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Abstract. This paper analyzes the hierarchical Bayesian optimization
algorithm (hBOA) on the problem of finding ground states of Ising spin
glasses with ±J couplings in two and three dimensions. The perfor-
mance of hBOA is compared to that of the simple genetic algorithm
(GA) and the univariate marginal distribution algorithm (UMDA). The
performance of all tested algorithms is improved by incorporating a de-
terministic hill climber (DHC) based on single-bit flips and cluster exact
approximation (CEA). The results show that hBOA significantly out-
performs GA and UMDA with both types of local search and that CEA
enables all tested algorithms to solve larger spin-glass instances than
DHC. Using advanced hybrid methods created by combining competent
genetic and evolutionary algorithms with advanced local searchers thus
proves advantageous in this challenging class of problems.

1 Introduction

Ising spin glasses are prototypical models for disordered systems and have played
a central role in statistical physics during the last three decades [1,2,3,4]. Exam-
ples of experimental realizations of spin glasses are metals with magnetic impu-
rities, e.g. gold with a small fraction of iron added. Spin glasses represent also
a rich class of challenging problems for optimization algorithms [5,6,7] where
the task is to minimize energy of a given spin-glass instance [8,9,10,11,12,13].
States with the lowest energy are called ground states and thus the problem of
minimizing the energy of spin-glass instances can be formulated as the problem
of finding ground states of these instances. There are two main challenges that
must be tackled to find ground states of spin glasses efficiently and reliably:
(1) There are many local optima in the energy landscape (the number of local
optima may grow exponentially with problem size). (2) The local minima are
often surrounded by high-energy configurations, which make it difficult for lo-
cal operators to escape the local optimum once they get trapped in it. That is
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why even state-of-the-art Markov chain Monte Carlo (MCMC) methods require
exponential time to locate ground states [14].

This paper analyzes the hierarchical Bayesian optimization algorithm
(hBOA) [15,16] on a broad spectrum of instances of the problem of finding
ground states of Ising spin glasses with ±J couplings and periodic boundary
conditions. The performance of hBOA is compared to that of the simple genetic
algorithm (GA) and the univariate marginal distribution algorithm (UMDA).
We build on the prior work [12] where we combined several evolutionary al-
gorithms with the deterministic hill climber to solve various classes of 2D and
3D spin glasses. However, here we consider also cluster exact approximation
(CEA) [17], which provides an efficient method to perform large updates of spin
glass configurations to decrease their energy. CEA is incorporated into hBOA
and GA, and the resulting hybrids are tested on a number of spin-glass prob-
lem instances. CEA is shown to significantly improve performance of all tested
algorithms, allowing a practical solution of much larger problems than DHC.

The paper is organized as follows. Section 2 describes the problem of finding
ground states of Ising spin glasses. Section 3 outlines the algorithms hBOA, GA
and UMDA; additionally, the section describes the deterministic hill climber and
cluster exact approximation, which are incorporated into all tested algorithms
to improve their performance. Section 4 presents and discusses experiments.
Finally, Section 5 summarizes and concludes the paper.

2 Ising Spin Glass

A very simple model to describe a finite-dimensional Ising spin glass is typically
arranged on a regular 2D or 3D grid where each node i corresponds to a spin si

and each edge 〈i, j〉 corresponds to a coupling between two spins si and sj . Each
edge has a real value associated with it that defines the relationship between
the two connected spins. To approximate the behavior of the large-scale system,
periodic boundary conditions are often used that introduce a coupling between
the first and the last element along each dimension.

For the classical Ising model, each spin si can be in one of two states: si =
+1 or si = −1. Note that this simplification corresponds to highly anisotropic
systems, which do indeed exist in some experimental situations. Nevertheless,
the two-state Ising model comprises all basic effects also found in models with
more degrees of freedom. A specific set of coupling constants defines a spin-glass
instance. Each possible setting of all spins is called a spin configuration.

Given a set of coupling constants Ji,j , and a spin configuration C = {si} (i =
1, . . . , n), the energy can be computed as

E(C) =
∑

〈i,j〉
siJi,jsj , (1)

where the sum runs over all couplings 〈i, j〉.
Given a set of coupling constants, the usual task in statistical physics is to

integrate a known function over all possible configurations of spins, assuming
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the Boltzmann distribution of spin configurations; that means, the probability
of each configuration C is proportional to exp (−E(C)/T ) where E(C) is energy
of C and T is the temperature. From the physics point of view, it is also inter-
esting to know the ground states (configurations associated with the minimum
possible energy). Finding extremal energies then corresponds to sampling the
Boltzmann distribution with temperature approaching 0 and thus the problem
of finding ground states is simpler a priori than integration over a wide range of
temperatures. However, most of the conventional methods based on sampling the
above Boltzmann distribution, such as the flat-histogram Markov chain Monte
Carlo [18], fail to find the ground states because they get often trapped in a local
minimum [14].

In order to obtain a quantitative understanding of the disorder in a spin glass
system introduced by the random spin-spin couplings, one generally analyzes a
large set of random spin-glass instances for a given distribution of the spin-spin
couplings. For each spin glass instance, the optimization algorithm is applied
and the results are analyzed to obtain a measure of computational complexity.
Here we consider the ±J spin glass, where each spin-spin coupling constant is
set randomly to either +1 or −1 with equal probability.

3 Compared Algorithms

This section outlines the algorithms compared in this paper: (1) The hierarchical
Bayesian optimization algorithm (hBOA), (2) the genetic algorithm (GA), and
(3) the univariate marginal distribution algorithm (UMDA). hBOA and UMDA
are estimation of distribution algorithms (EDAs) [19,20,21], where standard vari-
ation operators are replaced by building and sampling probabilistic models. The
section also describes the deterministic hill climber (DHC) and cluster exact
approximation (CEA), which are used to improve performance of compared al-
gorithms. Candidate solutions are represented by n-bit binary strings where each
bit specifies the value of one of the n spins (0 represents state −1 and 1 represents
state +1).

3.1 Hierarchical Bayesian Optimization Algorithm (hBOA)

The hierarchical Bayesian optimization algorithm (hBOA) [15,16] evolves a pop-
ulation of candidate solutions. The population is initially generated at random
according to a uniform distribution over all n-bit strings. Each iteration starts by
selecting a population of promising solutions using any common selection method
of genetic and evolutionary algorithms, such as tournament and truncation selec-
tion; we use binary tournament selection. New solutions are generated by build-
ing a Bayesian network with decision trees [22,23] for the selected solutions and
sampling the built Bayesian network. To ensure useful diversity maintenance,
the new candidate solutions are incorporated into the original population us-
ing restricted tournament replacement (RTR) [24]. The run is terminated when
termination criteria are met.
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3.2 Genetic Algorithm (GA)

The genetic algorithm (GA) [25,26] also evolves a population of candidate so-
lutions starting with a population generated at random. Each iteration starts
by selecting promising solutions from the current population. New solutions are
created by applying variation operators to the population of selected solutions.
Specifically, crossover is used to exchange bits and pieces between pairs of can-
didate solutions and mutation is used to perturb the resulting solutions. Here
we use one-point crossover and bit-flip mutation. The new candidate solutions
are incorporated into the original population using RTR. The run is terminated
when termination criteria are met.

3.3 Univariate Marginal Distribution Algorithm (UMDA)

The univariate marginal distribution algorithm (UMDA) [19] also evolves a pop-
ulation of candidate solutions represented by binary strings, starting with a ran-
dom population. Each iteration starts by selection. Then, the probability vector
is learned that stores the proportion of 1s in each position of the selected popu-
lation. Each bit of a new candidate solution is then set to 1 with the probability
equal to the proportion of 1s in this position; otherwise, the bit is set to 0. Con-
sequently, the variation operator of UMDA preserves the proportions of 1s in
each position while decorrelating different string positions. The new candidate
solutions are incorporated into the original population using RTR. The run is
terminated when termination criteria are met.

The only difference between hBOA and the UMDA variant discussed in this
paper is the type of the probabilistic model used to model promising candidate
solutions and generate the new ones. The comparison between hBOA and UMDA
should therefore indicate whether in this problem domain effective exploration
necessitates complex probabilistic models that can efficiently encode large-order
interactions between spins, as it is the case for hBOA. For analogical reasons,
the comparison between hBOA and GA will indicate whether it is important to
use advanced variation operators that adapt to the problem like in hBOA.

3.4 Deterministic Hill Climber

Like in previous work [12], we incorporate a deterministic hill climber (DHC) into
hBOA, GA and UMDA to improve their performance. DHC takes a candidate
solution represented by an n-bit binary string on input. Then, it performs one-
bit changes on the solution that lead to the maximum improvement of solution
quality (maximum decrease in energy). DHC is terminated when no single-bit
flip improves solution quality and the solution is thus locally optimal. Here, DHC
is used to improve every solution in the population before the evaluation is per-
formed. The hybrids created by incorporating DHC into hBOA, GA and UMDA
are referred to as hBOA+DHC, GA+DHC and UMDA+DHC, respectively.

3.5 Cluster Exact Approximation (CEA)

Due to the complex structure of the energy landscape of spin glasses, many
local minima exist, which have energies very close to the ground-state energy.
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Usually these minima differ from the true ground states by flips of large domains.
Hence, as already mentioned, the minima are surrounded by high energy barriers
from the viewpoint of single-spin-flip dynamics. This leads to poor performance
of algorithms that apply single-bit (spin) changes as DHC. For this reason, we
also consider cluster exact approximation (CEA) [17], which provides an efficient
method that can change many spins at the same time optimally (assuming that
the remaining spins remain fixed).

CEA starts by constructing a non-frustrated cluster of spins; a non-frustrated
cluster contains spins that can be set to some values without breaking any inter-
actions between them. The selected cluster is first transformed so that all inter-
actions become ferromagnetic (negative coupling). All spins outside the cluster
are fixed and treated as local magnetic fields. All cluster spins are computed
leading to an optimal spin configuration with respect to the non-cluster spins,
which remain fixed. The computation can be performed in polynomial time us-
ing graph-theoretical methods [27,28]: an equivalent network is constructed [29],
the maximum flow is calculated [30,31] and the spins of the cluster are set to
orientations leading to a minimum in energy.

The CEA update step ensures that the spins in the cluster minimize energy
assuming that the remaining (non-cluster) spins remain fixed to their current
values. Each CEA iteration either decreases the energy or the energy remains
the same, which is the case when all cluster spins have been already set to their
optimal values. In this work, we use CEA to improve all obtained candidate
solutions and we repeat the CEA update step until the update fails to decrease
the energy for a predefined number of iterations; specifically, the bound on the
number of failures is

√
n for 2D spin glasses and it is 3

√
n for 3D spin glasses.

4 Experiments

This section presents and discusses experimental results.

4.1 Tested Spin-Glass Instances

Both 2D and 3D Ising spin-glass instances with ±J couplings and periodic
boundary conditions were considered. To analyze scalability, for 2D spin glasses,
instances of size 6 × 6 (36 spins) to 50 × 50 (2500 spins) have been considered;
1000 random instances have been generated for each problem size. For 3D spin
glasses, instances of size 4×4×4 (64 spins) to 10×10×10 (1000 spins) have been
considered. In the experiments on 3D spin glasses without CEA, only 8 random
instances have been generated for each problem size because of the increased
computational resources required to solve the 3D instances; for CEA-based al-
gorithms, 1000 random instances were used for each problem size.

4.2 Description of Experiments

All compared algorithms use binary tournament selection to select promising
solutions. As a replacement strategy, RTR is used where the window size w is
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set to the number of bits in solution strings but it is always ensured to be at
most 5% of the population size, w = min(n, N/20). GA+DHC and GA+CEA
use one-point crossover with the probability of crossover pc = 0.6 and bit-flip
mutation with the probability of flipping each bit pm = 1/n.

For each problem instance, bisection is run to determine the minimum pop-
ulation size to ensure convergence in 5 independent runs (out of 5 runs total).
Each run is terminated either when the algorithm has found the optimum or
when the algorithm has failed to find the optimum for a large number of itera-
tions. The optimum for most 2D instances was verified with the branch-and-cut
algorithm provided at the Spin-Glass Ground State Server at the University
of Köln [32]. The remaining 2D instances with ground states were obtained
from S. Sabhapandit and S. N. Coppersmith from the University of Wisconsin
who identified the ground states using flat-histogram Markov chain Monte Carlo
simulations [14]. All 3D instances with their ground states were obtained from
previous simulations of one of the authors [10].

The upper bound on the number of iterations (generations) is determined by
combining convergence theory [33,34] with empirical results so that the num-
ber of iterations is sufficiently large for all tests. In general, the bound on the
number of iterations for GA+DHC is larger than that for hBOA+DHC and
UMDA+DHC because of the slower mixing with one-point crossover [35].

The performance of hBOA+DHC, GA+DHC and UMDA+DHC is measured
by the number of evaluated spin glass configurations until the optimum has been
found. Since one update step of CEA is usually more computationally expensive
than the entire evaluation of a spin configuration [36], the time complexity of
hBOA+CEA and GA+CEA is measured by the number of iterations of CEA as
opposed to the number of evaluations.

4.3 Results

Figure 1a compares the performance of hBOA+DHC, UMDA+DHC and
GA+DHC on 2D ±J spin glasses with periodic boundary conditions. The re-
sults indicate that the number of evaluations for hBOA+DHC grows with a
low-order polynomial of problem size, specifically, it is bounded by O(n1.63).
Furthermore, the results show that hBOA significantly outperforms GA+DHC
and UMDA+DHC. The worst performance is achieved by UMDA+DHC, the
time complexity of which grows faster than polynomially. Recall that for spin
glasses, one-point crossover performs relatively well because one-point crossover
rarely breaks important interactions between spins due to the used representa-
tion. Nonetheless, this behavior cannot be generalized to other similar slowly
equilibrating problems that exhibit different energy landscapes, such as protein
folding or polymer dynamics.

For 2D Ising spin glasses, a polynomial algorithm [37,38] with complexity
O(n3.5) exists that computes the number of states at each energy level, in-
cluding the ground state. It was shown [39] that on 2D ±J Ising spin glasses,
hBOA+DHC achieves asymptotic performance of the polynomial algorithm
without any prior knowledge about spin glasses.
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(a) 2D ±J spin glass.
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Fig. 1. Performance of hBOA+DHC, UMDA+DHC, and GA+DHC on random 2D
and 3D ±J Ising spin glasses

Figure 1b shows the performance of hBOA+DHC on 3D ±J spin glasses.
Since both GA+DHC and UMDA+DHC have not been capable of solving most
3D instances even with enormous computational resources, we only include the
results for hBOA+DHC. The results show that the performance of hBOA+DHC
appears to grow exponentially fast. This behavior is expected because the prob-
lem of finding ground states of 3D spin glasses is NP-complete [40]. However,
we see that hBOA+DHC is still capable of solving instances of several hundreds
spins, which are intractable with most standard optimization algorithms, such
as genetic algorithms and simulated annealing.

Figure 2a shows the performance of hBOA+CEA and GA+CEA on 2D Ising
spin glasses with ±J couplings. The results indicate that hBOA+CEA signif-
icantly outperforms GA+CEA and thus hBOA retains superior performance
even with CEA. The results also show that incorporating CEA leads to a some-
what faster asymptotic growth of time complexity with problem size; on the
other hand, the use of CEA provides a significant decrease of running time
for the tested range of problems and, consequently, much larger problem sizes
can be treated currently as compared to hBOA+DHC. Nonetheless, based on
these results, it can be hypothesized that hBOA+DHC will become faster than
hBOA+CEA for much larger spin-glass instances. It is also important to note
that the size of spin glass instances solved in this paper is orders of magnitude
larger than the size of problems solved by other EDAs [41,42,43,12].

Figure 2b shows the performance of hBOA+CEA and GA+CEA on 3D Ising
spin glasses with ±J couplings. The results indicate that the performance of
both algorithms grows faster than polynomially even with the use of CEA as is
expected from the NP-completeness of this problem. However, CEA improves the
performance of GA significantly and makes the difficult 3D instances tractable
even with GA. Nonetheless, hBOA+CEA still retains superior performance,
yielding several times fewer evaluations than GA+CEA.
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(a) 2D ±J Ising spin glass.
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Fig. 2. Performance of hBOA+CEA and GA+CEA on ±J Ising spin glasses

5 Summary and Conclusions

This paper tested the hierarchical Bayesian optimization algorithm (hBOA),
the simple genetic algorithm (GA) and the univariate marginal distribution
algorithm (UMDA) on a large number of instances of the problem of finding
ground states of Ising spin glasses with random couplings in two and three dimen-
sions. All algorithms were hybridized by using either a simple deterministic hill
climber (DHC) or the cluster exact approximation (CEA). The results showed
that hBOA significantly outperforms all other compared methods in all cases
and that CEA allows all algorithms to solve much larger instances than DHC.
The results presented in this paper thus confirm that using hierarchical decom-
position for solving difficult optimization problems with little problem-specific
knowledge holds a big promise and that advanced estimation of distribution al-
gorithms offer a robust and scalable class of optimization algorithms applicable
to important classes of difficult problems.
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