
Substructural Neighborhoods for Local Search in
the Bayesian Optimization Algorithm

Claudio F. Lima1, Martin Pelikan2, Kumara Sastry3, Martin Butz4,
David E. Goldberg3, and Fernando G. Lobo1

1 University of Algarve, Portugal
2 University of Missouri at St. Louis, USA

3 University of Illinois at Urbana-Champaign, USA
4 University of Würzburg, Germany

clima@ualg.pt, pelikan@cs.umsl.edu, ksastry@uiuc.edu,
mbutz@psychologie.uni-wuerzburg.de, deg@uiuc.edu, flobo@ualg.pt

Abstract. This paper studies the utility of using substructural neigh-
borhoods for local search in the Bayesian optimization algorithm (BOA).
The probabilistic model of BOA, which automatically identifies impor-
tant problem substructures, is used to define the structure of the neigh-
borhoods used in local search. Additionally, a surrogate fitness model is
considered to evaluate the improvement of the local search steps. The
results show that performing substructural local search in BOA signi-
ficatively reduces the number of generations necessary to converge to
optimal solutions and thus provides substantial speedups.

1 Introduction

Estimation of distribution algorithms (EDAs) [1,2], a new class of genetic and
evolutionary algorithms (GEAs), have frequently been found to be more efficient
than traditional GEAs that use fixed, problem-independent variation operators.
The conceptual difference is that EDAs replace the traditional variation op-
erators of GEAs by building and sampling a probabilistic model of promising
solutions. In essence, this procedure tries to mimic the behavior of an ideal
recombination operator that combines subsolutions with minimal disruption.

Although EDAs are effective at exploring the search space to find promising
regions, they inherit a common drawback from traditional GEAs: slower conver-
gence to optimal solutions when compared with appropriate local searchers that
start the search within the basin of attraction of the optima. This observation
has led to the combination of GEAs with local search methods known as hybrid
GEAs or memetic algorithms [3,4]. In this context EDAs are no exception and
many applications in real-world optimization have been accomplished with the
help of some sort of local search. However, systematic methods for hybridizing
and designing competent global and local-search methods that automatically
identify the problem decomposition and important problem substructures are
still scarce. For instance, the probabilistic models of EDAs contain useful infor-
mation about the underlying problem structure that can be exploited to speedup
the convergence of EDAs to optimal solutions.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 232–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Substructural Neighborhoods for Local Search in the BOA 233

In this paper we use substructural neighborhoods to perform local search in
the Bayesian optimization algorithm (BOA) [5]. These neighborhoods are de-
fined by the dependency groups learned by the probabilistic model of BOA.
Additionally, we use a surrogate fitness model that also makes use of substruc-
tural information to evaluate the alternatives while performing hillclimbing in
the subsolution search space. The results show that incorporating substructural
local search in BOA leads to a significant reduction in the number of generations,
providing relevant speedups in terms of number of evaluations.

The next section gives an outline of the Bayesian optimization algorithm and
how fitness can be modeled under this framework. In Section 3, we introduce
several substructural neighborhoods, followed by the incorporation of a substruc-
tural hillclimber in BOA. Section 5 presents and discusses empirical results. The
paper ends with a summary and major conclusions.

2 Bayesian Optimization Algorithm

Estimation of distribution algorithms [1,6] replace traditional variation operators
of GEAs by building a probabilistic model of promising solutions (that survive se-
lection) and sampling the corresponding probability distribution to generate the
offspring population. The Bayesian optimization algorithm [5,6] uses Bayesian
networks as the probabilistic model to capture the (in)dependencies between the
variables of the problem.

Like traditional GAs, BOA starts with an initial population (usually randomly
generated) that is evaluated and submitted to a selection operator that gives
preference to high-quality solutions. The set of selected individuals is then used
as the training dataset to learn the probabilistic model for the present generation.
After obtaining the model structure and parameters, the offspring population is
generated by sampling from the distribution of modeled individuals. The new
solutions are then evaluated and incorporated into the original population. Here,
we use a simple replacement scheme where new solutions fully replace the original
population.

2.1 Modeling (in)Dependencies Between Variables in BOA

Bayesian networks [7] are powerful graphical models that combine probability
theory with graph theory to encode probabilistic relationships between variables
of interest. A Bayesian network is defined by a structure and corresponding
parameters. The structure is represented by a directed acyclic graph where the
nodes correspond to the variables of the data to be modeled and the edges
correspond to conditional dependencies. The parameters are represented by the
conditional probabilities for each variable given any instance of the variables
that this variable depends on. More formally, a Bayesian network encodes the
following joint probability distribution,

p(X) =
�∏

i=1

p(Xi|Πi), (1)

234 C.F. Lima et al.

where X = (X1, X2, . . . , X�) is a vector of all the variables of the problem, Πi

is the set of parents of Xi (nodes from which there exists an edge to Xi), and
p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

In BOA, both the structure and the parameters of the probabilistic model
are searched and optimized to best fit the data (set of promising solutions). To
learn the most adequate structure for the Bayesian network a greedy algorithm is
usually used for a good compromise between search efficiency and model quality.

The parameters of a Bayesian network are represented by a set of conditional
probability tables (CPTs) specifying the conditional probabilities for each vari-
able given all possible instances of the parent variables Πi. Alternatively, these
conditional probabilities can be stored in the form of local structures such as
decision trees or decision graphs, allowing a more efficient and flexible represen-
tation of local conditional distributions. In this work, decision trees are used to
encode the parameters of the Bayesian network.

2.2 Modeling Fitness in BOA

Pelikan and Sastry [8] extended the Bayesian networks used in BOA to encode
a surrogate fitness model that is used to estimate the fitness of a proportion of
the population, thereby reducing the total number of function evaluations. For
each possible value xi of every variable Xi, an estimate of the marginal fitness
contribution of a subsolution with Xi = xi is stored for each instance πi of Xi’s
parents Πi. Therefore, in the binary case, each row in the CPT is extended by
two additional entries. The fitness of an individual can then be estimated as

fest(X1, X2, . . . , X�) = f̄ +
�∑

i=1

(
f̄(Xi|Πi) − f̄(Πi)

)
, (2)

where f̄ is the average fitness of all solutions used to learn the surrogate,
f̄(Xi|Πi) is the average fitness of solutions with Xi and Πi, and f̄(Πi) is the
average fitness of all solutions with Πi.

Fitness information can also be incorporated in Bayesian networks with de-
cision trees or graphs in a similar way. In this case, the average fitness of each
instance for every variable must be stored in every leaf of the decision tree or
graph. The fitness averages in each leaf are now restricted to solutions that
satisfy the condition specified by the path from the root of the tree to the leaf.

3 Substructural Neighborhoods

One of the key requirements for designing an efficient mutation operator is to
ensure that it searches in the correct neighborhood. This is often accomplished
by exploiting and incorporating domain- or problem-specific knowledge in the
design of neighborhood operators. While these neighborhood operators are de-
signed for a particular search problem, oftentimes on an ad-hoc basis, they do not
generalize their efficiency beyond a small number of applications. On the other

Substructural Neighborhoods for Local Search in the BOA 235

hand, simple bitwise hillclimbers are frequently used as local search methods with
more general applicability, providing inferior but still competitive results, espe-
cially when combined with population-based search procedures. Clearly, there is
a tradeoff between generalization and efficiency for neighborhood operators with
fixed structure. Therefore, it is important to study systematic methods for de-
signing neighborhood operators that can solve a broad class of search problems.

The exploration of neighborhoods defined by the probabilistic models of EDAs
is an approach that exploits both the underlying problem structure while not
loosing the generality of application. The resulting mutation operators explore
a more global, problem-dependent neighborhood than traditional local, purely
representation-dependent search procedures.

Recently, it has been shown that a selectomutative algorithm that performs
hillclimbing in the substructural space can successfully solve problems of bounded
difficulty with subquadratic scalability [9]. Sastry and Goldberg [10] proposed a
building-block-wise mutation algorithm based on the probabilistic model of the
extended compact genetic algorithm (eCGA) [11], where linkage information is
used to perform local search among competing subsolutions. Lima et. al. [12] ex-
tended the regular eCGA by incorporating local search in the subsolution search
space and concluded that this hybrid approach is more robust than both single-
operator-based approaches [11,10].

In this paper we extend the concept of exploring substructural neighborhoods
to the Bayesian optimization algorithm. Given the structure of the Bayesian
network, several neighborhood topologies can be considered to perform random
or improvement-guided mutations. For a given variable Xi, the corresponding
set of parent nodes Πi, and set of child nodes Ωi (nodes to where an edge arrives
from node Xi), we define three different substructural neighborhoods:

Parental neighborhood considers variable Xi together with the parent vari-
ables Πi. This neighborhood is therefore defined by K = 1 + |Πi| different
variables, resulting in 2K possible values in the binary realm.

Children neighborhood considers variable Xi together with the child vari-
ables Ωi. Thus this neighborhood is defined by K = 1 + |Ωi| variables.

Parental+Children neighborhood considers variable Xi together with both
parent variables Πi and child variables Ωi. This neighborhood is composed
by K = 1 + |Πi| + |Ωi| variables.

These three neighborhoods explore the structure captured by the Bayesian
network to different extends. In this paper, we focus on the parental neighbor-
hood to define the neighborhood topology to be used by local search.

A somewhat related approach has been recently proposed by Handa [13],
where the traditional bitwise mutation operator is employed in the estimation
of Bayesian networks algorithm (EBNA) [14] and consequently variables that
depend on the mutated node are resampled according to the conditional prob-
abilities for the new instance. Although this mutation operator takes into ac-
count the dependencies between variables, it is specifically designed to perturb
solutions in order to maintain diversity in the population. Our approach is to

236 C.F. Lima et al.

interpret the structure of the Bayesian network as a set of linkage groups that
are used to define neighborhoods to be explored by local search.

4 BOA with Substructural Hillclimbing

This section introduces a hillclimber that uses the parental neighborhood de-
fined in the previous section to perform hillclimbing in the substructural space
of an individual. This hillclimbing is performed for a proportion of the popula-
tion in BOA to speedup convergence to good solutions, as in traditional hybrid
GEAs. After the offspring population is sampled from the probabilistic model
and evaluated, each individual is submitted to substructural hillclimbing with
probability pls. The substructural hillclimber can be described as follows:

1. Consider the first variable Xi according with the ancestral reverse ordering
of variables in the Bayesian network.

2. Choose the values (xi, πi) associated with the maximal substructural fitness
f̄(Xi|Πi).

3. Set variables (Xi, Πi) of the considered individual to values (xi, πi) if the
overall fitness of the individual is improved by doing so, otherwise leave the
individual unchanged.

4. Repeat steps 2-3 for all remaining variables following the ancestral reverse
order of variables.

Some details need further explanation. First, we use the reverse order of that
used to sample the variables of new solutions, where each node is preceded
by its parents. By doing so, higher-order dependencies within the same linkage
group are optimized first. This procedure aims to reduce the possibility of doing
incorrect decisions when considering problems whose lower-order statistics lead
the search away from global optima.

Also, we consider two different versions of the substructural hillclimber in
our study, that only differ in step 3. The first version uses the estimated fitness
of the individual (Equation 2) to decide if the best substructure (according
to f̄(Xi|Πi)) for a given neighborhood should be accepted, while the second
version uses the actual fitness function to make the decision. After performing
substructural hillclimbing for all variables, the resulting individual is evaluated
with the fitness function before it is inserted back into the population. This
avoids the propagation of error possibly introduced by using surrogate fitness.
Thus, the surrogate is only used to perform local search in the substructural
neighborhoods.

We also note that searching within the same substructural neighborhoods for
different individuals yields results whose similarity increase with the accuracy
of the linkage model. However, in practice, performing local search on different
individuals helps to overcome incorrect biases from the errors in the substructural
models.

Substructural Neighborhoods for Local Search in the BOA 237

5 Experiments

This section describes the test problems used, presents the results obtained for
varying proportions of local search pls, and empirically analyzes the scalability
of the proposed method with increasing problem size.

5.1 Test Problems and Experimental Setup

Two different problems are used to test the proposed method: OneMax and Trap
functions. These problems represent two important bounds on a class of addi-
tively decomposable problems with bounded difficulty. In OneMax the fitness is
simply given by the sum of ones in a binary string. This is a simple linear func-
tion with the optimum in the solution with all ones. Therefore, there is no need
of linkage learning to be able to solve this problem. While the optimization of the
OneMax problem is easy, the probabilistic models build by EDAs such as eCGA
and BOA, however, are known to be only partially correct and include spurious
linkages. Therefore, the results on this function will indicate if the effect of using
partially correct linkage mapping on the accuracy of the surrogate is significant,
and consequently if performing substructural local search under these conditions
is still advantageous. This paper considers a OneMax function with size � = 50.

The second problem considered is a concatenated 5-bit Trap function [15].
This problem consists in concatenating a number of copies of the Trap function
with size k = 5. The Trap function used is defined as follows

fTrap(u) =
{

5 if u = 5
4 − u otherwise, (3)

where u is the number of ones in the substring of 5 bits. In this problem the
accurate identification and exchange of the building-blocks is critical to achieve
success, because processing substructures of lower order will lead to exponential
scalability. Ten concatenated copies of the 5-bit Trap are used, which makes the
total problem size also � = 50.

For each problem, we perform experiments for different proportions of local
search pls. The proportions tested are 0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2.
For the 10x5-bit Trap function, an additional value of 0.0005 is also considered.
The minimal number of function evaluations required to obtain the optimal so-
lution is empirically determined using a bisection method over the population
size. For each experiment, 10 independent bisection runs are performed. Each
bisection run searches for the minimal population size required to find the op-
timum in 10 out of 10 independent runs. Therefore, the results for the minimal
sufficient population size are averaged over 10 bisection runs, while the results
for the number of function evaluations and the number of generations spent
are averaged over 100 (10 × 10) independent runs. For all experiments, binary
tournament selection without replacement is used.

238 C.F. Lima et al.

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

Proportion of Local Search, p
ls

P
o
p
u
l
a
t
i
o
n

s
i
z
e
,

n

Estimated fitness
Evaluated fitness

0 0.05 0.1 0.15 0.2
0

2000

4000

6000

8000

10000

12000

Proportion of Local Search, p
ls

N
u
m
.

o
f

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s
,

n
f
e Estimated fitness

Evaluated fitness

Fig. 1. Population size and number of function evaluations required to solve the 50-bit
OneMax problem

0 0.05 0.1 0.15 0.2
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Proportion of Local Search, p
ls

P
o
p
u
l
a
t
i
o
n

s
i
z
e
,

n

Estimated fitness
Evaluated fitness

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3
x 10

5

Proportion of Local Search, p
ls

N
u
m
.

o
f

F
u
n
c
t
i
o
n

E
v
a
l
u
a
t
i
o
n
s
,

n
f
e

0.001 0.005
4

5

6
x 10

4

Estimated fitness
Evaluated fitness

Fig. 2. Population size and number of function evaluations required to solve the 10x5-
bit Trap problem

5.2 Results and Discussion

The results obtained are shown in figures 1 and 2. For both problems, the number
of evaluations is significatively reduced when using local search that explores
substructural neighborhoods. Also, both versions of the acceptance criteria in
the substructural hillclimber reduce the cost to solve the problem. However,
different dynamics can be observed for each problem.

For OneMax, using the actual fitness function when deciding if substructures
should be accepted or not provides slightly better results than using estimated
fitness, while the population size required is significatively smaller, in particular
for higher proportions of local search. Note that the correctness of the sub-
structural neighborhoods is not crucial when solving OneMax using local search
because there is no linkage. However, the choice of the best alternative in each
neighborhood is based on the substructural fitness contribution that is estimated
by the surrogate whose correctness relies on the accuracy of the linkage model.

Substructural Neighborhoods for Local Search in the BOA 239

20 40 80 140
1

5

10

20

Problem Size, l

N
u
m
.

o
f

g
e
n
e
r
a
t
i
o
n
s

p
ls
 = 0

p
ls
 = 0.0005

p
ls
 = 0.001

20 40 80 140

2

3

4

5

6

Problem Size, l

S
p
e
e
d
u
p
,

η l
s

p
ls
 = 0.0005

p
ls
 = 0.001

Fig. 3. Number of generations required to get the optimum and the speedup obtained
by performing substructural local search on a number of concatenated 5-bit Trap func-
tions. The speedup scales as O(�0.45) for � ≤ 80. For � > 80 the speedup grow is more
moderate for the optimal value of pls = 0.0005, while for higher proportions of local
search the speedup starts to decrease due to diversity reduction in the population.

But even more important is the acceptance (or not) of the substructures. By us-
ing real fitness evaluation in this decision, only those building-blocks that really
improve the fitness of the individual are accepted, which drastically reduces the
need of having an accurate surrogate fitness model (and consequently a larger
population size). For the hillclimber that uses only estimated fitness, the popula-
tion size required grows even more for higher proportions of local search because
the diversity in the population is quickly reduced, which requires the surrogate
to be accurate enough to solve the problem in the first generation.

In the 10x5-bit Trap, the identification of the correct substructures is crucial
to solve the problem, requiring the accuracy of the probabilistic model of BOA
to be high. Therefore, both hillclimbers perform similar for small proportions of
local search. Here, however, the cost of using fitness function calls at each step
of the substructural hillclimber shows to be an expensive overhead for higher
values of pls. Similar to OneMax, there is a transition phase in the population
size required for the hillclimber that uses surrogate fitness. For pls ≥ 0.05, the
population size stagnates at a value where the model is accurate enough to solve
the problem in the first generation by performing substructural local search.

Figure 3 presents the results obtained for increasing number of concatenated 5-
bit Trap functions for BOA with the hillclimber that uses estimated fitness. The
number of generations required to reach optima and the speedup of performing
local search are shown. Note that the speedup is simply the ratio of the number of
evaluations required by BOA without and with local search. Several proportions
of local search were tested between 0.0001 and 0.005, but for clarity only two
illustrative cases are plotted: 0.0005 and 0.001. The population size required (not
plotted) scales similarly for all tested pls values.

The results show that while obtaining a significant reduction in the number of
generations, substantial speedups are provided by using substructural local search

240 C.F. Lima et al.

in BOA. The speedup grows approximately as O(�0.45) for � ≤ 80. For larger
problem sizes the increase in speedup becomes more moderate for pls = 0.0005,
while for higher proportions of local search the speedup decreases. This is due to
the population size required for larger problems, increasing the number of indi-
viduals that undergo local search for the same value of pls, and thereby reducing
diversity in the population. Note that the resulting individuals from substruc-
tural hillclimbing are very similar. On the other hand, smaller proportions of lo-
cal search (not plotted) lead to a curve with similar slope to that obtained for the
best proportion but with inferior speedups. As a final remark, while pls = 0.0005
was found to be the most adequate value the spectrum of problem sizes tested,
the optimal proportion should decrease for larger problems than considered here.

The reduction of the slope in the speedup curve for larger problem sizes is also
related to the structure of the model learned by BOA. Analyzing the dependency
groups captured by the Bayesian network with decision trees, it can be observed
that the number and size of spurious linkages increases with problem size. By
spurious linkage we mean additional variables that are considered together with a
correct linkage group. Although the structure of the Bayesian network captures
such spurious dependencies, the conditional probabilities nearly express inde-
pendency between the spurious variables and the correct linkage, therefore not
affecting the capability of sampling such variables as if they were independent.
In fact, this capability of decision trees to detect more complex dependencies
is one of the keys in hierarchical BOA [6] to solve more complex decomposable
problems such as hierarchical problems.

6 Summary and Conclusions

In this paper, we have introduced the use of substructural neighborhoods to per-
form local search in BOA. Three different substructural neighborhoods—based
on the structure of the learned Bayesian network—were proposed. A hillclimber
that effectively searches in the subsolution search space was incorporated in
BOA, using a surrogate fitness model to evaluate competing substructures. The
results showed that incorporating substructural local search in BOA leads to a
significant reduction in the number of generations necessary to solve the prob-
lem, while providing substantial speedups in terms of number of evaluations.
More importantly, the relevance of designing and hybridizing competent op-
erators that automatically identify the problem decomposition and important
problem substructures have been empirically highlighted.

Acknowledgements. This work was sponsored by the Air Force Office of Sci-
entific Research, Air Force Materiel Command, USAF, under grant FA9550-06-1-
0096, the National Science Foundation under CAREER grant ECS-0547013, ITR
grant DMR-03-25939 at Material Computation Center, UIUC, and Portuguese
Foundation for Science and Technology (FCT/MCES) under grant SFRH-BD-
16980-2004. The work was also supported by the High Performance Computing
Collaboratory sponsoredby InformationTechnology Services, theResearchAward
and the Research Board at the University of Missouri in St. Louis.

Substructural Neighborhoods for Local Search in the BOA 241

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Air Force Office of Scientific Research, or the
U.S. Government.

References

1. Larrañaga, P., Lozano, J.A., eds.: Estimation of distribution algorithms: a new tool
for Evolutionary Computation. Kluwer Academic Publishers, Boston, MA (2002)

2. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21(1)
(2002) 5–20 Also IlliGAL Report No. 99018.

3. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent
Computation Program, California Institute of Technology, Pasadena, CA (1989)

4. Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University
of California, San Diego, San Diego, CA (1994)

5. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization
Algorithm. In Banzhaf, W., et al., eds.: Proceedings of the Genetic and Evolution-
ary Computation Conference GECCO-99, San Francisco, CA, Morgan Kaufmann
(1999) 525–532 Also IlliGAL Report No. 99003.

6. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Gen-
eration of Evolutionary Algorithms. Springer (2005)

7. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible in-
ference. Morgan Kaufmann, San Mateo, CA (1988)

8. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization algorithm.
In Deb, K.e.a., ed.: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2004), Part II, LNCS 3103, Springer (2004) 48–59

9. Sastry, K., Goldberg, D.E.: Let’s get ready to rumble: Crossover versus mutation
head to head. In Deb, K., et al., eds.: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2004), Part II, LNCS 3103, Springer (2004)
126–137 Also IlliGAL Report No. 2004005.

10. Sastry, K., Goldberg, D.E.: Designing competent mutation operators via proba-
bilistic model building of neighborhoods. In Deb, K., et al., eds.: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2004), Part II,
LNCS 3103, Springer (2004) 114–125 Also IlliGAL Report No. 2004006.

11. Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA. IlliGAL
Report No. 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL (1999)

12. Lima, C.F., Sastry, K., Goldberg, D.E., Lobo, F.G.: Combining competent
crossover and mutation operators: A probabilistic model building approach. In
Beyer, H., et al., eds.: Proceedings of the ACM SIGEVO Genetic and Evolution-
ary Computation Conference (GECCO-2005), ACM Press (2005)

13. Handa, H.: The effectiveness of mutation operation in the case of estimation of
distribution algorithms. Journal of Biosystems (2006) (to appear).

14. Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In
Rodriguez, A., et al., eds.: Second Symposium on Artificial Intelligence (CIMAF-
99), Habana, Cuba (1999) 332–339

15. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of
Genetic Algorithms 2 (1993) 93–108

	Introduction
	Bayesian Optimization Algorithm
	Modeling (in)Dependencies Between Variables in BOA
	Modeling Fitness in BOA

	Substructural Neighborhoods
	BOA with Substructural Hillclimbing
	Experiments
	Test Problems and Experimental Setup
	Results and Discussion

	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

