
obtained.

1 Introduction

Accurately measuring the MPI performance of a network is challenging. Appli-
cation codes are notorious for having poor portability. More importantly, full
applications are dependent on so many system factors that they obscure any
attempt to assess a single system component like the network. As a result, many
people turn to microbenchmarks to compare networks. The most widely quoted
benchmark — ping-pong latency and bandwidth — are known to bear little re-
semblance to application codes, and yet they are widely quoted anyway. Other
attempts to measure MPI characteristics, such as the Pallas Micro-Benchmark
suite (PMB)[2] and the OSU streaming bandwidth test, attempt to address dif-
ferent sets of application characteristics.

The universal problem with microbenchmarks is that they do not account
for interference with or interference from the application. A perfect example is
found in the collective benchmarks in PMB: hundreds of collective operations
are called consecutively. In real applications, there is load imbalance that means
that every node does not arrive at the collective at the same time, much as with
the Rogue OS effect[9]. Furthermore, applications tend to call collectives one at
a time with work between the calls; thus, the code and MPI data structures will
not be in cache.
� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.
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This paper, however, is not about a new benchmark. Instead, it discusses
system level aspects that make it challenging to write a new benchmark that ac-
tually captures the properties of interest. The issues discussed include compiler
optimizations, software optimizations, caching effects, and microprocessor opti-
mizations. Quantitative data from previous benchmarks written by the author
demonstrate the challenges of getting the benchmark right and creating a “fair”
comparison.

2 Related Work

Many benchmarks and metrics of network performance exist. NetPIPE[11] and
Netperf[1] are commonly used to measure ping-pong latency and streaming per-
formances, but it is almost as common for individuals (or network vendors)
to write their own. With the advent of MPI, there has been surprisingly little
published research on more realistic latency measurements. Preliminary work
in [10] presented a new latency micro-benchmark that includes the variance in
transmission time, which the standard ping-pong benchmark does not reveal.
Another previous work[13] considered the impacts of the message queue lengths
on message latency.

There have been some attempts at providing a more complete set of micro-
benchmarks that better characterize the behavior of real applications and/or
expose potential performance advantages that applications may leverage. Mi-
crobenchmark suites now attempt to measure the potential for overlap[6] as well
as overhead, the impact of buffer re-use, and memory consumption[7]. There
have been efforts to model these parameters (LogP[5]) and assess their impact
on applications [8]. Other work has attempted to measure the LogGP[3] pa-
rameters of modern networks[4]. While all of these efforts are moving toward a
more complete picture of network performance, they all have a common, pre-
viously unquantified challenge: the system level optimizations that help MPI
performance more in the benchmark case than the application case.

3 Benchmarks and Platforms

Table 1 highlights the platforms used in this evaluation. The benchmarks used
come from recent efforts to benchmark MPI in a more realistic scenario[13]. The
preposted latency benchmark[13] is a modification of the classic ping-pong la-
tency benchmark to examine latencies in the presence of preposted non-blocking
receives. It builds a posted receive queue of a specified length and inserts a target
receive such that when the target message arrives it must traverse a specified
percentage of the posted receive queue. The message rate benchmark is a vari-
ant on the concept of a streaming bandwidth benchmarks. Where traditional
streaming bandwidth benchmarks post a long set of receives and then always
send a message to the item at the head of the queue, this benchmark recognizes
that any application that posts a significant number of receives posts them for
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Table 1. Overview of Test Platforms

Infinipath Red Squall Thunderbird Liberty
Interconnect 4x InfiniPath Elan-4 4x InfiniBand Myrinet-2000

Host Interface HyperTransport PCI-X x8 PCI-Express PCI-X
Link BW 2 GB/s 2.133 GB/s 2 GB/s 500 MB/s
Host BW 6.4 GB/s 1.0 GB/s 4 GB/s 1.0 GB/s
Host Proc. 2.6GHz Opteron 2.2GHz Opteron 3.4GHz Xeon 3.06GHz Xeon

Mem. Speed dual DDR-400 dual DDR-333 dual DDR-400 dual DDR-266
OS Fedora 3 SUSE 9.1 Pro SUSE 9.1 Pro RHEL 3

Compiler PathScale 2.3.1 PathScale 2.1 PathScale 2.1 Intel 8.1
MPI Software InfiniPath 1.3 MPICH 1.24-43 MVAPICH 0.92 MPICH 1.2.6

more than one neighbor. Messages then arrive in an arbitrarily interleaved fash-
ion from those neighbors. To make this happen on two nodes, MPI tags are used
to force partial traversal of the list.

4 Analysis and Results

Challenges to writing a good benchmark that operates in a realistic application
like environment abound, but they fall into four basic categories: the software,
the hardware, the interaction of hardware and software, and the compiler. Basi-
cally, they fall in every aspect of the system.

4.1 Software Optimizations

An example of a well meaning software optimization that interacts badly with
the benchmark writer comes from the Quadrics Elan4 MPI stack. For the Elan4,
Quadrics partitioned the local and remote posted receive queues. This is the
“right thing to do” in that, while the posted receive queue for remote messages
lives on the NIC, it doesn’t make sense to make a trip to the NIC to traverse
the posted receive queue for strictly local messages.

How does this interact with the benchmark writer? Consider the preposted
latency benchmark described in Section 3. The goal is to measure the impact of
a long posted receive queue; thus, there are several posted receives that must be
cleared (preferably quickly) on each iteration of the benchmark. Since they are
zero length messages, it is actually far quicker on many platforms to clear them
locally (without having to go out over the wire). Thus, they are posted from
the local node, which triggers the Elan4 optimization. This defeats the point of
the benchmark, but clearing the extra posted receives remotely takes significant
extra time. To work around this, the messages were posted with MPI ANY SOURCE
and differentiated by tag. This is not a particularly uncommon application char-
acteristic, since some applications do not know who to expect messages from
or how many to expect. The impact of this change is seen in Figure 1, where
traversing a queue looks “free” in one case to taking approximately 150 ns when
the processor on the NIC actually has to traverse the messages.
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Fig. 1. Impact of the Elan 4 optimization on the preposted receive benchmark

4.2 Microprocessor Optimizations

While some modern networks (e.g. Quadrics Elan4) handle the MPI posted
receive queue on the network interface, most of them handle it on the micropro-
cessor. Some even go so far as to do many of the data movement operations using
the host processor (PathScale Infinipath). That means that the performance of
the microprocessor’s memory hierarchy (and particularly the cache) matters a
lot.

Flushing the cache is slightly tricky because of compiler optimizations (dis-
cussed in Section 4.4), but it also requires care in message passing. Because a
cache flush operation is inherently a variable time operation, a custom “barrier”
operation is used so that node 1 is guaranteed to exit the barrier before node 0
(the initiator of the ping-pong test).

When the cache is flushed after the receives are posted, the performance
of microprocessors in the preposted receive benchmark drops dramatically, as
shown in Figure 2. The impact can be as large as 4× for networks like Infini-
path that rely on the processor to obtain performance. It also suggests that
many of the modern network performance claims for ping-pong latency (far left
of the graph) are heavily based on caching performance that is unlikely to be
obtained.

Figure 2 shows similar results using the message rate benchmark with 6 simu-
lated neighbors with 64 posted receives each. That results in 6 sets of 64 posted
receives where tags cause the message target to be rotated among the sets. The
differences are less dramatic, but approach 25% in many cases.
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Fig. 2. Impact of flushing the cache on the preposted receive benchmark
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4.3 Hardware and Software Interactions

Things get even more interesting when hardware and software interact. Take,
for example, the slab cache optimization in MPICH. Rather than dynamically
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allocate queue entries, MPICH manages its own memory for these structures. Re-
quests are taken from a queue and placed back on the queue in the order they are
used. Because the slab cache starts from a contiguous, in-order region, a curious
interaction occurs with optimizations in the microprocessor. Modern micropro-
cessors include a hardware prefetcher, which detect the effectively stride-N access
that occurs when traversing a linked list that was sequentially allocated from a
contiguous region. This results in list traversals that are remarkably fast relative
to the memory latencies of the machine.
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Fig. 4. Impact of the hardware prefetcher on the preposted receive benchmark

In a real application, list items are cleared (and thus returned to the free list)
in a more random order. To mimic this behavior requires randomizing the list en-
tries, so a slab cache randomization function (one that preposts a large number of
receives and clears them in a random order) was added. Figure 4 shows the impact
of this change on the preposted receive benchmark. As the length of the list grows
long, the effect becomes dramatic. Another interesting note is that the impact
is less dramatic for Infinipath than for Myrinet because the Infinipath network is
connected to an AMD Opteron processor, which has a lower memory latency. The
Elan4 network, in contract, stores the posted receive list on the NIC, where the
memory is not nearly so impacted by caching behavior.

4.4 Compiler Optimizations

Benchmarks should generally be compiled with optimization. Otherwise, compil-
ers have been known to do things that are just dumb. Unfortunately, compilers
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can be quite aggressive in determining what code is “dead” when they are do-
ing dead code elimination. Almost everyone has encountered this when writing
a timing loop. You want to measure the time of operation X, so you write a
loop to do it N times. With optimization, the loop takes zero time because the
compiler figured out you never used the result variable.

Knowing this, an early version of the benchmarks described above had an
option to flush the cache. On every benchmark iteration (but outside the timing
portion), this option summed a large array of random numbers generated at run-
time and put the result into the data being transmitted as part of the benchmark.
Normally, one might expect the compiler to leave this alone; however, to prevent
excessive execution times, the array was only initialized once. When optimization
was turned on, the compiler detected this and the results with cache flushing
were no different from the results without it. In the C language, the solution was
to mark the target data location as volatile so that the compiler would leave it
alone. While this has negative implications for what the compiler will do with
that particular piece of code, it is not in the timing loop, so that does not matter,
and it is still faster than generating 1,000,000 random numbers on each iteration.

5 Conclusions

The two most important characteristics of a benchmark are that it measure
properties of interest to applications and that it measure them in an application
context. While it can be conceptually difficult to define properties of interest
to applications, measuring them in the context of applications is unduly com-
plicated by important system level optimizations. This paper discusses five op-
timizations spread across the hardware and software stack that generally work
extremely well in the benchmark context, but are unlikely to provide such per-
formance in a real application context. Techniques are presented for reducing
these impacts along with quantitative data on the magnitude of their impact. In
extreme cases, the difference can be 4×.
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Abstract. This paper describes the implementation, usage and expe-
rience with the MPI performance revealing extension interface (Peruse)
into the Open MPI implementation. While the PMPI-interface allows
timing MPI-functions through wrappers, it can not provide MPI-internal
information on MPI-states and lower-level network performance. We in-
troduce the general design criteria of the interface implementation and
analyze the overhead generated by this functionality. To support per-
formance evaluation of large-scale applications, tools for visualization
are imperative. We extend the tracing library of the Paraver-toolkit to
support tracing Peruse-events and show how this helps detecting perfor-
mance bottlenecks. A test-suite and a real-world application are traced
and visualized using Paraver.

1 Introduction

The Message Passing Interface (MPI) [7,8] is the standard for distributed mem-
ory parallelization. Many scientific and industrial applications have been par-
allelized and ported on top of this parallel paradigm. From the very beginning
the MPI standard offered a way for performance evaluation of all provided func-
tions including the communication routines with the so-called Profiling-Interface
(PMPI). Thereby all MPI-function calls are accessible through the prefix PMPI_,
allowing wrapper-functions, which mark the time at entry and exit. The trac-
ing libraries of performance analysis tools, such as Vampir[3], Paraver[5] and
Tau[9] are build upon the PMPI-Interface. However, the information gathered
using this interface has a limited impact, as it can only provide high level details
about any communications (such as starting and ending time), rather than more
interesting internal implementation and networking activities triggered by the
MPI calls.

In order to know the internals of how the communication between two pro-
cesses proceeds and where possible bottlenecks are located, a more in-depth and
finer-grained knowledge is required than is available from the PMPI-interface
level. The Peruse-interface [2], a multi-institution effort driven by LLNL which
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gained larger audience at a BoF at SC2002, proposes a standard way for applica-
tions and libraries to gather this information from a Peruse-enabled MPI-library.
Especially with more diverse hardware, such as multi-core chips using shared-
memory and many hierarchies in large-scale clusters, this performance evaluation
becomes essential for in-depth analysis.

This paper introduces an implementation of Peruse in the Open MPI [4] im-
plementation. In section 2 we describe the general design and implementation
of the Peruse-interface within Open MPI, and state the impact on communi-
cation performance degradation, while section 3 shows the performance metrics
gathered. Section 4 illustrates a possible method to evaluate the communication
performance by extending the mpitrace-library of the Paraver-toolkit. In sec-
tion 5 a real-world application is traced and visualized with Paraver. Finally, the
last section gives a conclusion and an outlook on future developments.

2 Design and Implementation

The Open MPI implementation uses the so-called modular component architec-
ture (MCA) to support several component implementations offering a specific
functionality [10]. In this paper, we will consider only the frameworks and com-
ponents used for communication purposes, i.e., the Point-to-Point management
layer (PML), the recursively named BML management layer (BML) and the
Bit-transport layer (BTL). These frameworks are stacked, as may be seen in
figure 1. MPI communication calls are passed on to the PML, which uses the
BML to select the best possible BTL, and then passes the message (possibly in
multiple fragments depending on length) to the BTL for transmission.

MPI

BML

PML

BTL/mvapi BTL/tcp

Fig. 1. Open MPI stack of frameworks and modules for communication

The Peruse interface allows an application or performance measurement li-
brary to gather information on state-changes within the MPI library. For this,
user-level callbacks have to be registered with the Peruse interface, which are
subsequently invoked upon the triggering of corresponding events. The interface
allows a single callback function to be registered for multiple events, as well as
multiple callback functions for one event (which covers the rare instance of an ap-
plication and one or more libraries wanting to gather statistics on a single event
simultaneously). Peruse does not impose any particular message passing method
and recommends not supporting a particular event, if this would burden or slow
down the MPI implementation. The interface is portable in design, by allowing
applications or performance tracing libraries to query for supported events using
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defined ASCII strings. The tracing library may then register for an event, sup-
plying a callback function, which is invoked upon triggering a particular event,
e. g. PERUSE_COMM_REQ_XFER_BEGIN when the first data transfer of a request
is scheduled. Registration then returns an event-handle. Events implemented in
Open MPI are presented in sec. 3.

Prior experience with the implementation of Peruse-functionality was gained
with PACX-MPI [6]. Special care was taken not to slow down the critical fast
path of the Open MPI library. The actual test for an active handle and the
immediate invocation of the callback function is implemented as a macro, which
the preprocessor optimizes away in a default build of the library. When building
with the configure parameter --enable-peruse, the actual test for an active
handle involves at most two additional if-statements: whether any handles are
set on this communicator and whether the particular one is set and active.

Although most of the events are pertaining to messages being sent and re-
ceived, the actual calls to the callback functions are performed in the PML-layer,
as it has all the necessary information regarding requests and fragments being
sent. Currently, only one major PML-module exists (ob1), in contrast to the six
major BTLs (sm, tcp, mvapi, openib, gm, mx), which would have each required
modifications for every possible Peruse event.

Additionally, this initial implementation only allows a single callback function
per event. As handles are stored per communicator (PERUSE_PER_COMM) as array
of ompi_peruse_handle_t-pointer, allowing more callbacks per event or worse
case multiple handles (instances) per event would have required iterating over all
the registered and active handles in the communicator-storage, greatly increasing
the overall overhead.

Table 1. Configuration of clusters for the Peruse overhead evaluation

Cluster cacau strider
Processor Dual Intel Xeon EM64T, 3.2 GHz Dual AMD Opteron 246, 2GHz
Interconnect Infiniband Myrinet 2000
Interface mvapi-4.1.0 gm-2.0.8

Compiler Intel compiler 9.0 PGI compiler 6.1.3
Open MPI no debug, static build no debug, dynamic build
Native MPI Voltaire MPIch-1.2.6 MPIch-1.2.6

For performance comparison with and without the Peruse-interface implemen-
tation, several measurements were conducted on the clusters given in table 1.
We compare the latency induced by the additional overhead by using a build
without any Peruse-support and two versions with Peruse-support: one without
any callbacks and one with callbacks attached for all possible events. Addition-
ally this is compared to the latency of the native MPI-implementation provided
on each cluster.
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Table 2. Latency (in μs) of zero-byte messages using IMB-2.3 with PingPong

cacau strider
native mvapi sm native gm sm

No Peruse 4.13 4.69 1.02 7.16 7.16 1.33
Peruse, no callbacks 4.67 1.06 7.26 1.71
Peruse, no-op callbacks 4.77 1.19 7.49 1.84

Table 2 shows the measurements done with the Intel-MPI Benchmark using
the zero Byte PingPong-test. The IMB_settings.h was changed to perform
each test for 10000 iterations with ten warm-up phases. For the native MPI, the
optimized vendor’s version on the cluster was used as listed in table 1.

In comparison with the cluster’s native MPI, the Open MPI’s BTLs mvapi and
gm only show marginal difference in latency being 1.7% and 4.6% respectively.
Therefore, a much more sensitive test using the shared-memory BTL sm was
performed. Here, one experiences a degradation in latency – but even with all
16 communication events registered, the increase is 16% and 38% respectively
for the two target systems. For larger message sizes, the overhead compared to
the bandwidth without any Peruse-support is shown in Fig. 2.

Fig. 2. Percentage of achieved bandwidth on cacau (left) and strider (right) compared
to Open MPI without Peruse

3 Performance Metrics Gathered

The current implementation in Open MPI supports all events stated in the current
Peruse-2.0 specification [2]. Orthogonal to the PERUSE_COMM_REQ_XFER_BEGIN/
_END Open MPI implements the PERUSE_COMM_REQ_XFER_CONTINUE notifying of
new fragments arriving for this request. This event is only issued in the case of
long messages not using the eager protocol. The sequence of callbacks that may
be generated on the way for sending / receiving a message are given in Fig. 3.
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IN_UNEX_Q
MSG_INSERT_

FROM_UNEX_Q
MSG_REMOVE

POSTED_REQ
MSG_MATCH_

IN_POSTED_Q
REQ_INSERT_
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REQ_REMOVE

ACTIVATE
REQ_

ACTIVATE
REQ_

REQ_MATCH
UNEX

 

REQ_XFER_BEGIN

MSG_ARRIVED

Communication Layer

REQ_COMPLETE

REQ_XFER_END

MPI_Start
MPI_*send
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REQ_NOTIFY

MPI Library

User Code

(REQ_XFER_CONTINUE)*

MPI_Wait*/MPI_Test*
MPI_*send/MPI*recv

User Code

All incoming messages

Fig. 3. Sequence of Peruse events implemented in Open MPI

The following example shows the callback sequence when sending a message
from rank zero to rank one, which nicely corresponds to figure 3. Here, we have
imposed an early receiver by delaying the sender by one second. One may note the
early activation of the request, searching in the unexpected receive queue, insertion
into the expected receive queue, and finally the arriving message with the subse-
quent start of transfer of messages events (edited):

PERUSE_COMM_REQ_ACTIVATE at 0.00229096 count:10000 ddt:MPI_INT
PERUSE_COMM_SEARCH_UNEX_Q_BEGIN at 0.00229597 count:10000 ddt:MPI_INT
PERUSE_COMM_SEARCH_UNEX_Q_END at 0.00230002 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_INSERT_IN_POSTED_Q at 0.00230312 count:10000 ddt:MPI_INT
PERUSE_COMM_MSG_ARRIVED at 1.00425 count:0 ddt:0x4012bbc0
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN at 1.00426 count:0 ddt:0x4012bbc0
PERUSE_COMM_SEARCH_POSTED_Q_END at 1.00426 count:0 ddt:0x4012bbc0
PERUSE_COMM_MSG_MATCH_POSTED_REQ at 1.00426 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_BEGIN at 1.00427 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_CONTINUE at 1.0043 count:10000 ddt:MPI_INT

-- subsequent XFER_CONTINUEs deleted --
PERUSE_COMM_REQ_XFER_CONTINUE at 1.00452 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_END at 1.00452 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_COMPLETE at 1.00453 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_NOTIFY at 1.00453 count:10000 ddt:MPI_INT

Collecting the output of the callbacks from a late sender:

PERUSE_COMM_REQ_ACTIVATE at 1.00298 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_BEGIN at 1.0031 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_CONTINUE at 1.00313 count:10000 ddt:MPI_INT

-- subsequent XFER_CONTINUEs deleted --
PERUSE_COMM_REQ_XFER_CONTINUE at 1.00322 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_END at 1.00327 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_COMPLETE at 1.00328 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_NOTIFY at 1.00328 count:10000 ddt:MPI_INT

4 Trace-File Generation

To cope with the information provided by Peruse’s functionality, one needs tools
to visualize the output generated. We have ported the mpitrace-library of the
Paraver-toolkit [1] to Open MPI. Paraver is a powerful performance analysis
and visualization tool developed at CEPBA/BSC. Similar to Vampir, a trace
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is a time-dependant function of values for each process. Through filtering and
combination of several functions, meaningful investigations may be deduced even
within large traces, e. g. searching and highlighting of parts of the trace with a
GFlop-rate below a specified value.

Several points had to be addressed when porting mpitrace to Open MPI:
removing assumptions on opaque MPI-objects (pointers to Open MPI internal
structures) being integer values and separating helper functions into C- and
Fortran-versions to avoid passing C-Datatypes to the Fortran PMPI-Interface.
The port was tested on the Cacau-Cluster (having 64-bit pointers and 32-bit
integers) with the mpi_test_suite, which employs combinations of simple func-
tionality to stretch tests to the boundaries of the MPI-standard’s definition.

For tracing, an application needs re-linking with the Peruse-enabled mpitrace-
library. Peruse-events to be tested for are specified by the environment variable
MPITRACE_PERUSE_EVENTS, separated by colons. Figure 4 shows the Paraver-
window of an exemplary trace of ten sends, each of 10MB-size messages from rank
zero to rank one with four Peruse-events attached1. Clearly, the initialization of
the buffer on rank zero is visible as running time, while rank one awaits the mes-
sage in the first MPI_Recv. Only with the Peruse-events (shown in gray), can the
actual transfer be seen as the small green flags for each transmitted data frag-
ment. By clicking into the trace-window, one may get further information on the
Peruse-Events of the trace.

Fig. 4. Paraver visualization of 10 large msgs sent from rank zero to one (edited)

5 Application Measurement

To demonstrate the suitability of Peruse-events tracing with the Paraver-toolkit,
we show the tracing of the large molecular-dynamics package IMD with a bench-
mark test (bench_cu3au_1048k.param). The overall trace with 32 processes on
cacau is shown in Fig. 5. One may note the long data distribution done using
a linear send, followed by a collective routine during the initialization at the
beginning of the execution. The overall run shows ten iterations and a final col-
lection phase. The right-hand window of Fig. 5 shows the achieved bandwidth,
here ranging from 101 to 612 MB/s.

1 MPITRACE PERUSE EVENTS=PERUSE COMM REQ XFER BEGIN:PERUSE COMM REQ XFER

END: PERUSE COMM REQ XFER CONTINUE:PERUSE COMM REQ NOTIFY
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Fig. 5. Trace of IMD with 32 processes – overall run (left) and bandwidth (right)

Figure 6 zooms into one communication step of the run (left) with the corre-
sponding bandwidth graph on the right hand side with up to 611 MB/s using
on average 524 kB-sized messages. In order to appreciate the additional infor-
mation Peruse-events give to the performance analyst, the actual time between
message fragments arriving with the PERUSE_COMM_REQ_XFER_CONTINUE event
are shown at the top-right of Fig. 6. Here, one may see how the in-flow rate
of messages changes over time, ranging from 46μs to 224μs between fragments,
corresponding to 4464 fragments/s up to 21739 fragments/s.

Fig. 6. Zoom into one communication step; bandwidth(right) and interval between
fragments(right-top)

While with PMPI-based tracing it is possible to detect performance problems,
such as ”Late Sender”, or ”LateReceiver”, the actual transferral of themessage can
not be seen. Particularly, for eager sends (small message) sends, the actual logical
transferral of the message is far longer than the physical.This may be detected only
with a corresponding PERUSE_COMM_MSG_ARRIVED-event on the receiver side.
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Fig. 7. Detection of late wait situation with Peruse on Open MPI (edited)

Similarly, ”Late Wait” situations of non-blocking communication cannot be
detected through PMPI, as the communication will only be considered fin-
ished upon the corresponding MPI_Wait/MPI_Wait; here the PERUSE_COMM_REQ_
COMPLETE-event notifies of the completion. Figure 7 shows a trace of such a situa-
tion. Process zero again sends a small message with eager protocol to process one,
using non-blocking send and receive, respectively. The recv’s MPI_Wait however
is delayed by roughly 1.6ms. While the PMPI-based tracing considers the logical
communication to finish within the MPI_Wait only, with Peruse one receives the
early PERUSE_COMM_REQ_COMPLETE.

Furthermore, together with PMPI-wrapper, the tracing-library may addition-
ally uncover book-keeping work commonly done by MPI-implementations be-
fore returning to the application, e. g. running event-handlers to progress other
communication.

Additionally to message send/arrival times, Peruse allows information on the
timing of internal traversal of message queues, which may be used to distin-
guish low network performance from slow queue management. Finally, with the
introduction of the PERUSE_COMM_REQ_XFER_CONTINUE-event one may uncover
fluctuations of the stream of fragments in case of network congestion.

6 Conclusion

In this paper we have described the implementation of the Peruse-interface into
the Open MPI library. The integration into Open MPI was straightforward due
to the modular design and the target platform. The authors are however aware,
that for other implementations, the current design of the Peruse interface may
not be feasible due to MPI running in a different context, not allowing callbacks
or due to the overhead introduced.

In the future, the authorswould like to extend theOpenMPIPeruse systemwith
additional events yet to be defined in the current Peruse specification, e.g., collec-
tive routines and/or one-sided operations. Additionally the functionality for very
low level events such as those defined within networking devices is also envisaged.

We would like to thank BSC for making mpitrace available. This work was
made possible by funding of the EU-project HPC-Europa (Contract No. 506079),
and also by the ”Los Alamos Computer Science Institute (LACSI)”, funded
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by Rice University Subcontract No. R7B127 under Regents of the University
Subcontract No. 12783-001-05 49.
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5th International Special Session on

Current Trends in Numerical Simulation for
Parallel Engineering Environments�

New Directions and Work-in-Progress

ParSim 2006

In today’s world, the use of parallel programming and architectures is essential
for simulating practical problems in engineering and related disciplines. Remark-
able progress in CPU architecture, system scalability, and interconnect tech-
nology continues to provide new opportunities, as well as new challenges for
both system architects and software developers. These trends are paralleled by
progress in parallel algorithms, simulation techniques, and software integration
from multiple disciplines.

ParSim brings together researchers from both application disciplines and com-
puter science and aims at fostering closer cooperations between these fields. Since
its successful introduction in 2002, ParSim has established itself as an integral
part of the EuroPVM/MPI conference series. In contrast to traditional confer-
ences, emphasis is put on the presentation of up-to-date results with a short
turn-around time. This offers a unique opportunity to present new aspects in
this dynamic field and discuss them with a wide, interdisciplinary audience. The
EuroPVM/MPI conference series, as one of the prime events in parallel com-
putation, serves as an ideal surrounding for ParSim. This combination enables
the participants to present and discuss their work within the scope of both the
session and the host conference.

This year, eleven papers from authors in nine countries were submitted to
ParSim, and we selected five of them. They cover a wide range of different ap-
plication fields including gasflow simulations, thermo-mechanical processes in
nuclear waste storage, and cosmological simulations. At the same time, the se-
lected contributions also address the computer science side of their codes and
discuss different parallelization strategies, programming models and languages,
as well as the use nonblocking collective operations in MPI. We are confident
that this provides an attractive program and that ParSim will be an informal
setting for lively discussions and for fostering new collaborations.

Several people contributed to this event. Thanks go to Jack Dongarra, the
EuroPVM/MPI general chair, and to Bernd Mohr, Jesper Larsson Träff, and
Joachim Worringen, the PC chairs, for their encouragement and support to con-
tinue the ParSim series at EuroPVM/MPI 2006. We would also like to thank the
� Part of this work was performed under the auspices of the U.S. Department of Energy

by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. UCRL-PROC-222517.
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numerous reviewers, who provided us with their reviews in such a short amount
of time (in most cases in just a few days) and thereby helped us to maintain
the tight schedule. Last, but certainly not least, we would like to thank all those
who took the time to submit papers and hence made this event possible in the
first place.

We hope this session will fulfill its purpose to provide new insights from both
the engineering and the computer science side and encourages interdisciplinary
exchange of ideas and cooperations. We hope that this will continue ParSim’s
tradition at EuroPVM/MPI.
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Abstract. Gadget-2 is a massively parallel structure formation code
for cosmological simulations. In this paper, we present a Java version of
Gadget-2. We evaluated the performance of the Java version by running
colliding galaxies simulation and found that it can achieve around 70%
of C Gadget-2’s performance.

1 Introduction

Various computer scientists have argued that Java could make an excellent
language for developing scientific codes. To date this argument has not con-
vinced too many practising computational scientists. The scarcity of high-profile
number-crunching codes implemented in Java does not help the case.

We have recently released MPJ Express [1], a thread-safe, production quality
Java messaging system for high performance computing. To help establish the
practicality of real scientific computing using message passing Java we have
ported the parallel cosmological simulation code, Gadget-2, from C to Java,
using MPJ Express. Gadget-2 [7] is a massively parallel structure formation
code developed by Volker Springel at the Max Planck Institute for Astrophysics.
Versions of Gadget-2 have been used in various research papers in astrophysics
literature, including the noteworthy “Millennium Simulation” [8]—the largest
ever model of the Universe.

Producing a Java version of Gadget is an experiment that helps us to un-
derstand where Java stands in comparison to C—an already established HPC
language. Concerns about Java’s performance have stopped many computational
scientists from seriously considering it. But constant improvements in JIT (Just
In Time) compilers, which translate bytecode into the native machine code at
runtime, have improved the computational performance.

Exploitation of Java for simulation projects has been ongoing for some years.
JWarp [3] is a Java library for discrete-event parallel simulations. MONARC
[4] is a simulation framework for large scale computing resources. It has been
deployed on an inter-continental testbed to verify simulation results with success.
CartaBlanca [5], from Los Alamos National Lab, is a general purpose non-linear
solver environment for physics computations on non-linear grids. It employs
an object-oriented component design, and is pure Java. These projects suggest

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 358–365, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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that Java has already made its mark on a range of projects involved in parallel
simulations, or scientific computing in general.

Section 2 of this paper presents an overview of Gadget-2. We discuss our ex-
periences in porting Gadget-2 to Java in Section 3. We evaluate the performance
of the Java version in section 4 and also compare it with the original C version.
We conclude and discuss future work in Section 5.

2 Overview of Gadget-2

Gadget-2 is a free production code for cosmological N-body and hydrodynamic
simulations. The code is written in the C language and parallelized using MPI.
It simulates the evolution of very large, cosmological-scale systems under the
influence of gravitational and hydrodynamic forces. The universe is modelled
by a sufficiently large number of test particles, which may represent ordinary
matter or dark matter.

We are particularly interested in the parallelization strategy, which is based
on an irregular and dynamically adjusted domain decomposition, with copious
communication between processors.

To give some feeling for the scale of interesting problems, consider the so-called
“Millennium Simulation” [8]. This simulation follows the evolution of 1010 dark
matter particles from the early Universe to the current day. It was performed
on 512 processors and used 1 Terabytes of distributed memory. The simulation
used 350,000 CPU hours over 28 days of elapsed time.

2.1 Computing Gravitational Forces

One of the main tasks of a structure formation code is to calculate gravitational
forces exerted on a particle.

In a N-body cosmological simulation, every particle exerts gravitational force
on every other particle. The reason is that gravity is a long range force. Thus, cal-
culating gravitational force in such simulations can be computationally
intensive—the total cost is O(N2) for the naive summation approach. This is
not feasible for the scale of problems that Gadget-2 aims to solve.

Thus, Gadget-2 can use either of two efficient algorithms to calculate grav-
itational forces. The first is Barnes-Hut (BH) [2] oct tree, and the second is a
hybrid of BH tree and Particle-Mesh (PM) method called TreePM. In this paper,
we restrict our attention to the pure BH tree algorithm.

Barnes-Hut Tree Algorithm. The cubical region of 3D space is divided into
eight sub-regions by halving each dimension. Every sub-region that contains any
particles is recursively divided until each region has at most one particle. The
root of the Barnes-Hut tree corresponds directly to the whole 3D space. The first
division of space results in eight sub-regions that become the daughter nodes of
the root. This process continues until each node of the tree contains one particle.

The reason for arranging the particles in a tree data-structure is that it allows
efficient calculation of gravitational forces. The tree is traversed from root to
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compute the force, for example on a particle i. If a node n is distant from particle
i, the contribution of node n is added to force on i from the center of mass of n.
In this case, there is no need to to visit the daughter nodes of n. The daughter
nodes of node n are visited recursively if it is close to i.

The definition of distant from or close to depends on an opening criterion.
The basic idea is that a node representing some region in space is distant from
a particle i if the angle it subtends is smaller than a threshold opening angle.
Otherwise, a node is considered close to particle i.

Using this approach, it is possible to calculate the gravitational force for each
particle in O(log N) steps. For the range of N of practical interest this is clearly
a huge win over the summation approach that results in O(N) steps.

2.2 Domain Decomposition

Being a massively parallel code, Gadget-2 needs to divide space or particle set
into domains, where each domain is handled by a single processor. It is particu-
larly challenging in Gadget-2 because it is not practical to divide space evenly.
This would result in poor load balancing because some regions have more parti-
cles than the others. Conversely, it is also not possible to divide particles evenly
in a fixed way because they move throughout space and it is desirable to keep
physically close particles on the same processor.

To solve this, Gadget-2 uses a space-filling Peano-Hilbert curve originally sug-
gested by Warren and Salmon [6]. Gadget-2 applies the standard recursion for
constructing the curve 20 times, logically dividing space into up to 220×220×220

cells on the Peano-Hilbert curve. Each cell is labelled by its location along the
Peano-Hilbert curve—260 possible locations. The information about the location
of each cell can be stored in a long word called the Peano-Hilbert key. These
Peano-Hilbert keys play an important role during domain decomposition. Be-
cause the total number of cells is far greater than total number of particles,
points of the discrete linear Peano-Hilbert curve are sparsely populated with
particles. To establish the domain decomposition, one sorts particles by their
Peano-Hilbert keys and then divides them evenly into P sections, where P is the
total number of processors.

This technique implements an efficient domain decomposition. It provides
good load balancing. The domains are simply connected and quite “compact” in
real space, because particles that are close along Peano-Hilbert curve are close
in real space (the converse is often but not always true). An added advantage is
that the Peano-Hilbert curves provide simple mapping to Barnes-Hut tree nodes.

Distributed Representation of Tree . The BH tree is implemented as a dis-
tributed data structure. Nodes of the tree can be classified according to whether
all particles in the node belong to one processor, or the node contains parti-
cles from multiple processors. Nodes in the first category are stored locally on
the relevant processors. All nodes in the second category—this typically means
higher nodes in the tree—are replicated over all processors.
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So every processor holds a copy of the root nodes and all daughter nodes down
to the point where all particles of a node are held on a single processor. Where
this is a remote processor the corresponding node is called a pseudo-particle. To
compute the force on a single local target particle, the tree is traversed starting
from root as usual accumulating force contributions from locally held particles.

2.3 Communication

The original Gadget-2 is parallelized following the standard MPI specifications.
As part of the parallel tree-force computation, a processor walks the tree for
every locally held particle accumulating force contributions. These contributions
may come from local particles or pseudo-particles. If the daughters of a node
representing pseudo-particles need to be traversed, the locally held particles are
marked for export to the processor that owns the pseudo-particle in question.
After the tree-walk, all particles marked for export are communicated to remote
hosts. These hosts calculate the force contributions and communicate them back.
Also, there is some communication involved during domain decomposition for
distributed sorting of the particle list.

3 Porting Gadget-2 to Java

Gadget-2 was manually translated to the Java language. We deliberately kept
similar data structures in the translated version so that we could cross reference
the original source code for debugging. Currently there are some functional lim-
itations compared with the C code. For example, the Java version only provides
the option of using BH oct tree for calculating gravitational forces.

There are three dependencies for Gadget-2; GNU Scientific Library (GSL),
parallel version of Fastest Fourier Transforms in the West (FFTW), and of course
a MPI library. Gadget-2 only uses a handful of GSL functions—we manually
translated these to Java. FFTW would be required for the TreePM algorithm,
and for this reason we use BH tree algorithm for calculating gravitational forces
in the current Java version. For communication, we use MPJ Express, our own
thread-safe implementation of MPI-like bindings for the Java language.

The main simulation loop increments timesteps and drift the particles to the
next timestep. This involves calculating gravitational forces for each particle in
the simulation and updating their accelerations. The BH tree could either be
dynamically updated or redrawn to depict the new state of the system. Calcu-
lating the gravitational forces, or in other words, walking the tree is the most
compute intensive task in the simulation.

3.1 Test Cases for Java Version

The source distribution of the original Gadget-2 code comes with some initial
conditions files including Colliding Galaxies and Cluster Formation. The Gadget-
2 code produces snapshot files at regular intervals during the simulation which
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can be used to plot the state of the system. The distribution also provides some
IDL (software for data visualisation and analysis) scripts to view the system.
We used these scripts along with the snapshot files to generate visual output,
which are indistinguishable for the two versions. This provides us with a very
high degree of confidence in correctness of the translated code. We perform this
comparison to ensure no bug has been introduced in the Java version.

3.2 Initial Java Optimizations

The performance evaluation of the initial Java version revealed that the per-
formance was approximately three times slower than the C version. We now
describe the principal optimizations applied to improve performance.

Custom Serialization and Deserialization. Initial versions of Java Gadget-
2 communicated Java objects, which was made possible by exploiting the JDK
default serialization and de-serialization mechanism in MPJ Express. The object
serialization and de-serialization is the process of converting Java objects to a
byte array and vice versa. It can have detrimental effects on the performance of
a parallel application. Thus, we decided to replace Java object communication
in Java Gadget-2 with primitive datatypes.

In the original C Gadget-2, initial conditions are read into an array of C
structs called ParticleData. In the Java version, this array of structs is
replaced by an object array called ParticleData. Particles that need to be
exported are copied to a contiguous memory region called CommBuffer in the
original C version. We replaced this with CommBuffer object, which contained
object arrays. Before the communication operation, the data was copied from
ParticleData array onto a related object array in CommBuffer object and
communicated.

In the optimized version of Java Gadget-2, this CommBuffer object is replaced
by a contiguous memory region, which is an instance of ByteBuffer class. Be-
fore the actual communication, we copy primitive data from each element of
ParticleData array to CommBuffer. Once all the data has been packed onto
this ByteBuffer, it is communicated to the receiver process. The receiver pro-
cess receives the data in CommBuffer, and unpacks it onto the ParticleData
object array. This technique helped us not only to avoid the Java object seri-
alization overhead, but also reduced the memory footprint of the JVM (Java
Virtual Machine) by 60%.

Maintaining Memory Locality. It is hard to maintain memory locality for
Java HPC applications. The reason is that native machine architecture is not
aware of Java objects that might be involved in computationally intensive sec-
tions of the code. This might result in poor usage of processor cache and page
faults. The authors in [9] have identified this problem and proposed an object-
aware memory architecture.

In the Java version of Gadget-2, we maintained memory locality by flattening
sensitive data structures. Using this technique, we replaced Java object arrays
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with primitive datatype arrays. For example, BH tree nodes are stored in an array
of Java objects called Nodes base. Each element of this array has members like
an array of doubles called center and a double called len, that represents the
side length of a tree node. In the Java version, these two members center and
len are stored in a doubles array. This ensures that when a particular tree node
is accessed, all the members of particular object element in Nodes base array
are in close vicinity in the memory.

We also flattened the ParticleData array, where each object has attributes
like a three element array of pos and vel representing position and velocities in
three dimensions. In addition, we also flattened the TopNodes array.

4 Performance Evaluation

In this section, we evaluate the performance of the Java version against the C
Gadget-2 code. We used the Colliding Galaxies simulation for comparison. Note
that the C version of Gadget-2 is meant to be a massively parallel code. The Col-
liding Galaxies simulation is too small to utilize its full potential. Nevertheless,
it gives us a starting point for evaluating the performance of Java Gadget-2.

We conducted these tests on a cluster called StarBug at the DSG. This cluster
consists of 8 dual Intel Xeon 2.8 GHz processors. The PCs were equipped with
2 Gigabytes of ECC RAM with 533 MHz Front Side Bus (FSB). The PCs were
running the Debian GNU/Linux with the 2.4.32 Linux kernel. The C compiler
on this cluster was GNU GCC 3.3.5. There is an option to use Myrinet or Fast
Ethernet for communication. We used MPJ Express (version 0.23) with Sun JDK
1.5 (Update 6) to run the Java version of Gadget-2. The original C Gadget-2
code used MPICH (version 1.2.5.2) on Fast Ethernet and MPICH-MX (version
1.2.6..0.94) using Myrinet.

Figure 1 shows execution time of C and Java Gadget-2 on 1, 2, 4, and 8
processors using Fast Ethernet. Note that one MPI or Java process is running on
a dual CPU node using one of the two available processors. A similar comparison
of execution time on Myrinet is shown in Figure 2. The Java version is almost
30% slower than the C version.

Figure 3 shows tree-walk time of C and Java Gadget-2. The presented tree-walk
is the average of all processors for more than one processor case. The Java version
is approximately 30% slower in calculating gravitational force than the C version.

The speed-up for C and Java version is modest because of small problem size
but the focus of this paper is the performance comparison of the two versions.

5 Conclusions and Future Work

In this paper, we have presented a Java version of Gadget-2. The performance
evaluation of the Java version revealed that it can achieve around 70% of C
Gadget-2’s performance. This is understandable given that Java has extra run-
time safety features. Also, it should be noted that the comparison is between a
production quality C code against a Java code that could be further optimized.
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Fig. 1. Execution Time Comparison on Fast Ethernet
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Fig. 2. Execution Time Comparison on Myrinet
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The performance of Java Gadget-2 shows that with careful programming, it is
possible to achieve performance in the same general ballpark as C code. It could
be argued that Java is an acceptable choice for HPC applications, especially
the ones that require high reliability. Java ensures reliability by providing extra
safety features including array bounds checking. For example, we discovered a
scenario in the original C Gadget-2 where seventh element of a six element array
was accessed. The Java Gadget-2 helped identify this scenario by throwing a
ArrayOutOfBound exception. We have informed the developer of C Gadget-2,
who has fixed this problem in the distribution.

In general, Java encourages better software engineering by being an object
oriented language and is more portable than its precursors.

We plan to continue working on the Java Gadget-2 software and make a public
release in the future. Our MPI-like messaging software MPJ Express is publicly
available from http://dsg.port.ac.uk/projects/mpg.
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Abstract. The simulation of fluid-structure interaction (FSI) problems
is a challenge in contemporary science and engineering. This contribution
presents an approach to FSI problems with incompressible Newtonian
fluids and elastic structures and discusses its realization in a general
purpose parallel finite element research code. The resulting algorithm is
robust and efficient and scales well on parallel machines. Recent attempts
on efficiency improvements are discussed and a numerical example is
shown.

1 Statement of Problem

Fluid-structure interaction (FSI) problems are non-overlapping multifield prob-
lems coupled at the interface. This contribution is concerned with the coupling
of incompressible Newtonian fluids, fluids whose shear stresses depend linearly
on the velocity gradient, with nonlinear structures. Both fields are governed by
a time dependent nonlinear PDE that reads

ρS D2d
Dt2

= ∇ · S + ρSfS in ΩS × (0, T ), (1)

in the structural field and

∂u
∂t

∣∣∣∣
χ

+
(
u − uG

)·∇u−2ν∇·ε(u)+∇p = fF and ∇·u = 0 in ΩF ×(0, T ),

(2)
in the fluid field. The unknown structural displacements d, fluid velocities u and
fluid pressure p are searched for. At the coupling interface both displacements
and forces must balance. The fluid domain deformation is treated by an Arbitrary
Lagrangian–Eulerian (ALE) approach.

Please refer to [11] for a profound discussion of the formulation of FSI prob-
lems including the required initial and boundary conditions.

The governing equations are discretized in space using finite elements (FE),
i.e. the whole domain is covered by an unstructured mesh of elements and nodes.
The continuous field variables d, u and p are replaced by discrete variables
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at the nodal points and approximations inside the elements. At the element
level a sophisticated advection and pressure stabilization respectively a hybrid
or mixed element formulation is employed to obtain high quality results. This
discretization results in a transient nonlinear system of equations that consists
of the structural part and the fluid part

MS d̈ + NS(d) = fS , (3)

MF u̇ + NF (u)u + KF u + GF p = fF ,
(
GF

)T

u = 0, (4)

connected by discrete versions of the coupling conditions. These equations are
further worked upon through direct time integration. The nonlinearities are
treated by a fix-point like or Newton-Raphson scheme.

A detailed discussion of the discrete operators N, K and G can be found in [11].

for all time steps:
i = 1
until the nonlinear equations (3) and (4) are satisfied:

for all elements:
calculate element matrix ke and RHS vector fe

assemble Ki and fi from ke and fe

solve the linearized system of equations
⎛
⎜⎝

KS
II,i KS

IΓ,i

KS
ΓI,i

(
KS

ΓΓ,i + δKF
ΓΓ,i

)
KS

ΓI,i

δKF
IΓ,i KF

II,i

⎞
⎟⎠

⎛
⎝ dI,i

dΓ,i

uI,i

⎞
⎠ =

⎛
⎝ fS

I,i

fS
Γ,i + fF

Γ,i

fF
I,i

⎞
⎠ (5)

i = i + 1

Algorithm 1. Basic sketch of monolithic FSI solver

2 Solution of Coupled FSI Problem

2.1 Monolithic Solution Approach

A monolithic solution approach treats all field equations of the FSI problem at
the same time [3,4]. That is the algorithm consists in the repeated assembling
and solution of a huge linear system of equations with quite diverse entries. In a
very compact notation, which abbreviates the left hand side (LHS) of a linearized
equation system with K and denotes by I and Γ the degrees of freedom inside
and at the coupling interface of a domain, respectively, algorithm 1 outlines the
solving procedure where the δ at the fluid interface contributions in equation (5)
accounts for the time discretization of the fluid velocity.

The LHS matrix of equation (5) follows from the discretization of the whole
domain by the finite element method and consequently it is banded and very
sparse. The direct solution of this system of equations destroys the sparsity
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pattern and consumes a lot of memory. Because of this memory requirements
direct solution approaches are unfeasible for any reasonable problem size. The
alternative are iterative solution techniques that do not suffer from excessive
memory consumption. The central operation of iterative linear equation solvers
is a matrix-vector product. Using an iterative technique the modified solution
algorithm is sketched in algorithm 2.

for all time steps:
i = 1
until the nonlinear equations (3) and (4) are satisfied:

for all elements:
calculate element matrix ke and RHS vector fe

assemble Ki and fi from ke and fe

j = 1
until convergence of the linear system:

dj+1 = Ki · dj

j = j + 1
i = i + 1

Algorithm 2. Sketch of coupled FSI solver with iterative linear equation solver

Another important advantage of iterative solvers for linear systems of equa-
tions is better behavior in parallel environments. With a parallel solver for linear
systems of equations the above algorithm can easily be run in parallel. This is
discussed in more detail in section 3.1.

2.2 Partitioned Solution Approach

Algorithm 2 suffers from various difficulties. On the numerical side it turns out
that the linearized system matrix K is poorly conditioned because of the widely
different properties of the participating fields. Very extensive (and expensive)
preconditioning is needed to attack this matrix with iterative solvers. From an
implementation point of view the derivation of off-diagonal blocks is quite cum-
bersome [3,2] and also contradicts the aspired software modularity. The later
point is particularly important since both field solvers (fluid and structure) solve
complex real-world problems and need to be quite sophisticated on their own.

A partitioned approach that avoids these difficulties was presented in [12]. The
partitioned approach builds on domain decomposition methods to separate the
fluid and the structural domain. In most cases [7,10,1,6] a Dirichlet-Neumann
approach is used that prescribes fluid velocities at the coupling interface of the
fluid domain and applies the resulting forces to the coupling interface of the
structural domain. This approach is natural from an engineering point of view.
Furthermore it eases implementation because the field solvers can be handled
independently. Available solvers can be integrated easily, which makes the ap-
proach most advantageous in industrial applications. The price to pay for these
advantages is the additional computation time required by the field iteration.
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The FSI algorithm for the relaxed Gauß-Seidel solver as suggested by [12,7]
is shown in algorithm 3. The crucial point for efficiency and robustness of the
partitioned solution approach is relaxation of interface displacements dS

Γ .

for all time steps:
until convergence of interface displacements dS

Γ

i = 1
until the nonlinear equations (4) are satisfied:

for all fluid elements:
calculate element matrix kF

e and RHS vector fF
e

assemble KF
i and fF

i from kF
e and fF

e

j = 1
until convergence of the linear fluid system:

uj+1 = KF
i · uj

j = j + 1
i = i + 1

transfer fluid interface forces fF
Γ to the structure

i = 1
until the nonlinear equations (3) are satisfied:

for all structure elements:
calculate element matrix kS

e and RHS vector fS
e

assemble KS
i and fS

i from kS
e and fS

e

j = 1
until convergence of the linear structural system:

dj+1 = KS
i · dj

j = j + 1
i = i + 1

relax interface displacements dS
Γ

transfer structural interface displacements dS
Γ to the fluid

Algorithm 3. Sketch of partitioned Gauß-Seidel like FSI solver

3 Parallel Object Based Simulation Code

The above FSI algorithm is implemented in a object based FE code written in C
and FORTRAN, where FORTRAN is used for time critical inner loops and all I/O fa-
cilities as well as data structures are implemented in C. The choice of language
was guided by performance considerations and the availability of development
tools on a wide range of platforms. A further point in question was the expected
learning curve for casual developers.

The central structures are shown in figure 1. The physical fields are repre-
sented by a Field structure that contains any number of discretizations. Each
discretization consists of a collection of elements and nodes that make up the
FE mesh. For clarity secondary data structure that represent the mesh topology
and the boundary conditions are not shown.
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Field
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Fig. 1. Core design of the simulation code

3.1 Parallelization

In the lower half of figure 1 there are the data structures needed for paralleliza-
tion. These data structures mirror the main structures, but depict just a partition
of the entire mesh. The decomposition of the mesh is such that each node belongs
to exactly one processor, consequently the elements at the partitions boundaries
are shared with the adjacent partitions. This way the global systems of equa-
tions are naturally distributed among the participating processors because each
equation belongs to exactly one node.

In a parallel environment each processor calculates and assembles just those
global equations that belong to its nodes. This can be parallelized without any
need for communication, it requires to loop all elements adjacent to the nodes
of each processor. The matrix-vector product needed to solve the distributed
system of equations needs some communication of vector elements. However
there are efficient communication patterns and the amount of communication
required depends on the partitioning of the FE mesh. A partitioning with com-
pact submeshes that reduces the required communication can be obtained by
graph partitioning tools such as metis [5]. Hence a parallel execution of algo-
rithm 3 is feasible without major modifications in the algorithm structure. The
expected speedup warrants the effort.

3.2 Efficiency Improvements

Algorithm 3 is realized in our general purpose FE research software. General
purposeness in this case means a broad range of algorithms with many variants,
easy adoption to new requirements as well as applicability of many different
computing systems. In particular support for cache based machines and vector
machines is needed. This flexibility is of course in conflict with the efficiency of
the code. Our attempts to increase the efficiency include (a) the introduction of
configurable element sets to fill the vector pipes on vector machines and (b) the
change of the sparse matrix format to a node block based format on cache
systems or even a jagged diagonal format on vector machines. Efforts to improve
the linear equation solver are justified by the dominating role of these solvers
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in transient FSI simulations. However, considerable time is spend with element
calculations, especially in 3d simulations, since a high approximation quality can
only be achieved using elaborated element techniques. The effort spend with
element formulation pays off, though, by means of a considerable reduction of
unknowns in the global system of equations. Results of this efforts can be found
in [8,9].

Future tasks in that direction include improved data parallelization of FE
meshes and RHS vectors.

4 Numerical Example

As numerical example for the presented algorithm a flexible structure in a 2d
channel has been calculated. A snapshot of the simulation is shown in figure 2.
This small example consists of 100258 fluid equations, 12400 structural equations
and 61360 mesh equations. The unsymmetrical fluid equations are solved with
GMRES, the structure and mesh equations are solved with CG. Processor local
ILU preconditioning is applied in both cases. The example has been executed
on 4, 8 and 16 processors on three hardware platforms.

Xeon Intel Xeon EM64T 3.2 GHz, Infiniband, 2 processors per node
Opteron AMD Opteron 850 2.4 GHz, Infiniband, 4 processors per node
Altix SGI Altix 3700 BX2

Measurements for element matrix calculation, matrix assembly and solution of
the global system of equations are shown in figure 3. Interestingly the times
required by the Xeon and the Opteron machine for the element calculation and
the matrix assembly are practically identical. That is possibly due to identical
memory latency. The Altix seems to have some more difficulties with the fine
grained work in the element routines and the integer arithmetic of the assembling
process. On the other hand does the Altix excel, as expected, during the number
crunching of the global linear solver. And this task turns out to dominate the
overall execution time.

Fig. 2. Velocity |u| of example channel problem with embedded flexible structure

Please note, however, that these are very preliminary numbers. We are cur-
rently deploying a new parallel cluster that will enable us to do more profound
studies and to solve larger systems. The conference presentation will contain
these new cases.
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Fig. 3. Execution time in s of two time steps. The element matrix calculation, the
matrix assembly and the solution of the global distributed system of equations are
measured.

5 Conclusion

This contribution discusses our ongoing effort to establish a FE based FSI solver
for general complex real-world problems on parallel machines. The partitioned
Gauß-Seidel algorithm with relaxation is presented and its parallelization dis-
cussed. The main design points of our general purpose FE research code are
sketched including some recent efforts on efficiency improvements. A small ex-
ample demonstrates the applicability of the proposed algorithm. More examples
are to be shown at the conference.
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Abstract. This paper presents a case study about the applicability and
usage of non-blocking collective operations. These operations provide the
ability to overlap communication with computation and to avoid unnec-
essary synchronization. We introduce our NBC library, a portable low-
overhead implementation of non-blocking collectives on top of MPI-1. We
demonstrate the easy usage of the NBC library with the optimization of
a conjugate gradient solver with only minor changes to the traditional
parallel implementation of the program. The optimized solver runs up to
34% faster and is able to overlap most of the communication. We show
that there is, due to the overlap, no performance difference between Gi-
gabit Ethernet and InfiniBandTM for our calculation.

1 Introduction

Historically, overlapping communication and computation is the most common
approach for scientists to leverage parallelism between processing and commu-
nication units [1]. The resulting application is less latency sensitive, and can
even, up to a certain extent, run on high latency networks without any change
in the parallel speedup. The non-blocking operations allow the applications to
ignore process skew or network jitter, which often has negative effects on the
running time [2]. Both can be very beneficial on Cluster-Computers (also known
as Networks of Workstations, NOW) and on Grid-based systems.

The Message Passing Interface (MPI) standard is currently the de-facto stan-
dard for parallel computing and many scientific programs exist which use MPI
as their communication layer. MPI-1 offers the possibility to overlap commu-
nication and computation and to avoid unnecessary synchronization for point-
to-point messages (MPI ISEND, MPI IRECV). However, many applications can
benefit from using MPI collective communication, which is often optimized for
the underlying hardware (e.g., [3,4]) and delivers much better performance than
comparable point-to-point communication schemes. Another advantage of col-
lective communication is their abstraction of communication and the resulting
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ease of use for parallel programs. Gorlatch recently published a good survey of
reasons to use collective communication [5].

Especially, applications from scientific computing (SC) are well-suited to ben-
efit from the more abstract parallelization approach of collective communication.
Furthermore, many algorithms in SC, e.g., linear solvers, provide a high poten-
tial of overlapping communication and computation. In order to combine the
advantages of this overlapping and of collective communication, we introduce
non-blocking collective operations for the MPI-1 standard and demonstrate their
gain in a conjugate gradient solver. An assessment of possible benefits has been
presented in [6].

1.1 Related Work

The idea to provide non-blocking collective operations grew out of discussions
for the MPI-2 standard. The MPI Forum defined split collectives which were
not standardized in MPI-2, but were written down in the MPI-2 Journal of
Development (JoD [7]). However, these operations are too limited to be easily
usable for scientists. IBM extended the interface and implemented non-blocking
collectives as part of their Parallel Environment, but they dropped the support
for them in the latest version because they were not part of the MPI standard
and were only rarely used by scientists who preferred portability. The upcom-
ing MPI/RT standard [8] defines all operations, including collective operations,
in a non-blocking manner. Kale et. al. implemented a non-blocking all-to-all
communication as part of the CHARM++ framework [9]. To the best of the
authors’ knowledge, there are neither explicit studies on performance gain and
nor optimized implementations of non-blocking collective operations available.

2 Implementing Non-Blocking Collective Operations

Our implementation aims mainly at portability, low overhead, and ease of use.
We built the first prototype library on top of non-blocking point-to-point oper-
ations defined in the MPI-1 standard. Therefore, although we cannot leverage
special hardware features, the protoype library is portable to all MPI-1 capable
parallel computers. Further because we implemented optimized algorithms for
all collective operations, we deliver the same performance as the hardware inde-
pendent blocking collective operations in MPICH2 [10] and Open MPI 1.0 [11].

The interface to the calls is very similar to the blocking MPI collective opera-
tions. However, to ensure non-blocking operation, a handler is returned which is
comparable to a MPI REQUEST. The behavior and the application programming
interface (API) of those non-blocking collective calls are defined in [12].

The following subsections provide an overview of the implementation of our
non-blocking collectives (NBC) library, which offers asynchronous collective sup-
port on top of MPI-1. The only difference to the definition in [12] is that all calls
and constants are prefixed with NBC instead of MPI to avoid confusion with
MPI standardized operations.
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2.1 The Scheduling Engine

To ease implementation, we propose a general framework to support all opera-
tions. This framework, our scheduling engine, builds and executes a schedule to
perform collective operations. Each collective operation, defined in the MPI stan-
dard, can be expressed as a row of sends, receives and operations between ranks
of a specific communicator. These functions can be arranged into r communica-
tion rounds to build a communicator-specific schedule for each rank. Each round
may consist of one or more operations which have to be independent and will be
executed simultaneously. Operations in different rounds depend on each other,
in a way that operations on round n can only be started after all operations in
round n − 1 have finished ∀ 0 ≤ n ≤ r.

2.2 Building a Schedule

The schedule defines all required actions to perform the collective operation for
a specific rank and a specific communicator. A rank’s schedule is specific to each
communicator and MPI argument set. It is designed to be reusable if it is saved
in association to the communicator and the arguments.

A schedule consists of actions (send, receive, operation) and rounds. It is laid
out as a contiguous array in memory to be cache friendly. The memory layout
of the simplified example schedule for rank 0, for a MPI BARRIER implemented
with the dissemination principle on a four-node communicator is shown in Fig. 1.
This schedule has a send operation to rank 1 and a receive operation from rank
3 in the first round. The round is ended by the end flag. The second round issues
a send to rank 2 and a receive from rank 2. The dissemination barrier is finished
after those operations and NBC TEST or NBC WAIT calls return NBC OK.

send to 1 recv from 3 end send to 2 recv from 2 end

Fig. 1. Memory Layout of a schedule at rank 0, implementing a Dissemination Barrier
between 4 nodes

2.3 Schedule Execution

The schedule array in Fig. 1 consists of four operations in two rounds. The
schedule represents the necessary operations to perform a MPI BARRIER on
rank 0 of 4. The non-blocking execution of the schedule begins if the user
calls NBC IBARRIER(comm, handle). The first call to NBC IBARRIER builds the
schedule (if not already done), starts all operations of the first round in a non-
blocking manner, initializes the handle, and returns immediately to the user.
The user can perform any computation while the operations are processed in
the background. The amount of progress made in the background depends on
the actual MPI implementation. The current implementation of the NBC library
is runnable in environments which offer no thread support. This means that
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the user should progress the operation manually by calling NBC TEST(handle).
NBC TEST checks all pending operations for completion and proceeds to the
next round if the current round is completed. It returns NBC OK if the oper-
ation (all rounds) is finished, otherwise NBC CONTINUE to indicate that the
operation is still running.

3 Optimization of Linear Solvers

Accelerating parallel applications in scientific computing is a main topic of many
research projects. Non-blocking collective communication can be an important
contribution to it and we will demonstrate this on a selected case study.

Iterative linear solvers are important components of most applications in SC.
They consume, with very few exceptions, a significant part of the overall run-time
of typical applications. In many cases, they even dominate the overall execution
time of parallel code. Reducing the computational needs of linear solvers will
thus be a huge benefit for the whole scientific community.

Despite the very different algorithms and varying implementations of many
of them, one common operation is the multiplication of very large and sparse
matrices with vectors. Assuming an appropriate distribution of the matrix, large
parts of the computation can be realized on local data and the communication
of required remote data — also referred to as inner boundaries or halo — can
be overlapped with the local part of the matrix vector product.

3.1 Case Study: 3-Dimensional Poisson Equation

For the sake of simplicity, we use the well-known Poisson equation with Dirichlet
boundary conditions, e.g., [13]

− Δu = 0 in Ω = (0, 1) × (0, 1) × (0, 1), (1)
u = 1 on Γ . (2)

The domain Ω is equidistantly discretized. Each dimension is split into N + 1
intervals of size h = 1/(N + 1). Within Ω one defines n = N3 grid points

G = {(x1, x2, x3)|∀i, j, k ∈ N, 0 < i, j, k ≤ N : x1 = ih, x2 = jh, x3 = kh}.

Thus, each point in G can be represented by a triple of indices (i, j, k) and we
denote u(ih, jh, kh) as ui,j,k. Lexicographical order allows to store the values of
the three-dimensional domain into a one-dimensional array. For distinction we
use a typewriter font for the memory representation and start indexing from
zero as in C/C++

ui,j,k ≡ u[(i − 1) + (j − 1) ∗ N + (k − 1) ∗ N2] ∀0 < i, j, k ≤ N. (3)

The differential operator −Δ is discretized for each x ∈ G with the standard
7 point stencil represented as a sparse matrix in Rn×n using the memory layout
from (3), confer e.g. [13] for the 2D case.
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3.2 Domain Decomposition

The grid G is partitioned into p sub-grids G1, . . . , Gp where p is the number of
processors. The processors are arranged in a non-periodic Cartesian grid p1 ×
p2 × p3 with p = p1 · p2 · p3, provided by MPI DIMS CREATE. In case that N is
divisible by pi∀i the local grids on each processor have size N/p1 ×N/p2 ×N/p3,
otherwise the local grids are such that the whole grid is partitioned and the sizes
along each dimension vary at most by one.

Each sub-grid has 3 to 6 adjoint sub-grids if all pi > 1. Two processors P
and P ′ storing adjoint sub-grids are neighbors, written as the relation Nb(P, P ′).
This neighborhood can be characterized by the processors’ Cartesian coordinates
P ≡ (P1, P2, P3) and P ′ ≡ (P ′

1, P
′
2, P

′
3)

Nb(P, P ′) iff |P1 − P ′
1| + |P2 − P ′

2| + |P3 − P ′
3| = 1. (4)

Fig. 2 shows the partition of G into sub-grids and necessary communication.

Fig. 2. Processor Grid

3.3 Design and Optimization of the CG Solver

The conjugate gradient method (CG) by Hestenes and Stiefel [14] is a widely
used iterative solver for systems of linear equations when the matrix is symmetric
and positive definite. To provide a simple base of comparison we restrain from
preconditioning [13] and from aggressive performance tuning [15]. However, the
local part part of the dot product is unrolled using multiple temporaries, the two
vector updates are fused in one loop, and the number of branches is minimized
in order to provide a high-performance base case. The parallelization of CG in
the form of Listing 1.1 is straight-forward by distributing the matrix and vectors
and computing the vector operations and the contained matrix vector product
in parallel.

Neglecting the operations outside the iteration, the scalar operations in List-
ing 1.1 — line 1, 2, 6, 9, and 11 — and part of the vector operations — line
3, 7, and 8 — are completely local. The dot products in line 5 and 10 require
communication in order to combine local results with MPI ALLREDUCE to the
global value. Unfortunately, computational dependencies avoid overlapping this
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1 while (sqrt(gamma) > epsilon * error_0) {

2 if (iteration > 1)

3 q = r + gamma / gamma_old * q;

4 v = A * q;

5 delta = dot(v, q);

6 alpha = delta / gamma;

7 x = x + alpha * q;

8 r = r - alpha * v;

9 gamma_old = gamma;

10 gamma = dot(r, r);

11 iteration = iteration + 1;

12 }

Listing 1.1. Pseudo-code for CG method

1 fill_buffers(v_in, send_buffers);

2 start_send_boundaries(comm_data);

3 volume_mult(v_in, v_out, comm_data);

4 finish_send_boundaries(comm_data);

5 mult_boundaries(v_out, recv_buffers);

Listing 1.2. Pseudo-code for parallel matrix vector product

reductions. Therefore, the whole potential to save communication time in a CG
method lies in the matrix vector product — line 4 of Listing 1.1.

3.4 Parallel Matrix Vector Product

Due to the regular shape of the matrix, it is not necessary to store the matrix
explicitly. Instead the projection u �→ −Δu is computed. In the distributed
case p > 1, values on remote grid points need to be communicated in order to
complete the multiplication. In our case study, the data exchange is limited to
values on outside planes of the sub-grids in Fig. 2 unless the plane is adjoint to
the boundary Γ . Therefore, processors must send and receive up to six messages
to their neighbors according to (4) where the size of the message is given by the
elements in the corresponding outer plane.

However, most operations can be already executed with locally available data
during communication as shown in Listing 1.2. The first command copies the
values of v in needed by other processors into the send buffers. Then an all-to-
all communication is launched, which can be blocking using MPI ALLTOALLV
or non-blocking using NBC IALLTOALLV, which has identical arguments plus
a NBC HANDLE that is used to identify the operation later. The command
volume mult computes the local part of the matrix vector product (MVP) and
in case of non-blocking communication, NBC TEST is called periodically with
the handle returned by NBC IALLTOALLV in order to progress the non-blocking
operations, cf. Section 2.1. Before using remote data in mult boundaries, the
completion of NBC IALLTOALLV is checked in finish send boundaries with
an NBC WAIT on the NBC HANDLE.
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3.5 Benchmark Results

We performed a CG calculation on a grid of 800 × 800 × 800 points until the
residual was reduced by a factor of 100, which took 218 iterations for each run.
This weak termination criterion was chosen to allow more tests on the cluster.
We verified on selected tests with much stronger termination criteria that longer
executions have the same relative behavior. The studies were conducted on the
odin cluster available at the Indiana University which consists of 128 dual 2
GHz Opteron 246 nodes connected with flat InfiniBandTM and Gigabit Ethernet
networks. Fig. 3 shows the benchmark results up to 96 nodes. We see that the
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Fig. 3. Parallel Speedup (left) and Relative Performance Gain (right)

usage of our NBC library resulted in a reasonable performance gain for nearly
all node counts. The performance loss at 8 processors is caused by relatively
high effort to test the progress of communication. Finding simple rules to adapt
the testing overhead to communication needs is subject to ongoing research.
Due to the implementation design described above, non-blocking point-to-point
communication would perform almost equally while requiring the management
for multiple communication handlers including the progress enforcement. The
overall results show that for both networks, InfiniBandTM and Gigabit Ethernet,
nearly all communication can be overlapped and the parallel execution times are
similar. The factor of 10 in bandwidth and the big difference in the latency of
both interconnects does not influence the running time, even if the application
has high communication needs. The partially superlinear speedup is due to the
calculation of the inner part of the matrix.

3.6 Optimization Impact on Other Linear Solvers

Other Krylov sub-space methods have comparable dependencies on reduction
operations which similarly limit the potential of communication overlapping to
parts of the execution. Preconditioners of Krylov sub-space methods are often
operations similar to MVP, e.g., incomplete LU or Cholesky factorization, and
have the potential of overlapping.
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Classical iterative solvers, like Gauß-Seidel, only consist of operations compa-
rable with a matrix vector product and, thus, the whole computation is subject to
overlapping. Due to very slow convergence, their importance as iterative solvers
is limited. However, these methods are very important components of multi-
grid methods (MG) [16]. Other operations in MG, which project values between
two grids, have a high potential to overlap communication, too. The computa-
tion on on the small grids introduces severe communication bottlenecks where
non-blocking communication can provide significant improvements. As multigrid
methods are solvers with minimal complexity, they are extremely important in
SC and we will investigate them in detail in future work.

4 Conclusions and Future Work

We demonstrated the easy use of the NBC library and the principle of non-
blocking collectives for a class of application kernels. We were able to improve
the parallel application running time by up to 34% with minor changes to the
application. The CG solver source code and the NBC library are available at:
http://www.unixer.de/NBC/.

Future work includes an optimized MPI-2 implementation of the NBC library,
hardware optimized non-blocking collective operations, and the analysis of more
applications. The possibility of asynchronous progress, which removes the need
for testing, with a separate thread will also be investigated. However, this may
have other implications because the user can not control when the library gets
called and possibly wipes out the CPU cache.
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Abstract. There is an increasing demand for high precision coatings
on large areas via in-line reactive sputtering, which requires advanced
process control techniques. Thus, an improved theoretical understanding
of the reactive sputtering process kinetics is mandatory for further tech-
nical improvement. We present a detailed Direct Simulation Monte Carlo
(DSMC) gas flow model of an in-line sputtering coater for large area ar-
chitectural glazing. With this model, the pressure fluctuations caused by
a moving substrate are calculated in comparison with the experiment.
The model reveals a significant phase shift in the pressure fluctuations
between the areas above the center and the edges of the substrate. This
is a geometric effect and is e. g. independent of the substrate travelling
direction. Consequently, a long sputtering source will observe pressure
fluctuations at its center and edges, which are out of phase.

For a heuristic model of the reactive sputtering process, we show that
in certain cases a two-dimensional model treatment is sufficient for pre-
dicting the film thickness distribution on the moving substrate. In other
cases, a strong phase shift between averaged pressure fluctuations and
reactive sputtering process response is observed indicating that a three-
dimensional model treatment is required for a realistic simulation of the
in-line deposition process.

1 Introduction

Reactive sputtering is a key technology for a large variety of technical appli-
cations such as thin film photovoltaics, displays, architectural energy-saving
and automotive coatings. With increasing size of coated substrates and with in-
creased performance of the coating devices, advanced process control techniques
e. g. in order to maintain a precise film homogeneity or to obtain a specific crys-
talline phase of the coated film become important. To improve the theoretical
understanding of the reactive sputtering process kinetics, heuristic models as
originally introduced by Berg et al. [Ber87, Ber05] enabling a qualitative under-
standing are investigated by several groups. In this ”Berg model”, the reactive
sputtering process is treated within a volume with homogeneous partial pressure
by simplified balance equations between the gas phase and the oxidation degrees
of target and substrate surfaces.

In order to obtain a heuristic sputtering simulation for more realistic recipient
geometries, an approach of coupling multiple Berg models via flow conductances

B. Mohr et al. (Eds.): PVM/MPI 2006, LNCS 4192, pp. 383–390, 2006.
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Fig. 1. Two dimensional cross section of modules M8–M11 of the ”BigMag” in-line
coater. Module M9 contains a double rotatable sputtering target, while in the upper
regions of M8 and M10 three turbo molecular pump with a pumping speed of approx.
1.4 m3/2 are located, respectively. The load lock is located in module M1 (not shown),
additional pumping is installed in modules M5 and M3.

and effective pumping speeds was introduced in [Pfl03]. For typical pressures in
the range of 10−2 . . . 10−4 mbar, the Knudsen number of a sputtering system is
in the order of 0.1 . . . 10. Thus we need to consider rarified gas flow conditions,
which can be simulated by a ”Direct Simulation Monte Carlo” (DSMC) approach
as given in [Bir94].

In a cooperation with Applied Films & Co. KG we performed a DSMC sim-
ulation of a so-called ”BigMag” in-line coater with a moving glass substrate
which causes pressure fluctuations in the sputtering compartment in the order
of 5% [Pfl04]. The coater setup around the sputtering compartment under in-
vestigation is shown in Fig. 1 With a subsequently developed, twodimensional
heuristic model, where the pressure fluctuations are averaged along the sputter
source direction, i. e. perpendicular to the transport direction, the resulting film
thickness profile on the substrate could be correctly predicted in the case of a
reactive ZnO deposition. However other experiments reveal that in many cases
the fluctuations of e. g. the sputter target voltage are not in phase with the av-
eraged pressure fluctuations. In these cases the simulated film thickness profile
strongly deviates from the experiment.

A detailed analysis of the simulated threedimensional pressure distribution,
as presented in this paper, shows that this is due to a strong phase shift in the
pressure fluctuations between the area at the center of the glass substrate and
the edges, which occurs even without any plasma discharge.

2 DSMC Simulation of the ”BigMag” In-Line Coater

For the DSMC method based on Ref. [Bir94] a parallel code has been imple-
mented at Fraunhofer IST in C++ using g++ 3.3.5 and the parallel environ-
ment PVM31. The simulation runs are carried out on a Linux cluster with ten
AMD/Opteron-250 processors and a GBit ethernet network.

In this DSMC system the worker processes are pure C++ programs which are
capable of handling a set of simple geometric units such as rectangular boxes

1 PVM stands for ”parallel virtual machine”, see http://www.csm.ornl.gov/pvm/
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Fig. 2. Software framework of the DSMC simulation system developed at Fraunhofer
IST

or cylinders. Each volume contains a distribution of super particles, whereof
each represents a number NR of gas molecules. Typically, NR is in the order of
1010 . . . 1014. It is possible to define rectangular or circular connecting surfaces
between adjacent volume units in order to exchange super particles. Depending
on whether these volume units are hosted by the same worker process or by
two different processes the particle transfer is either performed internally or via
exchanging PVM messages.

The master process is also written in C++ as a sub-class of a scripting lan-
guage ”RIG-VM” developed at Fraunhofer IST. RIG-VM2 has a C-like syntax
and is designed for simplifying communication between different embedded nu-
merical algorithms. In this case, we use RIG-VM for definition of the recipient
geometry – i. e. the set of volume units, their connections and assignments to the
worker tasks – as well as the control of the overall calculation schedule. As shown
in Fig. 2 the master process can be controlled by the scripting language via the
RIG-VM API, while the communication with the worker tasks uses PVM.

The chamber geometry is decomposited into many rectangular volume units,
as shown for M8-M10 in Fig. 3. The whole DSMC model comprises modules
M5-M11, i. e. a total volume of approx. 7.5 m3, and consists of 1005 rectangular
units. The substrate size is 3.21 × 1.0 m2, i. e. the substrate length in move
direction is 1.0 m. For simulation of substrate movement the area traversed by
the substrate is divided into stripes sized 3.21 × 0.05 × 0.004 m3. Each stripe
can be either connected to the surrounding gas volume or – if the substrate
is present – disconnected. By subsequently disconnecting / connecting stripes
at the front / rear side of the substrate, the movement can be resembled at a
resolution of 5 cm in transport direction.

The DSMC simulation was carried out for an Argon inflow of 600 sccm
distributed homogeneously below the two shieldings beneath the cylindrical

2 For a documentation of ”RIG-VM” see http://www.simkopp.de/rvm/
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Fig. 3. Decomposition of the ”BigMag” volume into rectangular boxes. The upper
graph shows the decomposition of module M9 in the x-y plane, while the lower graph
contains the extrusion of the geometry along the sputter target direction, i. e. the z-
axis. The whole DSMC model comprises seven sputtering compartments M5-M11 and
consists of 1005 rectangular boxes in total.

targets. For the initial substrate position, where the left glass edge is located
at the connection between M7 and M8, 150000 DSMC time cycles at a time step
of δt = 2.5×10−5 s are performed, while the total number of simulation particles
stabilizes in the order of 5 × 106. Additional 10000 steps of time-averaging are
performed thereafter. For each subsequent position of the glass substrate, which
is travelling to the left direction, the positions and velocities of all particles are
stored in temporary files which allows to continue the calculation after appli-
cation of the geometry modification. 25000 time steps are performed at each
position, which corresponds to a substrate travelling speed of 4.8 m/s. For 57
substrate positions in total, this takes a calculation time of approx. five days on
a Linux cluster with 10 Opteron processors at 2.4 GHz.

For parallelization, N volume units have to be assigned to the M worker
processes. The individual load Li for each volume unit i can be either estimated
by its actual number of particles or measured with the clock() function during
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Table 1. Load balancing results for 1005 volume units on a 10-CPU Opteron-250
cluster. Simulation runs comprise approx. 106 super particles at an average Ar-pressure
of 100 mPa.

M Network connections Time for 1000 cycles [s]
Particles CPU-load Particles CPU-load

1 0 0 438 438
2 202 80 297 (74%) 272 (81%)
3 286 83 255 (57%) 219 (67%)
4 366 119 241 (45%) 170 (64%)
5 366 158 213 (41%) 150 (58%)
6 406 162 169 (43%) 141 (52%)
7 446 185 148 (42%) 122 (51%)
8 489 209 152 (36%) 114 (49%)
9 498 250 127 (38%) 122 (40%)
10 474 247 145 (30%) 118 (37%)

a couple of test cycles. Additionally, a N × N matrix C is constructed during
setup of the geometry, whereof Cik(i < k) is the number of connections between
volume elements i and k. If Pi ∈ [1 . . .M ] is the process, where volume element
i is assigned to, the quantity E to be minimized by the load balancer is

E = γ1

⎛
⎝ ∑

i<k ∧Pi �=Pk

Cik

⎞
⎠

2

︸ ︷︷ ︸
network traffic

+γ2

∑
i=1,M

⎛
⎝L −

∑
k=1,N ; Pk=i

Lk

⎞
⎠

2

︸ ︷︷ ︸
load fluctuations

, (1)

whereof L is the average load per process, and γ1, γ2 are weighting factors. The
minimization is carried out with the ”Simulated Annealing” [Kir83] method by
randomly changing the assignments between volume units and processes. With
Lk given in [μs], a ratio of γ1/γ2 = 100 . . .1000 has been found to yield a good
compromise between minimization of load fluctuations and network traffic.

The load balance results for 1005 volumes and approx. 106 simulation particles
are summarized in Tab. 1, with Lk either given by the number of particles or by
the measured CPU-load of volume unit k. The latter method yields better results,
since the computational effort of the collision calculation is strongly nonlinear in
pressure. With a random initial process assignment vector P , the initial number
of communication paths going over the network is in the range of 2000, for M = 2
it is still in the range of 1400. As shown in Tab. 1 this quantity is reduced by
about 90% after load balancing. For M > 1 the relative speedup compared
to M = 1 is given in percent, while for M ≥ 7 the communication overhead
obviously becomes dominant. Better speedup efficiencies are obtained at higher
gas pressures with higher ratio between CPU-load and communication overhead.
Further improvements might be achieved by using a low-latency network such
as Myrinet and by using MPI instead of PVM.
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Fig. 4. (a) Simulated and measured pressure at a Ionivac pressure gauge located in
segment ”ZP3” of module M10 and (b) simulated pressure in module M9 at the center
(segments ”ZM” and ”ZP1/ZV1”) as well as at the boundaries (segments ”ZP3/ZV3”).
All pressure values are plotted against the substrate coordinate.

3 Results and Discussion

By comparing pressure measurements of an Ionivac pressure gauge located at the
coign of module M10 with DSMC simulations, a very good agreement between
measurement and simulation is obtained, as shown in graph (a) of Fig. 4. It
shall be noted in this context, that the measured pressure had to be rescaled by
a common factor since the absolute value of the Ionivac gauge was decalibrated.

In this picture, a monotonically decreasing pressure is found for the time
period, during which the travelling glass substrate is being deposited in chamber
M9. Thus, if a two-dimensional model of the reactive sputtering process in the
x-y plane is an appropriate description and if the sputtering process follows
immediately the pressure fluctuations, a monotonic shape of the resulting film
thickness profile on the substrate is expected.

However, a closer look at the simulated pressure fluctuations in the sputter-
ing module M9 – as shown in graph (b) of Fig. 4 – reveals that the shape of
the pressure fluctuations is different for the central region (segments ”ZM” and
”ZP1/ZV1”, see Fig. 3) of M9 in comparison to its boundary regions (segments
”ZP3/ZV3”): While in the boundary regions a pressure maximum occurs at a
substrate coordinate of x = 0.8 m, in the center a maximal pressure is obtained
for x = 1.3 m. For the latter case of the pressure fluctuations, a ”u” or ”n”
shaped film thickness profile on the glass substrate is expected rather than a
monotonic profile. It shall be noted that – in the x-y plane – all simulation data
is taken from the center of volume unit ”MM” (see upper graph in Fig. 3).

With a two-dimensional heuristic model of the reactive in-line sputtering
process in the ”BigMag” coater, the process response and film thickness profile
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Fig. 5. Simulated and measured relative film thickness profile on a glass substrate
sized 3.21×1.0 m2 after a one-pass dynamic deposition in the ”BigMag” in-line coater.
In case of a ZnO deposition the prediction of the two-dimensional heuristic model of
reactive sputtering is in good agreement with the experiment while it fails for other
experiments, e. g. a reactive SiO2 deposition, where the process conditions do not allow
a simplified treatment of the system in two dimensions.

due to the DSMC simulated pressure fluctuations were calculated as reported in
[Pfl04]. In this case the pressure field was averaged over the z-direction of the
geometry. As shown in Fig. 5, the two-dimensional treatment could be appro-
priate under certain conditions as shown in case of a measured ZnO-thickness
profile. This profile has been obtained by sputtering in oxide mode at high to-
tal pressure. However, there are also experiments – such as the measured SiO2
deposition profile – showing that a simplified two-dimensional treatment within
the heuristic sputtering simulation.

The reason for these deviations is obtained by a detailed look on the pure
DSMC gas flow simulation data: During substrate movement a long sputtering
source is confrontated with differently shaped pressure fluctuations with respect
to the location at the target surface. For a strong coupling via the electron drift
current it may be appropriate to assume a homogeneous ion generation prob-
ability in front of the target surface which allows a two-dimensional treatment
of the system. However for a weaker coupling along the target race track, a
three-dimensional treatment, i. e. modeling of a segmented target with inhomo-
geneously distributed oxidation degrees is necessary.

The nature of the coupling via the ring currents depends on many details. In
addition to usual process parameters such as discharge power or total pressure
it may also depend on whether a DC or a pulsed power is applied to the targets.
Also the presence of shieldings close to the target surfaces could have an impact
on the coupling behaviour. It will be subject of further investigations to develop a
heuristic model of an in-line sputtering process based on the detailed information
obtained from threedimensional DSMC simulations.
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4 Conclusion

A parallel, threedimensional ”Direct Simulation Monte Carlo” (DSMC) simula-
tion system for rarified gas flows has been developed and applied on the problem
of an in-line coater for reactive sputtering with a moving glass substrate. The
DSMC model consists of 1005 rectangular volume units, comprises seven mod-
ules of an in-line coater as usually designed for architectural glazing which is a
total volume of approx. 7.5 m3. For validation of the model, the measured pres-
sure fluctuations during substrate movement are compared with the simulation;
as a result, a very precise agreement is obtained.

A two-dimensional heuristic sputtering model based on the gas flow data ob-
tained by the DSMC simulation could describe the resulting process fluctuations
and thickness profile at least for a limited range of process conditions. In case
of a measured film thickness profile obtained from a reactive sputtering process
of ZnO the prediction of the heuristic model is in a good agreement with the
experiment. However, in other cases a strong disagreement is found between the
two-dimensional simulation and the experiment as in the case of a reactive SiO2
deposition experiment.

A detailed look on the DSMC simulation data reveals that the reason for this
disagreement is most probably a phase shift of the pressure fluctuations at dif-
ferent positions above the substrate in the sputtering compartment. This phase
shift even occurs under pure gas flow conditions, i. e. with no discharge plasma.
The development of a heuristic model in three dimensions with a segmented
target will be an issue for further investigations.

Acknowledgment

The authors gratefully acknowledge the financial contribution to parts of this
work from the BMBF under contract No. 02PP2001 and the VolkswagenStiftung
under contract No. I/79 263.

References

[Ber05] S. Berg, T. Nyberg, Fundamental understanding and modeling of reactive
sputtering processes Thin Solid Films 476 (2005) 215-230.

[Ber87] S. Berg, H. O. Blohm, T. Larsson, C. Nender, Modeling of reactive sputtering
of compound materials, J. Vac. Sci. Technol. A5 (1987) 202-7.

[Bir94] G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows,
Oxford Engineering Science Series 42 (1994).

[Kir83] S. Kirkpatrick, C. D. Gelatt, M. P. Vecci, Optimization by Simulated An-
nealing, Science 220 (1983) 671-680.

[Pfl04] A. Pflug, B. Szyszka, M. Geisler, A. Kastner, C. Braatz, U. Schreiber,
J. Bruch, Modeling of the film thickness distribution along trans-
port direction in in-line coaters for reactive sputtering, Proc. 47th

SVC Tech. Conf. (2004) 155-160.
[Pfl03] A. Pflug, B. Szyszka, V. Sittinger, J. Niemann, Process Simulation for Ad-

vanced Large Area Optical Coatings, Proc. 46th SVC Tech. Conf. (2003)
241-247.



Parallel Simulation of T-M Processes in
Underground Repository of Spent Nuclear Fuel
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1 Introduction

In the background of our interest in the modelling of thermo-mechanical phe-
nomena is its relevancy to the assessment of underground repositories of nuclear
waste - a highly urgent topic worldwide, with great impact on the future of
nuclear power utilization. In this context, one of the most internationally recog-
nised project is the Äspö Prototype Repository in Sweden, which is a full-scale
experimental realisation of the KBS-3 concept of spent nuclear fuel repository
[3], where modelling of phenomena such as heat transfer, moisture migration,
solute transport and stress/strain development can be verified.

This paper deals with mathematical simulation of the KBS prototype nuclear
waste repository in a simplified form. We consider the finite element solution of
thermo-elasticity problems, which are one-sidedly coupled. Thus, we can divide
the problem into two parts. Firstly, we determine the temperature distribution
by solving a nonstationary heat equation. Secondly, we solve a linear elasticity
problem at required time levels.

The numerical solution of both problems leads to the repeated solution of
large linear systems. For this purpose, we developed iterative solvers based on
the conjugate gradient method with Schwarz-type preconditioners. As we shall
demonstrate, their parallelization greatly improves the efficiency of the solution.

2 From Thermo-Elasticity to Linear Equations

The thermo-elasticity problem is formulated to find the temperature τ = τ(x, t)
and the displacement u = u(x, t),

τ : Ω × (0, T ) → R , u : Ω × (0, T ) → R3 ,

that fulfill the following equations

κρ
∂τ

∂t
= k

∑
i

∂2τ

∂xi
2 + q(t) in Ω × (0, T ) ,

−
∑

j

∂σij

∂xj
= fi (i = 1, . . . , 3) in Ω × (0, T ) ,
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σij =
∑
kl

cijkl [εkl(u) − αkl(τ − τ0)] in Ω × (0, T ) ,

εkl(u) =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
in Ω × (0, T )

together with the corresponding boundary and initial conditions. Above, κ is the
specific heat, ρ is the density of material, k is coefficient of the heat conductivity,
q is the density of the heat source, f is the density of the gravitational forces,
cijkl are components of the elasticity tensor, αkl are the coefficients of the heat
expansion and τ0 is the reference (initial) temperature. The values of the material
constants, used in the solved problem, can be found in [1].

After the variational formulation, the whole thermo-elasticity problem is dis-
cretized by the finite elements in space and the finite differences in time. Linear
finite elements and the simplest time discretization lead to the solution of linear
equations for vectors τ j , uj of nodal temperatures and displacements at the time
levels tj (j = 1, . . . , N) with the time steps Δtj = tj − tj−1. It gives the time
stepping algorithm presented in Figure 1.

find τ 0: Mhτ 0 = τ0

find u0: Ahu0 = b0 = bh(τ 0)

for j = 1, . . . , N:

compute dj = Mh−(1−ϑ)ΔtjKh τ j−1

+ ϑqj
h + (1 − ϑ)qj−1

h

find τ j : (Mh + ϑΔtjKh)τ j = dj

find uj : Ahuj = bj = bh(τ j)

end for

Fig. 1. The time stepping algorithm for thermo-elasticity problems. In practice, we
prefer the backward Euler time steps given by ϑ=1.

Here, Mh is the capacitance matrix, Kh is the conductivity matrix, Ah is
the stiffness matrix, qh comes from the heat sources, bh represents volume and
surface forces including a thermal expansion term and ϑ ∈ 〈0, 1〉 is a parameter.

We aim at the development of robust, stable methods and therefore we restrict
our attention to implicit methods with ϑ ∈ 〈1

2 , 1〉. Particularly, we shall consider
two cases, with ϑ = 1

2 and ϑ = 1, which correspond to the Crank-Nicolson (CN)
and backward Euler (BE) method, respectively.

To optimize the solution, we use adaptive time steps. Very roughly, it means
that we test the time change of the solution and change the time step size if
the variation is too small or large. Practically, the testing is based on a local
comparison of the BE and CN steps [1].

3 Solution of Large Linear Systems

Most of the computational work is concentrated in the repeated numerical solu-
tion of two large systems of linear equations. For each time step, we must solve
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the linear system for the heat conduction,

(M + ΔtK)τ = d .

Thereafter, but only at given time levels, we also must solve the linear system
for the elasticity,

Au = b .

In the existing in-house finite element software, we use an iterative solution
of both systems based on the well proven preconditioned conjugate gradient
(PCG) method. Whereas in the sequential case the preconditioning is based
on the incomplete factorization, parallel solvers take advantage of the additive
Schwarz method [2] for the preconditioning step. It means, that the PCG search
directions are constructed from pseudoresiduals rather than from residuals. To
compute the pseudoresidual from residual, the domain and the correspondingly
space of solution vectors are decomposed into subdomains Ωk and corresponding
subspaces. Then the residual is restricted to subspaces, local contributions from
subspaces are computed by solving restricted problems and results are summed
up to the pseudoresiduals. The subspace computations can be done in parallel.

For elliptic elasticity problems, it is important to add a subspace correspond-
ing to a global coarse grid to improve the preconditioner performance and ensure
numerical scalability. In this case, we speak about two-level Schwarz method. In
another papers [4], we describe how this coarse grid space can be built alge-
braically and investigate its properties. Furthermore, in a recent paper [5], we
show that the Schwarz preconditioner without any coarse grid space (one-level
Schwarz method) is sufficiently efficient for parabolic problems like the consid-
ered time dependent heat conduction.

4 Parallel Implementation

We conceived the realisation also as an opportunity to make a practical compar-
ison between the two main standards in parallel programming, message passing
and shared memory, and its main representatives, MPI and OpenMP standards.
That is why we implemented the parallel solver in two variants.

Note that OpenMP requires shared-memory parallel hardware and allows
bottom-up directive-based parallelization, as a rule focusing on the most time-
consuming loops, whereas message passing of MPI is supported and generally
available on all parallel architectures including distributed-memory systems, and
may require fundamental restructuring of the original sequential code.

In our case, both solvers, written in Fortran, follow the same algorithm and
apply the same parallel decomposition, thus being directly comparable. In this
decomposition, the k-th of m parallel processes corresponds to the subproblem
Ωk and works with its particular portion of data, including the matrices Mk,
Kk and the vectors τk, qk, for example, and follows the time stepping algorithm
presented in Figure 1.
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Due to a special one-dimensional domain decomposition, the communica-
tion requirements are fairly small in this approach. In the iterative phase, the
k-th process communicates just locally with its neighbours, i.e. the (k+1)-th
and (k−1)-th processes, mainly when the matrix-by-vector multiplication and
the preconditioning are performed. Moreover, the amount of data transferred is
small, proportional to the overlapped region. Thus, even the MPI-based parallel
solver has potential to be efficient and scalable.

Having some background in MPI and PVM parallel programming, it was quite
easy for us to switch to OpenMP and to mimic the MPI parallelization using
the parallel region constructs. Merely addressing of subdomains in the global
(shared) data structures was a little bit tricky.

5 Parallel Computing of the KBS Model

The Äspö prototype repository consists of a 65m long tunnel, which lies 450m
below the ground surface within crystaline lithology. It is divided into two sepa-
rate sections with four and two identical deposition holes, respectively. In these
1.75m diameter and 8 m deep holes, heater canisters simulating the heating from
the radioactive waste are emplaced. The engineered barriers are created by can-
isters surrounded by bentonite, transport tunnel closed by a backfill material
and the natural rock massif.

Fig. 2. KBS-3 concept of the SNF prototype repository

A constructed 3D model of the prototype repository, shortly named KBS,
considers a coupled thermo-mechanical problem in the computational domain
having dimensions 158×57×115m. The thermal source, decayed exponentially
in time, is given by the radioactive waste. The rock is isotropic and its mechanical
properties do not change with the temperature variations. We assume that the
heat is transferred only by conduction.

The boundary conditions for the mechanical part consist of the weight of the
overburden at the upper face of the model and zero normal displacements and
zero shear stresses on the other faces. For the thermal part, we assume zero heat
flux on the face corresponding to the plane of the symmetry and the original rock
temperature τ = 10 ◦C on the rest of the model boundary. This temperature also
gives the initial condition.
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The model is discretized by linear tetrahedral finite elements with 2 586 465
DOF for the heat transfer and 7 759 395 DOF for the elasticity computations.
The time interval is to be 100 years, the adaptive time stepping begins with
the time step 10−4 and requires 47 time steps in total. The development of
temperature and stress fields is monitored in selected time levels of 1, 4, 10, 19,
50, 75 and 100 years.

5.1 Finite Element Software GEM

The described KBS model is implemented within the in-house FEM software
named GEM. The discretization is based on structured meshes, which can be
viewed as an adaption of uniform, reference mesh to the geometry of the solved
problem. The hexahedra are divided into tetrahedra and the flexibility of the
regular meshes is enhanced by the fact that some tetrahedra can remain void.

Fig. 3. FE mesh for the KBS model

The pre-processor strategy supports starting from an initial very coarse ap-
proximation of the situation and gradual refinement of this initial approxima-
tion with the aid of interpolation of nodal coordinates and material distribution.
During this refinement, some details can be modified by supplying the data
corresponding to the smaller and smaller details of the constructed model.

5.2 Results of Computations

First, let us consider the computation of the nonstationary heat conduction. In
Table 1, we can observe the dependence of the number of PCG (preconditioned
conjugate gradient) iterations on the time step size Δt and various number of
subproblems/processors #P. To show this dependence, just one time step, which
started from the initial zero guess and continued up to the relative residual
accuracy 10−6, is considered. The behaviour of the solvers in the other time
steps is similar.

The results demonstrate the numerical stability of the parallel solvers based
on additive Schwarz domain decomposition without a coarse grid, i.e. the number



396 J. Starý et al.

Table 1. The dependence of the number of PCG iterations on the time step size Δt
(in years) and various number of subproblems #P

Δt
#P 0.0001 0.001 0.01 0.1 1.0 5.0 10.0 100.0 1000.0

Without coarse grid
1 11 11 16 26 38 46 60 109 193
2 12 12 16 26 38 49 64 118 222
4 12 12 16 26 38 49 64 125 238
8 14 16 20 26 39 50 68 146 281

12 14 16 20 25 42 54 78 183 328
16 14 16 20 26 42 56 84 212 395

With coarse grid
4 18 17 17 27 41 50 53 83 142

of iterations remains almost constant with the increasing number of subprob-
lems/processors. This holds for sufficiently small time steps, say Δt ≤ 5, accept-
able for most applications. For the given number of subproblems, the number
of iterations naturally grows with increasing time step. This fact encourages the
idea to employ one-level preconditioner without the coarse grid instead of the
two-level one, cf. the computations for # P=4 without a coarse grid and with
the coarse grid of 60×10×17 nodes created by aggregation.

Further, we shall consider the full sequence of 47 time steps, when the linear
system is always solved with the initial guess taken from the previous step.
Table 2 shows the number of iterations, the measured wall-clock time and the
relative speedup.

The tests were performed on a shared memory multiprocessor Sun Fire E15000
with the theoretical peak performance 86GFlops. In total, it consists of 48
UltraSPARC-III/900 processors, 48GB of shared memory, Sun Fireplane sys-
tem interconnect with data transfer capacity up to 9.6GB/s and 3.4TB disk
storage. The system is divided into 4 virtual servers and we used the largest one
with 36CPUs and 36GB of memory assigned.

Table 2. Parallel computations on Sun SMP. The total number of iterations # It and
the computation time T in dependence on the number of subproblems # P. The relative
speed-up S of the parallel solver is related to the sequential run of the same code.

OpenMP MPI
# P # It T [s] S # It T [s] S

1 1341 6292 1344 5931
2 1421 4101 1.63 1424 3169 1.87
4 1425 2082 3.44 1428 1577 3.76
8 1514 1120 6.34 1514 833 7.12

12 1578 872 8.48 1581 596 9.95
16 1614 751 10.09 1618 483 12.28
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Both the parallel solvers show a good scalability up to 16 processors. The
MPI code is roughly 36% faster than its equivalent OpenMP counterpart. This
suggests further investigation and optimization of the OpenMP code.

To give an idea about the whole modelling procedure, we present also the
computations of one elasticity problem in Table 3. The efficiency of the parallel
MPI solver based on the conjugate gradient method and both one-level Schwarz
preconditioner without a coarse problem and two-level Schwarz preconditioner
with auxiliary global problem created by regular 6×6×6 aggregation was tested
using zero initial approximation.

The tests were performed on a Beowulf cluster. This distributed memory sys-
tem consists of 8 computing nodes, each equipped by AMD Athlon/1400 proces-
sor, 1.5GB of memory and 2 FastEthernet interfaces. The system includes also
one interactive node identical to the computing nodes and the fileserver with two
AMD Athlon MP/1900 processors, 1 GB of memory and 100GB of disk space.

Table 3. Parallel computations on Beowulf cluster. The total number of iterations # It,
the computation time T and the computation time per one iteration T1 in dependence
on the number of subproblems # P. The coarse grid is created by aggregation of 6×6×6
mesh nodes.

Without coarse grid With coarse grid
#P # It T [s] T1 [s] # It T [s] T1 [s]

1 332 6264 18.87
2 395 3347 8.47 144 1273 8.84
4 491 2190 4.46 160 752 4.70
7 546 1494 2.74 170 534 3.14

5.3 From the Engineering Point of View

The temperature reaches maximum values in the time level 19 years after the
installation of the cannisters, see Figure 4. The temperatures depend on the

Fig. 4. The temperature field after 1 year (left) and 19 years (right). Range 10 - 85 ◦C.
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initial temperature of rocks and the heating power of the canisters, which is
determined by the time of cooling the spent nuclear fuel in an interim repository.
The knowledge of the temperature distribution is necessary for computation of
the stresses in rock and assessment of the stability issues.

The computation of stresses in rocks is a more complicated task. These stresses
are developed at least in three subsequent phases: (1) phase of virgin rocks and
the initial in-situ stress, (2) phase of excavation and stresses induced by it, (3)
phase after installation of the canisters and filling the deposition holes and the
transport tunnel with stresses induced by the thermal load. Here, we present the
results from very simplified modelling, which putted all the phases together and
assumed the initial in-situ stress to be caused only by the weights of rocks. The
corresponding values of hydrostatic pressure (range 0 - 7.5MPa) and shear stress
intensity (range 0 - 5.5MPa)are then shown in Figure 5.

Fig. 5. Hydrostatic preassure (left) and shear stress intensity (right) after 19 years

6 Conclusion

The paper deals with the parallel simulation of thermo-mechanical processes
in the underground SNF repository. We briefly describe the numerical methods
used for the modelling and approaches to parallel computing on both distributed
and shared memory parallel computers. The experiments confirms a very good
efficiency of the developed solvers and their usefulness for the solution of such
kind of large practical problems.

Note that the analysis of repository constructed along the KBS-3 concept can
be applied also to the assessment of nuclear waste repository projects in the
Czech Republic.
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Abstract. For this poster, the usability of the two most common IO
libraries for parallel IO was evaluated, and compared against a pure
MPI-IO implementation. Instead of solely focusing on the raw transfer
bandwidth achieved, API issues such as data preparation and call over-
head were also taken into consideration. The access pattern resulting
from parallel IO in unstructured grid applications, which is also one of
the hardest patterns to optimize, was examined.

Keywords: MPI, parallel IO, HDF5, parallel netcdf.

Parallel IO is of vital importance in large scale parallel applications. MPI of-
fers excellent support for parallel IO since version 2, particularly because of
its fundamental and complete support for user defined data types. However, as
demonstrated by the popularity of netcdf[5] and HDF5[3], applications are in
need of a higher level API that enables them to deal with data more naturally.
Parallel netcdf[4] and the implementation of MPI-IO support in HDF5 fulfill this
need for MPI applications. As the software stack for this kind of storage can be
quite complex, performance is easily lost if the coupling between the layers is
not done carefully.

The motivation for this work originates in the investigation of a performance
problem in a parallel unstructured grid code relying on HDF5 for file storage. In
this code, after partitioning, all CPUs need to read the coordinates and values of
all grid points that were assigned to them by the mesh partitioner. This results in
an almost random access pattern consisting of collective read operations. While
eventually the total dataset is read, a non-contiguous subset is accessed during
every read operation.

The authors did everything possible to assure efficient IO, for example by
utilizing collective data transfers with complete HDF5 type descriptions and
a continuous storage layout. Still, the code performed poorly when scaling to
larger CPU counts. Examination of the HDF5 source code revealed that no
parallel IO was supported for point selections in a dataset.1 This resulted in
1 This holds for both the latest stable release (1.6.5) and the current alpha release

(1.8.0).
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every CPU executing an independent read request for every accessed element of
the dataset, leading to seriously degraded IO performance.

HDF5 has extensive support for partial dataset selection and another method
to access the same subset was found. While this method did support parallel
IO, it suffers from another kind of problem. Although the final read operation
itself takes advantage of parallel IO and custom data types, the API needed to
setup this selection requires repeatedly calling a function with time complex-
ity O(number of currently selected elements). For a random selection of n
points, this leads to n! operations. Searching for alternatives, parallel netcdf was
tested as well, but was also shown to have issues preventing efficient data access
(for the described access pattern).

For this poster, an effort was made to describe best practices to achieve
high performance with the discussed storage libraries, evaluated in the con-
text of unstructured grid applications. Problems affecting performance, in both
the API and internal implementation, are highlighted. Actual performance mea-
surements, demonstrating achievable bandwidth, were made in combination with
true parallel filesystems such as lustre[1] and PVFS2[2] and more traditional ones
such as NFS. All tests were performed on an opteron based cluster situated at
K.U.Leuven.

As a preliminary conclusion, application writers in need of directly available
performance are better off directly using MPI-IO whenever possible. This is
particularly true for the class of irregular access patterns considered in our study.
Relying on a storage library that fails to utilize the flexibility and power that
MPI-IO offers results in a significant loss of performance. In principle, nothing
prevents high level IO libraries from achieving the same performance as raw MPI-
IO. However, at this moment their implementations need to mature somewhat
more before this becomes true.
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1 Motivation

Comparing the performance of different HPC platforms with different hardware,
MPI libraries, compilers or sets of runtime options is a frequent task for imple-
mentors and users as well. Comparisons based on just a few numbers gained from
a single execution of one benchmark or application are of very limited value as
soon as the system is to run not only this software in exactly this configuration.
However, the amount of data produced for thorough comparisons across a multi-
dimensional parameter space quickly becomes hard to manage, and the relevant
performance differences hard to locate. We deployed perfbase [3] as a system to
perform performance comparisons based on a large number of test results yet
being able to immediately recognize relevant performance differences.

2 Automation of Performance Comparison

perfbase is a toolkit that allows to import, manage, process, analyze and visu-
alize arbitrary benchmark or application output for performance or correctness
analysis. It uses a SQL database for data storage and a set of Python command
line tools to interact with the user. Its concept is to define an experiment with
parameter and result values, import data for different runs of the experiment
from arbitrarily formatted text files, and perform queries to process, analyze
and visualize the data. The presented framework for automated performance
comparison is a set of shell scripts and perfbase XML files. With this framework,
only four simple steps are required to produce a thorough comparison:

1. Define the range of parameters for execution (i.e. number or nodes or pro-
cesses) in the job creation script.

2. Execute the job creation script, then the job submission script. Wait for
completion of the jobs.

3. Run the import script which uses perfbase to extract relevant data from the
result files and store it in the perfbase experiment.

4. Run the analysis script which issues perfbase queries to produce the per-
formance comparison. Changing parameters in the analysis script allows to
modify the comparison result.

Two examples will illustrate the application of this framework to a single
micro-benchmark (Intel MPI Benchmark) or a suite of application kernel bench-
marks (NAS Parallel Benchmarks).
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2.1 Intel MPI Benchmark

The Intel MPI Benchmark [2] is a well-known and widely used MPI micro bench-
mark which measures the performance of individual MPI point-to-point commu-
nication patterns and collective communication operations. A single run of this
benchmark with 64 processes will perform 80 tests with 24 data sizes each. For
each data size, between 1 and 3 latencies are reported, resulting in more than
5000 data points. This amount of data can hardly be analyzed manually. In-
stead, we define a threshold for results being considered as differing. Only for
these cases, we report a single line with the key information like percentage of
data points being different, the average difference and the standard deviation.
The full range plots showing absolute and relative performance is generated as
well and can be analyzed based upon the summary report.

2.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks [1] are an established set of application kernels
often used for performance evaluation. The execution of the NPB can be varied
across the kernel type, data size and number of processes. Together with the vari-
ation of the component to be evaluated and recommended multiple executions,
a large number of result data (performance in MFLOPS) is generated. From
this data, we generate a report consisting of a table for each kernel with rows
like C 64 4 6.78. In this case, the 64 process, 4 processes per node execution of
the corresponding kernel for data size C delivered 6.79% more performance with
variant A than with variant B. The data presented in the tables is also visualized
using bar charts.

3 Conclusion

The application of the perfbase toolkit allows to thorougly but still conveniently
compare benchmark runs performed in two different environments. The impor-
tant features are the management of a large number of test runs combined with
the filtering of non-relevant differences. This allows to actually do in-depth com-
parisons based on a large variety of tests. The framework can easily be applied to
other benchmarks. The perfbase toolkit is open-source software available
at http://perfbase.tigris.org and includes the scripts and experiments
described in this paper.
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Abstract. We investigated the prerequisites for decent scaling of the
GROMACS 3.3 molecular dynamics (MD) code [1] on Ethernet Beowulf
clusters. The code uses the MPI standard for communication between
the processors and scales well on shared memory supercomputers like the
IBM p690 (Regatta) and on Linux clusters with a high-bandwidth/low
latency network. On Ethernet switched clusters, however, the scaling
typically breaks down as soon as more than two computational nodes are
involved. For an 80k atom MD test system, exemplary speedups SpN on
N CPUs are Sp8 = 6.2, Sp16 = 10 on a Myrinet dual-CPU 3 GHz Xeon
cluster, Sp16 = 11 on an Infiniband dual-CPU 2.2 GHz Opteron cluster,
and Sp32 = 21 on one Regatta node. However, the maximum speedup
we could initially reach on our Gbit Ethernet 2 GHz Opteron cluster was
Sp4 = 3 using two dual-CPU nodes. Employing more CPUs only led to
slower execution (Table 1).

When using the LAM MPI implementation [2], we identified the all-
to-all communication required every time step as the main bottleneck.
In this case, a huge amount of simultaneous and therefore colliding mes-
sages ”floods” the network, resulting in frequent TCP packet loss and
time consuming re-trials. Activating Ethernet flow control prevents such
network congestion and therefore leads to substantial scaling improve-
ments for up to 16 computer nodes. With flow control we reach Sp8 = 5.3,
Sp16 = 7.8 on dual-CPU nodes, and Sp16 = 8.6 on single-CPU nodes.

For more nodes this mechanism still fails. In this case, as well as
for switches that do not support flow control, further measures have to
be taken. Following Ref. [3] we group the communication between M
nodes into M − 1 phases. During phase i = 1 . . . M − 1 each node sends
clockwise to (and receives counterclockwise from) its ith neighbouring
node. For large messages, a barrier between the phases ensures that the
communication between the individual CPUs on sender and receiver node
is completed before the next phase is entered. Thus each full-duplex link
is used for one communication stream in each direction at a time.

We then systematically measured the throughput of the ordered all-to-
all and of the standard MPI Alltoall on 4 – 32 single and dual-CPU nodes,
both for LAM 7.1.1 and for MPICH-2 1.0.3 [4], with flow control and with-
out. The throughput of the ordered all-to-all is the same with and without
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flow control. The lengths of the individual messages that have to be trans-
ferred during an all-to-all fell within the range of 3 000 . . . 175 000 bytes for
our 80k atom test system when run on 4 – 32 processors. In this range the
ordered all-to-all often outperforms the standard MPI Alltoall. The per-
formance difference is most pronounced in the LAM case since MPICH
already makes use of optimized all-to-all algorithms [5].

By incorporating the ordered all-to-all into GROMACS, packet loss
can be avoided for any number of (identical) multi-CPU nodes. Thus the
GROMACS scaling on Ethernet improves significantly, even for switches
that lack flow control.

In addition, for the common HP ProCurve 2848 switch we find that
for optimum all-to-all performance it is essential how the nodes are con-
nected to the ports of the switch. The HP 2848 is constructed from
four 12-port BroadCom BCM5690 subswitches that are connected to a
BCM5670 switch fabric. The links between the fabric and subswitches
have a capacity of 10 Gbit/s. That implies that each subgroup of 12 ports
that is connected to the fabric can at most transfer 10 Gbit/s to the re-
maining ports. With the ordered all-to-all we found that a maximum of
9 ports per subswitch can be used without losing packets in the switch.
This is also demonstrated in the example of the Car-Parinello [6] MD
code. The newer HP 3500yl switch does not suffer from this limitation.

Table 1. GROMACS 3.3 on top of LAM 7.1.1. Speedups of the 80k atom test system
for standard Ethernet settings (Sp), with activated flow control (Spfc), and with the
ordered all-to-all (Spord).

single-CPU nodes dual-CPU nodes
CPUs 1 2 4 8 16 32 2 4 8 16 32
Sp 1.00 1.82 2.24 1.88 1.78 1.73 1.94 3.01 1.93 2.59 3.65
Spfc 1.00 1.82 3.17 5.47 8.56 1.82 1.94 3.01 5.29 7.84 7.97
Spord 1.00 1.78 3.13 5.50 8.22 8.64 1.93 2.90 5.23 7.56 6.85
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Abstract. Special attention is being paid to the phenomenon of diver-
gence between synchronous collective operations and parallel program
load balancing. A general way to increase collective operations perfor-
mance while keeping their standard MPI semantics suggested. A discus-
sion is addressed to internals of MPICH2, but approach is quite common
and can be applied to MPICH and LAM MPI as well.

Collective operations significantly increase both programmer performance and
expressibility of message-passing programs. But increase in expressiveness level
should either be supplemented by a good load balance between interacting
processes or a program performance can suffer from not ready yet processes
waiting overhead. Looking from the scalability perspective, it becomes more
and more problematic to guarantee satisfactory load balancing, but most of the
papers on collective operation implementation lack estimations of poor load bal-
ancing influence on collectives’ performance: it’s assumed that computations are
well-balanced.

Mentioned problem can definitely be ignored in case of using asynchronous
collective operations. But asynchronous collectives haven’t become a part of the
MPI-2 standard. It can be speculated that authors of MPI-2 standart assumed
that asynchronous collectives could be supported through generic requests. Our
belief is that trying to implement all this logic on the user-level (outside of
MPI library) is more or less a reinventing the wheel. Progress Engine is a well
thought-out, effective mechanism which only partially suffers from the lack of
user interoperability.

Poor load balance between collective operation participants can influence al-
gorithmic part of a collective operation. For example, an optimal broadcasting
algorithm in the worst “total unreadiness” case would send data from a root
node to everyone, not by using binomial tree. Optimal solution for “real-world
tasks” is somewhere in between, supposedly, in the field of highly branched trees.
This paper addresses the problems of unbalancing on the implementation level.

Despite the collective operation algorithms diversity [1], they have a common
feature: they use some nodes for message transit, i.e. for retranslation of received
information further. But current MPI Progress Engines do not support transit
and retranslation, so collective operations have to be implemented via “common”
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point-to-point operations. As a result, performance may suffer significantly if
a transit node is busy with computing and is not ready to participate in a
collective operation yet. It’s clear that the subset of nodes, which will suffer
from performance degradation depends on the collective operation algorithm. If
we do a broadcasting using binomial tree, lagging node descendants suffer. If
there is ring-based gather, lower nodes of lagging node are affected.

We came up with a prototype implementation of active broadcasting for eager
(i.e., “quite small”) messages in the MPICH2-1.0.x environment. It works in the
following way. Message re-sending starts right after broadcast message came to
a transit node. The algorithms of original Bcast (for example, binomial tree) is
used for retranslation, but message sending performed in an asynchronous man-
ner. Thus, useful time from receiving message to Bcast function call is utilized
by background transmissions. In the best case our background broadcasting fi-
nalizes before actual user’s Bcast call and as a result node’s siblings complete
their broadcastings earlier (maybe before the beginning of Bcast call on a parent
transit node at all).

Next parameters were added to MPICH2’s packet for proposed optimization:

1. target communicator;
2. collective operation details;
3. additional tag.

The first two items are used to determine important Bcast parameters without
actual user’s Bcast call. Communicator was added because it is impossible to
send the message without it. As a result, we have to know all communicators
on each processes, so exchanges were added into all communicator management
operations (communicator creation never turned out to be a performance-critical
operation). “Operation details” include only root’s rank for Bcast. Additional
tag was added to escape the problems of not-in-time receiving like in point-to-
point case, because collective operations are now internally asynchronous.

Idea behind async Bcast can be used for optimization of other collectives as
well. Let’s draw a quick sketch of a possible Gather implementation. It’s possible
to send transit packets right after arriving supplementing them with a transit
node info, if Gather is already called on the node. Key point for the performance
is a good lagged-packets-operating strategy: “Should they be send via binomial
tree or directly to a root process?”

According to preliminary results, some variant of GAMESS demonstrates
2.5% computation speedup. It’s quite significant, because Bcast takes only
6.8% of run time. Additional details including project sources can be found
at http://parallel-debugger.itlab.unn.ru/en/optimization.html. Work
by one of the co-authors, Sergey Scharf, was done with the financial support of
Russian Fund of Basic Research (#04-07-90138-b).
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Abstract. PARUS is a parallel programing framework that allows
building parallel programs in data flow graph notation. The data flow
graph is created by developer either manually or automatically with the
help of a script. The graph is then converted to C++/MPI source code
and linked with the PARUS runtime system. The next step is the par-
allel program execution on a cluster or multiprocessor system. PARUS
also implements some approaches for load balancing on heterogeneous
multiprocessor system. There is a set of MPI tests that allow developer
to estimate the information about communications in a multiprocessor
or cluster.

Most commonly, parallel programs are created with the libraries that generate
parallel executable code, such as MPI for cluster and distributed memory ar-
chitectures, and OpenMP for shared memory systems. The tendency to make
parallel coding more convenient led to the creation of software front-ends for MPI
and OpenMP. These packages are intended to get rid the user from the part of
problems related to parallel programming. Several examples of such front-ends
are DVM [2], Cilk [3], PETSc [4], and PARUS [5]. The latter is being written by
the group of developers headed by the author.

PARUS is intended for writing the program as a data-dependency graph. The
data-dependency graph representation gives the programmer several advantages.
In the case of splitting the program into very large parallel executed blocks, it
is convenient to declare the connections between the block and then execute
each block on its own group of processors in the multi-processor system. The
algorithm is represented as a directed graph where vertices are marked up with
series of instructions and edges correspond to data dependencies. Each edge is
directed from the vertex where the data are sent from to the vertex that receives
the data. Afterwards, the vertex processes the data and collects the data in
memory for delivering to other vertices of the graph. Thereby, the program
may be represented as a network that has source vertices (they usually serve
for reading input files), internal vertices (where the data are processed), and
drain vertices, where the data are saved to the output files and the execution
terminates. Then, the graph is translated into a C++ program that uses the
MPI library. The resulting program automatically tries to minimize processors
load imbalance and data trasmission overhead.
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One of the targets of this research was to investigate how the data-dependency
graph approach to writing parallel programs can be applied to the following
examples: 1) a distributed operation over a large array of data, 2) an artificial
neural network (perceptron), 3) multiple alignment problem. In order to evaluate
the performance of PARUS, we designed the following tests.

The first test uses a recursive algorithm that computes the result of an asso-
ciative operation to all elements of an array. Two examples of such operations are
summation and maximization. Every block is treated by its own processor and
the transmission delays are ignored. The algorithm requires O(logm(n)) opera-
tions, where m is the parameter of the algorithm that corresponds to number of
array elements per processor. Value of m is set to cover data transmission over-
head. Testing this implementation on MVS-1000M with 100 processors revealed
a 40 times speedup on an array sized 109.

Second, PARUS was used to simulate a three layer perceptron with a max-
imum of 18,500 neurons in each layer. The maximum acceleration that was
achieved was over 7 times.

Third, an algorithm of multiple sequence alignment was implemented. The
problem is important in molecular biology. The parallel implementation was
based on the MUSCLE package (http://www.drive5.com/muscle). The proce-
dure of construction of an alignment was parallelized. The parallelism is based
on the alignment profiles and evolutional tree (cluster sequence tree). We per-
form align of profiles concerned with each level of tree in parallel. The speedup
of parallel program in comparison with original MUSCLE depends on the de-
gree of cluster tree balance. Well balanced tree will provide high perfomance of
parallel program. The program was used to align all human-specific LTR class
5 in the EMBL data bank [1]. The test has demonstrated a 2.4 times speedup
on 12 processors on a Prime Power850 machine. This work was a part of the
project supported by CRDF grant No. RB01227-MO-2 and by RFBR grant No.
05-07-90238.

PARUS has been installed and tested on the following multiprocessors: MVS-
1000M http://www.top500.org/system/5871,
http://www.jscc.ru/cgi-bin/show.cgi?path=/hard/mvs1000m.html&type=3
(cluster of 768 Alpha processors), IBM pSeries690 (SMP 16 processors Power4+),
Sun Fujitsu PRIMEPOWER 850 Server (SMP 12 processors SPARC64-V).
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Although there are many computer programmes currently available for searching 
homologous proteins in large databases, none is considered satisfactory for both speed 
and sensitivity at the same time.  It has been known that a very sensitive programme 
could be written using the algorithm of Needleman and Wunsch [1].  This algorithm 
first calculates the maximum match score of two protein sequences on a two-
dimensional array, MAT(m,n), where m and n are the lengths of the two sequences 
(the average length is 364 amino acids in the Swiss-Prot database [2]).  The similarity 
or homology between the two sequences is then assessed statistically by comparing 
the score from the real sequences and the mean score from a large number (>200) of 
pairs of random sequences that are produced by scrambling each of the original 
sequences.  Homology search using this algorithm means that this statistical analysis 
must be carried out between the query sequence and every sequence in the database 
sequentially.  Consequently, as the size of database increases – the well-known 
TrEMBL database now contains over 2,500,000 protein sequences (about 962 
Mbytes), homology search by this method becomes very time consuming. 

A new programme that was named SEARCH, written in C and based on the 
Needleman-Wunsch algorithm was created for homology search.  A large amount of 
CPU time required by the straightforward implementation of the algorithm was 
reduced to a practical level by improving the algorithm and by optimising the 
programme, i.e. full statistical analyses were not carried out on a priori non-
homologous pairs and the most CPU intensive parts of the programme were written  
in assembly language.  SEARCH was run to find sequences homologous to cucumber 
basic protein (CBP, 96 amino acids) [3] in the Swiss-Prot database, which contained 
204,086 sequences.  The search was completed in 5 min 32 sec on a Pentium 4  
2.8 MHz computer. There were 159 homologous proteins, which included 20 
plastocyanins:  plastocyanin is a photosynthetic electron transport protein, and which 
has been known to be homologous to CBP from physicochemical characteristics.  
When the same search was carried out, for comparative purposes, using BLAST [4] 
and FASTA [5], which are the two most frequently used programmes (run at 
http://www.expasy.ch/tools/), however, these programmes found no plastocyanin.  
This seems to indicate that SEARCH is a more sensitive programme. 

When Swiss-Prot and TrEMBL were combined to include 2,710,972 sequences 
and used as the database, the search time was 1 hr 15 min 16 sec.  To improve the 
search time, the PVM system was employed: PVM 3.4.5 was installed in 41 Pentium 
4 2.8 GHz computers, consisting of 1 master and 40 slaves, and running under Linux.  
A small C programme was first written and used to divide the database file into 40 
smaller files containing an equal number of sequences (except the last one), which 
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were then distributed to the slaves.  The file size varied from 17 to 35 Mbytes (median 
26 Mbytes) depending on the sizes of the proteins therein.  The schedule of 
programme execution is as follows:  The master initiates SEARCH in the slaves by 
sending out the query sequence.  Each slave carries out the search and, whenever 
homology is found, it sends back the name and score of the homologous sequence to 
the master.  The master sorts the reported sequences according to score, and when the 
search is completed in all slaves, it produces a result file which contains the names 
and scores of homologous proteins.  This type of PVM application, data parallelism, 
seems particularly suited in this application, in which a large database is divided into 
smaller parts in the slaves.  This is allowed as the statistical analysis of the 
Needleman-Wunsch algorithm is, unlike with some other search programmes, carried 
out only between the query sequence and one sequence in the database at a time. 

When SEARCH was run under this system using the same query sequence and 
databases as above, the search was completed in 2 min 6 sec, improving the search 
time about 36-fold.  Considering the communication overhead inherent in the PVM 
system and the fact that the time spent on statistical analysis is not uniform among the 
slaves – it takes longer if the proteins are larger and also if there are more potentially 
homologous proteins in the database, the 36-fold improvement using 40 computers 
seems reasonable.  Furthermore, the names and scores of homologous proteins listed 
were the same as the ones obtained in the single computer system.  Therefore, it was 
concluded that no data were lost while being sent from the slaves to the master.  In a 
separate experiment, database files in the slaves were made to contain not the same 
number of proteins but a similar amount of data i.e. a similar number of amino acids 
(about 26 Mbytes/slave).  When SEARCH was run with this database system, 
however, search was slower by about 14% (2 min 24 sec).  Similarly sized databases 
may have contributed to lowering the efficiency of communication between the 
master and slaves. 

That the task of each slave is completely independent of those of other slaves and 
rather infrequent communication using small amounts of data seem to make the PVM 
system very effective in the sort of application described here. 
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