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Abstract. In this paper, we propose the use of a mathematical pro-
gramming technique called the ε-constraint method, hybridized with an
evolutionary single-objective optimizer: the cultured differential evolu-
tion. The ε-constraint method uses the cultured differential evolution to
produce one point of the Pareto front of a multiobjective optimization
problem at each iteration. This approach is able to solve difficult multi-
objective problems, relying on the efficiency of the single-objective opti-
mizer, and on the fact that none of the two approaches (the mathematical
programming technique or the evolutionary algorithm) are required to
generate the entire Pareto front at once. The proposed approach is vali-
dated using several difficult multiobjective test problems, and our results
are compared with respect to a multi-objective evolutionary algorithm
representative of the state-of-the-art in the area: the NSGA-II.

1 Introduction

Evolutionary multiobjective optimization consists of using evolutionary algo-
rithms to solve problems with two or more (often conflicting) objective func-
tions. This research area has become very popular in the last few years [1].
Concurrently, more challenging problems have been integrated into the most re-
cent benchmarks, some of which require a considerably high number of objective
function evaluations to be solved, or can even make current algorithms to fail in
their efforts to generate the true Pareto front [2].

The ε-constraint method is a mathematical programming technique, which
transforms a multiobjective optimization problem into several constrained single-
objective problems. This method has not been used too often in evolutionary
computation, due to the fact that it does not generates a set of nondominated
solutions in a single run, as most evolutionary algorithms do. Moreover, it has
been found that this method is relatively expensive when solving “easy” multiob-
jective problems, because of the several single-objective optimizations executed.

In this paper we propose the use of the ε-constraint method together with
an efficient evolutionary approach which solves constrained single-objective
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optimization problems. The optimizer consists of a differential evolution-based
cultural algorithm, which improves the optimization process by means of domain
information extracted during the evolutionary search.

The rest of the paper is organized as follows: in Section 2, the ε-constraint
method is presented in some detail. Section 3 briefly describes the cultured dif-
ferential evolution approach, which is the single-objective optimizer adopted in
this work. Section 4 describes our proposed approach. Section 5 contains our re-
sults, and a comparative study with respect to the NSGA-II. Finally, Section 6
provides our conclusions and some possible paths for future research.

2 The ε-Constraint Method

This is a multiobjective optimization technique, proposed by Haimes et al. [3], for
generating Pareto optimal solutions. It makes use of a single-objective optimizer
which handles constraints, to generate one point of the Pareto front at a time. For
transforming the multiobjective problem into several single-objective problems
with constraints it uses the following procedure (assuming minimization for all
the objective functions):

minimize fl(x)
subject to fj(x) ≤ εj for all j = 1, 2, . . . , m, j �= l,

x ∈ S

where l ∈ {1, 2, . . . , m} and S is the feasible region, which can be defined by
any equality and/or inequality constraint. The vector of upper bounds, ε =
(ε1, ε2, . . . , εm), defines the maximum value that each objective can have. In
order to obtain a subset of the Pareto optimal set (or even the entire set, in case
this set is finite), one must vary the vector of upper bounds along the Pareto front
for each objective, and make a new optimization process for each new vector.
The generation of different points of the Pareto front using different values of
the upper bound is illustrated in Figure 1.

For any nonlinear multiobjective optimization problem, the solution of an ε-
constraint problem yields a weakly Pareto optimal solution [3]. A true Pareto
optimal solution can be obtained either if the solution is unique, or if the opti-
mizations are done for all the objectives before reporting the solution [4]. How-
ever, to improve the speed of the generation of solutions, only one optimization
per point can be performed to obtain an approximation of the Pareto optimal
set.

To the best of our knowledge, the only attempt to hybridize the ε-constraint
method with an evolutionary algorithm is the approach called CMEA [5]. This
approach performs the intermediate optimizations using a standard evolutionary
algorithm. To reduce the computational cost of each independent optimization,
the final population of one optimization process is used as the initial popula-
tion for the next one; however, the authors noted the lack of diversity of the
approach and proposed a high mutation rate at the beginning of each process.
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Fig. 1. Generating different solutions with the ε-constraint method

The authors provide no further details about the mechanism adopted to handle
the constraints in the single-objective optimizer.

In [6], the authors proposed an extension of CMEA for three-objective prob-
lems. However, the algorithm does not seem able to find the extreme points of
the Pareto front itself, since they are provided a priori by the user. Regarding
the number of fitness function evaluations needed for CMEA to obtain good re-
sults, in [6], the authors mention that they perform 500,000 evaluations for the
three-objective knapsack problem.

3 Cultured Differential Evolution

The cultured differential evolution is a cultural algorithm [7] based on differential
evolution [8], designed to solve nonlinear constrained optimization problems. In
previous experiments [9], this algorithm exhibited a very good performance, ob-
taining competitive results when compared to other state-of-the-art evolutionary
optimization techniques, but requiring only a fraction of their fitness function
evaluations. This is because of the use of domain knowledge, extracted during
the evolutionary process, to efficiently guide the search. Next, we will briefly
describe this approach.

Cultural algorithms are made of two main components: The population space
consists of a set of possible solutions to the problem, and can be modeled using
any population based technique. The belief space is the information repository in
which the individuals can store their experiences for the other individuals to learn
them indirectly; it may be composed by several knowledge sources. Our proposed
approach uses differential evolution in the population space [8]. A pseudo-code
of our approach is shown in Algorithm 1.

In the initial steps of the algorithm, a population of popsize individuals, xj , j =
1, . . . , popsize, is created; each individual contains the n parameters of the prob-
lem, xj = (xj

1, . . . , x
j
n). An initial belief space is also created. For the offspring

generation, the variation operator of differential evolution is modified by the
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Algorithm 1. Pseudo-code of the cultured differential evolution
Generate initial population of size popsize
Initialize the belief space
repeat

for each individual j in the population do
Randomly select a knowledge source ks from the belief space
Generate a random integer irand ∈ (1, n)
for each parameter i do

xj′
i =

{
influence(ks) if rand(0, 1) < CR or i = irand

xj
i otherwise

end for
Replace xj with the child xj′, if xj′ is better

end for
Update the belief space

until the termination condition is achieved

influence() function of a knowledge source, but the parameters CR and F of the
standard differential evolution are also required. To determine if a child is better
than its parent, and, therefore, if it can replace it, we use the following rules: 1.
A feasible individual is better than an infeasible one. 2. If both are feasible, the
individual with the best objective function value is better. 3. Otherwise, the indi-
vidual with less amount of constraint violation is considered better. The amount
of constraint violation is measured using the expression: viol(x) =

∑C
c=1

gc(x)
gmaxc

where gc(x) with c = 1, . . . , C are the constraints of the problem, and gmaxc is
the largest violation found for the constraint gc(x) so far.

In our approach, the belief space is divided into 4 knowledge sources:

Situational Knowledge: consists of the best exemplar found along the evolu-
tionary process. Its infuence function modifies the direction of the variation
operator to follow the leader.

Normative Knowledge: contains the intervals for the decision variables where
good solutions have been found, to move new solutions towards them, through
the use of its influence function.

Topographical Knowledge: It consists of a set of cells, and the best individ-
ual found on each cell. The topographical knowledge has an ordered list of
the best cells, based on the fitness value of the best individual on each of
them. Its influence function moves newly generated individuals towards the
best cells.

History Knowledge: was originally proposed for dynamic objective functions
[10]. It records in a list, the location of the best individual found before each
environmental change. In our approach, instead of detecting changes of the
environment, we use it to escape from local optima.

At the beginning, all the knowledge sources have the same probability to be
applied, but during the evolutionary process, the probability of applying each
knowledge source is updated according to its success rate.
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4 Hybridizing the ε-Constraint Method with CDE

There are two main possibilities of how we can vary the ε values: one is to have
an approximation of the dimensions of the Pareto front, and then divide it into
a number of intervals depending of the number of solutions that we want as
outcome. The other, proposed by Laumanns et al. [11] is to execute an initial
optimization without constraints, and then use the result of this first step to
set the values for ε. If the Pareto front is discrete, this approach is particularly
suitable, because it can find the entire Pareto optimal set, as proved in [11].

As our proposed approach is designed to deal with real-valued problems, it
is most likely to have a continuous Pareto front, so we chose the first approach
(from the two previously mentioned) to obtain ε. The εj must vary from the
best to the worst value for the objective j, i.e. the search must move from the
ideal to the nadir objective vector. The estimation of the ideal objective vector
involves individual optimizations of one objective at a time. On the other hand,
the estimation of the nadir objective vector is a more difficult task [4]. Currently,
there are no efficient and reliable methods to estimate the nadir point, for an
arbitrary problem. Only for the two-objective case, there exists a simple method
that can provide a good estimation, which is called the payoff table. Due to this
limitation, the proposed approach is currently working only for two-objective
problems. However, there are very hard two-objective problems in the literature,
which are very difficult to solve efficiently by any of the current multi-objective
evolutionary algorithms (MOEAs). Some details about the estimation of the
dimensions of the Pareto front, in the proposed approach, are shown in the first
steps of Algorithm 2.

The single-objective optimizer, in which our method is based, is the cultured
differential evolution previously described. Let’s now assume that it is available
as the procedure cde(fl, ε, g), which performs the optimization process of the
ε-constraint method during g generations and returns the best point found. If
the procedure is called without any ε values (cde(fl, g)), the optimization is
performed removing the constraints of the form fj(x) ≤ εj . The pseudo-code of
the ε-constraint with CDE (ε-CCDE) is shown in Algorithm 2.

In Algorithm 2, the lower and upper bounds, lb and ub, are increased by
a tolerance t; this is done since the results of the cde procedure are only ap-
proximations, and it is possible to find a better point outside of them. We use
t = 0.05(ub − lb). The ε values are updated with a δ, which is dependent of the
number of points in the Pareto front desired by the user or the decision maker,
p. It is obtained as follows: δ = ub−lb

p This way, we aim that the final points
are equally spaced in their projection over the f2 axis. g is an input parame-
ter of the algorithm, but it is very important, because together with p and the
population size of the cde procedure, popsize, define the total number of fitness
function evaluations required for the approach. The number of fitness function
evaluations is approximately p · g · popsize.

Algorithm 2 shows f1 as the objective to be optimized, and f2 as the con-
straint. However, one can interchange the roles of the objectives if the problem
looks harder to solve in the original setting. In the experiments shown in this
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Algorithm 2. ε-Constraint with CDE.
P = ∅
ub = f2(cde(f1, 2g))
lb = f2(cde(f2, 2g))
ub = ub + t, lb = lb − t
ε = lb
while ε ≤ ub do

x = cde(f1, ε, g)
if x is nondominated with respect to P then

P = P − {y ∈ P | x � y}
P = P ∪ {x}

end if
ε = ε + δ

end while

paper, the original setting was always preserved, and f1 was always taken as
the objective to optimize, to allow a fair comparison. In order to improve the
performance of each optimization process, the algorithm shares a percentage of
the population, in the initial population of the next process. This helps because
the problems to be solved are very similar, and the only change is the upper
bound of the objective functions that are treated as constraints. When all the
population is shared, the loss of diversity leads to premature convergence. In
practice, we found that a small percentage (around 10%) of the population to
be shared is enough to improve convergence without losing diversity.

5 Comparison of Results

In order to validate the performance of the proposed approach, some test func-
tions have been taken from the specialized literature. One may think that the
several single-objective optimizations required may give rise to a prohibitively
high computational cost, which is unnecessary considering that a modern MOEA
may produce a similar approximation of the Pareto front at a much more af-
fordable computational cost. There are problems, however, where this is not the
case, and in which a modern MOEA cannot converge to the true Pareto front
even if we do not restrict the number of evaluations performed. It is precisely in
those cases for which we believe that our approach can be a viable alternative.

In order to validate our hypothesis we looked specifically for hard multiob-
jective problems within the existing benchmarks. Our search led us to the use
of DTLZ8 and DTLZ9 (from [12]), with 20 decision variables, as suggested by
their designers. The main difficulty of these two problems lies on the satisfaction
of their constraints. We also looked at a more recent benchmark proposed by
Huband et al. [2], where we found harder problems (WFG1, WFG2, WFG3 and
WFG9). Each of them has 24 variables. WFG1 is strongly biased toward small
values of the first 4 variables, WFG2 and WFG3 are non-separable, but WFG2
has also a disconnected Pareto front, and WFG9 is a deceptive problem.
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We decided to compare results with respect to the NSGA-II [13], since this is
an approach representative of the state-of-the-art in the area.

5.1 Experimental Setup

We ran both algorithms during 50,000 fitness function evaluations each (except
for two problems). We aimed to obtain a set of 50 points as a result of each
run, so we adapted the parameters according to that. For the ε-CCDE, the
parameters adopted were: p = 50, g = 48, with 10% of the population shared
between optimizations (this 10% is chosen at random). For the cde procedure we
used popsize = 20, F = 0.7, CR = 0.5. The population size of NSGA-II was set
to 52, and the number of generations to 962. The rest of the parameteres were
set as recommended by its authors: probability of crossover = 0.9, probability of
mutation = 0.0333, the value of the distribution index for crossover = 15, and
the value of the distribution index for mutation = 20.

Only for WFG1, the total number of fitness function evaluations was increased
to 250,000, because this is a really difficult problem. The parameters adopted
in this case were: g = 120 and popsize = 40. The number of generations of
the NSGA-II was changed in this case to 4808. Even with this large number of
iterations, the NSGA-II was not able to reach the true Pareto front. On the other
hand, for WFG2, the total number of fitness function evaluations was decreased
to 25,000, because this problem is less difficult than the others. The NSGA-II
ran in this case for 481 generations, and our approach adopted popsize = 10.

In Figure 2, we show the results of a single run for each test problem. Since
a visual comparison of the results may be inaccurate, we also used some perfor-
mance measures to allow a quantitative comparison of results.

5.2 Performance Measures

To assess the performance of the proposed approach, we adopted the two set
coverage (CS) metric [14], which is an indicator of how much a set covers (or
dominates) another one. A value of CS(X, Y ) = 1 means that all points in X
dominate or are equal to Y . If CS(X, Y ) = 0, there are no points in X that
dominate some point in Y . We executed our ε-CCDE 30 times per problem,
and then executed the NSGA-II 30 times with the same random seeds, and we
performed 30 one-to-one comparisons. The results are summarized in Table 1.

In all the problems in Table 1, the ε-CCDE obtained better average values.
However, the improvement is not always the same. In WFG1, all the points of ε-
CCDE always dominate the points produced by the NSGA-II, because the latter
cannot properly converge. On the other hand, in DTLZ8 and 9, both algorithms
could make most of their points to converge to the true Pareto front. But, as it
can be seen from the application of the next performance measure, the ε-CCDE
was able to generate points nearer to the ends of the true Pareto front.

Our second performance measure was the binary coverage (Qc) [15], which is
an indicator of the ability of an algorithm to obtain solutions near the extrema of
the Pareto front, measuring the largest possible angle between two vectors of the
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Fig. 2. Results produced by our ε-CCDE and the NSGA-II on the six test problems
adopted

Table 1. Mean and standard deviation of the CS measure (a larger value is better for
the first algorithm)

Test Problem CS(ε-CCDE, NSGA-II) CS(NSGA-II, ε-CCDE)
mean (std. dev.) mean (std. dev.)

DTLZ8 0.1415 (0.0521) 0.0185 (0.0184)
DTLZ9 0.1849 (0.0715) 0.1334 (0.0805)
WFG1 1.0000 (0.0000) 0.0000 (0.0000)
WFG2 0.8509 (0.1771) 0.0362 (0.0614)
WFG3 0.3987 (0.2691) 0.0908 (0.1368)
WFG9 0.6415 (0.3669) 0.0995 (0.2114)
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output of an algorithm. This is a second criterion when proper convergence has
been achieved. A value of Qc(X, Y ) > 0 means that X obtained points nearer
to the extrema of the Pareto front (it covers a larger angle). In Table 2, we show
the results (note that Qc(Y, X) = −Qc(X, Y )).

Table 2. Mean and standard deviation of the binary coverage measure (a larger value
is better for the first algorithm)

Test Problem Qc(ε-CCDE, NSGA-II)
mean (std. dev.)

DTLZ8 0.2496 (0.0536)
DTLZ9 0.1204 (0.1180)
WFG1 0.2112 (0.0634)
WFG2 0.0677 (0.2172)
WFG3 -0.0299 (0.0253)
WFG9 -0.0913 (0.1154)

This time, our approach obtained the largest values for DTLZ8, DTLZ9 and
WFG1. For WFG3 and WFG9, this metric indicates that the NSGA-II can cover
a larger portion of the Pareto front. However, it is important to keep in mind
that this is a secondary criterion, which becomes relevant only when convergence
has been achieved. In this case, and based on the two set coverage measure, our
ε-CCDE achieved a better convergence than the NSGA-II.

6 Conclusions and Future Work

In this paper, we explored the use of the ε-constraint method hybridized with
an efficient evolutionary single-objective optimizer, when solving hard multiob-
jective optimization problems. Our results show that the proposed approach can
solve problems that a highly competitive MOEA (the NSGA-II) cannot. Also,
there are some problems where the NSGA-II can converge properly, but it cannot
reach the ends of the true Pareto front, while our proposed approach obtained
a better spread of solutions in such cases. This approach may be recommended
when other algorithms cannot achieve a proper convergence, or when it is known
that the problem is deceptive or is strongly biased.

As part of our future work, we aim to extend our approach for m > 2 objec-
tives. This task requires that we implement a mechanism to estimate the ideal
and nadir objective vectors for more than 2 objectives.
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