
Mixed-Integer NK Landscapes

Rui Li1, Michael T.M. Emmerich1, Jeroen Eggermont2,
Ernst G.P. Bovenkamp2, Thomas Bäck1, and Jouke Dijkstra2,

and Johan H.C. Reiber2

1 Natural Computing Group, Leiden University,
P.O. Box 9500, 2300 CA Leiden, The Netherlands

{ruili, emmerich, baeck}@liacs.nl
2 Division of Image Processing, Department of Radiology C2S,

Leiden University Medical Center,
P.O. Box 9600, 2300 RC Leiden, The Netherlands

{J.Eggermont, E.G.P.Bovenkamp, J.Dijkstra, J.H.C.Reiber}@lumc.nl

Abstract. NK landscapes (NKL) are stochastically generated pseudo-
boolean functions with N bits (genes) and K interactions between genes.
By means of the parameter K ruggedness as well as the epistasis can be
controlled. NKL are particularly useful to understand the dynamics of
evolutionary search. We extend NKL from the traditional binary case
to a mixed variable case with continuous, nominal discrete, and integer
variables. The resulting test function generator is a suitable test model
for mixed-integer evolutionary algorithms (MI-EA) - i. e. instantiations
of evolution algorithms that can deal with the aforementioned variable
types. We provide a comprehensive introduction to mixed-integer NKL
and characteristics of the model (global/local optima, computation, etc.).
Finally, a first study of the performance of mixed-integer evolution strate-
gies on this problem family is provided, the results of which underpin its
applicability for optimization algorithm design.

1 Introduction

NK landscapes (NKL, also referred to as NK fitness landscapes), introduced
by Stuart Kauffman [6], were devised to explore the way that epistasis controls
the ’ruggedness’ of an adaptive landscape. Frequently, NKL are used as test
problem generators for Genetic Algorithms. NKL have two advantages. First, the
ruggedness and the degree of interaction between variables of NKL can be easily
controlled by two tunable parameters: the number of genes N and the number of
epistatic links of each gene to other genes K. Second, for given values of N and
K, a large number of NK landscapes can be created at random. A disadvantage
is that the optimum of a NKL instance can generally not be computed, except
through complete enumeration.

As NKL have not yet been generalized for continuous, nominal discrete, and
mixed-integer decision spaces, they cannot be employed as test functions for
a large number of practically important problem domains. To overcome this
shortcoming, we introduce an extension of the NKL model, mixed-integer NKL

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 42–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mixed-Integer NK Landscapes 43

(MI-NKL), that capture these problem domains. They extend traditional NKL
from the binary case to a more general situation, by taking different parameter
types (continuous, integer, and nominal discrete) and interactions between them
into account (cf. Figure 1).

Fig. 1. Example Genes and their interaction

This paper is organized as follows. First, in Section 2, we will give a review of
Kauffman’s NKL and its variants. In Section 3, we extend NKL to the mixed-
integer case , provide theorems on the existence and position of local and global
optima, and discuss the implementation of the model. Some initial experimental
results are given in Section 4 using a mixed-integer Evolution Strategy. Conclu-
sions and topics for future research are discussed in Section 5.

2 NK Landscapes

Kauffman’s NK Landscapes model defines a family of pseudo-boolean fitness
functions F : {0, 1}N → R

+ that are generated by a stochastic algorithm. It
has two basic components: A structure for gene interaction (using an epistasis
matrix E), and a way this structure is used to generate a fitness function for all
the possible genotypes [1]. The gene interaction structure is created as follows:
The genotype’s fitness is the average of N fitness components Fi, i = 1, . . . , N .
Each gene’s fitness component Fi is determined by its own allele xi, and also
by K alleles at K (0 ≤ K ≤ N − 1) epistatic genes distinct from i. The fitness
function reads:

F (x) =
1
N

N∑

i=1

Fi(xi; xi1 , . . . , xik
), x ∈ {0, 1}N (1)

where {i1, . . . , ik} ⊂ {1, . . . , N} − {i}. There are two ways for choosing K other
genes: ‘adjacent neighborhoods ’, where the K genes nearest to position i on the
vector are chosen; and ‘random neighborhoods ’, where these positions are chosen
randomly on the vector. In this paper we focus on the latter case, ‘random
neighborhoods ’. However, a translation to the first case is straightforward.

The computation of Fi : {0, 1}K → [0, 1), i = 1, . . . , N is based on a fitness
matrix F . For any i and for each of the 2K+1 bit combinations a random number
is drawn independently from a uniform distribution over [0, 1). Accordingly, for
the generation of one (binary) NK landscape the setup algorithm has to gener-
ate 2K+1N independent random numbers. The setup algorithm also creates an

44 R. Li et al.

epistasis matrix E which for each gene i contains references to its K epistatic
genes. Table 1 illustrates the fitness matrix and epistasis matrix of a NKL. A
more detailed description of its implementation can be found in [4].

Table 1. Epistasis matrix E (left) and fitness matrix F (right)

E1[1] E1[2] · · · · · · · · · E1[K]
E2[1] E2[2] · · · · · · · · · E1[K]
· · · · · · · · · Ei[j] · · · · · ·

EN [1] EN [2] · · · · · · · · · EN [K]

F1[0] F1[1] · · · · · · · · · F1[2K+1 − 1]
F2[0] F2[1] · · · · · · · · · F2[2K+1 − 1]
· · · · · · · · · Fi[j] · · · · · ·

FN [0] FN [1] · · · · · · · · · FN [2K+1 − 1]

After having generated the epistasis and fitness matrices, for any input vector
x ∈ {0, 1}N we can compute the fitness in O(KN) computational complexity via:

F (x) =
1
N

N∑

i=1

Fi[20xi + 21xEi[1] + · · · + 2KxEi[K]] (2)

Note, that the generation of F has an exponential computational complexity and
space complexity in K, while being linear in N . The computational complexity
for computing function values is linear in K and N for this implementation.

2.1 Properties of NK Landscapes

Kauffman’s model makes two principal assumptions: first, that the fitness of a
genotype is the sum of the contributions from each gene, and second, that the
effects of polygeny and pleiotropy make these interactions effectively random.
Besides Kaufmann, some other researchers, e. g. Weinberger et al. [10,9], did an
extensive study on NKL. Some well-known properties are:

1. K = 0 (no epistasis): The problem is separable and there exists a unique
global optimum. Assuming a Hamming neighborhood-structure, the problem
gets unimodal.

2. 1 ≤ K < N − 1: For K = 1, a global optimum can still be found in poly-
nomial time [10]. For K ≥ 2, global optimization is NP-complete for the
random assignment of neighbors and constant K. However, the problem can
always be solved in a computational complexity of 2N function evaluations
and hence can practically be solved for problems of moderate dimension
(N around 30). For adjacent neighbors, the problem can be solved in time
O(2KN) (cf. Weinberger [10]).

3. K = N − 1: This corresponds to the maximum number of interactions be-
tween genes. Practically speaking, to each bitstring of F : {0, 1}N → [0, 1)
we assign a sum of N values, each of which is drawn independently from a
uniform distribution in [0, 1). If we choose the Hamming neighborhood on
{0, 1}N the following results apply:

• The probability that a random bit string is a local optimum is 1
N+1

• The expected number of local optima is 2N

N+1

Mixed-Integer NK Landscapes 45

3 Generalized NK Landscapes

As mentioned in the previous section, Kauffman’s NKL model is a stochastic
method for generating fitness functions on binary strings. In order to use it as a
test model for mixed-integer evolution strategies, we extend it to a more general
case such that the fitness value can be computed for different parameter types.
Here we consider continuous variables in R, integer variables in [zmin, zmax] ⊂ Z,
and nominal discrete values from a finite set of L values. In contrast to the
ordinal domain (continuous and integer variables), for the nominal domain no
natural order is given. Mixed-integer optimization problems arise frequently in
practise, e.g. when optimizing optical filter designs [2] and the parameters of
algorithms [8].

The idea about how to extend NKL to the mixed-integer situation will be
described in three steps. First we propose a model for continuous variables, then
for those with integer variables and nominal discrete variables. Finally, we will
discuss the case of NKL that consists of all these different variable types at
the same time and allow for interaction among variables of different types. This
defines the full mixed-integer NKL model.

3.1 Continuous NK Landscapes

In order to define continuous landscapes, we choose an extension of binary NKL
to an N -dimensional hypercube [0, 1]N . Therefore, all continuous variables are
normalized between [0, 1]. In the following we describe the construction of the
objective function F : [0, 1]N → [0, 1):

Whenever the continuous variable takes values at the corners of the hyper-
cube, the value of the corresponding binary NKL is returned. For values located
in the interior of the hypercube or its delimiting hyperplanes, we employ a multi-
linear interpolation technique that achieves a continuous interpolation between
the function values at the corner. Note that a higher order approach is also possi-
ble but we chose a multi-linear approach for simplicity and ease of programming.
Moreover, the theory of multi-linear models as used in the design and analysis
of experiments, introduces intuitive notions for the effect of single variables and
interaction between multiple variables of potentially different types [3]. For each
of the N fitness components Fi : [0, 1]K+1 → [0, 1), we create a multi-linear
function

Fi(x) =
2K+1−1∑

j=0

ai
jx

[1 AND j]
i

K∏

k=1

x
[2k AND j]/2k

ik
, (3)

where AND is the bitwise and operator and xik
is the k-th epistatic gene of xi.

For instance, in the case K = 2 the formula for Fi(x) becomes1:
ai
000+ai

001xi+ai
010xi1 +ai

100xi2 +ai
011xixi1 +ai

101xixi2 +ai
110xi1xi2 +ai

111xixi1xi2 .

1 Note, that we use binary instead of decimal numbers for the index to make the
construction more clear.

46 R. Li et al.

Once uniformly distributed random values have been attached to the corners
of the K-dimensional hypercube (cf. Figure 2), we can identify the coefficients
ai
0, . . . , a

i
2K+1−1 by solving a linear equation system (LES). However, even for

moderate K the computational complexity for applying general LES solvers
would be prohibitive high. An advantage of the multi-linear form (as compared
to other interpolation schemes like radial basis functions or splines) is, that it
allows for an efficient computation of the coefficients by exploiting the diagonal
structure of the equation system. Accordingly, ai

j can be obtained by means of
the following formula:

ai
0 = Fi[0], ai

j = Fi[j] −
j−1∑

�=0

[
ai

�I(� = (� AND j))
]
, j = 1, . . . , 2K+1 − 1 (4)

In order to compute the values, we have to start with j = 0 and increase the
value of j. Hence, the number of additions we need for computing all coefficients
is proportional to (2K+1 − 1)(2K+1)/2 = 22(K+1)−1 − 2K .

Xi

Xi1

Xi2

Fi(0, 0, 0)

Fi(0, 0, 1)

Fi(0, 1, 0)

Fi(0, 1, 1)

Fi(1, 0, 0)

Fi(1, 0, 1)

Fi(1, 1, 0)

Fi(1, 1, 1)

ai
000 = Fi(0, 0, 0)

ai
001 = Fi(0, 0, 1) − ai

000

ai
010 = Fi(0, 1, 0) − ai

000

ai
011 = Fi(0, 1, 1) − ai

000 − ai
001 − ai

010

ai
100 = Fi(1, 0, 0) − ai

000

...

ai
111 = Fi(1, 1, 1) − ai

000 − ai
001 − ai

010 − ai
011

−ai
100 − ai

101 − ai
110

Fig. 2. Example HyperCube with K = 2 and the computation of ai
j

Once we have the ai
j values, we can use Equation 1 to compute the model. Of

course the domain of the x values has to be replaced by [0, 1]N in that equation.
For the computation of the global optimal value of the continuous NK landscapes
the following lemma is useful:
Lemma 1. At least one global optimum of the function F will always be located
in one of the corners of the N dimensional hypercube, such that the computation
of the optimal function value upper bounds the computational complexity for
the binary model.

Proof: The idea of the proof is that there is an algorithm that for any given input
x∗ ∈ [0, 1]N determines a corner of the hypercube, the function value of which
is not higher than the function value at F , given that F has a multilinear form.
Basically, the proposed algorithm can be described as a path oriented algorithm
that searches parallel to the coordinate axis: First we fix all variables except one,

Mixed-Integer NK Landscapes 47

say x1, in F . It is now crucial to see that the remaining form F (x1, x
∗
2, . . . , x

∗
N) is

a linear function of x1. Now, because the form is linear, it is obvious to see that
either (1, x∗

2, . . . , x
∗
N)T or (0, x∗

2, . . . x
∗
N)T has a function value that is better or

equal than the function value at (x∗
1, . . . , x

∗
N)T . We fix x1 to a value for which this

is the case, i. e. we move either to (1, x∗
2, . . . , x

∗
N)T or to (0, x∗

2, . . . x
∗
N)T without

increasing the function value. For the new position x1∗ we again fix all variables
except one. This time x2 is the free variable. Again we can move the value of x2
either to zero or to one, such that the function value does not increase. Now, the
new vector x12∗ will either be (x1∗

1 , 0, x∗
3, . . . , x

∗
N)T or (x1∗

1 , 1, x∗
3, . . . , x

∗
N)T . After

continuing this process for all remaining variables x3 to xN we finally obtain a
vector x12···N∗, all values of which are either zero or one, and the function value
is not worse than that of x∗. �
From Lemma 1 it follows:
Theorem 1. The problem of finding the global optimal value for a continuous
NKL is NP-complete for K ≥ 2.
Proof: Finding the optimum in the corner is equivalent to the NP-complete
binary case. By applying Lemma 1, we can reduce the continuous case to the
binary case. On the other hand, whenever we find the global optimal solution for
the continuous case, in polynomial time we can construct a just as good solution
where all optima are located at the corners in linear time. Thus, there exists a
polynomial reduction of the binary case to the continuous case. �

3.2 Integer NK Landscapes

Based on our design, NKL on integer variables can be considered to be a special
case of continuous NKL. The integer variables can be normalized as follows: Let
zmin ∈ Z denote the lower bound for an integer variable, and zmax ∈ Z denote
its upper bound. Then, for any z ∈ [zmin, zmax] ⊂ Z we can compute the value
of x = (z − zmin)/(zmax − zmin) in order to get the corresponding continuous
parameter in [0, 1], which can then be used in the continuous version of F to
compute the NKL. Note that the properties discussed in Lemma 1 and Theorem
1 also hold for integer NKL.

3.3 Nominal NK Landscapes

To introduce nominal discrete variables in an appropriate manner a more radical
change to the NKL model is needed. In this case it is not feasible to use inter-
polation, as this would imply some inherent neighborhood defined on a single
variable’s domain xi ∈ {di

1, . . . , d
i
L}, i = 1, . . . , N , which, by definition, is not

given for the nominal discrete case. We will now propose an extension of NKL
that takes into account the special characteristics of nominal discrete variables.

Let the domain of each nominal discrete variable xi, i = 1, . . . , N be defined
as a finite set of maximal size L ≥ 2. Then for the definition of a function on
a tuple of K + 1 such values we would need a table with LK+1 entries. Again,
we can assign all fitness values randomly by independently drawing values from

48 R. Li et al.

a uniform distribution. The size of the sample is upper-bounded by LK+1. For
L = 2 this corresponds to the binary case. After defining N fitness components
Fi, we can then sum up the values of these components for the NKL model (eq. 1).
The optimum can be found by enumerating all input values, the computational
complexity of which is now LN . The implementation of the function table and
the evaluation procedures are similar to that of the binary case. Note, that for
a constant value of L and K the space needed for storing the function values is
given by NLK+1, so is the computational complexity for generating the matrix.
The time for the function evaluations is proportional to N(K + 1).

Equipping the discrete search space with a Hamming neighborhood, in case
K = 0 the problem remains unimodal. For K > 0, we remark, that for the
general problem with L > 2, the detection of the optimum is more difficult than
in the binary case. Hence, the binary case can be reduced to the case L > 2, but
not vice versa. For the case of full interaction (K=N-1) we show:

Lemma 2. For the nominal discrete NKL with K = N − 1, L ≡ constant , and
Hamming neighborhood defined on the discrete search space, the probability
that an arbitrary solution x gets a local optimum is 1

N(L−1)+1 . Moreover the

expected number of local optima is LN

N(L−1)+1 .

Proof: Given the preliminaries, N(L − 1) is the number of Hamming neighbors
for any solution x ∈ {1, . . . , L}N . Since we assign a different fitness value from the
interval [0, 1) independently to each neighbor, the probability, that the central
solution, i.e. x itself becomes the best solution, is 1/(N(L−1)+1). Since, LN is
the number of search points in {1, . . . , L}N we can compute the expected number
of local optima as LN

N(L−1)+1 . �

3.4 Mixed Integer NK Landscapes

It is straightforward to combine these three types of variables into a single NKL
with epistatic links between variables of different types (cf. Figure 1). For mixed
variables of the integer and continuous types there is no problem, since integers,
after normalization, are treated like continuous variables in the formula of F . If
there are D nominal discrete variables that interact with a continuous variable,
then the values of these discrete variables determine the values at the edges of
the K −D dimensional hypercube that is used for the interpolation according to
the remaining continuous and integer variables. Note that for different nominal
discrete values the values at the corners of the K − D dimensional hypercube
will change in almost every case.

Instead of describing the mixed variable case in a formal manner we give
an illustrating example (cf. figure 3). This example shows one individual with
three parameters (one continuous, one integer and one discrete), and each gene
interacts with both other genes. For each gene, a hypercube is created. We
assume there are three levels for the discrete gene Xd (L = 3), so the hypercube
is reduced to three parallel planes, and the value of the discrete gene decides
which plane is chosen. More concretely, assuming the individual has the following

Mixed-Integer NK Landscapes 49

values: Xd = 0, Xi = 0.4, Xr = 0.8, the value of the discrete parameter Xd

determines which square is chosen (Xd = 0). The value for each corner is based
on the fitness matrix in Table 2 (bold displayed). As mentioned in the previous
chapter, we calculate the fitness value of this individual as follows:

Fr(a,x) = a0 + a1Xr + a2Xi + a3XiXr

a0 = Fr(0, 0) = 0.8, a1 = Fr(0, 1) − a0 = −0.1
a2 = Fr(1, 0) − a0 = −0.1, a3 = Fr(1, 1) − a0 − a1 − a2 = −0.1

Fr(0.4, 0.8) = 0.648

Xr

Xi

Fr(1, 0)=0.7 Fr(1, 1)=0.5

Fr(0, 1)=0.7Fr(0, 0)=0.8

Fr(0.4, 0.8)

(Xd=0, Xi=0.4, Xr=0.8)

+ F
Fi

Fr

FdXd

Xi

Xr

Fig. 3. Example for the computation of a MI-NK landscape

Table 2. Example epistasis matrix (left)and fitness matrix (right)

Er[1] = Xi Er[2] = Xd

Ei[1] = Xr Ei[2] = Xd

Ed[1] = Xr Ed[2] = Xi

0.8 0.7 0.7 0.5 0.3 0.7 0.2 0.9 0.5 0.6 0.3 0.5
Fr 0.5 0.8 0.4 0.7 Fi 0.2 0.3 0.7 0.9 Fd 0.9 0.8 0.2 0.7

0.2 0.1 0.8 0.4 0.2 0.5 0.4 0.6 0.8 0.7 0.3 0.3

4 Experimental Results

In order to test our mixed-integer NKL problem generator we have tested it
using a (μ,κ,λ) mixed-integer evolution strategy (MI-ES) as described in [5].
Here mutation distributions with maximal entropy are employed for the muta-
tion of continuous variables (Gaussian distribution), integer variables (geometric
distribution), and nominal discrete variables (uniform distribution). While for
the first two types a step-size parameter can be learned, in the latter case a
mutation probability is learned. We use a population size μ of 4, offspring size
λ of 28 and κ = 1 (comma-strategie). The stepsize/mutation-probability of each
variable was set to 0.1 and the standard MI-ES mutation and crossover operators
are used. The maximum number of fitness evaluations is set to 3000.

To see the effect of different values of K we generated 50 problem instantia-
tions for N = 15 and for each value K ≤ 14 (750 MI-NKL problems in total)
so that it is still feasable to find the global optimum by evaluating all bitstrings
of length 15. Each generated problem consists of 5 continuous, 5 integer and 5
nominal discrete variables. The continuous variables are in the range [-10,10],

50 R. Li et al.

the integer-valued variables are in the range [0,19] and we used {0, 1} for the
nominal discrete variables (Booleans). As described previously the continuous
and integer-valued variables are normalized to fit in the interval [0, 1] before
evaluation. To compare (and average) the results of the different experiments we
define the following error-measure:

error = best found fitness - best possible fitness

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 500 1000 1500 2000 2500 3000

av
er

ag
e

er
ro

r

fitness evaluations

k= 0
k= 1
k= 2
k= 3
k= 4
k= 5
k=14

Fig. 4. The error averaged over 50 mixed-integer NK landscape problems with N = 15.
Each problem contained 5 continuous, 5 integer-valued and 5 Boolean-valued variables.

The results are displayed in Figure 4. The x-axis shows the number of evaluations
while the y-axis shows the average error (over 50 experiments). As can be seen
an increase in K results in an increase in error which indicates the problem
difficulty increases with K. The fact that even for K = 0 the MI-ES algorithm
has problems achieving an average error of 0 is because in order to find the
global optima all variables, including the continuous ones, have to be exactly
either 0 or 1 (after normalization). This is hard for the continuous part of MI-
ES individuals because of the mutation operator used. In the mutation, we used
a reflection at the boundary method for keeping the variables within the [0, 1]
intervals [5]. This does not favor solutions that are directly at the boundary,
as this is done by other interval treatment methods, like for example logistic
transformation [2]. However, the latter mutation operator adds a bias to the
search and makes it more easy to locate solutions at the boundary than in the
interior, which is why we did not use it here.

5 Conclusion and Outlook

The NK landscape model has been extended to the mixed-integer problem do-
main. It turns out that a multi-linear interpolation approach for the continuous
and integer variables provides a straightforward generalization of this model,
that can also be easily implemented. Using Equation 3, function values can be

Mixed-Integer NK Landscapes 51

computed in linear time. However, the detection of the global optimum turns
out to be a NP-complete problem for K > 2 and can be reduced to the problem
of detecting the global optimum for the binary case.

An alleged drawback of the interpolation approach is that its optima are
always located in the corners of the search space. There are some ways of how
this problem could be addressed. One way would be to transform the input
variables by means of a periodic function and mapping them back to [0, 1],
e.g. to substitute xi by s(xi) = 1

2 + 1
2 cos(πxi + π) and restrict xi to the interval

[−0.5, 1.5] for i = 1, . . . , N . It is easy to show that the optima for this transformed
function are at the same position as for the original model.

For the nominal discrete variables the binary NK landscape was extended
to a L-ary representation. For this the amount of random numbers increases
exponentially with L. Also, for N = K − 1 it has been shown that the number
of local optima increases exponentially with L.

One of our intentions for developing MI-NKL was to further improve the MI-
ES approach. The experiments demonstrate the applicability of the MI-NKL
problem generator and that the difficulty for finding the global-optimum grows
with K. Future work will focus on exploring more of the characteristics of the
MI-NKL, including its specializations: continuous, integer and discrete NKL.

Acknowledgements. This research is supported by the Netherlands Organi-
sation for Scientific Research (NWO).

References

1. L. Altenberg: NK-Fitness Landscapes, In ”the Handbook of Evolutionary Compu-
tation”, ed. Th. Bäck, D.B. Fogel, and Z. Michalewicz, Oxford Univ. Press, 1997.

2. Th. Bäck and M. Schütz: Evolution Strategies for Mixed-Integer Optimization of
Optical Multilayer Systems. Evolutionary Programming, 33 - 51, 1995.

3. G. Box, W. Hunter, and J. Hunter: Statistics for Experiments. Wiley, 1978.
4. A.E. Eiben and J.E. Smith: Introduction to Evolutionary Comp., Springer, 2003.
5. M. Emmerich, M. Groetzner, B. Groß, and M. Schütz. Mixed-integer evolution

strategy for chemical plant optimization with simulators. In I. C. Parmee, editor,
Proc. of ACDM’00, pages 55-67, Springer, London, 2000.

6. S.A. Kauffman: The origins of order: Self-organization and selection in evolution.
Oxford University Press, NY, 1993.

7. S.A. Kauffman. and S. Levin: Towards a general theory of adaptive walks on rugged
landscapes. Journey of Theoretical Biology 128: 11—45, 1987.

8. R. Li, M.T.M. Emmerich, E.G.P. Bovenkamp, J. Eggermont, Th. Bäck, J. Dijkstra
and J.H.C. Reiber. Mixed-Integer Evolution Strategies and Their Application to
Intravascular Ultrasound Image Analysis. In F. Rothlauf et al. eds: Applications
of Evolutionary Computing, pp. 415-426, LNCS 3907, 2006, Springer.

9. R.E. Smith and J.E. Smith: An examination of tunable, random search landscapes.
In ”Foundations of Genetic Algorithms 5”, ed. W. Banzhaf and C. Reeves, Morgan
Kaufmann, San Francisco, 1999.

10. E.D. Weinberger: NP completeness of Kauffman’s N-K model, a tuneable rugged
fitness landscape. Working Papers 96-02-003, Santa Fe Institute, Santa Fe, NM,
First circulated in 1991.

	Introduction
	NK Landscapes
	Properties of NK Landscapes

	Generalized NK Landscapes
	Continuous NK Landscapes
	Integer NK Landscapes
	Nominal NK Landscapes
	Mixed Integer NK Landscapes

	Experimental Results
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

