
New EAX Crossover for Large TSP Instances

Yuichi Nagata

Graduate School of Information Sciences,
Japan Advanced Institute of Science and Technology

nagatay@jaist.ac.jp

Abstract. We propose an evolutionary algorithm (EA) that applies
to the traveling salesman problem (TSP). The EA uses edge assembly
crossover (EAX), which is known to be efficient and effective for solving
TSPs. Recently, a fast implementation of EAX and an effective tech-
nique for preserving population diversity were proposed. This makes it
possible to compare the EA with EAX comparable to state-of-the-art
TSP heuristics based on Lin-Karnighan heuristics. We further improved
the performance of EAs with EAX, especially for large instances of more
than 10,000 cities. Our method can find optimal solutions for instances of
up to 24978 cities within a day using a single Itanium 2 1.3-GHz proces-
sor. Moreover, our EA found three new best tours for unsolved national
TSP instances in a reasonable computation time.

1 Introduction

The traveling salesman problems (TSPs) are widely cited NP-hard combinato-
rial optimization problems because they are so intuitive and easy to state. In
Johnson and McGeoch’s surveys [1][2], the most efficient approximation methods
for TSPs were based on Lin-Kernighan local searches (LKLS) [3]. The chained
Lin-Kernighan algorithm (CLK) [4] is a more sophisticated LKLS. Helsgaun [5]
proposed another type of efficient LKLS (LKH). The tour-merging method [12]
has been thought be a very powerful approximation method; the best tour is
searched for on a restricted graph constructed of the union of dozens of high-
quality solutions obtained using CKL or LKH.

Many evolutionary algorithms (EAs) have been applied to TSPs. Much effort
has been devoted to designing effective crossovers suitable for TSPs because the
performances of EAs are highly dependent on the design of crossovers. The edge
assembly crossover (EAX) proposed by Nagata and Kobayashi [6] is known to
be an effective crossover for TSPs.

However, EAs without LKLS have been found to be less effective than state-of-
the-art TSP heuristics based on LKLS. Therefore, hybrid algorithms composed of
EAX and CLK have been proposed [7]. On the other hand, Nagata [11] proposed
a fast implementation of EAX and an effective method of preserving population
diversity. This technique significantly improved the performance of EAs using
EAX and demonstrated that EAs without LKLS can perform as well as state-
of-the-art TSP heuristics based on LKLS.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 372–381, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

New EAX Crossover for Large TSP Instances 373

In this paper, we further improve EAX to apply EAs to large instances of more
than 10,000 cities because we found that the EAX used in [11] is not appropriate
for large instances. The remainder of this paper is organized as follows. In Section
2, we look at existing work related to EAX. Our improvement of EAX for large
instances is described in Section 3. In Section 4, we discuss our experiments and
results. Section 5 is the conclusion.

2 Previous Work

In this section, we will introduce work related to this paper. First, we will briefly
describe the algorithm of EAX [6] (See Ref. [6] or [11] for details). Then, some
strategies for using EAX effectively, proposed in [10] and [11], are also described.

2.1 Outline of EAX

The following and Fig. 1 is an outline of EAX.

Step 1: Denote a pair of parents as tour-A and tour-B, and define GAB as a
graph constructed by merging tour-A and tour-B.

Step 2: Divide the edges on GAB into AB-cycles, where an AB-cycle is defined
as a closed loop on GAB that can be generated by alternately tracing the
edges of tour-A and tour-B.

Step 3: Construct an E-set by selecting AB-cycles according to a given rule.
Step 4: Generate an intermediate solution by applying the E-set to tour-A, i.e.,

by removing tour-A’s edges in the E-set from tour-A and adding tour-B’s
edges in the E-set to it.

Step 5: Modify the intermediate solution to generate a valid tour by connect-
ing its sub-tours. Two sub-tours are connected by deleting one edge from
each sub-tour and adding two edges to connect them. Which sub-tours are
connected and which edges are deleted are determined heuristically.

The following are comments that are helpful in Section 3.

– The union of all AB-cycles generated in step (2) is equal to GAB .
– In practice, AB-cycles constructed of duplicated edges are neglected in step

(3) because they have no effect on step (4). These AB-cycles are called
ineffective AB-cycles. The other are called effective AB-cycles.

In step (3), the E-set can be constructed from any combination of AB-cycles.
The following two methods were proposed in previous reports [6][10].

EAX-Rand: The E-set is constructed by randomly selecting AB-cycles with
provability 0.5. The intermediate solution tends to equally include edges of
tour-A and tour-B.

EAX-1AB: The E-set is constructed from a single AB-cycle. The intermediate
solution tends to be similar to tour-A; i.e., children are generated by remov-
ing a small number of edges from tour-A and adding the same number of
edges to it.

374 Y. Nagata

EA: tour-A

EB: tour-B

GAB

E-set Intermediate valid tour

Step 1

Step 5Step 4

Step 3

Step 2

edges of tour-A, new edgesedges of tour-B,

AB-cycle(Effective) (Ineffective)

Fig. 1. Outline of EAX

2.2 Some Strategies for EAX

In previous work [10,11], these two methods were bifurcated according to the
quality of the solutions in the population.

Stage I: EAX-1AB is used until no improvements in the shortest tour length
in the population are observed over a period of time.

Stage II: EAX-Rand is used after stage I is finished, i.e., when EAX-1AB can
no longer improve individuals in the population.

The reasons for using stage I are (i) the efficiency of the computational cost of
EAX-1AB and (ii) the capability of preserving the population diversity. When
EAX-1AB is used, changes of edges in the EAX algorithm are localized, and
calculation is sped up. An especially efficient implementation of EAX-1AB was
proposed by Nagata [11]. Moreover, EAX-1AB can prevent the population from
converging wastefully by eliminating changes of edges that do not shorten the
tour length [10].

Stage II is useful because EAX-Rand can produce wider varieties of children
than can EAX-1AB. Stage II can actually improve individuals in the population
even when EAX-1AB can no longer improve them [10,11].

3 Proposed Method

In this section, we propose a new EAX used in stage II instead of EAX-Rand.
First, we define some notation. The size of an E-set and the size of an AB-cycle

are defined as the number of tour-A edges included in the E-set and the AB-cycle,

New EAX Crossover for Large TSP Instances 375

respectively. GainModi is an improvements of tour length from an intermediate
solution to a valid tour which is defined by GainModi =

∑
e∈Eremove

w(e) −∑
e∈Eadd

w(e), where Eadd and Eremove are sets of edges that are added and
removed, respectively, in step (5) of the EAX algorithm. w(e) is a weight of an
edge e.

3.1 Limitations of EAX-1AB and EAX-Rand

Let POP be a population that EAX-1AB can no longer improve. Such a pop-
ulation is usually highly refined. Therefore, each individual in POP is trapped
in a deep local optima. To further improve individuals in POP, intermediate
solutions should be formed so as to satisfy the following two conditions.

(C-I) Intermediate solutions should be formed by changing tour-A extensively.
In other words, the size of the E-set should be large to overcome deep
local optima.

(C-II) The number of sub-tours in an intermediate solution should be as small
as possible.

The reason for C-II is a limitation of step (5) of the EAX algorithm. If an
intermediate solution consists of k sub-tours, they must be connected into a valid
tour by k − 1 operations like 2-opt moves. 2-opt move is a transition from one
tour to another by exchanging two edges. Indeed, step (5) of the EAX algorithm
usually increases the tour length of a resulting valid tour (GainModi < 0) when
tour-A is highly refined because 2-opt moves are the most restricted method
of connecting two sub-tours. Thus, the number of sub-tours in an intermediate
solution should be restricted to increase GainModi.

However, C-I and C-II usually conflict because the number of sub-tours in an
intermediate solution tends to increase as the size of E-set increases. Considering
C-I and C-II, the drawbacks of EAX-1AB and EAX-Rand can be summarized
as the following three hypotheses. Typical examples of intermediate solutions for
each case are illustrated in Fig. 2. We will verify these hypotheses in Section 3.3.

(i) If an E-set is constructed from a single small-sized AB-cycle, C-I is not
satisfied.

(ii) If an E-set is constructed from a single large-sized AB-cycle, C-II is not
satisfied.

(iii) If an E-set is constructed by randomly selecting multiple AB-cycles (EAX-
Rand), C-II is not satisfied. However, this method can produce improved
tours from POP at least in principle because a wide variety of E-sets can
be constructed. However, the likelihood is very low.

3.2 EAX-Block

In this subsection, we propose a method of selecting AB-cycles for constructing
an E-set that can produce an intermediate solution satisfying C-I and C-II. We
call EAX using this method EAX-Block.

376 Y. Nagata

(i) (iii)(ii)

tour-A tour-B AB-cycles

1

2
3

4 5

6
7

8 9

Intermediate solutions

U1

U4

U3

U5

U2

Fig. 2. Typical examples of intermediate solutions generated by E-sets constructed of
(i) a single small-sized AB-cycle (AB-cycle 9), (ii) a single large-sized AB-cycle (AB-
cycle 1), and (iii) randomly selected multiple AB-cycles (AB-cycle 1, 2, 3, 4). Tour-A,
tour-B and AB-cycles are also illustrated (Ineffective AB-cycles are omitted).

EAX-Block:
1. Select a large-sized AB-cycle. Let it be a center AB-cycle. Note that the top

Nch largest-sized AB-cycles are selected as center ones when Nch children
are generated from a pair of parents.

2. Apply the center AB-cycle to tour-A and form an intermediate solution. Let
Ui (i = 1, . . . , k) be the i-th sub-tour, where k is the number of sub-tours.
Let U1 be the largest sub-tour, i.e., including the largest number of edges.

3. Select AB-cycles that satisfy the following conditions.
-(c1): They have connections to vertices in Ui (i = 2, . . . , k).
-(c2): Their sizes are smaller than that of the center AB-cycle.

4. Construct an E-set from the center AB-cycle and the AB-cycles selected in
step 3.

Fig. 2 and Fig. 3 illustrate an example of EAX-Block. In step (1), AB-cycle 1
illustrated in Fig. 2 is selected as a center AB-cycle. Therefore, an intermediate
solution (ii) in Fig. 2 is produced in step (2). In step (3) and (4), an E-set is
constructed of AB-cycles 1, 6, 7, 8 and 9 as shown in Fig. 3, where ineffective
AB-cycles satisfying (c1) are also included in the E-set for the sake of simplicity
of an explanation described below. A resulting intermediate solution produced
by the E-set is illustrated in Fig. 3.

Now, properties of EAX-Block are described. For the sake of simplicity, inef-
fective AB-cycles can be selected in step (3), and condition (c2) is not considered
here. First, we define the following terms.

New EAX Crossover for Large TSP Instances 377

E-set Intermediate solutions

A-vertices

C-vertices

B-vertices

(effective) (ineffective)

Fig. 3. Typical example of an E-set and an intermediate solution generated by EAX-
Block. The E-set is constructed of AB-cycles 1, 6, 7, 8 and 9 illustrated in Fig. 2 and
ineffective AB-cycles adjacent to U2, . . . , U5.

A-vertex: A vertex that is connected to no tour-A (tour-B) edge in the E-set.
It is connected to two tour-A edges in intermediate solutions.

B-vertex: A vertex that is connected to two tour-A (tour-B) edges in the E-set.
It is connected to two tour-B edges in intermediate solutions.

C-vertex: A vertex that is connected to one tour-A (tour-B) edge in the E-
set. It is connected to one tour-A edge and one tour-B edge in intermediate
solutions.

All vertices in U2, . . . , Uk are B-vertices because of condition (c1) in step (3)
(Remember the comments mentioned in Section 2.1.). Vertices in U1 that are
geographically far from the other sub-tours tend to be A-vertices if the sizes of
AB-cycles selected in step (3) are small. Other vertices are C-vertices, which are
located between A-vertices and B-vertices. In Fig. 3, vertices in the intermediate
solution are divided into A-, B- and C-vertices. When the number of C-vertices
increase, the number of sub-tours tend to increase as shown in Fig. 2.

The advantage of EAX-Block over EAX-1AB and EAX-Rand is that inter-
mediate solutions can be generated by assembling a block of tour-A edges and a
block of tour-B edges. If the sizes of all AB-cycles selected in step (3) are small,
the number of C-vertices tends to be small. In this case, EAX-Block has an ideal
property and can satisfy the conditions (C-I) and (C-II).

3.3 Behaviors

Now, we demonstrate the behaviors of EAX-1AB, EAX-Rand, and EAX-Block.
The distribution frequency of sizes of AB-cycles that are obtained by applying

EAX to a pair of parents is shown in Fig. 4 (a). These data are averaged over 150
pairs of parents selected from POP by random sampling without replacement,
where POP was generated by stage I with EAX-1AB as described in Section 4.1.
The instance usa13509 [9] was used for these experiments.

On average, 124.6 AB-cycles are generated from a pair of parents1. As shown
in Fig. 4 (a), while most AB-cycles have sizes smaller than 10, relatively large
1 95% edges are removed as ineffectiveAB-cycles because individuals in POP are sim-

ilar to each other.

378 Y. Nagata

65.4 19.7

0

2

4

6

8

10

12

14

16

2 9 10-19

90-99
100-199

700-799

Num. of AB-cycles = 124.6

Sizes of AB-cycles

F
re

qu
en

cy
EAX-1AB:

0

2

4

6

8

10

12

14

16

2 9 10-19

90-99
100-199

900-999

Sizes of E-Sets

F
re

qu
en

cy

EAX-Rand:

(a) (b)

Fig. 4. (a) Distribution frequency of size of AB-cycles. (b) Distribution frequency of
size of E-sets. Note that scales of x-axes are different.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2 9 10-19

90-99
100-199

900-999

Sizes of E-Sets

P
rob. of im

provem
ent

EAX-1AB

EAX-Block

E
A

X
-R

an
d

0

20

40

60

80

100

120

2 9 10-19

90-99
100-199

900-999

Sizes of E-Sets

N
um

. of sub-tours

EAX-1AB

EAX-Block
EAX-Rand

-25000

-20000

-15000

-10000

-5000

0

2 9 10-19

90-99
100-199

900-999

Sizes of E-Sets

G
ain

M
odi

EAX-1AB

EAX-Block
EAX-Rand

(a) (c)(b)

Fig. 5. Behaviors of EAX-1AB, EAX-Rand, and EAX-Block. Note that scales of x-axes
are different.

AB-cycles having sizes of larger than 100 are usually contained in this example.
Figure 4 (b) shows the distribution frequency of the size of E-sets that were
obtained by applying EAX-Rand to the same population, where 100 E-sets are
generated form a pair of parents. Obviously, the sizes of the E-sets generated by
EAX-Rand are larger than those generated by EAX-1AB.

The behaviors of the three EAXs are shown in Fig. 5. The data are averaged
over each size of an E-set. Figure (a) shows the number of sub-tours in interme-
diate solutions generated by the three types of EAXs. As shown, the number of
sub-tours tends to increase as the size of the E-set increases. On the other hand,
Fig. (b) shows that GainModi tend to decrease as the size of the E-set increases.
We can see that the graphs in Figs. (a) and (b) are symmetric with respect to the
x-axis. Thus, the number of sub-tours and GainModi have a negative correlation.
Based on the condition (C-II), EAX-Block is the best method among the three
types of EAXs because the number of sub-tours (GainModi) of EAX-Block is the
smallest (largest) among them. Consequently, EAX-Block can improve tour-A
more frequently than can EAX-1AB and EAX-Rand, as shown in Fig. (c). Fig.
(c) shows the probabilities of obtaining improved individuals from tour-A using
E-sets constructed by the three types of EAXs.

New EAX Crossover for Large TSP Instances 379

4 Experiments

4.1 Experimental Setting

We compared EAX-1AB, EAX-Rand, and EAX-Block on several TSP bench-
marks. Experiment setting is the same as the Nagata’s works [11] where the
edge entropy measure was used to maintain population diversity, and the fast
implementation of EAX was used. This experiments are implemented in C++
and executed using Itanium 2 1.3-GHz single processor with 126 GB of RAM.

Stage I: EAX-1AB was applied to TSP benchmarks using selection model I
[11], where the population size (Np) was set to 300, and an initial population
was generated by the 2-opt local search. The number of children generated
from a pair of parents (Nch) was set to 30. If the shortest tour length in the
population stagnated over 150 generations, then the run was terminated. Ten
trials were executed for each instance. The resulting population is denoted
as POPi (i = 1, . . . , 10) for each run.

Stage II: For (i = 1, . . . , 10), EAX-Rand or EAX-Block was applied to TSP
benchmarks using POPi as the initial population. Selection model I was
used. Although Np was necessarily 300, Nch was set to 100 in this case to
enhance the searches. The termination conditions were the stagnation of 100
generations for EAX-Rand or 50 for EAX-Block.

4.2 Results

In these experiments, eight large instances were chosen from TSPLIB [9] and
twelve large instances from the national TSPs [13]. The results of EAX-1AB,
EAX-Rand, and EAX-Block are listed in Table 1. As shown, EAX-Rand im-
proved the qualities of the solutions obtained by EAX-1AB with a few excep-
tions. Although EAX-Rand can usually find optimal (best known) solutions for
the instances with up to 10,000 cities, it fails larger instances. In contrast, EAX-
Block can find optimal (best known) solutions for instances of up to 24978 cities.
Moreover, the CPU times needed to terminate runs of EAX-Block were about
10 times faster than those of EAX-Rand.The reasons are that (i) EAX-Block
can improve populations more rapidly than EAX-Rand and that (ii) EAX-Block
can generate individuals faster than EAX-Rand.

In this experiment, EAX-Block found three new best solutions to the na-
tional TSPs benchmarks. This is the first improvement in several years. The new
best tours (tour lengths) are pa8079 (114855), ho14473 (177092), and bm33708
(959291).

We compare EAX-Block with other state-of-the-art TSP heuristic algorithms.
Our proposed approach is categorized as approximation methods for TSPs that
consume relatively large time but aim at finding very near-optimal solution. So,
we chose HeSEA [7] and tour-merging technique [12] that are categorized as
the same class. HeSEA is a hybrid algorithm composed of EAX and CLK [4].
Tour-merging method look for a best tour on a restricted graph consisting of the
union of set of tours obtained by LKH[5].

380 Y. Nagata

Table 1. Comparisons of performances of EAs using three types of EAX. ”Opt.”
column indicates number of trials that reached optimal solutions in ten trials. ”Err.”
indicates average length by which best tour exceeded optimal tour in each trial. ”Gen.”
indicates average generation required to reach best individual in each trial. ”Time”
means average CPU time in seconds required for one trial. For unsolved instances, a
number of trials that reach best tour known today is listed in ”Opt.”, and ”–” is filled
in ”Err.”. If new best tour is found, ”Improve (number of these trials)” is filled in
”Opt.”.

EAX-1AB (Stage I) EAX-Rand (Stage II)EAX-Block (Stage II)

0.0000
0.0000
0.0000
0.0019
0.0033
0.0081
0.0047
0.0124

 fnl4461
 rl5915
 r11849
usa13509
 brd14051
 d15112
 d18512
 pla33810

Instances Gen. Time (sec)Opt.

 848
 319
1252
2486
2729
3076
3496
5014

 1512
 992
 7646
13249
15550
21244
25392
38424

 0
10
 0
 0
 0
 0
 0
 0

Err. (%)

0.0014
0.0000
0.0041
0.0126
0.0129
0.0181
0.0186
0.0182

 30
 0
 61
173
216
165
253
456

 185
 125
 2533
 7164
10193
40060
14037
18930

10
10
 9
 0
 0
 0
 0
 0

 3
 0
 15
 43
 31
107
 77
 79

 42
 36
 298
 496
 712
1662
1526
1892

0.0000
0.0000
0.0000
0.0001
0.0000
0.0001
0.0000
0.0076

 10
 10
 10
 6
 10
 4
 8
 0

 pm8079
 ei8246
 ar9152
 ja9847
 kz9976
 fi10639
mo14185
 ho14473
 it16862
vm22775
sw24978
bm33708

Improve (5)
0
0
0
0
0
0
0
0
0
0
0

 800
1476
1226
1664
1700
1891
2379
1218
3094
3814
4522
6339

Improve (9)
9
9
3
9
5
9
Improve (10)
2
1
3
Improve (1)

 1
 1
 2
 6
 21
 34
 44
 57
109
 45
129
168

 --
 --
0.0057
 --
 --
 --
 --
0.0173
0.0089
0.0209
 --

 --
 --
0.0017
 --
 --
 --

0.0007
0.0007
0.0010

 1596
 4556
 7038
 4705
 5967
 6955
10481
 3365
14778
21346
36946
56305

 128
 439
 135
 275
 532
 808
1089
 359
 892
3457
2500
5094

Gen. Time (sec)Opt. Err. (%)Gen. Time (sec)Opt. Err. (%)

Improve (9)
5
9
3
1
0
0
Improve (7)
0
0
0
0

 6
 53
 10
 31
119
169
 0
 67
 0
 0
 0
 0

 --
 --
0.0028
 --
 --
 --

0.0173
0.0089
0.0209
 --

 830
 4511
 217
 1574
 5685
 9276
10756
 5445
19778
20686
26542
36087

Table 2 show the results. As compared with the results of HeSEA and Tour-
merging, EAX-Block could find optimal solutions in some large instances with
smaller CPU times even where other method could not find them.

5 Conclusion

We improved the edge assembly crossover (EAX) to apply EAs using EAX to
large TSP instances having more than 10,000 cities. Our results demonstrated
that EAX-Block is suitable for large TSP instances.

We observed that the following two conditions are needed to improve highly
refined near-optimal solutions using EAX for large instances. (C-I) The E-set
should be large enough to overcome deep local optima. (C-II) The number of
sub-tours in an intermediate solution should be as small as possible. We pro-
posed EAX-Block to satisfy these conditions. The key idea of EAX-Block is
assembling blocks of tour-A edges and blocks of tour-B edges to generate inter-
mediate solutions. We demonstrated that EAX-Block is better than EAX-1AB
and EAX-Rand in terms of the above conditions.

The experimental results show that the EA with EAX-Block can find optimal
solutions for large instances of up to 24978 cities in a reasonable CPU time.
Moreover, three new best tours were found for unsolved national TSP instances.

New EAX Crossover for Large TSP Instances 381

Table 2. Performances of other state-of-the-art TSP heuristics. These Data are copied
from the original papers (Data are not available in Blank cells). HeSEA and Tour-
merging were executed twenty and one trials for each instance, respectively. CPU time
of HeSEA and Tour-merging are based on Pentium IV 1.2-GHz and EV6 Compaq
Alpha 500-MHz processors, respectively.

HeSEA Tour-merging

 fnl4461
 rl5915
 r11849
usa13509
 brd14051
 d15112
 d18512
 pla33810

Instances Time (sec)Opt.

 2,349
 2,773

34,948

16/20
19/20

 0/20

Err. (%)

0.0005
0.0001

0.0074

 63,954
 646,483
 968,473
 1,676,314
 1976,174
 3,704,852
43,632,379

0.0000
0.0000
0.0001
0.0030
0.0000
0.0071
0.0998

 1/1
 1/1
 0/1
 0/1
 1/1
 0/1
 0/0

Time (sec)Opt. Err. (%)

References

1. D. S. Johnson: Local Optimization and the Traveling Salesman Problem, Au-
tomata, Languages and Programming, Lecture note in Computer Science 442,
pringer, Heidelberg, pp. 446–461.

2. 8-th DIMACS Implementation Challenge: The Traveling Salesman Problem,
http://www.research.att.com/ dsj/chtsp.

3. S. Lin and B. Kernighan, Effective heuristic algorithms for the traveling salesman
problem, Oper. Res., vol. 21, pp. 498–516, 1973.

4. D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Finding tours in the TSP.
Technical Report 99885, Forschungsinstitut fur Diskrete Mathematik, Universitat
Bonn, 1999.

5. K. Helsgaun, “An effective implementation of the Lin-Kernighan traveling salesman
heuristic, “Eur. J. Oper. Res., vol. 126, no.1, pp. 106–130, 2000.

6. Y. Nagata and S. Kobayashi, Edge Assembly Crossover: A High-power Genetic
Algorithm for the Traveling Salesman Problem, Proc. of the 7th Int. Conference
on Genetic Algorithms, pp. 450-457, 1997.

7. H. K. Tsai, J. M. Yang, Y. F. Tsai, and C. Y. Kao, An Evolutionary Algorithm
for Large Traveling Salesman Problem, IEEE Transaction on SMC-part B, vol. 34,
no. 4, pp. 1718- 1729, 2004.

8. K. Maekawa, N. Mori, H. Kita, and H.Nishikawa, A Genetic Solution for the Trav-
eling Salesman Problem by Means of a Thermodynamical Selection Rule, Proc.
1996 IEEE Int. Conference on Evolutionary Computation, pp. 529-534, 1996.

9. TSPLIB95, http://www.iwr.uni-heidelberg.de/iwr/compt/soft/TSPLIB95
10. Y. Nagata, The EAX algorithm considering diversity loss, Proc. of the 8th Int.

Conference on Parallel Problem Solving from Nature, pp. 332–341, 2004.
11. Y. Nagata, Fast EAX algorithm Considering Population Diversity for Traveling

Salesman Problems, Proc. of the 6th Int. Conference on EvoCOP2006, pp. 171–
182, 2006.

12. W. Cook and P. Seymour, Tour Merging via Branch-Decomposition, INFORMS
Journal on Computing, vol. 15, no. 3, pp. 233–248, 2003.

13. National Traveling Salesman Problems.http://www.tsp.gatech.edu/world/
countries.html.

http://www.tsp.gatech.edu/world/countries.html
http://www.tsp.gatech.edu/world/countries.html

	Introduction
	Previous Work
	Outline of EAX
	Some Strategies for EAX

	Proposed Method
	Limitations of EAX-1AB and EAX-Rand
	EAX-Block
	Behaviors

	Experiments
	Experimental Setting
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

