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Abstract. A very general class of EDAs is defined, on which universal results
on the rate of diversity loss can be derived. This EDA class, denoted SML-EDA,
requires two restrictions: 1) in each generation, the new probability model is build
using only data sampled from the current probability model; and 2) maximum
likelihood is used to set model parameters. This class is very general; it includes
simple forms of many well-known EDAs, e.g. BOA, MIMIC, FDA, UMDA, etc.
To study the diversity loss in SML-EDAs, the trace of the empirical covariance
matrix is the proposed statistic. Two simple results are derived. Let N be the
number of data vectors evaluated in each generation. It is shown that on a flat
landscape, the expected value of the statistic decreases by a factor 1−1/N in each
generation. This result is used to show that for the Needle problem, the algorithm
will with a high probability never find the optimum unless the population size
grows exponentially in the number of search variables.

1 Introduction

Estimation of distribution algorithms (EDAs) are search algorithms inspired by evolu-
tionary algorithms. Whereas evolutionary algorithms use a population of configurations
to search for a solution to an optimization problem, EDAs use a probability function
instead. This probability function models the population which it replaces. For this rea-
son, EDAs are also often called “probability-model building evolutionary algorithms”.
A range of EDAs have been proposed and developed, both for continuous and discrete
search spaces, and a number of successful applications have been reported. A recent
book [1] reviews the field.

One of the appeals of EDAs is that the probability models can represent and learn
the structure between the search variables. The earliest EDAs treated each variable in-
dependently [2,3]. Later EDAs allowed a structured relationship between the variables.
This allows correlations between the variables to be maintained during search. Since
the effectiveness of genetic algorithms, and most other heuristic search algorithms, is
highly dependent on the move operators, the fact that EDAs can learn move operators
is a very enticing feature.

Despite the appeal of EDAs and the reported successes, there are difficulties in ap-
plying them effectively. One difficulty, which is the primary issue of this paper, is that
under certain circumstances certain EDAs can get into states from where they can-
not find the optimum no matter how long they are run. This is because they have lost
their diversity; it is analogous to fixation in a mutation-free genetic algorithm. Thus, to
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apply EDAs effectively, the control parameters of the algorithm must be chosen to avoid
this situation. However, this may be difficult to do. For independent-variable EDAs, it
has been shown [4,5] that the appropriate settings of these control parameters is very
different for different problems. For example, the learning rate in PBIL needs to be
sufficiently small to insure that the optimum is found, and it must be exponentially
small in the system size in some problems, but need only scale as low-order polynomial
of the system size in others. This makes it very difficult to set this control parameter
in advance. Similar results hold for UMDA, where the population size must grow as a
problem-dependent function of the number variables; exponentially for some problems,
polynomially in others.

It has not be known whether these results hold for EDAs with more complex variable
structure. A number of different EDAs have been proposed, which are distinguished by
the structure imposed on the variables and by the method used to learn the probability
model. This makes theoretical analysis difficult, first because there are so many dif-
ferent models to analyze, and second, because the analysis of models which change
their structure at each generation is difficult. Indeed, much of the theoretical work has
focused on the simplest, independent-variable EDAs (e.g. [6,7,5]). An example of the-
oretic work on population sizing in a specific non-independent EDAs is [8].

It is worth emphasizing that although it is expected that the runtime of algorithms
will depend very strongly on the problem, effective algorithms should work with fairly
generic settings of the control parameters. Otherwise, one will have to dedicate sub-
stantial computational resources to searching control-parameter space, resources which
could be applied to searching for the optimum using a more robust algorithm.

In this paper, two rigorous results are derived which hold for an entire class of
EDAs. It is a fairly unrestricted class, including EDAs which learn structure, such as
the Bayesian Optimization Algorithm (BOA) [9] in its simplest form, as well as simple
EDAs such as UMDA [3] which is one of the earliest independent-variable EDAs, and
many others. The first result concerns the expected diversity loss per generation when
searching on a flat landscape, and the corresponding expected time to completely lose
diversity (fixation). The second result is a lower bound on the minimum population size
required to insure that the optimum is found when searching for a particular configura-
tion on an otherwise flat landscape (the so-called needle in a haystack problem). Both
results are universal for the entire class of EDAs.

2 Estimation of Distribution Algorithms

I will consider the search space to consist of L variables, all of which take values from
some finite set A, i.e. x = (x1, x2, . . . , xL) ∈ AL. The goal is to find the configuration
which maximize an objective function f : AL → R.

At the heart of the EDA is a class of probability functions from which a probabil-
ity function is chosen at each generation. In general, this has two parts: the structure
defines which variables interact with which, and the parameters define the form of the
interaction. The structure is discrete and denoted S; the parameters are continuous and
denoted P . To avoid confusion, the term parameter will always be used to refer to a
parameter of the probability model; the term control-parameter will be used to refer to
parameters of the algorithm, such as the population size.



94 J.L. Shapiro

To express this mathematically, the assumption of EDAs is that for each variable xi,
there is a set of variables, called its parents, on which it depends. Let π(i) denote the
set of parents of component i. The underlying assumption is that the joint probability
of all the variables P (x), factorizes.

P (x) =
L∏

i=1

P (xi|xπ(i)). (1)

Here, we use the shorthand xπ(i) to denote the vector consisting of just those compo-
nents which are parents of i.

The set of parents for each variable is what constitutes the structure of the probability
model. Once the structure has been determined, one needs to estimate values for each
of the factors in equation (1). These values are what constitutes the parameters of the
probability model.

The generic EDA is roughly as follows. Start with a random population of M vectors.
Then implement a loop consisting of

1. Select N vectors using a selection method.
2. Learn the probability model (S, P) from the selected population.
3. Sample M vectors from the probability model.

There are many variations. Selection is often done by applying truncation selection to
the sampled population. Alternatively, the selected vectors replace a fraction of the se-
lected population from the previous generation rather than the entire population. Like-
wise, the probability model can be built from scratch at each generation, or or can use
the model from the previous generation(s) to build the current model. Another source
of variation in EDAs is in the allowed structure: UMDA treats each variable indepen-
dently. MIMIC assumes a chain of interactions, so every variable except the root and
the terminal variables are the parent of one node and the child of another. BOA uses a
general directed acyclic graph to represent the structure. And there are many others.

2.1 SML-EDA: A Restricted Class of EDAs

In this work, we consider a restricted class of EDAs for which we will derive some
simple results. We will need three assumptions.

Assumption 1. The probability distribution in each generation is built using only data
which was sampled from the probability model of the previous generation.

Assumption 2. The parameters of the estimated model are chosen using maximum
likelihood.

Assumption 3. The sample size M and the size of the population used to build the
model N are of a constant ratio independent of the number of variables L.

Assumption 1 means that data in generation t can only affect data in generation t + 1
through the probability model. This rules out taking data directly from previous gener-
ations to put into the current population. Thus, there can be no elitism or mixing of the
population with populations from previous generations.
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The results of this work apply irregardless of the mechanism used to generate the
structure of the probability model. However, once the structure is chosen, Assumption 2
requires the parameters of the model are those which maximize the probability of the
data given the probability model,

PML = argmaxP prob (population|(S, P)). (2)

This estimation is widely used, because it is easily computable from empirical fre-
quencies. For example, once the structure of the model is determined, a typical model
parameter will correspond to the probability that a particular component takes the par-
ticular value, given the value of its parents. If assumption 2 holds, this probability is
estimated by the following ratio,

P (xi|xπ(i)) ≈
N(xi,xπ(i))

N(xπ(i))
, (3)

where N(x, y) denotes the number of times in the data that x and y takes their values.
In this paper, we will explore two results which hold for all EDAs for which these

two assumptions hold. For the purpose of this paper, we will refer to all such EDAs as
SML-EDAs, to denote Simple, Maximum-Likelihood EDAs.

Definition 1. The class of EDAs for which assumptions 1 and 2 hold are called SML-
EDAs.

This class includes a wide group of EDAs and can include EDAs which assume inde-
pendent structure, EDAs which have non-trivial fixed structure, and EDAs which learn
their structure from the data. Certainly many of the standard EDAs, such as UMDA,
MIMIC, FDA, BOA, fall in this class in their simplest form.

There are two ways in which EDAs typically fail to be in the class SML-EDA. First,
because they use data from several previous generations to generate the probability
model. The second reason is that the parameters are not set using maximum likelihood.
PBIL, for example would not be in this class because its values are estimated as a linear
combination of the current values and the maximum likelihood ones. Mühlenbein and
Mahnig [10] suggest setting parameters for FDA using a maximum posteriori method
rather than maximum likelihood; if that is done the resulting EDA is not in this class.

Finally, in this work we are interested in asymptotic behavior for large L. Assump-
tion 3 ensures that a single control parameter governs the population size. Under these
three assumptions, the EDA works like this:

1. Initialize sample pop to be a random population of size M ;
2. Repeat

(a) Produce select pop by selecting N from sample pop;
(b) Learn the structure of the probability model S from select pop by any

means;
(c) Learn the parameters of the probability model P from select pop using

equation (3).
(d) Update sample pop by sampling M vectors independently from the proba-

bility model defined by (S, P).
3. Until some stopping criterion met
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3 Diversity Loss in SML-EDAs on a Flat Fitness Landscape

The first result concerns the rate of diversity loss in SML-EDAs on a flat landscape.
To measure the diversity in a population of size N , we will use the trace of empirical
co-variance matrix. Let νA

i be the empirical frequency at which the component i takes
the value A, i.e.

νA
i =

1
N

∑

μ

δ(xμ
i = A), (4)

where xμ
i is component i of population member μ, and δ is an indicator function; 1 if

its argument is true, and 0 if its argument is false. The diversity measure we will use is,

v =
∑

i

1
|A|

∑

a

νa
i (1 − νa

i ) , (5)

where |A| is the number of values component xi can take, which is assumed to be the
same for all components.

Whenever the value of a component fixates, i.e. is the same in all members of a pop-
ulation, the corresponding

∑
a νa

i (1 − νa
i ) will be zero. So, complete fixation implies

v = 0. The random population has the maximum value of v. Finally this is related to the
covariance matrix which is defined as the expectation that two components both take
the value A, minus the expectation that they take this value independently, summed over
all values,

Cij =
1

|A|
∑

a

[〈δ(xi = a)δ(xj = a)〉 − 〈δ(xi = a)〉 〈δ(xj = a)〉] (6)

where angled brackets 〈·〉 denotes expectation. The quantity vt is the trace of the em-
pirical estimate of C at generation t.

Using this measure of diversity, it is trivial to derive the diversity loss on a flat land-
scape, on which all vectors have the same fitness. On a flat landscape, sampling M
values followed by selection of a population of size N is equivalent to sampling a pop-
ulation of size N .

Theorem 1. For EDAs in class SML-EDA on a flat landscape, the expected value of v
is reduced in each generation by a factor of 1 minus the inverse population size,

〈vt〉 = 〈vt−1〉
(

1 − 1
N

)
. (7)

A detailed proof will be given elsewhere. To get from generation t−1 to t, there are two
steps. First the probability distribution is created from the data. Second, a new popula-
tion is created from the probability model. The proof is almost trivial. Starting from the
value of vt−1, the model is built. Since the parameters are set by maximum likelihood,
the marginals are equal to the frequencies for each component. Then sampling is done.
Since the landscape is flat, we can combine sampling with selecting, and replace that
step with the single step of sampling N data vectors from the probability model. It is
well known that empirical variance is reduced by a factor (1 − 1/N) from the parent
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population. Thus 〈vt〉 = vt−1
(
1 − 1

N

)
. Finally, we average over the right-hand side to

get the result.
This provides a prediction for the expected diversity loss which is universal for all

EDA in the class SML-EDA,

〈vt〉 = v0 (1 − 1/N)t
, (8)

which decays with characteristic time approximately equal to the population size for
large N . Assuming a random initial population, v0 = L/|A|(1 − 1/|A|).

4 A Universal Bound for the Minimum Population Size in the
Needle Problem

Next we consider an SML-EDA searching for a particular configuration on an otherwise
flat landscape. This problem is sometimes called the needle in the haystack problem,
or the Needle problem. I.e. there is one special state (the “needle”) which has a high
fitness value, and all other configurations have the same low fitness value.

Using the result from the previous section, it is possible to derive a lower bound for
the minimum population size N needed to solve this problem. Let TN be the time that
the needle is first sampled. The shorthand TN = ∞ will mean that the needle is never
sampled. (Time is measured in units of iterations of the algorithm. One time-step refers
to one cycle of selection, model building, and sampling.) We will assume, as above,
that the search space consists of L variables, each of which takes |A| possible values.
Asymptotics will be for large L; |A| is assumed to be a constant.

To derive a lower bound on the minimum population size required to ensure that the
optimum is found, a bound can be derived for the probability that the needle is never
sampled,

prob (TN = ∞) ≥ B(N, L). (9)

Then, the follow holds.

Theorem 2. In the limit that L → ∞ such that N2L|A|−L → 0,

B(N, L) = 1 − O
(
|A|−L/2

)

for any EDA in SML-EDA searching on the Needle problem.

This result shows that any SML-EDA will almost never find the needle if the population
size is o(

√
|A|L/L). I.e. the population size must grow at least as fast as

√
|A|L/L for

the optimum to be found.
Theorem 2 will be proved in two steps. First, a time t∗ is defined so that, if the

algorithm has run for that length of time without finding the needle, it is highly likely
that it never will find the needle. Next it is shown that if the population size grows (with
L) sufficiently slowly, it is highly likely that the algorithm will run for t∗ steps without
finding the needle.

The first step towards proving Theorem 2 relies on the following result.



98 J.L. Shapiro

Lemma 1. Let t∗ be defined as

t∗ = −
L
2 log (|A|) + log (LNv0)

log (1 − 1/N)
. (10)

If the needle has not been found after a time t ≥ t∗, the probability that the needle
will never be found is greater than 1 − ε, where ε = |A|−L/2. Mathematically, this is
expressed,

prob (TN = ∞|TN > t∗) ≥ 1 − |A|−L/2. (11)

Proof. To compute prob (TN = ∞|TN > t∗) first observe that at time t, the expected
variance is given by equation (8) and will be very small. Because the variance is posi-
tive, the fact that the expected variance is small means that the actual variance must also
be small with a high probability. The largest the actual variance can be with a probabil-
ity greater than or equal to 1 − ε is 〈v〉 /ε, for any ε between 0 and 1 (see, for example,
[11]). In other words,

prob
[
v(t) ≤ 〈v(r)〉

ε

]
≥ 1 − ε. (12)

The idea is to choose t∗ to be large enough so that

vt ≤ 〈vt〉
ε

≤ 1
N

(
1 − 1

N

)
(13)

The reason is that if vt is so small, there must be fixation at every component except
possibly one component. (Fixation of a component i means that the variable xi takes
the same value in all vectors in the population.) Since maximum likelihood is used to
build the probability model, once fixation happens at any component, that component
will remain fixed for the rest of the run of the algorithm. If L− 1 components are fixed,
the needle will only be sampled if they are fixed at values found in the needle. The
probability of this is no more than |A|−(L−1). Thus, we can write

prob
(
TN = ∞|TN > t∗, vt ≤ 1/N − 1/N2) > 1 − |A|−(L−1). (14)

This is the probability that the needle is never found assuming that the needle has not
been found up to time greater than t∗, and given that vt is small enough that we know
that L − 1 components are fixed.

We are not certain that vt appropriately small, it is just probable so. However, the
probability that vt is small as we assume is ε. Take

ε = |A|−L/2. (15)

Then it is the leading order term and

prob (TN = ∞|TN > t∗) = 1 − O(ε). (16)

It only remains to compute t∗. This is done by setting equation (13) to be equality, and
solving equation (8) for t. The solution is equation (10).


�
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The next step in proving Theorem 2 is to consider the probability of not finding the
needle during the t∗ steps.

Lemma 2. Let t∗ be defined as in equation (10). The probability that the needle is not
found after t∗ steps obeys

prob (TN > t∗) ≥ 1 − N2

|A|L

[
L

2
log (|A|) + log (LN)

]
. (17)

Proof. Choose t∗ as in equation 10. Since random search is optimal for this problem1,
the probability that SML-EDA does not find the needle in time t∗ obeys

prob (TN > t∗) ≥
(
1 − |A|−L

)t∗N
. (18)

(Remembering that N vectors are considered at each time-step.)
The result is found by putting into this equation the value for t∗, and using the con-

vexity of log and exp and other standard inequalities to simplify the expression, 
�

Proof of Theorem 2

Proof. The probability of never finding the needle can be decomposed into,

prob (TN = ∞) = prob (TN = ∞|TN > t∗) prob (TN > t∗). (19)

with t∗ defined as previously. Lemma 1 gives a lower bound for the first factor on
the right side of equation (19). Lemma 2 gives a lower bound for the second factor.
Combining them gives the following,

prob (TN = ∞) ≥ 1 − |A|−(L/2) − N2|A|−L

[
L

2
log (|A|) + log (LN)

]
(20)

+ higher order terms in |A|−L . (21)

If in the limit that L → ∞, N grows sufficiently slowly that the third term vanishes,
then the probability of never finding the needle will go to 1. Thus, if

N = o

(
|A|L/2
√

L

)
, (22)

the leading term in equation 20 will be 1 − |A|−L/2 and as L → ∞ the needle will
never be found. 
�

5 The Expected Runtime for the Needle Problem and the
Limits of Universality

The content of Section 4 is basically if the algorithm runs for time t∗ without finding
the needle, the algorithm has likely fixated and will never find the needle. Since number

1 Among algorithms which make no attempt to prevent visiting the same configuration multiple
times.
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vectors processed is tN which must be of order |A|L for the needle to be found, N
must be approximately the size of |A|L/t∗ for the needle to be found. This result is
universal, it holds for the entire class SML-EDA.

The next task is to show that when the population size is sufficiently large, the prob-
ability of finding the optimum approaches one, and to produce an estimate of the run
time when N is large enough so that the needle is typically found. It is not clear that
this can be done for the entire class SML-EDA. Lemma 1 gives a universal upper bound
on the search time given the needle is found.

Corollary 1. If the needle is found, the time to find it is bounded above by t∗ with
probability 1 − |A|−L/2.

However, this is not very informative. If the population size is smaller than the critical
value, as given in equation 22, this bound is not useful, since the needle will almost
never be found. If the population grows much faster than the critical value, it is likely
that this bound is not tight. For example, if the population size N = O(|A|L) it is
likely that the optimum will be found in the first few generations. If the population size
obeys the critical scaling, N2 = O(|A|L/L), Corollary 1 suggests that the algorithm is
efficient; the runtime is asymptotically the same as random search. However, the results
herein are not sufficient to show that the probability of finding the optimum is needle is
close to one in this case.

The reason that it is not possible to investigate the regime in which the optimum is
find using the methods of this paper, is that the particular statistic, vt gives one-sided
information. When it is small, there is definitely fixation, independent of the structure
of the probability model. However, when it is near its initial value, that does not imply
that there is no fixation in models with non-trivial structure. As an example, consider a
chain model with binary variables. Each variable xi can take the values 0 or 1, and the
parent of variable i is node i − 1. Variable 1 is a root and has no parent. In other words,
the assumed probability model is P (x) = P (x1)

∏L
i=2 P (xi|xi−1). Suppose it fixates

such that P (x1) = 1/2, P (xi = 1|xi−1 = 0) = 1 and P (xi = 0|xi−1 = 1) = 1. The
only vectors which can be generated are 01010 . . . and 101010 . . .. This fixation would
be totally invisible to the statistic vt which would continue to equal its initial value.

One conclusion is that convergence conditions will not be universal, but will be
particular to the EDA. (This paper is essentially about non-convergence conditions.)
A particular statistic, sensitive to the type of probability model might be necessary.
For example, the statistic used here is appropriate for SML-UMDA, for which it can
be shown that if the population size N and runtime T obey TN = O(|A|L) and
T/N = O(|A|−Lδ) for δ > 0, the algorithm behaves asymptotically like random
search on the Needle problem and is therefore efficient. For other EDAs other statis-
tics may be required to study algorithmic efficiency. Alternatively, it is possible that the
decay of some general property of the covariance matrix, e.g. its rank, may be used to
show convergence results for the general class SML-EDA, but that remains to be seen.

6 Conclusions

With inappropriate settings, many EDAs can reach a state from which the probability of
ever finding the optimum is zero. This is due to diversity loss which cannot be restored.
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If any component of the data vectors does not take one of its allowed values anywhere
in the entire population, that value can never be restored. If that value is required in
the optimum, the optimum will never be sampled. The flat landscape is the simplest
problem in which this can be studied. We have shown that this diversity loss is the same
for a whole class of EDAs. A consequence of this is that for a problem which is almost
everywhere flat, such as the Needle problem, the probability of diversity loss before the
optimum is sampled is also universal for the class, and we have shown that it requires
an exponentially large population size to avoid this.

It is important to go beyond these results. In many other search problems, the land-
scape will not be flat, but there will be many directions which are essentially flat. It
was shown in UMDA[5] and PBIL [4] that the rate of diversity loss relative to the rate
of search in non-flat directions helped to understand how control parameters needed to
be set to ensure a reasonable probability of finding the optimum. Presumably the same
will be true in arbitrary EDAs. However, unlike diversity loss, I expect that search in the
non-flat dimensions not to be universal, but to depend on the structure of the probability
model. This remains to be investigated.
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