Petr Sojka
Ivan Kopecek
Karel Pala (Eds.)

Text, Speech
and Dialogue

9th International Conference, TSD 2006
Brno, Czech Republic, September 2006
Proceedings

LNAI 4188

@ Springer

Lecture Notes in Artificial Intelligence 4188
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Petr Sojka Ivan Kopecek
Karel Pala (Eds.)

Text, Speech
and Dialogue

Oth International Conference, TSD 2006
Brno, Czech Republic, September 11-15, 2006
Proceedings

@ Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Petr Sojka

Masaryk University

Faculty of Informatics

Department of Computer Graphics and Design
Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: sojka@informatics.muni.cz

Ivan Kopecek

Karel Pala

Masaryk University

Faculty of Informatics

Department of Information Technologies
Botanicka 68a, 602 00 Brno, Czech Republic
E-mail: {kopecek,pala}@informatics.muni.cz

Library of Congress Control Number: 2006931937

CR Subject Classification (1998): 1.2.7, 1.2, H.3, H.4, 1.7
LNCS Sublibrary: SL 7 — Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-39090-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39090-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by Petr Sojka from source files by respective authors,
data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11846406 06/3142 543210

Preface

The annual Text, Speech and Dialogue Conference (TSD), which originated in 1998, is now
coming to the end of its first decade. During this time almost 400 authors from 36 countries
have contributed to the proceedings. TSD constitutes a recognized forum for the presentation
and discussion of state-of-the-art technology and recent achievements in the field of natural
language processing. It has become an interdisciplinary forum, interweaving the themes of
speech technology and language processing. The conference attracts researchers not only
from Central and Eastern Europe but also from other parts of the world. Indeed, one of
its goals has always been to bring together NLP researchers with different interests from
different parts of the world and to promote their mutual cooperation.

This volume contains the proceedings of the Ninth TSD Conference, held in Brno, Czech
Republic in September 2006. Following the review process, 87 papers were accepted out
of 175 submitted, an acceptance rate of 49.7%. The number of the submissions this year
was the highest so far. We would like to thank all the authors for the efforts they put into
their submissions and the members of the Program Committee and reviewers who did a
wonderful job helping us to select the most appropriate papers. We are also grateful to the
invited speakers for their contribution. Their talks provided insight into important issues,
applications and techniques related to the conference topics.

Special thanks are due to the members of the Local Organizing Committee for their
tireless effort in organizing the conference. Dagmar Janouskova and Dana Komarkova carried
the main administrative burden and contributed in many other ways to the preparation of the
conference. The TgXpertise of Petr Sojka resulted in the production of the volume that you
are holding in your hands.

We hope that you benefitted from the event and that you also enjoyed the social program
prepared by the Organizing Committee.

July 2006 Ivan Kopecek, Karel Pala

Organization

TSD 2006 was organized by the Faculty of Informatics, Masaryk University, in cooperation
with the Faculty of Applied Sciences, University of West Bohemia in Plzen. The conference
Webpage is located at http://www.tsdconferences.org/tsd2006/

Program Committee

Jelinek, Frederick (USA), General Chair No6th, Elmar (Germany)
Hermansky, Hynek (USA), Executive Chair ~ Ney, Hermann (Germany)

Agirre, Eneko (Spain) Oliva, Karel (Austria)

Baudoin, Genevieve (France) Pala, Karel (Czech Republic)
éernock}’f, Jan (Czech Republic) Pavesic¢, Nikola (Slovenia)

Ferencz, Attila (Romania) Petkevi¢, Vladimir (Czech Republic)
Gelbukh, Alexander (Mexico) Psutka, Josef (Czech Republic)
Guthrie, Louise, (UK) Pustejovsky, James (USA)

Hajicova, Eva (Czech Republic) Rothkrantz, Leon (The Netherlands)
Hlavacova, Jaroslava (Czech Republic) Schukat-Talamazzini, E. Giinter (Germany)
Hovy, Eduard (USA) Skrelin, Pavel (Russia)

Kopecek, Ivan (Czech Republic) Smrz Pavel (Czech Republic)
Krauwer, Steven (The Netherlands) Vintsiuk, Taras (Ukraine)

Kunzmann Siegfried (Germany) Wilks, Yorick (UK)

Matousek, Vaclav (Czech Republic) Zakharov, Victor (Russia)
Referees

Ifaki Alegria, Ben Allison, Lukas Burget, Oliver Bender, Jan Bungeroth, Pavel Cenek,
Thomas Deselaers, Nerea Ezeiza, Nestor Garay-Vitoria, Christian Gollan, Mark A. Green-
wood, FrantiSek Grezl, David Guthrie, Sasa Hasan, Georg Heigold, Ale§ Hordk, Sanaz Jab-
bari, Sergej Krylov, Arantza Diaz de Ilarraza, Jonas L66f, David Martinez, Pavel Matejka,
Arne Mauser, Brian Mitchell, Olga Mitrofanova, Yoshihiko Nitta, Ilya Oparin, Nino Pe-
terek, Christian Plahl, Joe Polifroni, German Rigau, Pavel Rychly, Kepa Sarasola, Petr Sojka,
Daniel Stein, Igor Szoke, Zygmunt Vetulani, David Vilar.

Organizing Committee

Dana Hlavackova (administrative contact), Ale§ Hordk, Dagmar Janouskova (Accounting),
Dana Komdrkovd (Secretary), Ivan Kopecek (Co-chair), Karel Pala (Co-chair), Adam
Rambousek (Web system), Pavel Rychly, Petr Sojka (Proceedings).

Supported by:

International Speech Communication Association, South Moravia Gas Company.

Table of Contents

I Invited Papers

Learning by Reading: An Experiment in Text Analysis 3
Eduard Hovy (ISI, University of Southern California, USA)

Depth of Feelings: Alternatives for Modeling Affect in User Models 13
Fva Hudlicka (Psychometriz Associates, Blacksburg, USA)

IT Text

The Lexico-Semantic Annotation of PDT 21
Eduard Bejéek, Petra Mdollerovd, Pavel Stranidk (Charles University,
Prague, Czech Republic)

Czech Verbs of Communication and the Extraction of Their Frames 29

Viclava Benesovd, Ondrej Bojar (Charles University, Prague, Czech
Republic)

Featuring of Sex-Dependent Nouns
in Databases Oriented to European Languages........................ 37

Igor A. Bolshakov (National Polytechnic Institute, Mexzico City,
Mezico), Sofia N. Galicia-Haro (National Autonomous University of
Mexico (UNAM), Mezico City, Mexico)

On the Behaviors of SVM and Some Older Algorithms

in Binary Text Classification Tasks oo .. 45
Fabrice Colas (Leiden University, The Netherlands), Pavel Brazdil
(University of Porto, Portugal)

A Knowledge Based Strategy for Recognising Textual Entailment 53
Oscar Ferrdndez, Rafael M. Terol, Rafael Munoz, Patricio
Martinez-Barco, Manuel Palomar (University of Alicante, Spain)

Paragraph-Level Alignment of an English-Spanish Parallel Corpus of
Fiction Texts Using Bilingual Dictionaries™............... 61
Alexander Gelbukh, Grigori Sidorov, José Angel Vera-Félix

Some Methods of Describing Discontinuity in Polish and Their
Cost-Effectiveness 69
Filip Graliniski (Adam Mickiewicz University, Poznan, Poland)

VIII Table of Contents

Exploitation of the Verbal.ex Verb Valency Lexicon

in the Syntactic Analysis of Czech
Dana Hlavdckovd, Ales Hordk, Viadimir Kadlec (Masaryk University,
Brno, Czech Republic)

Hungarian-English Machine Translation Using GenPar.................
Andrds Hécza, Andrds Kocsor (University of Szeged, Hungary)

Combining Czech Dependency Parsers.......... oo,
Tomds Holan and Zdenék Zabokrtskij (Charles University, Prague,
Czech Republic)

Processing Korean Numeral Classifier Constructions

in a Typed Feature Structure Grammar..............
Jong-Bok Kim (Kyung Hee University, Seoul, Korea), Jaehyung Yang
(Kangnam University, Korea)

Parsing Head Internal and External Relative Clause Constructions in
Korean
Jong-Bok Kim (Kyung Hee University, Seoul, Korea)

A Hybrid Model for Extracting Transliteration Equivalents from
Parallel COrporauunii
Jong-Hoon Oh (NICT, Republic of Korea), Key-Sun Choi (KAIST,
Republic of Korea), Hitoshi Isahara (NICT, Republic of Korea)

Sentence Compression Using Statistical Information About Dependency
Path Length o
Kiwamu Yamagata, Satoshi Fukutomi, Kazuyuki Takagi, Kazuhiko

Ozeki (The University of Electro-Communications, Tokyo, Japan)

Transformation-Based Tectogrammatical Analysis of Czech.............
Viclav Klimes (Charles University, Prague, Czech Republic)

The Effect of Semantic Knowledge Expansion

to Textual Entailment Recognition
Zornitsa Kozareva, Sonia Vdzquez and Andrés Montoyo (Alicante
University, Spain)

Segmentation of Complex Sentences
Vladislav Kuboni, Markéta Lopatkovd, Martin Pldtek (Charles
University, Prague, Czech Republic), Patrice Pognan (CERTAL
INALCO, Paris, France)

Enhanced Centroid-Based Classification Technique by Filtering

OULHETS ot
Kwangcheol Shin, Agjith Abraham, SangYong Han (Chung-Ang
University, Seoul, Korea)

Table of Contents IX

Multilingual News Document Clustering: Two Algorithms Based on

Cognate Named Entities i 165
Soto Montalvo (URJC, Spain), Raquel Martinez (UNED, Spain),

Arantza Casillas (UPV-EHU, Spain), Victor Fresno (URJC, Spain)

A Study of the Influence of PoS Tagging on WSD 173

Lorenza Moreno-Monteagudo, Rubén Izquierdo-Bevid, Patricio
Martinez-Barco, Armando Sudrez (Universidad de Alicante, Spain)

Annotation of Temporal Relations Within a Discourse 181
Petr Némec (Charles University, Prague, Czech Republic)

Applying RST Relations to Semantic Search.......................... 189
Nguyen Thanh Tri, Akira Shimazu, Le Cuong Anh, Nguyen Minh Le
(JAIST, Ishikawa, Japan)

Data-Driven Part-of-Speech Tagging of Kiswahili...................... 197
Guy De Pauw (University of Antwerp, Belgium), Gilles-Maurice de

Schryver (Ghent University, Belgium), Peter W. Wagacha (University

of Nairobi, Kenya)

Hand-Written and Automatically Extracted Rules for Polish Tagger 205
Maciej Piasecki (Wroctaw University of Technology, Poland)

Effective Architecture of the Polish Tagger 213

Maciej Piasecki, Grzegorz Godlewski (Wroctaw University of
Technology, Poland)

Synthesis of Czech Sentences from Tectogrammatical Trees............. 221
Jan Ptdcek, Zdenek Zabokrtsky (Charles University, Prague, Czech
Republic)

ASeMatch: A Semantic Matching Method 229
Sandra Roger (University of Alicante, Spain & University of Comahue,
Argentina), Augustina Buccella (University of Comahue, Argentina),
Alejandra Cechich (University of Comahue, Argentina), Manuel Sanz
Palomar (University of Alicante, Spain)

Extensive Study on Automatic Verb Sense Disambiguation in Czech. 237
Jird Semecky, Petr Podvesky (UFAL MFF UK, Czech Republic)

Semantic Representation of Events: Building a Semantic Primes
COMPONENT .. ettt ettt e e e e e e 245
Milena Slavcheva (Bulgarian Academy of Sciences, Sofia, Bulgaria)

Cascaded Grammatical Relation-Driven Parsing
Using Support Vector Machines. 253
Songwook Lee (Dongseo University, Busan, Korea)

X Table of Contents

Building Korean Classifier Ontology Based on Korean WordNet......... 261

Soonhee Hwang, Youngim Jung, Aesun Yoon, Hyuk-Chul Kwon (Pusan
National University, Busan, South Korea)

Exploiting the Translation Context for Multilingual WSD 269

Lucia Specia, Maria das Gragas Volpe Nunes (Universidade de Sdo
Paulo, Brazil)

Post-annotation Checking of Prague Dependency Treebank 2.0 Data 277
Jan Stépdnek ((jFAL UK Prague, Czech Republic)

Language Modelling with Dynamic Syntax 285
David Tugwell (University of St Andrews, Scotland, UK)

Using Word Sequences for Text Summarization 293

Esav Villatoro-Tello, Luis Villaserior-Pineda, Manuel Montes-y-Gomez
(National Institute of Astrophysics, Optics and Electronics, Mexico)

Exploration of Coreference Resolution: The ACE Entity Detection and
Recognition Task ... 301
Ying Chen, Kadri Hacioglu (University of Colorado at Boulder, USA)

Parsing with Oracle 309
Michal Zemlicka (Charles University, Prague, Czech Republic)

IIT Speech

Evaluating Language Models Within a Predictive Framework: An
Analysis of Ranking Distributions i i, 319

Pierre Alain, Olivier Boéffard, Nelly Barbot (Université de Rennes 1,
France)

Another Look at the Data Sparsity Problem.......................... 327

Ben Allison, David Guthrie, Louise Guthrie (University of Sheffield,
UK)

Syllable-Based Recognition Unit to Reduce Error Rate
for Korean Phones, Syllables and Characters 335

Bong-Wan Kim, Yongnam Um, Yong-Ju Lee (Wonkwang University,
Korea)

Recognizing Connected Digit Strings Using Neural Networks 343

Lukasz Brocki, Danijel Korzinek, Krzysztof Marasek (Polish-Japanese
Institute of Information Technology, Warsaw, Poland)

Table of Contents XI

Indexing and Search Methods for Spoken Documents 351
Lukds Burget, Jan Cernocky, Michal Fapso, Martin Karafidt, Pavel

Matéjka, Petr Schwarz, Pavel Smrz, Igor Széke (Brno University of
Technology, Czech Republic)

Analysis of HMM Temporal Evolution for Automatic Speech

Recognition and Verification........... i 359
Marta Casar, José A.R. Fonollosa (Universitat Politécnica de

Catalunya, Barcelona, Spain)

Corpus-Based Unit Selection TTS for Hungarian 367
Mark Fék, Péter Pesti, Géza Németh, Csaba Zainko, Gdbor Olaszy
(Budapest University of Technology and Economics, Hungary)

Automated Mark Up of Affective Information in English Texts 375
Virginia Francisco, Pablo Gervds (Universidad Complutense de Madrid,
Spain)

First Steps Towards New Czech Voice Conversion System 383
Zdenék Hanczlicek, Jindrich Matousek (University of West Bohemia,
Plzer, Czech Republic)

Are Morphosyntactic Taggers Suitable to Improve Automatic
Transcription? 391
Stéphane Huet, Guillaume Gravier, Pascale Sébillot (IRISA, France)

Fast Speaker Adaptation Using Multi-stream Based Eigenvoice in
Noisy Environments 399
Huwa Jeon Song, Hyung Soon Kim (Pusan National University, Korea)

Phonetic Question Generation Using Misrecognition 407
Supphanat Kanokphara, Julie Carson-Berndsen (University College
Dublin, Ireland)

Speech Driven Facial Animation Using HMMs in Basque 415
Maider Lehr (University of the Basque Country, Spain), Andoni Arruti
(VICOMTech Research Centre, Donostia - San Sebastidn, Spain),

Amalia Ortiz, David Oyarzun, Michael Obach (University of the Basque
Country, Spain)

Comparing B-Spline and Spline Models for FO Modelling. 423
Damien Lolive, Nelly Barbot, Olivier Boéffard (University of Rennes 1,
France)

Environmental Adaptation with a Small Data Set of the Target

Andreas Maier, Tino Haderlein, Elmar Nith (University of Erlangen
Niremberg, Germany)

XII Table of Contents

Current State of Czech Text-to-Speech System ARTIC.................
Jindrich Matousek, Daniel Tihelka, Jan Romportl (University of West
Bohemia, Pilsen, Czech Republic)

Automatic Korean Phoneme Generation Via Input-Text Preprocessing
and Disambiguation
Mi-young Kang, Sung-won Jung, Hyuk-Chul Kwon, Aesun Yoon (Pusan
National University, Busan, South Korea)

Robust Speech Detection Based on Phoneme Recognition Features
France Miheli¢, Janez Zibert (University of Ljubljana, Slovenia)

Composite Decision by Bayesian Inference in Distant-Talking Speech
Recognition
Mikyong Ji, Sungtak Kim, Hoirin Kim (Information and
Communications University, Daejeon, Korea)

Speech Coding Based on Spectral Dynamics
Petr Motlicek (IDIAP, Switzerland & Brno University of Technology,
Czech Republic), Hynek Hermansky (IDIAP, Switzerland € Brno
University of Technology, Czech Republic & EPFL, Switzerland),
Harinath Garudadri, Naveen Srinivasamurthy (Qualcomm Inc., San
Diego, USA)

Detecting Broad Phonemic Class Boundaries from Greek Speech

in Noise Environments i
Tosif Mporas, Panagiotis Zervas, Nikos Fakotakis (University of Patras,
Greece)

A System for Information Retrieval from Large Records of Czech
Spoken Data
Jan Nouza, Jindfich Zddnsky, Petr Cerva, Jan Kolorenc (TU Liberec,
Czech Republic)

A Structure of Expert System for Speaker Verification
Ales Padrta, Jan Vanék (University of West Bohemia in Pilsen, Czech
Republic)

Automatic Online Subtitling of the Czech Parliament Meetings
Ales Prazdak, J. V. Psutka, Jan Hoidekr, Jakub Kanis, Ludék Miller,
Josef Psutka (University of West Bohemia in Pilsen, Czech Republic)

Character Identity Expression in Vocal Performance
of Traditional Puppeteers
Milan Rusko, Juraj Hamar (Comenius University, Bratislava, Slovakia)

A Dissonant Frequency Filtering for Enhanced Clarity of Husky Voice
Signals . ..o
Sangki Kang, Yongserk Kim (Samsung Electronics Co., Korea)

Table of Contents

Post-processing of Automatic Segmentation

of Speech Using Dynamic Programming............

Marcin Szymariski, Stefan Grocholewski (Poznari University of
Technology, Poland)

Diphones vs. Triphones in Czech Unit Selection TTS

Daniel Tihelka, Jindrich Matousek (University of West Bohemia in
Pilsen, Czech Republic)

Silence/Speech Detection Method Based on Set of Decision Graphs.

Jan Trmal, Jan Zelinka, Jan Vanék, Ludék Miller (University of West
Bohemia in Pilsen, Czech Republic)

Prosodic Cues for Automatic Phrase Boundary Detection in ASR

Kldra Vicsi, Gyorgy Szaszdk (Budapest University for Technology and
Economics, Hungary)

Dynamic Bayesian Networks for Language Modeling

Pascal Wiggers, Leon J. M. Rothkrantz (Delft University of Technology,
The Netherlands)

IV Dialogue

Feature Subset Selection Based on Evolutionary Algorithms for
Automatic Emotion Recognition in Spoken Spanish and Standard

Basque Language

Aitor Alvarez, Idoia Cearreta, Juan Miguel Ldpez, Andoni Arruti,
FElena Lazkano, Basilio Sierra, Nestor Garay (University of the Basque
Country, Spain)

Two-Dimensional Visual Language Grammar

Siska Fitrianie, Leon J.M. Rothkrantz (Delft University of Technology,
The Netherlands)

Are You Looking at Me, Are You Talking with Me:

Multimodal Classification of the Focus of Attention

Christian Hacker (University of Erlangen-Nuremberg, Germany),
Anton Batliner (University of Erlangen-Nuremberg, Germany), Elmar
Noth (University of Erlangen-Nuremberg, Germany)

Visualization of Voice Disorders Using the Sammon Transform..........

Tino Haderlein, Dominik Zorn, Stefan Steidl, Elmar Nioth (University
of Erlangen-Nuremberg, Germany), Makoto Shozakai (Asahi Kasei
Corp.), Maria Schuster (University of Erlangen-Nuremberg, Germany)

XIII

X1V Table of Contents

Task Switching in Audio Based Systems 597

Melanie Hartmann, Dirk Schnelle (Darmstadt University of Technology,
Germany)

Use of Negative Examples in Training the HVS Semantic Model 605
Filip Juréicek, Jan Svec, Jir{ Zahradil, Libor Jelinek (University of
West Bohemia in Pilsen, Czech Republic)

Czech-Sign Speech Corpus for Semantic Based Machine Translation 613
Jakub Kanis (University of West Bohemia), Jir{ Zahradil (SpeechTech),

Filip Jurcicek (University of West Bohemia), Ludek Miller (University

of West Bohemia)

Processing of Requests in Estonian Institutional Dialogues: Corpus

Analysis ..o 621
Mare Koit, Maret Valdisoo, Olga Gerassimenko (University of

Tartu, Estonia), Tiit Hennoste (University of Helsinki, Finland and
University of Tartu, Estonia), Riina Kasterpalu, Andriela Rddbis,

Krista Strandson (University of Tartu, Estonia)

Using Prosody for Automatic Sentence Segmentation of Multi-

party Meetings 629
Jdachym Koldr (ICSI, Berkeley, USA and University of West Bohemia

in Pilsen, Czech Republic), Elizabeth Shriberg (ICSI, Berkeley, USA

and SRI International, Menlo Park, USA), Yang Liu (ICSI, Berkeley,

USA and University of Texas at Dallas, USA)

Simple Method of Determining the Voice Similarity and Stability by
Analyzing a Set of Very Short Sounds 637

Konrad Lukaszewicz, Matti Karjalainen (Helsinki University of
Technology, FInland)

Visualization of Prosodic Knowledge Using Corpus Driven MEMOInt
Intonation Modelling i 645

David Escudero Mancebo, Valentin Cardenioso-Payo (University of
Valladolid, Spain)

Automatic Annotation of Dialogues Using n-Grams 653

Carlos D. Martinez-Hinarejos (Universidad Politécnica de Valencia,
Spain)

PPChecker: Plagiarism Pattern Checker in Document Copy Detection ... 661
NamOh Kang (Chung-Ang University, South Korea), Alezander

Gelbukh (National Polytechnic Institute, Mexico), SangYong Han
(Chung-Ang University, South Korea)

Table of Contents

Segmental Duration Modelling in Turkish

Ozlem Oztiirk (Dokuz Eylul University, Izmir, Turkey), Tolga Ciloglu
(Middle East Technical University, Ankara, Turkey)

A Pattern-Based Methodology for Multimodal Interaction Design

Andreas Ratzka, Christian Wolff (University of Regensburg Germany)

A Pattern Learning Approach to Question Answering Within the

Ephyra Framework

Nico Schlaefer, Petra Gieselmann (University Karlsruhe, Germany),
Thomas Schaaf, Alex Waibel (Carnegie Mellon University, Pittsburgh,
USA)

Explicative Document Reading Controlled by Non-speech Audio

GeSTUTES .« . ot

Adam J. Sporka (Czech Technical University in Prague, Czech
Republic), Pavel Zikovsky (Academy of Performing Arts in Prague,
Czech Republic), Pavel Slavik (Czech Technical University in Prague,
Czech Republic)

Hybrid Neural Network Design and Implementation on FPGA

for Infant Cry Recognition i

I Suaste-Rivas, A. Diaz-Méndez, C.A. Reyes-Garcia (Instituto
Nacional de Astrofisica Optica y Electrénica, Mézico), O.F.
Reyes-Galaviz (Instituto Tecnolégico de Apizaco, Mézico)

Speech and Sound Use in a Remote Monitoring System for Health

(72 < T

Michel Vacher, Jean-Frangois Serignat, Stéphane Chaillol, Dan Istrate,
Viadimir Popescu (CLIPS-IMAG, Grenoble, France)

Author Index

XV

Part 1

Invited Papers

Learning by Reading: An Experiment in Text Analysis

Eduard Hovy
(with collaborators Hans Chalupsky, Jerry Hobbs, Chin-Yew Lin, Patrick Pantel,
Andrew Philpot, and students Rutu Mulkar and Marco Pennacchiotti)

Information Sciences Institute, University of Southern California
4676 Admiralty Way
Marina del Rey, CA, USA
hovy@isi.edu

Abstract. It has long been a dream to build computer systems that learn automatically
by reading text. This dream is generally considered infeasible, but some surprising
developments in the US over the past three years have led to the funding of several
short-term investigations into whether and how much the best current practices in
Natural Language Processing and Knowledge Representation and Reasoning, when
combined, actually enable this dream. This paper very briefly describes one of these
efforts, the Learning by Reading project at ISI, which has converted a high school
textbook of Chemistry into very shallow logical form and is investigating which
semantic features can plausibly be added to support the kinds of inference required
for answering standard high school text questions.

1 Context and Background

From almost the beginnings of Artificial Intelligence, it was clear that automated systems
require knowledge to reason intelligently, and that for multi-purpose, wide-domain, robust
reasoning, the amount required is nontrivial. Experience, especially with expert systems
during the 1970s, illustrated just how hard it is to acquire enough of the right knowledge,
and how difficult it is to formalize that knowledge in ways suitable for supporting reasoning.
Naturally, then, the dream arose to enable systems to read text and learn by themselves.
But this dream has never been realized. In fact, as research in Knowledge Representation
and Reasoning (KR&R) and Natural Language Processing (NLP) progressed, the two areas
diverged, to the point where today they are more or less entirely separate, with unrelated
conferences, journals, and research paradigms.

A few years ago, three research groups, funded by Vulcan Inc., participated in an
audacious experiment called Project Halo: to (manually) convert the information contained
in one chapter of a high school textbook on Chemistry into knowledge representation
statements, and then to have the knowledge representation system take a standard high school
Advanced Placement (AP) exam. Surprisingly, two of the three systems passed, albeit at a
relatively low level of performance. The project engendered wide interest; see (Friedland et
al., 2003).

Over the past year, DARPA has funded five groups in the US to conduct pilot studies that
investigate the feasibility of building fully Learning by Reading (LbR) systems. The largest,
Project Mdbius, is a consortium of some 20 researchers from numerous institutions. Its goal

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 3—12, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

4 E. Hovy

is to design a general framework for LbR systems in the future, and to advise DARPA on the
wisdom of funding a new program in this area. Typical questions include: How feasible is
fully automated LbR? What are the different phases/components/steps of LbR? What are
the current levels of capability of the component technologies, and where are the major
bottlenecks and failure points? What kind of research would best further the dream of LbR?
What sorts of results could one expect after five years?

The remaining four projects proceed independently but report back to Mdbius. All are
smaller, 9-month efforts, and each focuses on one or more specific aspects of the general
LbR problem:

A project jointly at Boeing and SRI, led by Peter Clark of Boeing, focuses on the

mismatch between English sentences and their equivalent knowledge representations

propositions, with the methodology of building manually the representations for a

carefully selected extract of 5 pages from the Chemistry textbook.

— A project at Northwestern University, led by Ken Forbus, concentrates on the processes
of self-guided inference that occurs after new information is read. Called introspection
or rumination, these processes work in parallel with the reading, and serve as a source of
expectations, questions, and background checking. This project focuses on a few selected
sentences from the Chemistry textbook, and the thoughts that may arise from them.

— A project at CYC Corp., led by Michael Witbrock, addresses the problem of learning
the meaning of new, unknown, words in context. Starting with the knowledge already
inside their very large ontology and reasoning system Cyc, researchers develop methods
to apply inferences in order to build up likely interpretations of a sentence and from these
hypothesize the meaning of the unknown word.

— The fourth project is the subject of this paper. Located at ISI, we are investigating how
much can be done by combining traditional and statistical NLP methods, and what kinds
of KR&R are absolutely required, at which points in the process. We have parsed the
whole Chemistry textbook, have developed methods to convert the parses into shallow
logical form, and are investigating the what types of -semantics should be added to
support the reasoning required for question answering.

In this paper we briefly outline the architecture and general aspects of ISI’s LbR project,
which will finish in August, namely about three months after the time of writing this paper.

2 The Text

The text is Chemistry: The Central Science (9th ed.), by Brown, LeMay, Bursten, and Burdge,
which is intended for senior high-school students. The publishers have kindly made an
electronic version available to the projects, to be used for research purposes only.

The book contains 313590 words (12722 different words). Of this, nouns comprise 146825
/ 9279 tokens/types, verbs 28627 / 1387 tokens/types, and adjectives and adverbs together
35775 /1 2795. The most frequent 50 nouns cover 67.2% of all noun tokens in the book;
the most frequent 50 verbs cover 92.4% of the verb tokens, and the most frequent 50
adjectives/adverbs cover 83.7%. This is relatively good news: should one have to hand-
construct core meanings of (most of) these words before the systems starts to read, it will
suffice to treat only the most frequent 200 nouns (covering 96.1% of all noun tokens), 50
verbs, and 50 adjectives/adverbs.

Learning by Reading: An Experiment in Text Analysis 5

3 The Learning by Reading Architecture and Modules

3.1 System Architecture

Given the very short time available—9 months from start to finish—the project is necessarily
very incomplete; we decided to focus on just selected areas of interest and to simplify
or ignore many of the interesting questions we encountered. Since our strength lies in
language processing technology, we focus on the NLP areas, with the intent to discover how
little KR&R we needed, and how shallow semantics is possible, to still produce something
interesting. We therefore consciously sidestep the many complex phenomena involved in
semantic understanding, as opposed to syntactic parsing, including in particular wordsense
disambiguation, coreference and anaphora resolution, quantification, negation, complex NP
structure and modification, discourse structure, and so on.

One might ask: if you ignore all this, what’s the point? And indeed, designing some
kind of evaluation, or at least some criteria by which one can measure and/or describe the
validity and utility of the outcome, is a significant challenge, as we discuss in Section 4.
Nonetheless, it is extremely interesting and quite instructive to proceed under these very
strong simplifications, and to then discover what phenomena of semantics are in fact required
for a practical application of LbR (as opposed to what phenomena have received a lot of
attention from researchers), as well as to investigate whether there are simple and robust
methods to derive these phenomena using modern techniques.

The overall system architecture is shown in Figure 1. The system was built in three 3-
month stages: stage 1 covered textbook analysis, background knowledge structures, and
syntactic parsing; stage 2 covered conversion of parse structures into shallow logical
form, creation of notations for selected semantic phenomena, and building of inferences /
transformation rules to create these representations; stage 3 covers instantiation of the final
output for into a KR&R system and experiments with question answering.

3.2 The Skeletal Ontology

No human would dream of reading a book like this without any knowledge whatsoever of
English words. Since we had only 9 months for the project, we decided to extract from our
large general-purpose term taxonomy/ontology Omega (Philpot et al., 2005) just the terms
used in the book, with their inheritance structure, verb case frame information, and selected
other relationships such as partonyms and synonyms. (The largest part of Omega, the Middle
Model, was derived by combining WordNet 2.1 (Fellbaum et al., 1998) with Mikrokosmos
(Mahesh, 1996) and adding to it a variety of additional information, notably the verb frame
structures of Framenet (Baker et al., 1998), Lexical-Conceptual Structures (Dorr and Habash,
1991), and the PropBank frame (Palmer et al, 2005). The LbR ‘ontology’ we derived consists
of 10371 terms, of which 6117 were already in Omega (the remaining terms were multi-word
phrases, unknown proper names, etc.).

In a technical book such as this, complex NPs pose a serous problem for understanding.
No current NLP engines do an adequate job of analyzing their internal structure. To avoid
this problem, and to fill in the rather large gap in the ontology due to these terms, Pantel
applied his Mutual Information-based method (see for example (Pantel, 2005; Pantel and
Ravichandran, 2004) for similar word on noun clusters and concept formation) to identify

6 E. Hovy

Phase |
Extract lists of o v & Omega
—» —

all words

Detetrmir‘le key 5 ——-——__, Create starter
Learn mode: Srms ontology Chem.

Prepare text ; ; / i
. - - ; re-
ool Learn inter-term relations . s‘ / Dntilu :
e ay

—— Choose text to read —

n.
n
vy —
n

—

Parse the T
Knowl.
fragments [["o

Pool
Deploy IR (deep read) ™, : o0
engirne on text /" 3 i
M - ' Phase Il
Retrieve Extract relevant Convlert iz i Thase T
L » relevant text =% text fragments gr?phs.fnet_;yorks Y
X (target read) OTPIOPOSTION® Find similar
L &« known graphs
s Rate graphs i
¥
7
QA mode: ‘ Match Q graphs
it Unknown
i problematic? b and find ansvier
question Ac?)uire graphs knowledge P
Phase |1 ELEREIE Return‘answers

Fig. 1. ISI’s Learning by Reading system architecture. The top region was completed in stage 1; the
middle region in stage 2, and the bottom (left and right) region in stage 3.

bigrams, trigrams, and longer strings of nouns that occur unusually frequently in this corpus
compared to general English. We obtained several thousand multi-word terms, including
(starting with highest mutual information) practice exercise, Solution Analysis, equilibrium
constant, periodic table, boiling point, equilibrium constant, partial pressures, and so on,
which we added to the ontology through simple automated matching of the final noun, which
we assumed was the head in all cases.

Although each term in the book is represented in the skeletal ontology, this does not mean
much is actually known about the concept. The system knows in all cases the English forms of
a word (plural, past tense, etc.), its purported taxonomic location (according to Omega, which
is not specialized for Chemistry), and the frame structure of some of the verbs. It does not
however have the words in the textbook disambiguated by sense: to the system, for example,
the noun water might mean the normal fluid we drink, a sea or lake, or any of several other
meanings. (Our initial assumption that words would tend to be monosemous because we are
dealing only with a single domain turned out not to hold; even in Chemistry, many words
have different senses. For example, “water” might refer to the substance in general, to its
formula in an equation, or to a specific instance of it as being discussed in an experiment,

3.3 Information Retrieval

We identified the need to support three modes of reading: skimming; general sentence-by-
sentence processing, as one normally reads a book (which we called deep reading); and
targeted reading, in which one focuses on a specific term and reads fragments about it from
all over the text. As described in Section 3.6, we used skimming to extract relations from

Learning by Reading: An Experiment in Text Analysis 7

the book using statistical methods. In contrast, as discussed in Sections 3.4 and 3.5, targeted
reading is required during more typical reading, both to find details about some term that
may be lacking crucial information and to answer questions (Section 3.7). To enable targeted
reading, Lin deployed over the textbook an instance of the Lucene information retrieval
package (Lucene 2005), and built a small web-based interface for it, by which one can explore
the book manually as well. This IR system and its interface we called Scout.

3.4 Parsing and Conversion to Hobbs Normal Form

We decomposed the conversion of natural language text into logical form into a series of
steps. In this process we used our Basic Element package, built at ISI earlier this year for
automated summarization evaluation (Hovy et al., 2006), which can be downloaded from
http://www.isi.edu/"cyl/BE. The purpose of the package is to convert sentences of
text into a list of relation-head-modifier triples and then to compare the lists obtained from
automated text summarizers to the lists produced from gold-standard human summaries.

For LbR, we required just the triples. Using the package, we applied both Charniak’s
parser (Charniak, 2000) and MINIPAR (Lin, 1994) to the whole book, and for technical
reasons chose the former. Using the BE package tree-decomposition rules, Lin converted
the entire book’s contents into so-called flat form. Next using a set of conversion rules
written manually by Lin, each flat form statement was converted into what we call Hobbs
Normal Form (HNF), which is a list of clauses, one per triplet, combined using logical AND,
that expresses the dependency structure of the sentence in quasi-logical format. During this
process, Lin also replaced the syntactic relations Subject and Object with the appropriate case
frame roles obtained from Omega, using a process trained on the PropBank corpus. A brief
example of a heading is shown in Figure 2.

This process has not been fully optimized, and still contains quite a few easily fixed errors
(as well as some unfortunately not so easily fixed). Of the 12394 sentences in the book, 51.7%
contain some kind of known error, including 2219 verbs without arguments (broken parse
trees), 2621 cases in which some argument (case frame role) has been wrongly duplicated
within a sentence, and 752 auxiliary verbs with main verb. Some of these errors can be
ignored for later purposes; many of them can be fixed by inserting additional tree-cutting
rules. Parsing the whole book took 39 minutes on a standard PC; creating the basic element
triples took 340 minutes; and converting into HNF took an additional 15 minutes.

0201 1.fr.txt:# 2.1/1 The/2 Atomic/3 Theory/4 of/5 Matter/6
0201 1.fr.txt:

0201 1.fr.txt: [X4 :type Theory/NN/theory

0201 1.fr.txt: :#NN CD 2.1/CD/2.1<* (X1)

0201 1.fr.txt: :#NN NNP The/NNP/the<* (X2)

0201 1.fr.txt: :#NN JJ Atomic/JJ/atomic<* (X3)

0201 1.fr.txt: :#NN NN Matter/NN/matter<OF (X6)]

0201 1.fr.txt:

0201 1.fr.txt: @Q@OGLF 2.1’ (el,x1) & the’(e2,x2) & nn’(e3,x2,x1)

& atomic’(e4,x1) & theory’(eb,x1) & of’(e6,x1,x3)
& matter’ (e7,x3)

Fig. 2. Input sentence, Basic Element triples, and HNF

8 E. Hovy

3.5 From Hobbs Normal Form to Limited Semantics

HNF is our starting point en route to semantics. This notation is a simplified variant of the
logical form developed over almost a decade by Jerry Hobbs (Hobbs, forthcoming). Our
implementation avoids numerous complex problems, including wordsense disambiguation,
quantifier and negation scoping, complex NP structure, and other issues. Nonetheless, it
provides a starting point into which we could systematically add representations of the
kinds of logical phenomena required to answer questions in the Chemistry domain. Guided
by analysis of the text and questions, Hobbs and Mulkar implemented a set of abductive
inference rules that takes as input HNF and returns a set of possible ‘deeper’ interpretations
of them, in which some particular semantic phenomenon has been addressed each time. At
the time of writing, the phenomena for which rules were created include:

— Determiner interpretation: insertion of V and 3 quantifiers (without scope)
— Plural handling: insertion of sets to represent aggregations, plus skolem variables to
represent their individual item(s). These sets are denoted by S variables in the HNF

An example will be helpful. Consider the sentence
All atoms of a given element are identical.
After parsing and basic element conversion, the flat logical form is

all(s,el) & atom’(el,x) & plural(x,s) & of ’(e2,x,y) & given(y)
& element’(e3,y) & identicall’(e4,s) & MainAssertion(e4)

Here each e variable expresses an eventuality, each s variable a set (as introduced by a plural),
and each x or y a specific instance. After application of the determiner inference rule and
canonicalization of symmetric predicates, we obtain

FORALL(x,el,e4) & atom’(el,x) & of '(e2,x,y) & element’(e3,y) & identicall’(e4,s)

and after recursively collecting the properties of x, the final result is an axiom in chemical
theory:

(Vx)[atom(x1) & atom(x2) & of(x1,y) & of(x2,y) & element(y) — identical2(x1,x2)]

The engine performing this transformation is a simplified version of the abductive theorem
prover TACITUS (Hobbs, 1986). It combines weight scores, originally assigned to inferences,
in order to obtain numerical goodness scores for each derived result, and then ranks them
accordingly.

Since each rule handles a different semantic phenomenon, the rules have to be written
by hand. How many such rules will eventually be required, and will the rule set eventually
grow unmanageable? This is impossible to estimate, but Hobbs is optimistic. In a passage of
7 clauses selected for its high content, for example, all clauses are of form (Vx)[Subject(x)
— (3y) VP(x,)]

The density of occurrence of the principal phenomena we have so far encountered in the
book (which has a relatively homogeneous style of exposition) suggests that a relatively small
number of rules/phenomena will do a lot of the work in translating sentences into content
theory axioms.

Learning by Reading: An Experiment in Text Analysis 9

3.6 Skimming to Obtain Relations

In a completely separate stream of work, Pantel and Pennacchiotti investigated the extraction
of axioms from the text using the statistical text harvesting paradigm. In (Pennacchiotti and
Pantel, 2006; Pantel and Pennacchiotti, 2006) they report the results. Their harvester, called
Espresso, uses weak supervision to learn lexical patterns that typically signal relations of
interest, and then applies these relations to extract all likely instances of the relation from
the book. These extractions are then reformulated as HNF axioms and added to the system’s
knowledge.

Espresso follows in the pattern-based extraction paradigm of Hearst (1992), Berland and
Charniak (1999), Ravichandran and Hovy (2002), Fleischmann et al. (2003), and Girju et al.
(2003). The patterns themselves are not manually built, but are learned from the text after a
small set of seed instances is given by the user, following the general design of Ravichandran
and Hovy. The most reliable patterns are identified using pointwise mutual information, and
the overly general ones are discarded. The resulting patterns are applied throughout the
textbook, to deliver a set of instances of the relation. Once instances have been collected,
pointwise mutual information is again used to prefer the ones best associated with the most
(reliable) patterns.

Espresso was applied to the Chemistry textbook, in which the relations of particular
interest (because they provide useful axioms in the domain) are is-a, part-of, react-with,
and produces, as in HCI is-a strong acid, atom part-of molecule, hydrogen-gas reacts-
with oxygen-gas, and ammonia produces nitrous oxide respectively. After quality filtering,
Espresso produced 200 is-a instances (with average precision of 85.0%), 111 part-of
(precision 60.0%), 40 reacts-with (precision 85.0%), and 196 produces (precision 72.5%).

The resulting instance expressions were then reformulated as axioms as follows:

R is-a S becomes R(x) < S(x)
R part-of S becomes (Vx)R(x) <> (Iy)[S(y) & part-of(x,y)]

3.7 Answering Questions: Inferences in Powerloom'

Given the modules described above, not much more is required to answer questions. The
parser’s grammar has to be extended to handle question syntax, and a rudimentary question
typology is required, along the lines of the QA typology described in (Hovy et al., 2002).

Most important, however, is the inclusion of a reasoning system to apply learned
inferences to newly-acquired propositions or questions in order to derive appropriate
connections with the existing knowledge. For this purpose we use Powerloom (Chalupsky
and Russ, 2002), a knowledge representation and reasoning system that has been widely
distributed and used in numerous projects over the past decade. All axioms and semantic
propositions derived from HNF are asserted into Powerloom, which is responsible for their
interconnection and maintenance.

The process of asserting semantic propositions into Powerloom, performed by Chalupsky,
makes very clear how much is taken for granted in the textbook as background knowledge,
either of Chemistry or of English in general. For example, for the sentence each element

! This work is still underway at the time of writing and hence this section does not include many
details.

10 E. Hovy

composed of extremely small particles called atoms the shallow semantic representation,
derived from HNF and asserted to Powerloom, is

(ASSERT
(FORALL (?E34 ?E35 ?x)
(=> (AND

(subject ?E34 ?E35)

(element’ ?E35 ?x))

(EXISTS (?E62 ?E63 ?s1 ?el0 ?y ?e4 ?e9 ?e3 ?e5 ?a ?z ?ell ?s2 ?e6)
(AND
(asserted ?E62 ?E63)
(compose’ ?E63 ?x ?s1)
(plural ?el0 ?y ?s1)
(small’ ?e4 ?7y)
(extremely ?e9 ?e4)
(particle’ ?e3 ?y)
(call’ ?e5 ?a ?y ?z)
(plural ?ell ?z7 ?s2)
(atom’ ?¢6 ?7))))))

With this knowledge, Powerloom is able to answer question 1 but not question 2:

1. Is each element composed of particles?
2. Is each element composed of atoms?

because it does not know that the relation call’ denotes object identity—that it, it does not
know the meaning of the word “called”.

Probably the most problematic aspect of this project is the fact there exists no set of axioms
that define the meanings of general English words, even to the rudimentary level required for
the simplest questions. This lack places a serious limitation on the amount of text a short-term
project such as this can handle. Fortunately, as mentioned in Section 2, one need not define
more than a few hundreds nouns, verbs, adjectives, and adverbs in order to cover most of the
book.

4 Evaluation

It remains unclear exactly how one should evaluate a Learning by Reading system such as
this. The general QA paradigm used in Halo and planned for Mobius—obtain a set of AP
exam questions, apply them to the system before reading and then again to the system after
reading, and compare the results—is somewhat inappropriate because in a 9-month period
one simply cannot build enough of the system, and include enough background knowledge
in the form of axioms, to be able to understand enough text for a real-world exam.

We therefore plan two approaches to evaluation. First, we are investigating the kinds of
questions the system can be expected to handle, and are building a typology of the question
types, arranged by complexity of reasoning. This typology will range from the simplest
questions (being able to answer Is i true that X? after having been given proposition X),
to formula-oriented computations (such as balancing equations), to the most complex ones

Learning by Reading: An Experiment in Text Analysis 11

(involving deeper inference with several axioms, obtained from several places in the text). If
possible, we will try to estimate the frequencies of these types in typical AP exams, in order
to estimate how much of each type of background knowledge (definitions of English; formula
reasoning; simple and complex inference; etc.) will be required of a full-blown LbR system.

Second, we are assembling a set of questions about material about which the system will
have been given the necessary background knowledge. We will apply these questions three
times, at levels of increasing complexity:

1. Baseline: just in English, using the Scout IR engine on the untreated English text;

2. No inference: after the system has read the text and asserted its knowledge and axioms
in Powerloom, but without inference allowed;

3. With inference: after the system has read and ingested the text, with Powerloom
inference enabled.

We will apply the same two relatively transparent evaluation metrics at each level, the first
counting just how much relevant material/propositions have been found, and the second
counting how many exact and correct answers have been found. (We are curious to learn the
results, and hope that they show that inference is useful, in other words, that pure text-level
IR is not enough for Chemistry.)

These two approaches to evaluation do not constitute a real evaluation, but will be
informative in helping to understand just how far one can expect a Learning by Reading
system of this (language-oriented) type to go, and in just what kinds of areas it falls short.

References

1. Baker, C.F., C.J. Fillmore, and J.B. Lowe. 1998. The Berkeley FrameNet Project. Proceedings of
the COLING/ACL conference, 86-90.

2. Berland, M. and E. Charniak. 1999. Finding Parts in Very Large Corpora. Proceedings of the
conference of the Association for Computational Linguistics (ACL-99), 57-64.

3. Chalupsky, H. and T.A. Russ. 2002. WhyNot: Debugging Failed Queries in Large Knowledge
Bases. Proceedings of the Fourteenth Innovative Applications of Artificial Intelligence conference
(IAAI-02), 870-877.

4. Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. Proc. of NAACL "00 conference.

5. Dorr, B.J. and N. Habash. 2001. Lexical Conceptual Structure Lexicons. In Calzolari et al. (eds),
ISLE-IST-1999-10647-WP2-WP3, Survey of Major Approaches Towards Bilingual/Multilingual
Lexicons.

6. Fellbaum, C. (ed.). 1998. WordNet: An On-line Lexical Database and Some of its Applications.
MIT Press.

7. Fleischmann, M., E.H. Hovy, and A. Echihabi. 2003. Offline Strategies for Online Question
Answering: Answering Questions before They are Asked. Proceedings of the conference of the
Association for Computational Linguistics (ACL-03), 1-7.

8. Friedland, N. et al., 2003. http://www.projecthalo.com/halotempl.asp?cid=30.

9. Girju, R., A. Baldulescu, and D. Moldovan. 2003. Learning Semantic Constraints for the Automatic
Discovery of Part-hole Relations. Proceedings of HLT-NAACL-03 conference, 80-87.

10. Hearst, M. 1992. Automatic Acquisition of Hyponyms from Large Text Corpora. Proceedings of
the COLING-92 conference, 539-545.

11. Hobbs, J.R. 1986. Overview of the TACITUS Project. Computational Linguistics 12(3).

12. Hobbs, J.R. (forthcoming) Discourse and Inference.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

E. Hovy

Hovy, E.H., U. Hermjakob, C.-Y. Lin, and D. Ravichandran. 2002. Using Knowledge to Facilitate
Pinpointing of Factoid Answers. Proceedings of the COLING-2002 conference. Available at
http://wuw.isi.edu/natural language/projects/webclopedia/
Taxonomy/taxonomy toplevel.html.

Hovy, E.H., C.-Y. Lin, L. Zhou, and J. Fukumoto. 2006. Automated Summarization Evaluation
with Basic Elements. 2006. Proceedings of the LREC conference.

Lin, D. 1994. Principar — An Efficient, Broad-Coverage, Principle-Based Parser. Proceedings of
the COLING/ACL conference, 42-48.

Lucene. 2005. Open Source software http://lucene.apache.org/java/docs/.

Mahesh, K. 1996. Ontology Development for Machine Translation: Ideology and Methodology.
New Mexico State University CRL report MCCS-96-292.

Palmer, M., D. Gildea, and P. Kingsbury. 2005. The Proposition Bank: A Corpus Annotated with
Semantic Roles, Computational Linguistics, 31(1).

Pantel, P. and D. Ravichandran. 2004. Automatically Labeling Semantic Classes. Proceedings of
the HLT-NAACL-04 conference.

Pantel, P. 2005. Inducing Ontological Co-occurrence Vectors. Proceedings of the conference of the
Association for Computational Linguistics (ACL-05).

Pantel, P. and Pennacchiotti, 2006. Espresso: Leveraging Generic Patterns for Automatically Har-
vesting Semantic Relations. Proceedings of the conference of the Association for Computational
Linguistics (COLING/ACL-06).

Pennacchiotti, M. and P. Pantel. 2006. A Bootstrapping Algorithm for Automatically Harvesting
Semantic Relations. Proceedings of the ICOS-06 conference.

Philpot, A., E.H. Hovy, and P. Pantel. 2005. The Omega Ontology. Proceedings of the ONTOLEX
Workshop at the International Joint Conference on NLP. Jeju Island, Korea.

Ravichandran, D. and E.H. Hovy. 2002. Learning Surface Text Patterns for a Question Answering
System. Proceedings of the conference of the Association for Computational Linguistics (ACL-02),
41-47.

Depth of Feelings:
Alternatives for Modeling Affect in User Models

Eva Hudlicka

Psychometrix Associates, 1805 Azalea Drive, Blacksburg, VA, USA
evahud@earthlink.net

Abstract. Neuroscience and psychology research has demonstrated a close connec-
tion between cognition and affect, and a number of emotion-induced effects on percep-
tion, cognition, and behavior. The integration of emotions within user models would
therefore enhance their realism and fidelity. Emotions can also provide disambiguating
information for speech recognition and natural language understanding, and enhance
the effectiveness of dialogue systems. This paper discusses the motivation and alter-
natives for incorporating emotions within user models. The paper first identifies key
model characteristics that define an analytical framework. The framework provides a
basis for identifying the functional and architectural requirements on one hand, and al-
ternative modeling approaches on the other, thereby laying the groundwork for a set of
model development guidelines. The paper then describes examples of existing models
for two core affective processes, cognitive appraisal and emotion-induced effects on
cognition, within the context of the analytical framework.

1 Introduction

Over the past two decades, emotion researchers in psychology and neuroscience have made
great strides in identifying the pervasive role of emotion in adaptive behavior and social
interaction, developing theories regarding the mechanisms mediating cognitive-affective
interactions, and elucidating the neural circuitry of affective processes [1]. Emotion research
demonstrates that cognitive and affective processes function in parallel, in a closely-coupled
manner [2]. Affective factors (emotions and personality traits) can profoundly influence
perception, cognition, and behavior, via a variety of biases and heuristics. Affective factors
also influence social interaction, facilitating communication and coordination through facial
expressions, speech quality and content, non-verbal cues, and behavioral choices.

Motivated both by theoretical and practical considerations, the potential benefits of includ-
ing emotions in user models and cognitive and agent architectures are being recognized [3,4].
In many cases, the motivation is to elucidate the mechanisms of affective processes and
cognitive-affective interactions, and their role in adaptive and social behavior [5,6]. In other
cases, emotions are included to improve human-computer interaction, by enhancing the re-
alism of user models and believability of synthetic agents. Variety of applications benefit
from affective user models, including: tutoring and education, decision-support systems, and
assistive technologies, where affective user models support recognition of, and adaptation
to, users’ emotions (e.g., customized pedagogical strategies, affect-adaptive user interfaces);
dialogue and recommender systems, where affective user models enhance effectiveness by
matching the speech content and quality to the user’s emotional states [7]; autonomous syn-
thetic agents and robots, where affective user models enhance believability by enabling be-
havioral variability and affective expressiveness (e.g., facial expressions).

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 13-18, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

14 E. Hudlicka

In spite of the surge of interest emotion models, there are as yet no systematic guidelines
for their development. The purpose of this paper is to lay the groundwork for the definition
of such guidelines. The paper first provides a brief review of relevant emotion research (sec-
tion 2), introduces a framework for analyzing computational models of emotions, by defining
their key characteristics, requirements, and available modeling alternatives (section 3), and
concludes with a description of existing models of two core affective processes: emotion gen-
eration via cognitive appraisal and the effects of emotions on cognitive processing (section 4).

2 Emotion Research Background

Definitions and Terminology. Psychologists draw a distinction between stable traits and
transient states. Emotions are mental states that involve evaluations of current situations
(internal or external; past, present or future) with respect to the agent’s goals, beliefs, values
and standards. Emotions thus reflect self- and survival-relevant evaluations of the state of the
world, the self or other agents.

Emotional states can be differentiated on the basis of duration, degree of specificity,
cognitive complexity, and universality. Affective states represent the least differentiated
evaluations (positive vs. negative), and similarly undifferentiated behavioral responses
(approach vs. avoid). Emotions proper reflect more differentiated evaluations, and are
often divided into basic (e.g., joy, sadness, anger, fear, disgust), and complex (e.g., pride,
shame, guilt, and jealousy) [8]. As emotions increase in complexity, so does their cognitive
component, and associated potential for individual and cultural variability, in both the
triggering stimuli and the behavioral repertoire. Moods are similar to emotions in terms of
affective content (e.g., sad, happy, jealous), but differ in terms of the triggering conditions
(less specific, less awareness of stimulus), duration (hours, days or longer), and behavioral
specificity (more diffuse and generalized behaviors).

Multi-modal Nature of Emotion. Emotional states are multi-modal phenomena, with mani-
festations across four distinct modalities [9]: physiology (e.g., increased heart rate); behavior
(e.g., smile vs. frown, fight vs. flee); cognition (specific effects on cognition such as positive
mood facilitating recall of positive thoughts, anxiety-linked threat bias); and distinct subjec-
tive feelings. Different emotions, moods and affective states have distinct ‘signatures’ across
these modalities; e.g., simple fear has significant and distinct physiological and behavioral
components, but a limited cognitive component, whereas pride has a complex and significant
cognitive component but a limited and non-specific physiological component.

Cognitive Appraisal. Appraisal is the process whereby current stimuli (internal and external;
real or imagined; past, present or future) are mapped onto an affective state, emotion or mood
[10,11,12]. Early theories focused on descriptive characterizations, identifying taxonomies
of triggers, emotions, and the mappings among them. The triggers (or elicitors) can be
characterized in terms domain-specific stimuli (e.g., snarling large dog induces fear; birthday
cake induces joy), or in terms of domain-independent characteristics of the stimuli (termed
appraisal dimensions or appraisal variables), such as novelty, desirability, and responsible
agent [11]. Particular combinations of appraisal variables then trigger specific emotions.
More recent appraisal theories emphasize the mechanisms mediating these mappings [12].
These process theories attempt to identify the structures and processes mediating cognitive

Depth of Feelings: Alternatives for Modeling Affect in User Models 15

appraisal. The processes are frequently divided into automatic (generating rapid, high-level
initial assessments), and deliberate (generating more differentiated emotions). The increased
complexity of cognition in the deliberate appraisal allows for more variability and individual
idiosyncracies in the elicitors-to-emotion mappings. Many appraisal theories also include
an assessment of the individual’s coping potential, which influences the type of emotion
generated (e.g., being accosted by a burglar may trigger anger or fear, depending on the
coping potential).

Emotion Effects on Cognition. Emotions, moods and personality traits exert a variety of
effects on the structures and processes mediating cognitive functions. At the fundamental
cognitive processing level, these include effects on attention (anxiety-linked attention
narrowing and threat bias), working memory (anxiety-linked reduction in working memory
capacity), and memory (mood congruent recall) [13,14]. These then result in observed effects
in higher cognitive functions, including situation assessment and expectation generation
(anxiety-linked threat bias), goal selection (trait- and mood-linked self focus), and problem
solving (mood-linked strategy choice, focus on details (negative) vs. ‘big picture’ (positive).

States (emotions, moods) exert transient effects on cognitive or perceptual processes,
while traits exert their influence via more stable structures (e.g., content and organization
of long-term memory schemas), but also influencing the emotion dynamics (e.g., sensitivity,
and ramp-up and decay rates of emotion intensities).

3 Framework for Affective Model Analysis and Comparison

The model characteristics below define an orienting framework which provides a basis for
the systematic analysis of the functional and architectural requirements on one hand, and the
available theories, data and modeling approaches on the other.

The first four characteristics are the model objective (e.g., explore mechanisms of affective
biases vs. generate affect-matched dialogue), task domain (e.g., speech generation, tutoring
agent),focus (e.g., emotion generation via appraisal vs. affective biases), and scope (e.g., the
set of specific emotions modeled and the associated elicitors) These constrain the applicable
theories, empirical data and modeling approaches, suggesting the appropriate level of ab-
straction, and the methods and criteria for validation (e.g., human data on matched empirical
studies used for mechanism elucidation vs. heuristic evaluations of ‘believability’ for eval-
uating affective agents). While not conceptually intriguing, the choices made here can have
a large impact on the overall effort and success. Considerable effort can be saved by select-
ing tasks with well-defined ontologies, relevant emotions with well-established elicitors and
behavioral expressions, and appropriate level of model resolution (e.g., generation of facial
expressions in a synthetic agent may not require a process model of cognitive appraisal).

Theoretical framework, selected on the basis of both focus and scope above, guides
the model development by suggesting the specific structures and processes necessary to
implement the selected phenomena. Affective processes and phenomena vary in their
degrees of theoretical support, with cognitive appraisal theories being the most extensively
developed. Existing theories define taxonomies of stimuli and emotions [15]; emotion
elicitors and elicitor-to-emotion mappings; sequence of steps or stages within this process
[10,11]; functions included in the appraisal process (e.g., assessment of coping [10]); and
the functions calculating the intensity and decay of specific emotions, and those determining

16 E. Hudlicka

how multiple emotions are combined (e.g., what emotion results from an event producing
both sadness and relief?).

Theoretical foundations of emotion effects on cognition and the mechanisms of particular
biases are not as well developed as the appraisal theories, though some do exist (e.g., Bower’s
spreading activation model of mood-congruent recall [14]). The lack of well-developed
theoretical basis for many affective phenomena poses a challenge, requiring the modeler
to use available empirical data (e.g., anxiety-induced interpretive threat bias) and theory
‘fragments’, and filling-in the gaps through ‘educated guesses’ regarding the causal pathways
and internal structures.

Model resolution is influenced by the modeling objective (e.g., for applied user models
black-box models may be adequate); data availability (e.g., available data may only
support low levels of resolution); and existing theories (e.g., lack of theories regarding
detailed mechanisms limits the level of resolution). Models lie on a spectrum, bounded by
input/output models (also black box, shallow, or performance models), and detailed process
models (also deep models). Within a given architecture, different functions and phenomena
can be modeled at different levels of resolution.

Architecture structure is determined by the theoretical framework and the resolution
level, which define the specific modules and the data and control flow among them. Affective
user models and cognitive-affective architectures typically include modules that correspond
to specific cognitive or affective processes (e.g., appraisal, expectation generation, goal
management), as well as ‘purely’ cognitive processes such as attention, different types of
memories (sensory; working; long-term including declarative, procedural, episodic), which
are necessary to provide the cognitive infrastructure within which the affective processes are
modeled. Some architectures do not localize affective processes within dedicated modules,
but consider them as emergent properties arising from complex information processing
[16]. Execution control ranges from sequential ‘see-think-do’ models (or ‘see-think-feel-
do’?) to parallel distributed models, with no centralized control; the latter frequently using
blackboards for communication and process coordination (e.g., [17]).

Empirical data required to build (and validate) models vary, depending on the choices
above. Black-box models have less demanding data requirements than process-oriented
models, which may require data about internal mental structures and processes that are
difficult or impossible to obtain with current empirical methods. The data come from
empirical studies (e.g., [13,14]), and from knowledge elicitation, and task and protocol
analysis with subjects and users.

Type and complexity of cognitive structures are a function of the selected theoretical
framework, the level of abstraction, and the available empirical data, as well as the overall
model objective, which determine the specific constructs represented in a particular model
(e.g., situations, expectations, goals, plans), the processes that operate on them (e.g., problem-
solving, learning, planning), and the memory types (e.g., declarative, episodic). For example,
appraisal models necessarily require representation of the actual and the desired states of the
world and self. Appraisal models that include coping require explicit representation of the
anticipated consequences, and appropriately detailed models of the agent’s own capabilities
within the context. Future oriented emotions (e.g., hope, anxiety) or past oriented emotions
(e.g., regret) require the explicit representation of time.

Depth of Feelings: Alternatives for Modeling Affect in User Models 17

Representational and inferencing formalisms Process models typically use symbolic
formalisms, most frequently rules and belief nets, the latter providing a mechanism for
uncertainty management. Black-box models use a variety of approaches to implement the
elicitor-emotion or emotion-effects mappings, including rules and belief nets, but also vector
spaces and connectionist models.

4 Models of Cognitive Appraisal and Emotion Effects

This section describes existing models of two core affective processes, emotion generation
via cognitive appraisal and the effects of emotions on cognition, within the context of the
analytical framework described above.

Modeling Emotion Generation Via Cognitive Appraisal. Cognitive appraisal is the most
frequently modeled aspect of affective processing. In computational terms, the objective is to
map the emotion elicitors (patterns of task-specific stimuli or abstract appraisal dimensions)
to the resulting emotions, or to dimensions such as valence and arousal, within the context of
a specific set of agent’s goals and beliefs. These mappings have been the basis of a range of
‘black box’ appraisal models (e.g., [11]). More recent mechanistically-oriented theories (e.g.,
[12]) lend themselves to computational implementations of process models, which attempt to
emulate the structures and processes mediating appraisal. The detailed taxonomies of stimuli
and emotions developed by Ortony et al. [15] are widely used as basis for appraisal models;
e.g., Reilly’s EM [18], Gratch and Marsella’s EMA [17], the former focusing in addition on
the functions calculating intensity, decay, and integration of multiple emotions; the latter on
coping and emotion dynamics. Scherer’s stimulus evaluation checks [11] and Lazarus’ [10]
theories provide basis for the dynamic aspects of appraisal, outlining the sequence of stages
within the process. Smith and Kirby’s mechanism-oriented theories are increasingly used as
basis for process models of appraisal (e.g., [17,20]).

Modeling Emotion Effects on Cognition. Models of emotion effects on cognition are less
common, and more challenging, due to lack of theories and difficulties obtaining the required
internal data. In computational terms, the objective is to map a particular emotion (or emotion
mix) onto changes in specific characteristics of cognitive structures and processes (e.g.,
attention and working memory speed, capacity and bias). Particular challenges occur when
multiple, possibly opposing, effects must be combined.

Hudlicka’s MAMID cognitive-affective architecture [20] implements a generic method-
ology [19,21] for modeling multiple, interacting effects of emotions and traits on a range of
cognitive processes, including appraisal. The methodology enables the modeling of a number
of affective biases, within the context of decision-making in simulated environments. The un-
derlying assumption of the approach is that a broad range of interacting emotion effects can
be represented in terms of distinct configurations of a small number of architecture parame-
ters. These parameters control processing within individual architecture modules, influencing
their speed, capacity, and content biases (e.g., threat- or self-bias). These low-level ‘micro ef-
fects’ are eventually manifested in differences in observable behavior associated with differ-
ent emotions. MAMID is a domain-independent architecture, originally demonstrated within
the context of a peacekeeping scenario, and recently transitioned to a search-and-rescue team
task.

18

5

E. Hudlicka

Conclusions

The frequent love-hate relationship that characterized academic emotion research until the
1980’s was echoed in the early Al and cognitive science work. Attitudes toward emotion
models were frequently of the all-or-nothing variety: either summarily rejected as infeasible,
irrelevant or both, or uncritically embraced as essential for adaptive, intelligent behavior. As
affective modeling research matures, these attitudes are giving way to more balanced views,

and the need arises for systematic guidelines for affective model development. The analytical

framework presented above aims to provide a basis for such guidelines.

References

AW

O 0 3 O\ L

13.

14.
15.
16.
17.
18.
19.

20.

21.

. Davidson, R.J., Scherer, K.R., Goldsmith, H.H.: Handbook of Affective Sciences. NY: Oxford.

(2003).

. LeDoux, J.: Cognitive-Emotional Interactions: Listen to the Brain. In Cognitive Neuroscience of

Emotion, Lane, R.D. & Nadel, L. (eds). NY: Oxford. (2000).

. Picard, R.: Affective Computing. Cambridge, MA: MIT. (1997).
. Hudlicka, E.: To Feel or Not To Feel: The Role of Affect in HCL. International Journal of Human-

Computer Studies, 59 (1-2), (2003) 1-32.

. Fellous, J-M, and Arbib, M.: Who Needs Emotions? NY: Oxford. (2005).

. Trappl, R., Petta, P., Payr, S.: Emotions in Humans and Artifacts. Cambridge, MA: MIT. (2002).

. de Rosis, E.: International Journal of Human-Computer Studies, 59 (1-2), (2003).

. Ekman, P., Davidson, R.J.: The Nature of Emotion. NY: Oxford. (1994).

. Clore, G.L. & Ortony, A.: Cognition in Emotion: Always, Sometimes, or Never? In Cognitive

Neuroscience of Emotion, Lane, R.D. & Nadel, L. (eds). NY: Oxford. (2000).

. Lazarus, R.S.: Emotion and Adaptation. NY: Oxford. (1991)
. Scherer, K.R.: Appraisal Considered as a Process of Multi-level Sequential Checking. In Appraisal

Processes in Emotion. Scherer, K., Schorr, A., Johnstone, T. (eds.). NY:Oxford. (2001).

. Smith, C.A., Kirby, L.: Consequences require antecedents: Toward a process model of emotion

elicitation. In Feeling and Thinking: The role of affect in social cognition, Forgas, J.P. (ed.). NY:
Cambridge. (2000).

Mineka, S., Rafaeli, E., Yovel, I.: Cognitive biases in emotional disorders: Information processing
and social-cognitive perspectives. In Davidson, R.J., Scherer, K.R., Goldsmith, H.H. (eds.),
Handbook of Affective Sciences. Oxford. (2003).

Bower, G.H.: Mood and Memory. American Psychologist, 36, (1981) 129-148.

Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. NY: Cambridge. (1988).
Sloman, A.: How many separately evolved emotional beasties live within us? In Emotions in
Humans & Artifacts, Trappl, R., Petta, P., Payr, S. (eds.). Cambridge, MA: MIT. (2003).

Gratch,, J., Marsella, S.: A domain independent frame-work for modeling emotion. Journal of
Cognitive Systems Research, 5(4), (2004) 269-306.

Reilly, W.S.N.: Modeling What Happens Between Emotional Antecedents and Emotional Conse-
quents. In Proceedings of ACE 2006. Vienna.

Hudlicka, E.: This time with feeling: Integrated Model of Trait and State Effects on Cognition and
Behavior. Applied Artificial Intelligence (2002) 16:1-31.

Hudlicka, E.: Two Sides of Appraisal: Implementing Appraisal and Its Consequences within a
Cognitive Architecture. In AAAI Spring Symposium, Architectures for Modeling Emotion, TR SS-
04-02. Menlo Park, CA: AAAI Press. (2004).

Hudlicka, E.: Modeling Emotion in Symbolic Cognitive Architectures. AAAI Fall Symposium, TR
FS-98-03. Menlo Park, CA: AAAI Press. (1998).

Part 11

Text

“Text: a book or other written or printed work, regarded in terms of its
content rather than its physical form: a text which explores pain and grief””’
NODE (New, Oxford Dictionary of English), Oxford, OUP, 1998, page 1998, meaning 1.

The Lexico-Semantic Annotation of PDT:
Some Results, Problems and Solutions

Eduard Bejcek, Petra Mollerov4, and Pavel Stranidk

Institute of Formal and Applied Linguistics,
Charles University, Prague, Czech Republic
{bejcek, mollerova, stranak}@ufal.mff.cuni.cz

Abstract. This paper presents our experience with the lexico-semantic annotation of
the Prague Dependency Treebank (PDT). We have used the Czech WordNet (CWN)
as an annotation lexicon (repository of lexical meanings) and we annotate each word
which is included in the CWN. Based on the error analysis we have performed some
experiments with modification of the annotation lexicon (CWN) and consequent re-
annotation of occurrences of selected lemmas. We present the results of the annotations
and improvements achieved by our corrections.

1 Introduction

In the Prague Dependency Treebank (PDT; see [1,2]), the annotation can be viewed as
an iterative analysis of text in the following sequence: raw text — tokenized text —
morphologically analysed and lemmatised text — surface syntax (analytical layer) — deep
syntax including verb valencies, topic-focus articulation and other features (tectogrammatical
layer). It is not just enrichment of the original text with additional information or rather
explication of grammatical information contained in the text. The tectogrammatical layer
includes all the information needed to generate the surface structure without using the original
text or the other layers. For technical reasons lexico-semantic annotations have been added
to the morphological level.

Lexico-semantic annotation (if the process is manual, done by humans) or tagging (if it is
automatic, performed by a machine) means assigning a semantic tag from an a priori given
set to each relevant lexical unit in a text. Lexical units which we deal with during this process
are lemmas of words; ! the relevant ones are those of the autosemantic parts of speech, namely
all nouns, adjectives, verbs, and adverbs.

In this paper, symbol T, (/) denotes a set of possible semantic tags which can be assigned
tolemma/ and y C T, (l) is a set assigned.

The purpose of lexico-semantic annotation or tagging is to distinguish between different
meanings a semantically ambiguous lemma has in different contexts.

! The lemmas at the syntactical level of the PDT form a set of tectogrammatical lemmas, which is
different from the set of lemmas at the morphological level [3]. However (despite lexico-semantic
analysis being placed only after the syntactical level), we currently use the lemmas produced by
morphological analyser for various practical or technological reasons.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 21-28, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

22 E. Bejcek, P. Mollerova, and P. Strandk

2 The Project Goal

The original goal was to provide training data for word sense disambiguation. For this
purpose two annotators begun to annotate in parallelzthe files of PDT 1.0 [2] with synsets
from Czech WordNet. Later it was decided to aim for complete lexico-semantic annotation of
PDT, thus enriching it with word sense information. To this day each annotator has processed
34,231 sentences consisting of 431,447 words. Because not all words occurring in the text
exist in CWN, 148,774 instances (i.e. words) of 7972 lemmas were actually annotated. Since
the morphological layer of PDT 2.0 consists of approximately 2 million words, we have
annotated over 20% of PDT 2.0.

3 Annotation Using the Czech WordNet

The CWN consists of 28,392 synsets (including nouns, adjectives, verbs, and adverbs) [4].
We use it to obtain the set of possible semantic tags T, (l) for each relevant lemma. In the
process of annotation, each annotated lemma is assigned the best tag from this set.

Table 1. List of the exceptions ordered by their preference

Incorrect Reflexivity
Missing Positive Sense
Missing Negative Sense
Incorrect Lemma

Figurative Use

Proper Name

Unclear Word Meaning in the Text
Unclear CWN Sense
Missing More General Sense
Missing Sense

Other Problem

The annotators must always assign exactly one synset or exception® to each relevant word
(i.e. | x| = 1). In case annotators believe that one synset cannot be assigned, they can either
mark the occurrence as vague (Exception 8) or they can say they are missing more general
sense in the CWN (Exception 10). These two exceptions are equivalent to situations when we
know that | y | = 1, but we cannot identify y, and when we know that | y| > 1, respectively.
These exceptions were assigned very rarely and agreed on in 20 and O cases, respectively.
From this we can conclude that allowing |y | > 1 would give us nothing and could only hurt
interannotator agreement, because T, ()| y|>1 = P(Tp(1)||=1)-

Annotators are instructed to try to assign a uniliteral synset first. Only if no uniliteral
synset is usable, they examine the multiliteral synsets (if present). If and only if no synset

2 We have used double blind annotation to be able to create a gold standard data by imploying a
corrector (=third annotator).
3 In contrast to SemCor [5] and other similar projects (see Section 8).

The Lexico-Semantic Annotation of PDT 23

from T, (I) can be assigned, the annotators choose one of the exceptions given in Table 1 (for
details see [6]).

4 Annotation Statistics

4.1 Summary of the Data Distribution

In terms of lexical semantics, only autosemantic words (nouns, adjectives, verbs, and
adverbs)* can be the subject of semantic tagging. There were 70% such words in the
annotated text. However, only words present in the CWN were annotated because they have
at least one possible tag to be assigned. 35% of all words fullfiled this condition but only 24%
were ambiguous (i.e. had more than one possible tag). This implies that only about 1/2 of all
autosemantic words in a given text can be subject of automatic word sense disambiguation
and only 1/3 are really ambiguous (according to the CWN). Detailed counts are given in the
Table 2.

69% of annotated words were nouns, 21% were verbs, and 10% were adjectives. Since
the CWN version we worked with does not contain any adverbial synsets, no adverbs were
annotated.

Only 67% of nouns, 26% of adjectives, and 49% of verbs occur at least in one synset and
thus could be processed by annotators. Now let us see how difficult this work was.

As described in section 3, there are three types of semantic tags used for annotation: unilit-
eral synsets, multiliteral synsets, and exceptions. A typical annotated word had 3 possible
uniliteral and 6 multiliteral synsets in the set of possible tags T, (/). Considering only those
words with more than one possible tag, they have 3.8 uniliteral synsets and 8 multiliteral
ones. Multiliteral synsets appeared almost exclusively in the tag sets of nouns.

4.2 Inter-annotator Agreement

All kinds of linguistic annotation are usually performed by more than one annotator. The
reason is to obtain more reliable and consistent data. In order to learn this reliability we
can measure inter-annotator agreement, a relative number of cases when selections of the
annotators were identical. This number gives also evidence of how difficult the annotation is.
Manually annotated data is often used to train systems for automatic assigning relevant tags
(tagging). Inter-annotator agreement gives an upper bound of accuracy of such systems.

Table 3 shows the inter-annotator agreement measured from various points of view. Basic
agreement on selection of uniliteral synsets was 61.5%. If we consider both uniliteral and
multiliteral synsets the inter-annotator agreement increases only by 0.2%. Overall inter-
annotator agreement on all possible types of tags is 74.6% — 1/4 of all processed words
are not annotated reliably. This number varies depending on POS: verbs were significantly
more difficult to assign a correct uniliteral synset.

Generally speaking, the inter-annotator agreement is relatively low but it does not
necessarily imply that annotators had problems to distinguish word meanings. They rather
had problems to select the most suitable options that would correspond to their opinion.

4 Numerals are sometimes considered autosemantic words too, but usually they are not the subject of
semantic annotation.

24 E. Bejcek, P. Mollerova, and P. Strandk

According to the CWN, some words occurring in the annotated texts had up to 18 senses.
Surprisingly, the inter-annotator agreement does not depend on the degree of ambiguity. It
ranged from 15% to 80% regardless of the number of possible tags. We can conclude that the
size of word tag sets is probably not what causes the low inter-annotator agreement.

5 Discussion on Semantic Tags and the Inter-annotator Agreement

There are two basic situations when the annotators can hardly generate the desired results,
i.e. choose both the same synset: a) if they for some reason do not understand the meaning of
the word to be annotated in the text, or b) if they understand the text and the word meaning,
but they are unable to choose the desired meaning from proposed T), (/).

If we wanted to tackle the first source of non-agreement, we could allow the annotators
to choose more than one synset, to address the vagueness of meaning. Such a change would
however result in much bigger T, (/). Our experience shows us that if the choices are too
many, the annotators make more mistakes and the work is slow and therefore expensive.
Because T), (/) would be enlarged for every word, but the vague contexts are very rare, we
have decided against this option.

6 Corrections

When we have analysed the inter-annotator agreement and the exception annotations, we
have found that significant number of non-agreements is caused by several highly frequent
lemmas that are not treated well in the CWN (see 6).

The inter-annotator agreement on a synset (i.e. both annotators assigned the word the
same synset) was 61.5%. In 25.7% at least one annotator assigned an exception and in the
remaining 12.8% both annotators assigned a synset but they disagreed. This gives us 38.5%
of non-agreement.

The non-agreement here means anything but the agreement of both annotators on
assigning the same synset to a word. We have split the non-agreements into 2 classes:

a) Atleast one annotator assigned a synset (i.e. disagreement on synset or synset / exception
disagreement)
b) Both annotators assigned an exception (i.e. agreement or disagreement on exception)

The analysis of the synsets for words with frequent non-agreement showed that the
annotators had

Table 2. Word counts in annotated text Table 3. Inter-annotator agreement (in %) on
selection of the same: uniliteral synset (U); uni-
All words 431447 100.0% literal or multiliteral synset (UM); uniliteral or

Autosemantic words 300725 69.7% 100.0% multiliteral synset or exception (UME)
Annotated words 148744 34.5% 49.5%
Ambiguous words 101703 23.6% 33.8% POS U UM UME
N 656 660 74.1
V 448 448 754
A 67.0 67.0 76.1
All 61.5 61.7 74.6

The Lexico-Semantic Annotation of PDT

25

1. Either little or no information for choosing correct synset from a range of choices
(synsets were missing definitions and examples), so they basically had to choose
randomly, or
2. The correct meaning of the word was not in CWN (missing synset).

We have decided to try and correct the non-agreement cases in two rounds:

1. Have a corrector (3rd annotator) look at the choices of both annotators in cases of a) and
try to decide whether one of them is right. In cases where 2 of 3 agree we would consider
the word successfully annotated.
2. In cases of b) and in cases from the first round where the corrector can’t find a reason to
agree with 1st or 2nd annotator we would:
— Check all the meanings (synsets) of a word in CWN, merge, divide, add or clarify

frequency: f(l)

— Re-annotate the occurrences of the corrected lemma.

the synsets as needed to give annotators a clear guideline for decision.

For our experiment we have taken the lemmas with the frequency of non-agreement
> 200. This resulted in 25 lemmas as given in Table 4 and marked by circles in Figure 1.

1000 1500 2000 2500

500

0 200

Lemmas with Error annotations
(sorted by freq.)

4743

T f

T T T T
25 50 100

lemmas (1)
First 25 corrected

Fig. 1. Corrected lemmas

500 1014

T T
5000

Table 4. Lemmas with highest non-agreement

frequency
Lemma Agr.
Cas (time) 41
Cast (part) 23
cena (price) 85
Clovek (human) 326
dat (to give) 17
den (day) 159
dobry (good) 252
dostat (to get) 20
fax (fax) 49
misto (place) 136
mit (to have) 0
moci (to can) 9
navrh (offer) 49
podnik (business) 20
prace (work) 193
pravo (law) 29
fada (row) 16
fikat (say) 1
rok (year) 1629
stat (to stand) 152
stat (state) 136
svét (world) 59
systém (system) 32
uvést (to state) 38
vysoky (high) 282

Non-agr.
242
238
642
267
332
236
217
261
212
274

2853
1435
229
458
215
201
216
212
611
369
318
236
212
284
200

Total
283
261
727
593
349
395
469
281
261
476

2853

1444
278
478
408
230
232
213

2240
521
454
295
244
322
482

26 E. Bejcek, P. Mollerova, and P. Strandk

First Round of Corrections. For each lemma we have taken all cases of non-agreement
where at least one annotator chose a synset and extracted all the occurrences from the original
files. Each occurrence had a context of at least 20 words on each side.

These lists of snippets were further divided to group similar cases in order to simplify the
work of the corrector (3rd annotator). The division was as shown in Table 5 according to
choice of annotators.

Most of the possible list were empty, only 6 in average existed for each lemma. Each
of the resulting lists was added a choice of annotator A and B respectively to each lemma
occurrence.

The corrector then had at most three options:

1. agree with A (if he chose a synset)
2. agree with B (if he chose a synset)
3. don’t agree with either A or B

First two options meant the word was considered successfully annotated, the third one added
this occurrence to those already prepared for the second round.

The corrector was also able to add notes to the word in general or to each occurrence
separately for use in the second round.

Although the corrector agreed with A or B sometimes, each lemma of our chosen 25 was
in the end sent into the second round. This meant that the CWN synsets will be edited and all
the occurrences will have to be re-annotated or at least checked again. Nevertheless crucial
data for editing CWN ware gathered.

Second Round of Corrections. First the notes from the 1st round were gathered and
compared to the CWN we have been using. We have also checked the most recent version of
CWN in order to see if the problems have been resolved. Various Czech printed dictionaries
as well as the Princeton WordNet were also consulted. The new sense distinctions were
kept as simple as possible. We have identified the basic synset and distinguished a different
meaning (created a synset) only if we were able to precisely specify a difference. This in many
cases resulted in merging existing CWN synsets. At the same time new synsets for missing
senses were sometimes added. For these cases the annotations with the exception number 10
(missing sense) proved valuable. Each synset was also enriched by the sort definition and the
example sentence (usually from our data). For editing the synsets we have used the wordnet
browser and editor VisDic [4].

7 Results of Corrections

After the CWN was modified we have started the re-annotation of the data with the new
synsets. Although this part has not yet been finished, we can calculate the result. When all the
occurrences of our 25 lemmas will be successfully annotated, the improvements of annotated
data will be as shown in Table 6.

We have corrected 25 of 4,738 lemmas for which there are cases of non-agreement. We
gave gained 10,971 new words annotated with the synsets. This means that by correcting
0.5% of problematic lemmas we have gained 7.4% improvement with respect to annotated
words.

The Lexico-Semantic Annotation of PDT 27

Table 5. Classes of files according to annotators’ choices (A Table 6. Annotation with uniliteral

and B are original annotators) synset (U) (in %)
A B POS U
uniliteral-x ~ uniliteral-y N 703 (+4.7)
uniliteral multiliteral V 63.6 (+18.8)
multiliteral uniliteral A 69.7 (+2.7)
multiliteral-x multiliteral-y All 68.9 (+7.4)
exception uniliteral
exception multiliteral
uniliteral exception

multiliteral exception

It is also interesting to look at the sentences that are fully disambiguated with respect to
our CWN. This means that in such sentence all the annotated words are annotated correctly:
before our corrections there were 5,111 sentences fully disambiguated, after the corrections
it is 6,941 sentences. This means 35.8% improvement with respect to data that can be used
for “all words” word sense disambiguation.

Corrections took aproximatelly 320 hours to the corrector who decided on the changes to
CWN and annotated the data and 215 hours to the programmer who created the annotation
data sets and scripts, implemented changes to CWN and processed the data as needed.

8 Summary

To our best knowledge, there are three similar projects: English SemCor [5], cf. also [7],
Spanish Cast3LB [8] and recent Basque corpus annotation [9]. All of these efforts are
smaller® and they differ in important methodological aspects; most prominently, both Spanish
and Basque projects use transversal annotation (word-type by word-type) and they (as well
as SemCor) allow arbitrary subset of T, (/) (i.e. x : || > 1) to be assigned as the final
tag. We have implored linear process, because, as we have explained earlier in Section 2, we
wanted to obtain training data for all words WSD. As for allowing |y | > 1, we put forward
our reasons against it in Section 3.
Our semantic annotation of the PDT has two major applications:

1. Lexico-semantic tags are a new kind of labels in the PDT and will become a substantial
part of a complete resource of training data, which can be exploited in many fields of
NLP.

We have shown above that the recent corrections improved significantly the number
of sentences that are fully lexico-semantically annotated with respect to our current
annotation lexicon.

2. The process of annotation provides a substantial feedback to the authors of the CWN
and significantly helps to validate and improve its quality. In process of the corrections
we have also begun improving CWN on our own.

5 Basque: cca 300,000, Cast3LB: 125,000 vs. PDT: cca 2,000,000 tokens.

28

E. Bejcek, P. Mollerova, and P. Strandk

Acknowledgments

This work has been supported by grant 1ET201120505 of Grant Agency of the Czech
Republic, and project MSM0021620838 of the Ministry of Education.

References

. Hajic, J., Vidova-Hladka, B., Hajicova, E., Sgall, P., Pajas, P, Rezni¢kovd, V., Holub, M.: The

current status of the prague dependency treebank. In Matousek, V., Mautner, P., Moucek, R., Tauser,
K., eds.: TSD2001 Proceedings, LNAI 2166, Berlin Heidelberg New York, Springer-Verlag (2001)
pp. 11-20.

Hajic, J., Hajicova, E., Pajas, P, Panevova, J., Sgall, P, Vidova-Hladka, B.: Prague dependency
treebank 1.0 (Final Production Label) (2001) Published by Linguistic Data Consortium, University
of Pennsylvania.

. Haji¢, J., Honetschldger, V.: Annotation lexicons: Using the valency lexicon for tectogrammatical

annotation. Prague Bulletin of Mathematical Linguistics (2003) 61-86.

Smrz, P.: Quality Control for Wordnet Development. In Sojka, P., Pala, K., Smrz, P., Fellbaum, C.,
Vossen, P., eds.: Proceedings of the Second International WordNet Conference—GWC 2004, Brno,
Czech Republic, Masaryk University (2003) 206-212.

. Landes, S., Leacock, C., Tengi, R.I.: Building semantic concordances. In Fellbaum, C., ed.:

WordNet, An Electronic Lexical Database. 1st edn. MIT Press, Cambridge (1998) 199-216.

Hajic, J., Holub, M., Hu¢inova, M., Pavlik, M., Pecina, P., Stranidk, P., Siddk, PM.: Validating and
improving the Czech WordNet via lexico-semantic annotation of the Prague Dependency Treebank.
In: LREC 2004, Lisbon (2004).

Stevenson, M.: Word Sense Disambiguation: The Case for Combinations of Knowledge Sources.
CSLI Studies in Computational Linguistics. CSLI Publications, Stanford, California (2003).
Navarro, B., Civit, M., Marti, M.A., Marcos, R., Fernandez, B.: Syntactic, semantic and pragmatic
annotation in cast3lb. Technical report, UCREL, Lancaster, UK (2003).

Agirre, E., Aldezabal, 1., Etxeberria, J., Izagirre, E., Mendizabal, K., Pociello, E., Iruskieta, M.Q.:
Improving the basque wordnet by corpus annotation. In: Proceedings of Third International
WordNet Conference, Jeju Island (Korea) (2006) 287-290.

Czech Verbs of Communication
and the Extraction of Their Frames*

Viclava Benesova and Ondrej Bojar

Institute of Formal and Applied Linguistics
UFAL MFF UK, Malostranské namé&sti 25, 11800 Praha, Czech Republic
{benesova, bojar}@ufal.mff.cuni.cz

Abstract. We aim at a procedure of automatic generation of valency frames for verbs
not covered in VALLEX, a lexicon of Czech verbs. We exploit the classification
of verbs into syntactico-semantic classes. This article describes our first step to
automatically identify verbs of communication and to assign the prototypical frame
to them. The method of identification is evaluated against two versions of VALLEX
and FrameNet 1.2. For the purpose of frame generation, a new metric based on the
notion of frame edit distance is outlined.

1 Introduction

The main objective of this paper is to present first experiments with an automatic extension
of VALLEX, a valency lexicon of Czech verbs. Czech verbs were included in the lexicon
on the basis of their frequency in the Czech National Corpus (CNC!) to achieve maximal
corpus coverage. VALLEX nowadays covers around 66% of verb occurrences; 23% of verb
occurrences belong to few frequent auxiliary verbs, esp. byt, byvat (to be). (See Table 1.)
The remaining 10% occurrences belong to verbs with low corpus frequency. It would not be
economical to continue manual development of VALLEX for the remaining entries because
the distribution of verbs closely follows Zipf’s law and there are about 28k verbs needed just
to cover our particular corpus.

In order to cover the missing verbs, we have experimented with the possibility of automatic
generation of frames based on corpus evidence. Our experiment exploits the classification of
verbs into semantic classes, a piece of information which is already available in VALLEX.
For the time being, we have focused on a single class: verbs of communication, the so called
verba dicendi.

In our contribution, we first provide a basic description of VALLEX 1.x, including its
classification of verbs. The examined class of verbs of communication is described in a
greater detail. Next, we describe and evaluate the proposed automatic method to identify
verbs of communication. Finally, we estimate the usefulness of the identification of this class
in the task of automatic creation of VALLEX entries.

* The work reported in this paper has been supported by the grants GAAV CR 1ET201120505, LC536
and GACR No. 405/04/0243.
I http://ucnk.ff.cuni.cz/

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 29-36, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

30 V. Benesovd and O. Bojar

Table 1. Coverage of VALLEX 1.0 and 1.5 with respect to the Czech National Corpus

VALLEX 1.0 VALLEX 1.5
Verb Verb
Occ. [%] lemmas [%] Occ. [%] lemmas [%]
Covered 8.0M 537 1,064 3.6 80M 65.6 1,802 6.1
Not covered but frequent 4.1IM 279 20 0.1 35M 234 4 0.0
Not covered, infrequent 27M 183 28385 963 1.6M 109 27,663 939
Total 14.8M 100.0 29,469 100.0 14.8M 100.0 29,469 100.0

1.1 VALLEX, Valency Lexicon of Czech Verbs

VALLEX uses the Functional Generative Description [1] as its theoretical background and is
closely related to the Prague Dependency Treebank (PDT, [2]). VALLEX is fully manually
annotated, which sets limits on the growth rate. On the other hand, manual annotation ensures
attaining data of high quality. The first version of VALLEX 1.0 was publicly released in 2003
and contained over 1,400 verb entries2. The set of covered verbs was extended to about 2,500
verb entries in VALLEX 1.5, an internal version released in 2005. (See also Table 2.) The
second version, VALLEX 2.0 (almost 4,300 entries) based on the so-called alternation model
(see [3]), will be available in autumn 2006.

VALLEX 1.0 and 1.5 consist of verb entries containing a non-empty set of valency frames.
Under the term valency, we understand the ability of a verb to bind a range of syntactic
elements. A valency frame is assigned to a verb in its particular meaning/sense and is
captured as a sequence of frame slots. Each slot stands for one complement and consists of a
functor (a label expressing the relation between the verb and the complement), its morphemic
realization and the type of complement.

1.2 Verb Classes in VALLEX

Verb classes were introduced to VALLEX primarily to improve data consistence because
observing whole groups of semantically similar verbs together simplifies data checking.

At present, classification of verbs into semantic classes is a topical issue in linguistic
research (cf. Levin’s verb classes [4], PropBank [5], LCS [6,7], FrameNet [8]). Although
we consider these approaches to be very stimulative from the theoretical point of view,
we decided to use our own classification for the reason of differences in the theoretical
background and in the methods of description.

However, we must emphasize that building verb classes and their description in VALLEX
is still in progress and the classification is not based on a defined ontology but is to a certain
extent intuitive. VALLEX classes are built thoroughly from below. When grouping verbs
together, we give priority mostly to syntactic criteria: the number of complements (FGD
classifies them into inner participants, the so-called actants, and free modifications roughly
corresponding to adjuncts), their type (mainly obligatory or optional), functors and their
morphemic realizations.

2 The term verb entry refers to a VALLEX entry which distinguishes homographs and reflexive
variants of the verb. The term verb lemma refers to the infinitive form of the verb, excluding the
reflexive particle.

Czech Verbs of Communication and the Extraction of Their Frames 31

As displayed in Table 2, VALLEX now defines about 20 verb classes (communication,
mental action, perception, psych verbs, exchange, change, phase verbs, phase of action,
modal verbs, motion, transport, location, expansion, combining, social interaction, providing,
appoint verb, contact, emission, extent) that contain on average 6.1 distinct frame types
(disregarding morphemic realizations and complement types).

Table 2. Basic statistics about VALLEX 1.0 and 1.5

VALLEX 1.0 ~ VALLEX 1.5

Total verb entries 1,437 2,476
Total verb lemmas 1,081 1,844
Total frames 4,239 7,080
Frames with a class 1,591 (37.5%) 3,156 (44.6%)
Total classes 16 23
Avg. frame types in class 6.1 6.1

1.3 Verbs of Communication

The communication class is specified as the set of verbs that render a situation when ‘a
speaker conveys information to a recipient’. Besides the slots ACT for the ‘speaker’ and
ADDR for the ‘recipient’, communication verbs are characterized by the entity ‘information’
that is expressed on the layer of surface structure as a dependent clause introduced by a
subordinating conjunction or as a nominal structure.

On the one hand, the entity ‘information’ is the property that relates these verbs to
verbs of some other classes (mental action, perception and psych verbs). On the other
hand, the inherence of the ‘recipient’ distinguishes the verbs of communication from the
aforementioned other classes. However, in a small number of cases when the addressee which
represents the ‘recipient’ does not appear explicitly in valency frame (speak, declare, etc.),
this distinctive criterion fails.

On the basis of our observations, the verbs of communication can be further divided into
subclasses according to the semantic character of ‘information’ as follows: simple informa-
tion (verbs of announcement: Fici (say), informovat (inform), etc.), questions (interrogative
verbs: ptdt se (ask), etc.) and commands, bans, warnings, permissions and suggestions (im-
perative verbs: porucit (order), zakdzat (prohibit), etc.).The dependent clause after verbs of
announcement is primarily introduced by the subordinating conjunction Ze (that), interrog-
ative by zda (whether), jestli (if) and imperative verbs by aby (in order to), at’ (let). We
recognize some other distinctions between these three subclasses but their description goes
beyond the scope of this paper.

2 Automatic Identification of Verbs of Communication

In the present section, we investigate how much the information about valency frame
combined with the information about morphemic realization of valency complement can
contribute to an automatic recognition of verbs of communication. For the sake of simplicity,
we use the term verbs of communication to refer to verbs with at least one sense (frame)
belonging to the communication class.

32 V. Benesovd and O. Bojar

2.1 Searching Corpus for Typical Surface Patterns

Our experiment is primarily based on the idea that verbs of communication can be detected
by the presence of a dependent clause representing the ‘information’ and an addressee
representing the ‘recipient’.

This idea can be formalized as a set of queries to search the corpus for occurrences of verbs
accompanied by: (1) a noun in one of the following cases: genitive, dative and accusative (to
approximate the ADDR slot) and (2) a dependent clause introduced by one of the set of
characteristic subordinating conjunction (Ze, aby, at’, zda or jestli) (to approximate the slot
of ‘information’).

We disregard the freedom of Czech word order which, roughly speaking, allows for
any permutation of a verb and its complements. In reality, the distribution of the various
reorderings is again Zipfian with the most typical pattern (verb+ADDR+subord) being the
most frequent. In a sense, we approximate the sum with the first, maximal, element only. On
the other hand we allow some intervening adjuncts between the noun and the subordinating
clause.

2.2 Evaluation Against VALLEX and FrameNet

We sort all verbs by the descending number of occurrences of the tested pattern. This
gives us a ranking of verbs according to their ‘communicative character’, typical verbs of
communication such as 7ici (say) appear on top. Given a threshold, one can estimate the class
identification quality in terms of a confusion matrix: verbs above the threshold that actually
belong to the class of verbs of communication (according to a golden standard) constitute
true positives (T P), verbs above the threshold but not in the communication class constitute
false positives (F P), etc.

A well-established technique of the so-called ROC curves allows to compare the quality of
rankings for all possible thresholds at once. We plot the true positive rate (T PR = T P/ P
where P is the total number of verbs of communication) against true negative rate (T NR =
TN/N, N stands for the number of verbs with no sense of communication) for all thresholds.

We evaluate the quality of class identification against golden standards from two sources.
First, we consider all verbs with at least one frame in the communication class from VALLEX
1.0 and 1.5 and second, we use all possible word-to-word translations of English verbs
listed in FrameNet 1.23 Communication frame and all inherited and used frames (For an
explanation, see [9,10]; the English-to-Czech translations were obtained automatically using
available on-line dictionaries). As the universum (i.e. P + N), we use all verbs defined in the
respective version of VALLEX and all verbs defined in VALLEX 1.5 for the FrameNet-based
evaluation.

Figure 1 displays the TPR/TNR curve for verbs suggested by the pattern V+N234+subord.
The left chart compares the performance against various golden standards, the right chart
gives a closer detail on contribution from different subordinating conjunctions.

The closer the curve lies to the upper right corner, the better the performance is compared
to the golden standard. With an appropriate threshold, about 40% to 50% of verbs of
communication are identified correctly while 20% of non-communication verbs are falsely

3 http://framenet.icsi.berkeley.edu/

Czech Verbs of Communication and the Extraction of Their Frames 33

S =
0 | bl
g © =
=
v © ©
Z S S
<
on
Q
= < | A
L © N <
= --- FNComm.+Used™. 1\ .
| FN Comm.+Inherited. '\« o | — aby
S 7 -~ VALLEX 1.0 R S - e
-—-- VALLEX 1.5 AN zda '
g _| -=-= baseline) g _| -~ Dbaseline
T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
True positive rate True positive rate

Fig.1. Verbs of communication as suggested by the pattern V+N234+subord, evaluated against
VALLEX and FrameNet (left) and evaluated against VALLEX 1.0 for three main contributing
subordinating conjunctions (aby, Ze, zda) independently (right)

marked, too. We get about the same performance level for both VALLEX and FrameNet-
based evaluation. This confirms that our method is not too tightly tailored to the classification
introduced in VALLEX.

The right chart in Figure 1 demonstrates that the contribution of different subordinating
conjunctions is highly varied. While aby and Ze contribute significantly to the required
specification, the verbs suggested by the pattern with zda are just above the baseline of not
suggesting any verb. (The conjunctions at’ and jest/i had too few occurrences in the pattern.)

2.3 Weak Points of Patterns

From the very beginning, we eliminated the nominal structures (which can also express
‘information’) from the queries in order to avoid verbs of exchange as give, take, etc. In a
similar vein, the queries were not able to identify sentences with verbs of communication
where some of the searched complements were not realized on the layer of surface structure.
Therefore, some verbs which belong to the communication class remained undiscovered.

On the contrary, the fact that conjunctions aby and Ze are homonymous lowers the
reliability of the queries. We tried to eliminate the number of incorrectly chosen verbs by
a refinement of the queries. (For instance, we omitted certain combination of demonstratives
plus conjunctions: tak, aby (so that), tak, Ze (so that), etc.) A further problem is represented
by cases when the identified dependent clause is not a member of the valency frame of the
given verb but depends on the preceding noun.

3 Frame Suggestion

One of our foreseen tasks is to generate VALLEX frame entries for new verbs based on
corpus data. This is a well-established research topic (see [11] for a survey) but most
experiments were conducted with focus on surface frames only, making the experimental
setting comparably easier.

34 V. Benesovd and O. Bojar

The method of searching corpus for typical patterns described in the previous section
can contribute to frame extraction task in the following manner: for all verbs occurring
frequently enough in the typical pattern, we propose the most typical ‘communication frame’
consisting of ACT, ADDR and PAT (all obligatory). For each verb independently, we assign
only conjunctions discovered by the queries to the PAT. Every verb of communication can
have some additional senses not noticed by our method but at least the communication frame
should be suggested correctly.

3.1 Frame Edit Distance and Verb Entry Similarity

Methods of frame extraction are usually evaluated in terms of precision and recall of either
frames as wholes or of individual frame elements (slots). These metrics are unfortunately
too rough for the richly structured VALLEX-like frames. Therefore, we propose a novel
metric, frame edit distance (FED). The metric estimates the number of edit operations (insert,
delete, replace) necessary to convert a hypothesized frame to a correct frame. In the current
simple version of the metric, we assign equal costs to all basic edit operations (fixing the
obligatoriness flag, adding or removing allowed morphemic forms), only the functor is
considered as fixed. In order to change the functor, one pays for complete destruction of
the wrong slot and complete construction of the correct slot. We consider charging more for
slot destruction than for slot construction in future versions of the metric because we prefer
methods that undergenerate and produce safer frames to methods that suggest unjustified
frames.

As described above, VALLEX is organized as a set of verb entries each consisting of a set
of frames. Given a verb lemma, the set of its VALLEX entries and a set of entries produced
by an automatic frame suggestion method, we can use FED to estimate how much of editing
work has been saved. We call this measure entry similarity or expected saving (ES) and define
it as follows:

min FED(G, H)

FED(G,) + FED(H, {)

where G denotes the set golden verb entries of this base lemma, H denotes the hypothesized
entries and ¢ stands for a blank verb entry. Not suggesting anything has ES of 0% and
suggesting the golden frames exactly has ES of 100%.

ES=1

3.2 Experimental Results with Verb Entry Similarity

Table 3 displays the ES of four various baselines and the result obtained by our method.
When we assume that every verb has a single entry and this entry consists of a single

Table 3. Expected saving when suggesting frame entries automatically

Suggested frames ES [%]

Specific frame for verbs of communication, default for others 38.00 = 0.19
Baseline 1: ACT(1) 26.69 +0.14
Baseline 2: ACT(1) PAT(4) 37.55+£0.18
Baseline 3: ACT(1) PAT(4) ADDR(3,4) 35.70 £0.17

Baseline 4: Two identical frames: ACT(1) PAT(4) 39.11 £0.12

Czech Verbs of Communication and the Extraction of Their Frames 35

frame with the ACT slot only, E'S estimates that about 27% of editing operations was
saved. Suggesting ACT and PAT helps even better (Baseline 2, 38%), but suggesting a third
obligatory slot for ADDR (realized either as dative (3) or accusative (4)) is already harmful,
because not all the verb entries require an ADDR.

We can slightly improve over Baseline 2 if we first identify verbs of communication
automatically and assign ACT PAT ADDR with appropriate subordinating conjunctions to
them, leaving other verbs with ACT PAT only. This confirms our assumption that verbs of
communication have a typical three-slot frame and also that our method managed to identify
the verbs correctly.

Our E S scores are relatively low in general and Baseline 4 suggests a reason for that: most
verbs listed in VALLEX have several senses and thus several frames. In this first experiment,
we focus on the communication frame only, so it still remains quite expensive (in terms of
ES) to add all other frames. In Baseline 4, we suggest a single verb entry with two core
frames (ACT PAT) and this gives us a higher saving because most verbs indeed ask for more
frames.

4 Conclusion

We briefly described the classification of verbs in VALLEX and we proposed and evaluated a
corpus-based automatic method to identify verbs of communication. The performance of our
method was tested not only on VALLEX data but also on an independent verb classification
as available in the FrameNet.

We introduced a novel metric to capture the effort to construct VALLEX verb entries and
to estimate how much effort an automatic procedure can save. Having assigned a prototypical
frame of communication to the verbs that were automatically identified in the previous step,
we achieved a little improvement over the baseline, although not statistically significant.

We conclude that the automatic identification of communication verbs proposed performs
satisfactorily. However, to employ this step in an automatic generation of verb entries for new
verbs, the method must not be restricted to a single class and suggest also other frames for
other verb senses. Otherwise, only very little of lexicographic labour is saved.

References

1. Sgall, P, Hajicova, E., Panevova, J.: The Meaning of the Sentence in Its Semantic and Pragmatic
Aspects. D. Reidel Publishing Company, Dordrecht (1986).

2. Haji¢, J.: Complex Corpus Annotation: The Prague Dependency Treebank. In Simkové, M., ed.:
Insight into Slovak and Czech Corpus Linguistics, Bratislava, Slovakia, Veda, vydavatel'stvo SAV
(2005) 54-73.

3. Lopatkova, M., Zabokrtsk}’f, Z., Skwarska, K.: Valency Lexicon of Czech Verbs: Alternation-Based
Model. In: Proceedings of LREC 2006, ELRA (2006) 1728-1733.

4. Levin, B.: English Verb Classes and Alternations. University of Chicago Press, Chicago (1993).

5. Palmer, M.e.a.: The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational
Linguistics 31 (2005) 71-106.

6. Jackendoff, R.: Semantic Structures. The MIT Press, Cambridge, MA (1990).

7. Dorr, B.J., Mari, O.B.: Multilingual Generation: The Role of Telicity in Lexical Choice and
Syntactic Realization. Machine Translation 11 (1996) 37-74.

36

10.

11.

V. Benesovd and O. Bojar

. Baker, C.F,, Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In Boitet, C., Whitelock,

P., eds.: Proceedings of the Thirty-Sixth Annual Meeting of the Association for Computational Lin-
guistics and Seventeenth International Conference on Computational Linguistics, San Francisco,
California, Morgan Kaufmann Publishers (1998) 86-90.

. Fillmore, C.J., Wooters, C., Baker, C.F.: Building a large lexical databank which provides deep

semantics. In: Proceedings of the Pacific Asian Conference on Language, Information and
Computation, Hong Kong (2001).

Fillmore, C.J.: FrameNet and the Linking between Semantic and Syntactic Relations. In Tseng,
S.C., ed.: Proceedings of COLING 2002, Howard International House (2002) xxviii—Xxxxvi.
Korhonen, A.: Subcategorization Acquisition. Technical Report UCAM-CL-TR-530, University
of Cambridge, Computer Laboratory, Cambridge, UK (2002).

Featuring of Sex-Dependent Nouns in Databases Oriented
to European Languages*

Igor A. Bolshakov' and Sofia N. Galicia-Haro?

I Center for Computing Research (CIC)
National Polytechnic Institute (IPN), Mexico City, Mexico
igor@cic.ipn.mx
2 Faculty of Sciences
National Autonomous University of Mexico (UNAM)
Mexico City, Mexico
sngh@fciencias.unam.mx

Abstract. It is argued that human-denoting nouns in European languages forming
pairs like English steward vs. stewardess, or Spanish jefe vs. jefa ‘chief’, or German
Student vs. Studentin ‘student’, or Russian moskvi¢ vs. moskvicka ‘Muscovite’ may
be featured in factographic databases conjointly as Sex-Dependent Nouns?a special
part of speech. Each SDN has two forms, maybe coinciding, selected when necessary
by the sex of the denoted person. SDN notion ensures a kind of universality for
translation between various languages, being especially convenient in languages with
gender of nouns implied by sex. We base our reasoning on Spanish, French, Russian,
German, and English examples.

1 Introduction

European languages have numerous pairs of human-denoting nouns that are the same in
meaning but differ in the sex of their bearer. The semantics of these pairs covers at least
the following groups:

1. Profession, occupation or official position (in English: steward vs. stewardess; in
Spanish: jefe vs. jefa ‘chief’; in Russian: ucitel’ vs. ucitel’nica ‘teacher’; in German:
Student vs. Studentin ‘student’; in French: directeur vs. directrice ‘director’);

2. Nationality or confession (in English: Frenchman vs. Frenchwoman; in Spanish: catélico
vs. catolica ‘Catholic’; in Russian: nemec vs. nemka ‘German’; in French: suédois vs.
suédoise ‘Swede’);

3. Dwelling locality (in French: parisien vs. parisienne ‘Parisian’; in Spanish: madrilefio
vs. madrilefia ‘dweller of Madrid’; in Russian: sibirjak vs. sibirjacka ‘Siberian’; in
French: sévillan vs. sévillane ‘Sevillian’);

4. Main feature of personality (in English: madman vs. madwoman; in Spanish: histérico
vs. histérica ‘hysteric’; in Russian: durak vs. dura ‘stupid’; in French: délinquant vs.
délinquante ‘delinquent’).

* Work done under partial support of Mexican government (CONACyT, SNI, SIP-IPN). Many thanks
to Steve Legrand for the proofreading of the manuscript.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 37—44, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

38 L.A. Bolshakov and S.N. Galicia-Haro

Because of the same meaning, the pair counterparts are considered synonymous. Morpho-
logically, they usually have the same root, and the repertoire of sex-forming suffixes is rather
limited (about a dozen suffix pairs, depending on language).

In contrast to the pairs, there exist many nouns of the mentioned groups whose dependence
of sex is not expressed explicitly. The same form is used, but their co-reference relationships
in context are expressed by sex-dependent personal pronouns, e.g., he is a teacher vs. she is
a teacher.

Meanwhile, in languages with grammatical gender (e.g., of Romance or Slavic families)
such nouns are of masculine or feminine gender for males and females respectively.
The sex as a semantic feature is expressed by means of the morpho-syntactic category
of gender of dependent articles (Sp. el estudianteyarg vs. la estudiantergparLe ‘the
student’), dependent adjectives (Sp. nuevo estudiantepap g VS. nueva estudiante pgpALE
‘new student’) or syntactically related predicatives (Sp. estudiantep AL E estd cansado Vvs.
estudiante rg M ALE estd cansada ‘student is tired’; Rus. vraéy AL g skazal vs. viaCFEMALE
skazala ‘physician said’).

The Sex-Dependent Nouns are already described in the works [1, 2, 3] of general
linguistics. In [3] two different viewpoints are compared. One of them considers SDN pairs
as members of the same lexeme, and this is usual for many modern Spanish and French
dictionaries. E.g., the French pair fou vs. folle ‘insane’ appears in the same dictionary entry
as inflectional forms of the same entity. Hence it is admitted that such nouns get inflectional
forms of each sex according to the specific gender?the way adjectives or participles do.

The contrary viewpoint considers fou and folle as two different lexemes linked by
a derivational relation. Hence, the sex is included in the semantic description of each
lexeme. Russian lexicography always prefers this viewpoint, whereas Romance language
lexicographies adopt it only in cases when the difference betweeen the two forms is rather
significant, e.g. for actor/actriz ‘actor/actress’ in Spanish.

In this paper, we argue for the first viewpoint and suggest the introduction of a new part
of speech, i.e., Sex-Dependent Nound (SDNs), for use in computational linguistics. SDNs
are especially applicable to languages with gender. In these languages, they are similar to
adjectives, the number and gender of which have the same word-forming characteristics.
Both number and gender of SDNs are semantically loaded: they reflect the number of persons
and their sex. Hence, they both should be recognizable when analyzed as a meaning unit in
the semantic representation of the analyzed text. In synthesis, the sex feature is used for
the selection of target word form from the pair (if the forms are different) and for correct
agreement of words referentially related with the target.

We base our considerations on Spanish, French, Russian, German, and English languages,
revealing few differences in properties of SDNs in various languages.

2 Sex-Dependent Nouns in Spanish

The number of SDNs in Spanish is tremendously high, i.e. several thousands. The Anaya
dictionary contains ca. 3600 nouns of this type, i.e. 18% of the total nouns. The most common
morpho-classes of SDN formation are shown in Table 1 (¥ is empty string).

The most common are the morpho-classes 1 to 3, both broadly spread and actually
productive. Indeed, the modern Spanish easily admits new female forms for profession

Featuring of Sex-Dependent Nouns in Databases Oriented to European Languages 39

and positions now occupied equally by women. The forms jefa ‘she-chief’, ingeniera ‘she-
engineer’, doctora ‘she-doctor’, profesora ‘she-professor’ or secretaria ‘she-secretary’ are
quite usual, while oficiala ‘she-officer’ and presidenta ‘she-president’ are already admitted
in speech and TV (La socialista Michelle Bachelet serd la primera presidenta de Chile ‘The
socialist Michelle Bachelet will be the first presidentr g4z g of Chile’).

Table 1. Some morpho-classes of SDN formation in Spanish

Morpho-class Endings Examples Translation
masc fem masc fem

1 0 a ruso rusa Russian

2 [a doctor doctora doctor

3 e a Jefe Jefa chief

0 ista ista tesista tesista defender of thesis

0 nte nte estudiante estudiante student

4 a isa poeta poetisa poet

0 i i iraqui iraqui Iraqi

5 or triz actor actriz actor/actress

6 esa alcalde alcaldesa mayor

7 ina héroe heroina hero/heroine

Class 0 is very numerous in Spanish and corresponds to endings used for both masculine
and feminine forms. The sex is expressed in this class only morpho-syntactically. Following
are several examples of class O: artista ‘artist’, turista ‘tourist’, camarada ‘comrade’,
comerciante ‘merchant’, compatriota ‘compatriot’, conyuge ‘spouse’, estudiante ‘student’,
hereje ‘heretic’, indigena ‘aborigine’, idiota ‘idiot’, intérprete ‘interpreter’, mdrtir ‘martyr’,
patriota ‘patriot’, rival ‘rival’, suicido ‘suicide’, testigo ‘witness’, soprano ‘soprano’, etc.

In addition to the semantic groups given in the introduction, we may also consider SDN
in the groups denoting in Spanish close relatives (hermano vs. hermana ‘brother/sister’, hijo
vs. hija ‘son/daughter’, esposo vs. esposa ‘husband/wife’, etc.) and highly generic nouns of
both sexes (nifio vs. nifia ‘little boy/girl’, muchacho vs. muchacha ‘boy/gitl’, etc.). However,
the gender formation by means of suppletion (total changing of the root) is also frequent in
these groups (padre vs. madre ‘father/mother’, yerno vs. nuera ‘son-in-law/daughter-in-law’,
caballero vs. dama ‘gentleman/lady’).

Together with the mentioned ‘standard” SDNGs, there exist also more rare cases:

— Only masculine form exists and it is equally applicable for men and women, e.g.,
miembro ‘member’: Miguel, el miembro mds antiguo de la academia ‘Miguel, the oldest
member of the academy’; la recién nacida es el séptimo miembro de la familia ‘the gy
new borng gy is the seventhys 4 sc family memberpyasc’).

— Feminine form is well-known, while the masculine one, even if exists, is not used, e.g.,
institutriz ‘preceptress’. This is valid for professions considered mainly feminine.

— Only feminine form exists and it is equally applicable for men and women, e.g., persona
‘person’.

— Only masculine form exists and it is aplicable only for men, e.g. el politico ‘politician’
(Ramon Corral, el politico sonorense ‘Ramon Corral, the politician from Sonora’)

40 L.A. Bolshakov and S.N. Galicia-Haro

or el ordenanza ‘courier’. The corresponding notion for women can be formed in a
descriptive manner, e.g., functionaria de politica ‘politic functionaryrgy’ to some
degree corresponds to the masculine politico. Note that a feminine morphological
counterpart can exist for such masculine nouns, but not as a feminine role in a SDN:
la politica means ‘policy’, la ordenanza means ‘standing order’. Cf. also non-SDN pairs
el cura ‘priest’ vs. la cura ‘care’; el papa ‘Pope’ vs. la papa ‘potato’.

— The SDN forms coincide and are broadly used, but the feminine form has an ad-
ditional semantic burden. E.g., for SDNs guardia ‘guard’, guia ‘guide’, policia ‘po-
liceman/woman’, vista ‘custom employee’, vocal ‘jury member’, and trompeta ‘trum-
pet player’, the feminine forms mean also ‘guard corps’, ‘guide-book’, ‘police corps’,
‘eyesight’, ‘vowel’, and ‘trompet’ relatively.

3 Sex-Dependent Nouns in French

French, like other Romance languages, has two genders. The most common morpho-classes
of SDN formation are listed in 2. The morpho-class 1 is very productive.

Table 2. Some morpho-classes of SDN formation in French

Morpho-class Endings Examples Translation
masc fem masc fem

0 [[artiste artiste artist

1] e artisan artisane craftsman

2 [ine tsar tsarine Tsar

3] sse suisse suissesse Swiss

4 eur rice créateur créatrice creator

5 eur euse chanteur chanteuse singer

6 eur eresse demandeur demanderesse claimant

7 ien ienne historien historienne historian

8 f ve veuf veuve widow/er

However, unlike Spanish, French does not easily admit feminine forms for professions and
positions now equally occupied by women [4]. Hence, the same form is frequently used for
men and women, e.g., professeur ‘professor’, médecin ‘physician’, écrivain ‘writer’, otage
‘hostage’, témoin ‘witness’. (Nevertheless, Canadian dialect accepts some feminine forms,
e.g., professeur vs. professeure ‘professor’.

Gender formation by means of suppletion is broader in French, for example: steward
‘steward’ vs. hotesse de I’air ‘stewardess’, frere ‘brother’ vs. seceur ‘sister’.

Among peculiar pairs, let us first mention those with only one gender serving for both
sexes: la vedette ‘actor/actress’, le capitaine ‘captain’, le savant ‘scientist’, le mannequin
‘he/she model’, le clown ‘he/she clown’. Some forms can be only applied to men, e.g.
le politique ‘politician’ (la politique means ‘politics’). Cf. also the non-SDN pairs le
vigile ‘night watchman’ vs. la vigile ‘abstinence’; le médecin ‘physician’ vs. la médecine
‘medicine’.

Featuring of Sex-Dependent Nouns in Databases Oriented to European Languages 41

4 Sex-Dependent Nouns in Russian

Some broadly spread and productive Russian morpho-classes of SDN are given in the lines 0
to 10 of Table 3.

Table 3. Some morpho-classes of SDN formation in Russian

Morpho-class Endings Examples Translation
masc fem masc fem

0] @ doktor doktor doctor

1] ka belorus beloruska Byelorussian

2] Sa vaxter vaxtersa janitor

3 ec ka Jjaponec Jjaponka Japanese

4 ec Jka avstriec avstrijka Austrian

5 ec ica pevec pevica singer

6 ec Jjanka kitaec kitajanka Chinese

7 U I'nica Zitel’ Zitel’nica dweller

8 ik ica ucenik ucenica pupil

9 k cka uzbek uzbecka Uzbek

10 in ka armjanin armjanka Armenian

11 er risa akter aktrisa actor/actress

12] esa kloun klounesa clown

SDNs with such morphological formation cover in Russian at least several hundred
pairs?nearly completely the semantic classes 2 to 4 given in the introduction. Meanwhile,
for the class 1 modern Russian exhibits staunch conservatism. One cannot freely use in texts
the female version of many profession or position titles if they are not accepted by official and
literary professionals. This is especially valid if a loan word is in question. As a result, such
frequent ‘masculine’ words as vrac ‘physician’, doktor or professor are uniquely possible for
titling and addressing a woman professional. There exist also vracixa, doktorsa, professorsa,
etc., but they may be used only in a colloquial manner. The pairs director vs. direktrisa
‘director’, kritik vs. kritikesa ‘critique’ can be used in texts, but the feminine forms have a
slight ironic flavor, i.e. they are not neutral and, officially, they are not accepted. Additionally,
the colloquial female morphological counterparts of high-leveled positions like ministersa or
general’sa are still interpreted as minister’s or general’s wife.

This feature of Russian is not valid in some other Slavic languages. For example, both
forms of the pair {doktor, doktorka} in Czech are stylistically neutral and may be used
officially.

The Russian bureaucratic tradition is so strong that even with words geroinja ‘heroine’
and stroitel’nica ‘she-constructor’ available, Russian woman may be officially honored only
as Geroj Rossii ‘Hero of Russia’ or ZasluZennyj Stroitel’ ‘Honorable He-constructor’.

Nevertheless, the laws of Russian morpho-syntax require expressing the sex of profes-
sionals by means of words that agree with the given noun. Hence in the middle of the 20th
century the semantically-induced agreement with syntactically related words has appeared in
speech and then in paper.

42 L.A. Bolshakov and S.N. Galicia-Haro

Currently, the agreement with predicates like viacy oL g skazal/utomlen vs. viaCFEpMALE
skazala/utomlena ‘physician said/is tired’ has become usual and is considered stable, but for
dependent adjectives the situation is different. For example, in modern press one can meet the
word combination moloden’kaja glavnyj redaktor ‘young editor-in-chiefrpprap g’ literally
‘youngish g g pprincipalys o g editor’. The first adjective gives the personal feature of the
woman and it has feminine gender, while the second adjective, together with the noun, forms
her official masculine title not changeable to feminine one because of the literary tradition.
Even more intricate situation may be observed when a SDN is a part of compose predicate:
ona byla xorosim redaktorom ‘she was a goodyar g editoryarLg’.

Thus, many Russian SDNs of the class 1 have the same forms for both sexes but differ
morpho-syntactically. For this reason, the peculiarities of a SDN in agreement (if any) should
be expressed in dictionaries, e.g., as a short list of official title-forming adjectives valid for
the given noun.

Among peculiarities, let us first mention professions which are considered mainly female:
sveja ‘seamstress’, kuxarka ‘she-kook’, dojarka ‘milkmaid’, balerina ‘balet she-dancer’.
When necessary, the corresponding masculine counterpart is expressible approximately by
means of suppletion (portnoj ‘tailor’, povar ‘kook’) or in a descriptive manner (master
doenija ‘milking master’, tancor baleta ‘dancer of balet’). Among professions that have been
considered purely masculine for many years, there exist, e.g., mexanik ‘mechanic’ (its mor-
phological feminine counterpart mexanika means ‘mechanics’), kuznec ‘blacksmith’ (its mor-
phological counterpart kuznica means ‘smithy’), and masinist (its morphological counterpart
masinistka means ‘she-typist’ and the latter does not have its own SDN counterpart!). If nec-
essary, the masculine form can be applied to a woman, with corresponding morpho-syntactic
changes in the context.

5 Sex-Dependent Nouns in German

The main and prevalence class of morphs in the formation of the SDN is {{, in}, e.g.,
Architekt vs. Architektin ‘architect’; Verkdufer vs. Verkduferin ‘shop assistant’; Pazifist vs.
Pazifistin ‘pacifist’. The masculine version of some nouns is applicable to women, even
though there exists the feminine form: Frau Doktor Opfermann ist Professor (Professorin) an
der Universitdt ‘the lady doctorps 4s¢ Opfermann is professorys osc/Fgp in the university’.

Again, there exist nouns whose two possible genders do not give a SDN: derpar g Leiter
‘manager’ vs. diep gy Leiter ‘stairs’; derpap g Junge ‘boy’, dasygy Junge ‘puppy’ (NEU
means the neuter gender).

6 Sex-Dependent Nouns in English

English does not have genders, and the pairs distinguishing sexes like Englishman/English-
woman, actor/actress, steward/stewardess, avitor/aviatrix, widower/widow, hero/heroine, ex-
ecutor/executrix, are rather few. Therefore, the introduction of the SDN notion seems exces-
sive in this language.

However, the label SDN at a noun of semantic groups given in the introduction could
designate that the noun has sex-dependent personal pronouns and, while translated to
Romance or Slavic languages, it has thereby a unique counterpart of the same class, with
specific forms chosen depending on the sex indication.

Featuring of Sex-Dependent Nouns in Databases Oriented to European Languages 43

7 Universal Featuring of SDNs

We suggest universal featuring of Sex-Dependent Nouns to be used in various machine
dictionaries. An SDN item should include a title name, a class of sex formation, and a short
list of peculiarities (if these exist). It is also necessary to indicate, for both elements of a pair,
their own classes of declension. In Romance languages these classes reflect only the manner
of forming numbers; in Slavic languages they reflect formation of numbers and cases. Below
we ignore the declension classes.

Following are some examples of dictionary items with provisory class numbers and two
resulting forms. These forms are only given to clarify that the title element coincides with
the masculine form and permits to generate the feminine form using the number of the given
class.

— For Spanish: TESISTA (sdn, 0) {fesista, tesista} ‘defender of thesis’; RUSO (sdn, 1)
{ruso, rusa} ‘Russian’; DOCTOR (sdn, 2) {doctor, doctora} ‘physician’; JEFE (sdn, 3)
{jefe, jefa} ‘chief’.

— For French: RUSSE (sdn, 0) {russe, russe} ‘Russian’; CHANTANT (sdn, 1) {chantant,
chantante} ‘singer’; INSTITUTEUR (sdn, 4) {instituteur, institutrice} ‘teacher’.

— For Russian: KOLLEGA (sdn, 0) {kollega, kollega}; DOKTOR (sdn, 0) {doktor,
doktor}; REDAKTOR (sdn, 0; glavnyj ‘principal’, vypuskajuscij ‘issuing’) {redaktor,
redaktor}; BELORUS (sdn, 1) {belorus, beloruska} ‘Byelorussian’; PEVEC (sdn, 5)
{pevec, pevica} ‘singer’.

— For German: KUNSTLER (sdn, 1) {Kiinstler, Kiinstlerin} ‘artist’; LEHRER (sdn, 1)
{lehrer, lehrerin} ‘teacher’.

— For English: DOCTOR (sdn, 0) {doctor, doctor}; STEWARD (sdn, 1) {steward,
stewardess}.

8 Applications and Conclusions

SDNs seem to be especially relevant for multilanguage factographic databases where official
human features should be recorded in a universal and easily translatable form, as well for
automatic translation in general and for text generation. The value of SDNS is quite evident
for translation from English to Romance, Slavic or some other Germanic languages. For
example, to correctly translate the Eng. teacher to Spanish or to German, the program should
extract sex feature of a denoted person from a record of the same database or from context and
then select from the pair {maestro, maestra} or { Lehrer, Lehrerin} respectively. In the reverse
direction, when source language (say, Spanish) shows grammatical gender of a person, the
way to conserve the complete information in English includes storing separately the sex
indication observed.

Another value of SDNs is in language learning. It is known [4,5,6] that acquisition of
grammatical genders in a second language is affected by the morpho-syntactic features of
gender in the native language. A dictionary containg SDNs could be then effectively help
learning.

Therefore, we suggest introducing a new part of speech: Sex-Dependent Nouns. Each
SDN has two forms selected when different by the sex of the denoted person. Our
considerations are based on facts of Spanish, French, Russian, German, and English, and,

44 L.A. Bolshakov and S.N. Galicia-Haro

with all differences exposed, they support our proposal. A database with the new POS entries
could help in translation, text generation and language learning.

References

1. Mel’¢uk, Igor. Course de morphologie général. Vol. III. Montréal /Paris, Les Presses de I’ Université
de Montréal / C.N.R.S. (1995).

2. Mel’¢uk, Igor. Course de morphologie général. Vol. IV. Montréal /Paris, Les Presses de I’ Université
de Montréal / C.N.R.S. (1997).

3. Mel’Cuk, Igor. Un FOU/une FOLLE: un lexéme ou deux? Lexique, syntaxe et sémantique. Mélanges
offertes a Gaston Gross a 1’occasion de son soixantieme anniversaire. BULAG, No. hors série (2000)
95-106.

4. Rousseau, J. "Madame la ministre": la féminisation des noms en dix questions. Sité du Centre
International d’Etudes Pédagogiques (1998) 1-28.

5. Sabourin, L. L1 effects on the processing of grammatical gender in L2. In: S. Foster-Cohen and A.
Niznegorodcew (Eds.). EUROSLA Yearbook, Vol. 1 Amsterdam, John Benjamins (2001) 159-169.

6. Sabourin, L., L.A. Stowe, G.J. de Haan. Transfer effects in learning a second language grammatical
gender system. Second Language Research, V. 22, No. 1 (2006) 1-29.

On the Behavior of SVM and Some Older Algorithms in
Binary Text Classification Tasks

Fabrice Colas! and Pavel Brazdil?

I LIACS, Leiden University, THE NETHERLANDS
fcolas@liacs.nl
2 LIACC-NIAAD, University of Porto, PORTUGAL
pbrazdil@liacc.up.pt

Abstract. Document classification has already been widely studied. In fact, some
studies compared feature selection techniques or feature space transformation whereas
some others compared the performance of different algorithms. Recently, following
the rising interest towards the Support Vector Machine, various studies showed that
the SVM outperforms other classification algorithms. So should we just not bother
about other classification algorithms and opt always for SVM?

We have decided to investigate this issue and compared SVM to kNN and naive
Bayes on binary classification tasks. An important issue is to compare optimized
versions of these algorithms, which is what we have done. Our results show all the
classifiers achieved comparable performance on most problems. One surprising result
is that SVM was not a clear winner, despite quite good overall performance. If a
suitable preprocessing is used with kNN, this algorithm continues to achieve very
good results and scales up well with the number of documents, which is not the case
for SVM. As for naive Bayes, it also achieved good performance.

1 Introduction

The aim of using artificial intelligence techniques in text categorization, is to build systems
which are able to automatically classify documents into categories. But as the feature space,
based on the set of unique words in the documents, is typically of very high dimension,
document classification is not trivial. Various feature space reduction techniques were
suggested and compared in [1,2]. A large number of adaptive learning techniques have also
been applied to text categorization. Among them, the k nearest neighbors and the naive
Bayes are two examples of commonly used algorithms (see for instance [3] for details).
JoACHIMS applied the Support Vector Machine to document classification [4]. Numerous
classifier comparisons were done in the past [5,4,6,7].

Some published comparative studies evaluate classifier performance on complex classi-
fication tasks by calculating the mean performance across a large number of classes. Some
algorithms like the SVM are by default binary classifiers. Therefore, if we have a problem
with more than two classes, we need to construct as many classifiers as there are classes (one
versus all strategy). It is thus not fair to compare a single naive Bayes or kNN classifier to
n SVM classifiers (for n classes). This is why we have decided to compare classifiers on
one against one binary tasks. Moreover, a study of FURNKRANZ [8] showed that a round
robin approach using a set of binary classifiers, performs at least as well as a one versus all

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 45-52, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

46 F. Colas and P. Brazdil

approach. Binary problems involve also smaller amounts of data, which means that the clas-
sifiers are faster to learn. The properties of the train set have much influence on the classifier
learning abilities. Therefore, focusing on binary classification tasks allows one to carefully
control the nature of train sets. Finally, directly studying multi-class classification tasks tends
to obscure the particular behaviors of the classifiers on some classes which may be of interest.

In this comparative study based on binary classification tasks, we seek answers to
the following questions. Should we still consider old classification algorithms in text
categorization or opt systematically for SVM classifiers ? What are the strengths and
weaknesses of the SVM, naive Bayes and kNN algorithms in text categorization on a set
of binary problems ? Are there some parameter optimization results transferable from one
problem to another ? Before giving the answers to the above questions, our experimental
settings and evaluation methodology are described. Then, our parameter optimization results
are presented. These optimized versions of the classifiers are then used in the subsequent
comparative study.

2 Data, Classifiers and Evaluation Methodology

2.1 Document Collection

For our experiments we used the well known 20newsgroups dataset composed of 20000
newsgroup emails (removed email headers and no stemming) and the ohsumed all dataset
composed of 50216 medical abstracts categorized into 23 cardio vascular disease categories
(no stemming). We chose to study the set of one against one binary classification tasks on

these datasets. Thus, 20(25 ~D = 190 classification tasks on 20newsgroups and 162 out of
23(2; 1 — 253 on ohsumed all were studied, which makes a total of 352 classification
tasks.

2.2 Algorithms

In this paper, two well known classifiers are compared to the SVM, namely kNN and naive
Bayes. These two classifiers were chosen because of their simplicity and their generally good
performance reported in document classification. With respect to the SVM, the PLATT’s SMO
implementation was used as well as another derived from SVMLight. They are available in
libbow [9] library.

2.3 Evaluation Methodology

As previous studies have shown that classifier performance is affected by the train set size
and the feature set size, we have decided to examine these issues in detail. First, we have
compared the classifiers for an increasing train set size. For this purpose we have adopted
a sub-sampling strategy which involves creating train sets of increasing size, but with equal
number of cases from each class. When the examples of one of the classes gets exhausted,
the train set is augmented using the documents of the other class. Thus we were giving to
both classes the same chance to be learned as well for small samples.

We have also examined the classifier behavior when the dimension of the feature space
was increased. The ordering of the set of attributes was done using the Information Gain. We
chose this heuristic for its simplicity and its good performance, as presented in [1,2].

On the Behavior of SVM and Some Older Algorithms in Binary Text Classification Tasks 47

A classical 10-fold cross validation was used to estimate classifier performance. We

__ 2XMPrecisionx M Recall
chose th.e .macro averaged F; measure M F; = M PrecisiontMRecall [10], where the
M Precision and the M Recall measures are the averages of the precision and the recall
computed on the basis of the two confusion matrices (in one, a class is considered positive
and the other negative ; in the other the assignment is interchanged). Finally, we recorded the

global processing time in seconds (the sum of the training and the testing time).

3 Experimental Results

3.1 Parameter Optimization Results

We ran some preliminary experiments on 20newsgroups to find the best parameter values.
The train set size was set to its maximum value of 1800 documents, whereas all the features
were selected. Three binary classification tasks were chosen*. The results are presented in
the following.

Support Vector Machines. Various parameters of SVM were considered in the attempt to
optimize the performance of this algorithm. The parameter C (relative importance of the
complexity of the model and the error)was varied and various kernel functions were tried
as well. None of those lead to interesting improvements in terms of performance (M F) or
processing time. So, the default value C = 200 and a linear kernel are used. This choice for
a linear kernel is consistent to previous results [6,7].

While varying the € parameter controlling the accepted error, we have found that € has no
influence on M F) as long as its value was smaller or equal to 0.1. However, the processing
time could be reduced by a factor of four in the best case, when the largest value of € was used.
Fig. 1 (A) shows the dependence of the processing time of the SVM classifier on the number
of features for different values of €. Fig. 1 (B) is similar, but portrays the dependence of the
processing time on the number of documents. Our hypothesis is that the resolution of the
optimization problem is simplified, when an acceptable optimal hyper plane is bounded by
a larger error €. The processing time is then consequently reduced. Therefore, it seems that
no high precision is needed to train SVM on these 20newsgroups’s binary classification
tasks.

k Nearest Neighbors. The search for the best number of neighbors (k) involved 3 problems.
The study was then repeated for each problem using 10-fold cross validation. So in total, each
problem was characterized by 30 measures. We have used pairwise #-test (95% confidence
interval) to determine whether one setting was significantly better than another. If one setting
proved to be better, a victory point was attributed. In case of tie, no point was given.

Large values of k lead to good performance. This can be explained by the way how the
similarity measure is computed. The contribution towards the class score of the neighbors
is weighted by their similarity to the test point. Therefore, the farthest neighbors have little
effect on the class score. Our experiments have shown k = 49 to be the best number of

3A binary task involves 2 X 1000 documents. Considering that 10-fold cross validation is used, each
training set includes 1800 documents and the test set 200.

4alt.atheism vs. talk. religion.misc, comp.sys.ibm.pc.hardware vs. comp.sys.
mac.hardware, talk.politics.guns vs. talk.politics.misc

48 F. Colas and P. Brazdil

[B = 5VM (Eps=0.0001}
rd -
0 - SVM (Eps=0.001)
2004 /.r X + SVM (Eps=0.01)
" - 'm, | = SVM (Eps=0.1)
/
E Il *—_
- 100 * \
= - . m
= -' - - ™
]
Eso{ 7 e "o
17 - ™ RO |
a ot .. *
o o N
8 \‘. ML
& 20+ . “-..—l‘\
=8 .. e ‘m
. e,
10
ta—e_s

100 200 500 1000 2000 5000 10000

Number of feature

“10
H} -
2 -
S10- T
- L -
- //.-’//
= 51 Ly /.
2 /'
2 Rt
g e
2 5 * /
5 /
- r -
<9 L

1 ey

10 20 1000 1800

0 0 500
Number of document in the train set

Fig. 1. Processing time of the SVM classifier on alt.atheism vs. talk.religion.misc, for
several values of €, given an increasing number of features (A) and an increasing number of documents
in the train set (B).

nearest neighbors. The subsequent comparative study is based on the 49-NN. In fact, this
optimal k value (49) is interestingly quite close to the one in [6] (45) with completely
different experimental settings (Reuters 21578, classification task seen as a single multi-
class problem). We also included 1-NN as a rival against which any other classifier should
perform better.

To achieve good performance with kNN, the feature space should be transformed to a
new one. A transformation @ involves the number of occurences of the i’" term ¢ fi, the
inverse document frequency defined as the ratio between the total number of documents N
and the number of documents containing the term d f;, and a normalization constant ¥ making
|®@||> = 1. Any transformation was found to be suitable but not the binary transformation
(value 1 or 0) which degraded the performance. It is consistent with a previous study [11].
Depending whether a particular word is (or is not) present, the inverse document frequency
should be systematically applied because, as it is well known, it decreases the importance
of common words occurring in numerous documents. The normalization do not affect the
performance. In all subsequent experiments we have adopted ntn . 1nc transformation which
achieved good results. The feature space transformation for the documents in the train set is
Do (tfi) = tfilog(dlj‘,-) whereas the transformation for the documents in the test set is

Oy (tfi) = wg](jfi) .

On the Behavior of SVM and Some Older Algorithms in Binary Text Classification Tasks 49

3.2 Comparisons for Increasing Document and Feature Sizes

The aim of our experiments was to examine the classifier learning abilities for an increasing
number of documents in the train set (learning curves), and also, how the performance is
affected by the number of attributes. In the study involving learning curves, all the features
were selected. Similarly, when the behaviors for an increasing number of features were
studied, the train set was composed of its maximum size, containing as many documents
of both classes.

e M
Q) L.eprrepdisciticeg Q) JPerS L E I
=] LI f‘i-i-:.. ‘.-‘-::o"".
E0s R L. L iy "t 06| AT e
=03 4 X SE-
= PP e o B A
-

T ¢ - 490N (e me) -
ol mlgnm . - *" g-n
A0.7 —&— naive Daves 0.7+ 25:' "N
— Sy n”
= " {c=200Eps=0.1) ’/_f"
E[I_ 54 (Number of documents : 4096)| 06 u (Number of features : 25170)

I I | | I I 1 1 I 1 1 I I 1

10 50 50 E000 10 20 50 100 S0 2000 5100
1000 e e%e, Numberof documents : 4096] 1000 o (Number of features : 23170)
o + ‘. oy,
g o Teas - .
.F' LR +,
g <
m 0 10+ a"d
g 1= S, ‘__.-'._'_

1u e o

2 guntt faad TS B 1 T 5 35 300U
8 mmx.'ilﬂ;:;A"“““

I I I | I | 1 1 I 1 1 I I 1

10 50 500 000 10 20 50 100 L 2000 BI00

Number ol fealures Number of documents in the train set

Fig. 2. Performance (A, B) and processing time (C, D) of the naive Bayes, 49-NN, 1-NN and SVM on
the task: Bacterial Infections and Mycoses and Disorders of Environmental Ori
gin (Ohsumed A1ll, CO1-C21), given an increasing number of features (A, C) and of documents
(B, D).

First of all, we observed that the parameters related to the experimental set-up (sample
selection, feature space, feature subset selection, classifier parameters) had a larger impact
on the performance than the choice of individual classifiers. In fact, if suitable parameters of
the set-up are chosen and if the parameter settings of the classifiers get correctly optimized,
then the differences between the algorithms are not very large. This is illustrated in Fig. 2 (B)
which shows very similar M F| performance of the 49-NN, naive Bayes and SVM algorithms
on a typical binary classification task given an increasing train set size.

Fig. 3 illustrates that 49-NN and naive Bayes often start with an advantage on SVM
when the train sets are composed of a small number of documents, but as the number
of documents increases, the difference diminishes. When the whole train set is used, as
described previously, the performance of the SVM are most of the time very similar to 49-NN
and naive Bayes. However, it is rare to have SVM achieve better performance for the largest
train set.

50 F. Colas and P. Brazdil

— ah-h-d=-A-h
® 0.9 . ey :—._._‘_._’
o et b
g ‘-’ - m-n g-E-H-g-m
E 0.8+ Vat "

F Y u

S 7/
b= A"'," —m— knn (k1)
& ;’./. knn (k=49)

0.7 o m —A— naive Bayes
= P —+— svm (C=200,Eps=0.1]
s s

0.5 * (Numberof fearures I!585J

I T
20 50 100 200 500 1000
N umber of documents in the train set

Fig. 3. Performance of SVM, 49-NN, 1-NN and naive Bayes given an increasing number of documents
in the train set on the classification task : Virus Diseases vs. Female Genital Diseases and
Pregnancy Complications (Ohsumed All dataset, C02-C13).

SVM is in a disadvantage, when we consider the processing time (mostly the training
time). It is not only much higher than for the other algorithms, but also, its tendency is super
linear with the number of documents in the train set (see Fig. 2 (D)). It is not the case of
49-NN, 1-NN and naive Bayes whose global processing time depends only on the size of
the test set. Indeed, when an increasing number of documents is provided to the classifiers,
the processing time remains the same (Fig. 2 (D)). But when comparing the processing time
across the classification tasks, differences are observed>.

With respect to the number of features, 49-NN and naive Bayes tend to reach the best
performance on a medium sized feature space. Most of the time, the performance of the
classifier remains at the top, or increases very slightly, for any larger number of features. But
it does also occur that an increasing number of features leads to a drop of performance with
49-NN and naive Bayes.

As for the SVM, we systematically observed a wave pattern (see Fig. 2 (A)) for an
increasing number of features. In fact, large feature spaces do not imply the best performance
for the SVM. It is somewhat surprising, since SVM is often regarded as an algorithm that
deals well with very large number of features. It appears that naive Bayes and 49-NN do
this better. On the other hand, SVM is the top ranking classifier for small feature space (see
left part of Fig. 2 (A)). This advantage on very small feature space may result in a gap of
performance as high as 25% with 49-NN and naive Bayes on some tasks. Furthermore, these
SVM classifiers built using a small feature space have often a comparable quality to others
built using a very large one. The SVM optimality criterion is only met when the number of
documents in the train set is sufficiently large. Thus, having a small feature space where
documents might not be linearly separable with a large train set place SVM close to its
condition of optimality.

Considering the processing time, both naive Bayes and kNN are affected by the number of
features (Fig. 2 (C)). The training time of the SVM is particularly high, especially for small
feature space. Indeed, the search for the optimal hyper plane of the SVM may require very
large training time in these conditions. With extended feature space, the learning task is much
faster. This behavior is probably a result of the very high dimension of the word vector space,
where data points become linearly separable.

5 This is due to the fact that the size of the classification tasks are different.

On the Behavior of SVM and Some Older Algorithms in Binary Text Classification Tasks 51

Related Works. Our results disagree somewhat with previous comparative studies. For
example in [5], PLATT’s SVM SMO algorithm was presented to outperform naive Bayes.
But only 50 features were selected for naive Bayes. It is a very restricted feature set size,
considering that the best performance occurs with larger number of features. On the other
hand, SVM was used with 300 features, which may not be far from the optimal setting.
Indeed, we can confirm that SVM outperformed any other classifier for such small feature
space.

Other studies [6,7] found naive Bayes to perform worse than SVM and kNN. The number
of features selected in [6] seem consistent with our results (2000 for naive Bayes, 2415
for kNN and 10000 for SVM). However, the experimental conditions were rather different.
Indeed, Reuters 21578 was used. But the document frequency per class varies widely.
About 33% of the categories have less than 10 documents, whereas the most common
2 categories have more than 2000 documents each. So, Reuters 21578 is probably not
the best choice for doing reliable classifier comparisons since many factors related to dataset
properties may affect the comparisons.

Moreover, comparisons were done on multi-class classification tasks [6,7] or on the
averaged performance of the set of one against all classification tasks [5,7]. But as explained
earlier, comparing a single multi-class naive Bayes (or kNN) to n SVM classifiers (n the
number of categories) is definitively not fair for naive Bayes (or kNN).

4 Conclusion

When investigating the best parameter settings for the SVM, the /inear kernel was found to
be the best choice together with a large value of €. This is consistent with previous works.
However, a surprising result is a relatively good performance of SVM with small or medium
size feature space. Regards kNN, the optimal number k is interestingly close to the ones used
in other work.

Both kNN, naive Bayes and SVM achieve very similar performance if suitable parameter
settings are used. These results are in agreements with a recent study [12] showing that the
set-up parameters have a more important affect on performance than the individual choice
of a particular learning technique. Therefore, one should keep considering kNN and naive
Bayes as possible options because they are fast, simple and well understood. Regards SVM,
perhaps it can handle better complex classification tasks, but it remains to be seen how we
can identify them. Moreover, the cost to train SVM is a clear weakness.

However, results highly depend of the adopted methodology and we have focused here
on binary classification tasks. For this purpose, new experiments should be carried out to
explain why naive Bayes behave so well on one against one classification tasks in opposite
of one against all tasks. Also, one would like to know why a wave pattern occurs when the
number of features is increased for SVM. Moreover, if we are interested to recommend a
classifier with suitable parameter settings, we should have a good way of characterizing the
given documents and develop a good meta-learning strategy for achieving that.

Acknowledgements

The Portuguese Pluri-annual support provided by FCT and funding under the FCT project
SUMO is gratefully acknowledged. This work has also been partially supported by the

52

F. Colas and P. Brazdil

Netherlands Bioinformatics Centre (NBIC) through its research programme BioRange.
Finally, The first author wishes to express his gratitude to LIACC-NIAAD where this work
was initiated.

References

1. Rogati, M., Yang, Y.: High-performing feature selection for text classification. In: 11th
International Conference on Information and Knowledge Management. (2002) 659-661.

2. Yang, Y., Pedersen, I.0.: A comparative study on feature selection in text categorization. In: 14
International Conference on Machine Learning. (1997) 412-420.

3. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997).

4. Joachims, T.: Making large-scale support vector machine learning practical. In: Advances in
Kernel Methods: Support Vector Machines. (1998).

5. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and represen-
tations for text categorization. In: 7" International Conference on Information and Knowledge
Management. (1998) 148-155.

6. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: 22nd International
Conference on Research and Development in Information Retrieval. (1999) 42—49.

7. Zhang, T., Oles, FJ.: Text categorization based on regularized linear classification methods.
Information Retrieval (2001) 5-31.

8. Fiirnkranz, J.: Pairwise classification as an ensemble technique. In: 13 European Conference on
Machine Learning. (2002) 97-110.

9. McCallum, A.K.: Bow: A toolkit for statistical language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/ “mccallum/bow (1996).

10. Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval
(1999) 69-90.

11. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification.
AAAI-98 Workshop on Learning for Text Categorization (1998).

12. Daelemans, W., Hoste, V., Meulder, ED., Naudts, B.: Combined optimization of feature selection
and algorithm parameters in machine learning of language. In: 14" European Conference of
Machine Learning. (2003) 84-95.

13. Yang, Y.. A scalability analysis of classifiers in text categorization. In: 26" International

Conference on Research and Development in Information Retrieval. (2003).

A Knowledge Based Strategy for Recognising Textual
Entailment*

Oscar Ferrdndez, Rafael M. Terol, Rafael Mufioz, Patricio Martinez-Barco,
and Manuel Palomar

Natural Language Processing and Information Systems Group
Department of Software and Computing Systems
University of Alicante, Alicante, Spain
{ofe, rafamt, rafael, patricio, mpalomar}@dlsi.ua.es

Abstract. This paper presents a knowledge based textual entailment approach com-
prising two stages. The first stage consists of inferring the logic forms for both the text
and the hypothesis. The logic forms are obtained by analysing the dependency rela-
tions between words. The second stage carries out a comparison between the inferred
logic forms by means of WordNet relations. This comparison aims at establishing the
existence of an entailment relation. This approach has been evaluated within the PAS-
CAL Second RTE Challenge and achieved 60% average precision.

1 Introduction

A well-known problem in Natural Language Processing (NLP) is the existence of a wide
variety of expressions stating the same meaning. An automatic method that can determine
how two sentences relate to each other in terms of semantic relations or textual entailment
would be very useful for robust NLP applications.

Textual entailment has been recently defined as a common solution for modelling language
variability [1]. Textual entailment is defined as a relation holding between two natural
language expressions, a text (T) and an entailment hypothesis (H) that is entailed by T. The
following example is a true entailment.

T: His family has steadfastly denied the charges.
H: The charges were denied by his family.

Many NLP applications need to recognize when the meaning of one text can be expressed
by, or inferred from, another text. The textual entailment phenomenon captures broadly the
reasoning about this language variability. Recognising this phenomenon is, without doubt, a
complex task and great obstacle for NLP applications. For example, in a Question Answering
(QA) system the same answer could be expressed in different syntactic and semantic
ways, and a textual entailment module could help a QA system in identifying the forecast
answers that entail the expected answer. Similarly, in other applications such us Information
Extraction a textual entailment tool could help by discovering different variants expressing

* This research has been partially funded by the Spanish Government under project CICyT number
TIC2003-07158-C04-01.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 53-60, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

54 O. Ferrandez et al.

the same concept. In multi-document summarization, it could use to identify redundant
information among the most informative sentences and, therefore, eliminate duplicates. In
general, a textual entailment tool would be profitable for a better performance of many NLP
applications.

The PASCAL RTE (Recognising Textual Entailment) Challenge [2] introduces a common
task and evaluation framework for textual entailment, covering a broad range of semantic-
oriented inferences needed for practical applications. This task is therefore suitable for
evaluating and comparing semantic-oriented models in a generic manner. Participants in the
evaluation exercise are provided with pairs of small text snippets (one or more sentences in
English), which the organizers term Text-Hypothesis (T-H) pairs. Participating systems have
to decide for each T-H pair whether T indeed entails H or not, and their results are then
compared to the manual annotation.

In this paper we present a system based on knowledge for solving the textual entailment
phenomenon, as opposed to other authors who solve the problem of textual entailment by
means of machine learning techniques. Our system attempts to recognise textual entailment
by determining if the text and the hypothesis are related by deriving logic forms from the text
and the hypothesis, and by finding relations between their predicates using WordNet.

The rest of the paper is organized as follows. The next section presents a brief background
of textual entailment. The architecture of our system is provided in Section 3, evaluation and
performance analysis are presented in Section 4, and the conclusions and future work are
drawn in Section 5.

2 Background

The recognition of the textual entailment phenomenon is a novel task within the NLP field.
The research community has a strong interest in the RTE task. A clear example of this interest
is the organization of several Workshops such as the PASCAL Challenge Workshops! and the
ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment?. The RTE
task has an important potential in support of other NLP applications.

We may distinguish two main different approaches adopted by researchers in order to
solve the RTE task. On the one hand, there are approaches based on knowledge techniques,
which normally use linguistic resources and, on the other hand, approaches using machine
learning and statistical methods to induce specific entailment relations.

Normally, the approaches based on machine learning and statistical methods apply
statistical measures over large textual collections or obtain a pool of suitable features for
future integration into a machine learning algorithm. For example, Glickman and Dagan [3]
propose a general probabilistic setting that formalises the notion of textual entailment. Bos
and Markert [4] present a decision tree trained using features obtained by shallow and
deep NLP methods. Another research effort in was carried out by Zanzotto et al. [5]. They
investigate the prototypical textual forms that describe entailment relations, calling them
textual entailment patterns. These patterns are analysed by both analysing large textual
collections and applying statistical measures relevant for the task.

Uhttp://www.pascal network.org/Challenges/RTE/
2 http://acl.ldc.upenn.edu/W/W05/

A Knowledge Based Strategy for Recognising Textual Entailment 55

On the other hand, the approaches based on knowledge techniques are characterized
by applying lexical resources: representing text with logic forms, generating dependency
trees and analysing semantic similarity measures are some of the knowledge-based methods
employed so far. Akhmatova [6] describes a system based on syntax-driven semantic analysis
and uses the notion of atomic proposition as main element for entailment recognition. Herrera
et al. [7], converts texts into dependency. These trees are compared with a simple matching
algorithm, and the lexical entailment relations obtained using WordNet. Another work on
dependency trees is reported by Kouylekov and Magnini [8]. The authors use a tree edit
distance algorithm applied to the dependency trees of the texts.

Although there are many approaches that rely on statistical and machine learning methods,
the main trend towards solving the textual entailment phenomenon is to provide the systems
with knowledge resources. This is due to the fact that RTE is dependent on a deep semantic
understanding of the text. Therefore, establishing suitable parameters for the machine
learning algorithms, during the training and test phases, is hard to achieve. Moreover, using
semantic resources such as WordNet seems appropriate for the detection of semantic relations
between two fragments of text.

3 System Architecture

Our present work focuses on the development of a textual entailment system based on
knowledge techniques. Our system consists of two main components: the first one derives
the logic forms and the other one computes the similarity measures between logic forms.
The former embodies various advanced natural language processing techniques that derive
from the text and the hypothesis the associated logic forms. The latter component realizes a
computation of similarity measures between the logic forms associated with the text and the
hypothesis. This computational process provides us with a score illustrating the similarity of
the derived logic forms. Depending on the value of this score, we will decide if the two logic
forms (text and hypothesis) are related or not. If the logic forms are related then the entailment
between the text and the hypothesis is true. Otherwise, there is no entailment relation holding
between the texts.

An overview of our system is depicted in Figure 1. The following sections will describe
in detail the main components of our system.

3.1 Derivation of the Logic Forms

The logic form of a sentence is derived through an analysis of dependency relationships
between the words of the sentence. Our approach employs a set of rules that infer several
aspects such as the assert, its type, its identifier and the relationships between the different
asserts in the logic form. This technique is clearly distinguished from other logic form
derivation techniques such as Moldovan’s [9] that constructs the logic form through the
syntactic tree obtained as output of the syntactic parser. Our logic form, similar to Moldovan’s
logic form, is based on the logic form format defined in the eXtended WordNet [10].

As an example, the logic form “story:NN(xI14) of:IN(x14, x13) variant:NN (x10)
NNC(x11, x10, x12) fly:NN(x12) and:CC(x13, x11, x6) emergency:NN(x5) NNC(x6, x5, x7)
rescue:NN(x8) NNC(x7, x8, x9) committee:NN(x9) who:NN(x1) save:VB(el, xI, x2) thou-
sand:NN(x2) in:IN(el, x3) marseille:NN(x3)” is automatically inferred from the analysis of

56 O. Ferréndez et al.

—H i_Jothesis

[=

Fig. 1. System architecture

dependency relationships between the words of the sentence “The story of Variant Fly and
the Emergency Rescue Committee who saved thousands in Marseille”. In this format of logic
form each assert has at least one argument. The first argument is usually instantiated with the
identifier of the assert and the rest of the arguments are identifiers of other asserts related to
it. For instance, the assert “story:NN(x14)”, has the type noun (NN) and the identifier x/4; the
assert “NNC(x11, x10, x12)”, has the type complex nominal (NNC), and its identifier is x/1,
and the other two arguments indicate the relationships to other asserts: x/0 and x/2.

3.2 Computation of Similarity Measures Between Logic Forms

This section presents the method employed by our system in order to obtain a similarity
score between the logic forms. This method is focused on initially analysing the relation
between the logic form predicates corresponding to the verbs of the text and the hypothesis
respectively. Then, if there is any relation between the two verbs, the method will analyse the
relations between the logic form predicates of the words depending on the two verbs. All the
weights provided by the analysis of these relations are summed and then normalized, thus
obtaining the final normalized-relation score. This method is described by the pseudo-code
below.

simWeight = 0

Tvb = obtainVerbs(T)

Hvb = obtainVerbs(H)

Jor i =0 ... size(Tvb) do

Jor j =0 ... size(HvD) do
if calculateSim(Tvb(i),Hvb(j)) # O then

simWeight += calculateSim(Tvb(i),Hvb(j))
Telem = obtainElem(Tvb(i))
Helem = obtainElem(Hvb(j))
simWeight += calculateSim(Telem,Helem)

A Knowledge Based Strategy for Recognising Textual Entailment 57

end if
end for
end for
if simWeight > threshold then
return TRUE
else
return FALSE
end if

In order to calculate the similarity between the predicates (calculateSim(x,y)), two
approaches have been implemented: one based on WordNet relations and another one based
on Lin’s measure [11]. Both of them are based on WordNet hierarchy, and they are described
in detail below. A Word Sense Disambiguation module was not employed in deriving the
WordNet relations between any two predicates. Only the first 50% of the WordNet senses
were taken into account. The threshold, above which one can consider that the text entails the
hypothesis, has been obtained empirically using the development data.

Approach Based on WordNet Relations. In the WordNet lexical database [12], a synset
is a set of concepts that express the same meaning. A concept is defined as the use of one
word in one determined context (sense). Thus, this task deals determining if two different
concepts are related through the composition of different WordNet relations: hypernymy,
hyponymy, entailment, similarity, meronymy and holonymy. The length of the path that
relates the two different concepts must be lower or equal than 4 synsets. A weight has been
assigned to each one of the WordNet relations: 0.8 for the hypernymy relationship, 0.7 for
the hyponymy and entailment relationships, 0.9 for the similarity relationship, and 0.5 for the
meronimy and holonymy relationships. Then, the weight of the path between two different
concepts is calculated as the product of the weights associated to the relations connecting
the intermediate synsets. This technique is different from the SpreadWeights algorithm [13],
even though derived from it.

Approach Based on Lin’s Measure. In this case, the similarities were computed using Lin’s
similarity measure [11] as implemented in WordNet::Similarity3 [14]. WordNet::Similarity
is an open source software package developed at the University of Minnesota. It allows the
user to measure the semantic similarity or relatedness between a pair of concepts, as well as
between a pair of words. WordNet::Similarity provides three measures of relatedness and six
measures of similarity based on the WordNet lexical database. The similarity measures are
based on analysing the WordNet is-a relations.

The similarity measures of WordNet::Similarity are divided into two groups: path-based
and information content-based. For our experiments, we have chosen an information content-
based similarity measure called Lin’s similarity measure.

Lin’s similarity measure augments the information content of the least common subsumer
(LCS%) of the two concepts with the sum of the information content of the concepts
themselves. The Lin’s measure scales the information content of the LCS by this sum.

3http://www.d.umn.edu/~tpederse/similarity.html
4 LCS is the most specific concept that two concepts share as an ancestor.

58 O. Ferrandez et al.

4 Evaluation

In order to evaluate our system for the textual entailment task, we used the corpus provided
by the PASCAL Second Recognising Textual Entailment Challenge®. The organizers of this
challenge provide participants with development and test corpora, both of them with 800
sentence pairs (text and hypothesis) manually annotated for logical entailment. It consists of
four subsets, which correspond to typical success and failure settings in different applications
such as Information Extraction (IE), Information Retrieval (IR), Question Answering (QA)
and Multi-document summarization (SUM). Within each application setting the annotators
selected both positive entailment examples (annotated YES) as well as negative examples
(annotated NO), where entailment does not hold (50%-50% split). The organizers have also
established two measures for evaluating the systems. The judgments returned by the systems
will be compared to those manually assigned by the human annotators. The percentage
of matching judgments will provide the accuracy of the run, i.e. the fraction of correct
responses. As a second measure, an Average Precision measure will be computed. This
measure evaluates the ability of systems to rank all the pairs in the test set according to
their entailment confidence, in decreasing order from the most certain entailment to the
least certain. Average precision is a common evaluation measure for system rankings. More
formally, it can be written as follows:

1 — # correct_up_to_pair_i
Average_Precision = R(Z E@) ~ B .p_ Pt

i=l

) ()]

1

where n is the number of the pairs in the test set, R is the total number of positive pairs in
the test set, E (i) is 1 if the i-th pair is positive and O otherwise, and i ranges over the pairs,
ordered by their ranking.

For evaluating our system we consider appropriate to carry out two different runs. Both
runs were based on deriving the logic forms from the text and the hypothesis. However, our
LINrun computes the similarity measures between logic forms by means of Lin’s similarity
measure, whereas the WNrun uses our approach based on WordNet relations. The results
obtained by the PASCAL RTE2 evaluation script for the development and test data are shown
in Table 1.

Table 1. Results obtained by the PASCAL RTE2 evaluation script

overall IE IR QA SUM
development LINrun Accuracy 0.5462 0.5421 0.5440 0.5722 0.5260
WNrun Accuracy 0.5273 0.5510 0.5345 0.4677 0.5686
LINrun Accuracy 0.5563 0.4950 0.5800 0.6100 0.5400
test Average Precision 0.6089 0.5722 0.6159 0.6431 0.6215
Accuracy 0.5475 0.4750 0.5850 0.6150 0.5150

WNrun

Average Precision 0.5743 0.5853 0.6113 0.5768 0.5589

As we can deduct from Table 1, the run using Lin’s similarity measure achieves better
results than the approach based on WordNet relations, both when tested on development, as

S http://www.pascal network.org/Challenges/RTE2/

A Knowledge Based Strategy for Recognising Textual Entailment 59

well as test data. This slight loss of accuracy is due to the fact that our WordNet relations
approach (see Section 3.2) attempts to establish an objective semantic comparison between
the logic forms rather than an entailment relation. Nevertheless, Lin’s similarity measure,
although not a pure entailment measure, seems to adapt good to the RTE task.

5 Conclusions and Future Work

This paper presents a system that deals with the textual entailment phenomenon. Our system
derives the logic forms for the text/hypothesis pair and computes the similarity between
them. The similarity is computed using two different measures: Lin’s similarity measure
and WordNet relation-based similarity measure. A score is therefore obtained, showing the
semantic similarity between two logic forms. Although our system does not provide a specific
entailment score, we found it challenging to evaluate it with the resources provided by Textual
Entailment competition. We have achieved promising results for the RTE task, and the next
step is to focalize our system for recognising only textual entailment.

As future work, we intend to perform a deeper study about the most suitable WordNet
relations for recognising textual entailment. It is possible only hyponymy, synonymy and
entailment relations between words belonging to the text and the hypothesis are more suitable
for the entailment phenomenon. On the other hand, we are also interested in testing how
other NLP tools can help in detecting textual entailment. For example, using a Named Entity
Recognizer could help in detecting entailment between two segments of text.

References

1. Dagan, I., Glickman, O.: Probabilistic Textual Entailment: Generic Applied Modeling of Language
Variability. In: PASCAL Workshop on Learning Methods for Text Understanding and Mining,
Grenoble, France (2004) 26-29.

2. Dagan, 1., Glickman, O., Magnini, B.: The PASCAL recognising textual entailment challenge.
In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment,
Southampton, UK (2005) 1-8.

3. Glickman, O., Dagan, I.: A Probabilistic Setting and Lexical Cooccurrence Model for Textual
Entailment. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic
Equivalence and Entailmen, Ann Arbor, Michigan (2005) 43-48.

4. Bos, J., Markert, K.: Combining Shallow and Deep NLP Methods for Recognizing Textual
Entailment. In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment, Southampton, UK (2005) 65-68.

5. Zanzotto, EM., Pazienza, M.T., Pennacchiotti, M.: Discovering Entailment Relations Using
“Textual Entailment Patterns”. In: Proceedings of the ACL Workshop on Empirical Modeling
of Semantic Equivalence and Entailment, Ann Arbor, Michigan (2005) 37-42.

6. Akhmatova, E.: Textual Entailment Resolution via Atomic Propositions. In: Proceedings of the
PASCAL Challenges Workshop on Recognising Textual Entailment, Southampton, UK (2005)
61-64.

7. Herrera, J., Pefias, A., Verdejo, F.: Textual Entailment Recognition Based on Dependency Analysis
and WordNet. In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment, Southampton, UK (2005) 21-24.

8. Kouylekov, M., Magnini, B.: Recognizing Textual Entailment with Tree Edit Distance Algorithms.
In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment,
Southampton, UK (2005) 17-20.

60

10.

11.

12.

13.

14.

O. Ferrandez et al.

Moldovan, D., Rus, V.: Logic Form Transformation of Wordnet and its Applicability to Question-
Answering. In: Proceedings of 39th Annual Meeting of the Association for Computational
Linguistics, Toulouse, France (2001).

Harabagiu, S., Miller, G., Moldovan, D.: WordNet 2 - A Morphologically and Semantically
Enhanced Resource. In: Proceedings of ACL-SIGLEX99: Standardizing Lexical Resources,
Maryland (1999) 1-8.

Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 151
International Conference on Machine Learning. (1998) 296-304.

Miller, G.: WordNet: An on-line lexical database. In: International Journal of Lexicography 3, 4.
(1990) 235-312.

Moldovan, D., Novischi, A.: Lexical Chains for Question Answering. In: Proceedings of the 19th
international conference on Computational linguistics - Volume 1, Taipei, Taiwan (2002) 1-7.
Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet::Similarity - Measuring the Relatedness of
Concepts. In: Proceedings of the 19" National Conference on Artificial Intelligence, San Jose, CA
(2004).

Paragraph-Level Alignment of an English-Spanish Parallel
Corpus of Fiction Texts Using Bilingual Dictionaries*

Alexander Gelbukh, Grigori Sidorov, and José Angel Vera-Félix

Natural Language and Text Processing Laboratory
Center for Research in Computer Science
National Polytechnic Institute
Av. Juan Dios Batiz, s/n, Zacatenco, 07738, Mexico City, Mexico
sidorov@cic.ipn.mx
http://www.Gelbukh.com

Abstract. Aligned parallel corpora are very important linguistic resources useful in
many text processing tasks such as machine translation, word sense disambiguation,
dictionary compilation, etc. Nevertheless, there are few available linguistic resources
of this type, especially for fiction texts, due to the difficulties in collecting the texts
and high cost of manual alignment. In this paper, we describe an automatically aligned
English-Spanish parallel corpus of fiction texts and evaluate our method of alignment
that uses linguistic data-namely, on the usage of existing bilingual dictionaries-to
calculate word similarity. The method is based on the simple idea: if a meaningful word
is present in the source text then one of its dictionary translations should be present in
the target text. Experimental results of alignment at paragraph level are described.

1 Introduction

Current development of corpus linguistics and machine learning methods in text processing
leads to increasing importance of text corpora, from raw texts to texts marked up with certain
additional linguistic information: phonetic, morphological, syntactic, word senses, semantic
roles, etc. The simplest form of such marks is linguistic information on the text itself: e.g.,
part of speech marks on the words. A more interesting kind of marks relates elements of
the text to some external source: some another text, multimedia items [12], multimodal
streams [15], pragmatic situation, etc. In spite of great importance of such information, there
exist few corpora offering it.

In this paper we are interested in a specific kind of corpora with such external information:
aligned parallel texts, i.e., texts that express the same information in two different languages,
with the structural parts (units) of these texts that are mutual translations explicitly related to
each other by the markup. The procedure of establishing such relation is called alignment.
There are various levels of alignment depending on what is considered a unit:

— Document: we just know that two documents express the same information in two
different languages (in case of very short texts, such as news messages or paper abstracts,
this can be directly useful);

* Work done under partial support of Mexican Government (CONACyT, SNI) and National Polytech-
nic Institute, Mexico (SIP, COFAA, PIFI).

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 61-67, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

62 A. Gelbukh, G. Sidorov, and J A Vera-Félix

— Paragraph: it is indicated which paragraphs are mutual translations;
— Sentence: similarly, but the information is given for individual sentences;
— Phrase (such as noun phrase) or word.

A unit in a parallel text can have one, several, or no counterparts: for example, a sentence
can be translated by several ones; some words can be omitted, etc. This makes alignment of
parallel texts quite a difficult task. Such situation is especially frequent in fiction texts, which
we discuss in this paper.

An obvious source of parallel texts is Internet. Unfortunately, texts presented in Internet
are difficult to process: they may contain pictures, special formatting, HTML tags, etc. Often
the texts are in PDF format and during their conversion into plain text format the information
about paragraph boundaries is lost. Rather extended preprocessing, often manual, is necessary
for these texts. We will not discuss here this process, as well as the problem of automatic
search of parallel texts in Internet.

The importance of aligned parallel corpora is closely related to the presence of structural
differences between languages. On the one hand the differences make the alignment task very
difficult, but on the other hand, they can be exploited for automatic extraction of information
on various linguistic phenomena-for example, for word sense disambiguation. An obvious
application of parallel corpora is machine translation [1], from dictionary compilation to
example-based machine translation.! Examples of other applications are automatic extraction
of data for machine learning methods, bilingual lexicography [8,13], and language teaching.

There are two major classes of alignment methods: those based on statistical data and
those using additional linguistic knowledge.? This distinction is not related to methods of
processing but to types of information involved.

Statistical methods usually exploit the expected correlation of length of text units
(paragraphs or sentences) in different languages [5,9] and try to establish the correspondence
between the units of the predicted size. The size can be measured in words or characters.
Linguistic-based methods, on the other hand, use linguistic data for establishing the
correspondence between structural units.

Statistical methods work well for texts when very literal translation is necessarily, like
texts of laws or technical manuals. For fiction texts, where the structure of the original and
the translation can vary significantly, it is more desirable to use linguistic methods, though
they require more thorough processing. Linguistic methods can also be used for alignment
at word level, though they require not only dictionaries, like the method described in this
paper, but also some additional syntactic information or syntactic heuristics. For example,
translation of an adjective should not be too far from the translation of the noun it modifies,
etc.

The idea of application of dictionaries to alignment problem is not new [2,10,11,13]; of
recent works the paper [4] can be mentioned. Still, it is not as popular as statistical methods-
probably due to the fact that the dictionaries are not so easily available. Usually, as we have
mentioned above, the experiments on parallel texts are conducted using specialized texts,
like texts of Canadian or European parliament, legal texts, or programming help files. The

1 Perhaps the most famous example of application of parallel texts is deciphering of Egyptian
hieroglyphs based on the parallel texts of Rosetta stone.
2 Similarly to, say, word sense disambiguation [6] and many other language processing tasks.

Paragraph-Level Alignment of an English-Spanish Parallel Corpus of Fiction Texts 63

problem we are dealing with in this paper is how a method based on a bilingual dictionary
method performs for fiction texts.

The main idea behind this method is that if a meaningful word is present in one text
then one of its dictionary translations should be present in the other text. So, even if some
words are omitted, the presence of the translation of other words allows for alignment at least
at the level of paragraph or sentence. The situation is more complicated at the word level,
because, as we mentioned, it requires not only lexical information from the dictionaries, but
also syntactic information.

The paper is organized as follows. First we describe the English-Spanish parallel corpus
compiled for fiction texts of significant size. Then we present a method of alignment based
on the use of bilingual dictionaries. Finally, we discuss the experiments on evaluation of
automatic alignment conducted at paragraph level.

2 Preparation of the Parallel Corpus

We began with preparation of a bilingual corpus, i.e., with compilation and preprocessing of
parallel texts. Generally speaking, a corpus can contain texts of different genres, like fiction,
newspaper articles, technical manuals, etc. In our case, we chose fiction genre because it is
the most non-trivial case of translation. Sometimes, fiction texts present the situations that
are difficult for automatic processing: for example, if one of the texts contains a joke, it is
possible that the other text will contain a joke that has nothing in common with the original.
L.e., the fiction translation is not literal.

On the other hand, there are many fiction texts in Internet, while variety of possible parallel
texts of other genres is lower.

We included the following titles in our corpus: Alice’s adventures in wonderland, Through
the looking-glass, The adventures of Sherlock Holmes, The turn of the screw, The jungle book,
Frankenstein, Dracula, Advances in genetics,? Five weeks in a balloon, From the earth to the
moon, Michael Strogoff, Twenty thousand leagues under the sea by Lewis Carroll, Arthur
Conan Doyle, Henry James, Rudyard Kipling, Mary Shelley, Bram Stoker, Ubidia, Abdén,
and Jules Verne, correspondingly, with their Spanish equivalents. The texts were originally
in PDF format and were preprocessed manually for elimination of special format elements,
Internet links, and for restoration of paragraph boundaries. The size of corpus is more than
11.5 MB. The corpus size might seem too small, but this is a parallel corpus, for which
the data are very difficult to obtain. Our corpus is freely available upon request for research
purposes.

3 Alignment Based on Bilingual Dictionaries

Our task is alignment of structural units (parts) of texts, such as paragraphs and sentences. We
do not consider words for the moment because of the lack of syntactic information necessary
for this type of alignment. Note that the correspondence of paragraphs and sentences in the
source and target texts is not necessarily one-to-one; see an example in Table 1.

We use lemmatization of words. For Spanish, we apply the morphological analyzer
AGME [14] that allows for analysis of grammar forms of 26,000 lexemes, i.e., more than
a million grammar forms; for English we use a similar morphological analyzer [6] based

3 This is a fiction text, not a scientific text.

64 A. Gelbukh, G. Sidorov, and J A Vera-Félix

Table 1. Example of alignment of paragraphs with pattern 2-to-1

Spanish Literal English translation Real English text
Luego, al percatarse After this, when she When she saw my

de mi gesto noticed my baffled look, she
estupefacto, surprised gesture, corrected herself: “My
corrigio: she corrected herself: grandmother.”

— No. Es mi abuela. “No, this is my grandmother.”

on the morphological dictionary of WordNet with about 60,000 lexemes. Thus, all words in
the pair of texts are normalized before we begin any further processing. We do not resolve
morphological homonymy; instead, we consider the presence of homonymic lemmas as a
source of possible translations. It is justified by the fact that often the only difference between
morphological homonyms is their part of speech, i.e., semantically they are similar (work
vs. to work). Also, often a word can be translated into the other language using a different
part of speech. It may be even useful in future work to search the translations of all related
words of different parts of speech—at least in some cases. If the morphological analyzer does
not succeed with analysis of a word then we treat it as a literal string and search for exact
matching in the other text. This is useful, for example, for proper names.

We filter out all auxiliary words, i.e., if at least one morphological homonym is an auxiliary
word (preposition, article, conjunction, or pronoun) then we do not consider it for further
comparison. This corresponds to the use of a stop word list, but in our case we rely on
morphological analyzers to determine whether the word should be considered or not. It
is justified by the very high frequency of this type of words, so that they can be present
practically in any sentence or paragraph.

3.1 Similarity Measure

Dictionary-based methods use some similarity measure. Sometimes it is a global optimiza-
tion, as in [10], and sometimes local, as in [4]. We used the simplest local measure. The main
idea of the implemented method is that if a meaningful word appears in a sentence or para-
graph of the source text, then one of its possible translations given in a bilingual dictionary
should appear in the corresponding part of the target text. It is not always so, because a word
can be translated by several words, omitted, or substituted by a far synonym that does not
appear as a translation variant in the dictionary.

In the future it is interesting to analyze the cases of absence of translation. For example,
we expect that many such cases occur due to the presence of idiomatic expressions. This may
allow for automatic extraction of such expressions. In case of translation of a word using
non-idiomatic word combination, it is natural to expect that at least one word in this word
combination would be its dictionary translation.

These considerations allow for introducing a measure of similarity between two structural
units for a pair of parallel texts. We use as the measure of similarity a coefficient similar to
the well-known Dice coefficient:
2x v K =1,

Similarity = X]
y+z K iftK <1,

Paragraph-Level Alignment of an English-Spanish Parallel Corpus of Fiction Texts 65

where y is the size in words of the source text unit, 7 is the size of the target text unit, x is the
number of intersections of the two units counted as the presence of any dictionary translation
of a source text word in the target text unit; K = y X k/z, k is an expected coefficient of
correspondence of the number of words in source and target texts: namely, k = Z /Y, where
Z and Y are the total number of words in the target and the source text, correspondingly. This
measure differs from the traditional Dice coefficient in the parameter K, which penalizes the
units with too different sizes.

For the current version of the algorithm we used Spanish-English dictionary with about
30,000 entries. In the future, we plan to use English-Spanish dictionary as well, because it is
not guaranteed that the dictionaries are symmetric. We will use the average value of similarity
calculated with both dictionaries.

3.2 Algorithm

Currently we use an ad hoc alignment algorithm that passes through the units of the source
text and analyzes three immediately available units from the target text, i.e., we search
only the alignment patterns 1-to-1, 1-to-2, 1-to-3, 2-to-1, and 3-to-1 paragraphs. It is not
a complete scheme, but it serves for evaluation of quality of the results of our dictionary-
based method of alignment. Other patterns are extremely rare and in fact did not occur in our
experiments with paragraphs. In the future, we plan to use a genetic algorithm for searching
for the global alignment optimum, as in [7] for word sense disambiguation. Other possibilities
are to use dynamic programming [5] or simulated annealing [3].

For improvement of the performance of the algorithm we also implemented an anchor
points technique. Anchor points are short units with very high similarity. They serve for
limiting the effect of cascaded errors during alignment, since the algorithm restarts after each
anchor point. With this, if an error occurs, it will not affect alignment of the whole text. The
algorithm performs two passes. First, it searches for anchor points, and then it processes the
units between the anchor points.

The algorithm implements the following processing: it takes a unit from the source text
(Spanish in our case), calculates the similarity of the patterns 1-to-1, 1-to-2, 1-to-3, 2-to-1,
and 3-to-1 taking into account two subsequent units from the source text and three current
units from the target text (English). Then it selects the pattern with the best similarity score
and continues from the next available units in the source and target texts.

4 Experimental Results

The results of an experiment for 50 patterns of paragraphs of the text Dracula are presented
in Table 2. The precision of the method in this experiment was 94%. Here we dealt with
non-literal translations of the fiction texts.

An example of an error of our method is presented in Table 3. The paragraph is rather
small that makes the correct solution less probable. Usually, the larger is the unit, the more
probable it is to obtain correct similarity. It is so because it is more probable to find a word
and its translation.

The paragraph in Table 3 would present difficulties for statistical methods as well, because
the size of the English unit is 21 words, while the size of the Spanish one is only 11
words. There are only three words that have translations given in the dictionary or direct

66 A. Gelbukh, G. Sidorov, and J A Vera-Félix

Table 2. Alignment results for 50 patterns of paragraphs

Patterns found Correct Incorrect

1-1 27 0
1-2 8 2
1-3 6 0
2-1 7 0
3-1 2 1

Table 3. Alignment results for 50 patterns of paragraphs

English text Spanish text Literal translation
“Suppose that there should turn out to >Y si el doctor “And if Doctor
be no such person as Dr. Fergusson?” Fergusson no existiera? Fergusson does not
exclaimed another voice, with a —pregunto una voz, exist?” asked a
malicious twang. maliciosa. malicious voice.

string matching: voice, malicious, Fergusson. There are 9 meaningful words in the English
paragraph and 6 in the Spanish paragraph. The words that are presented as translations but
do not have correspondence in the dictionary are: ask and exclaim. In order to detect that it
is something related, we should use, for example, some additional dictionary with marked-
up hyponymic relations, such as WordNet. The other words are really different, though they
carry the same meaning: furn out to be no such person = not exist. A grammatical way of
expression of conditional mode is used in Spanish, while in English a special construction
appears: suppose that there should exist vs. Spanish existiera.

This is a representative case of the most difficult situation consisting in non-literal
translation of a short unit. The situation is worse if there are several subsequent units of
this type because the possibility of wrong alignment increases. We expect that adding more
dictionary information (synonyms, hyponyms), syntactic information, and genetic algorithm
as optimization technique will alleviate this problem.

5 Conclusions and Future Work

We have presented an English-Spanish parallel corpus of fiction texts of considerable size
freely available for researchers and discussed a dictionary-based method of alignment as
applied to fiction texts. The experiment conducted at the paragraph alignment level shows
that the dictionary-based method has high precision (94%) for non-literal translations.

In the future, we plan to implement a better alignment algorithm based on genetic
algorithm with global optimization. Another direction of improvement of the method is the
use of other types of dictionaries with synonymic and homonymic relations, such as WordNet.
Also, the method can beneficiate from weighting the distance between a word and its possible
translation, especially in case of the large units, because some words can occur in a unit as
translation of the other word and not the one we are looking for.

Paragraph-Level Alignment of an English-Spanish Parallel Corpus of Fiction Texts 67

It is also interesting to analyze the influence of the special treatment of morphological

homonyms. As to alignment at the word level, we plan to try some additional syntactic
heuristics. As a possible application, we plan to analyze the cases of absence of translations,
as discussed above.

References

1.

10.

11.

12.

13.

14.

15.

Brown, P. F, Lai, J. C., and Mercer, R. L. 1991. Aligning Sentences in Parallel Corpora.
In: Proceedings of the 29" Annual Meeting of the Association for Computational Linguistics,
Berkeley, California, pp. 169-176.

. Chen, S. 1993. Aligning sentences in bilingual corpora using lexical information. In: Proceeding

of ACL 93, pp. 9-16.

. Cowie, J., J. A. Guthrie, L. Guthrie. Lexical disambiguation using simulated annealing. In Proc. of

the International Conference on Computational Linguistics, 1992, 359-365.

. Kit, Chunyu, Jonathan J. Webster, King Kui Sin, Haihua Pan, Heng Li. 2004. Clause alignment for

Hong Kong legal texts: A lexical-based approach. International Journal of Corpus Linguistics 9:1.
pp- 29-51.

. Gale, W. A., and Church, K. W. 1991. A program for Aligning Sentences in Bilingual Corpora.

In: Proceedings of the 29" Annual Meeting of the Association for Computational Linguistics,
Berkeley, California.

. Gelbukh, Alexander, and Grigori Sidorov. 2003. Approach to construction of automatic morpho-

logical analysis systems for inflective languages with little effort. Lecture Notes in Computer Sci-
ence, N 2588, Springer-Verlag, pp. 215-220.

. Gelbukh, Alexander, Grigori Sidorov, SangYong Han. 2005. On Some Optimization Heuristics for

Lesk-Like WSD Algorithms. Lecture Notes in Computer Science, Vol. 3513, Springer-Verlag, pp.
402-405.

. McEnery, A. M., and Oakes, M. P. 1996. Sentence and word alignment in the CRATER project.

In: J. Thomas and M. Short (eds), Using Corpora for Language Research, London, pp. 211-231.

. Mikhailov, M. 2001. Two Approaches to Automated Text Aligning of Parallel Fiction Texts. Across

Languages and Cultures, 2:1, pp. 87-96.

Kay, Martin and Martin Roscheisen. 1993. Text-translation alignment. Computational Linguistics,
19(1):121-142.

Langlais, Ph., M. Simard, J. Veronis. 1998. Methods and practical issues in evaluation alignment
techniques. In: Proceeding of Coling-ACL-98.

Li, Wei, Maosong Sun. Automatic Image Annotation based on WordNet and Hierarchical
Ensembles. In: A. Gelbukh (Ed.) Computational Linguistics and Intelligent Text Processing. Proc.
of CICLing 2006. Lecture Notes in Computer Science N 3878, Springer, pp. 551-563.

Meyers, Adam, Michiko Kosaka, and Ralph Grishman. 1998. A Multilingual Procedure for
Dictionary-Based Sentence Alignment. In: Proceedings of AMTA 98: Machine Translation and
the Information Soup, pages 187-198.

Veldsquez, F., Gelbukh, A. and Sidorov, G. 2002. AGME: un sistema de andlisis y generacion
de la morfologia del espaiol. In: Proc. Of Workshop Multilingual information access and natural
language processing of IBERAMIA 2002 (8" Iberoamerican conference on Artificial Intelligence),
Sevilla, Espaia, November, 12, pp. 1-6.

Villasefior Pineda, L., J. A. Massé Marquez, L. A. Pineda Cortés. Towards a Multimodal Dialogue
Coding Scheme. In: A. Gelbukh (Ed.) Computational Linguistics and Intelligent Text Processing.
Proc. of CICLing 2000. IPN, Mexico, pp. 551-563.

Some Methods of Describing Discontinuity in Polish
and Their Cost-Effectiveness

Filip Graliniski

Adam Mickiewicz University,
Faculty of Mathematics and Computer Science,
ul. Umultowska 87, 61-614 Poznan, Poland
filipg@amu.edu.pl

Abstract. The aim of this paper is to present some methods of handling discontinuity
(and freer word order in general) within a medium-level grammatical framework.
A context-free formalism and the “backbone” set of rules for verbal phrases are
presented as the background for this paper. The main result consists in showing
how discontinuous infinitive phrases and discontinuous noun phrases (interrogative
phrases included) can be theoretically covered within the introduced formalism
and similar grammatical frameworks. The second result reported in this paper is
the cost-effectiveness analysis of introducing discontinuity rules into a medium-
level grammatical framework: it turns out that attempting to cover some types of
discontinuity may be unprofitable within a given grammatical framework. Although
only examples from the Polish language are discussed, the described solutions are
likely to be relevant for other languages with similar word order properties.

1 Introduction

In languages such as Polish, Russian, Finnish, Turkish or Latin, the word order is relatively
free. Therefore, parsing such languages for practical applications (machine translation,
question answering, grammar checking, etc.) requires, at least to some extent, the ability to
handle free order of constituents (e.g. free subject-verb-object order) and their discontinuity.

The aim of this paper is to present some methods of dealing with free word order
phenomena within a medium-level grammatical formalism, a formalism occupying a middle
position on a continuum extending from shallow parsing formalisms to more sophisticated
(and computationally more expensive) types of grammars such as HPSG or Lexical-
Functional Grammar. Another objective is to try to delimit the extent of discontinuity that
can successfully be handled within medium-level formalisms. Although all the solutions
proposed in this paper are expressed within a specific grammatical formalism, the described
methods should be applicable in any context-free grammatical formalism in which tree
operations (see Section 1.1) are provided (e.g. in a DCG encoded in Prolog).

In Section 1.1 the grammatical framework addressed herein is presented. In Section 1.2
the rules of the VP backbone are introduced, whereas in central Sections 2 and 3 some types
of discontinuity (resp. discontinuous infinitive clauses and discontinuous noun phrases) are
discussed. Some remarks about other types of discontinuities are expressed in Section 4.
Although only examples from Polish are given, the described solutions are likely to be
relevant for other languages with similar word-order characteristics, e.g. other Slavonic
languages.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 6977, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

70 F. Graliniski

When handling discontinuity in practice, one should be concerned not only with what
could be done, but also with what is cost-effective, as discontinuity is relatively infrequent
in Polish and false detection of discontinuity may result in particularly inaccurate and
misleading interpretations of the input text. In Section 5 some preliminary experiments with
real-world texts are presented.

1.1 Grammatical Framework

In this subsection, we briefly present the grammatical framework referred to in Sections 2
and 3. The framework as such (named TgBGs for Tree-generating Binary Grammars) was
introduced in [6] and [7]. The formalism was partially inspired by the ideas given in [2], [3],
and [5].

To introduce the grammatical framework, let us consider the following sample rule for
noun phrases (for the incorporation of an adjective phrase):

np — ap np@ : la(modif)
ap.Case == Case && ap.Num == Num && ap.Gender == Gender

A grammar rule is composed of three parts separated by colons: a production (np —
ap np@ in the above example), a tree operation (la(modif)), and an attribute expres-
sion (ap.Case == Case && ap.Num == Num && ap.Gender == Gender). A pro-
duction is a unary or binary CFG-like rewriting rule. In addition, a symbol may be marked
with an @ sign — by default the attributes (see below) of the newly formed node are copied
from the node referred to by such a symbol. (If no symbol is marked with @, the values of
the attributes are equal to 0 by default.) In the above example, the production states that an
adjective phrase (ap) with a noun phrase (np on the right) constitute a noun phrase (np on
the left) and that the attributes of the node representing the noun superphrase will be copied
from the node representing the noun subphrase.

Syntax trees derived within the proposed framework are composed of symbols different
than those of productions — production symbols form a “scaffolding” which could be
discarded after parsing. Arcs connecting category nodes in a syntax tree are labelled with
syntactic roles, such as head, obj (object), subj (subject), modif (modifier).

a) b)) d)

A

t1 t1 t2 t1 t2

Fig. 1. Basic tree operations: (a) unary new node, (b) left attachment, (c) binary new node, (d) left insert

The shape of a syntax tree is determined with unary or binary (parametrised) tree
operations associated with productions. For example, a binary tree operation la(r) (¢,)
(left attachment) specifies to attach tree 7] to tree > and label the arc connecting the root of
11 and the root of #, with syntactic role r (see Figure 1b). The following basic tree operations

Some Methods of Describing Discontinuity in Polish and Their Cost-Effectiveness 71

are referred to in this paper: identity (id), unary new node of category A with syntactic
role r (nn(A, r); see Figure la), binary new node of category A with roles r| and r;
(nn(A, ry, rp); see Figure 1c), left attachment with syntactic role r (la(r); see Figure 1b),
right attachment with syntactic role r (ra(r); ra(r)(t1,) = la(r)(t2, 1)), left insert
with syntactic role r into the daughter of role ¢ (li (g, r); see Figure 1d), right insert with
syntactic role r (ri (r); ri(q,r)(t1, t2) = li(g,r)(t2, t1)).

Generally speaking, nn operations are used to introduce new tree nodes, with la/ra
operations it is possible to construct flat syntax trees, and with 1i/ri — discontinuous ones.

Nodes of syntax trees may be augmented with attributes having atomic values (numbers
and symbols starting with a lower-case letter). Attribute expressions are used to check
conditions (e.g. agreement conditions) and to set values for attributes of new nodes. Standard
C operators (assignment =, equality ==, negation !, AND operator &&, OR operator | |) are
used in attribute expressions. Attribute names start with an upper-case letter. Attributes of
the existing nodes are referenced with a dot (e.g ap.Case), whereas attributes of the newly
created node are referred to in a direct manner (e.g. Case).

1.2 VP Backbone

The sentence structure is relatively flexible in Polish — generally speaking, any order of
subject, verb and object is possible (though SVO is the most frequent order) [4].

In this subsection, a backbone of rules describing VPs is presented. We start with the verb
(VP head), then attach constituents (subject, object, adverbial phrases, etc.) to the right of the
verb and after all the right constituents are attached, we start attaching VP constituents on
the left side. (A subject is assumed to be a constituent of a VP.) This way of specifying rules
could be viewed as inducing head-driven parsing. Note that with the fixed direction (first the
right constituents, then the left ones) spurious ambiguities are avoided.

The rules of the VP backbone are as follows:

rvp — v@ : nn(VP, head)
creating a new VP node with a verb (v) as its head

rvp — rvp@ advp : ra(modif)
attaching an adverbial phrase (advp) on the right

rvp — rvp@ np : ra(subj)
np.Case == nom && np.Gender==Gender && np.Num==Num
&% np.Person==Person && !SubjFilled && SubjFilled = r
attaching the subject on the right; nom stands for nominative;
SubjFilled is checked ('SubjFilled)and set (SubjFilled = r)to
ensure that at most one subject is attached; (it is assumed that clauses of
a conjunction are calculated from left to right — as in C)

rvp — rvp@ np : ra(obj)
np.Case == ObjCase && !'0ObjFilled && ObjFilled = r
&& ObjNum = np.Num && ObjGender = np.Gender
attaching the nominal object; QbjCase is the required case of the object
(usually accusative); the number (O0bjNum) and gender (ObjGender) of
the object is stored to be used later for discontinuous objects

72 F. Graliniski

lvp — rvp@ : id
all the right VP constituents have been attached; switching to the left side

lvp — advp lvp@ : la(modif)
attaching an adverbial phrase on the left

lvp — np lvp@ : la(subj)
np.Case == nom && np.Gender==Gender && np.Num==Num
&% np.Person==Person && !SubjFilled && SubjFilled = 1
attaching the subject on the left

lvp — np lvp@ : la(obj)
np.Case == ObjCase && !'0bjFilled && ObjFilled = 1
&% 0bjNum = np.Num && ObjGender = np.Gender
attaching the object on the left

vp — 1lvp@ : id
now the VP is completed

s — vp : nn(S, head) : Temnse != inf
finally the S (sentence) node is introduced for finite VPs

2 Handling Discontinuous Infinitive Clauses

An infinitive clause used in sentences with Polish verbs such as chcie¢ (want), lubié (like),
etc. may be discontinuous. For example, consider various permutations of sentence Adam
chce reperowaé drukarke (Adam wants to repair a printer, lit. Adam(nom) wants to-repair
printer(acc)). Let us denote the subject Adam, the main verb chce, the verb in infinitive
reperowac and the object drukarke by respectively S, V, V; and O. Assuming that we want
to treat the infinitive VP (O + V;) as a constituent of the main VP!, SOVV; is discontinuous
(whereas e.g. SVOV; or SVV; O are continuous).

2.1 The VV; Order

Now we are going to extend VP backbone presented in Section 1.2 to cover sentences like
SOVV;. Let us start with a general rule for attaching an infinitive clause on the right:

lvp — rvp@ vp : ra(infobj) : 0bj == inf && vp.Tense == inf

(Obj attribute is set to inf for verbs taking an infinitive clause as their object.) Note that we
assume that an infinitive clause closes the main VP on the right (i.e. no other constituents
can follow it), since 1vp rather than rvp was used on the left-hand side of the production. In
practice this seems to be a reasonable approximation except that VV;S order is not covered.
(This order can be handled by temporarily attaching the subject to the verb in infinitive and
re-attaching it later to the main verb; note that this would require the introduction of a new
tree operation for re-attaching a node.)

I Note that if VV; were to be treated as a complex predicate, SVOV; or OVSV; would be discontinuous.

Some Methods of Describing Discontinuity in Polish and Their Cost-Effectiveness 73
In order to cover OVV; order, the above rule should be augmented as follows:

lvp — rvp@ vp : ra(infobj)
Obj == inf && vp.Tense == inf
&&
((vp.ObjFilled && ObjFilled = r)
[l (Obj = vp.0bj && ObjSource = inf))

The expression (vp.ObjFilled ...) || (... ObjSource = inf) can be read as
an if-else-then statement?: if an object has already been attached to the infinitive clause
(vp.0ObjFilled ...), then set ObjFilled attribute (ObjFilled = r). Otherwise, set
the expected object of the infinitive as the expected object of the main verb (Obj = vp.0bj)
and set the special attribute ObjSource to remember that the object will, in fact, belong to
the infinitive clause rather than the main VP.

Finally, an additional rule for attaching objects is needed:

lvp — np lvp@ : li(infobj,obj)
ObjSource == inf
&% np.Case == ObjCase && '0ObjFilled && ObjFilled = 1

This way, the syntax tree depicted in Figure 2 will be generated for sentence drukarke
chce reperowac ((he/she) wants to repair the printer, lit. printer(acc) wants to-repair). Note
that this tree is discontinuous — the discontinuity was introduced with the 1i (infobj,obj)
tree operation.

S
headl
head
VP
obj
NP head
head
N \% \%

drukarke chce reperowac

Fig. 2. A syntax tree for sentence drukarke chce reperowaé

The proposed solution should also work for verb chains (e.g. chce mdc reperowaé =
wants to be able to repair), although some minor modifications in attribute expressions are
necessary (in order to distinguish VV;V; from VV;).

2 «Short-circuit” semantics of | | and && is assumed (as in C).

74 F. Graliniski

2.2 The V;V Order

This order seems to be much less frequent than VV;. For instance, Google search engine
returned 2480000 and 184 results (May 2006) for chce kupié¢ (lit. wants to-buy) and kupic¢
chce respectively. The following rule covers the V;V order:

lvp — vp lvp@ : la(infobj)
Obj == inf && !'0bjFilled && vp.Tense == inf

However, the V; VO order (as opposed to V; OV and OV; V) cannot be covered in the manner
analogous to the manner in which OVV; was handled. This asymmetry is a result of the fixed
order in which VP constituents are attached (first the right constituents, then the left ones)
— it is not possible to attach the object on the right when the infinitive clause has not been
incorporated into the VP yet. This is an important limitation of the proposed solution.

3 Handling Discontinuous Noun Phrases

Consider a VP composed of a verb and a noun phrase containing an adjective, e.g. reperuje
nowgq drukarke ((he/she) is repairing a new printer). Let us denote the verb (reperuje), the
noun (drukarke) and the adjective (nowg) by resp. V, N and A. There are two discontinuous
configurations: AVN (nowgq reperuje drukarke) and NVA (drukarke reperuje nowg).

3.1 The AVN Order

Discontinuous objects of this type can be handled with the following rule:

lvp — ap lvp@ : li(obj,modif):
ObjFilled == r && ap.Case == (ObjCase
&% ap.Num == 0ObjNum && ap.Gender == ObjGender
the ap symbol refers to an adjective phrase

In a similar manner analogous discontinuous subjects can be captured:

lvp — ap lvp@ : li(subj,modif):
SubjFilled == r && ap.Case == nom
&% ap.Num == lvp.Num && ap.Gender == lvp.Num

The ObjFilled (SubjFilled) is tested to determine if it is equal to r in order to (1)

ensure that there is an object (subject) and to (2) exclude spurious interpretations in case of

continuous ANV order. Note that any number of adjective phrases can be attached this way.
Not all discontinuous noun phrases can be covered in this manner, for example noun

drukarki = I have two printers, lit. two(acc) I-have printers(acc)) can be straightforwardly
described with rules similar to the rules given above for NPs with adjectives.

Some Methods of Describing Discontinuity in Polish and Their Cost-Effectiveness 75

3.2 The NVA Order

As was the case with V;VO / OVV; (see Section 2), the NVA order cannot be handled in
the same way as AVN. One possible solution would be to attach the adjective phrase to rvp
and then force attaching the noun phrase on the left (thus temporarily breaking the order of
attaching VP constituents). This solution has the following disadvantages: (1) additional rules
for attaching object/subjects ought to be introduced, (2) no adverbial phrase (nor any other
VP constituent) can be placed between the noun and the verb.

4 Other Types of Discontinuity

Polish analytical future forms are, to some extent, similar to constructions with infinitive
phrases. Handling analytical future forms within a TgBG was discussed in [7]>. Note that it
was assumed there that the auxiliary verb is not the head of the VP — the motivation behind
it was to take advantage of the fact that in one type of the analytical future (e.g. bedzie robit)
the main verb agrees with the subject. Also discontinuous interrogative prepositional phrases
are described in [7].

5 Cost-Effectiveness of Handling Discontinuity

It has been established in the previous sections that at least some types of discontinuity can
be handled within a medium-level grammatical formalism. Now let us address the question
of whether it is cost-effective to do so in practice. It should be noted that the frequency of
discontinuity is not very high in Polish* and false positives may occur (discontinuity may be
detected where there is none). What is more, such false positives may be very confusing in
further processing, e.g. in machine translation.

The following simple experiment with a text corpus5 may be carried out: parse a corpus,
check how many times the given type of discontinuity was detected and count false positives
— if the percentage of false positives is too high or the number of discontinuities is very low,
the rule for the given type of discontinuity is probably useless in the context of the given
parser and type of texts.

In a preliminary experiment the corpus of the Frequency dictionary of contemporary
Polish [1] was parsed with the parser of the POLENG machine (Polish-to-English) translation
system [8] enhanced with some of the elements of the grammatical formalism described in
this paper.

The following types of discontinuity were checked: discontinuous infinitive clauses (iVP;
see Section 2), discontinuous interrogative noun phrases (iNP, e.g. jakg ... drukarke = which
...printer; this a special and highly important case of discontinuous NPs discussed in
Section 3), discontinuous interrogative prepositional phrases (iPP; e.g. o jakiej . .. drukarce

3 Let us note here that in a similar manner discontinuous conditional tense (by ...zrobil) can be
covered.

4 Derwojedowa [4, p. 68] reports that of 4839 Polish sentences (a subset of the corpus of Fre-
quency dictionary of contemporary Polish [1]) 8% contained a construction that was classified as
discontinuous.

5 Araw corpus was used as no large tree bank exists for Polish.

76 F. Graliniski

= about which . . . printer; see [7] for the theoretical discussion of this type of discontinuous
construction). The results are given in Table 1: A is the number of sentences with the given
discontinuity detected by the parser®, A% is their percentage relative to the number of
sentences in the corpus (42056), F is the number of false positives and F % is their percentage
relative to A.

Table 1. Various types of discontinuity detected in the corpus

A % F %

iVP 435 1.034% 70 16.1%
iNP 49 0.117% 25 51.0%
iPP 3 0.007% 0 0.0%

The number of detected discontinuous infinitive phrases is significant and the percentage
of false positives is probably acceptable. In contrast, the number of detected discontinuous
interrogative noun phrases is lower and more than half of them are false positives. It should
be concluded that in the context of the given parser, covering discontinuous interrogative NPs
brings more harm than profit.

6 Conclusion

It was shown in this paper that discontinuity can be — at least to some extent — covered within
a medium-level context-free grammatical formalism. Unfortunately, the cost-effectiveness of
handling some types of discontinuity may be low for a given parser.

Only cases when a phrase is separated with a verb have been discussed in this section.
There are (probably less frequent) other types of discontinuity in Polish, for example a noun

of discontinuity within a medium-level formalism needs further research.

References

1. Kurcz I, Lewicki A. et al.: Stownik frekwencyjny polszczyzny wspétczesnej (1990).

2. Holan T., Kubori V. et al.: Two Useful Measures of Word Order Complexity. COLING-98 Workshop
“Processing of Dependency-Based Grammars™ (1998).

3. Sylvain K, Nasr A., Rambow O.: Pseudo-Projectivity: A Polynomially Parsable Non-Projective
Dependency Grammar. http://citeseer.ifi.unizh.ch/586031.html (1998).

4. Derwojedowa M.: Porzadek linearny sktadnikéw zdania elementarnego w jezyku polskim. Elipsa,
Warszawa (2000).

5. Nasr A., Rambow O.: A Simple String-Rewriting Formalism for Dependency Grammar. Proceed-
ings of the COLING-98 Workshop “Recent Advances in Dependency Grammar” (2004).

6 The syntactical interpretation with the highest score was chosen for each sentence. The scores are
assigned by the parser according to various heuristics.

6.

7.

Some Methods of Describing Discontinuity in Polish and Their Cost-Effectiveness 77

Graliiski F.: A Simple CF Formalism and Free Word Order. ond Language & Technology
Conference, Proceedings. (2005) 172-176.

Graliiski F.: A Simple CF Formalism and Free Word Order. Archives of Control Sciences
Lecture Notes in Computer Science, Vol. 15. Institute of Automatic Control, Silesian University
of Technology, Gliwice (2005) 541-554.

. Jasssem K.: Przetwarzanie tekstow polskich w systemie ttumaczenia automatycznego POLENG,

Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznan (in press) (2006).

Exploitation of the Verbal.ex Verb Valency Lexicon in the
Syntactic Analysis of Czech

Dana Hlavackova, AleS Horak, and Vladimir Kadlec

Faculty of Informatics, Masaryk University Brno
Botanicka 68a, 602 00 Brno, Czech Republic
{hlavack, hales, xkadlec}@fi.muni.cz

Abstract. This paper presents an exploitation of the lexicon of verb valencies for
the Czech language named VerbalLex. The VerbalLex lexicon format, called complex
valency frames, comprehends all the information found in three independent electronic
dictionaries of verb valency frames and it is intensively linked to the Czech WordNet
semantic network.

The NLP laboratory at FI MU Brno develops a deep syntactic analyzer of Czech
sentences, the parsing system synt. The system is based on an efficient and fast head-
driven chart parsing algorithm. We present the latest results of using the information
contained in the Verbalex lexicon as one of the language specific features used in the
tree ranking algorithm for the Best Analysis Selection algorithm, which is a crucial
part of the syntactic analyser of free word order languages.

1 Introduction

The ambiguity level in the syntactic analysis of free word order languages suffers from the
exponential explosion of the number of resulting derivation trees. The main reasons for this
combinatorial grow arise on several levels of the sentence building process (prepositional
attachment, verb argument resolution, non-projectivity, ellipsis, anaphoric relations, etc.). A
traditional solution for these problems is presented by probabilistic parsing techniques aiming
at finding the most probable parse of a given input sentence. This methodology is usually
based on the relative frequencies of occurrences of the possible relations in a representative
corpus. “Best” trees are judged by a probabilistic figure of merit. Our experiments show, that
in the case of really free word order languages (like Czech) the probabilistic measures are
not able to cover the complexity of the sentence syntax. That is why we need to exploit the
knowledge of the language specific features as described in [1].

The basic sentence frame is driven by the lexical characteristics of its predicative
construction based on the set of possible verb valencies of the particular verb (see e.g. [2]). We
have implemented the technique of discovering the possible verb valencies from the resulting
ambiguous packed shared forest (stored in the parsing chart). This enables us to work with
verb valencies in two directions: a) using the VerbalLex valency lexicon to prune impossible
combination regarding the particular verb, and b) automatically process large corpora for
discovering possible verb valencies that are missing in the lexicon. These valencies are then
offered to the linguistic expert for addition to VerbaLex. Similar approach has been described
in [3], in which a partial parsing outputs were used for obtaining the verb subcategorization
information. Our approach includes a full parsing of Czech sentence, which increases the
credibility of the verb frame information.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 79-85, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

80 D. Hlavickova, A. Hordk, and V. Kadlec
2 The Verbalex Valency Lexicon

This paper presents an exploitation of the lexicon of verb valencies for the Czech language
named Verbalex [4]. VerbalLex was created in 2005 and it is based on three valuable language
resources for Czech, three independent electronic dictionaries of verb valency frames.

The first resource, Czech WordNet valency frames dictionary, was created during the
Balkanet project and contains semantic roles and links to the Czech WordNet semantic
network. The other resource, VALLEX 1.0 [5], is a lexicon based on the formalism of the
Functional Generative Description (FGD) and was developed during the Prague Dependency
Treebank (PDT) project. The third source of information for VerbaLex is the syntactic lexicon
of verb valencies denoted as BRIEF, which originated at FI MU Brno in 1996 [6].

The resulting lexicon, Verbalex, comprehends all the information found in these resources
plus additional relevant information such as verb aspect, verb synonymy, types of use and
semantic verb classes based on the VerbNet project [7]. The information in Verbalex is
organized in the form of complex valency frames (CVF). All the valency information in
Verbalex is specified regarding the particular verb senses, not only the verb lemmata, as
it was found in some of the sources. The current work on the lexicon data aims at enlarging
the lexicon to the size of about 16.000 Czech verbs. The VerbaLex lexicon displays syntactic
dependencies of sentence constituents, their semantic roles and links to the corresponding
Czech WordNet classes. An example of such verb frame is presented in the Figure 1.!

The complex valency frame in VerbaLex is designed as a sequence of elements which
form a “pattern”? for obligatory sentence constituents that depend on the verb. There are two
types of information displayed in CVFE. The constituent elements of valency frames cover
both syntactic level and lexical semantic level (represented by two-level semantic roles). The
default verb position *"VERB’ as the centre of the sentence is marked on the syntactic level.
The pattern of sentence constituents are situated in left and right positions in accordance
with the complementarity needed by the verb. The constituent elements of frame entries are
entered as pure pronominal terms, e.g. kdo (who), co (what), or prepositional phrase pattern
(with the lemma of the preposition) followed by the number of the required grammatical case
of the phrase.

opustit:4/leave office:1 (give up or retire from a position)
frame: AG <person: 1> 331101 VERB ACT <job:1> gvbhlat 4
example: opustil zaméstnani / he left his job

This way of notation allows to differentiate an animate or inanimate subject or object position.

The types of verbal complementation are precisely distinguished in the verb frame notation.
If a verb requires a completion with adjective or adverb, this fact is written as the adjectival

or adverbial lemma and part of speech tag from WordNet semantic network — [a] or [b].

citit se:1/feel:5 (have a feeling or perception about oneself in reaction to someone’s
behavior or attitude)

I Thisisa slightly enhanced version of CVF that splits the attribute values to verb attributes and frame
attributes.
2 Alistof necessary grammatical features such as the grammatical case or the the preposition.

Exploitation of the VerbaLex Verb Valency Lexicon in the Syntactic Analysis of Czech 81

Princeton WordNet: dress:2, clothe:1, enclothe:1, garb:1, raiment:1, tog:1,
garment: 1, habilitate:2, fit out:2, apparel:1
definition: provide with clothes or put clothes on
VerbaLex Synset: oblécizlpf, oblékat: limpf’ obléknout: lpf, ustrojit: lpf, strojit: 1 impf
=def: provide with clothes or put clothes on
=canbepassive: yes
=meaning: |
=class: dress-41.1.1
Complex valency frames:

1. obléci:1, oblékat:1, obléknout: 1
. .1 obl
-frame: AG <person:1> whol VERB
obl
to_whom3

-synonym: ustrojit:1, strojit: 1
-example: maminka oblékla ditéti kabdt / the mother put a coat
on her child
-attr: use: prim, reflexivity=obj_dat, mustbeimperative=no
2. obléci:1, oblékat:1, obléknout:1, ustrojit: 1, strojit:1
-frame: AG <person:1> gvbhlo 1 VERB

obl
whom4

obl

PAT <person:1> ART <garment: 1> what4

obl

PAT <person: 1> in+sth2

ART <garment: 1>

-synonym:

-example: maminka oblékla dité do kabdtu / the mother dressed
her child in a coat

-attr: use: prim, reflexivity=obj_ak, mustbeimperative=no

Fig. 1. An example of a VerbalLex verb frame

. .1 obl obl
frame: AG <person:1>71 ' VERB ATTR <[a]> 7 1 ¢

example: citil se bezvyznamny / he felt insignificant

citit se:2[feel:4 (seem with respect to a given sensation given)
frame: AG <.person: 1> Sﬁll o1 VERB MAN<[b]> ﬁgt}v
example: citil se Spatné / he felt badly

A verb valency with an infinitive construction is marked by abbreviation ’inf” and link to the
verbal literal from Princeton WordNet. A subordinate clause complementation is specified by
the lemma of the subordinating conjunction.

zacit:1/begin:1 (take the first step or steps in carrying out an action)

. .1~ obl obl
frame: AG <person:1> whol VERB ACT < [v]> inf
example: zacal stavét dim / he began to build a house

poprit:1/disclaim:1 (renounce a legal claim or title to)
frame: AG <person:1> Sﬁll o1 VERB COM <statement:1> ?}gt
example: poprel, Ze ho zna/he disclaimed that he knows him

The type of valency relation can be obligatory "obl’ (must be present) or optional *opt’. With
this notation format it is possible to generate two (or more) frames from one basic frame.

82 D. Hlavickova, A. Hordk, and V. Kadlec

The basic frame

desit:1/frighten:1 (cause fear in)

frame: AG <person:1> 331101 VERB PAT <person:1>

~_ Opt
ACT<act:2> with_ what7

example: désil ho hrozbami / he frightened him with threats

obl
whom4

contains the potential frame:

obl

. . obl .
frame: AG <person:1>771 - VERB PAT <person:1> -3

example: désil ho / he frightened him

Other details of the complex valency frame notation (e.g. the way of selection of the two-
level semantic roles that link the constituents to the wordnet hypero-hyponymical hierarchy)
are described in [4].

3 The Syntactic Analyzer synt

The NLP laboratory at FI MU Brno develops a deep syntactic analyzer of Czech sentences,
the parsing system synt [8]. The system uses the meta-grammar formalism, which enables to
define the grammar with a maintainable number of meta-rules. These meta-rules are produced
manually by linguists. The rules are then translated into context-free rules supplemented
with additional contextual constraints and semantic actions. Efficient and fast head-driven
chart parsing algorithm is used for the context-free parsing. The result of the context-free
parsing process — a chart — is stored in the form of a packed shared forest. To apply the
constraints and to compute the semantic actions, we build a new forest of values instead of
pruning the original chart. We use this multi-pass approach, because all described functions
are implemented as plug-ins that can be modified as needed or even substituted with other
implementations. For example, we compared four different parsing algorithms which use
identical internal data structures. The parsing system is aimed at analyzing the sentence not
only at the surface level, but it also covers the logical analysis of the sentence by means of
the Transparent Intensional Logic (TIL) [9].

4 The Verb Frames and Syntactic Analysis

In the case of a syntactic analysis of a really free word order language as the Czech language
is, we need to exploit the language specific features for obtaining the correct ordering of the
resulting syntactical analyzes. So far the most advantageous approach is the one based upon
valencies of the verb phrase — a crucial concept in traditional linguistics.

The part of the system dedicated to exploitation of information obtained from a list of verb
frames is necessary for solving the prepositional attachment problem in particular. During the
analysis of noun groups and prepositional noun groups in the role of verb valencies in a given
input sentence one needs to be able to distinguish free adjuncts or modifiers from obligatory
valencies. The wordnet classes together with the surface features in complex valency frames
are directly used for setting up a set of heuristic rules that determine whether a noun group
found in the sentence serves here as a free adjunct or not. The heuristics are based on the
lexico-semantic constraints derived from the Verbalex links to the EuroWordNet hypero-
hyponymical hierarchy.

Exploitation of the VerbaLex Verb Valency Lexicon in the Syntactic Analysis of Czech 83

4.1 Automatic Extraction of Verb Frames from the Packed Shared Forest

The verb frame extraction (VFE) process in the synt system is controlled by the metagram-
mar semantic actions. As we have described in the Section 3, we build a forest of values
to represent a result of the application of contextual constraints. The VFE actions are then
executed on a different level (see [8]) than the “usual” actions, which allows us to apply VFE
actions on the whole forest of values.

First of all, we find all noun groups covered by the particular context-free rule. Then
compatible groups® are processed by the VFE action. Notice, that this step suffers from a
possible exponential time complexity because we work with the derivation trees and not with
the packed forest. On the other hand our experiments show (see the Table 1) that in the
average case this is not a problem.

If the analyzed verb has a corresponding entry in Verbalex, we try to match the
extracted frame with frames in the lexicon. When checking the valencies with Verbalex,
the dependence on the surface order is discharged. Before the system confronts the actual
verb valencies from the input sentence with the list of valency frames found in the lexicon,
all the valency expressions are reordered. By using the standard ordering of participants, the
valency frames can be handled as sets independent on the current position of verb arguments.
However, since Verbalex contains an information about the usual verb position within
the frame, we promote the standard ordering with increasing or decreasing the respective
derivation tree probability.

We have measured the results of the first version of the automatic verb frame extraction
on 4117 sentences from the Czech corpus DESAM [10]. We have selected sentences which
are analysed on the rule level 0, i.e. sentences, which do not contain analytically difficult
phenomena like non-projectivity or adjective noun phrase. Even on those sentences the
number of possible valency frames can be quite high (see the Table 1). However, if we
work with intersections of those possible valency frames, we can get a useful reduction
of the number of resulting derivation trees — see the examples described in the next
Section.

4.2 Examples

The projection of the extracted valency frames to the corresponding VerbaLex entry can be
used as effective pruning tool for decreasing the number of successful derivation trees. As an
example of such pruning, we can have a look at the sentence

Pokud *uchazeci kurs rekvalifikace tspéSné absolvuji*, budou mit jisté uplatnéni
v zaméstnani.

If *the candidates successfully complete the retraining course®, they will certainly assert
themselves in their job.

The valency frame for the verb ’absolvovat’ from Verbalex:

absolvovat:1/complete:1 (come or bring to a finish or an end)

AG <person:1> gvbhl ol VERB KNOW <course: 1> %lillat 4

3 Compatible in the term of derivation, i.e. groups within the same derivation tree.

84 D. Hlavickova, A. Hordk, and V. Kadlec

Table 1. The results of verb frame extraction from the corpus DESAM

Number of sentences:

count 4117
Number of words in sentence:
minimum 2.0
maximum 68.0
average 16.8
median 15.0
Number of discovered valency frames:
minimum 0
maximum 37080
average 380
median 11
Elapsed time:
minimum 0.00 s
maximum 274.98 s
average 6.86's
median 0.07 s

There are 132 trees for that sentence in the parsing system synt. Due to the free word
order the sequence of sentence parts is

subject (uchazeci/candidates) — object (kurs/course)
— verb (absolvuji/complete).

According to the valency frame the subject is a noun in nominative and the object is a noun in
accusative. It is evident, that those elements cannot form a nominal phrase. This constriction
reduces the number of trees to 24.

Another example is displayed in the following sentence:

Havel se radil s predstaviteli justice a vnitra o posilen{ prava.
Havel consulted with representatives of judiciary and home office on the consolidation of the
legal system.

The valency frame for the verb ’radit se’ from Verbalex is:

radit se:1/consult:1 (get or ask advice from)

AG <person:1> gvbhlol VERB SOC <person:1>
opt

about_what6

opt
with_whom?7
ENTIABS <entity:1,abstraction:1>

The number of synt trees for this sentence is 2672. The part of sentence with the preposition
’s” (with) and a noun in instrumental and the part of sentence with preposition "o’ (on) and a
noun in locative are necessarily prepositional nominal phrases. The application of such limits
in synt allows a significant reduction of the number of trees to 18.

Exploitation of the VerbaLex Verb Valency Lexicon in the Syntactic Analysis of Czech 85

5 Conclusions

We have presented the results of exploitation of automatic verb frame extraction for Czech as
a language specific feature used for pruning the packed shared forest of results of syntactic
analysis with the synt parser. A necessary tool for this, the VerbaLex lexicon of valency
frames that is being built at FI MU Brno, is also described.

The preliminary results of the exploitation of Verbalex in the syntactic analysis of Czech
are very promising and the precision of the analysis grows significantly. We believe that with
enlarging the lexicon to a representative number of Czech verbs the synt system will be able
to detect the correct derivation tree in many cases which were unsolvable so far.

Acknowledgments

This work has been partially supported by Czech Science Foundation under the project
201/05/2781 and by Grant Agency of the Academy of Sciences of CR under the project
1ET400300414.

References

1. Hordk, A., Smrz, P.: Best analysis selection in inflectional languages. In: Proceedings of
the 19" international conference on Computational linguistics, Taipei, Taiwan, Association for
Computational Linguistics (2002) 363-368.

2. Trueswell, J., Kim, A.: How to prune a garden-path by nipping it in the bud: Fast-priming of verb
argument structures. Journal of Memory and Language (1998) 102-123.

3. Gamallo, P, Agustini, A., Lopes, G.P.: Learning subcategorisation information to model a grammar
with co-restrictions. Traitement Automatique de la Langue 44 (2003) 93-117.

4. Hlavackova, D., Horak, A.: Verbalex — new comprehensive lexicon of verb valencies for czech. In:
Proceedings of the Slovko Conference, Bratislava, Slovakia (2005).

5. Zabokﬂsk}?, Z., Lopatkova, M.: Valency Frames of Czech Verbs in VALLEX 1.0. In Meyers, A.,
ed.: HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation. (2004) 70-77.

6. Pala, K., Sevecek, P.: Valence Ceskych sloves (Valencies of Czech Verbs). In: Proceedings of
Works of Philosophical Faculty at the University of Brno, Brno, Masaryk University (1997) 41-54.

7. Dang, H.T., Kipper, K., Palmer, M., Rosenzweig, J.: Investigating regular sense extensions based
on intersective levin classes. In: Proceedings of Coling-ACL98, Montreal CA (August 11-17,
1998) http://www.cis.upenn.edu/ mpalmer/.

8. Hordk, A., Kadlec, V.: New meta-grammar constructs in Czech language parser synt. In:
Proceedings of Text, Speech and Dialogue 2005, Karlovy Vary, Czech Republic, Springer-Verlag
(2005) 85-92.

9. Hordk, A.: The Normal Translation Algorithm in Transparent Intensional Logic for Czech. Ph.D.
thesis, Faculty of Informatics, Masaryk University, Brno (2002).

10. Pala, K., Rychly, P, Smrz, P.. DESAM — annotated corpus for Czech. In: Proceedings of
SOFSEM 97, Springer-Verlag (1997) 523-530 Lecture Notes in Computer Science 1338.

Hungarian-English Machine Translation Using GenPar

Andras Hécza and Andras Kocsor

Department of Informatics, University of Szeged,
H-6720 Szeged, Arpad tér 2., Hungary
hocza@inf.u szeged.hu, kocsor@inf.u szeged.hu
http://wuw.inf.u szeged.hu

Abstract. We present an approach for machine translation by applying the GenPar
toolkit on POS-tagged and syntactically parsed texts. Our experiment in Hungarian-
English machine translation is an attempt to develop prototypes of a syntax-driven
machine translation system and to examine the effects of various preprocessing
steps (POS-tagging, lemmatization and syntactic parsing) on system performance.
The annotated monolingual texts needed for different language specific tasks were
taken from the Szeged Treebank and the Penn Treebank. The parallel sentences
were collected from the Hunglish Corpus. Each developed prototype runs fully
automatically and new Hungarian-related functions are built in. The results are
evaluated with BLEU score.

1 Introduction

Machine translation (MT) is the application of computers to the translation of texts from one
natural language to another. The practical reason for attempting this is that in many fields
people have to read documents and have to communicate in languages they do not know and
a good quality MT system could provide a quick solution for this problem.

Today’s state of the art in MT has been defined by statistical machine translation (SMT)
systems. The main goal of the 2005 SMT workshop [3] was to build a publicly available
toolkit for experimenting with tree-structured translation models. The GenPar toolkit was
published by organizers of the workshop to allow one to retarget the toolkit to new language
pairs.

In this paper we present a Hungarian-English application of the GenPar toolkit by creating
new prototypes and using available data sources from various treebanks. The manually POS-
tagged and syntactically parsed Hungarian and English texts needed for preprocessing was
derived from the Szeged Treebank [4] and from the Penn Treebank [9]. The Hungarian-
English parallel sentences for testing the GenPar toolkit were collected from the Hunglish
Corpus [16].

This paper is organized as follows. In Section 2 the difficulties of parsing the Hungarian
language are described. Section 3 provides a review of related works and a brief discussion
of efforts made by Hungarian researchers. Section 4 then introduces the GenPar toolkit.
Section 5 presents the details of our experiences, the data sources used, language-specific
modules and test results. Lastly, conclusions and suggestions for future study are given in
Section 6.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 87-94, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

88 A. Ho6cza and A. Kocsor

2 Difficulties of the Hungarian Language

The Hungarian language is customarily defined as an agglutinative, free word order
language with a rich morphology. These properties make a full analysis of it difficult,
compared to Indo-European languages. Machine translation is based on syntactic parsing,
but unambiguous marks for the automatic recognition of phrase boundaries do not exist in
Hungarian.

Another problem is the high morphological and syntactic diversity of the Hungarian
language. Many words with same stem have up to 100 word forms. The (almost) free word
order significantly raises the number of possible patterns and schemas, and this decreases
the effectiveness of statistical machine learning methods applied. Especially the realization
of inflections is a problem because the linguistic information that is stored in word order in
English are expressed with endings in Hungarian A simple example of the inflection problem
is showed in Figure 1.

Lekapcsolnad a lampat? — Would you turn off the lights?

le- — off
kapcsol- — turn
na- — would (hi or shi)
d — you
a — the
lampa- — lamp (— light-s)

t (Iampa — lampat) — (accusative)

Fig. 1. An example of the ending problem in Hungarian-English translation

In the Hungarian language - because of the free word order - more phrase structures
exist than in the English language. Therefore the realization English-Hungarian machine
translation seems to be an easier problem than the Hungarian-English one, because the
translator tool needs to store much less phrase syntax cases for English and it is easier to
recognize and find a possible translation.

3 Related Works

The best SMT systems are driven by translation models that are weighted finite-state
transducers (WFSTs) [11,7]. These methods go beyond the original IBM MT models [2]
by allowing multi-word units (phrases) in one language to be translated directly into phrases
in another language. The phrase-based variety of WFSTs memorizes the translations of word
n-grams rather than just single words. Translating strings of multiple words as a unit is
beneficial in two ways. First, the translations of individual words are more likely to be correct
when they are translated together and have the same context. Second, phrases can capture
local variations in word order, making the decoder’s job easier.

English-Hungarian MT tools, like MetaMorpho [13] have been developed which com-
bines the advantages of example-based and rule-based MT. MetaMorpho has achieved good
results compared to well-known MT systems (e.g. SYSTRAN, PROMPT, SDL). There is

Hungarian-English Machine Translation Using GenPar 89

ongoing work on Hungarian-English machine translation [15], but up till now there was no
good-quality MT tool available for this problem.

One important task is a comparison of the performance of MT systems. Over the past few
years, several automatic metrics for MT evaluation have been introduced, largely to reduce
the human cost of iterative system evaluation during the development cycle [12,8,10]. All
are predicated on the concept of n-gram matching between the sentence hypothesized by
the translation system and one or more reference translations—that is, human translations
for the test sentence. Although the motivations and formulae underlying these metrics are
all different, ultimately they all produce a single number representing the goodness of
the MT system output over a set of reference documents. This method is used mainly
for determining whether a given system modification has a positive impact on the overall
translation performance. For example unigram precision and recall statistics tell us something
about the performance of an MT system’s internal translation dictionaries, but nothing about
reordering. However these metrics cannot provide a precise comparison of MT systems
unless conditions (e.g. reference sentences) are exactly the same when tests are performed.

The BLEU metric [12] is probably the best known Machine Evaluation for MT. Essen-
tially, the algorithm looks for n-gram coincidences between a candidate text (the automati-
cally produced translation) and a set of reference texts (the human-made translations). The
value of N is typically between 1 to 4 (BLEU-4) and its value is always a number between 0
and 1. This value tells us how similar the candidate and reference texts are. In fact, the closer
the value is to 1, the more similar they will be.

4 About GenPar

The GenPar (Generalized Parsing) package is an object-oriented software toolkit for general-
ized parsing. The design is based on the architecture laid down by [10]. In an ordinary parser,
the input is a string, and the grammar ranges over strings. A given method applies generaliza-
tions of ordinary parsing algorithms that allow the input to consist of string tuples and/or the
grammar to range over string tuples. Such inference algorithms can perform various kinds
of analysis on parallel texts, also known as multitexts. Figure 2 shows some of the ways in
which ordinary parsing can be generalized.

The grammar development of GenPar focuses on multitext grammar (MTG), which is an
abstract generalization of context-free grammar (CFG) to the synchronous case [10]. In this
way, MTGs generate tuples of parse trees that are isomorphic up to the reordering of sibling
nodes and deletion. Figure 3 shows a typical representation of a multidimensional tree that
might be generated by an MTG.

The main goal of the 2005 SMT workshop [3] was to build a publicly available toolkit for
experimenting with tree-structured translation models. The GenPar toolkit was published by
organizers of workshop to allow one to apply the toolkit to new language pairs. The design
of GenPar has two goals:

— Flexibility: The toolkit should support many parser variants, and should be easily
configurable into one of them at run time.
— Extensibility: It should be easy to add new features and new functions.

To satisty the above requirements, the parser was decomposed into different components
and each type of component was defined by an object class family. This decomposition helps

90 A. Ho6cza and A. Kocsor

generalized parsing
(any D; any I

\§§ ﬁanslah \
e (D>=1)

word ™,

gnme1

syn c:hron ous
parsing
@)

\

dimensionality of grammar
n W
%,
Q,
B
%

ordlna

parslng
(B—L 1)
1] 2 3 synchronization
I = dimensionality of input \\(,r,_ 5;/

D=
)

ordinary &
parsing =

Fig. 2. Generalizations of ordinary parsing [10]

[Y

[]/TJ o])
P e

Fig. 3. Short example of 2D multitree [10]

the parser to support more variations and to be easily configured on demand. It also makes
the parser more easily extendible.

GenPar provides an integrated prototype system to save the toolkit users a lot of effort
of system integration. Hence it is easy to retarget the toolkit to new language pairs. Each
prototype contains the software modules and configuration files necessary for training,
testing, and evaluation with a particular language pair. A default directory structure and
execution order are shows in Figure 4.

With the GenPar toolkit, prototypes are provided for three different language pairs:
Arabic-English, French-English and English-English. These prototypes give an overview of
all of the modules. The code distributed with GenPar is suffient to run all but the preprocess
modules. The default configuration of the sandbox is to use previously preprocessed data
sets that were shipped with the software. However, the preprocessing modules are necessary
for applying the system on new data sets, but the installation guide describes how to
obtain and install the additional modules. These language-specific modules are tokenization,
lemmatization, POS-tagging and syntactic parsing.

Hungarian-English Machine Translation Using GenPar 91

inTut

Preprocess

— W2wW
hieralign

+
T~ initgramma

retrain

in{)ut

__— preprocess

prototype

T mulliparse

translate

evaluate ———— ByNGram

Fig. 4. Default execution [3]

The example prototypes contain not just different language pairs but different execution
orders as well. The following languages have different properties:

— English: is tokenized, POS-tagged and syntactically parsed in each prototype using the
formalism of Penn Treebank.

— Arabic: is tokenized and lemmatized in a different way because of the properties of
language. POS-tagging and syntactic parsing are done based on the reduced formalism
of the Penn Arabic Treebank

— French: is POS-tagger and syntactic parser were not used hence these texts are unparsed.

5 Experiences

In this section the Hungarian-English application of GenPar will be described that used
datasources and preparation of language-specific modules. The results of applied GenPar
prototypes for Hungarian-English machine translation are also described.

5.1 Evaluation Domains

One of the most notable of all, the Penn Treebank project [9] produced skeletal parses on top
of an initial POS tagging containing rough syntactic and semantic information on about 2.5
million words of American English. The syntactic parsing of the texts included the annotation
of predicate-argument structures.

In order to perform well and learn from the various Natural Language Processing tasks,
an adequately large corpus had to be collected to serve as the training database. A relatively
large corpus of Hungarian texts of various types was collected, and later called the Szeged

92 A. Ho6cza and A. Kocsor

Treebank [4]. It has six topic areas of roughly 200 thousand words each, meaning a text
database of some 1.2 million words. The treebank contains about 82,000 POS-tagged and full
syntactic parsed sentences. The Hungarian version of the internationally acknowledged MSD
(Morpho-Syntactic Description) schema [5] was used for the encoding of the words. The
MSD encoding schema can store morphological information about part-of-speech determined
attributes on up to 17 positions. About 1800 different MSD labels are employed in the
annotated corpus. The syntactic tag-set used in the corpus has a correlation with many other
internationally accepted syntactic tag-sets.

Parallel sentences were selected from the Hunglish Corpus [16], a sentence-aligned
Hungarian-English parallel corpus of about 54.2 m words in 2.07 m sentence pairs. The
corpus was manually collected in eight topic areas and was aligned with automatic methods.

5.2 Language Specific Modules

The input texts of GenPar are sentence-aligned. Therefore the first step of preprocessing is
the tokenization process where the sentences are split into words and punctuation marks.
The Hungarian tokenization task was similar as English tokenization was implemented in the
original prototypes. The Ratnaparkhi’s POS-tagger [14] was used for both languages and it
was trained on parts of the Szeged Treebank and Penn Treebank. The Hungarian texts were
lemmatized in some prototypes in order to decrease stored word-forms in the word-to-word
alignment model of GenPar. This method determines the stem of words by using parts of
speech information and the stem-dictionary gathered from the Szeged Treebank. English texts
are not lemmatized in all prototypes. The syntactic parsing of English texts was performed
by Dan Bikel’s parser [1], and the actual data for training was derived from 2-21 sections of
the Penn Treebank. The Hungarian texts were syntactically parsed with the PGS parser [6]
that was trained on the Szeged Treebank.

5.3 Results

The evaluation was performed on 5k training and 500 test sentence pairs selected from the
Hunglish Corpus. The results are not suitable for comparing its performance with other
MT systems because the “goodness” of translation is related to the rate of unknown words,
word-forms and word order of syntactic structures. On the other hand it is a harder task to
learn something from training only, an MT system can be prepared more by people for the
translation of general or special texts, e.g. using a dictionary. Hence the BLEU metric was
used to determine which modification has a positive impact on the performance.

New prototypes were created from existing ones to run on GenPar with different
preprocessing steps and the models were evaluated on test sentences. Prototype 1 was
performed like the French-English one where the source language was unparsed. The results
were quite poor; probably the 5500 sentences are not enough for the parser to recognize the
occurrence of word-forms. Prototype 2 tries to reduce the number of word-forms in word-
to-word alignment model of GenPar by lemmatization. Prototype 3 is the same as Prototype
2, but the Hungarian texts are POS-tagged. The results are worse than with Prototype 2,
because GenPar has to store the morpho-syntactic category of words and this increases the
uncertainty. Prototype 4 uses each available preprocessing step for Hungarian including
syntactic parsing. The results of experiences with prototypes are shown in Table 1.

Hungarian-English Machine Translation Using GenPar 93
Table 1. The BLEU score for different prototypes

BLEU-4 1-gram 2-gram 3-gram 4-gram
Prototype 1 0.033 0.343 0.094 0.059 0.035
Prototype 2 0.114 0.457 0.197 0.106 0.068
Prototype 3 0.085 0.374 0.134 0.076 0.049
Prototype 4 0.191 0.521 0.275 0.186 0.135

6 Summary and Future Work

In this paper, we showed how the GenPar toolkit could be applied to Hungarian-English
machine translation. New language-specific modules and prototypes were developed in
GenPar. In order to perform Hungarian-English machine translation, manually POS-tagged
and syntactically parsed Hungarian and English texts were gathered from the Szeged
Treebank and from the Penn Treebank and parallel sentences were collected from the
Hunglish Corpus. The BLEU metric was used to determine the effects of modifications on
translation performance. In the future we plan to investigate more methods for improving the
performance of GenPar on Hungarian-English and we will utilize our experiences in our MT
methods.

References

1. Bikel, D.: A distributional analysis of a lexicalized statistical parsing model. In Proceedings of
the 9" Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona,
Spain (2004).

2. Brown, Peter F., Stephen A. Della Pietra, Vincent Della J. Pietra, and Robert L. Mercer.: The
mathematics of statistical machine translation: Parameter estimation. Computational Linguistics
(1993), 19(2):263-312, June.

3. Burbank, A., Carpuat, M., Clark, S., Dreyer, M., Fox, P, Groves, D., Hall, K., Hearne, M.,
Melamed, I. D., Shen, Y., Way, A., Wellington, B., Wu, D.: Final Report of the 2005 Language
Engineering Workshop on Statistical Machine Translation by Parsing, November.

4. Csendes, D., Csirik, J., Gyiméthy, T., Kocsor, A.: The Szeged Treebank. In Proceedings of the gth
International Conference on Text, Speech and Dialogue, TSD 2005, Karlovy Vary, pp. 123-131.

5. Erjavec, T. and Monachini, M., ed.: Specification and Notation for Lexicon Encoding. Copernicus
project 106 “MULTEXT-EAST”, Work Package WP1 - Task 1.1 Deliverable D1.1F (1997).

6. Hocza, A., Felfoldi, L., Kocsor, A.: Learning Syntactic Patterns Using Boosting and Other
Classifier Combination Schemas, in Proceedings of the 8t International Conference on Text,
Speech and Dialogue, TSD 2005, Karlovy Vary, pp. 69-76.

7. Kumar, S., Byrne, W.: A weighted finite-state transducer implementation of the alignment template
model for statistical machine translation. In Proceedings of the Human Language Technology
Conference and the North American Association for Computational Linguistics (HLT-NAACL),
pages 63—70, Edmonton, Canada (2003)

8. Lin, Chin-Yew and Och, Franz Josef: Automatic evaluation of machine translation quality using
longest common subsequence and skip-bigram statistics. In Proceedings of the 42" Annual
Meeting of the ACL (2004), pp. 606—613.

9. Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus of English: the
Penn Treebank. in Computational Linguistics (1993), vol. 19.

94

10.

11.

12.

13.

14.

15.

16.

A. Ho6cza and A. Kocsor

Melamed, I. D., and Wei Wang: Statistical Machine Translation by Generalized Parsing. Technical
Report 05-001, Proteus Project, New York University (2005).

Och, Franz Josef and Hermann Ney: Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of the 40" Annual Meeting of the Association for
Computational Linguistics (ACL), Philadelphia (2002), July

Papineni, K., Roukos, S., Ward, T., Zhu, W. J.: BLEU: a method for automatic evaluation of
machine translation. In Proceedings of the 40" Annual Meeting of the ACL (2002), pp. 311-318,
Prészéky, G., Tihanyi, L.: MetaMorpho: A Pattern-Based Machine Translation Project. 24™
*Translating and the Computer’ Conference, 19-24, London, United Kingdom (2002).
Ratnaparkhi, A.: A linear observed time statistical parser based on maximum entropy models.
In Proceedings of the 2" Conference on Empirical Methods in Natural Language Processing
(EMNLP), Providence, Rhode Island (1997).

Tihanyi, L., Csendes, D., Merényi, Cs., Gyarmati, A.: Technical report of NKFP-2/008/2004
(2005).

Varga, D., Németh, L., Haldcsy, P., Kornai, A., Trén, V., Nagy, V.: Parallel corpora for medium
density languages. In Proceedings of the Recent Advances in Natural Language Processing 2005
Conference, pp. 590-596.

Combining Czech Dependency Parsers*

Tomés Holan and Zdenék Zabokrtsky

Faculty of Mathematics and Physics, Charles University
Malostranské nam. 25, CZ-11800 Prague, Czech Republic
{tomas.holan, zdenek.zabokrtsky}@mff.cuni.cz

Abstract. In this paper we describe in detail two dependency parsing techniques
developed and evaluated using the Prague Dependency Treebank 2.0. Then we propose
two approaches for combining various existing parsers in order to obtain better
accuracy. The highest parsing accuracy reported in this paper is 85.84 %, which
represents 1.86 % improvement compared to the best single state-of-the-art parser.
To our knowledge, no better result achieved on the same data has been published yet.

1 Introduction

Within the domain of NLP, dependency parsing is nowadays a well-established discipline.
One of the most popular benchmarks for evaluating parser quality is the set of analytical
(surface-syntactic) trees provided in the Prague Dependency Treebank (PDT). In the present
paper we use the beta (pre-release) version of PDT 2.0, which contains 87,980 Czech
sentences (1,504,847 words and punctuation marks in 5,338 Czech documents) manually
annotated at least to the analytical layer (a-layer for short).

In order to make the results reported in this paper comparable to other works, we use
the PDT 2.0 division of the a-layer data into training set, development-test set (d-test),
and evaluation-test set (e-test). Since all the parsers (and parser combinations) presented in
this paper produce full dependency parses (rooted trees), it is possible to evaluate parser
quality simply by measuring its accuracy: the number of correctly attached nodes divided by
the number of all nodes (not including the technical roots, as used in the PDT 2.0). More
information about evaluation of dependency parsing can be found e.g. in [1].

Following the recommendation from the PDT 2.0 documentation for the developers of
dependency parsers, in order to achieve more realistic results we use morphological tags
assigned by an automatic tagger (instead of the human annotated tags) as parser input in all
our experiments.

The rest of the paper is organized as follows: in Sections 2 and 3, we describe in detail
two types of our new parsers. In Section 4, two different approaches to parser combination
are discussed and evaluated. Concluding remarks are in Section 5.

* The research reported on in this paper has been carried out under the projects 1ET101120503, GACR
207-13/201125, 1ET100300517, and LC 536.
! For a detailed information and references see http: //ufal .mff.cuni.cz/pdt2.0/

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 95-102, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

96 T. Holan and Z. Zabokrtsky

2 Rule-Based Dependency Parser

In this section we will describe a rule-based dependency parser created by one of the authors.
Although the first version of the parser was implemented already in 2002 and its results have
been used in several works (e.g. [2]), no more detailed description of the parser itself has
been published yet.

The parser in question is not based on any grammar formalism (however, it has been
partially inspired by several well-known formal frameworks, especially by unification
grammars and restarting automata). Instead, the grammar is ‘hardwired’ directly in Perl code.
The parser uses tred/btred/ntred” tree processing environment developed by Petr Pajas. The
design decisions important for the parser are described in the following paragraphs.

One tree per sentence. The parser outputs exactly one dependency tree for any sentence,
even if the sentence is ambiguous or incorrect. As illustrated in Figure 1 step 1, the parser
starts with a flat tree — a sequence of nodes attached below the auxiliary root, each of them
containing the respective word form, lemma, and morphological tag. Then the linguistically
relevant oriented edges are gradually added by various techniques. The structure is connected
and acyclic at any parsing phase.

No backtracking. We prefer greedy parsing (allowing subsequent corrections, however) to
backtracking. If the parser makes a bad decision (e.g. due to insufficient local information)
and it is detected only much later, then the parser can ‘rehang’ the already attached node
(rehanging becomes necessary especially in the case of coordinations, see steps 3 and 6 in
Figure 1). Thus there is no danger of exponential expansion which often burdens symbolic
parsers.

Bottom-up parsing (reduction rules). When applying reduction rules, we use the idea of
a ‘sliding window’ (a short array), which moves along the sequence of ‘parentless’ nodes
(the artificial root’s children) from right to left.> On each position, we try to apply simple
hand-written grammar rules (each implemented as an independent Perl subroutine) on the
window elements. For instance, the rule for reducing prepositional groups works as follows:
if the first element in the window is an unsaturated preposition and the second one is a noun
or a pronoun agreeing in morphological case, then the parser ‘hangs’ the second node below
the first node, as shown in the code fragment below (compare steps 9 and 10 in Figure 1):

sub rule adj noun($) {
my $win = shift;
if (adjectival($win >[0]) and noun($win >[1])
and ($win >[0] >{p ordinal} or
(agr case($win >[0],$win >[1]) and
agr number ($win >[0],$win >[1]) and
agr gender($win >[0],$win >[11)))) {
return hang($win >[0],$win >[1]);
} else { return O }
}

sub rule prep noun($) {

2http://ufal.mff.cuni.cz/“pajas/tred/index.html
3 Our observations show that the direction choice is important, at least for Czech.

Combining Czech Dependency Parsers 97

my $win = shift;
if (preposition($win >[0])
and nominal ($win >[1])
and not $win >[0] >{p saturated}){
$win >[0] >{p saturated}=1;
return hang($win >[1],$win >[0]);
} else { return O }

The rules are tried out according to their pre-specified ordering; only the first applicable
rule is always chosen. Then the sliding window is shifted several positions to the right
(outside the area influenced by the last reduction, or to the right-most position), and slides
again on the shortened sequence (the node attached by the last applied rule is not the root’s
child any more). Presently, we have around 40 reduction rules and — measured by the number
of edges — they constitute the most productive component of the parser.

Interface to the tagset. Morphological information stored in the morphological tags is
obviously extremely important for syntactic analysis. However, the reduction rules never
access the morphological tags directly, but exclusively via a predefined set of ‘interface’
routines, as it is apparent also in the above rule samples. This routines are not always
straightforward, e.g. the subroutine adjectival recognizes not only adjectives, but also
possessive pronouns, some of the negative, relative and interrogative pronouns, some
numerals etc.

Aucxiliary attributes. Besides the attributes already included in the node (word form, lemma,
tag, as mentioned above), the parser introduces many new auxiliary node attributes. For
instance, the attribute p saturated used above specifies whether the given preposition
or subordinating conjunction is already ‘saturated’ (with a noun or a clause, respectively),
or special attributes for coordination. In these attributes, a coordination conjunction which
coordinates e.g. two nouns pretends itself to be a noun too (we call it the effective part
of speech), so that e.g. a shared attribute modifier can be attached directly below this
conjunction.

External lexical lists. Some reduction rules are lexically specific. For this purpose, various
simple lexicons (containing e.g. certain types of named entities or basic information about
surface valency) have been automatically extracted either from the Czech National Corpus or
from the training part of the PDT, and are used by the parser.

Clause segmentation. In any phase of the parsing process, the sequence of parentless nodes
is divided into segments separated by punctuation marks or coordination conjunctions; the
presence of a finite verb form is tested in every segment, which is extremely important for
distinguishing interclausal and intraclausal coordination.*

Top-down parsing. The application of the reduction rules can be viewed as bottom-up
parsing. However, in some situations it is advantageous to switch to the top-down direction,
namely in the cases when we know that a certain sequence of nodes (which we are not able
to further reduce by the reduction rules) is of certain syntactic type, e.g. a clause delimited on
one side by a subordinating conjunctions, or a complex sentence in a direct speech delimited
from both sides by quotes. It is important especially for the application of fallback rules.

4 In our opinion, it is especially coordination (and similar phenomena of non-dependency nature) what
makes parsing of natural languages so difficult.

98 T. Holan and Z

Od spravy se rownéz osekava

2. rovnéz ocekava ,

. Zabokrtsky

e zabezpedi levné a poslusné pracovni sily

e zabezpeti levné a poslusné sily

spravy se

spravy se

spravy se

rovnéz otekava , z

pracovni

fovnéz otekava ,

zabezpedi a

levné. poslusné pracovni

rovnéz otekava , z

/a poslusné pracovni

levné

Od spravy se fovngz obekava

Od spravy se rovngz ofekava

Od spravy se rovnéz otekava

Od spravy se rownsz ocekavd ze

ze zabezpec! [sily .

2\ pracovni

levné poslugné

e zabezpeti

sity

'\ pracovni

levné poslusné

ze

zabezpeci

sity

ja’\ pracovni

levné poslusné

zabezpeti

sity

fa’\ pracovni

levné poslusné

d se rovnéz otekava ze

10 sprévy . zabezpeti
sity

ja’\ pracovni

lewné poslusné

se_tovigz otekavd ze

11 d . zabezpeti
spravy sily
fa’\ pracovni

levné poslusné

d jze

12. spravy . zabezpeti
sy
ja’\ pracovni

levné poslusné

rovigz otekava

Z se 26
13. spravy . zabezpeci
ity
/a\ pracovni

levné poslusné

14. spravy , zabezpeti

sily

2\ pracovni

levné poslusné

Fig. 1. Step-by-step processing of the sentence ‘Od sprdvy se rovéZ ocekdvd, Ze zabezpeli levné a
poslusné pracovni sily.’ (The administration is also supposed to ensure cheap and obedient manpower.)
by the rule-based parser.

Combining Czech Dependency Parsers 99

Fallback rules. We are not able to describe all language phenomena by the reduction rules,
and thus we have to use also heuristic fallback rules in some situations. For instance, if we
are to parse something what is probably a single clause and no reduction rules are no longer
applicable, then the finite verb is selected as the clause head and all the remaining parentless
nodes are attached below it (steps 11-14 in Figure 1).

Similar attempts to parsing based on hand-coded rules are often claimed to be hard to
develop and maintain because of the intricate interplay of various language phenomena.
In our experience and contrary to this expectation, it is possible to reach a reasonable
performance (see Table 1), speed and robustness within one or two weeks of development
time (less than 2500 lines of Perl code). We have also verified that the idea of our parser can
be easily applied on other languages — the preliminarily estimated accuracy of our Slovene,
German, and Romanian rule-based dependency parsers is 65-70 % (however, the discussion
about porting the parser to other languages goes beyond the scope of this paper).

As for the parsing speed, it can be evaluated as follows: if the parser is executed in the
parallelized ntred environment employing 15 Linux servers, it takes around 90 seconds to
parse all the PDT 2.0 a-layer development data (9270 sentences), which gives roughly 6.9
sentences per second per server.

3 Pushdown Dependency Parsers

The presented pushdown parser is similar to those described in [3] or [4]. During the training
phase, the parser creates a set of premise-action rules, and applies it during the parsing phase.
Let us suppose a stack represented as a sequence 71 . .. 11j, where n; is the top element; stack
elements are ordered triplets <form,lemma,tag>. The parser uses four types of actions:

— read a token from the input, and push it into the stack,

— attach the top item n of the stack below the artificial root (i.e., create a new edge between
these two), and pop it from the stack,

— attach the top item 7| below some other (non-top) item 7n;, and pop the former from the
stack,

— attach a non-top item n; below the top item 71, and remove the former from the stack.’

The forms of the rule premises are limited to several templates with various degree of
specificity. The different templates condition different parts of the stack and of the unread
input, and previously performed actions.

In the training phase, the parser determines the sequence of actions which leads to the
correct tree for each sentence (in case of ambiguity we use a pre-specified preference ordering
of the actions). For each performed action, the counters for the respective premise-action pairs
are increased.

During the parsing phase, in each situation the parser chooses the premise-action pair
with the highest score; the score is calculated as a product of the value of the counter of the
given pair and of the weight of the template used in the premise (see [5] for the discussion

5 Note that the possibility of creating edges from or to the items in the middle of the stack enables the
parser to analyze also non-projective constructions.

100 T. Holan and Z. Zabokrtsky

about template weights), divided by the exponentially growing penalty for the stack distance
between the two nodes to be connected.

In the following section we use four versions of the pushdown parser: L2R — the basic
pushdown parser (left to right), R2L — the parser processing the sentences in reverse
order, L23 and R23 — the parsers using 3-letter suffices of the word forms instead of the
morphological tags.

The parsers work very quickly; it takes about 10 seconds to parse 9270 sentences from
PDT 2.0 d-test on PC with one AMD Athlon 25004. Learning phase takes around 100
seconds.

4 Experiments with Parser Combinations

This section describes our experiments with combining eight parsers. They are referred to
using the following abbreviations: McD (McDonnald’s maximum spanning tree parser, [61).5
COL (Collins’s parser adapted for PDT, [7]), ZZ (rule-based dependency parser described
in Section 2), AN (Holan’s parser ANALOG which has no training phase and in the parsing
phase it searches for the local tree configuration most similar to the training data, [5]), L2R,
R2L, L23 and R32 (pushdown parsers introduced in Section 3). For the accuracy of the
individual parsers see Table 1.

We present two approaches to the combination of the parsers: (1) Simply Weighted
Parsers, and (2) Weighted Evaluation Classes.

Simply Weighted Parsers (SWP). The simplest way to combine the parsers is to select
each node’s parent out of the set of all suggested parents by simple parser voting. But as
the accuracy of the individual parsers significantly differ (as well as the correlation in parser
pairs), it seems natural to give different parsers different weights, and to select the eventual
parent according to the weighted sum of votes. However, this approach based on local
decisions does not guarantee cycle-free and connected resulting structure. To guarantee its
‘treeness’, we decided to build the final structure by the Maximum Spanning Tree algorithm
(see [6] for references). Its input is a graph containing the union of all edges suggested by
the parsers; each edge is weighted by the sum of weights of the parsers supporting the given
edge. We limited the range of weights to small natural numbers; the best weight vector has
been found using a a simple hill-climbing heuristic search.

We evaluated this approach using 10-fold cross evaluation applied on the PDT 2.0 a-layer
d-test data. In each of the ten iterations, we found the set of weights which gave the best
accuracy on 90 % of d-test sentences, and evaluated the accuracy of the resulting parser
combination on the unseen 10 %. The average accuracy was 86.22 %, which gives 1.98
percent point improvement compared to McD. It should be noted that all iterations resulted
in the same weight vector: (10, 10, 9, 2, 3, 2, 1, 1) for the same parser ordering as in Table 1.
Figure 2 shows that the improvement with respect to McD is significant and relatively stable.

When the weights were ‘trained’ on the whole d-test data and the parser combination
was evaluated on the e-test data, the resulting accuracy was 85.84 % (1.86 % improvement
compared to McD), which is the best e-test result reported in this paper.’

6 We would like to thank Véclav Novak for providing us with the results of McD on PDT 2.0.
7 Of course, in all our experiments we respect the rule that the e-test data should not be touched until
the developed parsers (or parser combinations) are ‘frozen’.

Combining Czech Dependency Parsers 101

Table 1. Percent accuracy of the individual parsers when applied (separately) on the PDT 2.0 d-test and
e-test data.

McD COL ZZ AN R2L L2R R23 L23
d-test 84.24 81.55 76.06 71.45 73.98 71.38 61.06 54.88
e-test 83.98 80.91 75.93 71.08 73.85 71.32 61.65 53.28

87,00
86,50 | 2048 oo an gsaz 8636 5644 8639 86,42
| ZEee — 86,18 56122
86,007
85,67 85,68
85,50
85,00 84,88
84,70 84,72 [meD
84,50 - 84,39 84,34 84.24 LIswp
84,17 84,06 [——1
84,00 83,89 e
83,50 8346
83,00
0 1 2 3 4 5 & 7 8 9 AVG

Fig. 2. Accuracy of the SWP parser combination compared to the best single McD parser in 10-fold
evaluation on the d-test data.

Weighted Equivalence Classes (WEC). The second approach is based on the idea of
partitioning the set of parsers into equivalence classes. At any node, the pairwise agreement
among the parsers can be understood as an equivalence relation and thus implies partitioning
on the set of parsers. Given 8 parsers, there are theoretically 4133 possible partitionings (in
fact, there are only 3,719 of them present in the d-test data), and thus it is computationally
tractable.

In the training phase, each class in each partitioning obtains a weight which represents
the conditional probability that the class corresponds to the correct result, conditioned by
the given partitioning. Technically, the weight is estimated as the number of nodes where
the given class corresponds to the correct answer divided by the number of nodes where the
given partitioning appeared.

In the evaluation phase, at any node the agreement of results of the individual parsers
implies the partitioning. Each of the edges suggested by the parsers then corresponds to
one equivalence class in this partitioning, and thus the edge obtains the weight of the
class. Similarly to the former approach to parser combination, the Maximum Spanning Tree
algorithm is applied on the resulting graph in order to obtain a tree structure.

Again, we performed 10-fold cross validation using the d-test data. The resulting average
accuracy is 85.41 %, which is 1.17 percentage point improvement compared to McD. If the
whole d-test is used for weight extraction and the resulting parser is evaluated on the whole
e-test, the accuracy is 85.14 %.

102 T. Holan and Z. Zabokrtsky

The interesting property of this approach to parser combination is that if we use the
same set of data both for the training and evaluation phase, the resulting accuracy is the
upper bound for of all similar parser combinations based only on the information about local
agreement/disagreement among the parsers. If this experiment is performed on the whole
d-test data, the obtained upper bound is 87.15 %.

5 Conclusion

In our opinion, the contribution of this paper is threefold. First, the paper introduces two
(types of) Czech dependency parsers, the detailed description of which has not been published
yet. Second, we present two different approaches to combining the results of different
dependency parsers; when choosing the dependency edges suggested by the individual
parsers, we use the Maximum Spanning Tree algorithm to assure that the output structures are
still trees. Third, using the PDT 2.0 data, we show that both parser combinations outperform
the best existing single parser. The best reported result 85.84 % corresponds to 11.6 % relative
error reduction, compared to 83.98 % of the single McDonald’s parser.

References

1. Zeman, D.: Parsing with a Statistical Dependency. PhD thesis, Charles University, MFF (2004).

2. Zeman, D., Zabokrtsky, Z.: Improving Parsing Accuracy by Combining Diverse Dependency
Parsers. In: Proceedings of the 9™ nternational Workshop on Parsing Technologies, Vancouver,
B.C., Canada (2005).

3. Holan, T.: Tvorba zdvislostniho syntaktického analyzitoru. In: Sbornik semindfe MIS 2004.
Matfyzpress, Prague, Czech Republic (2004).

4. Nivre, J., Nilsson, J.: Pseudo-Projective Dependency Parsing. In: Proceedings of ACL’05, Ann
Arbor, Michigan (2005).

5. Holan, T.: Genetické uceni zdvislostnich analyzatord. In: Sbornik seminafe ITAT 2005. UPJS,
Kosice (2005).

6. McDonald, R., Pereira, F., Ribarov, K., Haji¢, J.: Non-Projective Dependency Parsing using
Spanning Tree Algorithms. In: Proceedings of HTL/EMNLP’05, Vancouver, BC, Canada (2005).

7. Hajic, J., Collins, M., Ramshaw, L., Tillmann, C.: A Statistical Parser for Czech. In: Proceedings
ACL 99, Maryland, USA (1999).

Processing Korean Numeral Classifier Constructions
in a Typed Feature Structure Grammar

Jong-Bok Kim! and Jachyung Yang?

1 School of English, Kyung Hee University, Seoul, 130-701, Korea
jongbok@khu.ac.kr
2 School of Computer Engineering, Kangnam University, Kyunggi, 449-702, Korea
jhyang@kangnam.ac.kr

Abstract. The syntactic and semantic complexity of the so-called numeral classifier
(Num-Cl) constructions in Korean challenges theoretical as well as computational lin-
guists. We provide a constraint-based analysis of these constructions within the frame-
work of HPSG with the semantic representations of MRS (Minimal Recursion Se-
mantics) and reports its implementation in the LKB (Linguistic Knowledge Building)
system.

1 Basic Data and Issues

One of the most salient features of languages like Korean is the complex behavior of numeral
classifiers.! There exist at least three different environments where the numeral-classifier
(Num-CL) expression can appear:2

(1) a. Genitive-Case (GC) Type:

sey myeng-uy haksayng-i o-ass-ta
three CL-GEN student-NOM come-PST-DECL
‘Three students came.’

b. Noun Initial (NI) Type:
haksayng sey myeng(-i) o-ass-ta
student three CL-NOM come-PST-DECL

c. Noun-Case (NC) Type:
haksayng-i sey myeng-i o-ass-ta
student-NOM three CL-NOM come-PST-DECL

In the GC type, the Num-CL appears with the genitive case marking, preceding the modifying
NP. In the NI type, the Num-CL sequence follows a caseless N, whereas in the NC type both
the head noun and the following Num-CL are case-marked.

! Our thanks go to anonymous reviewers for the comments and suggestions. This work was supported
by the Korea Research Foundation Grant funded by the Korean Government (KRF-2005-042-
A00056).

2 The abbreviations used for glosses and feature attributes in this paper are as follows: CL (CLAS-
SIFIER), CONJ (CONJUNCTION), COP (COPULA), COMP (COMPLEMENTIZER), DECL (DECLARA-
TIVE), GEN (GENITIVE), LBL (LABEL), LTOP (LOCAL TOP), NOM (NOMINATIVE), PNE (PRENOM-
INAL ENDING), PST (PAST), RELS (RELATIONS), SEM (SEMANTICS), SPR (SPECIFIER), SYN
(SYNTAX), TOP (TOPIC), etc.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 103-110, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

104 J.-B. Kim and J. Yang

The foremost difficulty in parsing these constructions comes from the NC type in which
the Num-CL floats away from its antecedent:

(2) pemin-i cengmal sey myeng-i/*-ul te iss-ta
criminal-NOM really three CL-NOM/ACC more exist-DECL
“There are three more criminals.’

Within a system where no movement is allowed, it is not an easy task to correctly link the
Num-CL to its remote antecedent.

In order to build a computationally feasible Korean grammar that can yield deep-parsing
results, the grammar needs to form these three types of numeral classifier constructions and
obtain semantics appropriate for each type. This paper shows that a typed feature structure
grammar, HPSG, together with Minimal Recursion Semantics (MRS), is well-suited in
providing the proper syntax and semantics of these three types of constructions.

2 Data Distribution

We have inspected the Sejong Treebank Corpus to figure out the distributional frequency
of Korean numeral classifiers in real texts. From the corpus of total 378,689 words (33,953
sentences), we identified 694 occurrences of numeral classifier expressions and identified the
top 8 most frequently-used classifiers:

®) CL Type Frequency Examples
pen 158 oycwul han pen ‘outgoing one CL’
salam 103 swunkem han salam ‘policeman one CL’
kaci 70 yuhyung twu kaci ‘type two CL’
myeng 56 kkoma han myeng ‘child one CL”
kay 50 pang two kay ‘room two CL’
mali 27 say han mali ‘bird one CL’
cang 25 pyenci han cang ‘letter one CL’
tay 20 cenhwa twu tay ‘phone two CL’

Of the 694 examples, we identified 86 GC examples, 104 NI examples, and 36 NC examples.
The remaining 468 examples consist of 365 anaphoric usages and 103 miscellaneous
usages(e.g, ordinal, appositive usages).4 As expected, the NI type occurs more often than
the other two types. The NC patterns are relatively rare partly because the Sejong Corpus we
inspected consists mainly of written texts. However, the statistics clearly show these three
categories are legitimate constructions and should be taken into consideration if we want to
build a robust grammar for Korean numeral classifiers. This research limited its scope to these
three main types.

3 Minimal Recursion Semantics, developed by [1], is a framework of computational semantics
designed to enable semantic composition using only the unification of type feature structures. See [1]
and [2]. The value of the attribute SEM(ANTICS) in our system represents a simplified MRS.

4 Examples like sey myeng-i 0-ass-ta ‘three CL-NOM come-PST-DECL’ are anaphoric usages in the
sense that the antecedent of the Num-CL is within the given context.

Korean Numeral Classifier Constructions 105
3 Implementing an Analysis

3.1 Forming a Numeral-Classifier Sequence and Its Semantics

The starting point of the analysis is forming the well-formed Num-CL expressions. Syntac-
tically, numeral classifiers are a subclass of nouns (for Japanese see [3]). However, unlike
common nouns, they cannot stand alone and must combine with a numeral or a limited set of
determiners:® *(twu) kay ‘two CL’ (Numeral), *(yeleo/myech) kay ‘several CL’ (Quantifier),
and *(myech) kay ‘how many’ (Interrogative). Semantically, there are tight sortal constraints
between the classifiers and the nouns (or NPs) they modify. For example, pen can classify
only events, tay machinery, and kwuen just books. Such sortal constraints block classifiers
like tay from modifying thin entities like books as in *chayk twu tay ‘book two-CL’. Reflect-
ing these syntactic and semantic properties, we can assign the following lexical information
to numerals (num-det) and classifiers (cl-n) within the feature structure system of HPSG and
MRS.6

4 B [cl-n
num-det ORTH (myeng)
ORTH (sey) -
r HEAD POS noun
SYN [HEAD | FOS 44! CLTYPE +
NUM + SYN
B r 7 VAL | SPR ([NUM * })
INDEX i .
a. HOOK ' b, INDEX i
LTOP h2 -
- HOOK INDEX i
SEM PRED card_rel LTOP hl
LBL h2
RELS ARGO i SEM PRED person_rel
CARG3 RELS(| LBL il
- -) - ARGO i

The feature structure in (4a) represents that there exists an individual x whose CARG
(constant argument) value is “3”. The feature NUM is assigned to the numerals as well as to
determiners like yele ‘several’ and myech ‘some’ which combine with classifiers. Meanwhile,
(4b) indicates that syntactically a classifier selects a NUM element through the SPR,
whereas semantically it belongs to the ontological category person_rel. The feature CLTYPE
differentiates classifiers from common nouns. Assuming that only [NUM +] elements can
combine with the [CLTYPE +], we can rule out unwanted forms such as *ku myeng ‘the
CL’. In addition, unlike quantifier determiners motun ‘all’ as in ku motun haksayng ‘the
all student’, nothing can intervene between the NUM and CL. Our grammar captures these

5 A limited set of common nouns such as salam ‘person’, kulus ‘vessel’, can ‘cup’, khep ‘cup’, and
thong ‘bucket’ can also function as classifiers.

6 The value of LBL is a token to a given EP (elementary predicate). The feature HOOK includes
externally visible attributes of the atomic predications in RELS. The value of LTOP is the local top
handle, the handle of the relations with the widest scope within the constituent. See [1] for the exact
functions of each attribute.

106 J.-B. Kim and J. Yang

multi-word like properties by treating the Num-CL sequence as a multiword (mw) expression
formed by the following rule:’

5) Num-CL Rule:
num-det
[num—cl—mw]—) | [CLTYPE +]
NUM +

When this rule is incorporated in our existing grammar and implemented in the LKB system?,
we then generate a right syntactic structure with the following MRS representation:

P = == ST ¥ MRS Displs -
|
P
mrs
DET K
[! LTOE h
DET I
Al = IHNOEX =

card_rel i

LEL h | [PErsen_e
RELS . |nBL

ARGO Faved

. ARGO

As represented here sey myeng ‘three CL forms a simple NP with the meaning that there are
three individuals ‘x2° which ontologically belongs to person_rel.

3.2 Genitive Case Type

Following [5], we assume the attachment of GEN case particle -uy to a nominal will add the
information on GCASE (grammatical case) as well as the specification on the MOD feature:

(6) [num-cl-gen

ORTH (sey myeng-uy)
POS noun

SYN| HEAD| CASE | GCASE gen
MOD (NP;)

PRED card_rel

LBL A2 PRED person_rel PRED part-of _rel
SEM | RELS) ,| LBL ki ,| ARGO i
ARGO i . .
ARGO i ARG j
ARG1 3

7 The type num-cl-mw is a subtype of hd-spr-ph formed by the combination of a head and its specifier.

8 The current Korean Resource Grammar has 394 type definitions, 36 grammar rules, 77 inflectional
rules, 1100 lexical entries, and 2100 test-suite sentences, and aims to expand its coverage on real-life
data. The LKB, freely available with open source (http://lingo.stanford.edu), is a grammar
and lexicon development environment for use with constraint-based linguistic formalisms such as
HPSG. cf. [4].

Korean Numeral Classifier Constructions 107

Unlike the simple expression sey myeng, the GEN marked expression sey myeng-uy adds
an additional constraint: the MOD value indicates that the expression that the num-cl-gen
modifies must be a nominal expression whose index value is associated with it through part-
of _rel. Unlike the determiners, the GEN-marked NP functions as a modifier to a completely
saturated NP as in John-uy ku chinkwu ‘John-GEN the friend’ or ku John-uy chinkwu ‘the
John-GEN friend’. In capturing such an NP property, our grammar introduces the Head-
MOD rule (generating hd-mod-ph) that allows the combination of an adnominal element and
its head, generating an appropriate syntactic structure and semantic representations.

3.3 NI (Noun-Initial) Type

The cleft sentences in (7) indicate that unlike in the NC type, in the NI type the head noun
forms a strong syntactic unit with a following Num-CL:

(7) a. ku sensayngnim-ul mos ka-key ha-n kes-un
that teacher-ACC not go-COMP do thing-PNE
[haksayng sey myeng]-i-essta.
three-CL-GEN student-COP-PAST
‘What made the teacher not leave were five students.’
b. *ku sensayng-nim-ul moskakey han kes-un [haksayng-i sey myeng-i]-ess-ta.

In addition, there exist various examples indicating that the NI type behaves like a
synthetic compound or multiword expression. For example, the N and the following Num-CL
sequence cannot be separated at all:®

(8) haksayng (*ku) sey myeng-i o-ass-ta
student the three CL-NOM come-PST-DECL
‘Three students came.

Such a tight syntactic cohesion supports the idea that the NI sequence is another multi-word
expression formed by a rule like the following:

(9) NI Compound Formation Rule:

num-cl-mw
cn-num-cl-mw cn
— |, H| CLTYPE +
HEAD | MOD () INDEX i)
INDEX i

The resulting type cn-num-cl-mw, unlike num-cl-mw, has an empty MOD value, indicating
that it can function not as a modifier but as an argument. This formation rule will eventually
license the combination of haksayng ‘student’ with sey myong as a multiword expression,
generating the following structure and MRS for (8):

oA long pause between the two improves the example, but such an example can be taken to be an NC
type.

108 J.-B. Kim and J. Yang

O sy (-0
[
2 I S I
NP-HT0M W mrs M
MP-ROM W LTop h
e v INDEX e
H WPHOM ot udef_g_rel ard ral
i C rel
e DET N LEL h | [student_rel ! person_rel prpstn_m_rel come_rel
DET 1 LEL h LEL LBL h
Moy RELS 2Re0 [x [|LBL A7 h |, ,|LBL [AF h |, ,
ol ESTR b | |agoo ARGD R0 ARGO A e
BODT h CARG 3 MARG h | |aRe1
qeq qeq
HEONS (HARG . |HARG)
L&RG LARG ||
_ - [¥]
1 =

As represented in the structure, the common noun haksayng ‘student’ combines with the num-
cl-mw expression sey myeng in accordance with the formation rule in (9). They both have the
same index value with their own semantic contributions as given in the RELS values. The NP
then functions as the ARG1 of the come_rel relation which projects a propositional message
(prpstn_m_rel).

3.4 Noun-Case Type

The NC type allows the NOM or ACC-marked NP to be followed by the identical case-
marked NUM-CL (called FQ here) which even can float away from the NP as noted in
(2). There exist several supporting phenomena indicating that the FQ modifies the following
verbal expression. One phenomenon is the substitution by the proverb kule- ‘do so’. As noted
in (10), unlike the NI type, only in the NC type, an FQ and the following main verb can be
together substituted by the proverb kulay-ss-ta:

(10) a. namca-ka [sey myeng o-ass-ko], yeca-to kulay-ss-ta
man-NOM three CL come-PST-CONJ woman-also do-PST-DECL.

‘As for man, three came, and as for woman, the same number came.’
b. *[namca sey myeng-i] o-ass-ko, yeca-to [kulay-ss-ta]

This means that the FQ in the NC type is a VP modifier, though it is linked to a preceding
NP.

The question then is how to link an FQ with its appropriate antecedent. There exist several
constraints in identifying the antecedents. When the floating quantifier is case-marked, it
seems to be linked to an argument with the same case marking. However, a complication
arises from examples in which either the antecedent NP or the FQ are marked not with a case
marker, but a marker like a TOP:

(11) a. haksayng-tul-i/un sakwa-lul sey kay-lul ~ mekta
student-PL-NOM/TOP apple-ACC three CL-ACC eat
‘As for the students, they ate three apples.’
b. sakwa-lul haksayng-tul-i/un sey kay-lul mekta

This implies that a surface case marking cannot be a sole indicator for the linking relation,
and that we need to refer to grammatical functions. Regardless of its location, however, we
can observe that the NOM-marked FQ is linked to the subject whereas the ACC-marked FQ
is linked to the object. This observation is reflected in the following lexical information:

Korean Numeral Classifier Constructions 109

(12) [num-cl-mw num-cl-mw

ORTH (sey myeng-i) ORTH (sey myeng-ul)
POS noun POS noun
CASE | GCASE nom b CASE | GCASE acc

a .

HEAD POS verb HEAD POS verb

MO MOD
SUBJ(NPi> COMPS<NPi,...>
| SEM | HOOK | INDEX i | | SEM |HOOK | INDEX i]

As given in the lexical information, the case-marked num-cl-mw functions as a specifier to a
verbal expression, but quantifies over an argument with the same case value.

(13)
&
’—ITII’S
tre il h
xS
udef g rel udef 1 rel udef 1 rel
i i art-of el 2 card_rel : stn_m rel
LEL 3 n | |apple_rel 1BL [h | |student_rel EEL _mah 1L [hgh LEL_ e b thing_rel ELFL _Ihj
reLs (ko0 Ml [LBL (07| |aRe0 Mk | [LEL h‘amu W x . [4560 f 1L h“mn
RsTR (9 h | [aReo Rsth [0 n | [aRe0 o RSTR [hT6 M i 60 v [
sy i Boov 71| b Boov 17
feq eq feq eq
HEANS (HARE |, |zazs 10, | [T, |maps 20
LERG LARG LRG LaR; 7l 1
-<| I ¥

As given in (12), the NOM-marked num-cl-mw thus modifies a verbal element whose SUBJ
has the same index value, whereas the ACC-marked num-cl-mw modifies a verbal element
which has at least one unsaturated COMPS element whose INDEX value is identical with
its own INDEX value. What this means is that the NOM or ACC marked num-cl-mw is
semantically linked to the SUBJ or COMPS element through the INDEX value. As given in
(13), this system provides a right MRS for (11b). The output MRS links the ARGO value of
apple_rel with the ARGO value of the CL thing_rel.

4 Future Work and Conclusion

Our grammar has been implemented in the HPSG for Korean. In testing its performance
and feasibility for parsing numeral classifier constructions, we used 100 sentences from
the identified 226 sentences (GC, NI, and NC type) extracted from the Sejong corpus as
noted in section 2, and 100 grammatical and 50 ungrammatical sentences extracted from the
literature. As noted before, the grammar successfully constructed three main types of Num-
CL constructions together with appropriate semantic representations. One strong merit of this
analysis, as we have seen, is that it can capture the syntactic and semantic aspects of the NC
type in which the NP and the FQ are not adjacent but in remote positions.

110 J.-B. Kim and J. Yang

Our approach still needs to cover other types of numeral classifier constructions and
then expand its coverage for authentic data. However, the test results provide a promising
indication that the grammar, built upon the typed feature structure system, is efficient enough
to build proper syntactic as well as semantic representations for the complex numeral
classifiers.

References

1. Copestake, A., Flickenger, D., Sag, 1., Pollard, C.: Minimal recursion semantics: An introduction.
Manuscript (2003).

2. Bender, E. M., Flickinger, D. P., Oepen, S.: The grammar matrix: An open-source starter-kit for the
rapid development of cross-linguistically consistent broad-coverage precision grammars. In Carroll,
J., Oostdijk, N., Sutcliffe, R., (Eds.): Proceedings of the Workshop on Grammar Engineering and
Evaluation at the 19" International Conference on Computational Linguistics, Taipei, Taiwan (2002)
8-14.

3. Bender, E. M., Siegel, M.: Implementing the syntax of Japanese numeral classifiers. In: Proceedings
of IICNLP-04. (2004).

4. Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI Lecture Notes. Center for
the Study of Language and Information, Stanford (2001).

5. Kim, J.B., Yang, J.: Projections from morphology to syntax in the korean resource grammar:
implementing typed feature structures. In: Lecture Notes in Computer Science. Volume 2945.
Springer-Verlag (2004) 13-24.

Parsing Head Internal and External Relative Clause
Constructions in Korean

Jong-Bok Kim

School of English, Kyung Hee University, Seoul, 130-701, Korea
jongbok@khu.ac.kr

Abstract. Korean displays various types of relative clauses including head internal
and external relative clauses (HIRC and HERC). In particular, the treatment of HIRC
has received less attention from computational perspectives even though it is frequently
found in both text and spoken languages. This paper shows that a typed feature
structure grammar of HPSG (together with the semantic representations of Minimal
Recursion Semantics) offers us a computationally feasible and applicable way of deep-
parsing both the HIRC and HERC in the language.

1 Introduction

In terms of truth conditional meanings, there is no clear difference between (Korean) HIRCs
like (1a) and HERCs like (1b).!

(1) a. Tom-un [sakwa-ka cayngpan-wi-ey iss-nun kes]-ul —mekessta
Tom-TOP apple-NOM tray-TOP-LOC eXist-PNE KES-ACC ate
“Tom ate an apple, which was on the tray.’
b. Tom-un [cayngpan-wi-ey iss-nun sakwa]-ul mekessta.
Tom-TOP tray-TOP-LOC exist-PNE apple-ACC ate
“Tom ate an apple that was on the tray.’

Both describe an event in which an apple is on the tray and Tom’s eating it.> Yet, there
exist several intriguing differences between the two constructions. One crucial difference
between the HIRC and HERC comes from the fact that the semantic object of mekessta ‘ate’
in the HIRC example (1a) is the NP sakwa ‘apple’ buried inside the embedded clause. It is
thus the subject of the embedded clause that serves as the semantic argument of the main
predicate [1,2].

We can treat the HERC as a modifier structure in which a sentence with a gap modifies a
nominal. In terms of semantics, we then just need to link the gap with the nominal. However,
complication arises in the HIRC since the head is inside the sentential element. In the analysis
of such HIRCs, of central interest is how we can associate the internal head of the HIRC

1T thank Chung Chan, Peter Sells, and Jachyung Yang for their helpful comments. My thank also goes
to anonymous reviewers for the comments. This work was supported by the Kyung Hee Alumni
Research Award in the year of 2005.

2 This paper adopts the following abbreviations: ACC (ACCUSATIVE), COMP (COMPLEMENTIZER),
LOC (LOCATIVE), NOM (NOMINATIVE), PNE (PRENOMINAL), TOP (TOPIC), etc.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 111-117, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

112 J.-B. Kim

clause with the matrix predicate so that the head can function as its semantic argument. This
paper provides a constraint-based analysis to these two different types of relative clauses
within the framework of HPSG (Head-driven Phrase Structure Grammar) and implements it
in the existing HPSG grammar for Korean using the LKB (Linguistic Building Knowledge)
system to check the computational feasibility of the analysis proposed.

2 Syntax and Semantics of the HERC

Unlike English, Korean employs no relative pronouns like who or which. In addition, the
predicate of the relative clause preceding the head noun is marked with a morphological
marker depending on the type of tense information.’

(2) Tom-i ; ilk-nun/un/ul chayk;
Tom-NOM read-PRES.PNE/PST.PNE/FUT.PNE book
‘the book that Tom reads/read/will read’

The prenominal markers in (2) in a sense function both as a relative pronoun and tense marker.
As also expected, the language also allows relativization from an embedded clause:

(3) John-i [Mary-ka ; mekessta-ko] malha-n sakwa;
John-NOM Mary-NOM ate-COMP say-PNE apple
‘the apple that John said Mary ate yesterday’

The key point of our treatment of relative clauses includes the lexical constraints on the v-rel-
mod verb heading the relative clause, a gap-introducing rule, and a grammar rule licensing the
combination of a nominal head with a relative clause. The lexical constraints on the v-rel-mod
will add the feature MOD, guaranteeing that a v-rel-mod element marked with a prenominal
ending will modify a nominal element through the head feature MOD. The gap-introducing
rule ensures the relative clause to be an incomplete sentence with one missing gap. As
specified in the following feature description in the LKB (Linguistic Knowledge Building
System), the rule allows any of the elements in the SUBJ or COMPS to be introduced as a
GAP element:*

binary start gap rule 1 := binary sg &
[SYN.VAL [SUBJ <>,
COMPS <>,
GAP <! #2 !> 1],
ARGS < #1 & [SYN [HEAD [CASE.GCASE nom, PRD 1],
VAL [SUBJ <>, COMPS <> 1 1 1,
[SYN.VAL [SUBJ < #1 >,
COMPS < #2 > 11 > 1.

3 These three basic kinds of tense-sensitive prenominal markers can be extended to denote aspects
when combined with tense suffixes.

4 The LKB, freely available with open source (http://lingo.stanford.edu), is a grammar and
lexicon development environment for use with constraint-based linguistic formalisms such as HPSG.
cf. [3].

Head Internal and External Relative Clause Constructions in Korean 113

This GAP value is passed upto the tree until it meets its filler to generate a long distance
dependency like (3). For example, the word mek-ess-ta-ko ‘eat-PST-DECL-COMP’ selects two
arguments. However, its COMPS can be realized as a GAP element according to the gap
introducing rule described in the above. The v-rel-mod word malha-n has the information
that it modifies a nominal element. In addition, the relative-clause modifying rule given in
the below will terminate this GAP value when the index value of the GAP is identical with
the modified nominal element:

head rel mod rule := binary &
[SYN.VAL.GAP <! !>
ARGS < ph ex & [SYN.VAL [MOD < #1 & [SYN.HEAD.POS noun,
SEM.INDEX #2] >,
GAP <! [SEM.INDEX #2] !>] 1,
syn st & #1 & [SYN.VAL [GAP <! !>,
.. 11>1.

As indicated in the first element of the ARGS value, the relative clause modifies a nominal
element whose index value is identical with that of the GAP’s value.

Equipped with these three fundamental mechanisms, the grammar allows us to parse the
syntactic as well semantic structures of relative clause constructions. For example, on Fig. 1
you see what the grammar obtains within the system.’ Leaving aside other semantic relations,
we can at least observe that the ARG2 value of eat_rel, x2, is coindexed with the ARGO value
of apple_rel. The grammar can correctly parse relative clauses as well as generate proper a
MRS meaning representation.

3 Syntactic and Semantic Aspects and HIRC

There exist several syntactic differences between HERC and HIRC. For example, in the
HIRC, there is also a tight syntactic coherence between the nominal head and the adnominal
clause headed with kes. Nothing can intervene between the two:

(4) *[sakwa-ka cayngpan-wi-ey iss-nun cak-un kes]-ul mekessta
apple-NOM tray-TOP-LOC exist-PNE small-PNE KES-ACC ate
‘(intended) (He) ate a small apple, which was on the tray.’

A tight syntactic relation between the clause and the noun kes can also be found from the
fact that unlike canonical nouns, it must combine with the preceding adnominal clause:

5 Minimal Recursion Semantics, developed by [4], is a framework of computational semantics
designed to enable semantic composition using only the unification of type feature structures. The
value of the attribute SEM we used here represents simplified MRS, though it originally includes
HOOK, RELS, and HCONS. The feature HOOK represents externally visible attributes of the atomic
predications in RELS (RELATIONS). The value of LTOP is the local top handle, the handle of the
relations with the widest scope within the constituent. See [4] and [5] for the exact functions of each
attribute.

114 J.-B. Kim

] EO| 027t HACHD U AL Simple MRS Display [=lE]
[
7mrs
vrop (R h
INDEE (%2 x
hamed rel proper_g_rel hamed rel proper_g_rel stn m rel eat_rel say_rel
LEL [hd | |MEE [hg h . h e [hid h sg; -h 6L W18 h | [LeL (A8 K
RELS , |ARGD A , |RRGD , J|aren [e17] e |, |aren [e19 e |,
BRG0P % aRG0 [9 % R0 [e15 e
CARG john RSTR [6 h CARG M RSTR (W11 h maRe [h14] h ARGL ARGL
! Bon¥ [h7] h Y | |Bony OER ARGZ aRGZ [e19]
qeq qeq L] L] =0 o] 2ot
HCONS <HAR|3 [h8) |, [mare [A17]|, [maRs [h14][, |HARG h21>
LBRG LBRG LARG LARG WP ‘
= T T — B
ET siiP r\::IP T
NP-fI0M WFINP !
I} i1
b SIiF o AR
H e v
§ooomE-fiom Y !
S R A
Ny
U
izt sl K
ermickn =

Fig. 1. Parsed structures and MRS for sentences like (3)

(5) Na-nun *(kangto-ka unhayng-eyse nao-nun) kes-ul capassta
I-ToP robber-NOM bank-from come-out-PNE KES-ACC caught
‘T arrested the robber who was coming out of the bank.’

The HIRC example in (5) indicates that the adnominal HIRC clause as well as its predicate
is an obligatory element. The observations imply that the pronoun kes selects an adnominal
clause as its complement.

Another fact concerning the status of the HIRC comes from stacking: whereas more than
one HERC clause can be stacked together, only one HIRC clause is possible:

(6) a. *kyongchal-i [kangto-ka unhayng-eyse nao-nun]
police-NOM [robber-NOM bank-from come.out-PNE]
[ton-ul hwumchi-in] kes-ul ~ chephohayssta
money-ACC steal-PNE ~ KES-ACC arrested
‘(int.) The police arrested a thief coming out of the bank, stealing money.’
b. kyongchal-i[unhayng-eyse nao-nun]
police-NOM [bank-from come.out-PNE]
[ton-ul hwumchi-in] kangto-lul chephohayssta
money-ACC steal-PNE robber-ACC-ACC arrested
‘(int.) The police arrested a thief coming out of the bank, stealing money.’

This contrast implies that the adonminal clause in the HIRC has the canonical properties
of a complement clause: kes combines with its complement clause, forming a hd-comp-ph
(head-complement-ph).

One thing to note here is that HIRCs are syntactically very similar to DPCs (direct
perception constructions). HIRCs and DPCs both function as the syntactic argument of a
matrix predicate. But, in the HIRC (7a), the internal argument John within the embedded
clause functions as its semantic argument. Meanwhile, in (7b) it is the embedded clausal
complement that functions as the semantic argument of the matrix predicate:

Head Internal and External Relative Clause Constructions in Korean 115

(7) a. Mary-nun [John-i talli-nun kes]-ul ~ capassta.
Mary-TOP John-NOM run-PNE KES-ACC caught
‘Mary caught John who was running.’
b. Mary-nun [John-i talli-nun kes]-ul poassta.
Mary-TOP John-NOM run-PNE KES-ACC saw
‘Mary saw John running.’

The only difference between (7a) and (7b) is the matrix predicate. This difference induces
the meaning difference. When the matrix predicate is an action verb such as capta ‘catch’,
chepohata ‘arrest’, or mekta ‘eat’ as in (7a), we obtain an entity reading. But as in (7b) we
will have only an event reading when the matrix predicate is a type of perception verb such
as po-ta ‘see’, al-ta ‘know’, and kiekhata ‘remember’.

The key point in our analysis is thus that the interpretation of kes is dependent upon the
type of matrix predicate, in the sense that the matrix predicate affects the interpretation of the
pronoun kes. The lexical entries in our grammar involve not only syntax but also semantics.
For example, the verb cap-ta ‘catch’ in (8a) lexically requires its object to refer to a ref-ind
(referential-index) whereas the verb po-ta ‘see’ in (8b) selects an object complement whose
index is indiv-ind (individual index) whose subtypes include ref-ind and event-ind, indicating
that its object can be either a referential individual or an event.

(8) | (cap-ta ‘catch’) (po-ta ‘see’)
SUBJ (NP;) SUBJ (NP;)
SYN | VAL SYN | VAL
COMPS (NP;) COMPS (NP;)
a. PRED catch_v_rel b. PRED see_v_rel
ARGO e/ ARGO e/
SEM | RELS . SEM | RELS .
ARGTI {[ref-ind] ARGTI {[ref-ind]

ARG? j[ref-ind] ARG?2 j[ind-ind)]

These lexical entries will then project an identical syntactic structure for (7a) and (7b),
represented together here in (9):

©)) VP
[INDEX el]
2NP v
COMPS (2)
[INDEX 1]
o INDEX e/
38 N
INDEX e! COMPS (3) caught/saw
XARG i INDEX 1
//\

John; -NOM run-PNE KES-ul

116 J.-B. Kim

As represented in the structure, in both constructions kes selects the adnominal S as its
complement and forms a hd-comp-ph. The resulting NP will then serve the complement of
the main verb caught and saw. However, semantically, due to the lexical entries in (8a), the
object of caught is linked to the external argument (XARG) robber whereas that of saw in
(8b) is linked to the event denoted by the S.® The type of predicate thus determines whether
the INDEX value of kes will be identified with that of the S or that of its XARG, as presented
in the lexical entries:

(10) (kes) (kes)

HEAD | POS noun HEAD | POS noun
SYN SYN
VAL | COMPS (S[INDEX eI]) VAL | COMPS (S[XARG i])

SEM | HOOK | INDEX e/ SEM | HOOK | INDEX i

Our grammar, in which lexical information tightly interacts with the other grammatical
components, ensures that the perception verb saw combines with the NP projected from (10a)
whereas the action verb caught with the NP projected from (10b). Otherwise, the grammar

will not satisfy the selectional restrictions of the predicates.

Incorporating this in our Korean grammar,7 we implemented the analysis in the LKB and

obtained the following two parsed trees and MRSs for (7a) and (7b), respectively:

(D (7 80 g2k 2<g) 202 21 212 01 Simple MRS Display 7
[
\; |-|TII’S
| [T [T n
weaCC v | |moEx e
e
5 N x o el named_rel E:JLFEF_“: fun_tel i prpstn_m_rel E;tch_r;: 2
P - 1L [h il - f
NP-HOM v N,ﬂ.lf.q RELS | [LEL h‘ARGD | |3R50 |LeL hJLBL T il N RGER
i A B B X i Elle 50
noov o2 el [l — 8 h i A0 wr [ARl
N aéfr ! sv 13 h ARG
T
i‘LVﬂI e feq

B <HARE e, |z
L3RG LARG

Leaving aside the irrelevant parts, we can see that the two have the identical syntactic
structures but different semantics. In the former, the ARGO value of kes is identified with the
named_rel (for ‘John’) but the one in the latter is identified with run_rel.

6 The feature XARG refers to the external argument in control constructions like John tries to run.
The XARG of run is thus identical to the matrix subject John. See [5] for details.

7 The current Korean Resource Grammar has 394 type definitions, 36 grammar rules, 77 inflectional
rules, 1100 lexical entries, and 2100 test-suite sentences, and aims to expand its coverage on real-life
data.

Head Internal and External Relative Clause Constructions in Korean 117

(2) o g0 ek 28
5 [mrs
® tme filh
NP-;E/E/\\V muek e
/ roper o rel see tel
m ¥ named el | PUPEL G gy prostnmurel | |-
P i pro.el B fGh . Hh LEL- hi0 h tes LEL _ Ll
wion v 0 s (e Bl 0 B e BiZh | iz e
MY yeg w0 M el el e 0
Ny e 60 [e o | PR G b o 160 wo g n | [
N B0 |y F3 n 1862
P =
N L
HoONS (ms a |, |#mRG >
LARG L3RG

The analysis thus provides a clean account of the complementary distribution between the
HIRC and DPC. That is, according to our analysis, we obtain an entity reading when the
index value of kes is identified with that of the external argument. Meanwhile, we have an
event reading when the index value is structure-sharing with that of the adnominal S. This
analysis, thus, correctly predicts that there exist no cases where two readings are available
simultaneously.

4 Discussion and Conclusion

The analysis we have presented so far, part of the typed-feature structure grammar HPSG for
Korean aiming at working with real-world data, has been implemented into LKB to test its
performance and feasibility.

We first inspected the Sejong Treebank Corpus (33,953 sentences), selected canonical
types of the HERC and HIRC constructions, and then checked if the grammar can parse
them both in terms of syntax and semantics. We hope to have shown that the grammar has
been quite successful in producing the appropriate syntactic and semantic structures for both
HERC and HIRC. Of course, issues remain of extending the coverage of our grammar to parse
more real-time data and further identify the other constructional types of relative clauses.

References

1. Kim, Y. B.: Relevance in internally headed relative clauses in korean. Lingua 112 (2002) 541-559.

2. Chung, C., Kim, J.B.: Differences between externally and internally headed relative clause
constructions. In: Proceedings of HPSG 2002, CSLI Publications (2003) 3-25.

3. Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI Lecture Notes. Center for
the Study of Language and Information, Stanford (2001).

4. Copestake, A., Flickenger, D., Sag, 1., Pollard, C.: Minimal recursion semantics: An introduction.
Manuscript (2003).

5. Bender, E. M., Flickinger, D. P., Oepen, S.: The grammar matrix: An open-source starter-kit for the
rapid development of cross-linguistically consistent broad-coverage precision grammars. In: Carroll,
J., Oostdijk, N., Sutcliffe, R., (Eds.): Proceedings of the Workshop on Grammar Engineering and
Evaluation at the 19" Int. Conference on Computational Linguistics, Taipei, Taiwan (2002) 8-14.

A Hybrid Model for Extracting Transliteration Equivalents
from Parallel Corpora

Jong-Hoon Ohl:2, Key-Sun Choi2, and Hitoshi Isahara'

1 Computational Linguistics Group, NICT, 3-5 Hikaridai, Kyoto 619-0289 Japan
{rovellia, isaharal}@nict.go.jp
2 Computer Science Division, EECS, KAIST, Daejeon 305-701 Republic of Korea
kschoi@cs.kaist.ac.kr

Abstract. Several models for transliteration pair acquisition have been proposed to
overcome the out-of-vocabulary problem caused by transliterations. To date, however,
there has been little literature regarding a framework that can accommodate several
models at the same time. Moreover, there is little concern for validating acquired
transliteration pairs using up-to-date corpora, such as web documents. To address these
problems, we propose a hybrid model for transliteration pair acquisition. In this paper,
we concentrate on a framework for combining several models for transliteration pair
acquisition. Experiments showed that our hybrid model was more effective than each
individual transliteration pair acquisition model alone.

1 Introduction

Transliteration, “phonetic translation” or “translation by sound”, is frequently used for
translating a foreign word of one’s language into Korean. “Transliteration pairs (TPs)” are
word pairs that are composed of a transliteration and its origin foreign word. “Transliteration
equivalent” refers to a set of transliteration pairs that originate from the same foreign word.
Note that most Korean transliterations generally originate from English words. For example,
a set composed of the English word data and its Korean transliterations ‘de-i-ta’, ‘de-i-teo’,
and ‘de-ta’ is a transliteration equivalent. The mixed use of various transliterations and their
origin English word causes severe word mismatch problems in IR (information retrieval) [1].
When a user query and document text use different transliterations and when a user query
uses Korean transliteration and a document contains English word or vice versa, simple
word matching is not suitable for retrieving documents. Transliteration equivalents can help
an IR system to solve the word mismatch problems caused by transliterations. Moreover,
transliterations are one of the main sources for out-of-vocabulary (OOV) problems [2].
Several studies on transliteration pair acquisition (TPA) have been proposed. The studies
are usually composed of two steps — TP candidate extraction and validation. Depending
on the validation method, they can be roughly classified into the phonetic conversion
model (PCM) [1,3] or the phonetic similarity model (PSM) [4,5]. The PCM uses a
“string comparison after phonetic conversion” strategy. The phonetic conversion in a PCM
transforms words of one language into phonetically equivalents of another language. Once
two words in the TP candidate are written in the same language, the PCM then validates
the TP candidates by a string comparison between the two words. This model is effective

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 119-126, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

120 J.-H. Oh, K.-S. Choi, and H. Isahara

when correct transliterations can be acquired through phonetic conversion. However, a
string similarity measure enables a PCM to acquire TPs even if the phonetic conversion
produces wrong transliterations. The PSM directly compares words written in two different
languages. This model differentiates phonetic similarity between two phonetic units' in
different languages depending on their phonetic characteristics. This makes it possible for the
PSM to calculate phonetic similarity in a more sophisticated manner than the string similarity
measure of the PCM.

Although each model on average has achieved good performance, both models incur errors
when extracting transliteration pairs. They do not always make the same error because of each
model’s particular characteristics. Thus, combining the models could enhance a system’s
performance by exploiting their strengths. To date, however, there has been little literature
regarding a framework that can accommodate two models at the same time. Moreover, there is
little concern for validating TP candidates using up-to-date corpora, such as web documents.
Web documents, as a knowledge source to validate relevant TPs, enable a TPA system to
filter out non-relevant TPs by investigating their occurrence in web documents.

To address these problems, we propose a hybrid model for TPA. In this paper, we
concentrate on modeling three TP candidate validation models, — called the PCM, PSM,
and corpus based similarity model (CSM) — and a framework for combining all three models.
This paper is organized as follows. Section 2 describes the parallel corpora that we used.
Section 3 describes our method. Section 4 deals with the experiments. Section 5 discusses
the results in detail. Section 6 contains our conclusion and future work.

2 Preparing Parallel Corpora

Ideally, large amounts of sentence aligned bilingual parallel corpora are necessary for a
TPA task. However, such large-scale parallel corpora are not readily available. Therefore,
we choose, as an alternative method, to use E-K bilingual technical dictionaries as the E-K
parallel corpora. There were two reasons why we selected bilingual technical dictionaries
as a source of TPs. First, over 40% of the Korean technical terms in scientific domains
contain transliterations [6]. Second, we can easily obtain parallel corpora from the bilingual
dictionaries because the bilingual technical dictionaries contain English technical terms and
their Korean counterparts. Note that there are several Korean translations for one English
technical term according to domains and translation methods. We constructed parallel

sentences from bilingual technical dictionaries with Korean translations (ktiq, - - - , ktin)
that corresponded to a single English technical term (et;) like ps; = (es;, ks;) where
ks; = {kti1,--- , ktin} and es; = et;.

3 A Hybrid Model for Transliteration Pair Acquisition

Our method is composed of two steps. First, our system extracted TP candidates. Second,
the TP candidates were validated using three validation models (PSM, PCM, and CSM),
each of which was represented as a similarity model between e, and kg, like Simpgy,
Simpcum, and Simcspy. In this section, we denote 1p,q; = (ep, kq) as a TP candidate,

LA phonetic unit refers to a chunk of graphemes, which can be mapped into a phoneme.

A Hybrid Model for Extracting Transliteration Equivalents from Parallel Corpora 121

where e, = ep1, -+, epy is composed of m English graphemes and k; = kg1, -+ - , kg is
composed of n Korean graphemes.

3.1 TP Candidate Extraction

Our approach for extracting a TP candidate is to use phonetic similarity with the assumption
that at least the first and last part of a Korean word and an English word in the relevant
TPs will be phonetically similar to each other [1,3,4,5,6]. As a result, our strategy retrieves
Korean transliteration candidates by finding the first and the last Korean syllable each of
which contains Korean graphemes that are phonetically similar to the first and the last English
grapheme of a given English word. Then, we can extract tp,, = (ep, k) when it satisfies
formula (1) and the length constraints (m < 2 x n and n < 2 x m). The length constraints
prevents the unnecessary extraction of TP candidates from redundant TP candidates, which
are often redundant due to a length difference between e, and k,. Our method extracts
single word TP candidates as well as multi-word TP candidates. Let mtps, = (e, k)
be a multi-word TP candidates, e, = ewy,, .., ewy, be composed of ! English words, and
ky = kwy,, .., kw;, be composed of I Korean words. m?py, can be extracted when both e;
and k; appear in parallel sentences and there are Peu, kw,; > ** * > tPewgkw, -

P(kql: kq2|ep0a e, ep3) X P(kl[}’l—la kqn|epm—2: s, epm+1) > 0 (D

3.2 Three Validation Models

PSM. The PSM (Simpsuy(ep,ky) in formula (2)) can be represented as the con-
ditional probability, P(kglep), like formula (3). We estimated P(kyle,) with kcgy,
which was a chunk of Korean graphemes that corresponded to ep;. We can simplify

P(kcgi, -+ ,kegmlept, -+, epm) into the products of P(kcgilep(i—2,i+2)) with the as-
sumption that kc,; is dependent on ep;i—2, - -+ , €pit2 = €p(i—2,i+2)-
Simps(tppg) = Simpsu(ep. ky) = 1/ P(kgley) @)

P(kq|€p) = P(kcqla e, kcqm|€pla T, epm) = H P(kcqi|ep(i—2,i+2)) 3)

PCM. TP candidates were validated using the PCM through phonetic conversion followed
by string comparison. For phonetic conversion, we automatically transliterated an English
word into a Korean word using formula (4). Formula (3) was used for estimating P (K lep)
to compare PCM and PSM in the same condition. Let T R(ep,) be a Korean string of e,
transliterated by formula (4). The string similarity (SS(ep, k;)) between e, and k; can
then be defined as formula (5), where LD (ky, T R(e))) is the number of edits (deletions,
insertions, and substitutions) required to transform k, into T R(e),). Note that we choose
the minimum of SS(ep, ky) and SS(ky, ep) as Simpcy(ep, ky) in formula (6) because
SS(ep, kq) and SS(ky, e,) were asymmetric.

122 J.-H. Oh, K.-S. Choi, and H. Isahara

K* = argmax P(K |e,) 4)
length(ky) — LD(ky, T R(ep)
SS k) = 5
(eps Kq) length(k,) ©)
Simpcm(tppg) = Simpcu(ep, kq) = min(SS(ep, ky), SS(ky, ep)) 6)

CSM. TP candidates were validated using the CSM based on corpus frequencies (C(ep),
C(ky), and C(tppy)) and web frequencies (W (kq) and W (tpp4)). The philosophy under-
lined in the CSM is that relevant TPs will appear more frequently in documents than non-
relevant TPs. In formula (7), Simcsm(ep, kq) is composed of two parts; CSy, (k) is used
for validating whether k, is a correct Korean word used in the real world, and CS; (tppq) is
used for validating whether e, and k, are used as TPs in documents. To obtain W (tp,q), a
phrasal search, where a phrase is composed of e, and k,, was used as a query in a search
engine. The web documents retrieved by the phrasal search usually contained a transliter-
ation and its corresponding source language word as a translation pair in parentheses, like
‘kol-lin’ (choline) and ‘kol-lin’ [choline]. Therefore, we could rely on the web frequency de-
rived from the phrasal search method to validate TP candidates and to test whether ¢, and &,
were TPs.

Simcsm(tppg) = Simcsm(ep, kq) = \/CSm (kq) x CSi(ep, kq) @)

Clkg) + Wikq)

Cnlka) = 5 clhy+ 3, Wik)

®

C(ep» kq) + W(tppq)

CSilep, kg) = Clep) + Clkg) + 22, W(tppj) + 22 W(tpiq)

TP Validation Using Three Validation Models. We validated TP candidates by combining
the three validation models. Let m?pg, be a multi-word TP candidate composed of / English
words and Korean words (e; = ewsy, - - - , ewg, ky = kw1, -+ -, kwy). We then validated
multi-word TP candidates using the product of Sim(ew;;, kw,;) and threshold value 6,
in formula (9). Single-word TP candidates were validated in a similar manner like that in
formula (10). Note that Sim (ews;, kw,;) in formula (9) and Sim(ep, k;) in formula (10)
were calculated by formula (11)

Sim(mtps,) = \/H Sim(ewy;, kwy;) > 0, 9
Sim(tppg) = Sim(ep, kq) > 0> (10)

Sim(ep, kq) = \3/SimPCM(ep, kq) X SimPSM(ep, kq) X SimCSM(ep, kq) (11)

A Hybrid Model for Extracting Transliteration Equivalents from Parallel Corpora 123

4 Experiments

To evaluate our proposed method, we used several bilingual technical dictionaries, which
contained over 1,400,000 English-Korean translation pairs and covered more than 20
scientific domains, including computer science, biology, and so on. We automatically
generated about 514,200 parallel sentences, each of which contained a single English
technical term, using the dictionaries. We then manually annotated transliteration pairs in
the parallel sentences. The results were evaluated using precision (P), recall (R), and F-value.
Precision is the proportion of the number of relevant TPs to the total number of extracted
TPs. Recall is the proportion of the number of extracted TPs to the total number of TPs in
the gold standard. The F-value is defined as (2 x P x R)/(P + R). To train TP candidate
extraction (formula (1)), PSM (formula (2)), and phonetic conversion in PCM (formula (4)),
we used an English-Korean transliteration lexicon that contained 7,000 entries [7]. Two tests
were conducted to investigate the effects of #; and the contribution of each validation model
to the overall performance.

4.1 Effects of 0

We tested the effects of 0 by setting 0 as 0.5, 0.1, 0.01, 0.001, and 0.0001. Table 1 lists
the effects of #; on TP candidate extraction. Here, STPC and MTPC represent the number of
single-word TP candidates and multi-word TP candidates. As 0; is decreased to 0.0001, our
system showed a higher recall but lower precision rate. The smaller #; enabled more relevant
TP candidates along with more non-relevant TP candidates to be extracted, thus a higher
recall but lower precision rate was achieved. Note that TP candidate extraction significantly
affected recall rate (¢ determined the upper bound of the recall rates for TP validation);
while TP candidate validation significantly affected precision rate (the goal of TP candidate
validation was to increase precision rate without a great loss to the recall rate). Therefore,
we should consider a trade-off between the precision and recall rates derived from 6. To
investigate the trade-off, we also examined the effects of 8] on overall TPA performance. We
validated TP candidates extracted using various setting of ;.

Table 2 lists the experimental results evaluated using the F-value. The results suggest
that a TPA system with a #; = 0.5 and §; = 0.1 cannot achieve high performance
due to a low recall rate. However, our system showed about 87%~88% (F-value) when
6, < 0.01, because a #; < 0.01 resulted in a relatively high recall rate (over 86% recall,
see Table 1).

Table 1. Effects of] on TP candidate extraction

6, =05 6, =01 6 =001 6 =0.001 6 =0.0001
STPC (n) 182,042 234,604 285923 362,848 449,543

MTPC (n) 12,361 18,608 23,436 31,001 39,072
Recall (%) 53.73 74.37 86.39 91.82 93.27
Precision (%) 82.94 82.37 69.76 51.16 37.56

F-value (%) 65.18 78.17 77.19 65.71 53.55

124 J.-H. Oh, K.-S. Choi, and H. Isahara
Table 2. Effects of 81 on transliteration pair acquisition (evaluated using F-value)

7)) 0y =05 6, =01 6;=0.01 6 =0.001 6 =0.0001

0.1 (%) 66.6 79.9 81.5 76.0 69.5
0.3 (%) 68.0 82.0 87.2 88.3 88.1
0.5 (%) 61.0 74.0 78.2 79.2 79.1

4.2 Contribution of Each Validation Model

To investigate the effects of each validation model on TPA performance, we tested TP
validation performance using various combinations of validation models — a single model
(PCM, PSM, and CSM), a combination of two models (PCM+PSM, PCM+CSM, and
PSM+CSM), and three models together (ALL). In this section, we set 6 as 0.001 because
it showed the best result in Table 2. Figure 1 shows the evaluation results. Although PCM
and PSM were based on phonetic similarity, they showed different distributions> due to the
different strategies used for calculating phonetic similarity. However, there was no significant
difference in performance between PCM and PSM. Unfortunately, CSM showed the worst
performance among the three models (71.33% as a maximum when 6, = 0.15) because of its
sharp decrease in recall rate as 8, is increased to 1. The main reason for the low recall in CSM
was that we could not retrieve web documents (W (tp;;) = 0) for relevant TPs. However,
a hybrid model between CSM and the other models enhanced system performance because
the CSM has different characteristics (corpus based similarity) from both PSM and PCM
(phonetic similarity). Due to the combined characteristics, the ALL model showed the best
performance (88.31% in &, = 0.3). In summary, our hybrid model increased performance by
about 5~23% as compared to the individual PCM, PSM, and CSM.

5 Discussion

Let tp;j = (ei,k;) and tpjx = (e;, ki) be TP candidates where k; and ky are the
same string except for one or two syllables, and |e;|, |k;|, and |ki| be the length (the
number of graphemes) of e;, k;, and kg, respectively. If tp;; = (e;, k;j) is a relevant TP
and tpjx = (e, ki) is an irrelevant TP, our transliteration validation process would have
difficulties in distinguishing relevant TPs between ¢ p;; and ¢ p;y, especially when the |k;| and
|ki | are long. The PCM and PSM rely on |e;|, |k;|, and |ki| to normalize phonetic similarity.
This results in the PCM and PSM being insensitive to the phonetic difference between e; and
kj or between e; and ki when the |k;| and |ki| are long. Moreover, we rarely retrieved web
documents using the phrasal search method when the |k;| and |k | are long, thus the CSM
can not distinguish relevant TPs from irrelevant TPs in the case. The rigid constraint in the
TP candidate extraction can be one possible solution. However, it leads to a low recall. To
address the problem, therefore, we need a more sophisticated algorithm in TP validation. We
plan to address such problems to improve TPA performance in the future.

We compared our PCM with the previous works based on PCM [1,3]. Because the
previous works used phonetic conversion, we applied the same E-K transliteration method

2 PCM showed the best performance in 8, = 0.7 (83.26%) while PSM showed the best performance
infh) = 0.3 (84.26%)

A Hybrid Model for Extracting Transliteration Equivalents from Parallel Corpora 125

F-value

T .. \‘X
\\ Xx
0.5 LI -
—— Al \&;_
-~ PSM + CSM
0.4 [—--x-- PCM+CSM
-8 PSM+PCM
--#— PCM
-~ PSM
e CSM
0.3 . .
0.1 0.2 0.3 0.4 05 0.6 07 08

Threshold

Fig. 1. Performance based on PCM, PSM, and CSM

as ours described in formula (4). Then their own string similarity measures, such as dice
coefficient [3] and KODEX [1], were applied. The results suggest that there was no significant
difference in performance between our PCM and previously reported PCMs, although
precision and recall differed from each other >. Although we did not directly compare our
PSM and previously reported PSMs [4,5], we can infer that there may be no significance
difference in performance because the information source for phonetic similarity in our PSM
and the previous PSMs, which significantly affects performance, is similar to each other.
Totally, our method improved TPA performance because of the combined effects of the PCM,
PSM, and CSM.

6 Conclusion

We described a hybrid model for TPA. Our method extracted TPs through TP candidate
extraction and TP candidate validation. In TP candidate extraction we took advantage of
phonetic similarity between English graphemes and Korean graphemes for the first and last
syllables. For TP candidate validation, we used three individual TP candidate validation
models and a hybrid model that combined all three individual models. Experiments showed
that the hybrid model was more effective than each individual TP candidate validation

3 KODEX showed the highest precision but the lowest recall rate because its binary decision for TP
validation. The dice coefficient and our PCM showed similar precision and recall rates.

126 J.-H. Oh, K.-S. Choi, and H. Isahara

model. However, we need further work to improve TPA performance. To address the problem
described in Section 5, we need to devise a more sophisticated algorithm for TP candidate
validation. We plan to apply extracted TP equivalents to cross-language applications.

References

1. Kang, B.J., Choi, K.S.: Two approaches for the resolution of word mismatch problem caused by
English words and foreign words in Korean information retrieval. IJCPOL 14 (2001).

2. Fujii, A., Tetsuya, I.: Japanese/English cross-language information retrieval: Exploration of query
translation and transliteration. Computers and the Humanities 35 (2001) 389-420.

3. Tsujii, K.: Automatic extraction of translational Japanese-Katakana and English word pairs from
bilingual corpora. IJICPOL 15 (2002) 261-279.

4. Brill, E., Kacmarcik, G., Brockett, C.: Automatically harvesting Katakana-English term pairs from
search engine query logs. In: Proc. of NLPRS 2001. (2001) 393-399.

5. Bilac, S., Tanaka, H.: Extracting transliteration pairs from comparable corpora. In: Proc. of
NLP2005. (2005).

6. Oh, J.H., Choi, K.S.: A statistical model for automatic extraction of Korean transliterated foreign
words. IJCPOL 16 (2003).

7. Nam, Y.S.: Foreign dictionary. Sung An Dang (1997).

Sentence Compression Using Statistical Information About
Dependency Path Length

Kiwamu Yamagata, Satoshi Fukutomi, Kazuyuki Takagi, and Kazuhiko Ozeki

The University of Electro-Communications, Tokyo 182-8585, Japan
http://wuw.oz.ice.uec.ac. jp/

Abstract. This paper is concerned with the use of statistical information about
dependency path length for sentence compression. The sentence compression method
employed here requires a quantity called inter-phrase dependency strength. In the
training process, original sentences are parsed, and the number of tokens is counted for
each pair of phrases, connected with each other by a dependency path of certain length,
that survive as a modifier-modified phrase pair in the corresponding compressed
sentence in the training corpus. The statistics is exploited to estimate the inter-
phrase dependency strength required in the sentence compression process. Results
of subjective evaluation shows that the present method outperforms the conventional
one of the same framework where the distribution of dependency distance is used to
estimate the inter-phrase dependency strength.

1 Introduction

Most of text summarisation methods reported so far are based on the idea of extracting
important parts from the original text [1]. Those methods are classified from the view point of
extraction unit. If sentence is employed as extraction unit, then the summarisation problem is
how to extract a specified number of significant sentences from a text to make a shorter text.
If word or phrase is adopted as extraction unit, then the problem is how to extract a specified
number of significant words or phrases from a sentence to compose a shorter sentence. The
latter is often referred to as sentence compression or sentence compaction, the topic of this
paper.

Oguro et al. presented a Japanese sentence compression method [2], and conducted
subjective evaluation for the quality of compressed sentences [3]. In their method two
functions are defined to evaluate the goodness of a subsequence of phrases extracted from
a sentence: one to measure the degree of information retention in the subsequence of phrases,
and the other to measure its grammatical naturalness. The functions are linearly combined
to make a single function to evaluate the overall goodness of the subsequence of phrases.
Sentence compression is done by searching for a subsequence of phrases of given length
that maximises the evaluation function. In the definition of the function to measure the
grammatical naturalness, a quantity called inter-phrase depedency strength is required. In
their work this was estimated from a large corpus without taking into account the relationship
between an original sentence and its compressed version. In the present work we estimate the
inter-phrase dependency strength through statistics of dependency path length using a corpus
containing original sentences and corresponding compressed sentences. Results of subjective
evaluation are presented to show the effectiveness of the present method.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 127-134, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

128 K. Yamagata et al.

2 Framework of Sentence Compression

Let us give a brief overview of the framework of sentence compression [2] employed in this
work. A Japanese sentence is a sequence of phrases wow; ... wy—1, where a phrase wg
consists of a string of content words followed by a string of (possibly 0) function words. To
compress the sentence, a subsequence of phrases wj, Wk, - - - Wky_, is extracted in such a way
as to preserve the original information and the grammatical naturalness as much as possible.
It is assumed that we can determine the significance g (w) of each phrase w. So a function

f(ko, k1, ..., kn—1) to measure the degree of information retention in the subsequence is
defined as
N-1
flkosky, .. oky1) = D q(wg,). (M
n=0
Also a function g(ko, ki, ..., ky—1) to evaluate the grammatical naturalness is defined on

the basis of the assumption that we can determine the inter-phrase dependency strength
p(w;, wj), which is a measure of plausibility for w; to modify w;. We can determine a
dependency structure on a phrase sequence by specifying a function s(n) that maps a modifier
phrase index kj, to that of the modified phrase k). So the quantity

N-2

> plw,, wiy,) 2)

n=0

should reflect the plausibility of the dependency structure represented by the function s. If the

phrase sequence wy, Wy, - - - Wy_, has a dependency structure with a large value of Eq.(2),
it is considered grammatically natural. Thus the function g(ko, k1, . .., ky—1) is defined as
N-=-2
ko, ki, ..., kny—1) = 3
g(0> ~1» s KN 1) mgxzop(wk"’wkf("))’ ()
n=»

where s runs over all the possible dependency structures on the phrase sequence. By linearly
combining these two functions, the overall evaluation function / is defined as

h(ko, ki, ..., kn—1) =af (ko ki, ..., kn—1) + (A —a)glko, ki, ..., kn=1), (4

where a(0 < a < 1) is a parameter to adjust the balance of contribution from f and
g. Thus the sentence compression problem can be formulated as a mathematical problem of
finding a subsequence of phrases wg, Wy, - - - Wiy _, of a given sentence wow; - - - wp—1 that
maximises the function 4 (kg, k1, . .., ky—1). This problem can be solved efficiently by an
algorithm similar to a dependency structure parser [2].

3 Inter-phrase Dependency Strength and Phrase Significance

3.1 Dependency Path Length

As stated in the preceding section, the inter-phrase dependency strength for every pair of
phrases in the original sentence is necessary for sentence compression. We tried to estimate

Sentence Compression Using Statistical Information About Dependency Path Length 129

this quantity by analysing both original sentences and corresponding compressed sentences
in the training corpus. First an original sentence is parsed, and a dependency structure tree
as in Fig. 1 is constructed by using a morphological analyser [4] and a dependency structure
analyser [5]. A subsequence of phrases wy,wy, - - - Wk, of a sentence wow1 ... wpHy—1 is
said to be a dependency path connecting wy, and wy, if wy, depends on (modifies in a
wide sense) wy,,, forn = 0,..., N — 1. Note that the dependency path connecting two
given phrases is unique on a dependency structure if there is one. The number N is called
the dependency path length [6] between wy, and wy,, , denoted by DPL(wy,, Wk,). If there
is no dependency path connecting w,, and w,, we define DPL(w,,, w,) = co. In Fig. 1 for
example,

DPL(kono, eikyoude) = 2,
DPL (eikyoude, unkyuushita) = 1,
DPL (taifuuno, kakusenga) = oo.

kono(this) o j

taifuuno(of typhoon) 1 —¢

eikyoude(by influence) 2

kakusenga(each line) 3 —¢
unkyuushita(was suspended) 4

Fig.1. Dependency structure tree for a Japanese sentence “kono taifuuno eikyoude kakusenga
unkyuushita (By the influence of this typhoon, each line was suspended)”

3.2 Inter-phrase Dependency Strength

To avoid statistical sparseness, phrases are classified according to their morphological
construct [7]. Modifier phrases and modified phrases are classified in different ways.
The class of a phrase w is denoted by Ci(w) or C,(w) depending on whether w is a
modifier phrase or a modified phrase, respectively. There are about 200 modifier phrase
classes, and about 100 modified phrase classes. For every pair of phrases w,, and w, with
DPL(w;,, wy,) # oo in original sentences, we consider a triplet

(Cx(wp), Cy(wy), DPL(wy,, wy)). 5)

We say that a triplet as in Eq.(5) in origial sentences survives the compression if it appears
with DPL(w,,, w,) = 1 in the compressed sentences, that is, w,, and w, appear in direct
modifier-modified relation in compressed sentences. Then the survival rate S(t) of a triplet ¢

is defined as ..
the number of surviving tokens for ¢
S@t) = (0)

the number of tokens for ¢ in the training data”

130 K. Yamagata et al.

Based on S(t), the inter-phrase dependency strength p(w,, w,) between w,, and w, is
estimated as
log S(¢), if DPL(wpm, wy) # 00;

Wiy, Wy) = 7
p(m, wn) —0o0, if DPL(wy, wy) = 00, @

where t = (Cx(wy,), C, (wy), DPL(wy,, wy)).

3.3 Phrase Significance

The significance g (w) of each phrase w was estimated by the method described in [7]. That
is, phrases were classified into about 60 classes, and the survival rate R(C(w)) of each
phrase class C (w) was calculated by using original sentences and corresponding compressed
sentences in the training corpus. Also TF-IDF(w) was calculated for the main content word
in w appearing in an original sentence by using the background newspaper articles that
appeared on the same day as the sentence appeared. Finally, the phrase significance g (w)
was estimated as

q(w) = log R(C(w)) + log TF-IDF(w). (8)

4 Sentence Compression Experiments

4.1 Corpus

A Mainichi Shinbun corpus [8] was used in the experiments. This corpus contains newspaper
articles appeared in Mainichi Shinbun in fiscal 2002 and corresponding 54-character
summaries written manually. We extracted the first sentence in the first paragraph of an article
as an original sentence to be compressed, because the 54-character summary attached to the
article can be regarded as its compressed version in most cases [7]. The data was divided into
three parts as in Table 1.

Table 1. Division of Mainichi Shinbun Corpus (2002) into training data and evaluation data. Training
Data I is used for estimating the inter-phrase dependency strength and the phrase significance. Training
Data Il is used to calculate TF-IDF for terms appearing in the Evaluation Data. In the Evaluation Data,
one sentence was extracted from each article.

Training Data I: 28423 articles from May 2002 to March 2003
Training Data II: 2778 articles in April 2002
Evaluation Data: 50 sentences extracted from 50 articles in April 2002

4.2 Experimental Conditions
We have compared the following three methods:

— Conventional Method
The inter-phrase dependency strength p.(w;,, wy,) was estimated by the distribution of
dependency distance as described in [3].

Sentence Compression Using Statistical Information About Dependency Path Length 131

— Present Method
The inter-phrase dependency strength p(w,, w;) was estimated as described in subsec-
tion 3.2.

— Combined Method
The combined quantity p(wp,, w,) + pe(wmn, wy,) was used for the inter-phrase
dependency strength.

In all cases, the phrase significance was estimated by the method reviewed in subsection
3.3. The parameter a was fixed at 0.5.

The compression rate is the ratio of the number of phrases in a compressed sentence to
that in its original sentence. Each original sentence was compressed at three compression
rates: 70%, 50%, and 30%.

5 Subjective Evaluation

5.1 Subjects and Evaluation Criteria

10 subjects were employed to evaluate the quality of compressed sentences. To each subject,
450 compressed sentences (50 original sentences X 3 methods X 3 compression rates)
were presented to evaluate from three points of view: information retention, grammatical
naturalness, and overall impression. The original sentence corresponding to each compressed
sentence was also presented. Evaluation was done by scoring compressed sentences in 6
marks: 0 (very poor) through 5 (very good). Subjects were given instructions as to what each
mark means.

5.2 Results

Fig. 2 (left and right) and Fig. 3 (left) show the evaluation score averaged over all the
compressed sentences at each compression rate and all the subjects.

Conventional Method & Conventional Method &

Present Method —+— Present Method —+—
4l Combined Method --*-— | 4l PR Combined Method --*-— |
""*»»*ﬂ,,,w,,,,,,%

0 ! ! ! 0 ! !
70 50 30 70 50 30

Compression Rate(%) Compression Rate(%)

Fig. 2. Evaluation score for information retension (left) and grammatical naturalness (right) averaged
over all the test sentences and all the subjects

132 K. Yamagata et al.

5
Conventional Method -—-&—- Conventional Method ---&—-
Present Method —+— Present Method —+—
a4l Combined Method --—x-— | 08 L Combined Method - |
=
2
J3F g o6 f g
S o
o °
@ <)
2 E S04 - g
c
ol
7]
1F B 0.2 -
0 L L L 0 L L L
70 50 30 70 50 30
Compression Rate(%) Compression Rate(%)

Fig. 3. Evaluation score for overall impression averaged over all the test sentences and all the subjects
(left), and the standard deviation of the evaluation score over the subjects (right)

In all cases, the present method outperformed the conventional one. By combining the
present method with the conventional one, grammatical naturalness was further improved. It
is noted in Fig. 2 (left) that even though we have only changed the method for estimating
the inter-phrase dependency strength, intending to improve the grammatical naturalness, the
information retention score was also improved. This suggests that the original information
is retained not only in each single phrase, but also in each pair of phrases. In the combined
method, the grammatical naturalness score was kept almost constant with the change of the
compression rate as seen in Fig. 2 (right). The tendency of the evaluation score to fall off with
the compression rate was similar in the information retention and in the overall impression
as seen in Fig. 3 (left). This means that the overall quality of compressed sentences is heavily
influenced by the degree of information retention. It is worth noting in Fig. 3 (right) that
the standard deviation of the overall impression score over the subjects was smaller in the
combined method than in other two methods; the scores for sentences compressed by the
combined method were comparatively stable over the subjects.

6 Conclusion

In a framework of sentence compression based on phrase significance and inter-phrase
dependency strength, a new method of estimating the inter-phrase dependency strength was
presented. The results of subjective evaluation showed that the new method outperformed the
conventional one. By combining the new method with the conventional one, the performance
was further improved. Our future work includes automatic correction of phrase ending in
compressed sentences to improve the grammatical naturalness. The use of survival rate for
n-tuples of phrases (n > 3) will also be worth pursuing.

Acknowledgments

This work was supported in part by the Japan Society for the Promotion of Science, Grant-
in-Aid for Scientific Research (C) (16500077).

Sentence Compression Using Statistical Information About Dependency Path Length 133

References

1. Okumura, M., Nanba, H.: Automated text summarization: A survey. Journal of Natural Language
Processing 6 (6) (1999) 1-26.

2. Oguro, R., Ozeki, K., Zhang, Y., Takagi, K.: An efficient algorithm for Japanese sentence
compaction based on phrase importance and inter-phrase dependency. Proc. TSD2000 (LNAI1902)
(2000) 65-81.

3. Oguro, R., Sekiya, H., Morooka, Y., Takagi, K., Ozeki, K.: Evaluation of a Japanese sentence
compression method based on phrase significance and inter-phrase dependency. Proc. TSD2002
(LNAI2448) (2002) 27-32.

4. JUMAN: http://www.kc.t.u tokyo.ac.jp/nl resource/juman.html

5. KNP:http://www.kc.t.u tokyo.ac.jp/nl resource/knp.html

6. Fukutomi, S., Takagi, K., Ozeki, K.: Aligning phrases in original text and its summary using concept
distance and inter-phrase dependency. Proc. 67" Annual Meeting of IPSJ 2 (2005) 119-120.

7. Morooka, Y., Esaki, M., Takagi, K., Ozeki, K.: Summarization of newspaper articles using important
sentence extraction and sentence compression. Proc. 10" Annual Meeting of Natural Language
Processing Society (2004) 436—439.

8. Mainichi Sinbunsha: Mainichi Shinbun zenbun-kiji oyobi 54-moji database. (2002).

134 K. Yamagata et al.

Appendix (Example of Compressed Sentences)
Original Sentence

31-nichi (31st)/ gogo (afternoon)/ shichi-ji (7 o’clock)/ 40-pun-goro (about 40 minutes)/
ibarakiken-toukaimura-no (in Tokai village, Ibaraki prefecture)/ nihon-genshiryoku-hatuden-
toukai-dai2-hatudensho-de (at the Toukai 2nd Plant of Japan Nuclear Power Generation)!
gaibu-kara-no (from outside)/ denryoku-kyoukyuu-ga (electric power supply)/ shunkanteki-
ni (for a moment)/ tomatta (stopped)/ tame (because),/ genshiro-ga (nuclear reactor)/ jidou-
teishi-shita (automatically stopped)./

(At the Toukai 2nd Plant of Japan Nuclear Power Generation in Tokai village, Ibaraki
prefecture, the nuclear reactor automatically stopped at about 7 o’clock 40 mimutes p.m.
on the 31st due to a momentary failure of electric power supply from outside.)

Conventional Method

70% 40-pun-goro (about 40 minutes)/ ibarakiken-toukaimura-no (in Tokai village, Ibaraki
prefecture)/ nihon-genshiryoku-hatuden-toukai-dai2-hatudensho-de (at the Toukai 2nd
Plant of Japan Nuclear Power Generation)/ gaibu-kara-no (from outside)/ denryoku-
kyoukyuu-ga (electric power supply)/ tomatta (stopped)/ tame (because), / genshiro-ga
(nuclear reactor)/ jidou-teishi-shita (automatically stopped)./

50% ibarakiken-toukaimura-no (in Tokai village, Ibaraki prefecture)/ nihon-genshiryoku-
hatuden-toukai-dai2-hatudensho-de (at the Toukai 2nd Plant of Japan Nuclear Power
Generation)/ gaibu-kara-no (from outside)/ denryoku-kyoukyuu-ga (electric power sup-
ply)/ shunkanteki-ni (for a moment)/ genshiro-ga (nuclear reactor)/ jidou-teishi-shita
(automatically stopped)./

30% ibarakiken-toukaimura-no (in Tokai village, Ibaraki prefecture)/ nihon-genshiryoku-
hatuden-toukai-dai2-hatudensho-de (at the Toukai 2nd Plant of Japan Nuclear Power
Generation)/ gaibu-kara-no (from outside)/ denryoku-kyoukyuu-ga (electric power
supply)/

Combined Method

70% ibarakiken-toukaimura-no (in Tokai village, Ibaraki prefecture)/ nihon-genshiryoku-
hatuden-toukai-dai2-hatudensho-de (at the Toukai 2nd Plant of Japan Nuclear Power
Generation)/ gaibu-kara-no (from outside)/ denryoku-kyoukyuu-ga (electric power sup-
ply)/ shunkanteki-ni (for a moment)/ tomatta (stopped)/ tame (because)/ genshiro-ga (nu-
clear reactor)/ jidou-teishi-shita (automatically stopped)./

50% ibarakiken-toukaimura-no (in Tokai village, Ibaraki prefecture)/ nihon-genshiryoku-
hatuden-toukai-dai2-hatudensho-de (at the 2nd Plant of Japan Nuclear Power Gen-
eration)/ gaibu-kara-no (from outside)/ denryoku-kyoukyuu-ga (electric power sup-
ply)/ tomatta (stopped)/ genshiro-ga (nuclear reactor)/ jidou-teishi-shita (automatically
stopped)./

30% ibarakiken-toukaimura-no (in Tokai village, Ibaraki prefecture)/ nihon-genshiryoku-
hatuden-toukai-dai2-hatudensho-de (at the Toukai 2nd Plant of Japan Nuclear Power
Generation)/ genshiro-ga (nuclear reactor)/ jidou-teishi-shita (automatically stopped)./

Transformation-Based Tectogrammatical Analysis of Czech

Vaclav Klime§

Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics
Charles University, Prague
klimes@Qufal.mff.cuni.cz

Abstract. There are several tools that support manual annotation of data at the
Tectogrammatical Layer as it is defined in the Prague Dependency Treebank. Using
transformation-based learning, we have developed a tool which outperforms the
combination of existing tools for pre-annotation of the tectogrammatical structure by
29% (measured as a relative error reduction) and for the deep functor (i.e., the semantic
function) by 47%. Moreover, using machine-learning technique makes our tool almost
independent of the language being processed. This paper gives details of the algorithm
and the tool.

1 Introduction

There are several reasons for developing a tool performing annotation at the tectogrammatical
layer, sometimes called “layer of deep syntax”. Annotation of a sentence at this layer is closer
to meaning of the sentence than its syntactic annotation and thus information captured at
the tectogrammatical layer is crucial for machine understanding of a natural language. This
can be used in areas such as machine translation and information retrieval, however it can
help other tasks as well, e.g. text synthesis. Last but not least, the tool can be employed
by annotators creating tectogrammatical representation (which then can be used for training
tools performing the noticed tasks) to ease their work.

In Sect. 2, we introduce the structure and content of the Prague Dependency Treebank,
which was used for training and testing of our tool; we characterize our training and testing
data; and briefly describe the transformation-based toolkit used in our tool. The evaluation
method is given in Sect. 3. Other tools performing partial tectogrammatical annotation are
introduced in Sect. 4. The core of the article—the algorithm used by our tool—together with
its results is described in Sect. 5. Finally, Sect. 6 contains some closing remarks.

2 Used Resources

2.1 The Prague Dependency Treebank and Layers of Its Annotation

The Prague Dependency Treebank (PDT), currently in version 2.0 [3], is a long-term research
project, whose aim is a complex, linguistically motivated (manual) annotation of a small part
of the Czech National Corpus.! It is being annotated at three layers: morphological, analytical
(surface syntax), and tectogrammatical. The Functional Generative Description theory [7]

I http://ucnk.ff.cuni.cz

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 135-142, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

136 V. Klime§

has been the main guidance for annotation principles and rules of PDT. A collection of
newspapers, an economical weekly and a popular scientific magazine have been selected
as the textual material for the PDT.

On the morphological layer, the morphological lexical entry (represented by a lemma) and
values of morphological categories (a morphological tag, shortly m-tag, i.e. the combination
of person, number, tense, gender, verbal voice, .. .) are assigned to each word.

At the second and third (analytical and tectogrammatical) layer of the PDT, a sentence is
represented as a rooted tree. Edges represent relation of dependency (also called “immediate
subordination” in some other theories) between two nodes: the governor and the dependent.”

Every token (word, punctuation) from the original text becomes a node at the analytical
(surface-syntactic) layer, shortly a-layer, of annotation and a label called an analytical
Sunction, shortly s-tag, is assigned to every node, describing the type of surface dependency
relation of the node to its parent. The original word order position of the corresponding token
is also kept as a separate attribute.

The tectogrammatical layer [4], shortly #-layer, captures the deep (underlying) structure
of a sentence. Nodes represent only autosemantic words (i.e. words with its own meaning);
synsemantic (auxiliary) words and punctuation marks can only affect values of attributes of
the autosemantic words which they belong to. On the other hand, (new) nodes may be created
for several reasons, usually as filling of ellipses, e.g., when the rules of valency so “dictate”.
For the sake of filling ellipses, nodes can also be copied.® At this layer, not less than 39
attributes (labels) can be assigned to nodes. One of the most important ones is the (deep)
functor, shortly f-tag, capturing the tectogrammatical function of a child relative to its parent,
i.e. the type of the modification.

Special f-tags are used for child—parent relations that are of a technical nature, such as for
capturing coordination and apposition constructions.

2.2 Training and Test Data

In PDT, there are 833,357 tokens in 49,442 sentences annotated at the tectogrammatical
layer. About one tenth of this volume are development test data, another tenth are evaluation
test data and the rest are training data. All the data are annotated manually. Unless stated
otherwise, our tool is trained on all the training data. All tests are performed on all the
development test data.

2.3 fnTBL

For the machine learning part of our tool, we have chosen the fnTBL toolkit [6], the fast
implementation of transformation-based learning mechanism [2]. Although we consider our
choice to be good, the toolkit is aimed at classification tasks only and is not capable to process

2 Usually, instead of ‘dependent—governor’, we denote pair of adjacent nodes as ’child—parent’ since
not all the edges correspond to the relation of dependency in the linguistic sense—some of them
have rather technical character, e. g. edges adjacent to nodes representing punctuation marks.

3 We want to stress that even if all nodes in a subtree exist on both the a-layer and t-layer, their relative
position at these layers may differ.

Transformation-Based Tectogrammatical Analysis of Czech 137

tree structures. How we have overcome these drawbacks is described at the appropriate
places.

The rules which the toolkit tries to learn are specified by rule templates which have to be
designed manually before the learning can start. A rule template, in our case, is a subset of
the possible names of features together with the name of a feature which bears information
about the class the sample belongs to (since it is possible to perform more classification tasks
atonce). A rule is an instance of a template: particular values are assigned to all the features.
The rule is interpreted such that a sample belongs to a given class if the given features have
the given values.

3 Evaluation

Since two tectogrammatical trees constructed over the same sentence do not necessarily
contain the same number of nodes, the first step of evaluation must be the alignment of
nodes, i.e. a node from one tree will be paired with a node from the other tree and each node
can be part of at most one such pair. Only after such alignment attributes of the paired nodes
can be compared. We have developed an alignment procedure which is the basis for all the
evaluations presented here (its description is beyond the scope of this paper).

We define precision, P, for any attribute assignment to be the number of pairs where both
nodes agree in the value of the attribute divided by the total number of nodes in the test (=
the automatically created) annotation; and we define recall, R, as the number of pairs with
the correct value of the attribute divided by the total number of nodes in the “gold standard”
annotation. We also define F-measure, F, in the usual way as the equally weighted harmonic
mean of precision and recall.

When we want to compare the structure, we have to slightly modify this approach. We
define a node to be correctly placed if the node and its parent are aligned and the counterpart
of the parent of the node in question is the parent of the counterpart of the node in quf:stion.4
Then, when comparing structure, the numerator of the fractional counts from the paragraph
above is the number of correctly placed nodes.

We use the subscript s for reporting the evaluation of the structure, e.g. P; means precision
in structural annotation. Similarly we use the subscript ¢ for f-tags.

4 Tools Performing the Tectogrammatical Annotation

Historically, there exist three tools performing partial annotation at the t-layer. They were all
developed to reduce the human work needed to annotate the PDT. The first tool ever used in
the annotation process, preannotating the t-layer on the basis of manual a-layer annotation,
is AR2TR [1]. Its algorithm has been manually written. It determines the value of f-tags
in clear-cut cases and those of several other attributes (e.g. verbal and sentence modalities
and aspect); deletes most nodes of synsemantic words and fills the corresponding attributes
of their parents accordingly; and reattaches nodes in certain cases and thus adjusts the tree
structure.

4 Informally, the “same” node in both trees has to depend on the “same” parent.

138 V. Klime§

The output of the AR2TR is the input of a decision-tree based tool for the assignment of
f-tags called AFA [8]. It was intended to use once the tectogrammatical structure is correctly
determined, and the annotators reported that it made their work easier even in this initial
phase, though.

The third tool [5], using a valency lexicon to add nodes and correct f-tags of valency
members, was developed near the end of the main annotation process of PDT and thus was
not used broadly by annotators. When these three tools are applied in the given order to the
manually annotated data at the a-layer, the resultis Py = 86.4%, Ry = 82.9%, Fy = 84.6%
and Py = 74.1%, R, = 71.1%, F; = 72.6%.

S The Algorithm

The input of our tool are data manually annotated at the analytical layer.

Since the tectogrammatical annotation is very complex (see above) and since machine-
learning methods are not suitable for the determination of all the attributes, we aimed to
determine the tectogrammatical structure and assignment of f-tags only.

The fnTBL toolkit is not capable of processing tree structures. Thus, when we want to
pass features of the parent, children etc. of a node to the toolkit, we have to pass them as if
they were features of the node. The biggest disadvantage of this procedure is that the toolkit
cannot employ the tree structure in its actual state—it remains the same during the whole
training or classification process and can be modified as late as when the process is finished.

Not only for this reason, we split the processes of training and classification into several
phases. After each phase of training, a set of trees being processed is modified according to
the rules used by this phase. The modified trees then serve as the input to the next phase.
After careful analysis of the data we have split the process into three phases; their description
and intended aim follows.

1. Deletion of nodes (synsemantic words or majority of punctuation) and assignment of
f-tags to the remaining nodes;

2. relocations of nodes (mainly rhematizers and phrases having different structure on the
a-layer and the t-layer), copying of nodes (filling ellipses), and creation (insertion) of
“inner” nodes (again, filling ellipses); assignment of f-tags of copied or newly created
nodes;

3. creation of leaf nodes (missing valency modifications) and assignment of their f-tags.

5.1 Phasel

The aim of this phase of tectogrammatical parsing is to delete nodes which have no place at
the t-layer and to assign f-tags to those nodes remaining.

Assignment of f-tags to nodes is an elementary classification task. It can easily accommo-
date also the deletion of nodes by assigning a special f-tag value meaning “deleted” to the
node in question. However, when a node being deleted has children, one of them should take
its place and become the new parent of its siblings. We call this node successor. That is why

5 We should say too that the AFA was trained on the data of PDT 1.0 and we could expect slightly
better performance if it is trained on PDT 2.0.

Transformation-Based Tectogrammatical Analysis of Czech 139

we have enriched rule templates by another type: deleting the parent of a node together with
appointing this node as the successor of its parent. Both types of rule templates have to exist,
since the second type cannot cause the deletion of leaf nodes.

A node is being deleted if a single rule of any type states so. If a node has children and its
successor is not appointed, it is deleted only if it has the only child®—and this child becomes
its successor. Otherwise the node is retained.

For both types of rules we have used only features of the node in question and of its
parent.” Namely we worked with their lemmas, s-tags and the values of individual positions
of their m-tags. However, the resulting number of features was too high to be kept in memory
even for rules with low number of features. To evade this we have developed an automatic
adaptive procedure which reduces templates. All the templates are used for training the rules
on a small part of data; then, the number of instances of each template is counted in the
resulting rule file. Templates with at least two instances are written into a new template file—
and the rule file is completely discarded. These new templates are used for training on the
whole data. We call this technique femplate reduction. Even with this technique employed,
rule templates can contain maximum of three features with the condition that when there are
exactly three features, they have to belong to different nodes.

The described set of rule templates gives the following precision, recall and F-measure of
structure assignment: Py = 87.1%, Ry = 76.2%, Fy = 81.3%. The same figures for f-tag
assignment are Py = 85.9%, R; = 75.2%, F; = 80.2%. When we tried to prefer somehow
the features which we regarded as more important (i.e. lemma, s-tag, and part of speech) in
templates, results were at best as good as those given above. Template reduction thus proved
to be the best option.

5.2 Phase 2

The aim of this phase of parsing is the relocation and copying of nodes and the insertion of
new inner nodes. F-tags of these new nodes should also be assigned.

After the analysis of the data and some experimenting, we find that the transformations
this phase should perform are considerably complex and therefore we decided to describe
each of them with a single formula as a subtree-to-subtree transformation. Besides relocation
of nodes, a transformation can capture creation or deletion of a node or the process of copying
an existing node. An example of a (real) complex transformation, on which the mechanism
can be explained, is
A(B(C(D),E(F,G))) >A(B(D(C),a(F,G,b)))+Adv+Atr+AuxC+ExD+ExD;CPR+Q| A
Each node is denoted with a letter and its children follow it in parentheses. Siblings on the
left side of a transcription follow their surface order. The whole transformation is recorded
along its node B. Since these pieces of information does not need to fully characterize C
and following nodes, their s-tags, serving for their identification, are attached (after the last
parenthesis). A lowercase letter denotes a copy of the node with uppercase variant of the
same letter; for such nodes their f-tags or a special value @ meaning “the same f-tag as the
original node has” are attached (after the semicolon). Similarly, a new node (not occuring in
the example) is denoted with an asterisk and its f-tag is attached (after the colon). When a

6 Which is not planned to be deleted as well
7 Memory was the limiting factor.

140 V. Klime§

node is deleted,? its successor node is given as well (after the |-sign). The transformation is
the smallest possible, i.e. besides nodes being created, deleted, copied, or moved, only nodes
required in order for the original and resultant structures to be trees are involved.

Although it would be best if fnTBL had access to features of all the nodes involved in it,
variable and possibly high number of the nodes needs a compromise solution. After exploring
the most frequent transformations occurring in the data, we decided to use features of five
groups of nodes: the node in question (B), its parent (4), its children, its left siblings and its
right siblings. Attributes from all the layers, namely lemma, m-tag, s-tag, and f-tag are chosen
as features; and where there are more nodes in a group, the respective values are merged into
one string and considered to be atomic. This way we got 20 feature types. However, even with
templates containing at most five features the computation did not fit into memory even for a
part of the training data. We thus threw out several feature types—we chose only lemmas of
children, left siblings, and right siblings for their sparseness. We also had to reduce number
of templates by eliminating those containing more that two features of any group. The set of
templates obtained in this way has been reduced in the same way as in the previous phase
with only one modification: since the number of resulting templates was low, all templates
whose instance occurred in the rule file were selected.

Under the described conditions, the result of structure assignment was Py = 91.4%,
Ry = 80.3%, F;, = 85.5% and that of f-tag assignment P, = 85.9%, R, = 75.5%,
Fy = 80.4%.°

5.3 Phase 3

The aim of this phase is to create leaf nodes missing in the surface form of a sentence
and fill in their (tectogrammatical) attributes. These nodes typically correspond to “missing”
obligatory valency slots.

If we could determine the valency frame of a word in its occurrence, adding missing
obligatory valency slots would be direct. However, we can hardly learn valency frames from
a corpus, since a certain valency member which is sometimes present and sometimes not may
indicate on one hand the only valency frame with the member being optional, or on the other
hand that two frames, first one with the member being obligatory and the second one without
it at all. That is why we make decisions about obligatoriness of a valency member one by one:
each f-tag corresponds to one feature which states whether (or, in case of free modifications,
how many times) a member with the f-tag should occur by an occurrence of a word. From
the 67 f-tags, only 27 have been chosen—those occurring at least twice in the training data at
nodes new at t-layer having no children, i.e. by potential valency members.

The set of features used in templates consists of a lemma (valency is the property of a
word), part of speech (several characterizations can be made even for whole parts of speech,
e.g. a verb usually has its actor), verbal voice (it affects valency frame of verbs), and negation
(negation of verb is expressed by an extra node being child of the verb). Every rule template
consists of either lemma or part of speech; and optionaly of either voice or negation.

However, things may be complicated by errors in assignment of f-tags done in the first
phase: if a wrong f-tag is assigned to a valency member, an extra error can occur by

8 This is given implicitely: it occurs on the left side, but not on the right side
9 The result in f-tag assignment is almost the same as after the previous phase, because f-tags were
assigned just to (a few) new nodes in this phase.

Transformation-Based Tectogrammatical Analysis of Czech 141

creating a superfluous node with the correct f-tag. To avoid it, we created rule templates
able to correct an f-tag as well. Corrections are recorded by the node being altered and the
following information is used in the features: lemma of the word whose valency frame we are
interested in and f-tag and morphemic realization'? of the valency member. Besides them we
added voice of the parent word (for the reason stated above) and lemma of valency member
(hopefully useful in identification of phrases). Every rule template contains lemma and either
functor or morphemic realization of a valency member. It can also contain its lemma and/or
voice of the parent.

A morphemic realization bears roughly the same information as that used in traditional
description of valency frames: lemmas of all nouns, prepositions, and conjunctions being
auxiliary words; and part of speech and case (if the word exhibits it) of the synsemantic
word.

When applying changes suggested by fnTBL, f-tags are repaired first, then the number of
valency members is determined, those missing in a tree are created and their f-tags are set.
When there is an extra node, it is not deleted.

Since the total number of templates is low, there is no need to reduce them. After this
phase, the result of structure assignment is Py = 90.2%, Ry = 87.9%, Fy = 89.0% and that
of f-tag assignment P; = 86.5%, R; = 84.3%, F; = 85.4%. These are the final evaluation
figures for our tool on the PDT 2.0 test data.

When m-layer and a-layer of training and test data are analyzed automatically, the result of
structure assignment is Py = 77.5%, Ry = 76.6%, Fy = 77.1% and that of f-tag assignment
is P =78.2%, R, = 77.3%, F; = 77.8%. The used parser [9] achieves accuracy 84.2% on
PDT 2.0.!!

6 Closing Remarks

We have shown that our tool substantially outperforms the accuracy of tectogrammatical
annotation made by the set of formerly employed partial tools. However, trying the tool out
on a new language can be useful and remains to be done (given the resources being created at
LDC, our Institute and other places, we hope to be able to do similar experiments on English
and later on Arabic).

This research was supported by the grant of the Grant Agency of the Czech Republic
No. 405/03/0913 and the grant of the Grant Agency of Czech Academy of Sciences No.
T10147016.

References

1. Alena Bohmova: Automatic Procedures in Tectogrammatical Tagging. In The Prague Bulletin of
Mathematical Linguistics 76. Charles University, Prague, 2001.

2. Eric Brill: A Simple Rule-Based Part-of-Speech Tagger. In Proceedings of 3 Conference on
Applied Natural Language Processing, pp. 152—155. Trento, Italy, 1992.

10 Called also “subcategorization information”
1T The training and test data used for analytical parsing are, however, supersets of the respective sets
used for tectogrammatical analysis.

142 V. Klime§

3. Jan Haji¢, Eva Hajicov4, Jaroslava Hlavacovd, Véclav Klimes, Jifi Mirovsky, Petr Pajas, Jan
Stépanek, Barbora Vidovd Hladkd, Zdenék Zabokrtsky: Prague Dependency Treebank 2.0, CD-
ROM, Linguistic Data Consortium, 2006. In press. http://ufal .mff.cuni.cz/pdt2.0/

4. Eva Hajicov4, Jarmila Panevovd, Petr Sgall: A Manual for Tectogrammatic Tagging of the Prague
Dependency Treebank. UFAL/CKL Technical Report TR-2000-09. Charles University, Prague,
2000.

5. Véclav Honetschliger: Using a Czech Valency Lexicon for Annotation Support. In V. Matousek,
P. Mautner: Proceedings of the 7" International Conference on Text, Speech and Dialogue, pp.
120-126. Springer-Verlag, Berlin Heidelberg New York, 2003.

6. Grace Ngai, Radu Florian: Transformation-Based Learning in the Fast Lane. In Proceedings of
NAACL 2001, pp. 40-47. Pittsburgh, PA, 2001.

7. Petr Sgall, Eva Hajicova, Jarmila Panevova: The Meaning of a Sentence in Its Semantic and
Pragmatic Aspects. Academia — Kluwer, Praha — Amsterdam, 1986.

8. Petr Sgall, Zdengk Zabokrtsky, Saso DZeroski: A Machine Learning Approach to Automatic Functor
Assignment in the Prague Dependency Treebank. In R. M. Rodriguez, C. Paz Sudrez Araujo (eds.):
Proceedings of the 3" International Conference on Language Resources and Evaluation, volume 5,
pp. 1513-1520. European Language Resources Association, 2002.

9. Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Haji¢: Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of the Human Language Technology /
Empirical Methods in Natural Language Processing conference (HLT-EMNLP), Vancouver, British
Columbia, 2005.

The Effect of Semantic Knowledge Expansion
to Textual Entailment Recognition

Zornitsa Kozareva, Sonia Vazquez, and Andrés Montoyo

Departamento de Lenguajes y Sistemas Informéticos
Universidad de Alicante, Spain
{zkozareva, svazquez, montoyo}@dlsi.ua.es

Abstract. This paper studies the effect of semantic knowledge expansion applied to
the Textual Entailment Recognition task. In comparison to the already existing ap-
proaches we introduce a new set of similarity measures that captures hidden semantic
relations among different syntactic categories in a sentence. The focus of our study is
also centred on the synonym, antonym and verb entailment expansion of the initially
generated pairs of words. The main objective for the realized expansion concerns the
finding, the affirmation and the enlargement of the knowledge information. In addition,
we applied Latent Semantic Analysis and the cosine measure to tune and improve the
obtained relations. We conducted an exhaustive experimental study to evaluate the im-
pact of the proposed new similarity relations for Textual Entailment Recognition.

1 Introduction

The web is the largest text repository, where millions of people share and consult information
daily. Given a natural language query, present search engines identify and return relevant
documents to the query. However, the relevant information may be present in different forms
and a search about “tropical fruit” may return a document where "mango" appears. Although
neither "tropical" nor "fruit" appear, the document is still relevant because "mango” is a
type of tropical fruit. Other Natural Language Processing (NLP) applications have to handle
language variabilities in order to avoid redundant information or to find the correct answer
which may be represented in indirect way. Therefore, to improve their performance, a textual
entailment (TE) module [1] is needed.

This directed researchers toward the development of diverse approaches of TE recognition
such as logic forms [2], WordNet similarities [3,4,5], edit distance between parsing trees [6]
among others [7].

At present, the already existing semantic similarity TE approaches, measure the word
similarity among noun-noun, verb-verb, adjective-adjective and adverb-adverb pairs. In this
work, we focus our study on word similarity relations among different syntactic categories.
We measure the degree of contribution of such pairs to the recognition of textual entailment.
In order to strengthen the similarity between the two texts, we expand the already obtained
word pairs with their synonyms, antonym and verb entailment relations.

Additionally, we measure the semantic similarity between two texts using Latent Semantic
Analysis (LSA) and the cosine measure. Instead of using the traditional word frequency
approaches, we propose to measure similarity through the usage of relevant domains [8].

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 143-150, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

144 Z. Kozareva, S. Vazquez, and A. Montoyo

The paper is organised in the following way. Section 2 describes the motivation of our
work and the utilized resources for our TE approach. Section 3 shows the experiments which
we conducted to establish the robustness of the proposed method. Finally, we conclude in
Section 4 and mention some work in progress.

2 Motivation and Resource Description

Recent textual entailment (TE) approaches [4,9,5] that rely on semantic information use only
relations between words of the same syntactic category. However, we realise that word pairs
from different syntactic categories also give relevant information. Thus, the main goal of our
approach focuses on the study of the effect of semantic similarity between different syntactic
categories such as verb-noun, adjective-noun, among others.

Additionally, we propose a new semantic similarity approach where the cosine and LSA
are employed and examined. These measures identify the semantic distance and hidden
relations between the text (T) and the hypothesis (H). The relatedness of the sentences is
determined with the resource of relevant domains, rather than using the traditionall word
frequency methods. The next subsections present the resources we utilized in our approach.

2.1 Inter-syntactic Relations

Already existing works measure the semantic similarity between words of the same syntactic
category. These systems do not take advantage of inter-syntactic relations'. In our study we
find out that pairs of different syntactic categories are very indicative and can lead to a better
textual entailment recognition. For example, in order to determine that "He died of blood loss"
and "He died bleeding", infer the same meaning, we need to use inter-syntactic relations. The
previous approaches take into account only word pairs of the same syntactic category, so
they cannot determine that blood-N and bleeding-V are semantically related. In this example
blood and bleeding are the most relevant word pairs for the two texts and they infer that the
entailment relation between the two sentences holds. Therefore, one of our main purposes
in this investigation work is to apply the inter-syntactic relations which extract this kind of
information.

To measure the semantic similarity between two sentences, first the parts of speech
tags [10] are determined. From them, we took the four most significant word groups: verbs,
nouns, adjectives and adverbs. The similarity between the different syntactic word pairs is
determined with the WordNet::Similarity package [11].

For each word pair 2, the lin and path similarity measures are applied. The reason of their
usage is due to the different word senses and similarity scores that the WordNet::Similarity
assigns. For example, the word pair "bank-money" with the measure of /in disambiguates the
words with the senses bank#3—money#2 and establishes their similarity as 0.46. While the
measure of path disambiguates the words as bank#8-money#2 with 0.14 similarity. In this
example the first measure is more indicative.

1 Noun-verb, verb-noun, adjective-noun, noun-adjective, adverb-noun, noun-adverb, adjective-verb,
verb-adjective, adverb-verb, verb-adverb

2 A word pair consists of a word from the first sentences which is called the text and a word from the
second sentence called the hypothesis

The Effect of Semantic Knowledge Expansion to Textual Entailment Recognition 145

2.2 Sentence Expansion

To the previously extracted word pairs (noun—verb, noun—adjective, verb—adverb, etc), a
synonym, antonym and verb entailment expansion is applied. For this expansion we use the
WordNet? lexical resource.

The purpose of the word expansion is to provide to the original text (T) and hypothesis
(H) sentences more relevant semantic information. The synonym expansion includes words
that have the same meaning in the same context (arm—weapon). The antonym extracts words
with opposite meaning (high-low). Verb entailment looks for verbs whose action can not be
done unless the previous is accomplished (breathe—inhale, divorce—marry).

We come across some limitations associated to these expansions — the increase of
computational cost and the degree of relevance for the new word pairs. The first obstacle
is due to the large amount of possible combinations. The other is related to the appearance
of a great number of synonyms that can transform the entailment relation from positive to
negative and vice versa.

In order to reduce the noise of knowledge expansion, we used word sense disambiguation
[11]. All words in T-H sentences are disambiguated and then expanded through WordNet. For
example, for the pair bank-money, instead of including all synonyms related to all possible
senses, we considered only the synonyms associated to senses bank#3—money#2 according
to the measure of /in, and the senses bank#8—money#2 according to the measure of path.

2.3 Latent Semantic Analysis

LSA [12] has been applied in different NLP tasks. LSA consists in the construction and
usage of a term-document matrix which describes the occurrences of terms in documents
where each row corresponds to one term and each column corresponds to one document.

For our approach, we modify the space model of LSA. Instead of representing the columns
as documents, we represent them as domains. These domains are extracted from the WordNet
domain resource [13]. Thus, a new conceptual space with words and domains is obtained.
This new space establishes the relevance among the words and the domains.

We use LSA technique to measure the similarity between two sentences. First, we obtain
for each sentence the different constituents (noun, verb, adjective and adverb). Then, we
apply the LSA over the words of the text T and the words of the hypothesis H. Thus, two
different sets are obtained. These new sets contain a list of related words ordered by their
similarity. The final step is to normalise the number of words that coincide between the T and
the H.

Moreover, we use LSA in another approximation. Instead of using our conceptual space
over terms and domains, we construct a new space, where the corpus is represented by the set
of text sentences in the experimental data. Later, we use this new LSA space to determine the
similarity between the T and H sentences. In the LSA experiments, we also study the effect
of lemmatized and non lemmatized text.

2.4 Cosine Measure

In our work, the cosine measure is used to establish the semantic relevance between T and H
sentences. The most known usage of the cosine measure is taking the frequency of the words

3 http://wordnet.princeton.edu/

146 Z. Kozareva, S. Vazquez, and A. Montoyo

from the text and the hypothesis. In this work, we introduce a new interpretation of the cosine
measure. Instead of word frequency, we consider Relevant Domains (RD).

The RD resource contains automatically extracted word-domain pairs, ordered by their
association ratio. For each word in T/H, the set of RD is determined. Once this information
is obtained, the T/H vectors are constructed and their similarity is measured with the
formula (1).

r-H _ 2o Ti - Hi
T||H|
IT1IH] \/Z?:1Ti2'\/2?=1Hi2

The values of the cosine vary from O to 1, where a 1 indicates that T and H are very similar
and 0O indicates that T and H have different meanings.

cos(T, H) = (D

3 Experiments and Evaluation

This section concerns the experimental evaluation of the significance of the different
knowledge representations which are described in the previous section.

All experiments are conducted with the Support Vector Machine (SVM) [14] algorithm.
We selected this machine learning approach, because of its ability to manage high data
scarcity problems and multidimensional attribute space.

3.1 Data Set

For our experiments, we use the development and test data sets provided by the Second
Recognising Textual Entailment Challenge (RTE 2)*. The examples in these data sets have
been extracted from real Information Extraction, Information Retrieval, Question Answering
and Text Summarization applications.

The development set consists of 800 text-hypothesis pairs, used as training examples.
The other set of 800 text-hypothesis pairs is used for testing. The provided data sets are for
the English language. The performances of the different knowledge representation sets are
evaluated with the RTE2 evaluation script’. According to the script, systems are ranked and
compared by their accuracy scores.

3.2 Experiment with Knowledge Expansion

The experiment knowledge expansion section presents two aspects — the contribution of the
inter-syntactic word pairs and the effect of synonym, antonym and verb entailment relation
expansions for the recognition of Textual Entailment.

We start our experiment with the measurement of the similarity for words of the same
syntactic category. This approach is similar to the one presented in [5]. Next, we expand the
initial noun, verb, adjective and adverbs pairs with their synonyms and verb entailment, as
previously described in subsection 2.2. The obtained results are shown in Table 1.

4 http://www.pascal network.org/Challenges/RTE2/
S http://www.pascal network.org/Challenges/RTE2/Evaluation/

The Effect of Semantic Knowledge Expansion to Textual Entailment Recognition 147

In this table, we show the results for the development and the test data sets, so that
a general overview of the behaviour of the knowledge features can be obtained. Without
the expansion, the development set obtains 60.12% accuracy, while after the expansion, the
performance increases with 0.53%. For the test set the performance improves with 1.38%.

Table 1. Results for the knowledge expansion experiments

sets Acc. IE IR QA SUM
devWithoutExp 60.12 54.00 61.00 59.00 66.50
devWitExp 60.75 53.50 58.00 61.50 70.00
devAllAttr 59.62 57.50 60.00 57.50 63.50
devExpARNVent 61.38 55.50 60.50 62.00 67.50
devExpARNV_NpCd 59.62 50.50 59.00 59.00 70.00
testWithoutExp 54.25 50.00 55.50 47.50 64.00
testWitExp 55.63 52.00 56.50 57.00 57.00
testAllAttr 53.50 52.50 53.50 53.00 55.00
testExpARN Vent 53.75 48.00 54.50 54.50 58.00
testExpARNV_NpCd 55.37 52.50 57.50 56.50 55.00

Considering the general scope of TE resolution, the performance of the already existing
systems varies from 49% of accuracy as a minimum to 60% of accuracy as a maximum [7].
Therefore 1.38% of improvement can be considered as significant for a Textual Entailment
system.

Once we demonstrated that the inclusion of synonym and verb entail expansion aided
the TE recognition, we added the antonym and all inter-syntactic category information. In
Table 1 this experiment is denoted with A/lAftr. This information decreased the performance
for the development and test data sets. The low performance is due to the antonym relations
and to the accumulated noise introduced by the expansion of the inter-syntactic word groups.
Additionally, not all sentence pairs express negative fact or event, therefore there is no need
to measure the antonym relation for each sentence. The synonym and antonym attributes
contradict each other, therefore they sparse the example vector space of the SVM and hamper
the classification of the employed machine learning algorithm.

An observation related to the A/lAftr experiment concerns the performance of the
Information Extraction (IE) task. Compared to the other sets, IE obtains 57.50% of accuracy.
This shows that the inter-syntactic information is significant and important for the IE task,
rather than to the other NLP tasks.

In order to confirm that the limitations of the AllAttr set are caused by the antonyms,
we conduct an experiment where only the synonym expansion and verb entail information
is included. For the development set, this combination obtains the highest accuracy of
61.38%. In addition, we add two more attributes: proper names and numbers. With them
the performance of the development data decreases to 59.62%, however, the test data obtains
55.37%. This accuracy is the second highest score for the test data.

In this experimental subsection, we show that the expansion of synonym and verb
entailment improves the score for the test data with around 1%. We also discover that the

148 Z. Kozareva, S. Vazquez, and A. Montoyo

inter-syntactic relations are very informative for the IE task. In conclusion, we can affirm that
semantic knowledge expansion has a positive effect over the performance of a TE system.

3.3 Experiment with LSA and the Cosine Measure
In respect to the previous experiments, in this section we study how entailments can be

resolved using the LSA and the cosine measure. For all experiments, the results are shown in
the Table 2.

Table 2. Results for the LSI and cosine measures

sets Acc. IE IR QA SUM
devLSI_Lema 49.38 52.50 48.50 49.00 47.50
devLSI_NoLema 53.37 50.50 54.00 49.00 60.00
devCosine 54.25 50.50 48.00 57.00 61.50
devLSI_Lema_Cosine 53.63 52.50 50.00 50.00 62.00
devLSI_NolLema_Cosine 53.63 52.50 50.00 50.00 62.00
devBexpCosine 60.75 53.50 58.00 61.50 70.00
devBexpLSI_Lema_Cosine 63.38 55.50 63.50 62.50 72.00
devBexpLSI_NoLema_Cosine 61.50 57.00 60.00 61.00 68.00
testLSI_Lema 53.37 51.00 53.50 51.00 58.00
testL.SI_NoLema 53.00 48.00 55.00 50.00 59.00
testCosine 54.00 46.50 56.50 56.00 57.00
testLSI_Lema_Cosine 52.38 47.00 54.50 52.50 55.50
testLSI_NoLema_Cosine 52.88 46.50 53.50 53.00 58.50
testBexpCosine 55.63 52.00 56.50 57.00 57.00
testBexpLSI_Lema_Cosine 52.88 51.50 55.00 51.50 53.50
testBexpLSI_NoLema_Cosine 56.13 53.50 57.00 58.00 56.00

The experimental setup starts with the observation of the performance of the LSA with
and without a lemmatizer. For the development data, the accuracy score increases with 4%
in favour of the non lemmatized sentences, while for the test set the accuracy increase only
with 0.37%. From the four different NLP tasks, the lemmatizer affects the performance of
the information retrieval and summarisation.

The next experiments represent the different combinations of LSA, the cosine and the
feature set with the synonym and verb entailment expansion. When only the LSA and cosine
are combined the accuracy for the test set is decreased, because both measures depend only
on the information of the relevant domains. However, combined with the expanded features,
the final performance increases.

The best score for the whole Textual Entailment experiment are obtained after the
combination of the LSA without a lemmatizer, the cosine, the synonym and verb entailment
expansion. For the test data, this score is 56.13%. In comparison with the initial approach
where simply the similarity of words from the same syntactic category are considered, the
improvement is 2%. This shows that the incorporation of various semantic knowledge sources
is beneficial and can help a semantic textual entailment module.

The Effect of Semantic Knowledge Expansion to Textual Entailment Recognition 149

4 Conclusions and Work in Progress

The main contributions of this paper are related to the study of new semantic knowledge
resources for the recognition of Textual Entailment.

First, we study the effect of word similarity across different syntactic categories. We
discover that inter-syntactic information is very important for the text entailment recognition
of the IE task.

On a second place, we take into account the word pair expansion with synonym, antonym
and verb entailment relations. Such expansion lead to 1% of improvement compared to a
system which does not use knowledge expansion. The performance of our system is lowered
by the introduced noise of the newly incorporated irrelevant words. Although we used a
word sense disambiguation method, by which words whose word senses do not correspond
to the initial words are discarded, the experiments show that the computational time is highly
increasing and the obtained knowledge is still noisy. At the moment, we are developing a
method to discard and reduce these irrelevant word pairs, by the help of the LSA and the
cosine measure.

Furthermore, we propose a novel approach to establish the semantic similarity of two
sentences. For this approach we use the LSA and cosine measure, where the source of infor-
mation is the relevant domain recourse, instead of the traditional word frequency methods. In
addition, we have done different experiments, where the role of word lemmatization for the
textual entailment recognition is demonstrated.

Finally, the combination of different semantic knowledge resources is explored. Among
all experiments, the inclusion of synonym expansion, the verb entailment, the LSA and cosine
measure yielded the highest score.

In conclusion, we can say that the effect of semantic knowledge expansion is significant
for the textual entailment recognition. Following the development of our approach, the 2%
improvement that is reached is significant, considering the global performance of the already
existing systems.

In the future, in order to avoid the dispersion introduced by the expanded word pairs, we
want to work with noun phrases. This will diminish the word similarity combinations. With
the same intention, LSA will be used to determine the most relevant synonym pairs.

Acknowledgements

This research has been funded by the Spanish Government under project CICyT number
TIC2003-07158-C04-01 and PROFIT number FIT-340100-2004-14, and by the Valencia
Government under project GV04B-276.

References

1. Dagan, L., Glickman., O.: Probabilistic textual entailment: Generic applied modeling of language
variability. In: PASCAL Workshop on Learning Methods for Text Understanding and Mining,
2004.

2. Akhmatova, E.: Textual entailment resolution via atomic propositions. In: Proceedings of the
PASCAL Challenges Workshop on Recognising Textual Entailment, 2005.

150

10.

11.

12.

13.

14.

Z. Kozareva, S. Vazquez, and A. Montoyo

. Herrera, J., Pefas, A., Verdejo., F.: Textual entailment recognition based on dependency analysis

and wordnet. In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment, 2005.

. Jijkoun, V., de Rijke, M.: Recognizing textual entailment using lexical similarity. In: Proceedings

of the PASCAL Challenges Workshop on Recognising Textual Entailment, 2005.

. Kozareva, Z., Montoyo, A.: Mlent: The machine learning entailment system of the university

of alicante. In: Proceedings of the PASCAL Challenges Workshop on Recognising Textual
Entailment, 2006.

. Kouylekov, M., Magnini, B.: Recognizing textual entailment with tree edit distance algorithm. In:

Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment, 2005.

. Dagan, L., Glickman, O., Magnini., B.: The pascal recognising textual entailment challenge. In:

Proceedings of the PASCAL Challenges Workshop on Recognising Textual Entailment, 2005.

. Vazquez, S., Montoyo, A., Rigau, G.: Using relevant domains resource for word sense

disambiguation. In: IC-Al (2004) 784-789.

. Corley, C., Mihalcea., R.: Measures of text semantic similarity. In: Proceedings of the ACL

workshop on Empirical Modeling of Semantic Equivalence, 2005.

Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings International
Conference on New Methods in Language Processing., Manchester, UK (1994) 44-49.

Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::Similarity - measuring the relatedness of
concepts. In: AAAL (2004) 1024-1025.

Landauer, T., Dumais, S.: A solution to plato’s problem: The latent semantic analysis theory of
acquisition. In: Psychological Review. (1997) 211-240.

Magnini, B., Cavaglia, G.: Integrating Subject Field Codes into WordNet. In: Proceedings of
LREC-2000, Second International Conference on Language Resources and Evaluation. (2000)
1413-1418.

Collobert, R., Bengio., S.: Svmtorch: support vector machines for large-scale regression problems.
The Journal of Machine Learning Researc (2001).

Segmentation of Complex Sentences*

Vladislav Kuboti!, Markéta Lopatkova', Martin Platek?, and Patrice Pognan®
! UFAL MFF UK, Prague
{lopatkova, vk}Qufal.mff.cuni.cz
2 KTIML MFF UK, Prague
martin.platek@mff.cuni.cz
3 CERTAL INALCO, Paris
mcertal@wanadoo.fr

Abstract. The paper describes a method of dividing complex sentences into seg-
ments, easily detectable and linguistically motivated units that may be subsequently
combined into clauses and thus provide a structure of a complex sentence with re-
gard to the mutual relationship of individual clauses. The method has been developed
for Czech as a language representing languages with relatively high degree of word-
order freedom. The paper introduces important terms, describes a segmentation chart,
the data structure used for the description of mutual relationship between individual
segments and separators. It also contains a simple set of rules applied for the segmen-
tation of a small set of Czech sentences. The segmentation results are evaluated against
a small hand-annotated corpus of Czech complex sentences.

1 Introduction

It is quite obvious that the syntactic analysis of long and complicated natural language
sentences is more difficult than the analysis of short sentences. A parsing success depends
among other things also on the length of the input sentence. This has been shown very often
in the past, let us mention for example [1,2] for rule-based syntactic analyzers and [3] for
stochastic parsing of Czech.

There are also multiple solutions to the problem of bridging the gap between results
of morphological analysis (or tagging) and a full-scale rule-based syntactic analysis or
stochastic parsing. Let us mention for example the idea of cascaded parsing used in [4,5]
or [6]. The advantage of working with a cascade of specialized parsers instead of having one
very complex general parser is quite obvious — the complexity of the task is substantially
reduced and the parsing process is speeded up.

The use of chunking1 is also quite frequent. The identification of chunks prior to parsing
helps to decrease the parsing complexity, the only problem being the correct identification of
chunks — if it is done only on the basis of very limited local context (bigrams or trigrams), it
may be misleading with regard to the context of the whole sentence.

Very interesting approach to dividing the parsing process into several relatively indepen-
dent but mutually closely related parts has been introduced in the XDG theory of D. Duchier

* This paper is a result of the project supported by the grant No. 1ET100300517.
! Very comprehensive explanation of this notion can be found for example at
http://nltk.sourceforge.net/tutorial/chunking/

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 151-158, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

152 V. Kubori et al.

and others, see [7]. We think that the idea presented in this paper may be exploited especially
in connection with similar approaches.

This paper describes a method how to estimate the structure of clauses (their span and
mutual relationships) solely on the basis of results of morphological analysis of an input
sentence and very strict syntactic rules concerning punctuation.

Although the method presented in this paper had been designed for the syntactic analyzers
of Czech, it is rather useful for a whole group of related and typologically similar languages.
Some papers (e.g. [8]) indicate that the punctuation is important even for languages of a
different type. It is not true that the information allowing to divide the complex sentence into
individual clauses or segments is not important and that every stochastic parser will provide
it for free in the parsing process — the substantially lower results (almost 10% difference)
reported for Czech compared to English for identical parsers (see [3,9]) support the claim
that even stochastic parsers have difficulties to cope with free-word order languages.

2 Describing a Structure of a Complex Sentence

The basic idea underlying our method is an assumption that every morphologically analyzed
sentence already contains a lot of more or less reliable information that may be directly used
for the benefit of more effective and precise syntactic parsing. We exploit Czech grammars
(esp. [10]) as well as previous linguistic observations (see [11]).

The most important information we are looking for is the information about the mutual
relationships between individual clauses, the span of embedded clauses etc. Let us call this
type of structural information a clause structure of the (complex) sentence. At the beginning
it is important to stress that we suppose neither that our method will be able to provide an
unambiguous clause structure for every sentence nor that an unambiguous clause structure
exists for every sentence. The aim is to create as precise an approximation of the clause
structure as possible.

2.1 Important Notions

In the sequel an input sentence is understood to be a sequence of lexical items wjws . . . wy.
Each item w; (1 < i < n) represents either a certain lexical form of a given natural
language, or a punctuation mark, quotation mark, parenthesis, dash, colon, semicolon or
any other special symbol which may appear in the written form of a sentence. All items
are disjunctively divided into two groups — ordinary words and separators.

Let us call the words or punctuation marks which may separate two clauses (or two
sentence members) separators. It is quite clear that there are at least three relatively easily
distinguishable types of separators — opening ones, closing ones and mixed ones, those, which
typically close the preceding clause or its part and open the following one. A typical opening
separator is e.g a subordinating conjunction or a relative pronoun, a closing one is a full stop,
question mark or exclamation mark at the end of a sentence, mixed separators are for example
commas or coordinating conjunctions.

It is often the case that two clauses are separated by more than one separator (e.g. comma
followed by Ze [that]), in some cases even combined with non-separators (emphasizing
adverbs, prepositions, etc.). In such a case it would be more convenient to consider the whole
sequence as a single item — let us call it a compound separator.

Segmentation of Complex Sentences 153

Let S = wjw; ... wy, be a sentence of a natural language. A segmentation of a sentence
S is a sequence of sections DoW; D ... Wy Dy, where particular section W; (1 < i < k)
represents so called segment, i.e. a (maximal) sequence of lexical items w;w;j+1 ... Wj+m
not containing any separator, and section D; (0 < i < k) represents a (compound) separator
composed of items wy Wy ... Wgyp. The section Dy may be empty, all other sections D;
(1 <1i < k) are non-empty. Each item w; for I < i < n belongs to exactly one section D;
if it is a member of a (compound) separator; in the opposite case, w; belongs to exactly one
W;. A pair D;_; W; (where D;_ is an opening or mixed (compound) separator) is called an
extended segment.

The section Dy is usually empty for sentences which start with a main clause. Dy is
typically nonempty if a complex sentence starts with a subordinated clause, as e.g. in the
sentence KdyZ jsem se probudil, zavolal jsem policii. [When I woke up, I called the police.].
Dy represents the final punctuation mark at the end of a sentence.

The segmentation of a particular sentence can be represented by one or more segmenta-
tion charts that describes the mutual relationship of individual sections with regard to their
coordination or subordination.

Each separator is represented by at least one node. If an opening separator represented by
anode D; has a subordinating function, a copy of the node Dl{ is placed directly under a node
D; in the chart and it is connected by a dotted arrow with the original node D;. The closing
separator may by also represented by a “raised” copy of a node D;. Let us demonstrate
example of a segmentation chart on the Czech complex sentence Zatimco netispéch byvd
sirotkem, tispéch mivd mnoho tatinku, horlivé se hldsicich, Ze zrovna oni byli u jeho poceti.
[While failure is usually an orphan, the success tends to have many fathers, claiming eagerly
that particularly they were present at its conception.], see Fig. 1.

D, Py __'Dz P"‘
Dy— br b'g_Ds |
'Dfa_bz:

Fig. 1. Example of segmentation chart

Dy - Zatimco [While]

W1 - neiispéch byvd sirotkem [failure is usually an orphan]

D -,

W, - dispéch mivd mnoho tatinku [the success tends to have many fathers]

D, -,

W3 - horlivé se hldsicich [claiming eagerly]

Ds -, Ze [that]

Wy - zrovna oni byli u jeho poceti [that particularly they were present at its conception]
Dy -.

There is more than one chart in case that the segmentation of a sentence is ambiguous.
It may happen if a separator is ambiguous — e.g. the Czech word form jak, which may be

154 V. Kubori et al.

both a noun or a subordinating conjunction — or if a separator does not clearly indicate the
relationship between both segments it separates, as e.g. comma.

In order to be able to present a basic set od rules for creating segmentation chart it is
necessary to introduce a couple of new notions, at least informally.

A subordination flag is assigned to particular extended segment either if this segment
contains any word form with one of the following morphological tags (for conjunctions,
pronouns, and numerals, see [12]) or if it contains one of the listed pronominal adverbs:

— tag="J,.*” representing a subordinating conjunction;
— tag="P.*” representing a interrogative/relative pronoun, where the second position in the
tag contains any of the following characters:
— 4 (jaky, ktery, ¢1, ...),
—E (co?),
=T (jenz, jiz, ...),
— K (kdo, kdoz, kdoZs),
- Q (co, copak, coZpak),
—Y (o¢, nac, zac);
— tag="C.*” representing numerals, where the second position in the tag is either
- ? (kolik),
—u (kolikrdt) or
— z (kolikdty),
— tag="“D.*” for pronominal adverbs
— adverbs (jak, kam, kde, kdy, proe)

For the sake of an easier explanation of mutual relationships of individual nodes of a
segmentation chart in vertical direction we would like to introduce the notion of chart layers.
In informal terms, a top layer of the chart (layer 1) corresponds to a main clause of the
sentence and the numbers identifying layers increase in the top-down direction. The lower
layers (layers with higher numbers) represent subordinated clauses. If a clause contains an
embedded clause (fully embedded, that is the main clause is divided into two non-empty
parts), the “tail” of the main clause is located in the same layer as its “head”; the same holds
also for subordinated clauses with more deeply embedded clauses.

2.2 General Principles of Building Segmentation Charts

The process of building segmentation charts is relatively straightforward. In accordance with
the principles presented above, the first step is always the morphological analysis of the input
sentence. On the basis of its (typically ambiguous) results we will divide the sentence into
segments, taking into account the number and position of all separators and (compound)
separators in the sentence.

The next step, drawing segmentation charts relevant for a given input sentence, is slightly
more complicated due to the ambiguity concerning especially closing separators (mainly
commas), which are generally highly ambiguous. Not only they can simply raise, lower or
directly connect the following section at the same layer, they may even raise the following
section several layers (in case of closing a deeply embedded subordinated clause). If there
is such an ambiguous separator anywhere in the sentence, it is necessary to create more
segmentation charts, each with an edge going in a different direction.

Segmentation of Complex Sentences 155

2.3 Basic Set of Rules

In order to demonstrate how the process of building the segmentation chart works, we present
here a basic set of rules for Czech:

3

. Sentence start: If the first (extended) segment does not have a subordination flag the
edge representing the first segment starts at the topmost (1*7) layer of the chart and
continues straight to the right. Otherwise the edge for first segment starts at the ond
layer.

. Comma: If the comma is NOT followed by an item with a subordination flag, the next
segment goes either straight to the right (this represents for example a comma separating
two coordinated items inside a single clause) OR it jumps one or more layers (this
is a highly ambiguous situation representing an end of an nested subordinated clause)
upwards.

. Comma followed by an item with a subordination flag: In this case the next segment
moves downward.?

. Coordinating expression: Coordinating conjunction or any other coordinating expres-
sion preserves a layer, even though it might be followed by an extended segment with
subordination flag.

. Full stop, question mark, exclamation mark: These characters represent an end of the
sentence, therefore the last node of the segmentation chart always jumps to the 157 layer
of the chart (the layer of the main clause).

. Opening quotation marks: Opening quotation marks are considered to be a separator
only when they are at the start of the sentence or when they are combined with other
separators (comma, semicolon etc.) — in such a case the next segment jumps one layer
down.

. Closing quotation marks: They are a separator only if they follow opening quotation
marks, which are considered being a separator as well — in such a case the next segment
jumps one or more layer up.

Evaluation

The evaluation of our method turned out to be more complicated than we have originally
envisaged. We have assumed that the richly syntactically annotated Prague Dependency
Treebank® will provide large enough set of sentences, but it turned out that this assumption
has been wrong.

The problem is the annotation — there are too many syntactic phenomena for which it

is extremely difficult, if not impossible, to find a general consensus about annotation. A
huge number of decisions has to be made concerning the annotation of complex linguistic
phenomena like coordination, verbal complexes, the proper place of prepositions etc.

2 There are some exceptions to this general rule, which may be handled by a set of conditions capturing

those specific constructions allowing to go either right or to move the next segment upwards. Such
a construction may be found for example in the sentence Rekl, Ze byl, jaky byl, ZE je, jaky je a Ze
bude, jaky bude. [(He) said that (he) was who (he) was, that (he) is who (he) is and the (he) is going
to be who (he) is going to be.]

3http://ufal.mff.cuni.cz/pdt2.0/

156 V. Kubori et al.

This inevitably leads to difficulties when someone tries to search the corpus for an
information which had not been accounted for at the moment of the annotation scheme
design. Let us demonstrate this on a very simple example — nothing is probably more easy
to determine as a single unit than a pair of parenthesis inside a sentence. Unlike punctuation
signs, the parenthesis unambiguously show the beginning and the end of a text inserted into
clause. It is therefore quite natural to expect this easily detectable segment to be annotated in
one way.

It turned out that this is not the case of the analytical level of PDT. After an examination of
a small sample of the treebank we have found as many as 7 different ways how the parenthesis
(and their content) were annotated in a certain context. Let us show at least two of those cases,
both even located in the same sentence (see particular subtrees in Fig. 2): Pred nékolika dny
vypukl dalsi skanddl (privatizace Cokolddoven v ModFanech), v némz byl do role hlavniho
vinika opét obsazen Fond ndrodniho majetku (FNM) a jeho predseda Tomds JeZek. [Yet
another scandal erupted few days ago (a privatization of Cokolédovny in Modfany), in which
the main role was played by a National Property Fund (NPF) and its chairman Tomas JeZek.]

skandal

dali{i);rg)\/}ace\\?o

(Cokoladoven vx) majetku jeho

Fond FNM) /pfedseda Tomas

Modfanech narodniho

Fig. 2. Two types of parenthesis annotation in PDT

Not only the annotation of a content of both parenthesis differs, but even the mutual
position of both types of parenthesis in the tree is different. It is quite clear that the
transformation of sentences from PDT would require a lot of manual effort in order to provide
a good testing material for our method.

These considerations led us to a decision to annotate manually a small sample of text not
according to the standard of PDT, but according to the definition of the segmentation chart.
Two articles from a daily newspapers Lidové noviny and Neviditelny pes* (LN, resp. NP in
Table 1) containing political commentaries have been selected and manually annotated as a
test set.

4 http://pes.eunet.cz

Segmentation of Complex Sentences 157

The table below shows the degree of ambiguity of segmentation charts created automat-
ically using the set of rules presented above, i.e. very local rules which do not presuppose
understanding the sentence meaning.

Table 1. Degree of ambiguity of segmentation charts

number of number of charts
sentences tokens segments 1 2 3 4 5 more
LN 33 553 78 28 2 1 1 1 -
NP 15 334 57 12 3 - - - -
total 48 887 135 40 5 1 1 1 -

Even though the test set is relatively small, the table clearly shows that the simple
rules presented above provide a very good starting point and that in the average case the
segmentation charts are almost unambiguous when a real text is concerned. It is of course
possible to find very elaborated examples of sentences where our simple rules fail produce
high number of segmentation charts, but the further refinement of those simple rules may
improve even that. The most important result of the test was the 100% coverage of our
method—not a single correct segmentation chart has been omitted by our algorithm.

4 Conclusion

The method presented in this paper shows that (at least for a language displaying inflectional
morphology similar to that of Czech) it is possible to draw a chart reflecting the mutual
position of clauses or their parts (segments) in complex sentences without applying the full-
fledged syntactic parsing of the whole sentence first. The method is based on the identification
of separators and their classification. The subsequent steps in the parsing process (which are
not covered by this paper) may then decide, on one hand, which of the charts is not valid (in
case that there are several variants of charts as an output of our method), and, on the other
hand, exploit the charts for faster and more effective syntactic analysis of complex sentences.
The evaluation of the method presented in the paper indicates that the segmentation may
really help, the ambiguous segmentation charts are more or less rare.

The results achieved so far encourage further research in two areas. The first area concerns
further development of more precise segmentation rules, the second one might concern the
step from segmentation charts towards the chart reflecting the mutual position of clauses, not
only segments.

References

1. Oliva, K.: A Parser for Czech Implemented in Systems Q. In: Explizite Beschreibung der Sprache
und automatische Textbearbeitung, MFF UK Praha (1989).

2. Kubon, V.: Problems of Robust Parsing of Czech. Ph.D. Thesis, MFF UK, Prague (2001).

3. Zeman, D.: Parsing with a Statistical Dependency Model. Ph.D. Thesis. MFF UK, Prague (2004).

158

10.
11.

12.

V. Kubori et al.

Abney, S: Partial Parsing via Finite-State Cascades. In: Journal of Natural Language Engineering,
Vol. 2, No. 4 (1995) 337-344.

Ciravegna, F., Lavelli, A.: Full Text Parsing using Cascades of Rules: An Information Extraction
Procedure. In: Proceedings of EACL’99, University of Bergen (1999).

Brants, T.: Cascaded Markov Models. In: Proceedings of EACL *99, University of Bergen (1999).
Debusmann, R., Duchier, D., Rossberg, A.: Modular grammar design with typed parametric
principles. In: Proceedings of FG-MOL 2005, Edinburgh (2005).

. Jones, B.E.M.: Exploiting the Role of Punctuation in Parsing Natural Text, In: Proceedings of the

COLING *94, Kyoto, University of Kyoto (1994) 421-425.

Hajic, J., Vidova-Hladkd, B., Zeman, D.: Core Natural Language Processing Technology Applica-
ble to Multiple Languages. The Workshop 98 Final Report. Center for Language and Speech
Processing, Johns Hopkins University, Baltimore (1998).

Smilauer, V.: Uéebnice vétného rozboru. SPN, Praha (1958).

Holan, T., Kubon, V., Oliva, K., Platek, M.: On Complexity of Word Order. In: Les grammaires de
dépendance — Traitement automatique des langues, Vol. 41, No 1 (2000) 273-300.

Hajic, J.: Disambiguation of Rich Inflection (Computational Morphology of Czech). UK, Nakla-
datelstvi Karolinum, Praha (2004).

Enhanced Centroid-Based Classification Technique
by Filtering Outliers

Kwangcheol Shin, Ajith Abraham, and Sang Yong Han™

School of Computer Science and Engineering,Chung-Ang University
221, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea
kcshin@archi.cse.cau.ac.kr, ajith.abraham@ieee.org, hansy@cau.ac.kr

Abstract. Document clustering or unsupervised document classification has been
used to enhance information retrieval. Recently this has become an intense area of
research due to its practical importance. Outliers are the elements whose similarity to
the centroid of the corresponding category is below some threshold value. In this paper,
we show that excluding outliers from the noisy training data significantly improves the
performance of the centroid-based classifier which is the best known method. The
proposed method performs about 10% better than the centroid-based classifier.

1 Introduction

Since late 1990s, the explosive growth of Internet resulted in a huge quantity of documents
available on-line. Technologies for efficient management of these documents are being
developed continuously. One of representative tasks for efficient document management is
text categorization, also called as classification. Given a set of training examples assigned
each one to some categories, the task is to assign new documents to a suitable category. A
fixed collection of text is clustered into groups or clusters that have similar contents. The
similarity between documents is usually measured with the associative coefficients from the
vector space model, e.g., the cosine coefficient.

A well-known text categorization method is kNN [1]; other popular methods are Naive
Bayesian [3], C4.5 [4], genetic programming [10], self organizing maps [11] artificial neural
networks [9] and SVM [5]. Han and Karypis [2] proposed the Centroid-based classifier and
showed that it gives better results than other known methods.

In this paper, we show that removing outliers from the training categories significantly
improves the classification results obtained by using the Centroid-based method. Our
experiments show that the new method gives better results than the Centroid-based classifier.

The paper is organized as follows. In Section 2, some related work is presented followed
by the details of the proposed method in Section 3. Experiment results are presented in
Section 4 and some Conclusions are given towards the end.

2 Related Work

Document representation. In both categorization techniques considered below, documents
are represented as keyword vectors according to the standard vector space model with #f-idf

* Corresponding author.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 159-163, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

160 K. Shin, A. Abraham, and S. Han

term weighting [6,7]. For definition purposes, let the document collection contains total N
different keywords. A document d is represented as an N-dimensional vector of term weight

t with coordinates f
td ny
Wig = log ., (D
max frq N
where f;4 is the frequency of the term ¢ in the document d and n; is the number of the
documents where the term ¢ occurs. The similarity between two documents d; and d; is
measured using the cosine measure widely used in information retrieval—the cosine of the
angle between them:
(o) = cos@rdy = @
s(d;, dj) = cos i,dj)) =
' ' |Idill 11117
where @ is the angle between the two vectors and ||d|] is the length of the vector.
kNN classifier [1]: For a new data item, kK most similar elements of the training data set
are determined, and the category is chosen to which a greater number of elements among
those k ones belong; see Figure 1, left.

5 e i M
ee '- A Y
i = h & : - - _,—
-'- *li A h & i » Hl i l.l'i
[] 'f.ll ll“r \ & ;" | A “: \
ot e ah A A . @ | “a s P
] o A 1" & T a— -‘. & &
n® _pm . P L el
[o A 5 /m . W
n® '.-' o & % l:f-" o
B g m & O~ W m
= o

Fig. 1. Example of classification

Centroid-based classifier [2]: Given a set Si documents — the i’" training category,
its center is defined as its average vector:

- 1 -
Ci= ., 2.d 3)
ISil 4
d ES,‘
where | S| is the number of documents in the category. For a new data item the category is

chosen that maximizes the similarity between the new item and the center of each category.
This was reported as the best known classifier so far [2].

3 Proposed Method

We observed that the training data items that are far away from the center of its training
category tend to reduce the accuracy of classification. Our hypothesis is that those items

Enhanced Centroid-Based Classification Technique by Filtering Outliers 161

merely represent noise and not provide any useful training examples and thus decrease
the classification accuracy. Thus we exclude them from consideration; see Figure 1, right.
Specifically, at the training stage we calculate the center Ci of each category Si using (2).
Then we form new categories by discarding the outliers:

S, =1{d €S : Simd, ;) > &) @

in the next section we discuss the choice of the threshold €. After refining training data, we
recalculate the center of each category:
.y -
Ci=,,>.d)

1
S/
JES;

i

And finally the Centroid-based classifier is applied to get the results.

4 Experimental Results

To evaluate the efficiency of the proposed method, we used two different datasets. First one
is the 20-newsgroup dataset which has many noisy data and the other is the popular Reuter-
21578 R10 dataset which doesn’t have noisy data.

4.1 20-Newsgroup Dataset

At first, we use the 20-newsgroup dataset to evaluate performance of the proposed method.
The dataset has 20 categories of roughly 1000 documents each. We used MC [8] program to
build the document vectors. We implemented our modified Centroid-based classification and
compared with the Centroid-based classification and kNN method with k = 5. As illustrated

520%
50 0%
48 0%
46 0%
44 0%
42 0%
400% F-—"" """ T T T
38 0%

Accuracy

02 025 03 035 04 045 05

€ value

Fig. 2. Different accuracy according to ¢ value for 80% of 20-newsgroup data

162 K. Shin, A. Abraham, and S. Han

e 1S l I
30.0% A
g B0% PR e Sl
2 40.0%
3 .- —
30.0%
25.0% ! '
60% 0% 80% 90%

Training Data

—&— Refined Centroid{s=0.4) —e— Centroid —»— 5NN

Fig. 3. Test results

in Figure 2, the proposed method provides the best performance with ¢ = g.4. Figure 3 shows
how the classification accuracy is affected due to the percentage of training dataset over total
dataset. We obtained 9.93% improvement over the original Centroid-based classification and
32.11% over SNN. Improvements clearly show that the proposed method worked very well
for the noisy dataset.

4.2 Reuter-21578 R10 Dataset

We also applied our method to the popular Reuter-21578 R10 dataset, which has 10 categories
and each category has different number of data. Because of being categorized by human in-
dexers, it doesn’t have noise data. Figure 4 illustrates that for noiseless dataset, like Reuter-

90.0%

88.0%
86.0% \

L 4
3

% 84.0% \
=
g 82.0%
<

80.0%

78.0%

?6[)00 | | | | | |

0 0.1 0.2 0.3 0.4 0.3
¢ value

Fig. 4. Performance (accuracy) of the algorithm for different ¢ values for 60% of Reuter-21578 R10
dataset

Enhanced Centroid-Based Classification Technique by Filtering Outliers 163

21578 R10, the performance is not improved when compared to the Centroid-based classifi-
cation approach (note: it is same with Centroid-based classification when we set 0 to).

5 Conclusion

We have presented an improved Centroid-based classifier. The improvement consists in
removing outliers from the categories of the training dataset. Our method shows almost
10% better accuracy for noisy dataset than the original Centroid-based classifier, which was
reported in [2] as the most accurate text categorization method. In the future, automatic choice
of the threshold value ¢ is to be considered

Acknowledgments. Work supported by the MIC (Ministry of Information and Commu-
nication), Korea, under the Chung-Ang University HNRC-ITRC (Home Network Research
Center) support program supervised by the IITA (Institute of Information Technology As-
sessment).

References

1. W.W. Cohen and H. Hirsh, Joins that generalize: Text Classification using WHIRL. In Proc. of the
Fourth Int’] Conference on Knowledge Discovery and Data Mining, 1998.

2. E. Han and G. Karypis, Centroid-Based Document Classification: Analysis and Experimental
Results, Principles of Data Mining and Knowledge Discovery, p. 424-431, 2000.

. D. Lewis and W. Gale. A sequential algorithm for training text classifiers, In SIGIR-94, 1994.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995

G. Salton and. M. J. McGill, Introduction to Modern Retrieval. McGraw-Hill, 1983.

. R. Baeza-Yates, and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

. Dhillon I. S., Fan J., and Guan Y. Efficient Clustering of Very Large Document Collections. Data
Mining for Scientific and Engineering Applications, Kluwer, 2001.

© N oL AW

9. MacLeod, K. An application specific neural model for document clustering. Proceedings of the

Fourth Annual Parallel Processing Symposium, vol. 1, p. 5-16, 1990.

10. Svingen, B. Using genetic programming for document classification. FLAIRS-98. Proceedings of
the Eleventh International Florida Artificial Intelligence Research, p. 6367, 1998.

11. Hyotyniemi, H. Text document classification with self-organizing maps. STeP *96 - Genes, Nets
and Symbols. Finnish Artificial Intelligence Conference, p. 64-72, 1996.

12. Lam, Wai and Low, Kon-Fan Automatic document classification based on probabilistic reasoning:
Model and performance analysis. Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, Vol. 3, p. 2719-2723, 1997.

Multilingual News Document Clustering:
Two Algorithms Based on Cognate Named Entities

Soto Montalvo!, Raquel Martinez2, Arantza Casillas®, and Victor Fresno!
I GAVAB Group, URIC
{soto.montalvo, victor.fresno}@urjc.es
2 NLP&IR Group, UNED
raquel@lsi.uned.es
3 Dpt. Electricidad y Electrénica, UPV-EHU
arantza.casillas@ehu.es

Abstract. This paper presents an approach for Multilingual News Document Cluster-
ing in comparable corpora. We have implemented two algorithms of heuristic nature
that follow the approach. They use as unique evidence for clustering the identification
of cognate named entities between both sides of the comparable corpora. In addition,
no information about the right number of clusters has to be provided to the algorithms.
The applicability of the approach only depends on the possibility of identifying cog-
nate named entities between the languages involved in the corpus. The main difference
between the two algorithms consists of whether a monolingual clustering phase is ap-
plied at first or not. We have tested both algorithms with a comparable corpus of news
written in English and Spanish. The performance of both algorithms is slightly dif-
ferent; the one that does not apply the monolingual phase reaches better results. In
any case, the obtained results with both algorithms are encouraging and show that the
use of cognate named entities can be enough knowledge for deal with multilingual
clustering of news documents.

1 Introduction

Multilingual Document Clustering (MDC) involves dividing a set of n documents, written
in different languages, into a specified number k of clusters, so that the documents that are
similar to other documents will be in the same cluster. Meanwhile a multilingual cluster is
composed of documents written in different languages, a monolingual cluster is composed of
documents written in one language.

MDC has many applications. The increasing amount of documents written in different
languages that are available electronically leads to develop applications to manage that
amount of information for filtering, retrieving, and grouping multilingual documents. MDC
tools can make easier tasks such as Cross-Lingual Information Retrieval, the training of
parameters in Statistics Based Machine Translation, or the Alignment of parallel and non
parallel corpora, among others.

MDC systems have developed different solutions to group related documents. On the
one hand, the strategies employed can be classified in two main groups: the ones which
use translation technologies, and the ones that transform the document into a language-
independent representation. One of the crucial issues regarding the methods based on

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 165-172, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

166 S. Montalvo et al.

document or features translation is the correctness of the proper translation. Bilingual
resources usually suggest more than one sense for a source word and it is not a trivial task to
select the appropriate one. Although word-sense disambiguation methods can be applied,
these are not free of errors. On the other hand, methods based on language-independent
representation also have limitations. For instance, those based on thesaurus depend on the
thesaurus scope. Numbers or dates identification can be appropriate for some types of
clustering and documents; however, for other types it could not be so relevant and even it
could be a source of noise.

MDC is normally applied with parallel [12] or comparable corpus ([1,2,6,7,10,13]). In
the case of the comparable corpora, the documents usually are news articles. Considering
the approaches based on translation technology, two different strategies are employed:
translate the whole document into an anchor language, or translate only some features
of the document. Some authors, for example [7], use machine translation techniques to
translate the whole document, while others apply the same techniques to translate selected
features [10]. On the other hand, authors like [1] translate some selected features of the
document consulting a bilingual dictionary. Some approaches first carry out a monolingual
clustering in each language, and then they find relations between the obtained clusters
generating the multilingual clusters. Other approaches start with a multilingual clustering
to look for relations between the documents of all the involved languages. In [2] the authors
select different features to carry out some experiments with both approaches.

The strategies that use language-independent representation try to normalize the content
of the documents in a language-neutral way; for example: by mapping text contents to an
independent knowledge representation, or by recognizing language independent text features
inside the documents. Both approaches can be employed isolated or combined. The first
approach involves the use of existing multilingual linguistic resources, such as thesaurus,
to create a text representation consisting of a set of thesaurus items. In [13] the authors
present an approach based on using the multilingual thesaurus Eurovoc. The second approach
involves the recognition of independent elements. In [6] is presented an approach that exploits
the presence of common words among different languages for solving cross language text
categorization. In [5] use as document features the named entities as well as the publication
date of the document to carried out the multilingual clustering. In this case the MDC is
applied in order to align a comparable corpora to obtain a similarity multilingual thesaurus.
However, in [4] the author affirms that the NEs themselves are not suitable to be used as
features in document clustering. In [12] the authors present a method based on Relevant
Expressions (RE). Others works ([9,14]) combine recognition of independent text features
with mapping text contents to a thesaurus.

This paper presents an approach for MDC in comparable corpora. We have implemented
two algorithms, both of heuristic nature, that use as unique evidence for clustering the
identification of cognate named entities between both sides of the comparable corpora. None
of the revised works use as unique evidence for clustering the identification of cognate named
entities between both sides of the comparable corpora. One of the main advantages of this
approach is that it does not depend on multilingual resources such as dictionaries, machine
translation systems, thesaurus or gazetteers. In addition, no information about the right
number of clusters has to be provided to the algorithms. The applicability of the approach
only depends on the possibility of identifying cognate named entities between the languages

Multilingual News Document Clustering 167

involved in the corpus. It could be particularly appropriate for news corpus, where named
entities play an important role. The main difference between the two algorithms consists of
whether a monolingual clustering phase is applied or not. This allows to determine when is
more appropriate the application of the monolingual and multilingual phases, or even if a
monolingual phase is needed.

In Section 2 we present our approach for MDC and the two algorithms. Section 3 describes
the corpora, as well as the experiments and the results. Finally, Section 4 summarizes the
conclusions and the future work.

2 MDC by Cognate NE Identification

We propose an approach based only on cognate Named Entities (NE) identification. The
NE categories that we take into account are: PERSON, ORGANIZATION, LOCATION,
and MISCELLANY. Other numerical categories such as DATE, TIME or NUMBER are not
considered in this work. We think they are less relevant regarding the content of the document.
In addition, they can lead to group documents with few content in common.

The approach has two main phases: cognate NE identification which is common to the two
algorithms, and clustering. Both phases are described in detail in the following subsections.

2.1 Cognate NE Identification
This phase is shared by the two algorithms. It consists of two steps:

1. Detection and classification of the NEs in each side of the corpus separately. In our
case we used a corpus with morphosyntactical annotations and the NEs identified and
classified.

2. Identification of cognates between the NEs of both sides of the comparable corpus.

In order to identify the cognates between NEs 4 steps are carried out:

— Obtaining two lists of NEs, one for each language.

— Identification of entity mentions in each list. For instance, “Ernesto Zedillo”, “Zedillo”,
“Sr. Zedillo” will be considered as the same entity after this step since they refer to the
same person. This step is only applied to entities of PERSON category. The identification
of NE mentions, as well as cognate NE, is based on the use of the Levensthein
edit-distance function (LD). This measure is obtained by finding the cheapest way
to transform one string into another. Transformations are the one-step operations of
insertion, deletion and substitution. The result is an integer value that is normalized by
the length of the longest string. In addition, constraints regarding the number of words
that the NEs are made up as well as the order of the words are applied.

— Identification of cognates between the NEs of both sides of the comparable corpus.
It is also based on the LD. In addition, also constraints regarding the number and
the order of the words are applied. First, we tried cognate identification only between
NEs of the same category (PERSON with PERSON, ...) or between any category and
MISCELLANY (PERSON with MISCELLANY, ...). Next, with the rest of NEs that have
not been considered as cognate, a next step is applied without the constraint of being
to the same category or MISCELLANY. As result of this step a list of corresponding
bilingual cognates is obtained.

168 S. Montalvo et al.

— The same procedure carried out for obtaining bilingual cognates is used to obtain two
more lists of cognates, one per language, between the NEs of the same language.

2.2 Clustering

The two algorithms proposed for the clustering of multilingual news documents are of
heuristic nature. Both, in an iterative way, decide the number of clusters.

Bilingual at the End Algorithm (BEA). BEA consists of 3 main phases: (1) first
monolingual clusters creation, (2) monolingual relocation of documents, and (3) bilingual
relocation of documents. This algorithm is based on a previous one described in [8].

1. First monolingual clusters creation. Documents in each language are processed sepa-
rately. News of the same language that have more cognates in common than a threshold
are grouped into the same cluster. In addition, at least one of the cognates have to be of
a specific category. In this work we have fixed this category to be PERSON. After this
phase all documents are assigned to some cluster. Notice that some cluster could have
only a document since this one does not comply with the grouping conditions. After
this phase two sets of clusters are obtained, one per language. The number of clusters
obtained in this phase will be the top limit; the next phases could reduce it.

2. Monolingual relocation of documents. In this phase the documents in each language are
processed separately as well. Each document is located in the cluster that contains the
most similar document regarding the number of cognates in common, but only if that
number is greater than a threshold. No constraint regarding the NE category is applied.
This is an iterative process until no document is relocated. As result of this phase, the
number of clusters in each set could be reduced because of the relocation.

3. Bilingual relocation of documents. Finally, both sets of monolingual clusters are merged
into one. This process is not carried out by the union of the whole clusters, but by
the relocation of documents. The process is similar to the previous one, but with the
documents and clusters of both languages.

Bilingual Algorithm (BA). BA consists of 2 main phases: (1) first bilingual clusters creation,
and (2) bilingual relocation of documents.

1. First bilingual clusters creation. This phase is similar to the first phase of BEA but
comparing news documents of different languages. After this phase only one set of
clusters is obtained.

2. Bilingual relocation of documents. This phase is similar to the third phase of BEA.
Therefore, documents are compared among them irrespective of the languages. This is
why no later phase is needed.

The thresholds of both algorithms can be customized in order to permit and make
the experiments easier. In addition, the parameters customization allows the adaptation to
different type of corpus or content. In Section 3.2 the exact values we have used are described.

Multilingual News Document Clustering 169

3 Evaluation

We wanted not only determine whether our approach was successful for MDC or not, but we
also wanted to compare if the application of the multilingual comparison only at the end or
from the beginning influences the results.

3.1 Corpus

A Comparable Corpus is a collection of similar texts in different languages or in dif-
ferent varieties of a language. In this work we compiled a collection of news writ-
ten in Spanish and English belonging to the same period of time. The news are
categorized and come from the news agency EFE compiled by HERMES project
(http://nlp.uned.es/hermes/index.html). That collection can be considered like
a comparable corpus.

We used two subsets of that collection. In order to test the MDC results we have carried
out a manual clustering with each subset. Three persons read every document and grouped
them considering the content of each one. The first subset, call S1, consists on 63 news, 35
in Spanish and 28 in English. It consists on 8§ multilingual and 2 monolingual clusters. The
second one, S2, is composed of 136 news, 71 in Spanish and 65 in English. It consists on 24
multilingual and 2 monolingual clusters.

In the experimentation process the first subset, S1, was used to train the parameters and
threshold values; with the second one the best parameters values were applied.

3.2 Experiments and Results with MDC by Cognate NE

The quality of the results is determined by means of an external evaluation measure, the
F-measure [11]. This measure compares the human solution with the system one. The
F-measure combines the precision and recall measures:
L. 2 X Recall(i, j) x Precision(i, j)
F(@, j) = o Co ey
(Precision(i, j) + Recall(i, j)
where Recall(i, j) = ’Z,J , Precision(i, j) = ’;’/’ , njj is the number of members of cluster

human solution i in cluster j, n; is the number of members of cluster j and 7; is the number
of members of cluster human solution i. For all the clusters:

F:Z’:max{F(i)} 2)

The closer to 1 the F-measure value the better MCD performance.

The threshold for the LD in order to determine whether two NEs are cognate or not is 0.2,
except for entities of ORGANIZATION and LOCATION categories which is 0.3 when they
have more than one word. In the first clusters creation phase of both BEA and BA algorithms,
one of the constraint refers to the category of at least one of the cognates in common. We
realized that this constraint mainly influences in the number of clusters obtained in this phase.
However, it has little impact in the resulting clustering after the relocation phases. Therefore,
we have fix this category to be PERSON in this experiments. Regarding the thresholds of the
phases of both algorithms, after training the thresholds with the collection S1 we concluded:

170 S. Montalvo et al.

— In BEA algorithm two thresholds are needed: one for the first phase (TH1) and the other
for the second and third phases (TH2). The second threshold has more impact in the
result than the first one. In fact, with a low value for TH2 (2) the best results are obtained.
It seems that using a THI relatively high (7, 8, 9) leads to a good first grouping that
makes second and third phases more effective. However with lower values for TH1 good
f-measure results are obtained as well.

— BA algorithm also needs two thresholds, one per phase. It performs the best clustering
with both high and low values for TH1 but with low or medium values for TH2. It seems
to be more independent of the threshold values.

Table 1 shows the 10 best results of the application of BEA and BA algorithms to subset
S2. We run the algorithms with the best parameter set obtained of the experimentation with
S1. This set was the best set for S2 collection as well. The fifth column represents: the
number of multilingual clusters of the algorithm result, the number of clusters calculated,
and the number of clusters of the human solution. Although none of the results got the exact
number of clusters, it is remarkable that the resulting values are close to the right ones.

Table 1. MDC results with the BEA and BA Algorithms for cognate NE approach and S2 subset

Step Thresholds Results Clusters
Alg. TH1 TH2 F-measure Mult./Calcul./Total
BEA 7 2 0.8796 23/30/26

8 2 0.8708 19/31/26
9 2 0.8708 19/31/26
10 2 0.8708 19/31/26
4 2 0.8600 18/29/26
5 2 0.8600 18/29/26
6 2 0.8600 18/29/26
7 4 0.8594 17/42/26
3 2 0.8569 18/28/26
8 4 0.8506 17/43/26
BA 2 3 0.8831 22/33/26
2 2 0.8831 22/33/26
2 1 0.8831 22/32/26
2 0 0.8831 22/32/26
8 3 0.8770 24/36/26
8 2 0.8770 24/36/26
8 1 0.8770 24/35/26
8 0 0.8770 24/35/26
2 4 0.8750 22/36/26
2 5 0.8750 22/36/26

4 Conclusions and Future Work

We have described a novel approach for Multilingual Document Clustering based only on
cognate named entities identification. One of the main advantages of this approach is that it

Multilingual News Document Clustering 171

does not depend on multilingual resources such as dictionaries, machine translation systems,
thesaurus or gazetteers. The only requirement to fulfill is that the languages involved in the
corpus have to allow the possibility of identifying cognate named entities. Another advantage
of the approach is that it does not need any information about the right number of clusters. In
fact, the algorithm calculates it according with the threshold values of the algorithm.

We propose two algorithms that follow our approach. The main difference between them
is whether a previous monolingual clustering phase is applied or not. We have tested the
two algorithms with a comparable corpus of news written in English and Spanish, obtaining
encouraging results. The one that does not apply a monolingual phase obtains slightly better
clustering results. This approach could be particularly appropriate for news articles corpus,
where named entities play an important role. Even more, when there is no previous evidence
of the right number of clusters. Future work will include the compilation of more corpora,
the incorporation of machine learning techniques in order to obtain the thresholds more
appropriate for different type of corpus.

Acknowledgements

We wish to thank the anonymous reviewers for their helpful and instructive comments. This
work has been partially supported by MCyT TIN2005-08943-C02-02.

References

1. B. Mathieu, R. Besancon and C. Fluhr: “Multilingual Document clusters discovery”. RIAO 2004
(2004) 1-10.

2. H-H. Chen and C-J. Lin: “A Multilingual News Summarizer”. Proceedings of 1 8™ International
Conference on Computational Linguistics, (2000), 159-165.

3. G. Karypis: “CLUTO: A Clustering Toolkit”. Technical Report: 02-017. University of Minnesota,
Department of Computer Science, Minneapolis, MN 55455 (2002).

4. W. Gang: “Named Entity Recognition and An Apply on Document Clustering”. MCSc Thesis.
Dalhousie University, Faculty of Computer Science, Canada (2004).

5. M. Garcfa, F. Martinez, L.A. Urefia y M.T. Martin: “Generacién de un tesauro multilingue a partir
de un corpus comparable aplicado a CLIR”. Procesamiento de Lenguaje Natural, vol(28), (2002)
55-62.

6. A. Gliozzo and C. Strapparava: “Cross language Text Categorization by acquiring Multilingual
Domain Models from Comparable Corpora”. Proceedings of the ACL Workshop on Building and
Using Parallel Texts, (2005), 9-16.

7. L.J. Leftin: “Newsblaster Russian-English Clustering Performance Analysis”. Columbia computer
science Technical Reports (2003).

8. S. Montalvo, R. Martinez, A. Casillas and V. Fresno: “Multilingual Document Clustering: an
Heuristic Approach Based on Cognate Named Entities”. To be published in COLING-ACL 2006
(2006).

9. B. Pouliquen, R. Steinberger, C. Ignat, E. Kdsper and I. Temikova: “Multilingual and cross-
lingual news topic tracking”. Proceedings of the 20™ International Conference on Computational
Linguistics, (2004), 23-27.

10. A. Rauber, M. Dittenbach and D. Merkl: “Towards Automatic Content-Based Organization of
Multilingual Digital Libraries: An English, French, and German View of the Russian Information
Agency Novosti News”. Third All-Russian Conference Digital Libraries: Advanced Methods and
Technologies, Digital Collections Petrozavodsk, RCDI’2001, (2001).

172

11.

12.

13.

14.

S. Montalvo et al.

C.J. van Rijsbergen: “Foundations of evaluation”. Journal of Documentation, vol(30), (1974), 365—
373.

J. Silva, J. Mexia, C. Coelho and G. Lopes: “A Statistical Approach for Multilingual Document
Clustering and Topic Extraction form Clusters”. Pliska Studia Mathematica Bulgarica, vol(16),
(2004), 207-228.

R. Steinberger, B. Pouliquen and J. Scheer: “Cross-Lingual Document Similarity Calculation
Using the Multilingual Thesaurus EUROVOC”. CICling’2002, (2002), 415-424.

R. Steinberger, B. Pouliquen and C. Ignat: “Exploting multilingual nomenclatures and language-
independent text features as an interlingua for cross-lingual text analysis applications”. SILTC
(2004).

A Study of the Influence of PoS Tagging on WSD*

Lorenza Moreno-Monteagudo, Rubén Izquierdo-Bevia, Patricio Martinez-Barco,
and Armando Suarez

Departamento de Lenguajes y Sistemas Informadticos.
Universidad de Alicante. Spain
{loren, ruben, patricio, armando}@dlsi.ua.es

Abstract. In this paper we discuss to what extent the choice of one particular Part-of-
Speech (PoS) tagger determines the results obtained by a word sense disambiguation
(WSD) system. We have chosen several PoS taggers and two WSD methods. By
combining them, and using different kind of information, several experiments have
been carried out. The WSD systems have been evaluated using the corpora of the
lexical sample task of SENSEVAL-3 for English. The results show that some PoS
taggers work better with one specific method. That is, selecting the right combination
of these tools, could improve the results obtained by a WSD system.

1 Introduction

There are several approaches to WSD based on machine learning techniques. Among others,
maximum entropy [1,2,3] and support vector machines [4] are found, both of them supervised
methods using feature vectors. Commonly, some of these features are words, lemmas, PoS
tags, etc. The performance reached by these methods depends on all this information, and
therefore on the way it is obtained, that is, the tools that are used.

In [5] three different PoS taggers were evaluated for a WSD systeml. She found that the
best results in her WSD system were achieved with the most accurate PoS tagger. However,
the results of the WSD system did not reflect the stand-alone accuracy of the rest of PoS
taggers. Our aim is to study how these tools, different kinds of PoS taggers and WSD
methods, work together. At this point, we are more interested on determining if there exist
differences when these tools are combined in different ways, than on the final precision
achieved.

The rest of this paper is organized as follows: we first summarize the corpus and the PoS
taggers we have used for the experiments (sections 2 and 3 respectively). Next, in section
4, the experiments are described. Section 5 discusses the results obtained with the different
experiments, and, finally, in section 6 some conclusions and further work are shown.

2 Source Corpora

As said before, we have used the SENSEVAL-3 lexical sample corpus [6] for our experiments.
This corpus consists of examples from the British National Corpus®. The examples have

* This paper has been supported by the Spanish Government under projects CESS-ECE (HUM2004-
21127-E) and R2D2 (TIC2003-07158-C04-01).

! The experiment was undertaken with the training Dutch Senseval-2 data.

2 http://www.natcorp.ox.ac.uk

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 173-179, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

174 L. Moreno-Monteagudo et al.

been manually annotated with senses using WordNet 1.7.1 for adjectives and nouns, and
Wordsmyth? for verbs. The lexical sample task deals with annotating 57 words with their
senses. There are 20 nouns, 32 verbs and 5 adjectives with an average number of senses of
5.8, 6.31 and 10.2 respectively. Only fine grained senses have been considered.

3 Description of the Part-of-Speech Taggers

In this section we summarize the different PoS taggers we have used for the experiments.
They are the following: SVMTool [7], Freeling [8], TreeTagger [9], Brill’s Tagger [10] and
Ratnaparkhi’s MaxEnt tagger [11]. Table 1 reflects their main features: the learning method
they use, precision published by the authors, if they obtain the lemma, and the corpora used
for training.

Table 1. Description of PoS taggers

PoS tagger Method Prec. Lemma Corpora
SVMTool Support Vector Machines 97.16 Wall Street Journal
Freeling Hidden Markov Models ~ 95.0 v Wall Street Journal
TreeTagger Decision Trees 96.36 v PennTreebank
Brill Rules 94.9 PennTreebank
Brown Corpus
Ratnaparkhi Maximum Entropy 96.6 Wall Street Journal

4 Experiments

The experiments have been designed in order to analyze the behaviour of two WSD methods
when combined with different PoS taggers and different types of information. In table 2 the
different elements combined are specified: WSD method, PoS tagger, lemmatizer (we have
used Freeling and TreeTagger to get the lemma) and kind of information used in the WSD
systems. SVMLight4 [12] and MxE[13] have been chosen as WSD systems based on SVM
and maximum entropy respectively. The set of features defined for the WSD systems are:

— word, PoS tag, lemma and stem at positions 0 (target word), £1, +2, £3
— words, PoS tags and lemmas of collocations at positions (—3, —2), (—2, —1), (—1, 0),
0, +1), (+1,42), (+2,+3)

Three types of experiments have been defined, depending on the information used. So,
Experiment 1 uses words and PoS tags, Experiment 2 adds lemmas and the last one,
Experiment 3, uses words, PoS tags, lemmas and stems’. The reason for defining a third
experiment using stems, when we already have lemmas, is to find out if the information
provided by both sources is complementary, improving the final WSD results.

3 www.wordsmyth.net

4 Referred as SVM in tables. Available at svmlight.joachims.org
3 The stemmers are available at http://www.unine.ch/info/clef and
http://www.unine.ch.

A Study of the Influence of PoS Tagging on WSD 175

Throughout these experiments the relation between a PoS tagger and the WSD results can
be analyzed. Additionally, by adding lemmas and stems, we can study whether this influence
lessens when more information, apart from PoS tags, is used. These three experiments have
been carried out for each WSD method and PoS tagger, and considering each lemmatizer
when necessary. That is for Experiment 2 and Experiment 3 with all the PoS taggers except
for Freeling and TreeTagger.

Table 2. Different components to define experiments

Method PoS tagger Lemmatizer Information

MxE SVMTool Freeling Word

SVM Freeling TreeTagger PoS
TreeTagger Lemma
Brill tagger Stem
Ratnaparkhi

5 Results

Results® for all the experiments have been arranged in different tables.

Table 3 shows the overall results organized by experiment and WSD method. For each
experiment-WSD method, the accuracy obtained by the different PoS tagger-lemmatizers is
shown. We also show the differences between the best and worst result in the last column.
Significant differences, according to the z’-fest [14] have been highligthed. So, we can
study in what way the final result of the WSD system depends on the PoS tagger used. By
experiments two and three we can determine if this “dependency” becomes weaker when
more information (lemmas and stems) is added.

An interesting point is that SVM gets always the best result when combined with
TreeTagger and the worst one with Freeling. This seems to verify the importance of choosing
the right combination of PoS tagger and WSD method. Another important aspect is that the
results converge when more information is used (Experiment 3), as it is shown by the Dif.
column. However, this is not the case for MxE where there is not a “favourite” PoS tagger.

Moreover, the lemma information provided by Freeling or TreeTagger affects differently
to each WSD method. As Experiment 2 shows, both methods seem to work better with
TreeTagger than with Freeling. However, when stems are introduced, Experiment 3, SVM
perfoms better with TreeTagger, while MxE does it with Freeling. Additionally, TreeTagger
is the best PoS tagger when used with SVM, but the worst one when combined with MxE.
Besides this, Freeling is the best PoS tagger for MxE and the worst one for SVM. A reason for
this different behavior could be on the nature of the WSD methods themselves and the way
PoS taggers behave. While SVM is based on learning the linear discriminant, MxE learns
probability models. Furthermore, errors made by PoS taggers may not be so systematic,
meaning that one particular PoS tagger could not always make the same mistakes on the
same kind of words. If so, MXE seems to be more affected by this kind of “noise” than SVM.

6 Accuracy (correct clasifications/number of test examples) is used for all the experiments since
coverage is always 100%.

176 L. Moreno-Monteagudo et al.

Table 3. Average results by experiment, WSD method, PoS tagger and lemmatizer

Exp. WSD PoS tagger Lemmatizer Acc. Dif.
TreeTagger 67.72
SVMTool - 66.84
SVM Ratnaparkhi - 66.81 1.34
Brill - 66.43
Freeling - 66.38
Expl Ratnaparkhi ; 64.88
Brill - 64.68
MXE SVMTool - 64.58 0.94
TreeTagger - 64.45
Freeling - 63.95
TreeTagger TreeTagger 67.85
SVMTool TreeTagger 67.39
SVMTool Freeling 67.22
Brill TreeTagger 67.19
SVM Brill Freeling 67.11 104
Freeling Freeling 67.01
Ratnaparkhi TreeTagger 66.99
Ratnaparkhi Freeling 66.81
Exp2 TreeTagger TreeTagger 65.97
SVMTool TreeTagger 65.90
Ratnaparkhi TreeTagger 65.90
Brill Freeling 65.85
MXE Brill TreeTagger 65.77 0.58
SVMTool Freeling 65.62
Ratnaparkhi Freeling 65.49
Freeling Freeling 65.39
TreeTagger TreeTagger 67.65
Ratnaparkhi TreeTagger 67.37
SVMTool TreeTagger 67.29
Brill TreeTagger 67.29
SVM Brill Freeling 67.22 0.56
SVMTool Freeling 67.17
Ratnaparkhi Freeling 67.11
Freeling Freeling 67.09
Exp3 Freeling Freeling 66.56
Ratnaparkhi Freeling 66.28
Brill Freeling 66.23
SVMTool Freeling 66.18
MXE Brill TreeTagger 66.08 0.66
Ratnaparkhi TreeTagger 66.00
SVMTool TreeTagger 65.97
TreeTagger TreeTagger 65.90

The fact is that, in our case, the selection of one PoS tagger is not a trivial matter, even though
the results show slight differences from one PoS tagger to another.

A Study of the Influence of PoS Tagging on WSD 177

We have also arranged the results under word category, in order to find out if they depend
on it. That is, if the results depend on the way PoS taggers behave with different word
categories: adjectives, nouns and verbs. Table 4 shows these results for Experiment 3. This
experiment has been chosen as an example of the differences found in all the tests.

Table 4. Results for Experiment 3 organized by category

PoS WSD PoS tagger Lemmatizer Acc. Dif.
TreeTagger TreeTagger 66.46
Ratnaparkhi Freeling 66.35
Ratnaparkhi TreeTagger 66.24
SVMTool Freeling 66.13
SVM SVMTool TreeTagger 66.08 0.83
Brill Freeling 66.08
Brill TreeTagger 66.08
Freeling Freeling 65.63
N SVMTool Freeling 65.25
Freeling Freeling 65.02
Ratnaparkhi Freeling 64.91
Brill Freeling 64.86
MXE Ratnaparkhi TreeTagger 64.64 0.83
SVMToo TreeTagger 64.58
Brill TreeTagger 64.47
TreeTagger TreeTagger 64.42
TreeTagger TreeTagger 69.97
Freeling Freeling 69.77
SVMTool TreeTagger 69.72
Brill TreeTagger 69.72
SVM Ratnaparkhi TreeTagger 69.67 0.86
Brill Freeling 69.57
SVMTool Freeling 69.41
Ratnaparkhi Freeling 69.11
v Freeling Freeling 68,96
Ratnaparkhi Freeling 68.45
Brill TreeTagger 68.40
Brill Freeling 68.35
MXE TreeTagger TreeTagger 68.20 106
Ratnaparkhi TreeTagger 68.15
SVMTool TreeTagger 68.10
SVMTool Freeling 67.90

Studying the corpus we find much less adjectives (around 4%) than verbs (50%) and nouns
(46%), which means that errors on adjectives are more evident. This is why we do not show
the results obtained for adjectives, since we think they cannot be taken into account.

An interesting point is that the ranking of PoS taggers for each WSD method is different
for each category. This shows that the selection of a PoS tagger for a WSD system does not
only depend on the WSD method selected, but also on the lexical category. Consequently, we

178 L. Moreno-Monteagudo et al.

could possibly use the best PoS tagger for each category and then integrate the results in the
WSD system.

6 Conclusions and Future Work

In this paper the way of combining different NLP tools has been explored, in order to achieve
the best results in a specific task. In this case, the influence of using a PoS tagger with a WSD
system has been studied. Slight differences, even of a few tenths, can be of great importance
in a WSD task’, specially when less information is used. In these cases it is necessary to pay
more attention when selecting one PoS tagger. We have shown that some of the differences
are significant ones.

Additionally, some tools seem to combine “better” with some other tools (TreeTagger
shows a tendency to work better with SVM). So, depending on the WSD method, a different
PoS tagger should be used. We are now studying each individual case in order to determine
what kind of errors each PoS tagger makes. As the results show, not only the accuracy
reported by the authors should be considered when choosing a PoS tagger. Moreover, the
WSD method itself, indeed the combination of both, WSD method and PoS tagger, should be
taken into consideration, since not the highest PoS tagger precision leads to the best results
in WSD (in fact, TreeTagger does not have the highest reported precision).

For future work we expect to get further studying the aspects to be taken into consideration
when combining these tools. An interesting question could be adding more features to the
WSD systems from different sources, such as parsing, domains, bags of words. .. Besides
this, we are considering gathering the information provided by several tools of the same type
(for example different PoS taggers) to build up the set of features, determining in which
way their individual errors affect the final results. Finally, we want to apply this type of
experiments to other WSD methods, languages and NLP tasks.

References

1. Lau, R., Rosenfeld, R., Roukos, S.: Adaptative statistical language modeling using the maximum
entropy principle. In: Proceedings of the Human Language Technology Workshop, ARPA. (1993).

2. Berger, A.L., Della Pietra, S.A., Della Pietra, V.J.: A maximum entropy approach to natural
language processing. Computational Linguistics 22 (1996) 39-71.

3. Ratnaparkhi, A.: Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D.
thesis, University of Pennsylvania, Philadelphia (1998).

4. Vapnik, V. In: The Nature of Statistical Learning Theory. Springer (1995).

5. Gaustad, T.: The importance of high quality input for wsd: an application-oriented comparison of
part-of-speech taggers. In: Proceedings of the ALTW 2003, Melbourne, Australia (2003) 65-72.

6. Mihalcea, R., Chklovski, T., Kilgarriff, A.: The Senseval-3 English lexical sample task. In
Mihalcea, R., Edmonds, P., eds.: Senseval-3: Third International Workshop on the Evaluation
of Systems for the Semantic Analysis of Text, Barcelona, Spain, Association for Computational
Linguistics (2004) 25-28.

7. Giménez, J., Marquez, L.: SVMtool: A general pos tagger generator based on support vector
machines. In: Proceedings of LREC 2004, Fourth International Conference on Language
Resources and Evaluation, Workshop, Lisbon, Portugal (2004).

7 Best two results for English at Senseval-3, lexical sample, are 72.9 and 72.6.

10.

11.

12.

13.

14.

A Study of the Influence of PoS Tagging on WSD 179

. Carreras, X., Chao, I., L.Padr6, Padrd, M.: Freeling: An open-source suite of language analyzers.

In: Proceedings of LREC 2004, Lisbon, Portugal (2004).

. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of NemLap-

94, Manchester, England (1994) 44-49.

Brill, E.: A simple rule-based part of speech tagging. In: Proceedings of the 3™ Annual Meeting
of the ACL, Trento, Italy (1992).

Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In Brill, E., Church,
K., eds.: Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Somerset, New Jersey (1996) 133-142.

Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer Academic
Publishers (2002).

Sudrez, A., Palomar, M.: A maximum entropy-based word sense disambiguation system. In Chen,
H.H., Lin, C.Y., eds.: Proceedings of the 19" International COLING. (2002) 960-966.

Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning
algorithms. Neural Computation 10 (1998) 1895-1923.

Annotation of Temporal Relations Within a Discourse

Petr Némec

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University
Malostranské namesti 25, 118 00 Praha, Czech Republic
nemecQufal .mff.cuni.cz

Abstract. In this paper we present an annotation scheme that captures general
temporal relations between events expressed in a discourse. The proposed scheme aims
to naturally extend the existing tectogrammatic annotation of the Prague Dependency
Treebank and represents a step towards capturing the cognitive (ontological) content of
a discourse. The existence of such an annotation will allow the training and testing of
algorithms for automatic extraction of temporal relations which, in turn, contributes to
various NLP tasks such as information retrieval and machine translation. 233 sentences
of Czech translations of the Wall Street Journal (Penn Treebank) have been annotated
so far. We also present statistics on the distribution of respective temporal relations
based on this preliminary annotation data as well as the performance of a grammar-
based algorithm.

1 Introduction

In this paper we present an annotation scheme that captures temporal relations between
events' expressed in a discourse. The scheme aims to capture all the (evident or inferable)
temporal relations within the discourse as formulated in the utterances of the respective
speakers. The primary purpose of such an annotation is the possibility to train and test
a system for automatic retrieval of temporal information. Such a system can be used in
variety of applications such as machine translation (where the knowledge of the proper
sequence of events expressed in a sentence makes it possible to select a correct tense in
target languages with rich tense system such as English), information retrieval, and natural
language understanding in general.

Although the scheme itself is language independent and can be used to annotate plain
texts, it is particulary convenient to link the temporal annotation with the existing level of
tectogrammatic annotation within the framework of the Prague Dependency Treebank (PDT).
The tectogrammatic representation (TR) of a sentence captures its deep-syntax properties
and relations as a tectogrammatical tree structure (TGTS). A TGTS is a dependency tree,
the nodes of which represent the autosemantic words of the sentence. Each node is labelled
with an inflectionally reduced word-form called the lemma and a functor that describes the
deep syntactic valency relationship to its governor (parent node). Additionally, the nodes
are labelled with grammatemes that capture further morphological and semantic information

! We will use the term event to refer to any type of time anchored entity, e.g. activity, accomplishment,
state etc.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 181-188, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

182 P. Némec

corresponding to the autosemantic words such as tense, aspect, gender, number, mood, verb
and sentential modality etc. The textual coreference information is captured as well. For a
detailed description of the TGTS annotation scheme see [1]. The temporal annotation can
thus be viewed as a natural extension to the PDT framework.

The crucial reason for annotating TGTSs rather than plain texts is that in the next stage we
would like to use the vast information contained in TGTSs to actually build the mentioned
system for automatic retrieval of temporal information. Specifically for Czech, there exists an
algorithm developed by Panevova [5] that identifies the relative ordering of events expressed
by finite verbs of a sentence. It is based purely on the knowledge of sentence structure and
morphology of the verbs. Of course, it identifies only a subset of all existing relations — these
provided by the grammar. There are many other relations inferred and it is the identification of
these that represents the challenge. Nevertheless, the availability of TGTS representation of
a sentence makes it possible to use the described grammar-based algorithm straightforwardly
(as all the required information is captured by the TR) and we believe that the information it
provides (such as coreference) can also help in determining the “non-grammatical” relations.
As there is already a parser to TGTS available, this approach does not exclude analysis of
plain texts.

We annotate the Czech translation TGTSs of portion of Wall Street Journal. The cor-
responding sections have been previously translated and annotated at the tectogrammatical
level for purposes of machine translation [2]. The reason for this decision (in contrast to
annotating the original PDT data) was twofold: First, we expect the resulting automatic tem-
poral information retrieval system to be integrated into this machine translation framework so
this allows us to directly evaluate the contribution to the existing machine translation system.
Second, we expect that the “non-grammatical” part of the system will be very hard to create
as it requires substantial of context and world knowledge. Because of that, it is better to start
with a fairly restricted semantic domain which is the case of Wall Street Journal. Currently,
the preliminary set of 233 sentences (corresponding to the development testing data of the
machine translation system) is annotated.

The paper is structured as follows: Section 2 introduces the basic principles of the
formalism. Section 3 lists the defined temporal relations. Section 4 provides statistics on the
annotated data together with the performance of the mentioned grammar-based algorithm.
Section 5 compares our work to a similar project and Section 6 concludes the paper.

2 Basic Principles

In accordance with Novdk [4] we recognize start time point anchor E and end time point
anchor E, of each event (activity, accomplishment, state etc.) E expressed in a discourse. Ej
anchors the beginning of the event whereas E, anchors the time the event is finished. The
cited work provides convincing evidence for such unified treatment of various “event types”
(in opposition to e.g. distinctions made by Steedman in [6]). If an event E takes place in one
single time point, we take E; = E,.

These anchors are interpreted as time points on the real time axis regardless of the event
modality, i.e., regardless of whether the event taking place is asserted, negated, desired,
hypothesized etc. In any of these cases, the (asserted, negated etc.) event is anchored within
real time by the speaker.

Annotation of Temporal Relations Within a Discourse 183

The set of all the anchor pairs and the set of time-of-speech points (one for each
discourse utterance) together form the temporal space of a discourse. Consider the following
Example? 1:

1. A consortium of private investors operating as BPH Funding Co. said yesterday that it
could eventually make a $300 million cash bid.
2. Today it announced that it no longer considers the possibility.

There are two time-of-speech points (/.tos, 2.tos) and start and end points for the events
expressed by the words operating (op.s, op.e), said (say.s, say.e), make (mk.s, mk.e),
announced (anc.s, anc.e), and considers (cnsd.s, cnsd.e).

The task of the temporal annotation of a discourse is to identify its temporal space and to
determine relations between these points.

The decision on which expressions denote an event may not be entirely straightforward.
Basically, verbs and deverbative substantives and adjectives are subject to annotation.

3 Annotated Relations

We recognize two types of relations between the respective time points: the relative ordering
relations and specific determination relations (that anchor the time points by means of time
expressions). We describe both types in the following subsections.

The annotation of all the binary inter-sentential relations is very difficult as their number is
potentially the square of the number of all the time points within the discourse. It is unfeasible
for a human annotator to consider all of them. In practice, we annotate all the potential
relations crossing the adjacent sentence boundary, i.e. when annotating a sentence we also
consider all the time points of the previous one.

3.1 Relative Ordering Relations

The following relative ordering relations (corresponding to weak partial ordering) may hold
between two time points p and g: precedence (p < ¢), precedence-or-equality (p < q),
antecedence (p > ¢g), antecedence-or-equality (p > g), equality (p = ¢q). For the Example
1 (in Section 2) the smallest possible set of relative ordering relations would be as follows:

1.tos < 2.tos (sentence order)

- op.s < l.tos < op.e

say.s = say.e < 1.tos (said expresses a single time point event)
1.tos < mk.s = mk.e (make takes place in the future if at all)

- anc.s = anc.e < 2.tos

cnsd.s < anc.s < cnsd.e

These relations correspond to the information provided by the grammar. Nevertheless,
more relations can be inferred with various level of confidence:

2 Although the annotation has been performed on the Czech data we will present only the identical
English examples where possible.

184 P. Némec

— op.s < say.s (the consortium was probably operating as BPH Funding before it made
a statement yesterday)

— op.s = cnsd.s (the same for considering the offer)

— say.s < anc.s (follows from the absolute temporal determinations)

— op.s < 2.tos < op.e (the state of affairs is true even in the time-of-speech of the other
sentence)

— cnsd.s < 1.tos < cnsd.e (the same)

The complete annotation of relative ordering of the respective events is the transitive
closure of the entered relations (e.g. from a < b < ¢ the a < c relation is inferred).

3.2 Specific Determinations

Values of some time points are determined by functions of other time points or are even
specified absolutely. For example, in the sentence (Example 2)

Last year we spent our holiday in Austria and it was very similar to our vacation in Germany
in February 1980.

the event of spending the holiday in Austria is determined as a function (last year) of the time-
of-speech point whereas the event of spending the holiday in Germany has been positioned
absolutely to the interval of February 1980. Note that although we may not know the value of
speech time of the utterance we still understand the sentence and should be able to annotate it.

To capture this kind of information we have developed an apparatus based on the operators
and functions described below?. It represents content of the expressions such as “last Friday”,
“beginning of the next month”, “the middle of 80s” etc. Moreover, it allows for a construction
of an efficient algorithm for the computation of partial ordering of these expressions on the
real time axis.

Let us present type convention for these functions and operators first:

t_point is a concrete point on the real time axis. It may be an event time point variable
or it can be specified directly (e.g. 21.1.1980 23:55:00).

t_interval is a concrete closed interval on the real time axis, e.g. the time period
between two time points including the points. It may also be specified directly, e.g.
21.1.1980 represents the entire day interval.

t_range is any amount of time (e.g. two seconds, four months etc.).

t_entity_type is one of the following constants: year, month, day, hour, minute,
second.

— t_entity is a name of a day or month.

— t_part is one of the following constants (representing vague language expressions):
beginning, end, middle.

We may now list the operators and functions (the type of arguments and result follow after
the colon):

3 Using these operators and functions we have been able to capture all the absolute time determinations
within the annotated data. However, we do not claim that this list is sufficient to capture all absolute
time specifications. Its extension may be needed in the future.

Annotation of Temporal Relations Within a Discourse 185

U, N, \(Intervaly, Intervaly) : (t_interval, t_interval) — t_interval

+, —(Rangey, Range,) : (t_range,t_range) — t_range

shift(Point, Distance, InPast) : (t_point,t_range, boolean) — t_point
entityRange(EntityType, Number) : (t_entity_type, RY) — t_range
span(Point, EntityType) : (t_point,t_entity_type) — t_interval
find(Point, Entity, Index) : (t_point,t_entity,integer) — t_interval)
part(Interval, Part) : (t_interval,t_part) — t_interval

U, N, and \ are the standard interval union, disjunction, and intersection operators.

+ and — are the addition and subtraction operators on time ranges respectively

shift returns the time point that succeeds or precedes (depending on the value of
InPast) Point by Distance.

entity Range function returns the time range represented by Number time entities of
type EntityType,e.g. entity Range(year, 2) returns time range of two years.

The span function returns the concrete time interval of the time entity of type
EntityType that contains the time point Point, e.g. span(lg, month) returns the interval
of the month containing time point 1.

The find function finds the Index-th occurence of Entity succeeding or preceding(if
Index is negative) Point. For example, find(ly, Monday, —2) returns the interval of the
Monday before the last Monday before 1;.

The part function returns the Part of Interval, e.g. part(February 1980, beginning)
corresponds to the (vague) expression “beginning of the February 1980

These functions and operators may be arbitrarily composed to form the resulting
expression. A time point can then be positioned inside (outside) the interval specified by
this expression. E.g. the starting point sp.s of spend from Example 2 can be positioned to
“last year” as follows

sp.s € span(shift(tos, entityRange(year, 1), yes), year)

where tos is the time of speech. The same mechanism can be used to specify absolute
distance between two time points etc.

3.3 Special Modifiers

Some discourse expressions do not express a single event taking place in a single interval of
time. In case the event is recurrent as in “Last month, I used to wake up every morning and
run 10 miles.” it is not enough to mark each of the two events separately as the connection
between them would be lost. Instead, we introduce the notion of a plan: the two events are
annotated as usual except that they are declared to be part of one particular box — the plan.
The plan itself has a start time point and end time point (plan boundaries) which denote the
interval of plan’s validity (in the example, these are directly specified as the start and end
of the “last month”). Repeat period (of time_range type) of the plan may also be specified
(one day in our example).

Other special situation is when the event occurs separately for each actor in distributive
readings such as “Each company built its own headquarters in Boston.”. This is indicated in
the annotation by a special marker. The two cases may co-occur as in “Many people wake up
every morning...”. In this case the plan is marked as distributive as well.

186 P. Némec

4 Empirical Results

In this section we present some empirical results based on the annotated data. The primary
purpose is to provide an idea of the distribution of respective annotated entity and relation
types. We also present the performance of the Panevova’s algorithm described in [5] that
determines the relative ordering of finite verbs (and time of speech points) based solely on
their grammatical properties*. The performance of the algorithm may be viewed as a baseline
for further experiments.

The set consists of 233 sentences containing 804 annotated events (represented by 632
verbs, 120 substantives, and 52 adjectives) and 33 plans, i.e. there are 2#*804 + 2*33 + 233 =
1907 time points in total. In addition, there are 88 specific determinations (time expressions)
present.

There are 5637 annotated relation in total — the table lists their distribution (TOS stands
for time of speech, PB for plan boundary).

TOS Verbs Substantives Adjectives
TOS 221 (3.92%) X X X
Verbs 944 (16.75%) 2698 (47.86%) X X

Subst. 139 (2.47%) 703 (12.47%) 211 (3.74%) X
Adj. 83(1.47%) 230(4.08%) 29(0.51%) 90 (1.60%)
PB 45 (0.80%) 179 3.18%) 12(0.21%) 2 (0.04%) 51 (0.90%)

XX X X =

Running the algorithm yielded accuracy of 80.80% and coverage > of 42.47%. There are
various interesting types of errors produced by the algorithm (some of them mentioned in [5]
itself) but space limitations prevent us from presenting them here.

5 Related Work

To annotate temporal expressions the TIMEX? [3] annotation scheme was developed yielding
the TIDES corpus [7]. The goal of this project could be characterized as the identification
and precise formalization of the temporal expressions describing a time specification (not
a event) occurring in the text. This is similar to our “specific determinations” as described
Section 3.2. The difference consists in the fact the under TIMEX2 all such expressions
(including indexical expressions — functions of time of speech or event) get resolved into
a calendric expression - they get “extensionalized”. On the other hand, our compositional
functional approach preserves their “intension” (which makes it possible to annotate them
even if the absolute time of speech is unknown) while ensuring the effective determination
of their absolute value if possible. However, the crucial difference between TIMEX2 and our

4 The algorithm can be briefly stated as follows: the morphological tense of a finite verb (head of a
clause A) determines its relation — precedence, overlap (i.e. at least one one common time point),
antecedence — with the verb of the dominating clause B (or time of speech point if A is the main
clause) if A represents an object of B. Otherwise, let C be the nearest clause dominating (possibly
indirectly) A that is an object of its dominating clause D. Then the morphological tense of A
determines its relationship to D or to the time of speech if there is no such clause C.

5 The ratio of the number of relations considered by the algorithm and the total number of relations.

Annotation of Temporal Relations Within a Discourse 187

annotation scheme consists in their respective primary purposes: our annotation scheme aims
at capturing deep temporal information — namely the identification and relative order of the
events expressed in the discourse. TIMEX2 focuses on fast and simple extraction of temporal
expressions from documents.

6 Conclusion and Future Work

We have designed an annotation scheme that allows to capture large amount of temporal
information contained in a discourse and annotated a preliminary set of data. This set
can be readily used as a (development) test data for any automatic temporal information
retrieval system. We have also presented statistical results based on this small set together
with the performance results of a purely grammar-based algorithm. We were able to
capture all the temporal phenomena we considered relevant by means of our annotation
scheme.

In our opinion, the main problem with the annotation consist in the inability to annotate all
the relations within a discourse and the necessity to restrain to relations within one utterance
or at most between two adjacent utterances.

For the purposes of statistical training, larger data have to be annotated. This may also
reveal potential problems within the current annotation scheme as well as the necessity to
enrich it.

In summary, the presented work represents a preliminary attempt to annotate a discourse
for deep temporal relations that will be worked on in the future.

Acknowledgements

The development of the presented work has been supported by the following organizations
and projects: the LC536 grant of the Ministry of Education of the Czech Republic,
Information Society Project No. 1ET201120505 of the Grant Agency of the Academy of
Sciences of the Czech Republic, Grant No. 0530118 of the National Science Foundation of
the USA, and Grant No. 352/2006 of the Grant Agency of Charles University. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the respective grant agencies.

References

1. Bohmovd, A., Hajic, J., Hajicova, E., Vidova Hladka, B.: The Prague dependency treebank: Three-
level annotation scenario. In Anne Abeille, editor, In Treebanks: Building and Using Syntactically
Annotated Corpora. Dordrecht, Kluwer Academic Publishers, The Netherlands. 2002.

2. Hajic, 1., Cmejrek, M., Dorr, B., Ding, Y., Eisner, J., Gildea, D., Koo, T., Parton, K., Radev,
D., Rambow, O.: Natural language generation in the context of machine translation. Technical
report, Center for Language and Speech Processing, Johns Hopkins University, Baltimore. Summer
Workshop Final Report. 2002.

3. Mani, I., Wilson, G., Sundheim, B., Ferro, L.: Guidelines for Annotating Temporal Information.
In Proceedings of HLT 2001, First International Conference on Human Language Technology
Research, J. Allan, ed., Morgan Kaufmann, San Francisco, 2001.

188 P. Némec

4. Novédk, V.. Towards Logical Representation of Language Structure. The Prague Bulletin of
Mathematical Linguistics 82. 2004.

5. Panevovi, J., BeneSovd, E., Sgall, P.: Cas a modalita v &esting. Charles University. 1971.

6. Steedman, M.: The Productions of Time: Temporality and Causality in Linguistic Semantics. Draft
4.1, October. 2002.

7. Tides Temporal Corpus, Spanish and English dialogs.
http://wuw.nist.gov/speech/tests/ace/phase2/resource/index.htm.

Applying RST Relations to Semantic Search

Nguyen Thanh Tri, Akira Shimazu, Le Cuong Anh, and Nguyen Minh Le

School of Information Science
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
{t thanh, shimazu, cuonganh, nguyenml}@jaist.ac.jp

Abstract. This paper proposes a new way of extracting answers to some kinds of
queries based on Rhetorical Structure Theory (RST). For each type of question, we
assign one or more rhetorical relations that help extract the corresponding answers.
We use ternary expressions which are successfully applied in the well-known question
answering system START to represent text segments, index documents and queries.
The cosine measure is used in the matching process. The experiment with RST
Discourse Treebank shows that the results of ternary-expression-based indexing are
better than those of keyword-based indexing.

1 Introduction

Current key word based search engines have successfully served users for many years. These
systems rely on key words and return pages in which the typed key words appear. Therefore
users have to read through (up to thousands of) pages to find what they want. In order to
overcome this problem, semantic search (a content-based search method) is proposed. One
recent approach, applied to the World Wide Web (WWW), is Semantic Web. The mainstream
of Semantic Web is to enable computers to understand data by adding some more information
(called metadata) into Web pages, as in Simple HTML Ontology Extension (SHOE) [7].
Web pages that SHOE can process must include additional terms and concepts according to
SHOE specification. In Distributed Open Semantic Elaboration platform (DOSE) [5], authors
use the concept vector model, which is based on the classical vector space model. Another
search engine which explores the semantics of XML tags in order to give better results is
XML search (Xsearch) [10].

Though above methods give better results, they still return results in the form of pages.
There are various types of questions, e.g, “Why didn’t Mr. Bush need to wait for a law?” to
which users want to have a direct answer (in form of a sentence or a passage) rather than
pages containing the answers.

This study proposes a novel method for extracting answers (not pages) to some kinds
of questions from documents by exploiting the structure of documents. The structure of
documents includes the characteristic that one text span can be an answer to a question
related to the adjacent text span. The structure of documents can be represented by Rhetorical
Structural Theory (RST) proposed by Mann and Thompson [3]. In their proposal a document
is represented in form of a tree, in which there are relations between adjacent text spans. Each
relation has a specified meaning and some relations are clue for extracting answers to some
types of questions.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 189-196, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

190 T.T. Nguyen et al.

The rest of this paper is organized as follows: Sect. 2 describes how RST can be used for
finding and extracting answers as well as the way to index documents and retrieve answers.
Sect. 3 gives details about implementation, and comparison with a similar system in which
keywords are used instead of T-expressions. Finally, Sect. 4 concludes the paper.

2 Method for Semantic Search

This section gives details about how we apply RST to finding and extracting some kinds of
questions, the method of representing text segments and the method of matching questions.

2.1 Rbhetorical Relation Exploration

Rhetorical Structure Theory (RST) [3], proposed by Mann and Thompson, defined a set of 23
rhetorical relations. This model represents the structure of a text in the form of a hierarchical
tree (called rhetorical tree) that labels relations between adjacent text spans, such as clauses
(lowest level), sentences, or paragraphs. There is a relationship between adjacent spans (spans
having the same parent), e.g., SOLUTIONHOOD, ELABORATION and PURPOSE. The smallest
text spans are called elementary discourse units. Spans (or nodes) are either nucleus or
satellite within a relation. A span is a nucleus if it is more important than the other, otherwise
it is a satellite. For example, the sentence “because the car broke down, John was late for the
meeting” can be divided into two text spans: “because the car broke down”(denoted as SP1)
as the satellite, “John was late for the meeting” (denoted as SP2) as the nucleus, and there is
a rhetorical relation “NON-VOLITIONAL CAUSE” between them.
The rhetorical structure of this sen-

tence is represented in Fig. 1. Internal

nodes consist of larger text segments, SP1-2

such as a sentence, a paragraph or a sec- [non-velitional cause]

tion, and the root node spans the en-

tire document. Each rhetorical relation /_\

has a specified meaning. For example,

the NON-VOLITIONAL CAUSE relation AF 1 (satellite) AP 2 (raclens)

specifies the cause of the situation pre-
sented in one text span is stated in the
other. Therefore, span SP1 is a candi- Fig. 1. The structure of the text
date as an answer to the question “Why
was John late?” which relates to the situation stated in SP2. In general, SP2 consists of smaller
text spans. When the question is related to one child node of SP2, how to extract the answer is
a problem. Fortunately, according to Marcu, “If a rhetorical relation R holds between two text
spans of the tree structure of a text, that relation also holds between the most important units
of the constituent spans” [4]. Hence, if the question is related to one of the most important
descendants of span SP2, then SP1 is still a candidate as an answer.

The process of constructing the discourse tree of a document can be automatic as presented
in [4,8,11].

Applying RST Relations to Semantic Search 191

2.2 Rhetorical Relation Application

RST relation can be applied to extracting answers to a question of a specific type. As
discussed in Sect. 2.1, the span SP2 has a NON-VOLITIONAL CAUSE relation with span
SP2, so if given a question “Why was John late?”, then the span SP1 is a candidate as an
answer. This is the idea how to apply rhetorical relations to finding and extracting the answers
to questions. The types of question given in the Text Retrieval Conference (TREC) [6] are
divided into 3 types: list questions, definition questions and factoid questions. These are all
factual questions and the answers can be directly extracted from the sentences that match the
questions. There can be more types of questions:

— How to questions: e.g., “How can I recover space after installing updates?”’. SOLUTION-
HOOD relation indicates the situation presented in nucleus is a solution to the problem
stated in satellite. PURPOSE relation indicates that satellite presents a situation to be re-
alized through the activity in nucleus. Thus, SOLUTIONHOOD and PURPOSE relations
are clues for extracting answers.

— Suggestion questions: e.g., “What should I do about compilation error in V6.1.b10?”. For
this type of question, SOLUTIONHOOD relation gives a possible solution and is suitable
for extracting answers.

— Why questions: e.g., “Why didn’t Mr. Bush need to wait for a law?”. CONDITION,
VOLITIONAL CAUSE, NON-VOLITIONAL CAUSE and PURPOSE all are related to causal
relation, therefore they are clues for extracting answers.

— Yes/no questions: e.g., “Did John buy a car?”

The question types and corresponding helpful rhetorical relations are listed in Tab. 1. Other
types irrelevant to rhetorical relations are not listed. In order to use rhetorical relations for
extracting answers, we need to construct the rhetorical structure of documents and then index
documents in such a way that the rhetorical structure of documents remains. The technique
for indexing is mentioned in Sect. 2.3. The method for retaining rhetorical structure of
documents is described in Sect. 3. After these steps, we have a knowledge base for answering
questions. In answering mode, the system operates as the algorithm described in Fig. 2,
where Answers.add(span,d) means to add text belonging to span in the document d to the
answer list. The method for matching the question against the knowledge base is described
in Sect. 2.3.

2.3 Indexing Documents and Matching Questions

This section gives details on how we represent text segments, index documents and match
questions. We borrow the sentence representation style used by natural language Question

Table 1. The question types and corresponding rhetorical relations

Question types Rhetorical relations
How to SOLUTIONHOOD, PURPOSE
Suggestion SOLUTIONHOOD

Why VOLITIONAL CAUSE, NON-VOLITIONAL CAUSE and PURPOSE

192 T.T. Nguyen et al.

Search(Question ¢q) {

1 Identify the type of question g;

2 Identify a set of rhetorical relations R corresponding to this question type;

3 if (is_empty(R)) {

4 return “This type of question is not supported!”;

5 Jelse{

6 Match the question g against the knowledge base;

7 if (no matches found) return “Not found!”; else {

8 for (each match m){

9 for (each relation r in R){

10 Find a span spy (in the rhetorical structure of a document d containing
12 the match m) having the relation r with the span sp; which contains
11 the match m (or one of its most important constituents contains the
12 match m);//As depicted in Fig 3.

13 if (found) Answers.add(spy, d);

14 }

15 }

16 }

17 return Answers;

18 }

19}

Fig. 2. The search algorithm

and Answering system START (SynTactic Analysis using Reversible Transformation) [1],
which is successful in answering a series of questions by using this representation style.

Indexing and answering in START: A sentence, in START, is divided into kernel
sentences which usually contain one verb. A kernel sentence is represented by a ternary
expression (T-expression) which is a triple of <subject relation object>, where relation
is an infinitive verb, a preposition or some special words (e.g., describe_relation). Other
information of the sentence (such as tense, voice, negation, auxiliary verbs and adverbs)
is stored in another place called history. For complex sentences, START allows any
T-expression to take another T-expression as its subject or object. For example, the sentence
“John Adams discovered Neptune” is represented as <“John Adams” discover Neptune>.

In answering mode, START converts questions into T-expressions and performs the search
against its knowledge. For example, if given the above fact, START creates the T-expression
<“John Adams” discover Neptune> and stores it in its knowledge base. Then if a user
asks the question “Who discovered Neptune?”, it converts the question into the T-expression
<S$who discover Neptune>, where $who serves as a matching variable. This T-expression
is matched against the knowledge base, in this case, $who is matched with “John Adams”,
then START uses the T-expression <“John Adams” discover Neptune> with its history to
restore the sentence “John Adams discovered Neptune” as the answer.

Indexing in our system: We propose a new way of indexing based on T-expressions. The
idea is to group T-expressions of a sentence (or a text segment) together so that we can use
cosine measure to calculate the similarity of a text segment and a question as described in the
next section. The method for grouping T-expressions of the same text segment is mentioned
in Sect. 3. We use T-expressions for the indexing and matching processes, not for the purpose

Applying RST Relations to Semantic Search 193

of generating answers. When a span is found to be an answer, all the text segments belonging
to this span are collected and returned.

Matching in our system: We use cosine measure for scoring the similarity between
a question and a text segment. Suppose a question g is converted into T-expressions
(tq1,tq2, ..., 1qgy) and a text segment s is converted into T-expressions (£s, 152, ..., 1s]).
In general cases, n and [are not equal, thus we have to normalize them to be the same
size. Let m be the total of unique T-expressions of ¢ and s. Let (tcy,tca, ..., tcm)
be the vector of unique T-expressions of ¢ and s. Then s and g can be represented
as vectors of size m (t,tp,...,ty), where t; = 1 if T-expression fc¢; is present in
its T-expression list, otherwise #; = 0. If one T-expression of the question g contains
a variable, we must treat that T-expression differently from ordinary T-expressions in
comparison. When two T-expressions are the same except for a variable, they are regarded
as being matched. For example, if there is a T-expression <$who be worker>, this
T-expression and T-expressions like <John be worker> and <James be worker> (in
the knowledge base) are said to be matched. Finally, the
cosine between the question g and the text segment s is

defined as follows: opq.2
3 1k(q)1(s) 7]

COS(q, S) = n:€=l m

> 1(q@)? 3 ti(s)? /‘—\-\\

=1 k=1

" p1 2

where ¢ (s), tx(q) are the presence of the k'" element o
of T-expressions of the text segment s and question g
correspondingly.

Fig. 3. Finding an expected span
This method provides the flexibility for matching

process and users have an option to adjust the threshold
to filter the result with respect to a degree of similarity in the range (0, 1].

There can be history (tense, negation, auxiliary verbs and adverbs) attached to a T-
expression. In the matching process we must consider this issue. For yes/no questions, we
just measure the similarity between the question and a sentence without considering negation
and tense because a match is always an answer. For example, if we have the fact “John bought
anew car in June”, and the question is any one of “Did John buy a car in June?”, “Didn’t John
buy the car in June” or “Has John bought a car?” that sentence is still the answer. For other
types of questions, if the question and a sentence do not match regarding the negation or tense,
we will not consider that sentence to be a candidate as an answer. For example, given a ques-
tion “File access is denied. How to fix this problem?” it is incorrect to match the T-expressions
of “File access is denied” with the T-expression of the fact “File access is not denied”. We do
not take adverbs into account because they do not affect the precision of answers.

3 Implementation and Evaluation

We used the RST Discourse Treebank [9] for testing because the task of building RST
trees of documents is outside the scope of this study, and there are some studies on this
issue [4,8,11]. This Treebank contains a subset of documents from the Wall Street Journal
which are annotated according to RST theory. We used database management system

194 T.T. Nguyen et al.

Table 2. The results of T-expression-based and keyword-based systems. The final column is the average
answer per question

. . Precision Recall Ave. answer
Question type #questions T-expr Keyword T-expr Keyword T-expr Keyword
Why 64 0.864 0.689 0.968 0.938 1.16 1.36
How to 91 0.801 0.739 0978 0.967 1.21 1.35
Suggestion 25 0952 0.778 0.800 0.840 0.84 1.08
Factual 259 0.806 0306 0.984 0.857 1.22 2.79

MySQL' for storing data. A tree can be represented by parent-child relation, so the technique
for grouping T-expressions of the same sentence and retaining RST structure is implemented
using MySQL. The module of converting sentences into T-expressions is a rule-based system.
We firstly use the Charniak parser? (whose F-score is 90%) to parse sentences, and secondly
the T-expressions are built based on the output of Charniak parser. Starting from a set of
basic conversion rules from a sequence of part-of-speech (POS) tags to T-expressions, e.g.,
“Nouni+(Preposition+Noun,)” is converted into < Noun; Preposition Noun, >,
complex sequences of POS tags are recursively processed at the lowest level. For example:
for Noun+(Preposition|+

(Nounjy + (Prepositiony + Nouny))), after having generated < Noun,

Preposition, Nouns >, the head noun Noun, is kept for generating < Noun,
Preposition; Noun, >. The complexity of this module is that of Charniak parser because
the conversion time of a parsed sentence into T-expressions can run in real time. The
precision, recall and F-score of this module are 92%, 90% and 91%, respectively.

We built another similar system, which uses keywords instead of T-expressions for base
line evaluation. We created a question set consisting of 91 how to, 64 why, 25 suggestion
and 259 factual questions. In keyword-based system, we set the threshold for cosine measure
to 0.30 for factual questions and 0.20 for other questions, while in the T-expression-based
system we set the threshold to 0. Non-factual questions have corresponding rhetorical
relations to filter the results while factual questions do not. In order to reduce the number
of answers returned to factual questions, we set a higher threshold for factual questions in the
keyword-based system. The results are shown in Tab. 2.

The limitations that make the system fail to find answers in some situations are:

— When a question relates to more than one adjacent text segments of a sentence and
T-expressions of the question are different from those of related text segments, the
matching process will fail.

— The question does not match an important constituent of a span which has the expected
relation with the span containing the answer.

— The module for converting a question into T-expressions incorrectly adds a matching
variable in some situations.

— Questions contain proper names which are replaced by pronouns in the knowledge base.

— Questions are expressed in different ways from the original sentences used to build the
knowledge base.

! The software is available at http://wuw.mysql.com
2 The source code is available at http: //www.cs . brown.edu/people/ec/

Applying RST Relations to Semantic Search 195

A possible solution to relieve some limitations is to build T-expressions from the original
sentences (by concatenating text segments of the same sentence), and perform co-reference
on original documents to resolve pronouns.

By representing text segments in T-expressions, we can support for entailment relation.
From one text segment we can entail another one which omits some adjectives. For example,
from the text segment “John bought a new car” is converted into <John buy car> and <new
describe_relation car>, so we can infer the text segment which has the T-expression <John
buy car> by omitting the T-expressions having describe_relation relation.

Another possible improvement is to generate finer-grained T-expressions. In the current
implementation, the sentence “John and Jane bought a new car” is converted into two T-
expressions <“John Jane” buy car> and <new describe_relation car>. If we convert the
above sentence into three T-expressions: <John buy car>, <Jane buy car> and <new
describe_relation car>, then we can answer a question that is written in a different order,
such as “Did Jane and John buy a new car?”.

4 Conclusion

This study proposes a method for finding and extracting answers to some kinds of questions
based on the rhetorical structure of documents. We exploit the characteristics of document
structure in which one segment of text can be an answer to a question related to the adjacent
text segment. According to each question type, we identify related rhetorical relations which
help in finding answers. T-expressions are used to index documents and cosine measure is
used in the matching process. Comparison of the two experimental systems shows that the
results of the T-expression-based system are better that those of keyword-based one.

We currently consider only five rhetorical relations, other ones are still valuable for further
study.

Though the relation definitions of Mann and Thompson are only one well-known case, we
may define any kind of relations that help answer an arbitrary type of question.

In a future study, we intend to apply an ontology, such as WordNet, in the matching process
in order to be able to answer questions that have different linguistic expressions but the same
meaning as some facts.

References

1. Boris Katz, 1988. Using English for Indexing and Retrieving, Proceedings of the 1% RIAO
Conference on User-Oriented Content-Based Text and Image Handling.

2. Charles Clark, et al. 2000. Question Answering by Passage Selection, The 9th Text REtrieval
Conference (TREC 2000), pp. 229-235.

3. William Mann, Sandra Thompson. 1987. Rhetorical Structure Theory: A theory of text
organization, In L. Polanyi, (Ed.) Discourse structure (pp. 85-96). Norwood/NJ: Ablex.

4. Daniel Marcu. 2000. The Rhetorical Parsing of Unrestricted Texts: A Surface-Based Approach,
Computational Linguistics, Vol. 26, Issue 3, pp. 395-448.

5. Dario Bonino, et al. 2003. DOSE: a Distributed Open Semantic Elaboration Platform, The 15t
IEEE International Conference on Tools with Artificial Intelligence, Sacramento, California.

6. Ellen Voorhees. 2003. Overview of TREC 2003, The Twelfth Text REtrieval Conference (TREC
2003), pp. 1-13.

196

7.

10.

11.

T.T. Nguyen et al.

Jeff Heflin and James Hendler. 2000. Searching the Web with SHOE, In Atrtificial Intelligence
for Web Search. Papers from the AAAI Workshop, WS-00-01. AAAI Press, Menlo Park, CA, pp.
35-40.

. Huong Le Thanh. 2004. Investigation into an approach to automatic text summarization, Doctoral

dissertation, Middlesex University.

. Lynn Carlson, et al. 2003 Building a discourse-tagged corpus in the framework of Rhetorical

Structure Theory, In Current Directions in Discourse and Dialogue, pp. 85-112, Jan van Kuppevelt
and Ronnie Smith eds., Kluwer Academic Publishers.

Sara Colhen, et al. 2003. XSearch: A semantic search engine for XML, The 29" International
Conference on Very Large Databases (VLDB).

Tadashi Nomoto. 2004. Machine Learning Approaches to Rhetorical Parsing and Open-Domain
Text Summarization, Doctoral Dissertation, Nara Institute of Science and Technology.

Data-Driven Part-of-Speech Tagging of Kiswabhili

Guy De Pauw', Gilles-Maurice de Schryver®>, and Peter W. Wagacha4

I CcNTS - Language Technology Group, University of Antwerp, Belgium
guy .depauw@ua.ac.be
2 African Languages and Cultures, Ghent University, Belgium
gillesmaurice.deschryver@ugent.be
3 Xhosa Department, University of the Western Cape, South Africa
4 School of Computing and Informatics, University of Nairobi, Kenya
waiganjoQuonbi.ac.ke

Abstract. In this paper we present experiments with data-driven part-of-speech
taggers trained and evaluated on the annotated Helsinki Corpus of Swahili. Using
four of the current state-of-the-art data-driven taggers, TnT, MBT, SVMTool and
MXPOST, we observe the latter as being the most accurate tagger for the Kiswahili
dataset. We further improve on the performance of the individual taggers by combining
them into a committee of taggers. We observe that the more naive combination
methods, like the novel plural voting approach, outperform more elaborate schemes
like cascaded classifiers and weighted voting. This paper is the first publication to
present experiments on data-driven part-of-speech tagging for Kiswahili and Bantu
languages in general.

1 Introduction

It is well-known that Part-of-Speech (POS) taggers are crucial components in the develop-
ment of any serious application in the fields of Computational Linguistics (CL), Natural Lan-
guage Processing (NLP) or Human Language Technology (HLT). While great strides have
been made for (major) Indo-European languages such as English, Dutch and German, work
on the Bantu languages is scarcely out of the egg. The Bantu languages - of which there
are roughly five to six hundred - are basically agglutinating in nature, are characterized by a
nominal class system and concordial agreement, and are spoken from an imaginary line north
of the Democratic Republic of the Congo all the way down to the southern tip of the African
continent.

A particularly active region with regard to work on POS taggers for the Bantu languages
is South(ern) Africa, but so far the projects have unfortunately not gone much beyond the
development of (proposed) tagsets and, in some cases, prototype modules for morphological
analysis. In this regard, the EAGLES tagset was adjusted for Setswana [1], a different tagset
and suggestions to venture into Transformation-Based Tagging were presented for isiXhosa
[2], yet another tagset and a combination of rule-based symbolic tagging and statistical
tagging were offered as a corpus-processing tool for Sesotho sa Leboa [3,4], and a prototype
finite-state morphological analyzer was developed for isiZulu [5.4].

For Kiswahili — a Bantu language spoken by up to fifty million people in East Africa
(which makes it one of the most widely spoken African languages) — the situation is
markedly different. Close to two decades of work at the University of Helsinki resulted in a

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 197-204, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

198 G. De Pauw, G.-M. de Schryver, and P.W. Wagacha

relatively large corpus, the Helsinki Corpus of Swahili (HCS) [6], which has been thoroughly
analyzed and carefully annotated using a two-level finite-state formalism, with morphological
disambiguation carried out using a Constraint Grammar Parser [7]. The POS tag information
in HCS allows one to use supervised learning techniques to build data-driven POS taggers
and to perform a quantitative comparative evaluation of the available techniques. The latter
is exactly the purpose of this paper.

2 An Annotated Corpus of Kiswahili: HCS

Lexical ambiguity in Kiswahili is limited, making POS tagging relatively straightforward,
but still far from trivial, as illustrated in the following example:

(1) paka alianguka ndani ya maji
cat fell inside of water
noun verb adverb adjective noun
verb noun preposition

To tackle this disambiguation problem, we investigate the applicability of existing data-driven
POS taggers. These methods have in common that they require a large amount of annotated
data to induce the word class disambiguation task. For the experiments we used the POS tag
annotated part of the aforementioned HCS as our training material.

After some general data clean-up and disposal of duplicate sections, we had a corpus of
3,656,821 words (169,702 sentences) available. To obtain a reasonable spread in language
usage, we randomized the sentences in the corpus, so that the tagger would not be biased
towards a particular type of text during training. Given the expansive size of the corpus, full
10-fold cross validation experiments were not feasible. We therefore randomly divided the
corpus into a 80% training set (2,927,846 words), a 10% validation set (362,866 words) on
which the optimal parameters of the algorithms could be established, and finally a 10% blind
test set (366,109 words) for evaluation on unseen text.

3 Data-Driven Taggers

The last 15 years have witnessed corpus-based methods making tremendous headway in
providing accurate and robust POS taggers. Many of these tools have since been made
publicly available, so that they can relatively easily be applied to new languages when
annotated corpora become available. In this section, we briefly introduce the taggers used
for the experiments.

TnT (Trigrams’n’Tags): Hidden Markov Modeling One of the most common approaches to
data-driven POS tagging is using Hidden Markov Models (HMMs). A very sophisticated
HMM tagger is the Trigrams'n’Tags (TnT) tagger' [8]. It improves on previous HMM
approaches through the use of well established smoothing methods and its more sophisticated
processing of unknown words, capitalized words and sentence boundaries.

I TnT is available from http: //www.coli.uni saarland.de/~thorsten/tnt/

Data-Driven Part-of-Speech Tagging of Kiswahili 199

MXPOST: Maximum Entropy Modeling Maximum entropy modeling has consistently been
achieving top performance on a variety of NLP tasks. The maximum entropy tagger,
MXPOST? [9], is typically able to beat most other POS taggers in a direct comparison [10].
Like most other taggers, it uses lexical information about the word to be tagged, contextual
features (preceding, following tags) and morphological features (prefix, suffix letters).

MBT: Memory-Based Learning With its emphasis on symbolic processing and its inherent
robustness to exceptions, Memory-Based Learning (MBL) is particularly well suited for NLP
classification tasks. The Memory-Based Tagger (MBT)? [11] induces two taggers from the
training data: one for known words and one for unknown words, the former using contextual
clues, while the latter also uses orthographical features.

SVMTool: Support Vector Machines Support Vector Machines (SVMs) have been success-
fully applied to a wide range of classification tasks [12], but only recently has an SVM-based
POS tagging tool become available: SVMTool* [13], which functions as a set of pre- and
postprocessing scripts for SVM-Light [14]. SVMTool has been shown to outperform TnT on
English data [13], but has so far not been extensively compared to other methods and on other
datasets.

4 Experiments: Individual Tagger Performance

In this section, we outline the performance of the individual data-driven taggers trained and
evaluated on the Kiswahili dataset. The training, validation and test sets outlined in Section 2
were kept constant for all of the experiments, allowing for a systematic and direct comparison
between the tagging methods.

In a first phase, algorithmic parameters and information source are optimized on the
basis of the validation set. The taggers obtained from this training and optimization phase
are subsequently used to tag the held-out test set. The accuracy of the respective taggers is
calculated by comparing the output of the taggers to the gold-standard annotation provided
by HCS.

The average per-word lexical ambiguity in the Kiswahili dataset is quite favorable, with
only an average of 1.3 possible tags per word. This figure indicates that (on the basis of the
HCS tagset) there is not a lot of lexical ambiguity in Kiswahili. Roughly 3% of the words
(about 12,000 words) in the validation set, as well as the test set, are unknown, meaning that
they do not occur in the training set.

The limited lexical ambiguity is further illustrated by the high score achieved by the
baseline method: a simple statistical unigram method, which assigns to each of the known
words in the test set the tag it has been most often associated with in the training set. For
unknown words, it assigns the tag most frequently associated with unknown words in the
validation set (PROPNAME). This baseline method already achieves more than 97% accuracy
on known words (Table 1), but does not handle unknown words very well with a score of
only 18.59%.

2 MXPOST is available from ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar. gz
3 MBT is available from http://ilk.uvt.nl/software.html
4 SVMTool is available from http: //www.1lsi.upc.es/ nlp/SVMTool/

200 G. De Pauw, G.-M. de Schryver, and P.W. Wagacha

Table 1. Accuracy scores on blind test set (366K words) and approximate CPU times for the individual
taggers

Accuracy Scores CPU Time
Tagger Known Words Unknown Words Total Train Tag
Baseline 97.01% 18.59% 94.50% 4s 1s
TnT 98.00% 91.66% 97.79% 9s 4s
MBT (default) 98.39% 90.59% 98.14% 3m 20s
MBT (optimal) 98.46% 91.61% 98.25% 6m 8m
SVMTool 98.48% 91.30% 98.24% £80h 15s
MXPOST 98.61% 93.32% 98.44% +£5h 90s

Table 1 indicates that the TnT tagger by far exhibits the most efficient processing times
of all data-driven taggers®. Despite an exhaustive optimization phase on the validation set
(which still revealed the default settings to perform the best), the performance of the TnT
tagger trails in direct comparison to the other taggers. It nevertheless establishes a significant
increase compared to the baseline tagger, particularly with respect to unknown words.

The default MBT uses a context of two disambiguated tags to the left of the word to be
tagged and one ambiguous tag to the right. Table 1 shows that the default MBT performs
quite well for known words, but is lacking for unknown words. We subsequently performed
extensive optimization experiments during which we established the ideal information source
and optimal algorithmic parameters. For known and unknown words, this equaled to three
tags before and after the word to be tagged. For unknown words, we also took into account
five prefix and suffix letters and information on capitalization, hyphenation and numerical
characters within the word. While this optimization had a significantly positive effect on the
accuracy of the tagger, particularly on the processing of unknown words, it has a detrimental
effect on CPU time during classification.

Typical for SVM-based methods, SVMTool has a laborious training phase, but very
attractive efficiency properties during classification. The training phase of the SVMTool
tagger is rather problematic with a processing time of several days, which rendered
optimization experiments unfeasible. Table 1 therefore presents the accuracy scores on the
test set using the default radial basis kernel. As expected however, tagging time is very
favorable and SVMTool’s performance is easily able to match that of the optimized MBT.
Its lower performance on processing unknown words means it achieves a barely significantly
lower score than MBT, but we are confident that further optimization experiments can at least
level the field.

In direct comparison with other data-driven taggers, the MXPOST tagger further
establishes its state-of-the-art status. The default settings of MXPOST were confirmed as
performing the best during optimization experiments on the validation set, except for the
number of iterations (we used 500 iterations during training instead of the default 200).
Table 1 illustrates that MXPOST is able to achieve the highest accuracy, with a particularly
impressive accuracy score for unknown words. Compared to the baseline tagger, MXPOST
achieves an error reduction rate of 72% (54% on known words, 92% on unknown words).

3 Approximate CPU time was measured on a dual 64bit AMD Opteron 2.44GHz system with 6GB
RAM.

Data-Driven Part-of-Speech Tagging of Kiswahili 201

Data analysis showed that most taggers are able to resolve ambiguity well. The MXPOST
tagger for instance has an accuracy of more than 94% on ambiguous words. Interestingly
however, both TnT and MBT beat MXPOST when it comes to unambiguous words, which
means MXPOST makes slightly more mistakes on words that should not be considered
ambiguous. MXPOST seems to avoid overfitting the training data, by a more loose definition
of lexical ambiguity, while the other 3 taggers tend to choose the single tag associated with
the word in the lexicon.

The most common mistake made by all taggers is the tagging of a preposition (PREP) as
an agentative particle (AG-PART) and vice versa. This accounts for almost 20% of all tagging
errors. Other common mistakes include the tagging of a noun as a verb and the tagging of a
proper name as a noun.

5 Experiments: System Combination

While some studies [15] suggest that classifier bias can be minimized given an exhaustive
search through algorithmic parameters and information source, in practice most data-driven
taggers exhibit quite different tagging behavior given the same data set. In the system
combination experiments, we try to exploit these differences by combining the output of the
taggers to create a type of tagging committee that agrees on a tag for a word. Data analysis
indeed shows that only 97.23% of the time do the taggers all predict the same tag. 96.75% of
the time do the taggers agree on a tag which matches the correct tag. Furthermore, only 0.5%
of the time, do the taggers all agree on the same erroneous tag.

These figures indicate that there is enough disagreement between the individual taggers to
obtain a considerable increase using system combination. This type of system combination
is again performed in two processing steps: first we use the four data-driven taggers to tag
the validation set and test set. We then create a new dataset with 6 columns: the word, the
four tagger predictions and the gold-standard tag. The upper bound performance of any given
combination method can be found on the last line of Table 2. If we were to have an oracle
which, given the four possible predicted tags, always chooses the correct one, we could obtain
a tagging accuracy of 99.44%.

Table 2. Results of system combination experiments

Method Known Words Unknown Words Total

MXPOST 98.61% 93.32% 98.44%
Majority Voting 98.53% 93.12% 98.36%
Weighted Voting 98.59% 93.68% 98.42%
Plural Voting 98.72% 92.72% 98.56%
MXPOST+LLU 98.79% 93.32% 98.61%
Cascaded Classifier 98.63% 93.37% 98.46%
Oracle 99.52% 96.85% 99.44%

The first combination method we consider, simple majority voting, chooses for each
word the tag that is most often predicted by the taggers. Ties are resolved randomly. This

202 G. De Pauw, G.-M. de Schryver, and P.W. Wagacha

combination method improves on all of the individual taggers, except MXPOST. Apparently,
many of the correct tags suggested by MXPOST are outvoted by the other taggers. To counter
this effect, we implemented two more refined voting methods: weighted voting and plural
voting. Interestingly, weighted voting in which the weight of each classifier’s vote is equal to
its observed accuracy on the validation set, again fails to yield a performance increase.

We also experimented with a more naive voting method, plural voting, in which we
attribute MXPOST four votes, MBT and SVMTool three votes and TnT two votes. These
values were manually chosen on the basis of their performance on the validation set. Plural
voting achieves a higher accuracy on the test set than any of the individual taggers. To our
knowledge, plural voting has not yet been attempted as a system combination technique. It
is therefore interesting to observe that this very naive combination method outperforms the
more sophisticated weighted voting method.

We previously observed that MXPOST makes more mistakes on unambiguous words than
the other taggers, but is better at handling ambiguous words. Since ambiguity information is
available before tagging, we are able to propose a combined system, where MXPOST tags
ambiguous and unknown words and a simple lexicon lookup approach handles unambiguous
words. This almost trivial combination method yields a substantial performance increase with
an overall tagging accuracy of 98.61% (MXPOST+LLU in Table 2).

A last combination method takes the output of the taggers and transforms them into
instances that can be used as training material for a machine learning algorithm, with the
gold-standard tag as the class to be predicted. The tagged validation set was used to create
a training set for a memory-based classifier which classified the instance base generated
from the test set. The output tags were then considered as the final tag proposed by the
tagger committee. Table 2 shows that the cascaded classifier is indeed able to improve on
any of the individual taggers with an overall accuracy of 98.46%. Interestingly however, this
combination method underperforms compared to the more naive combination methods.

The best system combination method (MXPOST+LLU) achieves an error reduction rate of
more than 11% compared to the best individual tagger. While this increase in accuracy is not
as dramatic compared to those observed for other languages and datasets [10], it nevertheless
establishes further proof that system combination is able to overcome the individual taggers’
bias to a significant extent. Moreover, given the upper-bound accuracy obtained by the oracle,
there is still ample room for improvement for other system combination methods, especially
for the disambiguation of unknown words.

6 Future Work and Conclusion

In this paper we presented experiments with data-driven part-of-speech taggers trained and
evaluated on the annotated Helsinki Corpus of Swahili. We selected four of the current state-
of-the-art data-driven taggers, TnT, MBT, SVMTool and MXPOST, and observed the latter
as being the most accurate tagger for this dataset. In another set of experiments, we further
improved on the performance of the individual taggers by combining them into a committee
of taggers. Surprisingly, we observed the more naive combination methods, like the novel
plural voting approach, outperform more elaborate schemes like cascaded classifiers and
weighted voting.

This paper presents the first direct comparison of data-driven taggers on this particular
data set. We are confident that significant increases in tagging accuracy can still be

Data-Driven Part-of-Speech Tagging of Kiswahili 203

obtained through various stages of algorithmic optimization and more refined system
combination methods. The results of SVMTool in particular can undoubtedly be improved
through the selection of a more appropriate kernel and a thorough validation phase.
Furthermore, the inclusion of other data-driven tagging methods such as CRF++, WPDV [10]
or Transformation-Based Tagging [16] might also improve the performance of the system
combination methods.

Future work will include learning curve experiments to determine how much data is
minimally needed to obtain optimal performance. Thorough data analysis is further needed
to investigate the way the taggers handle morphological issues in Kiswahili. Affixation is an
important indicator of word class in Kiswahili and all of the data-driven taggers used in the
experiments only cover this aspect indirectly on the level of the grapheme. Perhaps a more
rigid morphologically inspired approach to part-of-speech tagging, where morphological
analysis functions as a preprocessing step, might provide a significant performance increase.
Despite the limitations of the taggers presented in this paper, we nevertheless hope that the
results presented herein can function as a first benchmark for future research on data-driven
part-of-speech tagging of Kiswahili, and Bantu languages in general.

References

1. van Rooy, B., Pretorius, R.: A word-class tagset for Setswana. Southern African Linguistics and
Applied Language Studies 21(4) (2003) 203-222.

2. Allwood, J., Gronqvist, L., Hendrikse, A.P.: Developing a tagset and tagger for the African
languages of South Africa with special reference to Xhosa. Southern African Linguistics and
Applied Language Studies 21(4) (2003) 223-237.

3. Prinsloo, D.J., Heid, U.: Creating word class tagged corpora for Northern Sotho by linguistically
informed bootstrapping. In: Proceedings of the Conference on Lesser Used Languages & Computer
Linguistics (LULCL 2005), Bozen/Bolzano, Italy (2005 (to be published)).

4. Taljard, E., Bosch, S.E.: A comparison of approaches towards word class tagging: disjunctively
vs conjunctively written Bantu languages. In: Proceedings of the Conference on Lesser Used Lan-
guages & Computer Linguistics (LULCL 2005), Bozen/Bolzano, Italy (2005 (to be published)).

5. Pretorius, L., Bosch, S.E.: Computational aids for Zulu natural language processing. Southern
African Linguistics and Applied Language Studies 21(4) (2003) 267-282.

6. Hurskainen, A.: HCS 2004 — Helsinki Corpus of Swahili. Compilers: Institute for Asian and
African Studies (University of Helsinki) and CSC (2004).

7. Hurskainen, A.: Disambiguation of morphological analysis in Bantu languages. In: Proceedings of
the Sixteenth International Conference on Computational Linguistics (COLING-96), Copenhagen,
Denmark (1996) 568-573.

8. Brants, T.: TnT - a statistical part-of-speech tagger. In: Proceedings of the Sixth Conference on
Applied Natural Language Processing (ANLP 2000), Seattle, WA, USA (2000) 224-231.

9. Ratnaparkhi, A.: A maximum entropy model for part-of-speech tagging. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing, Somerset, NJ, USA (1996)
133-142.

10. van Halteren, H., Zavrel, J., Daelemans, W.: Improving accuracy in word class tagging through
combination of machine learning systems. Computational Linguistics 27(2) (2001) 199-230.

11. Daelemans, W., Zavrel, J., van den Bosch, A., van der Sloot, K.: MBT: Memory Based Tagger,
version 2.0, Reference Guide. ILK Research Group Technical Report Series 03-13, Tilburg (2003).

12. Wagacha, P., Manderick, B., Getao, K.: Benchmarking Support Vector Machines using StatLog
Methodology. In: Proceedings of Benelearn 2004, Machine Learning Conference of Belgium and
the Netherlands, Brussels, Belgium (2004) 185-190.

204

13.

14.

15.

16.

G. De Pauw, G.-M. de Schryver, and P.W. Wagacha

Giménez, J., Marquez, L.: SVMTool: A general POS tagger generator based on Support Vector
Machines. In: Proceedings of the 4" International Conference on Language Resources and
Evaluation (LREC 2004), Lisbon, Portugal (2004) 43-46.

Joachims, T.: Making Large-scale SVM Learning Practical. In Scholkopf, B., Burges, C., Smola,
A., eds.: Advances in Kernel Methods — Support Vector Learning. MIT Press, Boston, MA, USA
(1999) 41-56.

De Pauw, G., Daelemans, W.: The role of algorithm bias vs information source in learning
algorithms for morphosyntactic disambiguation. In: Proceedings of the Fourth Conference on
Computational Natural Language Learning (CoNLL 2000), Lisbon, Portugal (2000) 19-24.

Brill, E.: A simple rule-based part-of-speech tagger. In: Proceedings of the Third Conference on
Applied Natural Language Processing (ANLP "92), Trento, Italy (1992) 152-155.

Hand-Written and Automatically Extracted
Rules for Polish Tagger

Maciej Piasecki

Institute of Applied Informatics, Wroctaw University of Technology,
Wybrzeze Wyspianskiego 27, Wroctaw, Poland
maciej.piasecki@pwr.wroc.pl

Abstract. Stochastic approaches to tagging of Polish brought results far from being
satisfactory. However, successful combination of hand-written rules and a stochastic
approach to Czech, as well, as some initial experiments in acquisition of tagging
rules for Polish revealed potential capabilities of a rule based approach. The goals
are: to define a language of tagging constraints, to construct a set of reduction rules
for Polish and to apply Machine Learning to extraction of tagging rules. A language
of functional tagging constraints called JOSKIPI is proposed. An extension to the
C4.5 algorithm based on introducing complex JOSKIPI operators into decision trees
is presented. Construction of a preliminary hand-written tagging rules for Polish is
discussed. Finally, the results of the comparison of different versions of the tagger are
given.

1 Introduction

The statistical approach of [1] to tagging of Polish brought results far from being satisfactory.
However the accuracy of statistical tagger for Czech, another inflective language, has been
significantly improved after combination with hand-written rules [2]. Experience collected
during experiments in acquisition of tagging rules for Polish [3] on the basis of Genetic
Algorithms revealed potential capabilities of a rule based approach but showed also that the
inefficient extraction algorithm had to be changed. This work follows this path. Similarly
to [2], we want to combine hand-written rules with Machine Learning, but as in [3], we
tend to base the whole tagging process on the rules. Our claim is that rules written in
a symbolic language with high expressive power are a much better solution for tagging
inflective languages than solutions relying on stochastic models.

The first goal is to define a symbolic language for expressing fagging constraints, in the
sense similar to [4], i.e. constraints that must be preserved in all natural language expressions,
or at least often enough. Such constraints must have local character and be verifiable without
extensive parsing. But the main goal is to apply this language as a common tool for supporting
automatic extraction of rules and expressing hand-written rules. We want to be able to express
in this language both: simple constraints that are parts of automatically extracted rules and
complicated premises of hand-written rules of tags reduction. Finally, we are going to present
an algorithm for rules extraction and a preliminary set of hand-written rules for Polish.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 205-212, 2006.
(© Springer-Verlag Berlin Heidelberg

206 M. Piasecki

2 JOSKIPI Language

The proposed language of constraints has a lot in common with its direct ancestors, namely
[4,5], and [6]. The difference is in its primary application. As the intended Machine Learning
algorithm for the extraction of rules should produce highly efficient rules on the basis of
large corpus, we put the main stress on defining constraints working in a functional style.
Such constraint, used as a part of extracted rules, should take context as input, check its state
and return some information describing the state. Partial information delivered by component
constraints is combined by the logic of the extracted rule. The intended algorithm was C4.5
[7]. Moreover, this work remotely inherits some ideas from Hermjakob and its work on parser
learning [8].

A language called JOSKIPI (the acronym of a Polish name meaning ‘the language of the
description of the state in the IPI PAN Corpus’ [9]) is proposed. The core of JOSKIPI is a set
of predefined operators of the three main classes:

1. simple operators — atomic, return a set of symbolic values or strings,

2. test operators — compound, return a boolean value,

3. conditional operators — compound, include an operator and a test operator, the value of
the operator is returned on the condition that the test is fulfilled.

The work of simple operators is closely related to the structure of a token description in
the IPI PAN Corpus (further IPIC) XML format presented below:
<tok> <orth>token</orth>
<lex><base>base form;</base><ctag>tag,</ctag></lex>

<lex><base>base form,</base><ctag>tag,</ctag></lex> </tok>
Moreover, a positional tag in IPIC is a sequence of values:

The first value encodes one of the 32 grammatical classes (a more finer-grained division
than parts of speech), e.g. adjective, ad-adjectival adjective, or non-past form. The following
positions correspond to grammatical categories (12 in total), e.g. gender, aspect, or vocalicity,
appropriate for the given grammatical class. For a given class each category is determined by
position. An IPIC tag is considered to be a structure of attributes in JOSKIPL.

Simple operators allow for reading the state of a specified token. The position of the token
can be directly specified by an offset from the centre of the context, e.g. orth[1] returns
a string (a sequence of characters) — a token first to the left from the centre. The centre
of the context is always the token being currently disambiguated. A position can also be
specified by a variable', e.g. base [$P] returns a set of strings. The size of the returned set
is one if the token in the position stored in $P is non-ambiguous according to its base form.
Other simple operators return sets of symbolic values of other attributes of tags assigned to
the pointed token, e.g. grammatical class, case, number, gender etc. If there is no token in the
pointed position or the pointed token does not possess the given attribute in any of its tags, the
empty value none is returned. Names of the simple operators follow exactly the mnemonics
used in the query language of IPIC. Filtered simple operators allow for reading values from
attributes of tags fulfilling specified condition, e.g. catf1t(0,{nom,acc},{nmb}) reads

1 Only variables over positions exists in JOSKIPIL.

Hand-Written and Automatically Extracted Rules for Polish Tagger 207

the number of the token O from its tags with case values in the given set, when there are no
such tags the operator returns none .
Test operators construct compound expressions. There are five subclasses:

1. sets comparison: equal(0;,07), inter(0;,07), in(o,0;7), where o0; can be an
operator or a constant value, e.g. equal (pos[0] ,pos[2]), where pos returns a
set of grammatical classes, or in(case[1], {nom, gen, acc});

2. logical conjunctions: and , or , and not , where the last one means not or when
applied to more than one argument,

3. search: 1100k (posst, pOSend ,$Var ,test) and rlook , where positions can be
variables or constants (e.g. the begin and the end of a sentence), $Var is an obligatory
iterator, both operators look for the first token fulfilling fest, set $Var to its position and
return true, otherwise return false;

4. condition fulfilment over a sequence: only (posgs, pOSend , $Var ,test) and a similar
atleast;

5. and agreement: agrpp(pos;,posy,{mask},n) and agr with the same syn-
tax, where mask is a set of names of attributes and/or values, agrpp checks agree-
ment between a pair of tokens, while agr over a sequence, e.g. agrpp(0,
1,{pl,gnd,genl},3) checks possible agreement the two tokens: 0 and -1 on gender
but only for tags with number=pl and case=gen.

Search operators setting some variables, when used in combination with other operators,
can construct complex conditions over a large sequences of tags. The agreement operators
add also a lot to the large expressive power of JOSKIPI.

Conditional operators, of the scheme: op 7 test , combine any operator with a test
operator and return none when the test is not fulfilled, e.g.
cas[$Cs]?rlook(1,end,$Cs, not(equal(cas[$Cs],{none})))

JOSKIPI has been implemented directly in C++ in order to achieve high efficiency.
Especially, the implementation of agr had to be very careful, as in a sequence of tokens each
can have many tags and the number of possible paths of agreement across the tags is huge.
Instead of searching, the problem was considered as to be a Constraint Solving Problem.

3 Preliminary Rules

In JOSKIPI reduction rules have the following scheme:
delete(testje) # p : testqpp , Where festge; and test,p, are any test operators
and p is the priority of the rule.

The value of test,pp decides about applicability of the rule. If the rule is applicable, then
testye is evaluated for each tag of the O token i.e. the O token is presented several times to
testye as possessing only one tag. Tags for which testy.; returns true are deleted from
the O token. In order to protect against errors in IPIC (or text), if all tags are removed by a
rule, then all are restored.

The staring point for the construction of our set of rules was the work of Rudolf [6] and a
few rules in [3]. Unfortunately, Rudolf’s rules are expressed in natural language, and in this
form most of them are very imprecise and can be only guidelines. From the 17 rules presented
in [6] only one (pp. 95 in [6]), presented below, survived in its original form in tests on IPIC:

208 M. Piasecki

delete(equal(pos[0],{fin})) # 150 :
and(inter(pos[0],{fin}), equal(pos[1],{fin}))

The above rule states that an ambiguous token cannot be a verb non-past form (£in) if
followed by another non-past form. Oliva and Petkevic¢ [10] claim that this rule is universal
for all Slavic languages and our research supports this hypothesis, as it produces no errors
tested on IPIC.

However, the other variant of this rule, where an unambiguous fin precedes a token
which can be fin, have had to be refined:

delete(equal(pos[0],{fin})) # 140 :

and(inter(pos[0],{fin}), equal(pos[1],{fin}),

not(and(in(orth[2],{‘““jest’,“znaczy’’}),equal(orth[3],{*to’’})
)))

The additional constraints protect a little outdated constructions of the type fo znaczy fin
(gloss. it means fin) appearing several times in IPIC.

Inspired by [6] we tried to explore all cases of obligatory agreement in Polish and
formulated a preliminary set of tagging rules for Polish. The set is called ‘preliminary’ as
the work was time consuming, and we concentrated on very efficient and general rules first.
The number of rules completely tested is 24. The work on rules is performed according to
the following scheme:

1. An initial naive version of a rule is formulated.

2. The rule is tested on IPIC with the help of a special Rule Debugger tool.

3. Rule Debugger records positions of all cases in which a tag selected by a human was
deleted by the rule.

4. The recorded exceptions are analysed in IPIC with the help of a constructed editor called
Manufakturzysta. The errors are immediately corrected in IPIC.

5. If the rule produces some exceptions, it is refined and the process is repeated.

As we have no space for a detailed presentation of the rules, only the main groups of rules
are described (all used in tests, Sec. 5).

Separation of two non-past forms — the two members of this group have been already
presented. The other rules of this group block the occurrence of two verbs in non-past forms
even if there are one or two particle-adverbs (qub) between the two tokens. However, if we
add adverbs, we will encounter too many errors (i.e. mistakenly deleted tags).

Case after preposition — only tags agreeing in case with a preposition are left after the
preposition. This almost always working rule had to be divided into several at least. Firstly,
potential possessive pronoun jego (his) had to be treated separately. Secondly, numerals in
dates or currencies break this rule (separate rules needed). Thirdly, genitive case can always
appear as the indicator of possessive construction. And finally, adjective after preposition
needs separate complicated rule taking into account some collocations.

Token “7”/“z” as preposition — cannot be a preposition if there is no following token with
instrumental case as it is claimed in [6]. We added genitive case to the list and a collocation
Z tak.

Genitive case after numerals — in the preliminary set only a rule for indefinite numerals
like mato (little) or mnéstwo (plenty) (being adverbs in IPIC) has been formulated. A set of
rules for main numerals is in development.

Hand-Written and Automatically Extracted Rules for Polish Tagger 209

Plural number after numeral — works well for nouns except cases of names of units, but
adjectives in IPIC include ordinals which complicates the picture.

Agreement of relative pronoun “ktéry” (which/who) and noun in number and gender —
mainly works with the additional condition of the presence of ‘,’, but anyway produces some
small error rate.

4 Operator Based Learning

Large workload on manual construction of rules was predicated before we started, and from
the very beginning we wanted to extract the bulk of rules automatically. As the application of
rules should be efficient, we were looking for some simple form. Encouraged by the positive
results in [8], as the first attempt, we decided to extract rules in the form of Decision Trees
(DTs) by the C4.5 algorithm [7]. The rules of both types were applied in the reductionistic
tagger described in [11]. The tagger works in three phases. During each phase a partial
disambiguation is performed: firstly grammatical class, secondly number and gender and
thirdly case. Most of the other attributes are dependent on those four, with the exception of:
aspect in case of non-past forms of verbs (‘present tense’, third person) and accentability and
post-prepositionality in the case of 3rd person pronouns.

DTs are constructed not for the whole phases but for ambiguity classes, following [12].
An ambiguity class is a set of tokens possessing the same set of possible values of some tag
attribute or attributes, e.g. {adj fin subst} is an example of ambiguity class of the first
phase. There are 143 DTs constructed: 61 (1st phase), 48, and 34. DTs encode from several
to many thousands of rules.

The general idea for encoding more sophisticated rules by DTs is that each node of DT
corresponds to the application of some JOSKIPI operator. During learning all operators of DT
are applied in advance for example tokens and the returned values are stored as sequences.
The sequences are next passed to the implementation of C4.5 as learning examples. Created
DTs encodes identifiers of operators in their nodes. During tagging our implementation of
DT while is entering some node requests from the environment application of the appropriate
operator to the current context. After the value is returned, our DT compares the returned
value with values assigned to the branches leaving the node. One of the branches is chosen
and DT traverses to the next node corresponding to the next operator. The important
limitation of this mechanism is that operators in DTs work independently. A highly expressive
mechanism of joining by position variables is not avaible. But the operator encoded in the
nodes can be of any complexity.

Each DT is specified by a JOSKIPI expression called a pattern:

ambiguity class specification # a sequence of operators,

where the specification of an ambiguity class is written as a set of mnemonics of possible
values. The backbone of each DT is a set of simple operators called a standard vector, e.g.
for DTs of the first phase the standard vector includes:

posl 31...pos[1] pos[2] cas[3]...cas[2]
gnd[3]...gnd[2] nmb[3]...nmb[2]

We have been extending patterns with more complex operators for each DT individually.
Firstly by manual inspection of members of the given ambiguity class in IPIC, we tried to

210 M. Piasecki

identify some distinguishing features, e.g. equal (orth[0],{‘*kiedy’’}) in the pattern
for {conj qub} points to the behaviour of the specific word, for which DT should build
some specific rules. Secondly, we tried to formulate some relaxed linguistic constraints
concerning agreement or some common word order, e.g. whether there is a particle sig
somewhere to the left and between it and the centre there are only tokens of some specified
classes. Such constraints were tested by building pseudo-rules and running them by Rule
Debugger on IPIC and next analysing the exceptions. Finally, the statistics of a set of learning
examples generated by some preliminary version of a pattern was analysed. We could see
how promising are the different versions of operators for C4.5. For example, we formulated
an conditional operator checking whether two sequences of tokens agreeing on case, number
and gender that are joined by a conjunction have a common case value. Mostly the operator
returns none, but in some situations its boolean values are nicely correlated with a choice
of some class. Unfortunately, for C4.5 this happens to rarely to include this operator in the
given DT.

An example of a more complex operator (but a shorter one) is an operator looking for an
adjective somewhere to the right which agrees with the 0 token:

tAdjPRight
or(and(inter(pos[1],adj,ppas,pact),
agrpp(0,1,cas,gnd,nmb,3)),

and(rlook(2,end,$Adj, inter (pos[$Adj],{adj,ppas,pact})),
agrpp(0,$Adj,{cas,gnd,nmb},3),

only(1,$ 1Adj,$Q,inter(pos[$Q],{adv,qubl})))

)

There are 11 operators of similar complexity applied in DTs of the first phase (grammatical
class). The most sophisticated, but extensively used by C4.5 is the operator testing whether
the O token can be a potential subject of some verb in the context. DTs of the second phase
(number and gender) utilise several simpler operators and 8 complex. DTs of the third phase
(case) use 10 complex operators, and a lot of simpler ones. Obviously, for each phase a
version of a standard vector is defined.

5 Results and Conclusions

The tagger using the rules and DTs based on JOSKIPI operators achieved the accuracy of
92.55% (84.75% for ambiguos words). However, it must be emphasised that in addition to
the simplifications disscussed in Sec. 4, the tagger does not distinguish nouns from gerunds
on the other base than number, gender and case. All tokens noun/gerund ambiguous, if not
disambiguated on the basis of the three attributes, are assigned two tags at the end. The
accuracy of the tagger has been evaluated in ten-fold test on the learning part IPIC (LIPIC)
including 885 669 tokens. All cases in which the set of tags assigned by the tagger has a
non-empty intersection with the set assigned by a human were counted as proper decisions.
In order to analyse what is the influence of hand-written rules and of the use of sophisticated
operators in DTs, we prepared and tested 4 different versions of the tagger (Tab. 1)%:

2 The results reported earlier were increased due to a programmer error in the test.

Hand-Written and Automatically Extracted Rules for Polish Tagger 211

— a full tagger (T): hand-written rules and all types of operators in DTs,

— a tagger without hand-written rules (T-HR) but still DT are constructed with the use of
complex operators,

— a tagger without hand-written rules and complex operators in DTs (T-HR-C) in which
DTs are constructed on the basis of standard vectors plus some simple operators checking
existence of some particular words in the fixed positions,

— and a tagger applying hand-written rules, but not using complex operators in DTs
(T+HR-C).

Table 1. Comparison of the accuracy [%] of different versions of the tagger

tagger all tokens all max. all min. ambiguous amb. max. amb. min.

T 92.55 93.04 91.98 84.75 86.12 83.4
T-HR 91.60 92.03 90.97 82.70 83.27 81.94
T-HR-C 91.43 91.86 90.76 82.54 83.16 81.38
T+HR-C 91.75 91.94 9148 82.8 83.31 82.39

In Tab. 1 we can observe, that switching off both: the hand-written rules and the complex
operators decreases significantly the accuracy. The mutual relation between both changes
is less clear, as the decrease of accuracy in the case of T-HR-C is marginal in comparison
to T-HR. But the tagger T+HR-C shows that the lack of the complex operators in DTs is
as important, as the lack of the hand-written rules! The small difference between T-HR
and T-HR-C can be the result of construction by DTs some general rules with the help of
the complex operators. Such rules can express some important linguistic constraints. The
complex operators are often used in the top parts of DTs.

The preliminary set of rules is very small, but very significant, see the result of T-HR.
The rules when applied to LIPIC activated for 76 543 tokens and removed 187 895 tags. The
tagger leaves at average 1.03 tags per token (initially 2.87). The estimated speed of the full
tagger is about 4000 tokens per second on the PC 512 MB RAM 2.41 GHz.

The accuracy is lower than [2], but it seems to be significantly improved in comparison to
the previous Polish taggers [1,3]. Further work must be done on enlarging the set of hand-
written rules. We plan also to look for an algorithm of extraction of more expressive rules
based on JOSKIPI than DTs.

Acknowledgement. This work was financed by the Ministry of Education and Science
projects No 3 T11C 003 28 and No 3 T11C 018 29.

References

1. Lukasz Debowski: Trigram morphosyntactic tagger for Polish. In Mieczystaw A. Ktopotek,
Wierzchon, S.T., Trojanowski, K., eds.: Proceedings of Intelligent Information Processing and Web
Mining. Proceedings of the International IIS:IIPWM’04 Conference held in Zakopane, Poland,

May 17-20, 2004. Springer Verlag (2004) 409—413.
2. Haji¢, J., Krbec, P., Kvéton, P, Oliva, K., Petkevi¢, V.: Serial combination rules and statistics:

A case study in czech tagging. In: Proceedings of The 39" Annual Meeting of ACL, Morgan
Kaufmann Publishers (2001) 260-267.

212

10.

11.
12.

13.

14.

M. Piasecki

. Piasecki, M., Gawel, B.: A rule-based tagger for Polish based on Genetic Algorithm. [13].
. Karlsson, F,, Voutilainen, A., Heikkil a, J., Anttila, A., eds.: Constraint Grammar: A Language-

Independent System for Parsing Unrestricted Text. Mouton de Gruyter, Berlin and New York
(1995).

. Kvétoi, P.: Language for grammatical rules. Report TR-2003-17, UFAL/CKL MFF UK, Prague

(2003).

. Rudolf, M.: Metody automatycznej analizy korpusu tekstow polskich. Uniwersytet Warszawski,

Wydz. Polonistyki (2004).

. Quinlan, J.: C4.5: Programms for Machine Learning. Morgan Kaufmann (1993).
. Hermjakob, U.: Learning Parse and Translation Decisions From Examples With Rich Context.

PhD thesis, University of Texas, Austin (1997).

. Przepidrkowski, A.: The IPI PAN Corpus Preliminary Version. Institute of Computer Science PAS

(2004).

Oliva, K., Petkevi¢, V.: Morphological and syntactic tagging of slavonic languages. Lecture Notes
for Empirical Linguistics and Natural Language, Fall School, Sozopol (2002).

Piasecki, M., Godlewski, G.: Reductionistic, Tree and Rule Based Tagger for Polish. [14].
Mirquez, L.: Part-of-speech Tagging: A Machine Learning Approach based on Decision Trees.
PhD thesis, Universitat Politécnica de Catalunya (1999).

Mieczystaw A. Ktopotek, Wierzchon, S.T., Trojanowski, K., eds.: Proceedings of Intelligent
Information Processing and Web Mining, 2005. Advances in Soft Computing. Springer, Berlin
(20095).

Mieczystaw A. Ktopotek, Wierzchon, S.T., Trojanowski, K., eds.: Proceedings of Intelligent
Information Processing and Web Mining 2006. Advances in Soft Computing. Springer, Berlin
(2006).

Effective Architecture of the Polish Tagger

Maciej Piasecki and Grzegorz Godlewski

Institute of Applied Informatics, Wroctaw University of Technology,
Wybrzeze Wyspianskiego 27, Wroctaw, Poland
maciej.piasecki@pwr.wroc.pl

Abstract. The large tagset of the IPI PAN Corpus of Polish and the limited size of
the learning corpus make construction of a tagger especially demanding. The goal of
this work is to decompose the overall process of tagging of Polish into subproblems
of partial disambiguation. Moreover, an architecture of a tagger facilitating this
decomposition is proposed. The proposed architecture enables easy integration of
hand-written tagging rules with the rest of the tagger. The architecture is open
for different types of classifiers. A complete tagger for Polish called TaKIPI is
also presented. Its configuration, the achieved results (92.55% of accuracy for all
tokens, 84.75% for ambiguous tokens in ten-fold test), and considered variants of the
architecture are discussed, too.

1 Introduction

If a tagset is very large and a learning corpus is quite small, then the problem of tagging
becomes very demanding. This is the case of Polish and the largest corpus of Polish, namely
IPI PAN Corpus (henceforth IPIC) [1]. In IPIC, there are 4179 theoretically possible tags,
but only 1642 of them occur in the manually disambiguated part of 885 669 tokens. Probably
it was the data spareness, which was the main cause of low accuracy of statistical tagger
of Dgbowski [2] constructed on the basis of IPIC. However, a positional IPIC tag is a
sequence of symbols describing different morpho-syntactic features of a token. Thus, if a
tag is a sequence, then we can assume that subsequences of elements of tags appear in
IPIC with greater frequency than the whole tags. Starting with this assumption, the goal
of this work is to decompose the overall process of tagging of Polish into subproblems of
partial disambiguation. Next, we want to define an architecture of a tagger facilitating this
decomposition.

Moreover, as it was shown in [3], [4] and [5], the introduction of hand-written rules can
improve accuracy of a tagger for inflective languages like Czech or Polish. That is why, we
did our best to make the proposed architecture open for integration of hand-written tagging
rules with the rest of a tagger.

2 Task

In the IPIC XML format every tag is written in the following form:

<lex><base>base form</base>
<ctag>gram class:cat valj:...:cat vali</ctag></lex>,

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 213-220, 2006.
(© Springer-Verlag Berlin Heidelberg

214 M. Piasecki and G. Godlewski

where gram classis a grammatical class', e. g. noun, main numeral or impersonal, cat_val;
is a value of some grammatical category, e.g. gender, case, number etc., k € (0, 12) is the
number of categories for the given class.

In our approach, a IPIC tag is represented as a structure: (class = name,
cat; = value, ..., caty = value). All class names and category values are encoded as
binary numbers with one bit per name/value, what makes operations on structures more
efficient. We will call the elements of this structure tag attributes, or simply attributes, where
it should not cause confusion.

According to the assumed representation of tags, the morfo-syntactic analyser Morfeusz
[6] assigns to each token a list of structures, i.e. tags. In this paper, we call these structures
simply fags. The overall task of the tagger is to choose the proper ones for each token, ideally
one. We want to decompose this task into several steps. During the subsequent steps the
subsequent groups of attributes are disambiguated, i.e. the values for them are chosen from
the possible ones. The possible values are those that are present in the set of tags assigned to
the given token by Morfeusz.

3 Architecture

The architecture of our tagger, called TaKIPI (Polish acronym for The Tagger of IPIC) is
presented in Fig. 1.

The process starts with morpho-syntactic processing of input text (Reader). Division into
tokens (tokenisation) and assignment of tags is done mainly by Morfeusz, but previously
all strings between two spaces are presented to Abbreviation Recogniser, implemented as a
transducer. If a string is recognised, then its full description, potentially ambiguous i.e. a set
of tags, is taken from the dictionary of abbreviations, and the token is not further analysed by
Morfeusz.

Pre-sentencer, a simple set of rules derived from [2], recognises boundaries of sentences,
but in the case of a recognised dot-ended abbreviation, Pre-sentencer postpones making
decision. The final decision is made by Sentencer on the basis of the results of tagging,
e.g. in this phase it is already decided whether “im.” is>: “im:ppron3 ‘’:interp”, (i.e.
3rd person pronoun and punctuation) or the abbreviation of a form of imig (name).

The rest of TaKIPI works on chunks of the input text roughly corresponding to the
sentences’ defined by Pre-sentencer. This main loop is not presented in Fig. 1 (for the sake
of clarity). If an occurrence of an abbreviation postpones the final decision, then a block of
several sentences is further processed in one iteration.

Following the approach of [3] we apply hand-written rules (see Sec. 4) before application
of other classifiers. The rules can delete some tags.

Initial probabilities for tags are calculated by Unigram Classifier on the basis of
frequencies of: (token,tag), stored in the unigram dictionary. The probabilities for the pairs
not observed in the learning data, but possible according to the morphological analysis, are

' One of 32 possible in IPIC, grammatical classes express more fine grained division than parts of
speech.

2 In the examples, we present only selected attributes of tags, mostly only the class.

3 This is done due to the assumptions underlying the manual disambiguation.

Effective Architecture of the Polish Tagger 215

Rules Filter

Unigram Classifier ‘

4—»{ Abbreaviations Recogniser ‘

abbreaviation dictionary

layers masks

desision trees for layers

handmade rules

Classifiers Manager

I

I

I

|

}

v |
Normalisation ‘ |
|

|

|

|

I

I

I

|

DTs
layer;

DTs
layer,

‘ v
‘ Package Cut-off ‘
|

Annotator

v

Sentencer
A 4
Writer

tagged sentence

Fig. 1. The architecture of the tagger

| |
‘ Token Annotator ‘
| |
\ |

calculated by smoothing (inspired by [7], where wy is a token, #; one of its possible tags, and
K is the number of possible tags):
pltifw) = AR A eh = (K — 1)/K)
freq(wy) + LK

The core of the tagging process is divided in our architecture into several subsequent
phases, corresponding to serial combination of [3]. During each phase some tags can
be deleted according to the performed partial disambiguation. The set of all possible tag
attributes is divided into several layers. Attributes of the same layer are disambiguated during
the same phase of tagging. The definitions of layers and their order are stored in the sequence
of masks of layers.

During each phase, tags are distinguished only on the basis of values of attributes of the
corresponding layer. Moreover, a token can be ambiguous in some layers, and non-ambiguous
in the others. A subset of tags of the given token such that all its members have identical
values of attributes of the given layer is called a package of tags. During each phase, the
tagger choose the best package according to the current probabilities of tags, and eliminates
all packages except the best one — Package Cutoff.

Each phase of tagging begins with subsequent application of classifiers to each token in
the sentence. More than one classifier can be applied to any token, as it often happens. Only
tokens that are ambiguous with respect to the current layer are processed. The architecture is

216 M. Piasecki and G. Godlewski

open for many types of classifiers. The only constraint is that a classifier should update the
probabilities of tags. The way of calculating probabilities is free.

In the present version of TaKIPI there are three layers: grammatical class, number and
gender, and case.

The other grammatical categories of IPIC are mostly dependent on the above. The only
exceptions are:

— aspect in the case of non-past forms of verbs in present tense and third person, that are
described by Morfeusz as being ambiguous in aspect (in each case the base form is the
same), e.g. razi (dazzles, or offends), pozostaje (stays, remains), napotyka (encounters),

— accentability and post-prepositionality in the case of personal pronouns in third per-
son, e.g. on (he) possesing four different combinations of values {accented, non-
accented} X { post-prepositional, non-post-prepositional }.

As the differences in the above cases are very subtle and are based mainly on semantics,
we do not disambiguated the attributes in these cases.

Another significant simplification assumed in TaKIPI is that we do not try to distinguish
substantives (nouns, in IPIC: subst) from gerunds (IPIC: ger) on the other basis than
number, gender and case. All tokens subst/ger ambiguous, if not disambiguated on the
basis of the three attributes, are assigned two tags at the end. Except the cases described
above, TaKIPI returns one tag per one token. Detailed statistics are presented in Sec. 6.

In the present version TaKIPI only classifiers based on the algorithm of Induction of
Decision Trees (DT) called C4.5r8 [8], where “r8” is the 8th code release [9], are applied.
However, the DT classifiers have been converted to classifiers returning probability of
positive decision — selected value for some attribute, and negative decision — smoothed
non-zero probability of other values. In the application of DT to tagging and their use as
probabilistic classifiers we follow the main line of [7].

For each leaf of DT, the probability of its decision is calculated on the basis of the number
of examples attached to this leaf during tree construction. The probability is smoothed
according to the algorithm presented in [7]: (¢ is decision, 1| X — examples with the decision
t in the given leaf, | X| — all examples in the given DT, K — the number of possible
decisions in the given DT):

Sl X) + 2

X)) = ,
PUXD) =0 x4+ 2K

where A = (K — 1)/K 2)

As in [7], instead of building one big classifier for a phase, we decided to decompose
the problem further into the classes of ambiguity [7]. Each class corresponds to one of
many possible combinations of values of layer attributes, e.g. there is only one attribute
in the first layer, namely grammatical class, and different classes of ambiguity on the first
layer are different combinations of grammatical classes observed in tokens of the learning
data. Examples of classes of ambiguity are: {adj, subst},{adj, conj, qub, subst}
(where qub = particle-adverb), or {sg, ml, m2, m3} (of the second layer: number
singular, but all male genders possible).

The number of examples for different classes of ambiguity varies in large extent. For some
classes, e.g. {gen, acc} (the third layer of case) there are thousands of examples, for some
only few, e.g. {acc, voc}. Following [7], we apply a kind of a backing off technique, in

Effective Architecture of the Polish Tagger 217

which an inheritance relation between ambiguity classes is defined. The inheritance relation
is simply a set inclusion relation between sets of values defining ambiguity classes, e.g.
the ‘superclass’ {adj fin subst} (where £in = verb non-past form) is in inheritance
relation with {adj fin}, {adj subst}, etc. Construction of DT for a particular ambiguity
class supports accurate choice of components of learning vectors for DT. We deliver to the
given DT information specific for the given linguistic problem, e.g. concerning the distinction
between nominative and genitive case. Typically, ‘superclasses’ have fewer examples than its
‘subclasseses’, but the merged class is the sum of both. From the linguistic point of view, the
choice of a learning vector for merged classes is not so essential to the problem, but still there
are often some common morpho-syntactic features of the examples belonging to the merged
classes.

Thus, TaKIPI works on the basis of a collection of DTs divided into groups assigned to
layers. Classifiers Manager selects the proper set of DTs for each token which is ambiguous
according to the current layer. Each DT multiplies the probabilities of tags in the token with
the probabilities of a decision. Next, after processing of all tokens, only the package with
the best maximal probability is left by Package Cut-off. At the end of the loop, probabilities
in each token (only the winning package) are normalised. The process is repeated for each
layer.

4 Learning

For the description of hand-written rules and learning examples the same language has been
used, namely JOSKIPI [10], similar in its expressive power to [11] and [12]. The applied
hand-written rules come from [10], as well.

As already noted, the manually disambiguated part of IPIC (further called Learning IPIC,
or LIPIC) consists of only 885 669 tokens, including punctuation and 11 576 tokens unknown
to Morfeusz. On the basis of an analysis of a part of LIPIC of about 655 000 tokens, we
identified all possible ambiguity classes for all layers. We selected some ambiguity classes,
called supported classes, that are sufficiently supported by examples (a heuristic criterion
of having size about 100 examples) or are necessary according to the inheritance structure,
i.e. the lack of linguistically reasonable superclass. Sets of learning examples are generated
only for supported classes, but according to the inheritance hierarchy each token belonging
to one of the non-supported classes is the source of learning examples added to the sets for
its superclasses. We tested several depths of inheritance finally choosing the depth equal to 0
(see Sec.5) as giving the best results.

A learning example is a sequence of values produced by a sequence of operators defined in
JOSKIPI for the given ambiguity class. Operators are functions taking the state of the context
of some token and returning a value. There are three main classes of operators constructed
from JOSKIPI primitives [10]:

1. simple operators — read some tag attribute and return a set of values (singletons for
non-ambiguous attributes),

2. test operators — evaluate some logical condition and return a boolean value, a string —
some token, or a set of strings — (ambiguous) base form;

3. conditional operators — an operator plus a test operator, return the empty value when
the test is not fulfilled, otherwise the value of the operator.

218 M. Piasecki and G. Godlewski

Simple operators can read any attribute of any token. The token can be either specified
by a distance from the centre or found by JOSKIPI operators 11ook and rlook according
to some logical test. A test can be a simple equality test, a relation between sets of values, a
test of a possibility of morfo-syntactic agreement or fulfilment of some constructed complex
condition in some part of the context (the test can pertain to any part of a sentence). A
complex condition can utilise a mechanism of variables over positions of tokens. An example
of a complex operator used in learning can be a test checking whether there is some potential
subject of a sentence somewhere to the left of the token being disambiguated. Operators do
not cross the sentence boundaries. It is worth to notice that similar operators are used as
premises of hand-written rules.

Generation of learning examples for the first layer is done in one go for all ambiguity
classes of this layer by sequentially setting the centre of the context in subsequent ambiguous
tokens and applying operators of the appropriate ambiguity classes. For the next layers the
process is identical, except the initial preparation of the learning data. During tagging, DTs
(or generally classifiers) of the second layer are applied to tokens partially disambiguated.
During learning, we have to create a similar situation. This is achieved by learning partial
taggers for subsequences of layers up till the ‘full tagger’. Before preparation of learning
examples for the k layer, a partial tagger for k — 1 layers is applied and the attributes of all
k — 1 layers are disambiguated. This gradual learning appeared to be superior in comparison
to an ‘ideal’ disambiguation based on manual disambiguation of LIPIC.

Construction of DTs by C4.5 algorithm is completely independent from generation of the
examples, and is done by application of the C4.5 software [9].

5 Variations and Parameters

We tested several values of pruning confidence level for DTs [9] achieving the best results
with an individual value for each DT. The range is from almost 100% (no prunning) to less
than 1% (many branches pruned). A sequence of operators for each DT has been chosen on
the basis of a heuristic analysis of results.

Many important variants of tagger’s architecture were tested. The level of inheritance
between ambiguity classes varied from 2 to 0. It expresses how many levels we are going
up the hierarchy looking for superclasses matching a given token. The value 0 means that
only the classes on the first matching level are taken for the given token (i.e. the exact class
if exist, otherwise all in the minimal distance in the hierarchy). Values greater than 0 enlarge
the set of superclasses applied. The value 1 during learning and tagging resulted in the best
accuracy—during tagging each token is classified by DTs learned from similar contexts.

We tried to apply a mechanism of iterative improvement. Learning sequence of operators
were extended with additional operators reading the attributes of winning tags in the context.
DTs were applied several times during one phase in several iterations. In this version, the
cut-off and the normalisation were applied after each iteration. But the results were lower.
Probably, the number of different combinations of values increased and situations in the
context did match the learned examples too often.

A similar problem appeared when we tried to iterate across different permutations of
packages of tags generated with respect to the given layer. Generation of permutations was
repeated in one phase several times with cut-off and normalisation after each iteration of all

Effective Architecture of the Polish Tagger 219

permutations. However, the achieved results were significantly lower. Once again, traversing
of DT stopped very often inside the tree, not reaching any leaf. In that case, it is very hard to
successfully estimate the probability.
We also tested the repeated application of Unigram Classifier before each phase, but it
appeared, that it is much better to keep the probabilities established in the previous phase.
Finally, the version without application of the hand-written rules was tested, but the
accuracy was worse by 0.95% (2.05% for ambiguous tokens).

6 Evaluation and Conclusions

The accuracy of TaKIPI has been evaluated in ten-fold test on LIPIC. In LIPIC some tokens
are assigned more than one tag when human could not make a decision on the basis of
sentential context. As our tagger tends to assign one tag per token, except the cases described
in Sec. 3, we counted all cases in which the set of tags assigned by the tagger has a non-empty
intersection with the set assigned by a human as proper decisions. However, the tagger leaves
on average 1.03 tags per token (initially 2.87). TaKIPI processes about 4000 words per sec.
on PC, 512 MB RAM, 2.41GHz. The results are presented in Tab. 14,

Table 1. Accuracy [%] of the tagger evaluated on the IPI PAN Corpus

layer all tokens all max. all min. ambiguous amb. max. amb. min.
all 92.55 93.04 91.98 84.75 86.12 83.40
1 (gram. class ~ POS) 98.80 98.83 98.71 91.64 91.85 91.04
2 (1 + nmb, gnd) 95.90 96.09 96.61 87.40 87.86 87.06

Comparison with 90.4% reported by Dgbowski [2] is difficult, as his tagger always leaves
the best one tag, and was tested on a very small part of LIPIC. However, the accuracy of
TaKIPI seems to be better. Also some informal manual comparison of the results of both
taggers revealed better accuracy of TaKIPI. More important is that in many practical applica-
tions, e.g. in Machine Translation, the worst errors are the ones made in grammatical classes
(POS). With respect to 31 classes recognised by TaKIPI the average error of 8.36% in relation
to ambiguous tokens can be acceptable in some applications. Moreover, the open architecture
defines many possibilities for future improvements.

Acknowledgement. This work was financed by the Ministry of Education and Science
projects No 3 T11E 005 28 and No 3 T11C 003 28.

References

1. Przepidrkowski, A.: The IPI PAN Corpus Preliminary Version. Institute of Computer Science PAS
(2004).

2. Debowski L.: Trigram morphosyntactic tagger for Polish. In Ktopotek, M.A., Wierzchon, S.T.,
Trojanowski, K., eds.: Intelligent Information Processing and Web Mining. Proceedings of the
International IIS:IIPWM’04 Conference, Zakopane, Poland. Springer Verlag (2004) 409—413.

4 The results reported earlier were increased due to a programmer error in the test.

220

10.
11.

12.

13.

14.

M. Piasecki and G. Godlewski

. Hajic, J., Krbec, P., Kvéton, P., Oliva, K., Petkevi¢, V.: Serial combination rules and statistics:

A case study in czech tagging. In: Proceedings of The 39" Annual Meeting of ACL, Morgan
Kaufmann Publishers (2001) 260-267.

. Rudolf M.: Metody automatycznej analizy korpusu tekstéw polskich: pozyskiwanie, wzbogacanie

i przetwarzanie informacji lingwistycznych. PhD thesis, Uniwersytet Warszawski (2003).

. Piasecki, M., Gawel, B.: A rule-based tagger for Polish based on Genetic Algorithm. [13].
. Woliriski, M.: Morfeusz — a practical tool for the morphological analysis of polish. [14].
. Mirquez, L.: Part-of-speech Tagging: A Machine Learning Approach based on Decision Trees.

PhD thesis, Universitat Politécnica de Catalunya (1999).

. Quinlan, J.: C4.5: Programms for Machine Learning. Morgan Kaufmann, San Mateo (1993).
. Quinlan, R.: Ross Quinlan’s Personal Homepage.

http://wuw.rulequest.com/Personal/c4.5r8.tar.gz (2005).

Piasecki, M., Godlewski, G.: Reductionistic, Tree and Rule Based Tagger for Polish. [14].
Karlsson, F.,, Voutilainen, A., Heikkil a, J., Anttila, A., eds.: Constraint Grammar: A Language-
Independent System for Parsing Unrestricted Text. Mouton de Gruyter, Berlin and New York
(1995).

Kvétoti, P.: Language for grammatical rules. Report TR-2003-17, UFAL/CKL MFF UK, Prague
(2003).

Ktopotek, M.A., Wierzchon, S.T., Trojanowski, K., eds.: Intelligent Information Processing and
Web Mining — Proceedings of the International IIS: IIPWM’05 Conference, Gadansk, Poland.
Advances in Soft Computing. Springer, Berlin (2005).

Ktopotek, M.A., Wierzchon, S.T., Trojanowski, K., eds.: Intelligent Information Processing and
Web Mining — Proceedings of the International IIS: IIPWM’06 Conference, Zakopane, Poland.
Advances in Soft Computing. Springer, Berlin (2006).

Synthesis of Czech Sentences from Tectogrammatical Trees*

Jan Pta¢ek and Zdendk Zabokrtsky

Institute of Formal and Applied Linguistics, Charles University
Malostranské namésti 25, 118 00 Prague, Czech Republic
{ptacek, zabokrtsky}Qufal.mff.cuni.cz

Abstract. In this paper we deal with a new rule-based approach to the Natural
Language Generation problem. The presented system synthesizes Czech sentences
from Czech tectogrammatical trees supplied by the Prague Dependency Treebank 2.0
(PDT 2.0). Linguistically relevant phenomena including valency, diathesis, conden-
sation, agreement, word order, punctuation and vocalization have been studied and
implemented in Perl using software tools shipped with PDT 2.0. BLEU score metric
is used for the evaluation of the generated sentences.

1 Introduction

Natural Language Generation (NLG) is a sub-domain of Computational Linguistics; its
aim is studying and simulating the production of written (or spoken) discourse. Usually
the discourse is generated from a more abstract, semantically oriented data structure. The
most prominent application of NLG is probably transfer-based machine translation, which
decomposes the translation process into three steps: (1) analysis of the source-language text
to the semantic level, maximally unified for all languages, (2) transfer (arrangements of the
remaining language specific components of the semantic representation towards the target
language), (3) text synthesis on the target-language side (this approach is often visualized
as the well-known machine translation pyramid, with hypothetical interlingua on the very
top; NLG then corresponds to the right edge of the pyramid). The task of NLG is relevant
also for dialog systems, systems for text summarizing, systems for generating technical
documentation etc.

In this paper, the NLG task is formulated as follows: given a Czech tectogrammatical tree
(as introduced in Functional Generative Description, [1], and recently elaborated in more
detail within the PDT 2.0 project!*?), generate a Czech sentence the meaning of which
corresponds to the content of the input tree. Not surprisingly, the presented research is
motivated by the idea of transfer-based machine translation with the usage of tectogrammatics
as the highest abstract representation.

In the PDT 2.0 annotation scenario, three layers of annotation are added to Czech
sentences: (1) morphological layer (m-layer), on which each token is lemmatized and
POS-tagged, (2) analytical layer (a-layer), on which a sentence is represented as a rooted

* The research has been carried out under projects 1IET101120503 and 1ET201120505.

I http://ufal .mff.cuni.cz/pdt2.0/

2 In the context of PDT 2.0, sentence synthesis can be viewed as a process inverse to treebank
annotation.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 221-228, 2006.
(© Springer-Verlag Berlin Heidelberg

222 J. Ptacek and Z. Zabokrtsk)’/

PRED

predejit [to prevent]
jv
o

presto [still] uvedeni [stating] #Gen nedorozumeéni [misunderstanding]
PREC MEANS ACT PAT ™
n.denot.neg n.denot.neg
o]
Ihtta [period] #Gen smlouva [contract] Cetny [frequent] a[and]
PAT ACT LOC RSTR CONJ
n.denot n.denot adj.denot

objevit_se [to arise] mrzet [to be sorry]
RSTR RSTR
v v

ktery [which] #Oblfm ted [now] ktery [which] #PersPron

ACT LOC TWHEN PAT ACT

n.pron.indef adv.pron.def n.pron.indef n.pron.def.pers

Fig. 1. Simplified t-tree fragment corresponding to the sentence ‘Presto uvedenim lhuty ve smlouvé by
se bylo predeslo cetnym nedorozuménim, kterd se nyni objevila a kterd nds mrzi.’ (But still, stating the
period in the contract would prevent frequent misunderstandings which have now arisen and which we
are sorry about.)

ordered tree with labeled nodes and edges corresponding to the surface-syntactic relations;
one a-layer node corresponds to exactly one m-layer token, (3) tectogrammatical layer (t-
layer), on which the sentence is represented as a deep-syntactic dependency tree structure
(t-tree) built of nodes and edges (see Figure 1). T-layer nodes represent auto-semantic
words (including pronouns and numerals) while functional words such as prepositions,
subordinating conjunctions and auxiliary verbs have no nodes of their own in the tree. Each
tectogrammatical node is a complex data structure — it can be viewed as a set of attribute-
value pairs, or even as a typed feature structure. Word forms occurring in the original
surface expression are substituted with their t-lemmas. Only semantically indispensable
morphological categories (called grammatemes) are stored in the nodes (such as number for
nouns, or degree of comparison for adjectives), but not the categories imposed by government
(such as case for nouns) or agreement (congruent categories such as person for verbs or
gender for adjectives). Each edge in the t-tree is labeled with a functor representing the deep-
syntactic dependency relation. Coreference and topic-focus articulations are annotated in t-
trees as well. See [2] for a detailed description of the t-layer.

The pre-release version of the PDT 2.0 data consists of 7,129 manually annotated textual
documents, containing altogether 116,065 sentences with 1,960,657 tokens (word forms and
punctuation marks). The t-layer annotation is available for 44 % of the whole data (3,168
documents, 49,442 sentences).

2 Task Decomposition

Unlike stochastic ’end-to-end’ solutions, rule-based approach, which we adhere to in this
paper, requires careful decomposition of the task (due to the very complex nature of the
task, a monolithic implementation could hardly be maintainable). The decomposition was

Synthesis of Czech Sentences from Tectogrammatical Trees 223

not trivial to find, because many linguistic phenomena are to be considered and some of them
may interfere with others; the presented solution results from several months of experiments
and a few re-implementations.

In our system, the input tectogrammatical tree is gradually changing — in each step, new
node attributes and/or new nodes are added. Step by step, the structure becomes (in some
aspects) more and more similar to a-layer tree. After the last step, the resulting sentence
is obtained simply by concatenating word forms which are already filled in the individual
nodes, the ordering of which is also already specified.

A simplified data-flow diagram corresponding to the generating procedure is displayed in
Figure 2. All the main phases of the generating procedure will be outlined in the following
subsections.

2.1 Formeme Selection, Diatheses, Derivations

In this phase, the input tree is traversed in the depth-first fashion, and so called formeme is
specified for each node. Under this term we understand a set of constraints on how the given
node can be expressed on the surface (i.e., what morphosyntactic form is used). Possible
values are for instance simple case gen (genitive), prepositional case pod+7 (preposition pod
and instrumental), v-inf (infinitive verb),? Ze+v-fin (subordinating clause introduced with
subordinating conjunction Ze), attr (syntactic adjective), etc.

Several types of information are used when deriving the value of the new formeme
attribute. At first, the valency lexicon® is consulted: if the governing node of the current
node has a valency frame, and the valency frame specifies constraints on the surface form for
the functor of the current node, then these constraints imply the set of possible formemes. In
case of verbs, it is also necessary to specify which diathesis should be used (active, passive,
reflexive passive etc.; depending on the type of diathesis, the valency frame from the lexicon
undergoes certain transformations). If the governing node does not have a valency frame, then
the formeme default for the functor of the current node (and subfunctor, which specifies the
type of the dependency relations in more detail) is used. For instance, the default formeme
for the functor ACMP (accompaniment) and subfunctor basic is s+7 (with), whereas for
ACMP . wout it is bez+2 (without).

It should be noted that the formeme constraints depend also on the possible word-forming
derivations applicable on the current node. For instance, the functor APP (appurtenance) can
be typically expressed by formemes gen and attr, but in some cases only the former one is
possible (some Czech nouns do not form derived possessive adjectives).

2.2 Propagating Values of Congruent Categories

In Czech, which is a highly inflectional language, several types of dependencies are
manifested by agreement of morphological categories (agreement in gender, number, and

3t s important to distinguish between infinitive as a formeme and infinitive as a surface-
morphological category. The latter one can occur e.g. in compound future tense, the formeme of
which is not infinitive.

4 There is the valency lexicon PDT-VALLEX [3] associated with PDT 2.0. On the t-layer of the
annotated data, all semantic verbs and some semantic nouns and adjectives are equipped with a
reference to a valency frame in PDT-VALLEX, which was used in the given sentence.

224

—

. Ptacek and Z. Zabokrtsky

Valency Lexicon || Derivation Rules
(xml) (plain text)

Formemes create.
T-TREE |»> o+ Agreement Compounds Prepositions
Derivation Conjuctions,
Conjugation Word Order

Declination
Rules for Numerals Vocalization Rules

Morphology Tools
(perl) (plain text) (xml)

Fig. 2. Data-flow diagram representing the process of sentence synthesis

> | SENTENCE

case between a noun and its adjectival attribute, agreement in number, gender, and person
between a finite verb and its subject, agreement in number and gender between relative
pronoun in a relative clause and the governor of the relative clause, etc.). As it was already
mentioned, the original tectogrammatical tree contains those morphological categories which
are semantically indispensable. After the formeme selection phase, value of case should
be also known for all nouns. In this phase, oriented agreement arcs (corresponding to the
individual types of agreement) are conceived between nodes within the tree, and the values of
morphological categories are iteratively spread along these arcs until the unification process
is completed.

2.3 Expanding Complex Verb Forms

Only now, when person, number, and gender of finite verbs is known, it is possible to expand
complex verb forms where necessary. New nodes corresponding to reflexive particles (e.g. in
the case of reflexiva tantum), to auxiliary verbs (e.g. in the case of complex future tense), or
to modal verbs (if deontic modality of the verb is specified) are attached below the original
autosemantic verb.

2.4 Adding Prepositions and Subordinating Conjunctions

In this phase, new nodes corresponding to prepositions and subordinating conjunctions are
added into the tree. Their lemmas are already implied by the value of node formemes.

2.5 Determining Inflected Word Forms

After the agreement step, all information necessary for choosing the appropriate inflected
form of the lemma of the given node should be available in the node. To perform the
inflection, we employ morphological tools (generator and analyzer) developed by Haji¢
[4]. The generator tool expects a lemma and a positional tag (as specified in [5]) on the
input, and returns the inflected word form. Thus the task of this phase is effectively reduced
to composing the positional morphological tag; the inflection itself is performed by the
morphological generator.

Synthesis of Czech Sentences from Tectogrammatical Trees 225

2.6 Special Treatment of Definite Numerals

Definite numerals in Czech (and thus also in PDT 2.0 t-trees) show many irregularities
(compared to the rest of the language system), that is why it seems advantageous to generate
their forms separately. Generation of definite numerals is discussed in [6].

2.7 Reconstructing Word Order

Ordering of nodes in the annotated t-tree is used to express information structure of the
sentences, and does not directly mirror the ordering in the surface shape of the sentence.
The word order of the output sentence is reconstructed using simple syntactic rules (e.g.
adjectival attribute goes in front of the governing noun), functors, and topic-focus articulation.
Special treatment is required for clitics: they should be located in the ‘second’ position in the
clause (Wackernagel position); if there are more clitics in the same clause, simple rules for
specifying their relative ordering are used (for instance, the clitic by always precede short
reflexive pronouns).

2.8 Adding Punctuation Marks

In this phase, missing punctuation marks are added to the tree, especially (i) the terminal
punctuation (derived from the sentmod grammateme), (ii) punctuations delimiting bound-
aries of clauses, of parenthetical constructions, and of direct speeches, (iii) and punctuations
in multiple coordinations (commas in expressions of the form A, B, C and D).

Besides adding punctuation marks, the first letter of the first token in the sentence is also
capitalized in this phase.

2.9 Vocalizing Prepositions

Vocalization is a phonological phenomenon: the vowel -e or -u is attached to a preposition
if the pronunciation of the prepositional group would be difficult without the vowel (e.g. ve
vyklenku instead of *v vyklenku). We have adopted vocalization rules precisely formulated
in [7] (technically, we converted them into the form of an XML file, which is loaded by the
vocalization module).

3 Implementation and Evaluation

The presented sentence generation system was implemented in ntred environment for
processing the PDT data. The system consists of approximately 9,000 lines of code
distributed in 28 Perl modules. The sentence synthesis can also be launched in the GUI editor
tred providing visual insight into the process.

As illustrated in Figure 2, we took advantage of several already existing resources, es-
pecially the valency lexicon PDT-VALLEX [3], derivation rules developed for grammateme
assignment [8], and morphology analyzer and generator [4].

We propose a simple method for estimating the quality of a generated sentence: we
compare it to the original sentence from which the tectogrammatical tree was created during

Shttp://ufal.mff.cuni.cz/ pajas

226 J. Ptagek and Z. Zabokrtsky

the PDT 2.0 annotation. The original and generated sentences are compared using the BLUE
score developed for machine translation [9] — indeed, the annotation-generation process is
viewed here as machine translation from Czech to Czech. Obviously, in this case BLEU
score does not evaluate directly the quality of the generation procedure, but is influenced also
by the annotation procedure, as depicted in Figure 3.

. 674 7
Original Sentence A 1
160
§ %120—
b 5 100 1
Tectogrammatical Tree a § 80 1
- 60
[an] 40
0,

O O I M - 0 O I N O N~ U AN O

| S S -~ Ao dmyooN e S

r o ©o o o O O O O © o ©o o

Synthesized Sentence

S
BLEU Score Classes

Fig. 3. Evaluation scheme and distribution of BLEU score in a development test sample counting 2761
sentences

It is a well-known fact that BLEU score results have no direct common-sense interpre-
tation. However, a slightly better insight can be gained if the BLEU score result of the de-
veloped system is compared to some baseline solution. We decided to use a sequence of
t-lemmas (ordered in the same way as the corresponding t-layer nodes) as the baseline.

When evaluating the generation system on 2761 sentences from PDT 2.0 development-
test data, the obtained BLEU score is 0.477.° Distribution of the BLEU score values is given
in Figure 3. Note that the baseline solution reaches only 0.033 on the same data.

To give the reader a more concrete idea of how the system really performs, we show
several sample sentences here. The O lines contain the original PDT 2.0 sentence, the B lines
present the baseline output, and finally, the G lines represent the automatically generated
sentences.

(1) O: Dobte vi, o koho jde.
B: védét dobry jit kdo
G: Dobfte vi, o koho jde.

(2) O: Trvalo to az do roku 1928, nez se tento problém podarilo prekonat.
B: trvat aZ rok 1928 podafit_se tento problém prekonat
G: Trvalo azZ do roku 1928, Ze se podafilo tento problém pfekonat.

(3) O: Stejné tak si je i adresat vytky podle ostrosti a vysky ténu okamzité jist nejen tim,
Ze jde o néj, ale i tim, co skandal vyvolalo.

6 This result seems to be very optimistic; moreover, the value would be even higher if there were more
alternative reference translations available.

Synthesis of Czech Sentences from Tectogrammatical Trees 227

B: stejné tak byt i adresat vytka ostrost a vyska ton okamzity jisty nejen jit ale i
skanddl vyvolat co

G: Stejné tak je i adresat vytky podle ostrosti a podle vysky ténu okamzité jisty, nejen
Ze jde o néj, ale i co skanddl vyvolalo.

(4) O: Pravda o tom, Ze zvykani pro zZvykani bylo odjakZiva ¢innosti veskrze lidskou —
kam pamét lidského rodu saha.
B: pravda zvykani Zvykdni byt odjakziva Cinnost lidsky veskrze pamét rod lidsky
sahat kde
G: Pravda, ze zvykani pro zZvykani bylo odjakZiva veskrze lidska cinnost (kam pamét
lidského rodu sahd).

4 Final Remarks

The primary goal of the presented work — to create a system generating understandable Czech
sentences out of their tectogrammatical representation — has been achieved. This conclusion
is confirmed by high BLUE-score values. Now we are incorporating the developed sentence
generator into a new English-Czech transfer-based machine translation system; the prelimi-
nary results of the pilot implementation seem to be promising.

As for the comparison to the related works, we are aware of several experiments with
generating Czech sentences, be they based on tectogrammatics (e.g. [10,11,12]) or not
(e.g. [13]), but in our opinion no objective qualitative comparison of the resulting sentences
is possible, since most of these systems are not functional now and moreover there are
fundamental differences in the experiment settings.

References

1. Sgall, P.: Generativni popis jazyka a ¢eskd deklinace. Academia (1967).

2. Mikulova, M., Bémova, A., Hajic, J., Hajicov4, E., Havelka, J., Koldfova, V., Lopatkova, M., Pajas,
P, Panevov4, J., Razimova, M., Sgall, P, gtépének, J., UreSova, Z., Vesela, K., Zabokrtsk}’/, Z.,
Kucovd, L.: Anotace na tektogramatické roviné Prazského zdvislostniho korpusu. Anotdtorskd
ptirucka. Technical Report TR-2005-28, UFAL MFF UK (2005).

3. Haji¢, J., Panevova, J., Uresovd, Z., Bémova, A., Koldfova-Reznitkovd, V., Pajas, P.: PDT-
VALLEX: Creating a Large-coverage Valency Lexicon for Treebank Annotation. In: Proceedings
of The Second Workshop on Treebanks and Linguistic Theories, Vaxjo University Press (2003)
57-68.

4. Haji¢, J.: Disambiguation of Rich Inflection — Computational Morphology of Czech. Charles
University — The Karolinum Press, Prague (2004).

5. Hana, J., Hanova, H., Haji¢, J., Vidova-Hladkd, B., Jefabek, E.: Manual for Morphological
Annotation. Technical Report TR-2002-14 (2002).

6. Ptacek, J.: Generovani vét z tektogramatickych stromt Prazského zdvislostniho korpusu. Master’s
thesis, MFF, Charles University, Prague (2005).

7. Petkevic, V., ed.: Vocalization of Prepositions. In: Linguistic Problems of Czech. (1995) 147-157.

8. Razimovi, M., Zabokrtsk}’/, Z.: Morphological Meanings in the Prague Dependency Treebank 2.0.
LNCS/Lecture Notes in Artificial Intelligence/Proceedings of Text, Speech and Dialogue (2005).

9. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a Method for Automatic Evaluation of
Machine Translation. Technical report, IBM (2001).

228 J. Ptacek and Z. Zabokrtsk)’/

10. Panevovd, J.: Random generation of Czech sentences. In: Proceedings of the 9th conference on
Computational linguistics, Czechoslovakia, Academia Praha (1982) 295-300.

11. Panevovd, J.: Transducing Components of Functional Generative Description 1. Technical
Report 1V, Matematicko-fyzikaln{ fakulta UK, Charles University, Prague (1979) Series: Explizite
Beschreibung der Sprache und automatische Textbearbeitung.

12. Hajic, J., émejrek, M., Dorr, B., Ding, Y., Eisner, J., Gildea, D., Koo, T., Parton, K., Penn, G.,
Radev, D., Rambow, O.: Natural Language Generation in the Context of Manchine Translation.
Technical report, Johns Hopkins University, Baltimore, MD (2002).

13. Hana, J.: The AGILE System. Prague Bulletin of Mathematical Linguistics (2001) 147-157.

ASeMatch: A Semantic Matching Method*

Sandra Rogerl’z, Augustina Buccella2, Alejandra Cechich?, and Manuel Sanz Palomar!
! Natural Language Processing and Information Systems Group
Department of Software and Computing Systems, University of Alicante, Spain
{sroger, mpalomar}@dlsi.ua.es
2 GIISCO Research Group, Department of Computing Sciences
University of Comahue, Argentina
{sroger, abuccel, acechich}@uncoma.edu.ar

Abstract. Usually, syntactic information of different sources does not provide enough
knowledge to discover possible matchings among them. Otherwise, more suitable
matchings can be found by using the semantics of these sources. In this way, semantic
matching involves the task of finding similarities among overlapping sources by using
semantic knowledge. In the last years, the ontologies have emerged to represent this
semantics. On these lines, we introduce our ASeMatch method for semantic matching.
By applying several NLP tools and resources in a novel way and by using the semantic
and syntactic information extracted from the ontologies, our method finds complex
mappings such as 1 — N and N — 1 matchings.

1 Introduction

Integration of different information sources is a widely referenced subject in the literature.
These sources can be heterogeneous databases, internet pages or even texts that must be
combined to obtain information from one simple interface. However, integration is not a
straightforward task and several problems have to be faced such as dealing with semantic
heterogeneity.

Several proposals have emerged aiming at providing different solutions to integration
problems. In particular, we are interested in those defining automatic or semi-automatic
methods to find similarities between ontologies. The last emerged proposals [1,2,3] take
advantage of the information ontologies provide and new information extracted from
semantic resources like WordNet [4]. Unfortunaltely, they do not represent the solution to
the matching problems, since they only allow to find some missing relationships in the
ontologies.

The work presented here is a continuation of the approach reported in [5,6], in which
we have proposed a layered architecture and a method to deal with semantic heterogeneity
problems. In our work, an ontology is a 4-tuple O =< C, DT, SP, R > where C is a set
of classes, DT is a set of datatype properties, SP is a set of special properties and R is a
set of restrictions. By using semantic resources and taking into account the structure of the
ontologies and their syntactic and semantic relationships, our method allows to find several

* This research has been partially funded by the Spanish Government under project CICyT number
TIC2003-07158-C04-01 by the Valencia Government under project number GV04B-268, and by the
University of Comahue under the project 04/E059 and 04/E062.

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 229-235, 2006.
(© Springer-Verlag Berlin Heidelberg

230 S. Roger et al.

correct mappings. But there are still undiscovered mappings, called complex mappings, where
1 — N and N — 1 matches are involved. Focusing on them, the ASeMatch method finds
these complex mappings by means of the application of several Natural Language Processing
(NLP) tools and resources in a novel way.

The way how NLP tools are used by our method is the focus of this paper. It paper is
organized as follows: Section 2 describes the Architectural Components of our approach.
Then, Section 3 presents a case study showing how our method works. Section 4 briefly de-
scribes some proposals widely referenced in the literature denoting their main characteristics
together with advantages and disadvantages with respect to our proposal. Conclusions and
future work are addressed afterwards.

2 Architectural Components of ASeMatch

Our method receives two ontologies as input and generates a set of equality axioms as output.
These axioms are like mappings providing information about what elements of one ontology
are similar to elements of the another one.

Three main components have been defined in our arquitecture:

— Parser and Instantiation Component, which parses the ontology’s codes loaded by the
user in order to create two Object Structures (OS’s) — the Similarity Searcher Component,
which extracts the provided information and use it to find similarities; and the

— Similarity Searcher Component which is in charge of calculating the similarity values
between the OS’s and generating the equality axioms as a result of the whole process.
Finally, the

— Linguistic Component, that is further explained in the next section.

2.1 Linguistic and Similarity Searcher Components

The ASeMatch method is based on the information extracted from the ontologies. This
information is translated to OS’s representing classes, properties, and restrictions ontologies
provide. All of the elements of an ontology are represented by these OS’s, thus, they represent
a valid instantiation of the ontologies. NLP tools, in particular the “multiconcept" definition
(MCR)[7], is used in order to find the complex mappings. This definition is an extension of
the “multiword" concept defined in [7].

Definition 1 (Multiconcept). Let E‘} an OS element and E ;’1’ E ;)2, .., FE P! other OS
elements, E'p is a multiconcept ofEll, E}z, oo Epr ([ED] Fme [E}l, E}z, el E}n])
if E} semantically equivalent | J; ES’,"

Two elements are semantically equivalent if the application of our method returns a value that
exceeds a certain threshold determined empirically. Our extended MCR definition is able to
find mappings between one element of an OS and one or more elements of another OS and
viceversa. This extension allows a more refined comparison than the multiword recognition
proposed by [7] (only over labels). In this first stage of our work, the MCR is applied only to
DT properties (Ep).

ASeMatch: A Semantic Matching Method 231

ASeMatch consists of three main phases: 1) Linguistic Analysis of the Labels, 2) Contex-
tualization, and 3) Computation of Similarity Values. The application of all of them deter-
mines whether two elements are semantically equivalent.

1) Linguistic Analysis of the Labels. In this phase, the OS is translated into a new OS
in which all words in labels are analyzed syntactically. To do so, the labels are tokenized (by
using OnToken') and FreeLing? is used as lemmatizer, PoS tagger and syntactic analyzer.
Finally, WordNet® (WN) is used in the Word Sense Disambiguation process.

2) Contextualization. In this phase, we contextualize the interpretation of the OS
elements. The combination of two contexts is used to represent the elements: 1) SContext
embeds the structural context of the elements, and 2) HContext takes into consideration the
hypernymy and hyponymy relation that occur among elements.

The first context is built using the elements that are near to the analyzed element. The
near(E) function depends on the OS elements (DT, SP or class). For example, if E is a DT
properties, the near function considers only the DP properties of its class as well as the
corresponding SP properties. When E is an SP property, the near function considers the DT
properties of the classes related by E. Finally, if E is a class, near considers both the class
related to E through SP properties as well as their DP properties.

The second context (HContext) is obtained by extracting the chain of hypernyms and
hyponyms for each sense analysed element. Synsets are also taken into account in the
disambiguation process.

This process involves two main tasks. The first task consists of intersecting all hypernyms
and hyponyms chains that correspond to all the senses of the analyzed elements. If the
resulted intersection set contain more than one chain, a second disambiguation process is
performed by using the SContext.

3) Computation of the Similarity Elements: Finding similarities is a very complex
activity because in general it is complex to determine fully automatically all mappings
between two models. The similarity functions we propose in this paper determine mapping
candidates associated with probability values. These values give a degree of similarity among
the elements of two OS’s. Four main similarity functions are used depending on the OS’s
elements, DT, check restrictions, SP, and class similarity functions as follows.

Datatype Similarity Function: MCR is applied in this function. That is, not only structural
information is taken into account but also contextual information is required to find complex
mappings. To do so, three auxiliary functions are used and we will show in Section 3, by
using an example, how this function works:

— Textual entailment recognition(entail(label(dt)) , label(dt))) of DT properties la-
bels: The entail function is used to perform this task. This function uses information
extracted from WN relations such as synonyms, holonyms, hypernyms, and hyponyms
involved in the Contextualization phase (HContext and SContext).

— Datatype compatibility: This a straightforward function because it only compares the
data types of the two DT properties. For example, string to string or string to integer.
The function returns 1 when both data types are equal. If there exists a logical

1 developed by the University of Comahue.
2http://garraf.epsevg.upc.es/freeling/index.php
3 http://wordnet.princeton.edu/

232 S. Roger et al.

conversion between a data type and another, the result of the function is extracted from
a compatibility table, otherwise it is equal to 0.

— MCR (Definition 1): This task uses the two last functions to find subsume relationships.
That is, when a set of DT properties subsume to another.

Check Restriction Similarity Function: The check restriction function compares the
restrictions applied to the SP properties. Only when both properties have the same restrictions
the function returns 1, otherwise it returns a percentage according to the number of
restrictions that are the same. Besides, a compatibility table is used to map restrictions with
similar meanings. For example, if one property is defined as functional and another has a
“no more than one” cardinality restriction, the similarity value between them is equal to 1
because both denote the same meaning.

Special Property Similarity Function: In this function we compare the SP properties
belonging to common classes. The comparison is similar to the DT similarity function, but
the DT compatibility is not calculated and it is replaced by the check restriction function to
check SP property restrictions. As SP properties relate classes, this function compares not
only the domain classes but also the range classes. This comparison generates the analysis of
the DT and SP properties of these range clases. Therefore, our method is recursive and it will
stop when all classes have been compared.

Class Similarity Function: Finally, we must compare the classes. Two comparisons are
used in this function, label and structural. The label comparison compares the labels of
classes by using the entail function like in the property functions. Structural comparison
uses the results of the special and datatype functions in order to analyze the set of similar
properties of the involved classes. To do so, we use the function (1) [8]:

Simg(x,y) = NV M
[XNY | +alx,y) | X/ V] +0 —alx,y) | V/X|

for0<oa <1

where x and y are concepts and X and Y correspond to description sets of x and y (in this
case “properties"). The function (1) is based on Tversky’s model [9], in which the « function
identifies the most common superclass between two concepts and calculates their depth in a
hierarchy. If the depth of two concepts is the same, the value of this function is equal to 0.5.

As SP properties provide more information than DT properties, we divide the function (1)
into two new weighted functions. Thus, we can increase the value of the SP property’s weight
to enhance this knowledge. Then, the function (1) is now as follows:

simejass(cl, €2) = Wspecial—properties X Simspecial—properties (c1,)+
+Wdatatype—properties X SiMdatatype—properties (c1,¢2)

Besides, this function takes into account the 1-N and N-1 matches obtained in the
comparison of the properties. That is, if there are 1-N or N-1 matches (found by the MCR
process), the set of DT properties of an OS found as part of one DT property of another OS is
considered like only one property. Thus, to consider these complex matches the function (1)
has no need to change.

ASeMatch: A Semantic Matching Method 233

3 A Motivating Example

In order to illustrate how the ASeMatch method works, we have extracted two ontologies
named “Talk-ont”™ (O;) and “Talk™ (O,) from repositories on the Web. We have made
some changes to both of them in order to show the main aspect of our proposal, the MCR.
Figure 1 and 2 shows a part of the (O;) and (O,) ontology respectively.

homeAddress
‘ Place ‘ Person

address homeAddress name y

zip organization firstName email organization

longitude email lastName homePhone bioSketch

direction bioSketch title officePhone interests
phoneNumber gender cellPhone expertise
faxNumber birthday fax proffesionalTitle
interests homeAddress pager
expertise officeAddress homepage

Fig. 1. A reduced version of the ontology Talk-ont ~ Fig.2. A reduced version of the ontology Talk
©On (@)

Following our approach, we begin the similarity process by mapping the class Person(P)
of (Oy) and the class Speaker (S) of (O;). In order to determine their similarity, our method
begins comparing the DT properties of these classes to other classes related to them by
means of SP properties. As the class S is a subclass of the class Person of Oy, the evaluation
process will consider the DT properties of Person as DT properties of S as well. For example,
firstName and lastName of Person will be also considered during the evaluation of S.

Now, let us see how ASeMatch compares Name of P and the FirstName property of the
Person class. First of all, the method analyses the labels syntactic and morphologically, and
disambiguation process is performed resulting in the selection of the noun category for the
Name property. Following, the syntactic analysis determines that first is an adjective and
Name is also a noun. In these cases, the method should compare the following pairs (name,
name), (name, first). As firstName is defined by WN, the pair (name, first name) is compared
too. Then, the “textual entailment recognition" of the previous labels determines that name
subsumes first name; and a similar result is obtained by the analysis of the labels name and
last name. In both cases, the type compatibility value results 1, since the type is the same
for the three involved DT properties. Then, the MCR takes into account this result and the
structural information to compute its functions. In this case, the near function (section 3)
considers the classes P and Place, the DT properties of both classes, and the SP properties
homeAddress and officeAddress of O;; and the classes S and Person of O, along with
their DT properties. Depending on the similarity value resulting from the comparison, and
considering that there are only one DT property referring name in P, and there are two DT
properties in S; then our method determines that [name] Ry [firtName, lastName].

4 http://daml .umbc.edu/ontologies/talk ont
3 http://daml.umbc.edu/ontologies/ittalks/talk

234 S. Roger et al.

The DT properties organization, bioSketch, interests, email and expertise of Oy are
semantically equivalent to the corresponding DT properties of O,; and faxNumber is
semantically equivalent to fax of O,. Finally, homePhone, officePhone and cellPhone of O,
are little similar to phoneNumber of O,. Besides, as there is a reference for cell Phone in
WN, that is hyponym of phone, the similarity value between cellPhone and phoneNumber
will be still greater.

4 Related Work

Several semantic matching proposals are found in the literature [1,2,3]. Particularly, the work
in [2] presents a semantic matching algorithm based on graph-like structures. The approach
contains two levels — the element and structure levels. Firstly, the labels are tokenized and
lemmatized in order to obtain atomic words. A semantic resource, in this case EuroWordNet,
is queried to obtain the senses of these words. Secondly, the element level is applied
determining the semantic relations holding between pairs of atomic concepts of labels. To do
so, the senses are extracted from EuroWordNet. Using sense filtering techniques [7] one sense
can be selected as relevant instead of another one. Finally, the structure level is performed
producing a set of semantic relations between concepts at nodes.

CtxMatch [7] is a model based schema/ontology matcher which computes mappings
(namely a set of point-to-point) between schema/ontology elements. CtxMatch is an algo-
rithm that encodes the meaning of each node in a formal language and computes a mapping
between elements by comparing their meaning using a linguistic process. CtxMatch consists
of three main phases: 1) linguistic analysis of the labels — in this phase the tokenization,
PoS-tagging, and multiconcep recognition are realized; 2) contextualization — here a recog-
nition of multi-level multiconceps, sense filtering, and sense composition are produced; and
3) computation of the logical relation — this phase receives the logic forms and calculates
logical relations by using a SAT solver.

The work presented in [1] proposes an algorithm for ontology matching, named ASCO.
This algorithm uses instances, concepts, relations, and the structure of hierarchy of con-
cepts/relations that can be extracted from ontologies. Three main steps are used by this pro-
posal: linguistic matching, structural matching and mapping generation. The first one uses a
set of similarity functions to compare names, labels and descriptions of classes. In particular,
in the description part, information retrieval techniques are used to determine if two classes
are similar. Besides, to find synonyms, WordNet is required. Then, only one result is pro-
duced by combining all last results. If this value exceeds a threshold a mapping between these
classes is added. The second step, structural mapping, analyzes the concepts in a hierarchy
by building a graph structure and compares them by using graph similarity techniques [10].

The work presented in [3] proposes a methodology for ontology merging. The main idea of
this proposal is to reconcile a large number of closely related, domain specific ontologies. The
scenario is a large number of small ontologies. Two types of information are used to compare
the ontologies: syntactic and semantic. The syntactic information analyses the names of the
classes by using string-matching techniques. The semantic information uses WordNet to find
synonyms. Thus, this step can find mappings which would not have been found using the
syntactic information.

The implicit information obtained from both the context and the linguistic process is the
main difference between our method and the approaches cited here. This information allows

ASeMatch: A Semantic Matching Method 235

to find more correct mappings even those involving 1-N and N-1 matches. In general, the
approaches take advantage of all information ontologies provide but they only deal with 1-1
matches such as person=human. By extending the filtering techniques proposed by [7], our
method is able to find complex matches such as those presented in this paper. Therefore,
in our ASeMatch method all the information that can be extracted from the ontologies is
combined with NLP tools in order to find more suitable matchings.

5 Conclusions and Future Works

Using richer semantic resources with PLN tools is crucial to improve semantic heterogeneity
problems. In this paper, we have presented an approach to semi-automatically enrich the
semantic matching between two ontologies by finding complex mappings such as those
involving 1—N and N—1 matchings.

The advantage of our proposal is clear: we improve the semantic matching between two
ontologies by adding linguistic techniques and the MCR definition. However, our matching
process still needs improvement to be able to compare other elements of the ontologies, such
as classes; and aspects like performance and complexity should be analyzed. We are currently
working on an implementation of our method in order to evaluate these aspects.

References

1. Le, B.T., Dieng-Kuntz, R., Gandon, F.: On ontology matching problems for building a corporate
semantic web in a multi-communities organization. In: ICEIS 2004 Software Agents and Internet
Computing. (2004) 236-243.

2. Giunchiglia, F.,, Yatskevich, M., Giunchiglia, E.: Efficient semantic matching. In: Gémez-Pérez,
A., Euzenat, J., Eds.: ESWC 2005. Volume LNCS 3532, Springer-Verlag (2005) 272-289.

3. Stephens, L., Gangam, A., Huhns, M.: Constructing Consensus Ontologies for the Semantic Web:
A Conceptual Approach. In: World Wide Web: Internet and Web Information Systems. Number 7,
Kluwer Academic Publishers (2004) 421-442.

4. Richardson, R., Smeaton, A.: Using wordnet in a knowledge-based approach to information
retrieval. Technical Report CA-0395, Dublin City Univ., School of Computer Applications, Dublin,
Ireland (1995).

5. Buccella, A., Cechich, A., Brisaboa, N.R.: A federated layer to integrate heterogeneous knowledge.
In: VODCA 04 First Int. Workshop on Views on Designing Complex Architectures, Bertinoro,
Italy, Electronic Notes in Theoretical Computer Science, Elsevier Science B.V (2004) 101-118.

6. Buccella, A., Cechich, A., Brisaboa, N.R.: A three-level approach to ontology merging.
In: MICAI’05: Fourth Mexican International Conference on Artificial Intelligence, Monterrey,
Meéxico, LNCS 3789 of Springer-Verlag (2005) 80-89.

7. Magnini, B., Speranza, M., Girardi, G.: A semantic-based approach to interoperability of
classification. hierarchies: Evaluation of linguistic techniques. In: Proceeding of COLING 2004,
Geneva, Switzerland (2004).

8. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from
different ontologies. IEEE Transactions on Knowledge and Data Engineering 15 (2003) 442-456.

9. Tversky, A.: Features of similarity. Psychological Review 84 (1977) 327-352.

10. Dieng, R., Hug, S.: Comparison of personal ontologies represented through conceptual graphs. In:
Proceedings of the ECAI 98 — 13t European Conference on Artificial Intelligent, Brigthon, UK
(1998) 341-345.

Extensive Study on
Automatic Verb Sense Disambiguation in Czech

Jifi Semecky and Petr Podvesky

Institute of Formal and Applied Linguistics
Malostranské namésti 25, 11800 Prague, Czech Republic
semecky@ufal.mff.cuni.cz, podveskyQufal.mff.cuni.cz

Abstract. In this paper we compare automatic methods for disambiguation of verb
senses, in particular we investigate Naive Bayes classifier, decision trees, and a rule-
based method. Different types of features are proposed, including morphological,
syntax-based, idiomatic, animacy, and WordNet-based features. We evaluate the
methods together with individual feature types on two essentially different Czech
corpora, VALEVAL and the Prague Dependency Treebank. The best performing
methods and features are discussed.

1 Introduction

Verb sense disambiguation (VSD) is an interesting and challenging problem of assigning the
right sense to a given verb according to context. VSD aims at selecting the right sense using
surrounding words or, perhaps, a thorough analysis of larger context. Verbs are usually central
elements of sentences, therefore, the key aspect in determining the meaning of the whole
sentence is a proper analysis of the verb sense. A verb can have several senses, for example
in Czech the verb dodat can mean to supply or to add. VSD can also help in improving other
NLP tasks, such as machine translation, information retrieval, etc.

Previous experiments on VSD have been already reported in the literature, e.g.
[1] and [2] studied English VSD; initial experiments on Czech VSD have been also
published [3]. Related problems are studied in the Curpus Pattern Analysis project
http://nlp.fi.muni.cz/projekty/cpa/ andin [4].

In this paper we focus on automatic VSD methods. We propose novel elaborate features
and employ them in standard automatic classifiers. We evaluate our approach on two corpora.

The paper is divided as follows. Section 2 introduces the corpora and lexicons that we used
in our experiments. Section 3 describes the proposed features in detail. Section 4 covers the
machine learning methods which we used for VSD. In Section 5, we summarize and evaluate
achieved results.

2 Data

In this section we describe corpora which were used throughout our experiments. We worked
with two corpora VALEVAL and the Prague Dependency Treebank 2.0. Verb senses are not
directly annotated in the corpora, instead, the verbs are annotated with valency frames. The
valency lexicon which was used for annotation of VALEVAL was VALLEX version 1.0 [3].

Petr Sojka, Ivan Kopecek and Karel Pala (Eds.): TSD 2006, LNAI 4188, pp. 237-244, 2006.
(© Springer-Verlag Berlin Heidelberg

238 J. Semecky and P. Podvesky

Table 1. Corpora statistics after parsing and cleaning

#unique #annotated @ running verbs O senses
verbs running verbs per verb per running verb
VALEVAL 109 7,779 71.4 4.58
PDT 1,636 67,015 41.0 14.8

The valency frame annotation of PDT corpus was done according to valency lexicon PDT-
VALLEX. Verb valency frames are closely related to verb senses. In addition, in the valency
lexicons, different verb senses even with the same configuration of syntactical constituents
are labeled with two different frames. For example the verb chovat with accusative object
have in Czech two different meanings: cuddle, and breed. In both valency lexicons, the two
meanings are described by two different frames. As there is no straightforward procedure to
determine the verb reflexivity, Verbs with reflexive particles are assumed to be variants of the
main verb.

VALEVAL. VALEVAL contains randomly selected sentences from the Czech National
Corpus [5]. 109 representative verbs were chosen to form VALEVAL. For each verb, 100
sentences were selected from the Czech National Corpus to constitute VALEVAL. For more
details about the verb selection, see [6].

The corpus was independently annotated by three annotators. The inter-annotator agree-
ment of all three annotators was 66.8%, the average pairwise match was 74.8%. Sentences
on which the three annotators disagreed were double-checked by an expert who determined
the correct annotation. Sentences with an obvious mistake were corrected.

To prepare the data for subsequent feature extraction, we automatically parsed the
sentences using Charniak’s syntactic parser [7]. The parser was trained on the Prague
Dependency Treebank [8]. Some sentences could not be parsed due to their enormous length.
Such long sentences were excluded from our corpus yielding the total number of 7,779 parsed
sentences. In the parsed corpus, a verb occured 71.4 times in average, ranging from a single
occurrence to 100 occurrences. The average number of senses per verb was 4.58, the average
was computed over the corpus.

Prague Dependency Treebank 2.0 (PDT). PDT is a large corpus of manually annotated
Czech data with linguistically rich information. PDT is based on the theory of Functional
Generative Description [9]. It contains three layers of annotation — morphological, analytical,
and tectogrammatical. We worked only with the tectogrammatically annotated part of the
corpus. It contains about 800 thousand words. The verb frame annotation was done according
to the PDT-VALLEX lexicon.

We automatically parsed PDT using the MST parser [10] trained on PDT using deleted
interpolation. The tectogrammatical annotations were done only by one annotator, therefore
the PDT data may be more biased than VALEVAL corpus. We excluded verbs which were
only present either in the training set or in the testing set. This resulted in 67,015 annotated
verbs occurences. For training we used the train portion of PDT which was comprised of
58,304 sentences. For testing we used so-called dfest portion which had 8,711 sentences. The
number of unique verbs was 1,636. There were 41.0 occurrences of verb in average, ranging
from two occurrences (one in each part of data) to 11,345 occurrences (for the verb byir).

Extensive Study on Automatic Verb Sense Disambiguation in Czech 239

o

5°® 38

S o 5

g " g

[9) [op=4

r 2 L & more...
© i T T T T 1 © i T T T T 1

0 20 40 60 80 100 0 20 40 60 80 100
Samples per verb Samples per verb
VALEVAL PDT

Fig. 1. Distributions of the number of samples per lemma

Table 1 summarizes the basic statistics of the corpora. Figure 1 shows distribution of the
number of verb occurences in VALEVAL and PDT corpora respectively.

3 Features

Features are essential to any automatic classification method. Each occurrence of a verb in
a context is described by a vector of features. Based on this feature vector, a verb sense
is assigned. Features reflect various information about the context of a verb. We worked
only with features with context confined to the actual sentence. No information behind
sentence boundary was considered. We experimented with five types of features, namely
morphological features, syntax-based features, idiomatic features, animacy features, and
WordNet-based features. In the following paragraphs, we thoroughly describe each group
of features.

3.1 Morphological Features

Morphological features are reliably estimated, and easy to obtain. Czech positional morphol-
ogy [11] uses tags with 15 positions, out of which we used first 12 positions. Each position
expresses one morphological category: part of speech, detailed part of speech, gender, num-
ber, case, possessor’s gender, possessor’s number, person, tense, grade, negation and voice.
Categories which are not relevant for a given word are assigned a special void value.

We introduced one feature for each possition of the current verb tag. Moreover, we
added tag features for two preceding words, and two following words. Thus we obtained
60 morphological features (5 words times 12 features).

3.2 Syntax-Based Features

We believe that syntax can capture deeper relation crucial to sense disambiguation, therefore
we added the following features based on syntax:

— Two boolean features stating whether there is a pronoun se or si dependent on the verb.
— One boolean feature stating whether the verb depends on another verb.
— One boolean feature stating whether there is a subordinate verb dependent on the verb.

240 J. Semecky and P. Podvesky

— Six boolean features, each for one subordinating conjunction defined in the VALLEX
lexicon (aby, at’, aZ,