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Abstract. Recent research on evolutionary multiobjective optimization
has mainly focused on Pareto fronts. However, we state that proper be-
havior of the utilized algorithms in decision/search space is necessary for
obtaining good results if multimodal objective functions are concerned.
Therefore, it makes sense to observe the development of Pareto sets as
well. We do so on a simple, configurable problem, and detect interesting
interactions between induced changes to the Pareto set and the ability
of three optimization algorithms to keep track of Pareto fronts.

1 Introduction

In recent years, evolutionary multiobjective optimization (EMO) [1,2] has de-
veloped from a marginal into one of the most actively pursued areas within
evolutionary computation (EC). Many new algorithms and measures have been
suggested, and, with them, concepts like Pareto set and Pareto front have entered
the common EC vocabulary [3]. Increasing interest in multiobjective techniques
has even evoked new theoretical approaches that employ multiple objectives to
simplify an originally singleobjective problem [4]. However, most of the current
EMO research concentrates on processes observed in the objective space, which
consists of the possibly obtainable value combinations of the considered objec-
tive functions. Undoubtedly, approximating the Pareto front well is the final aim
of EMO algorithms (EMOAs), and the Pareto set distribution may be of minor
interest for estimating their performances. Nevertheless, for improving these al-
gorithms, as well as for attaining guidelines on which of the solutions contained
in the approximated Pareto set shall eventually be implemented in a real-world
situation, a well-founded understanding of Pareto set distributions is supposed
to be a major advantage.

Research on singleobjective algorithms largely focuses on population behavior
in the decision space, or simplified models thereof, e.g. using basins of attraction
as means of abstraction [5]. Especially for multimodal problems, numerous tech-
niques have been invented to prevent the populations from converging to a single
point too soon. Some of these, as crowding [6], are also applied in EMOAs. But
diversity maintenance is only sought in objective space, to ensure good coverage
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of the Pareto front. However, for at least one of the objective functions being
multimodal, it is clear that this coverage cannot normally be achieved when the
whole population is clustered around one local minimum of this function. We
thus conjecture that a) there are situations—and these are not uncommon—
where the Pareto set does not share the aspired nice properties of the received
Pareto front the user normally focusses the attention on, and b) that diver-
sity maintenance is not only needed in objective but also in decision space for
successfully treating multiobjective optimization problems (MOPs): The product
designer is mainly interested in a thorough covering of the Pareto front for maxi-
mum wide scope in selecting solutions according to the (conjectured) customers’
desires. This is the situation which contemporary EMOAs are designed for. But
the product engineer is mainly interested in a thorough covering of the Pareto
set since it is important to know if a certain design can be realized by differ-
ent parameters of the production process: Solutions may differ in sensitivity or
in shorter tooling times and the like. Evidently, contemporary EMOAs are not
geared toward product engineers yet.

These both sides of one medal (Pareto front in the objective space, Pareto set
in the decision space) and the conjunction between them has not been studied in
detail before. Only few theoretical results for special classes of search spaces and
multiobjective functions were presented before, cf. Ehrgott [7]. But the handled
cases are restricted in a way that no generalization can be foreseen. Some effort
has been made in the development of test functions not only with regard to
a nice behaving Pareto front, but also with aspired properties in the decision
space, cf. Okabe et al. [8]. Zhou et al. [9] propose a specialized EA to implicitly
handle and profit from regularities in the objective as well as in the decision
space. Such regularities stem from the test functions proposed by Okabe et al.
[8] and cannot be expected generally.

2 Aims and Methods

Our approach is constructive; on a minimalist bimodal bicriteria test problem, we
study structural changes of true Pareto set and Pareto front on a set of targeted
modifications. These are derived both analytically and empirically, the latter
employing grid-based and stochastic enumerators. Furthermore, we observe how
different EMOAs cope with the original problem and the changes. More detailed,
we try to answer the following questions:

– How do Pareto set distributions change when the problem is modified? Are
there unexpected outcomes?

– Are different EMOAs able to cover Pareto set and Pareto front well?
– Are there consistent similarities/dissimilarities in the behavior of different

EMOAs due to problem modifications that hint to distinct capabilities of
these?
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3 A Simple Test Problem: TWO-ON-ONE

To deepen the insight in behavior and structure of Pareto sets mapping onto
Pareto fronts, we define the plainest bimodal/unimodal test problem we could
think of. It consists of a polynomial function f1 of degree four with two optima,
and the sphere function f2, which is of degree two:

f = (f1, f2) : IR2 → IR2 : f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − cx1x2 + dx1 + 20,
f2(x1, x2) = (x1 − k)2 + (x2 − l)2

The level (niveau) of the optima of f1 can be adjusted smoothly via param-
eter d. With d positive, the optimum in the positive x1 domain is lifted up in
comparison to the optimum in the negative x1 domain. Consequently, the former
becomes a local optimum, while the latter remains a global optimum (asymmet-
ric optima). With parameter c = 0, both minimizers are located on the x1 axis,
but for increasing c, their connecting line is rotated counterclockwise, until its
gradient is nearly 1.

The function f2 is unimodal, the location of its minimizer determined by
parameters k and l. For k = l = 0 it is located in the origin, right between the
minimizers of the bimodal function f1. By variation of k and l the minimizer is
moved away from the connecting line of the minimizers of f1. Next to changing
the Pareto front, this also effects the Pareto set.

Table 1. Parameter setting for the five cases of TWO-ON-ONE, c was set to 10

Cases 1 2 3 4 5
Parameters d 0 0 0.25 0.25 0.25

k 0 1 0 1 0
l 0 0 0 0 1

In order to allow for a theoretical analysis of the problem, five parameter
settings have been fixed (Table 1, Figure 1). These result in different placements
of the minimizers in search space, two for the symmetric case (both optima of
f1 identical), three for the asymmetric case (optima distinct). While all these
settings are expected to lead to ordinary (generic) Pareto fronts, the Pareto sets
are expected to look more complex.

The coordinates of the minimizers of f1 can be determined analytically to

(x∗
11,2

, x∗
21,2

) =
(

±1
2

√
(
√

101 + 1), ± 1
20

(
√

101 − 1)
√

(
√

101 + 1)
)

.

In cases 1 and 2, both optima of f1 are on the same level, ensured by d = 0. In
1, the minimizer of the sphere function is located in the origin, where f1 has a
saddle point. In 2, the optimum is moved right on the x1 axis by one unit.

Cases 3 and 4 repeat the same configuration, with asymmetric optima of f1;
the global optimum resides in the negative x1 and x2 domain, and the local
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Fig. 1. Superposition of functions f1 and f2 (sphere) of TWO-ON-ONE for cases 1
to 5. The optima of f1 are symmetrical (equal fitness) in cases 1 + 2, asymmetrical in
3+4+5, with the right minimizer shifted slightly upwards and the left one downwards.

optimum in the positive domain. It is expected that the Pareto set now estab-
lishes a connection between the global optima of f1 and of f2. This is due to the
solutions in the global optimum of f1 being mapped to the extremal part of the
Pareto front. Consequently, solutions from the local optimum of f1 may be lost.

The same situation is expected for case 5, which is similar, except for a move-
ment of the minimizer of f2 towards the global minimizer of f2, whereas in case
4, it is brought nearer to the local minimizer.

4 Experimental Investigation of Pareto Sets

Our expectation is that for all symmetrical cases, the Pareto sets consist of two
curves, connecting either peak with the minimizer of the sphere function f2. For
the asymmetric cases, it seems reasonable that Pareto sets contain only points
on a curve between the global minimizers of f1 and f2. But this expectation
stems from thought experiments rather than empirical or analytical facts.

We employ two simple tools, a grid based and a stochastic enumerator, for
obtaining a first, rough impression of structure and location of the Pareto sets.
Either one samples points from a given interval and keeps a list of the Pareto-
optimal solutions found. Tried points are either taken from a pre-specified grid
or determined randomly. As we shall see, it sometimes makes sense to use both,
as the obtained results can subtly differ.

Experiment 1: Determine Pareto sets and fronts of TWO-ON-ONE.
Pre-experimental planning: First experiments were performed with a grid-
based enumerator only. They revealed an unexpectedly wide Pareto set (Fig. 2,
left). We thus additionally sampled by means of a stochastic enumerator.
Task: Find location of the Pareto sets, detect deviations from the expected.
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Setup: For each of the 5 cases specified in Table 1, we sample points in the
interval x1, x2 ∈ [−3, 3]. The grid-based enumeration consists of 300 × 300 =
90, 000 points each, the stochastic enumeration of 500, 000 points each. The
difference is intended as we hope for a better resolution with the latter method,
to shed light on the bar-shaped artifacts. All non-dominated points are archived.

Fig. 2. Pareto sets of case 1, obtained with grid and stochastic enumerator

Experimentation/Visualization: Figures 2 and 3 show the most interest-
ing of the obtained Pareto sets and fronts. All others largely comply with the
previously stated expectations and are omitted due to space limitations.
Observations: The figures clearly show that neither grid nor stochastic sam-
pling produces a clear-cut picture of the true Pareto sets. Roughly, case 1 yields
a smeared areal, propeller-like structure (Fig. 2) instead of the expected single
curve. However, the Pareto set appears narrower under stochastic enumeration.

For case 4 (sphere function f2 moved towards local optimum of f1), the Pareto
front splits into two parts at f1 ≈ 8, as visualized in Fig. 3. Accordingly, the
Pareto set breaks up into two distinct fragments. Note that no connection exists
between the location of the sphere and the global optimum of f1. At the left edge
of its right part, the grid-based approximated Pareto set reveals a strange curl
which is not visible in the stochastically approximated Pareto set. Pareto fronts
of cases 4 and 5 both contain pieces of very low point densities, at 17 < f1 < 19
in the former, and 15 < f1 < 17 in the latter case.
Discussion: We regard the obtained Pareto set approximations for case 1 as
rather misleading, and analytical investigation in §5 supports this view. However,
considering the amount of sampled points (90k and 500 k), and taking into account
that the latter (stochastically approximated) Pareto set is much tighter, one may
conclude even from our empirical data that the true Pareto set indeed is most likely
located on a curve and non-areal. The enumerators are probably misguided by the
huge difference in gradients of f1 and f2 in direction of the connecting line between
the two optima of f1 and orthogonal to it. Following from that, any EMOA will ex-
perience the same situation: Practically identical values of the objective functions
can have a large set of preimages and thus spread in search space.
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Fig. 3. Surprising Pareto sets and fronts for cases 4 and 5

Results obtained for case 4 show that contrary to our expectation, by far the
larger Pareto set portion resides in the range between the local optimum of f1
and the optimum of f2. Only where function values for f1 are better than may
be attained at the local optimum, points from the left fragment can enter the
Pareto set, resulting in a stepped Pareto front. The curl found near x1 = 1
seemingly corresponds to the low density part of the Pareto front which must
be located in proximity of the sphere center as values for f2 are near 0. The
stochastic Pareto set approximation is again tighter than the grid-based one,
leading to the conjecture that the true Pareto set is non-areal as in case 1.

Two more conclusions may be drawn from the case 4 results. Firstly, search
space distances between optima of separate objective functions play a major
role for the composition of Pareto sets, and secondly, it is necessary to keep the
population of EMOAs spread over several local optima of the treated objective
functions during an optimization run.

5 Analytical Derivation of Pareto Sets

The Pareto set for case 1 can be derived analytically but its analytic expression
is too complex and space-consuming to be presented here. Instead, we suggest
the linear approximation
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whose deviation from the true convex-concave curve is less than 0.045 for all x1
above. In any case, the Pareto set is a 1-dimensional connected set and not an
areal set of higher dimension as the output of the grid or stochastic enumerator
might suggest (see fig. 2).

As can be seen from the symmetry f(x1, x2) = f(−x1, −x2) the entire Pareto
front can be built solely by positive (or negative) points of the Pareto set. Thus,
it may happen that an EMOA approximating the Pareto front quite well with
regard to the S-metric has found only points in the decision space with, say,
positive components. As a consequence, a good value for the S-metric tells only
half the story.

The Pareto sets of the other cases are also amenable to an analytic solution
but the expressions are far away from being manageable easily. This observation
is quite counter-intuitive given the pretended simple expressions and structural
design of the objective functions.

6 Behavior of EMOAs on TWO-ON-ONE

Whereas Pareto sets and fronts of problem TWO-ON-ONE have been explored
in §4 and determined analytically in §5, we now turn to the behavior of different
EMOAs in a second experiment. Note that it is not intended to argue in favor
of or against any algorithm here, but rather to detect possible differences.

Algorithms. We invoke two standard techniques next to a new development
within the field. The Pisa framework1 is used to conduct the referred optimiza-
tion runs. Here, the TWO-ON-ONE problem has been implemented as a vari-
ator, which can be optimized with respect to different objectives and multiple
selectors. Among the set of available selectors, NSGA-II and SPEA2 are cho-
sen, because these appear to be the currently most well-known and commonly
used algorithms in the field [1,2]. Additionally, the more recent SMS-EMOA
[10,11] is tested within this framework. The SMS-EMOA was designed for fea-
turing a performance measure, namely the hypervolume or S-metric, as sec-
ondary ranking criterion in a NSGA-II like manner. The additional effort for
a third algorithm in the study seems to be justified, because the SMS-EMOA
was found to spread solutions more nicely over Pareto-fronts than the other
two algorithms. This aspired behavior is purchased by a runtime of O(μ log μ +
μ(d/2+1) log μ) of the SMS-EMOA, with μ denoting the population size and d the
number of objectives (cp. Beume [12]). In contrast, the runtime of NSGA-II and
SPEA2 is quadratic in the population size and polynomial in the number of
objectives.

1 PISA - Platform and Programming Language Independent Interface for Search Al-
gorithms, ETH Zurich, www.tik.ee.ethz.ch/pisa/
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Measures. To detect differences in algorithm behaviors on the most interesting
cases, we define two simple measures. For case 1, we measure if the resulting
population P is fairly distributed over the left and right wings of the Pareto set
by taking the fraction on the less crowded wing into account:

fair(P ) =
1
2

− min(|{individual ∈ P : x1 < 0}|, |{individual ∈ P : x1 ≥ 0}|)
|P | (1)

For case 4, we are interested in the fraction of points in proximity of the global
optimum of f1, corresponding to the search points in the left half of the search
space:

left(P ) =
|{individual ∈ P : x1 < 0}|

|P | (2)
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Fig. 4. Pareto front (left) and Pareto set (right) of a single SPEA2 run on case 1

Experiment 2: Search Space Behavior of EMOAs on function TWO-ON-ONE.
Pre-experimental planning: First runs indicated that results on cases 2, 3,
and 5 are comparable for all three algorithms. We thus focused on cases 1 and
4. For case 1 it was found that at least 50 runs are necessary to get a detailed
picture of differences in measure fair(P ), for case 4, 20 runs seemed sufficient.
Task: Detect differences in the obtained Pareto sets and fronts that may be
related to test problem properties. We employ bootstrap permutation tests with
49, 999 replicates and significance level 5% for the measured data.
Setup: The decision space was limited to f1, f2 ∈ [−50, 50], thereby enclosing
the region around the optima of f1 and f2, and a certain amount of space the
algorithms have to bypass to get there. All three algorithms, NSGA-II, SPEA2,
and SMS-EMOA, are run with a population size of 100 for 30, 000 evaluations,
otherwise utilizing default parametrizations. For case 1 and 4, 50 and 20 runs
are performed, respectively.
Experimentation/Visualization: Figure 4 depicts a typical outcome for case
1. More extreme population distributions with almost all individuals on one wing
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Fig. 5. Pareto sets of single NSGA-II (left) and SMS-EMOA (right) runs on case 4

of the Pareto set also happen. In figure 5, resulting Pareto sets for two different
algorithms are presented, again, typical runs are chosen.
Observations: Figure 4 demonstrates that for symmetric optima, the Pareto
front often contains large chunks of points originating from the proximity of dif-
ferent minimizers. Accordingly, the approximated Pareto sets show correspond-
ing clouds of points, unevenly distributed over the true Pareto set. For case 4,
Figure 5 shows that the algorithms are able to spread their populations over
both important parts of the Pareto set. However, the shape of the clouds near
the global minimizer of f1 is different: NSGA-II often forms lines of points in
that region, whereas the SMS-EMOA rather builds areal structures.
Discussion: For case 1, hypothesis testing reveals a slight difference (p-value
0.071) between NSGA-II and SMS-EMOA and a strong one (p-value 0.030) be-
tween NSGA-II and SPEA2. SMS-EMOA and SPEA2 may be considered behav-
ing relatively similar (p-value 0.427). NSGA-II covers both wings of the Pareto
set more evenly on average, its fair -measure is 0.110, compared to 0.149 and
0.152 for SPEA2 and SMS-EMOA, respectively.

All three algorithms cope surprisingly well with case 4. Here, hypothesis tests
hint to a similarity between SMS-EMOA and NSGA-II (p-value 0.468) and sharp
distinction between SPEA2 and SMS-EMOA, and SPEA2 and NSGA-II, both
p-values 0.001. As indicated by the histograms, NSGA-II and SMS-EMOA both
place more points near the global optimizer, their left -measures are 0.169 and
0.167, respectively. SPEA2 only puts 13.1% of its final population there. Unfor-
tunately, we are currently not able to explain what makes the algorithms behave
differently in this respect.

7 Summary and Outlook

The main message of the work presented here is our belief in the fact that a neat
covering of the Pareto front is not sufficient for meeting the needs of all clients
that may use EMOAs. Therefore, future versions of EMOAs should also take into
account a proper covering of the Pareto set. Evidently, contemporary EMOAs
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cannot deliver this kind of behavior. For this purpose we need an effective mea-
sure for assessing the quality of a solution set in decision space—similarly to the
S-metric in objective space.

To follow this avenue we have to deepen our understanding of EMOA behav-
ior in the decision space, which may be quite counter-intuitive as our seemingly
simple test problem has revealed. Obviously, EMOAs are easily confronted with
strangely shaped approximate Pareto sets as the ones obtained from our empir-
ical approaches to determine the true Pareto set. We attribute this behavior to
scaling issues between orthogonal gradients and discretized computer represen-
tation of real values, but this assessment can only be preliminary. The important
point is that EMOAs have no means of detecting ’real’ Pareto set shapes, they
have to cope with their inexact counterparts. These problems are currently not
reflected in algorithm design. Furthermore, we are convinced that a thorough
analysis of the interaction between Pareto front and Pareto set will eventually
lead to new insights, new search operators, and even better EMOAs.
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