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Abstract. In this paper we analyze a new method for an adaptive variation of 
Evolutionary Algorithms (EAs) population size: the Self-Regulated Population 
size EA (SRP-EA).  An empirical evaluation of the method is provided by 
comparing the new proposal with the CHC algorithm and other well known 
EAs with varying population. A fitness landscape generator was chosen to test 
and compare the algorithms: the Spear’s multimodal function generator. The 
performance of the algorithms was measured in terms of success rate, quality of 
the solutions and evaluations needed to attain them over a wide range of 
problem instances. We will show that SRP-EA performs well on these tests and 
appears to overcome some recurrent drawbacks of traditional EAs which lead 
them to local optima premature convergence. Also, unlike other methods, SRP-
EA seems to self-regulate its population size according to the state of the 
search.  

1   Introduction 

Although varying the population size of EAs during the run seems to be a rather 
natural and rewarding approach when implementing this type of algorithms, that 
particular parameter has not been widely studied as far as variation is concerned. 
Unlike other operators’ parameters - like mutation rate for instance -, population size, 
with few exceptions, remained away from major efforts in finding parameter control 
methods. GAVaPS [1] (see next section) introduced some interesting concepts that 
gave rise to an optimist expectation about the performance of EAs with varying 
population size. But some aspects of the algorithm, namely population size self-
regulation, could not be reproduced in other tests [5] [7]. The authors of GAVaPS 
suggested that the algorithm could adapt its population size according to the state of 
the search, balancing exploration and exploitation by increasing the population size 
on a first stage and then reducing the number of chromosomes on later stages. But, in 
further studies, a different behavior was observed. In [7], the authors noted that 
GAVaPS, when applied to a Royal Road problem, either grew its population size up 
to several thousand individuals or decreased it until extinction. These features were 
observed with different parameter values, that is, no combination of parameters was 
found to improve the stability of the population. In [5], GAVaPS also evolved into 
large populations when applied to Spears’ multimodal problems, giving rise to a poor 
performance when compared to other EAs. Despite these disappointing general results 
of GAVaPS, some other studies indicate that varying the population size of EAs may 
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increase their performance on some problems (see [5], for instance). Also, although 
GAVaPS did not attain the expected impact, some of its concepts are very interesting 
and worth further exploring. With these issues in mind, we intended to develop a 
decentralized variation process that may lead to a self-regulated behavior of the 
population size, at least within a small subset of the parameters values, thus exploring 
more conveniently the search space and making use of the resources in a more 
rational way. The proposed process relies on the genetic diversity of the population 
during the run. Our results indicate that this may be a promising path to follow when 
developing EAs with varying population size. 

2   Previous Research 

According to Eiben and al. [4] parameter control mechanisms of EAs may be divided 
into three categories: 

• Deterministic methods: parameter values are changed by some deterministic rule. 
• Adaptive methods: values vary during the EA run depending on its behavior.  
• Self-Adaptive methods: the values are codified within the chromosome and 

evolve together with the problem solutions. 

In this paper we focus our attention on the variation of the population size of EAs 
during the run. Some techniques described below fall into the adaptive methods 
categories, while others, like RVPS [3] and PRoFIGA [5] are deterministic methods. 
Our proposal may also be classified as an adaptive method. However, the variation 
process in SRP-EA may also be viewed as a result of a varying crossover rate, which 
is indirectly controlled by the genetic diversity of the population.      

The Genetic Algorithm with Varying Population Size (GAVaPS) [1] does not have 
an explicit selection mechanism. As in natural systems, population size is defined by 
the birth and death of individuals occurring at each iteration. A parameter called 
lifetime is introduced. It defines the number of generations in which each individual is 
allowed to remain alive, that is, a part of the population and the evolutionary process. 
After its creation, the chromosome is assigned to a specific lifetime, according to its 
fitness. Three lifetime calculation methods are proposed. The algorithm proceeds in a 
generational manner, at each time step increasing each individual’s age. When an 
individual’s age exceeds its lifetime, the chromosome is removed from the 
population. Since fittest individuals remain in the population for more generations, 
thus having a higher probability to be engaged in a reproduction process and generate 
offspring, GAVaPS’ chromosomes have equal probability to be selected to reproduce, 
independently of their fitness value. This concept of lifetime/age provides the 
algorithm with the necessary selection pressure, which reduces the need for selection 
strategies: GAVaPS randomly pairs the chromosomes for crossover operations. The 
intensity of the pressure is controlled by two parameters, minLT and maxLT, that 
define, respectively, the minimum and maximum lifetime allowed for each 
chromosome. Higher difference between the two values leads to a more selective 
algorithm. However, this process may have a serious drawback since increasing the 
maxLT parameter will result in larger populations and, as stated above, an 
increasingly high population size is a characteristic of GAVaPS. The algorithm also 
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introduces another parameter: reproduction rate (ρ). Its value defines the number of 
new chromosomes created in each generation t, depending on the size of the current 
population.  

The Adaptive Population size Genetic Algorithm (APGA) [2] is very similar to 
GAVaPS. The only difference resides in reproduction rate, which in APGA has a 
fixed value of two individuals. This technique follows the reproduction strategy of the 
Steady-State GA and prevents the population from growing out of control has it often 
happens with GAVaPS. On the other hand, such a low reproduction rate results in 
populations with few individuals unless a high value for maxLT is used. But, even in 
the last case, the population size is very stable and apparently does not react to the 
evolution process and different search stages (see section 4). However, the algorithm 
performs well on some problems and clearly outperformed GAVaPS when applied to 
the Spears’ multimodal problems [5]. Besides a low reproduction rate, APGA also 
uses an elitist strategy by keeping unchanged the age of the best individual.  

The Population Resizing on Fitness Improvement GA (PRoFIGA) was proposed in 
[5] by Eiben, Marchiori and Valkó. The variation process of PRoFIGA is based on the 
improvement of the best fitness in the population. The process intends to balance 
exploration and exploitation by growing the population in earlier and exploratory 
stages and gradually decrease it in later stages of the search. When the population gets 
trapped in local optima, the process is supposed to generate another growing phase of 
the population, thus increasing diversity and escaping the local optima. The authors 
present a heuristic for size variation during the run that increases or decreases the 
population size according to whether or not the best fitness of the population has been 
improved and, if the later case is observed, for how long it has remained unchanged.  

In the Random Variation of Population Size GA (RVPS) [3] the population size is 
randomly changed during the run. The authors concluded that in some cases the 
performance of RVPS is equivalent to the standard GA. So, when there are no hints 
about the optimal population size for some problem, it may be appropriate to 
randomly set and vary the population size of the GA. 

Like PRoFIGA and RVPS, the Saw-Tooth Genetic Algorithm [8] is an example of 
a deterministic method used in the variation of the population size. In this algorithm 
the population size varies according to a predefined function with a saw-tooth shape. 
The authors concluded that the Saw-Tooth GA performed well on some particular test 
functions. However, besides a variable population size, the Saw-Tooth GA also uses a 
reinitialization mechanism to introduce genetic diversity in the population. 

3   Our Proposal 

The SRP-EA combines features of CHC [6] and GAVaPS and introduces a dynamic 
reproduction rate which is indirectly controlled by the genetic diversity of the 
population. CHC, which stands for Cross generational elitist selection, 
Heterogeneous Recombination and Cataclysmic Mutation, is a variation of the 
standard GA. It uses no mutation in the classical sense of the concept, but instead it 
goes through a process of macro-mutation when the best fitness of the population 
doesn’t change after a certain number of generations. The genetic diversity is assured 
by a highly disruptive crossover operator (HUX) and a reproduction restriction which 
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assures that selected pairs of chromosomes won’t generate offspring unless their 
Hamming Distance is above a certain threshold. Then, each generation, p/2 pairs of 
chromosomes are randomly selected from the population with size p. All pairs are 
submitted to the reproduction process. First, their Hamming Distance is computed. If 
the value is found to be above the threshold then the chromosomes generate two 
children with the HUX operator. When the process is concluded, the newly generated 
population of p’ offspring replaces the worst p’ chromosomes in the main population, 
therefore maintaining the size of the population. The threshold is usually set in the 
beginning of the runs to ¼ of the chromosome length, and decremented when no 
offspring is generated. When the algorithm gets stuck in local optima, a cataclysmic 
mutation is applied by replacing the entire population, except the best chromosome, 
with mutated copies of that individual. Usually, the mutation rate at this point is set  
to 0.35.  

SRP-EA adapts the Hamming Distance restriction of CHC. Remember that the 
process leads to a changing reproduction rate meaning that in each generation the 
number of offspring is not necessarily the same. The difference is that in SRP-EA the 
new chromosomes do not replace the parents’ population. Instead, offspring are added 
to the population, therefore increasing its size, while other individuals are removed 
via an age/lifetime process similar to the one found in GAVaPS and APGA. The 
process conduces to a variation in the size of the population and works as follows 
(SRP-EA pseudo-code is given in figure 1). First SRP-EA assigns a lifetime to each 
chromosome created (the three lifetime computation strategies of GAVaPS were 
adopted). Then, in each generation, the age (initially set to 0) of each chromosome is 
incremented. The chance of survival decreases with the age of the chromosome - the 
survival probability is set to (lifetime-age)/maxLT and when the age of a chromosome 
reaches its lifetime, the probability of survival reaches zero. There is a difference 
between the SRP-EA and GAVaPS, since in GAVaPS the individuals remain in the 
population during its lifetime, while in SRP-EA an individual may die before the age 
reaches its limit.  

The create new individuals procedure increases the population size by generating 
offspring with a restriction based on the Hamming Distance between the parents. 
When two parents are selected and their Hamming Distance is above the threshold, 
the children are generated. If the Hamming Distance is below or equal to the threshold 
then the parents do not cross and the attempt is classified as failure. After the p/2 
mating attempts are concluded (where p is the size of the population), all newborn 
children are introduced in the population and the threshold is set to a new value 
according to the heuristic described in figure 1 (the process repeats until at least one 
mating attempt succeeds). Also, in the kill older individuals procedure, the threshold 
is increased by a predefined amount (Inc) if the number of newborn is higher than 
number of individuals that died in the present generation. This strategy, along with 
proper set of the Dec and Inc parameters, creates a self-regulated population, which 
increases in the beginning of the search, decreases with convergence, and sometimes 
reacts to local optima convergence. Notice that this emergent behavior is similar to 
the one that PRoFIGA intends to simulate by means of a set of deterministic rules. 
However, the correct way to set the parameter values necessary to attain the desired 
population behavior and consequent algorithm performance is still unclear, although 
the tests described in the next section have brought some light into the subject. 
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Procedure SRP-EA 
     initialize and evaluate population                /*compute fitness and lifetime */ 
     while (not termination condition) { 
           increase the age of each individual by 1 
           create new individuals               
           kill older individuals 
           evaluate new individuals 
           set lifetime of new individuals }    /*Using any kind of strategy*/ 
      
Procedure create new individuals 
     do { 
            mating_events = population_size/2 
            for (i = 1 to mating_events)  do{ 
                select two individuals         /*Any method may be used here*/ 
                if (hamming distance > threshold)  crossover and mutate     /*Successful mating*/         
            } 
            if (failed matings> successful matings)   threshold = threshold-Dec 
            else                                                           threshold = threshold+Inc 
      } while (successful matings = 0) 
 
Procedure kill older individuals 
          for all individuals except the best do { 
                survival probability = (lifetime-age)/maxLT 
                if (random [0, 1] > survival probability)   kill individual   } 
           if (newborn > dead)    threshold = threshold+Inc 

Fig. 1. SRP-EA pseudo-code 

4   Test Bed Set and Results 

To test the efficiency of the proposed method, a Genetic Algorithm with the 
reproduction procedure described above was tested on several Spears’ multimodal 
problems [9]. In [5], the authors chose that function generator to study different EAs 
with varying population size.  

For that reason, the Spears’ problem may be a good benchmark to test the SRP-EA. 
Also, the generator creates problems with different sizes and degrees of multimodality 
making it a good tool to test some of the algorithms’ characteristics. In the 
experiences described below we tried to follow the procedures described in [5]. 

Table 1. Algorithms’ setup 

Chromosome length L 100 
Initial population size N 25, 50, 100, 200 
Mutation rate pm (in APGA and SRP-EA) 0.0025, 0.005, 0.01, 0.02 
Crossover rate pc (in APGA) 0.9 
Selection Random and 4-size tournament 
Maximum number of evaluations in each run 10000 
Initial threshold (in CHC and SRP-EA) L/4 
Inc, Dec (in SRP-EA) Inc = Dec = 3 
minLT (in APGA and SRP-EA) 1 
maxLT (in APGA and SRP-EA) 7, 11, 20 
Lifetime calculation (in APGA and SRP-EA) Bilinear (see [1] for details) 
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The SRP-EA was tested and compared with the CHC and the APGA. In [5] the 
authors compared the APGA with a Simple Genetic Algorithm (SGA) and other 
algorithms with varying population size, like GAVaPS and PRoFIGA, and concluded 
that APGA outperformed those methods through a wide range of Spears’ problem 
instances. For that reason we simplified our analysis and eliminated the results attained 
with other EAs from the figures below. Furthermore, we are mainly interested in 
adaptive control methods of the population size, so deterministic methods like the ones 
used in RVPS and PRoFIGA somehow fall off this paper’s subject. 

We ran the algorithms on 10 different types of landscapes, with the number of 
peaks (NP) ranging through 1, 2, 5, 10, 25, 50, 100, 250, 500 and 1000. The 
distribution of the peaks is linear and the lowest peak height was set to 0.5. Global 
optimum fitness is 1 in all instances of the problem. All configurations of the EAs 
created and evaluated no more than 10000 chromosomes in each run. The results were 
averaged over 100 runs. The initial population size (fixed in CHC) ranged through 25, 
50, 100 and 200. Four different mutation rates were tested. The crossover rate of 
APGA was set to 0.9, following the test setups in [5], and a two point crossover 
operator was used, except in CHC where we used the HUX operator associated with 
the method. The value of minLT was set to 1 in APGA and SRP-EA, while maxLT 
varied through 7, 11 and 20. All algorithms use elitism. Table 1 resumes the setup. 

Before we proceed to a more accurate study some general remarks must be stated.  

• The APGA results shown in [5] were properly reproduced in our tests. Also, the 
configuration used by the authors revealed to be appropriate and, in general, other 
configurations didn’t increase significantly the performance. 

• While the tests with APGA and CHC revealed no clear improvement when using 
tournament instead of random selection, SRP-EA seems to perform better with a 
tournament selection strategy.  

• As expected, CHC performed better with small populations (the algorithm is 
known to be more able to deal with problems that require small populations). 

• Neither APGA nor SRP-EA had significant changes in the performance over the 
range of maxLT values. 

• The values of Inc and Dec parameters were not achieved by means of an 
exhaustive search and optimization. However, a general inspection revealed that 
values between 1% and 10% of the chromosome length may lead to good results. 
Also, results indicate that setting Inc = Dec appears to be an adequate strategy. 

The performance of the algorithms was analyzed under three criteria: the success 
rate of the algorithm (SR%), that is, the percentage of runs in which the global 
optimum is achieved; the average number of evaluations (AE) necessary to reach 
global optimum (considering successful runs); and the average of the best 
chromosome’s fitness (AF) found in each run. Since one of the hypotheses about 
SRP-EA is its ability to balance exploration and exploitation by adapting the size of 
the population to the state of the search, therefore increasing the probability to reach 
optimum, we will focus our attention on the SR% criteria.  

Figure 2 illustrates some of the above observations. The graphics depict the 
success rates achieved by some configurations of CHC and APGA compared with 
two configurations of SRP-EA which differ in the mutation rate. Success  rates  of  the 
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Fig. 2. CHC, APGA and SRP-EA success rates. SRP-EA parameters: N = 100, pm= 0.005 
(SRP-EA1), pm = 0.0025 (SRP-EA2), maxLT = 11, size 4 tournament; APGA: N = 100, pc = 0.9 
and maxLT = 11. 

algorithms are shown over the problem dimension range (number of peaks – NP). The 
graphics suggest that SRP-EA is more able to reach global optimum than APGA and 
CHC. Also, pm = 0.0025 seems to favor SRP-EA performance in Spears’ landscapes 
with higher number of peaks, while pm = 0.005 works well on medium range problem 
dimension. Notice also, that CHC with a population of 200 individuals clearly fails in 
finding the optimal solutions and the same happens for APGA with pm = 0.02.  

When comparing the algorithms in terms of the best chromosome’s fitness (AF), 
the results show that SRP-EA also attains, in general, higher values (see figure 3). 
However, the performance of SRP-EA pays a price in terms of number of evaluations 
to reach optima (AE). In figure 3 it is clear that SRP-EA performance comes with an 
increase in the number of evaluations. These results are not surprising since the 
population size variation process inherent to SRP-EA conduces to a large exploratory 
stage in the beginning of the search which increases the probability to reach global 
optimum but creates a large amount of new individuals, with obvious effects in the 
number of evaluations necessary to reach that optimum. 

Choosing, for each NP, the best results of the algorithms over the complete space 
of parameter values of table 1 we obtain the curves represented in figure 4a. These 
results clearly illustrate the SRP-EA potential and its ability to find the global optima 
of Spears’ landscapes.  

One last test was conducted to examine the real influence of population variation in 
SRP-EA. As stated above, the population size variation of SRP-EA relies on a repro-
duction restriction that in nature is called assortative mating and tends to preserve 
genetic diversity. In some problems, that may be sufficient to increase convergence 
rate to  global  optimum.  To  try  to  quantify  and  distinguish  the  effects  of  genetic 
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Fig. 3. Fitness of the best individual found and evaluations needed to reach the optima (results 
averaged over 100 runs) in CHC2, APGA2 and SRP-EA1 

diversity maintenance and population size variation in SRP-EA, we created the 
Varying Assortative Mating EA (VAMEA), in which the procedure kill older 
individuals is replaced by a delete worst generational replacement as in CHC: like 
SRP-EA, p’ individuals are created from p/2 mating attempts (where p is the size of 
the population); then, the p’ worst elements of the population are replaced by the 
offspring. This way, we remove the influence of the variation of population size and 
isolate the effects of the assortative mating found in the SRP-EA reproduction 
process. VAMEA was tested through the parameters’ values range of table 1. Results 
are shown in figure 4b, where the curves represent the best results found for each NP 
(covering the complete set of parameter values shown in table 1). The differences 
found in the curves shape illustrate the role of the population variation mechanism. 
Although the assortative mating improves the success rates of the other genetic 
algorithms (as we can see by comparing the VAMEA curve in figure 4b with CHC 
and APGA curves in figure 4a), those rates experience even further improvement 
when the population variation process is introduced.  

Although we tested SRP-EA with random selection of parents, following GAVaPS 
and APGA method, best results were achieved with tournament selection. APGA, on 
the other hand, didn’t improve its results when changing the selection method. This 
outcome is not surprising for two reasons: 1) the way the chromosomes are eliminated 
from the population is different in SRP-EA, so the same maxLT value in SRP-EA and 
APGA conduces to a lower selection pressure in the first algorithm; 2) to amplify 
selection pressure in the algorithms, one must raise maxLT value; however, in SRP-
EA, the increase in maxLT may lead to an excessive population growth and the 
consequent effort in terms of function evaluations (the population of APGA, with its 
“Steady-State like” reproduction, is almost immune to demographic explosion, even 
with large values of maxLT).  

Before we conclude this section, a brief analysis of the population growth of the 
algorithms is required. Due to its fixed and low reproduction rate, the variation in the 
population size of APGA is very predictable and consists of small oscillations around 
an average value. Besides that, the population size seems to evolve without any 
feedback from the state of the search. Every APGA run over every instance of the 
problem showed the same behavior. The population size of SRP-EA evolves in a 
quite diverse manner. As we can see in figure 5, which represents the population 
growth and the evolution of the best fitness in two independent successful runs  of  the  
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Fig. 4. Best success rates thorough the complete parameter space 

algorithm on a NP=100 landscape, the population size clearly oscillates, sometimes 
even in severe way. There is a consistent demographic explosion in the beginning of 
the search which is quickly appeased. Then, the population stagnates in lower values 
but experience from time to time sudden increases in its size. Inspecting closely the 
curves below it can be seen that the sudden demographic growth is usually associated 
with stabilized or slowly growing phases of the best fitness value. 
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Fig. 5. Population growth and best fitness of SRP-EA in two independent runs. N = 100, pm = 
0.005 and maxLT =11. NP = 100. 

5   Conclusions and Future Work 

The results illustrated SRP-EA superior ability to find the global optima of Spears’ 
landscapes when compared to CHC and APGA. That ability comes not only from the 
reproduction restriction based on the Hamming Distance between parents (which 
contributes with genetic diversity maintenance) but also from the population size 
variation itself. The dynamics of the population size seem to reflect the state of the 
search and the evolution of the quality of the solutions, in opposition to a more stable 
growth curve observed in APGA runs. 

An in-depth analysis of the new parameters is needed in order to establish some 
rules that might reduce the complexity of the algorithm and also optimize its 
performance. Other distance criteria must also be inspected in order to reflect more 
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properly the distribution of the population in the search space, avoiding overcrowded 
areas which do not contribute to maintain the genetic diversity, and redirecting the 
search to unexplored areas in an adaptive and non centralized manner. Finally, the 
application of SRP-EA to dynamic problems with on-line moving optima may be a 
proper field to evaluate the algorithm’ potentialities and test its adaptive 
characteristics. Some preliminary tests already indicated that SRP-EA may be a useful 
tool to deal with dynamic problems. 

Acknowledgement. The first author wishes to thank FCT, Ministério da Ciência e 
Tecnologia, his Research Fellowship SFRH/BD/18868/2004. 

References 

1. Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS – A Genetic Algorithm with Varying 
Population Size. In: Proceedings of Evolutionary Computation Conference, IEEE Press, 
1994.  

2. Bäck, T., Eiben, A.E., van der Sart, N.A.L.: An empirical Study on Gas “without 
parameters”. In Proceedings of the 6th Conference on Parallel Problem Solving from 
Nature, LNCS, pages 315-324, Springer, Berlin, 2000. 

3. Costa, J., Tavares, R., Rosa, A.C.: An Experimental Study on Dynamic Random Variation 
of Population Size. In Proceedings of IEEE Systems, Man and Cybernetics Conference, 
Volume, pages 607-612, Tokyo, 1999. IEEE Press. 

4. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary 
Algorithms. IEEE Transaction on Evolutionary Computation, 3(2): 124-141, 1999. 

5. Eiben, A.E., Marchiori E., Valkó, V.A.: Evolutionary Algorithms with On-the-Fly 
Population Size Adjustment. 8th Conference on Parallel Problem Solving from Nature, 
LNCS, pages 315-324, Springer, Birmingham, 2004. 

6. Eschelman, L.J. The CHC Algorithm: How to Have Safe Search When Engaging in Non-
traditional Genetic Recombination. In Proceedings of Foundations of Genetic Algorithms-1, 
pages 70-79, 1990.  

7. Fernandes, C., Rosa, A.C.: A Study on Non-random Mating and Varying Population Size in 
Genetic Algorithms Using Royal Road Functions. In Proceedings of the IEEE Conference 
on Evolutionary Computation, pages 60-66, 2001. 

8. Koumosis, V.K., Katsaras, C.P.: A Saw-Tooth Genetic Algorithm Combining the Effects of 
Variable Population Size and Reinitialization to Enhance Performance. In IEEE 
Transactions on Evolutionary Computation, 10(1), pages 19-28, 2006. 

9. Spears, W.M.: Evolutionary Algorithms: the role of mutation and recombination. Springer, 
2000. 


	Introduction
	Previous Research
	Our Proposal
	Test Bed Set and Results
	Conclusions and Future Work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




