
An Investigation of Representations and
Operators for Evolutionary Data Clustering with

a Variable Number of Clusters

Julia Handl and Joshua Knowles

Manchester Interdisciplinary Biocentre, University of Manchester, UK
j.handl@postgrad.manchester.ac.uk, j.knowles@manchester.ac.uk

Abstract. This paper analyses the properties of four alternative repre-
sentation/operator combinations suitable for data clustering algorithms
that keep the number of clusters variable. These representations are inves-
tigated in the context of their performance when used in a multiobjective
evolutionary clustering algorithm (MOCK), which we have described pre-
viously. To shed light on the resulting performance differences observed,
we consider the relative size of the search space and heuristic bias inher-
ent to each representation, as well as its locality and heritability under the
associated variation operators. We find that the representation that per-
forms worst when a random initialization is employed, is nevertheless the
best overall performer given the heuristic initialization normally used in
MOCK. This suggests there are strong interaction effects between initial-
ization, representation and operators in this problem.

1 Introduction

Data clustering [7] is an unsupervised classification problem in which a set of
data items is partitioned into a number of disjoint subsets or ‘clusters’, based
on proximity information. The number of clusters, k, inherent to the data is
usually unknown a priori, so clustering algorithms that investigate solutions
with different numbers of clusters may be preferred to algorithms requiring a
fixed value of k to be specified by the user. In this work, we consider alterna-
tive combinations of representations and variation operators that are suitable
for exploring solutions with a variable number of clusters. We analyse the differ-
ent choices within a multiobjective clustering evolutionary algorithm, MOCK,
described previously [6], and attempt to understand the performance differences
observed in terms of key properties of the representations and operators.

The effects of representations and operators on evolutionary search are a
perennial topic in the literature, though few firm rules or conclusions of prac-
tical significance exist. Important factors, nonetheless, are thought to be: the
size of the search space induced by a representation; whether phenotype space
is entirely covered and/or reachable; whether the mapping from genotype to
phenotype is injective, or ‘degenerate’ [11]1; whether particular (groups of) phe-
notypes are over-represented [11,12,13]; and the ‘heritability’ and ‘locality’ of
1 Meaning that several genotypes may map to the same phenotype.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 839–849, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

840 J. Handl and J. Knowles

the representation under crossover and mutation, respectively [12]. We consider
each of these aspects in the analysis of the alternative representations studied
here, and reflect on how much they tell us about performance.

The organization of the paper is as follows. Section 2 briefly recalls the prin-
ciples behind the multiobjective clustering algorithm, MOCK, and the require-
ments it imposes on possible representations and operators. We also briefly revisit
other work that considers representations for evolutionary data clustering. Sec-
tion 3 provides the details of the representations and operators that are studied
and the parameter setting used. Section 4 presents both theoretical and empirical
findings of the study, and Section 5 concludes.

2 Previous Work

Basic principles of MOCK. In our previous work, we have described a mul-
tiobjective evolutionary algorithm (MOEA) for clustering, called MOCK (for
Multiobjective clustering with automatic k-determination, [6]). MOCK is based
on the elitist multiobjective evolutionary algorithm, PESA-II, described in detail
in [2]. It minimizes two clustering objectives, overall deviation and connectivity:
overall deviation is computed as the overall sum of the distances between each
data item and its corresponding cluster centre,

Dev(C) =
∑

Ck∈C

∑

i∈Ck

δ(i, μk),

where C is the set of all clusters, μk is the centroid of cluster Ck and δ(., .)
is the chosen distance function (here, the Euclidean distance); quite differently,
connectivity evaluates the degree to which neighbouring data-points have been
placed in the same cluster and is computed as,

Conn(C) =
N∑

i=1

⎛

⎝
L∑

j=1

xi,nnij

⎞

⎠ , where xr,s =
{ 1

j if �Ck : r ∈ Ck ∧ s ∈ Ck

0 otherwise,

and where nnij is the jth nearest neighbour of datum i, N is the size of the
clustered data set, and L is a parameter determining the number of neighbours
that contribute to the connectivity measure.

When these two objectives are minimized, an approximate Pareto front is ob-
tained with solutions arranged along the front by the number of clusters, k. (This
arrangement occurs because the objectives have opposite biases with respect to
the number of clusters [6]). The shape of the Pareto front gives important clues
as to which is the actual ‘best solution’ and MOCK uses an automatic heuristic
strategy to select the best solution, hence determining or estimating k automati-
cally. Using this strategy, MOCK seems to provide solutions of a more consistently
high quality compared to some other clustering algorithms, when a range of data
sets is considered [6]. However, the final solution returned by MOCK’s selection
strategy depends crucially on obtaining a good overall Pareto front, and one that

An Investigation of Representations and Operators 841

covers a range of values of k. This means that any representation used must facili-
tate finding solutions over a wide range of different numbers of clusters. Moreover,
the representation must encourage effective exploration of the search space for an-
other reason: although overall deviation is a relatively easy objective to minimize,
connectivity (like most objectives capturing spatial separation or local connected-
ness [6]) provides relatively poor guidance in some areas of the search space.

MOCK’s representation, operators and initialization. The representa-
tion employed in MOCK in [6] is the locus-based adjacency scheme proposed
in [10]. In this graph-based representation, each individual g consists of N genes
g1, . . . , gN , where N is the size of the clustered data set, and each gene gi can
take allele values j in the range {1, . . . , N}. A value of j assigned to the ith
gene, is then interpreted as a link between data items i and j: in the resulting
clustering solution they will be in the same cluster. The decoding of this repre-
sentation requires the identification of all connected components, and all items
belonging to the same connected component are assigned to one cluster. This
decoding step can be done in linear time.

MOCK’s initialization is based on (i) minimum spanning trees (MSTs) and (ii)
the k-means algorithm [9]. For a given data set, the complete MST is computed
using Prim’s algorithm. Individuals corresponding to different clustering solutions
are then obtained by breaking up the MST, using either a measure of ‘interesting-
ness’ of individual links or the partitionings prescribed by the k-means solutions.
This has the effect of generating solutions with a range of cluster numbers that
already provide a good and well-spread approximation to the Pareto front [6].

MOCK’s variation operators are uniform crossover and a mutation operator
that allows data items to be linked to one of their L nearest neighbours only.
Hence, ∀i, gi ∈ {nni1, . . . , nniL}, where nnil denotes the lth nearest neighbour
of data item i.

Alternative representations. For single-objective clustering tasks, a variety
of different EA representations for clustering solutions have been explored in
the literature (see [1]), ranging from a straightforward representation (with the
ith gene coding for the cluster membership of the ith data item), to more com-
plex representations, such as matrix-based or permutation-based representations.
Falkenauer’s grouping GA [3] also provides a general template for the implemen-
tation of evolutionary algorithms for grouping problems, although an application
of the approach to straightforward data clustering has not been demonstrated,
to our knowledge, previously, and under Falkenauer’s template, this would re-
quire the design of several clustering-specific operators. Much previous work has
also explored the use of existing clustering heuristics (most notably the k-means
algorithm) as the cluster generator in a hybrid coding scheme (see [8]). This
restricts the search space ‘seen’ by the evolutionary algorithm to the set of local
optima that can be identified by the clustering heuristic used, and is therefore
unsuitable for the use in multiobjective clustering where trade-off solutions (not
identifiable by existing single-objective clustering heuristics) are to be found.

842 J. Handl and J. Knowles

3 Representations/Operators Studied

The four different combinations of representations/operators investigated in this
paper are as follows.

Baseline: A straightforward clustering representation, with one gene for every
data item and its allele value specifying the cluster membership. An upper
limit on the maximum number of clusters is imposed. Uniform crossover and
a standard mutation operator (random change of cluster membership for a
single data item) are used.

VIENNA: Representation identical to theBaseline representation.No crossover,
but the mutation operator introduced in [5] is used. When a gene undergoes
mutation to a different allele value (i.e. cluster), a number g of other genes are
simultaneously ‘moved’ with it into the same target cluster (and the genotype
is updated accordingly). The particular data items that undergo this move are
the g nearest neighbours to the data item coded for by the initially mutated
gene. The integer g itself is chosen, independently at each mutation event, uni-
formly at random in 0, . . . , N/2.

Falkenauer: Following the principles in [3], the genome of every individual
consists of two sections, the first being identical to the above Baseline rep-
resentation, and the second being a list of the groups (i.e. the set of allele
values making up the first part). Two-point crossover operates directly on
the second section, and the first section is updated, subsequently. We have
developed a crossover operator that uses heuristic information to repair the
first section: all unassigned data items are assigned the cluster membership
of their nearest data items. We have also designed three mutation operators
for the splitting, merging and the exchange of data items between groups,
respectively. The splitting mutation operates on a randomly selected group:
two items from this ‘parent’ cluster are randomly selected and used as ‘seeds’
for the two ‘daughter’ clusters. All remaining data items are then assigned
to the cluster whose seed they are closer to. The merging mutation sim-
ply joins two randomly selected clusters. The swapping mutation swaps the
cluster membership of two randomly selected data items.

MOCK: MOCK’s standard representation and operators (see Section 2).

These different representations and operators are ‘plugged’ into our existing mul-
tiobjective clustering algorithm, that is, the optimization algorithm (PESA-II)
and the objectives used remain constant throughout the experiments. MOCK’s
heuristic initialization scheme is also used for all representations/operators, but
we additionally conduct experiments with random initialization in order to assess
the impact of this initialization scheme. Here, the random initialization schemes
used for the different representations vary slightly, as we aim to use the initial-
ization that intuitively seems the most ‘natural’ for each of the representations
used. For the adjacency-based representation, a random initialization is obtained
by linking each data item to one of its randomly selected L nearest neighbours

An Investigation of Representations and Operators 843

Table 1. Parameter settings for the four algorithms. In those representations using
crossover, a crossover probability of 0.7 is used. The mutations in the Baseline representa-
tion and VIENNA, and Falkenauer’s swapping mutation are applied with a probability of
1
N

, where N is data set size. For MOCK, the biased mutation probability pm = 1
N

+(l
N

)2

introduced in [6] is used. The merge and split mutations in Falkenauer’s representation
are applied to a given individual with a probability of 0.2 each.

Parameter setting
Number of generations 1000
External population size 1000
Internal population size 10
Resolution of hypergrid per dimension 10
#(Initial solutions) 100
Objective functions Overall deviation and

connectivity (L = 10)

of the data set. For the other three representations we first (randomly) deter-
mine the number of clusters, and then (randomly) assign cluster numbers to the
individual data items.

Apart from representation-specific variations, the parameter settings are kept
constant throughout the experiments and are summarized in Table 1.

4 Analysis

4.1 Empirical Performance Analysis

The data sets used in our empirical performance analysis have been previously
described in [6] and are obtained using a generator for Gaussian clusters. For
eight different combinations of cluster number and dimension, 10 different in-
stances are generated, giving 80 data sets in all. In our experiments, these groups
of 10 instances are referred to as xd-yc, where x is the dimensionality and y is
the number of clusters in the data set.

In order to assess the algorithms’ performance at solving the clustering task,
two different measures are employed. Firstly, the quality of the best solution
present in the Pareto front is analyzed. Here, the quality of a clustering solution
is established using an external validation technique (which compares to the
known correct partitioning), the Adjusted Rand Index (see [6]). It returns values
in the interval [∼0, 1] and is to be maximized.

Secondly, the quality of the Pareto fronts obtained is assessed using the hy-
pervolume indicator (a.k.a. the S measure [15]), a standard measure from the
literature. This indicator assesses the size of the region dominated by a sample
set of points, and is to be maximized. Here, the Pareto front of all runs com-
bined is normalized to lie in (0,1),(1,0); this normalization is then applied to each
Pareto front. To compute each hypervolume, the point (2,2) is used to bound the
dominated region, and the hypervolumes are divided by 4.0 to normalize them
to a maximum value of 1.0.

844 J. Handl and J. Knowles

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 0 50 100 150 200 250 300 350 400 450 500

O
ve

ra
ll

de
vi

at
io

n

Connectivity

Baseline, heuristic initialization
Vienna, heuristic initialization

Falkenauer, heuristic initialization
MOCK, heuristic initialization

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 200 400 600 800 1000 1200

O
ve

ra
ll

de
vi

at
io

n

Connectivity

Baseline, random initialization
Vienna, random initialization

Falkenauer, random initialization
MOCK, random initialization

MOCK, heuristic initialization

Fig. 1. Illustration of the differences between the approximation sets returned by the
four algorithms on one of the 10d-40c data sets. (Left) With heuristic initialization.
(Right) With random initialization. Results are for the first run of each algorithm.

Table 2. Mean values of the Adjusted Rand Index (wrt the known correct partitioning)
of the best solution in the approximation sets identified by the four MOEAs, and the
hypervolume of the entire approximation sets. Bold font indicates the statistically best
performer (and ties) under a paired Wilcoxon test (overall α = 0.05).

Adjusted Rand Index Hypervolume Indicator
Data set MOCK Falkenauer VIENNA Baseline MOCK Falkenauer VIENNA Baseline
2d-4c 0.988905 0.98401 0.965744 0.853658 0.98123 0.972678 0.963554 0.953729
2d-10c 0.948349 0.91774 0.858553 0.800329 0.985935 0.97792 0.959744 0.949203
2d-20c 0.949477 0.935117 0.877584 0.862006 0.989509 0.982987 0.968587 0.96579
2d-40c 0.875799 0.81649 0.775303 0.771587 0.987412 0.976384 0.954132 0.949916
10d-4c 0.995852 0.996396 0.96457 0.898749 0.968248 0.95513 0.941786 0.933688
10d-10c 0.969794 0.955316 0.893811 0.859238 0.978902 0.970791 0.949533 0.94131
10d-20c 0.997959 0.997976 0.970049 0.961713 0.983116 0.978429 0.96757 0.966485
10d-40c 0.99129 0.983576 0.943561 0.937465 0.997303 0.988787 0.971748 0.968548

Table 2 summarizes the performance of the four algorithms under these two
different measures. The results indicate clear performance differences between
the algorithms. MOCK emerges as the strongest overall performer. In terms of
the Adjusted Rand Index, it is closely followed by Falkenauer’s representation,
however, the results of the hypervolume reveal a significantly better convergence
of MOCK towards the Pareto front. Both MOCK and Falkenauer’s represen-
tation outperform VIENNA and the Baseline method. Figure 1 provides some
representative examples of the approximation sets obtained by the four algo-
rithms on a complex data set, and contrasts these results with the performance
of the algorithms when random initialization is used. With the latter, all four
algorithms perform very poorly, with MOCK suddenly being one of the worst
performers. These results suggest that MOCK’s good performance derives from a
synergy between its initialization, representation and operators. This also seems
apparent from the results obtained when comparing crossover innovation during
a run of each MOEA, with the same for random solutions (see Section 4.4).

An Investigation of Representations and Operators 845

4.2 Size of the Search Space

In its original formulation, the size of the search space of the adjacency-based
representation is bounded by NN . However, the introduction of the nearest-
neighbour mutation reduces the upper bound of the size of the search space seen
by mutation to LN , where, in our case, L = 10.

The Baseline representation and VIENNA result in a search space of (kmax)N

each, where kmax is the upper limit on the number of clusters, which, in this
work, has been set to kmax = 50. For Falkenauer’s representation, the search
space is of size (kmax)N × kmax!.

4.3 Heuristic Bias

A representation is said to be biased if it leads to an over-representation of
certain phenotypes: hence, when sampling the search space without any selection
pressure, these phenotypes will have a larger probability of being generated [12].
Here, the presence of a bias is analyzed with respect to two different phenotypic
properties: (i) the number of clusters of the solution; and (ii) the clustering
quality of the solution.

In the Baseline representation and VIENNA, every phenotype is encoded by(
kmax

k

)
×k! different genotypes. Furthermore, the number of phenotypes S(N, k)

with a fixed number k of clusters is given by the Stirling number of the second
kind. Consequently, the number of genotypes coding for a clustering solution
with a fixed number of clusters k is given by

RBaseline(N, k) =
(

kmax

k

)
×

k∑

i=1

(−1)k−i

(
k

i

)
iN .

For very small data sets (n = 1, . . . , 9), the resulting distributions are illustrated
in Figure 2 (right). The bias of Falkenauer’s representation is closely related and
is given as

RFalkenauer(N, k) = RBaseline(N, k) × k!.

Hence, all three of these representations have a strong bias towards large numbers
of clusters. On the other hand, it is clear that the adjacency-based representation
suffers from a strong bias towards small numbers of clusters. In particular, for a
data set of size N , the number of different genotypes coding for solutions with
a fixed number of clusters k corresponds to the integer sequence A060281 [14]
and is computed as [4],

RMOCK(N, k) =
N−1∑

i=k−1

(
N − 1

i

)
NN−1−i[zk−1](z + 1) . . . (z + i),

where [zk−1] is a coefficient operator, and means that only the coefficients of the
terms with the specified powers of z contribute to the sum. For very small data
sets (n = 1, . . . , 9), the resulting distributions are illustrated in Figure 2 (left).

846 J. Handl and J. Knowles

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 g

en
ot

yp
es

Number of clusters

N=7

N=4

N=5

N=3

N=2

N=6

N=9

N=8

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 g

en
ot

yp
es

Number of clusters

N=9

N=8

N=7

N=6

N=5

N=4

N=3

N=2

Fig. 2. Number of genotypes coding for a clustering solution for a fixed number of clus-
ters for N = 1, . . . , 9 data items. (Left) Adjacency-based representation. Note that, for
increasing N , the maximum of the curve moves from k = 1 to k = 2, and this slow shift-
ing to the right can be observed to continue for growing N . (Right) Baseline/VIENNA
representation.

These calculations are confirmed by random sampling of the search space
with neither selection pressure nor the use of specialized heuristic operators (re-
sults not shown). Figure 3, illustrates the selection pressure implicitly introduced
through the use of specialized operators for clustering. The most striking results
are MOCK’s convergence to high numbers of clusters (caused by the nearest
neighbour restriction in the mutation operator), the quick loss of diversity in
Falkenauer’s and the Baseline method (caused by the use of crossover) and the
continuing exploration behaviour exhibited by VIENNA (due to the use of a
large-scale mutation operator with strong heuristic bias).

4.4 Locality and Heritability

An analysis of locality and heritability of the operators can help to further
understand the performance differences observed between the algorithms. This
analysis only requires the definition of a distance in phenotype space [12], which
is easily defined for the clustering task. A binary version of the Adjusted Rand
Index is used to compare the similarity of two given clustering solutions. Note
that, due to the use of a similarity (rather than a distance) measure, the following
definitions are slightly different from those introduced in [12].

In order to assess heritability under crossover, crossover innovation CI is
defined as the phenotypic similarity between an offspring and its phenotypically
closer parent:

CI = max(sP (xc, xp1), sP (xc, xp2)),

where xp1 and xp2 are the phenotypes of the two parents and xc is the phenotype
of the offspring, and sP (,) is the similarity measure chosen.

Accordingly, the locality of the mutation operator is defined as the mutation
innovation MI, which is the phenotypic similarity between solution x and its
mutant:

MI = sP (x, xm).

An Investigation of Representations and Operators 847

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250

A
dj

us
te

d
R

an
d

In
de

x

#(Evaluations)

Heuristic initialization
Random initialization

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

#(
C

lu
st

er
s)

#(Evaluations)

Heuristic initialization
Random initialization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

A
dj

us
te

d
R

an
d

In
de

x

#(Evaluations/50)

Heuristic initialization
Random initialization

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

#(
C

lu
st

er
s)

#(Evaluations/50)

Heuristic initialization
Random initialization

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250

A
dj

us
te

d
R

an
d

In
de

x

#(Evaluations/50)

Heuristic initialization
Random initialization

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 50 100 150 200 250

#C
lu

st
er

s)

#(Evaluations/50)

Heuristic initialization
Random initialization

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

A
dj

us
te

d
R

an
d

In
de

x

#(Evaluations/50)

Heuristic initialization
Random initialization

Random initialization, no nn-restriction

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

#(
C

lu
st

er
s)

#(Evaluations/50)

Heuristic initialization
Random initialization

Random initialization, no nn-restriction

Fig. 3. Evolution of the number of clusters and the Adjusted Rand Index during a
typical run of the MOEAs without selection pressure on one of the 2d-4c data sets

Figure 4 compares the distributions of crossover innovation and mutation in-
novation throughout the runs of the four MOEAs, and for randomly generated
solutions. These plots illustrate that the reasons for the quick convergence of Falke-
nauer’s representation in the absence of explicit selection pressure lie in the
crossover operator’s poor performance as a variation operator (it frequently cre-
ates identical copies of one parent). In contrast to this, MOCK’s crossover

848 J. Handl and J. Knowles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(C

I)

CI

Baseline
Falkenauer

MOCK

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(C

I)

CI

Baseline
Falkenauer

MOCK

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(M

I)

MI

Baseline
VIENNA

Falkenauer
MOCK

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(M

I)

MI

Baseline
VIENNA

Falkenauer
MOCK

Fig. 4. (Top left) Crossover innovation in a normal run of the algorithms on a 2d-4c
data set. (Top right) Crossover innovation for randomy generated solutions. (Bottom
left) Mutation innovation in a normal run of the algorithm on a 2d-4c data set. (Bottom
right) Mutation innovation for randomly generated solutions.

operator generates a large number of potentially interesting solutions (in the range
[0.4, 0.9]),which maybe the reason for its superior performance. Importantly, how-
ever, it fails to do so when random initialization is used, underlining once again that
this representation relies crucially on the use of a powerful initialization scheme.

5 Conclusion

In this paper, four alternative representation/operator combinations for data-
clustering with variable-k, have been investigated. We have focused on their use in
the multiobjective clustering algorithm, MOCK, where it is necessary to be able to
represent both compact clusters and locally-connected clusters equally well, and
represent these for a large range of values of k. The analysis has revealed that,
in this context, the simple adjacency-based representation, when combined with
uniform crossover and nearest-neighbour mutation, performs very well, but only
if a specialized initialization scheme is used. The more complicated scheme follow-
ing Falkenauer is good if random initialization is used. Some of these results were
reflected in the crossover innovation plots. The effects of the different representa-
tions’ heuristic biases in phenotype space were also apparent under random selec-
tion, but these were overcome by the effects of standard selection and especially
the use of the heuristic nearest-neighbour mutation.

An Investigation of Representations and Operators 849

Acknowledgments. We would like to thank Vladeta Jovovic and Neil Sloane
for pointing us to A060281 in the online encyclopedia of integer sequences. JH
acknowledges support of a doctoral scholarship from the German Academic Ex-
change Service (DAAD) and the Gottlieb Daimler- and Karl Benz-Foundation,
Germany. JK is supported by a David Phillips Fellowship from the Biotechnology
and Biological Sciences Research Council (BBSRC), UK.

References

1. R. M. Cole. Clustering with genetic algorithms. Master’s thesis, University of West-
ern Australia, Australia, 1998.

2. D. W. Corne, J. D. Knowles, and M. J. Oates. PESA-II: Region-based selection in
evolutionary multiobjective optimization. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 283–290. ACM Press, New York, NJ, 2001.

3. E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley and Son
Ltd, New York, NJ, 1998.

4. I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. John Wiley and
Sons, Inc., New York, NJ, 1983. (Page 192, 3.3.28).

5. J. Handl and J. Knowles. Evolutionary multiobjective clustering. In Proceedings of
the Eighth International Conference on Parallel Problem Solving from Nature, pages
1081–1091. Springer-Verlag, Berlin, Germany, 2004.

6. J. Handl and J. Knowles. An evolutionary approach to multiobjective clustering.
IEEE Transactions on Evolutionary Computation, 2006. (In press).

7. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, Engle-
wood Cliffs, NJ, 1988.

8. P. C. H. Ma, K. C. C. Chan, X. Yao, and D. K. Y. Chiu. An evolutionary cluster-
ing algorithm for gene expression microarray data analysis. IEEE Transactions on
Evolutionary Computation, 2006. (In press).

9. L. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297. University of California Press, Berkeley, CA, 1967.

10. Y.-J. Park and M.-S. Song. A genetic algorithm for clustering problems. In Pro-
ceedings of the Third Annual Conference on Genetic Programming, pages 568–575.
Morgan Kaufmann, San Francisco, CA, 1998.

11. N. J. Radcliffe and P. D. Surry. Fitness variance of formae and performance pre-
diction. In Foundations of Genetic Algorithms 3, pages 51–72. Morgan Kaufmann
Publishers, San Mateo, CA, 1995.

12. G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability and heuristic
bias in evolutionary algorithms: A case study for the multidimensional knapsack
problem. Evolutionary Computation, 13(4):441–475, 2005.

13. F. Rothlauf and D. E. Goldberg. Redundant representations in evolutionary com-
putation. Evolutionary Computation, 11(4):381–415, 2003.

14. N. J. A. Sloane. Series A060281 in The On-Line Encyclopedia of Integer Sequences.
15. E. Zitzler. Evolutionary algorithms for multiobjective optimization: methods and ap-

plications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzer-
land, 1999.

	Introduction
	Previous Work
	Representations/Operators Studied
	Analysis
	Empirical Performance Analysis
	Size of the Search Space
	Heuristic Bias
	Locality and Heritability

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

