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Preface

We are very pleased to present this LNCS volume, the proceedings of the 9th
International Conference on Parallel Problem Solving from Nature (PPSN IX).
PPSN is one of the most respected and highly regarded conference series in evolu-
tionary computation and natural computing / computation. This biennial event
was first held in Dortmund in 1990, and then in Brussels (1992), Jerusalem
(1994), Berlin (1996), Amsterdam (1998), Paris (2000), Granada (2002), and
Birmingham (2004). PPSN continues to be the conference of choice by researchers
all over the world, who value its high quality.

We received 255 paper submissions this year. After an extensive peer review
process involving more than 1000 reviews, the programme committee selected
the top 106 papers for inclusion in this volume and, of course, for presentation
at the conference. This represents an acceptance rate of 42%.

The papers included in this volume cover a wide range of topics, from evo-
lutionary computation to swarm intelligence and from bio-inspired computing
to real-world applications. They represent some of the latest and best research
in evolutionary and natural computation. Following the PPSN tradition, all pa-
pers at PPSN IX were presented as posters. There were 7 sessions: each session
consisting of around 15 papers. For each session, we covered as wide a range of
topics as possible so that participants with different interests could find some
relevant papers in every session.

The conference featured three distinguished keynote speakers: Herschel Ra-
bitz, Nadia Busi, and Edward Tsang. Their backgrounds in chemistry, theoret-
ical computer science, and financial engineering, respectively, reflect the inter-
disciplinary nature of PPSN IX. Herschel Rabitz’s talk was on “Controlling
Quantum Phenomena: The Dream Is Alive”, Nadia Busi’s was on “Comput-
ing with Calculi and Systems Inspired by Biological Membranes”, and Edward
Tsang’s was on “Wind-tunnel Testing for Strategy and Market Design”. Both
Edward Tsang and Nadia Busi gave introductory tutorials related to their talks.
Furthermore, Nadia Busi is the co-author of some notes on (Mem)Brane Com-
putation included in this volume. We are very grateful to them for contributing
valuable time from their busy schedules.

PPSN IX included 10 tutorials and 4 workshops. We were extremely fortunate
to have such an impressive list of internationally leading scientists from across
natural computing as tutorial speakers. They provided an excellent start to the
five-day event. The workshops offered an ideal opportunity for participants to
explore specific topics in natural computing in an informal setting. They were
sowing the seeds for the future growth of natural computing.

To encourage and reward high-quality research in the international commu-
nity, PPSN IX presented a Best Paper Award. All accepted papers were eligible
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to enter the competition. A separate Best Student Paper Award was also given
at the conference.

The success of a conference depends on its authors, reviewers and organizers.
PPSN IX was no exception. We are grateful to all the authors for their paper
submissions and to all the reviewers for their outstanding work in refereeing the
papers within a very tight schedule. We relied heavily upon a team of volunteers
to keep the PPSN IX wheel turning. We are very grateful for their efforts.

September 2006 Thomas Philip Runarsson
Hans-Georg Beyer

Edmund Burke
Juan Julián Merelo Guervós

Darrell Whitley
Xin Yao
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Peter Dürr, Claudio Mattiussi, Dario Floreano

A Two-Level Clustering Method Using Linear Linkage Encoding . . . . . . . 681
Emin Erkan Korkmaz

A New Swarm Intelligence Coordination Model Inspired by Collective
Prey Retrieval and Its Application to Image Alignment . . . . . . . . . . . . . . . . 691

Giovanni Da San Martino, Franco Alberto Cardillo, Antonina Starita

Exploring the Effect of Proximity and Kinship on Mutual Cooperation
in the Iterated Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Colin Frayn, Andy Pryke, Siang Yew Chong

Investigating the Emergence of Multicellularity Using a Population
of Neural Network Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

Ehud Schlessinger, Peter J. Bentley, R. Beau Lotto

Building of 3D Environment Models for Mobile Robotics Using
Self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
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Abstract. Spatio–temporal fitness landscapes that are constructed from
Coupled Map Lattices (CML) are introduced. These landscapes are an-
alyzed in terms of modality and ruggedness. Based on this analysis, we
study the relationship between landscape measures and the performance
of an evolutionary algorithm used to solve the dynamic optimization
problem.

1 Introduction

In theoretical studies of evolutionary algorithms, concepts of fitness landscapes
have shown to be a useful tool [4,7,14,16]. A fitness landscape assigns fitness
values to the points of the search space through which the evolution moves.
This search space can be constructed by a genotype–to–fitness mapping or more
generally by encoding the set of possible solutions of an optimization problem
to form a representation space for which additionally a neighborhood structure
needs to be defined. Typically, the topology of the search space is considered to
be constant over the run–time of the evolutionary algorithm and hence such a
fitness landscape is a static concept.

As dynamic optimization turned more and more into an important topic in
evolutionary computation [17,2,9,6,19], it became desirable to have concepts
of fitness landscapes in dynamic environments as well. Whereas recent results
have shown that such an approach is useful to characterize and classify types
of dynamic landscapes [5], there is a certain lack of environments that show
sufficiently complex structure in both spatial topology and temporal dynamics.
In this paper, such spatio–temporal fitness landscapes are introduced and it is
shown how these landscapes can be constructed from spatio–temporal dynamical
systems, namely from Coupled Map Lattices (CML). CML have been the subject
of intensive research, which revealed a broad variety of spatio–temporal behavior,
including different types of pattern formation, spatio–temporal chaos, quasi–
periodicity and emergence [8,3].

In the next section, a methodology to construct spatio–temporal fitness land-
scapes from CML is given. In Sec. 3, these landscapes are analyzed in terms of
modality and ruggedness. Further, quantifying measures such as the number of
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optima and the correlation structure are studied. In Sec. 4, factors contributing
to problem hardness in dynamic optimization like change frequency and dynamic
severity are reviewed. Numerical experiments using an evolutionary algorithm
to optimize in the spatio–temporal fitness landscape are reported in Sec. 5. In
the final section, the findings are summarized and conclusions are drawn.

2 Constructing Spatio–temporal Fitness Landscapes

Constructing spatio–temporal fitness landscapes should begin with defining a
spatio–temporal dynamical system. Therefore, we lay out a lattice grid with
I × J equally sized cells, which form a 2D–structure. For every discrete time
step k, k = 0, 1, 2, . . ., each cell is characterized by its height

h(i, j, k), i = 1, 2, . . . , I, j = 1, 2, . . . , J, (1)

where i, j denote the spatial indices in vertical and horizontal direction, respec-
tively, see Fig. 1. This height h(i, j, k), which we will interpret as fitness according
to the geometrical metaphor of a fitness landscape, is subject to changes over
time, which are described by the two–dimensional CML with nearest–neighbor
coupled interaction [8,3]

h(i, j, k + 1) = (1 − ε)g(h(i, j, k)) +
ε

4

[
g (h(i − 1, j, k))

+ g (h(i + 1, j, k)) + g (h(i, j − 1, k)) +g (h(i, j + 1, k))
]
, (2)

where g(h(i, j, k)) is a local mapping function and ε is the diffusion coupling
strength. In other words, as h(i, j, k) denotes the height of the h(i, j)–th unit bar
situated in the (i, j)–lattice cell at time step k, Eq. (2) describes how this height
changes over time depending on its own height and the heights of the surrounding
bars, see Fig. 1a. The CML is initialized by the heights h(i, j, 0) being realizations
of a random variable uniformly distributed on [0, 1]. To complete the definition
of the CML (2), we employ the logistic map

g(h(i, j, k)) = αh(i, j, k)(1 − h(i, j, k)) (3)

as mapping function and render the period boundary conditions

h(I + 1, j, k) = h(1, j, k), h(i, J + 1, k) = h(i, 1, k). (4)

To summarize, the CML is a spatio–temporal dynamical system with discrete
space (lattice) and time (map). The system’s states, which we interpret as
heights, are continuous and situated on the lattice. They dynamically inter-
act with surrounding states via the nonlinear map (3). The spatio–temporal
behavior of the CML depends on two parameters, the coupling strength ε and
the nonlinear parameter α. These parameters span a parameter space in which
different regions represent different types of spatio–temporal behavior. In this
paper, we focus on the parameter ε.

Based on this description of a spatio–temporal dynamical system, we for-
mulate the spatio–temporal fitness landscape. Therefore, we project the lattice
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Fig. 1. Coupled map lattice: a) Generic structure. b) Spatio–temporal fitness landscape
for I = J = 9 and s1 = s2 = 0.5.

cells on a zero plane and introduce scaling factors s1, s2 ∈ R for the vertical
and horizontal extension. By these scaling factors, we convert the integer search
space to a real value search space with step function characteristics, see Fig. 1b.
The si can additionally be used to adjust severity of the dynamic optimization
problem to be solved. Next, we define the search space variable x = (x1, x2)

T ,
impose a rounding condition, so that

(
�s1x1�, �s2x2�

)T =
(
i, j

)T and find the
spatio–temporal fitness function for the two–dimensional CML (2):

f(x, k) =

⎧⎨⎩ h(�s1x1�, �s2x2�, k) for
1 ≤ �s1x1� ≤ I
1 ≤ �s2x2� ≤ J

0 otherwise

⎫⎬⎭ , k ≥ 0. (5)

The dynamic optimization problem is

max
x∈R2

f(x, k) = max
1≤�s1x1�≤I
1≤�s2x2�≤J

h(�s1x1�, �s2x2�, k), k ≥ 0 (6)

and solving it yields the solution trajectory

xS(k) = arg max
x∈R2

f(x, k) = arg max
1≤�s1x1�≤I
1≤�s2x2�≤J

h(�s1x1�, �s2x2�, k), k ≥ 0, (7)

which we intend to find using an evolutionary algorithm.
The given construction of spatio–temporal fitness landscapes has the advan-

tage that spatial topology and temporal dynamics are generated by the same
system. No external driving system for inducing dynamics is required. The given
formulation of a spatio–temporal fitness landscape is valid for a two–dimensional
search space. An extension to n–dimensional search spaces is possible using the
given framework and employing n–dimensional CML, see e.g. [13]. In addition,
we only considered flat heights on the lattice cells. A generalization can be
achieved by introducing morphological structures on the cell tops.

3 Properties of Spatio–temporal Fitness Landscapes

In order to evaluate the performance of an evolutionary algorithm in a spatio–
temporal fitness landscape, we need a notion of how difficult a certain landscape
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is to optimize in. This question is addressed by concepts and quantifiers for
measuring fitness landscapes. For static landscapes, this topic has been studied
intensively, e.g. [18,4,16]. In the following, we adopt and modify these results to
measure spatio–temporal fitness landscapes.

First, we look at the modality of the landscape by measuring the number of
local maxima. Despite the continuous search space of the spatio–temporal fitness
landscape (5), the local maxima need to be described within the framework of
local optima in discrete search spaces. A local optimum is a solution optimal
within a neighboring set of solutions, which is the same as in combinatorial
optimization problems [10], p. 7. The neighborhood structure we consider here
are the surrounding heights. That means the neighborhood structure N(i, j) of
the (i, j)–th lattice cell is

N(i, j) = (i + β, j + δ),

(β, δ) = (−1,−1) ∧ (−1, 0) ∧ (−1, 1) ∧ (0,−1) ∧ (0, 1) ∧ (1,−1) ∧ (1, 0) ∧ (1, 1).

Here, (i, j)T = (�s1x1�, �s2x2�)T . Hence, the fitness function possesses a local
maximum at the time k if

h(i, j, k) ≥ h(N(i, j), k). (8)

Due to the countable number of lattice cells, the number of local maxima can be
determined by enumeration. We denote #LM (k) the number of local maxima at
time k. As a spatio–temporal fitness landscape changes over time, the number of
local maxima needs not to be constant. Therefore, we consider its time average:

〈#LM (k)〉 = lim
K→∞

1
K

K−1∑
k=0

#LM (k). (9)

To get an approximate value of the time average number of local maxima, the

〈#LM (k)〉 is replaced by #LM = 1
K

K−1∑
k=0

#LM (k) with K sufficiently large. In

Figs. 2a,c,e the average number of maxima is given for different ε and different
lattice sizes. Here, as well as in the following experiments, we fix α = 3.999 and
consider varying ε. We see that the number of maxima increases steadily with
increasing lattice size and that this occurs symmetrically in the vertical as well
as in the horizontal direction identified by I and J . For smaller ε, this increase is
steeper than for larger values. On the other hand, for varying ε there is no clear
trend as to how the number of maxima scales with it, but there are also sections in
the ε–parameter space (for instance 0.3 ≤ ε ≤ 0.9) for which a proportional rela-
tion can be observed. Next, we determine the ruggedness of the spatio–temporal
fitness landscape modelled by the CML. A standard procedure to assert rugged-
ness of fitness landscapes is to analyze its correlation structure. This method
works by performing a random walk on the landscape and calculating its ran-
dom walk correlation function. For the spatio–temporal fitness landscape (5), this
starts with generating a time series h(τ, k) = h(i(τ), j(τ), k), τ = 1, 2, . . . , T , of
the heights h(�s1x1�, �s2x2�, k) with (i, j)T = (�s1x1�, �s2x2�)T . For performing
the random walk, we create two times T independent realizations of an integer
random variable uniformly distributed on [−1, 1]. Starting from an initial cell,
the next cell on the walk is obtained by adding the two independent realizations
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Fig. 2. Average number of local maxima #LM and average correlation length λ with
α = 3.999 for K = 1500 and T = 100000

of the random variable to the current cell index (i, j). In addition, the boundary
condition (4) is observed. The random walk in the two spatial dimensions as
specified by i(τ), j(τ) yields the needed time series on the spatio–temporal fit-
ness landscape by recording the heights h(τ, k) = h(i(τ), j(τ), k) at time k. For
this time series the spatial correlation can be calculated. The spatial correlation
is widely used in determining ruggedness of static landscapes [18,4,15]. It is an
estimate r(tL, k) of the autocorrelation function of the time series with time lag
tL, also called random walk correlation function:

r(tL, k) =

T−tL∑
τ=1

(
h(τ, k) − h̄(k)

) (
h(τ + tL, k) − h̄(k)

)
T∑

τ=1

(
h(τ, k) − h̄(k)

)2 , (10)
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where h̄(k) = 1
T

T∑
τ=1

h(τ, k) and T � tL > 0. The spatial random walk correlation

function measures the correlation between different regions of the fitness land-
scape for a fixed k. As r(tL, k) changes over time, we consider its time average
〈r(tL, k)〉, for which we calculate numerically an approximated value r(tL), sim-
ilarly as for the average number of maxima. It has been shown that ruggedness
is best reflected by the correlation length [15]

λ = −1/ ln (|r(1)|). (11)

This quantity is given for the spatio–temporal fitness landscape, see Figs. 2b,d,f.
The lower the values of λ are, the more rugged the landscape is. For varying ε, the
correlation length scales in a similar manner as the number of maxima, compare
Fig. 2a. Increasing lattice sizes lead to a small increase of λ only, see Figs. 2d,f.
Also, for smaller values of ε, the correlation length is distributed smoother on
the I − J-lattice size plane.

Fig. 3a shows ruggedness measured by the correlation length versus modality
measured by the number of maxima. This also serves as a test on the relationship
between modality and ruggedness. The results show that there is an exponential
dependency between correlation length λ and the number of maxima #LM ,
which is also clearly distinct for different lattice sizes.

4 Problem Hardness in Dynamic Optimization

Optimization in spatio–temporal fitness landscapes is in essence dynamic op-
timization. In dynamic optimization, it is generally understood that problem
hardness depends not only on the problem difficulty of the landscape but also
on features of the involved dynamics [2,9]. The most prominent features are the
(relative) speed of the landscape changes, which is expressed by change frequency
and the (relative) strength of the landscape changes, which can be attributed by
dynamic severity. Both quantities are briefly recalled. The optimization problem
(6) can be solved by an evolutionary algorithm with real number representation
and μ individuals a ∈ R2, which build the population P ∈ R2×μ. The dynamics
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Table 1. Settings of the evolutionary algorithm and the numerical experiments

Design parameter Symbol Value Setting Symbol Value
Population size μ 50 Number of considered runs R 150
Initial population width ω2 5 Generations in a run T 1500
Base–mutation rate bm 0.1 Eq. (3) α 3.999
Hyper–mutation rate hm 30 Severity scaling s = s1 = s2 1

of such an evolutionary algorithm can be described by the generation transition
function ψ : R2×μ → R2×μ, see e.g. [1], pp. 64–65. The generation transition
function includes the genetic operators selection, recombination and mutation.
It generates the movement of the population within the fitness landscape by
transforming a population at generation t ∈ N0 into a population at generation
t+ 1,

P (t + 1) = ψ (P (t)) , t ≥ 0. (12)

Here, t represents a discrete time variable, as k does for the spatio–temporal
fitness function (5). In dynamic optimization, both time scales can be related
to each other by the environmental change period γ ∈ N (cf. [11]). Between
the frequency of the changes in the population and that of the dynamic fitness
landscape, we find

t = γk. (13)

A second prominent factor in problem hardness of dynamic optimization is dy-
namic severity [17,12], which measures the (relative) magnitude of the changes
in the landscape by comparing k to k+1. In terms of the spatio–temporal fitness
landscape considered here, severity means to evaluate the distance between the
largest height before and after a change. Hence, severity can be calculated

σ(k + 1) = ‖xS(k + 1) − xS(k)‖, (14)

where xS(k) is the solution of the dynamic optimization problem (7). As this
quantity may vary with time k, we focus on the time average severity 〈σ(k)〉 =

lim
K→∞

1
K

K−1∑
k=0

σ(k). For the solution trajectory (7), we obtain 〈σ(k)〉 = σ·
√
s21 + s22,

where σ is severity for (i, j)T = (�x1�, �x2�)T . The quantity σ is shown in Fig.
3b and can be regarded as almost constant for a given lattice size and a large
majority of values of ε. Hence, severity of the optimization problem can be
adjusted by s1 and s2.

5 Evolutionary Optimization

We now give experimental results on evolutionary optimization in spatio–tempo-
ral fitness landscapes modelled by CML. The performance of the evolutionary
algorithm is examined depending on problem difficulty expressed by change fre-
quency, severity and landscape measures as modality and ruggedness. The nu-
merical experiments have been conducted with an evolutionary algorithm that
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Fig. 4. Performance specified by the MFE with ε = 0.5 and I = J = 16 for different γ
versus: a) Population size μ for severity scaling s = 1. b) Severity scaling s for μ = 50

uses real number representation, fixed population size, tournament selection with
tournament size 2, fitness–based recombination and base– as well as hyper–
mutation. The initial population is created by realizations of a random variable
normally distributed on [0, ω2]. Tab. 1 summarizes the design parameters of the
algorithm together with settings for the numerical experiments. The performance
of the algorithm is measured by the Mean Fitness Error (MFE)

MFE =
1
R

R∑
r=1

[
1
T

T∑
t=1

(
f (xS, t/γ) − max

a∈P
f (a, t/γ)

)]
, (15)

where f (xs, t/γ) is the maximum fitness value at generation t, max
a∈P

f (a, t/γ) is

the fitness value of the best individual a ∈ P at generation t, T is the number
of generations used in the run, and R is the number of consecutive runs.

In a first experiment, we look at the design parameter population size μ and
its scaling with the MFE, see Fig. 4a. Here, as well as in the following figures the
MFE together with its 95% confidence interval is given. We see an exponential
decrease of the MFE with increasing μ and a clear distinction between different
environmental change periods γ, which is a typical result for dynamic optimiza-
tion [9,11]. Next, the MFE depending on dynamic severity for s = s1 = s2 is
given, see Fig. 4b. We observe a steep increase of the MFE for values of s get-
ting smaller, which means for larger dynamic severity. Again, this is in agreement
with previous findings [17,12].

In a next set of experiments, we study how the landscape measures modality
and ruggedness relate to the MFE, see Fig. 5. These results stem from calculating
the MFE for different values of ε, given in Fig. 5a. The results are the MFE for 150
runs and again the 95% confidence intervals are shown. Note that the intervals
are small so that this MFE represents a good approximation of the long–term
behavior. In the Figs. 5b,c the MFE is shown depending on the number of
maxima #LM and the correlation length λ. Within certain bounds of #LM and
λ, we observe that the MFE gets gradually smaller with an increasing number
of maxima, while it gets larger with increasing correlation length. This trend is
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Fig. 5. The MFE as a function of: a) Diffusion coupling strength ε. b) Number of
maxima #LM . c) Correlation length λ. d) Correlation between the MFE and #LM , λ.

particularly visible for larger environmental change periods γ. Also, within these
bounds, γ is the leading factor in performance. For very large values of #LM and
very small values of λ, this relation vanishes. Finally, we consider the correlation
between the MFE and #LM , denoted by ρ(MFE,#LM), and between the MFE
and λ, denoted by ρ(MFE, λ), respectively, depending on γ. We notice that
both correlations decrease with increasing γ. This indicates that the correlation
between the landscape measures and the performance gets weaker for increasing
γ. For change frequency being in general the leading factor in the algorithm’s
performance, this can be interpreted as follows: a large number of maxima and
a high ruggedness does not influence the performance strongly for the algorithm
having enough time to search for the maxima. On the other hand, for small γ,
these landscape measures clearly determine the performance.

6 Conclusions

In this paper, spatio–temporal fitness landscapes constructed from Coupled Map
Lattices were introduced. These dynamic landscapes were analyzed in terms of
modality (number of optima) and ruggedness (correlation structure). Based on
these results, the relationship between landscape measures and the performance
of the evolutionary algorithm used to solve the dynamic optimization problem
was studied.
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The results show that the landscape measures modality and ruggedness scale
with the algorithm’s performance and hence allow its prediction. In particular,
for small change frequencies, we find a strong correlation between the perfor-
mance and landscape measures, that is, modality and ruggedness. For larger
change frequencies, this correlation ceases as the algorithm is more likely to find
the optimum despite the problem hardness induced by the landscape.
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Abstract. The ridge function class is a parameterised family of test
functions that is often used to evaluate the capabilities and limitations of
optimisation strategies. Past research with the goal of analytically deter-
mining the performance of evolution strategies on the ridge has focused
either on the parabolic case or on simple one-parent strategies without
step length adaptation. This paper extends that research by studying the
performance of multirecombination evolution strategies with cumulative
step length adaptation for a wide range of ridge topologies.

1 Introduction

It has been conjectured that ridge following is a recurring task in numerical op-
timisation. According to Whitley et al. [13], while the difficulties of optimising
ridges “are relatively well documented in the mathematical literature on deriva-
tive free minimization algorithms [. . . ], there is little discussion of this problem in
the heuristic search literature”. For evolution strategies in particular, a number
of recent publications provide results that partly fill this gap.

In early work, Herdy [8] observes that mutative self-adaptation yields signifi-
cantly suboptimal step lengths on the parabolic ridge, and that it fails altogether
on the sharp ridge. He shows empirically that hierarchically organised strategies
fare much better at generating useful step lengths. The performance of a sim-
ple hierarchically organised strategy on the parabolic ridge has recently been
analysed in [2].

Oyman et al. [11, 12, 10] analytically study the performance of the (μ/μ, λ)-
ES on the parabolic ridge. (See [5] for a comprehensive introduction to evolution
strategies and the related terminology.) Recently, Arnold and Beyer [1] have
extended that work by considering both the effects of noise and the performance
of cumulative step length adaptation. Another extension of the initial work of
Oyman et al. has been provided by Beyer [3] who considers more general ridge
topologies, albeit only for one-parent strategies and without considering step
length adaptation.

This paper analytically studies the performance of the (μ/μ, λ)-ES with cu-
mulative step length adaptation for the ridge function class considered in [3].
It generalises the results in that reference by considering multirecombinative

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 11–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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strategies as well as cumulative step length adaptation. Moreover, it succeeds
in analytically computing optimal parameter settings. This paper extends the
work in [1] by considering more general ridge topologies. The results presented
here thus represent a further step toward an understanding of the potential and
the limitations of evolution strategies when optimising ridge functions. They are
particularly interesting as they allow comparing step lengths generated using
cumulative step length adaptation with optimal step lengths.

2 Algorithm and Objective Function

This section outlines the strategy considered in this paper and describes the
ridge function class.

2.1 The (μ/μ, λ)-ES with Cumulative Step Length Adaptation

The (μ/μ, λ)-ES with isotropically distributed mutations is an evolution strategy
used for the optimisation of functions f : IRN → IR. In every time step it
computes the centroid of the population of candidate solutions as a search point
x ∈ IRN that mutations are applied to. Using cumulative step length adaptation
as proposed by Ostermeier et al. [9], a vector s ∈ IRN that is referred to as the
search path is used to accumulate information about the directions of the most
recently taken steps. An iteration of the strategy updates the search point along
with the search path and the mutation strength of the strategy in five steps:
1. Generate λ offspring candidate solutions y(i) = x+σz(i), i = 1, . . . , λ, where

mutation strength σ > 0 determines the step length and the z(i) are vectors
consisting of N independent, standard normally distributed components.

2. Determine the objective function values f(y(i)) of the offspring candidate
solutions and compute the average

z(avg) =
1
μ

μ∑
k=1

z(k;λ) (1)

of the μ best of the z(i). The index k;λ refers to the kth best of the λ offspring
candidate solutions. Vector z(avg) is referred to as the progress vector.

3. Update the search point according to

x ← x + σz(avg). (2)

4. Update the search path according to

s ← (1 − c)s +
√
μc(2− c)z(avg) (3)

where the cumulation parameter c is set to 1/
√
N .

5. Update the mutation strength according to

σ ← σ exp
(
‖s‖2 −N

2DN

)
(4)

where damping parameter D is set to
√
N .

See [1] for a more thorough discussion of the algorithm and its parameters.
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2.2 The Ridge Function Class

The class of objective functions considered throughout this paper is

f(x) = x1 − d

(
N∑

i=2

x2
i

)α/2

, x = 〈x1, . . . , xN 〉 ∈ IRN (5)

where d > 0 and α > 1. The x1-axis is referred to as the ridge axis. Notice that
while in the definition used here the ridge axis is aligned with an axis of the
coordinate system, that fact is irrelevant for a strategy that uses isotropically
distributed mutations such as those considered in the present paper. The coor-
dinate system could be subjected to an arbitrary rotation without affecting the
strategies’ performance. The parameter α is referred to as the topology parame-
ter. Ridges with α = 2 are referred to as parabolic ridges. The sharp ridge with
α = 1 requires extra care when using normalised variables and is not directly
included in the considerations below due to space restrictions. However, it can
be handled easily using the approach pursued here and indeed occurs as a limit
case. Finally, as in [11, 12, 10, 3, 1], the performance of evolution strategies on
ridge functions is quantified by the progress rate

ϕ = E
[
σz

(avg)
1

]
(6)

i.e., the expected progress of the search point in the direction of the ridge axis
in a single time step.

3 Performance

This section first briefly discusses the general methodology of the approach pur-
sued in this paper. It then considers the case that the step length of strategy is
static and derives optimal parameter settings. Finally, the case of adaptive step
length is discussed.

3.1 Preliminaries

The performance of the (μ/μ, λ)-ES with cumulative step length adaptation has
been studied in [1] for the parabolic ridge. The approach to the analysis for
more general ridge topologies is closely analogous. Due to the symmetries of the
ridge, the state of the evolution strategy can be described by a small number of
variables. The algorithm described in Section 2.1 defines a stochastic mapping of
those variables. After initialisation effects have faded, several state variables have
a stationary limit distribution. Approximate average values of that distribution
can be determined by replacing all quantities with their expected values (thus
rendering the stochastic mapping deterministic) and finding a fixed point. Fur-
ther simplifications are made by assuming that the search space dimensionality
is high and dropping any terms from the calculations that disappear in the limit
N →∞. Simulations are used to evaluate the accuracy of the approximations.
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Letting x2...N = 〈0, x2, . . . , xN 〉 denote the projection of the search point
onto the plane with x1 = 0, throughout this paper R = ‖x2...N‖ denotes the
distance of the search point from the ridge axis. Central to the analysis of the
performance of evolution strategies on ridge functions is a decomposition of
mutation and progress vectors into three mutually orthogonal components z1,
zA, and zB . Vector z1 = 〈z1, 0, . . . , 0〉 points in the direction of the ridge axis and
is referred to as the axial component of z. Letting z2...N = 〈0, z2, . . . , zN〉, scalar
quantity zA = −x2...N · z2...N/R is the signed length of the central component
zA = −zAx2...N/R of vector z that points from the search point toward the ridge
axis. Vector zB equals z2...N − zA and is referred to as the lateral component
of z. Altogether, z = z1 + zA + zB . See [1] for an illustration.

3.2 Static Step Length

Consider the fitness of an offspring candidate solution y = x + σz. Using the
definitions of zA and z2...N , it follows from Eq. (5) that

f(y) = x1 + σz1 − d

(
N∑

i=2

(xi + σzi)2
)α/2

= x1 + σz1 − d
(
R2 − 2RσzA + σ2‖z2...N‖2)α/2

. (7)

As z is a mutation vector, ‖z2...N‖2 is χ2
N−1-distributed and has mean N − 1

and variance 2(N − 1). As the distribution of mutation vectors is isotropic, zA

is standard normally distributed. Let us assume that

R� σ
√
N. (8)

It will be seen below that for given mutation strength σ the resulting stationary
distance R of the search point from the ridge axis is such that with increasing N ,
σ
√
N/R tends to zero, thus providing an a posteriori justification for Eq. (8).

Under the assumption, the first term in the parentheses in Eq. (7) dominates
the other two. The power term can thus be expanded into a Taylor series with
terms beyond the linear one ignored, yielding

f(y) N→∞= x1 + σz1 − d
(
Rα − α

2
Rα−2 (2RσzA − σ2‖z2...N‖2))

= f(x) + σz1 + αdRα−1σzA −
αd

2
Rα−2σ2‖z2...N‖2. (9)

Again using the assumption Eq. (8), for large N the variance of the term involv-
ing ‖z2...N‖2 disappears relative to that involving zA, and it is possible to treat
the former as a constant. The two variable terms (those involving z1 and zA)
are both normally distributed due to the way that mutation vectors are gener-
ated. Selection ensures that those μ candidate solutions with the largest values
of z1 +αdRα−1zA survive. The signed lengths z1 and zA of the axial and central
components of the mutation vectors are thus concomitants of the order statistics
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that result from ranking offspring candidate solutions according to their fitness.
(See [6] for an introduction to concomitants of order statistics.) According to
Eq. (1), the axial, central, and lateral components z(avg)

1 , z(avg)
A , and z(avg)

B of
the progress vector are the averages of the respective components of the selected
mutation vectors. The following lemma that has previously been used in [1] is
thus immediately applicable:

Lemma 1. Let Xi = Yi + ϑZi for i = 1, . . . , λ, where the Yi and the Zi are
independently standard normally distributed. Ordering the sample members by
nondecreasing values of the X variates, the expected value of the arithmetic mean
of those μ of the Yi with the largest associated values of Xi is

E

[
1
μ

μ∑
k=1

Yλ+1−k;λ

]
=

cμ/μ,λ√
1 + ϑ2

where Yj;λ denotes the concomitant of the jth order statistic and where cμ/μ,λ is
the (μ/μ, λ)-progress coefficient defined in [4].

Specifically, with Y = z1, Z = zA, and ϑ = ρα−1, where ρ = (αd)1/(α−1)R
denotes the standardised distance of the search point from the ridge axis, it
follows from the lemma that

E
[
z
(avg)
1

]
N→∞=

cμ/μ,λ√
1 + ρ2(α−1)

. (10)

Similarly, with Y = zA, Z = z1, and ϑ = 1/ρα−1 it follows that

E
[
z
(avg)
A

]
N→∞=

cμ/μ,λρ
α−1√

1 + ρ2(α−1)
. (11)

Both equations are generalisations of the corresponding results for α = 2 ob-
tained in [1]. Finally, as noted above, the influence of ‖z2...N‖2 on the relative
fitness of the resulting offspring tends to zero as N increases. (The variance of the
term involving ‖z2...N‖2 in Eq. (9) disappears compared to that involving zA.)
For N → ∞, z(avg)

B is thus the average of μ uncorrelated random vectors. As
seen in [4], averaging μ uncorrelated random vectors reduces the squared length
of the vectors being averaged by a factor of 1/μ. Furthermore, the relative con-
tribution of the central component z(avg)

A to ‖z(avg)
2...N‖2 vanishes for large N . As a

result,

E

[
‖z(avg)

2...N‖2

N

]
N→∞=

1
μ
. (12)

The same result has been used in [1]. Together, Eqs. (10), (11), and (12) provide
a description of the progress vector that is sufficient for obtaining a characteri-
sation of the stationary state attained by an evolution strategy with stationary
step length when tracking a ridge.
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According to Eq. (2), the squared distance of the next time step’s search point
from the ridge axis is

N∑
i=2

(
xi + σz

(avg)
i

)2
= R2 − 2Rσz(avg)

A + σ2‖z(avg)
2...N‖2.

In order for stationarity to hold, the expected distance of the search point from
the ridge axis must not change, yielding condition

2RσE
[
z
(avg)
A

]
= σ2E

[
‖z(avg)

2...N‖2
]
.

Introducing normalised mutation strength σ∗ = σN(αd)1/(α−1)/(μcμ/μ,λ), using
Eqs. (11) and (12), and squaring both sides yields after some simple transfor-
mations condition

4ρ2α = σ∗2
(
1 + ρ2(α−1)

)
. (13)

For given mutation strength, Eq. (13) can be used to determine the resulting
average distance of the search point from the ridge axis. While for α = 2 an
analytical solution can be found (and has been presented in [1]), in general,
solutions need to be obtained numerically.

From Eqs. (6) and (10) with normalisation ϕ∗ = ϕN(αd)1/(α−1)/(μc2
μ/μ,λ),

the stationary normalised progress rate on the ridge is

ϕ∗ =
σ∗√

1 + ρ2(α−1)
(14)

Figure 1 compares predictions from Eqs. (13) and (14) with measurements from
runs of evolution strategies. The measurements have been made with the search
point of the evolution strategy initialised to lie on the ridge axis. The simulations
have been run for 40N time steps in order to reach the state where the distance
from the ridge axis is stationary on average. Then, ρ and ϕ∗ have been averaged
over a period of 40000 time steps. It can be seen from the figure that the quality
of the predictions is quite good and that it improves with increasing N . While
the measurements have been made using d = 1, the choice of normalisations of
the mutation strength and of the progress rate ensures that a different choice of
d is nothing more than a uniform scaling of the search space. For any α > 1,
the accuracy of the measurements in Fig. 1 is in fact independent of the choice
of d. This is not true for the case of α = 1 which is not included in the above
considerations due to the degeneracy of the normalisations used. However, for
d = 1 it can be considered as a limit case and has been included in the figure
for comparison. Finally, notice that the search space dimensionality N does not
appear explicitly in Eq. (13). For σ∗ > 0 and the value of ρ that solves the
equation, the quotient σ∗/ρ takes on a finite value. As a consequence, it follows
from reversing the normalisations of the mutation strength and the distance from
the ridge axis that Eq. (8) indeed holds.
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Fig. 1. Standardised distance ρ from the ridge axis and normalised progress rate ϕ∗

plotted against normalised mutation strength σ∗. The points mark measurements made
in runs of the (3/3, 10)-ES for N = 40 (+) and N = 400 (×). The lines represent predic-
tions obtained by numerically solving Eq. (13) for ρ and using Eq. (14) to compute ϕ∗.

3.3 Optimal Step Length

Interestingly, optimal settings of the mutation strength and the resulting progress
rate can be determined analytically even though Eq. (13) can generally only be
solved numerically. Using Eq. (13) to eliminate σ∗ in Eq. (14) yields

ϕ∗ =
2ρα

1 + ρ2(α−1) .

Computing the derivative

dϕ∗

dρ
=

2αρα−1(1 + ρ2(α−1))− 4(α− 1)ρ3(α−1)

(1 + ρ2(α−1))2

and demanding that it be zero yields condition

α
(
1 + ρ2(α−1)

)
= 2(α− 1)ρ2(α−1)

that must hold for maximal progress. Solving for ρ yields

ρ =
(

α

α− 2

) 1
2(α−1)

(15)

for the optimal standardised stationary distance from the ridge axis. Using
Eqs. (13) and (14), the corresponding normalised mutation strength and progress
rate are

σ∗ =

√
2α

α
α−1

(α − 1)(α− 2)
1

α−1
(16)

and

ϕ∗ =
α

α
2(α−1) (α− 2)

α−2
2(α−1)

α− 1
. (17)
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Clearly, from Eq. (15), only for α > 2 does a nonnegative solution exist for ρ.
For α ≤ 2 the optimal mutation strength is infinite, and the stationary distance
of the search point from the ridge axis diverges. For α < 2 the resulting progress
rate increases indefinitely with increasing mutation strength as can be seen in
Fig. 1 for the special case that α = 1. As seen in [1], for α = 2 a limit value
of ϕ∗ = 2 is approached as σ∗ increases. For α > 2, the optimal mutation
strength is finite and results in a finite progress rate as witnessed by the curves
for α = 4 in Fig. 1. The same findings have been made by Beyer [3] for the special
case of the (1, λ)-ES. However, in that reference no analytical expressions have
been obtained for the optimal parameter settings. Finally, the dependence of
the optimal normalised mutation strength and progress rate on the topology
parameter α are illustrated by the solid lines in Fig. 2.

3.4 Adaptive Step Length

It has been seen in [1] for α = 2 that by considering several further state variables
that serve to characterise the search path, cumulative step length adaptation can
be analysed using the approach described in Section 2.1. In that reference,

z
(avg)
1

2
+ z

(avg)
A

2
=

σ

R
z
(avg)
A ‖z(avg)

2...N‖2 (18)

has been derived as a stationarity condition. The derivation is lengthy and cannot
be reproduced here. The same argument applies in the case of more general ridge
topologies, leading to the same result. The mutation strength generated by the
cumulative step length adaptation mechanism can be computed from Eq. (18).
Using the expected values from Eqs. (10), (11), and (12) to replace z(avg)

1 , z(avg)
A ,

and ‖z(avg)
2...N‖2 it follows after replacing σ and R with their normalised values that

1 + ρ2(α−1) = σ∗2ρ2(α−2).

Using Eq. (13) to eliminate the normalised mutation strength and solving the
resulting equation yields ρ = 1 for the standardised distance from the ridge axis.
Using this result in Eqs. (13) and (14) yields

σ∗ =
√

2 (19)

for the normalised mutation strength generated by cumulative step length adap-
tation and

ϕ∗ = 1 (20)

for the corresponding normalised progress rate. Figure 2 compares the predic-
tions from Eqs. (19) and (20) with measurements made in runs of evolution
strategies. The experimental setup is the same as that used to generate the data
points in Fig. 1, except that now the mutation strength of the strategy is subject
to cumulative step length adaptation. It can be seen that although the quality
of the predictions improves with increasing N , it is not as good as for static
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Fig. 2. Normalised mutation strength σ∗ and normalised progress rate ϕ∗ plotted
against the topology parameter α. The points mark measurements made in runs of the
(3/3, 10)-ES with cumulative step length adaptation for N = 40 (+) and N = 400 (×).
The dashed lines represent predictions obtained from Eqs. (19) and (20). The solid
lines reflect the optimal values described by Eqs. (16) and (17).

mutation strength. In particular, for α � 1 both the mutation strength and the
progress rate are severely underestimated unless the search space dimensionality
is very high. A more careful analysis that helps explain those deviations remains
as a task for future work and likely needs to take fluctuations of the state vari-
ables into account. Nonetheless, it is instructive to see that independent of the
ridge topology, cumulative step length adaptation always generates step lengths
that are shorter than optimal. For 1 < α ≤ 2, it generates finite step lengths
even though infinite step lengths are optimal. For the parabolic ridge where the
maximal progress rate is finite, as seen in [1] cumulative step length adaptation
achieves 50% of the optimal performance. For α > 2, the gap between optimal
progress rate and progress rate achieved with cumulative step length adaptation
decreases with increasing values of α.

4 Conclusions

To conclude, this paper has presented an analysis of the behaviour of the (μ/μ, λ)-
ES with cumulative step length adaptation on the ridge function class. Analytical
results have been obtained for the optimal mutation strength and progress rate of
the strategy, as well as for the mutation strength and progress rate generated by
cumulative step length adaptation. It has been seen that the step lengths achieved
using cumulative step length adaptation are consistently below the optimal values.
The resulting loss in performance that has previously been seen to be a factor
of two for the parabolic ridge decreases monotonically with increasing topology
parameter α. How significant the failure of cumulative step length adaptation is
to generate infinite step lengths for α < 2 is debatable as arguably, it may reflect
a deficiency of the ridge model rather than one of the strategy.
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Future work with the goal of better understanding the behaviour of evolution
strategies on ridge functions should consider alternative step length adapta-
tion mechanisms, such as mutative self-adaptation and the use of hierarchically
organised strategies. The analysis of the performance of the hierarchically or-
ganised strategy presented in [2] can be generalised beyond the parabolic ridge
using the approach pursued in the present paper, and it will be interesting to see
whether qualitative differences exist. Finally, strategies that use nonisotropically
distributed mutations, such as the CMA-ES [7] remain to be studied.
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Abstract. Evolutionary optimization, among which genetic optimiza-
tion, is a general framework for optimization. It is known (i) easy to use
(ii) robust (iii) derivative-free (iv) unfortunately slow. Recent work [8]
in particular show that the convergence rate of some widely used evolu-
tion strategies (evolutionary optimization for continuous domains) can
not be faster than linear (i.e. the logarithm of the distance to the op-
timum can not decrease faster than linearly), and that the constant in
the linear convergence (i.e. the constant C such that the distance to the
optimum after n steps is upper bounded by Cn) unfortunately converges
quickly to 1 as the dimension increases to ∞. We here show a very wide
generalization of this result: all comparison-based algorithms have such
a limitation. Note that our result also concerns methods like the Hooke
& Jeeves algorithm, the simplex method, or any direct search method
that only compares the values to previously seen values of the fitness.
But it does not cover methods that use the value of the fitness (see [5]
for cases in which the fitness-values are used), even if these methods do
not use gradients. The former results deal with convergence with respect
to the number of comparisons performed, and also include a very wide
family of algorithms with respect to the number of function-evaluations.
However, there is still place for faster convergence rates, for more original
algorithms using the full ranking information of the population and not
only selections among the population. We prove that, at least in some
particular cases, using the full ranking information can improve these
lower bounds, and ultimately provide superlinear convergence results.

1 Introduction

The principle of the main stream of evolutionary computation is to use only com-
parison between fitness values, and not the fitness values themselves. In almost
all cases, the algorithm is indeed only based on comparisons between fitnesses
of elements currently in a so-called ”population”, that has bounded size. Many
algorithms, in spite of this restriction, have been proved linear (i.e. it has been
proved that the logarithm of the distance to the optimum decreases linearly);
see e.g. [4,1,2,10]. Some linear lower bounds also exist in various cases ([8]). In
this paper, we show that :

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 21–31, 2006.
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- this kind of algorithms can at best be linear w.r.t the number of comparisons,
with a constant 1−O( 1

d) as the dimension d increases to ∞, even with very easy
fitness functions ;
- however, such algorithms can have slightly better constants w.r.t the num-
ber of function evaluations (theorem 4), for not too strange fitness-functions ;
an interesting point is that this requires features that are not present in usual
(μ, λ)-algorithms ;
- in some very particular cases, these non-standard algorithms can be superlinear
if they use ranking-informations and not only selection (theorem 5).
The principle of the proof of the first point is as follows. In this informal intro-
duction, we present it in the continuous case, but the proof is general. Consider
an algorithm guided by comparisons. Then, after nc comparisons, you have at
most 2nc possible behaviors (possibly stochastic, but we may think of determin-
istic behaviors in this informal introduction). This is not so large in front of the
entropy (here quantified by the packing number): to be precise within distance
ε in [0, 1]d, you must be able of at least Ω(1/εd) different answers, i.e. you need
d log(1/ε) bits of information to get a precision ε. This rough introduction shows
already that nc ensuring a precision ε must be at least such that 2nc = Ω(1/εd),
i.e. ε decreases as (2−1/d)nc . The convergence is therefore at most linear, with
a coefficient roughly 2−1/d = 1 − O(1/d), hence the expected result that will
be proved formally below. The reasonning also holds in the discrete case, and
similar results can be derived for multi-modal optimization.

The proof of the second point, better constants w.r.t the number of function
evaluations, is based on the information contained in rankings instead of selec-
tion. The proposed algorithm, realizing the task, is something between Nelder-
Mead algorithm ([9]) and evolution strategies. The fitness is built in an ad hoc
manner, but has some reasonnable properties that make the proof not too artifi-
cial. This is absolutely not the case of the proof of the last point (superlinearity
w.r.t of the number of function evaluations), which uses ad hoc fitness and algo-
rithm which are of theoretical but not practical interest. We do not know if this
result also holds for more natural functions.

2 General Framework

Let D be the domain in which we look for optimal (say, minimal) values of
a given real-valued function called the fitness. The packing number of a set S
with respect to a metric and some ε > 0, is the maximal number of points
(possibly ∞) such that (i) each point is in S (ii) any two distinct points are at
distance at least ε. We note |S| the cardinal of the set S (possibly infinite). We
note Ey1,y2,...,yk

the expectation with respect to random variables y1, . . . , yk. A
property F being given, 1F denotes the function with value 1 when F holds, and
0 otherwise else. Let gn, f , h be possibly stochastic functions. See 2 for more
details on assumptions. The algorithm is as follows :

1. initialize s1 and t1 to some value s and t.
2. for n = 1 to ∞, do Epoch(n) which is
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(a) compute (rn, tn+1) = gn(sn, tn) with rn ∈ Kn ;
(b) sn+1 = f(sn, rn).
(c) consider xn = h(sn) as your current proposal as an approximation of the

min-argument of the fitness.

The goal of this algorithm is the fast convergence of xn to the min-argument of
the fitness. No assumption is made on sn, it can live in any domain, the only
requirement is that sn+1 is only a function of sn and rn. In natural cases sn

can be a backup of all results of comparisons and of all random generations.
Similarly, tn can live in any domain, provided that tn+1 only depend on sn and
tn; a natural case for us is that tn contains all the archive of visited points
with their fitness values. Also, theorems below hold for any case of Kn whenever
the natural case for this paper is that rn is the result of one or finitely many
comparisons. We will now see how evolutionary algorithms fit in this framework.

Why this algorithm includes evolutionary computation. Our framework
is very general, but we show here why this framework is relevant for all forms of
evolutionary computation. Typically, in evolutionary computation:
- tn is the archive of visited points with their fitness values
- rn is the result of various comparisons (in gn, fitness are computed and com-
pared to other points in the population or in the archive);
- f is the method for creating generations (which might include cross-over, muta-
tions, selection,. . . ). Without loss of generality, we have assumed that f does not
depend on n; if we want f depending on n, we just have to add the information
”n” in sn (i.e., replace sn by (sn, n)).

What are our hypothesis. The algorithm depends on (i) the initialization of
s1 and t1 ; (ii) the possibly stochastic function gn ; (iii) the possibly stochastic
function f ; (iv) the possibly stochastic function h. The gn are the only functions
that use the fitness to be optimized. Kn (in which rn has its values) is finite.

Typically, the function to be optimized is used only as a black-box. However,
we will not have to assume this here in the main results. We mainly need the
fact that the information provided by the fitness fits in a finite number of bits
(i.e. finiteness of Ki). This is why algorithms like BFGS or even the gradient
descent are not concerned by our results ; the information provided by a gradient
does not fit in a finite number of bits (at least if we assume infinite precision of
floating-point values). The tn can have any structure, it may contain an archive
of fitness values or not. We don’t even need the fact that the computation time
per epoch is bounded.

These assumptions are typically true for evolutionary algorithms. As we do
not assume anything about the structure of sn, and we do not assume anything
about what is done with the fitness except that the number of bits is small, our
result is much more general than only evolutionary computation.
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3 Lower Bounds w.r.t of the Number of Comparisons

Entropy Lemma for Evolutionary Computation:
Consider an algorithm as in section 2. Consider a set Fit of possible fitness
functions on domain D, i.e. Fit ⊂ RD, such that any fit ∈ Fit has only one
min-argument fit∗, and such that {fit∗; fit ∈ Fit} = D. This means that we
don’t know a priori where is the min-argument (Fit can be the set of sphere
functions or any other very simple optimization problems).

Then, define N(ε) the packing number of D for 2ε, for some metric. Consider
fit a random variable such that fit∗ is uniformly distributed on the N(ε) ele-
ments realizing the packing number of D. Consider some fixed δ ∈]0, 1[ and n
such that the probability (on both fit and xn) that d(xn, f it

∗) ≤ ε (where d(., .)
is the euclidean distance) verifies P (d(xn, f it

∗) ≤ ε) ≥ 1− δ.
Then n ≥ nε,δ = � log(1−δ)

log(K′
n) + log(N(ε))

log(K′
n|) � where K ′

n = n
√∏n

i=1 |Ki|.

Proof: We note Sε the set of points of the domain that lie at distance ≤ ε of
the optimum fit∗ for the ||.||∞ norm.

Step 1: conditionning to a sequence of ri. Consider a fixed sequence
of (ri), instead of ri function (via gi) of si and ti. We consider a run of the
algorithm, in the case in which these ri are fixed. Then, conditionally to xn,
Efit1{xn∈Sε} ≤ 1

N(ε) . Averaging on xn (which can be random if the algorithm is
stochastic) leads to EfitExn1{xn∈Sε} ≤ 1/N(ε).

Step 2: summing on all possible (ri)i∈[[1,n]]

Efit sup
rn

Exn1{xn∈Sε} ≤ Efit

∑
rn

Exn1{xn∈Sε} ≤
∑
rn

EfitExn1{xn∈Sε} ≤
n∏

i=1

|Ki|
N(ε)

(thanks to step 1). Note for shortK ′
n = n

√∏n
i=1 |Ki|. Then, P (d(xn, f it

∗) ≤ ε) ≥
1 − δ implies K ′

n
n
/N(ε) ≥ 1 − δ. This implies that n ≥ log(1 − δ)/ log(K ′

n) +
log(N(ε))/ log(K ′

n).
Note that for many algorithms, Kn is constant, and therefore K ′

n is constant.
An easier formulation is as follows :

Theorem 1: Entropy Theorem for Evolutionary Computation:
Consider a set Fit of possible fitness functions on domain D, i.e. Fit ⊂ RD, such
that any fit ∈ Fit has only one min-argument fit∗, and such that {fit∗; fit ∈
Fit} = D. This means that we don’t know a priori where is the min-argument
(Fit can be the set of sphere functions or any other very simple optimization
problems). Consider some fixed δ ∈]0, 1[ and n such that for any fitness in Fit,
P (d(xn, f it

∗) ≤ ε) ≥ 1 − δ. Then n ≥ nε,δ = � log(1−δ)
log(K′

n) + log(N(ε))
log(K′

n) � where K ′
n =

n
√∏n

i=1 Ki.

Proof: Assume, to get a contradiction, that n ensures d(xn, f it
∗) ≤ ε with

probability 1 − δ for any fitness in Fit. Then, a fortiori, it ensures it with
probability 1 − δ on average for any distribution of fitnesses in Fit. This leads
to a contradiction with the previous lemma, hence the expected result.
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This theorem provides the convergence rate with respect to the number of
epochs. This is in particular interesting when (i) each epoch is parallelized ;
or (ii) the cost is mainly the cost of fitness-evaluations and the number of fitness
evaluations per epoch is some fixed q fitness-evaluations/epoch, what implies
that the average coefficient of linear convergence per fitness evaluation rfe is
rfe = q

√
re where re is the coefficent of the linear convergence per epoch.

These lower bounds are absolute lowers bounds with respect to the epochs,
but we might also be interested in bounds with respect to time, without neglect-
ing the computational cost of each epoch. We can do this with a very natural
assumption, very classical in evolutionary algorithms, which is that we only use
comparisons on the fitness values. We can then derive a bound on the conver-
gence rate with respect to the number of comparisons, and therefore on the
convergence rate with respect to time :

Corollary 2. (entropy theorem for black-box evolutionary algorithms:
complexity w.r.t. number of comparisons): Assume the same hypothesis
as in the theorem above with Kn = 2 corresponding to rn equal to the result of
a comparison between the fitnesses of two previously visited points. Then, with
log2(x) = log(x)/ log(2), the number of comparisons nc required for ensuring with
probability 1 − δ a precision ε is nc ≥ log2(1 − δ) + log2(N(ε)). I.e., formally,
P (||xnc − fit∗|| < ε) ≥ 1− δ ⇒ nc ≥ log2(1− δ) + log2(N(ε)).

Proof: Split the algorithm in section 2 so that each epoch contains at most one
comparison. Then |K ′

n| = |Kn| = 2 as any computation except the comparison
can be put in f . Hence the expected result.

Corollary 2’: the same with respect to area. If the domain has measure
1, and if Fit has the same property as in theorem 1, then nc comparisons are
necessary for a comparison-based algorithm in order to provide a set with measure
v < 1 that contains fit∗ with probability at least 1− δ, where nc ≥ log2(1− δ) +
log2(1/v). and also with notations as above, the number of epochs n verifies
n ≥ log(1− δ)/ log(K ′

n) + log(1/v)/ log(K ′
n).

Proof: The proof is very similar to the previous one, and is indeed simpler.
Consider a fixed sequence of rn. Consider fit a random variable on Fit such that
fit∗ is uniform on the domain D. Note V the set proposed by the algorithm,
and that must contain fit∗ with probability at least 1− δ.

Consider a fixed V . Then, the probability (on fit) that fit∗ ∈ V is at
most v. Now, by averaging on V (conditionaly to a sequence of rn), we have
PV (fit∗ ∈ V ) ≤ v. If we now consider the sum of these probabilities among pos-
sible sequences of rn, we have P (fit∗ ∈ V ) ≤ 2ncv and therefore 1 − δ ≤ 2ncv,
which leads to nc ≥ log2(1− δ)− log2(v) where log2(t) = log(t)/ log(2).

Continuous case: linear convergence w.r.t the number of comparisons.
The bound above on the convergence rate depends on the packing number of
the domain. This bound holds for any families of fitnesses, provided that the
optimum is not known in advance (i.e. it can be anywhere in the domain). We will
now apply it to the simple continuous case D = [0, 1]d with the supremum norm,
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N(ε) ≥ (�1/ε�d). First consider the convergence with respect to n the number
of epochs in the (standard) case: ∀i,Ki ≤ K for some K. This implies that the
guaranteed distance to the optimum, for some n and with probability at least
1−δ, for fixed δ, verifies N(ε) ≤ Kn/(1−δ) i.e. �1/ε� ≤ (Kn/(1−δ))1/d, i.e. ε ≥
1/

(
1 + (Kn/(1− δ))1/d

)
. This is (at best) a linear convergence, with constant

in [1−O(1/d), 1]. The convergence with respect to time if only comparisons are
used is more strongly bounded, as shown in the corollary (without assuming
anything except the fact that only comparisons of fitnesses are used) : ε ≥
1/

(
1 + (2nc/(1− δ))1/d

)
where nc is the number of comparisons. This is (at

best) a linear convergence, with constant in [1− O(1/d), 1], independent of the
algorithm for a fixed K. We will see below that modifying K for example by
modifying λ and μ does not significantly modify the result w.r.t the number
of comparisons, but it does w.r.t the number of function-evaluations, but only
if we use full-ranking and not only selection. Note that the bound is tight: the
following problems {x �→ ||x − fit∗||1; fit∗ ∈ [0, 1]d} is solved with constant
1 − Ω(1/d) by the following algorithm (close to the Hooke&Jeeves algorithm
[7]), that reaches 1 − Θ(1/d) both w.r.t the number of fitness-evaluations and
w.r.t the number of comparisons:

– initialize x = (x1, . . . , xd) at any point.
– in lexicographic order on (j, i) ∈ N× [[0, d− 1[[:

• try to replace the jth bit b of xi by 1− b;
• if it is better, then keep the new value; otherwise else keep the old value.

4 Convergence Rate with Respect to the Number of
Fitness-Evaluations: Why the 1 − O(1/d) Is Also True
for Selection-Based Algorithms

We already mentionned that our approach covers almost all existing evolutionary
algorithms. We can now check the value of K, depending on the algorithm, and
consider convergence rates with respect to the number of fitness-evaluations
instead of the number of comparisons. The convergence rate will be ≥ 1/ λd

√
K.

- (μ, λ)-ES (or SA-ES): at each step, then, we only know which are the
selected points. Then, K =

(
λ
μ

)
≤
(

λ
�λ/2	

)
≤ (2λ/

√
2πλ) (see e.g. [3, p587] or

[6] for proofs about
(

λ
μ

)
). This leads to a convergence rate with respect to the

number of FEs > 1/ λd
√

2λ ≥ 1/ d
√

2, hence the 1−O(1/d) result with respect to
the number of FEs ; note that the constant is worst if λ increases.

- Consider more generally, any selection based algorithm, i.e. any al-
gorithm in which rn encodes only a subset of μ points among λ. Then, the
algorithm provides only a subset of [[1, λ]], i.e. Kn ≤ 2λ, and λ

√
K = O(1) and

the convergence rate is ≥ 1− O(1/d) bound in distance or exp(−O(1)) in area.
Note that this remains true if λ depends on the epoch and even if the subset has
not a fixed size defined before the fitness-evaluations. As we will show below,
this 1−O(1/d) with respect to the number of FEs is not true for algorithms
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using the full ranking information ; this allows the conclusion that using
all the ranking information can lead to better convergence rates, at
least in some cases, than using only a selection information.

- (μ+λ)-ES (or SA-ES): then, we only know which are the selected points.
Then, K = (λ + μ)!/(μ!λ!). This does not allow a proof of 1 − O(1/d) if μ
increases as a function of d, but indeed, for (μ + λ)-ES, the 1 − O(1/d) can be
proved by other means ; see e.g. [11]. Note however that for other algorithms
(not (μ + λ)-ES) with a big archive (what is somewhat similar to a big μ), we
will see that the 1−O(1/d) does not hold.

- Parallel (1 + λ)-ES: As the λ points are computed in parallel, we don’t
need to consider the λ

√
(.) ; the convergence rate is ≥ 1/ d

√
K = 1/ d

√
λ. Here,

K ≤ λ, therefore the speed up is only at most logarithmic (the number of fitness-
evaluations required for a given precision decreases only as log(N(ε))/ log(λ)).

Consider the convergence rate with respect to the area as in corollary 2’,
with respect to epochs. For an averaged convergence rate with respect to the
number of fitness-evaluations, we must consider the λth root ; the convergence
rate in area is O( λ

√
2λ√

λ
). Increasing the population size to infinity as dimension

increases will therefore not improve the result in (μ, λ) schemas: this leads to
exp(−o(1)) instead of the exp(−Θ(1)) that can be reached by some algorithm
like (1+1)-ES. Therefore, in the case of (μ, λ)-ES, either the population remains
finite, and we can reach exp(−Θ(1)), or the population increases to infinity as
the dimension increases and it is worse.

The case of (μ + λ)-ES is different, as a huge μ has no cost w.r.t function
evaluations (is only involves archiving). With a huge μ, as we have no restriction
here on the selection method and the information stocked in memory and the
computational power (we only count the number of fitness-evaluations), you can
encode in an archive many specific methods, and in particular the algorithms
below beating the exp(−O(1)) (for area with respect to convergence rates). How-
ever, note that for standard (μ+ λ)-ES, the numerical evaluation of the bounds
above, which depends on the rule for specifying μ and λ as functions of the di-
mension, lead to exp(−O(1)) at best (for the area, with respect to the number
of function evaluations).

5 Superlinearity: What About the Complexity with
Respect to the Number of Fitness-Evaluations ?

Kn can run to infinity as n → ∞. This implies that the computational cost
of an epoch converges to infinity, but this might happen in particular if the
principal cost is the evaluation of the fitness. For example in algorithms using
the full archive of visited points and using the ranking of all visited points, we
can compare each new point to all previously visited points. Can this improve
the result in term of convergence rate with respect to the number of visited
points? For the moment, we have bounds with respect to the computational
time (corollary above), with respect to the number of epochs (the main theorem),
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but what about a bound on the convergence rate with respect to the number of
fitness-evaluations, neglecting the other computational costs ? Such bounds are
important as evolutionary algorithms are particularly relevant for very expensive
fitnesses. Section 4 answers partially to this question for some algorithms. A
positive result is a clue for designing algorithms that might be superlinear, or
might have better dependencies on the dimension. We will show below that using
full ranking information, it is possible to outperform the 1− O(1/d) that hold,
even w.r.t the number of function-evaluations for selection based algorithms.

The ultimate limit of corollary 2 w.r.t function-evaluations. Assume
that we only use comparisons (but allow as many comparisons as you want per
epoch). Then, let’s rewrite the algorithm so that there is only one call to the fit-
ness function per epoch. This only means that we split each epoch in the number
of fitness-evaluations. Then, we see that there are at most n possible outcomes in
the set of comparisons in this epoch: the rank of the newly evaluated point. This
implies that Kn ≤ n. Then, the number of epochs required to ensure a precision
ε with probability 1 − δ is n ≥ log(1 − δ)/ log(K ′

n) + log(N(ε))/ log(K ′
n) with

K ′
n = n

√
n! = Θ(n). In the continuous case, this is asymptotically (slightly) su-

perlinear, but at the cost of a computation time per epoch increasing to infinity.
Let’s summarize these elements.

Corollary 3: convergence rate w.r.t. the number of fitness-evaluations.
Assume that Kn contains only the result of comparisons between values of the
fitness at visited points. Then, the number of visited points necessary for a preci-
sion at most ε with probability at least 1−δ is at least nfe ≥ log(1−δ)/ log(K ′

n)+
log(N(ε))/ log(K ′

n) with K ′
n = Θ(n) (i.e. a superlinear convergence rate in the

continuous case [0, 1]d).
Whereas (as shown in corollary 2) the number of comparisons required is at

least nc ≥ log2(1−δ)+log2(N(ε)) (i.e. a linear convergence rate in the continuous
case [0, 1]d, with coefficient 1−O(1/d)).

This suggests the possible relevance of evolutionary algorithms for expensive
fitnesses, for which the computational cost of each epoch out ot fitness-calls is
negligible: for low-cost fitness, where the computational cost of the comparisons
is not negligible, we know that we can not be superlinear, and that the constant
quickly runs to 1 as the dimension increases, but we let open the possibility
of superlinearity w.r.t the number of fitness evaluations, and the possibility of
constants better than this 1−O(1/d).

In particular, our proof above (corollary 2’) forbids better than exp(−O(1))
in the following terms: if the domain has measure 1, then the number of
comparisons required by a comparison-based algorithm for providing an area of
measure v < 1 that contains the optimum with probability at least 1−δ is as least
nc ≥ log2(1− δ)+ log2(1/v). This is a bound in exp(−O(1)) for the convergence
rate with respect to the area, uniformly in all the possible dimensions. It is in
some sense more natural, because it reflects the idea that in order to divide the
area where the optimum can lie by 2, you need 1 bit of information. This bound
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- holds with respect to the number of comparisons (corollary 2’) ;
- holds with respect to the number of fitness-evaluations if the number of
comparisons per epoch is a priori bounded independendly of the dimension or
under various hypothesis including nearly all existing comparison-based algo-
rithms ;
- but does not hold w.r.t the number of fitness-evaluations in the general case.
Indeed, it is possible to avoid the exp(−O(1)) if the population size increases to
infinity, on some not too artificial fitness-functions. If we look to very particular
cases of fitness-functions, it is also possible to be superlinear w.r.t the number
of fitness-evaluations, with only comparisons. This point will be shown below.

Improved convergence rates using full ranking information. We now
formalize two theorems about this precise point. The first one considers the
convergence better than exp(−O(1)) from the area point of view on a reasonnable
fitness, thanks to the use of a bigger information than only the selected points:
the algorithm uses the full ranking of the population. The second one reaches
superlinearity, but for a very particular fitness and a very particular algorithm,
so is only of theoretical interest.

Theorem 4: better than exp(−O(1)) for the convergence rate of the
area. In spite of the various results showing bounds in exp(−O(1)) on the con-
stant in linear convergence rates, it is possible under the following hypotheses:
- continuous domain with non-empty interior and dimension d;
- family of fitnesses that satisfy the hypothesis of theorem 1 (for any fit∗ ∈ D,
there is at least one fitness fit with optimum in fit∗) ;
- fitnesses radially increasing (∀x �= 0, t > 0, t �→ fit(fit∗ + tx) is increasing);
- comparison-based algorithm;
to reach a O(1/d) constant from the point of view of the convergence of the area
with respect to the number of function-evaluations.

Remark: Selection is strictly less informative than ranks. Theorem 4
shows that it is possible to outperform the exp(−O(1)) in area in a framework
using only ranks. We have shown above that algorithms based on selections
only could not outperform exp(−O(1)). Therefore, at least for particular fitness-
functions, full ranking is significantly more informative than selection only (i.e.,
can lead to o(1) instead of exp(−O(1))). In the same spirit, theorem 5 (superlin-
earity) can not be reached with selection only. The result is proved in details in
http://www.lri.fr/∼teytaud/lblong.pdf. It is based on a recursive splitting
of the domain in simplices, depending on the ranking of its vertices.

Theorem 5: superlinear convergence rates w.r.t. number of function
evaluations. There is one algorithm and one family of fitness functions such
that (i) for almost all fit∗ in the domain D there is a fitness fit with only one
optimum at fit∗ ; (ii) the convergence is superlinear.

The result is proved, thanks to very artificial fitness functions and algorithms,
in http://www.lri.fr/∼teytaud/lblong.pdf.
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6 Conclusion

We have studied algorithms that only depend on comparisons. We have shown
(section 3) that ranking-based methods can not be better than linear, and that
the constant runs to 1 as the dimension d runs to infinity, at least as 1−O(1/d).
The result does not only concern comparison-based methods, it concerns all al-
gorithms using at each epoch finitely many bits of information (what is not the
case of algorithm using real numbers, at least on ideal computers). This linear-
ity and this constant are with respect to the number of bits, e.g. the number of
comparisons. In section 4, similar results are derived for the convergence with
respect to the number of function evaluations. We also show that increasing λ
e.g. as dimension increases does not improve the result, in a stronger sense for
(λ, μ) algorithms than for (λ + μ)-algorithms. However, these negative results,
that generalize the state of the art, does not formally forbid superlinearity for
comparison-based algorithms w.r.t the number of fitness-evaluations. We have
then (section 5) shown that superlinearity w.r.t the number of function evalua-
tions is possible. The contrast with the results of section 3 show that superlinear
algorithms can only be superlinear w.r.t the number of function-evaluations (and
not the number of comparisons), and that traditional (λ, μ)-ES or SAES or any
usual algorithm can’t be superlinear. Superlinear algorithms, or even linear al-
gorithms with better constants as d increases, must use a stronger information
from comparisons, typically the full ranking, and not only selection. We have
exhibited such algorithms, one of them which is reasonnable (theorem 4, im-
proving the dependency in front of the dimension by a Nelder-Mead inspired
algorithm, modified for taking into account the full ranking) and one of them
purely theoretical (theorem 5, superlinearity).
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Abstract. In this paper, we show universal lower bounds for isotropic
algorithms, that hold for any algorithm such that each new point is the
sum of one already visited point plus one random isotropic direction mul-
tiplied by any step size (whenever the step size is chosen by an oracle
with arbitrarily high computational power). The bound is 1 − O(1/d)
for the constant in the linear convergence (i.e. the constant C such that
the distance to the optimum after n steps is upper bounded by Cn),
as already seen for some families of evolution strategies in [19,12], in
contrast with 1 − O(1) for the reverse case of a random step size and a
direction chosen by an oracle with arbitrary high computational power.
We then recall that isotropy does not uniquely determine the distribu-
tion of a sample on the sphere and show that the convergence rate in
isotropic algorithms is improved by using stratified or antithetic isotropy
instead of naive isotropy. We show at the end of the paper that beyond
the mathematical proof, the result holds on experiments. We conclude
that one should use antithetic-isotropy or stratified-isotropy, and never
standard-isotropy.

1 Introduction: What Is the Price of Isotropy

[3] has recalled that, empirically, all evolution strategies with a relevant choice of
the step size exhibit a linear convergence rate. Such a linear convergence rate has
been shown in various contexts (e.g. [1]), even for strongly irregular multi-modal
functions ([2]). Linearity is not so bad, but unfortunately [19,12] showed that
the constant in the linear convergence, for (1 + λ)-ES and 1, λ-ES in continuous
domains, converges to 1 as 1 − O(1/d) as the dimension d increases ; this has
been generalized in [17] to all comparison-based methods. On the other hand,
mathematical programming methods, using the derivatives ([4,7,9,16]), but also
using only the fitness-values, reach a constant 0 in all dimensions and work in
practice in huge dimension problems (see e.g. [18]).

So, we know that (i) comparison-based methods suffer from the 1−O(1/d) (ii)
fitness-value-based methods do not. Where is the limit ? We here investigate the
limit case for isotropic algorithms in two directions : (1) can isotropic algorithms
avoid the 1−O(1/d) by using additional information such as a perfect line search

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 32–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with computational cost zero (2) can we do better than random independent
sampling for isotropic algorithms ? The answer for (1) will be essentially no :
naive isotropy leads to 1 − O(1/d). A more optimistic answer appears for (2) :
yes, some nice samplings lead to better results than naive independent uniform
samplings, namely : stratified isotropy, and antithetic isotropy.

The paper is organized as follows. Section 2 shows that a random step
size forbids superlinear convergence, but allows a linear convergence with rate
exp(−Ω(1)). Section 3 shows that a random independent direction forbids su-
perlinear convergence and forbids a better constant than 1− O(1/d), whatever
may be the family of fitness functions and the algorithm, whatever may be its
step-size rule or selection procedure provided that it uses isotropic random mu-
tations. Section 4 then shows that isotropy does not necessarily imply naive
independent identically distributed sampling, and that the convergence rate of
(1 + λ)−ES on the sphere function is improved when using stratified sampling
or antithetic sampling.

For the sake of clarity, without loss of generality we assume that the origin
is the only optimum of the fitness (so the norm of a point is the distance to an
optimum).

2 If the Step-Size Is Random

Consider an unconstrained optimization problem in Rd. Consider any algorithm
of the following form, based on at least one initial point for which the fitness has
been computed (we assume that 0 has not been visited yet). Let’s describe the
nth epoch of the algorithm :

– Consider Xn one of the previously visited points (points for which the fitness
has been computed) ; you can choose it by any algorithm you want using
any information you want ;

– Choose the direction v ∈ Rd with unit norm by any algorithm you want,
using any information you want.

– Then, choose the step size σ in [0,∞[ ; for the sake of simplicity of notations,
we require that σ ≥ 0, but if you prefer σ ∈ R, you simply replace v by −v
with probability 1/2 ;

– Evaluate the fitness at X ′
n = Xn + σv.

We assume that at each epoch σ has a non-increasing density on [0,∞[. This
constraint is verified by e.g. gaussian distributions (gaussian random variables
have values in ] − ∞,∞[, but ”gaussian steps + random isotropic direction” is
equivalent to ”absolute value of a gaussian step + random isotropic direction”
and the absolute value of a gaussian step has decreasing density on [0,∞[). Pro-
vided that the constraint is verified for each epoch, whatever may be the algorithm
for choosing the distribution, the results below will hold. The distribution can be
bounded and we do not require it to be gaussian or any other particular form of
distribution. This formalism includes many algorithms ; SA-ES for example are
also included. What we only require is that each point is chosen by a random jump
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from a previously visited point (any previously tested point) with a distribution
that might be restricted to a deterministic direction (possibly the exact direction
to an optimum!), with density decreasing with the distance.

In all the paper, [a]+ = max(a, 0). Then,

Theorem 1 (step-size does matter for super-linearity).

E
(
[− ln([||X ′

n||/||Xn||]+
)
≤
∫

t>0
min(1,

2 exp(−t)
1− exp(−t) ) <∞. (1)

Moreover the variance is finite, and therefore this also implies that

lim sup n
√

1/||Xn|| ≤
∫

t≥0
min(1,

2 exp(−t)
1− exp(−t) )dt. (2)

Proof: The main tools of the proof are E[X ]+ =
∫

t≥0 P (X ≥ t)dt and the
lemma P (||X ′

n||/||Xn|| ≤ c) ≤ min(1, 2c/(1 − c)) ; the detailed proof is in
http://www.lri.fr/∼teytaud/lbedalong.pdf.

3 If the Direction Is Random

This section generalizes [12] to any algorithm in which each newly visited point
is equal to an old one plus a vector whose direction is uniform in the sphere
(whenever the distance depends on the direction, i.e. is not chosen independently
of the direction, even if it is optimal, and whenever the algorithm computes the
gradient, the Hessian or anything else).

Consider an unconstrained optimization problem in Rd. Consider any algo-
rithm of the following form, based on at least one initial point for which the
fitness has been computed :

– Consider Xn one of the previously visited points (points for which the fitness
has been computed) ; you can choose this point, among previously visited
points, by any algorithm you want using any information you want, even
knowing the position of the optimum ;

– Choose the direction v ∈ Rd randomly in the unit sphere ;
– Choose the step size σ > 0 by any algorithm you want, using any information

you want ; it can be stochastic as well ; it can depend on v, e.g. it can
minimize the distance between Xn + σv and the optimum ;

– Evaluate the fitness at X ′
n = Xn + σv.

As the previously stated theorem, this result applies to a wide range of evo-
lution strategies. We only require that each new visited point is chosen by a
random jump from a previously visited point.

Then, the following holds :

Theorem 2 (direction does matter for convergence rates).
Assume d > 1. Then,
E[− ln(||X ′

n||/||Xn||)] is finite and decreases as O(1/d).
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Proof: The main element of the proofs are

– the equality E[x]+ =
∫

t≥0 P (x ≥ t) for x = − ln(||X ′
n||/||Xn||) which re-

duces the problem of the evaluation of the expectation to the evaluation of
probabilities ;

– the result according to which the probability of an angle lower than α be-
tween two random independent vectors uniformly drawn on the sphere is
1
2 −

1
2Fβ(cos2(α); 1

2 , (d − 1)/2) for α < π/2 and d > 1. This result is a
theorem in [8].

– equalities of the form Γ (d/2)/Γ ((d−1)/2) =
√

(d− 1)/2×(1+o(1)) ([10,13])
simplifying the equation above ;

– tedious evaluation of integrals.

The detailed proof of theorem 2, using these elements, can be found in
http://www.lri.fr/∼teytaud/lbedalong.pdf.

4 Isotropic (1 + λ)-ES and a Comparison Among
Isotropic Samplings

We have shown that with independent isotropic mutations, even with perfect
step size chosen a posteriori, we have a linear convergence rate with constant
1−O(1/d). We can study more carefully (1+λ)-ES with perfect step size on the
sphere, in order to show the superiority of unusual isotropy. (1+λ)-ES are λ-fully-
parallel ; they are probably a good choice for complex functions on which more
deterministic or more structured approaches would fail, and if you have a set of λ
processors for parallelizing the fitness-evaluations. Therefore, it is worth studying
it. We show here that you must choose (1 + λ)-ES with stratified isotropic or
antithetic isotropic sampling instead of (1 + λ) standard isotropic sampling. We
show that, at least on the sphere, it is better in all cases. The proofs below show
that the convergence rate is better, but also that the distribution of the progress
rate itself ( ||Xn+1||

||Xn|| ) is shifted in the good direction. At least for the sphere with
step size equal to the distance to the optimum, we show that all probabilities
of a given progress-rate are improved. Formally: for any c, P ( ||Xn+1||

||Xn|| < c) is
greater or equal to its value in the naive case, with only equality in non-standard
cases. We have postulated isotropy : this means that the probability of having
one point in each given infinitesimal spherical cap is the same in any direction.
This is uniformity on the unit sphere. But isotropy does not mean that all
the offspring must be independent and identically distributed. We can consider
independence and identical distribution (this is the naive usual case), but we
can also consider independent non-identically distributed individuals (this is
stratification, a.k.a. jittering, and this does not forbid overall uniformity as we
will see below) and we can consider non-independently distributed individuals
(this is antithetic sampling, and it is also compatible with uniformity).

Some preliminary elements will be necessary for both cases. (1 + λ)-ES
has a population reduced at one individual Xn at epoch n and it generates λ
directions randomly on the sphere. Then, for each direction, a step-size determines
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a point, and the best of these λ points is selected as the new population. Let v a vec-
tor toward the optimum (so in the good direction). Let’s note γi the angle between
the ith point and v. We assume that the step size is the distance to the optimum. If
γi ≥ π

3 then the new point will not be better thanXn. Hence, we can consider θi =
min(γi,

π
3 ). Let θ = miniθi. θ is a random variable. As we assume that the step size

is the distance to the optimum, the norm of Xn+1 is exactly 2 ∗ | sin(θ/2)|||Xn||.
In the sequel, we note for short ssin(x) = 2 sin(x/2)||Xn|| ; the norm of Xn+1 is
exactly |ssin(θ)|. Then log(||Xn+1||) = log(|ssin(mini∈[[1,λ]] |θi|)|). Therefore, we
will have to study this quantity in sections below. For sake of clarity we assume
that ||Xn|| = 1 (without loss of generality).

4.1 Stratification Works

Let’s consider a stratified sampling instead of a standard random independent
sampling of the unit sphere for the choice of directions. We will consider the
following simple sampling schema : (1) split the unit sphere in λ regions of same
area ; (2) instead of drawing λ points independently uniformly in the sphere,
draw 1 point in each of the λ regions. Such a stratification is also called jittered
sampling (see e.g. [5]). In some cases, we define stratifications according to an
auxiliary variable : let v(.) a function (any function, there’s no hypothesis on
it) from the sphere to [[0, λ − 1]]. The ith generated point (i ∈ [[0, λ − 1]]) is
uniformly independently distributed in v−1(i). We note πk(x) the kth coordinate
of x : x = (π0(x), π1(x), π2(x), . . . , πd−1(x)).

Let’s see some examples of stratification :

1. for λ = d, we can split the unit sphere according to v(x) =
arg maxi∈[[0,d−1]]|πi(x)|. We will see below that for a good anticorrelation,
this is probably not a very good choice.

2. for λ = 2d, we can split the unit sphere according to v(x) =
arg maxi∈[[0,2d−1]](−1)iπ� i

2 	(x).
3. for λ = 2d, we can split the unit sphere according to the auxiliary variable

v(x) = (sign(π0(x)), sign(π1(x)), sign(π2(x)), . . . , sign(πd−1(x))).
4. for λ = d + 1, we can also split the unit sphere according to the faces of a

regular simplex centered on 0.
5. for λ = 2, we can split the unit sphere with respect to any hyperplane

including 0.
6. for λ = d!, we can split the unit sphere with respect to the ranking of the d

coordinates.
7. for λ = 2dd!, we can split the unit sphere with respect to the ranking of the

absolute values of the d coordinates and the sign of each coordinate.

However, any stratification in λ parts S1, . . . , Sλ of equal measure works (and
indeed, various other stratifications also do the job). We here consider stratifica-
tion randomly rotated at each generation (uniformly among rotations) and with
each stratum measurable and having non-empty interior.

Theorem 3 (stratification works). For the sphere function x �→ ||x||2
with step size the distance to the optimum, the expected convergence rate
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exp(E(− log(||Xn+1||/||Xn||))) for (1 + λ)-ES increases when using stratifica-
tion.

Proof: Consider the probability of |ssin(θ)| > c for some c > 0. Pnaive =
P (|ssin(θ)| > c) = P (|ssin(θi)| > c)λ if naive sampling. Consider the same
probability in the case of stratification. Pstrat = P (|ssin(θ)| > c) =
Πi∈[[1,λ]]P (|ssin(θi)| > c). where θi is drawn in the ith stratum.

Let’s introduce some notations. Note Pi the probability that |ssin(v)| > c
and that v ∈ Si, where v is a random unit vector uniformly distributed on the
sphere. Note P (Si) the probability that v ∈ Si. Then Πi

Pi∑
j Pj

≤ (1/λ)λ (by
concavity of the logarithm). The equality is only reached if all the Pi are equal.

This implies that Πi
Pi∑
j Pj

≤ ΠiP (Si), what leads to Πi∈[[1,λ]]
Pi

P (Si)
≤

(
∑

i Pi)λ. This is exactly Pstrat ≤ Pnaive. This is true for any value of c. Using
E max(X, 0) =

∫
t≥0 P (X > t) for any real-valued random variable X , this im-

plies with X = − log |ssin(θ)| that E − log(|ssin(θ)|) can be worse than naive
when using stratification. Indeed, it is strictly better (larger) as soon as the Pi

are not all equal for at least one value of c. This is in particular the case for c
small, which leads to Pi < 1 only for one value of i.

Remark. We have assumed above that the step size was the distance to the
optimum. Indeed, the result is very similar with other step-size-rules, provided
that the probability of reaching ||Xn+1|| < c is not the same for all strata for at
least an open set of values of c.

We present in figure 1 experiments on three stratifications (1 to 3 in the list
above).

4.2 Antithetic Variables Work

The principle of antithetic variables is as follows (in the case of k antithetic
variables): (1) instead of generating λ individuals, generate only λ/k indi-
viduals x0, . . . , xλ/k−1 (assuming that k divides λ); (2) define xi+aλ/k , for
a ∈ [[1, 2, . . . , k − 1]], as xi+aλ/k = fa(xi) where the fi’s are (possibly ran-
dom) functions. A more restricted but sufficient framework is as follows : choose
a fixed set S of λ/k individuals, and choose as set of points rot1(S), rot2(S),. . . ,
rotk(S) (of overall size λ) where the ri are independent uniform rotations in Rd.
The limit case k = 1 (which is indeed the best one) is defining one set S of λ
individuals, and using rot(S) with rot a random rotation.

We first consider here a set S of 3 points on the sphere, which are
(1, 0, 0, . . . , 0), (cos(2π/3), sin(2π/3), . . . , 0), (cos(4π/3), sin(4π/3), 0, . . . , 0) (the
optimal and natural spherical code for n = 3). The angle between two of these
points is 2π/3.

Theorem 4 (antithetism works). For the sphere function x �→ ||x||2 with
step size equal to the distance to the optimum, the expected convergence rate
exp(E(− log(||Xn+1||/||Xn||))) for (1 + λ)-ES increases when using antithetic
sampling with the spherical code of 3 points.



38 O. Teytaud, S. Gelly, and J. Mary

Proof: As previously, without loss of generality we can assume ||Xn|| = 1. We
consider exp(E(− log(||Xn+1||))). As above, we show that for any c,

P (||X1|| > c with antithetic variables) ≤ P (||Xn+1|| > c) (3)

Using E max(x, 0) =
∫

t≥0 P (x ≥ t), this is sufficient for the expected result. The
inequality on expectations is strict as soon as it is strict in a neighborhood of
some c. The probability P (||Xn+1|| > c), in both cases, antithetic variables or
not, is by independence the power λ

3 of the result for λ = 3. Therefore, it is
sufficient to show the result for λ = 3. Yet another reduction holds on c: c > 1
always leads to a probability 0 as the step-size will be 0 if the direction does not
permit improvement. Therefore, we can restrict our attention to c < 1.

So, we have to prove equation 3 in the case c < 1, λ = 3. In the antithetic
case the candidates for Xn+1 are Xn + yi where y0 = rot(x0), y1 = rot(x1), y2 =
rot(x2). In the naive case these candidates y0, y1, y2 are randomly drawn in
the sphere. We note γ = min(|angle(−yi, Xn)|) (the yi realizing this minimum
verifies Xn+1 = Xn + yi if ||Xn + yi|| < ||Xn||). Let θ the angle such that
γ ≤ θ ⇒ ||Xn+1|| < c

In the antithetic case the the spherical caps si located at −yi, and of angle θ
are disjoint because c < 1 so θ < π

3 . But in the naive one they can overlap with
non zero probability. As P (||Xn+1|| < c) = P (Xn ∈ ∪isi), this shows equation
3, which concludes the proof.

The proof can be extended to show that k = 1 leads to a better convergence
rate than k > 1, at least if we consider the optimal set S of λ points. But we
unfortunately not succeeded in showing the same results for explicit larger num-
bers of antithetic variables in this framework. We only conjecture that randomly
drawing rotations of explicit good spherical codes ([6]) on the sphere leads to
similar results. However, we proved the following

Theorem 5 (arbitrarily large good antithetic variables exist). For any
λ ≥ 2, there exists a finite subset s of the unit sphere in Rd with cardinal
λ such that the convergence rate of (1 + λ)-ES is faster with a sampling by
random permutation of s than with uniform independent identically distributed
sampling, with step size equal to the distance to the optimum.

Proof:We consider the sphere problem with optimum in zero and Xn of norm 1.
Let s a sample of λ random points (uniform, independent) on the unit sphere.

Let f(s) = Erot(ln ||Xn+1||) (as above rot is a random linear transformation with
rot × rot′ = 1). If s is reduced to a single element we reach a maximum for f (as
the probability of ln(Xn+1) < c is lower than for any set with at least two points).

f(s) is therefore a continuous function, with some values larger than Esf(s).
Therefore, the variance of f(s) is non-zero. Therefore, thanks to this non-zero
variance, there exists s′ such that f(s′) < Esf(s).

Esf(s) is the progress rate when using naive sampling and f(s′) is the progress
rate when using an antithetic sampling by rotation of s′. So, this precisely means
that there exists good values of s leading to an antithetic sampling that works
better than the naive approach.
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We have stated the result for (1 + λ)-ES with λ antithetic variables, but
the same holds for λ/k antithetic variables with the same proof. This does not
explicitly provided a set s′, but it provides a way of optimizing it by numerical
optimization of E ln(Xn+1) that can be optimized once for all for any fixed value
of λ. Despite the lack of theoretical proof, we of course conjecture that standard
spherical codes are a good solution. This will be verified in experiments (figure 1,
plots 4,5,6). However, we see that it works in simulations for moderate numbers
of antithetic variables placed according to standard spherical codes. But for
k = 2d antithetic variables at the vertices of an hypercube, it does not work when
dimension increases, i.e. hypercube sampling is not a good sampling. Note that
the spherical codes λ = 2d (generalized octahedron, also termed biorthogonal
spherical code) and λ = d+ 1 (simplex), which are nice and optimal for various
points of view, seem to scale with dimension. Their benefit in terms of the
reduction of the number of function evaluations behaves well when d increases.
Of course, more experimental works remain to be done.

5 Conclusion

We have shown that (i) superlinear methods require a fine decision about the
stepsize, with at most a very little randomization; (ii) if we accept linear conver-
gence rates and keep the randomization of the step size, we however need, in order
to break the curse of dimensionality (i.e. keeping a convergence rate far from 1),
a fine decision about the direction, with at most a very little randomization.
This shows the price of isotropy, which is only a choice when less randomized
techniques can not work. In a second part, we have shown that isotropy can be
improved; the naive isotropic method can be very easily replaced by a non i.i.d
sampling, thanks to stratification (jittering) or antithetic variables. Moreover, it
really works on experiments.

The main limit of this work is its restriction to isotropic methods. A second
limit is that we have considered the second order of sampling inside each epoch,
but not between successive epochs. In particular, Gauss-Seidel or generalized
versions of Gauss-Seidel ([14,15]) are not concerned; we have not considered
correlations between directions chosen at successive epochs; for example, it
would be natural, at epoch n + 1, to have directions orthogonal to, or very
different from, the chosen direction at epoch n. This is beyond the simple
framework here, in particular because of the optimal step size, and will be the
subject of a further work.

The restriction to 3 antithetic variables in theorem 4 simplifies the theorem;
this hypothesis should be relaxed in a future work. Theorem 5 shows that good
point sets exist for any number of antithetic variables, theorem 4 explicitly
exhibits 3 antithetic variables that work and that are equal to the optimal
spherical code for n = 3, but figure 1 (figs. 4,5,6) suggests that more generally
octahedron-sampling or simplex-sampling (which are very good spherical codes,
see e.g. [6]) are very efficient, and in particular that the improvement remains
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strong when dimension increases. Are spherical codes ([6]) the best choice, as
intuition suggests, and are there significant improvements for a number n = λ/k
of antithetic variables large in front of d ? This is directly related to the speed-up
of parallelization.
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Fig. 1. Antithetic variables look better. Plots 1,2,3: with ρ the average progress rate
nλ
√||Xn||/||X0 || on the sphere, we plot d(1 − ρ) in two cases (i) independent uniform

sampling (ii) stratified sampling. Each point corresponds to one run. n = 100 for each
run. The step size is equal to the optimal one. The three plots respectively deal with
λ = d, λ = 2d and λ = 2d. The improvement in terms of number of fitness-evaluations
is the ratio between the log(.) of the convergence rates. For dimension 2, the difference
in terms of number of function-evaluations is close to 20 % but quickly decreases. Plots
4,5,6: with ρ the average progress rate nλ

√||Xn||/||X0 || on the sphere, we plot d(1− ρ)
in two cases (i) independent uniform sampling (ii) antithetic sampling with λ = 3 (plot
4) or λ = d with an antithetic sampling by random rotation of a regular simplex (plot
5) or λ = 2d with an antithetic sampling by random rotation of {−1, 1}d (plot 6). n
and the step size are as for previous plots. For dimension 2 to 6, the difference in terms
of number of function-evaluations for a given precision are between 12 % and 18 % for
λ = 2d and remain close to 20 % for the octahedron λ = 2d for any value of d. We also
experiments the direct inclusion of quasi-random numbers in the Covariance-Matrix-
Adaptation algorithm ([11]); the resulting algorithm, termed DCMA, in which the
only difference with CMA is that the random-generator is replaced by a quasi-random
generator, is more stable and faster than the classical CMA; results are presented in
http://www.lri.fr/˜ teytaud/resultsDCMA.pdf.
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Abstract. NK landscapes (NKL) are stochastically generated pseudo-
boolean functions with N bits (genes) and K interactions between genes.
By means of the parameter K ruggedness as well as the epistasis can be
controlled. NKL are particularly useful to understand the dynamics of
evolutionary search. We extend NKL from the traditional binary case
to a mixed variable case with continuous, nominal discrete, and integer
variables. The resulting test function generator is a suitable test model
for mixed-integer evolutionary algorithms (MI-EA) - i. e. instantiations
of evolution algorithms that can deal with the aforementioned variable
types. We provide a comprehensive introduction to mixed-integer NKL
and characteristics of the model (global/local optima, computation, etc.).
Finally, a first study of the performance of mixed-integer evolution strate-
gies on this problem family is provided, the results of which underpin its
applicability for optimization algorithm design.

1 Introduction

NK landscapes (NKL, also referred to as NK fitness landscapes), introduced
by Stuart Kauffman [6], were devised to explore the way that epistasis controls
the ’ruggedness’ of an adaptive landscape. Frequently, NKL are used as test
problem generators for Genetic Algorithms. NKL have two advantages. First, the
ruggedness and the degree of interaction between variables of NKL can be easily
controlled by two tunable parameters: the number of genes N and the number of
epistatic links of each gene to other genes K. Second, for given values of N and
K, a large number of NK landscapes can be created at random. A disadvantage
is that the optimum of a NKL instance can generally not be computed, except
through complete enumeration.

As NKL have not yet been generalized for continuous, nominal discrete, and
mixed-integer decision spaces, they cannot be employed as test functions for
a large number of practically important problem domains. To overcome this
shortcoming, we introduce an extension of the NKL model, mixed-integer NKL

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 42–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(MI-NKL), that capture these problem domains. They extend traditional NKL
from the binary case to a more general situation, by taking different parameter
types (continuous, integer, and nominal discrete) and interactions between them
into account (cf. Figure 1).

Fig. 1. Example Genes and their interaction

This paper is organized as follows. First, in Section 2, we will give a review of
Kauffman’s NKL and its variants. In Section 3, we extend NKL to the mixed-
integer case , provide theorems on the existence and position of local and global
optima, and discuss the implementation of the model. Some initial experimental
results are given in Section 4 using a mixed-integer Evolution Strategy. Conclu-
sions and topics for future research are discussed in Section 5.

2 NK Landscapes

Kauffman’s NK Landscapes model defines a family of pseudo-boolean fitness
functions F : {0, 1}N → R+ that are generated by a stochastic algorithm. It
has two basic components: A structure for gene interaction (using an epistasis
matrix E), and a way this structure is used to generate a fitness function for all
the possible genotypes [1]. The gene interaction structure is created as follows:
The genotype’s fitness is the average of N fitness components Fi, i = 1, . . . , N .
Each gene’s fitness component Fi is determined by its own allele xi, and also
by K alleles at K (0 ≤ K ≤ N − 1) epistatic genes distinct from i. The fitness
function reads:

F (x) =
1
N

N∑
i=1

Fi(xi;xi1 , . . . , xik
), x ∈ {0, 1}N (1)

where {i1, . . . , ik} ⊂ {1, . . . , N}− {i}. There are two ways for choosing K other
genes: ‘adjacent neighborhoods ’, where the K genes nearest to position i on the
vector are chosen; and ‘random neighborhoods ’, where these positions are chosen
randomly on the vector. In this paper we focus on the latter case, ‘random
neighborhoods ’. However, a translation to the first case is straightforward.

The computation of Fi : {0, 1}K → [0, 1), i = 1, . . . , N is based on a fitness
matrix F . For any i and for each of the 2K+1 bit combinations a random number
is drawn independently from a uniform distribution over [0, 1). Accordingly, for
the generation of one (binary) NK landscape the setup algorithm has to gener-
ate 2K+1N independent random numbers. The setup algorithm also creates an
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epistasis matrix E which for each gene i contains references to its K epistatic
genes. Table 1 illustrates the fitness matrix and epistasis matrix of a NKL. A
more detailed description of its implementation can be found in [4].

Table 1. Epistasis matrix E (left) and fitness matrix F (right)

E1[1] E1[2] · · · · · · · · · E1[K]
E2[1] E2[2] · · · · · · · · · E1[K]
· · · · · · · · · Ei[j] · · · · · ·

EN [1] EN [2] · · · · · · · · · EN [K]

F1[0] F1[1] · · · · · · · · · F1[2K+1 − 1]
F2[0] F2[1] · · · · · · · · · F2[2K+1 − 1]
· · · · · · · · · Fi[j] · · · · · ·

FN [0] FN [1] · · · · · · · · · FN [2K+1 − 1]

After having generated the epistasis and fitness matrices, for any input vector
x ∈ {0, 1}N we can compute the fitness inO(KN) computational complexity via:

F (x) =
1
N

N∑
i=1

Fi[20xi + 21xEi[1] + · · ·+ 2KxEi[K]] (2)

Note, that the generation of F has an exponential computational complexity and
space complexity in K, while being linear in N . The computational complexity
for computing function values is linear in K and N for this implementation.

2.1 Properties of NK Landscapes

Kauffman’s model makes two principal assumptions: first, that the fitness of a
genotype is the sum of the contributions from each gene, and second, that the
effects of polygeny and pleiotropy make these interactions effectively random.
Besides Kaufmann, some other researchers, e. g. Weinberger et al. [10,9], did an
extensive study on NKL. Some well-known properties are:

1. K = 0 (no epistasis): The problem is separable and there exists a unique
global optimum. Assuming a Hamming neighborhood-structure, the problem
gets unimodal.

2. 1 ≤ K < N − 1: For K = 1, a global optimum can still be found in poly-
nomial time [10]. For K ≥ 2, global optimization is NP-complete for the
random assignment of neighbors and constant K. However, the problem can
always be solved in a computational complexity of 2N function evaluations
and hence can practically be solved for problems of moderate dimension
(N around 30). For adjacent neighbors, the problem can be solved in time
O(2KN) (cf. Weinberger [10]).

3. K = N − 1: This corresponds to the maximum number of interactions be-
tween genes. Practically speaking, to each bitstring of F : {0, 1}N → [0, 1)
we assign a sum of N values, each of which is drawn independently from a
uniform distribution in [0, 1). If we choose the Hamming neighborhood on
{0, 1}N the following results apply:
• The probability that a random bit string is a local optimum is 1

N+1

• The expected number of local optima is 2N

N+1
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3 Generalized NK Landscapes

As mentioned in the previous section, Kauffman’s NKL model is a stochastic
method for generating fitness functions on binary strings. In order to use it as a
test model for mixed-integer evolution strategies, we extend it to a more general
case such that the fitness value can be computed for different parameter types.
Here we consider continuous variables in R, integer variables in [zmin, zmax] ⊂ Z,
and nominal discrete values from a finite set of L values. In contrast to the
ordinal domain (continuous and integer variables), for the nominal domain no
natural order is given. Mixed-integer optimization problems arise frequently in
practise, e.g. when optimizing optical filter designs [2] and the parameters of
algorithms [8].

The idea about how to extend NKL to the mixed-integer situation will be
described in three steps. First we propose a model for continuous variables, then
for those with integer variables and nominal discrete variables. Finally, we will
discuss the case of NKL that consists of all these different variable types at
the same time and allow for interaction among variables of different types. This
defines the full mixed-integer NKL model.

3.1 Continuous NK Landscapes

In order to define continuous landscapes, we choose an extension of binary NKL
to an N -dimensional hypercube [0, 1]N . Therefore, all continuous variables are
normalized between [0, 1]. In the following we describe the construction of the
objective function F : [0, 1]N → [0, 1):

Whenever the continuous variable takes values at the corners of the hyper-
cube, the value of the corresponding binary NKL is returned. For values located
in the interior of the hypercube or its delimiting hyperplanes, we employ a multi-
linear interpolation technique that achieves a continuous interpolation between
the function values at the corner. Note that a higher order approach is also possi-
ble but we chose a multi-linear approach for simplicity and ease of programming.
Moreover, the theory of multi-linear models as used in the design and analysis
of experiments, introduces intuitive notions for the effect of single variables and
interaction between multiple variables of potentially different types [3]. For each
of the N fitness components Fi : [0, 1]K+1 → [0, 1), we create a multi-linear
function

Fi(x) =
2K+1−1∑

j=0

ai
jx

[1 AND j]
i

K∏
k=1

x
[2k AND j]/2k

ik
, (3)

where AND is the bitwise and operator and xik
is the k-th epistatic gene of xi.

For instance, in the case K = 2 the formula for Fi(x) becomes1:
ai
000+ai

001xi+ai
010xi1 +ai

100xi2 +ai
011xixi1 +ai

101xixi2 +ai
110xi1xi2 +ai

111xixi1xi2 .

1 Note, that we use binary instead of decimal numbers for the index to make the
construction more clear.
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Once uniformly distributed random values have been attached to the corners
of the K-dimensional hypercube (cf. Figure 2), we can identify the coefficients
ai
0, . . . , a

i
2K+1−1 by solving a linear equation system (LES). However, even for

moderate K the computational complexity for applying general LES solvers
would be prohibitive high. An advantage of the multi-linear form (as compared
to other interpolation schemes like radial basis functions or splines) is, that it
allows for an efficient computation of the coefficients by exploiting the diagonal
structure of the equation system. Accordingly, ai

j can be obtained by means of
the following formula:

ai
0 = Fi[0], ai

j = Fi[j]−
j−1∑
	=0

[
ai

	I(� = (� AND j))
]
, j = 1, . . . , 2K+1 − 1 (4)

In order to compute the values, we have to start with j = 0 and increase the
value of j. Hence, the number of additions we need for computing all coefficients
is proportional to (2K+1 − 1)(2K+1)/2 = 22(K+1)−1 − 2K .

Xi

Xi1

Xi2

Fi(0, 0, 0)

Fi(0, 0, 1)

Fi(0, 1, 0)

Fi(0, 1, 1)

Fi(1, 0, 0)

Fi(1, 0, 1)

Fi(1, 1, 0)

Fi(1, 1, 1)

ai
000 = Fi(0, 0, 0)

ai
001 = Fi(0, 0, 1) − ai

000

ai
010 = Fi(0, 1, 0) − ai

000

ai
011 = Fi(0, 1, 1) − ai

000 − ai
001 − ai

010

ai
100 = Fi(1, 0, 0) − ai

000

...

ai
111 = Fi(1, 1, 1) − ai

000 − ai
001 − ai

010 − ai
011

−ai
100 − ai

101 − ai
110

Fig. 2. Example HyperCube with K = 2 and the computation of ai
j

Once we have the ai
j values, we can use Equation 1 to compute the model. Of

course the domain of the x values has to be replaced by [0, 1]N in that equation.
For the computation of the global optimal value of the continuous NK landscapes
the following lemma is useful:
Lemma 1. At least one global optimum of the function F will always be located
in one of the corners of the N dimensional hypercube, such that the computation
of the optimal function value upper bounds the computational complexity for
the binary model.

Proof: The idea of the proof is that there is an algorithm that for any given input
x∗ ∈ [0, 1]N determines a corner of the hypercube, the function value of which
is not higher than the function value at F , given that F has a multilinear form.
Basically, the proposed algorithm can be described as a path oriented algorithm
that searches parallel to the coordinate axis: First we fix all variables except one,
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say x1, in F . It is now crucial to see that the remaining form F (x1, x
∗
2, . . . , x

∗
N ) is

a linear function of x1. Now, because the form is linear, it is obvious to see that
either (1, x∗2, . . . , x∗N )T or (0, x∗2, . . . x∗N )T has a function value that is better or
equal than the function value at (x∗1, . . . , x

∗
N )T . We fix x1 to a value for which this

is the case, i. e. we move either to (1, x∗2, . . . , x
∗
N )T or to (0, x∗2, . . . x

∗
N )T without

increasing the function value. For the new position x1∗ we again fix all variables
except one. This time x2 is the free variable. Again we can move the value of x2
either to zero or to one, such that the function value does not increase. Now, the
new vector x12∗ will either be (x1∗

1 , 0, x∗3, . . . , x
∗
N )T or (x1∗

1 , 1, x∗3, . . . , x
∗
N )T . After

continuing this process for all remaining variables x3 to xN we finally obtain a
vector x12···N∗, all values of which are either zero or one, and the function value
is not worse than that of x∗. �
From Lemma 1 it follows:
Theorem 1. The problem of finding the global optimal value for a continuous
NKL is NP-complete for K ≥ 2.
Proof: Finding the optimum in the corner is equivalent to the NP-complete
binary case. By applying Lemma 1, we can reduce the continuous case to the
binary case. On the other hand, whenever we find the global optimal solution for
the continuous case, in polynomial time we can construct a just as good solution
where all optima are located at the corners in linear time. Thus, there exists a
polynomial reduction of the binary case to the continuous case. �

3.2 Integer NK Landscapes

Based on our design, NKL on integer variables can be considered to be a special
case of continuous NKL. The integer variables can be normalized as follows: Let
zmin ∈ Z denote the lower bound for an integer variable, and zmax ∈ Z denote
its upper bound. Then, for any z ∈ [zmin, zmax] ⊂ Z we can compute the value
of x = (z − zmin)/(zmax − zmin) in order to get the corresponding continuous
parameter in [0, 1], which can then be used in the continuous version of F to
compute the NKL. Note that the properties discussed in Lemma 1 and Theorem
1 also hold for integer NKL.

3.3 Nominal NK Landscapes

To introduce nominal discrete variables in an appropriate manner a more radical
change to the NKL model is needed. In this case it is not feasible to use inter-
polation, as this would imply some inherent neighborhood defined on a single
variable’s domain xi ∈ {di

1, . . . , d
i
L}, i = 1, . . . , N , which, by definition, is not

given for the nominal discrete case. We will now propose an extension of NKL
that takes into account the special characteristics of nominal discrete variables.

Let the domain of each nominal discrete variable xi, i = 1, . . . , N be defined
as a finite set of maximal size L ≥ 2. Then for the definition of a function on
a tuple of K + 1 such values we would need a table with LK+1 entries. Again,
we can assign all fitness values randomly by independently drawing values from
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a uniform distribution. The size of the sample is upper-bounded by LK+1. For
L = 2 this corresponds to the binary case. After defining N fitness components
Fi, we can then sum up the values of these components for the NKL model (eq. 1).
The optimum can be found by enumerating all input values, the computational
complexity of which is now LN . The implementation of the function table and
the evaluation procedures are similar to that of the binary case. Note, that for
a constant value of L and K the space needed for storing the function values is
given by NLK+1, so is the computational complexity for generating the matrix.
The time for the function evaluations is proportional to N(K + 1).

Equipping the discrete search space with a Hamming neighborhood, in case
K = 0 the problem remains unimodal. For K > 0, we remark, that for the
general problem with L > 2, the detection of the optimum is more difficult than
in the binary case. Hence, the binary case can be reduced to the case L > 2, but
not vice versa. For the case of full interaction (K=N-1) we show:

Lemma 2. For the nominal discrete NKL with K = N − 1, L ≡ constant , and
Hamming neighborhood defined on the discrete search space, the probability
that an arbitrary solution x gets a local optimum is 1

N(L−1)+1 . Moreover the

expected number of local optima is LN

N(L−1)+1 .

Proof: Given the preliminaries, N(L− 1) is the number of Hamming neighbors
for any solution x ∈ {1, . . . , L}N . Since we assign a different fitness value from the
interval [0, 1) independently to each neighbor, the probability, that the central
solution, i.e. x itself becomes the best solution, is 1/(N(L−1)+1). Since, LN is
the number of search points in {1, . . . , L}N we can compute the expected number
of local optima as LN

N(L−1)+1 . �

3.4 Mixed Integer NK Landscapes

It is straightforward to combine these three types of variables into a single NKL
with epistatic links between variables of different types (cf. Figure 1). For mixed
variables of the integer and continuous types there is no problem, since integers,
after normalization, are treated like continuous variables in the formula of F . If
there are D nominal discrete variables that interact with a continuous variable,
then the values of these discrete variables determine the values at the edges of
the K−D dimensional hypercube that is used for the interpolation according to
the remaining continuous and integer variables. Note that for different nominal
discrete values the values at the corners of the K − D dimensional hypercube
will change in almost every case.

Instead of describing the mixed variable case in a formal manner we give
an illustrating example (cf. figure 3). This example shows one individual with
three parameters (one continuous, one integer and one discrete), and each gene
interacts with both other genes. For each gene, a hypercube is created. We
assume there are three levels for the discrete gene Xd (L = 3), so the hypercube
is reduced to three parallel planes, and the value of the discrete gene decides
which plane is chosen. More concretely, assuming the individual has the following
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values: Xd = 0, Xi = 0.4, Xr = 0.8, the value of the discrete parameter Xd

determines which square is chosen (Xd = 0). The value for each corner is based
on the fitness matrix in Table 2 (bold displayed). As mentioned in the previous
chapter, we calculate the fitness value of this individual as follows:

Fr(a,x) = a0 + a1Xr + a2Xi + a3XiXr

a0 = Fr(0, 0) = 0.8, a1 = Fr(0, 1)− a0 = −0.1
a2 = Fr(1, 0)− a0 = −0.1, a3 = Fr(1, 1)− a0 − a1 − a2 = −0.1

Fr(0.4, 0.8) = 0.648

Xr

Xi

Fr(1, 0)=0.7 Fr(1, 1)=0.5 

Fr(0, 1)=0.7Fr(0, 0)=0.8

Fr(0.4, 0.8)

(Xd=0, Xi=0.4, Xr=0.8)

+ F
Fi

Fr

FdXd

Xi

Xr

Fig. 3. Example for the computation of a MI-NK landscape

Table 2. Example epistasis matrix (left)and fitness matrix (right)

Er[1] = Xi Er[2] = Xd

Ei[1] = Xr Ei[2] = Xd

Ed[1] = Xr Ed[2] = Xi

0.8 0.7 0.7 0.5 0.3 0.7 0.2 0.9 0.5 0.6 0.3 0.5
Fr 0.5 0.8 0.4 0.7 Fi 0.2 0.3 0.7 0.9 Fd 0.9 0.8 0.2 0.7

0.2 0.1 0.8 0.4 0.2 0.5 0.4 0.6 0.8 0.7 0.3 0.3

4 Experimental Results

In order to test our mixed-integer NKL problem generator we have tested it
using a (μ,κ,λ) mixed-integer evolution strategy (MI-ES) as described in [5].
Here mutation distributions with maximal entropy are employed for the muta-
tion of continuous variables (Gaussian distribution), integer variables (geometric
distribution), and nominal discrete variables (uniform distribution). While for
the first two types a step-size parameter can be learned, in the latter case a
mutation probability is learned. We use a population size μ of 4, offspring size
λ of 28 and κ = 1 (comma-strategie). The stepsize/mutation-probability of each
variable was set to 0.1 and the standard MI-ES mutation and crossover operators
are used. The maximum number of fitness evaluations is set to 3000.

To see the effect of different values of K we generated 50 problem instantia-
tions for N = 15 and for each value K ≤ 14 (750 MI-NKL problems in total)
so that it is still feasable to find the global optimum by evaluating all bitstrings
of length 15. Each generated problem consists of 5 continuous, 5 integer and 5
nominal discrete variables. The continuous variables are in the range [-10,10],
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the integer-valued variables are in the range [0,19] and we used {0, 1} for the
nominal discrete variables (Booleans). As described previously the continuous
and integer-valued variables are normalized to fit in the interval [0, 1] before
evaluation. To compare (and average) the results of the different experiments we
define the following error-measure:

error = best found fitness - best possible fitness
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Fig. 4. The error averaged over 50 mixed-integer NK landscape problems with N = 15.
Each problem contained 5 continuous, 5 integer-valued and 5 Boolean-valued variables.

The results are displayed in Figure 4. The x-axis shows the number of evaluations
while the y-axis shows the average error (over 50 experiments). As can be seen
an increase in K results in an increase in error which indicates the problem
difficulty increases with K. The fact that even for K = 0 the MI-ES algorithm
has problems achieving an average error of 0 is because in order to find the
global optima all variables, including the continuous ones, have to be exactly
either 0 or 1 (after normalization). This is hard for the continuous part of MI-
ES individuals because of the mutation operator used. In the mutation, we used
a reflection at the boundary method for keeping the variables within the [0, 1]
intervals [5]. This does not favor solutions that are directly at the boundary,
as this is done by other interval treatment methods, like for example logistic
transformation [2]. However, the latter mutation operator adds a bias to the
search and makes it more easy to locate solutions at the boundary than in the
interior, which is why we did not use it here.

5 Conclusion and Outlook

The NK landscape model has been extended to the mixed-integer problem do-
main. It turns out that a multi-linear interpolation approach for the continuous
and integer variables provides a straightforward generalization of this model,
that can also be easily implemented. Using Equation 3, function values can be
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computed in linear time. However, the detection of the global optimum turns
out to be a NP-complete problem for K > 2 and can be reduced to the problem
of detecting the global optimum for the binary case.

An alleged drawback of the interpolation approach is that its optima are
always located in the corners of the search space. There are some ways of how
this problem could be addressed. One way would be to transform the input
variables by means of a periodic function and mapping them back to [0, 1],
e.g. to substitute xi by s(xi) = 1

2 + 1
2 cos(πxi + π) and restrict xi to the interval

[−0.5, 1.5] for i = 1, . . . , N . It is easy to show that the optima for this transformed
function are at the same position as for the original model.

For the nominal discrete variables the binary NK landscape was extended
to a L-ary representation. For this the amount of random numbers increases
exponentially with L. Also, for N = K − 1 it has been shown that the number
of local optima increases exponentially with L.

One of our intentions for developing MI-NKL was to further improve the MI-
ES approach. The experiments demonstrate the applicability of the MI-NKL
problem generator and that the difficulty for finding the global-optimum grows
with K. Future work will focus on exploring more of the characteristics of the
MI-NKL, including its specializations: continuous, integer and discrete NKL.

Acknowledgements. This research is supported by the Netherlands Organi-
sation for Scientific Research (NWO).
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Abstract. We investigate (1,λ) ESs using isotropic mutations for opti-
mization in Rn by means of a theoretical runtime analysis. In particular,
a constant offspring-population size λ will be of interest.

We start off by considering an adaptation-less (1,2) ES minimizing a
linear function. Subsequently, a piecewise linear function with a jump/cliff
is considered, where a (1+λ)ES gets trapped, i. e., (at least) an exponen-
tial (in n) number of steps are necessary to escape the local-optimum re-
gion. The (1,2) ES, however, manages to overcome the cliff in an almost
unnoticeable number of steps.

Finally, we outline (because of the page limit) how the reasoning and
the calculations can be extended to the scenario where a (1,λ) ES using
Gaussian mutations minimizes Cliff, a bimodal, spherically symmetric
function already considered in the literature, which is merely Sphere
with a jump in the function value at a certain distance from the mini-
mum. For λ a constant large enough, the (1,λ) ES manages to conquer
the global-optimum region – in contrast to (1+λ) ESs which get trapped.

1 Introduction

Since Schwefel has introduced the comma selection in the late 1960s (cf. Schwefel
(1995)), every now and then there have been long debates about whether to
favor elitist or comma selection. Unlike for the discrete search space {0, 1}n

where according to Jansen et al. (2005, p. 415) “the difference between an elitist
(1+λ) EA and a non-elitist (1,λ) EA is less important”, for optimization in the
contiuous domain Rn this difference can be crucial. It seems common knowledge
that comma selection should be auxiliary when a multi-modal function is to
be optimized or when noise makes the function to appear multi-modal to the
evolution strategy (ES) (cf. Arnold (2002)). On the other hand, it seems clear
that on a smooth unimodal function elitist selection will always outperform
comma selection – provided that an adequate mutation adaptation is used.

The insights about the optimzation of multimodal functions, however, base on
intuition and a huge number of experimental investigations of the performance of
a large variety of ESs – rather than on theoretical investigations. One reason for
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this may be that the common progress-rate approach is unapplicable for these
kinds of scenarios since it (implicitly) demands the progress to become stationary
(possibly using some kind of normalization, for instance w. r. t. the distance from
the optimum and/or the search space dimension). Jägersküpper (2005) at least
proves that elitist selection is no good choice when the fitness landscape shows
“cliffs” or “gaps”; the more challenging question whether comma selection would
do better is not tackled.

The present paper tackles this question. Namely, we follow this approach and
contribute to the debates by investigations that base on probabilistic runtime
analysis known from the classical field of the analysis of randomized algorithms
in theoretical computer science.

2 The Simplest Scenario

We consider the linear function Sumn : Rn → R defined by

Sumn(x) :=
n∑

i=1

xi

which is also called OneMax when x ∈ {0, 1}n. For a given function-value a ∈ R

let HSum=a denote the hyper-plane {x | Sum(x) = a} ⊂ Rn. Obviously, HSum=a

and HSum=b are parallel, and it is easy to see that the distance between the two
hyper-planes equals |a − b|/

√
n. Furthermore, for a search point c ∈ Rn let Hc

abbreviate HSum=Sum(c), i. e. Hc = {x | Sum(x) = Sum(c)}. Thus, for instance,
a mutation of the current search point c corresponds to a Sum-gain of 1 (we
consider minimization!) iff the mutant c′ = c+m lies in HSum=Sum(c)−1, implying
that dist(c′, Hc) = 1/

√
n, where “dist” denotes to the Euclidean distance – as

we minimize in Euclidean n-space. Furthermore, we focus on the function (class)
LinCliffΔ

n : Rn → R with Δ : N→ R>0 defined by

LinCliffΔ
n :=

{
Sumn(x) for Sumn(x) ≥ 0,
Sumn(x) +

√
n ·Δ(n) for Sumn(x) < 0.

As we minimize, all points x with Sum(x) = 0 are local optima with function
value 0 (there is no global optimum); namely, the hyper-plane HSum=0 contains
all local optima. For x with negative Sum-value a “penalty” of

√
n ·Δ is added,

where Δ might depend on n. Thus, there are two different hyper-planes with
LinCliff-value 0: one is HSum=0, which contains all local optima, and the other
one is HSum=−√

nΔ. Recall that the distance between these two hyper-planes
equals Δ.

When talking about “the gain” of a mutation or a step, we mean the spatial
gain of a mutation/step (unless we explicitely state “Sum-gain”, of course). The
change in the Sum-value is merely used as an indicator whether the mutant of c
lies in the one half-space w. r. t. the hyper-plane Hc or in the other.

As we focus on isotropically distributed mutation vectors, the larger the length
of m, the larger the expected distance between the mutant c′ and Hc (and the
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larger the expected Sum-gain). To focus on the core of the reasoning, for the
present we consider unit isotropic mutations, i. e. isotropic mutations the lengths
of which are not random but concentrated at 1 (so that the mutation vector m is
uniformly distributed upon the unit hyper-sphere). Later we show how to extend
the calculations to (scaled) Gaussian mutations, the length of which follows a
(scaled) χ-distribution. So, the random spatial gain

G :=

{
dist(c′, Hc) if Sum(c′) < Sum(c)

− dist(c′, Hc) if Sum(c′) ≥ Sum(c)

corresponds to the “signed distance” of the mutant from the hyper-plane con-
taining its parent. Jägersküpper (2003) shows that the density of G at g ∈ [−1, 1]
equals (1− g2)(n−3)/2/Ψ for n ≥ 4, where Ψ :=

∫ 1
−1(1 − g2)(n−3)/2 dg lies in the

interval
√

2π
/√

n− [1.5± 0.5] (normalization), giving a symmetric bell-shaped
function with inflection points at ±1/

√
n−4 for n ≥ 6.

When the (1+1)ES minimizes Sum, the expected gain of a step, which consists
of a (unit isotropic) mutation and selection, equals the expectation of the random
variable (r.v.) G+ := G·1{G≥0} since the indicator variable “1{G≥0}” implements
elitist selection (in this case). We have

ḡ := E
[
G+] =

∫ 1

0
g · (1 − g2)(n−3)/2 dg

/
Ψ = (n− 1)−1/Ψ ∈

[
0.3989√
n+1

,
0.4√
n−1

]
.

For the (1,λ) ES, however, Gλ:λ, the maximum of λ independent copies of G,
equals the gain of a step. The following general property of the second-order
statistic of a symmetric r.v. tells us that the expected one-step gain of the
(1,2)ES (when optimizing Sum) is at least as large as the one of the (1+1)ES
(cf. the appendix for a proof).

Proposition 1. Let the r.v. X be symmetric, i. e., P{X ≥ g} = P{X ≤ −g} for
g ∈ R. Then E[X2:2] ≥ E[X · 1{X≥0}] (= E[X | X ≥ 0]/2).

Hence, also the expected total gain of i steps of the (1,2) ES is at least as large
as the expected i-step gain of the (1+1)ES. There is a crucial difference, though:
Unlike for the (1+1)ES, for the (1,2) ES the total gain G

[i]
2:2 of i steps, which

is formally the sum of i independent copies of G2:2, can be negative, i. e., the
evolving search point may visit the half-space consisting of all points with a
larger Sum-value than the initial search point. Note that G[i]

2:2 is a generalized
random walk.

We are interested in the r.v. Ginf
2:2 := infi≥0 G

[i]
2:2, the maximum loss compared

to the starting point. In particular, we’d like to know P
{
Ginf

2:2 ≥ 0
}
, the probabil-

ity that the evolving search point is never (i. e. even when running the (1,2)ES
ad infinitum) worse than the initial one. (As the very first step yields a negative
gain with probability 1/4, obviously P

{
Ginf

2:2 ≥ 0
}
≤ 3/4.)
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Lemma 2. P
{
Ginf

2:2 ≥ 0
}

= Ω(1).

Proof. Recall that E[G2:2] ≥ ḡ (= E[G+]). Consider the partition of R≥0 given
by the intervals Pi = [ḡ · i3; ḡ · (i+1)3) for i ∈ N0. Note that the width of Pi

equals wi := ḡ · (3i2 + 3i + 1). We identify the current search point with the
corresponding total (spatial) gain. Then we are interested in the probability of
getting from Pi to P>i := ∪j>iPj without hitting R<0. In fact, we want to prove
that, when starting in Pi, the probability of hitting R<0 before hitting P>i is
e−Ω(i). Since, for k a constant large enough,

∑
i≥k e−Ω(i) ≤ 1/2, we would know

that once the current individual has made it into Pk, then with probability at
least 1/2 it would never again visit the half-space corresponding to a negative
total gain. On the other hand, since P{G2:2 ≥ ḡ} ≥ P{G ≥ ḡ} = Ω(1), with
probability P{G2:2 ≥ ḡ}k3

= Ω(1) each of the first k3 steps yields a gain of at
least ḡ, implying that Pk is hit without visiting R<0. All in all, we’d have shown
that R<0 is never visited right from the start with probability Ω(1) ·1/2 = Ω(1).

It remains to show that the probability of hitting R<0 before P>i when start-
ing in Pi is in fact bounded by e−Ω(i). Therefore, recall that the width of Pi

equals wi = ḡ · (3i2 +Θ(i)). Thus, the expected number of steps necessary to
get from ḡ · i3 (= minPi) into P>i (possibly including a visit to R<0) is at most
wi/ḡ = 3i2 + Θ(i) (by using a modification of Wald’s equation). As Pi is at
distance ḡ i3 from R<0, one may already foresee that the probability of a visit
to R<0 becomes smaller and smaller as i increases.

Formally, we want to prove that this probability is e−Ω(i). Therefore, consider
the period starting (ending) with the first visit to Pi (resp. P>i). Assume that
in each mutation in this period |G| was at most

√
i · ḡ. Then in each step G2:2 ≥

−
√
i · ḡ, and thus, more than ḡ · i3/(

√
i · ḡ) = i2.5 steps would be necessary for

a visit to R<0 to be at all possible. For i large enough, the expected conditional
one-step gain (under the condition |G| ≤

√
i ḡ) is at least ḡ/2 (see appendix),

and hence, the expected number of necessary steps (under the condition on
|G|) is at most 2 · (3i2 + Θ(i)) = 6i2 + Θ(i). By Hoeffding’s bound, for i large
enough, 9i2 steps do not suffice with a probability of e−Ω(i) (see appendix). As
the condition on |G| is not met also with probability e−Ω(i) (see appendix), the
total failure probability (of not getting from Pi into P>i within 9i2 steps such
that in each of these steps |G| ≤

√
i ḡ for both mutations) is upper bounded by

e−Ω(i) + 2 · 9i2 · e−Ω(i) = e−Ω(i). Finally note that (under the condition on |G|
and for i large enough) R<0 cannot be reached in 9i2 steps as we have already
seen. In short, with probability 1− e−Ω(i) the search gets from Pi (in particular
from ḡ · i3 = minPi) into P>i without visiting R<0 in at most 9i2 steps. ��

As “Ginf
2:2 ≥ 0” implies that R<0 is never visited, the probability of observing

b > 0 drop-backs to R<0 is bounded above by (1 − Ω(1))b = e−Ω(b). Thus, the
search drops behind the hyper-plane containing the initial search point at most
nε times w. o. p., where we can choose the positive constant ε arbitrarily small.

Now consider the minimization of LinCliffΔ
n where Δ > 0. Recall that there

are two different hyper-planes with LinCliff-value 0: HSum=0, which contains
all local optima, and HSum=−√

nΔ. The distance between these two hyper-planes
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equals Δ. Call the half-space HSum≥0 = {x | Sum(x) ≥ 0} local-optimum region.
Then a mutant c′ of c ∈ HSum≥0 that hits HSum<0 (i. e., it leaves the local-
optimum region) such that LinCliffΔ

n (c′) ≤ LinCliffΔ
n (c) must necessarily

yield a spatial gain of at least Δ. Then P{G ≥ Δ} equals the corresponding
probability of such a successful mutation. For unit isotropic mutations, the eli-
tist (1+λ)ES cannot overcome the cliff if Δ ≥ 1, of course. Jägersküpper (2005)
investigates how the chances of (1+λ) ES (using isotropic mutations) to get over
cliffs/gaps depends on how the size of the cliff relates to the step length/mutation
strength. Note that, unlike for the spherical symmetric function CliffΔ

n consid-
ered therein, for LinCliffΔ

n there is always a good chance of getting over the
cliff if only the step length is made appropriately large.

In the present paper, however, we show that a (1,2) ES manages to overcome
the cliff in a “short” time independently of how largeΔ is. The challenge is to show
that drop-backs to HSum≥0 become more and more unlikely with the number of
escapes and, in particular, to prove an upper bound on the number of steps neces-
sary to get that far away from the local-optimum region such that there is w. o. p.
no drop-back. The next result tells us that, if the current search point is “close to
the cliff” in the local-optimum region, then with a “considerable” probability the
local-optimum region is left in the next step once and for all.

Lemma 3. Let the (1,2) ES minimize LinCliffΔ
n using unit isotropic muta-

tions. Assume that after t steps the current search point c[t] lies in the half-space
HSum≥0 such that P

{
c[t] + m ∈ HSum<0

}
= Ω(1). Then, independently of Δ,

P
{
c[t+j] ∈ HSum<0 for j ∈ N

}
= Ω(1).

Proof. Obviously, we will follow the proof of Lemma 2. With a probability of
P
{
c[t] + m ∈ HSum<0

}2
= Ω(1) both mutants of c[t] generated in the next step

lie in HSum<0 so that one of them becomes c[t+1]. Subsequently, with a probability
of (P{G ≥ ḡ} · 1/2)k3

= Ω(1) for the constant k from the proof of Lemma 2, in
each of the k3 following steps both mutants yield positive gains such that one of
them is at least ḡ. Then a drop-back to HSum≥0 is precluded within these steps,
and moreover, the distance from HSum≥0 is at least k3ḡ after these steps. From
here on (when i ≥ k), exactly the same reasoning about getting from Pi into P>i

without ever dropping behind HSum=0 as in the proof of Lemma 2 applies. ��
As a consequence, w. o. p. we observe at most nε drop-backs, where the con-
stant ε > 0 can be chosen arbitrarily small. The question is how many steps
it takes the (1,2) ES until this has happend. Therefore, we must show first
that, when in HSum≥0, the search gets close enough to the cliff HSum=0 for
P{c + m ∈ HSum<0} to be Ω(1). Note that (as Jägersküpper (2003) shows) in
fact P{c + m ∈ HSum<0} = Ω(1) ⇐⇒ dist(c, HSum<0) = O(E[G+]). The next
result tells us that, when the search approaches the cliff, as long as the distance
from the cliff is at least four times the (stationary one-step) drift on Sum, the
drift towards the cliff is at least a quarter of this drift.

Lemma 4. Let the (1,2) ES minimize LinCliffΔ
n in Rn using unit isotropic

mutations. If the search point c lies in the local-optimum region HSum≥0 such
that dist(c, HSum=0) ≥ 4E[G+] then E[G2:2 · 1{G1,G2≤dist(c,HSum=0)}] ≥ E[G+]/4.
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Proof. Recall ḡ := E[G+]. The appendix shows E[G+ · 1{G≤
√

2/n}] ≥ ḡ/2 as
well as 4ḡ ≥

√
2/n, and why this implies E[G2:2 · 1{G1,G2≤4ḡ}] ≥ E[G+]/4. ��

As a consequence, we merely get an additional factor of 4 in upper bounds on
the number of steps necessary for the distance from HSum<0 to drop below 4 ḡ.

Theorem 5. Let the (1,2) ES minimize LinCliffΔ
n in Rn using unit isotropic

mutations. Assume that the current search point c lies in HSum≥0 such that
dist(c, HSum=0) = O(E[G+]). Then, independently of Δ, after 3n0.4 steps w. o. p.
HSum≥0 has been left once and for all.

Proof. Let δ := dist(c, HSum≥0) within this proof and notice that δ > 0 implies
c ∈ HSum<0. The proof of Lemma 2 directly implies (by choosing i = n0.1, i. e.
i3 = n0.3) that once δ has exceeded n0.3 ḡ, the local-optimum region HSum≥0

is never visited again w. o. p., namely with probability 1 − e−Ω(n0.1). Using a
pigeonhole-principle-like argument, we will show that, if δ does not exceed ḡ n0.3

within at most 3n0.4 steps, then w. o. p. there must be at least n0.1 drop-backs
(from HSum<0 back into HSum≥0). Consequently, there would also be n0.1 tran-
sitions from HSum≥0 into HSum<0, and since for each of those there is a Ω(1)
probability of never dropping back (Lemma 3), those n0.1 drop-backs happen
only with probability e−Ω(n0.1). Thus, since our assumption “δ does not exceed
ḡ n0.3 within 3n0.4 steps” implies the occurrence of an event which does not hap-
pen w. o. p., this assumption does not hold true w. o. p. In other words, w. o. p.
δ does exceed ḡ n0.3 in at most 3n0.4 steps, finally implying the theorem.

Consider 2n0.3 steps, namely the r.v. S defined as the sum of 2n0.3 independent
copies of G2:2. A straightforward application of Hoeffding’s bound (just like the
one in the appendix) shows that w. o. p. S exceeds E[S]/2 = n0.3 E[G2:2] ≥ n0.3 ḡ.
Thus, right after a step in which HSum≥0 was left, w. o. p. within at most 2n0.3

steps either there is a drop-back or δ exceeds n0.3ḡ. In the latter case we are
done; if there is a drop-back, however, the question arises how many steps it
takes until the next transition from HSum≥0 into HSum<0 takes place w. o. p.

Therefore note that c’s distance from HSum<0 right after a drop-back is at
most n0.1ḡ w. o. p. Thus, the number of steps until the distance from the cliff
drops below 4ḡ again is upper bounded by 4 ·2n0.1 w. o. p. (a rather loose bound;
the factor “4” stems from the lemma preceding the theorem, the factor “2”
from considering twice the number of steps that would suffice in expectation
to apply Hoeffding’s bound again). Recall that dist(c, HSum<0) = O(ḡ) implies
P{c + m ∈ HSum<0} = Ω(1). Thus, w. o. p. within at most n0.2 steps after a
drop-back, HSum≥0 is left anew (again a rather loose bound since one of nε trials
succeeds already w. o. p.). After this leave it takes w. o. p. at most another 2n0.3

steps until either a drop-back occurs again or δ > n0.3 ḡ, and so on. Hence, our
initial assumption “δ ≤ n0.3 ḡ for 3n0.4 steps” finally implies that w. o. p. at least
3n0.4/(2n0.3 + n0.2) ≥ n0.1 drop-backs take place. This was to be shown. ��
We note that the theorem remains true if we substitute “3n0.4” by “nε, ε ∈ R>0”.
Recall that a (1+λ) ES (using unit isotropic mutations) is incapable of conquer-
ing the cliff for Δ := 1, for instance. It would stay in HSum≥0 forever and keep on
converging towards HSum=0 at a declining rate – a really noticeable difference.
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3 Extension to Cliff and Gaussians (Extended Outline)

As already noted, when LinCliffΔ
n is minimized, for a fixed Δ we can always

choose a step length such that also a (1+λ) ES can overcome the cliff in a short
time. On the other hand, for a fixed length of an isotropic mutation, there is
always a choice for Δ disabling a (1+λ) ES from conquering the cliff. One may
argue that commonly the length of an isotropic mutation is also random. For
instance, the length of a Gaussian mutation m̃ ∈ Rn (each component of which
is independently standard-normal distributed) follows a χ-distribution with n
degrees of freedom. Then arbitrary large lengths are possible. However, since the
density of |m̃| = � equals �n−1 · e−	2/2 · 21−n/2/Γ (n/2) (a unimodal distribution
having its mode at

√
n− 1 and inflection points at

√
n − 1/2 ±

√
2n − 7/4), the

probability that the length exceeds � drops exponentially for � ≥
√

3n. In short,
the length of a Gaussian mutation is too concentrated, and hence, if Δ is by a
factor of nε, ε ∈ R>0, larger than the expected length of a Gaussian mutation,
then the probability that a mutation conquers the cliff is exponentially small. An
ad hoc solution to this problem could be to choose a different distribution for the
length of a mutation to make large step lengths more probable, e. g. a Cauchy
distribution. If the lower-level sets (success regions) are bounded (which is not
the case for LinCliff), however, all this is pointless: Steps with immoderate
length are vain anyway (they fail to hit the lower level set with high probability).

Therefore, consider the spherically symmetric function CliffΔ
n : Rn → R

CliffΔ
n (x) :=

{
|x|+Δ(n) if |x| < 1−Δ(n),
|x| otherwise,

where Δ : N→ (0, 0.3], introduced by Jägersküpper and Witt (2005). All points
in the hyper-sphere {x | |x| = 1 −Δ} ⊂ Rn are local, non-global optima. The
best chances to get over the cliff, however, are at unit distance from the optimum;
cf. Jägersküpper (2005). There the ratio of the gain necessary to overcome the
cliff (of Δ towards the optimum/origin o ∈ Rn) to distance from o is minimal.

Consider the well-known Sphere-function (Sphere(x) = |x|2 =
∑n

i=1 xi
2).

For any (1+, λ) ES using isotropic mutations there is a distinct normalized (here
w. r. t. to the distance from the origin/optimum, not(!) w. r. t. to n) length of
an isotropic mutation resulting in maximum expected one-step gain. As we are
interested in the number of function evaluations – which equals λ times the
number of steps –, we are particularly interested in constant λ, i. e. λ is not
a function of n. Then the optimum expected one-step gain (progress rate) is
O(d/n) where d := |c| equals the distance from the global optimum (d.g.o.).
For the (1+1)ES on Sphere, an isotropic mutation of length � = Θ(d/

√
n)

results in an expected gain of Θ(d/n). A (1,2)ES (using isotropic mutations) is
incapable of realizing an expected one-step gain of Ω(d/n) for Sphere. However,
a straightforward calculation (Jägersküpper, 2006) shows:

1) For the (1,λ∗) ES with λ∗ a constant large enough, isotropic mutations with
a length of Θ(d/

√
n) result in an expected one-step gain of Θ(d/n) on Sphere.
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Now we can follow the reasoning for “the simplest scenario”. Namely, we’d show:

2) For the (1,λ∗) ES using isotropic mutations of fixed length � := Θ(d[0]/
√
n)

there is a Ω(1) probability that the d.g.o. never exceeds d[0], the initial one.

3) For d[0] ∈ [1−Δ; 1−Δ+ �/
√
n ] there is a Ω(1) probability that the first step

conquers the cliff and that the search never drops back to the local optimum
region afterwards, i. e. P

{
d[i] < 1−Δ for i ∈ N

}
= Ω(1).

4) We’d show that 1), 2), 3) remain true when using Gaussian mutations scaled
by a mutation strength σ ∈ R>0 that is Θ(d[0]/n) (we would utilize the concen-
tration of the χ-distribution already mentioned at the beginning of this section).

5) When started at a distance, say, d[0] ∈ [1.2, 1.3] then w. o. p. after t = O(n)
steps d[t] ∈ [1 − Δ; 1 − Δ + σ] such that 3) applies. After at most n0.1 trials
of conquering the cliff within at most 3n0.4 steps, the global-optimum region
{x | |x| < 1−Δ} ⊂ Rn is conquered such that it is never left again w. o. p.

After another O(n) steps, w. o. p. d drops below 1.2/2 = 0.6 ≤ 1 − Δ − 0.1,
implying the following result:

Theorem 6. Let a (1,λ) ES minimize CliffΔ
n using Gaussian mutations scaled

by a fixed σ. Assume that after initialization |c[0]| ∈ [1.2, 1.3] and σ = Θ(|c[0]|/n).
Then, independently of Δ, for λ a constant large enough, the number of steps t
until |c[t]| ≤ 0.6 (i. e. the distance from the optimum is halved) is O(n) w. o. p.

Since λ is a constant, the (1,λ) ES gets by with O(n) function evaluations to
halve the d.g.o. Finally, compare this with the (1+1)ES on Sphere: It needs
w. o. p. Ω(n) function evaluations to halve the d.g.o. even if the length of isotropic
mutations would be adapted perfectly in each step! Thus, indeed, the cliff does
not keep the (1,λ) ES from halving the d.g.o. within the asymptotically smallest
possible number of function evaluations, which is Θ(n).

Since the 1/5-rule (non-endogenous σ-adaptation) uses an observation phase
of Θ(n) steps, and since conquering the cliff takes place in a sub-linear number
of steps, we are even able to extend the theorem: When the 1/5-rule is used,
the number of Cliff-evaluations to reduce the d.g.o. to a 2−b-fraction of the
initial one is O(b ·n) w. o. p. – wherever the initial starting point lies (given that
1 ≤ b = poly(n) and σ[0] = Θ(|c[0]|/n, though). This concludes the outline.
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Appendix

Proof of Proposition 1. Note that P{X ≥ 0} = P{X ≤ 0} ≥ 1/2 due to the
symmetry. As X2:2 = max{X1, X2}, where X1, X2 are independent copies of X ,

E[X2:2] = E[X2:2 · 1{X1,X2≥0}] + E[X2:2 · 1{X1≥0,X2≤0}]
+E[X2:2 · 1{X1,X2≤0}] + E[X2:2 · 1{X1≤0,X2≥0}].

The first summand can be bounded from below by

E[X2:2 · 1{X1,X2≥0}] ≥ E[X1 · 1{X1,X2≥0}]
= E[X1 · 1{X1≥0}] · P{X2 ≥ 0}
≥ E[X1 · 1{X1≥0}] · 1/2.

Analogously, one obtains E[X2:2 · 1{X1,X2≤0}] ≥ E[X1 · 1{X1≤0}]/2 as well as
E[X2:2 · 1{Xi≥0,X3−i≤0}] ≥ E[Xi · 1{Xi≥0}]/2 for i ∈ {1, 2}. Altogether,

E
[
X2:2] ≥ 3 · E[X · 1{X≥0}]/2 + E[X · 1{X≤0}]/2 = E[X · 1{X≥0}]

since E[X · 1{X≤0}] = −E[X · 1{X≥0}] because of the symmetry. ��

Moreover, if u > 0 such that E[X · 1{u≥X≥0}] ≥ E[X · 1{X≥0}]/2, then

E[X2:2·1{X1,X2≤u}] ≥ 3 · E[X ·1{X≥0}]
2

/
2− E[X ·1{X≥0}]/2 = E[X ·1{X≥0}]/4.

Additional Calculations for the Proof of Lemma 2. Recall that here
G corresponds to the spatial gain of a unit isotropic mutation. The r.v. “G ·
1{|G|≤√

i·E[G+]}” is also symmetric, and thus, Proposition 1 applies, that is,
E[max{G1, G2} · 1{|G1|,|G2|≤u}] ≥ E[G+ · 1{|G|≤u}]. Thus, it suffices to show that

1) E[G+ · 1{|G|≤√
i·E[G+]}] ≥ E[G+]/2 for i large enough.
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Recall that the density of G at g ∈ [−1, 1] equals (1−g2)(n−3)/2 ·√n·(1−Θ(1/n))
(for n ≥ 4). We use (1− t/n)n ≤ e−t for 0 ≤ t ≤ n. Then for i ∈ [0, n]

E
[
G+ · 1{|G|≤

√
i/n}

]
=
∫ √

i/n

0
g · (1 − g2)(n−3)/2 dg · 1/Ψ =

[
(1− x2)(n−1)/2

−(n− 1)

]√i/n

0
· 1/Ψ =

(
1

n− 1
− (1 − (i/n))(n−1)/2

n− 1

)
· 1/Ψ

=
(

1− (1 − (i/n))(n−1)/2︸ ︷︷ ︸
)
· 1
n− 1

· 1/Ψ︸ ︷︷ ︸
≤ e−(i/n)(n−1)/2 = E

[
G+]

and e−(i/n)(n−1)/2 ≤ e−i·3/8 < 1/2 for i ≥ 2 (yet i ≤ n ≥ 4; for i > n the indi-
cator variable becomes meaningless). Thus E[G+ · 1{G≤

√
2/n}] > E[G+]/2 and,

hence, finally E
[
G+ · 1{G≤4E[G+]}

]
> E[G+]/2 (since E[G+] ≥ 0.3989/

√
n+1)

2) We want P
{
|G| >

√
i/n

}
= e−Ω(i).

We assume (solely for better legibility) that
√
i as well as

√
n are integral.

P
{
|G| >

√
i/n

}
= 2

√
n · (1−Θ(1/n)) ·

∫ 1

√
i/n

(1 − g2)(n−3)/2 dg

≤ 2
√
n

√
n∑

k=
√

i

(1− k2/n)(n−3)/2 · 1√
n
≤ 2

√
n∑

k=
√

i

e−(k2/n)(n−3)/2 < 2
∞∑

k=
√

i

e−k2/8

Since e−(k+1)2/8
/
e−k2/8 = e−(2k+1)/8 < 1/2 for k ≥ 3, for i ≥ 32 we obtain

P{|G| >
√
i/n} ≤ 2 · 2 · e−i/8 = e−Ω(i).

3) The application of Hoeffding’s bound to obtain a probability of e−Ω(i) that
9i2 steps do not suffice to get from Pi into P>i (given that in each mutation
|G| ≤

√
i · ḡ, where i is large enough such that the expected conditional one-step

gain is at least ḡ/2).
Hoeffding (1963, Theorem 2) tells us that for the r.v. S defined as the sum

X1 + · · · + Xk of k independent r.v.s Xj ∈ [aj , bj ] for j ∈ {1, . . . , k} we have
P{S ≤ E[S]− t} ≤ e−2·t2/

∑k
j=1(bj−aj)2 for t ≥ 0. In our case, k := 9i2 so that

E[S] ≥ 4.5 i2ḡ, and furthermore, aj = −
√
i · ḡ and bj =

√
i · ḡ. Since the necessary

gain is at most wi = ḡ · (3i2 + Θ(i)) ≤ 4 i2ḡ for i large enough, we can choose
t := 0.5 i2ḡ. Thus, the exponent becomes −2 · (0.5 i2ḡ)2/

∑9i2

j=1(2
√
i ḡ)2 = −i/72.
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Abstract. We examine the evidence for the widespread belief that heavy tail dis-
tributions enhance the search for minima on multimodal objective functions. We
analyze isotropic and anisotropic heavy-tail Cauchy distributions and investigate
the probability to sample a better solution, depending on the step length and the
dimensionality of the search space. The probability decreases fast with increasing
step length for isotropic Cauchy distributions and moderate search space dimen-
sion. The anisotropic Cauchy distribution maintains a large probability for sam-
pling large steps along the coordinate axes, resulting in an exceptionally good
performance on the separable multimodal Rastrigin function. In contrast, on a
non-separable rotated Rastrigin function or for the isotropic Cauchy distribution
the performance difference to a Gaussian search distribution is negligible.

1 Introduction

The optimization of multimodal objective functions is recognized as a fundamental
problem in several areas of science and engineering. Stochastic search procedures such
as Simulated Annealing or Evolutionary Algorithms are well-established methods to
optimize multimodal objective functions. New candidate solutions are often sampled
from isotropic multivariate Gaussian distributions. The choice of Gaussian distribu-
tions has several reasons. Isotropic Gaussian distributions do not favor any direction in
the search space. Gaussian distributions are amenable to mathematical analysis because
they are the only stable distribution—where the sum of iid variates has the same type of
distribution as its summands—with finite variance. For a given variance, the Gaussian
distribution has the maximal entropy, which can be interpreted in that the distribution
shape contains the least additional assumptions on the objective function to be opti-
mized. Finally, Gaussian distributions suggest themselves for bioinspired algorithms as
they are widely observed in nature as for example in the distribution of phenotypic traits.

On the other hand, it is a common belief that, when employed for the optimization of
multimodal objective functions, the exponentially decreasing tails of Gaussians are inef-
fective [8]. Instead, it is argued that heavy tails, such as those of the Cauchy distribution,
are more appropriate, as long jumps occasionally lead to better solutions, that eventu-
ally lie within the attraction region of a better (local) optimum. Long jumps that produce
worse solutions should be disregarded in general.1 In this context several search strate-
gies that apply heavy tail distributions have been investigated, including Fast Simulated

1 A search strategy is highly susceptible to divergence, if worse solutions from long jumps are
accepted. The danger of divergence is way smaller, if an accepted worse solution is originated
from a short step. Alternatively, worse solutions from long jumps can be exploited with local
optimization, which is not considered in this paper.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 62–71, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Annealing [6] and Fast Evolution Strategies [8]. In these strategies one key difference
concerns the use of isotropic [6] and anisotropic [8] heavy tail distributions. The impor-
tance of the anisotropy of the coordinate-wise iid multivariate Cauchy distribution was
already recognized in [5,2]. Obuchowicz [2] observed a degradation of performance of
the anisotropic distribution when rotating the search space. He proposed isotropic Gauss
and Cauchy distributions with norms distributed as their one-dimensional counter parts
with mixed results.

Rowe and Hidovic [4] investigated the use of a scale free distribution that allowed
searching simultaneously on a given range of scales. In one-dimensional problems, the
scale free distribution is uniformly distributed on the log scale in that Pr(x ∈ [a, b]) ∝
log b− loga, given a and b are in the supported range. We found the n-dimensional ver-
sion of this scale free distribution to be highly anisotropic (similar to Fig. 3, lower right).
Surprisingly, even with a (1+1)-selection scheme the scale free distribution shows ex-
ceptional performance on the multimodal Rastrigin function and this is explained with
the advantage of long jumps. We summarize the common hypothesis.

Hypothesis 1. Long jumps, attributed to sampling from heavy-tail or scale free distri-
butions, occasionally lead to better solutions. They are therefore helpful for searching
multimodal objective functions.

On the other hand, for the unimodal sphere model, where f(x) =
∑n

i=1 x
2
i , theo-

retical investigations and experiments show that compared to the Cauchy distribution
the Gaussian consistently leads to faster convergence of the (1, λ)-evolution strategy,
regardless of the choice of λ [5].

This paper investigates why and when heavy tails can help for global optimization. The
goal is (a) to quantify the possible effect of heavy tails and (b) to separate the effects of the
heavy tail and the anisotropy of the search distribution in a carefully chosen experimental
set-up. The paper is structured as follows: in Sect. 2 the relation between step length and
search space volume is discussed. In Sect. 3 search distributions are introduced. Their
characteristics and potential impact are investigated in Sect. 4. In Sect. 5 simulations of
an evolutionary algorithm are presented and Sect. 6 gives a short conclusion.

2 The Search Space Volume Phenomenon

The so-called curse of dimensionality casts doubt on Hypothesis 1: the search space
volume increases exponentially fast with increasing dimension and large steps become
more and more unsuccessful. Rechenberg [3, p.160ff] analyzes the situation for the 30-
dimensional Rastrigin function. He finds only a narrow evolution window for jumps that
can initiate successful new subpopulations. Here jumps are not expected to produce bet-
ter solutions but to converge to better local optima in a local optimization. Smaller steps
fall back into the originating local optimum, larger steps converge into worse optima.

The volume covered by a step of length r is given by the hypersphere surface area

Sn(r) = 2πn/2

Γ (n/2) r
n−1, where r is the distance to the center, n is the dimension, and Γ is

the Gamma function. The covered volume increases with rn−1 making it increasingly
difficult to hit a particular area of given volume.

We investigate an idealized scenario for the probability to find a better solution by
jumping into another region of attraction, as depicted in Fig. 1 (left).



64 N. Hansen et al.

αmax

rv

v

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

pr
ob

ab
ili

ty
 to

 h
it 

th
e 

un
it 

ba
ll

 2
 3
 5
10
20

distance to origin r

Fig. 1. Probability to hit the unit hyperball (solid) sampling from rv as mean with an optimal
isotropic distribution, where v ∈ Rn and ‖v‖ = 1. The plots on the right show results for
n = 2, 3, 5, 10, 20, from above to below. Dashed lines depict the approximation 1

3 rn−1 .

The arrow depicts a vector v with unit length. The starting point is rv, located on
the dotted circle on the right. Its closest local minimum is inside the dotted circle. A
second volume of better solutions lies on the left, inside the unit hyperball around the
coordinate system origin. We compute the probability to hit the unit hyperball by sam-
pling around rv isotropically. We assume an optimal step-length distribution, where all
steps lie on the hypersphere surface, corresponding to the dashed arc on the left. To hit
the unit hyperball the angle between the sampled vector and −v has to be smaller than
αmax = arcsin(1/r). Using the cumulative distribution function of the angle between
a reference vector and a random vector uniformly distributed on the unit hypersphere
[1, Theorem 9] we deduce the probability to hit the unit hyperball as

1
2
− 1

2
Γ (n/2)

Γ (1/2)Γ ((n− 1)/2)

∫ 1− 1
r2

0
t−

1
2 (1− t)(n−3)/2dt . (1)

The probability is plotted as a function of r in Fig. 1 (right) using Matlab’s function
betainc. Dashed lines depict 1

3 rn−1 , resembling the dependency of the hypersphere
surface area on r, which turns out to be a reasonable approximation of (1). Even for
moderate dimensions the probability drops fast with increasing r and becomes 10−4

for r = 6, 2, 1.5 and n = 5, 10, 20 respectively. For r = 1 the scenario resembles the
sphere function and the success probability is 0.5 (for infinitesimally small step length).
Our observations are summarized in an alternative hypothesis.

Hypothesis 2. Long jumps virtually never lead to better solutions in high dimensional
search spaces, because they get lost in the huge search space volume.

3 Search Distributions

3.1 Univariate Gaussian and Cauchy Distribution

The distributions that will be used in this paper are derived from the univariate standard
normal and Cauchy distribution. The univariate normal distribution with zero mean and
variance σ2 obeys the density
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Fig. 2. Densities of the univariate normal (Gaussian) distribution (dashed) and the standard
Cauchy distribution (solid) in a linear and a semi-log plot. The standard deviation of the normal
distribution σ = 1.4826 is chosen such that the quartile values equal −1, 0, 1 (vertical dotted
lines) as for the Cauchy distribution.

fN (0,σ2)(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
. (2)

The univariate Cauchy distribution with median zero and upper quartile τ obeys

fC(0,τ)(x) =
1
τ π

1
x2/τ2 + 1

=
1
π

τ

x2 + τ2 . (3)

A standard Cauchy distributed number, where τ = 1 can be sampled by dividing two
independent, standard normally distributed random numbers. Furthermore C(0, τ) ∼
τC(0, 1), and N (0, σ2) ∼ σN (0, 1). Figure 2 shows the densities of both univariate
distributions.

3.2 Multivariate Distributions

We consider both isotropic and anisotropic distributions [4,7,8], and as isotropic distri-
butions we consider a heavy-tail distribution and a distribution with exponentially fast
decreasing tail.

We use Gn to denote an n-dimensional Gaussian (normally) distributed random vec-
tor with zero mean and identity covariance matrix. The distribution Gn can be sampled
by sampling independent standard (0, 1)-normally distributed random numbers from
Eq. 2 for each component of a vector. Furthermore, let Un denote a uniform distribution
on the n-dimensional unit hypersphere, where Pr(‖Un‖ = 1) = 1. The distribution Un

can be sampled by sampling Gn and normalizing the resulting vector to length one, i.e.
Un = Gn/‖Gn‖.

The following search (mutation) distributions are used.

Cn ∈ Rn, an (anisotropic) n-dimensional Cauchy distribution, where each coordinate
is independent standard (0, 1)-Cauchy distributed. This distribution is used, for ex-
ample, in Fast Evolution Strategies [8] and Fast Evolutionary Programming [7].

Ciso
n ∼ ‖Cn‖ × Un, an isotropic n-dimensional distribution with the norm distributed

as for Cn.
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Gn ∼ ‖Gn‖ × Un, the n-dimensional Gaussian (normal) distribution which is widely
used in Evolutionary Algorithms such as Evolution Strategies or Evolutionary Pro-
gramming. The distribution is isotropic (spherical), its norm is χn-distributed.

The distributions Cn and Ciso
n have polynomially decreasing (heavy) tails. The dis-

tributions Ciso
n and Gn are isotropic (spherical), and can be sampled by a product of a

random number, i.e. a scalar representing the norm, and Un.

4 Characteristics of the Distributions

Figure 3 shows 10000 sampled points of C2 and G2 visualizing the characteristics of
the distributions in 2D. For values between −3 and 3 the results of the Gaussian (first
row) and the Cauchy distribution (second row) are comparable. While the Gaussian
rarely realizes steps larger than five, the Cauchy distribution reveals a surprising pic-
ture. Zooming out further the distribution starts to resemble a cross parallel to the coor-
dinate system (third row). That means, the distribution comes close to coordinate-wise
sampling on the large scale.

Figure 4 presents data in the 10-dimensional case. Shown are densities of the vector
norms (left) and densities along rv ∈ R10, where r is a scalar and v is fixed, ‖v‖ = 1
(right). The density for the norm of Ciso

10 was obtained by Monte-Carlo simulations
(about 109 samples), the respective density on the right by dividing with the hypersphere
surface area Sn(r) = 2πn/2

Γ (n/2) r
n−1. The remaining densities are well-known or can be

easily obtained analytically.
Comparing the lower and the upper bold graph in the right figure, again a striking

difference between diagonal and coordinate axis parallel density can be recognized for
Cn. As can be derived from (3) (the multivariate density derives from a product of
the univariate) the coordinate axis parallel density drops proportional to r2, while the
diagonal drops proportional to r2n, for large r.

Two Gaussian densities along rv are shown. First 3.8×G10 (dashed graph), where the
median of the norm corresponds to the one of the Cauchy distributions. Second 1.25×
G10, where the density for small r compares to the one of the Cauchy distributions.

We compare the Gaussians with the isotropic Cauchy distribution (middle bold graph).
In one case the density of the Gaussian drops below the Cauchy density for r larger than
about 5.6. In the other case only for r between about 8 and 17 the Gaussian reveals
a larger density than the isotropic Cauchy distribution Ciso

n . For larger r Gaussian and
Cauchy densities drop fast: for Ciso

n the slope is approximately r−10. For example, the
probability to hit a volume in a distance of 60 = 3 × 20 is about 310 ≈ 105 times
lower than to hit the same volume in distance 20, a distance where Ciso

n and 3.8 × Gn

have comparable densities. The other way around, the volume that can be found with a
comparable probability by steps being three times longer needs to be 105 times larger.
In contrast, for the coordinate axis direction the density drops slowly and volumes far
away have a considerable probability of being reached.

We can draw two conclusions from these figures. First, the anisotropy of the Cauchy
distribution might have a considerable effect on the search behavior. Second, compared
to the Gaussian distribution that operates on a reasonable scale of search, the heavy tails
should not be of great help. Both conclusions are confirmed in our experimental results.
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Fig. 3. Ten thousand 2D sample points from the Gaussian distribution 1.4826 × G2 (upper row)
and the Cauchy distribution C2 (middle and lower row). Shown are the same sampled points on
different scales (±1,±3,±10,±30, . . .). The clippings contain 26, 91, and 100% of the points
for G2 and 25, 67, 88, 96, 98.72, and 99.55% of the points for C2. For the larger scales Cn be-
comes mainly coordinate-wise sampling.

5 Simulation Results for the (1+1)-EA

5.1 The Test Functions and Evolutionary Algorithm

We use the highly multimodal Rastrigin function

fRastrigin : x �→ 10n+
n∑

i=1

y2
i + 10 cos(2πyi) ,

where y = Mx and M is an orthogonal matrix (M−1 = MT). We investigate two
situations. First, the axis parallel Rastrigin function fRastrigin, where M = I is the
identity matrix. The axis parallel Rastrigin function is separable and can therefore be
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Fig. 4. Densities for n = 10 on the log10 scale. Left: Density of norms, ‖C10‖ and ‖Ciso
10 ‖

(same solid graph), and 3.8 × ‖G10‖ (dashed), where the factor is chosen such that the median
equals to 11.7 as for ‖C10‖. Right: densities along rv ∈ Rn versus r, where ‖v‖ = 1. For Cn

(solid) in coordinate axis direction (v = (1, 0, . . . , 0)T, upper graph) and in diagonal direction
(v = (1, . . . , 1)T/

√
10, lower graph), for Ciso

n (middle solid graph), for 3.8 × Gn (dashed), and
for 1.25 × Gn (dashed dotted).

solved by n one-dimensional optimization procedures parallel to the coordinate axes.
Second, we consider the rotated Rastrigin function, with a randomly chosen M , where
all columns of M are uniformly distributed on the unit hypersphere and orthogonal,
achieved by Gram-Schmidt orthogonalization of Gn-distributed vectors. In the relevant
region for x ∈ [−5, 5]n, the local optima of the Rastrigin function have function val-
ues that are close to integer values, which makes the integer bin centers used for the
frequency histograms below particularly meaningful.

We apply the (1+1) evolutionary algorithm (EA) as depicted in Fig. 5 (left) in order
to address the question whether and how the heavy tails can influence the global search
performance.

If not stated otherwise, we choose α = 10
1.2

104n , θfinal = 10−3, and the initial θstart =
103, leading to 50000×n iteration steps, and initial x = M−1(5, . . . , 5)T. The values
for α result into α ≈ 1.0000921, 1.0000553, 1.0000276, for n = 3, 5, 10, all smaller
than 1 + 10−4.

Neither (self-)adaptation nor a large population is applied so as to not interfere with
the effects of the search distribution. Adaptation of distribution parameters, like the
step-size θ, is not expected to improve the global search performance, as it usually drops
step lengths much faster than the given schedule. Large populations, and eventually
recombination, will usually improve the performance, but this should be true for all
distributions applied. The rationale behind this set-up is to slowly move through all
scales and to allow any scale, in case, to conduct the search successfully. It takes about
2500n iterations to reduce θ by a factor of two.

Figure 5 shows two runs on the axis parallel Rastrigin function, where n = 2 and
α = 1, one run with Dn = Gn and θ = 0.25, one run with Dn = Cn and θ = 0.01. In
both cases θ is chosen much too small. While the Cauchy distribution needs about 9000
iterations, the Gaussian needs about 80000 iterations to approach the global optimum.
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The Algorithm

choose Dn, θstart, θfinal, α
initialize x, θ = θstart

while θ > θfinal

x′ = x + θ ×Dn

if f(x′) ≤ f(x)
x= x’

θ ← θ/α

Fig. 5. The Evolutionary Algorithm (left), and paths and sampled points of two runs in 2D, where
Dn = Gn, θ = 0.25 (square marks �), and Dn = Cn, θ = 0.01 (circle marks ◦). The marks
denote realized steps, where f(x′) ≤ f(x). The optima lie on an axis parallel grid allowing the
Cauchy distribution to reach the vicinity of the global optimum about ten times faster.

Having in mind the 2D image of the Cauchy distribution Cn the result and the resulting
picture are not surprising.

5.2 Results

Methods. We conducted experiments on the axis parallel and the rotated Rastrigin func-
tion for dimensions n = 3, 5, 10, performing in each case 50 runs. We judge perfor-
mance in terms of reached final function value and success rate to reach the global
optimum with a precision of 10−2. We compared success rates with the χ2-test and the
median final function values with the rank sum test.

Results. The final distribution of function values for n = 3, 5, and 10 is shown in Fig. 6.
For n = 3 the global optimum is found in most cases for all experimental conditions.

On the axis parallel function Cn achieves a success probability of 100% and is slightly
better than Ciso

n and Gn. For n = 5 the difference becomes much more pronounced.
While the success probability drops to about five percent for Ciso

n and Gn, on the axis
parallel function Cn has still a success probability of 100%. For n = 10 (Fig. 6, right)
the success probability drops to zero in all cases but for Cn on the coordinate axis paral-
lel function, where it is still one. The distributions in the five other cases are statistically
indistinguishable and the best final function value is close to four. In all dimensions all
distributions perform virtually identical on the rotated function, and only Cn performs
significantly different from the other distributions in the coordinate axis parallel case
while the performance of Gn and Ciso

n is invariant under rotation of the search space.

Validation of the Annealing Scheme. To investigate the influence of the choices of θstart
and θfinal we ran simulations for all combinations of values θstart = 1010, 109, . . . ,
10−5 and θfinal = 105, 104, . . . , 10−10 for n = 5, where θstart ≥ θfinal and the number
of iterations are 50 000× 5, choosing α respectively. The best result is obtained with
θstart = 1, θfinal = 0.1 for C5 and θstart = θfinal = 1 for G5. The respective average
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Fig. 6. Frequency of the final function value for, from above to below, Cn, Ciso
n , and Gn. Left:

n = 3, Middle: n = 5, Right: n = 10. For n = 3 on the coordinate axis parallel function Cn has
a significantly higher success probability than Ciso

n (p < 1.3 × 10−4) and Gn (p < 10−2). For
n = 5 and n = 10 the difference regarding distribution median and success probability between
Cn on the coordinate axis parallel function and all other cases is highly significant (p < 10−15).

final function values are 1.7 and 1.6, compared to 2.8, and 2.4 for the set-up chosen in
the last section. The results confirm that the annealing schedule is reasonably chosen
and does not dominate the outcome.

6 Summary and Conclusion

We analyzed densities of isotropic and anisotropic heavy-tail Cauchy distributions with
respect to their effectiveness when employed in searching for optima in multimodal ob-
jective functions. The densities are determined to a great extent by the volume of the
hypersphere surface area. Consequently, for isotropic search distributions the density
(i.e. the probability to hit a given volume) must decrease faster than r−n, where r is
the distance to the distribution center.2 For Gaussian distributions the density decreases
exponentially fast with r, for the investigated isotropic Cauchy distribution the depen-
dency is r−2n. Even for moderate dimensions (n = 5 to 10), the relevance between
polynomial and exponential decrease on the search performance becomes questionable
and cannot be observed in our experiments.

In contrast, the effect of anisotropy of a search distribution on the search perfor-
mance can be tremendous, in particular in higher dimensions (n ≥ 10). The Cauchy
distribution, where coordinates are sampled independently, is highly anisotropic in that
large steps occur most often close to the coordinate axes (see e.g. Fig. 3). Hence, it
can perform exceptionally well on separable functions, like any algorithm performing
coordinate-wise search. Therefore, the anisotropy of heavy-tail distributions is the most
likely explanation for remarkable performance improvements on separable functions,
e.g. of Fast Evolution Strategies [8] and of the so-called scale-free distribution [4]. If
the coordinate system is rotated or the distribution is modified to become isotropic—
keeping the distribution of the vector norm unchanged—the performance becomes in-
distinguishable from the Gaussian distribution in our experiments.

2 Otherwise the density is not integrable for r → ∞.
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We believe that our result can be generalized beyond the specifically chosen set-up
stating the following conjecture: heavy tails are useful on multimodal objective func-
tions (for global optimization) only if the large variations take place mainly in a low
dimensional (sub-)space and the low dimensional space contains the better optima. This
is the case, for example, either if the search space by itself is low dimensional (n �� 3),
or if the search distribution is highly anisotropic with respect to the coordinate sys-
tem and the objective function is separable. A challenging question arising from our
conjecture is whether and how low dimensional subspaces can be found, such that the
exceptional performance of the anisotropic Cauchy distribution on separable functions
can be carried over to non-separable functions.
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Abstract. This paper presents first results of an analysis of the σ-self-adaptation
mechanism on the sharp ridge for non-recombinative (1, λ) evolution strategies
(ES). To analyze the ES’s evolution, we consider the so-called evolution equa-
tions which describe the one-generation change. Neglecting stochastic perturba-
tions and considering only the mean value dynamics, we will investigate possible
causes why self-adaptation can fail on the sharp ridge.

1 Introduction

The performance of evolution strategies (ES) depends on the population’s distribution.
During the course of an optimization run, the distribution has to be “fitted” continu-
ously to the local characteristics of the search space in order to ensure a fast progress
towards the optimum. In the case of ES, adapting the mutation strength is one of the
main means. To this end, several methods have been introduced. In this paper, we will
focus on self-adaptation [9,10] where the mutation strength is an integrated part of an
individual’s genome. Similar to the object parameters, it is subject to variation and se-
lection processes and survives if the individual has a sufficiently good fitness.

The mechanism of self-adaptation can be examined by various means. The evolution
of the ES is a stochastic process which can be described by a Markov chain. In [6],
an approximate model is used to determine the system’s dynamics. Other approaches
analyze the Markov chain directly, e.g. [4], or study induced supermartingales, e.g.
[11]. In this paper, we will follow the approach in [6] which will be described in the
next section. Most of the research appears to be focused on the sphere model, i.e., on
fitness functions the dependence of which can be aggregated to one variable only: the
distance R to the optimizer. The ridge function class can be seen as a “natural” next
step. It comprises functions of the form

Fridge(y) = y1 − d
( N∑

i=2

y2
i

)α/2
=: x− dRα (1)
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with parameters d and α, α > 0. Note, we use a orthogonal representation of the general
ridge function. This is not problematic as long as the ES uses isotropic mutations. As
pointed out by Oyman [8], maximizations of ridge functions confront the ES with two
(conflicting) goals: The distance to the ridge should be reduced while the x-component
should be maximized.

Ridge functions are an interesting test case for self-adaptation. As already observed
by Herdy [7], the mechanism may fail – especially on the sharp ridge, i.e, for α = 1. It
was found that in some cases self-adaptation decreases the mutation strength although
the opposite behavior would be needed. It is one of the aims of this paper to investigate
the reasons for this behavior. For constant mutation strengths, the behavior of ES on
ridge functions was investigated before, e.g. by Oyman [8] and Beyer [5]. Recently
Arnold and Beyer [2] analyzed the behavior of intermediate (μ/μI , λ)-ES on the noisy
parabolic ridge applying cumulative step-size adaptation and Arnold and MacLeod [3]
considered Herdy’s Meta-ES [7].

We will consider the self-adaptive behavior of (1, λ)-evolution strategies. In short,
a (1, λ)-ES with self-adaptation works as follows. Based on the object vector y of the
parent, λ offspring are generated where each offspring yl is obtained by adding a nor-
mally distributed random vector (mutation vector) with zero mean and standard de-
viation (mutation strength) ςl. Since we are considering self-adaptation, the parental
mutation strength is also subject to mutation and the descendants’ mutation strengths
are created by a multiplication with a random variable ζ. A common choice for ζ’s
distribution is the log-normal distribution with parameter (learning parameter) τ , i.e.,
ς is generated according to ς = σeτN (0,1). The mutated mutation strength is then used
to create the offspring’s mutation vector. Afterwards the offspring with the best fitness
value is selected as the parent of the next generation.

The paper is organized as follows. First, we introduce the so-called evolution equa-
tions which are used to model the evolution of the characteristic variables, e.g., the
mutation strength. In order to continue, it is necessary to derive equations describing
the variables’ expected change. Afterwards, we consider the stationary state behavior
on the sharp ridge trying to explain why simple self-adaptation may fail.

2 Preliminaries

Evolution strategies optimizing a ridge function can be fully characterized by three (ag-
gregated) variables: the value on the ridge axis x, the distance to the ridge axis R, and
the mutation strength ς . We will follow the approach introduced in [6] and consider the
change of these variables during one generation. The change will be modeled by two
components: the expected, i.e., deterministic, change of the variable and a perturbation
part which covers the random fluctuations. In a first approach, the influence of the per-
turbation parts on the evolution will be neglected. This is a rough simplification and the
results will have to be evaluated with experiments. Keeping this in mind, the evolution
equations can be given by

x(g+1) = x(g) + E[x(g+1) − x(g)] =: x(g) + ϕx(ς(g), x(g), R(g)) (2)

R(g+1) = R(g) − E[R(g) −R(g+1)] =: R(g) − ϕR(ς(g), x(g), R(g)) (3)
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ς(g+1) = ς(g) + ς(g)E
[ς(g+1) − ς(g))

ς(g)

]
=: ς(g) + ς(g)ψ(ςg, x(g), R(g)). (4)

The progress rate ϕx denotes the expected change in the direction of the ridge. The
expected change of the distance to the ridge axis is given by the progress rate ϕR,
also called the “radial progress” [5]. The so-called self-adaptation response (SAR) ψ
is a placeholder for the expected relative change of the mutation strength. In order
to continue, we need to find expressions for these functions. The progress rates were
already obtained for τ = 0 in [5]. Due to space restrictions, we only state the results
obtained there. To simplify the notations, we will set R = r(g), r := r(g+1), σ = ς(g),
and ς = ς(g+1). The progress in ridge direction is given as

ϕx(σ,R) =
σc1,λ√

1 +
(
dαRα−1

)2 R2+σ2(N−1)/2
R2+σ2(N−1)

(5)

and depends on the distance to the ridge. The radial progress reads

ϕR(σ,R) = R−
√
R2 + σ2(N − 1) + dαRα−1R

2 + σ2(N − 1)/2
R2 + σ2(N − 1)

ϕx(σ,R). (6)

The progress coefficient c1,λ that appears in (5) is a special case of the higher order
progress coefficients [6, p.119]

d
(k)
1,λ :=

λ√
2π

∫ ∞

−∞
tke−

t2
2 Φ(t)λ−1 dt (7)

with k = 1 and denotes the expectation of the best of λ standard normally distributed
random variables. The radial component influences the progress in ridge direction. In
contrast to this, there is no influence of the x-component on the evolution of R. Equa-
tions (5) and (6) were obtained under the assumption that the change r − R is small
compared to the parental distance to the ridge axis. In addition, both progress rates
were obtained for τ = 0, i.e., without considering self-adaptation. The remainder of
the section is devoted to determining the self-adaptation response. The first-order self-
adaptation response (SAR) denotes

ψ(σ, x(g), R) = E
[( ς − σ

σ

)]
=
∫ ∞

0

( ς − σ

σ

)
p1,λ(ς|σ, x(g), R) dς. (8)

The density function in (8) is the density of the mutation strength of the best offspring
in λ trials. Applying the concept of induced order statistics [1], it is given by the condi-
tional density of ς given the parental mutation strength σ. The mutation strength in turn
is defined by the distribution chosen and by the probability that the mutation strength
leads to the highest fitness change Q = Fl − F (y(g)) in λ trials

p1,λ(ς|σ, x(g), R) = pσ(ς|σ)λ
∫ ∞

−∞
p(Q|ς, x(g), R)P (Q|σ, x(g), R)λ−1 dQ. (9)

The probability function (cdf) P (Q|σ, x(g),R) denotes the expectation of P (Q|s, x(g),
R). The latter cdf and the density function (pdf) p(Q|s, x(g), R) were already obtained
in [5]. The probability function of Q reads
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P (Q|s, x(g), R) = Φ

⎛⎝Q + αRα−1
(√

R2 + s2(N − 1)−R
)

√
s2 +

(
dαRα−1

)2
s̃2

⎞⎠ . (10)

Note, it directly depends on the parental distance to the ridge axis. The parameter s̃
is used to shorten the notation s̃ = s

√
(R2 + s2(N − 1)/2)/(R2 + s2(N − 1). The

density function can be easily obtained by computing the derivative of (10). It was
shown in [6], that the integral expression of P (Q|σ, x(g), R) may be simplified if a log-
normal distribution is considered. Provided that the learning parameter τ is sufficiently
small, the cdf may be obtained by substituting s with σ in (10). We are now in a position
to determine the self-adaptation response. Plugging everything into (8), the integral

ψ(σ,R) =
∫ ∞

0

( ς − σ

σ

)
pσ(ς|σ)λ

1
√

2π
√
ς2 +

(
dαRα−1

)2
ς̃2

×
∫ ∞

−∞
Φ

(
Q+ dαRα−1

(√
R2 + ς2(N − 1)−R

)√
ς2 +

(
dαRα−1

)2
ς̃2

)λ−1

×exp
(
− 1

2

(
Q+ dαRα−1

(√
R2 + ς2(N − 1)−R

)√
ς2 +

(
dαRα−1

)2
ς̃2

)2)
dQdς (11)

serves as the starting point for the derivation. Since there is no closed solution to (11),
we will apply a similar approximation approach as in [6]. First, we will simplify the
expression inside the Φ-function. Afterwards, we will expand the exponential function
and the root function into their Taylor series around σ and cut them off after the first
few terms. Due to space restrictions, we will only sketch the main points of the deriva-
tions. Let t stand for the expression inside the Φ-function. Rewriting it for Q gives

Q =
√
σ2 +

(
dαRα−1

)2
σ̃2t− dαRα−1

(√
R2 + σ2(N − 1)− R

)
. The integral (11)

changes to the general form

ψ(σ,R) =
∫ ∞

0

( ς − σ

σ

)
pσ(ς|σ)λ

∫ ∞

−∞
Φ (t)λ−1

g(ς, σ)f(t, ς, σ) dt dς

where g and f stand for the root and the exponential function. Both are expanded into
their Taylor series’ Tf and Tg around the parental mutation strength σ. We will assume
τ � 1 which allows to assume that |ς − σ| � 1. As a result, it is possible to cut off the
Taylor series after the quadratic term without introducing severe approximation errors.
We will first address the integration over t. Concerning the variable t, the Taylor series
Tf of f is a polynomial in t up to the fourth power

It(ς, σ) = λ

∫ ∞

−∞
Φ(t)λ−1 e−

t2
2

√
2π

(
a0(ς, σ) + a1(ς, σ)t + a2(ς, σ)t2

+a3(ς, σ)t3 + a4(ς, σ)t4
)

dt+O
(
(ς − σ)3

)
. (12)
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Using the progress coefficients (7), (12) reads

It(ς, σ) = a0(ς, σ) + a1(ς, σ)c1,λ + a2(ς, σ)d(2)
1,λ + a3(ς, σ)d(3)

1,λ + a4(ς, σ)d(4)
1,λ

+O
(
(ς − σ)3

)
. (13)

The coefficients ai depend on ς − σ. Since the integration over the mutation strength
remains to be done, (13) is regrouped into a polynomial in (ς − σ)/σ

ψ(R, σ) =
∫ ∞

0

(
ς − σ

σ

)
Tg(ς, σ)Tf (ς, σ) dς

=
∫ ∞

0
g0f0

(
ς − σ

σ

)
+ (f0g1 + g0f1)σ

(
ς − σ

σ

)2

+(g1f1 + f0g2 + g0f2)σ2
(
ς − σ

σ

)3

+O
(
(ς − σ)4

)
dς (14)

where fi and gi denote the Taylor series’s coefficients associated with [(ς − σ)/σ]i. In
the case of the log-normal operator, the expected values of ςk read ςk = σk exp(k2

τ2/2). The expectation of ((ς − σ)/σ)k can therefore be easily determined. Cutting
off the resulting exponential series after τ2, we obtain ψ(R, σ) = g0f0

τ2

2 + (f0g1 +
g0f1)στ2 + O

(
τ4
)

as the first order SAR. The coefficients gi and fi can be obtained
after a lengthy but straightforward calculation leading to

ψ(R, σ) = τ2
(
d
(2)
1,λ −

1
2
− c1,λdαR

α−1(N − 1)σ√
R2 + (N − 1)σ2 + (dαRα−1)2(R2 + N−1

2 σ2)

+(d(2)
1,λ − 1)

(dαRα−1)2(N − 1)σ2
(
1− 2 R2+ N−1

2 σ2

R2+(N−1)σ2

)
2(R2 + (N − 1)σ2) + 2(dαRα−1)2(R2 + N−1

2 σ2)

)
.(15)

The first order self-adaptation response (SAR) (15) was obtained under the condition
τ � 1 which enabled several simplifications of the original equations. The basic points
were the expansion of the more complicated functions into their Taylor series’ around
the parental mutation strength σ which due to τ � 1 could be cut off after the first
terms. Similarly to the observations made in [5], the SAR (15) depends on the distance
to the ridge axis directly but not on the x-component.

3 Self-adaptation on the Sharp Ridge

The sharp ridge is the simplest case to be analyzed. In this case, the fitness function
is given by F (y) = x − dR. For our first analysis, we will simplify the notations by
introducing normalizations similar to those used in the case of the sphere model [6].
Setting thus σ∗ = σ(N − 1)/R, the SAR changes to
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ψ(σ∗, d,N) = O(τ4) + τ2
(

1
2
− c1,λdσ

∗√
1 + σ∗2

N−1 + d2
(
1 + σ∗2

2(N−1)

)
+(d(2)

1,λ − 1)
(
1 +

d2 σ∗2

N−1

(
1− 2

1+ σ∗2
2(N−1)

1+ σ∗2
N−1

)
2(1 + σ∗2

N−1) + 2d2(1 + σ∗2

2(N−1) )

))
. (16)

The SAR (16) has an approximately linear loss part whose non-linear components van-
ish with increasing search space dimensionality. In Fig. 1, Eq. (16) is compared with
the results of experiments on the sharp ridge. Each data point was obtained by aver-
aging the results of 200, 000 one-generation experiments. For the range of σ∗-values
considered, (16) predicts the outcome of experiments generally well. Deviations occur
for higher σ∗-values. Figure 1 also shows the influence of the d-parameter on the SAR.
Larger choices of d result in an initially sharper fall of the curve and smaller zeros of
the SAR. Let us now consider the limit value of (16) for N →∞ under the assumption
that σ∗ remains finite. We obtain after a short calculation

ψ∞(σ∗, d) := lim
N→∞

ψ(σ∗, d,N) = O(τ4) + τ2
(
d
(2)
1,λ −

1
2
− c1,λdσ

∗
√

1 + d2

)
(17)

which apart from a correction factor d/
√

1 + d2 closely resembles the SAR on the

sphere model ψsphere(σ∗) = O(τ4) + τ2
(
d
(2)
1,λ − 1

2 − c1,λσ
∗) obtained in [6] for

N →∞. The zero of the SAR (17), denoted by σ∗
ψ0

, is easily obtained

ψ∞(σ∗
ψ0
, d) = τ2

(
d
(2)
1,λ −

1
2
−

c1,λdσ
∗
ψ0√

1 + d2

)
= 0 ⇒ σ∗

ψ0
=

√
1 +

1
d2

d
(2)
1,λ − 1

2

c1,λ
(18)

and scales with
√

1 + 1/d2. Similarly to the SAR (15), we can determine the limit of
the normalized progress rate (5) ϕ∗

x = ϕx(N − 1)/R

lim
N→∞

ϕ∗
x(σ∗) = lim

N→∞
σ∗c1,λ√

1 + d2 1+σ∗2/(2(N−1))
1+σ∗2/(N−1)

=
σ∗c1,λ√
1 + d2

(19)

where ϕ∗
x = ϕx(N − 1)/R and that of the normalized radial progress rate (6) ϕ∗

R =
ϕR(N − 1)/R

lim
N→∞

ϕ∗
R(σ∗) = lim

N→∞
(N − 1)

(
1−

√
1 +

σ∗2

N − 1

)
+ lim

N→∞
1 + σ∗2/(2(N − 1))
1 + σ∗2/(N − 1)

dc1,λσ
∗√

1 + d2 1+σ∗2/(2(N−1))
1+σ∗2/(N−1)

=
d√

1 + d2
c1,λσ

∗ − σ∗2

2
(20)
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using Taylor series expansions of the roots. The radial progress rate resembles that of
the sphere. It is interesting to consider a further progress measure, the quality gain, i.e.,
the expected one-generation change of the fitness F (y) = x− dR which is defined by
Q = E[F (g+1) − F (g)] = E[x(g+1) − x(g)]− dE[R(g+1) −R(g)]= ϕx + dϕR. Using
the normalization Q∗ = Q(N − 1)/R, considering (19) and (20), and letting finally
N →∞, we obtain

Q∗ = ϕ∗
x + dϕ∗

R =
√

1 + d2c1,λσ
∗ − dσ∗2/2. (21)

Its second zero is σ∗
F0

= 2c1,λ

√
1 + d2/d. It can be shown by case inspection that the

zero of the SAR is smaller then the zero of the quality gain, i.e., that

σ∗
ψ0

< σ∗
F0
⇔

√
1 +

1
d2

d
(2)
1,λ − 1

2

c1,λ
< 2

√
1 +

1
d2 c1,λ ⇔ d

(2)
1,λ −

1
2
< 2c2

1,λ (22)

provided that λ > 1 and that σ∗
ϕ0

< σ∗
F0

= (1 + 1/d2)σ∗
ϕ0

holds. The consequences of
these relations will be shown later on.
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Fig. 1. The SAR (16) (blue) and its limit for N → ∞ (straight lines) in comparison with the
results of experiments. Each data point was sampled over 200, 000 one-generation experiments.

On the sphere, the ς∗-evolution reaches a steady state for g → ∞. The interesting
question is whether this also occurs for the sharp ridge. Note, in the case of the non-
normalized mutation strength σ, a σ-increase over time on the sharp ridge is desirable
[5]. Therefore, the long-term behavior of the non-normalized σ is also of interest. Let
us assume that the ES starts far away from the ridge axis so that the model appears
basically as a sphere. As a result, the influence of R can be assumed to be far greater
than the influence of x and the ES should initially attain a stationary normalized muta-
tion strength. As can be seen in Fig. 2, experiments support this assumption. But what
are the consequences of this stationary state? In a first analysis, we consider the SAR
and the progress rates obtained for N → ∞. The equation for the ς∗-evolution fol-
lows from (4). The variable ς∗ is obtained by normalizing ς with r/(N − 1). Note, r
denotes the new distance to the ridge. The new distance is given by the evolution equa-
tion (4) for r, r = R − ϕR = R(1 − ϕ∗

R/(N − 1)). The ς∗-evolution is thus given
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by ς∗ = σ∗(1 + ψ)/(1 − ϕ∗
R/(N − 1)) ≈ σ∗(1 + ψ + ϕ∗

R/(N − 1)) provided that
|ϕ∗

R| � N − 1 holds. Stationary points, i.e., points which fulfill ς∗ = σ∗ = σ∗
st, are

then characterized by the solutions of ψ = −ϕ∗
R/(N − 1), i.e., by

d√
1 + d2

c1,λσ
∗
st −

σ∗
st

2

2
= −Mτ2

(
d
(2)
1,λ −

1
2
− d√

1 + d2
c1,λσ

∗
st

)
⇒ σ∗

st =
(
1−Mτ2) d√

1 + d2
c1,λ

+

√(
1−Mτ2

)2 d2c2
1,λ

1 + d2 − 2Mτ2
(
d
(2)
1,λ −

1
2

)
(23)

with M = N − 1. Equation (23) is compared with the results of experiments in Fig.
(3). If the search space’s dimensionality is sufficiently large or τ is sufficiently small
(e.g. τ = 1/

√
N as usually used in practice), the agreement with the experimental

data is good. An exception appears to be a choice in the vicinity of d = 1 where
greater deviations occur: We suspect that taking into account fluctuations is of special
importance for these cases, because this scenario seems to resemble a sphere model
with heavy noise. The deterministic analysis presented cannot account for these random
effects.

The stationary mutation strength (23) assumes values between the zero of the radial
progress rate σ∗

ϕ0
and the zero of the SAR σ∗

ψ. The choice of the learning parameter
decides whether σ∗

st is closer to the latter or to the former. Note, in the case of the sphere
model, the zero of the SAR is generally smaller than the zero of the progress rate. Thus,
the ES is able to obtain positive progress – reducing the distance to the optimizer on
average. On the sharp ridge, it depends on the choice of the ridge parameter d which
zero is greater as the other

σ∗
ϕ0

=
d2c1,λ√
1 + d2

≥ σ∗
ψ0

=
√

1 + d2

d

d
(2)
1,λ − 1

2

c1,λ
⇒ d ≥

√√√√ d
(2)
1,λ − 1

2

2c2
1,λ + 1

2 − d
(2)
1,λ

=:dcrit (24)

which holds for 2c2
1,λ + 1/2− d

(2)
1,λ > 0 which is generally fulfilled for λ > 1.

If d > dcrit, stationary mutation strengths given by (23) are connected with a posi-
tive radial progress and the distance R to the ridge is decreased on average. Similar to
its behavior on the sphere model, the ES moves closer to the ridge axis. This has con-
sequences for the non-normalized mutation strength σ and of course for the progress in
x-direction. If R decreases and σ∗ stays constant (on average) then the non-normalized
mutation strength σ = σ∗R/(N − 1) decreases. Finally σ becomes too small to cause
significant variations. The case d > dcrit finally results in a stagnation. The ridge axis
has been approached, but the ES cannot move significantly along the axis. In other
words, the ES behaves as if it would optimize the sphere model.

If d < dcrit, the zero of the SAR is larger than the zero of the radial progress rate.
Any stationary normalized mutation strength given by (23) causes a negative radial
progress which results in an expected increase of the distance to the ridge axis. The ES
does not approach the ridge axis but enlarges both components of its fitness function:
the x-component of the ridge axis and the distance to the ridge R.
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Both cases for d, i.e., d > dcrit and d < dcrit achieve a positive expected change of
the normalized fitness, since the second zero of Q∗, denoted by σ∗

F0
, is greater than the

zero of the SAR σ∗
ψ0

and the zero of the radial progress σ∗
ϕ0

. Therefore, the normalized
fitness change is positive for all stationary mutation strengths (23). The fitness thus im-
proves on average regardless of the choice of d, however, with different overall results.
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Fig. 2. Some typical runs of (1, 10)-ES on the sharp ridge for d = 5 and d = 0.2 over the first
100, 000 generations. The search space dimensionality is N = 1000. Shown are the distance to
the ridge (r), the mutation strength (σ, thick line) and the mutation strength (σ∗) normalized with
respect to the ridge. The critical d-value is dcrit = 0.936.
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Fig. 3. Comparison between the stationary mutation strength (23) and the stationary mutation
strength obtained in experiments. The points denote the experimental results. Each data point
was sampled over at least 1, 000, 000 experiments. Due to the fast convergence of the distance to
the ridge, it was necessary in some cases to restart the algorithm in order to provide an adequate
data basis.

4 Conclusions

In this paper, we considered the self-adaptation behavior of (1, λ)-ES on the sharp ridge.
The behavior of the ES was modeled using the evolution equation approximations. To
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this end, the expected one-generation changes of the state variables have to be deter-
mined: the radial and axial progress rate and the self-adaptation response. All equations
obtained show an explicit dependency on the distance to the ridge axis R. In a sense,
self-adaptation is deceived by this R-variable. Experiments show that the ES generally
reaches a stationary normalized mutation strength. This is crucial for the long-term be-
havior of the algorithm. From this point on, it only depends on the choice of the ridge
function parameter d whether the ES mainly decreases the distance to the ridge axis or
mainly increases the speed by which it travels parallel to it. Only if d is chosen smaller
than a population size dependent limit, the stationary mutation strength results in an
increase of the distance to the ridge otherwise the decrease occurs. In both cases, a pos-
itive normalized fitness gain is achieved. But only if R increases, this also results in a
significant gain along the ridge direction.

The analysis is far from being complete. First of all, other ridge function, e.g. the
parabolic ridge, will have to be considered. Secondly, the neglected perturbation parts
will have to be taken into account and the analysis must considerN -dependent progress
rates and SAR.
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on Ridge Functions
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Abstract. The progress rate of a self-adaptive evolution strategy is sub-optimal
on ridge functions because the global step-size, denoted σ, becomes too small.
On the parabolic ridge we conjecture that σ will stabilize when selection is unbi-
ased towards larger or smaller step-sizes. On the sharp ridge, where the bias in
selection is constant, σ will continue to decrease. We show that this is of practical
interest because ridges can cause even the best solutions found by self-adaptation
to be of little value on ridge problems where spatially close parameters tend to
have similar values.

1 Introduction

The self-adaptive evolution strategy frequently generates a step-size that is sub-optimal
on ridge functions. This causes the progress rate to be slower than expected or even to
stall [8,14,7]. We conjecture that the global step-size of a (1, λ)-ES will stabilize when
the selection of σ is unbiased toward larger or smaller step-sizes. This occurs when the
probability of selecting an individual with a smaller σ value is approximately equal to
the probability of selecting an individual with a larger σ value.

We provide empirical evidence that shows when the ridge function is smooth (e.g. the
parabolic ridge), self-adaptation will decrease its step-size until it is unbiased in select-
ing σ. On the sharp ridge, which is not continuously differentiable, the local topology in
the neighborhood of the step-size does not change as σ decreases; this implies that for
any σ value, there is a constant bias toward selecting individuals that have smaller step-
sizes. Our explanation for this behavior supplements other justifications for the failure
of self adaptation on the sharp ridge [14].

This is important because the ridge topology can greatly affects the usefulness of
solutions found by self-adaptation. This is especially true when the expected global so-
lution is smooth, a situation that arises in many real-world applications where spatially
close object parameters tend to have similar values. In this paper, we discuss two such
problems: 1) an atmospheric science inverse model that relates a smooth temperature
profile to a set of observable measurements and 2) an artificial problem proposed by
Salomon [13] that also has a smooth target profile. We show that the solutions found by
self-adaptation on these problems are often unacceptable for actual use. This is because
both problems have ridge topology and self-adaptation will favor the parameters of the
profile that offer the greatest decrease in fitness first, and often assign incorrect values
to the parameters that correspond to ridge axes (e.g. those that have less influence on
the fitness function).

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 82–91, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Searching for Balance: Understanding Self-adaptation on Ridge Functions 83

2 The Self-adaptive Evolution Strategy

The canonical evolution strategy is an iterative process where a population of μ parents
produce λ offspring based on mutation distributions that center around the parents. This
paper considers the (1, λ) evolution strategy where the best parent is selected only from
the λ offspring.

In self-adaptation, each individual in the population is described by a set of object
parameters, which define its location in the search space, and a set of strategy param-
eters, that define its mutation distribution. In general, individuals with higher fitness,
and therefore better object parameters, are more likely to survive. Unlike object param-
eters, strategy parameters are selected indirectly based on the assumption that the best
individuals of the current generation are likely to have useful strategy parameters.

Bäck describes the typical evolution strategy for self-adapting a global step-size [2].
In the following equations,N(0, 1) denotes a normally distributed random number with
mean 0 and a standard deviation of 1. Before the object parameters are created, the step-
size for each offspring is adapted.

σg+1 = σg · exp(N(0, τ
′
))

The global mutation strength on σ is τ
′
= 1/

√
2n, where n represents the number of

object parameters. The object parameters are created based on this new step-size.

xg+1
i = xg

i + σg+1 ·Ni(0, 1)

Self-adaptation can be extended to adapt elliptical distributions defined by individ-
ual step-sizes, but this mutation distribution has a tendency to collapse and search only
a subset of the search space [4,9,7]. Correlated mutations extends this idea further by
estimating the covariance for each pair of object parameters, which, in theory, can de-
scribe any elliptical distribution in the search space. But Hansen et al. show that using
correlated mutations becomes impractical when the dimensionality is higher than about
ten [7] and that the performance of correlated mutations is strongly related to the ini-
tial values of the strategy parameters [6]. These shortcomings suggest that self-adapting
more than one strategy parameter can be unreliable.

3 Self-adaptation and the General Ridge Function

A ridge in the search space occurs when there exists a different rate of change (e.g.
scale) between the parameters of the objective function. The direction of the ridge axis
is determined by the interaction of the parameter values. For a separable function, the
ridge axis will be aligned with the coordinate axis that corresponds to the parameter
with the smallest rate of decrease.

Isotropic distributions are invariant to rotations of the search space. This means that
the offspring are created in an unbiased search direction. The implication here is that the
difference in scale between the parameters of the ridge, and not the ridge orientation, is
the primary characteristic that can affect performance. But being invariant with respect
to rotation and being able to exploit ridge structures is not exactly the same [15].
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The generalized ridge function, as defined by Beyer [3], does not have an obtainable
optimal solution. Instead, this “treadmill” function is used to understand the steady-
state behavior of search algorithms on the ridge. The goal is to maximize the following:

f(x) = x0 − d ·
(

N∑
i=1

x2
i

)α/2

where d is a scaling factor that determines how narrow and steep the valley will be. The
α constant determines the type of ridge; the parabolic ridge corresponds to an α = 2
and the sharp ridge forms when α = 1. Although the ridge axis (denoted x0) is aligned
with a coordinate axis, this will not skew our results because, as mentioned, isotropic
distributions are unbiased to the orientation of the ridge axis.

The goal is to make progress in the x0 direction while minimizing the distance to
the ridge axis in all other dimensions [12]. This creates a problem for an isotropic
distribution because offspring are sampled in an unbiased way. For example, there is
no adaptive mechanism that allows self-adaptation with a global step-size to search for
larger values in one direction while minimizing the other parameter values.

Related Work

The theoretical and empirical behavior of evolution strategies using constant mutation
strength and a single global step-size is well documented for the parabolic ridge func-
tion [12,10,11]. Beyer extended this work by looking at the performance properties of
the (1, λ)-ES on the general class of ridge functions [3]. Recently, Arnold and Beyer
have studied CSA on the noisy parabolic ridge [1].

The behavior for an evolution strategy with a fixed mutation strength can be sum-
marized using two important theoretical equations (see Beyer for details [3]). First, the
distance of the best individual to the ridge axis tends to fluctuate within a predictable
range, R, which is called the stationary distance [10]. This measurement is used in the
second equation, the progress rate (ϕ), that predicts the average expected change in the
direction of the ridge axis given a fixed σ value. Algorithms that creep on the ridge will
tend to have lower progress rates.

Beyer points out that the results derived using a constant mutation strength can serve
as a performance benchmark for self-adaptation [3]. If self-adaptation is working as
expected, the steady-state σ values should be close to the optimal predicted values using
a constant step-size. Unfortunately, they are not.

Because an adaptive step-size is necessary in practice, it is important to understand
how different adaptive strategies will perform. Oyman, Beyer, and Schwefel present
conditions on the parabolic ridge where a (1 + 10)-ES limps, or creeps [10]. Several
researchers have also noticed that non-elitist self-adaptation fails on ridge functions.
Herdy showed that the self-adaptation with a single global step-size fails on the sharp
ridge [8]. Salomon empirically showed that the (1, λ)-ES with a global step size failed
on two instances of the sharp ridge 1 function [14]. Salomon found that the estimated
progress rate is essentially negative for nearly all values σ > 0. When the population

1 Salomon’s test functions were similar to the general ridge function with α = 1 and α = 0.5.
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size was large, which Salomon found grew exponentially with problem dimension, only
a small neighborhood of acceptable σ values yield positive progress.

Given the amount of attention devoted to evolution strategies on the ridge, it is sur-
prising that no explanation has been put forth as to why self-adaptation tends to evolve
less than optimal step-sizes on the general ridge function. In the conclusion of his paper,
Beyer observes that self-adaptation appears to reward the short-term goals of reducing
the stationary distance rather than the long-term goal of making progress along the
ridge axis [3]. In the next section, we provide evidence that supports our conjecture as
to why this occurs.

4 Why Is Self-adaptation Sub-optimal?

On the ridge function there is a small “window” of improving search directions. This
window gets smaller as either the dimensionality increases or the scaling factor, d, in-
creases. This means that an unbiased isotropic distribution is more likely to sample the
search space in a poor direction rather than an effective one. This creates a strong bias
towards selecting smaller and smaller step-sizes.

In order to understand this bias, consider the three parabolic ridges in figure 1. The
left ridge is sharp (α = 1) whereas the other two ridges are parabolic (α = 2). Two
isotropic distributions based on σ are shown. One is slightly larger than σ and the other
is slightly smaller. The base σ value in the first two graphs is 1 and decreases to σ = 0.1
for the right most graph. The “window” where the larger step size has greater fitness is
less than the small step-size window in all cases. In other words, the smaller step-size
has a larger region where its fitness is better than that of the larger step-size. This creates
a bias towards selecting smaller σ values. Notice that on the sharp ridge, the “window”
aligns perfectly with the contour lines; decreasing σ will not change the ridge bias.
However, comparing the two right graphs shows that as σ decreases on the parabolic
ridge, the neighborhood around the step-size becomes more linear and the bias towards
smaller step-sizes is less pronounced. Given this inherent bias toward smaller step-sizes,
we propose the following conjecture.

Conjecture 1. The global step-size of a self-adaptive (1, λ)-ES will stabilize when the
selection of σ is unbiased toward larger or smaller values. If the ridge bias cannot be
removed, self-adaptation will continue to decrease σ by selecting smaller step-sizes.

We found that the steady-state value of σ on the parabolic ridge occurs when the proba-
bility of selecting a small step-size is approximately equal to the probability of selecting
a larger one. Self-adaptation decreases its step-size until the ridge bias diminishes. Intu-
itively, this makes sense. When σ is large, the ridge bias will drive σ towards a smaller
value. If σ gets too small, the probability that a larger step-size will be selected in-
creases. Self-adaptation tends to have a steady-state behavior that reflects this balance.

On the sharp ridge, however, the inherent bias cannot be removed. Although the
sharp ridge is continuous everywhere, its gradient is discontinuous along the ridge axis.
This means that as the step-size decreases, due to the inherent ridge bias, the topology in
the neighborhood around σ looks identical for all values. In other words, there does not
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Fig. 1. Contour plots of three ridge functions. The dotted arc in each plot corresponds to the
region where the smaller step-size has greater fitness. The solid arc indicates the region where the
larger step-size is best.

exist a small enough step-size such that the bias toward selecting smaller σ values di-
minishes. This compliments Salomon’s results [14]; in high dimensions, the population
size needed to effectively sample the search space adequately is exponentially large.
Without an adequate sample, an individual with a larger step-size will rarely search in
the small window where the larger step-size is best.

In order to provide evidence for our conjecture, we would like to measure the prob-
ability that the step-size of the next generation parent is smaller than that of the current
parent. If σg equals the step-size of generation g, then what we would like to measure
is: P (σg+1 < σg). We denote this probability as ω. This will allow us to show that
when σ reaches a steady-state, ω ≈ 0.5.

We can estimate ω by conducting a series of “single generation” experiments 2. We
do this by creating λ offspring based on a distribution defined by σ and the parent’s
location, x. Then we evaluate the fitness of the offspring and ask the question: is the
step-size of the best individual less than the value of σ? We repeat this 200 times and
keep track of the number of times that a small step-size is successful. This is our esti-
mate of ω, denoted ω̂.

We ran 100 trials of a (1, 60)-ES on both the parabolic and sharp ridge function. Each
trial ran until either 1000 generations passed, which is ample to measure the stable be-
havior, or the step-size was below 1e− 10, which is appropriate for measuring failure.
After each generation, we estimated ω using the position and step-size of the current
parent, as well as the corresponding population size, λ = 60. We tested several settings
for the ridge scaling factor d = {1, 2, 5, 10}. Larger values of d create a steeper ridge
function, which, given the same value for σ, increases the bias toward selecting smaller
step-sizes. Figure 2 illustrates how self-adaptation behaves on a N = 30 dimensional
ridge function where d = 2. The left graph shows the logarithm of σ for each genera-
tion. On the parabolic ridge, σ decreases until it reaches a steady-state value. Although
this is sub-optimal, the strategy continues to make progress along the ridge axis. The
step-size on the sharp ridge continues to decrease, never reaching a stable value. This

2 An idea used by Beyer [3] for a different purpose.
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Fig. 2. The left graph shows the convergence of log(σ) for λ = 60 on the sharp (α = 1) and
parabolic (α = 2) ridge. The graph on the right shows ω̂. The x-axis is the generation number.

is consistent with previously reported observations [8,14]. The right graph shows the
average ω̂ for each function. The value for ω̂ is approximately 50% on the parabolic
ridge. The step-size decreases until the topology around its expected distance from the
ridge is unbiased toward selecting small or large values of σ. On the other hand, as soon
as the self-adaptation finds the sharp ridge, the value for ω̂ is constant and greater than
50%. This is because changing the step-size does not impact the bias toward selecting
smaller σ values. Therefore, the step-size will continue to decrease.

Increasing the scaling factor d increases the rate at which the last N − 1 parame-
ters decrease. This makes the difference between the rate of change for ridge axis (x0)
and all the other parameters more pronounced, and therefore, increases the ridge bias.
There are two implications here. First, the steady-state σ values on the parabolic ridge
will decrease as d increase. This is because it will take a smaller step-size to create
an unbiased selection operator required for σ to stabilize. Second, because the bias in
the sharp ridge cannot be removed, an increased ridge bias will cause the step-size to
decrease at a higher rate.

Figure 3 shows how the scaling factor d can affect self-adaptation on the sharp ridge.
The right box plot indicates that increasing d creates a larger bias toward selecting
smaller step-sizes for the sharp ridge. The parabolic ridge still reduces it step-size until
ω̂ ≈ 50, but this requires a smaller σ for larger values of d (which is not shown here).
Although the ω̂ value for the sharp ridge with d = 1 appears to be close to 50, it is
actually significantly different. Even this small bias will cause instability in the step-
size. The right graph of figure 3 shows the convergence behavior for σ on the ridge
functions with d = 1. The parabolic ridge balances when ω̂ ≈ 50. On the sharp ridge,
a slight bias in selection (ω̂ > 50) causes the step-size to decrease slowly. Given 1000
generations, self-adaptation makes greater progress on the unscaled (d = 1) sharp ridge
than it does on the unscaled parabolic ridge. This is not surprising because the parabolic
ridge has a much larger rate of decrease to the ridge axis than the sharp ridge, which
decreases linearly.
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Fig. 3. The graph on the left shows ω̂ for all values of the ridge scaling factor d. Each experiment
is denoted with an s or p, depending on whether the ridge is sharp or parabolic, and the d value.
For example, s1 refers to the sharp ridge with d = 1. The right graph shows the the convergence
of log(σ) for λ = 60 on the sharp with d = 1. Although ω̂ appears to be close to 50 for the
sharp ridge with d = 1 (s1), it is in fact significantly higher (using a t-test with a 0.95 confidence
interval).

5 Why Should We Care?

The previous section indicates that steeper more narrow ridges have a stronger inherent
bias toward selecting smaller step-sizes. We also know that the progress rate is lower
for smaller values of σ [3], which can cause an algorithm to creep. This means that on
the general ridge function, self-adaptation will find the set of parameter values that are
close to the ridge and either fail to find, or take a long time to find, the optimal value for
the parameter that corresponds to the ridge axis. What is unclear here is exactly how the
ridge bias can affect solution quality when more than one parameter acts like a ridge
axis. We have found that self-adaptation will pay more attention to the parameters that
have the largest rate of descent (e.g. large d) and often assign the incorrect values to the
parameters that act like ridge axes. Sometimes these values are wildly different from
the expected solution.

Many real-world applications that measure physical phenomena have optimal solu-
tions such that spatially close object parameters tend to have similar values. This creates
a “smooth” target profile through the parameter values of the objective function. We have
recently been using search methods to find the inverse of an atmospheric science forward
model that relates vertical temperature profiles to observed measurements. We actually
want to solve the inverse problem: given a set of observations, what is the corresponding
temperature profile? Traditional gradient-based methods can be used, which means that
the function is smooth, but such methods are computationally extremely costly [5]. Un-
fortunately, we have found that well known, well tested evolutionary algorithms and local
search methods applied to inversion problems do not always yield acceptable solutions.
The primary reason for this is that there are ridges in fitness landscape.

Salomon demonstrated that a (1,6)-ES using self-adaptation failed to converge on
an artificial test function that also contained physical continuity [13]. The test problem
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Fig. 4. Self-adaptation will focus search on those parameters that offer the greatest influence on
the fitness function. The top graphs are the estimated bias b̂ (figure 4(a)) and the actual weights
used on the temperature problem and Salomon’s problem respectively. The vertical dashed line
indicates a “transition” on the temperature problem where the parameter bias changes from small
to large. The average values of b̂ are lower for the parameters to the left of this line. We simulated
this for Salomon’s function by applying larger weights to the last half of the parameters.

uses a simple convex function, f(x) = 1 − x2, as the target profile. The fitness of an
individual is an approximation of the area between the current solution and the target
profile (see Salomon’s paper for details [13]). Since this metric is more on the order of
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the absolute difference between the target and current solution, and not its square, the
test problem creates a “sharper” ridge. This is the primary cause for self-adaptation’s
poor performance. We found that applying different weights to the individual parame-
ters exacerbated this problem.

We also know that the temperature problem has a strong bias toward the upper di-
mensions of the problem. Starting from the globally optimal solution, we varied each
parameter by ± 2 units. Every move increases the objective error, which is zero when
no change is applied. The average change per dimension, denoted b̂, is a rough estimate
of the expected change in the objective function associated with each object parameter
near the optimal solution.

The top graph in figures 4(a) and 4(b) shows the estimated bias b̂ for the temperature
problem and the actual weights used to scale Salomon’s problem. The bottom graph
in each figure shows the target profile as a solid black line. The gray lines are the
10 best solutions out of 30 trials for a (1, 100)-ES using self-adaptation. Notice that
the parameters offering the greatest opportunity to reduce the error will correspond
to the largest values of the estimated bias b̂ and artificial weights. This bias causes
search algorithms to fit the “steeper” dimensions of the profile first – and to assign
incorrect values to the other parameters. Unfortunately, as search continues to progress,
σ becomes too small to make any dramatic changes to these solutions. From a practical
point of view, the parameter values are not very useful because they “zig-zag” the actual
temperature profile too much. The same is true for Salomon’s problem. Even small
weight values, like wi = 3, create enough difference in rate of decrease to have a
profound affect on how well the algorithm can fit the target profile.

6 Conclusion and Outlook

We have provided evidence to support our conjecture that self-adaptation will continue
to decrease its step-size on the parabolic ridge function until it removes the bias toward
selecting smaller σ values. On the sharp ridge function, this inherent bias cannot be
removed, and σ will decrease on average. This explains why the performance of self-
adaptation is poor on ridge functions.

From a practical point of view, ridges can cause even the best solutions found by
self-adaptation to be of little value when the solution is a smooth target profile. This is
because self-adaptation will favor the parameters that correspond to the largest decrease
in fitness first, and leave the other parameters in potentially sub-optimal locations. This
is strong evidence that isotropic distributions are not the most efficient or effective algo-
rithms for problems that contain ridges. Strategy that directly address the ridge problem,
like Covariance Matrix Adaptation [7], are a much better choice.

The shortcomings of correlated mutations and the lack of robustness that frequently
occurs when adapting individual step-sizes leave an impression that the only safe way
to use self-adaptation is with a single strategy parameter. And this strategy can also
fail on the sharp ridge, a relatively harmless looking unimodal surface. To confuse the
issue even more, when self-adaptation does not fail, it usually adapts step-sizes that are
too small. All of these arguments seem to indicate that the self-adaptive assumption –
highly fit individuals will also have useful strategy parameters – is incorrect.
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On the other hand, the selected individuals will tend to have distributions that are
more likely to explore better regions of the search space on the ridge function. A large
step-size is less likely to “explore” better regions of the search space because of the
inherent bias that comes with ridge functions.

This paper takes the first step towards a deeper understanding of why self-adaptation
fails on the general ridge function. The results presented hold λ = 60 (for N = 30)
constant. Future work should study how λ can affect the steady-state value of σ. Our
preliminary results are counter intuitive; increasing the population size can also increase
the estimated probability (ω̂) that a smaller step is selected.
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ence Foundation under Grant No. 0117209 and Sandia National Labs.
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Abstract. A very general class of EDAs is defined, on which universal results
on the rate of diversity loss can be derived. This EDA class, denoted SML-EDA,
requires two restrictions: 1) in each generation, the new probability model is build
using only data sampled from the current probability model; and 2) maximum
likelihood is used to set model parameters. This class is very general; it includes
simple forms of many well-known EDAs, e.g. BOA, MIMIC, FDA, UMDA, etc.
To study the diversity loss in SML-EDAs, the trace of the empirical covariance
matrix is the proposed statistic. Two simple results are derived. Let N be the
number of data vectors evaluated in each generation. It is shown that on a flat
landscape, the expected value of the statistic decreases by a factor 1−1/N in each
generation. This result is used to show that for the Needle problem, the algorithm
will with a high probability never find the optimum unless the population size
grows exponentially in the number of search variables.

1 Introduction

Estimation of distribution algorithms (EDAs) are search algorithms inspired by evolu-
tionary algorithms. Whereas evolutionary algorithms use a population of configurations
to search for a solution to an optimization problem, EDAs use a probability function
instead. This probability function models the population which it replaces. For this rea-
son, EDAs are also often called “probability-model building evolutionary algorithms”.
A range of EDAs have been proposed and developed, both for continuous and discrete
search spaces, and a number of successful applications have been reported. A recent
book [1] reviews the field.

One of the appeals of EDAs is that the probability models can represent and learn
the structure between the search variables. The earliest EDAs treated each variable in-
dependently [2,3]. Later EDAs allowed a structured relationship between the variables.
This allows correlations between the variables to be maintained during search. Since
the effectiveness of genetic algorithms, and most other heuristic search algorithms, is
highly dependent on the move operators, the fact that EDAs can learn move operators
is a very enticing feature.

Despite the appeal of EDAs and the reported successes, there are difficulties in ap-
plying them effectively. One difficulty, which is the primary issue of this paper, is that
under certain circumstances certain EDAs can get into states from where they can-
not find the optimum no matter how long they are run. This is because they have lost
their diversity; it is analogous to fixation in a mutation-free genetic algorithm. Thus, to
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apply EDAs effectively, the control parameters of the algorithm must be chosen to avoid
this situation. However, this may be difficult to do. For independent-variable EDAs, it
has been shown [4,5] that the appropriate settings of these control parameters is very
different for different problems. For example, the learning rate in PBIL needs to be
sufficiently small to insure that the optimum is found, and it must be exponentially
small in the system size in some problems, but need only scale as low-order polynomial
of the system size in others. This makes it very difficult to set this control parameter
in advance. Similar results hold for UMDA, where the population size must grow as a
problem-dependent function of the number variables; exponentially for some problems,
polynomially in others.

It has not be known whether these results hold for EDAs with more complex variable
structure. A number of different EDAs have been proposed, which are distinguished by
the structure imposed on the variables and by the method used to learn the probability
model. This makes theoretical analysis difficult, first because there are so many dif-
ferent models to analyze, and second, because the analysis of models which change
their structure at each generation is difficult. Indeed, much of the theoretical work has
focused on the simplest, independent-variable EDAs (e.g. [6,7,5]). An example of the-
oretic work on population sizing in a specific non-independent EDAs is [8].

It is worth emphasizing that although it is expected that the runtime of algorithms
will depend very strongly on the problem, effective algorithms should work with fairly
generic settings of the control parameters. Otherwise, one will have to dedicate sub-
stantial computational resources to searching control-parameter space, resources which
could be applied to searching for the optimum using a more robust algorithm.

In this paper, two rigorous results are derived which hold for an entire class of
EDAs. It is a fairly unrestricted class, including EDAs which learn structure, such as
the Bayesian Optimization Algorithm (BOA) [9] in its simplest form, as well as simple
EDAs such as UMDA [3] which is one of the earliest independent-variable EDAs, and
many others. The first result concerns the expected diversity loss per generation when
searching on a flat landscape, and the corresponding expected time to completely lose
diversity (fixation). The second result is a lower bound on the minimum population size
required to insure that the optimum is found when searching for a particular configura-
tion on an otherwise flat landscape (the so-called needle in a haystack problem). Both
results are universal for the entire class of EDAs.

2 Estimation of Distribution Algorithms

I will consider the search space to consist of L variables, all of which take values from
some finite set A, i.e. x = (x1, x2, . . . , xL) ∈ AL. The goal is to find the configuration
which maximize an objective function f : AL →R.

At the heart of the EDA is a class of probability functions from which a probabil-
ity function is chosen at each generation. In general, this has two parts: the structure
defines which variables interact with which, and the parameters define the form of the
interaction. The structure is discrete and denoted S; the parameters are continuous and
denoted P . To avoid confusion, the term parameter will always be used to refer to a
parameter of the probability model; the term control-parameter will be used to refer to
parameters of the algorithm, such as the population size.
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To express this mathematically, the assumption of EDAs is that for each variable xi,
there is a set of variables, called its parents, on which it depends. Let π(i) denote the
set of parents of component i. The underlying assumption is that the joint probability
of all the variables P (x), factorizes.

P (x) =
L∏

i=1

P (xi|xπ(i)). (1)

Here, we use the shorthand xπ(i) to denote the vector consisting of just those compo-
nents which are parents of i.

The set of parents for each variable is what constitutes the structure of the probability
model. Once the structure has been determined, one needs to estimate values for each
of the factors in equation (1). These values are what constitutes the parameters of the
probability model.

The generic EDA is roughly as follows. Start with a random population ofM vectors.
Then implement a loop consisting of

1. Select N vectors using a selection method.
2. Learn the probability model (S,P) from the selected population.
3. Sample M vectors from the probability model.

There are many variations. Selection is often done by applying truncation selection to
the sampled population. Alternatively, the selected vectors replace a fraction of the se-
lected population from the previous generation rather than the entire population. Like-
wise, the probability model can be built from scratch at each generation, or or can use
the model from the previous generation(s) to build the current model. Another source
of variation in EDAs is in the allowed structure: UMDA treats each variable indepen-
dently. MIMIC assumes a chain of interactions, so every variable except the root and
the terminal variables are the parent of one node and the child of another. BOA uses a
general directed acyclic graph to represent the structure. And there are many others.

2.1 SML-EDA: A Restricted Class of EDAs

In this work, we consider a restricted class of EDAs for which we will derive some
simple results. We will need three assumptions.

Assumption 1. The probability distribution in each generation is built using only data
which was sampled from the probability model of the previous generation.

Assumption 2. The parameters of the estimated model are chosen using maximum
likelihood.

Assumption 3. The sample size M and the size of the population used to build the
model N are of a constant ratio independent of the number of variables L.

Assumption 1 means that data in generation t can only affect data in generation t + 1
through the probability model. This rules out taking data directly from previous gener-
ations to put into the current population. Thus, there can be no elitism or mixing of the
population with populations from previous generations.
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The results of this work apply irregardless of the mechanism used to generate the
structure of the probability model. However, once the structure is chosen, Assumption 2
requires the parameters of the model are those which maximize the probability of the
data given the probability model,

PML = argmaxP prob (population|(S,P)). (2)

This estimation is widely used, because it is easily computable from empirical fre-
quencies. For example, once the structure of the model is determined, a typical model
parameter will correspond to the probability that a particular component takes the par-
ticular value, given the value of its parents. If assumption 2 holds, this probability is
estimated by the following ratio,

P (xi|xπ(i)) ≈
N(xi,xπ(i))
N(xπ(i))

, (3)

where N(x, y) denotes the number of times in the data that x and y takes their values.
In this paper, we will explore two results which hold for all EDAs for which these

two assumptions hold. For the purpose of this paper, we will refer to all such EDAs as
SML-EDAs, to denote Simple, Maximum-Likelihood EDAs.

Definition 1. The class of EDAs for which assumptions 1 and 2 hold are called SML-
EDAs.

This class includes a wide group of EDAs and can include EDAs which assume inde-
pendent structure, EDAs which have non-trivial fixed structure, and EDAs which learn
their structure from the data. Certainly many of the standard EDAs, such as UMDA,
MIMIC, FDA, BOA, fall in this class in their simplest form.

There are two ways in which EDAs typically fail to be in the class SML-EDA. First,
because they use data from several previous generations to generate the probability
model. The second reason is that the parameters are not set using maximum likelihood.
PBIL, for example would not be in this class because its values are estimated as a linear
combination of the current values and the maximum likelihood ones. Mühlenbein and
Mahnig [10] suggest setting parameters for FDA using a maximum posteriori method
rather than maximum likelihood; if that is done the resulting EDA is not in this class.

Finally, in this work we are interested in asymptotic behavior for large L. Assump-
tion 3 ensures that a single control parameter governs the population size. Under these
three assumptions, the EDA works like this:

1. Initialize sample pop to be a random population of size M ;
2. Repeat

(a) Produce select pop by selecting N from sample pop;
(b) Learn the structure of the probability model S from select pop by any

means;
(c) Learn the parameters of the probability model P from select pop using

equation (3).
(d) Update sample pop by sampling M vectors independently from the proba-

bility model defined by (S,P).
3. Until some stopping criterion met
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3 Diversity Loss in SML-EDAs on a Flat Fitness Landscape

The first result concerns the rate of diversity loss in SML-EDAs on a flat landscape.
To measure the diversity in a population of size N , we will use the trace of empirical
co-variance matrix. Let νA

i be the empirical frequency at which the component i takes
the value A, i.e.

νA
i =

1
N

∑
μ

δ(xμ
i = A), (4)

where xμ
i is component i of population member μ, and δ is an indicator function; 1 if

its argument is true, and 0 if its argument is false. The diversity measure we will use is,

v =
∑

i

1
|A|

∑
a

νa
i (1− νa

i ) , (5)

where |A| is the number of values component xi can take, which is assumed to be the
same for all components.

Whenever the value of a component fixates, i.e. is the same in all members of a pop-
ulation, the corresponding

∑
a ν

a
i (1− νa

i ) will be zero. So, complete fixation implies
v = 0. The random population has the maximum value of v. Finally this is related to the
covariance matrix which is defined as the expectation that two components both take
the valueA, minus the expectation that they take this value independently, summed over
all values,

Cij =
1
|A|

∑
a

[〈δ(xi = a)δ(xj = a)〉 − 〈δ(xi = a)〉 〈δ(xj = a)〉] (6)

where angled brackets 〈·〉 denotes expectation. The quantity vt is the trace of the em-
pirical estimate of C at generation t.

Using this measure of diversity, it is trivial to derive the diversity loss on a flat land-
scape, on which all vectors have the same fitness. On a flat landscape, sampling M
values followed by selection of a population of size N is equivalent to sampling a pop-
ulation of size N .

Theorem 1. For EDAs in class SML-EDA on a flat landscape, the expected value of v
is reduced in each generation by a factor of 1 minus the inverse population size,

〈vt〉 = 〈vt−1〉
(

1− 1
N

)
. (7)

A detailed proof will be given elsewhere. To get from generation t−1 to t, there are two
steps. First the probability distribution is created from the data. Second, a new popula-
tion is created from the probability model. The proof is almost trivial. Starting from the
value of vt−1, the model is built. Since the parameters are set by maximum likelihood,
the marginals are equal to the frequencies for each component. Then sampling is done.
Since the landscape is flat, we can combine sampling with selecting, and replace that
step with the single step of sampling N data vectors from the probability model. It is
well known that empirical variance is reduced by a factor (1 − 1/N) from the parent
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population. Thus 〈vt〉 = vt−1
(
1− 1

N

)
. Finally, we average over the right-hand side to

get the result.
This provides a prediction for the expected diversity loss which is universal for all

EDA in the class SML-EDA,

〈vt〉 = v0 (1− 1/N)t
, (8)

which decays with characteristic time approximately equal to the population size for
large N . Assuming a random initial population, v0 = L/|A|(1− 1/|A|).

4 A Universal Bound for the Minimum Population Size in the
Needle Problem

Next we consider an SML-EDA searching for a particular configuration on an otherwise
flat landscape. This problem is sometimes called the needle in the haystack problem,
or the Needle problem. I.e. there is one special state (the “needle”) which has a high
fitness value, and all other configurations have the same low fitness value.

Using the result from the previous section, it is possible to derive a lower bound for
the minimum population size N needed to solve this problem. Let TN be the time that
the needle is first sampled. The shorthand TN = ∞ will mean that the needle is never
sampled. (Time is measured in units of iterations of the algorithm. One time-step refers
to one cycle of selection, model building, and sampling.) We will assume, as above,
that the search space consists of L variables, each of which takes |A| possible values.
Asymptotics will be for large L; |A| is assumed to be a constant.

To derive a lower bound on the minimum population size required to ensure that the
optimum is found, a bound can be derived for the probability that the needle is never
sampled,

prob (TN = ∞) ≥ B(N,L). (9)

Then, the follow holds.

Theorem 2. In the limit that L→∞ such that N2L|A|−L → 0,

B(N,L) = 1−O
(
|A|−L/2

)
for any EDA in SML-EDA searching on the Needle problem.

This result shows that any SML-EDA will almost never find the needle if the population
size is o(

√
|A|L/L). I.e. the population size must grow at least as fast as

√
|A|L/L for

the optimum to be found.
Theorem 2 will be proved in two steps. First, a time t∗ is defined so that, if the

algorithm has run for that length of time without finding the needle, it is highly likely
that it never will find the needle. Next it is shown that if the population size grows (with
L) sufficiently slowly, it is highly likely that the algorithm will run for t∗ steps without
finding the needle.

The first step towards proving Theorem 2 relies on the following result.
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Lemma 1. Let t∗ be defined as

t∗ = −
L
2 log (|A|) + log (LNv0)

log (1− 1/N)
. (10)

If the needle has not been found after a time t ≥ t∗, the probability that the needle
will never be found is greater than 1 − ε, where ε = |A|−L/2. Mathematically, this is
expressed,

prob (TN = ∞|TN > t∗) ≥ 1− |A|−L/2. (11)

Proof. To compute prob (TN = ∞|TN > t∗) first observe that at time t, the expected
variance is given by equation (8) and will be very small. Because the variance is posi-
tive, the fact that the expected variance is small means that the actual variance must also
be small with a high probability. The largest the actual variance can be with a probabil-
ity greater than or equal to 1− ε is 〈v〉 /ε, for any ε between 0 and 1 (see, for example,
[11]). In other words,

prob
[
v(t) ≤ 〈v(r)〉

ε

]
≥ 1− ε. (12)

The idea is to choose t∗ to be large enough so that

vt ≤
〈vt〉
ε

≤ 1
N

(
1− 1

N

)
(13)

The reason is that if vt is so small, there must be fixation at every component except
possibly one component. (Fixation of a component i means that the variable xi takes
the same value in all vectors in the population.) Since maximum likelihood is used to
build the probability model, once fixation happens at any component, that component
will remain fixed for the rest of the run of the algorithm. If L− 1 components are fixed,
the needle will only be sampled if they are fixed at values found in the needle. The
probability of this is no more than |A|−(L−1). Thus, we can write

prob
(
TN = ∞|TN > t∗, vt ≤ 1/N − 1/N2) > 1− |A|−(L−1). (14)

This is the probability that the needle is never found assuming that the needle has not
been found up to time greater than t∗, and given that vt is small enough that we know
that L− 1 components are fixed.

We are not certain that vt appropriately small, it is just probable so. However, the
probability that vt is small as we assume is ε. Take

ε = |A|−L/2. (15)

Then it is the leading order term and

prob (TN = ∞|TN > t∗) = 1−O(ε). (16)

It only remains to compute t∗. This is done by setting equation (13) to be equality, and
solving equation (8) for t. The solution is equation (10).

��
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The next step in proving Theorem 2 is to consider the probability of not finding the
needle during the t∗ steps.

Lemma 2. Let t∗ be defined as in equation (10). The probability that the needle is not
found after t∗ steps obeys

prob (TN > t∗) ≥ 1− N2

|A|L

[
L

2
log (|A|) + log (LN)

]
. (17)

Proof. Choose t∗ as in equation 10. Since random search is optimal for this problem1,
the probability that SML-EDA does not find the needle in time t∗ obeys

prob (TN > t∗) ≥
(
1− |A|−L

)t∗N
. (18)

(Remembering that N vectors are considered at each time-step.)
The result is found by putting into this equation the value for t∗, and using the con-

vexity of log and exp and other standard inequalities to simplify the expression, ��

Proof of Theorem 2

Proof. The probability of never finding the needle can be decomposed into,

prob (TN = ∞) = prob (TN = ∞|TN > t∗) prob (TN > t∗). (19)

with t∗ defined as previously. Lemma 1 gives a lower bound for the first factor on
the right side of equation (19). Lemma 2 gives a lower bound for the second factor.
Combining them gives the following,

prob (TN = ∞) ≥ 1− |A|−(L/2) −N2|A|−L

[
L

2
log (|A|) + log (LN)

]
(20)

+ higher order terms in |A|−L . (21)

If in the limit that L → ∞, N grows sufficiently slowly that the third term vanishes,
then the probability of never finding the needle will go to 1. Thus, if

N = o

(
|A|L/2
√
L

)
, (22)

the leading term in equation 20 will be 1 − |A|−L/2 and as L → ∞ the needle will
never be found. ��

5 The Expected Runtime for the Needle Problem and the
Limits of Universality

The content of Section 4 is basically if the algorithm runs for time t∗ without finding
the needle, the algorithm has likely fixated and will never find the needle. Since number

1 Among algorithms which make no attempt to prevent visiting the same configuration multiple
times.
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vectors processed is tN which must be of order |A|L for the needle to be found, N
must be approximately the size of |A|L/t∗ for the needle to be found. This result is
universal, it holds for the entire class SML-EDA.

The next task is to show that when the population size is sufficiently large, the prob-
ability of finding the optimum approaches one, and to produce an estimate of the run
time when N is large enough so that the needle is typically found. It is not clear that
this can be done for the entire class SML-EDA. Lemma 1 gives a universal upper bound
on the search time given the needle is found.

Corollary 1. If the needle is found, the time to find it is bounded above by t∗ with
probability 1− |A|−L/2.

However, this is not very informative. If the population size is smaller than the critical
value, as given in equation 22, this bound is not useful, since the needle will almost
never be found. If the population grows much faster than the critical value, it is likely
that this bound is not tight. For example, if the population size N = O(|A|L) it is
likely that the optimum will be found in the first few generations. If the population size
obeys the critical scaling, N2 = O(|A|L/L), Corollary 1 suggests that the algorithm is
efficient; the runtime is asymptotically the same as random search. However, the results
herein are not sufficient to show that the probability of finding the optimum is needle is
close to one in this case.

The reason that it is not possible to investigate the regime in which the optimum is
find using the methods of this paper, is that the particular statistic, vt gives one-sided
information. When it is small, there is definitely fixation, independent of the structure
of the probability model. However, when it is near its initial value, that does not imply
that there is no fixation in models with non-trivial structure. As an example, consider a
chain model with binary variables. Each variable xi can take the values 0 or 1, and the
parent of variable i is node i− 1. Variable 1 is a root and has no parent. In other words,
the assumed probability model is P (x) = P (x1)

∏L
i=2 P (xi|xi−1). Suppose it fixates

such that P (x1) = 1/2, P (xi = 1|xi−1 = 0) = 1 and P (xi = 0|xi−1 = 1) = 1. The
only vectors which can be generated are 01010 . . . and 101010 . . .. This fixation would
be totally invisible to the statistic vt which would continue to equal its initial value.

One conclusion is that convergence conditions will not be universal, but will be
particular to the EDA. (This paper is essentially about non-convergence conditions.)
A particular statistic, sensitive to the type of probability model might be necessary.
For example, the statistic used here is appropriate for SML-UMDA, for which it can
be shown that if the population size N and runtime T obey TN = O(|A|L) and
T/N = O(|A|−Lδ) for δ > 0, the algorithm behaves asymptotically like random
search on the Needle problem and is therefore efficient. For other EDAs other statis-
tics may be required to study algorithmic efficiency. Alternatively, it is possible that the
decay of some general property of the covariance matrix, e.g. its rank, may be used to
show convergence results for the general class SML-EDA, but that remains to be seen.

6 Conclusions

With inappropriate settings, many EDAs can reach a state from which the probability of
ever finding the optimum is zero. This is due to diversity loss which cannot be restored.
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If any component of the data vectors does not take one of its allowed values anywhere
in the entire population, that value can never be restored. If that value is required in
the optimum, the optimum will never be sampled. The flat landscape is the simplest
problem in which this can be studied. We have shown that this diversity loss is the same
for a whole class of EDAs. A consequence of this is that for a problem which is almost
everywhere flat, such as the Needle problem, the probability of diversity loss before the
optimum is sampled is also universal for the class, and we have shown that it requires
an exponentially large population size to avoid this.

It is important to go beyond these results. In many other search problems, the land-
scape will not be flat, but there will be many directions which are essentially flat. It
was shown in UMDA[5] and PBIL [4] that the rate of diversity loss relative to the rate
of search in non-flat directions helped to understand how control parameters needed to
be set to ensure a reasonable probability of finding the optimum. Presumably the same
will be true in arbitrary EDAs. However, unlike diversity loss, I expect that search in the
non-flat dimensions not to be universal, but to depend on the structure of the probability
model. This remains to be investigated.
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Abstract. In this paper we relate information theory and Kolmogorov Complex-
ity (KC) to optimization in the black box scenario. We define the set of all possible
decisions an algorithm might make during a run, we associate a function with a
probability distribution over this set and define accordingly its entropy. We show
that the expected KC of the set (rather than the function) is a better measure of
problem difficulty. We analyze the effect of the entropy on the expected KC. Fi-
nally, we show, for a restricted scenario, that any permutation closure of a single
function, the finest level of granularity for which a No Free Lunch Theorem can
hold [7], can be associated with a particular value of entropy. This implies bounds
on the expected performance of an algorithm on members of that closure.

1 Introduction

General purpose algorithms (also known as metaheuristics, black-box algorithms or
randomized search heuristics [9]) are often used when either the problem is not well
defined or when there is insufficient knowledge (or resources) to construct specific al-
gorithms [9]. In the most general case, a randomized search heuristic can be represented
as a mapping from a multi-set of previously visited points to a new (not necessarily
unvisited) point in the search space. Wolpert and Macready [10], Vose [8] as well as
Droste, Jansen and Wegener [3,9] suggested accordingly a formal model for black-box
algorithms which generalizes most, if not all, existing randomized search heuristics.

There are various theoretical approaches to analyze the expected performance of
metaheuristics. Wolpert and Macready [10], using their model, proved that over all
possible problems, all algorithms have the same performance. It was later shown that
the same result holds even for a smaller set: the sharpened No Free Lunch Theorem
(NFLT) [7] proves that a NFL result holds for any set of functions which is closed
under permutation.

Rather than focusing on a set of functions, compressibility or Kolmogorov com-
plexity is associated with a particular object. It is defined as the length of the shortest
program that can generate a string and halts. When the string represents a problem, it
is argued that compressible strings are associated with easy problems whereas random,
incompressible strings, with difficult ones [6].

In [2], based on the information landscape framework, we derived a new way to
measure the KC of a fitness function and showed the connection to the NFLTs. However,
this framework was based, mainly, on a first order approximation. This paper removes
this restriction. In section 2 we introduce the notion of Kolmogorov complexity – a way
to measure the complexity of a fitness function f . Section 3 defines the information
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content of f . Then, we define a way to measure its entropy, or as we put it, to quantify
the amount of information a function contains. The connection between the expected
difficulty of the function and its amount of information is explored in section 4. The
implication of this on the sharpened NFLTs is given in section 5.

2 Kolmogorov Complexity

The Kolmogorov complexity [6] K : {0, 1}∗ → N is a function from finite binary
strings of arbitrary length to the natural numbers N. It is defined on ’objects’ represented
by binary strings but can be extended to other types like functions.

The KC of an object, x, is defined as the length of the shortest program that prints
x and halts. The program can be implemented by any universal programming language
(e.g., C++, Java), in which a universal Turing Machine can be implemented. The choice
of universal computer (programming language) may change the KC of x only by a fixed
additive constant (which depends on the length of code required to simulate a universal
computer by another). For this reason, we fix our programming language to an arbitrary
language (e.g., C) and define KC w.r.t. that language. The KC of a string x is defined
as: K(x) := minp l(p), where p is a program that prints x and halts and l(p) denotes
the length of program p. This definition suffices for the purpose of this paper – a more
accurate definition is given in [6,5].

A simple or regular object x has a low KC. For example, a string representing a
sequence consisting of n 1s (i.e., “111...1”) can be represented by K(x) = O(log n)
bits. The size of the program depends on the number of bits needed to encode the
number n. A random object, on the other hand, with very high probability, can only
be represented by K(x) = n + O(log n). That is, the shortest program to print x will
be: ”print x”. The KC of an object can only be used as a conceptual measure of its
complexity, it cannot be computed. That is, it is possible to analyze the properties of a
random object, or even to prove that the majority of objects are random but, given an
object x, it is not possible to prove that it is random.

The notion of KC can be extended to account for functions as well. Let f : X → Y
be a mapping between two finite spaces X and Y , then:

K(f) = minpf∈{0,1}∗{l(pf) : ∀x ∈ X pf (x) = f(x)}

where pf is a program that given an input x returns the value f(x). Any function, in
the worst case, can be represented by explicitly listing the co-domain value for each
domain (e.g.,if (x=“0000000000”) return 1230 else...). If the function is random, this
is the only way to represent it. Other functions, like flat functions, can be represented in
code with a constant length, e.g., ”return 0”.

The KC of a function is sometimes used as an indicator for the expected difficulty of
the function for optimization algorithms. A random function contains no regularities.
For this reason, no algorithm, regardless of the search strategy, is expected to optimize
it efficiently. A function with a low KC, on the other hand, contains regularities, that,
in some scenarios, can be exploited by a search algorithm to find an optimal solution
quickly.
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Some limitation of using KC to asses problem difficulty were studied in [1]. It was
concluded that KC measures how different (either better or worse) the expected perfor-
mance (over a function) is likely to be from a random search. Moreover, some exam-
ples of difficult functions which have low KC were given. Nearly constant functions,
like the needle-in-a-haystack, have minimal KC. Nevertheless, they are very difficult to
optimize. This paper addresses particularly the last limitation. In this paper we make
the following assumptions: Firstly, we focus, on functions which contain only a small
number of optima. More precisely, by small, we will mean logarithmic in the size of
the search space. Secondly, we assume that the algorithm has no a priori bias towards
specific regions of the search space. We do not exclude deterministic decisions making
– we assume, however, that the initial starting points are random. In the following sec-
tion, we will define the information content of a function, and we will use this in section
4 to suggest a new way to calculate the KC.

3 Information Content of a Function

Let f : X → Y , where X denotes a finite search space and Y is finite. Let F denote all
possible fitness functions. Using Vose’s notation [8], random search heuristics can be
thought of as an initial collection of elements Ψk ∈ Ψ chosen from some search space
X together with a transition rule τ which produces from the collection Ψk another
collection Ψl. The search is a sequence of iterations of τ : Ψk

τ→ Ψl
τ→ · · · . A collection

of elements is a multiset of X . We use the term search-state to denote a particular
collection. The set of all possible such collections, the state-space, is denoted by Ψ .
Without loss of generality, we assume a notion of order in Ψ . Note that we do not
consider the dynamics of the algorithm and hence adjacent states do not correspond to
adjacent time steps.

We restrict our attention to search algorithms for which τ depends completely on the
current state, that is: τ : Ψ × F → Ψ . Heuristics such as particle swarm optimization
include other parameters such as, for example, velocity vectors. We do not consider, at
this stage, such algorithms.

In reality, the transition rule τ(Ψi, f) if often a composition τ = χ ◦ ξ(Ψi, f) where
ξ(Ψi, f) denotes a selection operator, and χ can be thought of as the exploration op-
erator. The selection phase identifies solutions with high fitness value, the exploration
operator samples accordingly new solutions from X . This section focuses solely on the
selection phase of the search.

In order to make a clear distinction between the two operators (stages) it is useful to
think of an output of the selection operator, a multiset, d, which represents a possible
way to choose (or select) solutions from Ψi. For example, in GAs, given a particular
population, Ψi, d includes a possible mating pool. For a (1+1) evolutionary strategy,
d can be either the parent or the offspring1. Given a state Ψi, we denote by Si all
possible ways of selection points. That is, Si is a set of multisets, each multiset, d ∈ Si,
corresponds to one possible way of selecting points.

1 The notion of a state, in that case, is not natural but, nevertheless, correct. Each state, in our
notation, contains two solutions, then selection is applied to select one of them, and a mutation
is applied in order to achieve the next state.
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The dependency of the performance of a search algorithm on f is reflected by a
probability distribution, P i

f , that the selection mechanism defines for each state over
Si. The particular multiset of solutions, d, that the algorithm selects, being the only
argument for the exploration operator, defines the next state of the search. We define the
information content of f as the set of all such distributions.

Definition 1. The information content of the function f is the set Pf =
{P 1

f , P
2
f , ..., P

n
f } which gives for each state, Ψi the probability distribution P i

f used
in the selection phase.

Usually, the algorithm does not define explicitly a probability distribution over Si,
rather, a distribution over single solutions from Ψi. For example, binary tournament
selection defines the probability of selecting one of two possible solutions as follows:

Pr
trnmnt

{x | {x, y}} = δ(f(x) > f(y)) + 0.5δ(f(x) = f(y)) (1)

where the function δ(expr) returns 1 if expr is true, and 0 otherwise. This is used for a
state (population) bigger than two points, by selecting, iteratively, uniformly at random,
two points from Ψi and applying equation 1:

Pr(x | Ψi, f) = Pr{x, x}+
∑
x �=y

Pr{x, y} · Pr
trnmnt

{x | {x, y}} (2)

Finally, P i
f , the probability of selecting a particular multiset, d, is obtained as follows:

P i
f (d | Ψi, f) =

∏
j<|d|

Pr(dj | Ψi, f). (3)

Rather than calculating the probability of selecting a particular multiset on a partic-
ular state (P i

f (d)), we can measure the probability of obtaining particular sequence of
decisions – this gives a full account (when, to reiterate, all the other parameters of the
algorithm are fixed) for the expected performance. Let D = S0 × S1 × · · · × Sn, and
D ∈ D a particular decision set. Let R be a random variable taking values from D. The
probability Pf that the algorithm is consistent with D is:

Pf (R = D) =
∏
d∈D

P i
f (d)

In order to understand the meaning of the distribution Pf , it is important to explain
the connection between a deterministic selection mechanism, decision set and fitness
functions. For deterministic selection mechanism, f and D are synonymous: there is
only one decision set which corresponds to a particular fitness function. The set of all
possible fitness functions (F ) corresponds therefore to a set of possible decision sets
D ⊂ D. For stochastic selection mechanisms, a uniform Pf corresponds to choosing
at each state, Ψi, d ∈ Si uniformly, at random, this can be thought of as running a de-
terministic search algorithm BUT choosing f ∈ F uniformly, at random.2 The NFLTs

2 Assuming that the algorithm is consistent, i.e., given the same state, it always makes the same
decision.
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X f(x) X 000 001 010 011 100 101 110 111

000 6 000 1 1 1 1 1 1 0

001 5 001 0 0.5 1 1 1 1 0

010 5 010 0 0.5 1 1 1 1 0

011 3 011 0 0 0 1 1 1 0

100 2 100 0 0 0 0 0.5 0.5 0

101 2 101 0 0 0 0 0.5 0.5 0

110 2 110 0 0 0 0 0.5 0.5 0

111 7 111 1 1 1 1 1 1 1

Information Content Possible Decision Matrix
Fitness

Function
X 000 001 010 011 100 101 110 111

000 L L L L L L U

001 U L L L L U

010 L L L L U

011 L L L U

100 U L U

101 L U

110 U

111

Fig. 1. Matrix representation of the information content of a function and a possible decision set

[7] imply that the expected performance, in such case, is that of a random search. The
distributionPf corresponds therefore to the level of randomness in the decision making
of the algorithm. We define the entropy of f , in order to measure this3:

Definition 2. Let Ψ denote the state-space of the algorithm. The entropy H(f) of f
corresponds to the entropy of Pf as defined by the algorithm.

H(f) ≡
∑
D∈D

Pf (D) log 1/Pf (D)

While K(f) measures how regular a function is, and thus implies how difficult it is
to optimize the function, H(f) measures the hardness of the search from a different
perspective. It explicitly measures the randomness induced by the way an algorithm is
using the function. The higher the rate of random decisions the algorithm is expected to
make, the closer the performance will be to a random search.

3.1 Making It Concrete

The size of |Ψ | and |Ψi| for realistic search algorithms is usually bounded. Genetic
algorithms usually use a population of fixed size, the size of a tabu-list is bounded
and local-searchers often consider only two solutions at any given time. In order to
have a more concrete formulation we will restrict our attention to algorithms that use a
comparison of pairs of solutions in the search space.

Each state Ψi corresponds, therefore, to a pair of solutions (e.g., {xi, xj}) from which
the algorithm chooses one. It follows that the number of all possible states |Ψ | = |X |2,
and that for each state there are |Si| = 2 possible choices. In this case, if we consider
various local searchers, equations 1 and 2 coincide, and therefore:

P i
f ({x} | {x, y}) = Pr

trnmnt
{x | {x, y}} (4)

3 In order to have a complete understanding one has to consider the probability of obtaining a
particular state during a run and calculate the expected entropy accordingly. At this stage, we
assume that the uniform distribution gives a good indication to that.
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Figure 1 illustrates this notion for a search space of size 8. It represents a fitness
function f , the information content of the function and a possible decision set. The
information content of the function is represented in the form of a matrix, in which
the area above the diagonal corresponds to the search-states Ψ . Each entry in the ma-
trix corresponds to the probability P i

f , defined by equation 4 of choosing either of the
|Si| = 2 possible solutions. The decision set is defined as a possible realization of the
distributions given in the information-content matrix. We used the abbreviation ’U’ and
’L’ to denote up and left, respectively, that is, to point the particular solutions in the
matrix, which were selected.

This scenario corresponds directly to various kinds of local search algorithms. How-
ever, it can also approximate some population-based search algorithms, as long as they
use a binary selection operator. For example, a GA with binary tournament selection,
or even Memetic algorithms. In any case, from this point on, we will consider only this
restricted scenario. Whenever Ψ is implied we assume the comparison of pairs of so-
lutions. P i

f is defined as in equation 4. Under this assumptions we can calculate the
entropy of an algorithm.

Theorem 1. Let X,Ψ, f, P i
f defined as before. Define r(f) =

∑
i δ(P

i
f = 0.5). Then,

H(f) = r(f).

Proof. Since for P f
i = 0.5 the algorithm chooses with equal probability one of the

two solutions, Pf (D) =
∏

d∈D P i
f (d) is uniformly distributed. Also, the number of

possible decision sets is exponential with the number of entries P f
i = 0.5. It fol-

lows, therefore, that ∀D Pf (D) = 1/2r(f) which gives, H(f) ≡
∑

D∈D
1/2r(f)

log 2r(f) = r(f) �

The entropy of the landscape corresponds to the number of states in which the algorithm
is forced to take a random decision. The entropy will be maximal (i.e., equals |Ψ |) for a
flat landscape (in which ∀iP

i
f = 0.5). In this case, the search will be random. Note that

while low entropy indicates non-random search, this does not necessarily correspond
to efficient search – it simply implies that the algorithm searches according to a certain
bias. The efficiency of the search depends on the matching between this bias and the
problem at hand.

4 Information and Problem Hardness

In section 2 we defined the KC of f and argued that high KC implies hardness. Section
3 on the other hand, focused on the entropy of f for stochastic search algorithms. It
seems that the two notions define hardness from two different perspectives: the first,
K(f), relates to some intrinsic property of f which measures how regular the function
is. The second, H(f), measures the level of randomness as reflected by the way an
algorithm uses f . In this section we show that the KC of the expected decision set of
the algorithm, integrates these two measures.

As a first step, note that given the fitness function f , we can use a fixed size program
to generate the information content of f (i.e., equation 4). This, in turn, can be used to
generate all the elements of the decision set which correspond to entries with a value
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different from 0.5. The KC of the decision vector is equivalent therefore to that of f
plus the complexity which corresponds to the random decisions the algorithm makes.

The problem arises as to how to measure the part corresponding to the random deci-
sions. It seems that it can be better described by H(f) (which relates to the distribution)
rather than the Kolmogorov complexity which measures the complexity of a single ob-
ject. The two measurements of information, however, are closely related. The following
result is taken from [6]:

Lemma 1. Let x = x1x2... where the individual xi are realizations of some random
variable Xi, distributed according to some distribution P . If all outcomes X1, X2, ...
are independently identically distributed (i.i.d.) with for all i, P (Xi = 1) = p for some
p ∈ [0, 1], the expected Kolmogorov complexity of x is:

K(x[1:n]) = n ·H(p) + o(n) (5)

where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy such that 0 ≤
H(p) ≤ 1.

Lemma 1 makes the connection clear. Since the elements in the decision set which
correspond to the random decision the algorithm makes are i.i.d., equation 5 gives us
the expected KC for such a string. The following is a simple corollary of that.

Corollary 1. Let X,Ψ, f, P i
f defined as before. Let D denote the expected decision set.

K(D) > r(f)

Proof. The decision set D can be decomposed into two subsets: let D1 = {d|P i
f

(d) �= 0.5} and D0.5 = {d|P i
f (d) = 0.5}. Clearly, K(D|f) = K(D0.5) + O(1)

(equation 4 and a simple loop can generate, given f the subset D1). But, following
lemma 1, K(D0.5) = |D0.5| ·H(0.5) + o(|D0.5|) = r(f) · 1 + o(r(f)). Which gives:
K(D) ≥ K(D|f) > r(f) �
In order to understand the implication of this lemma, consider the expected hardness
of a needle-in-a-haystack (NIAH). The NIAH describes a landscape in which all the
points in the search space have the same fitness except the global optimum which has a
higher one. It is known to be a very difficult problem.

For a search space of size n let fneedle denote the NIAH and Pf the corresponding
information content. The average description length of fneedle (and therefore of Pf as
well) is O(log n). The high compressibility of the function in contrast to its known
hardness is usually given as a counterexample to the use of Kolmogorov complexity as
a measure of problem difficulty [1].

This apparent contradiction can be resolved by considering the algorithm perspective
of the NIAH landscape. The algorithm does not see a flat landscape. At each time step
it has to make a concrete decision, namely to decide which solution to sample next.
It therefore has to “interpret” the flat landscape to a landscape which contains concrete
information. In other words, it selects uniformly, at randomD ∈ D and selects solutions
accordingly.

Following the previous lemma consider the Kolmogorov complexity of the expected
decision set vs. the fitness function:

K(Dneedle) ≥ r(fneedle) = 2((n−1)·(n−2))/2 � logn
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This illustrates the magnitude of difference between the current approach to calculate
the Kolmogorov complexity of a landscapes and the one suggested in this paper. The
NIAH, however, is an extreme example. Generally, moving from low entropy (H(f) =
0) to maximum entropy (H(f) = |Ψ |) we should obtain many intermediate values.

5 Information and the Sharpened NFLT

In the previous section we showed that K(Df ) > H(f), where Df is the expected de-
cision set, given the function f . Interestingly, H(f) depends on the fitness distribution
of f alone. This allows us to make an important observation regarding the sharpened
NFLT [7]. In the following we give a brief summary of the sharpened NFLT and then
show how it is connected with our results.

Let f : X → Y be a function and σ : X → X be a permutation (i.e., σ is one-
to-one and onto). The permutation σf of f is the function σf : X → Y defined by
σf(x) = f(σ−1(x)).

Define a set F of functions to be closed under permutation if for every f ∈ F ,
every permutation of f is also in F . Schumacher, Vose and Whitley [7] proved that the
permutation closure of a single function is the finest level of granularity at which a NFL
result can hold.

English [4] named each set F , a block. A distribution which is uniform within each
block is called block uniform. The space of all possible problems can be divided into
blocks. A block uniform distribution is necessary and sufficient for NFLT in search.

Each block (i.e., a set F ) can be associated with a particular value of entropy. For
each f ∈ F , H(f) is:

H(f) = Σi

(
|y = i|

2

)
(6)

Equation 6 counts all possible pairs of solutions which have the same fitness. It
follows that the entropy depends solely on the fitness distribution of f . Since the per-
mutation operator does not affect the fitness distribution of a function, all the functions
which belong to F have the same fitness distribution and, therefore, the same entropy,
this proves the following result:

Theorem 2. Let F be a set of functions which is c.u.p. ∀f,g∈F H(f) = H(g). We
denote the entropy of F , H(F ) = H(f | f ∈ F )

5.1 A Qualitative Plot of the Expected Hardness of a Problem

Let F be c.u.p. defined over the metric space (X, d). In this section we would like to an-
alyze how the variance of expected performances changes for different values of H(F ).
Let us start with H(F ) ≈ |Ψ |. It follows from corollary 1 that ∀f∈FK(Df ) > |Ψ |, this
corresponds to a random function and hence, all the functions in the set are expected
to be very difficult to optimize. The variance, however, is expected to be very low –
irrespectively of the algorithm, the expected performance on any function is expected
to be the same, that of a random search.
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Fig. 2. The variance of expected performance as a function of the entropy. Each rectangle rep-
resents a block uniform on which a NFL result holds. The space of all possible problems is the
union of all blocks. Each block is associated with a particular entropy. (A) represents a block
with minimal entropy and maximum variance, (C) maximum entropy and no variance (B) is in
between.

On the other hand, for H(F ) ≈ 0 we do not have any bound on the performance.
We can choose, for example, a function f1 such that K(Df1) is minimal. The low KC
suggests that there exists an algorithm, a, which is the best possible algorithm to solve
f . This implies that f is expected to be very easy to a, the question arises, though, as
to how well the same algorithm performs on other functions from F . It is important to
remember that KC gives an indication to the best performance that a realistic algorithm
can have over one, specific function. It does not tell us how well the same algorithm
may perform on other functions. From the sharpened NFLTs on the other hand, we
know that for each problem (e.g., f1) on which an algorithm (e.g., a) performs better
than random search there exists another problem (e.g., f2), in the same set, on which
it performs as badly. It is easy to construct two functions f1, f2 ∈ F2 such that one is
expected to be very easy and the other very hard. For example, let:

f1(x) = x

f2(x) =

{
n + 1 if x = 0,
x otherwise

We showed that for H(F ) = |Ψ | the variance of possible performance values is
small, and, on the other hand, for H(F ) = 0 the variance is high. More generally,
moving from H(F ) = 0 to H(F ) = |Ψ | the variance becomes smaller and smaller.
The reason for that is derived directly from the NFLTs. An algorithm is expected to
perform well on a problem (better than random search) only if it is aligned with the
problem. The same algorithm, in that case, is misaligned with another problem and,
therefore, is expected to perform badly (i.e., worse than a random search), to the same
extent. The entropy H(f) can be thought of as measuring how unbiased an algorithm
is. The higher H(f) the more random decisions the algorithm makes, the less bias it
will be.
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To summarize, corollary 1 shows that K(Df ) > H(f): the entropy of a function is
a lower bound to its expected KC. Theorem 2 associates each group of functions which
is c.u.p with a particular entropy. Thus, each group of functions for which the NFLTs
hold, are associated with a certain value of entropy which gives a bound on the expected
performance of any algorithm when solving members of that group.

So, on one hand, given the entropy we have a qualitative boundary on the perfor-
mance of the most efficient algorithm on the easiest landscape. On the other hand, from
the sharpened NFLT we know that if the algorithm performs well on one problem there
exists another problem on which it performs as badly. Combining these two aspects we
can give a qualitative plot of the expected performance of the best algorithm over all
possible problems w.r.t. their entropy. This is illustrated in figure 2.

6 Conclusion

This paper has provided a connection between information theory, Kolmogorov com-
plexity and the study of optimization algorithms. The information content of a fitness
function was defined, its expected effect on performance was analyzed and a novel way
to compute the KC of a fitness function was introduced. This has led to new obser-
vations regarding the sharpened NFLTs: we proved that each closure can be associated
with a particular entropy which implies bounds on its Kolmogorov complexity and con-
sequently, expected difficulty. In order to make some of these connections we had to
limit our attention to particular kind of algorithms (section 3.1). In future research, we
plan to generalize our results.
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Abstract. A novel negative selection algorithm, namely r[]-NSA, is proposed in 
this paper, which uses an array to store multiple partial matching lengths for 
each detector. Every bit of one detector is assigned a partial matching length. 
As for a detector, the partial matching length of one bit means that one string is 
asserted to be matched by the detector, if and only if the number of the maximal 
continuous identical bits between them from the position of the bit to the end of 
strings is no less than the partial matching length, and the continuous identical 
bits should start from the position of the bit. The detector generation algorithm 
and detection algorithm of r[]-NSA are given. Experimental results showed that 
r[]-NSA has better detector generation efficiency and detection performance 
than traditional negative selection algorithm. 

1   Introduction 

Artificial Immune System (AIS) is an emergent bio-inspired research field [1-3]. 
Negative Selection Algorithm (NSA) is an algorithm based on the negative selection 
mechanism in the course of T-Cells maturation in biological immune system [4], 
which has been used for anomaly detection and other applications [1-3, 5-8]. The 
matching rule, the detector generation algorithm and the detection algorithm are the 
most important components of NSA [4, 8-9]. 

This paper is concerned with a novel detector structure and the detector generation 
and detection algorithms. In this paper, a detector has an array of partial matching 
lengths, while not just one partial matching length as previous NSAs. Namely, every 
bit of one detector is assigned a partial matching length. The partial matching length 
of one bit means that one string is asserted to be matched by the detector, if and only 
if the number of the maximal continuous identical bits between them from the posi-
tion of the bit to the end of strings is no less than the partial matching length, and the 
continuous identical bits should start from the position of the bit. For convenience, we 
call such kind of detectors as r[]-detector. According to such kind of detector struc-
ture, a novel negative selection algorithm, namely the r[]-NSA algorithm, is proposed 
with the corresponding detector generation algorithm and detection algorithm. 
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2   r[]-NSA 

2.1   Detector Structure of r[]-NSA 

The r[]-NSA is presented in binary string space in this paper. The “r-continuous-bits” 
matching rule is adopted here. However, in r[]-NSA, a detector no longer has only 
one partial matching length, but has multiple partial matching thresholds that can be 
saved in an array with the corresponding detector.  

For convenience, r[]-detector is used to denote the detector of r[]-NSA. Fig. 1 
shows the difference between r[]-detector and traditional detector.  

 

Fig. 1. The difference between r[]-detector and traditional detector. The detailed algorithm for 
generating r[]-detectors will be given in section 2.2. 

In Fig. 1, the string length l is 5, the self set is {00111, 00110}. The candidate de-
tectors are {11100, 01110}. As an example, we used r=3 for “r-continuous-bits” par-
tial matching rule in traditional negative selection algorithm [4]. If the premature 
detector is {11100, 01110}, “11100” is a mature detector after negative selection, 
while “01110” is deleted because it matches the self string “00110”. However, as for 
r[]-NSA, both “11100” and “01110” are valid detectors. 

As for the r[]-detector “11100”, r[1]=1 means that if one string is matched by the 
detector “11100” at the first bit, the string is an anomaly string. Similarly, r[3]=2 
means that if one string is matched by the detector “11100” at both the third bit and 
the fourth bit, the string is an anomaly string. Especially, r[5]=0, this means that no 
valid matching needs to be done starting from this position. Furthermore, Fig. 2 
shows the configuration of a matching length array of the 5-bit r[]-detector “11100”. 

 

Fig. 2. The partial matching length array of the r[]-detector “11100”. The string length and the 
self set are listed in Fig. 1. 

Fig. 3 is used to further illustrate how to use the detectors. The parameters, the self 
set and the detector set are the same as those listed in Fig. 1. 

In Fig. 3, as for the string “11101”, NSA asserts that it is an anomaly one because 
the detector “11100” matches its first three bits. However, r[]-NSA asserts that it is  
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String to be detected NSA r[]-NSA 
11101 11100 11100 

00100 11100 11100 
01001 --- 11100 or 01110 
01110 --- 11100 or 01110 

00110 (Self string) --- --- 

Fig. 3. How the detectors are used in NSA and r[]-NSA. The bits underlined mean the matching 
bits between the detector and the string to be detected. 

an  anomaly  one  because  the  detector “11100” matches its first bit. As for the  string 
“00100”, NSA asserts that it is an anomaly because the string “00100” is matched by 
the detector “11100” at the last three bits, while r[]-NSA asserts that it is an anomaly 
because the string “00100” is matched by the detector “11100” at both the third bit 
and the fourth bit. For other two strings “01001” and “01110”, NSA can not assert 
that they are anomaly ones with the detector set of {11100}. However, r[]-NSA can 
do it. As for the self string “00110”, both NSA and r[]-NSA do not generate false 
alarms. 

2.2   Detector Generation Algorithm 

The detector generation algorithm for r[]-NSA is listed in Fig. 4. In Fig. 4, the length 
of a bit-string is denoted by l, and ],1[ li ∈ , r[] represents the array with elements of 

the partial matching lengths. 

(1)  Define the self set S. 
(2)  Generate a candidate detector d randomly. 
(3)  Perform the matching process between d and all self strings in S. 

(3.1)  For the first self string s r[i] represents the number of maximal con-
tinuous identical bits between d and s from the ith bit to the end of string, and the 
continuous identical bits should start from the ith bit. 

(3.2)  For other self strings, ][irt  represents the number of maximal continu-

ous identical bits between d and the self bit-string from the ith bit to the end of 
string, and the continuous identical bits should start from the ith bit. If r[i]< ][irt , 

then r[i]= ][irt . 

(3.3)  If r[1] = l, go to step (2). 
(3.4)  For i from l to 1, if r[i] = l i 1, let r[i]= 1− . 
(3.5)  For i from l to 1, r[i] = r[i]+1. 

(4)  Add (d, r[]) to the detector set. Go to step (2) if the number of detectors is not 
enough. 

Fig. 4. The detector generation algorithm for r[]-NSA. Only the candidate string that com-
pletely matches one self string will be discarded at step (3.3). Therefore, every non-self string 
could be a valid detector. 
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To analyze the time complexity and space complexity of the detector generation 
algorithm of  r[]-NSA, some symbols used are given as follows. 

l: The string length. 
NR0: The number of the candidate detectors (namely the immature detectors). 
NR: The number of detectors. 
NS: The size of the self set. 
According to above detector generation algorithm, every string that is not in the 

self set could be a detector. Therefore, 

)
2

1(0 l
S

RR
N

NN −=  . (1) 

To generate NR detectors, the number of candidate detectors needed is 

S
l

l

RR
N

NN
−

=
2

2
0  . (2) 

For any candidate detector, the time complexities of both step (3.1) and step (3.2) 
are )(lO . In fact, the expected total number of bit comparisons in step (3.1) is 2l. It is 

also 2l in step (3.2). The time complexities of both step (3.4) and step (3.5) are also 
)(lO . Therefore, the time complexity for generating NR detectors is 

)
2

2
( lN

N
NO S

S
l

l

R ⋅⋅
−

 . (3) 

Every detector needs an array with size of l to store the partial matching lengths for 
each bit of the detector. The space cost for generating NR detectors is: 

)( lNO R  . (4) 

2.3   Detection Algorithm 

According to above detection algorithm, the time cost of the detection algorithm is 
)( lNO R ⋅ . The detection algorithm needs a temporary array with size of l to store the  

 

t: string to be detected; R: the detector set 
(1)  For any detector d in the detector set R 

(1.1)  For i from 1 to l 
(1.1.1) If 0][ ==ir , go to (1). 

(1.1.2) Calculate ][irt . ][irt  means the number of the maximal continuous 

identical bits between t and d from the ith bit to the end of string, and the continuous 
identical bits should start from the position of the bit. 

(1.1.3)  If ][][ irirt ≥ an anomaly change has been detected. 

Fig. 5. The detection algorithm for r[]-NSA 
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number of the continuous matching bits between t and d. Therefore, the space cost of 
the detection algorithm is )(lO . 

3   Experiments and Analyses 

The r[]-NSA is compared with the traditional NSA in this paper. The binary string 
length l is 10, and then the size of global string space O is 1024. The parameter u, 
which denotes the proportion of the self set among the global string space O, namely 

l
SNu 2= , is set to {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95} re-

spectively to observe the changes of the results against it.  
The “r-continuous-bits” matching rule is adopted here and the partial matching 

length r of traditional NSA is fixed to 9.  
The self set of every independent run is generated randomly, and is identical for 

both r[]-NSA and traditional NSA. 
There are two parameters taken to make the comparisons, NR and Pf. Where NR is 

the number of mature detectors. In an independent run, it is assumed that FN is the 
number of non-self strings missed (i.e. undetected), and TP is the number of non-self 

strings detected as non-self. And then TPFN
FNPf +=  [4]. 

3.1   Comparisons on NR and Pf When 0RN  Is Fixed 

In experiments, the size of initial immature detector set is fixed to 300. The results 
take the average values over 20 independent runs for every value of the parameter u.  

Table 1. Comparisons on NR between r[]-NSA and traditional NSA when NR0 is fixed 

NR  
r[]-NSA NSA 

u Experimental Theoretical Experimental Theoretical  
0.05 285.70 (9.87) 285.06 258.70 (20.87) 258.31 
0.15 254.75 (4.94) 254.88 183.85 (7.49) 190.94 
0.25 227.15 (5.99) 225.00 128.15 (6.75) 141.55 
0.35 193.30 (6.43) 195.12 81.90 (7.09) 104.94 
0.45 163.50 (7.24) 164.94 51.10 (6.81) 77.57 
0.55 134.00 (5.42) 135.06 26.45 (6.14) 57.51 
0.65 106.55 (6.24) 104.88 14.10 (3.11) 42.51 
0.75 76.15 (6.30) 75.00 4.90 (2.59) 31.52 
0.85 46.50 (4.85) 45.12 1.40 (1.23) 23.36 
0.95 15.55 (4.35) 14.94 0.05 (0.22) 17.27 

Both the experimental values and theoretical values of NR are given in Table 1, 
where the standard deviations of experimental values are in the parenthesizes. Ac-
cording to the experimental values in Table 1, it is obvious that the sizes of the detec-
tor sets of r[]-NSA are lager than those of traditional NSA. Therefore, the detector 
generation efficiency of r[]-NSA is much better than traditional NSA.  
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The theoretical values of r[]-NSA in Table 1 is calculated according to equation (1) 
in section 2. The theoretical values of traditional NSA are computed by the methods 
provided in reference [4]. Theoretically, with fixed NR0, the number of detectors line-
arly decreases as NS increases for r[]-NSA. However, with fixed NR0,, the number of 
detectors exponentially decreases as NS increases for traditional NSA [4, 9]. It is note 
that the assumption, in reference [4], that the detectors are independent is not entirely 
valid as NS and Pm increase [4, 9] (Pm is the probability of a match between two ran-
dom strings). This is also verified by the experimental values in Table 1. When u is 
large, the experimental values of traditional NSA are much smaller than the theoreti-
cal values. However, as for r[]-NSA, its experimental values are always almost equal 
to the theoretical values.  

 

Fig. 6. Comparisons on Pf between r[]-NSA and traditional NSA 

Fig. 6 shows the comparisons on Pf between two algorithms when NR0 is fixed (the 
numbers of detectors are shown in Table 1). It is shown that the values of Pf of r[]-
NSA are clearly lower than those of traditional NSA when NR0 is fixed. 

3.2   Estimate Pf After NR Detectors Are Generated 

In this subsection, some experiments are done to show how to estimate Pf after some 
detectors are generated. Firstly, a method for estimating Pf of r[]-NSA is given. 

As for a detector d with an array r[], the probability that one string can be matched 
by d is denoted by Pm. Assume the array of r[] has π  non-zero elements, and these π  
non-zero elements are denoted by 

πxxxx rrrr ,,,,
321

. Therefore, we have 

π

π

πππ

xxxx

kxjxixjxixix

rrrr

kji
rrr

ji
rr

i
rmP

++++

≤≠≠≤
++

≤≠≤
+

≤≤

−+−

+−=

3212

1
)1(

2

1

2

1

2

1

111
 . (5) 

Obviously, we assume that all these probabilities of one string being matched at 

πxxxx ,,,, 321  positions are independent. 

When the self set is absolutely very large, one detector is prone to matching only 

one string, and then l
mP 21≈ . When the self set is not very large, we have 
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Let the size of the detector set R is NR, and the 
imP  is the probability that one 

string can be matched by the ith detector. Assume that every detector is independent 
because every candidate detector is generated randomly. Therefore, 

∏ −≈
i

mf i
PP )1(  . 

(7) 

fP : the expected value. 

(1)  Initialize 1_ =tempfP . 

(2)  Repeat 
(2.1)  Generate a detector d according to the algorithm in Fig. 4. 
(2.2)  Add d to the detector set R. 
(2.2)  Compute mP  of d. 

(2.3)  let )1(__ mtempftempf PPP −⋅= . 

(3)  Until ftempf PP ≤_ . 

Fig. 7. Estimate fP  of r[]-NSA after some detectors are generated 

When the expected Pf of r[]-NSA is given, the pseudo-codes in Fig. 7 show how to 
generate enough detectors for the expected Pf [16]. 

 
(1)  count=0. 
(2)  Generate the self set S randomly. 
(3)  Predefine the expected value of fP . 

(3)  Generate the detector set R according to the algorithm in Fig. 7. 
(4)  For every string in global string space but not in the self set 
       (4.1)  If this string can be detected by the detector set R, then counter= counter+1. 

(5)  Set the real values of fP  as )2( S
l Ncount − . 

Fig. 8. Verify the real fP  of r[]-NSA after the estimated number of detectors are generated 

The experimental procedure is given Fig. 8. By generating enough detectors for the 
expected Pf according to the method given in Fig. 7, the pseudo-codes in Fig. 8 is also 
used to verify the real values of Pf. 

Table 2 gave the results when the expected value of Pf is 0.1. And Table 3 gave the 
results when the expected value of Pf is 0.05. All results are the average values of 100 
independent runs. And the standard deviations are in the parenthesizes. 
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In Table 2 and Table 3, as for r[]-NSA, “NR” means the size of the detector set that 
generated according to the algorithm in Fig. 7, “Pf (real)” means the real value of Pf 
that is calculated according to the algorithm in Fig. 8. As for traditional NSA, “NR 
(theoretical)” means the theoretical value that is computed according to the equation 
(2) in reference [9], while “NR (experiment)” means the real number of the detectors 
that traditional NSA really can be generated. Because traditional NSA could not gen-
erate sufficient number of detectors, the values of “NR (experiment)” are smaller than 
the theoretical values when u is larger. 

Table 2. Comparisons between r[]-NSA and traditional NSA when Pf is fixed to 0.1 

 r[]-NSA NSA 
u NR Pf (real) NR (theoretical) NR (Experiment) Pf (real) 

0.05 30.32 (4.75) 0.31881 (0.04734) 785 785 (0) 0.02282 (0.00682) 
0.15 121.51 (12.41) 0.27654 (0.02677) 785 626.12 (9.33) 0.05954 (0.00720) 
0.25 241.99 (21.18) 0.19909 (0.02644) 785 431.4 (11.29) 0.15630 (0.01192) 
0.35 381.33 (29.51) 0.11482 (0.02125) 785 280.59 (11.46) 0.28119 (0.01583) 
0.45 538.53 (26.46) 0.00950 (0.01191) 785 169.12 (12.44) 0.42892 (0.02233) 
0.55 461 (0) 0 (0) 785 92.07 (9.20) 0.57456 (0.02767) 
0.65 358 (0) 0 (0) 785 43.67 (7.74) 0.72277 (0.03626) 
0.75 256 (0) 0 (0) 785 15.78 (4.45) 0.84383 (0.03496) 
0.85 154 (0) 0 (0) 785 3.22 (1.98) 0.94247 (0.03275) 
0.95 51 (0) 0 (0) 785 0.12 (0.38) 0.99294 (0.02256) 

Table 3. Comparisons between r[]-NSA and traditional NSA when Pf is fixed to 0.05 

 r[]-NSA NSA 
u NR Pf (real) NR (theoretical) NR (Experiment) Pf (real) 

0.05 39.88 (6.23) 0.25239 (0.04693) 1021 878.69 (3.23) 0.00762 (0.00321) 
0.15 160.97 (16.45) 0.20786 (0.02758) 1021 625.84 (9.83) 0.05986 (0.00697) 
0.25 314.58 (25.28) 0.13773 (0.02188) 1021 429.81 (11.93) 0.15512 (0.01305) 
0.35 496.79 (34.16) 0.05165 (0.01600) 1021 279.67 (10.86) 0.28353 (0.01447) 
0.45 563 (0) 0 (0) 1021 170.51 (10.86) 0.42393 (0.02442) 
0.55 461 (0) 0 (0) 1021 92.71 (9.84) 0.57508 (0.02829) 
0.65 358 (0) 0 (0) 1021 44.70 (7.29) 0.71704 (0.02781) 
0.75 256 (0) 0 (0) 1021 16.40 (4.78) 0.84219 (0.03505) 
0.85 154 (0) 0 (0) 1021 3.40 (2.15) 0.93844 (0.03435) 
0.95 51 (0) 0 (0) 1021 0.13 (0.56) 0.99392 (0.02080) 

As shown in Table 2 and Table 3, as for r[]-NSA, when u>0.25, the real values of 
Pf are almost equal or smaller than the expected values of Pf. Therefore, the algorithm 
in Fig. 7 can be used to estimate the number of detectors. However, when u<0.25, the 
real values of Pf is larger than the expected values. This is because the detectors of r[]-
NSA is not entirely independent when u is smaller. Since the r[]-NSA has better per-
formance to generate valid detectors than traditional NSA as shown in subsection 3.1, 
this problem can be easily avoided by adding more detectors. 

As for traditional NSA, the results are not very ideal when u>0.25. The real values 
of Pf are much higher than the expected values. 
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4   Related Works and Discussions 

Negative Selection Algorithm (NSA) is presented by S. Forrest and her colleagues [4, 
8], and is mainly applied as a change detection algorithm in artificial immune sys-
tems. P. D’haeseleer and S. Forrest presented a greedy algorithm that attempts to 
reduce the size of the detector set and maximize the coverage areas of the detector set 
when “r-continuous-bits” matching rule is adopted, and proposed an approach to 
counting the number of holes [10]. Wierzcho also analyzed the negative selection 
algorithm with the r-contiguous bits matching rule in [14-15]. Z. Ji and D. Dasgupata 
proposed an augmented NSA with variable-coverage detectors for real-valued space 
[11-12]. In their works, other than having one unique partial matching threshold for 
all the detectors, every detector can have an appropriate matching threshold different 
from others. By this way, the coverage of different detectors can be different, and the 
number of holes is reduced at a certain extent. Their works mainly describes the ex-
periments of variable-sized detectors in real-valued space. And effects of the two 
main control parameters, the self radius and expected coverage, are discussed and 
experimentally tested [11-12]. In addition, Z. Heng et al. proposed an r-adjustable 
NSA, and their works focused on the binary string space [13].  

Anyway, in all current works, one detector has only one partial matching length. In 
this paper, a novel r[]-NSA is proposed, in which a detector no longer has just one 
matching threshold, but has multiple thresholds that can be saved in an array with the 
corresponding detector. By this way, the coverage of a detector can be improved, and 
the survivability of an immature detector is improved, i.e., the efficiency of detector 
generation is improved, which has been proved by the experiments. 

5   Conclusions 

A novel negative selection algorithm, namely r[]-NSA, is proposed in this paper. This 
novel algorithm can improve the efficiency of detector generation greatly. The per-
formance of this new algorithm has been proved and verified by the experiments. The 
candidate detector of r[]-NSA is generated randomly in this paper. In the future, a 
more efficient detector generation algorithm for r[]-NSA needs to be designed to 
maximize the coverage of a detector set with a certain number of detectors. And the 
r[]-NSA for a higher dimensionality and real world problems will be studied.  
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Abstract. This paper analyzes the hierarchical Bayesian optimization
algorithm (hBOA) on the problem of finding ground states of Ising spin
glasses with ±J couplings in two and three dimensions. The perfor-
mance of hBOA is compared to that of the simple genetic algorithm
(GA) and the univariate marginal distribution algorithm (UMDA). The
performance of all tested algorithms is improved by incorporating a de-
terministic hill climber (DHC) based on single-bit flips and cluster exact
approximation (CEA). The results show that hBOA significantly out-
performs GA and UMDA with both types of local search and that CEA
enables all tested algorithms to solve larger spin-glass instances than
DHC. Using advanced hybrid methods created by combining competent
genetic and evolutionary algorithms with advanced local searchers thus
proves advantageous in this challenging class of problems.

1 Introduction

Ising spin glasses are prototypical models for disordered systems and have played
a central role in statistical physics during the last three decades [1,2,3,4]. Exam-
ples of experimental realizations of spin glasses are metals with magnetic impu-
rities, e.g. gold with a small fraction of iron added. Spin glasses represent also
a rich class of challenging problems for optimization algorithms [5,6,7] where
the task is to minimize energy of a given spin-glass instance [8,9,10,11,12,13].
States with the lowest energy are called ground states and thus the problem of
minimizing the energy of spin-glass instances can be formulated as the problem
of finding ground states of these instances. There are two main challenges that
must be tackled to find ground states of spin glasses efficiently and reliably:
(1) There are many local optima in the energy landscape (the number of local
optima may grow exponentially with problem size). (2) The local minima are
often surrounded by high-energy configurations, which make it difficult for lo-
cal operators to escape the local optimum once they get trapped in it. That is

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 122–131, 2006.
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why even state-of-the-art Markov chain Monte Carlo (MCMC) methods require
exponential time to locate ground states [14].

This paper analyzes the hierarchical Bayesian optimization algorithm
(hBOA) [15,16] on a broad spectrum of instances of the problem of finding
ground states of Ising spin glasses with ±J couplings and periodic boundary
conditions. The performance of hBOA is compared to that of the simple genetic
algorithm (GA) and the univariate marginal distribution algorithm (UMDA).
We build on the prior work [12] where we combined several evolutionary al-
gorithms with the deterministic hill climber to solve various classes of 2D and
3D spin glasses. However, here we consider also cluster exact approximation
(CEA) [17], which provides an efficient method to perform large updates of spin
glass configurations to decrease their energy. CEA is incorporated into hBOA
and GA, and the resulting hybrids are tested on a number of spin-glass prob-
lem instances. CEA is shown to significantly improve performance of all tested
algorithms, allowing a practical solution of much larger problems than DHC.

The paper is organized as follows. Section 2 describes the problem of finding
ground states of Ising spin glasses. Section 3 outlines the algorithms hBOA, GA
and UMDA; additionally, the section describes the deterministic hill climber and
cluster exact approximation, which are incorporated into all tested algorithms
to improve their performance. Section 4 presents and discusses experiments.
Finally, Section 5 summarizes and concludes the paper.

2 Ising Spin Glass

A very simple model to describe a finite-dimensional Ising spin glass is typically
arranged on a regular 2D or 3D grid where each node i corresponds to a spin si

and each edge 〈i, j〉 corresponds to a coupling between two spins si and sj . Each
edge has a real value associated with it that defines the relationship between
the two connected spins. To approximate the behavior of the large-scale system,
periodic boundary conditions are often used that introduce a coupling between
the first and the last element along each dimension.

For the classical Ising model, each spin si can be in one of two states: si =
+1 or si = −1. Note that this simplification corresponds to highly anisotropic
systems, which do indeed exist in some experimental situations. Nevertheless,
the two-state Ising model comprises all basic effects also found in models with
more degrees of freedom. A specific set of coupling constants defines a spin-glass
instance. Each possible setting of all spins is called a spin configuration.

Given a set of coupling constants Ji,j , and a spin configuration C = {si} (i =
1, . . . , n), the energy can be computed as

E(C) =
∑
〈i,j〉

siJi,jsj , (1)

where the sum runs over all couplings 〈i, j〉.
Given a set of coupling constants, the usual task in statistical physics is to

integrate a known function over all possible configurations of spins, assuming
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the Boltzmann distribution of spin configurations; that means, the probability
of each configuration C is proportional to exp (−E(C)/T ) where E(C) is energy
of C and T is the temperature. From the physics point of view, it is also inter-
esting to know the ground states (configurations associated with the minimum
possible energy). Finding extremal energies then corresponds to sampling the
Boltzmann distribution with temperature approaching 0 and thus the problem
of finding ground states is simpler a priori than integration over a wide range of
temperatures. However, most of the conventional methods based on sampling the
above Boltzmann distribution, such as the flat-histogram Markov chain Monte
Carlo [18], fail to find the ground states because they get often trapped in a local
minimum [14].

In order to obtain a quantitative understanding of the disorder in a spin glass
system introduced by the random spin-spin couplings, one generally analyzes a
large set of random spin-glass instances for a given distribution of the spin-spin
couplings. For each spin glass instance, the optimization algorithm is applied
and the results are analyzed to obtain a measure of computational complexity.
Here we consider the ±J spin glass, where each spin-spin coupling constant is
set randomly to either +1 or −1 with equal probability.

3 Compared Algorithms

This section outlines the algorithms compared in this paper: (1) The hierarchical
Bayesian optimization algorithm (hBOA), (2) the genetic algorithm (GA), and
(3) the univariate marginal distribution algorithm (UMDA). hBOA and UMDA
are estimation of distribution algorithms (EDAs) [19,20,21], where standard vari-
ation operators are replaced by building and sampling probabilistic models. The
section also describes the deterministic hill climber (DHC) and cluster exact
approximation (CEA), which are used to improve performance of compared al-
gorithms. Candidate solutions are represented by n-bit binary strings where each
bit specifies the value of one of the n spins (0 represents state −1 and 1 represents
state +1).

3.1 Hierarchical Bayesian Optimization Algorithm (hBOA)

The hierarchical Bayesian optimization algorithm (hBOA) [15,16] evolves a pop-
ulation of candidate solutions. The population is initially generated at random
according to a uniform distribution over all n-bit strings. Each iteration starts by
selecting a population of promising solutions using any common selection method
of genetic and evolutionary algorithms, such as tournament and truncation selec-
tion; we use binary tournament selection. New solutions are generated by build-
ing a Bayesian network with decision trees [22,23] for the selected solutions and
sampling the built Bayesian network. To ensure useful diversity maintenance,
the new candidate solutions are incorporated into the original population us-
ing restricted tournament replacement (RTR) [24]. The run is terminated when
termination criteria are met.
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3.2 Genetic Algorithm (GA)

The genetic algorithm (GA) [25,26] also evolves a population of candidate so-
lutions starting with a population generated at random. Each iteration starts
by selecting promising solutions from the current population. New solutions are
created by applying variation operators to the population of selected solutions.
Specifically, crossover is used to exchange bits and pieces between pairs of can-
didate solutions and mutation is used to perturb the resulting solutions. Here
we use one-point crossover and bit-flip mutation. The new candidate solutions
are incorporated into the original population using RTR. The run is terminated
when termination criteria are met.

3.3 Univariate Marginal Distribution Algorithm (UMDA)

The univariate marginal distribution algorithm (UMDA) [19] also evolves a pop-
ulation of candidate solutions represented by binary strings, starting with a ran-
dom population. Each iteration starts by selection. Then, the probability vector
is learned that stores the proportion of 1s in each position of the selected popu-
lation. Each bit of a new candidate solution is then set to 1 with the probability
equal to the proportion of 1s in this position; otherwise, the bit is set to 0. Con-
sequently, the variation operator of UMDA preserves the proportions of 1s in
each position while decorrelating different string positions. The new candidate
solutions are incorporated into the original population using RTR. The run is
terminated when termination criteria are met.

The only difference between hBOA and the UMDA variant discussed in this
paper is the type of the probabilistic model used to model promising candidate
solutions and generate the new ones. The comparison between hBOA and UMDA
should therefore indicate whether in this problem domain effective exploration
necessitates complex probabilistic models that can efficiently encode large-order
interactions between spins, as it is the case for hBOA. For analogical reasons,
the comparison between hBOA and GA will indicate whether it is important to
use advanced variation operators that adapt to the problem like in hBOA.

3.4 Deterministic Hill Climber

Like in previous work [12], we incorporate a deterministic hill climber (DHC) into
hBOA, GA and UMDA to improve their performance. DHC takes a candidate
solution represented by an n-bit binary string on input. Then, it performs one-
bit changes on the solution that lead to the maximum improvement of solution
quality (maximum decrease in energy). DHC is terminated when no single-bit
flip improves solution quality and the solution is thus locally optimal. Here, DHC
is used to improve every solution in the population before the evaluation is per-
formed. The hybrids created by incorporating DHC into hBOA, GA and UMDA
are referred to as hBOA+DHC, GA+DHC and UMDA+DHC, respectively.

3.5 Cluster Exact Approximation (CEA)

Due to the complex structure of the energy landscape of spin glasses, many
local minima exist, which have energies very close to the ground-state energy.
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Usually these minima differ from the true ground states by flips of large domains.
Hence, as already mentioned, the minima are surrounded by high energy barriers
from the viewpoint of single-spin-flip dynamics. This leads to poor performance
of algorithms that apply single-bit (spin) changes as DHC. For this reason, we
also consider cluster exact approximation (CEA) [17], which provides an efficient
method that can change many spins at the same time optimally (assuming that
the remaining spins remain fixed).

CEA starts by constructing a non-frustrated cluster of spins; a non-frustrated
cluster contains spins that can be set to some values without breaking any inter-
actions between them. The selected cluster is first transformed so that all inter-
actions become ferromagnetic (negative coupling). All spins outside the cluster
are fixed and treated as local magnetic fields. All cluster spins are computed
leading to an optimal spin configuration with respect to the non-cluster spins,
which remain fixed. The computation can be performed in polynomial time us-
ing graph-theoretical methods [27,28]: an equivalent network is constructed [29],
the maximum flow is calculated [30,31] and the spins of the cluster are set to
orientations leading to a minimum in energy.

The CEA update step ensures that the spins in the cluster minimize energy
assuming that the remaining (non-cluster) spins remain fixed to their current
values. Each CEA iteration either decreases the energy or the energy remains
the same, which is the case when all cluster spins have been already set to their
optimal values. In this work, we use CEA to improve all obtained candidate
solutions and we repeat the CEA update step until the update fails to decrease
the energy for a predefined number of iterations; specifically, the bound on the
number of failures is

√
n for 2D spin glasses and it is 3

√
n for 3D spin glasses.

4 Experiments

This section presents and discusses experimental results.

4.1 Tested Spin-Glass Instances

Both 2D and 3D Ising spin-glass instances with ±J couplings and periodic
boundary conditions were considered. To analyze scalability, for 2D spin glasses,
instances of size 6× 6 (36 spins) to 50× 50 (2500 spins) have been considered;
1000 random instances have been generated for each problem size. For 3D spin
glasses, instances of size 4×4×4 (64 spins) to 10×10×10 (1000 spins) have been
considered. In the experiments on 3D spin glasses without CEA, only 8 random
instances have been generated for each problem size because of the increased
computational resources required to solve the 3D instances; for CEA-based al-
gorithms, 1000 random instances were used for each problem size.

4.2 Description of Experiments

All compared algorithms use binary tournament selection to select promising
solutions. As a replacement strategy, RTR is used where the window size w is
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set to the number of bits in solution strings but it is always ensured to be at
most 5% of the population size, w = min(n,N/20). GA+DHC and GA+CEA
use one-point crossover with the probability of crossover pc = 0.6 and bit-flip
mutation with the probability of flipping each bit pm = 1/n.

For each problem instance, bisection is run to determine the minimum pop-
ulation size to ensure convergence in 5 independent runs (out of 5 runs total).
Each run is terminated either when the algorithm has found the optimum or
when the algorithm has failed to find the optimum for a large number of itera-
tions. The optimum for most 2D instances was verified with the branch-and-cut
algorithm provided at the Spin-Glass Ground State Server at the University
of Köln [32]. The remaining 2D instances with ground states were obtained
from S. Sabhapandit and S. N. Coppersmith from the University of Wisconsin
who identified the ground states using flat-histogram Markov chain Monte Carlo
simulations [14]. All 3D instances with their ground states were obtained from
previous simulations of one of the authors [10].

The upper bound on the number of iterations (generations) is determined by
combining convergence theory [33,34] with empirical results so that the num-
ber of iterations is sufficiently large for all tests. In general, the bound on the
number of iterations for GA+DHC is larger than that for hBOA+DHC and
UMDA+DHC because of the slower mixing with one-point crossover [35].

The performance of hBOA+DHC, GA+DHC and UMDA+DHC is measured
by the number of evaluated spin glass configurations until the optimum has been
found. Since one update step of CEA is usually more computationally expensive
than the entire evaluation of a spin configuration [36], the time complexity of
hBOA+CEA and GA+CEA is measured by the number of iterations of CEA as
opposed to the number of evaluations.

4.3 Results

Figure 1a compares the performance of hBOA+DHC, UMDA+DHC and
GA+DHC on 2D ±J spin glasses with periodic boundary conditions. The re-
sults indicate that the number of evaluations for hBOA+DHC grows with a
low-order polynomial of problem size, specifically, it is bounded by O(n1.63).
Furthermore, the results show that hBOA significantly outperforms GA+DHC
and UMDA+DHC. The worst performance is achieved by UMDA+DHC, the
time complexity of which grows faster than polynomially. Recall that for spin
glasses, one-point crossover performs relatively well because one-point crossover
rarely breaks important interactions between spins due to the used representa-
tion. Nonetheless, this behavior cannot be generalized to other similar slowly
equilibrating problems that exhibit different energy landscapes, such as protein
folding or polymer dynamics.

For 2D Ising spin glasses, a polynomial algorithm [37,38] with complexity
O(n3.5) exists that computes the number of states at each energy level, in-
cluding the ground state. It was shown [39] that on 2D ±J Ising spin glasses,
hBOA+DHC achieves asymptotic performance of the polynomial algorithm
without any prior knowledge about spin glasses.
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Fig. 1. Performance of hBOA+DHC, UMDA+DHC, and GA+DHC on random 2D
and 3D ±J Ising spin glasses

Figure 1b shows the performance of hBOA+DHC on 3D ±J spin glasses.
Since both GA+DHC and UMDA+DHC have not been capable of solving most
3D instances even with enormous computational resources, we only include the
results for hBOA+DHC. The results show that the performance of hBOA+DHC
appears to grow exponentially fast. This behavior is expected because the prob-
lem of finding ground states of 3D spin glasses is NP-complete [40]. However,
we see that hBOA+DHC is still capable of solving instances of several hundreds
spins, which are intractable with most standard optimization algorithms, such
as genetic algorithms and simulated annealing.

Figure 2a shows the performance of hBOA+CEA and GA+CEA on 2D Ising
spin glasses with ±J couplings. The results indicate that hBOA+CEA signif-
icantly outperforms GA+CEA and thus hBOA retains superior performance
even with CEA. The results also show that incorporating CEA leads to a some-
what faster asymptotic growth of time complexity with problem size; on the
other hand, the use of CEA provides a significant decrease of running time
for the tested range of problems and, consequently, much larger problem sizes
can be treated currently as compared to hBOA+DHC. Nonetheless, based on
these results, it can be hypothesized that hBOA+DHC will become faster than
hBOA+CEA for much larger spin-glass instances. It is also important to note
that the size of spin glass instances solved in this paper is orders of magnitude
larger than the size of problems solved by other EDAs [41,42,43,12].

Figure 2b shows the performance of hBOA+CEA and GA+CEA on 3D Ising
spin glasses with ±J couplings. The results indicate that the performance of
both algorithms grows faster than polynomially even with the use of CEA as is
expected from the NP-completeness of this problem. However, CEA improves the
performance of GA significantly and makes the difficult 3D instances tractable
even with GA. Nonetheless, hBOA+CEA still retains superior performance,
yielding several times fewer evaluations than GA+CEA.
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Fig. 2. Performance of hBOA+CEA and GA+CEA on ±J Ising spin glasses

5 Summary and Conclusions

This paper tested the hierarchical Bayesian optimization algorithm (hBOA),
the simple genetic algorithm (GA) and the univariate marginal distribution
algorithm (UMDA) on a large number of instances of the problem of finding
ground states of Ising spin glasses with random couplings in two and three dimen-
sions. All algorithms were hybridized by using either a simple deterministic hill
climber (DHC) or the cluster exact approximation (CEA). The results showed
that hBOA significantly outperforms all other compared methods in all cases
and that CEA allows all algorithms to solve much larger instances than DHC.
The results presented in this paper thus confirm that using hierarchical decom-
position for solving difficult optimization problems with little problem-specific
knowledge holds a big promise and that advanced estimation of distribution al-
gorithms offer a robust and scalable class of optimization algorithms applicable
to important classes of difficult problems.
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Abstract. Important factors for the easy usage of an Evolutionary Algorithm 
(EA) are numbers of fitness calculations as low as possible, its robustness, and 
the reduction of its strategy parameters as far as possible. Multimeme Algo-
rithms (MMA) are good candidates for the first two properties. In this paper a 
cost-benefit-based approach shall be introduced for the adaptive control of both 
meme selection and the ratio between local and global search. The latter is 
achieved by adaptively adjusting the intensity of the search of the memes and 
the frequency of their usage. It will be shown in which way the proposed kind 
of adaptation fills the gap previous work leaves. Detailed experiments in the 
field of continuous parameter optimisation demonstrate the superiority of the 
adaptive MMA over the simple MA and the pure EA. 

1   Introduction  

Wide application of Evolutionary Algorithms (EA) to real-world problems presently 
is being prevented by two major obstacles: by the variety of strategy parameters, the 
appropriate adjustment of which may be crucial to success, and by the large number 
of evaluations required. The latter is of relevance in particular when the individual 
evaluation requires a high expenditure, because it is based on e.g. a simulation run. 
For the EA to become a standard tool of the engineer, a significant reduction of rele-
vant strategy parameters is as necessary as a reduction of fitness calculations.  

Concerning EA strategy parameters like mutation rates and crossover parameters, a 
lot of research effort has been taken successfully, see [1, 2] and [3] for a survey. The 
large number of evaluations is caused by the property of EA of being strong in dis-
covering interesting regions of a given search space (exploration), but unfortunately 
weak in finding the precise optimum (exploitation) due to their lacking exploitation of 
local information. This is why most applications of EAs to real-world problems use 
some sort of hybridisation with other procedures and techniques, such as local search-
ers (LS) or heuristics, see [4-9, 12-15, 19-24]. These add-ons frequently introduce 
some sort of domain-specific knowledge in the until then generally applicable EA and 
change it into a domain-specific tool. This is the usually paid price for the speed-up 
achieved. In [6] and [7] it was shown for parameter optimisation that this drawback 
can be overcome by using application-independent local searchers. The resulting hy-
brid combines the global nature of the search and the convergence reliability of the 
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EA with a decrease of the evaluations required to reach a given solution by factors of 
up to 100 compared to the pure EA. 

Hybridisation can be done in the following ways: by improving all or a fraction of 
the start population [8], by improving all or some offspring [5], by some sort of post-
optimisation of the EA results [9], or by combinations thereof. This was investigated 
and compared in detail in [6] and [7], and an important result is that offspring im-
provement works best and that all strategy parameters and the choice of an appropri-
ate local searcher are application-dependent. This paper will focus on offspring im-
provement, a kind of hybridisation which is also known as Memetic Algorithm (MA) 
[10]. This term was introduced by Moscato [11] and the idea is to imitate the effect of 
learning and social interaction during the life span of an individual by some kind of 
(local) improvement mechanisms (memes) applied to the offspring created by the 
common operators of an EA.  

The aim of the work presented here is to find a mechanism for the adaptive control 
of as many strategy parameters of an MA for continuous parameter optimisation as 
possible. The cost-benefit-based approach proposed for adaptation controls both 
meme selection and the intensity of their work, and thus the balance between global 
and local search. The procedure can be applied to all population-based EAs, and it is 
desirable, but not necessary to have more than one offspring per mating. 

In section 2 the approach will be compared to other adaptive MAs and it will be 
shown in which way it fills the gap previous work leaves. The approach will be de-
scribed in detail in section 3, while the results of in-depth experiments using five test 
functions and two real-world problems shall be presented in section 4. The paper will 
be concluded by a summary and an outlook in section 5. 

2   Related Work 

For MAs an appropriate choice of the local search method employed has a major im-
pact on the search performance, as shown for example by Hart [12], Krasnogor [13], 
Ong [14], and our own results [6, 7]. As it is usually not known a priori which LS per-
forms best or at least well, multimeme EAs (MMA) were introduced by Krasnogor 
and Smith [15] and applied to two bioinformatics problems [13]. The difference to 
“simple MAs” (MAs with one meme and without any adaptation will be referred to as 
simple MA (SMA)) is that multimeme EAs do not employ one complex or sophisti-
cated LS, but a set of more or less simple LSs. From this set, it is selected adaptively 
which one is to be used for different individuals in the course of evolution. Another 
big step in this direction is Krasnogor’s “Self-Generating Memetic Algorithm” which 
is able to create its own local searchers and to co-evolve their behaviours as required 
to successfully solve a given problem [13]. Here, the classification of adaptation 
given in [16] shall be used: “Adaptive dynamic adaptation takes place if there is some 
form of feedback from the EA that is used to determine the direction and magnitude 
of the change to the strategy parameters.” In the case of self-adaptation, “the parame-
ters to be adapted are encoded onto the chromosome(s) of the individual and undergo 
mutation and recombination.”  

On addition to LS selection, the distribution of computing resources between local 
and global search is another important issue. It is usually controlled by the intensity of 
the local search and the fraction of offspring, to which the LS is applied, see e.g. [12]. 
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Furthermore, it must be decided, whether this partitioning shall be static or change 
during the progress of search. Goldberg and Voessner [17] presented a first analysis 
on a system level, where two scenarios were investigated: the attempt to obtain a 
specified solution quality in a minimum time or the goal of achieving the best possi-
ble solution quality in a given time. This work was continued by Sinha, Chen, and 
Goldberg [18], but is still “based on a number of assumptions which may require in-
formation unavailable in practice”, as the authors stated themselves.  

In Table 1 a classification of the different approaches to adaptive MAs as to how 
and what is adaptively controlled is presented together with the researchers, who in-
troduced and investigated them in detail (publications on single problems or aspects 
of MAs are omitted here). Furthermore, it is indicated whether a given quality or time 
frame limits the run of the particular MA and whether it was applied mainly to com-
binatorial or parameter optimisation. The table also shows how the work reported here 
complements previous research in this area. In addition to the table the work of Hart 
[12] and Lozano et al. [19] must be mentioned here. They experimented with different 
local search intensities and showed that the best number of iterations is application-
dependent. From this it can be concluded that it should be adjusted adaptively.  

Table 1. Classification of different adaptive MAs 

 Adaptive Dynamic Adaptation Self-adaptation 

Meme selection Ong & Keane [14] 
quality, param. opt. 

Krasnogor, Smith [13, 15, 23] 
quality, comb. and param. opt. 

Intensity of the search 
of the meme(s) 

Zitzler et al. [20, 21]
time, comb. opt. 

Jakob et al. 
[7, 22] 
quality, pa-
ram. opt. 

 

The cost-benefit-based adaptation scheme used by Ong and Keane [14] is close to 
that used here and it was obviously developed in parallel (cf. [7] and [22]), but it is 
used for meme selection only. The number of allowed evaluations per LS run is fixed 
to 100, which means that local search is stopped before convergence in many cases 
[14]. Ong and Keane investigated two kinds of selection mechanisms for a set of nine 
different LSs and found that their approach performed closely to the best SMA. This 
is a great advantage, as the decision which meme to use can now be left to the adapta-
tion without any danger of a relevant performance lost. While Ong and Kane concen-
trate on the selection of an LS, the work presented here focuses more on the intensity 
of an LS run. Hence, both complement each other.  

The approach by Zitzler et al. [20] is based on a fixed time budget. They use pa-
rameterised local searchers, where the amount of iterations and, thus, accuracy can be 
controlled. They start with low accuracy and increase it according to a given schedule 
comparable to simulated annealing. In a later and enhanced version Bambha et al. 
[21] replace the fixed schedules by dynamic ones which take the observed increase of 
solution quality produced by the LS into account. Still, their framework is based on a 
fixed time budget. Their detailed investigation demonstrates the superiority of adapta-
tion of the intensity of local search over SMAs, where the number of iterations of the 
LS is fixed and usually set high for achieving a good accuracy [21]. We share the idea 
of adaptively increasing the precision of the local search in the course of evolution. 



 Towards an Adaptive Multimeme Algorithm for Parameter Optimisation Suiting  135 

The main difference is the fixed time frame, upon which their algorithm is con-
structed. Especially for new problems, only rough estimates of the time required to at 
least get a feasible solution may be obtained. Despite the fact that there are applica-
tions where adhering to a fixed time frame is essential, we think that a more general 
approach which attempts to yield the best within the shortest possible time, also has 
its significance.  

The motivation for using an external mechanism for adaptation rather than self-
adaptation, as it is done by Krasnogor and Smith [13, 15, 23, 24] and others, is as  
follows: self-adaptation has proved its suitability when e.g. applied to control the mu-
tation rate as it is the case with the ES. This works well, because only fitness im-
provements play a role, as the cost for a mutation is independent of the chosen step 
size. The choice of different LSs, however, implies different numbers of evaluations 
(costs), unless they are stopped uniformly. These costs should be taken into account. 
Therefore, an external control mechanism, such as the cost-benefit-based adaptation 
introduced, is required. Another argument is that the self-adaptation of strategy pa-
rameters of the evolutionary mechanism is somewhat different from self-adapting the 
control parameters of an additional algorithm like an LS. Krasnogor et al. [24] state: 
“The rationale is to propagate local searchers (i.e. memes) that are associated with fit 
individuals, as those individuals were probably improved by their respective memes.” 
Or they were improved by recent evolution! This cannot be concluded from the fit-
ness value alone, because the fitness sums up the fitness coming from evolution and 
that originated from local search. Despite the success reported by the authors of co-
evolution, we think that these are arguments in favour of the investigation of the cost-
benefit-based approach introduced. 

3   Concept of Cost-Benefit-Based Adaptation 

The adaptive mechanism is based on the fitness gain obtained by local search and the 
effort spent that is measured in evaluations. This mechanism is described for the case 
of scheduling local searchers. Initially, all LSs have the same probability of being se-
lected. The relative fitness gain rfg and the required evaluations eval are summed up. 
A normalised fitness function in the range of 0 and fmax is used, which turns every task 
into a maximisation problem. The relative fitness gain is the ratio between the 
achieved fitness improvement and the possible one, as shown in (1), where fLS is the 
fitness obtained by the LS and fevo the fitness of the offspring as produced by the evo-
lution. The probabilities of applying the local searchers are adjusted, if either each LS 
was used at minimum usagemin times or there have been matingsmax matings in total 
since the last adjustment. The new relation between the local searchers LS1, .. , LSn is 
calculated as shown in (1). 

The sums are reset to zero after the adjustment, such that the adaptation is faster. If 
the probability for one LS is worse than Pmin for three consecutive alterations, it is ig-
nored from then on. To avoid premature deactivation, the probability is set to Pmin for 
the first time it drops below Pmin. For the experiments Pmin was set to 0.1.  

evo

evoLS

ff

ff
rfg

−
−

=
max

 
1,

1,

LSi

LSi

eval

rfg
: … :

LSnj

LSnj

eval

rfg

,

,  (1)



136 W. Jakob 

This approach can be extended easily for strategy parameters to be adapted like the 
maximum permissible iterations of an LS. For each parameter, a set of levels is de-
fined corresponding to appropriate values like iteration limits or termination thresh-
olds. In contrast to the selection of LSs, however, where all LSs have a certain chance 
of being selected unless they prove their infeasibility, only three consecutive levels 
are allowed to be active here (i.e. to have a probability p greater than zero) at the same 
time. Initially, a likeliness of 0.5 is assigned to the lowest level, 0.3 to the next one, 
and 0.2 to the last one, ensuring that the search will start coarsely. If the lowest or 
highest active level is given a probability of more than 0.5, the next lower or higher, 
respectively, is added. The level at the opposite end is dropped and its likeliness is 
added to its neighbour. The new level is given a probability equal to 20% from the 
sum of the probabilities of the other two levels. This causes a move of three consecu-
tive levels along the scale of possible ones according to their performance determined 
by the achieved fitness gain and the required evaluations. To ensure mobility in both 
directions none of the three active levels may have a probability below 0.1. An exam-
ple of a movement of the active levels is shown in Fig. 1.  

For EAs that create more than one offspring per mating, such as the one used here, 
a choice must be made between locally optimising the best (called best-improvement) 

or a fraction of up to all 
of these offspring (called 
all-improvement). This is 
controlled adaptively in 
the following way: the 
best offspring always un-
dergoes LS improvement 
and for its siblings the 
chance of being treated 
by the LS is adaptively 
adjusted as described be-
fore, with the following 
peculiarities. After hav-
ing processed all selected 
offspring, fLS is estimated 
as the fitness of the best 
locally improved child 
and fevo as that of the best 
offspring from pure evo-
lution. 

4   Experiments 

Due to the lack of space, the basic algorithms used for the experiments shall be de-
scribed briefly only and the interested reader is referred to the given literature. Suit-
able local search algorithms must be derivative-free and able to handle restrictions in 
order to preserve the general applicability of the resulting MA. The Complex and  
the Rosenbrock algorithm, two well-known procedures from the sixties, were  

 

Fig. 1. Three phases of a level movement. p denotes the prob-
ability of the levels and v the associated strategy parameter 
value, which is just an illustrating example here. Active levels 
are marked by a grey background. 
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chosen, since they meet these requirements and are known to be powerful local search 
procedures. The Rosenbrock algorithm is a modified coordinate strategy that uses a 
rotating coordinate system which points in the direction that appears to be most favor-
able. The Complex procedure is a polyhedron strategy using expansion, reflection, 
and contraction for improving the polyhedron. The implementation is based on 
Schwefel [25], who gives a detailed description of both algorithms together with ex-
perimental results. Hereinafter, the algorithms are abbreviated by R and C. 

The EA used is GLEAM (General Learning Evolutionary Algorithm and Method) 
[26], an EA of its own that combines elements from Evolution Strategy (ES) and real-
coded Genetic Algorithms with data structuring concepts from computer science. The 
coding is based on chromosomes consisting of problem-configurable gene types. The 
definition of a gene type constitutes its set of real, integer or Boolean parameters  
together with their ranges of values. There are different rules for constructing chro-
mosomes from gene types covering the range of pure parameter and combinatorial 
optimisation including chromosomes of variable length. Based on the gene type defi-
nitions a set of standard genetic operators is defined. This provides users with a flexi-
ble mechanism for naturally mapping their problem to the chromosomes and genes, 
often resulting in genotypes from which phenotypic properties can be derived easily. 
Among others, GLEAM contains mutation operators influenced by the ES insofar, as 
small parameter changes are more likely than greater ones. GLEAM uses ranking-
based selection, elitist offspring acceptance, and a structured population based on a 
neighbourhood model [27], that causes an adaptive balance between exploration and 
exploitation and avoids premature convergence. This is achieved by maintaining 
niches within the population for a longer period of time and thus, sustains diversity. 
Hence, GLEAM can be regarded a more powerful EA compared to simple ones, 
which makes it harder to gain improvement by adding local search. On the other 
hand, if an improvement can be achieved by adding and applying memes adaptively, 
then at least the same advantage if not better can be expected by using a simpler EA.  

These procedures were integrated and the resulting hybrid GLEAM (HyGLEAM) 
covers all kinds of hybridisation mentioned in the first section. Detailed investigations 
of the SMA included in HyGLEAM showed that Lamarckian evolution, where the 
chromosomes are updated according to the LS improvement, performs better than 
without updates [6, 7, 22]. The danger of premature convergence, which was ob-
served by other researchers, is avoided by the neighbourhood model used [26, 27].  

Adaptive HyGLEAM controls meme selection and four strategy parameters con-
trolling the intensity of local search (thR, limitR, and limitC) and the frequency of 
meme application (all_impr) as shown in Table 2. thR is a termination threshold value 
of the Rosenbrock procedure, while limitR and limitC  margin the LS iterations. In case  

Table 2. Adaptively controlled strategy parameters of the Multimeme Algorithm (MMA) 

Strategy parameter Values used for the experiments 
thR 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9 
limitR, limitC 100, 200, 350, 500, 750, 1000, 1250, 1500, 1750, 2000 
all-impr 0, 0.2, 0.4, 0.6, 0.8, 1.0 
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of all-improvement (see also section 3), the probability of the siblings of the best 
offspring being treated by a meme is denoted all_impr. 

4.1   Strategy Parameters of the Adaptation Scheme 

First experiments and thorough observations of the adaptation process have led to the 
insight that adaptation should be allowed to develop differently for dissimilar fitness 
levels. The experiments were carried out with three parameterisations for the fitness 
levels and three different adaptation speeds (see also section 3), as shown in Tables 3 
and 4. Together with the choice between best- and all-improvement, this results in 
three new strategy parameters, and a crucial question related to the experiments is, 
whether they can be set to common values without any relevant loss of performance. 

Tables 3 and 4. Strategy parameters of the adaptive Multimeme Algorithm (AMMA) 

 Meme Selection Parameter Adaptation Fitness 
Levels 

Fitness Ranges 
in % of  fmax  

Adaptation 
Speed usagemin matingsmax usagemin matingsmax 

fl1 40      70      100  fast 3 15 3 12 
fl2 35   65  85   100  medium 5 20 4 15 
fl3 30 55 75 90 100  slow 8 30 7 25 

4.2   Test Cases 

Appropriate test cases must be representative of real-world applications, their calcula-
tion must be comparatively fast for statistical investigations, and the exact or an ac-
ceptable solution must be known. We used five test functions taken from GENEsYs 
[28] and two real-world problems, see Table 5. Due to the lack of space they are de-
scribed very briefly only, and the interested reader is referred to the given literature 
and to [6, 7, 22]. We used rotated versions of Shekel’s Foxholes and the Rastrigin 
function in order to make them harder, see [7, 22]. The scheduling task is solved 
largely by assigning start times to the production batches. 

Table 5. Important properties of the test cases used. fi are the function numbers of [28]. 

Test Case Para-
meter 

Modality Implicit 
Restrict.

Range Target 
Value 

Schwefel’s Sphere[28, f1] 30 real unimodal no [-1010, 1010] 0.01 
Shekel’s Foxholes [28, f5] 2 real multimodal no [-500, 500] 0.998004 
Gen. Rastrigin f. [28, f7] 5 real multimodal no [-5.12, 5.12] 0.0001 
Fletcher & Powell f. [28, f16] 5 real multimodal no [-3.14, 3.14] 0.00001 
Fractal f. [28, f13] 20 real multimodal no [-5, 5] -0.05 
Design optimisation [29] 3 real multimodal no   
Scheduling + resource opt.[30] 87 int. multimodal yes   
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4.3   Experimental Results 

The comparisons were based on one hundred runs per job (an algorithm together with 
a setting of its strategy parameters). The effort was measured by the average number 
of evaluations needed for success, i.e. reaching the target value of Table 5 or a given 
solution quality in case of the real-world problems. Only jobs where all runs were 
successful were taken into account for comparison to ensure high convergence reli-
ability. The different jobs were evaluated by the improvement in effort achieved com-
pared with the best hand-tuned GLEAM job. Table 6 shows the results for the best 
jobs of the basic EA GLEAM, the two simple MAs SMA-R (thR,, best/all) and SMA-
C (best/all) using the Rosenbrock or the Complex procedure respectively, and two 
parameterisations of the adaptive Multimeme Algorithm (AMMA): best AMMA (ad-
aptation speed, fitness levels, best/all) and recommended AMMA (see next section). 
The hand-tuned strategy parameters are given in brackets except for the population 
size μ, which was always tuned.  

Table 6 shows that the effort required could be reduced massively when using the 
appropriate SMA or the AMMA and that the choice of a suitable LS for the SMA is 
application-dependent. Based on a detailed statistical analysis of the results, the fol-
lowing best setting of the strategy parameters of the AMMA (cf. Tables 3 and 4) can 
be given: all-improvement, fitness level fl1, and slow adaptation speed. On the aver-
age, the best jobs of this recommended AMMA reach 83% of the observed effort re-
duction of the best hand-tuned AMMA. The differences between best and recom-
mended AMMA are not significant for the scheduling and the design optimisation 
task. Thus, the recommended AMMA performs only a little worse for three test cases: 
sphere, Fletcher’s, and fractal function. The great span of population sizes from 5 to 
11,200 used with the basic EA GLEAM could be reduced to a range between 5 and 
90, which simplifies the estimation of the appropriate value for that last remaining 
strategy parameter. Fig. 2 illustrates the improvements obtained. For a correct inter-
pretation of the outstanding results reached with one of the two SMAs for three test 
cases, it must be considered that they all require careful and cumbersome tuning and 
that it is some sort of peak-shaped optimum in the case of the scheduling task. Fur-
thermore, both AMMA parameterisations yield better results than the best SMA in 
case of Shekel’s foxholes, the Rastrigin, and the fractal function.  

Table 6. Effort (evaluations) for best hand-tuned basic EA GLEAM, two SMAs, best AMMA 
and recommended AMMA and their best population sizes μ. “-“ indicates no success. 

Basic EA GLEAM SMA-R SMA-C Best AMMA Rec.AMMA Test 
Case μ eval. μ eval. μ eval μ eval. μ eval. 

Sphere 5 278,102 10 2,518 - 5 9,316 5 18,718 
Fletcher 600 483,566 10 13,535 5 4,684 10 11,808 5 14,449 
Sched. 1,800 5,376,334 5 69,448 - 30 235,410 20 257,951 
Foxholes 350 103,192 30 10,710 20 8,831 20 6,209 20 6,209 
Rastrigin 11,200 3,518,702 70 315,715 150 3,882,531 90 265,892 90 265,892 
Fractal 20 195,129 5 30,626 10 1,065,986 5 20,753 5 28,644 
Design 210 5,773 10 4,222 5 1,041 10 1,201 5 1,440 
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5   Conclusions and 
     Outlook 

We introduced a cost-
benefit-based adaptation for 
both meme selection and in-
tensity and frequency of 
meme usage, which defines 
the balance between global 
and local search. It was 
shown how this approach 
fits into the gap previous 
work in the field left open. 
Finally, a common parame-
terisation of the adaptive 
Multimeme Algorithm sug-
gested was developed, which 
requires only one strategy 
parameter to be adjusted, the 
population size. For this, it is 
recommended to start with a 
value of 20 or more for 
problems that are assumed to 
be very complex.  

As the proposed adapta-
tion scheme can be applied to any other EA, it is hoped to meet the engineer’s needs for 
an easy-to-apply EA for the task on hand. As the results are based on five test functions 
and two real-world app-lications, they should be verified by further applications or test 
cases. The addition of more local searchers and improvements of the adaptation mecha-
nism are also interesting fields of further research. 
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Abstract. Following the introduction of two niching methods within
Evolution Strategies (ES), which have been presented recently and have
been successfully applied to theoretical high-dimensional test functions,
as well as to a real-life high-dimensional physics problem, the purpose of
this study is to address the so-called niche radius problem.

A new concept of adaptive individual niche radius, introduced here
for the first time, is applied to the ES Niching with Covariance Matrix
Adaptation (CMA) method. The proposed method is described in detail,
and then tested on high-dimensional theoretical test functions.

It is shown to be robust and to achieve satisfying results.

1 Introduction

Evolutionary Algorithms (EAs) have the tendency to converge quickly into a
single solution [1,2,3], i.e. all the individuals of the artificial population evolve
to become nearly identical. Given a problem with multiple solutions, the tra-
ditional EAs will locate a single solution. This is the desired result for many
complex tasks, but a problem arises when multimodal domains are considered
and multiple optima are required. For instance, consider an optimization prob-
lem for a high-dimensional real-world application, which requires the location
of highly-fit multiple solutions with high diversity among them - a result which
a sequential multiple-restart algorithm doesn’t aim for. Niching methods, the
extension of EAs to multi-modal optimization, address this problem by main-
taining the diversity of certain properties within the population - and this way
they allow parallel convergence into multiple good solutions. Up to date, niching
methods have been studied mainly within the field of Genetic Algorithms (GAs).
The research in this direction has yielded various successful methods which have
been shown to find multiple solutions efficiently [1], but naturally were limited to
low-dimensional real-valued problems. Evolution Strategies (ES) are a canonical
EA for real-valued function optimization, due to their straightforward encoding,

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 142–151, 2006.
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their specific variation operators, the self-adaptation of their mutation distribu-
tion as well as to their high performance in this domain in comparison with other
methods on benchmark problems. The higher the dimensionality of the search
space, the more suitable a task becomes for an ES (see, e.g. [3], pp. 149-159).
Two ES niching methods have been proposed lately [4,5]. Upon their successful
application to high-dimensional theoretical functions, those methods were suc-
cessfully applied to a real-world high-dimensional physics problem, namely the
optimization of dynamic molecular alignment by shaped laser pulses [6]. In that
application, the niching technique was shown to be clearly qualitatively infe-
rior with respect to multiple restart runs with a single population, for locating
highly-fit unique optima which had not been obtained otherwise.

Fig. 1. S , n = 2 Fig. 2. V, n = 2

The ES niching methods, as the majority of the GA niching methods, hold
an assumption concerning the fitness landscape, stating that the peaks are far
enough from one another with respect to some threshold distance, called the
niche radius, which is estimated for the given problem and remains fixed during
the course of evolution. Obviously, there are landscapes for which this assump-
tion isn’t applicable, and where those niching methods are most likely to fail (for
example see Fig. 1, 2). There were several GA-oriented studies which addressed
this so-called niche radius problem, aiming to drop this assumption, such as the
cooling-based UEGO [7] or the clustering-based DNC [8]. A more theoretical
study of a clustering-based niching can be found in [9]. Moreover, an iterative
statistical-based approach was introduced lately [10] for learning an optimal
niche radius (without relaxing the fitness landscape assumption).

Our proposed method introduces a new concept to the niche radius problem,
inspired by the ES self-adaptation concept - an adaptive individual niche
radius. The idea is that each individual carries and adapts a niche radius along
with its adaptive strategy parameters. This method is an “adaptive extension”
to the CMA-ES dynamic niching algorithm [5], as will be explained.

The remainder of the paper is organized as follows: In section 2 we introduce
the background for the various components of our proposed algorithm. Section 3
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introduces our proposed algorithm. In section 4 the test functions as well as
the methodology for the performance study are outlined, where the numerical
results are presented and analyzed in section 5. Section 6 provides summary and
conclusion.

2 From Fitness Sharing to the CMA-ES Niching Method

2.1 Fitness Sharing

The fitness sharing approach [11] was the pioneering GA niching method. Its idea
is to consider the fitness as a shared resource and by that to aim to decrease
redundancy in the population. Given the similarity metric of the population,
which can be genotype or phenotype based, the sharing function is given by:

sh(dij) =

{
1−

(
dij

ρ

)αsh

if dij < ρ

0 otherwise
(1)

where dij is the distance between individuals i and j, ρ (traditionally noted as
σsh) is the fixed radius of every niche, and αsh is a control parameter, usually
set to 1. Using the sharing function, the niche count is then defined as follows:

mi =
N∑

j=1

sh(dij) (2)

Given an individual’s raw fitness fi, the shared fitness is then defined by:

fsh
i =

fi

mi
(3)

2.2 Dynamic Niche Sharing

The dynamic niche sharing method [12], which succeeded the fitness sharing
method, aims to dynamically recognize the q peaks of the forming niches, and
with this information to classify the individuals as either members of one of the
niches, or as members of the “non-peaks domain”. Explicitly, let us introduce
the dynamic niche count :

mdyn
i =

{
nj if individual i is within dynamic niche j
mi otherwise (non-peak individual) (4)

where nj is the size of the jth dynamic niche, and mi is the standard niche
count, as defined in Eq. 2. The shared fitness is then defined respectively:

fdyn
i =

fi

mdyn
i

(5)

The identification of the dynamic niches can be done in the greedy approach, as
proposed in [12] as the Dynamic Peak Identification (DPI) algorithm.
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2.3 Dynamic Niching in Evolution Strategies

The ES dynamic niching algorithm [4] was introduced recently as a niching
method for the Evolution Strategies framework. The inspiration for this algo-
rithm was given by various niching algorithms from the GA field, and in partic-
ular by the fitness sharing [11] and its dynamic extension [12], as well as by the
crowding concept [13]. The basic idea of the algorithm is to dynamically identify
the various fitness-peaks of every generation that define the niches, classify all
the individuals into those niches, and apply a mating restriction scheme which
allows competitive mating only within the niches : in order to prevent genetic
drift, every niche can produce the same number of offspring, following a fixed
mating resources concept.

For more details we refer the reader to [14].

2.4 Dynamic Niching with Covariance Matrix Adaptation ES

The dynamic niching with CMA-ES algorithm [5] was the successor of the ES
dynamic niching algorithm, where the CMA replaces the mutative step-size con-
trol. We provide here a short overview of the CMA-ES method, followed by a
description of the algorithm.

The (1, λ)-CMA-ES: A Brief Overview. The covariance matrix adaptation
evolution strategy [15], is a variant of ES that has been successful for treating
correlations among object variables. This method tackles the critical element of
Evolution Strategies, the adaptation of the mutation parameters. We provide
here a short description of the principal elements of the (1, λ)-CMA-ES.

The fundamental property of this method is the exploitation of information
obtained from previous successful mutation operations. Given an initial search
point x0, λ offspring are sampled from it by applying the mutation operator.
The best search point out of those λ offspring is chosen to become the parent of
the next generation.

Explicitly, the action of the mutation operator for generating the λ samples
of search points in generation g + 1 is defined as follows:

xg+1 ∼ N
(
x

(g)
k , σ(g)2C(g)

)
, k = 1, ..., λ (6)

where N (m,C) denotes a normally distributed random vector with mean m
and covariance matrix C. The matrix C, the crucial element of this process,
is initialized as the unity matrix and is learned during the course of evolution,
based on cumulative information of successful mutations (the so-called evolution
path). The global step size, σ(g), is based on information from the principal
component analysis of C(g) (the so-called “conjugate” evolution path). We omit
most of the details and refer the reader to Hansen and Ostermeier [15].

Dynamic Niching with CMA. The algorithm uses the (1, λ)-CMA ES as its
evolutionary core mechanism. A brief description of the algorithm follows. Given
q, the estimated/expected number of peaks, q + p “CMA-sets” are initialized,
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where a CMA-set is defined as the collection of all the dynamic variables of the
CMA algorithm which uniquely define the search at a given point of time. Such
dynamic variables are the current search point, the covariance matrix, the step
size, as well as other auxiliary parameters. At every point in time the algorithm
stores exactly q + p CMA-sets, which are associated with q + p search points:
q for the peaks and p for the “non-peaks domain”. The (q + 1)th...(q + p)th

CMA-sets are individuals which are randomly re-generated in every generation
as potential candidates for niche formation. Until stopping criteria are met, the
following procedure takes place. Each search point samples λ offspring, based
on its evolving CMA-set. After the fitness evaluation of the new λ · (q + p)
individuals, the classification into niches of the entire population is done using
the DPI algorithm, and the peaks become the new search points. Their CMA-sets
are inherited from their parents and updated according to the CMA method.

2.5 The Niche Radius Problem

The traditional formula for the niche radius for phenotypic sharing in GAs was
derived by Deb and Goldberg [16]. By following the trivial analogy and consid-
ering the decision parameters as the decoded parameter space of the GA, the
same formula was applied to the ES niching methods. It is important to note
that this formula depends on q, the expected/desired number of peaks in the
solution space:

ρ =
r

n
√
q

(7)

where given lower and upper boundary values xk,min, xk,max of each coordinate
in the decision parameters space, r is defined as r = 1

2

√∑n
k=1(xk,max − xk,min)2.

For the complete derivation see, e.g., [6].
Hence, by applying this niche radius approach, two assumptions are held:

1. The expected/desired number of peaks, q, is given or can be estimated.
2. All peaks are at least in distance 2ρ from each other, where ρ is the

fixed radius of every niche.

3 The Proposed Algorithm: Niche Radius Adaptation
in the CMA-ES Niching Algorithm

Our new algorithm tackles the niche radius problem, in particular the assumption
regarding the fitness landscape: it introduces the concept of an individual niche
radius which adapts during the course of evolution. The idea is to couple the niche
radius to the global step size σ, whereas the indirect selection of the niche radius
is applied through the demand for λ individuals per niche. This is implemented
through a quasi dynamic fitness sharing mechanism.

The CMA-ES Niching method is used as outlined earlier (Sec. 2.4), with the
following modifications. q is given as an input to the algorithm, but it’s now
merely a prediction or a demand for the number of solutions, with no effect on
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the nature of the search. A niche radius is initialized for each individual in the
population, noted as ρ0

i . The update step of the niche radius of individual i in
generation g + 1 is based on the parent’s radius and on its step-size:

ρg+1
i =

(
1− cg+1

i

)
· ρg

parent + cg+1
i · σg+1

parent (8)

where cg
i is the individual learning coefficient, which is updated according to the

delta of the step size σ:

cg+1
i =

1
5
·
(
1− exp

{
α ·Δσg+1

i

})
Δσg+1

i =
∣∣∣σg+1

parent − σg
parent

∣∣∣ (9)

This profile is chosen in order to keep the learning coefficient close to 1
5 for big

changes in the global step size, but make it exponentially approach 0 as the global
step size vanishes, i.e. convergence is achieved. The parameter α determines
the nature of this profile, and it seems to become problem dependent for some
landscapes (a discussion concerning this parameter will follow).

The DPI algorithm is run using the individual niche radii, for the identi-
fication of the peaks and the classification of the population.
Furthermore, introduce:

g (x, λ) = 1 +Θ (λ− x) · (λ− x)2

λ
+Θ (x− λ) · (λ− x)2 (10)

where Θ (y) is the Heaviside step function. Given a fixed λ, g (x, λ) is a parabola
with unequal branches, centered at (x = λ, g = 1). An explanation will follow.
Then, by applying the calculation of the dynamic niche count mdyn

i (Eq. 4),
based on the appropriate radii, we define the niche fitness of individual i by:

fniche
i =

fi

g
(
mdyn

i , λ
) (11)

The selection of the next parent in each niche is based on this niche fitness.
Eq. 11 enforces the requirement for having a fixed resource of λ individuals per
niche, since g (x, λ) obtains values greater than 1 for any niche count different
than λ. The anti-symmetry of g (x, λ) is therefore meant to penalize more the
niches which exceeded λ members, in comparison to those with less than λ
members. This equation is a variant of the dynamic shared fitness (Eq. 5), and
is used now in the context of niche radius adaptation.

A single generation of the method is summarized as Algorithm 1.

4 Test Functions and Experimental Procedure

Table 1 summarizes the unconstrained multimodal test functions [3,5,17,18], as
well as their initialization intervals. Some of the functions have a symmetric or
equal distribution of optima (A, L, B, M, G), and some do not (F , V , S). Some
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Algorithm 1. (1, λ)-CMA-ES Dynamic Niching with Adaptive Niche Radius
for all i = 1..q + p search points

Generate λ samples based on the CMA distribution of i

Update the niche radius ρg+1
i according to Eq.8

endfor
Evaluate Fitness of the population.
Compute the Dynamic Peak Set of the population using the DPI, based on individual radii
Compute the Dynamic Niche Count (Eq.4) of every individual
for every given peak of the dynamic-peak-set do:

Compute the Niche Fitness (Eq. 11)
Set indiv. with best niche fitness as a search point of the next generation
Inherit the CMA-set and update it respectively

endfor
if Ndps =size of dynamic-peak-set < q

Generate q − Ndps new search points, reset CMA-sets
endif
Reset the (q + 1)th...(q + p)th search points

of the functions are non-separable. The CMA-ES dynamic niching algorithm
(with a fixed niche radius) was tested on {A, L, F} [5], whereas it was not
applied to the rest of the functions given here. Some of those additional test
functions {M, B, G} are benchmark multimodal functions that will further test
the robustness of the algorithm as a niching method, and the others {V , S} focus
on the niche radius problem.
M is meant to test the stability of a particularly large number of niches: In the

interval [0, 1]n this function has 3n maxima, equally distributed as a hyper-grid,
with equal function values of 1. V is a sine function with decreasing frequency (6n

optima in the interval [0.25, 10]n). S, suggested in [18], introduces a landscape
with dramatically uneven spread of optima. Both V and S are not likely to be
tackled by a niching method with a fixed niche radius.

The algorithm is tested on the specified functions for various dimensions. Each
test case includes 100 runs. All runs are performed with a core mechanism of

Table 1. Test functions to be minimized and initialization domains

Name Function Init

Ackley A(x) = −c1 · exp
(
−c2

√
1
n

∑n
i=1 x2

i

)
− exp

( 1
n

∑n
i=1 cos(c3xi)

)
+ c1 + e

[−10, 10]n

L L(x) = −∏n
i=1 sink (l1πxi + l2) · exp

(
−l3

(
xi−l4

l5

)2
)

[0, 1]n

Fletcher-Powell
F(x) =

∑n
i=1 (Ai − Bi)2

Ai =
∑n

j=1 (aij · sin(αj) + bij · cos(αj))
Bi =

∑n
j=1 (aij · sin(xj) + bij · cos(xj))

[−π, π]n

M M (x) = − 1
n

∑n
i=1 sinα (3πxi) [0, 1]n

Bohachevsky B (x) =
∑n−1

i=1 (x2
i + 2x2

i+1

−0.3 · cos(3πxi) − 0.4 · cos(4πxi+1) + 0.7)
[−10, 10]n

Grienwank G (x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos
(

xi√
i

)
+ 1 [−10, 10]n

Shekel S (x) = −∑10
i=1

1
ki(x−ai)(x−ai)T +ci

[0, 10]n

Vincent V (x) = − 1
n

∑n
i=1 sin (10 · log(xi)) [0.25, 10]n
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a (1, 10)-strategy per niche and initial points are sampled uniformly within the
initialization intervals. Initial step sizes, as well as initial niche radii, are set to
1
6 of the intervals. The parameter q is set based on a-priori knowledge when
available, or arbitrarily otherwise; p is set to 1. The default value of α is −10,
but it becomes problem dependent for some cases, and has to be tuned. Each
run is stopped after 105 generations ((q + 1) · 106 evaluations).

We consider three measures as the performance criteria: the saturation M.P.R.
(maximum peak ratio; see, e.g., [5]), the global optimum location percentage, and
the number of optima found (with respect to the desired value, q).

5 Numerical Results

The results of the simulations are summarized in table 2. As reflected by those
results, our method performs in a satisfying manner. A comparison shows that
the performance of the new niching method is not harmed by the introduction
of the niche radius adaptation mechanism with respect to the same multimodal
test functions reported in [5], except for the Ackley function in high dimensions.
The latter seems to become deceptive for the adaptation mechanism as the
dimensions go up: it requires the tuning of the parameter α, but no longer
obtains satisfying results for n > 15. This occurs since the global minimum has
a far stronger basin of attraction in comparison to the local minima, and many
niches are formed in this basin. However, our confidence in the method is further
reassured by the results on the functions {M, B, G} which are quite satisfying.
Concerning the landscapes with the “deceptive” distribution of optima, i.e. V
and S, our method performed well, and managed to tackle the niche radius
problem successfully. The tuning of α is also required for S.

A visualizations of the runs on V and S for n = 1 are given as Fig. 3 and
Fig. 4.

Table 2. Performance Results

Function M.P.R. Global Optima/q Function M.P.R. Global Optima/q

A : n = 3 1 100% 7/7 M : n = 3 1 100% 100/100
A : n = 20 0.6984 59% 22.6/41 M : n = 10 0.9981 100% 99.1/100
A : n = 40 0.3186 43% 20.8/81 M : n = 40 0.7752 100% 87.2/100
L : n = 4 0.9832 100% 4.4/5 B : n = 3 0.9726 100% 3.96/5
L : n = 10 0.7288 47% 3.4/11 B : n = 10 0.5698 82% 2.21/5
F : n = 2 1 100% 4/4 B : n = 20 0.1655 61% 1.21/5
F : n = 4 0.881 100% 3.0/4 G : n = 2 0.7288 100% 3.96/5
F : n = 10 0.783 67% 2.3/4 G : n = 10 0.398 53% 2.2/5
V : n = 1 0.8385 100% 5.05/6 S : n = 1 0.9676 100% 7.833/8
V : n = 2 0.8060 100% 17.86/36 S : n = 2 0.8060 100% 6.33/8
V : n = 5 0.9714 100% 39.16/50 S : n = 5 0.7311 91% 4.37/8
V : n = 10 0.9649 100% 36.9/50 S : n = 10 0.7288 79% 3.41/8
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6 Summary and Conclusion

We have proposed a new niching algorithm, with a niche-radius adaptation mech-
anism, for Evolution Strategies. In particular, this method relies on the CMA-ES
algorithm, and couples the individual niche radius to the individual step size.
The method is tested on a set of highly multimodal theoretical functions for
various dimensions. It is shown to perform in a satisfying manner in the loca-
tion of the desired optima of functions which were tested in the past on the
predecessor of this method, using a fixed niche radius. The Ackley function in
high dimensions seems to be deceptive for this method. More importantly, the
niche radius problem is tackled successfully, as demonstrated on functions with
unevenly spread optima. In these cases the performance was satisfying as well.

The function of the learning coefficients has to be tuned (through the parame-
ter α) in some cases. Although this is an undesired situation, i.e., the adaptation
mechanism is problem dependent, this method makes it possible to locate all de-
sired optima on landscapes which could not be handled by the old methods of
fixed niche radii, or would require the tuning of q parameters.
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Abstract. The paper introduces a hybrid Tabu Search-Evolutionary
Algorithm for solving the constraint satisfaction problem, called STLEA.
Extensive experimental fine-tuning of parameters of the algorithm was
performed to optimise the performance of the algorithm on a commonly
used test-set. The performance of the STLEA was then compared to the
best known evolutionary algorithm and benchmark deterministic and
non-deterministic algorithms. The comparison shows that the STLEA
improves on the performance of the best known evolutionary algorithm
but can not achieve the efficiency of the deterministic algorithms.

1 Introduction

The last two decades saw the introduction of many evolutionary algorithms
(EAs) for solving the constraint satisfaction problem (CSP). In [1], the perfor-
mance of a representative sample of these EAs was compared on a large ran-
domly generated test-set of CSP-instances. In [2] a more extensive comparison,
including a large number of algorithm variants, was included, this time on a
test-set generated by the latest random CSP generator. One variant algorithm,
the Stepwise-Adaptation-of-Weights EA with randomly initialisated domain sets
(rSAWEA) outperformed all other EAs. However, when the effectivity and the
efficiency of this algorithm was compared to non-evolutionary algorithms, it
was found that the effectivity of the other algorithms was approached by the
rSAWEA but that the efficiency still fell short of the other algorithms.

A major reason for this lack of efficiency is that EAs tend to recheck previously
checked candidate solutions during their run, wasting computational effort. This
paper investigates a way of reducing this waste: the use of a tabu list.

Tabu lists are used in Tabu Search (TS) algorithms ([3]). They are used to
ensure that the algorithm does not return to an already searched neighbourhood
or check a candidate solution twice. Tabu lists and TS have found their way into
EAs before (i.e. [4,5,6]) but to the authors’ knowledge never for EAs solving
the CSP. Tabu lists, in essence, store already checked candidate solutions. The
algorithm can use the list to determine future search avenues or simply to forgo
checking the candidate solution: making it tabu. Because the (more simple) tabu
lists are used as reference memory (only insertion and lookup is allowed), they

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 152–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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can be implemented efficiently as a hash set. This ensures a constant time cost
(O(1)) when a suitable hash function is used and the table is sufficiently large.
This paper will show that combining EAs with tabu lists will provide both an
effective and efficient CSP solving algorithm.

The article is organised in the following way: in section 2, the constraint
satisfaction problem is defined. Section 3 defines the proposed algorithm. The
experimental setup is explained in section 4. Section 5 discusses the results of
the experiments. Finally, the paper is concluded in section 6.

2 Constraint Satisfaction Problems

The Constraint Satisfaction Problem (CSP) is a well-known satisfiability prob-
lem that is NP-complete ([7]). Informally, the CSP is defined as a set variables
X and a set of constraints C between these variables. Variables are only assigned
values from their respective domains, denoted as D. Assigning a value to a vari-
able is called labelling a variable and a label is a variable-value pair, denoted:
〈x, d〉. The simultaneous assignment of several values to their variables is called
a compound label. A constraint is a set of compound labels, this set used to de-
termine when a constraint is violated. If a compound label is not in a constraint,
it satisfies the constraint. A compound label that violates a constraint is called
a conflict. A solution of the CSP is defined as the compound label containing all
variables in such a way that no constraint is violated. The number of distinct
variables in the compound labels of a constraint is called the arity of the con-
straint and these variables are said to be relevant to the constraint. The arity of
a CSP is the maximum arity of its constraints. In this paper we consider only
CSPs with an arity of two, called binary CSPs. All constraints of a binary CSP
have arity two.

In this paper we will use the test-set constructed in [2]. The test-set consists of
model F generated solvable CSP-instances ([8]) with 10 variables and a uniform
domain size of 10 values. Complexity of the instances is determined by two com-
monly used complexity measures for the CSP: density (p1) and average tightness
(p2), both presented as a real number between 0.0 and 1.0 inclusive. The mushy
region is the region in the density-tightness parameter space where the hard-
to-solve CSP-instances can be found. The nine density-tightness combinations
used are 1 : (0.1, 0.9), 2 : (0.2, 0.9), 3 : (0.3, 0.8), 4 : (0.4, 0.7), 5 : (0.5, 0.7), 6 :
(0.6, 0.6), 7 : (0.7, 0.5), 8 : (0.8, 0.5), and 9 : (0.9, 0.4). For these density-tightness
combinations 25 CSP-instances were selected from a population of 1000 gener-
ated CSP instances (for selection criteria see [2]) for a total of 225 CSP-instances.
The test-set can be downloaded at: http://www.emergentcomputing.org/csp/
testset mushy.zip.

3 The Algorithm

The proposed EA is called the Simple Tabu List Evolutionary Algorithm
(STLEA) and is a hybrid between a TS algorithm and an EA. In keeping
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with the simple definition of TS as “a meta-heuristic superimposed on another
heuristic” ([3]), the STLEA only uses the tabu list. The tabu list is used to en-
sure that the STLEA does not check a compound label twice during a run. The
basic structure of the STLEA is similar to other EAs and is shown in algorithm
1. A population P of popsize individuals is initialised (line 2) and the compound
labels in the population are added to the tabu list (line 3). The individuals’
representation and how they are initialised are described in section 3.1, the tabu
list is described in section 3.3. The STLEA iterates for a number of generations
(line 4 to 10) until either a solution is found or the maximum number of conflict
checks allowed (maxCC) has been reached or exceeded (The stop condition in
line 4). At each iteration parents are selected from P into offspring population S
using biased linear ranking selection ([9]) with bias bias (line 5). The offspring
population creates a new population using the variation operator (line 6), further
described in section 3.4. The new offspring population is then evaluated by the
objective function (line 7), described in section 3.2. Each new individual in the
offspring population is also added to the tabu list (line 8). Finally, the survivor
selection operator selects individuals from the offspring population (S) into an
emptied population (P ) to be used for the next generation (line 9). The survivor
operator selects individuals with the best fitness value (see section 3.1) until the
new population (P ) is equal to popsize.

Algorithm 1: STLEA
1 funct STLEA(popsize,maxCC, bias) ≡
2 P := initialise(popsize);
3 updateTabuList(P );
4 while ¬solutionFound(P ) ∨ CC < maxCC do
5 S := selectParents(P, bias);
6 S := variationOperator(S);
7 evaluate(S);
8 updateTabuList(S);
9 P := selectSurvivors(S);

10 od

3.1 Representation and Initialisation

An individual in the STLEA consists of three parts: a compound label over all
variables of the CSP used as the candidate solution; the subset of constraints of
the CSP that are violated by the compound label; and a parameter indicating
which variable was altered in the previous generation (changed variable parame-
ter). A new individual is then initialised by: uniform randomly labelling all vari-
ables in the compound label from the respective domains of each variable; adding
each constraint violated by the compound label to the set of violated constraints;
and leaving the changed variable parameter unassigned. The biggest difference
to other commonly used representations is that this representation maintains:
the actual set of violated constraints instead of the derivative number of violated
constraints; and the variable changed in the previous generation. The size of the
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constraint set is used if a fitness value for the individual is needed. By numbering
the constraints of the CSP, we can store only this number as a reference to the
actual constraint.

3.2 Objective Function

The objective of STLEA is to minimise the number of violated constraints, thus
finding a solution. The objective function then maintains the set of violated
constraints of an individual. The number of conflict checks needed for one fitness
evaluation is reduced by only considering the constraints relevant to the last
changed constraint. First all constraints relevant to the last changed variable
are removed from the set of violated constraints of the individual. The objective
function then checks each constraint relevant to the last changed variable of
the individual. If it is violated, the constraint is added to the set of violated
constraints of the individual.1

3.3 Simple Tabu List

The STLEA maintains a simple tabu list of compound labels implemented as
a hash set. The tabu list is used in only two ways: adding a compound label
(insertion), and checking if a compound label is in the list (lookup). There is no
need to alter or remove a compound label once it has been added to the tabu
list. New compound labels are added immediately after the new individuals
have been evaluated. Depending on the quality of the hash-function and given
adequate size of the hash table, insertion and lookup in a hash table set constant
time (O(1)).

3.4 Variation Operator

The variation operator takes a single individual to produce many children (off-
spring). The basic premise of the variation operator is simple: select a variable
from the CSP and generate children for all not previously checked values in the
domain of the selected variable. The variation operator uses the tabu list to check
whether a child has already been checked. All not previously checked children
are added to the offspring population, and the last changed variable parameter
is set to the selected variable.

If all children are in the tabu list, the variation operator iterates the procedure
with another variable selected. No variable will be selected twice in one operator
invocation per individual. It is possible that after all variables have been selected,
no unchecked child was found. At this stage, the search environment around the
individual has been exhaustively searched and the search path can be terminated.
At this point the variation operator inserts a new randomly initialised individual
into the offspring population, in effect, starting a random new search path. This
is, in essence, a gradual restart strategy. The variation operator never selects

1 This objective function only works when only one variable is changed, although a
version where more than one variable is changed can be defined analogously.
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the variable selected in the previous generation, since all values for that variable
have already been checked in the previous generation of the algorithm.

The variation operator selects the variable in three stages, uniform randomly
from the set of variables:

1. relevant to the constraints violated by the individual’s compound label (first
stage variable set);

2. related to but excluding the variables in the first stage variable set by con-
straint arc (second stage variable set); and

3. that are not in the previous two sets (third stage variable set).

The first stage variable set is created by adding all relevant variables for each
constraint in the violated constraints set of the individual to a multiset. A mul-
tiset is used so that variables relevant to more than one violated constraint have
a higher chance of being selected. This provides a higher chance to satisfy more
than one constraint by a single relabelling.

The second stage variable set is a multiset of variables, excluding the variables
of the first stage variable set but including those variables that are relevant to
constraints that have a relevant variable in the first stage variable set. These
variables are said to be relevant-by-arc to a violated constraint. After all variables
from the first stage variable set have been tried, it is necessary to expand the
local-search neighbourhood. It may be useful to change the value of a relevant-
by-arc variable to another value first to escape the local-search neighbourhood.
The second stage variable set gives a higher selection chance to variables that
are relevant-by-arc to more violated constraints.

The third stage variable set includes all variable not in the previously two
variable sets. Since no preference can be established, all variables in the set have
equal probability for selection.

4 Experimental Setup

The STLEA is run on the test-set used in [2] (see section 2). Two measures are
used to assess the performance of the algorithm: the success rate (SR), and the
average number of conflict checks to solution (ACCS ). The SR will be used to
describe the effectiveness of the algorithm, the ACCS will be used to describe
the efficiency of the algorithms.

The SR of an algorithm is calculated by dividing the number of successful runs
by the total number of runs. A successful run is a run in which the algorithm
solved the CSP-instance. The SR is given as a real number between 0.0 and
1.0 but can also be expressed as a percentage. A SR of 1.0 means that all runs
were successful. The SR is the most important performance measure to compare
algorithms on, after all, an algorithm which finds more solutions should be valued
over an algorithm that does not. The accuracy of the SR measure is influenced
by the total number of runs.
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The ACCS of an algorithm is calculated by averaging the number of conflict
checks needed by an algorithm over several successful runs. A conflict check is
the check made to see if a compound label is in a constraint. Unsuccessful runs
of an algorithm are discarded, and if all runs of an algorithm are unsuccessful,
the ACCS measure is undefined. The ACCS measure is a secondary measure for
comparing an algorithm and its accuracy is affected by the number of successful
runs as well as the total number of runs of an algorithm (the ratio of which is
the SR).

A efficiency performance measure has to account for the computational effort
of an algorithm. The ACCS measure uses the number of conflict checks as the
atomic measure to quantify the computational effort. The STLEA, however, also
spends computational effort on the maintenance of the tabu list. It was found
that the computational effort needed to insert and lookup compound labels in the
tabu list was negligible in comparison to the computational effort of performing
a conflict check when the CSP-instance to solve was sufficiently complex. The
computational effort needed to maintain the tabu list became relatively sub-
stantial when the average number of relevant constraints to a variable in the
CSP-instance is smaller than two. This was not the case for the CSP-instances
in the test-set.

The STLEA has relatively few parameters to fine-tune: the popsize; the
maxCC allowed; and the bias of the biased linear ranking parent selection op-
erator. We chose to select an equal number of parents for use by the variation
operator as there were individuals in the population (popsize). A bias of 1.5 for
the biased linear ranking selection operator was used because this gave the best
performance in preliminary experiments, and is also used in other studies ([1,2]).

This leaves just the popsize and maxCC parameters to fine-tune. With EAs
for solving CSPs it is common practice to use a small population size. The
reasoning is that with a small population to maintain, more computational effort
can be spend on increasing the fitness of the individuals, following the (small
number of) search paths of which they are part. Large populations, on the other
hand, need a lot of computational effort to maintain but provide for more search
avenues to explore; in general keeping population diversity high. The trade-off,
is investing computational effort, either in following a few search paths in depth,
or in maintaining many search paths but (perhaps) following them to a lesser
depth. The STLEA, however, doesn’t seem to lend itself well to conventional
wisdom. The combination of a tabu list and a powerful local search technique
appears to address both issues at simultaneously. Since the common practice does
not seem to apply to the STLEA, only experimentation with a large number of
combinations for the popsize and maxCC parameters can provide guidelines.

The experimental setup for the proposed algorithm is then as follows: all 225
CSP-instance in the test-set the algorithm is run 10 times for a total of 2250 runs.
The popsize and maxCC parameters are varied. The popsize parameter is taken
from the following set: {10}∪{50, 100, . . . , 5000}. The maxCC is taken from the
following set: {100000, 200000, . . . , 5000000}. In total 2250 ·101 ·50 = 11, 362, 500
runs were performed.
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Fig. 1. The relationship between the population size (x-axis) and the success rate
(y-axis) of the algorithm for different maximum number of conflict checks allowed

5 Results

The results of the experiments are summarised in figure 1. Figure 1 consists of
9 graphs, each showing the result for each density-tightness combination in the
test-set. The top row shows the results for density-tightness combinations 1 to
3, the middle row the results for density-tightness combinations 4 to 6, and the
bottom row the results for density-tightness combinations 7 to 9.

Figure 1 shows the influence of different values for maxCC on the SR for
different values of popsize. The trend for the SR is the same for all different
density-tightness combinations. The SR increases when larger values for popsize
are used. The SR drops abruptly when popsize gets too large relative to maxCC .
At the point where the algorithm achieves maximum SR, maxCC is just enough
to allow the algorithm to reach this peak but not much more. If the popsize is
increased beyond this point, the maxCC for maintaining a population of this
size are not available and the SR drops abruptly. The inner most arc seen from
the left-bottom corner of the graph (worst performance) invariably depicts the
experiments with the least maxCC. Note that the difference in complexity of the
density-tightness combinations in the test-set is also apparent by the maxCC
allowed. Density-tightness combination 1 for example is known to be easier to
solve than density-tightness combination 9, and the number of conflict checks
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Table 1. Success rate (SR) and average conflict checks to solution (ACCS) for the best
population size (popsize) and maximum conflict checks allowed (maxCC) parameters

SR ACCS popsize maxCC

1 1.0 2576 50 100000
2 1.0 67443 550 200000
3 1.0 313431 1650 500000
4 1.0 397636 1800 600000
5 1.0 319212 1150 500000
6 1.0 469876 1350 800000
7 1.0 692888 1750 1100000
8 1.0 774929 1700 1400000
9 1.0 442323 900 800000

needed to sustain the population while reaching a success rate of 1.0 is therefore
lower for the first then for the latter. Note also the stepwise drop in SR after
the optimal SR has been reached. Each step is caused be the inability of the
algorithm to perform another generation. The slight increase in SR at each step
is cause by the maximisation of the popsize for the number of generations that
can still be performed.

Table 1 shows the first parameter-combination (popsize-maxCC) for which
the SR is 1.0 for each density-tightness, with popsize minimised first and maxCC
second. There is significant difference between the parameter values for different
density-tightness combinations. CSP-instances for density-tightness combination
1 for example can be solved with popsize = 50 and maxCC = 100000 while
density-tightness combination 7 needs popsize = 1750 and maxCC = 1100000.
This reflects the difference in effort needed for solving the CSP-instances for the
different density-tightness combination more then an inherent aptitude for the
different density-tightness combinations of the algorithm.

Table 2 shows a comparison of the performance of the STLEA with the best
algorithm from [2] and some benchmark algorithms. Table 2 clearly shows that
the STLEA outperforms rSAWEA in SR and ACCS on all but density-tightness
combination 9. Especially the fact that, given a large enough population and
allowed number of conflict checks to work, the STLEA has a success rate of 1.0
is an improvement on rSAWEA. The STLEA also compares favourable with the
HCAWR algorithm, with efficiency of the algorithm on average several magni-
tudes better (except density-tightness combination 9). Compared with the de-
terministic algorithms CBA and FCCDBA, however, the STLEA still has, on
average, inferior efficiency, both algorithms outperforming it by several orders of
magnitude (except for density-tightness combinations 1 and 2 for CBA). Over-
all, the STLEA is more effective and efficient then the best EA published so far
but, although a step in the right direction, is still unable to beat deterministic
algorithms on efficiency.

In [2] the notion of memetic overkill was introduced as well. Memetic overkill
occurs when an algorithm for solving CSPs incorporates a heuristic so capable
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of finding solutions that the evolutionary components actually hamper per-
formance. Especially hybrid algorithms are susceptible to suffer from memetic
overkill. De-evolutionarising the STLEA through additional experiments (as ex-
plained in [2]) showed that the STLEA does not suffer from memetic overkill.

Table 2. Comparing the success rate and average conflict checks to solution of the
STLEA, the Stepwise-Adaptation-of-Weights EA with randomly initialised domain
sets (rSAWEA), Hillclimbing algorithm with Restart (HCAWR), Chronological Back-
tracking Algorithm (CBA), and Forward Checking with Conflict-Directed Backjumping
Algorithm (FCCDBA)

STLEA rSAWEA HCAWR CBA FCCDBA
SR ACCS SR ACCS SR ACCS SR ACCS SR ACCS

1 1.0 2576 1.0 9665 1.0 234242 1.0 3800605 1.0 930
2 1.0 67443 0.988 350789 1.0 1267015 1.0 335166 1.0 3913
3 1.0 313431 0.956 763903 1.0 2087947 1.0 33117 1.0 2186
4 1.0 397636 0.976 652045 1.0 2260634 1.0 42559 1.0 4772
5 1.0 319212 1.0 557026 1.0 2237419 1.0 23625 1.0 3503
6 1.0 469876 1.0 715122 1.0 2741567 1.0 44615 1.0 5287
7 1.0 692888 1.0 864249 1.0 3640630 1.0 35607 1.0 4822
8 1.0 774929 1.0 1012082 1.0 2722763 1.0 28895 1.0 5121
9 1.0 442323 1.0 408016 1.0 2465975 1.0 15248 1.0 3439

6 Conclusion

In this paper we introduced a hybrid Tabu Search — Evolution Algorithm for
solving the CSP, called Simple Tabu List Evolutionary Algorithm (STLEA). In
[2] it was found that EAs for solving the CSP were able to approach the effec-
tiveness of other (deterministic) algorithms but that they were still far behind in
efficiency while doing so. A reason behind this lack of efficiency is the tendency
of EAs to recheck previously checked compound labels during their search for a
solution. The rational behind the STLEA is to reduce this rechecking by using
a tabu list, effectively making previously checked compound labels tabu. The
basic structure of the STLEA resembles the basic EA structure but incorporates
a local-search technique into a single variation operator. A slightly altered rep-
resentation allows for further efficiency improvement as well. A large number of
experiments were performed for different combinations of the algorithm’s param-
eters in order to find the best parameter settings. Using these parameters, it was
found that the STLEA outperforms the best EA for solving the CSP published
so far but still has inferior efficiency to deterministic algorithms.

Future research is focussed on comparing the relative behaviour of the STLEA
to other algorithms when the complexity of the CSP-instances is increased (scale-
up experiments) and the effects on the performance of the STLEA when other
kinds of tabu lists are used.
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Abstract. In this paper, we propose a variant of an ACO algorithm
called the cunning Ant System (cAS). In cAS, each ant generates a solu-
tion by borrowing a part of a solution which was generated in previous
iterations, instead of generating the solution entirely from pheromone
density. Thus we named it, cunning ant. This cunning action reduces
premature stagnation and exhibits good performance in the search. The
experimental results showed cAS worked very well on the TSP and it
may be one of the most promising ACO algorithms.

1 Introduction

As a bio-inspired computational paradigm, ant colony optimization (ACO) has
been applied with great success to a large number of hard problems. They include
the traveling salesman problem (TSP) [1,2,3], the quadratic assignment problem
[4], scheduling problem [5], and vehicle routing problem [6], among others.

The first ACO algorithm was called the Ant System (AS) [1], and is applied to
the TSP. Since then, many advanced ACO algorithms are proposed as extensions
of AS. Typical of these are AS with elitist strategy and ranking (ASrank) [6], Ant
Colony System (ACS) [2], and MAX-MIN Ant System (MMAS) [3]. These ad-
vanced ACO algorithms include a strong exploitation of the best solutions found
during the search. However, strong exploitation causes premature stagnation of
the search. The most successful ones, such as ACS and MMAS, have explicit
features to avoid this premature stagnation [7]. Thus for developing a successful
variant of ACO, we need to incorporate a good balance between exploitation
and exploration.

In this paper, we propose a variant of an ACO algorithm called the cunning
Ant System (cAS). In cAS, each ant generates a solution by borrowing a part of
a solution from a previous iteration, instead of generating the solution entirely
from pheromone density. From this behavior, we call them cunning ants. This
cunning action reduces premature stagnation and exhibits good performance in
the search.

Although the basic background is different, the idea of using partial solutions
to seed the ants’ solution construction is inspired by our previous study on
the edge histogram based sampling algorithm (EHBSA) [8] within the EDA [9]
framework for permutation domains. Using partial solutions to seed solution

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 162–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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construction in ACO framework has been performed by combining an external
memory implementation in [10,11]. In [12], some solution components generated
according to ACO are removed, resulting in a partial candidate solution. Starting
from the partial solution, a complete candidate solution is reconstructed by a
greedy construction heuristic.

In the remainder of this paper, Section 2 gives a brief overview of MMAS.
Then, Section 3 describes how the solutions with cAS are constructed, and the
empirical analysis is given in Section 4. Finally, Section 5 concludes this paper.

2 A Brief Review of MMAS

Since cAS uses the MMAS framework in pheromone density updating, in this
section we give a brief overview of MMAS.

MMAS allows the deposit of pheromone by either the iteration-best, or best-so-
far ant to introduce a strong exploitation feature in the search. To counteract the
stagnation caused by this, MMAS introduced an important mechanism to limit
the possible range of pheromone trail density within the interval [τmin, τmax]. By
limiting the influence of the pheromone trails we can avoid the relative differences
between the pheromone trails from becoming too extreme during the run of the
algorithm. MMAS also introduced schemes of pheromone trail reinitialization
and/or pheromone trail smoothing (PTS) to prevent stagnation of the search.
In MMAS, the values of τmax and τmin are defined as

τmax(t) = 1/(1− ρ)× 1/Cbest−so−far
t , (1)

τmin(t) =
τmax · (1− n

√
pbest)

(n/2− 1) · n
√
pbest

, (2)

where Cbest−so−far
t is the fitness of best-so-far solution at t and n is the problem

size and pbest is a control parameter. With a smaller value of pbest, the value of
τmin becomes larger.

3 Cunning Ant System (cAS)

3.1 Cunning Ant

In traditional ACO algorithms, each ant generates a solution probabilistically
or pseudo-probabilistically based on the current pheromone trail τ ij(t). In this
paper, we introduce an agent called cunning ant (c-ant). The c-ant differs from
traditional ants in the manner of solution construction. It constructs a solution
by borrowing a part of existing solutions. The remainder of the solution is con-
structed based on τ ij(t) probabilistically as usual. In a sense, since this agent in
part appropriates the work of others to construct a solution, we named the agent
c-ant after the metaphor of its cunning behavior. In the remainder of this paper a
solution constructed by a c-ant is also represented with the same notation, c-ant.
Also, an agent which has constructed a solution borrowed by a c-ant is called a
donor ant (d-ant) and the solution is also represented with the notation d-ant.
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Fig. 1. c-ant and d-ant in TSP

Fig. 1 shows an example of the
relationship between c-ant and d-ant
in TSP. Here note again the nota-
tions c-ant and d-ant are used both
for agents and solutions. In this ex-
ample, the c-ant borrows part of the
tour, 7→0→1→2→3, from the d-ant
directly. The c-ant constructs the re-
mainder of the tour for cities 4, 5,
and 6 according to τ ij(t) probabilis-
tically. Using c-ant in this way, we can
prevent premature stagnation the of
search, because only a part of the cities
in a tour are newly generated, and this
can prevent over exploitation caused by strong positive feedback to τ ij(t) (see
Section 4.2).

3.2 Colony Model of cAS

ij(t+1)

pheromone 
density

pheromone 
update

tour construction

ant*1,t

d-ant1,t

c-ant1,t+1

Winner

unit 1

t t+1

ant*m,t

d-antm,t

c-antm,t+1

Winner

unit m
t t+1

Fig. 2. Colony model of cAS

In cAS, we use a colony
model as shown in Fig.
2, which is similar to
the colony model pro-
posed for real parameter
optimization with ACO
framework [13]. It con-
sists of m units. Each
unit consists of only one
ant∗k,t (k = 1, 2, . . . , m).
At iteration t in unit k,
a new c-antk,t+1 creates
a solution with the exist-
ing ant in the unit (i.e.,
ant∗k,t) as the d-antk,t.
Then, the newly gener-
ated c-antk,t+1 and d-
antk,t are compared, and the better one becomes the next ant∗k,t+1 of the unit.

Thus, in this colony model, ant∗k,t, the best individual of unit k, is always
reserved. Pheromone density is then updated with ant∗k,t (k=1, 2, . . . , m) and
τ ij(t+1) is obtained as:

τij(t + 1) = ρ · τij(t) +
∑m

k=1
Δ∗τk

ij(t), (3)

Δ∗τk
ij(t) = 1/C∗

k,t: if (i, j) ∈ ant∗k,t, 0: otherwise, (4)
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where C∗
k,t is the fitness of ant∗t,k.

In cAS, pheromone update is performed with m ant∗k,t (k=1,2,. . . , m) by Eq.
3 within [τmin, τmax] as in MMAS [3]. Here, τmax for cAS is defined as

τmax(t) =
1

1− ρ
×
∑m

k=1

1
C∗

k,t

, (5)

and τmin is given by Eq. 2 of MMAS. Here, note that τmax of Eq. 5 is obtained
by modifying Eq. 1 of MMAS.

In this colony model, a d-ant is the best ant of each unit. By using ant∗ as a d-
ant in each unit we can expect an appropriate level of exploitation. Further, the
comparison method in each sub-colony is similar to the tournament selection
in genetic algorithms (GAs), being well known that tournament selection can
maintain diversity of a population, though it differs from traditional tournament
selection in that the comparison restricted to being performed inside of each unit.
Thus, we can also expect this colony model to maintain the diversity of ant∗k in
the system.

3.3 Number of Sampling and Borrowing Nodes

A crucial question when c-ant creates a new solution is how to determine which
part of the solution the c-ant will borrow from the d-ant. To ensure robustness
across a wide spectrum of problems, it should be advantageous to introduce
variation both in the portion and the number of nodes of the partial solution
that is borrowed from d-ant. First it is reasonable to choose the starting node
position of the partial solution randomly. Thereafter, the number of nodes of the
partial solution must be determined. Let us represent the number of nodes that
are constructed based on τ ij(t), by ls. Then, lc, the number of nodes of partial
solution, which c-ant borrows from d-ant, is lc = n–ls. Here, let us introduce a
control parameter γ which can define E(ls) (the average of ls) by E(ls) = n×γ.

In previous studies [8], when generating a permutation string, part of the
permutation elements were copied from a template string. To determine the
sampling portion in a string, we used the c cut-point approach. We sampled nodes
for only one randomly chosen segment from c segments obtained by applying c
cut points to the template. With this approach, ls distributes in the range [0,
n], and E(ls) = n×1/c. Thus, with c cut-point method above, E(ls) is n/2, n/3,
. . . for c = 2, 3, and so on, and, γ corresponds to 1/c, i.e., γ can take only the
values of 0.5, 0.333, and 0.25, corresponding to c = 2, 3, 4 and so on.

In the current research, we extend this elementary method to a more flexible
technique which allows for γ taking values in the rage [0.0, 1.0]. The probability
density function of ls with the c cut-point approach is [14]:

fs(l) =
(c− 1)

n

(
1− l

n

)c−2

, 0 < l < n, c ≥ 2. (6)

Here, we extend c so that it can take a continuous value (c ≥2). Then, we can
obtain a generalized fs(l) by setting c = 1/γ in Eq. 6 for 0.5 ≥ γ >0 as follows:
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fs(l) =
1− γ

nγ

(
1− l

n

) 1−2γ
γ

. (7)

For 0.5 <γ<1, we further extend
the above logic as follows. First we
consider distribution of l’ = n–l
and p’s = 1– γ in Eq. 7. Then we
can obtain the following equation
for 0.5 <γ < 1.

fs(l) =
γ

n(1− γ)

(
l

n

) 2γ−1
1−γ

. (8)

Fig. 3 shows fs(l) for γ = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. We can see from
this figure that for a smaller γ, shorter lengths of ls become dominant, and for
a larger γ, longer lengths of ls become dominant.

The algorithm of cAS is summarized in Fig. 4.

1. t ← 0
2. Set the initial density τ ij(t) = C(an arbitrary large value, e.g. 10)
3. Sample two individuals randomly for each unit k, then choose the best one in

the unit and set it as ant∗
k,0 (k=1,2,. . . , m)

4. Update τ ij(t) according to Eq. 3 with τmax, τmin of Eqs. 5 and 2
5. Sample c-antk,t+1 for k=1,2,. . . , m according to d-antk,t (: ant∗

k,t) and τ ij(t+1)
6. Compare c-antk,t+1 and d-antk,t, set the best one as ant∗

k,t+1 for i=1,2,. . . , m
7. t ← t+1
8. If the termination criteria are met, terminate the algorithm. Otherwise, go to 4

Fig. 4. Algorithm description of cAS

4 Experiments

Here we evaluate cAS on TSP. Unless explicitly indicated otherwise, the following
default parameter settings are used, which are the same values as used with
MMAS in [3] except for pbest, i.e., α = 1, β = 2 (α and β are parameters that
control the relative importance of the trail and the heuristic value [3] ), m = n
(m is the number of units and n is the number of cities), a candidate list [3] with
a size of 20. For cAS, pbest value of 0.005 and γ value of 0.4 were used. All test
instances are taken from TSPLIB.

4.1 Performance of cAS

The performance of cAS was compared with MMAS and ACS, both of which
outperform other existing ACO algorithms [7]. The comparison was performed
on the same number of tour constructions for all algorithms as is described in [15]
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and [3]; this number was chosen as k×n×10000, where k = 1 for symmetric TSPs
and k = 2 for asymmetric TSPs (ATSPs). 25 runs were performed. Performance
of each algorithm was compared using Bestavg (average of the best tour length)
and Error (average excess rate from optimum length) over 25 runs.

Table 1 summarizes the results. The results of MMAS+PTS and MMAS are
taken from [3] and those of ACS are from [15]. We also showed the results of
non-cAS; i.e., we use colony model shown in Fig. 2 but no cunning action is
applied. This correspond to cAS with γ = 1. The values in bold show the best
performance for each instance. From this table, we can see that cAS outperforms
almost all instances used in the experiments except for d198. Further, we can
observe that even non-cAS has similar performance to MMAS and thus the
effectiveness of using the colony model in Fig 2 is also confirmed.

Table 1. Results of cAS Bestavg is average best solution over 25 runs and Error
indicates average excess (%) of Bestavg from optimal in 25 runs

Error Error Error Error Error
(%) (%) (%) (%) (%)

eil51 426 426.2 0.5 0.06 427.3 0.7 0.31 427.1 0.26 427.6 0.38 428.1 0.48

kroA100 21282 21282.0 0.0 0.00 21332.4 48.5 0.24 21291.6 0.05 21320.3 0.18 21420.0 0.65

d198 15780 15954.1 35.6 1.10 15958.5 10.9 1.13 15956.8 1.12 15972.5 1.22 16054.0 1.74

ry48p 14422 14465.4 34.9 0.30 14509.5 46.7 0.61 14523.4 0.70 14553.2 0.91 14565.5 0.99

ft70 38673 38736.1 77.1 0.16 39105.8 169.5 1.12 38922.7 0.65 39040.2 0.95 39099.1 1.10

kro124p 36230 36303.2 120.3 0.20 36734.1 261.1 1.39 36573.6 0.95 36773.5 1.50 36857.0 1.73

ftv170 2755 2827.1 8.7 2.62 2820.6 14.8 2.38 2817.7 2.28 2828.8 2.68 2826.5 2.59
* std : standard deviation of Best avg

Best avg

TSP opt
Best avgstd*Best avgstd*

MMAS

ST
SP

A
T

SP

ACS
c AS

non-c AS ( =1) MMASc AS ( =0.4) MMAS+pts

Best avg Best avg

4.2 Parameter Values for γ
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Fig. 5. Variation of Error for γ

Fig. 5 shows the variations of Er-
ror for various γ values. Here, γ
values were varied starting from
0.1 to 0.9 with step 0.1. Except
for d198 and ftv170, γ values of
[0.2, 0.6], which are in the smaller
value range of γ, showed good per-
formance. On ftv170, cAS with γ
values of 0.2 showed good perfor-
mance. On d198, γ values of [0.4,
0.9], which are in the larger value
range of γ, showed good performance.

Fig. 6 shows the convergence process of change of Error on kroA100 (100-city
symmetric TSP) for γ values of 0.1, 0.3, 0.5, 0.7, and 0.9. Early stagnations of
search can be observed with γ vales of 0.7 and 0.9. With γ values of 0.3 and
0.5, stagnations of search occur much later in the search. With a γ value of
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0.1, no stagnation can be observed. But the convergence process is very slow.
Thus we can see that using appropriate small values of γ can prevent over ex-
ploitation with strong positive feedback to τ ij(t) and lead to success searches.
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Fig. 6. Convergence process on kroA100

4.3 Parameter Values for ρ

With the ACO scheme, parame-
ter ρ also plays an important role
in controlling the search process.
With a larger value of ρ, the search
proceeds slowly, but it prevents the
stagnation of the search. On the
other hand, with a smaller value of
ρ, the search proceeds rapidly, but
it causes stagnation.

In cAS, as seen in Section 4.2,
parameter γ has an effect similar to
that of ρ. Fig. 7 shows the effects of
variations of the value of ρ on the quality of solutions on kroA100 with γ values
of 0.2 (left) and 0.6 (right). With γ = 0.6, though the performance is bad
compared with γ = 0.2, ρ having a strong effect. On the other hand, with γ =
0.2, we can see the effect of variation of ρ is weaker compared with γ = 0.6. But
still an appropriate value of ρ (ρ =0.98) leads to successful runs. Thus, we can
see the synergy effect of parameters γ and ρ.
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Fig. 7. Effect of ρ values on kroA100. Error is average over 25 runs.

4.4 Improving Performance of cAS with Local Search

Here we study cAS with a local search on symmetrical TSP. One of the best
performing local searches for TSP is the well-known Lin-Kernighan algorithm
(LK) [16]. The implementation of LK is complex compared with 2-OPT and 3-
OPT heuristics. There are many variant implementations for LK. An important,
and widely adopted scheme is the repeated use of the basic LK algorithm. The
scheme is referred to as Chained Lin-Kernighan [17], or Iterated Lin-Kernighan
[18]. In addition to the basic LK, Chained LK repeatedly utilizes a method
for perturbing a given tour which is called kick. We used a Chained LK called
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Table 2. Results of cAS with LK on symmetrical TSP. Iavg and Tavg are average
iterations and time in second to find optimal in successful runs. Error indicates average
excess (%) from optimal in 25 runs.

#O
P

T

Error
(%)

I avg
T avg

[min, max]

#O
P

T

Error
(%)

I avg
T avg

[min, max]

#O
P

T

Error
(%)

I avg
T avg

[min, max]
#O

P
T

Error
(%)

T avg

[min, max]

att532
(n =532)

25 0.00 1.8 7.8
[1.4, 27.8]

24 0.00 1.9 8.2
[1.4, 32.9]

25 0.00 2.4 10.5
[1.4, 32.6]

17 0.02 6.11
[0.3, 28.5]

40

d1291
(n =1291)

25 0.00 5.7 27.4
[6.0, 54.4]

24 0.00 7.4 35.9
[6.0, 56.9]

22 0.00 10.3 48.8
[6.1, 74.1]

6 0.12 17.0
[4.0, 61.3]

80

vm1748
(n =1748)

25 0.00 5.6 72.4
[8.4, 171.0]

24 0.00 5.6 77.5
[8.1, 169.8]

21 0.00 5.6 78.4
[8.3, 173.0]

1 0.06 72.8
[-]

200

pr2392
(n =2392)

25 0.00 10.1 104.9
[33.7, 190.0]

24 0.00 13.4 137.2
[57.3, 205.9]

12 0.00 20.4 211.3
[170.3, 233.2]

4 0.17 122.4
[40.2, 222.1]

240

fl3795
(n =3795)

25 0.00 9.8 435.1
[102.8, 1228.7]

15 0.00 13.9 615.9
[119.4, 1138.2]

17 0.00 17.6 770.7
[159.9, 1081.1]

0 0.57 - 1400

rl5934
(n =5934)

25 0.00 43.2 1336.1
[729.1, 1996.8]

1 0.00 59.6 1854.6
[-]

10 0.00 82.8 2533.6
[1499.2, 2897.0]

0 0.27 - 3300

Chained LK 

TSP T max
c AS ( =0.4) non-c AS ( =1)

c AS
MMAS

Fig. 8. Variations of Error for various values on fl3795 and rl5934

Concorde TSP solver (Concorde) developed by D. Applegate et.al, which is
available for research purposes at [19]. cAS is written in JAVA and Concorde
is written in C. So we combined it with cAS using Java Native Interface (JNI).
Concorde was compiled using MinGW on Windows XP. For each tour generated
by cAS, we applied it n iterations of Chained LK with random-walk kicks, which
is reported to have the best performing kick [17].

The following six instances, which range in hundreds and thousands of cities,
were used: att532, d1291, vm1748, pr2392, fl3795, and rl5934. The maximum
execution time (Tmax) of the cAS with LK for each instance is set to 40, 80, 200,
240, 1400, and 3300 seconds, respectively. The machine we used had two Opteron
275 (2.4GHz) processors, 2GB main memory, and 32-bit WindowsXP. For unit
size, m = 5 was used for all instances. For other parameters, we used ρ = 0.5. γ
=0.4. For τmin, we used τmin = τmin/2n to attain somewhat tighter bounds on
the allowed pheromone trail strength according to the recommendation in [3].

To confirm the effectiveness of combining cAS with LK, we also tested the
following three algorithms: non-cAS with LK (i.e., γ=1, see Section 4.1), MMAS
with LK, and Chained LK alone. For MMAS, we used our implementation with
Java. ρ value of 0.8 was used. For MMAS, we tuned by testing all combinations of
m = {5, 10} and pheromone update strategy = {iteration-best, best-so-far, and
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the schedule described in [3] for use with LK}. The results of the combination of
{m= 5} × {pheromone update strategy = best-so-far} scored the best #OPT on
bigger problems (i.e., pr2392, fl3795, and rl5934) and we used this combination
for MMAS with LK. We ran Concorde iterating the basic LK with random-walk
kicks until the achieving time defined by Tmax. In the Chained LK, the initial
tour affects the performance. In this experiment, we chose the Quick-Borka tour
which has good performance on medium runs [17].

Table 2 summarizes the results. We can see all algorithms of cAS, non-cAS,
and MMAS showed very small values of Error by combining LK and thus the
advantage of combining these algorithms with LK is very clear. However, when
we focus our attention on the results of #OPT, all algorithms except for cAS
could not attain #OPT = 25 for d1291,vm1748, pr2392, fl3795, and rl5934. In
contrast to this, cAS could attain #OPT = 25 for all test instances within the
allowed run time Tmax showing the smallest Tavg (average time in seconds to find
optimal in successful runs) among algorithms tested. Here we notice again that
even non-cAS shows very similar #OPT results to MMAS, as were observed
without local search in Section 4.1. Thus, we can see that the effectiveness of us-
ing the combination of the proposed colony model and c-ant holds true for cAS
with local search also. Fig. 8 shows the variations of Error for various γ values.
Here, γ values were varied starting from 0.2 to 0.8 with step 0.1. We can see that
cAS with γ values within range [0.3, 0.5] shows small Tavg with #OPT = 25.

5 Conclusions

In this paper, we proposed the cAS, a new ACO algorithm, and evaluated the
performance using TSP instances available at TSPLIB. The results showed that
cAS worked well on the test instances and has performance that may be one of
the most promising ACO algorithms. We also evaluate cAS when it is combined
with LK local search heuristics using larger sized TSP instances. The results also
showed promising performance.

cAS introduced two important schemes. One is to use the colony model divided
into units, which has a stronger exploitation feature while maintaining a certain
degree of diversity among units. The other is to use a scheme, we call cunning,
when constructing new solutions, which can prevent premature stagnation by
reducing strong positive feedback to the trail density.

However, we need more analytical study on the relationships between these
schemes and traditional schemes with ACO, including the further tuning of com-
petitor algorithms. To apply cAS to other applications, such as the scheduling
problem and the quadratic assignment problems, also remains for future work.
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Genetic Algorithm Based on Independent Component
Analysis for Global Optimization
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Abstract. We design a new Genetic Algorithm based on Independent Compo-
nent Analysis for unconstrained global optimization of continuous function. We
use Independent Component Analysis to linearly transform the original dimen-
sions of the problem into new components which are independent from each other
with respect to the fitness. We project the population on the independent compo-
nents and obtain corresponding sub-populations. We apply genetic operators on
the sub-populations to generate new sub-populations, and combine them as a new
population. In other words, we use Genetic Algorithm to find the optima on the
independent components, and combine the optima as the global optimum for the
problem. As we actually reduce the original high-dimensional problem into sub-
problems of much fewer dimensions, the solution space decreases exponentially
and thus the problem becomes easier for Genetic Algorithm to solve. The ex-
periment results verified that our algorithm produced optimal or close-to-optimal
solutions better than or comparable to those produced by some of other Genetic
Algorithms and it required much less fitness evaluations of individuals.

Keywords: Genetic Algorithm, Independent Component Analysis, Estimation of
Distribution Algorithms, Global Optimization.

1 Introduction

Genetic Algorithm (GA) [1][2] is a branch of Evolutionary Computation inspired by
Darwin’s theory of natural evolution. GA can solve the unconstrained continuous global
optimization problem as formulated in Definition 1. GA encodes the problem solution in
a vector of variables as an individual. The objective function in Definition 1 evaluates
the fitness of the individual. GA randomly generates a population of individuals to
search in the solution space at first, focuses on the promising solution areas via genetic
operators gradually, and finally converges to the global optimum.

Definition 1. An unconstrained global optimization problem is solving the following
continuous objective function:

maximize f (x), sub ject to l ≤ x ≤ u

where l ≤ x ≤ u defines the function domain, i.e. the solution space.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 172–181, 2006.
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GA can fail to find the optima in some high-dimensional problems, because the size
of the solution space grows exponentially with the dimension of the problem. To reduce
the size of the solution space, a possible approach is dividing the original problem into
several sub-problems by its dimensions. Afterwards GA is applied to the sub-problems
to find their sub-optima separately. Finally the sub-optima are combined as the optimum
of the original problem. Since a sub-problem has fewer dimensions than the original
problem, its solution space is smaller than that of the original problem, so it is easier
for GA to solve.

The difficulty of this approach is that the dimensions of the problem are usually
interdependent on each other with respect to the fitness. In other words, the fitness of a
sub-solution for a sub-problem depends on the sub-solutions for the other sub-problems.
Suppose we have found the sub-optimum for a sub-problem, if the other sub-solutions
change, the original sub-optimum might not be optimal any more. Therefore, even if
we find the sub-optima for all the sub-problems, combining them does not give us the
optimum for the original problem.

We propose a new Genetic Algorithm based on Independent Component Analy-
sis (GA/ICA) to resolve this difficulty in this paper. We use Independent Component
Analysis (ICA) to find a set of components which are linear transformations of the
original dimensions. The components are independent from each other with respect
to the fitness, so the sub-solutions on the independent components do not affect each
other. Afterwards, the original problem is converted into a new problem defined on
the independent components. Consequently, we can decompose the new problem into
sub-problems by the independent components, and use GA to solve the sub-problems
separately. There are primarily three issues to be solved to make our algorithm work,

1. ICA is a statistical method while GA is an optimization algorithm. Therefore, we
need to transform the original problem into an equivalent new problem so that we
can apply ICA on it.

2. When we use GA to solve the sub-problems, we need to know their fitness func-
tions. However, we only have the fitness function for the original problem with all
the dimensions together. Therefore, we need to infer the fitness in the sub-problems
from the original fitness.

3. A solution could become a local optimum on a certain dimension when it cannot
increase its fitness in either direction along the dimension, so a single modal prob-
lem could induce multi-modal sub-problems. Therefore, we need to take extra care
when we apply GA on the sub-problems.

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 described GA/ICA in detail. Section 4 presents the experiment results on some
benchmark problems. Section 5 concludes the paper.

2 Related Work

Estimation of Distribution Algorithm (EDA) [6] is a branch of GA with statistical anal-
ysis. In each generation, EDA selects good individuals from the population, and learns
the distribution of these good individuals, then it generates a new population according
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to the distribution. In continuous domain, a Gaussian distribution is often used as the
distribution model of the individuals.

Univariate Marginal Distribution Algorithm (UMDA) [5] is a kind of EDA. It as-
sumes that the variables of the individual are independent from each other with respect
to the fitness. Therefore, the joint probability density function is a product of Gaussian
distributions of variables as Eq. 1, where m is the number of variables, μi is the mean
of the ith variable, and σi is the corresponding standard deviation.

pN (x; μ ,σ) =
m

∏
i=1

pN (xi; μi,σi) =
m

∏
i=1

1√
2πσi

e−
1
2 ( xi−μi

σi
)2

(1)

Univariate Marginal Distribution Algorithm with Independent Component Analy-
sis (UMDA/ICA) [10] incorporates ICA into UMDA to resolve the interdependence
between the dimensions of the problem. In each generation, it uses ICA on the good
individuals to find the independent components of the original dimensions. Then it
transforms the population from the original space into the new space defined by the
independent components. Afterwards, it applies UMDA to the transformed population.
However, we think there are three disadvantages of UMDA/ICA. First, UMDA/ICA
uses only part of the population for ICA and UMDA, so it may not find the true inde-
pendent components and it loses the information contained in the rest of the population.
Second, the selected individuals are treated equally in ICA and UMDA disregarding
the differences between their fitness. Finally, it uses only crossover in the evolution on
each independent component, which may not be very effective for difficult problems.
[8] proposed a similar approach to UMDA/ICA. By applying ICA to the population, it
transforms the coordinate system of the solution space so as to increase the separability
of the fitness function, and then the component-wise crossover is applied.

3 Genetic Algorithm with Independent Component Analysis

UMDA is inappropriate for the problems whose variables are highly interdependent on
each other with respect to the fitness. To circumvent this restriction, an approach is to
linearly transform the original variables into a set of new independent variables so that
we can apply UMDA on the new variables. ICA is an appropriate method for this task.

3.1 Independent Component Analysis

Independent Component Analysis (ICA) [4] is originally used as a data transforma-
tion method, especially for Blind Source Separation (BSS). Suppose we observe N m-
dimensional data xt ,t = 1,2...N, we try to find a linear transformation y = Wx, where
W is the demixing matrix, so as to make the variables yi, i = 1 · · ·m as statistically inde-
pendent from each other as possible. In BSS, we try to find the mixing model x = As,
where s is the recovered source signals and A is the mixing matrix. It is proved that y
equals s up to a multiplicative constant and permutation. The difficulty of ICA is that we
know neither A nor s. In statistics, the variables y1,y2, · · · ,ym are mutually independent,
if their joint density function can be factorized as Eq. 2, where pi(yi) is the marginal
density of yi.
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p(y) = p(y1,y2, · · · ,ym) =
m

∏
i=1

pi(yi) (2)

Suppose our optimization problem is as defined in Definition 1. For ICA to find the
independent components with respect to the fitness, we need to associate the fitness to
the probability density. Intuitively, we should have more individuals of higher fitness
than individuals of lower fitness. If the objective function f (x) has a lower bound L =
in f{ f (x)|l ≤ x ≤ u}, we can define f ′(x) = f (x)− L ≥ 0 as the new fitness of the
individual. Further suppose

∫ u
l f ′(x)dx is the integral of f ′(x) over the domain [l,u], then

g(x) as defined in Eq. 3 can be treated as a probability density function as it satisfies the
two conditions following its definition.

g(x) =
f ′(x)∫ u

l f ′(x)dx
=

f (x)−L∫ u
l ( f (x)−L)dx

, where g(x)≥ 0 &
∫ u

l
g(x)dx = 1 (3)

It is difficult to calculate g(x) because we do not have the analytical form of f (x) in
the integral. However, we can generate a new population of individuals whose distri-
bution roughly follows the probability density function g(x). Note that

∫ u
l ( f (x)−L)dx

is the same for the g(x) of all the individuals, so we have f (x)−L ∝ g(x). Therefore,
we replicate each individual xi for "C · ( f (xi −L))# times, where C is an appropriate
constant to make C · ( f (xi −L))≥ 1. This way, the copies of the individual is approxi-
mately proportionate to its density of g(x). Then we apply ICA on this new population
to find the independent components satisfying the statistical independent equation Eq.
4, where g′(s) is the joint density function defined on the independent components and
g′i(si) is the univariate marginal density function, which can be treated as the implicit
fitness function defined on the ith independent component.

g(x) = g(As) = g′(s) =
m

∏
i=1

g′i(si) (4)

GA/ICA uses ICA in a different way than UMDA/ICA does. First, it uses all the
individuals in the population for ICA. Second, it uses the fitness of the individuals for
the probability densities in ICA.

3.2 Algorithm

GA/ICA consists of two stages. In the first stage, GA/ICA samples a large population
of individuals uniformly in the solution space. Then it uses ICA on the population to
find the independent components. In the second stage, GA/ICA actually evolves the
population to find the solution. It projects the population on the independent compo-
nents and gets one 1-dimensional sub-population on each independent component, so
it is able to evolve on the independent components separately. The basic steps of the
second stage are shown in Algorithm 1 with the independent components as the in-
puts. At first GA/ICA randomly initializes a new population, evaluates the fitness of
its individuals, and remembers the best individual in the population. Then it evolves the
population for at most 1000 generations. In each generations, it runs the following steps
until termination,
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1. First we need to decide which genetic operator to use mostly in the current gen-
eration. Usually, crossover shrinks the solution area covered by the population,
while mutation makes the population explore a large solution area. Because a single
modal problem could induce a multimodal sub-problem on an independent com-
ponent, we use the mutation as the primary genetic operator. When the best-so-
far individual has not been improved for a relatively long time, we switches to
crossover to focus on the neighborhood of the best-so-far individual. On the con-
trary, UMDA/ICA uses crossover only.

2. We project the population in the original space into the new space defined by the
independent components according to the ICA demixing formula y = Wx. Then we
divide the population by the independent components into m 1-dimensional sub-
populations.

3. In the function estimatePop, we estimate the new fitness of the 1-dimensional in-
dividuals in the sub-populations. The new fitness in stead of the original fitness is
used in the evolution later. We will explain this in detail in Fitness Estimation.
However, UMDA/ICA uses the original fitness directly in UMDA.

4. On each of the independent components, we sample a new 1-dimensional sub-
population out of its corresponding 1-dimensional sub-population via the genetic
operator we have chosen in step 1. The details of the function icaSample are de-
scribed in Independent Component Sampling. This step is totally different from
UMDA.

5. After completing the evolutions on all the independent components, we combine
all the new 1-dimensional sub-populations into a new m-dimensional population.
Then we project the new population back into the original space using the ICA
mixing formula x = As, and evaluate the fitness of its individuals.

6. Finally, we check how many generations the best-so-far individual has not been
improved for. If the number is larger than 50, we terminate the program and return
the best-so-far individual.

Fig. 1 illustrates combining the 1-dimensional sub-populations into a m-dimensional
population. On the left, each row of the table is a sub-population. The individuals in
the ith 1-dimensional sub-population are denoted as {s1

i ,s
2
i , · · · ,sN

i }. On the right, each
column of the table is a m-dimensional individual. The jth individual in the population
is denoted as (s j

1s j
2 · · ·s

j
m)T . Now we elaborate on the functions of estimatePop and

icaSample.

s1
1 s2

1 · · · sN
1

s1
2 s2

2 · · · sN
2

· · · · · ·
s1
m s2

m · · · sN
m

−→

s1
1 s2

1 · · · sN
1

s1
2 s2

2 · · · sN
2

· · · · · ·
s1
m s2

m · · · sN
m

Fig. 1. Combine the 1-dimensional sub-populations into a true m-dimension population. Row
vectors on the left table are the 1-dimensional sub-populations. Column vectors on the right table
are the individuals in the population.
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Algorithm 1. Evolution with the Independent Components
Input: W, A
Output: bestInd
pop ← initPop();
fitness ← evaluate(pop);
bestInd← bestFunc(pop, fitness);
for gi ← 1 to 1000 do

[pop, genOp ] ← checkOp(bestInd, pop, fitness, stagnancy);
icaOldPop← W × pop ;
for di ← 1 to dim do

[icaPopdi, icaFitdi] ← estimatePop(icaOldPopdi, fitness, icaPopdi,
icaFitdi);
icaNewPopdi ← icaSample(icaPopdi, icaFitdi, genOp);

end
pop← A × icaNewPop ;
fitness ← evaluate(pop);
[stagnancy bestInd ]← checkState(pop, fitness, bestInd);
if stagnancy > 50 then

break;
end

end

Fitness Estimation. When we perform GA on the 1-dimensional sub-population on
the independent component si, we need to know the fitness of its 1-dimensional indi-
viduals. UMDA/ICA uses the fitness of the original individuals for evolution, i.e. f (As).
However, f (As) does not only depends on si, but on the other independent components
as well, so f (As) is not the true measure of the goodness of the 1-dimensional individ-
uals on si. The ideal measure should be g′i(si) in Eq. 4. The difficulty of this measure
is that all that we have is g′(s), while g′i(si) is only an implicit term. However, in ICA,
theoretically, we can calculate the marginal density function pi(yi) in Eq. 2 as in Eq. 5,
where −i represents the dimensions other that i.

pi(yi) =
∫ u−i

l−i

p(y−iyi)dy−i (5)

Similarly, we have the theoretical and empirical formulas for calculating g′i(si) as
Eq. 6, where Si is the set of individuals whose ith variables equal si. The problem is
that we do not have many individuals which have the same si value, especially in high-
dimensional space. Therefore, we have to take the nearby individuals into account as
well, calculate the average of their fitness, and give bigger weight to the nearer indi-
viduals. This method results in a Parzen window like regression in Eq. 7, where σ is
the average distance between the individuals and their nearest neighbors. In this way,
GA/ICA is able to estimate the fitness of an individual in a sub-population as in the
estimatePop function in Algorithm 1.

g′i(si) =
∫ u−i

l−i

g′(s−isi)ds−i or g′i(si) =
1
|Si| ∑

s j∈Si

g′(s j) (6)
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g′i(s
j
i ) =

∑N
k=1 ϕ(s j

i ,s
k
i )g

′(sk)

∑N
j=1 ϕ(s j

i ,s
k
i )

, where ϕ(s j
i ,s

k
i ) =

1√
2πσ

e
(s j

i −sk
i )2

2σ2 (7)

Independent Component Sampling. The central part of GA/ICA is generating new
1-dimensional sub-populations on the independent components. EDA samples new in-
dividuals from the distribution model of the previous individuals. However, GA/ICA
does not build such a distribution model. It generates new individuals by applying ge-
netic operators to the previous individuals directly. The function independentSample in
Algorithm 1 follows the basic framework of GA except the part of individual evaluation
(because it cannot evaluate individuals of only one dimension). In addition, it has some
advantages over GA, including adaptive genetic operators, fitness prediction and high
population diversity.

At first, it calculates the average distance of the individuals to their nearest neighbors,
i.e. σ , which is used as the parameter to control the scale of crossover and mutation.
In the initial population, the individuals are randomly generated in the whole solution
space, so σ is relatively large. As the population converges, σ drops gradually. With
this method, crossover and mutation of GA/ICA adapt to the current sub-populations.
Then it runs the following steps iteratively:

1. GA/ICA uses the tertiary-tournament. It randomly selects three individuals, uses
the best two individuals for crossover and mutation, and replaces the worst individ-
ual with the offspring.

2. GA/ICA then generates two random numbers. One number follows the Cauchy dis-
tribution, while the other number follows the Gaussian distribution. GA/ICA uses
the Gaussian random number for crossover. Cauchy distribution has bigger tails
than Gaussian distribution. GA/ICA uses the Cauchy random number for mutation
to make it more likely for the offspring to jump out of the local optimum [9].

3. In each generation, GA/ICA chooses crossover or mutation as the primary genetic
operator in the current evolution. When it chooses crossover, independentSample
does two crossovers of opposite directions and one mutation, so it makes the pop-
ulation converge. When it chooses mutation instead, independentSample does two
mutations of opposite directions and one crossover, so it keeps the individuals
search in different solution areas.

4. GA/ICA cannot evaluate the fitness of the offspring candidates directly because
they are of only 1 dimension. Instead, it uses the Parzen window like regression, as
described in the function estimatePop, on the current sub-population to predict the
fitness of the candidates. Then it chooses one of them as the offspring probabilis-
tically, with bigger probabilities given to better candidates. This technique enables
it to search in more promising directions and avoid wasting evaluation time on bad
candidates.

5. As discussed in Section 1, the number of local optima could increase on an inde-
pendent component, so GA/ICA need to make the population diverse to search in a
large solution space. Before the offspring is actually put in the new sub-population,
it is adjusted to maintain the sub-population diversity. independentSample keeps
an ordered list of offspring already generated, and finds the location where to insert
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the new offspring. If the new offspring’s distance to either its pre-neighbor or next-
neighbor in the list is smaller than the current σ , it is adjusted to make the distance
at least σ if possible, otherwise as large as possible. In this way, the offspring are
pushed away from each other to maintain the sub-population diversity.

4 Experiment

In order to test the performance of GA/ICA, we used GA/ICA to find the global optima
of the following 7 testing functions.
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All the above functions are multimodal functions with many local optima besides
the global optima. The functions of f1 to f5 have 30 dimensions, and the functions of
f6 and f7 have 100 dimensions. The functions’ feasible solution spaces, global optimal
function values and the population sizes GA/ICA used are shown in Table 1. The ICA
algorithm we used was FastICA [3]. Note that ICA did not know the original dimensions
of some functions are actually independent, so they sufficed to verify the capability of
ICA to discover the independent components.

Other researchers have also tested their algorithms on these problems, so we can use
their results directly for comparison. The algorithms that we compared ours to are:
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Table 1. The Experiment Settings

Function Function Space Optimum Pop Size
f1 [−500,500]30 12569.5 200
f2 [−5.12,5.12]30 0 400
f3 [−32,32]30 0 400
f4 [−600,600]30 0 400
f5 [−50,50]30 0 200
f6 [0,π]100 99.2784 600
f7 [−5,5]100 78.33236 600

Table 2. Experiment Results

Test Mean number of function evaluations Mean function value (standard deviation)
function OGA/Q CGA FES GA/ICA OGA/Q CGA FES GA/ICA

f1 302,166 458,653 900,030 34,420 12569.45 8444.76 12556.4 12569.47
f2 224,710 335,993 500,030 56,760 0 -22.97 -0.16 -4.24×10−4

f3 112,421 336,481 150,030 44,400 -4.44×10−16 -2.70 -1.2×10−2 -5.0×10−6

f4 134,000 346,971 200,030 45,160 0 -1.26 -3.7×10−2 -1.4×10−8

f5 134,556 346,800 150,030 26,840 -6.02×10−6 -3.74×10−1 -2.8×10−6 -1.40×10−8

f6 302,773 338,417 NA 115,020 92.83 83.27 NA 97.61
f7 245,930 268,286 NA 86,220 78.31 59.05 NA 78.33

1. Orthogonal Genetic Algorithm with Quantization (OGA/Q) [7]: OGA/Q uses or-
thogonal array to generate the initial population and the offspring in crossover.

2. Conventional Genetic Algorithm (CGA) [7]: This is the conventional Genetic Al-
gorithm, with standard random initialization, crossover and mutation.

3. Fast Evolution Strategy (FES) [9]: FES is ES but with Cauchy mutation.

Table 2 shows the experiment results. We performed GA/ICA on each of the test
functions for 10 runs. For each test function in the 10 runs, we recorded the mean
number of the function evaluations, the mean function value of the best individuals
and their standard deviation. As described in Section 3.2, we randomly sampled and
evaluated 20,000 individuals before the evolution, and then we used FastICA to find
the independent components. The 20,000 individuals were not counted in the mean
number of the function evaluations, but the good ones among them were not used in
the evolution either. In the future work, GA/ICA may use these 20,000 individuals in
evolution, as ignoring them would be a huge waste of computation.

For all the test functions except f5, where FES obtained slightly better solution than
OGA/Q, OGA/Q and GA/ICA outperformed CGA and FES in terms of the function
values of the solutions and the numbers of the function evaluations. For the functions
f1, f5, f6 and f7, GA/ICA produced better solutions than OGA/Q. For the functions
f2, f3 and f4, the solutions of GA/IGA were slightly worse than those of OGA/Q.
While for all the test functions, the numbers of the function evaluations that GA/ICA
used were significantly less than those used by OGA/Q. Therefore, the results verified
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that GA/ICA was able to produce optimal or close-to-optimal solutions better than or
comparable to those of OGA/Q while requiring much less function evaluations.

5 Conclusion

We have proposed GA/ICA as a new GA employing ICA to solve unconstrained con-
tinuous global optimization problems in this paper. It first uses ICA to identify the
independent components of the solution space with respect to the fitness, then it divides
the population into sub-populations and evolves on the independent components sepa-
rately, finally it combines their optima as the global optimum for the original problem.
As the high-dimensional problem is divided into many 1-dimensional sub-problems, the
solution space is exponentially reduced, so the problem becomes easier for GA to solve.
The experiment results showed that GA/ICA required much less function evaluations
to produce optimal or close-to-optimal solutions which are better than or comparable to
those produced by OGA/Q on the benchmark problems tested in this paper.
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Abstract. This paper presents a technique called Improved Squeaky Wheel Op-
timisation (ISWO) for driver scheduling problems. It improves the original 
Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by 
incorporating two additional steps of Selection and Mutation which implement 
evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-
Mutation-Prioritization-Construction continues until stopping conditions are 
reached. The Analysis step first computes the fitness of a current solution to 
identify troublesome components. The Selection step then discards these trou-
blesome components probabilistically by using the fitness measure, and the Mu-
tation step follows to further discard a small number of components at random. 
After the above steps, an input solution becomes partial and thus the resulting 
partial solution needs to be repaired. The repair is carried out by using the Pri-
oritization step to first produce priorities that determine an order by which the 
following Construction step then schedules the remaining components. There-
fore, the optimisation in the ISWO is achieved by solution disruption, iterative 
improvement and an iterative constructive repair process performed. Encourag-
ing experimental results are reported. 

1   Introduction 

Personnel scheduling problems have been addressed by mangers, operational re-
searchers and computer scientists over the past forty years. During this period, there 
has been a wealth of literature on automated personnel scheduling including several 
survey papers that generalise the problem classification and the associated approaches 
(Burke et al., 2004; Ernst et al., 2004). 

In brief, personnel scheduling is the problem of assigning staff members to shifts 
or duties over a scheduling period (typically a week or a month) so that certain con-
straints (organizational and personal) are satisfied. The scheduling process normally 
consists of two stages: the first stage involves determining how many staff must be 
employed in order to meet the service demand; the second stage involves allocating 
individual staff members to shifts and then assigning duties to individuals for each 
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shift. Throughout the process, all industrial regulations associated with the relevant 
workplace agreements must be complied with. 

Since personnel scheduling problems are general NP-hard combinatorial problems 
(Garey and Johnson, 1979) which are unlikely to be solved optimally in polynomial 
time, various methods such as local search-based heuristics (Li and Kwan, 2005), 
knowledge based systems (Scott and Simpson, 1998)  and hyper-heuristics (Burke, 
Kendall, and Soubeiga, 2003) have been studied. Over the last few years, meta-
heuristics have attracted the most attention. Genetic Algorithms (GAs) form an im-
portant class of meta-heuristics (Aickelin 2002), and have been extensively applied to 
personnel scheduling problems (Aickelin and Dowsland 2000 & 2003; Aickelin and 
White, 2004; Easton and Mansour, 1999 Li and Kwan, 2003; Wren and Wren, 1995). 
A number of attempts have also been made using other meta-heuristics (Shen and 
Kwan, 2001; Aickelin and Li 2006). The methods and techniques that have been used 
over the years to tackle personnel scheduling problems have tended to draw on prob-
lem-specific information and particular heuristics. In this paper, we are trying to deal 
with the goal of developing more general personnel scheduling systems, i.e. a method 
which is not designed with one particular problem in mind, but is instead applicable to 
a range of problems and domains. 

The work that is presented here is based on the observation that, in most real world 
problems, the solutions consist of components which are intricately woven together. 
Each solution component, e.g. a shift pattern assigned to a particular employee, may 
be a strong candidate in its own right, but it also has to fit well with other compo-
nents. To deal with these components, Joslin and Clements (1999) proposed a tech-
nique called Squeaky Wheel Optimisation (SWO), and claimed it could be a general 
approach for various combinatorial optimisation problems. In this paper, we analyse 
the limitations of the original SWO and revise it by incorporating some evolutionary 
features into the searching process. We term the revised version the improved SWO 
(ISWO). Its general idea is to break a solution down into its components and assign a 
score to each by an evaluation function working under dynamic environments. The 
scores are employed in two ways: first as fitness values which determine the chances 
for the components to survive in the current solution, and then they are sorted to ob-
tain an order in which a greedy algorithm reschedules deleted components. 

2   A General Description of the ISWO 

SWO belongs to the class of non-systematic search techniques. In SWO, a priority or-
dering of problem components is given to a greedy algorithm that constructs a solu-
tion. That solution is then analyzed to find trouble spots, i.e. those components that 
are not handled as well as they could be, relative to some lower bound. The priority of 
the components that are trouble spots is then increased. All components, sorted in the 
new priority ordering are then given to the greedy constructor, with the likely result 
that those components will be handled better in the next solution. This construct-
analyze-prioritize cycle continues until a stopping condition is reached. Joslin and 
Clements (1999) applied this technique on production line scheduling problems and 
graph colouring problems with some satisfactory results. Burke and Newall (2004) 
developed an adaptive heuristic framework for examination timetabling problems 
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which was based on SWO. A hybridisation of this method (Burke and Newall, 2002) 
with exam timetabling methodology based upon the Great Deluge algorithm was 
shown to be effective on benchmark problems (Burke et al 2004). 

In essence, SWO finds good quality solutions quickly by searching in two spaces 
simultaneously: the traditional solution space and the new priority space. Hence it 
avoids many problems that other local search methods often encounter. These features 
allow SWO to effectively make large coherent moves to escape from unpromising re-
gions in the search space. The construct-analyze-prioritize loop learns as it executes: 
problem components that are hard to handle tend to rise in the priority queue, and 
components that are easy to handle tend to sink. 

Although SWO has achieved success in certain problems of realistic size, there ex-
ist two limitations which restrict its wider applications in domains with large problem 
sizes, such as many practical scheduling and rostering problems. The first limitation 
lies in its scalability, which is caused by SWO’s construction step using greedy algo-
rithms to construct a solution from scratch at each iteration. If the construction proc-
ess could start from partial solutions which contain information of past solutions, the 
optimisation process would speed up significantly. 

The second limitation lies in its aspect of convergence: although SWO has the abil-
ity to make large coherent moves, it is, however, poor at making small tuning moves 
in the solution space. Ironically, this weakness is caused by its feature of operating on 
dual search spaces (a “strength”). Compared to the solution of the previous iteration, a 
small change in the sequence of components generated by the Prioritization step may 
correspond to a large change in the corresponding solution generated by the Construc-
tion step. For example, moving a component forward in the sequence can signifi-
cantly change its state in the actual solution, because any components occurring after 
it in the sequence must accommodate that component’s state. However, if it was pos-
sible to restrict changes of components to the trouble-makers, e.g. by delaying part of 
the sequence without going through the full Analysis and Prioritization cycle, then the 
changes in the corresponding solutions would be relatively small. 

To address the above two issues, this paper presents a new technique called ISWO, 
which incorporates two additional steps of Selection and Mutation into the loop. 
These two steps enable the ISWO to implement search by simulating an evolutionary 
process on a single solution. Each component in the solution has to continuously 
demonstrate its worthiness to stay in the solution. Hence in each iteration, a number 
of components will be deemed not worth keeping. The evolutionary strategy adopted 
may also throw out, with a low probability, some worthy components. Any deleted 
component is then rescheduled by using a greedy algorithm one at a time, in the order 
they occur in the priority sequence. Of key importance is that the admittance of a new 
component is analyzed by a dynamic evaluation function, which takes account of how 
well the prospective component will fit in with others already in the solution. The 
above processes are iterated together with the remainder of the classical SWO. Thus 
the global optimisation procedure is based on solution disruption and iterative im-
provement, while a constructive process is performed within. 

As outlined, our proposed algorithm operates a sequence of Analysis, Selection, 
Mutation, Prioritization and Construction steps in a loop on one solution. Besides 
these five steps, some input parameters (e.g. stopping conditions) and a valid starting 
solution are initialized. In the Analysis step, the fitness of each component in the  
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current solution is computed. By analyzing a solution, well-fitting and ill-fitting com-
ponents can be identified. The fitness measure is then used probabilistically to select 
components to be discarded in the Selection step. Components with high fitness have 
a lower probability of being discarded. To get out of local optima in the solution 
space, it is necessary to incorporate the ability to make for uphill moves. This is 
achieved by the Mutation step which probabilistically discards even superior compo-
nents of the solution. 

After the above steps, a previously complete solution becomes partial due to the 
removal of some components, and thus the resulting partial solution needs to be re-
paired. Before making any repairs, the Prioritization step uses the results of the 
Analysis step to create priorities that in turn determine the scheduling order for the re-
cently removed components. In this step, the previous sequence of ‘trouble’ compo-
nents (i.e. recently removed ones) is modified: problem components with lower fit-
ness values (i.e. more trouble-making ones) are moved towards the front of the 
sequence: The lower the value, the further the component is moved towards the front 
of the sequence. Finally, the Construction step repairs a broken solution by applying a 
greedy algorithm to reschedule the removed components, in the order that they appear 
in the component sequence produced by the Prioritization. Throughout the iteration, 
the best solution is retained and finally presented as the final solution. 

3   ISWO for Driver Scheduling 

3.1   Problem Description 

Bus and rail driver scheduling is represents process of partitioning blocks of work, 
each of which is serviced by one vehicle, into a set of legal driver shifts. The main ob-
jectives are to minimize the total number of shifts and the total shift costs. This prob-
lem has attracted much interest since the 1960’s. Wren and Rousseau (1995) gave an 
overview of the main approaches, many of which have been reported in a series of in-
ternational workshop conferences, e.g. (Voß and Daduna, 2001). 

To clarify the problem, we start by introducing some terminologies used in driver 
scheduling (Li and Kwan, 2003). A Relief Opportunity (RO) is a time and place 
where a driver can leave the current vehicle, for reasons such as taking a meal-break, 
or transferring to another vehicle. The work between two consecutive ROs on the 
same vehicle is called a piece of work. The work that a single driver carries out in a 
day is called a shift, which is composed of several spells of work. A spell contains a 
number of consecutive pieces of work on the same vehicle, and a schedule is a solu-
tion that contains a set of shifts that cover all the required work. The subsequent 
packaging of work for actual drivers is usually performed on a weekly basis, allowing 
for rest days and taking into account issues such as fairness and safety regulations. 

The driver scheduling problem can be formulated as a set covering integer linear 
programming problem: all the legal potential shifts are first constructed by heuristics 
that are usually highly parameterized to reflect on the driver work rules of individual 
companies, and then a least cost subset covering all the work is selected to form a so-
lution schedule. In practice, the model has been extended to cater for other practical 
objectives and constraints (Fores et al., 2002). A typical problem may have a solution 
schedule requiring over 100 shifts chosen from a potential set of about 50,000. 
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3.2   Implementation 

This section details how to apply the ISWO to the driver scheduling problem. Based 
on our problem-specific knowledge, we first set up five criteria to evaluate the struc-
ture of a shift from different aspects. Since each criterion bears some degree of uncer-
tainty, we characterize them as individual fuzzy membership functions and aggre-
gated these membership functions together by the way of fuzzy evaluation. The 
resulting aggregated function is used in a general evaluation function to analyze the 
fitness of each solution component (i.e. shift), and then incorporated into a construct-
ing heuristic to enable shift selection. The steps of Analysis, Selection, Mutation, Pri-
oritization and Construction are executed in a loop to improve a given initial solution 
iteratively. During each iteration, an unfit portion of the working schedule is removed. 
Broken schedules are repaired by the constructing heuristic. Throughout the itera-
tions, the best is retained and finally returned as the preserved solution. 

3.2.1   Analysis 
The first Analysis step is to evaluate the current arrangement for each shift in a sched-
ule. In this step, the fitness of the individual shift in a complete schedule is computed. 
The purpose of computing this measure is to determine, besides the structural fitness 
of shifts, which shifts are in positions that lead to less overlapping work time, and 
which shifts contribute unnecessarily to large amounts of overlapping work time. 
Hence we can formulate a normalized evaluation function as 

JjSfSfSF jjj ∈∀×=   ),()()( 21
 (1) 

where Sj denotes the shift contained in the current schedule J with an index number j, 
0  f1(Sj)  1 is the structural coefficient of shift Sj, and 0  f2(Sj)  1 is the over-cover 
penalty which reflects the coverage status for shift Sj. 

1) Structural coefficient 
Five fuzzified criteria ui (i= 1 ,…, 5), characterized by associated membership func-
tions, have been abstracted for the evaluation of the shift structure (Li 2002): Total 
work-time u1, the ratio u2 of total work-time to spreadover (i.e. the paid hours for a 
driver from sign on to sign off), the number of pieces of work u3, the number of spells 
u4 contained in a shift, and the fractional cover u5 which is given by a linear pro-
gramming relaxation. Since the evaluations by individual criteria refer to the local 
features of each criterion, an overall evaluation (i.e. the calculation of the structural 
coefficient f1(Sj) for shift Sj) could be made by the aggregation of these five criteria as 
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The design of the membership functions for these five criteria can be briefly described 
as follows. Since the fitness of shift Sj generally increases with the total work-time, 
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ratio of total work-time to spreadover and number of pieces of work, respectively, the 
membership function μÃi (i = 1, 2, 3) for these three factors takes the same form as 
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where x1 is the total work-time of Sj, a1 is the maximum total work-time, b1 is the 
minimum total work-time, x2 is the ratio of total work-time to spreadover for Sj, a2 is 
the maximum ratio, b2 is the minimum ratio, x3 is the number of pieces of work con-
tained in Sj, a3 is the maximum number of pieces of work and b3 is the minimum 
number of pieces of work. 

With respect to the criterion u4, in most practical problems, the number of spells in 
a shift is limited to be at most four. 2-spell shifts are generally more effective than 
others, and 3-spell shifts are more desirable than 1-spell or 4-spell shifts. Hence, the 
membership function μÃ4 is defined as 
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where x4 is the number of spells contained in Sj. 
With respect to the last criterion u5, extensive studies have shown that the frac-

tional cover by linear programming relaxation provides some useful information 
about the significance of some of the shifts identified in the relaxed solution. In gen-
eral, the higher the fractional value of the variable for a shift, the higher chance that it 
is present in the integer solution (Kwan et al., 2001). We use the following Gaussian 
distribution function μÃ5 to define criterion u5. More details about this criterion can be 
found in (Li 2002). 
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where x5 is the fractional value of Sj in the relaxed LP solution, a is the maximum 
value in fractional cover and b is the minimum value in fractional cover. 

2) Over-cover penalty 
The ratio of the overlapped work time to total work time in Sj, is also regarded as an 
important criterion, which can be formulated as over-cover penalty 0  f2(Sj)  1, 
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where |Sj| is the number of pieces of work in Sj, jk is 0 if work piece k in Sj has been 
covered by any other shifts Si in J and 1 otherwise, and jk is the work-time for work 
pieces k  in Sj. 
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3.2.2   Selection 
This step is to decide whether a shift in a current schedule should be retained or dis-
carded. The decision is made by comparing its fitness value F(Sj) to (ps – p) where ps 
is a variable generated randomly for each iteration satisfying 0  ps  1, and p is a 
constant no larger than 1. If F(Sj) is larger than (ps – p), then Si will remain in its pre-
sent allocation, otherwise Sj will be removed from the current schedule. The pieces of 
work that Sj covers are then released unless they are also covered by other remaining 
shifts in the schedule. By using Selection, shift Sj with larger fitness F(Sj) has higher 
probability to survive in the current schedule. Note that the purpose of subtracting p 
from ps is to improve the efficiency of Selection. Without this operator, for example, 
almost all shifts in the current schedule will be removed when ps is close to 1. 

3.2.3   Mutation 
The Mutation step follows to mutate the retained shifts Sj, i.e. randomly discarding 
them from the partial solution at a small rate pm. The pieces of work that Sj covers are 
then released unless they are also covered by other remaining shifts in the schedule. 
Compared with the selection rate which is randomly generated for each iteration, the 
mutation rate pm should be much smaller to ensure convergence. 

3.2.4   Prioritization 
The Prioritization step first generates a sequence of problem shifts that need to be re-
scheduled (i.e. the ones that have been removed by the previous steps of Selection and 
Mutation). Using the results of Analysis, the problem shifts are sorted in ascending 
order of their fitness values, with poor-scheduled shifts being earlier in the sequence. 

The obtained sequence of problem shifts is then used indirectly to determine the 
order in which a new solution is constructed. Since each shift constitutes a number of 
pieces of work, the sequence of shifts can be transformed into a longer sequence of 
pieces of work, with pieces that have already been covered by earlier shifts not ap-
pearing again. Thus, the new sequence consists of all the uncovered pieces of work, in 
the order that they would be covered by the construction heuristic described below. 

3.2.5   Construction 
The Construction task is to assign shifts to all uncovered pieces of work to repair a 
broken schedule. By considering all potential shifts with respect to the pieces of work 
to be covered, it is possible to build a coverage list for each piece containing all shifts 
that are able to cover it. The greedy constructor assumes that the desirability of adding 
shift Sj(j) into the partial schedule increases with its function value F(Sj). The recon-
structing heuristic is to assign shifts until every piece of work is covered. Candidate 
shifts are then assigned to the unassigned pieces of work sequentially. The criterion of 
choosing the next uncovered piece of work for assignment is to locate the first piece 
of work appearing in the priority sequence, obtain its corresponding coverage list, and 
randomly select a shift with one of the k-largest function value F(Sj). For a feasible 
solution obtained in such a way, over-cover is often inevitable and ultimately has to 
be resolved by manual editing before the schedule is implemented: In practise, the in-
tervention is simply to decide a shift that should contain the over-covered pieces of 
work and then remove this piece from the other shifts. 
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Note that the evaluation function used in the Constructing heuristic takes the same 
form as the one used in the Analysis step. The major difference is that the former one 
needs to evaluate all unused shifts from the large possible legal shift set, for the pur-
pose of selecting some shifts to form a feasible schedule, while the latter only evalu-
ates shifts in the current schedule. 

3.3   Experimental Results 

Among various heuristic and meta-heuristic approaches developed in recent years for 
driver scheduling, the Self-Adjusting Approach (SAA) performs generally best on a 
set of standard test problems (Li and Kwan, 2005). It uses the following weighted-
sum objective function, which combines the two main objectives of minimizing total 
cost and number of shifts into a weighted-sum cost function: 

Minimize 
=

+
L

i
Ji

c
1

)2000(  (8) 

where L is the number of shifts in the schedule, cJi is the cost of the i-th shift, and 
2000 is used to give priority to the first objective of minimizing the number of shifts. 

For a benchmark comparison, the same objective function is used in the ISWO 
coded in C++ and implemented on a Pentium IV 2.1 GHz machine under Window 
XP. Thirteen real world instances from medium to very large size are used as the test-
bed. Starting from an initial solution generated by a genetic algorithm (Li and Kwan, 
2003), we set the stopping criterion equal to 1000 iterations without further improve-
ment. Also, we apply a fixed weight distribution of membership functions, W=(0.20, 
0.10, 0.10, 0.20, 0.40), in equation (3) to all thirteen data instances. In addition, we set 
parameter ps in Section 3.2.2 to be 0.3, the mutation rate pm in Section 3.2.3 to be 
 

Table 1.   Comparative results.   B – Bus, T – Train, R – Tram, M – Mean.   S – best shift, C – 
best cost, CPU – mean CPU time in seconds.   SAA – Self-Adjusting Approach, SWO - 
Squeaky Wheel Optimisation, ISWO – Improved Squeaky Wheel Optimisation, TRACS – 
TRACS II by Fores et al.   The last two columns show % between ISWO and TRACS II. 

 SAA 
S 

SAA 
C 

SAA 
CPU 

SWO 
S 

SWO 
C 

SWO 
CPU 

ISWO 
S 

ISWO 
C 

ISWO 
CPU 

S 
% 

C 
% 

B1 35 294 28 37 321 >999 34 292 121 0.0 1.2 
B2 35 294 26 36 319 >999 35 291 61 2.9 0.5 
B3 74 830 216 81 908 >999 73 828 203 -2.7 -2.7 
T1 62 507 131 67 554 >999 62 507 141 0.0 0.4 
T2 117 998 167 124 1097 >999 116 994 176 0.0 -0.9 
T3 51 406 11 56 455 >999 50 403 19 0.0 -0.2 
T4 62 572 530 67 632 >999 61 569 536 -4.7 1.2 
T5 243 2249 981 262 2488 >999 242 2248 873 0.0 0.0 
T6 271 2102 130 314 2410 >999 270 2082 135 -2.2 -0.0 
T7 343 2662 358 399 3091 >999 342 2662 318 -2.0 0.0 
T8 390 3239 986 447 3686 >999 389 3200 928 -1.5 2.0 
R1 49 420 23 53 444 >999 49 420 27 0.0 0.0 
R2 49 414 59 54 437 >999 49 411 74 0.0 0.6 
M 137 1153 280 154 1295 >999 136 1147 278 -0.8 0.1 
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0.05, and the k value in Section 3.2.5 to be 2. For each instance, we run the program 
ten times by using different random seeds. 

Table 1 lists the comparative results of the ISWO against the results of the ILP and 
the SAA, respectively. It also lists the results of the original SWO, which are far from 
optimal. Each data instance was run ten times by fixing the parameters and varying 
the pseudo random number seed at the beginning. Compared with the solutions of the 
ILP approach, our best solutions are 0.78% better in terms of total shift numbers, and 
are only 0.11% more expensive in terms of total cost. However, our results are much 
faster in general, especially for larger cases. Compared with the SAA which 
outperforms other meta-heuristics available in the literature (Li and Kwan, 2005), our 
ISWO performs better for all data instances using similar execution times. 

4   Conclusions 

This paper presents a new technique to solve personnel scheduling problems by using 
the original idea of SWO but by adding two steps of Selection and Mutation into its 
loop of Analysis / Prioritization / Construction. With these two additional steps, the 
drawbacks of the original SWO in terms of optimisation ability and execution speed 
are successfully dealt with. Taken as a whole, the ISWO implements evolution on a 
single solution and carries out search by solution disruption, iterative improvement 
and an iterative constructive process. The experiments have demonstrated that the 
ISWO performs very efficiently and competitively. In general, it outperforms the pre-
vious best-performing approaches reported in the literature. 

The architecture of the ISWO is innovative, and thus there is still some room for 
further improvement. For example, we currently only use one fixed rule. We believe 
that by adding some more flexible rules into the search, solution quality could be im-
proved further. This would be particularly interesting if we have more difficult in-
stances to solve. In the future, we are also looking at more advanced methods of 
Analysis, Selection and Mutation. 

Acknowledgements. The research described in this paper was funded by the Engi-
neering and Physical Sciences Research Council (EPSRC), under grant GR/S70197/1. 
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Abstract. Local Genetic Algorithms are search procedures designed in
order to provide an effective local search. Several Genetic Algorithm mod-
els have recently been presented with this aim. In this paper we present a
new Binary-coded Local Genetic Algorithm based on a Steady-State Ge-
netic Algorithm with a crowding replacement method. We have compared
a Multi-Start Local Search based on the Binary-Coded Local Genetic Al-
gorithm with other instances of this metaheuristic based on Local Search
Procedures presented in the literature. The results show that, for a wide
range of problems, our proposal consistently outperforms the other local
search approaches.

1 Introduction

Local Search Procedures (LSPs) are optimisation methods that maintain a solu-
tion, known as current solution, and explore the search space by steps within its
neighbourhood. The interest on LSPs comes from the fact that they may effec-
tively and quickly explore the basin of attraction of optimal solutions, finding an
optimum with a high degree of accuracy and within a small number of iterations.
In fact, these methods are a key component of metaheuristics that are state-of-
the-art of many optimisation problems, such as Multi-start Local Search ([3]),
Greedy Randomised Adaptive Search Procedures, Iterated Local Search, Variable
Neighbourhood Search, and Memetic Algorithms ([2]).

Genetic Algorithms (GAs) ([9,14]) have been seen as search procedures that
can locate high performance regions of vast and complex search spaces, but they
are not well suited for fine-tuning solutions ([17]). However, the components
of the GAs may be specifically designed and their parameters tuned, in order to
provide an effective local search as well. In fact, several GA models have recently
been presented with this aim ([17,18]). These algorithms are called Local Genetic
Algorithms (LGAs).
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LGAs present some advantages over classic LSPs. Most LSPs lack the abil-
ity to follow the proper path to the optimum on complex search landscapes.
This difficulty becomes much more evident when the search space contains very
narrow paths of arbitrary direction, also known as ridges. That is due to LSPs
attempt successive steps along orthogonal directions that do not necessarily co-
incide with the direction of the ridge. However, it was observed that LGAs are
capable of following ridges of arbitrary direction in the search space regardless
of their direction, width, or even, discontinuities ([17]). Thus, the study of LGAs
becomes a promising way to allow the design of more effective metaheuristics
based on LSPs ([6,13,17,18,22]).

In this paper, we propose a Binary-coded LGA (BLGA) based on a Steady-
State Genetic Algorithm (SSGA) with a crowding replacement method. It itera-
tively crosses a leader solution with individuals of the population belonging to the
nearest niches. Then, the best solution between the leader one and the offspring
becomes the new leader solution, and the other one is inserted in the population
by means of the Restricted Tournament Selection ([11]). We have compared a
Multi-start Local Search based on the new LGA with other instances of this
metaheuristic based on LSPs proposed in the literature. The results show that,
for a wide range of problems, this LGA consistently outperforms the other local
search approaches.

The paper is organised as follows. In Section 2, we present the LGAs. In
Section 3, we propose the BLGA. In Section 4, we compare the performance
of the BLGA with LSPs presented in the literature. Finally, in Section 5, we
provide some conclusions.

2 Local Genetic Algorithms

There are two primary factors in the search carried out by a GA ([23]):

– Selection pressure. In order to have an effective search there must be a search
criterion (the fitness function) and a selection pressure that gives individuals
with higher fitness a higher chance of being selected for reproduction, mu-
tation, and survival. Without selection pressure, the search process becomes
random and promising regions of the search space would not be favoured
over non-promising regions.

– Population diversity. It is crucial to a GA’s ability in order to continue the
fruitful exploration of the search space.

Selection pressure and population diversity are inversely related: increasing se-
lection pressure results in a faster loss of population diversity, while maintaining
population diversity offsets the effect of increasing selection pressure.

Traditionally, GA practitioners have carefully designed GAs in order to obtain
a balanced performance between selection pressure and population diversity. The
main objective is to obtain their beneficial advantages simultaneously: to allow
the most promising search space regions to be reached (reliability) and refined
(accuracy).
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Due to the flexibility of the GA architecture, it is possible to design GA mod-
els specifically aimed to provide effective local search. In this way, their unique
objective is to obtain accurate solutions. These algorithms are named Local Ge-
netic Algorithms. LGAs arise as an alternative choice to classical LSPs, in order
to design metaheuristics based on LSPs. In fact, some LGAs were considered for
this task ([6,13,17,18,22]).

3 Binary-Coded Local GA

In this section, we present a Binary-coded LGA (BLGA) that may be used
to design metaheuristics based on LSPs. It is a Steady-state GA ([20,23]) that
inserts one single new member into the population (P ) in each iteration. It uses
a crowding replacement method (restricted tournament selection (RTS) ([11])) in
order to force a member of the current population to perish and to make room
for the new offspring. It is important to know that RTS favours the formation
of niches in P (groups of chromosomes with high quality located in different
and scattered regions of the search space). In addition, the BLGA maintains an
external chromosome, the leader chromosome (CL), which is always selected as
one of the parents for the crossover operation. The following sections indicate
the main components of the BLGA.

3.1 General Scheme of the Binary-Coded LGA

Let’s suppose that a particular metaheuristic applies the BLGA as LSP. When
the metaheuristic calls the BLGA to refine a particular solution, the BLGA will
consider this solution as CL. Then, the following steps (Figure 1) are carried out
during each iteration:

1. Mate selection. m chromosomes, Y 1, Y 2, ..., Y m, are selected from the pop-
ulation applying the positive assortative mating m times (Section 3.2).

2. Crossover. CL is crossed over with Y 1, Y 2, ..., Y m by applying the multipar-
ent uniform crossover operator, generating an offspring Z (Section 3.3).

3. Update of the leader solution and replacement. If Z is better than CL, then
CL is inserted into the population using the restricted tournament selection
(Section 3.4) and Z becomes the new CL. Otherwise, Z is inserted in the
population using the same replacement scheme.

These steps are carried out until the stop condition described in Section 3.5
is achieved.

3.2 Positive Assortative Mating

Assortative mating is the natural occurrence of mating between individuals of
similar phenotype more or less often than expected by chance. Mating between
individuals with similar phenotype more often is called positive assortative mat-
ing and less often is called negative assortative mating. Fernandes et al. ([5])
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Fig. 1. Model of the BLGA

implement these ideas to design two mating selection mechanisms. A first par-
ent is selected by the roulette wheel method and nass chromosomes are selected
with the same method (in BLGA all the candidates are selected at random).
Then, the similarity between each of these chromosomes and the first parent is
computed (similarity between two binary-coded chromosomes is defined as the
Hamming distance between them). If assortative mating is negative, then the
one with less similarity is chosen. If it is positive, the genome more similar to
the first parent is chosen to be the second parent. In the case of BLGA, the first
parent is the leader chromosome and the method is repeated m times.

3.3 Multiparent Uniform Crossover Operator

The BLGA uses a multiparent version of the Uniform crossover (UX) ([20]) with
a short term memory mechanism that avoids the generation of any offspring
previously created. The pseudocode is shown in Figure 2, where U(0, 1) is a
random number in [0, 1], RI(1,m) is a random integer in {1, 2, ...,m}, and pf is
the probability of choosing genes from CL (pf is set to a high value in order to
create offspring similar to CL).

The short term memory remembers the genes of CL that have been flipped at
generating an offspring Zk. Then, it avoids flipping those genes of CL, in order
to prevent the creation of Zk once again. In order to do that, this mechanism
maintains a mask, M = (M1, . . . ,Mn), where Mi = 1 indicates that the gene
cL
i can not be flipped in order to create an offspring. Initially, and when CL is

updated with a better solution, any gene can be flipped, so Mi is set to 0 for all
i ∈ {1, . . . , n}.

The multiparent UX with short term memory creates the offspring Z =
(z1, . . . , zn) with:

– zi is set to cL
i for all i = 1, . . . , n with Mi = 1.

– If Mi = 0, then zi is set to cL
i with probability pf . Otherwise, zi is set to

the ith gene of a randomly chosen parent Y j . The mask is updated if zi is
different from cL

i .
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multiparent UX(CL, Y 1, ..., Y m, m, pf)
For i = 1, ..., n

If Mi = 1 OR U(0, 1) < pf //short term memory mechanism
zi ←− cL

i ;
Else

k ←− RI(1, m);
zi ←− Y k

i ;
If zi �= cL

i

Mi ←− 1; //update the mask
If Z = CL

j ←− RI(1, n) such as Mj = 0;
Mj ←− 1; //update the mask
zj ←− 1 − zj;

Return Z;

Fig. 2. Pseudocode of the multiparent UX with short term memory

– If Z is equal to CL, then a gene chosen at random, i with Mi = 0, is flipped
and the mask is updated.

The short term memory mechanism shares ideas with the one of the Tabu
Search (TS) ([7]). Both of them help the sampling operator to efficiently explore
the neighbourhood of the current solution CL. Both of them avoid sampling
previous solution more than once. The main difference is that the mechanism of
the BLGA is entirely reset every time an offspring Z becomes better than CL,
whereas the elements in the one of the TS are eliminated, one by one, when their
tabu tenure expires (usually, a fix number of algorithm iterations).

3.4 Restricted Tournament Selection

BLGA considers the Restricted Tournament Selection (RTS) ([11]) as crowding
method. Its main idea is to replace the closest chromosome R to the one being
inserted in the population, I, from a set of nT randomly selected ones, if I is
better than R.

The application of RTS together with the use of high population size may
favour the creation of groups of chromosomes with high quality in P , which
become located in different and scattered regions of the search space (niches).

3.5 Stop Condition

It is important to notice that, when every bit of the mask of the short term
memory is set to 1 (Section 3.3), then, CL will not be further improved, because
the crossover operator will create new solutions exactly equal to CL. Thus, this
condition will be used as stop condition for the BLGA.
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4 Experiments: Comparison with Other LSPs

The aim of this section is to compare the BLGA with other LSPs for binary-
coded problems presented in the literature:

– the First LSP ([2]) that changes a random component of the current solution,
which improves its fitness value,

– the Best LSP ([2]), which changes the bit that makes the best improvement,
and,

– the RandK LSP ([16,19]) that examines a k-variable neighbourhood (it looks
for solutions changing k components).

We have implemented four instances of the simplest LSP based metaheuristic,
the Multi-start Local Search ([3]), each one with a different LSP. Multi-start
Local Search iteratively creates a random solution and apply a LSP on it, until
a stop condition is reached. At last, Multi-start Local Search returns the best
solution obtained so far.

The four Multi-start Local Search instances will be called as follows:

– MS-First-LS: Multi-start with the First LSP.
– MS-Best-LS: Multi-start with the Best LSP.
– MS-RandK-LS: Multi-start with the RandK LSP.
– MS-BLGA: Multi-start with the BLGA.

We have chosen the Multistart Local Search metaheuristic in order to avoid
possible synergies between the metaheuristic and the LSP. In this way, compar-
isons among the LSPs are fairer. All the algorithms were executed 50 times, each
one performing 100,000 evaluations.

The BLGA uses 500 individuals as the population size, pf = 0.95 and m = 10
mates for the crossover operator, nass = 5 for the Positive Assortative Mating,
and nT = 15 for the Restricted Tournament Selection. The population of the
BLGA does not undergoes initialisation after the iterations of the Multistart
Local Search, i.e. the initial population of the BLGA at the jth iteration of the
MS-BLGA is the last population of the (j − 1)th iteration. On the other hand,
the leader chromosome is randomly generated at the beginning of the iterations
of this metaheuristic.

4.1 Test Suite

Table 1 shows the test function used, their dimension, optimisation criterion (to
maximise/minimise), optimum value and reference. Some comments are needed:

– Trap(4) consists on applying Trap(1) to a chromosome with 4 groups of 36
genes. Each group is evaluated with Trap(1), and the overall fitness of the
chromosomes is the sum of the fitness of each group.
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Table 1. Used test problems

Name Dim Criterion f∗ Ref
Onemax(400) 400 min 0
Deceptive(13) 39 min 0 [8]
Deceptive(134) 402 min 0 [8]

Trap(1) 36 max 220 [21]
Trap(4) 144 max 880 [21]

Maxcut(G11) 800 max Not known [15]
Maxcut(G12) 800 max Not known [15]
Maxcut(G17) 800 max Not known [15]
Maxcut(G18) 800 max Not known [15]
Maxcut(G43) 1000 max Not known [15]

M-Sat(100,1200,3) 100 max 11 [4]
M-Sat(100,2400,3) 100 max 11 [4]

NkLand(48,4) 48 max 11 [4]
NkLand(48,12) 48 max 11 [4]

BQP(’gka’) 50 max 34142 [1,10]
BQP(50) 50 max 20982 [1,10]
BQP(100) 100 max 79702 [1,10]
BQP(250) 250 max 456072 [1,10]
BQP(500) 500 max 1165862 [1,10]

– We have used 5 instances of the Max-cut problem (G11, G12, G17, G18,
G43) from [12].

– We have used two set of instances of the Max-Sat problem with 100 variables
(n), 3 variables by clause (l), and 1200 and 2400 clauses (m) respectively
([4]). They are denoted as M-Sat(n, m, l).

– We have used two set of instances of the NK-Landscape problem: one with
N = 48 and K = 4, and another with N = 48 and K = 12 ([4]). They are
denoted as NKLand(N , K).

– We have used 5 instances of the Binary Quadratic Problem (BQP) with dif-
ferent dimensions (n). They have been taken from the OR-Library. They
are the first instances of the files ‘bqpgka’, ‘bqp50’, ‘bqp100’, ‘bqp250’,
‘bqp500’. They are called BQP(‘gka’), BQP(50), BQP(100), BQP(250), and
BQP(500), respectively.

4.2 Results

The results for all the algorithms are included in Table 2. It shows the average
and the standard deviation of the best fitness function found over 50 executions.
We have added, in parenthesis, the times the MS-BLGA is slower than the
average of the other algorithms (the time consumed by the MS-BLGA divided
by the average of the time consumed by the remainder, which were extremely
similar). In addition, a two-sided t-test at 0.05 level of significance was applied
in order to ascertain if the differences in the performance of MS-BLGA are
significant when compared against the ones for the other algorithms. We denote
the direction of any significant differences as follows:
1 1 is the maximum possible fitness value, however it may not exist any optimal

solution with that fitness value, depending on the current problem instance.
2 Best known values presented in [1].
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Table 2. Comparison of the MS-BLGA with other Multistart LSP instances

MS-First-LS MS-Best-LS MS-RandK-LS MS-BLGA + ∼ -
average 0 0 0 0

Onemax(400) sd 0 ∼ 0 ∼ 0 ∼ 0 (753.12) 0 3 0
average 8.68 3.36 14.32 8.68

Deceptive(13) sd 1.11 ∼ 1.24 − 0.94 + 1.43 (1162.51) 1 1 1
average 177.6 128.4 201.6 185.84

Deceptive(134) sd 5.03 − 10.5 − 7.51 + 9.56 (742.11) 1 0 2
average 213.12 219.1 201.86 218.38

Trap(1) sd 2.54 + 1.94 ∼ 2.41 + 2.39 (873.49) 2 1 0
average 790.08 828.92 781.78 869.3

Trap(4) sd 7.17 + 8.09 + 7.88 + 6.97 (562.19) 3 0 0
average 437.36 349.6 441 506.64

Maxcut(G11) sd 7.37 + 17.11 + 10.78 + 6.92 (52.47) 3 0 0
average 425.6 335.16 431.32 497.36

Maxcut(G12) sd 7.23 + 15.65 + 12.17 + 6.97 (52.44) 3 0 0
average 2920.82 2824.66 2946.58 2975.7

Maxcut(G17) sd 5.97 + 15.59 + 11.06 + 8.15 (51.16) 3 0 0
average 849.86 628.32 873.82 898.08

Maxcut(G18) sd 11.30 + 22.15 + 18.68 + 15.98 (51.37) 3 0 0
average 6427.44 5735.84 6463.1 6463.18

Maxcut(G43) sd 16.27 + 40.74 + 26.20 ∼ 24.86 (49.3) 2 1 0
average 0.9551 0.9526 0.9563 0.9566

M-Sat(100,1200,3) sd 3.7e-3 + 3.9e-3 + 3.3e-3 ∼ 3.2e-3 (21.59) 2 1 0
average 0.9332 0.9314 0.9335 0.9338

M-Sat(100,2400,3) sd 2.0e-3 ∼ 2.5e-3 + 2.2e-3 ∼ 1.9e-3 (11.25) 1 2 0
average 0.7660 0.7647 0.7694 0.7750

NkLand(48,4) sd 1.4e-2 + 1.3e-2 + 1.4e-2 + 1.4e-2 (13.48) 3 0 0
average 0.7456 0.7442 0.7493 0.7468

NkLand(48,12) sd 8.3e-3 ∼ 7.7e-3 ∼ 1.0e-2 ∼ 9.5e-3 (9.39) 0 3 0
average 3414 3414 3414 3414

BQP(‘gka’) sd 0 ∼ 0 ∼ 0 ∼ 0 (143.8) 0 3 0
average 2098 2094.08 2096.72 2098

BQP(50) sd 0 ∼ 15.68 ∼ 9.05 ∼ 0 (146.11) 0 3 0
average 7890.56 7831.7 7881.52 7927.56

BQP(100) sd 33.79 + 57.75 + 38.01 + 43.15 (96,4) 3 0 0
average 45557.16 45171.38 45504.22 45510.96

BQP(250) sd 33.68 ∼ 295.46 + 99.28 + 128.92 (62.92) 2 1 0
average 115176.88 108588.26 115335.34 115256.3

BQP(500) sd 494.89 ∼ 2210.02 + 527.97 ∼ 814.44 (50.14) 1 2 0
+/ ∼ /− 10 / 8 / 1 12 / 5 / 2 11 / 8 / 0

– A plus sign (+): the average of MS-BLGA is better than the one of the
corresponding algorithm.

– A minus sign (−): the algorithm improves the average of MS-BLGA.
– An approximate sign (∼): non significant differences.

We have added the last three columns and the last three rows that count the
number of improvements, non-differences and reductions according to the t-test
by functions and by algorithms, respectively.

The last three rows indicate that the BLGA arises as a promising algorithm
to deal with binary-coded optimisation problems because it achieves many im-
provements and very few reductions versus the other approaches.

On the other hand, two remarks are worth being mentioned from the last
three columns:

– MS-BLGA is one of the best algorithms for almost the 90% of the test
functions. Concretely, MS-BLGA achieves better or equivalent results than
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the ones of the other algorithms for all the functions, except on the two
Deceptive ones.

– MS-BLGA returns the best results for 4 from up to 5 Max-cut problems.

It can be seen that these good results do not come for free. MS-BLGA invest
runtime in order to obtain better results than the ones obtained by the other
LSPs, performing the same number of fitness evaluations. However, it is inter-
esting to notice that the differences become smaller when the dimension of the
problem increases. The design of less time consuming LGAs, including parallel
GAs, arises as an important idea from this study.

To sum up, we may conclude that the BLGA, working within the Multistart
Local Search metaheuristic, is very competitive with classic LSPs, because it
obtains better or equivalent results for almost all the test problems considered
in this study.

5 Conclusions

In this paper, we have presented the BLGA, a LGA instance that incorporates
specific mate selection mechanism, crossover operator, and replacement strategy
to direct the local search towards promising search regions represented in the
proper BLGA population.

An experimental study, including 19 binary coded test problems, has shown
that when we incorporate the BLGA into a Multistart Local Search metaheuris-
tic, this metaheuristic may improve their results with regards to the use of other
LSP instances that are frequently used to implement it.

Several ideas for future developments arise from this study:

– Analyse the behaviour of the BLGA when it is used by different metaheuris-
tics based on LSPs ([3,2]).

– Extend our investigation to different test-suites (other coding schemes) and
real-world problems.

– Study adaptive mechanisms that control the parameters of the algorithm
according to the current state of the search process.
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Abstract. Hyperheuristics are single candidate solution based and simple to 
maintain mechanisms used in optimization. At each iteration, as a higher level of 
abstraction, a hyperheuristic chooses and applies one of the heuristics to a 
candidate solution. In this study, the performance contribution of hill climbing 
operators along with the mutational heuristics are analyzed in depth in four 
different hyperheuristic frameworks. Four different hill climbing operators and 
three mutational operators are used during the experiments. Various subsets of the 
heuristics are evaluated on fourteen well-known benchmark functions. 

1   Introduction 

The term hyperheuristics refers to a recent approach in search methodologies [2, 4, 5, 7, 
17, 23]. The hyperheuristic concept involves a higher level of abstraction than metaheu-
ristic methods. This term describes an iterative search approach which controls a set of 
heuristics. The method keeps track of the non problem-specific data such as the fitness 
change, the execution time and applies a heuristic at each iteration. Studies involving a 
number of heuristic selection and acceptance mechanism combinations are reported in 
the literature [2, 3, 4, 7, 17]. A comprehensive study on the performance of different 
heuristic selection and move acceptance strategies is reported in [3].  

In this paper, the synergy of various heuristics and their contribution to the perform-
ance is evaluated on a set of benchmark functions. Furthermore, four different hyperheu-
ristic frameworks that utilize a set of hill climbers as heuristics in addition to a set of 
mutational heuristics, are defined and assessed as well. The new frameworks are derived 
from the commonly used framework. The intention of this study is to answer the follow-
ing questions: What type of heuristics is useful to be used in hyperheuristics? Do the hill 
climbers improve the performance if used within hyperheuristics? Can we use only hill 
climbers as heuristics? At which stage(s) and how can hill climbers be used to improve 
the performance? Is it possible to identify the problem domains where a specific frame-
work might perform better as compared to the others?  

2   Preliminaries 

In general, exhaustive methods are impractical for solving real world problems, whereas 
meta-heuristics provide better means by intelligently seeking optimal solutions within  
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a search space. For many practical problems meta-heuristics provide state-of-the-art 
solutions. Their success is due to the problem-specific implementations, which utilize 
knowledge about the problem domain and properties. The deployment of meta-
heuristics requires expert level knowledge and experience on the problem tackled. Fur-
thermore, fine tuning might be required [4, 23]. Hyperheuristics are general search 
methods that can be applied to any optimization problem easily [7]. Hyperheuristics 
describe a set of strategies that are used to choose a heuristic from a set of low level 
heuristics as illustrated in Fig. 1. There are very simple strategies that can be coded 
easily. Yet, a meta-heuristic can be used as a heuristic underneath a hyperheuristic as 
well as a hyperheuristic itself within this framework. 

 

Fig. 1. Traditional hyperheuristic framework 

Hyperheuristics operate on the search space of heuristics instead of candidate solu-
tions. Non problem-specific data like heuristic execution time and changes in the  
fitness function can be used by hyperheuristics to select and apply a heuristic [2]. Al-
though the methods of this type are reported in the literature before, the term hyperheu-
ristic is first proposed by Cowling et al. [7] to name this approach. The early studies 
date back to Fisher and Thompson. They used a hyperheuristic based on probabilistic 
weighting of heuristics to solve the job-shop scheduling problem [12]. Kitano [19] 
used a genetic algorithm as a hyperheuristic for designing neural network topology. 
The hyperheuristic approach is utilized by Gratch et al. [15] to schedule earth-orbiting 
satellites and ground stations communications. Fang et al. [11] utilized this approach 
using the genetic algorithm to tackle the open-shop problem. Hart and Ross [17] tack-
led the dynamic job-shop problem with a similar approach. Hyperheuristics are applied 
to university exam timetabling problems by Terashima-Marin et al. [25].  

A single iteration of a hyperheuristic method can be decomposed in two stages, 
heuristic selection and movement acceptance. In the previous studies, hyperheuristics 
might be named without discriminating between heuristic selection and acceptance 
criterion. Examples of heuristic selection methods are Simple, Greedy, Choice Func-
tion [7], Tabu-Search [5], and Case Based Heuristic Selection Methods [6]. Simple 
Hyperheuristics utilize randomized processes to select heuristics. Greedy Hyperheu-
ristic chooses the best performing heuristic at each iteration. Choice Function Hyper-
heuristic keeps track of previous performance of each heuristic and makes a choice 
between them by evaluating their performance via a choice function. Two types of 
deterministic acceptance criteria are used in [5, 7]: All Moves Accepted (AM) and 
Only Improving Moves Accepted (OI). Non-deterministic acceptance criteria can be 

Select a Heuristic 
Apply 

 Input Candidate Solution 

 Output Candidate Solution 

 Hyperheuristic 
              Heuristics 
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found in [2, 17]. Monte Carlo Hyperheuristic accepts all of the improving moves and 
the non-improving moves can be accepted based on a probabilistic framework [2]. 
Great Deluge Hyperheuristic utilizes the Great Deluge Algorithm as the acceptance 
criterion [17]. Monte Carlo and Great Deluge Hyperheuristics both use Simple Ran-
dom as heuristic selection method in [2, 17]. An experimental study on the perform-
ance of various heuristic selection and acceptance criterion combinations yielded that 
the combination of Choice Function, Improving and Equal Moves Accepted (IE) 
strategy and bit modifying heuristics performed the best on benchmark functions [3]. 
Hence, during the experiments this combination is used. 

2.1   Benchmark Functions  

A set of benchmark functions can be used to represent a broad range of optimization 
problems with various fitness landscapes. For the performance evaluation of different 
heuristic sets within different hyperheuristic frameworks, fourteen different bench-
mark functions are utilized. Characteristics of each benchmark function and the 
sources where they are obtained are summarized in Table 1. 

Table 1. Characteristics of benchmark functions: lb indicates lower bound, ub upper bound, opt 
optimum point, dim number of dimensions, bits number of bits per dimension, Conti. continu-
ity, Cont. continuous, Disc. discrete, and Multi. multimodal 

Label         lb        ub opt  dim  bits Conti. Modality Source 
F1 -5.12 5.12 0 10 30 Cont. Unimodal [8] 
F2 -2.048 2.048 0 10 30 Cont. Unimodal [8] 
F3 -5.12 5.12 0 10 30 Cont. Unimodal [8] 
F4 -1.28 1.28 1 10 30 Cont. Multi. [8] 
F5 -65.536 65.536 0 2 30 Cont. Multi. [8] 
F6 -5.12 5.12 0 10 30 Cont. Multi. [15] 
F7 -500 500 0 10 30 Cont. Multi. [16] 
F8 -600 600 0 10 30 Cont. Multi. [12] 
F9 -32.768 32.768 0 10 30 Cont. Multi. [1] 

F10 -100 100 -1 10 30 Cont. Unimodal [1] 
F11 -65.536 65.536 0 10 30 Cont. Unimodal [8] 
F12 - - 0 8 8 Disc. - [14] 
F13 - - 0 30 3 Disc. - [10] 
F14 - - 0 6 4 Disc. - [18] 

2.2   Heuristics for Benchmark Function Optimization 

Heuristics are classified as mutational heuristics and hill climbers in this paper. Hill 
climbers generate a better output candidate solution as a local search component, after 
they are applied to an input candidate solution. Mutational heuristics do not necessarily 
generate a better output candidate solutiono. 4 hill climbing algorithms and 3 mutational 
heuristics are implemented as heuristics to be used for solving binary encoded problems.  

Hill climbing algorithms are as follows: Davis’ Bit Hill Climbing Algorithm 
(DBHC) [8], Next Descent Hill Climbing Algorithm (NDHC) Random Bit Hill 
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Climbing Algorithm (RBHC) and Steepest Descent Hill Climbing Algorithm (SDHC) 
[19]. All hill climbers make a set of modifications on a given candidate solution and 
each modification is accepted if there is an improvement in the generated solution. 
Assuming that a candidate solution is represented by a binary string, in each NDHC 
step a bit is inverted. The whole string is scanned bit by bit starting from the first until 
to the last. A DBHC differs from NDHC due to the scanning order. DBHC predeter-
mines a random sequence to apply a hill climbing step and scans through the candi-
date solution according to it. During each RBHC step a bit is selected randomly and 
inverted for a number of iterations. SDHC checks each single bit inversion variant of 
the input candidate and accepts the one with the best improvement.  

Mutational heuristics are Swap Dimension (SWPD), Dimensional Mutation 
(DIMM) and Hyper-mutation (HYPM). Swap Dimension heuristic randomly 
chooses two different dimensions in a candidate solution and swaps them. Dimen-
sional Mutation heuristic randomly chooses a dimension and inverts all bits in this 
dimension with a probability of 0.5. Hyper-mutation randomly inverts each bit in 
the candidate solution with a probability of 0.5. 

2.3   Hyperheuristic Frameworks 

Recent studies presented in [21] shows that in memetic algorithms, using a single effi-
cient hill climber instead of using a set of hill climbers where the operator selection is 
carried out self adaptively, might yield better solutions. As a result, different frameworks 
based on the general hyperheuristic approach can be defined in order to make better use 
of hill climbers as heuristics. In this study, four different frameworks are used; FA, FB, FC 
and FD, as summarized in Fig. 2.  

FA is the traditional framework and the others are the newly proposed ones. Hill 
climbers are used together with the mutational hill climbers. In some situations, after 
applying a mutational heuristic a hill climbing might be desirable. For example, if IE is 
used in the hyperheuristic, then most of the mutational heuristic moves will be declined. 
To avoid this phenomenon and to make better use of diversity provided by mutational 
heuristics, a hill climber can be utilized additionally. FB represents such a framework. If 
the hyperheuristic chooses a mutational heuristic, then a predefined single hill climber is 
applied to the candidate solution. Notice that FB still uses all heuristics together. In FC, 
hill climbers are separated from the mutational heuristics. Hyperheuristic chooses only an 
appropriate mutational heuristic. Application of a selected heuristic to a candidate solu-
tion is followed by a hill climbing. A single hill climber is predefined by the user. FD is a 
more general form of FC. Two hyperheuristic modules are used; one for selecting an 
appropriate mutational heuristic and one for selecting an appropriate hill climber. FD can 
be implemented in two ways. The acceptance mechanism of the hyperheuristic for hill 
climbers can get a feedback from the intermediate candidate solution (Fig. 2- FD, marked 
solid lines) or from the initial candidate solution (Fig. 2-FD, dashed line). 

3   Experiments 

The experiments are  performed on Pentium IV, 2 GHz Linux machines with 256 
Mb memory. Fifty runs are performed for  each heuristic set and problem  instance  
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Fig. 2. Different hyperheuristic frameworks combining mutational heuristics and hill  
climbers 



 Hill Climbers and Mutational Heuristics in Hyperheuristics 207 

pair. For each problem instance, a set of fifty random initial candidate solutions are 
created. Each run in an experiment is performed starting from the same initial candi-
date solution. The experiments are allowed to run for 600 CPU seconds. If the global 
optimum of the objective function is found before the time limit is exhausted than the 
experiment is terminated. 

3.1   Experimental Settings  

The candidate solutions are encoded as bit strings. The continuous functions in 
benchmark set are encoded in gray code. The discrete functions have their own 
direct encoding. Linear combinations of deceptive function variables are created to 
make them multidimensional. F5 has default dimension of 2. The default number 
of bits per dimension parameter is set to 8, 3, and 4 for the F12, F13, and F14 re-
spectively. The rest of them have 10 dimensions and 30 bits are used to encode a 
variable (Table 1).  

Hyperheuristic pattern is defined as the set of heuristics and the framework util-
ized in a hyperheuristic algorithm. The experimental set consists of eleven differ-
ent hyperheuristic patterns; H1-H11 (Table 2). The frameworks FA and FB are 
tested combining hill climbers (HCs) with each mutational heuristic to observe the 
contribution of each one. If just hill climbers are used without having any muta-
tional heuristics in the system, then both frameworks FB and FD reduce to FA and 
FC becomes local search. Hyperheuristic patterns are tested on 14 different bench-
mark functions. Choice Function and IE pair is used as a hyperheuristic during the 
experiments, except for H11. This pair is used on hill climbers, while Simple Ran-
dom and AM pair is used on mutational heuristics. The single hill climber within 
the frameworks FB and FC is chosen as DBHC during the experiments. 

3.2   Experimental Results 

The runs, where the global optimum is found before time limit is exceeded, are 
considered to be successful. Success rate, the ratio of successful runs to all runs, is 
used as a performance criterion. There exists at least one hyperheuristic pattern 
that obtains an optimal solution during the runs for each benchmark function, ex-
cept F4, which represents a search space with noise.  

The average number of evaluations of the hyperheuristic patterns achieving full 
success during all runs on each benchmark function is depicted in Fig. 3. The tradi-
tional framework FA with hill climbers performed poorly on most of the bench-
mark functions. There is always a better framework than FA for all cases, except 
for F1. Even for F1, the performance of FA is not significantly better than the rest. 
The framework FB with all hill climbers and SWPD heuristic performed well on 
the benchmark functions F2, F9, and F11. These functions carry epistasis between 
dimensions. The experiments with FA, FB and each mutational heuristics showed 
that in some cases a good choice of mutational heuristics might yield a better per-
formance. For example, DIMM provided a significantly better performance com-
pared to the rest of the mutational heuristics in FA and FB for F6 and F11. Further-
more, in some cases, the framework might generate a synergy between operators 
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providing an improved performance. For example, FB performed significantly better 
than FA when all hill climbers are used and SWPD in F2 and F8. 

Table 2. Heuristic set and the framework used in each hyperheuristic pattern; H1-H11, 
where + and * indicate that the corresponding heuristic is controlled by the same hyperheu-
ristic and –  points out the heuristic that is used as the single hill climber within the related 
framework 

Sets: H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 
NDHC + + + + + + + + +  + 
DBHC + + + + +/– +/– +/– +/– + – + 
RBHC + + + + + + + + +  + 
SDHC + + + + + + + + +  + 
SWPD  +   +   + + + * 
DIMM   +   +  + + + * 
HYPM    +   + + + + * 

Framework  FA  FA FA FA  FB  FB FB FB FA FC FD 

The framework FC with all mutational heuristics and DBHC hill climber per-
formed well on F3, F6, F7, and F10 which are continuous benchmark functions 
either unimodal or multimodal. Furthermore, FC yielded a significantly better per-
formance in solving discrete deceptive problems as compared to the rest. FD was 
the only framework generating full success in all the runs for F5. This framework 
also performed well on F8. Both functions represent continuous and highly multi-
modal search spaces.  
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 Fig. 3. Average number of fitness evaluations and their standard deviations for each hyperheu-

ristic pattern having full success in all the runs 
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4   Conclusion 

The traditional hyperheuristics framework is extended to embed hill climbers as heu-
ristics in various ways. Three different new frameworks are proposed and experi-
mented on a set of benchmark functions, together with the traditional framework.  
Additionally, in order to observe the effects of mutational heuristics combined with 
hill climbers, an extra set of experiments is arranged. 

The empirical results indicate that two of the newly proposed frameworks FB and 
FC have a better average performance than the traditional one. The third framework 
proposed turns out to be significantly successful for solving two highly multimodal 
benchmark functions compared to the rest. Furthermore, a hyperheuristic framework 
does not perform well, if it contains only hill climbers as heuristics. Obviously, most 
of the problems require utilization of a mutational heuristic in order not to get stuck at 
local optima. It has been observed that the choice of heuristics, whether it is a hill 
climber or a mutational heuristic determines the performance along with the choice of 
the framework. Exploitation and exploration capability of a hyperheuristic algorithm 
is determined by the heuristics used within. Mutational heuristics and hill climbers, 
combined underneath a decent framework might generate a synergy, yielding a better 
performance.  

It seems that the traditional perturbation approaches are appropriate to be used as 
mutational heuristics. For example, random perturbation of a locus in a candidate 
solution, similar to mutation in evolutionary algorithms seems to perform well. Di-
mensional or content swapping operators can be helpful. Even, a hypermutation like 
heuristic, generating a random candidate solution might become handy, especially, 
whenever a hill climber is invoked afterwards. In our experiments, SWPD was useful 
in the benchmark problems with interdimensional epistasis, while DIMM and HYPM 
were very useful in multimodal benchmark functions to escape from the local optima. 
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Abstract. Bucket elimination (BE) is an exact technique based on vari-
able elimination. It has been recently used with encouraging results as
a mechanism for recombining solutions in a memetic algorithm (MA)
for the still life problem, a hard constraint optimization problem based
on Conway’s game of life. This paper studies expanded multi-level mod-
els in which this exact/metaheuristic hybrid is further hybridized with
branch-and-bound techniques. A novel variable clustering based recom-
bination operator is also explored, with the aim of reducing the inherent
time complexity of BE. Multi-parent recombination issues are analyzed
as well. The obtained results are of higher quality than any previous
metaheuristic approach, with large instances being solved to optimality.

1 Introduction

Conway’s game of life [1] consists of an infinite checkerboard in which the only
player places checkers on some of its squares. Each square has eight neighbors:
the eight cells that share one or two corners with it. A cell is alive if there is
a checker on it, and dead otherwise. The state of the board evolves iteratively
according to three rules: (i) if a cell has exactly two living neighbors then its
state remains the same in the next iteration, (ii) if a cell has exactly three living
neighbors then it is alive in the next iteration, and (iii) if a cell has fewer than
two or more than three living neighbors, then it is dead in the next iteration.
The maximum density still life problem (MDSLP) is a challenging constraint
optimization problem based on Conway’s game. The problem is to find stable
configurations, called still lifes, consisting of finite board configurations (of size
n × n) with a maximum number of living cells not changing along time. This
problem has many practical applications in the control of discrete systems [2,3]
and is very hard to solve; though it has not been proven to be NP-hard, no
polynomial-time algorithm for it is known.

The MDSLP has been tackled using different approaches. Bosch and Trick
[4] used a hybrid approach mixing integer programming and constraint pro-
gramming to solve the cases for n = 14 and n = 15 in about 6 and 8 days
of CPU time respectively. Smith [5] considered a pure constraint programming
approach to tackle the problem and proposed a formulation of the problem as
a constraint satisfaction problem with 0-1 variables and non-binary constraints.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 212–221, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A dual formulation of the problem was also considered, and it was proven that
this dual representation outperformed the initial one (although it could only
solve instances up to n = 10). The best results for this problem were reported
in [6], showing the usefulness of bucket elimination (BE). Their basic approach
could solve the problem for n = 14 in about 105 seconds. Further improvements
pushed the solvability boundary forward to n = 20 in about the same time. At
any rate, it is clear that these exact approaches are inherently limited for in-
creasing problem sizes, and their capabilities as anytime algorithms are unclear.
Later, Cheng and Yap [7] tackled the problem via the use of ad-hoc constraints,
but their results are far from the ones obtained previously by Larrosa et al.

To the best of our knowledge, the only evolutionary approach to the problem
has been proposed by Gallardo et al. [8]. Their work showed that a MA endowed
with BE could provide optimal or near-optimal solutions at an acceptable com-
putational cost. A study of partial Lamarckism was also conducted, revealing
that applying always the BE operator provides the best results. In this paper,
we consider extended hybrid models in which the hybridization with exact tech-
niques takes place at two levels: inside the MA, as an embedded operator, and
outside it, in a cooperative model. We also study variants based on an alternative
recombination operator, and on multi-parent recombination [9]. Experimental
results reveal that the performance of the algorithm is improved significantly,
showing that MAs stand as a practical alternative to exact techniques employed
so far to obtain still-life patterns.

2 Bucket Elimination and the Still Life Problem

Bucket elimination [10] is a generic algorithm particularly adequate for solving
weighted constraint satisfaction problems (WCSPs) [11]. A WCSP is defined by
a set X = {x1, · · · , xn} of variables taking values from a set D of finite domains
(Di ∈ D is the domain of xi) and a set F of cost functions (also called soft
constraints). Each f ∈ F is defined over a subset of variables var(f) ⊆ X , called
its scope. For each assignment t of all variables in the scope of a soft constraint
f , t ∈ f (i.e., t is permitted) if, and only if, t is allowed by the soft constraint. A
complete assignment that satisfies every soft constraint represents a solution to
the WCSP. The valuation of an assignment t is defined as the sum of costs of all
functions whose scope is assigned by t. Permitted assignments receive finite costs
expressing their degree of preference and forbidden assignments receive cost ∞.
The optimization goal consists of finding the solution with the lowest valuation.

BE is based upon two operators over functions: (1) the sum of two functions f
and g denoted (f+g) is a new function with scope var(f)∪var(g) which returns
for each tuple the sum of costs of f and g defined as (f + g)(t) = f(t) + g(t);
(2) the elimination of variable xi from f , denoted f ⇓ i, is a new function with
scope var(f)− {xi} which returns for each tuple t the minimum cost extension
of t to xi, defined as (f · i)(t) = mina∈Di{f(t · (xi, a))} where t · (xi, a) means
the extension of t to the assignment of a to xi. Observe that when f is a unary
function, eliminating the only variable in its scope produces a constant.
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BE works in two phases. In the first phase, the algorithm eliminates variables
one at a time in reverse order according to an arbitrary variable ordering o. In
the second phase, the optimal assignment is computed processing variables in
increasing order. The elimination of variable xi is done as follows: initially, all
cost functions in F having xi in their scope are stored in Bi (the so called bucket
of xi). Next, BE creates a new function gi defined as the sum of all functions
in Bi in which variable xi has been eliminated. Then, this function is added to
F , which is also updated by removing the functions in Bi. The consequence is
that the new F does not contain xi (all functions mentioning xi were removed)
but preserves the value of the optimal cost. The elimination of the last variable
produces an empty scope function (i.e., a constant) which is the optimal cost of
the problem. The second phase generates an optimal assignment of variables. It
uses the set of buckets that were computed in the first phase: starting from an
empty assignment t, variables are assigned from first to last according to o. The
optimal value for xi is the best value regarding the extension of t with respect
to the sum of functions in Bi.

In order to apply the general BE template to the MDSLP, let us first introduce
some notation. A board configuration for a n × n instance will be represented
by a n-dimensional vector (r1, r2, . . . , rn). Each vector component encodes (as a
binary string) a row, so that the j-th bit of row ri (noted rij) indicates the state
of the j-th cell of the i-th row (a value of 1 represents an alive cell and a value of
0 a dead cell). Let Zeroes(r) be the number of zeroes in binary string r and let
Adjacents(r) be the maximum number of adjacent living cells in row r. If ri is a
row and ri−1 and ri+1 are the rows above and below r, then Stable(ri−1, r, ri+1)
is a predicate satisfied if, and only if, all cells in r are stable.

The formulation has n cost functions fi (i ∈ {1..n}). For i ∈ {2..n− 1}, fi is
ternary with scope var(fi) = {ri−1, ri, ri+1} and is defined as:

fi(a, b, c) =

⎧⎪⎪⎨⎪⎪⎩
∞ : ¬Stable(a, b, c)
∞ : a1 = b1 = c1 = 1
∞ : an = bn = cn = 1

Zeroes(b) : otherwise

(1)

As to f1 and fn, they are binary with scopes var(f1) = {r1, r2} and var(fn) =
{rn−1, rn}, and are defined similarly to fi(·), assuming a boundary of dead cells.
Notice in these definitions that stability is not only required within the pattern,
but also in the surrounding dead cells.

Due to the sequential structure of the corresponding constraint graph [6], the
model can be readily approached with BE. Figure 1 shows the corresponding
algorithm. Function BE takes two parameters: n, the size of the instance to be
solved, and D, the domain for each variable (row) in the solution. If domain
D is set to {0..2n − 1} (i.e., a set containing all possible rows) the function
implements an exact method that returns the optimal solution for the problem
instance (as the number of dead cells) and a vector corresponding to the rows
of that solution.



A Multi-level Memetic/Exact Hybrid Algorithm for the Still Life Problem 215

function BE(n, D)
1: for a, b ∈ D do
2: gn(a, b) := minc∈D{fn−1(a, b, c) + fn(b, c)}
3: end for
4: for i := n − 1 downto 3 do
5: for a, b ∈ D do
6: gi(a, b) := minc∈D{fi−1(a, b, c) + gi+1(b, c)}
7: end for
8: end for
9: (r1, r2) := argmina,b∈D{g3(a, b) + f1(a, b)}

10: opt := g3(r1, r2) + f1(r1, r2)
11: for i := 3 to n − 1 do
12: ri := argminc∈D{fi−1(ri−2, ri−1, c) + gi+1(ri−1, c)}
13: end for
14: rn := argminc∈D{fn−1(rn−2, rn−1, c) + fn(rn−1, c)}
15: return (opt, (r1, r2, . . . , rn))

end function

Fig. 1. Bucket Elimination for the MDSLP

3 Memetic and Hybrid Algorithms for the MDSLP

As mentioned before, the algorithmic model we consider is based on the hy-
bridization of MAs with exact techniques at two levels: within the MA (as an
embedded operator), and outside it (in a cooperative model). An overall de-
scription of the basic hybridization scheme at the first level is provided in next
subsection. Subsequently, we will explore some variants based on variable clus-
tering and multi-parent recombination, before proceeding to the second level of
hybridization.

3.1 A Memetic Algorithm with BE for the MDSLP

The MA described in [8] evolves configurations represented as binary n×n matri-
ces; infeasible solutions are dealt via a stratified penalty-based fitness function:

f(r) = n2 −
n∑

i=1

n∑
j=1

rij +K

n+1∑
i=0

n+1∑
j=0

[
r′ijφ1(ηij) + (1− r′ij)φ0(ηij)

]
(2)

where r′ is an (n + 2) × (n + 2) binary matrix obtained by embedding r in a
frame of dead cells, K and K ′ are constants, ηij is the number of alive neighbors
of cell (i, j), and φ0, φ1 : N −→ N are two functions that take the number of
alive neighbors of a cell, and return how many of them should be flipped to have
a stable configuration (depending on whether the central cell is alive or not).
Constants K and K ′ are set with the primary goal of decreasing the number of
cells in an unstable state; if this were not possible, the secondary goal was to
decrease the level of instability of these cells.

It turns out that this fitness function is easily decomposable, a fact that
is exploited within the MA by means of a local improvement strategy based
on tabu search (TS). This TS strategy explores the neighborhood N (r) =
{s | Hamming(r, s) = 1}, i.e., the set of solutions obtained by flipping exactly
one cell in the configuration.
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The binary representation allows the use of standard recombination operators
for binary strings, but these blind operators performed poorly. Hence, problem-
aware operators were considered. To be precise, BE was used to implement
a recombination operator that explored the dynastic potential [12] (possible
children) of the solutions being recombined, providing the best solution that
could be constructed without introducing implicit mutation. That is, let x =
(x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two board configurations for a n× n
instance of the MDSLP. Then, BE(n, {x1, x2, · · · , xn, y1, y2, · · · , yn}) calculates
the best feasible configuration that can be obtained by combining rows in any of
the parents (x and y). Notice that the described operator can be generalized to
recombine any number of board configurations like BE(n,∪x∈S{xi | i ∈ {1..n}})
where S is a set comprising the solutions to be recombined. This is one of the
algorithmic variants that will be explored next.

3.2 Variable Clustering and Multi-parent Recombination

The complexity of BE depends on the problem structure (as captured by its
constraint graphG) and the ordering o of variable elimination. According to [13],
the complexity of BE along ordering o is time Θ(Q × n × dw∗(o)+1) and space
Θ(n×dw∗(o)), where d is the largest domain size, Q is the cost of evaluating cost
functions (usually assumed Θ(1)), and w∗(o) is the maximum width of nodes in
the induced graph of G relative to o (check [13] for details).

A well-known technique for reducing this computational cost in the context
of constraint processing is variable clustering [14]. This approach merges several
variables into a metavariable preserving the problem semantics. Inspired by this
technique, variables corresponding to consecutive rows in a MDSLP solution can
be clustered. We will denote by CiBE the recombination operator that performs
bucket elimination on a new domain obtained by clustering every group of i
consecutive rows in a metavariable. This recombination operator thus provides
the best feasible configuration that can be obtained by combining groups of i
rows taken from the parents. Figure 2 shows the resulting algorithm for C2BE
when n is even. The procedure starts by defining the new domain for variables
obtained by grouping every two consecutive rows in the original domain. Then,
bucket elimination is performed for the new domain. The number of iterations
of the loop in line 5 is reduced to one half with respect to the original algorithm,
and the range for loops instantiating variables is also halved, thus reducing the
time complexity of the algorithm at the expense of losing information.

One of the possibilities for alleviating the loss of alternatives for combining
the information is the consideration of multi-parent recombination [9]. Follow-
ing the scheme depicted in Section 3.1, an arbitrary number of solutions can
contribute their constituent rows for constructing a new solution. In the worst
case, this results in a linear increase in the size of domains, and thus does not
affect the asymptotical complexity of BE, as long as the number of parents is
bounded by a constant. One of the goals of the experimentation has been to
check whether there exists some optimal tradeoff between these two strategies
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function C2BE (n, D)
1: D′ := { {D2i−1, D2i} | i ← {1.. |D|

2 } }
2: for a, b ∈ D′ do
3: gn(a, b) := minc∈D′{fn−4(a1, a2, b1) + fn−3(a2, b1, b2) + fn−2(b1, b2, c1)+

fn−1(b2, c1, c2) + fn(c1, c2)}
4: end for
5: for i := 1 to n−6

2 do
6: for a, b ∈ D′ do
7: gn−i(a, b) := minc∈D′{ fn−2(i+2)+1(a1, a2, b1) + fn−2(i+2)(a2, b1, b2)+

gn−i+1(b, c)}
8: end for
9: end for

10: κ := n − n−6
2

11: (α, β) := argmina,b∈D′{gκ(a, b) + f1(a1, a2)}
12: r1 := α1; r2 := α2; r3 := β1; r4 := β2
13: opt := gκ(α, β) + f1(r1, r2)
14: for i := 5 to n − 3 step 2 do
15: κ := κ + 1
16: α := argmina∈D′{fi−1(ri−3, ri−2, ri−1) + gκ(ri−1, a)}
17: ri := α1; ri+1 := α2
18: end for
19: α := argmina∈D′{fn−1(rn−2, a1, a2) + fn(a1, a2)}
20: rn−1 := α1; rn := α2
21: return (opt, (r1, r2, . . . , rn))

end function

Fig. 2. BE with clusters formed by two rows for even sizes for the MDSLP

(variable clustering and multi-parent recombination), and indeed whether any
of them can contribute to the global improvement of the hybrid algorithm.

3.3 A Beam Search Hybrid Algorithm

Gallardo et al. [15] have shown that hybridizing a MA with a branch-and-bound-
based Beam Search (BS) algorithm can provide excellent results for some com-
binatorial optimization problems. We show here that this is also the case for
the MDSLP. We consider a hybrid algorithm that executes the BS and the MA
in an interleaved way. The goal is combining synergistically these two different
approaches, exploiting the capability of BS for identifying provably good regions
of the search space, and the strength of the MA for exploring these.

The resulting algorithm is depicted in Figure 3. Here, r denotes the reflection
value of r, and v++r is the vector obtained by concatenating r to the end of v.
Function Hybrid(n, k, l0) constructs a branch and bound tree whose leaves are
all possible n×n board configurations whose rows are symmetric (this symmetry
constraint is required to keep the branching factor at a manageable level for the
range of instance sizes considered). Internal nodes at level i represent partially
specified (up to the ith row) board configurations. The tree is traversed using
a BS algorithm that explores the tree in a breadth-first way maintaining only
the best k nodes at each level of the tree. In order to rank nodes, a quality
measure is defined on them, whose value is either ∞ if the partial configuration
is unstable, or its number of dead cells otherwise. Parameter l0 indicates how
many levels the BS descends before starting running the MA, and can be used to
control the balance between the MA and the BS. For each execution of the MA,
its population is initialized using the best popsize nodes in the current level
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function Hybrid (n, k, l0)
1: sol := ∞
2: q := { () }
3: for i := 1 to n do
4: q′ := {}
5: for c ∈ q do
6: for r := 0 to 2�n/2� − 1 do
7: q′ := q′ ∪ {c++(r or r)}
8: end for
9: end for

10: q := select best k nodes from q′

11: if (i ≥ l0) then
12: initialize MA population with best nodes from q’
13: run MA
14: sol := min (sol, MA solution)
15: end if
16: end for
17: return sol

end function

Fig. 3. Hybrid algorithm for the MDSLP

of exploration. Since these are partial solutions, they must be first converted
into full solutions, e.g., by completing remaining rows randomly. After running
the MA, its solution is used to update the incumbent solution. This process is
repeated until the search tree is exhausted.

4 Experimental Results

A set of experiments for problem sizes from n = 12 up to n = 20 has been realized
(recall that optimal solutions are known up to n = 20). The experiments were
done in all cases using a steady-state MA (popsize = 100, pm = 1/n2, pX =
0.9, binary tournament selection). Aiming to maintaining diversity, duplicated
individuals were not allowed in the population. For the different versions of
the hybrid algorithm described in Section 3.3, the setting of parameters was
k = 2000 and l0 = 0.3n, i.e, the best 2000 nodes were kept on each level of the
BS algorithm, and 30% of the levels of the BS tree were initially descended before
starting running the MA. All algorithms were run until an optimal solution was
found or a time limit was exceeded. This time limit was set to 3 minutes —on
a P4 (2.4GHz and 512MB RAM) under SuSE Linux— for problem instances of
size 12 and were gradually incremented by 60 seconds for each size increment.
For each algorithm and each instance size, 20 independent executions were run.

First of all, experiments have been done to explore the effects of multi-parent
recombination in a MA endowed with BE for performing recombination as de-
scribed in Section 3.1 (MA-BE). Figure 4 (left) shows the results obtained by
MA-BE for different number of parents being recombined (arities 2, 4 and 8).
For arity = 2, the algorithm was able to find the optimum solution for all
instances except for n = 18 and n = 20 (the relative distance to the optimum
is less than 1.04% in these cases). Note that results for n = 19 and n = 20
were obtained in just 10 and 11 minutes per run respectively. As a comparison,
recall that the approach in [6] respectively requires over 15 hours and over 2
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Fig. 4. Relative distances to optimum for different arities for MA-BE (left) and HYB-
MA-BE (right) for sizes ranging from 12 up to 20. Each box summarizes 20 runs.
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Fig. 5. Relative distances to optimum for different arities for MA-C2BE (left) and
HYB-MA-C2BE (right) for sizes from 12 up to 20. Each box summarizes 20 runs.

days for these same instances, and that other approaches are unaffordable for
n > 15. Executions with arity = 4 cannot find optimum solutions for the re-
maining instances, but note that the distribution always improves. Clearly, the
performance of the algorithm degrades when combining more than 4 parents due
to the higher computational cost.

Subsequent experiments were conducted to evaluate the CiBE recombination
operator for i ∈ {2, 3}. Results are shown in Figure 5 (left) and 6 (left), and
reveal that the performance of the algorithm is worse, as it only finds the opti-
mal solution for the smallest instance sizes. The computational costs saved by
clustering variables does not compensate the loss of information induced, even
in the presence of multi-parent recombination, and the combination of these two
strategies is counter-productive.

We finally approach the two-level hybrid algorithm. Figures 4 (right), 5 (right),
and 6 (right) show the results obtained using MA-BE, MA-C2BE, and MA-C3BE
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Fig. 6. Relative distances to optimum for different arities for MA-C3BE (left) and
HYB-MA-C3BE (right) for sizes from 12 up to 20. Each box summarizes 20 runs.

in the MA part. The performance is significantly improved over the original MA.
Note that HYB-MA-BE using an arity of 2 parents is able to find the optimum
for all cases except for n = 18 (this instance is solved with arity = 4). All
distributions for different instance sizes are improved in an significant manner.
For n < 17 and arity ∈ {2, 4}, the algorithm consistently finds the optimum in all
runs. For other instances and arity = 2, the solution provided by the algorithm is
always within a 1.05 % of the optimum, except for n = 18, for which the relative
distance to the optimum for the worst solution is 1.3%. The results of HYB-
MA-C2BE and HYB-MA-C3BE are worse than those of HYB-MA-BE, but note
however that the hybridization with the BS algorithm is beneficial also in this
case, as it improves the distributions with respect to MA-C2BE and MA-C3BE.

5 Conclusions and Future Work

The high space complexity of BE as an exact technique [10], makes this approach
impractical for large instances. In this work, we have presented several propos-
als for the hybridization of Bucket Elimination (BE) with MAs and BS, and
showed that it represents a worthwhile model. The experimental results have
been very positive, solving to optimality large instances of a hard constrained
problem. We have also studied the influence that variable clustering and multi-
parent recombination have on the performance of the algorithm. The results
indicate that variable clustering is detrimental in this problem, but multi-parent
recombination can help to improve the results obtained by previous approaches.

One interesting extension to this work is to improve the bounds used in the BS
algorithm. To do so, we are currently considering the technique of mini–buckets
[16]. Work is in progress in this area.
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Abstract. An optimal location and parameters of an UPFC along with values of 
OLTC taps are tuned with a view to minimize the real power losses of a mesh 
power network. This issue is formulated as a non-linear equality and inequality 
constrained optimization problem with an objective function incorporating 
power loss. A new evolutionary algorithm known as Bacteria Foraging is 
applied for solving, the optimum location and the amount of series injected 
voltage for the UPFC, and the best values of the taps present in the system. The 
same problem is also solved with Interior Point Successive Linearization 
technique using the LINPROG command of MATLAB. A comparison between 
the two suggests the superiority of the proposed algorithm. 

1   Introduction 

Optimal Power Flow (OPF) is a static non-linear program that intends to schedule the 
controls of the power system in such a manner that certain objective function like real 
power loss is optimized with some operating equipment and security requirement, 
limit constraints forced on the solution. The OPF problem has been solved from 
different perspectives like studying the effects of load increase/decrease on voltage 
stability/power flow solvability, generation rescheduling to minimize the cost of 
power generation, controls like taps, shunts and other modern VAR sources 
adjustments to minimize real power losses in the system. 

The OPF is solved by varieties of methods like Successive Linear 
Programming(SLP)[1], Newton based non-linear programming method[2], and with 
varieties of recently proposed Interior Point Methods(IPM) [3]. With the advent of 
Flexible AC Transmission Systems (FACTS) technology a new possibility of 
optimizing the power flow without resorting to generation rescheduling or topology 
changes has arisen. UPFC the most advanced in the family of these devices can 
provide a lot of flexibility in OPF by injecting a controlled series and shunt 
compensation [4].  

Proper coordination of the UPFC with the existing OLTC transformer taps already 
present in the system will certainly improve the steady state operating limit of any 
power system. Even though the OPF problem when incorporated with FACTS 
devices becomes non-convex and thus is prone to be trapped in local optima, but still 
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the conventional techniques of OPF solution can be satisfactorily applied. However, 
the disadvantage with the classical techniques lies in the fact that they are highly 
sensitive to starting points owing to a non-monotonic solution surface. To eliminate 
such problems evolutionary techniques have been applied in solving the OPF problem 
[5]. In [5] authors have applied Particle Swarm Optimization (PSO) to the problem of 
OPF. Such algorithms, based on food searching behavior of species (like birds etc.), 
compute both global and local best positions at each instant of time, to decide the best 
direction of search.  

In this paper the authors have applied a new algorithm from the family of 
Evolutionary Computation, known as Bacteria Foraging (BF) Algorithm, to solve 
OPF problem of real power loss minimization, along with improved voltage profile. 
BF has been recently proposed [6] and further applied for harmonic estimation 
problem in power systems [7]. The algorithm is based on the foraging behavior of 
E.coli bacteria present in human intestine. The UPFC location, series injection voltage 
and transformer tap positions are simultaneously adjusted as control variables, so that 
the overall bus voltages profile is maintained flat, keeping an eye to all specified 
constraints. The results so obtained show its strength in solving highly non-linear 
epistatic problems like that of OPF. The main objectives of this paper are as follows: 

1) By optimizing the values of OLTC transformer taps present in a multi machine 
power network, so that the real power loss of the system is minimized. The OPF 
solution is carried out with the Bacteria Foraging Algorithm (BFA) and also with 
Successive Linear Programming (SLP) technique integrated with Interior Point 
Method, so as to get a comparative idea of the performances of the two. The 
Interior Point Successive Linear Programming (IPSLP) is solved by using the 
MATLAB command  LINPROG. 

2) By fixing the tap positions at the optimized values, Unified Power Flow Controller 
(UPFC) is introduced in the system. The best location and injection voltages of the 
UPFC are again optimized using BFA and IPSLP to seek a comparison. 

2   Bacteria Foraging Optimization 

The idea is based on the fact that, natural selection tends to eliminate animals with 
poor foraging strategies and favor those having successful foraging strategies. After 
many generations, poor foraging strategies are either eliminated or reshaped into good 
ones. The E. coli bacteria that are present in our intestines also undergo a foraging 
strategy. Four processes basically govern the bacteria namely Chemotaxis, Swarming, 
Reproduction, Elimination and Dispersal [6].  

a) Chemotaxis: This process is achieved through swimming and tumbling. 
Depending upon the rotation of the flagella in each bacterium it decides whether it 
should move in a predefined direction (swimming) or an altogether different direction 
(tumbling), in the entire lifetime of the bacterium.   To represent a tumble, a unit 
length random direction, say )( jφ , is generated; this will be used to define the 

direction of movement after a tumble. In particular 

)()(),,(),,1( jiClkjlkj ii φ+θ=+θ                                     (1) 
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Where ),,( lkjiθ represents the ith bacterium at jth chemotactic kth reproductive and lth 

elimination and dispersal step. C(i ) is the size of the step taken in the random 
direction specified by the tumble (run length unit).   
b) Swarming: It is always desired that the bacterium which has searched optimum 
path of food search should try to attract other bacteria so that they reach the desired 
place more rapidly. Swarming makes the bacteria congregate into groups and hence 
move as concentric patterns of groups with high bacterial density. Mathematically, 
Swarming can be represented by 
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where  )),,(,( lkjPJcc θ is the cost function value to be added to the actual cost 

function to be minimized to present a time varying cost function. 'S' is the total 
number of bacteria. 'p' the number of parameters to be optimized which are present in 
each bacterium. repelentrepelentattractattract hd ωω ,,,  are different coefficients that are 

to be chosen judiciously.    
c) Reproduction: The least healthy bacteria die and the other healthiest bacteria each 
split into two bacteria, which are placed in the same location. This makes the 
population of bacteria constant. 
d) Elimination and Dispersal: It is possible that in the local environment the life of a 
population of bacteria changes either gradually (e.g., via consumption of nutrients) or 
suddenly due to some other influence. Events can occur such that all the bacteria in a 
region are killed or a group is dispersed into a new part of the environment. They 
have the effect of possibly destroying the chemotactic progress, but they also have the 
effect of assisting in chemotaxis, since dispersal may place bacteria near good food 
sources. From a broad perspective, elimination and dispersal are parts of the 
population-level long-distance motile behavior. It helps in reducing the behavior of 
stagnation,( i.e. being trapped in a premature solution point or local optima) often 
seen in such parallel search algorithms. This section is based on the work in [6]. The 
detailed mathematical derivations as well as theoretical aspect of this new concept are 
presented in [6,7].  

3   Simulation System 

Simulations have been carried out to solve the real power bus voltage constrained loss 
minimization of 10 machine New England power systems [8], connected with UPFC 
by using   IPSLP and BFA. Both the sequential and simultaneous allocation of taps 
and UPFC are carried out for comparison. This is done in the following manner: 
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a) A total of 12 transformer taps present in the system are optimally positioned.  
b) Introducing an UPFC at the most suitable location in the system and then injecting 

the desired voltage, through its series converter keeping the above values of taps 
fixed.   
 
In this paper the 10-machine, 39-bus New England power system shown in Fig.1 is 

considered for study. The system data in detail, including the 12 transformers’ 
nominal tap values are given in [8]. The system diagram is shown in Fig.1. 
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Fig. 1. New England Power System Layout 

The OPF problem is a static constrained non linear optimization problem, the 
solution of which determines the optimal settings of control variables in a power 
network respecting various constraints. So the problem is to solve a set of nonlinear 
equations describing optimal solution of power system. It is expressed as:            

 
             Minimize   ),( uxF                                                           (3)                

              Subject to 
0)(

0),(

, ≤
=

uxh

uxg
 

The objective function F, is real power loss of the mesh connected multi machine 
test system. ),( uxg  is a set of non-linear equality constraints ( i.e. power flow) and  

),( uxh is a set of non-linear inequality constraints( i.e. bus voltages, transformer/line 

MVA limits, etc.). Vector x consists of dependent variables and u consists of control 
variables. For the above problem the control variables are the OLTC transformer taps 
and both the magnitude and phase angle of UPFC series injected voltage (Vse). The 
non-linear optimization problem of equation (3) is solved by both BFA and IPSLP 
methods.  
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4   Bacterial Foraging: The Algorithm 

The BF algorithm suggested in [7] is modified so as to expedite the convergence. The 
modifications are discussed below. 

1) In [7], the author has taken the average value of all the chemotactic cost 
functions, to decide the health of particular bacteria in that generation, before 
sorting is carried out for reproduction. In this paper, instead of the average value, 
the minimum value of all the chemotactic cost functions is retained for deciding 
the bacterium’s health. This speeds up the convergence, because in the average 
scheme [7], it may not retain the fittest bacterium for the subsequent generation. 
On the contrary in this paper the global minimum bacteria among all chemotactic 
stages passes on to the subsequent stage.    

2) For swarming, the distances of all the bacteria in a new chemotactic stage are 
evaluated from the global optimum bacterium till that point, and not the distances 
of each bacterium from rest others as suggested in [6,7].  

The algorithm is discussed below:  

Step1-Initialization  
The following variables are initialized. 
i. Number of bacteria (S) to be used in the search. 
ii. Number of parameters (p) to be optimized. 
iii. Swimming length Ns.  
iv. Nc the number of iteration in a chemotactic loop. (Nc > Ns). 
v. Nre the no of reproduction. 
vi. Ned the no of elimination and dispersal events. 
vii. Ped the probability of elimination and dispersal.  
viii. Location of each bacterium P(p,S,1) i.e. random numbers on [0-1].  
ix. The values of repelentrepelentattractattract hd ωω   and ,, .   

Step-2 Iterative algorithm for optimization 
This section models the bacterial population chemotaxis, swarming, reproduction, 

elimination and dispersal (initially, j=k=l=0). For the algorithm updating iθ  
automatically results in updating of 'P'.  
1) Elimination-dispersal loop: l=l+1 
2) Reproduction loop: k=k+1 
3) Chemotaxis loop: j=j+1 

a) For i=1,2,…,S, calculate cost function value for each bacterium i as follows. 
 Compute value of cost function J(i, j, k, l). Let  

Jsw(i, j, k, l)= J(i, j, k, l)+   )),,(),,,(( lkjPlkjJ i
cc θ P(j,k,l) is the location of 

bacterium corresponding to the global minimum cost function out of all the 
generations and chemotactic loops till that point (i.e., add on the cell-to-cell 
attractant effect for swarming behavior). 

 Let Jlast= Jsw(i, j, k, l) to save this value since we may find a better cost via a 
run. 

 End of For loop  
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b) For i=1,2,….S take the tumbling/swimming decision  

• Tumble: Generate a random vector   )( pi ℜ∈Δ with each element 

  )(imΔ m=1,2,..p, a random number on [0,1]. 

• Move: let 

                    
)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii

ΔΔ

Δ
+=+ θθ  

Fixed step size in the direction of tumble for bacterium i is considered.  
• Compute J(i, j+1, k, l) and then let Jsw(i, j+1, k, l)= J(i, j+1, k, l )+ 

  )),,1(),,,1(( lkjPlkjJ i
cc ++θ  

• Swim : 
i) Let m=0; (counter for swim length) 

            ii) While m<Ns (have not climbed down too long) 
• Let m=m+1 
• If Jsw(i, j+1, k, l) < Jlast  (if doing better), let Jlast= Jsw(i, j+1, k, l) and let 
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ii
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ii

ΔΔ

Δ+=+ θθ  

and use this   ),,1( lkji +θ to compute the new J(i, j+1, k, l) 

• Else, let m=Ns. This is the end of the while statement. 
c) Go to next bacterium (i+1) if  Si ≠ (i.e. go to b) to process the next 

bacterium. 
4. If j < Nc, go to step 3. In this case, continue chemotaxis since the life of the 

bacteria is not over. 
 

5. Reproduction 
a) For the given k and l, and for each i=1,2,..S, let 

{ }
{ }),,,(min

1
lkjiJJ sw

Nj

i
health

c∈
=  be the health of the bacterium i. Sort 

bacteria in order of ascending cost Jhealth (higher cost means lower health). 
b) The Sr=S/2 bacteria with highest Jhealth values die and other Sr bacteria 

with the best value split (and the copies that are made are placed at the 
same location as their parent) 

6. If k < Nre go to 2, in this case, we have not reached the number of specified 
reproduction steps, so we start the next generation in the chemotactic loop. 

7. Elimination-dispersal: For i=1,2,..S, with probability Ped, eliminates and 
disperses each bacterium (this keeps the number of bacteria in the population 
constant). To do this, if you eliminate a bacterium, simply disperse one to a 
random location on the optimization domain.   

5   Simulation and Results 

The objective function of the real power loss minimization problem is formulated by 
introducing penalty factors for voltage and transformer MVA and transmission line 
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limit violations. These penalty factors are added to the total real power loss in the 
system.     

                  ofpfpfpfF +++= 321 , where                        (4) 

                      =of  Real Power Loss 

)1)2.1((*10

)1)8.0((*10
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    )1)15((*10 max2 +−= transsignabspf  

  )1)20((*10 max3 +−= linesignabspf  

21, pfpf  and 3pf  are the penalty factors added with the real power loss ( of ), so that a 

constrained solution is achieved. maxV and minV are the maximum and minimum limits 

of bus voltages of all buses. Similarly maxtrans and maxline are respectively the 

maximum MVA limits of the transformers and lines in the system. The values of 

maxtrans and maxline  are chosen at double the maximum nominal values of respective 

quantities. The methodology adopted for optimization with both the BFA and IPSLP 
techniques are discussed here in brief. 

 
A. Optimization with only OLTC taps as control variables  
Bacteria Foraging (Without Swarming): Initially the Swarming effect is excluded 
from the algorithm so as to study the convergence behavior. The values of bacteria 
number (S) and the chemotactic loops number (Nc) are chosen in steps and the 
algorithm is run for number of times. For a whole cycle of elimination and dispersal 
loop when the cost function remains unchanged, then the algorithm is said to have 
converged.  The speed of convergence differs with different combinations of S and 
Nc. It was found that S=10 and Nc=6 gives the fastest convergence. A comparison of 
convergence by taking the average value of each bacterium [7] in the chemotactic 
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stage to that of Global Minimum (as proposed) for reproduction is shown in Fig.2. It 
is found that with the proposed scheme the algorithm converges faster. Also for the 
particular problem the algorithm proposed in [7] fails to converge but tend to oscillate 
around the point of convergence. 

Bacteria Foraging (With Swarming):  
As established above swarming is included now considering the global minimum.  To 
choose the parameters of swarming, the algorithm is run for different values 
of repelentrepelentattractattract hd ωω   and ,, .  

It was found that these values when chosen as 0.1, 0.1, 0.1,10 respectively, it gives 
the fastest convergence. Fig.3 shows the relative improvement of convergence when 
swarming effect is included as compared to without swarming. It is seen that though 
the loss minimization is same with both the techniques, there is a difference in the 
values of tap positions to which the algorithms have converged. These tap values are 
highlighted in Table-1. From Fig.3 it is obvious that the BFA converges faster if the 
swarming effect is included in it, though there is a negligible improvement seen for 
the particular problem. 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.346

0.348

0.35

0.352

0.354

0.356

0.358

0.36

0.362

0.364

With Swarm
         Without Swarm

No of  J- Evaluation

C
o

ts
tcnuf 
i

lav
no

ue

 

Fig. 3. Performance of Algorithms 

B: Sequential optimization of UPFC location and its injection voltage: 
With the optimized tap positions obtained previously, the UPFC location and its series 
injection voltage is then evaluated. The power injection model as discussed in section 
III is used for modeling the UPFC. In both BFA and IPSLP methods, 14 lines (out of 
total 46 lines), containing transformers or feeding generator powers to the network are 
excluded for connecting the UPFC. The UPFC is connected at the left hand side bus 
as per line notation given in [8]. For BFA, the line at which UPFC should be 
connected is decided randomly out of 32 lines selected in the initial stage. Hence the 
line number in which UPFC is to be connected becomes a control variable along with 
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the usual control variables of series injection voltage magnitude and its phase angle. 
On the other hand the UPFC location in terms of line number can’t be used as a 
control variable for IPSLP technique as it cannot be linearized through perturbation. 
Therefore the UPFC is connected to all the 32 lines, considering one at a time. The 
best location and the UPFC injection voltage in each succession of linearization are 
retained.  

Table 1. Results 

Optimization of only Taps Sequential Optimization
of UPFC

Line
Number

Nominal
Taps

L
o
s
s

Optimized
Discrete

Taps
(BFA)

L
o
s
s

Optimized
Discrete

Taps
(IPSLP)

L
o
s
s

UPFC Optimized
Parameter

L
o
s
s

2 -  30 1.025 1.05 1.05
10 -  32 1.070 1.20 1.20
12 -  11 1.006 1.05 0.80
12 -  13 1.006 1.05 0.80
19 -  33 1.070 1.15 1.15
19 -  20 1.060 1.00 1.00
20 -  34 1.009 1.15 1.15
22 -  35 1.025 1.15 1.15
23 -  36 1.000 1.10 1.10
25 -  37 1.025 1.05 1.05
29 -  38 1.025 1.10 1.10
31 -  6 1.070

.u.p
0093.0

0.85

.u.p
8453.0

0.85

.u.p
8453.0

     BFA:
|Vse | = 0.0079 p.u. 
〈 Vse =   5.0998 rad 
Location:
   line 14-15 

    IPSLP: 
|Vse| = 0.1245 p.u. 
〈 Vse = 3.6767 rad 

 Location:
   line 21-22 

u.p
4672.0

u.p
1533.0

 

6   Conclusions 

The new evolutionary technique, Bacteria Foraging has been used for solving a highly 
non-linear and non-convex problem of Optimal Power Flow solution. It is found that 
the BFA technique succeeds in better loss minimization as compared to conventional 
IPSLP technique.  
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Abstract. This paper studies the utility of using substructural neigh-
borhoods for local search in the Bayesian optimization algorithm (BOA).
The probabilistic model of BOA, which automatically identifies impor-
tant problem substructures, is used to define the structure of the neigh-
borhoods used in local search. Additionally, a surrogate fitness model is
considered to evaluate the improvement of the local search steps. The
results show that performing substructural local search in BOA signi-
ficatively reduces the number of generations necessary to converge to
optimal solutions and thus provides substantial speedups.

1 Introduction

Estimation of distribution algorithms (EDAs) [1,2], a new class of genetic and
evolutionary algorithms (GEAs), have frequently been found to be more efficient
than traditional GEAs that use fixed, problem-independent variation operators.
The conceptual difference is that EDAs replace the traditional variation op-
erators of GEAs by building and sampling a probabilistic model of promising
solutions. In essence, this procedure tries to mimic the behavior of an ideal
recombination operator that combines subsolutions with minimal disruption.

Although EDAs are effective at exploring the search space to find promising
regions, they inherit a common drawback from traditional GEAs: slower conver-
gence to optimal solutions when compared with appropriate local searchers that
start the search within the basin of attraction of the optima. This observation
has led to the combination of GEAs with local search methods known as hybrid
GEAs or memetic algorithms [3,4]. In this context EDAs are no exception and
many applications in real-world optimization have been accomplished with the
help of some sort of local search. However, systematic methods for hybridizing
and designing competent global and local-search methods that automatically
identify the problem decomposition and important problem substructures are
still scarce. For instance, the probabilistic models of EDAs contain useful infor-
mation about the underlying problem structure that can be exploited to speedup
the convergence of EDAs to optimal solutions.
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In this paper we use substructural neighborhoods to perform local search in
the Bayesian optimization algorithm (BOA) [5]. These neighborhoods are de-
fined by the dependency groups learned by the probabilistic model of BOA.
Additionally, we use a surrogate fitness model that also makes use of substruc-
tural information to evaluate the alternatives while performing hillclimbing in
the subsolution search space. The results show that incorporating substructural
local search in BOA leads to a significant reduction in the number of generations,
providing relevant speedups in terms of number of evaluations.

The next section gives an outline of the Bayesian optimization algorithm and
how fitness can be modeled under this framework. In Section 3, we introduce
several substructural neighborhoods, followed by the incorporation of a substruc-
tural hillclimber in BOA. Section 5 presents and discusses empirical results. The
paper ends with a summary and major conclusions.

2 Bayesian Optimization Algorithm

Estimation of distribution algorithms [1,6] replace traditional variation operators
of GEAs by building a probabilistic model of promising solutions (that survive se-
lection) and sampling the corresponding probability distribution to generate the
offspring population. The Bayesian optimization algorithm [5,6] uses Bayesian
networks as the probabilistic model to capture the (in)dependencies between the
variables of the problem.

Like traditional GAs, BOA starts with an initial population (usually randomly
generated) that is evaluated and submitted to a selection operator that gives
preference to high-quality solutions. The set of selected individuals is then used
as the training dataset to learn the probabilistic model for the present generation.
After obtaining the model structure and parameters, the offspring population is
generated by sampling from the distribution of modeled individuals. The new
solutions are then evaluated and incorporated into the original population. Here,
we use a simple replacement scheme where new solutions fully replace the original
population.

2.1 Modeling (in)Dependencies Between Variables in BOA

Bayesian networks [7] are powerful graphical models that combine probability
theory with graph theory to encode probabilistic relationships between variables
of interest. A Bayesian network is defined by a structure and corresponding
parameters. The structure is represented by a directed acyclic graph where the
nodes correspond to the variables of the data to be modeled and the edges
correspond to conditional dependencies. The parameters are represented by the
conditional probabilities for each variable given any instance of the variables
that this variable depends on. More formally, a Bayesian network encodes the
following joint probability distribution,

p(X) =
	∏

i=1

p(Xi|Πi), (1)
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where X = (X1, X2, . . . , X	) is a vector of all the variables of the problem, Πi

is the set of parents of Xi (nodes from which there exists an edge to Xi), and
p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

In BOA, both the structure and the parameters of the probabilistic model
are searched and optimized to best fit the data (set of promising solutions). To
learn the most adequate structure for the Bayesian network a greedy algorithm is
usually used for a good compromise between search efficiency and model quality.

The parameters of a Bayesian network are represented by a set of conditional
probability tables (CPTs) specifying the conditional probabilities for each vari-
able given all possible instances of the parent variables Πi. Alternatively, these
conditional probabilities can be stored in the form of local structures such as
decision trees or decision graphs, allowing a more efficient and flexible represen-
tation of local conditional distributions. In this work, decision trees are used to
encode the parameters of the Bayesian network.

2.2 Modeling Fitness in BOA

Pelikan and Sastry [8] extended the Bayesian networks used in BOA to encode
a surrogate fitness model that is used to estimate the fitness of a proportion of
the population, thereby reducing the total number of function evaluations. For
each possible value xi of every variable Xi, an estimate of the marginal fitness
contribution of a subsolution with Xi = xi is stored for each instance πi of Xi’s
parents Πi. Therefore, in the binary case, each row in the CPT is extended by
two additional entries. The fitness of an individual can then be estimated as

fest(X1, X2, . . . , X	) = f̄ +
	∑

i=1

(
f̄(Xi|Πi)− f̄(Πi)

)
, (2)

where f̄ is the average fitness of all solutions used to learn the surrogate,
f̄(Xi|Πi) is the average fitness of solutions with Xi and Πi, and f̄(Πi) is the
average fitness of all solutions with Πi.

Fitness information can also be incorporated in Bayesian networks with de-
cision trees or graphs in a similar way. In this case, the average fitness of each
instance for every variable must be stored in every leaf of the decision tree or
graph. The fitness averages in each leaf are now restricted to solutions that
satisfy the condition specified by the path from the root of the tree to the leaf.

3 Substructural Neighborhoods

One of the key requirements for designing an efficient mutation operator is to
ensure that it searches in the correct neighborhood. This is often accomplished
by exploiting and incorporating domain- or problem-specific knowledge in the
design of neighborhood operators. While these neighborhood operators are de-
signed for a particular search problem, oftentimes on an ad-hoc basis, they do not
generalize their efficiency beyond a small number of applications. On the other
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hand, simple bitwise hillclimbers are frequently used as local search methods with
more general applicability, providing inferior but still competitive results, espe-
cially when combined with population-based search procedures. Clearly, there is
a tradeoff between generalization and efficiency for neighborhood operators with
fixed structure. Therefore, it is important to study systematic methods for de-
signing neighborhood operators that can solve a broad class of search problems.

The exploration of neighborhoods defined by the probabilistic models of EDAs
is an approach that exploits both the underlying problem structure while not
loosing the generality of application. The resulting mutation operators explore
a more global, problem-dependent neighborhood than traditional local, purely
representation-dependent search procedures.

Recently, it has been shown that a selectomutative algorithm that performs
hillclimbing in the substructural space can successfully solve problems of bounded
difficulty with subquadratic scalability [9]. Sastry and Goldberg [10] proposed a
building-block-wise mutation algorithm based on the probabilistic model of the
extended compact genetic algorithm (eCGA) [11], where linkage information is
used to perform local search among competing subsolutions. Lima et. al. [12] ex-
tended the regular eCGA by incorporating local search in the subsolution search
space and concluded that this hybrid approach is more robust than both single-
operator-based approaches [11,10].

In this paper we extend the concept of exploring substructural neighborhoods
to the Bayesian optimization algorithm. Given the structure of the Bayesian
network, several neighborhood topologies can be considered to perform random
or improvement-guided mutations. For a given variable Xi, the corresponding
set of parent nodes Πi, and set of child nodes Ωi (nodes to where an edge arrives
from node Xi), we define three different substructural neighborhoods:

Parental neighborhood considers variable Xi together with the parent vari-
ables Πi. This neighborhood is therefore defined by K = 1 + |Πi| different
variables, resulting in 2K possible values in the binary realm.

Children neighborhood considers variable Xi together with the child vari-
ables Ωi. Thus this neighborhood is defined by K = 1 + |Ωi| variables.

Parental+Children neighborhood considers variable Xi together with both
parent variables Πi and child variables Ωi. This neighborhood is composed
by K = 1 + |Πi|+ |Ωi| variables.

These three neighborhoods explore the structure captured by the Bayesian
network to different extends. In this paper, we focus on the parental neighbor-
hood to define the neighborhood topology to be used by local search.

A somewhat related approach has been recently proposed by Handa [13],
where the traditional bitwise mutation operator is employed in the estimation
of Bayesian networks algorithm (EBNA) [14] and consequently variables that
depend on the mutated node are resampled according to the conditional prob-
abilities for the new instance. Although this mutation operator takes into ac-
count the dependencies between variables, it is specifically designed to perturb
solutions in order to maintain diversity in the population. Our approach is to
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interpret the structure of the Bayesian network as a set of linkage groups that
are used to define neighborhoods to be explored by local search.

4 BOA with Substructural Hillclimbing

This section introduces a hillclimber that uses the parental neighborhood de-
fined in the previous section to perform hillclimbing in the substructural space
of an individual. This hillclimbing is performed for a proportion of the popula-
tion in BOA to speedup convergence to good solutions, as in traditional hybrid
GEAs. After the offspring population is sampled from the probabilistic model
and evaluated, each individual is submitted to substructural hillclimbing with
probability pls. The substructural hillclimber can be described as follows:

1. Consider the first variable Xi according with the ancestral reverse ordering
of variables in the Bayesian network.

2. Choose the values (xi, πi) associated with the maximal substructural fitness
f̄(Xi|Πi).

3. Set variables (Xi, Πi) of the considered individual to values (xi, πi) if the
overall fitness of the individual is improved by doing so, otherwise leave the
individual unchanged.

4. Repeat steps 2-3 for all remaining variables following the ancestral reverse
order of variables.

Some details need further explanation. First, we use the reverse order of that
used to sample the variables of new solutions, where each node is preceded
by its parents. By doing so, higher-order dependencies within the same linkage
group are optimized first. This procedure aims to reduce the possibility of doing
incorrect decisions when considering problems whose lower-order statistics lead
the search away from global optima.

Also, we consider two different versions of the substructural hillclimber in
our study, that only differ in step 3. The first version uses the estimated fitness
of the individual (Equation 2) to decide if the best substructure (according
to f̄(Xi|Πi)) for a given neighborhood should be accepted, while the second
version uses the actual fitness function to make the decision. After performing
substructural hillclimbing for all variables, the resulting individual is evaluated
with the fitness function before it is inserted back into the population. This
avoids the propagation of error possibly introduced by using surrogate fitness.
Thus, the surrogate is only used to perform local search in the substructural
neighborhoods.

We also note that searching within the same substructural neighborhoods for
different individuals yields results whose similarity increase with the accuracy
of the linkage model. However, in practice, performing local search on different
individuals helps to overcome incorrect biases from the errors in the substructural
models.
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5 Experiments

This section describes the test problems used, presents the results obtained for
varying proportions of local search pls, and empirically analyzes the scalability
of the proposed method with increasing problem size.

5.1 Test Problems and Experimental Setup

Two different problems are used to test the proposed method: OneMax and Trap
functions. These problems represent two important bounds on a class of addi-
tively decomposable problems with bounded difficulty. In OneMax the fitness is
simply given by the sum of ones in a binary string. This is a simple linear func-
tion with the optimum in the solution with all ones. Therefore, there is no need
of linkage learning to be able to solve this problem. While the optimization of the
OneMax problem is easy, the probabilistic models build by EDAs such as eCGA
and BOA, however, are known to be only partially correct and include spurious
linkages. Therefore, the results on this function will indicate if the effect of using
partially correct linkage mapping on the accuracy of the surrogate is significant,
and consequently if performing substructural local search under these conditions
is still advantageous. This paper considers a OneMax function with size � = 50.

The second problem considered is a concatenated 5-bit Trap function [15].
This problem consists in concatenating a number of copies of the Trap function
with size k = 5. The Trap function used is defined as follows

fTrap(u) =
{

5 if u = 5
4− u otherwise, (3)

where u is the number of ones in the substring of 5 bits. In this problem the
accurate identification and exchange of the building-blocks is critical to achieve
success, because processing substructures of lower order will lead to exponential
scalability. Ten concatenated copies of the 5-bit Trap are used, which makes the
total problem size also � = 50.

For each problem, we perform experiments for different proportions of local
search pls. The proportions tested are 0.001, 0.005, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2.
For the 10x5-bit Trap function, an additional value of 0.0005 is also considered.
The minimal number of function evaluations required to obtain the optimal so-
lution is empirically determined using a bisection method over the population
size. For each experiment, 10 independent bisection runs are performed. Each
bisection run searches for the minimal population size required to find the op-
timum in 10 out of 10 independent runs. Therefore, the results for the minimal
sufficient population size are averaged over 10 bisection runs, while the results
for the number of function evaluations and the number of generations spent
are averaged over 100 (10 × 10) independent runs. For all experiments, binary
tournament selection without replacement is used.
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Fig. 1. Population size and number of function evaluations required to solve the 50-bit
OneMax problem
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Fig. 2. Population size and number of function evaluations required to solve the 10x5-
bit Trap problem

5.2 Results and Discussion

The results obtained are shown in figures 1 and 2. For both problems, the number
of evaluations is significatively reduced when using local search that explores
substructural neighborhoods. Also, both versions of the acceptance criteria in
the substructural hillclimber reduce the cost to solve the problem. However,
different dynamics can be observed for each problem.

For OneMax, using the actual fitness function when deciding if substructures
should be accepted or not provides slightly better results than using estimated
fitness, while the population size required is significatively smaller, in particular
for higher proportions of local search. Note that the correctness of the sub-
structural neighborhoods is not crucial when solving OneMax using local search
because there is no linkage. However, the choice of the best alternative in each
neighborhood is based on the substructural fitness contribution that is estimated
by the surrogate whose correctness relies on the accuracy of the linkage model.
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Fig. 3. Number of generations required to get the optimum and the speedup obtained
by performing substructural local search on a number of concatenated 5-bit Trap func-
tions. The speedup scales as O(�0.45) for � ≤ 80. For � > 80 the speedup grow is more
moderate for the optimal value of pls = 0.0005, while for higher proportions of local
search the speedup starts to decrease due to diversity reduction in the population.

But even more important is the acceptance (or not) of the substructures. By us-
ing real fitness evaluation in this decision, only those building-blocks that really
improve the fitness of the individual are accepted, which drastically reduces the
need of having an accurate surrogate fitness model (and consequently a larger
population size). For the hillclimber that uses only estimated fitness, the popula-
tion size required grows even more for higher proportions of local search because
the diversity in the population is quickly reduced, which requires the surrogate
to be accurate enough to solve the problem in the first generation.

In the 10x5-bit Trap, the identification of the correct substructures is crucial
to solve the problem, requiring the accuracy of the probabilistic model of BOA
to be high. Therefore, both hillclimbers perform similar for small proportions of
local search. Here, however, the cost of using fitness function calls at each step
of the substructural hillclimber shows to be an expensive overhead for higher
values of pls. Similar to OneMax, there is a transition phase in the population
size required for the hillclimber that uses surrogate fitness. For pls ≥ 0.05, the
population size stagnates at a value where the model is accurate enough to solve
the problem in the first generation by performing substructural local search.

Figure 3 presents the results obtained for increasing number of concatenated 5-
bit Trap functions for BOA with the hillclimber that uses estimated fitness. The
number of generations required to reach optima and the speedup of performing
local search are shown. Note that the speedup is simply the ratio of the number of
evaluations required by BOA without and with local search. Several proportions
of local search were tested between 0.0001 and 0.005, but for clarity only two
illustrative cases are plotted: 0.0005 and 0.001. The population size required (not
plotted) scales similarly for all tested pls values.

The results show that while obtaining a significant reduction in the number of
generations, substantial speedups are provided by using substructural local search
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in BOA. The speedup grows approximately as O(�0.45) for � ≤ 80. For larger
problem sizes the increase in speedup becomes more moderate for pls = 0.0005,
while for higher proportions of local search the speedup decreases. This is due to
the population size required for larger problems, increasing the number of indi-
viduals that undergo local search for the same value of pls, and thereby reducing
diversity in the population. Note that the resulting individuals from substruc-
tural hillclimbing are very similar. On the other hand, smaller proportions of lo-
cal search (not plotted) lead to a curve with similar slope to that obtained for the
best proportion but with inferior speedups. As a final remark, while pls = 0.0005
was found to be the most adequate value the spectrum of problem sizes tested,
the optimal proportion should decrease for larger problems than considered here.

The reduction of the slope in the speedup curve for larger problem sizes is also
related to the structure of the model learned by BOA. Analyzing the dependency
groups captured by the Bayesian network with decision trees, it can be observed
that the number and size of spurious linkages increases with problem size. By
spurious linkage we mean additional variables that are considered together with a
correct linkage group. Although the structure of the Bayesian network captures
such spurious dependencies, the conditional probabilities nearly express inde-
pendency between the spurious variables and the correct linkage, therefore not
affecting the capability of sampling such variables as if they were independent.
In fact, this capability of decision trees to detect more complex dependencies
is one of the keys in hierarchical BOA [6] to solve more complex decomposable
problems such as hierarchical problems.

6 Summary and Conclusions

In this paper, we have introduced the use of substructural neighborhoods to per-
form local search in BOA. Three different substructural neighborhoods—based
on the structure of the learned Bayesian network—were proposed. A hillclimber
that effectively searches in the subsolution search space was incorporated in
BOA, using a surrogate fitness model to evaluate competing substructures. The
results showed that incorporating substructural local search in BOA leads to a
significant reduction in the number of generations necessary to solve the prob-
lem, while providing substantial speedups in terms of number of evaluations.
More importantly, the relevance of designing and hybridizing competent op-
erators that automatically identify the problem decomposition and important
problem substructures have been empirically highlighted.
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Abstract. A new class of estimation of distribution algorithms (EDAs),
known as cellular EDAs (cEDAs), has recently emerged. In these algo-
rithms, the population is decentralized by partitioning it into many small
collaborating subpopulations, arranged in a toroidal grid, and interacting
only with its neighboring subpopulations. In this work, we study the sim-
plest cEDA —the cellular univariate marginal distribution algorithm
(cUMDA). In an attempt to explain its behaviour, we extend the well
known takeover time analysis usually applied to other evolutionary algo-
rithms to the field of EDAs. We also give in this work empirical arguments
in favor of using the cUMDAs instead of its centralized equivalent.

1 Introduction

Evolutionary Algorithms (EAs) are stochastic search techniques designed as an
attempt to solve adaptive and hard optimization tasks on computers [1]. In fact,
it is possible to find this kind of algorithms applied for solving complex problems
like constrained optimization tasks, problems with a noisy objective function, or
problems having high epistasis and multimodality [2]. These algorithms work
over a set (population) of potential solutions (individuals) by applying some
stochastic operators, called variation operators (e.g., natural selection, recombi-
nation, or mutation), on them in order to search for the best solutions.

Estimation of Distribution Algorithms (EDAs) [3,4] are an alternative family
to traditional EAs in which a different kind of variation operators is used. The
successive generations of individuals are created by using estimations of distri-
butions observed in the current population instead of evolving the population
with the typical variation operators (like crossover and mutation) used in other
EAs. Hence, the main feature distinguishing EDAs from other more classical
EAs is that EDAs learn the interactions among variables (building blocks) in
the problem to be solved. At the same time, it is the main drawback of EDAs
due to the complexity of this learning and simulation task.
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The application of EDAs to optimization problems has been intense during the
last decade [4]. The motivation is, in part, that in many of the reported results
EDAs overcome other EAs such as genetic algorithms [4, 5, 6]. Due to the high
computational costs of many EDAs, the current state-of-art of the field requires
the development of new and more powerful strategies for implementing them.

One interesting and simple approach for dealing with that problem consists in
decentralizing the population. In many cases [7], decentralizing the population
provides a better sampling of the search space, and thus improves the numer-
ical behavior of the algorithm. In this paper, we propose a decentralization of
the population of EDAs by partitioning it into many small collaborating sub-
populations, such that they are allowed to interact only with their neighboring
subpopulations for computing the estimation of distribution. This estimation is
then used for computing the next generation of the considered subpopulation.
The result are the so called cellular EDAs (cEDAs) [8,9]. Note that MIDEA [10]
can seem as a similar approach to the proposed one, but in MIDEA the space of
solutions is clustered for obtaining the estimation of distribution for each clus-
ter, and then all the performed estimations are mixed to obtain a unique one for
computing the whole next population. However, we are using one estimation of
distribution for each population in our approach.

The main contribution of this paper is a comparative study on the behavior
of both cEDAs and EDAs. For this study, we face an extended benchmark of
discrete problems with UMDA (a simple EDA) and 4 different cellular versions
of UMDA (cUMDAs). This study extends the one previously made in [8], where
a UMDA and a cUMDA were compared on one simple problem, and confirms
the obtained results in that work. As a second contribution, we extend the study
of the selection pressure of an algorithm to the field of EDAs in order to include
a brief comparison on the theoretical behavior of the proposed algorithms. To
the best of our knowledge, this is the first time that this selection pressure study
is applied to an EDA, and it constitutes a good empirical approach for studying
the behavior of an algorithm.

The paper is structured as follows. In the next section we present the cellular
EDA approach studied in this paper. The benchmark we have used in this work
is presented in Section 3, while our results, as well as an explanation of the
algorithms used, are given in Section 4. Finally, we finish this paper giving our
main conclusions an some future research lines.

2 Cellular Estimation of Distribution Algorithms

Cellular EAs (cEAs) are endowed of an internal spatial structure that allows
fitness and genotype diversity for a larger number of iterations [11] than cen-
tralized EAs. Additionally, some works [12, 13] have established the advantages
of using cEAs over other EA models for complex optimization tasks where high
efficacy and a low number of steps are needed.

Cellular EDAs were introduced in [9] as a decentralized version of EDAs, and
also as a generalization of the cellular models developed for other evolutionary
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algorithms [14, 12]. In a cEDA the population is decentralized by partitioning
it into many small collaborating subpopulations (called cells or member algo-
rithms), arranged in a toroidal grid, and interacting only with the neighboring
subpopulations. One distinctive feature of this class of algorithm is that selection
is decentralized at the level of the member algorithms, while in other cellular
EAs selection usually occurs at the recombination level.

Fig. 1. A cEDA with a C13 neighborhood and the population shape 2 × 2 − 9 × 9

The organization of cEDAs is based on the traditional 2D structure of overlap-
ped neighborhoods. That structure is better understood in terms of two grids, i.e.
one consisting of strings and another consisting of disjoint sets of strings (cells).
Figure 1 shows a global population of 18×18 strings (small squares) partitioned
in a 9×9 toroidal grid of cells (large squares) containing 4 strings each. The neigh-
borhood used is the so called C13, which is composed by the considered subpop-
ulation plus its 12 nearest cells (measured with the manhattan distance). We
adopt the same notation used in [9] for describing the shape of the population:
it consists of the shape of cells in terms of strings plus the shape of the whole
population taking into account the cells (composed of one or more strings). For
example, following this nomenclature, the grid of Fig. 1 is labelled as 2×2−9×9.

In Algorithm 1 we present a pseudocode of the proposed cEDA approach. Each
iteration of a cEDA consists of exactly one iteration of all the member algorithms.
Each of these member algorithms is responsible for updating exactly one subpopu-
lation, and this is madeby applying a localEDAmodel to the population composed
of its strings and those of its neighbor subpopulations (lines 5 to 7). In the imple-
mentation of cEDA carried out in this paper, the successive populations replace
each other at once (line 10), so the new individuals generated by the local learning
and sampling steps are placed in a temporal population (line 8). This policy for up-
dating individuals is called synchronous, since all the individuals are updated at
the same time in the population. An alternative to this synchronousupdating is the
so called asynchronous update method, and lies in placing the offsprings directly
in the current population by following some rules [15] instead of updating all the
individuals simultaneously. The asynchronous issue is not explored here because
of the many implications and numerous existing asynchronous policies.
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Algorithm 1. Pseudocode of a simple cEDA
1: Set t ← 1;
2: Generate N >> 0 points randomly;
3: while termination criteria are not met do
4: for every cell do
5: Select locally M ≤ SizeOf(Neighborhood) × SizeOf(cell) strings of the neigh-

borhood according to a selection method;
6: Estimate the distribution ps(x, t) of these M selected strings;
7: Generate SizeOf(cell) new points according to the distribution ps(x, t);
8: Insert the generated points in the same cell of an auxiliary population;
9: end for

10: Replace the current population with the auxiliary one;
11: Compute and update the statistics;
12: Set t ← t + 1;
13: end while

In the replacement step (line 10), the old population can be taken into account
(i.e., replacing a string if the new one is better) or not (always adding the new
string to the next population). The first issue (called elitism) is the preferred one
for this study. Finally, computing basic statistics (line 11) is rarely found in the
pseudocodes of other authors in the EA field. However, it can be used for mon-
itoring the algorithm and decide changes in the adaptive search, when needed.

A critical issue in a cEDA is the computation of the probabilistic model due to
the high computational cost it usually supposes. The reader is referred to [9,8] for
an explanation of several alternative learning schemes for cellular EDAs. Notice
that the use of UMDA as the member algorithm, implies that we do not need to
learn the structure of the model (it is known), but just the univariate marginal
frequencies.

3 Set of Test Functions

We present in this section the set of test functions we have selected for our study.
It is composed of five problems having many different features: OneMax [16],
Plateau [17], IsoPeak [18], P-PEAKS [19] and the minimum tardy task problem
(MTTP) [20]. In Table 1 we present, for each of these problems, its name, its
fitness function (to be maximized), the size of the studied instance, the chro-
mosome representing the optimal solution to the problem, and the value of this
optimum. In all the cases, n represents the dimension of the problem, and a
binary genotype is used (xi ∈ {0, 1}).

The Onemax problem simply consists in maximizing the number of ones in
a bit-string. In the Plateau function, the chromosome is divided into groups of
three genes, and the fitness value is the number of sets containing three ones.
IsoPeak is a non separable function, and it is composed of functions Iso1 and
Iso2. The P-PEAKS problem consists in finding one of P randomly generated
binary strings. Finally, MTTP is a task scheduling problem in which the tasks
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Table 1. Benchmark of problems

Problem Fitness function n Solution chromosome Optimum

Onemax fOneMax(x) =
n∑

i=1
xi 1000 (1,1,1,1,...,1,1) 1000

Plateau

fP lateau(x) =
m∑

i=1
g(si)

where si = (x3i−2, x3i−1, x3i), and m = n
3 300 (1,1,1,1,...,1,1) 100

g(x1, x2, x3) =
{

1 if x1 = x2 = x3 = 1
0 otherwise

IsoPeak

fIsoP eak(x) = Iso2 (x1, x2)

+
m∑

i=2
Iso1 (x2i−1, x2i) ; m = n

2

Iso1(x1, x2) = m − mx1 − mx2 + (2m − 1)x1x2
Iso2(x1, x2) = mx1x2

100 (1,1,0,0,...,0,0) 2500

P-PEAKS
fP −P EAKS(x) =
1
N max1≤i≤p(N − HammingD(x, Peaki))

100 One of the peaks 1.0

MTTP fMT T P (x) =
n∑

i=1
xi · wi 100

x = (x1, x2, ..., xn)
xi = 1 ⇒ Task ∈ S
xi = 0 ⇒ Task /∈ S

0.005

have a given length (the time its execution takes), a deadline before which a task
must be scheduled (and its execution completed), and a weight. The objective is
to maximize the weights of the scheduled tasks S from a set of tasks T , subject
to that a task can not be scheduled before any previous one has finished, and
every task finishes before its deadline.

4 Experimentation

We present in this section the experiments we have made in this work. In Sec-
tion 4.1 we briefly explain the functioning of the UMDA algorithm, the simple
EDA we have selected for our study. Later, in Section 4.2 we show and analyze
the results of our tests.

4.1 Univariate Marginal Distribution Algorithm

The Univariate Marginal Distribution Algorithm (UMDA) was presented for the
first time by Müehlenbein and Paaß in [3]. UMDA is one of the simplest algorithm
in the EDAs family. A pseudocode of UMDA is presented in Algorithm 2. In
UMDA, it is considered that variables are independent from the others, so there
are no dependencies between them. The current generation evolves towards the
new one by computing the frequencies of values of the variables on each position
in the selected set of promising solutions (lines 4 and 5). These frequencies are
then used to compute new solutions (line 6), which replace the old ones. Due to
its simplicity, it is a very efficient algorithm (converges quickly), and its behavior
is particularly good for linear problems.

We have used common parameterizations in our tests in order to make a mean-
ingful comparison among the studied algorithms. The details are shown in
Table 2. As can be seen, we have defined four different configurations of cUM-
DAs. These cUMDAs differ in the population and the neighborhood used. The
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Algorithm 2. Univariate Marginal Distribution Algorithm
1: Set t ← 1;
2: Generate N >> 0 points randomly;
3: while termination criteria are not met do
4: Select M ≤ N points according to a selection method;
5: Compute the marginal frequencies ps(xi, t) of the selected set;

6: Generate N new points according to the distribution ps(x, t) =
n∏

i=1
ps(xi, t);

7: Set t ← t + 1;
8: end while

population is always composed of 400 individuals, but in the case of the cUMDAs
it can be structured in two different ways (1× 1− 20× 20 and 2× 2− 10× 10).
The neighborhoods used are C25 and C41 (see Fig. 2), and they are composed by
the considered cell plus the nearest 24 (for C25) and 40 (in the case of C41) cells
measured in manhattan distance. The selection method used is the truncation se-
lection (with τ = 0.5), applied into the local subpopulation pool. Finally, all the
algorithms implement a mutation step in order to introduce some diversity into
the population. Although it is not usual in EDAs, we apply this mutation due to
the good results obtained in some preliminary experiments. The proposed muta-
tion simply consists in flipping the genes of the newly generated individuals with
a given probability.

Table 2. Parameterization used in all the compared algorithms

Parameter Value
Population Size 400 individuals
Selection of Parents Truncation selection, τ = 0.5
Mutation Bit-flip, pm = 1/n
Replacement Replace-if-Better
Stop Condition Optimum reached or 400000 fitness evaluations
Member Algorithm UMDA
Cellular Case Neighborhood Shape: C25 and C41

Population Shape: 1 × 1 − 20 × 20 and 2 × 2 − 10 × 10

We finally include in this section a brief study of the theoretical behavior of all
the proposed algorithms in terms of their selection pressure. Selection pressure
is related to the concept of takeover time, which is defined for EAs as the time
it takes for a single best individual to colonize the whole population with copies
of itself under the effects of selection only. Shorter takeover times mean a more
intense selection. For calculating the takeover time in EDAs, we compute the
proportion of the best individuals in the population (after truncating), and use
it for generating the new one with elitism (best individuals are kept).

In Fig. 3 we plot the growth curves of UMDA and the four cUMDAs. In or-
der to obtain meaningful results, we have enlarged the population up to 64000
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Fig. 3. Takeover curves for the studied algorithms

individuals for this study. As can be seen, the higher selection pressure (shorter
takeover time) corresponds to UMDA. Regarding the cUMDAs, the two algo-
rithms having one individual per cell are those with lower selection pressure
(longer takeover time). The reason is that in the cases of the cUMDAs with four
individuals per cell the exploration capabilities of the algorithm are penalized
since the number of individuals in the neighborhood is multiplied by four.

4.2 Results

In this section we turn to present and analyze the results we have obtained in our
experiments for the five problems previously proposed in Section 3. As we stated
in the previous section, the algorithms we have studied in our comparison are
the standard UMDA plus four different proposed cellular versions. All these five
algorithms include a mutation operator. The studied cUMDAs are those using
the C25 neighborhood and one or four strings per cell (called C25-1×1-20×20,
and C25-2×2-10×10, respectively), and these same two population structures
with the neighborhood C41: C41-1×1-20×20 and C41-2×2-10×10.

In order to get statistically significant results, we have made 100 runs for each
test, and computed the analysis of variance (ANOVA) or Kruskal-Wallis tests for
comparing our results (depending on whether the data follows a normal distri-
bution or not). For these statistical tests, we consider in this work a significance
level of 95% (p-value under 0.05). Both UMDA and cUMDA are written in C++
and executed in a Pentium 4 2.4 GHz under Linux with 512 MB of RAM.

We present in Table 3 the percentage of runs in which the algorithms found
the optimal solution to the problems (success –or hit– rate). As can be seen,
UMDA has difficulties for finding the optimum in the case of MTTP (74% of the
runs), and was not able to get it in any run for the IsoPeak problem. Conversely,
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Table 3. Success Rate

Neighborhood OneMax Plateau IsoPeak P-PEAKS MTTP
UMDA 100% 100% 0% 100% 74%
cUMDA C25-1×1-20×20 100% 100% 100% 100% 100%
cUMDA C25-2×2-10×10 100% 100% 100% 100% 100%
cUMDA C41-1×1-20×20 100% 100% 100% 100% 100%
cUMDA C41-2×2-10×10 100% 100% 100% 100% 100%

its four cellular versions studied here did not find any difficulty for obtaining the
optimal value for all the problems in every run (100% of success rate).

Table 4. Function evaluations

Neighborhood OneMax Plateau IsoPeak P-PEAKS MTTP
UMDA 26072.00 18972.00 — 15040.00 169713.51

±463.20 ±1054.86 — ±1448.37 ±106624.49

cUMDA C25-1×1-20×20 23298.11 16337.83 176878.71 13460.97 14976.44
±382.76 ±584.86 ±36384.01 ±1650.01 ±1348.01

cUMDA C25-2×2-10×10 22037.60 14961.16 218190.00 34994.20 14418.12
±346.74 ±511.65 ±47518.06 ±13342.22 ±1116.66

cUMDA C41-1×1-20×20 22500.89 15454.92 176138.77 16915.08 14469.85
±361.14 ±510.05 ±41834.80 ±3091.56 ±981.36

cUMDA C41-2×2-10×10 21851.72 14773.64 253725.44 41795.32 14235.52
±340.30 ±469.24 ±58172.59 ±15362.06 ±1203.63

p-value + + + + +

In Table 4 we present the average number of evaluations and the standard de-
viation needed by the five studied algorithms for solving the problems. In the last
row of the table we present the p-values obtained in our statistical tests when
comparing all the algorithms for each problem. The ‘+’ symbol stands for sta-
tistical confidence in the comparison of the five algorithms, i.e. the results of
almost two of the compared algorithms are statistically different. As can be seen,
the most efficient algorithm (lowest number of evaluations) for every problem
(bolded values) is always one of the studied cellular versions of UMDA.

In Fig. 4 we graphically show the results of Table 4. It is easy to see that the
less efficient algorithm for all the problems is UMDA, with the exception of P-
PEAKS. With respect to the different cellular versions of UMDA, cUMDA C41-
2×2-10×10 is the most efficient for three of the five studied problems (OneMax,
Plateau, and MTTP), although it is the worst one for the two other problems.
However, the differences among the studied cUMDAs are, in general, very low
(no statistical confidence was found in the comparison of the cUMDAs).

Finally, in Fig. 5 we plot an example of the evolution of the best fitness value
for UMDA and the 4 proposed cUMDAs when solving the Plateau problem. The
value plotted in each generation is computed as the average of 100 executions. As
can be seen, the two algorithms that converge earlier to the optimum are the two
cUMDAs with the population 2×2-10×10, which show a similar behavior (almost
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Fig. 4. Efficiency of the algorithms
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for Plateau

indistinguishable), as we previously obtained in the analysis of the takeover time.
The slowest of the studied algorithms for this problem is UMDA, which finds
more difficulties than the cUMDAs for avoiding local optima and converge to
the global optimum due to its higher solution pressure.

5 Conclusions and Further Work

In this paper we have investigated an algorithm from a new class of decentralized
EDAs, called cellular EDA, based on the functioning of other existing cellular
EAs. Our main motivation has been to advance in the field of EDAs by study-
ing a new kind of decentralized population, easily parallelizable, that has been
demonstrated to obtain highly competitive results in other kind of EAs. Four
approaches based on UMDA have been tested. The comparison between the
four new cUMDAs and UMDA reports very advantageous results for the cellular
models, since UMDA (centralized) is, in general, the worst algorithm both in
terms of efficacy (success rate) and efficiency (number of evaluations to reach an
optimum) for all the problems.

The comparison of the cellular EDA versus other kinds of algorithms is out of
the scope of this paper. Our objective here is not competing with other existing
algorithms, but presenting a study of a new kind of EDA and analyze its behavior
versus their centralized counterpart. The algorithms investigated herein are only
a first approach, and are susceptible of high improvements after a fine tuning
of the parameters. The comparison between EDAs and cEDAs was carried out
in terms of the selection pressure and the resolution of a diverse benchmark of
discrete problems. In the two cases, the centralized EDA was outperformed by
the four new cellular models (cEDAs) compared.

Thus, in this paper we have advanced in the development a new wide research
field, and hence there exists a huge number of possible future lines of work.
Specifically, we suggest some direct further works from this paper, like the study
of the other alternatives proposed (but not studied) in [8] for the cEDAs learning
schemes, the fine tuning of the parameters used, the comparison of our cEDAs
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to other existing algorithms in the literature, and the study on the behavior of
other cellular models based on EDAs distinct than UMDA. There exist also some
other future lines of work, such as the study on the effects of the synchronicity
in the population updating, the algorithm parallelization, or adopting existing
algorithmic improvements from other cellular EAs.
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5. Cantú-Paz, E.: Feature subset selection by estimation of distribution algorithms.
In: GECCO, San Francisco, CA, Morgan Kaufmann (2002) 303–310

6. Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. Ad-
vances in Soft Computing-Engineering Design and Manufacturing (1999) 521–535

7. Alba, E., Troya, J.: Improving flexibility and efficiency by adding parallelism to
genetic algorithms. Statistics and Computing 12(2) (2002) 91–114

8. Madera, J., Alba, E., Ochoa, A.: Parallel Estimation of Distribution Algorithms.
In Alba, E., ed.: Parallel Metaheuristics: A New Class of Algorithms, John Wiley
& Sons (2005) 203–222

9. Ochoa, A., Soto, M., Alba, E.: Cellular estimation of distribution algorithms. In
preparation (2006)

10. Bosman, P., Thierens, D.: Advancing continuous IDEAs with mixture distributions
and factorization selection metrics. In: OBUPM. (2001) 208–212

11. Spiessens, P., Manderick, B.: A massively parallel genetic algorithm. In Belew, R.,
Booker, L., eds.: 4th ICGA, Morgan Kaufmann (1991) 279–286

12. Baluja, S.: Structure and performance of fine-grain parallelism in genetic search.
In Forrest, S., ed.: 6th ICGA, Morgan Kaufmann (1993) 155–162

13. Mühlenbein, H., Schomish, M., Born, J.: The parallel genetic algorithm as a func-
tion optimizer. Parallel Computing 17 (1991) 619–632

14. Manderick, B., Spiessens, P.: Fine-grained parallel genetic algorithm. In: 3rd
ICGA. (1989) 428–433

15. Giacobini, M., Alba, E., Tomassini, M.: Selection intensity in asynchronous cellular
evolutionary algorithms. In: GECCO, Springer Verlag (2003) 955–966

16. Schaffer, J., Eshelman, L.: On crossover as an evolutionary viable strategy. In: 4th
ICGA, Morgan Kaufmann (1991) 61–68

17. Mühlenbein, H., Schlierkamp-Voosen, D.: The science of breeding and its applica-
tion to the breeder genetic algorithm (BGA). Evol. Comp. 1 (1993) 335–360

18. Mahnig, T., Mühlenbein, H.: Comparing the adaptive Boltzmann selection schedule
SDS to truncation selection. In: CIMAF. (1999) 121–128

19. Jong, K.D., Potter, M., Spears, W.: Using problem generators to explore the effects
of epistasis. In: 7th ICGA, Morgan Kaufman (1997) 338–345

20. Stinson, D.: An Introduction to the Design and Analysis of Algorithms. The
Charles Babbage Research Center, Canada (1985 (second edition, 1987))



A Memetic Approach to Golomb Rulers
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Abstract. Finding Golomb rulers is an extremely challenging optimiza-
tion problem with many practical applications. This problem has been
approached by a variety of search methods in recent years. We consider
in this work a hybrid evolutionary algorithm that incorporates ideas from
greedy randomized adaptive search procedures (GRASP), tabu-based lo-
cal search methods (TS) and scatter search (SS). In particular, GRASP
and TS are embedded into a SS algorithm to serve as initialization and
restarting methods for the population and as improvement technique
respectively. The resulting memetic algorithm significantly outperforms
earlier approaches (including other hybrid EAs, as well as hybridizations
of local search and constraint programming), finding optimal rulers where
the mentioned techniques failed.

1 Introduction

Golomb Rulers [1,2] are a class of undirected graphs that, unlike usual rulers,
measure more discrete lengths than the number of marks they carry. More for-
mally, a n-mark Golomb ruler is an ordered sequence of n distinct nonnegative
integers 〈m1, . . . ,mn〉 (mi < mi+1) such that all distances mj −mi (1 � i <
j � n) are distinct. Each integer mi corresponds to a mark on the ruler and the
length of the ruler is the difference mn −m1. By convention, the first mark m1
can be placed in position 0, in which case the length is given by mn.

The particularity of Golomb Rulers that on any given ruler, all differences be-
tween pairs of marks are unique makes them really interesting in many practical
applications (cf. [3,4]). It turns out that finding optimal or near-optimal Golomb
rulers (a n-mark Golomb ruler is optimal if there exists no n-mark Golomb ruler
of smaller length) is an extremely challenging combinatorial problem. The search
for an optimal 19-marks Golomb ruler took approximately 36,200 CPU hours on
a Sun Sparc workstation using a very specialized algorithm [5]. Optimal solutions
for 20 up to 24 marks were obtained by massive parallelism projects, taking from
several months up to several years for each of those instances [4,6,7,8]. Finding
optimal Golomb rulers has thus become a standard benchmark to evaluate and
compare a variety of search techniques. In particular, evolutionary algorithms
(EAs), constraint programming (CP), local search (LS), and their hybridizations
have all been applied to this problem (e.g., [3,9,10,11,12,13]).

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 252–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Memetic Approach to Golomb Rulers 253

In this paper, we present a hybrid EA designed to find optimal or near-optimal
Golomb Rulers. This algorithm makes use of both an indirect approach and a
direct approach in different stages of the search. More specifically, the indirect
approach is used in the phases of initialization and restarting of the population
and takes ideas borrowed from the GRASP-based evolutionary approach pub-
lished in [9]. The direct approach is considered in the stages of recombination
and local improvement; particularly, the local improvement method is based on
the tabu search (TS) algorithm described in [14]. Experimental results show that
this algorithm succeeds where other evolutionary algorithms did not. OGRs up
to 15 marks (included) can now be found. Moreover, the algorithm produces
Golomb rulers for 16 marks that are very close to the optimal value (i.e., 1.1%
far), thus significantly improving the results reported in the EA literature.

2 Related Work

Two main approaches can be essentially considered for tackling the OGR prob-
lem with EAs. The first one is the direct approach, in which the EA conducts
the search in the space SG of all possible Golomb rulers. The second one is the
indirect approach, in which an auxiliary Saux space is used by the EA. In this
latter case, a decoder [15] must be utilized in order to perform the Saux −→ SG

mapping. Examples of the former (direct) approach are the works of Soliday et
al. [13], and Feeney [3]. As to the latter (indirect) approach, we can cite the work
by Pereira et al. [10] (based on the notion of random-keys [16]), and Cotta and
Fernández [9] (based on ideas from GRASP [17]). This latter paper is particu-
larly interesting since generalizations of the core idea presented there have been
used in this work. To be precise, the key idea was using a problem-aware pro-
cedure (inspired in GRASP) to perform the genotype-to-phenotype mapping.
This method ensured the generation of feasible solutions, and was shown to
outperform other previous approaches.

Another very relevant proposal has been recently presented by Dotú and Van
Hentenryck [14]. They used a hybrid evolutionary algorithm (grohea) that in-
corporated a tabu-search algorithm for mutation. The basic idea was to optimize
the length of the rulers indirectly by solving a sequence of feasibility problems
(starting from an upper bound l and producing a sequence of rulers of length
l1 > l2 > . . . > li > . . .). This algorithm performed very efficiently and was
able to find OGRs for up to 14 marks. Notice that this method requires an esti-
mated initial upper bound, something that clearly favored its efficiency. At any
rate, grohea outperforms earlier approaches and will be used to benchmark our
algorithm.

3 Scatter Search for the OGR Problem

Scatter search (SS) is a metaheuristic based on population-based search whose
origin can be traced back to the 1970s in the context of combining decision rules
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and problem constraints [18]. Among the salient features of SS we can cite the ab-
sence of biological motivation, and the emphasis put in the use of problem-aware
mechanisms, such as specialized recombination procedures, and LS techniques.
In a striking example of convergent evolution, these are also distinctive features
of memetic algorithms (MAs) [19]. Indeed, although SS evolved independently
from MAs, SS can be regarded with hindsight as a particular case of MA (or, at
least, as an alternative formulation of a common underlying paradigm). There
is just one remarkable methodological difference between mainstream versions
of SS and MAs: unlike other population-based approaches, SS relies more on
deterministic strategies rather than on randomization. At any rate, this general
methodological principle is flexible. This is particularly the case in our approach,
in which we use a non-deterministic component within our algorithm. For this
reason, we will use the terms MA and SS interchangeably in the context of this
work. In the following we will describe each of the components of our algorithm.

3.1 Diversification Generation Method

The diversification generation method serves two purposes in the SS algorithm
considered: it is used for generating the initial population from which the refer-
ence set will be initially extracted, and it is utilized for refreshing the reference
set whenever a restart is needed.

The generation of new solutions is performed by using a randomized procedure
that tries to generate diverse solutions. The basic method utilizes the GRASP-
decoding techniques introduced in [9]. Solutions are incrementally constructed
as follows: in the initial step, only mark m1 = 0 is placed; subsequently, at each
step i, an ordered list is built using the n first integers l1, · · · , ln such that placing
a new mark mi = mi−1 + lj , 1 � j � n, would result in a feasible Golomb ruler.
A random element is drawn from this list, and used to place mark mi. This
process is iterated until all marks have been placed. Notice that the outcome is
a feasible solution.

A variant of this process is used in subsequent invocations to this method
for refreshing the population. This variant is related to an additional dynamic
constraint that is imposed in the algorithm: in any solution, it must hold that
mn < L, where L is the length of the best feasible Golomb ruler found so
far. To fulfill this constraint, new solutions are constructed by generating two
feasible rules following the procedure described before, and submitting them to
the combination method (see Sect. 3.3), which guarantees compliance with the
mentioned constraint.

3.2 Local Improvement Method

The improvement method is responsible for enhancing raw solutions produced by
the diversification generation method, or by the solution combination method. In
this case, improvement is achieved via the use of a tabu-search algorithm. This
TS algorithm works on tentative solutions that may be infeasible, i.e., there
may exist some repeated distances between marks. The goal of the algorithm
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is precisely to turn infeasible rulers into feasible ones, respecting the dynamic
constraint mn < L. Whenever this is achieved, a new incumbent solution is
obviously found.

To guide the search, the algorithm uses a notion of constraint violations on
the distances. The violation υσ(d) of a distance d in a n-mark ruler σ is the
number of times distance d appears between two marks in the ruler σ beyond
its allowed occurrences, i.e.,

υσ(d) =

⎛⎝ ∑
1�i<j�n

1(dij = d)

⎞⎠− 1 (1)

where dij = mj −mi, and 1(TRUE) = 1 and 1(FALSE) = 0. The overall violation
υ(σ) of a n-mark ruler σ is simply the sum of the violations of its distances d,
i.e., υ(σ) =

∑
d∈D υσ(d), where D = {dij | 1 � i < j � n}.

A move in the local search consists of changing the value of a single mark.
Since marks are ordered, a mark mx can only take a value in the interval Iσ(x) =
[mx−1 + 1,mx+1 − 1]. As a consequence, the set of possible moves is M(σ) =
{(x, p) | (1 < x < n) ∧ (p ∈ Iσ(x))}. Observe that m1 is fixed to 0, and mn is
not allowed to grow. To prevent cycling, a tabu list of movements is kept. The
list stores triplets 〈x, p, i〉, where x is a mark, p is a possible position for mark
x, and i represents the first iteration where mark x can be assigned to p again.
The tabu tenure, i.e., the number of iterations (x, p) stays in the list, is dynamic
and randomly generated in the interval [4, 100]. For a ruler σ and an iteration
k, the set of legal moves is thus defined as

M+(σ, k) = {(x, p) ∈ M(σ) | ¬tabu(x, p, k)}. (2)

where tabu(x, p, k) holds if the assignment mx ← p is tabu at iteration k. The
tabu status can be overridden whenever an assignment reduces the smallest
number of violations found so far. Thus, if σ∗ is the ruler with the smallest
number of violations found so far, the neighborhood also includes the moves

M∗(σ, σ∗) = {(x, p) ∈ M(σ) | υ(σ[mx ← p]) < υ(σ∗)} (3)

where σ[mx ← p] denotes the ruler σ where variable mx is assigned to p. To
intensify the search, the current solution is reinitialized to the initial ruler σ0
(in the current TS run) whenever no improvement in the number of violations
took place for maxStable iterations. The algorithm returns the best solution σ∗

found. Fig. 1 shows the complete pseudocode of the TS algorithm.

3.3 Solution Combination Method

The combination of solutions is performed using a procedure that bears some
resemblance with the GRASP-decoding mentioned in Sect. 3.1. There are some
important differences though: firstly, the procedure is fully deterministic; sec-
ondly, the solution produced by the method is entirely composed of marks taken
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1. TS(σ0)
2. tabu ← {};
4. σ∗ ← σ0; σ ← σ0;
5. k ← 0;
6. s ← 0;
7. while k � maxIt & υ(σ) > 0 do
8. select (x, p) ∈ M+(σ, k) ∪ M∗(σ, σ∗) minimizing υ(σ[mx ← p]);
9. τ ← random([4,100]);
10. tabu ← tabu ∪ {〈x, p, k + τ 〉};
11. σ ← σ[mx ← p];
12. if υ(σ) < υ(σ∗) then
13. σ∗ ← σ;
14. s ← 0;
15. else if s > maxStable then
16. σ ← σ0;
17. s ← 0;
18. tabu ← {};
19. else
20. s++;
21. k++;
22. return σ∗;

Fig. 1. Pseudocode of the TS algorithm

from either of the parents; finally, the method ensures that the mn < L con-
straint is fulfilled.

The combination method begins by building a list L of all marks x present
in either of the parents, such that x < L 1. Then, starting from m1 = 0, a new
mark x is chosen at each step i such that (i) mi−1 < x, (ii) there exist n−i marks
greater than x in L, and (iii) a local quality criterion is optimized. This latter
criterion is minimizing

∑i−1
j=1 υσ(x −mj)2 + (x −mi−1), where σ is the partial

ruler. This expression involves minimizing the number of constraints violated
when placing the new mark, as well as the subsequent increase in length of the
ruler. The first term is squared to raise its priority in the decision-making.

3.4 Subset Generation and Reference Set Update

This subset generation method creates the groups of solutions that will undergo
combination. The combination method used is in principle generalizable to an
arbitrary number of parents, but we have considered the standard two-parent
recombination. Hence the subset generation method has to form pairs of solu-
tions. This is done exhaustively, producing all possible pairs. It must be noted
that since the combination method utilized is deterministic, it does not make

1 It might happen that the number of such marks is not enough to build a new ruler.
In that case, a dummy solution with length ∞ (the worst possible value) is returned.
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sense to combine again pairs of solutions that were already coupled before. The
algorithm keeps track of this fact to avoid repeating computations.

As to the reference set update method, it must produce the reference set for
the next step by using the current reference set and the newly produced offspring
(or by using the initial population generated by diversification at the beginning
of the run or after a restart). Several strategies are possible. Quality is an obvious
criterion to determine whether a solution can gain membership to the reference
set: if a new solution is better than the worst existing solution, the latter is
replaced by the former. In the OGR, we consider a solution x is better than a
solution y if the former violates less constraints, or violates the same number of
constraints but has a lower length. It is also possible to gain membership of the
reference set via diversity. To do so, a subset of diverse solutions (i.e., distant
solutions to the remaining high-quality solutions in the set – an appropriate
definition of a distance measure is needed for this purpose) is kept in the reference
set, and updated whenever a new solution improves the diversity criterion.

If at a certain iteration of the algorithm no update of the reference set takes
place, the current population is considered stagnated, and the restart method
is invoked2. This method works as follows: let μ be the size of the reference
set; the best solution in the reference set is preserved, λ = μ(μ− 1)/2 solutions
are generated using the diversification generation method and the improvement
method, and the best μ − 1 out of these λ solutions are picked and inserted in
the reference set.

4 Experimental Results

To evaluate our memetic approach, a set of experiments for problem sizes rang-
ing from 10 marks up to 16 marks has been realized. In all the experiments, the
maximum number of iterations for the tabu search was set to 10, 000, the size of
the population and reference set was 190 and 20 respectively, and the arity of the
combination method was 2. The reference set is only updated on the basis of the
quality criterion. One of the key points in the experimentation has been analyz-
ing the influence of the local search strategy with respect to the population-based
component. To this end, we have experimented with partial Lamarckism [20],
that is, applying the local improvement method just on a fraction of the mem-
bers of the population. To be precise, we have considered a probability pts for
applying LS to each solution. The values pts ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} have
been considered. All algorithms were run 20 times until an optimal solution was
found, or a limit in the whole number of evaluations was exceeded. This number
of evaluations was set so as to allow a fixed average number e of LS invocations
(e = 10, 000 TS runs). Thus, the number of evaluations was limited in each of
the instances to e/pts. This is a fair measure since the computational cost is
dominated by the number of TS invocations.
2 Notice that the TS method used for local improvement is not deterministic. Thus,

it might be possible that further applications of TS on the stagnated population
resulted in an improvement. However, due to the computational cost of this process,
it is advisable to simply restart.
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Table 1. Relative distances to optimum for different probabilities of the MA and
the algorithms grohea and hgrasp. Globally best results (resp. globally best median
results) for each instance size are shown in boldface (resp. underlined). Results of
hgrasp and grohea are not available for 10 marks.

number of marks
10 11 12 13 14 15 16

hgrasp Best N/A 2.8 10.6 4.7 6.3 7.3 6.8
Median N/A 2.8 11.8 7.5 9.4 11.9 11.3

grohea Best N/A 0 0 0 3.1 4.6 5.6
Median N/A 0 7.1 5.6 7.1 8.6 10.2

MA1.0 Best 0 0 0 0 1.6 0 4.0
Median 0 0 0 0 2.4 4.0 6.2

MA0.8 Best 0 0 0 0 0.8 1.3 2.3
Median 0 0 0 0 1.6 3.3 5.6

MA0.6 Best 0 0 0 0 0.8 0 2.8
Median 0 0 0 0 1.6 4.0 6.2

MA0.4 Best 0 0 0 0 0 1.3 1.1
Median 0 0 0 0 1.6 4.0 5.6

MA0.2 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 4.0 6.2

MA0.1 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 3.3 5.6

Table 1 reports the experimental results for the different instances consid-
ered. Row MAxx corresponds to the execution of the MA with a local improve-
ment rate of pts = xx. The table reports the relative distance (percentage)
to the known optimum for the best and median solutions obtained. The table
also shows the results obtained by the algorithms described in [9] (hgrasp)
and [14] (grohea). Algorithm hgrasp is grounded on the evolutionary use of
the GRASP-based solution generation method used in the basic diversification
method of our algorithm. As to grohea, it provides the best results reported
in the literature for this problem via a population-based approach, and there-
fore it is the benchmark reference for our algorithm. Specifically for this latter
algorithm, as reported in [14], the maximum number of iterations for the tabu
search was also 10, 000, the size of the population was 50, and the probabilities
pm and pX were both set to 0.6. Both algorithms (grohea and hgrasp) were
run 30 times for each ruler.

The results are particularly impressive. Firstly, observe that our memetic al-
gorithm systematically finds optimal rulers for up to 13 marks. grohea is also
capable of eventually finding some optimal solutions for these instance sizes, but
notice that the median values are drastically improved in the MA. In fact, the
median values obtained by the MA for these instances correspond exactly to their
optimal solutions. Comparatively, the results are even better in larger OGR in-
stances: our MA can find optimal ORGs even for 14 and 15 marks, and computes
high-quality near-optimal solutions for 16 (i.e., 1.1% from the optimum). These
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0.1 0.2 0.4 0.6 0.8 1.0
0.1 • − + + − − − − + + + − − − − + + + − − − − + + + − − − − + + + − − − −
0.2 − + + − − − − • − − − − − − − + + − − − − − + + − − − − − + + + − − − −
0.4 + + + − − − − − − − − − − − • + + − − − − − + − − − − − + + + − − − − −
0.6 + + + − − − − + + − − − − − + + − − − − − • + + − − − − − + + + − − − −
0.8 + + + − − − − + + − − − − − + − − − − − + + + − − − − − • + + − − − − −
1.0 + + + − − − − + + + − − − − + + − − − − − + + + − − − − + + − − − − − •

Fig. 2. (Top) Computational effort (measured in number of TS invocations) to find
the best solution. (Bottom) Statistical comparison of the computation effort. In each
cell, the results (‘+’=significant, ‘−’=non-significant) correspond from left to right to
instance sizes from 10 up to 16.

results clearly outperform grohea; indeed, the latter cannot provide optimal
values for instance sizes larger than 14 marks. Moreover, all MAxx significantly
improve the median values obtained by grohea on the larger instances of the
problem. These results clearly indicate the potential of hybrid EAs for finding
optimal and near-optimal rulers.

We have also conducted statistical tests to ascertain whether there are sig-
nificant performance differences between the different LS application rates. This
has been done using a non-parametric Wilcoxon ranksum test (results are not
normally distributed). Except in three head-to-head comparisons for 14 marks
(pts = 1.0 vs pts = 0.8 and pts = 0.1, and pts = 0.4 vs pts = 0.1), there is
no statistically significant difference (at the standard 0.05 level) in any instance
size for the different values of pts. While this is consistent with the fact that the
average number of TS invocations is constant, it raises the issue of whether the
associated computational cost is the same or not. The answer to this question
can be seen in Fig. 2. As expected, the computational cost increases with the
size of the problem. Quite interestingly, the average cost decreases for 16 marks.
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This behavior owes to the higher difficulty of the problem for this latter size:
the algorithm quickly reaches a near-optimal value (a remarkable result), and
then stagnates (longer runs would be required to improve the solutions from that
point on). The table at the bottom of Fig. 2 shows the outcome of the statistical
comparison between the computational cost of the MAxx for a given instance
size. As it can be seen, the differences are almost always significant for the lower
range of sizes, and progressively become non-significant as the size increases. For
16 marks, there is just one case of statistically significant difference of computa-
tional cost (pts = 0.4 vs pts = 0.8). Since the small values of pts imply a lower
computational cost for instance sizes in the low range, and there is no significant
difference in either quality or computational cost with respect to higher values
of pts in the larger instances, it seems that values pts ∈ {0.1, 0.2} are advisable.

5 Conclusions

We have presented a memetic approach for the optimal Golomb ruler problem.
The MA combines, in different stages of the algorithm, a GRASP-like procedure
(for diversification and recombination) and tabu search (for local improvement)
within the general template of scatter search. The results of the MA have been
particularly good, clearly outperforming other state-of-the-art evolutionary ap-
proaches for this problem. One of the aspects on which we have focused is the
influence of the LS component. We have shown that lower rates of Lamarckism
achieve the best tradeoff between computational cost and solution quality.

We are currently exploring alternatives for some of the operators used in our
algorithm. Preliminary experiments with multi-tier reference sets –i.e., including
a diversity section– do not indicate significant performance changes. A deeper
analysis is nevertheless required here. In particular, it is essential that the par-
ticular distance measure used to characterize diversity correlates well with the
topology of the search landscape induced by the reproductive operators. Related
to this issue, we plan to test alternative recombination methods based on exhaus-
tive techniques used in constraint programming. Defining appropriate distance
measures in this context (and indeed, checking their usefulness in practice) will
be the subsequent step.
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Abstract. Membrane Computing and Brane Calculi are two recent com-
putational paradigms in the framework of Natural Computing. They are
based on the study of the structure and functioning of living cells as living
organisms able to process and generate information. In this paper we give
a short introduction to both areas and point out some open research lines.

1 Introduction

Natural Computing studies new computational paradigms inspired from various
well known natural phenomena in physics, chemistry and biology. This paper is
devoted to a new field in Natural Computing: The study of the structure and
functioning of cells as living organisms able to process and generate information.

The starting point is the fact that the cell is the smallest living thing, and at
the same time it is a marvellous machinery, with a complex structure, an intricate
inner activity self-regulated in a quite efficient way. Assuming that cells can be
seen as computational devices, two different branches of Natural Computing can
be found in the literature: Membrane Computing and Brane Calculi.

The notions of membrane investigated in these new paradigms of computa-
tion are abstract entities which try to mimic some features of the functioning
of membranes in living cells. The basic function of biological membranes is to
define compartments and to relate compartments to their environment, includ-
ing neighbouring compartments. The currently accepted model of the membrane
structure is the so-called fluid-mosaic model, proposed in 1972 by S. Singer and
G. Nicholson. According to this model, a membrane is a phospholipid bilayer
in which protein molecules (as well as other molecules) are totally or partially
embedded.

The first paradigm of computation we present is Membrane Computing. It
was introduced by Gh. Păun in [22] under the assumption that the processes
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taking place in the compartmental structure of a living cell can be interpreted as
computations. The devices of this model are called P systems. Roughly speaking,
a P system consists of a membrane structure, in the compartments of which one
places multisets of objects which evolve according to given rules in a synchronous
nondeterministic maximally parallel manner.

The second one, Brane Calculi was introduced by L. Cardelli in [9] on the
assumption that in living cells membranes are not merely containers, but they
are highly dynamic entities that actively participate in the cell life. In this way,
computation happens on the membrane, not inside it.

The paper is organised as follows: Section 2 is devoted to a brief presentation
of Membrane Computing. In a similar way, a short introduction to Brane Calculi
is presented in Section 3. The paper ends with some final remarks.

2 Membrane Computing

Membrane Computing1 starts with the explicit goal of abstracting computing
models from the structure and the functioning of a living cell. The literature
of the domain is very large (already in 2003, Thompson Institute for Scientific
Information, ISI, has qualified the initial paper as “fast breaking” and the domain
as “emergent research front in computer science” – see http://esi-topics.com)
and it progresses rather rapidly, so that the presentation here is quite general.

The basic idea is to consider a distributed and parallel computing device,
structured like a cell, by means of a hierarchical arrangement of membranes
which delimit compartments where various chemicals (we call them objects)
evolve according to local reaction rules. The objects can be described by sym-
bols or by strings of symbols from a given alphabet. These objects can also pass
through membranes, under the control of specific rules. Because the chemicals
from the compartments of a cell are swimming in an aqueous solution, the data
structure we consider is that of a multiset – a set with multiplicities associated
with its elements. Also, in close analogy with what happens in a cell, the reaction
rules are applied in a parallel manner. This means that in each computational
step a maximal (multi)set of nondeterministically chosen rules is applied.

The membrane structure of a P system is a hierarchical arrangement of mem-
branes (understood as three dimensional vesicles), embedded in a skin mem-
brane, the one which separates the system from its environment. A membrane
without any membrane inside is called elementary. Each membrane defines a
region. For an elementary membrane this is the space enclosed by it, while the
region of a non-elementary membrane is the space in-between the membrane
and the membranes directly included in it. Membranes are labelled. Each region
contains a multiset of objects, and a set of (evolution) rules. The objects are
represented by symbols from a given alphabet. Typically, an evolution rule from
region r is of the form ca → cbinjdoutdhere, and it “says” that a copy of the

1 A layman-oriented introduction can be found in [30], a comprehensive presentation
can be found in [23] and further updated bibliography in [34]. A presentation of
applications can be found in [14].
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object a, in the presence of a copy of the catalyst c (this is an object which is
never modified, it only assists the evolution of other objects), is replaced by a
copy of the object b and two copies of the object d. Moreover, the copy of b has
to enter “immediately” the inner membrane of region r labelled by j (hence to
enter region j), one copy of object d is sent out through the membrane of region
r, and one copy of d remains in region r. Note that the considered evolution rule
can be applied in the region r only if this region includes the membrane j.

Membrane systems are synchronous, in the sense that a global clock is as-
sumed. In each time unit a transformation of a configuration of the system takes
place by applying the rules in each region, in a nondeterministic and maximally
parallel manner. This means that the objects to evolve and the rules governing
this evolution are chosen in a nondeterministic way; this choice is “exhaustive”
in the sense that, after the choice was made, no rule can be applied anymore in
the same evolution step (there are not enough objects available anymore for any
rule to be applied now – this is the maximality of application). In this way, one
gets transitions between the configurations of the system. A maximal sequence
of transitions is called a computation. A configuration is halting if no rule is
applicable in any region. A computation is halting if it reaches a halting con-
figuration. The result of a (halting) computation is the number of objects sent
(through the skin membrane) to the environment during the computation.

Many variants/extensions of this very basic model sketched above are dis-
cussed in the literature.

2.1 Variants of the Basic Model

Here we will briefly mention a few variants of the basic model. For instance,
there are a number of ways of weakening the programming power provided by
inj: to only indicate in (an object associated with this command has to enter
any adjacently lower membrane; the choice of a membrane to enter is nondeter-
ministic), to associate electrical charges both with objects and with membranes
(a polarised object will enter the region of any adjacently lower membrane of the
opposite polarisation; the polarisation of objects and of membranes may change
during the computation).

Coming closer to the trans-membrane transfer of molecules, we can consider
purely communicative systems, based on the three classes of such transfer known
in the biology of membranes: uniport, symport, and antiport. Symport refers to
the transport where two molecules pass together through a membrane in the
same direction, antiport refers to the transport where two molecules pass through
a membrane simultaneously, but in opposite directions, while the case when a
molecule does not need a “partner” for a passage is referred to as uniport.

Another important extension is to consider a priority relation among rules.
Furthermore, we can have rules for handling membranes (creating, destroying,
dividing, merging, etc.), the rules can have promoters or inhibitors, their use
can be regulated by a priority relation, the permeability of membranes can be
controlled by the used rules and so on and so forth, either with a biological or with
a mathematical motivation. In short, we abstract as much as possible/necessary,
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in order to obtain a mathematical model which is intended to be (i) minimalistic
(as elegant as possible, containing as restricted ingredients as possible), but
(ii) without losing the biological inspiration (hence remaining as “realistic” as
possible), with (iii) good computability properties (as powerful as possible and
as efficient as possible).

2.2 Computational Power and Efficiency

Many classes of P systems, combining various ingredients described above, are
capable of simulating Turing machines, hence they are computationally complete.
Note that in the case when we deal with P systems which compute numbers,
we consider Turing machines as number recognisers; in the case of string-objects
we can obtain the family of languages which are recognised by Turing machines
(the recursively enumerable languages). Always, the proofs of results of this type
are constructive, and this has the important consequence from the computability
point of view that we can get universal (hence programmable) P systems: starting
from a universal Turing machine, we get an equivalent universal P system.

The computational power is one of the important questions to be dealt with
when defining a new computing model. The other fundamental question concerns
the computational efficiency.

One of the explicit goals of various branches of natural computing is to find
ways to address computationally hard problems (typically, NP-complete prob-
lems) in order to solve them (in a strict sense or in a probabilistic sense) in a
feasible (that is, in polynomial) time. The rules of a P system are used in parallel,
that is, in each membrane all objects evolve simultaneously, and, in turn, at the
level of the system all membranes evolve simultaneously. This is a good degree of
parallelism, which, however, is not sufficient to devise polynomial time solutions
to NP-complete problems (unless P = NP). However, biology suggests opera-
tions with membranes which, sometimes surprisingly, make possible polynomial
(often linear) solutions to NP-complete problems. Among these operations, the
most investigated so far in membrane computing have been membrane division
and membrane creation.

We do not enter here into details, but we refer, e.g., to the chapter from [14]
devoted to this topic. Anyway, these results are of a clear theoretical interest
(new characterisations of the standard complexity classes were given, as well
as a characterisation of the relation P = NP problem, intriguing borderlines
between efficiency and non-efficiency were found – with many challenging open
problems still waiting to be considered).

2.3 Applications

As mentioned above, Membrane Computing was initiated having as primary
goals computability in general, and Natural Computing in particular, without
aiming to faithfully model biological facts in such a way as to provide a modelling
framework for the use of biologists. However, after significantly developing at
the theoretical level, the domain started to be useful for biological and medical
applications.
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For example, the modelling of some dynamical systems, where we are not
interested in halting configurations, but in the evolution of the process itself (see
[34] and the corresponding chapter from [14]).

Another important application field is the study of processes related to cancer.
We only mention the simulation of p53 protein pathways control (the interaction
between proteins p53 and MdM2) through a P system, as carried out by Y.
Suzuki and his co-workers (details can be found in [14]), and the modelling of
EGFR (epidermal growth factor receptor) signalling network [31].

A very promising application is the study of approximate algorithms for hard
optimisation problems (see [20]). These algorithms can be considered as high
level (distributed and dynamically evolving their structure during the computa-
tion) evolutionary algorithms. The strategy has been checked for the travelling
salesman problem and the results were more than encouraging.

Besides applications in biology, membrane computing has also been considered
in other areas, such as computer graphics [33], cryptography [19], modelling in a
uniform way parallel architectures [12], economics [25,26], etc. Some theoretical
applications of (notions and ideas central to) P systems has also been considered
in several papers: to artificial life [18], for simulating the photosynthesis [21], to
linguistics [2], etc.

3 Brane Calculi

In recent years, the modeling and analysis of the biological matter has attracted
the interest of the researchers in the area of concurrent process calculi.

Indeed, a network of biochemical cells can be seen as a computing machinery,
made of processing agents which interact and cooperate to achieve a common
goal. This informal description applies to concurrent system as well, hence it
is natural to use techniques from the concurrency theory field to study the be-
haviour of biological cells.

Particularly promising is the use of process calculi, which are formalisms used
to describe concurrent and mobile systems. Process calculi are equipped with a
formal semantics describing their behaviour, and plenty of tools for the static
and dynamic analysis of systems have been produced. These tools can therefore
be used in the field of biological organisms, as well.

Starting from the seminal work of Buss and Fontana [17] on the use of a pro-
cess calculus for the modeling of biological entities, the field has been fruitfully
explored by other research groups, either by using existing calculi or by defining
new, biologically inspired calculi (see, e.g., [29,28,13,32,15,27], just to mention a
few).

Brane Calculi [9] are a family of process calculi proposed for modeling the
behavior of biological membranes. In a process algebraic setting, Brane Calculi
represent an evolution of BioAmbients [32], a variant of Mobile Ambients [10]
based on a set of biologically inspired primitives of interaction. The main novelty
of Brane calculi consists in the fact that the active entities reside on membranes,
and not inside membranes.
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While Membrane Computing is now a well-established research field, Brane
Calculi can be considered to be a newborn, rather unexplored research field. In
the following, we present a brief overview of the calculi, as well as of the main
existing (and ongoing) works.

In [9] two basic instances of Brane Calculi are defined: the Phago/Exo/Pino
(PEP) and the Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process of
incorporating external material into a cell by engulfing it with the cell membrane)
and exocytosis (the reverse process). A relevant feature of such primitives is
bitonality, a property ensuring that there will never be a mixing of what is inside a
membrane with what is outside, although external entities can be brought inside
if safely wrapped by another membrane.

As endocytosis can engulf an arbitrary number of membranes, it turns out
to be a rather uncontrollable process. Hence, it is replaced by two simpler op-
erations: phagocytosis, that is engulfing of just one external membrane, and
pinocytosis, that is engulfing zero external membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito).

Because membrane fission is an uncontrollable process that can split a mem-
brane at an arbitrary place, it is replaced by two simpler operations: budding,
that is splitting off one internal membrane, and dripping, that consists in split-
ting off zero internal membranes.

An encoding of the MBD primitives in PEP is provided in [9].
In [6] we provided a stronger separation result between PEP and MBD.
On the one hand, we showed that PEP is a Turing powerful language, by

providing a deterministic encoding of Random Access Machines (a Turing–
equivalent formalism).

On the other hand, we proved that the existence of a divergent (i.e., infinite)
computation is a decidable property in MBD. This means that there exist no
divergence-preserving encoding of PEP in MBD.

After the introduction of the two basic brane calculi PEP and MBD, contain-
ing only membranes and membrane interaction primitives, in [9] the calculus is
extended with small molecules, freely floating either in the external environment
or inside a membrane, and with a molecule–membrane interaction primitive.

Biological membranes contain catalysts that can cause molecules, floating re-
spectively inside and outside the membrane, to interact with each other without
crossing the membrane. Membranes can bind molecules on either sides of their
surface, and can release molecules on either sides of their surface. Usually, such
an operation occurs in an atomic (all-or-nothing) way. The bind&release opera-
tion permits to simultaneously bind and release multiple molecules.

In [4] we extend the decidability result presented in [6] in two directions.
On the one hand, we showed the decidability of divergence to the calculus with
molecules, and with all the molecule–membrane and membrane–membrane inter-
action primitives, except the phago operation. On the other hand, we extended
the decidability result on the full calculus without phago to other biologically
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relevant properties, such as, e.g., control state maintainability, inevitability and
boundedness.

Control state maintainability can be used to check safety properties, such as,
e.g., the fact that all the derivatives of a system contain at least one occurrence
of a given molecule (or at least two occurrences of molecules belonging to some
specified set). Inevitability can be used to check, e.g., if in all the computation a
state is eventually reached that does contain no occurrences of a given molecule.
Boundedness can be used to check if the number of membranes or of molecules
can arbitrarily grow during the computation.

The decidability results in [4] are all constructive, i.e., they provide a com-
putable procedure for deciding the systems properties. We plan to develop a tool
for the animation and the analysis of Brane Calculus systems, also based on the
results presented in this work.

We also recently started to use Brane Calculi for the modeling of biological
pathways, and to apply the analysis techniques developed in [4]. A preliminary
step in this direction is represented by [8], where the LDL Cholesterol Degrada-
tion Pathway [1] is modeled both in Brane Calculi and in Membrane Computing.
Moreover, we also discuss an application of the analysis techniques developed
in [4] to check behavioural properties of this pathway.

4 Final Remarks

In the last years, two branches of Natural Computing, Membrane Computing
and Brane Calculi, have been developed, with a continuous afflux of new ideas,
notions, problems, and with a series of applications, especially in modelling bi-
ological phenomena. No lab implementation was intended, and no such imple-
mentation is known to be planned for the near future2.

Brane Calculi are somewhat dual to Membrane Computing, as they work
with objects placed on membranes (corresponding to proteins attached to or
embedded in the real membranes), with membranes operations controlled by
these objects, and trying to stay as close to the biology as possible; also the tools
and the goals are different – process algebra and systems biology, respectively.

A notable difference between Brane Calculi and P systems is concerned with
the semantics of the two formalisms: whereas Brane Calculi are usually equipped
with an interleaving, sequential semantics (each computational step consists of
the execution of a single instruction), the usual semantics in membrane com-
puting is based on maximal parallelism (a computational step is composed of a
maximal set of independent interactions).

The fist attempt of bridging both research areas was made in [11] by the fa-
thers of the disciplines L. Cardelli and Gh. Păun and as they point out Membrane
Computing and Brane Calculi have different objectives and develop in different
directions. While Membrane Computing tries to abstract computing models, in

2 For Membrane Computing, several simulators have been implemented. We refer to
[34] and to the corresponding chapter from [14] for details.
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the Turing sense, from the structure and the functioning of the cell (. . . ), Brane
Calculi pay more attention to the fidelity to the biological reality (. . . ).

In [11] a variant of P systems with the mate and drip operations – inspired
by the corresponding primitives in Brane Calculi – is defined and proved to be
Turing powerful. The Projective Brane Calculus [16] is a refinement of Brane
Calculi, where the interaction primitives reside either on the external side or on
the internal side of the membrane. In [3] a projective variant of the P systems,
defined in [11], is defined and shown to be computationally complete.

In [5] the computational power of the MBD Brane Calculus equipped with two
different semantics is investigated. The first semantics is the classical interleav-
ing semantics of process calculi, whereas the second semantics is the maximal
parallelism semantics used for Membrane Computing. An expressiveness gap has
been found, thus confirming the intuition that the maximal parallelism semantics
turns out to be a very powerful synchronization mechanism.

Recently, a bridge has been crossed the other way [7]. Instead of expressing
Brane Calculi operations in terms of the Membrane Computing formalism, a
problem is taken from Computer Science (the generation of the set {n2 |n ≥ 1})
and it is shown how it can be implemented both in Membrane Computing and
in Brane Calculi.

In the last years, Membrane Computing has turned out to be a useful frame-
work for building models with biological relevance, and the number of applica-
tions of this type is steadily increasing and becoming more and more advanced
and elaborate.

This leads to considerations concerning the significance of membrane based
calculi and systems (for biology, for mathematics, and for computing). The ap-
proach is clearly motivated from a mathematical point of view, not only because
it is natural to (try to) model the cell computational behaviour, but also because
the new computing model has a number of intrinsically interesting features. Ex-
amples of such features are: the use of multisets, the inherent parallelism, the
possibility of devising computations which can solve exponential (intractable)
problems in polynomial time (by making use of an exponential space created in
a natural manner). At this moment, all these features are only potentially useful
from a practical computational point of view. How should the implementation
problem be approached? All these questions (and some more presented at [24])
should be explored in the future.
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Abstract. Finding overlay topologies for peer-to-peer networks on top
of the Internet can be regarded as a network design problem, in which a
graph with minimum communication costs is desired. An example of
such a graph is a spanning tree connecting all nodes in the overlay.
We present evolutionary algorithms incorporating local search for the
minimum routing cost spanning tree problem in which the overall rout-
ing/communication cost is minimized. We present three types of local
search for this problem as well as an evolutionary framework for find-
ing (near)optimal solutions to the problem. Moreover, we present results
from a fitness landscape analysis for the three types of local optima that
reveal interesting properties of the problem data based on real measure-
ments in the Internet. We demonstrate that our proposed algorithms find
near optimum solutions reliably by comparing against a lower bound of
the problem.

1 Introduction

Peer-to-peer (P2P) systems have become popular due to development of file-
sharing applications like Gnutella [1,2], Kazaa or Bit-Torrent [3]. However, the
P2P paradigm is useful in many other application scenarios such as Distributed
Computing [4,5], Distributed Storage/Backup [6], or Distributed Database Sys-
tems [7]. An important aspect in the development of a P2P protocol is the design
of the overlay topology. The topology defines which nodes are directly connected
to each other. More formally, we can think of the topology as a graph, in which
the nodes are networked computers and the edges are communication links be-
tween them. The goal of the design is to find a graph which is robust in respect
to failures of nodes and links and/or which reduces the communication overhead
and time within the network. In this paper, we concentrate on the latter by min-
imizing the routing and hence communication time between any pair of nodes
in the network. Since the graph should be easy to maintain as well as to repair
and routing algorithms should be simple, we focus on spanning trees.
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Since the forming of the topology is a self-organizing process, we are interested
in distributed online algorithms for the network design problem. However, we
concentrate in this paper on the offline case, where we search for the optimum
topology given the global view on the network. The purpose of this approach
is twofold. Firstly, the offline algorithms provide a basis for analyzing the per-
formance of online algorithms. Secondly, by analyzing local search algorithms
we gain valuable insight for the development of distributed algorithms for the
online optimization problem.

The paper is organized as follows. In section 2, an overview is given for network
optimization problems with focus on the minimum routing cost spanning tree
(MRT) problem as well as local search algorithms. A new evolutionary heuristics
for the MRT problem is presented in section 3. In section 4, results from various
experiments with the new heuristics as well as a landscape analysis are presented
based on measured Internet (PlanetLab) data. Conclusions and an outline for
future research is provided in section 5.

2 Network Optimization and Local Search

A P2P overlay topology can be represented by a weighted graph G = (V,E, d)
where the nodes are the peers and the edges are communication links between
the peers used for communicating in the P2P system. The weight d(i, j) of an
edge (i, j) denotes message delay on the communication link from peer i to peer
j, or the average round-trip-time (RTT) between peer i to peer j. A spanning
tree is a subgraph T ⊆ G with |V | − 1 edges connecting all nodes in V . Given a
spanning tree, multicast/broadcast can be implemented simply by flooding. In
this preliminary work, we focus on spanning trees as topologies for P2P overlays
since they require a minimum number of edges (connections) and are easily
maintained. Since in a P2P system peers may join or leave at any time, the graph
is changing over time. In order to study the effectiveness of the optimization
methods, we concentrate on the case where the graph remains constant for the
time of optimization.

2.1 Problem Definition

In order to minimize the time for multicast or unicast routing, a tree with opti-
mum routing cost is sought. The problem of finding a spanning tree with mini-
mum routing cost is defined as follows. Given a graph G = (V,E, d), finding a
spanning tree T of G such that

C(T ) =
∑

u,v∈V

dT (u, v) (1)

is minimal is called the Minimum Routing Cost Spanning Tree (MRT) Problem,
where dT (u, v) denotes the distance/length of the path from u to v in T (message
delay from u to v). The problem is a special case of the optimum communication
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spanning tree problem, which is known to be NP-hard [8,9], but known to admit
a polynomial-time approximation scheme (PTAS) [9,10].

The MRT problem is closely related to the Shortest-Path-Tree (SPT) Prob-
lem. In fact, there is a vertex such that any SPT rooted at the vertex is a 2-
approximation of the MRT. The SPT problem can be solved in polynomial time
with Dijkstra’s algorithm [11] or the algorithm of Bellman and Ford [12,13].
However, resulting trees may degenerate to stars if the triangle inequality is
obeyed.

2.2 Related Work

Only few research has been done on the optimization of network topologies, in
particular overlay topologies, focusing on combinatorial optimization techniques.
In [14], two combinatorial problems are addressed, a minimum spanning tree
problem, and a traveling salesman problem. In both cases, centralized heuris-
tics/algorithms are proposed. In [15], evolutionary algorithms for self-organized
networks are proposed. However, the authors do not consider the MRT objec-
tive and it is unclear how their algorithms can work in a fully decentralized
distributed system. A centralized approximation algorithm for application-layer
multicast trees is presented in [16]. The approach concentrates on an NP-hard
optimization problem in which each node has a nonnegative processing delay
the model differs also from our problem regarding the objective. The MeshTree
approach [17] is a decentralized approach differentiating between backbone and
delivery trees. Each node has a maximum neighbor degree. It is unclear how
effective the optimization is in terms of approaching the optimum or a lower
bound. Moreover, the benefits from using a minimum spanning tree (MST) as
a backbone tree are not obvious. Since finding a degree-constrained MST is an
NP-hard problem it can be expected to be harder for heuristic search than the
degree-constrained SPT. Summarizing, to the best of our knowledge the MRT
problem has not yet been addressed by (evolutionary) heuristics.

2.3 Local Search for the MRT Problem

Local search in the MRT Problem works by searching for a better solution (in
terms of fitness/cost function) in the neighborhood of the current solution. The
neighborhood itself consists of all trees reachable from a given tree by applying
simple ‘moves’. Such a move modifies the tree in a simple non-destructive way.
Two types of moves considered in our algorithms are shown in Fig. 1. In the first
move (a), a node (i) is connected to a new parent (q). We denote a neighborhood
based on this move a 1-opt neighborhood. The second move (b) is actually a
combination of two moves of type (a): two nodes, denoted i and j exchange
their parents. We denote the neighborhood of this move a 2-opt neighborhood.

In order to compute the gain associated with a move, we make use of the
following formula. The objective can be rewritten as

C(T ) =
∑
v∈V

Cv(T ) with Cv(T ) = 2 c(v) (N − c(v)) d(v, pv), (2)
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Fig. 1. Two types of tree moves

where N = |V |, pv denotes the parent of node v and c(v) denotes the size of
the subtree rooted at v (number of children + 1). We assume here that the tree
is rooted with an arbitrary root. With the formula, the cost of a tree can be
computed in linear time. Also, this formula can be used to calculate the gain of
a move efficiently. For both moves, only those Cv have to be recalculated that
do change. These are those nodes for which the number of children or parent
edges change and hence all nodes on the path P on the tree from i to parent q
(or node j):

ΔC(T → T ′) = C(T )− C(T ′) =
∑
v∈P

(Cv(T )− Cv(T ′)) (3)

Hence, the number of updates is expected to be in O(logN) but in the worst case
linear in N (if the tree degenerates to a single path). If we except an expected
path length of O(logN), the time to search the complete neighborhood (denoted
by N2-opt) becomes O(N2 logN). As a consequence, a local search based on these
neighborhoods may not scale well with the problem size. Therefore, we propose
two variants of the local search.

The first one considers only the nodes incident to the parent node p as can-
didates for the new parent q in move (a). Hence, the path from p to q consists
of just p and q. A move of type (b) is only performed if c(i) = c(j) and hence no
update of Cv is needed along the path from p to q. Furthermore, not all pairs
(i, j) are considered here. Instead, in each iteration of the local search, for each
node i a node j is selected randomly. Therefore, the time complexity for search-
ing the neighborhood reduces to O(N) if we assume that the node degree in the
tree is bounded by a constant. In the following we refer to this neighborhood as
the constant update neighborhood Nconst.

Since a local search based only on constant time/local changes may get stuck
too early in local optima, we considered another neighborhood. In addition to
Nconst we also check for non-local moves of type (a) by randomly selecting j for
each node i. This way, the time required for searching the neighborhood remains
sub-quadratic but global moves are also considered to a certain degree. We call
this neighborhood Nfast.

3 An Evolutionary Algorithm for the MRT Problem

Since the local search alone may not be sufficient to find optimum or near op-
timum solutions, we propose an evolutionary framework for improving local
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optimum solutions. The framework is similar to iterated local search [18] or
memetic algorithms [19,20]. Unlike other memetic algorithms for combinatorial
problems, it uses only mutation.

Since the general framework is independent of the considered problem, we
provide a problem independent description in the following.

3.1 The General Evolutionary Framework

After creating initial solutions or an application of the mutation operator, a local
search is applied to find a new local optimum. The general outline is shown in
Fig. 2.

The framework is especially useful if not much is known about a problem. It
accepts three parameters: the number of generations κ, the number of offspring
per iteration λ, and the mutation adaptation rate α. The algorithm can be
considered as a (1+λ)-EA incorporating local search. The product of generations
and offspring defines the number of local searches to perform. The higher the
number of offspring the higher the selection pressure. The adaptation rate defines
by which factor the number of mutation steps is to be reduced if an iteration was
not successful, i. e. there was no better solution. This approach is meaningful
if the optimum mutation strength of problem is not known. Especially if an
optimum mutation rate exists but is unknown, the adaptation allows to try
different mutation rates or no mutation at all if multiple starts (init+local search)
are sufficient. Since the number of mutation steps is adapted only if there was
no improvement, the algorithm is capable of selecting an effective mutation rate
depending on the state of convergence.

function EALS( κ: Integer; λ: Integer; α : Real) : Solution;
begin

s := Init ();
s := LocalSearch(s);
mutationSteps := ProblemSize(s);
for iter := 0 to κ do begin

sbest := s;
for i := 0 to λ do begin

if mutationSteps = ProblemSize(s) then stemp := Init()
else stemp := Mutate(s, mutationSteps);

stemp := LocalSearch(stemp);
if stemp < sbest then sbest := stemp;

end;
if sbest < s then s := sbest

else mutationSteps := round(mutationSteps ∗ α);
end;
return s ;

end;

Fig. 2. The Evolutionary Local Search Framework
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3.2 The Local Search Operator for the MRT Problem

It is not obvious which local search is best suited in the above evolutionary frame-
work. Therefore, we decided to realize all three local search procedures described
above, namely Nconst local search, Nfast local search and N2-opt local search.

3.3 The Mutation Operator for the MRT Problem

The mutation operator is parameterized by a the number of mutation steps to
apply. A single step consists of a random move as used in the local search, more
precisely, type (a) described above. Hence, within the mutation operator such
a move with a randomly selected node and a randomly selected new parent is
applied k times with k denoting the number of mutation steps (mutationSteps
in the pseudo code). As a consequence of mutation with k steps will remove k
edges from the tree and insert k random edges such that the resulting graph is
again a tree.

4 Results

We performed several experiments to evaluate the effectiveness of the local search
variants as well as the evolutionary framework. In the experiments, we used
data collected in experiments performed on the PlanetLab [21], a world-wide
platform for performing Internet measurements. The PlanetLab consist of more
than 400 computers distributed over more than 200 sites around the world. The
measurements are simple ‘ping’ measurements measuring the RTT of messages
using the ICMP protocol from any host to any other host in the PlanetLab. These
RTTs were used in our experiments as the communication cost for the edges in
the overlay graph. The higher the RTT, the higher the cost for a link/edge. In
the experiments, we used the daily collected data by Jeremy Stribling reported in
[21]. For each month of the year, we selected the first measurement (denoted by
01-2005, . . ., 12-2005). All CPU times reported in this section refer to a Pentium
IV (3 GHz, running Java). All results are averaged over at least 30 runs.

4.1 EALS Performance Evaluation

In a first set of experiments, we ran our evolutionary algorithms with varying
parameters on the set of 12 instances. We varied the number of generations κ,
the number of offspring λ, and the local search variant used in the EA. In all
experiments we fixed the adaptation rate to α = 0.8. The results for some of the
experiments are shown in Table 1. In the displayed experiments the number of
offspring was set to 1, and the number of generations to 1000. The cost of the
best known solution is shown in column Best. It can be seen that with increasing
neighborhood size |Nconst| < |Nfast| < |N2-opt| both runtime and solution quality
(shown as the percentage excess over the best known solution) increase. The
constant update neighborhood local search performs very poor on some of the
instances with a high deviation of more than 27% from the best solution.
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Table 1. Results for three Evolutionary Locals Search algorithm variants, with
(κ, λ, LS) = (1000, 1, {const, fast, 2-opt}), κ denoting the number of generations, λ
the number of offspring per generation, and LS the local search neighborhood

(1000,1,const) (1000,1,fast) (1000,1,2-opt)
Instance Best Time Excess Time Excess Time Excess
01-2005 2743556 0.9 s 3.86 1.4 s 1.33 37.2 s 0.26
02-2005 17567152 3.6 s 8.86 5.7 s 1.46 313.1 s 0.34
03-2005 19288320 3.5 s 10.02 5.6 s 1.72 286.2 s 0.52
04-2005 751404 0.5 s 1.03 0.7 s 0.50 8.5 s 0.09
05-2005 19175890 4.4 s 39.06 7.6 s 1.58 513.6 s 0.17
06-2005 20312884 4.1 s 16.27 7.1 s 1.61 409.1 s 0.29
08-2005 30540984 4.9 s 6.78 7.9 s 0.86 542.9 s 0.26
09-2005 25712960 5.3 s 30.76 8.7 s 1.58 535.4 s 0.26
11-2005 26797284 5.3 s 9.39 8.5 s 0.62 527.2 s 0.17

In order to study the influence of the number of generated offspring per gen-
eration, we performed additional experiments. The most relevant results are
summarized in Table 2. The time required (Time) as well as percentage excess
over the best known solution in percent (Ex) are reported. Here, we can see that
increasing the number of offspring significantly increases average solution qual-
ity. Moreover, the Nfast local search EA appears to be close to the N2-opt local
search EA in terms of tree cost, given approximately the same CPU time. The
results clearly indicate that the 2-opt local search EA performs the best but the
fast local search EA can achieve also very good results. It may scale better with
the problem size if the networks become larger than investigated here. The slight
modification of the fast variant compared to the const variant has a tremendous
effect on the solution quality for several instances considered. The 2-opt variant
with 100 generations and 100 offspring per generation finds the best solutions
very frequently as indicated in the last column of the table.

4.2 Problem Instance Analysis

In the next set of experiments, we looked at the deviation of our best solutions
found from two bounds, the all-pairs-shortest-path (APSP) lower bound and the
best-shortest-path-tree (SPT) upper bound. The former measures the overall
communication cost if we consider for each node the shortest path tree instead
of a single shared tree as in the MRT. The latter is the best shortest path tree
among all possible shortest path trees in terms of our cost function. This tree is
a 2-approximation to the optimum solution. The results are shown in Table 3.
Interestingly, it turns out that there is a relatively small gap of 10% to 13%
between the best solutions we found and the simple APSP lower bound for all
instances independent of their size. The gap to the upper bound of 4% up to
14% indicates that it is worth using heuristics for the MRT problem instead of
using the shortest path tree approximation.

In a final set of experiments, we were interested in the properties of the local
optima using the three neighborhoods. We calculated the average percentage
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Table 2. Results for three Evolutionary Locals Search algorithm variants, with
(κ, λ, LS) = {(100, 100, fast), (10, 10, 2-opt), (100, 100, 2-opt)}, κ denoting the number
of generations, λ the number of offspring per generation, and LS the neighborhood
used in the local search

(100,100,fast) (10,10,2-opt) (100,100,2-opt)
Instance Best Time Ex Time Ex Time Ex Best
01-2005 2743556 18.2 s 0.29 9.9 s 0.13 157.6 s 0.00 52/53
02-2005 17567152 108.7 s 0.28 97.6 s 0.20 3260.0 s 0.00 34/50
03-2005 19288320 105.3 s 0.22 92.5 s 0.07 2633.5 s 0.00 42/48
04-2005 751404 5.4 s 0.05 2.0 s 0.01 26.6 s 0.00 48/48
05-2005 19175890 166.2 s 1.17 155.7 s 0.08 3244.8 s 0.00 43/48
06-2005 20312884 148.8 s 0.26 132.2 s 0.07 5558.5 s 0.00 34/48
08-2005 30540984 162.7 s 0.31 168.5 s 0.12 4067.4 s 0.00 39/47
09-2005 25712960 195.0 s 0.25 185.2 s 0.03 3840.2 s 0.00 35/48
11-2005 26797284 178.1 s 0.16 177.9 s 0.03 6407.2 s 0.00 40/48

Table 3. Overview of all considered instances. For each instance, the network size,
the best solution found, the All-Pairs-Shortest-Path lower bound and an upper bound
based on the Best Shortest Path Tree are shown.

Instance Size Best Lower Bound (APSP) Upper Bound (SPT)
01-2005 127 2743556 2447260 (12.1%) 3025120 (10.3%)
02-2005 321 17567152 15868464 (10.7%) 19607936 (11.6%)
03-2005 324 19288320 17164734 (12.4%) 20842606 (08.1%)
04-2005 70 751404 663016 (13.3%) 787856 (04.9%)
05-2005 374 19175890 17324082 (10.7%) 19949036 (04.0%)
06-2005 365 20312884 18262984 (11.2%) 22217312 (09.4%)
08-2005 402 30540984 27640136 (10.5%) 32209226 (05.5%)
09-2005 419 25712960 23195568 (10.9%) 27223336 (05.9%)
11-2005 407 26797284 23694130 (13.1%) 29322480 (09.4%)

Table 4. Properties of the local optima. For each local search neighborhood, the devia-
tion from the best solution, the fitness distance correlation coefficient, and the average
distance to the best solution is provided.

LS const LS 2-opt LS fast
Instance Ex(%) FDC Dist Ex(%) FDC Dist Ex(%) FDC Dist
01-2005 68.8 0.25 91.3 5.5 0.32 52.7 13.7 0.40 80.3
02-2005 51.5 0.24 237.0 4.1 0.43 134.7 12.0 0.46 207.6
03-2005 47.0 0.22 245.6 3.6 0.37 145.5 11.3 0.40 216.2
04-2005 21.0 0.33 41.2 2.9 0.28 27.2 7.2 0.30 35.6
05-2005 86.9 0.15 282.9 3.0 0.39 143.5 32.7 0.50 245.3
06-2005 51.2 0.23 274.0 3.8 0.49 144.8 14.8 0.49 235.9
08-2005 34.1 0.31 291.5 2.8 0.48 158.3 8.0 0.52 250.9
09-2005 73.4 0.27 311.0 3.4 0.36 164.9 29.6 0.45 270.9
11-2005 43.3 0.31 293.8 3.2 0.45 156.9 10.2 0.44 255.0
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excess (Ex) over the best solution found, the fitness distance correlation coeffi-
cient (FDC) of the local optima and the average distance (Dist) in the solution
space to the best known solution. This distance is calculated by counting the
edges of one tree not contained in the other. The results are displayed in Ta-
ble 4. It can be observed that average tree quality and correlation are significantly
lower for the simplest local search. The average distance to the best solution is
very high. The other local search variants have a lower distance to the best so-
lution and a significantly higher FDC. In all cases the FDC is below or equal to
0.52, indicating that recombination may not be very helpful for these landscapes,
since respectful recombination is known to be effective on correlated landscapes
[22,23]. Hence, the evolutionary local search algorithms based on mutation ap-
pear to be a good choice for effectively finding (near)optimum solutions to the
MRT problem.

5 Conclusions

We have presented highly effective evolutionary algorithms incorporating local
search for the minimum routing cost spanning tree problem arising in the design
of P2P overlay topologies. The results show that the proposed algorithms are
capable of approaching a lower bound on the problem effectively as well as
improving upper bounds found by shortest path tree algorithms significantly.
We proposed and investigated three types of local search in an evolutionary
framework using a self-adapting mutation operator. The results show that either
using a strong but time-consuming local search or using a scalable fast local
search yields a solution quality below 0.5% in short time.

There are several issues for future research. The influence of the adaptation
rate used in our evolutionary framework has to be studied in detail. Moreover,
it is important to investigate the scalability of the variants. Since there is no
PlanetLab data with larger networks than those used here, we are forced to
generate random instances with similar properties. Finally, we are working on
distributed online algorithms for the MRT problem.
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Abstract. This paper presents two nature-inspired approaches to the
design of Zero Reference Codes (ZRC) for optical applications, both in
one and two dimensions. Specifically we present a genetic algorithm and a
simulated annealing hybridized with a restricted search operator to cope
with the problem constraints. Extensive experiments have shown that
nature-inspired approaches proposed can improve the results of existing
techniques for this problem.

1 Introduction

The absolute measure of the position in grating measurement systems, and the
detection of a reference position in mask alignment systems, are critical prob-
lems in metrology. They are very similar problems: both need a reference signal
to detect an absolute position, and both can be tackled by solving an optimiza-
tion problem. These systems are especially important in precision engineering,
nanoscience and nanotechnology.

In grating measurement systems, a reference signal (or zero reference signal)
is necessary to obtain an absolute measure. Traditionally, zero reference sig-
nals are generated by means of optical correlation of two binary transmittances,
named Zero Reference Codes (ZRCs). Since 1986 gratings with adjacent zero
reference codes has been developed [2]. Each ZRC consists of a group of spe-
cially coded transparent and opaque slits, see Figure 1 (a). A collimated beam
propagates through both codes and the total amount of transmitted light is reg-
istered by means of a photodiode. The transmitted light depends on the relative
displacement between the ZRCs and the signal registered in the photodiode is
the correlation of the transmittances of the ZRCs. The characterization and de-
sign of optimum codes to obtain suitable reference signals has been studied in
[3] and [4].

Chen et al. proposed a two-dimensional version of the ZRCs for precise mask
alignment [6]. The system operation is similar to the one used to generate the
zero reference signal in grating measurement systems, see Figure 1 (b). When
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the movement takes place on the XY plane, the signal is obtained as the two-
dimensional correlation of the ZRCs. The design of two-dimensional ZRCs are
considerably harder to design than its one-dimensional counterpart because the
number of variables in a two-dimensional problem is n × n, with n the number
of variables of the one-dimensional version of the problem.

In this paper we explore the possibility of applying nature-inspired approaches
to the design of ZRCs. Specifically we develop a genetic algorithm and a sim-
ulated annealing to deal with the problem of designing good ZRCs. We will
show that these techniques are not limited by the number of variables, and are
able to obtain good quality codes better than the codes obtained with previous
approaches to the problem, even for large codes, with hundreds of variables.

The rest of the paper is structured as follows: next section describes the ZRC
design problems tackled in this paper. Section 3 presents the nature-inspired
algorithms we propose in this paper to solve the ZRC design problems. In Section
4 we provide several computational evidences of the good performance of our
approaches in both problems. Section 5 closes de paper with some final remarks.

2 Optical Reference Signals Problems

The systems used in generation of optical reference signals are displayed in Figure
1. In Figure 1 (a) we show the generation in a grating measurement system (one-
dimensional ZRC) and, in Figure 1 (b) we show a mask alignment system for
optical lithography (two-dimensional ZRC). Note that in both examples, the
ZRCs are parallel to each other and at least one of them is set in an XY (or
X) mobile stage. A collimated beam passes through them in the perpendicular
direction and the total transmitted flux is detected in a photodiode. The output
signal depends on the relative displacements between ZRCs. In order to increase
the maximum of this signal, the two codes are made identical so that the reference
signal becomes the autocorrelation of the same ZRC. Although one and two-
dimensional cases are different problems, two dimensional problem can be treated
like a generalization of the one-dimensional problem.

The structure of a general ZRC can be represented by the following matrix of
binary data:

c = [cij ] =

⎡⎢⎣ c11 · · · c1n

...
. . .

...
cn1 · · · cnn

⎤⎥⎦ , cij ∈ {0, 1} , (1)

where n is the total number of elements of the ZRC, cij = 1 if a transparent
pixel is located at the ij-position, and cij = 0 elsewhere. The number of trans-
parent pixels is n1. The sizes of the transparent and opaque regions in the ZRC
are integer multiples of the width of a single pixel. In two-dimensional ZRC, a
transparent pixel is a square aperture, whereas in one-dimensional ZRC, a trans-
parent pixel is a rectangular slit, c =

[
c1 c2 · · · cn

]
, cj = {0, 1} , j = 1, . . . , n.

The one-dimensional case can be obtained from two-dimensional case substitut-
ing cij by ci and removing the index j.
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Fig. 1. Examples of systems using ZRCs; (a) Generation system of optical reference
signals in grating measurement systems (one-dimensional ZRC); (b) Mask alignment
system for optical lithography (two-dimensional ZRC)

We will assume that the illuminating light is a parallel ray beam and diffrac-
tion effects are negligible. This approach is valid when the gap between ZRCs is
small with regard to the size of the pixels (or slits) in the code and this size is
greater than wavelength of the illuminating light.

When the two ZRC have relative displacements of k and l units in the X and
Y directions respectively, the signal registered in the photodiode is proportional
to

Skl =
n−k∑
i=1

n−l∑
j=1

cijci+k, j+l, (2)

where k, l = −n+ 1, . . . , n− 1, and the signal Skl is the autocorrelation matrix
of the two ZRC defined in equation (1). S00 is the signal obtained when the
relative displacement between the ZRCs is zero. It is the central maximum and
is equal to the number of transparent pixels, n1

S00 =
n∑

i=1

n∑
j=1

c2
ij =

n∑
i=1

n∑
j=1

cij = n1 . (3)

The secondary maximum of the signal is

σ = max
k2+l2 �=0

[Skl] (4)

where k2 + l2 �= 0 implies that k �= 0 and l �= 0 at the same time.
The most important parameter that characterize a zero reference signal is

the ratio between the secondary and the main maximum, K = σ/S00. A good
zero reference signal must be a single and well distinct peak, so the secondary
maxima of the correlation signal must be low. The smaller K value, the higher
the sensitivity and robustness of the zero reference signal.

In absence of diffraction, the size of the pixels of the ZRC defines the width
of the central peak of the reference signal and this width is the resolution of
the alignment system. The diameter of the light beam limits the number of
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pixels in the ZRC and in addition, the sensitivity of the photodiode determines
the minimum value for the central maximum of the signal, i. e., the number of
transparent pixels of the ZRC. According with these working requirements, we
have n and n1 predetermined and we must minimize the second maximum of
the signal, σ. In [4] and [7] the authors calculate a theoretical lower bound for
the second maximum in a one and two-dimensional problem, respectively. The
lower bound in one-dimensional problem is

σ ≥

[
(2n+ 1)−

√
(2n+ 1)2 − 4n1 (n1 − 1)

]
2

, (5)

and in the two dimensional case is

σ ≥
−
(
2n2 + n− 1

)
+
√

(2n2 + n− 1)2 + 4
(
1 + 1

n

)
n1 (n1 − 1)

−2
(
1 + 1

n

) . (6)

Although there are some simple cases in which this bound is reached, there is
no evidence that, for any values of n and n1 at least one ZRC could be found for
which the equality sign holds. The objective of the ZRC design problem is the
calculation a ZRCs whose autocorrelation has the minimum second maximum.
Table 1 shows a summary of the objective functions as well as the constraints
for the one and two-dimensional cases.

Table 1. Main features of the set of benchmark problems considered

min
c∈binary

f (c) one-dimensional two-dimensional

Objective function
f (c) = max {S1, . . . , Sn−1}

Sk =
∑n−k

j=1 cj · cj+k

f (c) = max
k2+l2 �=0

{Skl}
Skl =

∑n−k
i=1

∑n−l
j=1 cijci+k, j+l

Constraints
∑n

i=1 ci = n1
∑n

i=1

∑n
j=1 cij = n1

Traditionally, the design of the ZRCs has been based on properties of the au-
tocorrelation function, since they establish the necessary conditions to achieve
a suitable signal. The main difficulty for designing good ZRCs, is that there
is not a systematic method of calculus from which arbitrary length ZRCs can
be obtained. Some hints are given by Yajun in [3] and [4] in one-dimensional
ZRC and [6] in two-dimensional ZRC to heuristically construct optimum ZRCs
according to predefined criteria. The method consists of filling the code with
ones or zeros to fulfill the necessary conditions of optimality, these conditions
are only applicable to small-length ZRC, up to 30-40 elements. Recently, a new
approach to the design of ZRCs based on optimization techniques has been
presented [5]. The design problem is transformed into a minimization problem
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with binary variables, and the algorithm known as DIRECT is applied to solve
it. We compare the nature-inspired algorithms presented in this paper with the
results of DIRECT algorithm.

3 Nature-Inspired Algorithms Proposed

In this paper we aim to show the performance of standard implementations of a
genetic algorithm and a simulated annealing for solving one and two-dimensional
ZRC design problems. In both cases, there is a constraint related to the number
of 1s in the encoding of the problem (number of slits (n1), see Table 1). This
section briefly describes the standard implementations of a GA and a SA, and
also the restricted search operator used to include the problem constraints, and
how to include it into the algorithms.

3.1 A Genetic Algorithm

GAs are robust problem’s solving techniques based on natural evolution processes.
They are population-based techniques which codifies a set of κ possible solutions
to the problem, and evolve them through the application of the so called genetic
operators [1]. The standard genetic operators in a GA are:

– Selection, where the individuals of a new population are selected from the
old one. In the standard implementation of the Selection operator, each
individual has a probability of surviving for the next generation proportional
to its associated fitness value (roulette wheel).

– Crossover, where new individuals are searched starting from couples of in-
dividuals in the population. Once the couples are randomly selected, the
individuals have the possibility of swapping parts of themselves with its cou-
ple, the probability of this happens is usually called crossover probability,
Pc.

– Mutation, where new individuals are searched by randomly changing bits of
current individuals with a low probability Pm (probability of mutation).

Outline of a GA:
1: Initialize GA population of κ individuals at random;
2: while(max. number of generations not reached)
3: for(every individual c)
4: Calculate the objective function f(c);
5: endfor
6: Selection;
7: Crossover;
8: Mutation;
9: end while
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3.2 The Simulated Annealing

SA has been widely applied to solve combinatorial optimization problems [10],
[11]. It is inspired by the physical process of heating a substance and then cooling
it slowly, until a strong crystalline structure is obtained. This process is simu-
lated by lowering an initial temperature by slow stages until the system reaches
an equilibrium point, and no more changes occur. Each stage of the process
consists in changing the configuration several times, until a thermal equilibrium
is reached, and a new stage starts, with a lower temperature. The solution of
the problem is the configuration obtained in the last stage. In the standard SA,
the changes in the configuration are performed in the following way: A new
configuration is built by a random displacement of the current one. If the new
configuration is better, then it replaces the current one, and if not, it may re-
place the current one probabilistically. This probability of replacement is high
in the beginning of the algorithm, and decreases in every stage. This procedure
allows the system to move toward the best configuration. Although SA is not
guaranteed to find the global optima, it is still better than others algorithms
in escaping from local optima. The solution found by SA can be considered a
“good enough” solution, but it is not guaranteed to be the best.

Outline of the SA heuristic:
1: k ← 0;
2: T ← T0;
3: Initialize a potential solution c at random;
4: do{

Calculate f(c);
5: repeat
6: for j = 0 to ξ
7: cmut ← mutate(c);
8: Calculate(f(cmut));
9: if((f(cmut) < f(cbest))) OR (random(0, 1) < e(

−a
T ))) then

10: c ← cmut

11: cbest ← cmut

12: endif
13: endfor
14: T ← fT (T0, k);
15: k ← k + 1;
16: until(T < Tmin);

where k counts the number of iterations performed; T keeps the current tem-
perature; T0 is the initial temperature; Tmin is the minimum temperature to be
reached; c stands for the current configuration, cmut for the new configuration
after the mutation operator is applied and cbest for the configuration obtained
after applying the tabu search; f represents the objective function considered; ξ
is the number of changes performed with a given temperature T ; fT is the cool-
ing function; and a is a previously fixed constant. Parameter a and the initial
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temperature T0 are calculated in order to have an initial acceptance probability
equal to 0.8, which is the value tipically used. In order to increase the rate of
convergence we do not allow the probability of acceptance worse solutions than
the current one to be less than 0.005 until the last 50 iterations of the algorithm.
The cooling function is defined as

fT =
T0

1 + k
. (7)

The minimum temperature Tmin is calculated on the basis of the desired
number of iterations as:

Tmin = fT (T0, numIt). (8)

3.3 The Restricted Search

The restricted search strategy consists of fixing the number of desired transparent
slits in the ZRC (1s in the binary string), by means of the so-called restricted
search operator. This operator works in the following way: after the application
of the crossover and mutation operators in the genetic algorithm, or the mutation
in the simulated annealing, the individual c will have p 1s that, in general, will be
different from the desired number of transparent slits n1. If p < n1 the restricted
search operator adds (n1 − p) 1s randomly and if p > n1, the restricted search
operator randomly selects (p−n1) 1s and removes them from the binary string.
This operator can be described in pseudo-code, as follows:

The restricted search operator

Select n1 (number of transparent slits) before running the GA or SA algorithms.
for every generation of the GA or SA:

for every individual of the GA population or state of the SA:
check the number of 1s p.

if(p < n1)
Add ones(n1 − p);

else
Remove ones(p − n1)

end(if)
end(individual)

end(generation)

Note that this operator forces the genetic algorithm or the simulated annealing
to search in a reduced search space. In fact, the standard genetic algorithm
and simulated annealing search in a space of size 2n, whereas introducing the
restricted search operator, the size of the search space is reduced to

(
n
n1

)
� 2n.

This operator has been used before in different applications such as feature
selection [9]. Note also that the application of the restricted search in the GA
or SA heuristic is straightforward: it must be applied after the crossover and
mutation operators in the GA and after the mutation operator in the SA.
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4 Experiments and Results

In order to test the performance of our approaches in the design of ZRCs, we
have run simulations in the case one and two dimensional ZRCs of different
length. Specifically we propose two simulations: the first one is the design of one
dimensional ZRCs, with length n = 256, and a variable number of slits (n1),
from 1 to 255. The second experiment simulates the design of two dimensional
ZRCs, with length 16 × 16, also with number of slits variable from 1 to 255.
We have run the GA with parameters Pc = 0.6, Pm = 0.01 (standard values
suggested in [1]), 300 generations and a population of 100 individuals. The SA
parameters are k = 300 and ξ = 100. Note that both algorithms perform the
same number of function evaluations.

In order to compare the results obtained, we have implemented the DIRECT
algorithm in the same problems [5], with the same number of function evalua-
tions. DIRECT is a sampling algorithm developed by Donald R. Jones et al. for
finding the global minimum of a multivariate function subject to simple bounds,
using no derivative information [8]. The name DIRECT comes from DIviding
RECTangles, which describes the way the algorithm moves towards the mini-
mum. The first step in the algorithm is to transform the search space in a unit
hypercube. The function is then sampled at the center of this hypercube. The
hypercube is then divided into smaller hyperrectangles whose center-points are
also sampled. Normally, the Lipschitz constant of the objective function is uti-
lized for determining the next rectangle to sample. As the Lipschitz is not known,
DIRECT identifies a set of “potentially optimal” rectangles corresponding to all
the combinations of Lipschitz constants and rectangles sizes in each iteration.
All “potentially optimal” rectangles are further divided into smaller rectangles
whose centers are sampled. For more information about DIRECT algorithm see
reference [5], [7].

Figure 2 (left) shows the comparison among the algorithms implemented,
together with the lower bound for the one dimensional ZRC design problem.
Note that both the GA and the SA obtains very similar results, much better
than the DIRECTs. In this figure is difficult to appreciate differences in the
behavior of our nature-inspire approaches. To do this, we can do a zoom in
the graph, between 160 and 200 slits (Figure 2 (right)). This figure shows that
the GA seems to perform slightly better, though there are points where the SA
obtains a better value. Anyway, there are few differences between the proposed
nature-inspired approaches in this one dimension case.

Figure 3 (left) shows the results obtained in the two-dimensional ZRCs code
design. Again the results obtained with DIRECT algorithm and the lower bound
in Section 2 have been depicted for comparison. In this problem it is apparent
that the proposed nature-inspired algorithms perform much better than the DI-
RECT algorithm. The performance of GA and the SA is similar, but there are
small differences between them, more accused than in the one dimensional case.
This can be better seen in Figure 3 (right), where it is easy to appreciate that
the GA obtains solutions with second maximum of autocorrelation smaller than
the SA solution.
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Fig. 2. Comparison of the second maximum of autocorrelation reached with the Ge-
netic algorithm, the Simulated annealing, the DIRECT algorithm and the theoretical
lower bound for the one dimensional ZRC design problem; Complete simulation on the
left; Zoom n1 = 160 to 200 on the right
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Fig. 3. Comparison of the second maximum of autocorrelation reached with the Ge-
netic algorithm, the Simulated annealing, the DIRECT algorithm and the theoretical
lower bound for the two-dimensional ZRC design problem; Complete simulation on the
left; Zoom n1 = 160 to 200 on the right

5 Conclusions

The design of optimum ZRCs is a very demanding task in terms of computing.
In this paper we have analyzed the performance of a genetic algorithm and a
simulated annealing algorithms in the design of reference signal in optics. We
have shown that these meta-heuristic techniques are able to improve the results
obtained previously by a DIRECT technique. The ZRCs obtained by our nature-
inspired approaches are excellent reference signals for mask alignment in optical
lithography and also in grating measurement systems.

Future work includes the modification of the problem’s objective function, for
taking into account not only the second maximum of the signal (as in the present
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application), but also the code structure, in such a way that the diffraction
between ZRCs can be taken into account.
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Abstract. For deciding suitable structures of surface acoustic wave
(SAW) filters based on the computer simulation, the equivalent circuit
model of interdigital transducer (IDT), which includes several uncertain
constant parameters, is usually used. In order to cope with the imper-
fections of the optimum design caused by the inevitable dispersion of
these constant parameters, a technique based on the Taguchi’s qual-
ity engineering coupled with a memetic algorithm (MA) is presented.
Besides the traditional Taguchi’s two-step design approach maximizing
the robustness of SAW filters before realizing their specified functions,
the proposed MA enables us to improve their robustness and functions
simultaneously.

1 Introduction

In recent years, surface acoustic wave (SAW) filters have played an important
role as a key device in various mobile and wireless communication systems, such
as personal data assistants (PDAs) and cellular phones[1,2]. Especially, resonator
type SAW filters are wildly used in the inter-stages of cellular phones, because
they provide small, rugged and cost-competitive mechanical bandpass filters with
outstanding frequency response characteristics such as high attenuations[3].

The frequency response characteristics of SAW filters are governed primar-
ily by their geometrical structures, namely, the configurations of interdigital
transducers (IDTs) and grating reflectors fabricated on piezoelectric substrates.
Consequently, for realizing desirable functions of SAW filters, we need to decide
their suitable structures. Even though a number of optimum design techniques
coupling optimization methods with computer simulations are proposed for de-
ciding the suitable structures of SAW filters[4,5,6,7], conventional optimum de-
sign techniques have rarely discussed the accuracy of computer simulations. The
underlying models might have some error factors that deteriorate the precision
of simulations. Actually, in order to estimate the performances of SAW filters
based on the computer simulation, we have been constrained to use the equiva-
lent circuit model of IDT including several uncertain constant parameters[8].

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 292–301, 2006.
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In this paper, we present a robust optimum design technique to tackle the
imperfections of the optimum design of SAW filters caused by the inevitable
dispersion of constant parameters included in the equivalent circuit model of
IDT. Among robust optimum design approaches developed recently[9,10,11], the
design for six sigma (DFSS)[10] may be the most popular one. However, DFSS
needs to be used with the time-consuming Monte Carlo simulation for evaluating
the robustness of products. Therefore, we employ the quality engineering[11],
which is also called “the Taguchi method”. Then, according to the Taguchi
method, we define a signal-to-noise ratio (SNR) for measuring the robustness
of resonator type SAW filters. Since the value of SNR is obtained with less
experiments, we can save a lot of time by using the Taguchi method.

The Taguchi method recommends the two-step design approach maximizing
the SNR of products before realizing their ideal functions. First of all, we obey
the Taguchi’s precept and enhance the robustness of SAW filters before achiev-
ing their functions by solving two kinds of optimization problems sequentially.
Then we propose a concurrent design approach for improving robustness and
functions simultaneously. Exactly, we formulate the robust optimum design of
SAW filters as a constrained optimization problem in which the SNR of SAW
filters is maximized under the constraints of their specified functions.

In order to solve the above optimization problems, we propose a memetic al-
gorithm (MA), which are also referred as genetic local searches or hybrid genetic
algorithms (GAs)[12]. A favorite trick of MAs is to improve respective solutions,
or individuals, by using exclusive local searches. Therefore, we introduce a new
local search, i.e., a revised version of the variable neighborhood search (VNS)
offered by authors[6]. Because any restart mechanism isn’t used in the MA, a
distance-based mutation is also proposed to keep the diversity of population.

In the next section, we briefly describe a structure of SAW filter. We also
explain the equivalent circuit model of IDT. In Section 3, we formulate two
types of robust design approaches of SAW filters into optimization problems.
In Section 4, we present a MA for solving the above optimization problems.
In Section 5, we demonstrate the proposed design techniques on the robust
optimum design of practical SAW filters. Finally, we offer some conclusions in
Section 6.

2 Resonator Type SAW Filter

2.1 Structure of SAW Filter

Figure 1 shows the fundamental structure of resonator type SAW filter consisting
of five components: one receiver IDT (IDT-1), two transmitter IDTs (IDT-2)
and two grating reflectors realized by shorted metal strip array (SMSA). Each
of IDTs is composed of some pairs of electrodes, which are called fingers, and
used for SAW excitation and detection. Because resonator type SAW filters are
designed to resonate SAW stably, they have symmetric structures.

The frequency response characteristics of SAW filters depend on their struc-
tures, or the configurations of components fabricated on piezoelectric substrates.
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Fig. 1. Resonator type SAW filter
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For example, in order to decide a suitable structure of the SAW filter in Fig.1,
we have to adjust nine design parameters listed in Fig.2, namely, overlap be-
tween electrodes W , number of fingers of IDT-1 N1, ditto of IDT-2 N2, number
of strips of SMSA Nr, gap between IDT-1 and IDT-2 D, metallization ratio of
IDT ξ, ditto of SMSA ξr, pitch ratio of SMSA ρr and thickness of electrode H .
The metallization ratio of IDT is defined as ξ = lm/lp with the pitch of fingers lp
and their metal width lm. Similarly, the metallization ratio of SMSA is defined
as ξr = rm/rp. The pitch ratio of SMSA to IDT is given by ρr = rp/lp.

According to the terminology of the Taguchi method[11], design parameters
describing the structure of SAW filter are referred as control factors. We represent
control factors by a vector of n-elements x = (x1, · · · , xn). Some control factors,
such as the number of IDTs’ fingers, are positive integers. Also the lithographic
resolution for shaping electrodes and strips on substrates is restricted into a finite
value. Therefore, we introduce a minimum unit value ei into each of xi ∈ x. Then
we suppose that control factors xi ∈ x take discrete values within the regions
bounded by their parametric limitations as follows.

xi ≤ xi ≤ xi, i = 1, . . . , n. (1)

where, (xi − xi) mod ei ≡ 0, ei > 0, i = 1, . . . , n.

2.2 Equivalent Circuit Model of IDT

The entire circuit models of SAW filters are made up from the equivalent circuit
models of their components, namely, IDTs and SMSAs[2,8]. The N -pair of IDTs
illustrated in Fig.3 can be modeled by using a three-port circuit shown in Fig.4,
where port-1 and port-2 are acoustic ports, and port-3 is electric port[8]. If we
short the electric port-3, we can obtain the equivalent circuit model of SMSA.
Circuit elements included in Fig.4, namely, transconductances A10, A20, admit-
tance Ym and impedances Z1, Z2, depend on the image admittance Fs and the
image transfer constant γs derived from some parameters as follows.

Fs =
√
p q, γs = 2 tanh−1

(√
p

q

)
(2)
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where, ys = gs + j bs; gs and bs denote bulk wave loss and phase susceptance at
the edge of electrode. vo is the velocity of SAW. ω denotes frequency[8].

The accuracy of the equivalent circuit model of IDT depends on the reliability
of three constant parameters, namely, velocity ratio τv, discontinuous coefficient
τ and phase susceptance bs included in (2). However, because these constant
parameters vary with the qualities of the materials of substrates and electrodes,
we can’t decide their values exactly. Therefore, in the robust design of SAW
filters based on the computer simulation, we should consider the dispersion of
these constant parameters. From now on, constant parameters (τv, τ, bs) are
referred as error factors[11] and represented by a vector c = (c1, c2, c3).

3 Robust Optimum Design

3.1 Evaluation of Robustness

In order to evaluate the robustness of SAW filters, we define the signal-to-noise
ratio (SNR) in accordance with the Taguchi method[11]. First of all, as a signal
factor, we choose the following resonant frequency of single IDT[8].

ωo =
π vo

(1 + ξ (τv − 1)) lp
(3)

We suppose that each error factor cj ∈ c (j = 1, . . . , 3) takes three levels,
namely, nominal ćj , minimum cj and maximum cj ; thus we consider 33 = 27
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variations of error factors cr (r = 1, . . . , 27). We pay our attention to the trans-
mission coefficient s21[2] between the input- and the output-ports of SAW filter.
Since s21 depends on control factor x, error factor c and frequency ω, we evaluate
the values of s21(cr , x, ωo) under the signal factor ωo in (3) and a given x against
every cr (r = 1, . . . , 27). For minimizing the dispersion of these s21(cr , x, ωo),
we try to maximize the SNR of SAW filters defined as follows.

η(x) = 10 log
(
μ2(x)
σ2(x)

)
(4)

where, μ2 is mean square of s21, while σ2 is deviation of (μ− s21).

3.2 Evaluation of Function

As a criterion for discussing the ideal functions of SAW filters, we adopt the
attenuation Γ defined from the transmission coefficient s21 as follows[2].

Γ (c,x, ω) = − 20 log(|s21(c, x, ω)|) (5)

Let Ω be a set of frequencies ω ∈ Ω sampled from the remarkable range of a
target SAW filter. Γ (ć,x, ω) denotes the value of the attenuation evaluated at
ω ∈ Ω with a given design factor x and the nominal value of error factor ć. By
using the upper U(ω) and the lower L(ω) bounds, Γ (ć,x, ω) is specified at each
ω ∈ Ω. Consequently, in order to realize the specified characteristics of the SAW
filter, we have only to minimize the following objective function.

f(x) =
∑
ω∈Ω

∇U(x, ω) +∇L(x, ω)
|Ω| (6)

[
∇U(x, ω) = max{Γ (ć, x, ω)− U(ω), 0 }
∇L(x, ω) = max{L(ω)− Γ (ć, x, ω), 0 }

3.3 Formulation of Two-Step Design Approach

The Taguchi method recommends the two-step design approach, because it is
more difficult to reduce the variability than to adjust the average response to the
target value[11]. According to the two-step approach, the first design problem
for maximizing the robustness of SAW filters is formulated as follows.

x̃ = arg max
x∈X

η(x) = arg min
x∈X

− η(x) (7)

where X is a set of control factors x ∈ X that satisfy the constraints in (1).
After solving the first design problem in (7), we evaluate the SNR for each

of the best control factors x̃i ∈ x̃ (i = 1, . . . , n) by using orthogonal array with
three levels, namely, x̃i and x̃i ± ei, and decide their optimal levels xo

i .
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We choose several effective control factors xj ∈ x for raising the SNR and fix
their values in the optimal levels xo

j . Let Z ⊆ X be a set of control factors x ∈ X
that satisfy the constraint: x ∈ Z ⇒ xo

j ∈ x. Then the second design problem
for realizing the functions of SAW filters is formulated as follows.

x̃ = arg min
x∈Z

f(x) (8)

3.4 Formulation of Concurrent Design Approach

The Taguchi’s two-step design approach assumes that we can realize the func-
tions of SAW filters sufficiently by solving the second design problem under the
constraint x ∈ Z ⊆ X . But there is no evidence for the assumption. Therefore, in
order to guarantee the specified functions of SAW filters with a ceiling ε (ε ≥ 0),
we present the concurrent design problem formulated as follows.

x̃ = arg min
x∈F

− η(x), F = {x ∈ X | ε ≥ f(x) }. (9)

Incidentally, for deciding an appropriate value of the ceiling ε in (9), we can
refer to the minimum value of the objective function f(x̃) obtained by solving
the following conventional optimum design problem of SAW filters[6,7].

x̃ = arg min
x∈X

f(x) (10)

4 Memetic Algorithm

4.1 Variable Neighborhood Search

The k-degree-neighborhood Nk(x) (k ≤ n) is defined as follows[6]: every solution
x′ ∈ Nk(x) differs from the solution x in just k elements, and the differences
between respective x′i ∈ x′ and xi ∈ x are equivalent to their units such as
ei = |x′i − xi|. Therefore, Nk(x) contains the following number of solutions.

|Nk(x)| = 2k
nCk (11)

The original VNS explores Nk(x) (k = 1, . . . , k) and jumps from there to a
new one if and only if an improvement was made[6]. Consequently, the quality of
solution seems to be improved by using more and more neighborhoods. However,
the computation time spent by VNS increases with their numbers.

In order to reduce the computational time arbitrarily, we introduce the limits
of the total number of solutions to be examined t. Supposing that we solve the
unconstrained optimization problem in (10), the procedure of the restricted VNS
is described as follows. Since we employ the first improvement strategy[13], the
incumbent x is always replaced by the first objective-improving solution x′ found
in L = Nk(x) ∩ X . Furthermore, we choose a candidate x′ ∈ L randomly.
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Procedure of restricted VNS
get an initial x ∈ X ; k := 1; t := 0;
while (k < k and t < t) {
L := Nk(x) ∩ X ; flag := 0;
while (L �= ∅ and t < t) {

choose x′ ∈ L; L := L− { x′ }; t := t+ 1;
if (f(x′) < f(x)) { x := x′; flag := 1; break; }

}
if (flag = 1) k := 1; else k := k + 1;

}
return x;

4.2 Genetic Operators

As we have mentioned before, we adopt a general procedure of MA[12], while
we apply the above restricted VNS to every offspring generated by crossover or
mutation. For keeping the diversity of population, we employ a discrete version
of the blend crossover (BLX-α)[14] with α = 50 [%]. Furthermore, we use the
distance-based mutation that modifies more than k elements xi ∈ x of a parent
x to generate its offspring x′ as x′i := xi ± ei; (x′i ∈ x′). Therefore, x′ is never
included initially within any neighborhood Nk(x) (k = 1, . . . , k) of parent.

4.3 Constraint Handling

When we apply our MA to the constrained optimization problem in (9), we
minimize the following penalty function g1(x) (x ∈ X ) with the above VNS.

g1(x) = − η(x) + β max{ f(x)− ε, 0 }, β > 0. (12)

On the other hand, in accordance with the criterion g2(x) in (13) to be min-
imized, a new generation is formed by selecting the best individuals from the
current population P . As a result, the values of g2(x) for feasible solutions x ∈ F
are always smaller than those of infeasible ones x ∈ F = (X − F)[15].⎡⎣g2(x) = − η(x), x ∈ F .

g2(x) = − η(x) − min
x′∈F∩P

{−η(x′) }+ max
x′′∈F∩P

{−η(x′′) }, x /∈ F . (13)

5 Computational Experiments

5.1 Example of Two-Step Design Approach

We applied the two-step approach to the robust optimum design of the SAW
filter shown in Fig.1. Table 1 shows the search space X , i.e., the upper and lower
bounds of xi ∈ x (i = 1, . . . , 9) in Fig.2 and their units ei. For each of cj ∈ c
(j = 1, 2, 3), we assigned three levels: ćj , cj = 0.99 ćj and cj = 1.01 ćj. Then,
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Fig. 5. Factor effect graph for SNR (optimal level: ◦)

Table 1. Search space of control factors

i xi [ xi, xi ] ei

1 W [200, 400] 10
2 N2 [11.0, 21.0] 0.5
3 N1 [12.5, 32.5] 1.0
4 Nr [50, 150] 5
5 D [0.88, 1.28] 0.02
6 ξ [0.30, 0.70] 0.05
7 ξr [0.30, 0.70] 0.05
8 ρr [0.98, 1.22] 0.02
9 H [2900, 3100] 10

Table 2. Comparison of solutions

problem η(x̃) f(x̃) time
(7) 16.63 4.65 2.21 × 105

(9) 9.74 0.62 3.28 × 105

(10) 6.66 0.53 3.28 × 105

• Taguchi’s first design problem: (7)
• concurrent design problem: (9)
• conventional design problem: (10)

we solved the first design problem in (7) by using the MA with population size:
20, the numbers of offspring generated by crossover: 10 and mutation: 10 in each
generation, terminal generation: 40, k = 3 and t = 400. We chose these values
carefully through some preliminary experiments and the knowledge from (11).
As a result, we obtained the best solution x̃ with η(x̃) = 16.63 [dB].

Figure 5 shows the factor effect for the SNR about x̃i ∈ x̃ analyzed with
the orthogonal array. From Fig.5, we decided optimal levels xo

i and fixed several
xj ∈ x as xj = xo

j . Also we specified the upper and lower bounds of Γ (ć,x, ω) in
(6) at ω ∈ Ω (|Ω| = 200). Then we applied the above MA to the second design
problem in (8), changing the number of xo

j ∈ x fixed in Z ⊆ X .
The best solution x̃ minimizing the objective function f(x̃) in (8) might lose

its initial value of the SNR η(x̃) achieved at the first design problem in (7).
Figure 6 shows the values of f(x̃) and η(x̃) obtained for the best solutions x̃ of
the second design problems in (8) under various numbers of xo

j ∈ x selected in
effective order. From the results in Fig.6, we can observe a trade-off relationship
between the robustness and the function of the SAW filter.

5.2 Example of Concurrent Design Approach

(1) Small-sized SAW Filter: We applied the concurrent approach to the
robust optimum design of the SAW filter shown in Fig.1. By using the above
MA, we solved the optimization problem in (9) under a ceiling ε = 1.0.

Table 2 compares the best feasible solution of the problem in (9) with those
of the problems in (7) and (10) on their robustness η(x̃), functions f(x̃) and
the total numbers of solutions examined by MA. Undoubtedly, the concurrent
approach was able to improve the robustness of the best solution of the conven-
tional optimum design problem in (10) without losing its function.
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(2) Large-sized SAW Filter: Since we could verify that the concurrent ap-
proach was more efficient than the two-step approach, we applied the former
approach to the robust optimum design of a large-sized SAW filter illustrated
in Fig.8. The complex structure of the large-sized SAW filter including pitch-
modulated IDTs and SMSAs is described with 14 control factors[16].

By using the above MA, we obtained the best solution x̃ of the problem in (9)
with η(x̃) = 12.51 [dB] and f(x̃) = 0.49. On the other hand, the best solution
x̃′ of the problem in (10) became η(x̃′) = 5.90 [dB] and f(x̃′) = 0.31. Figure 7
compares the attenuation Γ (ć, x̃, ω) (solid line) with Γ (ć, x̃′, ω) (broken line).
We can’t see so much difference between Γ (ć, x̃, ω) and Γ (ć, x̃′, ω).

6 Conclusions

As a practical application of evolutionary computation in industry track, we
have presented a MA equipped with the restricted VNS for the robust optimum
design of resonator type SAW filters. Through the computational experiments,
we have disclosed that there is a trade-off relationship between the robustness
and the functions of SAW filters. Therefore, for realizing an ideal function of
SAW filter, the traditional Taguchi’s two-step approach demands to solve the
second design problems repeatedly, changing the number of fixed control factors.
On the other hand, the concurrent approach can offer a proper solution, if the
MA is executed twice at most. Consequently, the concurrent design approach is
applicable to large-sized SAW filters, as we have demonstrated in this paper.
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Future work will focus on the multi-criteria optimization of SAW filters for de-
signing their robustness and functions comprehensively. Also evolutionary com-
putations including MAs are suitable for the multi-criteria optimization.
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Abstract. We introduce a new model for detection and tracking of
bursts of events in a discrete temporal sequence, its only requirement
being that the time scale of events is long enough to make a discrete time
description meaningful. A model for the occurrence of events using with
Poisson distributions is proposed, which, applying Bayesian inference
transforms into the well-known Potts model of Statistical Physics, with
Potts variables equal to the Poisson parameters (frequencies of events).
The problem then is to find the configuration that minimizes the Potts
energy, what is achieved by applying an evolutionary algorithm specially
designed to incorporate the heuristics of the model. We use it to ana-
lyze data streams of very different nature, such as seismic events and
weblog comments that mention a particular word. Results are compared
to those of a standard dynamic programming algorithm (Viterbi) which
finds the exact solution to this minimization problem. We find that,
whenever both methods reach a solution, they are very similar, but the
evolutionary algorithm outperforms Viterbi’s algorithm in running time
by several orders of magnitude, yielding a good solution even in cases
where Viterbi takes months to complete the search.

1 Introduction and State of the Art

Suppose you are the marketing manager of a publishing house which has recently
released a book targeted at being a new best-seller, you have launched a mar-
keting and PR campaign and want to know its impact. One thing you can do
is to collect e-mails from public discussion forums on books and check for those
that talk about the topic the new book deals with. Once these messages have
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been selected, you end up with a temporal sequence of events. The campaign can
be considered successful if after the targeted advertising campaign, references to
the book show up as a burst of activity in your temporal series.

In the area of “topic detection and tracking” (TDT) [1], once the document
topics have been identified, the sequence of documents for a particular topic can
be regarded and analyzed as any other temporal series. There are many natural
and social phenomena that produce such temporal series of events: seisms, books
or CDs sales, news, e-mails and citations to a scientific paper, to name a few. In
all of them, events roughly concentrate in bursts in which, loosely speaking, the
frequency of their occurrence first rises, stays there for a while and then fades
away. In a graphical representation of such sequences these bursts are more or
less visible; however, a precise automatic detection of these bursts and of the
frequency of events in them is not trivial because the sequence of events is a
stochastic process and noise hides the relevant information. Even in the middle
of the burst, events can apart from each other. On the contrary, even if there is
no such burst, a few events may be close together. Discriminating whether these
are just noise or a significant part of a burst is the real problem that we address
in this paper.

Different statistical techniques[6,3,5] have been applied to analyse temporal
changes in document streams. In particular, Kleinberg proposed in [6] a prob-
abilistic automaton to model the frequency of document arrival, e-mails with a
given topic in his case. High activity episodes or bursts correspond to intervals of
high frequency of arrival. The most probable sequence of frequencies follows from
Bayesian inference through Viterbi’s dynamic programming algorithm [4,7]. A
similar analysis using an evolutionary algorithm (EA) instead was recently pro-
posed by some of us [2].

However, there is a limitation in Kleinberg model: events can happen at any
time instant, which is true for a certain kind of them (for instance, the problem
that motivated Kleinberg, which was e-mail classification). However, the time-
scale of some events is so long that this may be too much information for a proper
modeling. For instance, low intensity earthquakes have a timescale of days; sales
are registered with a timescale of days or even weeks, and e-mails on a given
topic in a discussion forum also have a timescale of days (an accurate registering
of time leads to some modeling issues as the difference between day and night, for
instance). A typical sequence of such events consists of the number of occurrences
per day, per week, per month or other adequate time period, which is a discrete
temporal sequence that cannot be correctly modeled by Kleinberg’s model. That
is the main reason why we propose here a new automaton model for such a kind
of sequences and apply it to several data streams of this type. The search for
the most probable sequence of frequencies is made with both Viterbi’s algorithm
and an EA. When the complexity of the temporal sequence is high enough, the
latter, which we present here, is shown to perform much better, even in cases in
which Viterbi is infeasible.

The rest of the paper is organized as follows: section 2 describes the proba-
bilistic model, section 3 introduces the EA to obtain the most probable sequence
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of event frequencies, and section 4 shows the performance in applications to dif-
ferent kinds of data. Results are summarized in section 5.

2 Potts Model for Event Streams

Suppose we have an event log along T time units (days, months, years. . . ) that
registers the number of events which occurred at all times t = 0, 1, . . . , T . If
events arrive at a constant average frequency, λ, independently of each other,
the number of events at any given time, n, follows a Poisson distribution

P (n|λ) = e−λ λ
n

n!
, n = 0, 1, 2 . . . (1)

Frequencies may be different at different times, so assuming independence of
events occurring at different times, the probability that we observe a certain
stream of events {n1, n2, . . . , nT } will be given by

P (n1, n2, . . . , nT |λ1, λ2, . . . , λT ) =
T∏

t=1

P (nt|λt), (2)

where λt denotes the event frequency at time t, and P (n|λ) is given by (1).
In a typical experiment we have the stream {n1, n2, . . . , nT } and what we

want to estimate is the sequence of frequencies which these events have occurred
with. Thus we apply Bayesian inference and express

P (λ1, . . . , λT |n1, . . . , nT ) =
P (n1, . . . , nT |λ1, . . . , λT )P (λ1, . . . , λT )

P (n1, . . . , nT )

=
exp

{∑T
t=1(nt lnλt − λt)

}
P (λ1, . . . , λT )

P (n1, . . . , nT )
∏T

t=1 nt!
,

(3)

where we have inserted (2) once 1 has been substituted into it.
Our problem is now to make a sensible choice of the prior P (λ1, . . . , λT ), given

the situation we want to model. To begin with, we will assume that the sequence
of frequencies is a Markov process, i.e. the frequency that the events a time t have
arrived with only depends on the frequency of arrival at the previous time step.
This is, of course, a simplification; if the process that models the frequencies has
memory, its modeling is hopeless unless we have further information on it. On
the other hand, most stochastic processes in real life are Markov processes, so
this is a reasonable assumption. Therefore,

P (λ1, . . . , λT ) = P (λ1)P (λ2|λ1) · · ·P (λT |λT−1). (4)

For practical purposes we will assume that frequencies can only take values from
a discrete set Λ. Then we take P (λ1) = 1/E, with E the number of frequencies
in Λ, i.e. any frequency is considered as likely to be observed initially as any
other. This reflects our lack of knowledge about the initial the state. For P (λ′|λ)
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we make the hypothesis that if the process has frequency λ at time t− 1, then
it will tend to have the same frequency at time t; so with probability p, λ′ = λ,
and with probability 1− p, λ′ �= λ and will equiprobably take any other value of
the frequency. Thus,

P (λ′|λ) = p δλ′,λ +
1− p

E − 1
(1− δλ′,λ), (5)

where δλ′,λ = 1 if λ′ = λ and 0 otherwise. A more convenient rewriting is

P (λ′|λ) =
1− p

E − 1
(1− δλ′,λ + eK δλ′,λ) =

1− p

E − 1
eKδλ′,λ , (6)

where we have introduced the new parameter K = log[p(E − 1)/(1− p)].
If we now introduce the prior (4), with these choices, into equation (3),

P (λ1, . . . , λT |n1, . . . , nT ) =
exp

{∑T
t=1(nt lnλt − λt) +

∑T
t=2 Kδλt,λt−1

}
Z(K;n1, . . . , nT )

, (7)

where

Z(K;n1, . . . , nT ) = E

(
E − 1
1− p

)T−1

P (n1, . . . , nT )
T∏

t=1

nt! (8)

is a normalizing factor and therefore can also be written

Z(K;n1, . . . , nT ) =
∑

{λt∈Λ}T
t=1

exp

{
T∑

t=1

(nt lnλt − λt) +
T∑

t=2

Kδλt,λt−1

}
. (9)

Expressions (7) and (9) define the well-known Potts model of Statistical
Physics [8] in a one-dimensional lattice, with λt the Potts variable at site t,
K the coupling constant and ϕ(λt) = nt lnλt −λt, for fixed nt, an external field
acting on λt.

Once we have an expression for P (λ1, . . . , λT |n1, . . . , nT ) we can obtain the
desired estimation for the sequence of frequencies {λ1, . . . , λT } as that which
maximizes this probability. Since Z(K;n1, . . . , nT ) is independent on the fre-
quencies and the numerator of (7) is an exponential, maximizing this probabil-
ity is equivalent to maximizing the argument of the exponential (i.e. minus the
energy of the configuration in the Potts model), namely

f(λ1, . . . , λT ) =
T∑

t=1

(nt lnλt − λt) +K

T∑
t=2

δλt,λt−1 , (10)

which turns into a well-defined fitness function for an evolutionary algorithm.
Please note that the two sums have competing effects on the frequencies: the
first one gets maximized when every λt is as close as possible to nt, while the
second one reaches its maximum when all frequencies are equal. The “coupling”
K is then a parameter that tunes the “stiffness” of the estimation, i.e. the larger
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K, the more new events will be assumed to have arrived with the same frequency
as the previous ones. Playing with K we can smooth out the intrinsic noise that
the data unavoidably contain, and at the same time capture net differences in
the frequencies.

3 Evolutionary Algorithm for Event Frequency Tracking

We propose an EA to perform the search of the sequence of event frequencies
which maximizes (10). First of all, we need to estimate the model parameters.
An estimate of the minimum, λmin, and maximum, λmax, frequencies can be
λmin = (1/2)T−1, λmax = 2M , with T the longest interval without events, and
M the maximum number of events registered in a time unit. The value of E,
i.e. the number of different frequencies (states of the automaton) considered is
then given by E = λmax/λmin. Thus the possible frequencies are λα = αλmin,
α = 1, · · · , E.

The choice of p (see 5) is rather arbitrary. However, it enters the model through
K ( see 6), and this parameter is rather insensitive to the precise value of p
provided it is in the range ∼ 0.3–0.7. Thus, after checking that other choices
lead to the same results, we have taken p = 0.5.

The fitness function is directly provided by (10). In what follows we define
the remaining ingredients of the EA.

3.1 Individuals and Initial Population

The most immediate representation of the individuals of our EA would be a
sequence of T frequencies, one for each time unit. Accordingly, an individual
would be a list of T genes gt, where gt ∈ {0, · · · , E} is the frequency at time
t, αt.

However, many adjacent times can be assigned the same frequency, so the
sequence of transitions can be compacted. Thus, an individual is a variable length
list, in which each position, or gene, represents a time interval with the same
frequency. Each gene is composed of a frequency and of an identifier of the first
and the last time of the interval.

g1 g2 · · · · · · · · · gf

α1, [1, t2 − 1] αt2 , [t2, t3 − 1] · · · · · · · · · αtf
, [tf , T ]

The initial population of our algorithm is composed of individuals composed
of randomly generated sequences of frequency transitions. The simplest way of
creating one such sequence is to choose a few times at random and use them
to split the whole period of time into intervals, every one of which is assigned
a random frequency. Some preliminary experiments have shown, however, that
such a naive strategy gives rise to a search space much too large for the algorithm
to be efficient. Accordingly, we propose a different strategy. We again choose a
random set of times for splitting, but remove those for which the number of
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events in the preceding interval differ in less than 50%. Afterwards, the first
interval is assigned a random frequency and subsequent intervals are assigned a
random higher frequency if they have more events than the preceding interval
or a random lower frequency if they have less events.

3.2 Crossover Operator

We have adopted the classic one point crossover, which creates two offsprings
by splitting two individuals at a crossover point and swapping their second bits.
Then, the best offspring replaces the worst parent (steady state, elitist strategy).

There are some details that have to be dealt with, though. The crossover point
lies in genes g and g′ of both parents, respectively. Thus after swapping, unless
both g and g′ have the same frequency, each of these genes will become two, one
on the left of the crossover point and one on the right, with different frequencies.
Several strategies have been tested, but the most efficient one is to leave them
as two genes if the number of events at the crossover instant and the preceding
instant differ more than 50%; otherwise both the left and right genes are assigned
the frequency of g or g′ at random, and thus converted back in a single gene.

3.3 Mutation Operator

We have implemented three different mutation operators and each time a mu-
tation occurs one of them is applied at random. The operators are:

1. Choose a gene at random and with equal probability increment or decrement
its frequency to the next or previous one.

2. Join two consecutive genes to produce a single one with a frequency randomly
taken from one of the original genes.

3. Split a gene in two and assign a different frequency to each piece: one of them
is given the frequency of the original gene and the other one is incremented
or decremented (depending on whether the number of events is larger or
smaller than that of the other piece) a random amount. This operator is
only applied if the resulting number of events at both sides of the partition
differ more than 50%.

4 Experimental Results

The present model relies on two assumptions: (i) that events occur with a Pois-
son distribution and (ii) that frequency changes occur with a constant proba-
bility and contiguous frequencies are uncorrelated. In order to test the Bayesian
reconstruction with our EA independently of these two assumptions we have
first tested the model against data streams artificially created using Poisson dis-
tributions of different frequencies. The sequence art poisson1 presents short
periods of constant frequency and small frequency jumps, and the sequence
art poisson2 presents long periods of constant frequency and large frequency
jumps. The outcome of our EA has been compared with that of Viterbi’s algo-
rithm (an exhaustive search algorithm for Markov chains) as well as with the
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Fig. 1. Artificial sequences created to test the EA: art poisson1 (a), and art poisson2
(b). We plot the exact sequence of frequencies (full lines), the number of events gener-
ated with this sequence along 200 (a) or 1000 (b) time steps (dots), and the result from
the EA as well as Viterbi’s algorithm (dashed line; both results are indistinguishable
in the plot).

exact sequence of frequencies. Both algorithms have been implemented in C++
and run on a Pentium IV 2.4MHz and 1Gb of memory running Linux. Results
appear in Figure 1. First of all, we can observe that Viterbi’s algorithm repro-
duces with high accuracy the sequence of frequencies, which proves the validity
of the Bayesian inference applied to this model, but the EA yields results which
are indistinguishable from them, which proves the validity of the EA —at least
for these simple sequences.

The next step taken has consisted in tuning the parameters of the EA. For
this purpose we have chosen art poisson2. Figure 2 shows the final fitness at-
tained by the EA for different population sizes (a) as well as its evolution with
time for a fixed population (b). Plotted data are averages over 5 different EA
runs. Figure 2(a) shows that fitness improves with the population size for any
setting of the remaining parameters, although beyond 103 individuals and using
intermediate values for crossover and mutation rates, no further improvement is
obtained. Figure 2(b) shows the fast increase of fitness to its maximum, which
is faster the larger the population is (although actual differences are negligi-
ble). Figure 3 shows the effect of crossover and mutation on the fitness, also
for art poisson2. It can be observed that the best results are obtained with a
crossover rate ∼ 30–60% and a mutation rate ∼ 15–25%.

4.1 Results on Real Data

We have applied our EA to real streams of events of very different nature. The
first one, shown in Figure 4, provides the daily number of earthquakes of mag-
nitude ≥ 2 which occurred in Spain in the period 2002/01/01–2004/11/221.
Figure 4(a) illustrates the fit produced by the EA with 103 individuals, a 30%
1 Data taken from the “Advance National Seismic System Catalog”, web page

www.ncedc.org/cnss/catalog-search.html.
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Fig. 2. (a) Final fitness attained with different population sizes for several values
of crossover and mutation rates. (b) Evolution of the fitness along 104 generations
(crossover rate = 50%, mutation rate = 15%), for different population sizes.
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Fig. 3. Fitness reached with different values of the crossover rate (with a 15% of mu-
tation) (a) as well as of the mutation rate (with a 50% of crossover) (b), for several
population sizes. Total number of generations: 104.

of crossover, a 5% of mutation and run for 5× 103 generations. Figure 4(b) is a
cumulative plot of the same results. The goodness of the fit is more evident in
this latter plot, so the remaining data are plotted using this representation. The
second and third set of data are formed by the comments on ‘blog’ and ‘Google’,
respectively, sent to all blogs hosted in Blogalia (http://blogalia.com) during the
period January 2002-January 2006. A cumulative plot of these data, as well as
the fits produced by the EA with 103 individuals, a 50% of crossover, a 15% of
mutation and run for 104 generations, appear in Figure 5. Despite being data of
a very different nature, the fit is as good as that for the earthquakes. One of the
most important aspects to remark about our experiments is the comparison of
the execution times needed by the EA and by the Viterbi’s algorithm. As it can
be seen in Table 1, Viterbi required about two orders of magnitude more time to
reach the solution than the EA. In fact, in two of the cases Viterbi was stopped
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Fig. 4. Fit to the daily number of earthquakes of magnitude ≥ 2 which occurred in
Spain in the period 2002/01/01–2004/11/22.
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Fig. 5. Time sequence of comments on ‘blog’ and ‘Google’ during the period January
2002-January 2006

without reaching a solution, and the time to get it was estimated extrapolating
from the time required to compute every time step. The main reason for such
an impressive improvement in performance is the fact that the EA conducts a
search very much guided by the heuristics on the particular problem under study
that can be implemented in the evolution operators (in our case, for instance, the
way crossover and mutation are implemented eliminates trials which assign dif-
ferent frequencies to segments with similar number of events). This dramatically
reduces the size of the search space, so much as to render feasible problems that

Table 1. Execution times required by the EA and estimated for Viterbi

Viterbi EA
earthquakes 7140862 s (> 82 days) 27514.2 s (7.64 hours)
coment blogs 697412 s (> 8 days) 25139.3 s (7.00 hours)
coment google 237800 s (> 2 days) 35609.4 s (9.89 hours)
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would not be so with a standard algorithm like Viterbi’s. These two elements:
the accuracy of the results, and the dramatic increase in performance, justify
the application of an EA to this problem.

5 Conclusions

In this paper we have proposed a model for detection and tracking of bursts in
data streams coming from a wide range of problems. The model applies to those
problems which are well represented by a discrete temporal series where we have
a log of the number of events every time unit (day, week, month, year. . . ). We
model event occurrences by Poisson distributions and apply Bayesian inference
to find the sequence of Poisson parameters that maximizes the likelihood. The
problem is shown to be equivalent to minimizing the energy of the well-known
Potts model of Statistical Physics. We use the negative of this energy as the
fitness of a special purpose evolutionary algorithm to solve this problem, and
apply it to streams of data obtained from earthquake detection and from we-
blog comments. The results are very similar to those obtained from Viterbi’s
algorithm, which is guaranteed to find the absolute maximum of such problems.
However, execution times for the evolutionary algorithm are about two orders of
magnitude smaller than those employed by Viterbi, thus leaving the evolution-
ary algorithm as the only available tool to reach a solution in a reasonable time
for real collections of data.
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Abstract. In this paper we describe a computationally intelligent ap-
proach to solving the dynamic vehicle routing problem where a fleet of
vehicles needs to be routed to pick up loads at customers and drop them
off at a depot. Loads are introduced online during the actual planning
of the routes. The approach described in this paper uses an evolutionary
algorithm (EA) as the basis of dynamic optimization. For enhanced per-
formance, not only are currently known loads taken into consideration,
also possible future loads are considered. To this end, a probabilistic
model is built that describes the behavior of the load announcements.
This allows the routing to make informed anticipated moves to customers
where loads are expected to arrive shortly. Our approach outperforms not
only an EA that only considers currently available loads, it also outper-
forms a recently proposed enhanced EA that performs anticipated moves
but doesn’t employ explicit learning. Our final conclusion is that under
the assumption that the load distribution over time shows sufficient reg-
ularity, this regularity can be learned and exploited explicitly to arrive
at a substantial improvement in the final routing efficiency.

1 Introduction

The goal in solving dynamic optimization problems is to provide solutions during
a timespan such that the result of a certain function, integrated over that times-
pan, is optimized [5,7]. In practice, such problems typically have to be solved
online, i.e. as time actually goes by. To solve such problems, often a myopic ap-
proach is taken. The quality of a decision is then taken only to be how good it is
in the current situation. This approach however is blind to the important issue
of time-dependence: decisions taken now have consequences in the future. To es-
tablish a non–myopic approach, the system’s future response to earlier decisions
must be known. In practice however, this information is typically not available.
Therefore, to be able to anticipate the system’s future behavior, this information
needs to be learned from experience that is gained as time goes by.
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Recently, a framework has been proposed to deal with anticipating the future
in the problem to be optimized [4]. The framework is based on a synergy in com-
putational intelligence: evolutionary algorithms (EAs) and statistical/machine
learning (ML/SL). EAs are known to be a good problem–solving methodology
for dynamic optimization with respect to the efficiency of tracking optima as
these optima shift through the search space as time goes by [5]. Often this is a
virtue of properly maintaining diversity in the population. As such, EAs provide
a solid basis for building a robust non–myopic approach to dynamic optimiza-
tion. The ML/SL techniques are used to explicitly predict for future times the
observed values of problem–specific variables and/or the quality of decisions.
The EA optimizes decisions not only with respect to the current situation but
also future decisions with respect to future, predicted, situations (i.e. it builds
a plan/strategy). It was shown, as a proof of principle, that this approach is
capable of outperforming strategies that do not use explicit future prediction.

In this paper we tailor this approach to a key dynamic optimization problem
that is important to the transportation and logistics industry: the dynamic ve-
hicle routing problem [6]. In this problem, routes have to be planned for a fleet
of vehicles to pick up loads at customers. The problem is dynamic because the
loads to be transported are announced while the vehicles are already on-route.

Intuitively, one can construct a more efficient routing, resulting in the delivery
of more loads, if one would know beforehand when the loads will become ready
for transport. It would then be possible to send a vehicle to a customer that
currently has no load available, but it is known that a load will be available at
that customer upon arrival of the vehicle. Alternatively stated, this information
allows us to see that a current decision to send a vehicle to pick up a currently
available load may in the end not be the best thing to do. This corresponds
exactly to the non-myopic approach for which the earlier mentioned framework
has been developed. However, this optimal information about future introduction
of new loads is not readily available. The only option left is to learn it.

A few studies currently exist in which information is used about future loads
[3,8,10,11,14]. Most approaches employ a waiting strategy. For each vehicle, upon
its arrival at a customer, a waiting window is defined within which a new load is
expected to arrive at that customer or at a nearby customer. During that waiting
period, the vehicle doesn’t move because it anticipates on having to move only a
little in the near future to pick up a new load. In this paper, similar to [14], we opt
for an approach in which the vehicles keep driving, unless they are at a centrally
located depot. The rationale behind this idea is the principled notion that as long
as there are loads to be transported, we don’t want to have any vehicles waiting
around. To move the vehicles as efficiently as possible, we propose to learn the
distribution of load announcements at the customers. We use this information to
predict the number of future expected loads at a certain customer. By directly
integrating this expected value into the fitness of solutions, i.e. vehicle routes, the
evolutionary algorithm (EA) that we use in this paper is able to make informed
decisions about anticipated moves (i.e. moves to customers that currently don’t
have a load ready). Not only do the results show an improvement compared
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to building routes solely on the basis of currently available loads, our explicit–
learning approach also outperforms the EA proposed in [14] that uses anticipated
moves without explicit learning.

The remainder of this paper is organized as follows. In Section 2 we describe
the dynamic vehicle routing problem as targeted in this paper. Subsequently,
in Section 3 we describe the approach that we take to solving the problem. In
addition to describing a base dynamic EA, we describe both an existing approach
from the literature to using anticipation and our explicit–learning approach to
using anticipation. In Section 4 we present results of running experiments with
the various EAs. Finally, some conclusions are drawn in Section 5.

2 Problem Definition

The definition of the dynamic vehicle routing problem that we use in this paper is
the same as the one used by Van Hemert and La Poutré [14]. Exact mathematical
details are in extenso formulated in [14]. Due to space constraints we shall restrict
ourselves here to an intuitive, yet concise, description of the problem at hand.

A set of customers is predefined. Each customer has a certain location defined
by 2D coordinates. The distance between two locations is taken to be the Eu-
clidean distance. The goal in solving the problem is to deliver as many loads as
possible. Each load has to be picked up at a certain customer and must be deliv-
ered to the central depot. A load has a certain announcement time (i.e. the time
from which it is available for pickup). Each load must be delivered to the depot
within a certain delivery window, starting from the moment of announcement.
Beyond this delivery window the load is no longer accepted by the depot. The
size of the delivery window is fixed and is denoted Δ.

To transport the loads, a fleet of vehicles is available. All vehicles have the
same capacity. All loads have the same size. Both the size of the loads and the
capacity of the vehicles is integer. Initially, all vehicles are located at the depot.

At any time tnow, the solver must be able to return a list of actions to be
performed; one separate action for each vehicle in the fleet. Actions are either
to go and pick up a load at a customer, to go to a certain customer without a
pickup assignment (i.e. an anticipated move) or to go back to the depot to drop
off all loads that are currently being carried.

To ensure that loads are only picked up if they can be delivered on time and
to furthermore ensure that loads that have actually been picked up are indeed
delivered on time, constraints exist to ensure that such solutions are infeasible.
The optimization approach must now only return feasible solutions.

3 Optimization Approach

3.1 The Dynamic Solver

The dynamic solver updates the optimization problem whenever a change occurs,
i.e. when a new load becomes available for pick up. In addition, the dynamic
solver controls the EA. It runs the EA and announces changes to the EA so



Computationally Intelligent Online Dynamic Vehicle Routing 315

that these changes may be accounted for in the solutions that the EA is working
with. It also requests the currently best available solution from the EA whenever
changes occur and presents that solution to the real world as the plan to be
executed. In our case, the problem changes whenever a new load is announced,
whenever a load is picked up or whenever loads are delivered. In addition, the
currently executed solution changes whenever a vehicle arrives at a customer,
regardless of whether a load is to be picked up there.

The EA is run between changes (also called events). In practice, the time
that is available for running equals the time between events. Because computing
fitness evaluations takes up most of the time, in our simulated experiments we
ensured that the number of evaluations that the EA was allowed to perform be-
tween two subsequent events is linearly proportional to the time between events
in the simulation. For each time unit of the simulation the EA may perform one
generation. Since the population size will be fixed, the EA will thus perform a
fixed number of evaluations in one simulation run.

The whole simulation operates by alternatively running the EA and the sim-
ulated routing problem. The routing simulator calculates when the next event
will occur, e.g., a vehicle will pick up or deliver a load, or, a load is announced for
pickup. Then, the EA may run up until this event occurs. This way we simulate
an interrupt of the EA when it needs to adapt to changes in the real world.
The best individual from the last generation before the interrupt is used to up-
date the assignments of the vehicles in the routing simulation. Then, the routing
problem is advanced up until the next event. Afterwards, the individuals of the
EA are updated by removing assignments that are no longer applicable (i.e. de-
livered loads or loads that have passed their delivery window) and by adding
assignments to pick up loads that have recently been made available.

3.2 Base EA: Routing Currently Available Loads

With the exception of the selection method, the base EA that we use is the same
as the one used by Van Hemert and La Poutré [14].

Representation
The representation is a set of action lists, one separate list for each vehicle in
the fleet. An action list describes all actions that the vehicle will perform in that
order. In the case of the base EA, this action list contains only pickup actions.
The first action in the list for a specific vehicle is the action that is currently
being executed by that vehicle. Properties such as the number of loads that a
vehicle already carries is stored in the simulation and is not subject to search.

New loads
Whenever the solver announces new loads to the EA, these loads are injected
randomly into the action list of a single vehicle in each member of the population.

Variation
Only mutation is considered. In the mutation of an individual, two vehicles are
chosen randomly. These two vehicles may actually be the same vehicle. From
these two vehicles, two actions from their lists are chosen randomly. These actions
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are swapped. This operator allows visits to customers to be exchanged between
vehicles or to be re–ordered in the route of a single vehicle directly.

Selection
The selection scheme that we employ ensures elitism. We use truncation selection
to select half of the population. The other half is discarded. Using variation,
the discarded half is replaced with new individuals. Hence, elitism of the best
half of the population is employed. Although this selection operator is rather
strict, enough diversity is introduced as a result of mutation and the random
introduction of new loads. As a result, selecting more strictly allows the EA to
weed out bad solutions more efficiently.

Decoding
It is important to note that as a result of load introduction and of variation,
action lists may come to represent an infeasible solution. For example the action
list may cause the vehicle to be on–route too long for the loads that it is carrying
to be returned to the depot within the delivery window. For this reason a de-
coding mechanism is used that decodes the representation into a valid solution,
i.e., a solution where none of the constraints are violated. The representation
itself is not altered. Assignments that violate one or more time constraints are
ignored upon decoding. When a vehicle reaches its capacity or when adding
more assignments will violate a time constraint, the decoder inserts a visit to
the depot into the action list. Afterwards, this vehicle may be deployed to service
customers again. This procedure is the same as used in [9]. The fitness of the
individual will be based on the decoded solution. Although the decoding process
may have a large impact on the fitness landscape, it is necessary as in a dynamic
environment we must be able to produce valid solutions on demand.

Fitness
The fitness of an individual corresponds to the number of loads that is returned to
the depot, i.e. the number of loads picked up when executing the current decoded
action lists for all vehicles. It should be noted that this representation already
provides, in part, a way to oversee future consequences of current decisions. To
see this, note that the only decision required to be taken at each point in time
from the problem’s perspective is what to let each vehicle in the fleet do next.
By having a list of actions to perform after the first next move, planning ahead
is made possible, which consequently allows for more efficient routing. However,
this anticipation at time tnow covers only the non–stochastic information about
the problem that is available at time tnow. It might be possible to improve the
benefits of anticipation further by considering some of the stochastic information
about the problem at time tnow. This is the goal of introducing anticipated moves.

3.3 Enhanced EA: Anticipated Moves

Implicit anticipation. The first approach that we describe to introducing
anticipated moves into the EA is the one originally proposed in [14]. In this
approach, there is no explicit link between making an anticipated move and the
expected reward to be gained from that move. Instead, the mechanism behind
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anticipated moves is implicit and focuses on ensuring that anticipated moves do
not cause the resulting routing to violate any constraints. Ultimately, this results
in slight deviations from routes that are built based upon currently available
loads, otherwise the loads will not be returned to the depot in time. It is only
over multiple generations and over time that in retrospect an anticipated move
can be found to have been advantageous.

Variation
To guide the introduction of anticipated moves, an anticipated–move–rate α is
used. Upon mutation, this parameter represents the probability of introducing
an anticipated move into the route of a single vehicle. Similar to mutation in
evolution strategies [2], this parameter is subject to self–mutation.

Fitness
To prevent selection of individuals with a large α that cause many constraint–
violating anticipated moves to be introduced, the fitness function is extended
with a penalty term. The penalty term grows linearly with the number of
constraint–violating anticipated moves in a solution.

Explicit anticipation. The results reported in [14] already indicate an im-
provement over the base EA for certain values of the delivery window Δ. How-
ever, there is no directly apparent reason that the anticipated moves will actually
result in the collection of more loads. A bigger improvement is to be expected if
a proper, direct and explicit reason for making anticipated moves is introduced.
To this end, we opt for an explicit means of anticipation. We still use the basic
strategy of introducing anticipated moves randomly, i.e. we use the same vari-
ation technique. To bias the search toward feasible anticipated moves with a
positive number of expected future loads, we alter the fitness function.

Fitness
First, assume that we have an oracle that can tell us for each customer exactly
when future loads will become available at that customer. In that case the fitness
of a decoded action list can be computed by not only counting the number of
loads that are picked up along the route as a result of premeditated pickup
actions, but also the number of loads that are available at customers upon arrival
there. Care must be taken that the capacity of the vehicle is not exceeded in
computing the number of additional loads. Moreover, only the loads that can
still be brought back to the depot on time should be counted. Also, each load
should only be counted once to avoid overrating the goodness of anticipated
moves when two or more vehicles have planned a visit to the same specific
customer. As we now know exactly how fruitful certain anticipated moves are,
this extension allows for a much more efficient search of anticipated moves.

In practice we do not have such perfect information. Hence, the only thing
left that we can do is estimate it. The closer the estimation, the closer we get
to the case of optimal information. For each customer we propose to estimate
the distribution of the time between two subsequent loads becoming available
for transport. To estimate this distribution, we use the normal distribution.
How to compute maximum–likelihood estimates for the normal distribution is
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well known from the literature [1,13]. The expected number of loads that will
become available at a certain customer ci between the current time tnow and the
time of arrival of a vehicle at that specific customer tarrive is just (tarrive−tnow)/μci

where μci is the mean of the distribution of the time between two subsequent
loads at customer ci. Similar to the case of perfect information we have to make
sure that we only count the expected loads that can still be brought back to the
depot in time. Also the capacity of the vehicle and the possibility of multiple
vehicles planning an anticipated trip need to be taken into account. This can be
done exactly the same way as in the case of perfect information.

4 Experiments

4.1 Experimental Setup

In practice, customers are often clustered into regions as opposed to scattered
around uniformly [12]. We therefore use a particular arrangement of the cus-
tomers by clusters, similar to the arrangement used in [14]. First a set of points
called the set of cluster centers C is created by randomly selecting points (x, y)
in the 2–dimensional space such that these points are uniformly distributed in
that space. Then for each cluster center (x, y) ∈ C a set of locations R(x, y)
is created such that these locations are scattered around the cluster center by
using a Gaussian random distribution with an average distance of τ to choose
the diversion from the center. This way we get clusters with a circular shape.
The set of customer nodes N is defined as N = {n|n ∈ R(x, y) ∧ (x, y) ∈ C}.
The set of locations form the nodes of the graph G = (N, E). This graph is a
full graph and its edges E are labeled with the costs to traverse them. For each
(n1, n2) ∈ E, this cost is equal to the Euclidean distance between n1 and n2.

A set of loads is randomly generated, which represents the work that needs
to be routed. Every load starts at a customer node and needs to be carried to a
central depot, which is located in the center of the map. Each customer generates
loads where the time between two subsequent loads is normally distributed with
a mean of μLoads and a standard deviation of σLoads. Typically customers are
manufacturers. Therefore, the internal process of preparing loads is often quite
regular. The larger the standard deviation, the less regular the process is assumed
to be and the more randomly generated the loads will appear to be.

We have randomly generated 25 problem instances and have run the EA
without anticipation, the EA with implicit anticipation, the EA with optimal–
information anticipation and the EA with learned–information anticipation for
1·105 time units. We have varied the standard deviation of the time between sub-
sequent loads, the delivery window and the capacity of the vehicles. An overview
of all involved parameters used in our experimental setup is given in Table 1.

4.2 Results

Figure 1 shows the efficiency of the various EAs with respect to the problems
in our test suite for a standard deviation of the time spread of the loads of 40.
The use of truncation selection and elitism compared to the use of tournament
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Table 1. Parameter settings used in our experiments

Parameter Value
Maximum width and height of the map 200 × 200
Number of locations |N | = 50
Number of clusters |C| = 5
Spread of locations in a cluster τ = 10
Number of vehicles |V | = 10
Capacity constraint q ∈ {1, 5}
Delivery time constraint Δ ∈ {20, 40, . . . , 400}
Average time spread of loads μLoads = 400
Standard dev. time spread of loads σLoads ∈ {20, 40, . . . , 200}
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Fig. 1. Routing efficiency in percentage of loads delivered as a function of the delivery
window for all tested algorithms and a standard deviation of the time spread of the
loads of σLoads = 40. Vehicle capacity is 1 in the left graph and 5 in the right graph.

selection and a generational scheme that was used in the EA that employed
implicitly anticipated moves [14] was observed to give better results. This causes
the ratio of improvement of the implicit anticipation approach compared to using
no anticipation to be smaller than was found in the earlier research.

Similar to the results by Van Hemert and La Poutré [14], there is a clear shift
in problem difficulty when varying the length of the delivery time window. If this
time window is very small, anticipatory routing only pays off if one is certain
that there will be loads that can be picked up upon arrival at a certain customer.
The number of loads that can be picked up and delivered on time is so small
that uninformed anticipatory moves directly cause a drop in the number of loads
that could have been delivered otherwise. Indeed, if the learned information or
the perfect information is used, an improvement can be found over not using
anticipatory moves, where the perfect information of course leads to the biggest
improvements. For an average Δ there is much room for improvement. Indeed
all anticipatory approaches are capable of obtaining better results than the non–
anticipatory approach. However, the use of explicit learning and predicting the
announcement of new loads is able to obtain far better results than when the
implicit means of anticipation is used. If the delivery window becomes too large,
there is ample time to fully use the capacity of the fleet to the maximum and
hence there is no longer any difference between using anticipation and using no
anticipation. The problem thus becomes easier.
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Fig. 2. Relative performance increase of our proposed anticipation–by–explicit–lear-
ning EA over the non–anticipatory EA for various values of the delivery window and
the standard deviation of the time spread of the loads

Figure 2 shows a contour graph of the relative performance increase that
can be obtained when using our explicit prediction approach to anticipation
as compared to the EA that doesn’t use anticipatory moves. This height–map
shows clearly the phase–shift with respect to the delivery time window. There
are clear bounds within which an improvement can be obtained. This graph also
shows the influence of the randomness of the problem. The larger the standard
deviation of the time between subsequent loads, the smaller the performance
increase becomes. Clearly, the largest performance increase can be obtained if
the variance goes down to 0, which corresponds to the case of using the optimal
information. Although the best results only comprise a small area of the graph
and thus correspond only to a specific type of problem settings, the range of
problem settings for which an improvement can be obtained is large and rather
robust with respect to an increase in randomness. Hence we can conclude that
our explicit anticipatory approach provides a robust means of improving the
quality of online dynamic vehicle routing that is generally speaking preferable
compared to an implicit means of anticipatory routing.

5 Conclusions

In this paper we have revisited a dynamic vehicle routing model that defines a
load collection problem, i.e. the pickup and delivery of loads to a central depot.
Conforming to earlier work, we have argued that the use of anticipatory moves
to customers where currently no load is available can improve the quality of
routing. As an extension to earlier work, we have argued that such anticipatory
routing can be greatly improved if decisions for making anticipatory moves are
well–informed. We have used this observation in an evolutionary algorithm by
following an existing framework that integrates evolutionary computation with
learning techniques to predict future situations and to simultaneously base cur-
rent decisions on the currently available information as well as the predicted
information. Specifically, we have learned the times between subsequent loads
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at customers and used this information to predict when new loads will become
available. This information is explicitly used to define the fitness of a planned
route that possibly contains anticipatory moves. By doing so, we have found,
similar to earlier work, transition points in varying problem–specific parameters
between which it makes sense to employ anticipatory routing. Moreover, our
explicit learning approach clearly outperformed an earlier approach that intro-
duced anticipatory moves in an implicit manner. Hence, by analyzing carefully
what it is that should be predicted, learning this information from past experi-
ence and explicitly incorporating it in anticipating the consequences of current
decisions, better results can be obtained than when using no prediction or when
using an implicit means of prediction.
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Abstract. Rheological structure-property models play a crucial role in
the manufacturing and processing of polymers. Traditionally rheological
models are developed by design of experiments that measure a rheologi-
cal property as a function of the moments of molar mass distributions.
These empirical models lack the capacity to apply to a wide range of
distributions due the limited availability of experimental data. In recent
years fundamental models were developed to satisfy a wider range of
distributions, but they are in terms of variables not readily available
during processing or manufacturing. Genetic programming can be used
to bridge the gap between the practical, but limited, empirical models
and the more general, but less practical, fundamental models. This is a
novel approach of generating rheological models that are both practical
and valid for a wide set of distributions.

Keywords: genetic programming, rheology, molar mass distribution.

1 Introduction

Structure-property relationships of materials, like plastics, are very important
in the manufacturing and application of materials. Over the last thirty years, a
multidisciplinary field of relating the performance and function of matter in an
application to its micro-, nano-, and atomic-structure, has developed [1]. This
field is known as materials science. At the basis of all materials science is to
understand how the desired properties of a material in a certain application are
related to the material’s structure and vice versa. The way in which the material
is processed (formed or created) is an important determinant of the structure
and thus of its properties. Radical materials advances can drive the creation of
new products or even new industries. Industrial applications of materials science
include materials design, cost/benefit tradeoffs in the production of materials,
and improving processing and analytical techniques.

One particular field of research in materials science is rheology. Rheology is the
science of the flow and deformation of matter [2]. It is associated to the so-called
visco-elastic materials, which have a complex dynamic behavior. All materials
act as solids when deformation is fast and as liquids when deformation is slow.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 322–331, 2006.
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An every day example of this is glass. When impacted by fast movement, glass
will shatter. However, over time the glass in windows will “flow” to the bottom
under force of gravity. The general flow and relaxation behavior of materials is
therefore a combination of elastic and viscous response.

Important visco-elastic materials are polymers (plastics). Many of the com-
mercially available polymers are produced in chemical plants, accounting for
a multi-billion dollar market. The rheology of polymers is essential in various
aspects. It is a characterization tool as rheology is very sensitive to molecular
structure. It is also key to the complex processes that transform the material
into a final product, such as a plastic bag, an insulating foam sheet, or a car
bumper. During such processes, the polymer is typically molten after which a
time-dependent force and motion is imposed. Rheology governs the response of
the molten material to the deformation.

The modeling of materials is quite difficult for a number of reasons. One reason
is the difficulty in observing everything that is needed to describe the materials
completely despite the vast array of techniques that exist to characterize them.
A second major reason is the inherent multi-scale nature of the composition
and properties of many materials in terms of length scales (from nanometers to
meters) and time scales (from nanoseconds to years). Parts of this spectrum can
be covered by fundamental models but many gaps exist that need to be bridged
by (semi-)empirical models.

This paper describes a novel approach to develop desired rheological models by
making use of genetic programming. The layout of this paper is as follows. The
next section describes the classical approaches to develop rheological models.
It also discusses briefly the limitations of each approach and proposed a new
strategy of modelling rheology. The third section shows how traditional power-
law fitting fails to develop satisfactory models using the new strategy. Finally,
in Section Four, Genetic Programming (GP) is employed as a novel approach to
generate the desired models.

2 Classical Rheology Modelling

Polymer synthesis kinetics leads to systems that consist of a distribution of chains
cite3. Each chain has a different number of monomers incorporated. In general,
it is a huge task to characterize and describe the distribution, especially when
the architecture contains side branches. Focusing on purely linear chains, the
description is considerably simplified. A full description would then consist of a
table of chain lengths or masses and the corresponding number, volume, or weight
fraction of chains of that specific mass. Still, such a description is rather complex,
because thousands of different chain lengths are typically present. Therefore, for
practical reasons, most distributions are captured by a couple of indicators, such
as some moments of the so-called molar mass distribution (MMD). Fig. 1 shows
an example of the moments of a MMD. The lower moments are Mn, the number-
average molar mass, and Mw, the weight-average molar mass. Higher moments
are Mz, the z-average moment, and Mz+1, with Mz+1 ≥ Mz ≥ Mw ≥Mn. The
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distribution and its moments are either available from knowledge of the synthesis
kinetics or from measurements on a small sample of the material. An example
of such an experiment is gel permeation chromatography, where the chains are
led through a porous medium, which separates the chains according to length
because of their different residence time in the medium.
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Fig. 1. Moments of a molar mass distribution

There are many different ways of determining the rheology of polymers [2].
From an experimental point of view, in shear experiments, cylindrical pieces of
polymer of a couple of centimeter in diameter and a millimeter in height are put
in between two metal disks. The sample is heated to the desired temperature
and a prescribed deformation of the disks is executed as a function of time. The
polymer will respond to the deformation in a viscoelastic manner. Forces are
measured during the experiment and relevant rheological quantities are derived
from the deformation-force profile. Two main rheological indicators are taken as
examples in the present paper. The zero-shear viscosity η0 is a measure of the
viscous character of the polymer. The recoverable compliance J0

e is a measure
of the elastic character of the polymer.

One of the most important challenges in rheology is to relate the molar mass
distribution to the rheological properties. This is of prime importance to a poly-
mer producer, because such knowledge enables design of materials for specific
applications.

2.1 Empirical and Fundamental Modelling

Historically, per polymer type, empirical models have been derived to relate
structure to rheology [2]. A number of samples is characterized both in terms of
distribution moments and main rheological quantities. Statistical methods are
used to derive fit equations. Since the dynamic range of inputs and outputs is
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large in this field, the variables are typically logarithmically transposed. The
limited number of data points has led to using linear fit functions in the log-
space, which results in power-law functions in the original variable space. Two
examples of such relations are given here. The zero-shear viscosity is found to
be well-described by only using Mw: η0 ∝ (Mw)3.4. The recoverable compliance
is often described by a function of a ratio of Mz and Mw: J0

e ∝ (Mz/Mw)3.
The main limitation of these models is that they are built upon a limited

number of samples. It is suspected that certain cases require higher moments to
accurately describe the compliance, but the limited data provide no statistical
basis for it. Higher moments are also difficult to determine experimentally.

Recently, physics-based models have been derived to relate structure to rheo-
logy. Such models typically require the full distribution to calculate viscosity and
compliance. The fundamental model under consideration is the double reptation
model in the time-dependent diffusion (DRmTDD) form by [4]. The need to
use the entire distribution as input is a limitation for the practical use of this
fundamental model.

2.2 Enhanced Empirical Modelling with Fundamentals

In this section a strategy is proposed that combines the advantages of both
classical approaches. A large set of theoretical distributions is generated with
significant variability in all aspects of the distribution, such as bimodality and
the presence of high molar mass tails. These full distributions are the inputs
for the fundamental model which generates the relevant rheological quantities.
The moments of each distribution are also calculated. Finally, models are built
relating the rheology to the moments.

The models are allowed to contain the first four moments of the distribution,
because higher moments are not obtainable from experiments. This is important,
because the resulting models will ultimately also be used in connection with
further experimentation. A conventional way of relating the inputs and outputs
is as follows:

η0(·) = η0

(
Mw,

Mw

Mn
,
Mz

Mw
,
Mz+1

Mz

)
≡ η0 (Mw, 1, 1, . . .) ηrel

(
Mw,

Mw

Mn
,
Mz

Mw
,
Mz+1

Mz

)
(1)

J0
e (·) = J0

e

(
Mw,

Mw

Mn
,
Mz

Mw
,
Mz+1

Mz

)
≡ J0

e (Mw, 1, 1, . . .) Jrel

(
Mw,

Mw

Mn
,
Mz

Mw
,
Mz+1

Mz

)
. (2)

Note that the second (polydisperse) part of the right hand side of each equa-
tion is in general still depending on Mw. The first (monodisperse) part is easy
to find by conventional modeling. The polydisperse part is less obvious.
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3 Traditional Power-Law Moment Fits

The previous section introduced a new approach of modeling rheological
structure-property relationships. Recall that the empirically derived models were
only valid for a limited range of molecular weight distributions, whereas the in-
put data for the fundamental models were not easily obtained. The ideal model
is one that is valid for a larger range of molecular weight distributions, but using
easy-to-measure input data.

For the learning input data we used three types of molecular weight distribu-
tions. Set I consisted of 13 strictly monodisperse polymers, i.e. all molecules have
the same mass. Since these are monodisperse polymers their molecular weight
distribution can be characterized by one moment only, e.g. Mw. Set II consisted
of 75 log-normal distributions. The log-normal distribution is characterized by
two moments, namely Mw and Mn. The distributions were designed on a grid
of (5 Mw) x (15 Mw/Mn) values. The polydispersity of the distributions used
in this set ranged from 1 to 20. Set III was constructed using 198 blends of two
log-normal distributions with 5 degrees of freedom. The blends were designed
using the Mw and Mn of the individual log-normal components and the weight
fraction of the low mass component w1. The distributions were designed on a
grid of (1 Mw1) x (3 Mw1/Mn1) x (2 Mw2) x (3 Mw2/Mn2) x (11 w1) values.
The individual component polydispersity in this set ranged from 2 to 10. The
three sets combined resulted in a total of 289 input data observations.

The DRmTDD-model was then used to predict the output for the theoreti-
cal molecular weight distributions. From the multiple outputs that the model
provides, only the relative rheological properties ηrel and Jrel are of interest.

The designed data were used in a normal least squares fit approach. An initial
analysis showed that the relative properties ηrel and Jrel could not be described
using a polynomial function of a single moment ratio, e.g. Mw/Mn [5]. Rheolo-
gists typically use multiplicative power-laws of higher moments of the form:

yfit =
(
Mw

Mn

)a (
Mz

M2

)b (
Mz+1

Mz

)c

, y = ηrel, Jrel. (3)

The log-normal results of Set II also showed that the multiplicative power-
law fit of Eq. 3 cannot explain the curvature in the log-log relationships [5].
Furthermore, such a description was unable to handle the variability through
Mw. Incorporating more moments, e.g. Mz+2/Mz+1, did not improve the fits
either. In order to obtain more accurate fits, the input variables were transformed
to the following three variables:

x1 = log(Mw), x2 = log (Mz/Mw) , and x3 = log (Mz+1/Mz) .

The output variable y is also transformed logarithmically where y = log(ηrel) or
y = log(Jrel). Note that the first polydispersity index (Mw/Mn) is not used since
it showed little correlation with especially Jrel. Using the transformed data, a
least squares fit of a first degree polynomial was fitted again:

log(ηrel) = 0.1730− 0.0467x1 + 0.4814x2 − 0.2030x3 (4)
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log(Jrel) = −0.1373 + 0.0620x1 + 2.2034x2 + 1.5788x3. (5)

The performance of these models on the learning data is given in Fig. 2.
The accuracy of the models, especially that of the model in Eq. 4, was not good
enough for all application purposes and therefore it was decided to try and derive
better models using GP.
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Fig. 2. Performance of the linearised models on the learning data

4 Moment Fits Using GP-Generated Models

It was shown in the previous section that following the traditional empirical
fitting of power laws could not produce the desired rheological model. In this
section we describe how genetic programming is used to develop the “ideal”
rheology model [6].

Three GP-experiments with different settings were made using a MATLAB
toolbox developed internally in The Dow Chemical Company. The experiments
used the transformed input data (x1, x2, x3) and the output y = log(ηrel) and
y = log(Jrel) as learning data. The settings used in the different experiments are
given in Table 1.

Several thousand empirical models are generated in a typical GP-experiment.
Most of the models have similar performance and selecting the best model is not
trivial. Often researchers simply use the R2-statistic as criterion to select the
“best” model based on the fitness measure at the end of the run.

A drawback of this fitness measure is that it does not take complexity of
the function into account. The complexity is a very important factor for the
robustness of a model. It is often possible to obtain a far less complex function
for a slightly decreased in the performance. Less complex models typically have
higher robustness and are therefore more stable in a noisy environment. Since the
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Table 1. GP-experiment parameter settings

Experiment 1 Experiment 2 Experiment 3
Number of independent runs 5 10 10
Number of cascades 10 20 10
Number of generations 30 30 25
Total number of generations 10x30=300 20x30=600 10x25=250
Population size 500 300 200

intended use of this particular model is to emulate a known fundamental model,
it is important it does not violate any physical laws. For this the experience
of the rheologist is needed. Therefore, it is necessary to extract a manageable
number of models to inspect for complexity and compliance to physics.

One indicator of the complexity of GP-models is the number of nodes used to
define the model. The measure may be misleading for it does not discern between
the types of operators used in each node. For example, no distinction is made
between an addition operator and an operator that is an exponential function.
Clearly there is a huge difference in complexity. Another measure of complexity is
the level of nonlinearity or smoothness in model. In [7] an expressional complexity
measure was developed and this measure is used in further analyses.

In order to find the right trade-off between complexity and accuracy, the
Pareto-front is constructed. The Pareto-front is a concept commonly used in
multi-objective optimization [8]. In multi-objective (MO) optimization, apart
from the solution space, which is constructed by the constraints, there is also
an objective space. The objective space is a mapping of the solution space onto
the objectives. The MO-problem is typically written as a single objective opti-
mization problem by defining an a priori weighted sum. The solution of this new
problem is one point in the objective space. Since the optimal weighted sum is
seldom known a priori, it is often better to make the final decision from a set of
weight-independent solutions. This set of solutions is given by the Pareto-front.

The task of model selection is essentially a MO-problem (i.e. accuracy vs.
complexity). Therefore the fundamentals of the Pareto-front can be applied.
Using the Pareto-front for the GP-models has a number of advantages [9]. Firstly,
the structural risk minimization principle can be easily applied to GP-models
[10]. Secondly, it effectively displays the trade-off between the measures, which
enables the user to make an unbiased decision. Thirdly, as only a small fraction of
the generated GP-models will end up on the Pareto-front, the number of models
that need to be inspected individually is decreased tremendously.

In Fig. 3 the Pareto-front is displayed for the GP-models in terms of two
objectives, namely the complexity measure and R2. The complexity measure
needs to be minimised. The second objective, R2 is a measure of the performance
of the models. Using 1-R2 instead allows easier interpretation as both objectives
are minimized. The Pareto-front models are models for which no improvement
on one objective can be obtained without deteriorating another objective. The
optimal model will therefore lie somewhere on the Pareto-front. If the complexity
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Fig. 3. Pareto-front of GP-generated rheological models

and performance have equal importance then the optimal model would lie in the
lower left corner of the Pareto-front. It is clear from Fig. 3 that there are several
models that can reach high R2-values for relatively low complexity estimates.
Using the Pareto-front, the following model was selected for y = log(ηrel)

y = 2.220 · 10−2(3 + x2) ((x1 − x3)x2 cos(x1 + exp(exp(−x2))) − x3) . (6)

The same approach was used to develop a model for y = log(Jrel). The selected
GP-model is

y = 1.7768 (x2(1 + exp(−x2)) + x3 cos(x1 + x2)) . (7)

The performance of the GP-model in Eq. 6 on the learning data is given in
Fig. 4(a). Although there are no physical grounds for using periodic functions, it
is perfectly acceptable to use one period of the cosine to approximate a smooth
function. It is only a matter of scaling. The resulting fit of the model in Eq. 6
is not very good (R2 = 0.89), although it is significantly better than when
using Eq. 4 (R2 = 0.71). However, when the model in Eq. 6 is combined with
the dominant dependence of η0/ηrel on Mw an excellent overall description is
obtained. For such a strong main Mw-dependence is absent, which makes the
fit of Jrel in Eq. 7 more critical. Fig. 4(b) shows the performance of the GP-
model in Eq. 7 on the learning data. Although the R2 of the model is very high
(R2 = 0.99), the fit is still not perfect because on the linear scale (opposed to
the logarithmic scale) the mean square error is 6.9x103. On the other hand, the
fit is much better than when using Eq. 5 (R2 = 0.95).

Fig. 5 shows the performance of the model in Eq. 7 on some validation data.
The validation data consisted of three test sets. The first test set had 28 ob-
servations of a similar design as Set III but using lower values for Mw. These
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Fig. 4. Performance of GP-generated models on the learning data
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Fig. 5. Extrapolation capability of GP-generated rheological model

lower Mw-values are in the range of the Set II Mw, but differ in polydispersity.
The second test set consisted of 30 unimodal log-normal distributions at the
same polydispersity values as Set II, but with higher Mw-values. The third test
set consisted of 7 unimodal log-normal distributions at the same Mw-values as
Set II, but of higher polydispersity. The extrapolation of the model in terms of
polydispersity is good (R2 = 0.91). However, the extrapolation in terms of Mw

leads to predicted values that are too high and the resulting performance of the
model is not satisfactory (R2 = 0.85). Therefore, in general the model should be
used with care when extrapolating outside the known learning space.
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The models have not been validated using data obtained by laboratory ex-
periments because of time and cost constraints.

5 Conclusions

Rheological structure-property models play a crucial role in the manufacturing
and processing of polymers. Classical rheology modelling approaches lack either
broad application of easily obtainable input data.

In this paper we have shown a novel approach to develop complex rheological
models that are not only in terms of easily obtained parameters, but also valid
for a wide range of polymers. The new approach uses the fundamental model to
predict a specific rheological output by using an articifial full MMD. The output
combined with the calculated moments of the full MMD form a learning data
set to be used by Genetic Programming. The resulting nonlinear models have a
much better performance than the classical regression models. It was also shown
that these models are capable of extrapolating with reasonable accuracy.

Genetic programming has given rheologists a new way of modelling complex
structure-property relationships that are both practical and valid for a broad set
of molar mass distribution.
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Abstract. Phylogenetic networks are models of the evolution of a set of
organisms that generalize phylogenetic trees. By allowing the existence of
reticulation events (such as recombination, hybridization, or horizontal
gene transfer), the model is no longer a tree but a directed acyclic graph
(DAG). We consider the problem of finding a phylogenetic network to
model a set of sequences of molecular data, using evolutionary algorithms
(EAs). To this end, the algorithm has to be adequately designed to handle
different constraints regarding the structure of the DAG, and the location
of reticulation events. The choice of fitness function is also studied, and
several possibilities for this purpose are presented and compared. The
experimental evaluation indicates that the EA can satisfactorily recover
the underlying evolution model behind the data. A computationally light
fitness function seems to provide the best performance.

1 Introduction

Phylogenies are used to represent the evolutionary history of a collection of organ-
isms (represented by phenotypical information, or –as assumed throughout this
paper– by molecular sequence data). Typically, this evolutionary history is repre-
sented as a tree, i.e., a hierarchy showing the degree of closeness among the organ-
isms under study. As it turns out, inferring the best hierarchy is a formidably dif-
ficult task under several formulations [1,2]. This hardness barrier can be circum-
vented using heuristic approaches; indeed, evolutionary algorithms (EAs) have
been used in this domain with encouraging results, e.g., [3,4,5,6,7] among others.
At any rate, there is an additional important fact we should not lose sight of: trees
oversimplify our view of evolution, as it has been long recognized by biologists.
There are many events in natural evolution in which the genetic material is not
transferred in a hierarchical way, e.g., hybrid speciation, horizontal gene transfer,
etc. These phenomena, usually called reticulations, give rise to edges that connect
nodes from different branches of a tree, creating a directed acyclic graph structure
that is usually called a phylogenetic network [8].

No single methodology for network reconstruction is widely accepted to date
[9]. For example, the detection and identification of reticulation events has been
approached by Hallett et al. [10] (focusing on horizontal gene transfer), and by
Posada et al. [11] (focusing on recombination events). Nakhleh et al. [12] have
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proposed a method that combines pre-existing consensus trees into a network
with a single reticulation event. Finally, Gusfield et al. [13,14] have devised sev-
eral algorithms for binary input sequences, under different assumptions on where
reticulation events take place, and how they work.

The methods mentioned above are in general based in deterministic approaches
for finding provably good solutions, and hence the well-known limitations arising
from the P �= NP conjecture apply. To the best of our knowledge, the inference
problem has not been approached with metaheuristic techniques so far. However,
this latter approach seems natural in this domain, given the success history of these
techniques (EAs in particular) on the inference of phylogenetic trees. In this work,
we propose an evolutionary approach to the phylogenetic-network inference prob-
lem, and show that it can be a useful tool in this domain.

2 Phylogenetic Networks

As mentioned in previous section, there exist some evolutionary events that do
not fit in the tree-like view of evolution, e.g., hybrid speciation, recombination,
and horizontal gene transfer. In general, these events require the use of rooted
directed acyclic graphs (DAGs) for representing them. In the following, we will
describe the notation used henceforth, as well as some crucial notions such as
time coexistence, and topological distance metrics on phylogenetic networks.

2.1 Notation

Let G(V,E) be a DAG. We will use the notation E(G) and V (G) to denote
respectively the set of edges and vertices of a DAG G. A directed path P of length
k from u to v in a graph G (u, v ∈ V (G)), is a sequence P = 〈u0, u1, · · · , uk〉
of nodes where u = u0, v = uk, and (ui, ui+1) ∈ E(G) for 0 � i < k. Let
α(P ) = u0, and ω(P ) = uk be the endpoints of path P . A node v is reachable
from u in G if there exists a directed path from u to v; in that case, u is an
ancestor of v. Unlike trees, there may be more that one directed path between
two nodes in a DAG. These paths are also termed positive time directed paths
for reasons that will be clear at a later point.

We can now define the in-degree δ↓ of a node as the number of edges arriving
to that node, and the out-degree δ↑ as the number of edges that depart from
that node. There are some degree constraints in DAGs representing phylogenetic
networks. To be precise, a node v ∈ V (E) is a tree node if (a) δ↓(v) = 0 and
δ↑(v) = 2 [root (unique)], (b) δ↓(v) = 1 and δ↑(v) = 0 [leaf], or (c) δ↓(v) = 1
and δ↑(v) = 2 [internal tree node]. If a node v is not a tree node, then it must
have δ↓(v) = 2 and δ↑(v) = 1. Such nodes are termed network nodes. An edge
e = (u, v) ∈ E(G) is a tree edge if and only if v is a tree node, and it would be a
network edge otherwise. Notice that tree nodes describe mutations, and network
nodes describe reticulation events. Fig. 1(a) shows an example of phylogenetic
network. If given any edge in the network at least one of its endpoints is a tree
node (and provided some constraints on the structure of reticulation events are
fulfilled, see Sect. 2.2), the network is termed reconstructible [9].
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Fig. 1. (a) A phylogenetic network N on six observed species (and seven ancestral
species). Tree nodes and network nodes are depicted with circles and squares respec-
tively. Likewise, solid lines denote tree edges, and dashed lines denote the network
edges. (b) X and Y cannot coexist in time.

2.2 Time Coexistence

A crucial consideration that must be taken into account in phylogenetic networks
is the fact that each reticulation event defines a simultaneity plane: in order to
have two species recombining their genomes, or having some genetic information
transferred from a species to another, they must coexist in time. This way, the
set of nodes V (G) of a phylogenetic network G are implicitly ordered in time
according to the particular reticulation events existing in G. To be precise, we
can assign a specific time-stamp t(v) to each node v in the network. Actually,
the absolute values of these time-stamps are not relevant; what matters is their
relative ordering. Thus, if there exists a time directed path between node u and
node v, we would logically have t(u) < t(v), i.e., u is an ancestor of v. However,
if e = (u, v) is a network edge, then t(u) = t(v) because the reticulation events
are instantaneous in the evolution time scale.

Consider Fig. 1(b). Let t(Y ) = t1 and t(X) = t4, and let reticulation events
s1 and s2 happen at time t2 and t3 respectively. Now notice that there does not
exist a positive time directed path from Y to X. However, even though Y is not
an ancestor of X, it is impossible to have a reticulation event between these two
nodes: Y is an ancestor of A, that coexists with B; B is in turn an ancestor of C
that coexist with D, an ancestor of X. Hence, t1 < t2 < t3 < t4. More formally,
we say that two nodes u, v ∈ V (G) cannot coexist in time if:

(a) u is an ancestor of v (or vice versa), or
(b) there is a sequence of positive time directed paths P = {P1, P2, · · · , Pk} such

that α(P1) = u (resp. v), ω(Pk) = v (resp. u), and for 1 � i < k, there exists
a network node whose parents are ω(Pi), and α(Pi+1).

Time coexistence thus imposes constraints on where reticulation events can take
place, and therefore on which DAGs actually represent a feasible phylogenetic
network. These constraints will have to be observed when evolving networks
within the inference algorithms.
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2.3 Topological Distance Metrics on Phylogenetic Networks

Metrics for measuring the topological distance between networks are essential to
interpret the results of an inference algorithm. They can be used to determine to
which extent the features of a target network have been successfully recovered.
For this purpose, we can resort to generalizations of well-known distance metrics
for trees, such as the Robinson-Foulds (RF) distance [15].

The RF distance on trees uses the notion of bipartition: given an edge e
in a tree T , we can partition the leaf set L of T into two disjoint sets A(e)
and C(e), respectively comprising the leaves in L that are reachable from the
root (resp. unreachable) through edge e. The notion of bipartition in trees is
readily generalizable to tripartitions in networks. In this latter case, an edge e
induces a tripartition 〈A(e), B(e), C(e)〉, where A(e) comprising the leaves that
are reachable from the root only through edge e, B(e) comprises the leaves that
are reachable from the root by a path that goes through e, and at least by
another path that does not pass through e, and C(e) is defined as before.

We denote by φ(e) = 〈A(e), B(e), C(e)〉 the tripartition induced by the e.
Two tripartitions φ(e1) and φ(e2) are equivalent (φ(e1) ≡ φ(e2)) if, and only if,
A(e1) = A(e2), B(e1) = B(e2), and C(e1) = C(e2). Now, two edges e1, e2 are
compatible (e1 ≡ e2) if, and only if, φ(e1) ≡ φ(e2). Let δ : B → {0, 1} be defined
as δ(TRUE) = 1 and δ(FALSE) = 0. Let Γ (G1, G2) be defined as

Γ (G1, G2) =
1

|E(G1)|
∑

e1∈E(G1)

⎛⎝1−
∑

e2∈E(G2)

δ(e1 ≡ e2)

⎞⎠ (1)

It is then possible to define the false negative rate FN (G, G̃) = Γ (G̃, G), and
the false positive rate FP(G, G̃) = Γ (G, G̃) between an inferred network G and
a target network G̃. Finally, the RF distance for networks can be estimated as
DRF (G, G̃) = (FN (G, G̃)+FP(G, G̃))/2. Notice that the RF distance is 0.0 for
two identical networks, and 1.0 for two networks without any compatible edge.

3 EAs for Inferring Phylogenetic Networks

In order to tackle the inference of phylogenetic networks with EAs, we consider
a direct approach in which the search is directly conducted on the space of
all possible phylogenetic networks with given leaf set. Thus, each individual in
the population of the EA represents a feasible phylogenetic network, internally
encoded as an adjacency matrix. This means that (i) an initialization process
producing feasible networks must be used, and (ii) the reproductive operators
used must respect feasibility, i.e., they must always produce feasible offspring.
The details of these operators will be described in Sect. 3.1.

Another central element in this EA is the fitness function. The RF metric
defined in the previous section can be used for the off-line assessment of the
results, but it cannot obviously be used during the evolution. On the contrary,
the fitness function must evaluate a phylogenetic network on the basis of the
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Fig. 2. After deleting node F, the subnetwork in (a) takes the shape shown in (b)

particular dataset of molecular sequences to be modelled. Several choices have
been explored for this purpose. These are described in Sect. 3.2.

3.1 Evolutionary Operators

The first issue to be tackled in the EA is the generation of feasible networks for
insertion in the initial population. To do so, each time a new network is required
a random tree is firstly generated (this is done by firstly constructing a random
permutation of the leaves; then, an initial tree is built with the first two leaves in
the permutation, and the remaining leaves are subsequently inserted at random
points of the partial tree until it is finally completed). Once the tree has been
obtained, network nodes are inserted by randomly selecting pairs of tree nodes
that can coexist in time.

After having generated a population of feasible networks, adequate reproduc-
tive operators must be used. Let us firstly consider the recombination operator.
As usual, this operator takes information pieces from two individuals, and com-
bines them to create a new feasible solution. In this case, these information pieces
take the shape of subnetworks, and hence we can express the process in terms of
pruning and grafting subnetworks. Let G1 and G2 be the networks to recombine,
and let trees be represented in LISP notation. The process is as follows:

1. Select a random subnetwork N (rooted at a tree node) from G1.
2. for each leaf u ∈ N do

(a) Find subnetwork U in G2 such that U = (h, (u), U ′) or U = (h,U ′, (u)).
(b) Replace U by U ′ in G2.

3. Select a random subnetwork V from G2.
4. Replace V by V ′ = (h′, N, V ), where h′ is a new internal tree node.

This operator can be regarded as a generalization of the Prune-Delete-Graft
(PDG) operator for trees [5,6]. Thus, we have termed it NetPDG. Notice that
some network node might be broken during the recombination process. This
could happen either in step 1 (if there were a reticulation event between a node
in N and another node not in N), or in step 2b (if a grandson of a network node
were removed). Fig. 2 shows an example of this latter situation.
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As to the mutation operator, it is based on rearranging the topology of a
portion of the network. More precisely, to mutate network G, this operator
(NetSCRAMBLE) selects a random subnetwork N from G, and generates an-
other random network, spanning the same set of leaves, and having the same
number of internal network nodes (network nodes with one parent in N and
other parent outside N are broken). Notice that not only the number of network
nodes in the child might be lower than that of the parental solution(s) (if some
such nodes are broken during recombination –as described before– or during
subnetwork scrambling in mutation); it can be also higher than it if no network
node is broken, and new ones are transferred during recombination. In this work,
we have opted for keeping a fixed, predefined number of network nodes in solu-
tions. Hence, whenever a new solution has a higher or lower number of network
nodes, it is repaired (breaking randomly selected network nodes, or adding new
ones).

3.2 The Fitness Function

As it is the case for phylogenetic trees, the accuracy with which a phylogenetic
network model the evolutionary history of a certain dataset can be computed
via sequence-based methods (i.e., maximum parsimony [16], or maximum likeli-
hood [17]) and distance-based methods [18]. Among these approaches, maximum
likelihood is an appealing way of assessing the quality of a proposed phyloge-
netic model: they consider all possible evolutionary pathways compatible with
the molecular data available, and are known to be asymptotically accurate [19].
We have thus opted for a maximum likelihood approach here.

The general setting is the following: we have a collection D of n sequences,
representing some molecular data from n different species. Here, these sequences
are taken from the alphabet Σ ={A, C, G, T}, i.e., they represent DNA sequences.
We assume a certain evolution model at the molecular level, indicating the like-
lihood that a certain character (nucleotides in this case) mutates into another
one, say Π = {πij}i,j∈Σ . Each site in the sequence is assumed to evolve inde-
pendently. Likewise, we assume a certain mechanics for reticulation events, i.e.,
network nodes indicate recombinations, and these produce organisms whose ge-
netic sequence is, e.g., the result of a uniform crossover of the parental sequences.
When this general evolutionary framework is superimposed on a particular net-
work N , we can calculate P (D|N), that is, the likelihood that N gave rise to D.
A potential drawback of this method is its computational cost. Related to this
issue, we have considered several alternative formulations of the fitness function
to estimate P (D|N), as described below.

The first method is based on the formula used for likelihood calculation in
trees. Let Lr

k,sk
be the likelihood of a network rooted at node k, given that that

node has nucleotide sk in site r. If node k is the parent of nodes i and j in the
network, and both are tree nodes, then,

Lr
k,sk

=

(∑
si∈Σ

πsk,si
Lr

i,si

)⎛⎝∑
sj∈Σ

πsk,sj
Lr

j,sj

⎞⎠ . (2)
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In case node i were a network node, the first term in Eq. (2) would have to
be changed accordingly. To be precise, the state of node i would depend on
the state of node k, and also on the state of the other parent, say node z.
This bivariate dependency precludes the fast recursive evaluation of Eq. (2). To
circumvent this issue, we can take into account the fact that, due to the semantics
of recombination, the state of node k propagates with 1/2 probability to node
i. Thus, we approximate this first term as 1/2 · Lr

v,sk
, where v is the unique

child of node i in the network. The same reasoning would apply to node j were
it a network node. While this is a mere approximation of the exact likelihood
of these network nodes, it allows a very fast recursive evaluation of the overall
likelihood of the complete network. This evaluation is completed by noting that
(i) the likelihood Lr

w,s of a leaf is 1.0 if the rth site of the wth sequence is s,
and 0.0 otherwise, and (ii) the complete likelihood of the network for site r
is Lr =

∑
s0∈Σ πs0L

r
0,s0

, where πs is the marginal probability of nucleotide s.
Finally, since sites evolve independently, the likelihood of the network for the
whole data is L =

∏m
i=i Li, m being the length of sequences. We term this

evaluation method ABE (after approximate bayesian estimation).
Monte Carlo (MC) methods constitute an alternative to ABE providing an

asymptotically exact numerical estimation of the network likelihood. This esti-
mation is obtained by constructing N samples of the states of internal nodes in
the network, and computing

Lr =
1
N

N∑
i=1

∏
w

πsi
w′ ,sw

(3)

where the inner product ranges over all leaves w of the network, w′ is the parent
node of a certain w, si

w′ is the ith sampled state in the rth site for node w′, and
sw is the actual state in the rth site of the wth sequence. In order to have a
correct MC integration, the probability of each sample must be proportional to
its real likelihood. This can be easily accomplished by assuming a random state
at the network root (following the marginal probabilities πs), and simulating the
evolution of this site along the network, using the stochastic model Π considered.

The MC method provides an asymptotically more accurate estimation of the
exact likelihood, but it has a much higher computational cost than ABE. In order
to alleviate this cost partially, a combined method (CMB) has been considered.
The basic idea is identifying all the subtrees in the network (that is, maximal
subgraphs without network nodes), using the MC method just to sample the
states for the remaining nodes. Subsequently,

Lr =
1
N

N∑
i=1

∏
v

Lr
v,si

v

∏
w

πsi
w′ ,sw

(4)

where the first product ranges over all internal nodes v being the root of a
maximal subtree, si

v is the corresponding value in the ith sample, the second
product ranges over all leaves that are not part of a maximal subtree, and w′, si

w′ ,
and sw are interpreted as before. Thus, the exact likelihood value is computed
for maximal subtrees, and the cost of the MC component is reduced.
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4 Experimental Results

The data used in the experiments have been synthetically generated from known
evolution models, in order to allow an objective measurement of the extent to
which the inference algorithms were capable of recovering the underlying model.
The process consists of generating a random network with the desired number
of leaves (n) and network nodes (k), and then constructing nucleotide sequences
by simulating the evolution of r sites throughout the network. The stochastic
evolution of sequences is done assuming the Kimura 2-parameter model [20] with
transition rate α = 0.05 and transversion rate β = .025. We have considered net-
works with n ∈ {10, 25} leaves, k ∈ {0, 1, 2} network nodes, and r ∈ {100, 250}
sites per sequence. Both the procedure for generating the dataset, and the pa-
rameters used are similar in related woks [12,16].

A steady-state EA with standard parameters (popsize = 100, pX = .9,
pm = 1/�, � being the number of nodes, maxevals = 1000n, binary tournament
selection) has been used in the experiments. No fine tuning of these parameters
has been attempted. To allow a wider exploration of the capabilities of the EA,
a different problem instance has been used in each run. This way we are eval-
uating the algorithm on many samples of the whole problem class, rather than
just on a couple of instances. Results have been obtained for the three fitness
functions described in Sect. 3.2. Twenty runs have been done for each parameter
set for functions MC and CMB. Function ABE turns out to be around 50 times
faster than MC (using 500 samples per evaluation), so we have conducted 1000
runs for it per parameter set. The best networks found are evaluated in terms
of the RF distance with respect to the “real” network. For the network model
considered, the most related approach in the literature is [12]. Unfortunately, the
SPNET program used there is not available. For this reason, we have devised an
combination of greedy-exhaustive heuristic for comparison purposes: we firstly
construct a tree using an agglomerative technique such as complete-link (CL)
or single-link (SL), and then exhaustively check all locations where to place the
network nodes (one at a time), keeping the best network.

Complete results are shown in Fig. 3. As expected, the ABE function performs
very well in the k = 0 case (i.e., tree models) since it captures the exact likelihood
of each tentative solution. For n = 10, k > 0, the MC function provides better
results than ABE (the MC estimation may be better than the approximation
used in ABE); however, for n = 25, k > 0, the differences are negligible (not
statistically significant, using a Wilcoxon ranksum test [21] since data is not
normally distributed), and the best results of ABE are even better than those
of MC for k = 1. In general, CMB performs similarly to ABE, and all three
evolutionary approaches are much better (statistically significant) than CL and
SL. Notice also that ABE can recover the original network in at least one run
for all parameter settings except n = 25, k = 2. We have also conducted similar
experiments with networks generated with an additional constraint: the parents
of network nodes must be located at the same depth. The results are essentially
the same as depicted in Fig. 3 for unconstrained networks.
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Fig. 3. Results for different instance sizes (from left to right in each group of five boxes:
ABE, MC, CMB, CL, and SL). The boxes comprise the second and third quartile, and
the whiskers indicate the range of the data. (a) Sequences of 100 nucleotides. (b)
Sequences of 250 nucleotides.

5 Conclusions

We have analyzed several evolutionary approaches for the inference of phylo-
genetic networks from molecular data. The results indicate that EAs can be a
useful tool in this domain, since it has been shown that they can provide network
models very close to the real evolutionary model hidden in the data (sometimes
recovering it in full), outperforming some ad-hoc heuristics as well. We have
compared three different fitness functions for guiding the evolution. The ABE
function seems to provide the best tradeoff between the quality of the results,
and the computational cost implied.

Future work will be directed to analyze the generalizability of this evolution-
ary approach to other reticulation events. For example, recombination can be
analyzed on diploid organisms (the offspring would inherit a full DNA sequence
from each of the parents). The approach can be also readily adapted to tackle
alternative assessment models such as maximum parsimony.
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supported by MCyT project TIN2005-08818-C04-01.
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Abstract. This paper presents a new approach to the delineation of local labour 
markets based on evolutionary computation.  The main objective is the region-
alisation of a given territory into functional regions based on commuting flows. 
According to the relevant literature, such regions are defined so that (a) their 
boundaries are rarely crossed in daily journeys to work, and (b) a high degree of 
intra-area movement exists.  This proposal merges municipalities into func-
tional regions by maximizing a fitness function that measures aggregate intra-
region interaction under constraints of inter-region separation and minimum 
size. Real results are presented based on the latest database from the Census of 
Population in the Region of Valencia.  Comparison between the results obtained 
through the official method which currently is most widely used (that of British 
Travel-to-Work Areas) and those from our approach is also presented, showing 
important improvements in terms of both the number of different market areas 
identified that meet the statistical criteria and the degree of aggregate intra-
market interaction. 

1   Introduction 

Delineating local labour markets (LLMs) is an exercise that has become very com-
mon in the last decades across developed countries [1]. These sets of functional areas 
are seen as an alternative to the use of local and regional administrative areas as the 
relevant geography for statistical purposes and for the design, implementation and 
monitoring of labour market and other public policies in related fields such education 
and housing markets. The reason for this is that administrative areas are defined by 
boundaries that very frequently derive from historical reasons, and so it is not assured 
that they provide a meaningful insight of the territorial functional reality. Most coun-
tries have opted for defining markets through the aggregation of units which are  
intimately related in terms of exchange of flows. Thus accordingly to their nature  
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in most developed countries travel-to-work commuting flows have been used to iden-
tify LLMs instead of defining markets characterized by the homogeneity of the 
constituting geographical basic units in certain attributes (a review of procedures 
which concentrate on this last option can be found in [19]). 

A LLM represents an area where the majority of the interaction between workers 
seeking jobs and employers recruiting labour occurs. This refers to what Goodman [2] 
called external perfection (the boundary of the area is rarely crossed in daily journeys 
to work) and is joined by high degree of intra-market movement (so that the defined 
market is internally active and so as unified as possible) to form the basis of the ideal 
LLM. More than a decade ago Eurostat [3] established a code of good practices to 
guide the selection of a specific procedure: (1) the ideal map of LLMs should be 
based on statistical criteria, thus defined in a consistent way to allow comparison for 
statistical and policy purposes, (2) the procedure should allow the delineation of 
boundaries between areas within which most people both live and work, (3) each 
basic spatial unit should be in one, and only one LLM, (4) contiguity should be re-
spected, (5) a certain degree of self-containment should be reached, so that most of 
the LLM’s workers live in that area and most of the area’s employed residents should 
work locally, (6) the map should consist on homogeneous units whose size should 
overpass a minimum threshold, (7) the areas defined should not be unnecessarily 
complex from a topographic point of view, (8) the map of LLMs should respect where 
possible the standard administrative top tier boundaries, this being considered advan-
tageous from both statistical and policy points of view and finally (9) the procedure 
should be flexible enough to allow evaluation and adjustment, although the possibility 
of varying the statistical criteria between regions must be excluded. The preference 
for detail (delineating as many criteria-meeting LLMs as possible) is also frequently 
included as one additional criterion.  

Despite sharing a common basic view about the ideal features of such an area, cur-
rent official methods have a very diverse nature and are mostly based in sets of rules 
whose sophistication substantially varies nationally and, to a certain degree, tempo-
rally. In [4] several classifications of these official procedures are presented. One of 
the procedures that has been more successfully applied is that of Coombes et al. [5] 
which has been used in the United Kingdom for the delineation of LLMs (so-called 
Travel-to-Work Areas, TTWAs) since the 80s. This procedure has also been used, 
with minor changes, to define LLMs in Italy [6], [7], [8], Spain [9], New Zealand [10] 
and Australia [11], among other countries. This is the procedure that serves as inspira-
tion for the one proposed in the article. In our proposal the regionalisation problem is 
presented as the maximization of markets’ internal cohesion in terms of travel-to-
work subject to a number of restrictions among which stands meeting certain self-
containment and minimum size (in terms of occupied population) thresholds, with the 
aim of identifying as many independent markets as possible, and without making use 
of contiguities constrictions or distance measures. Unlike most current procedures, the 
method proposed here meet the criteria listed above and means a significant im-
provement in measurable indicators such as the number of LLMs identified which 
meet the stated criteria compared with alternative methods. 

Given the size of the problem, which can be characterized as NP-complete, an ex-
haustive search of the solution is not possible, this is the reason why an evolutive 
approach is proposed where specific operators and strategies have been designed and 
implemented in experimentation using the latest figures available for Spain [12]. 
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2   Problem Description 

Let { }1 2 nA A ,A , , A=  be a set of areas (territory). The objective is to obtain the set 

of regions { }1 2 mR R ,R , ,R=  so as 
m

i 1
i

R A
=

=  and [ ]i jR R , i, j 1,m , i j∩ = ∅ ∀ ∈ ≠ ,  

that maximizes the fitness function  

 ( ) ( )
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being ( )R i  the region containing area i, and 

s t

s t

R ,R ij
i R j R

W W
∀ ∈ ∀ ∈

=  (3) 

where ijW  is the number of commuters from area i to area j, that is the number of 
employed residents in area i that work in area j. 

( )f ⋅  represents the interaction index between an area and the rest of the region to 
which it belongs, while the introduction of the number of regions tries to maximize 
the division of the territory.  

Besides, each one of the regions iR R∈  must fulfil two constraints of self-
containment ( 1β , 2β ), 

2 1
β ≥ β  and minimal size ( 3β , 4β ), 

3 4
β ≥ β : 

i i i i

i i

R ,R R ,R

1
R ,A A,R

W W
min ;

W W
≥ β  (4) 

iR ,A 4W ≥ β  (5) 

A trade-off between both constraints has been introduced similarly to [5], but in the 
formulation proposed by Casado [9]. According to this trade off, the self-containment 
absolute requisite is relaxed for regions which are sufficiently large following a linear 
relationship. This trade-off establishes a new constraint: 

i i i i

i

i i

R ,R R ,R

R ,A
R ,A A,R

W W
min ; a b W

W W
≥ + ⋅  

2 4a b= β − β  

2 1

4 3

b
β −β

=
β −β

 

(6) 

We have also included a requisite to guarantee some degree of contiguity by em-
ploying only commuting data: an area can only belong to a region if some of the areas 
to/from it has more output/input commuting flows is also part of that region.  
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3   Evolutive Proposal 

The structure of the evolutive algorithm for the regionalisation of the territory is: 

Produce a random initial population of size n 
Repeat 
 Evaluate fitness of all individuals 
 Generate new individuals by recombination 
 Generate new individuals by mutation 
 Evaluate fitness of all new individuals 
 Order all individuals (old and new) by fitness 

Generate a new population choosing the n best indi-
viduals 

Until there were no change in the best individual for a 
number of iterations  

3.1   Individual Representation 

The individuals of the population represent feasible solutions, that is, the aggregation 
of all the geographical basic areas composing territory A into no over-lapping local 
labour markets (regions). Each individual is represented by a vector of n components, 
each of which corresponds to an area of A, and takes the value of the identifier of the 
region the area belongs to. 

1 2 1 3 2 1 3 2 3 4 Individual 
 

{ }=
1 1 3 6

R a ,a ,a  { }=
2 2 5 8

R a ,a ,a  { }=
3 4 7 9

R a ,a ,a  { }=
4 10

R a  

3.2   Selection 

Selection of the individuals to be affected by recombination and mutation operations 
is performed following a ranking method [13], according to which those individuals 
scoring higher in the fitness function have a larger probability of being selected.  

3.3   Recombination Operators 

Due to the large number of constraints that the individuals must fulfil, and very nota-
bly to the fact that in a regionalisation exercise it is important to guarantee the exhaus-
tive coverage of the territory and the avoidance of overlapping between regions, the 
usual operator of recombination does not in many cases lead to feasible solutions. 
This is the reason why we have designed a wide group of specific operators which 
allow a more rapid evolution of the population to acceptable solutions: 

− Rec1: a crossover point is randomly selected. Offspring is generated by taking the 
initial part of one of the parents and the final part of the other one. This is the usual 
operator employed in genetic algorithms. However, unacceptable offspring is a fre-
quent result  of this operator in this specific case, since frequently there is not a 
compatible correspondence between the region identifiers of both parents. 
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Parent #1 1 2 1 3 2 1 3 2 3 4  

            
Offspring 1 2 1 3 2 3 4 2 4 5 Crossover point= 4 

            
Parent #2 1 2 3 4 2 3 4 2 4 5  

To avoid such discrepancies in the codification of the regions of both parents two 
new operators of recombination have been introduced: 

− Rec2: A region identifier belonging to parent #1 is randomly chosen. The areas 
with identifiers lower or equal to the chosen one are inherited by the offspring. The 
rest of the areas are then assigned the identifiers of parent #2, except for the cases 
when this involves a region for which one or more of its constituting areas were al-
ready in the offspring. In such cases, the areas take the identifiers from parent #1. 

Parent #1 1 2 1 3 2 1 3 2 3 4  
            

Offspring 1 2 1 4 2 1 4 2 4 5 Crossover region = 2 
            

Parent #2 1 2 3 4 2 3 4 2 4 5  

− Rec3: a crossover point is randomly selected. For the areas previous to that point, 
the offspring takes the values of parent #1. From that crossover point, values from 
parent #2 are inherited, unless this involves a region with an area already set in the 
offspring, when the identifier of parent #1 is used.  

Parent #1 1 2 1 3 2 1 3 2 3 4  
            

Offspring 1 2 1 3 2 1 3 2 3 5 Crossover point = 4 
            

Parent #2 1 2 3 4 2 3 4 2 4 5  

Since the areas characterised by lower identifiers are also assigned to regions with 
lower identifiers, their probability of being taken from parent #1 is greater than that 
of areas with high identifiers. To cope with this we have added two recombination 
operators (Rec4 and Rec5), as variations of Rec2 and Rec3 respectively. In them a 
random recoding of the regions in the representation of both parents is performed 
previously to the recombination. 

3.4   Mutation Operators 

We have designed an extensive set of mutation operators, some of them specifically 
intended for the delineation of local labour market areas, with the aim to accelerate 
the obtaining of individuals with adequate fitness: 

− Mut1: This is the mutation operator usually employed in evolutionary computation. 
The only difference is that instead of muting just one gene (area), we mute a ran-
domly selected number of genes, changing the region they belong to. 
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− Mut2: This operator is analogous to Mut1. In this case, however, instead of choos-
ing the region assigned to the muted area on a random basis, such area is merged 
with its optimal region, that is, the region with a higher interaction index with it: 

( )
( )

{ }

{ }

{ }

{ }

j j

j j j

2 2
i ,R R , i

R R R i A,R R ,Ai ,A A, i

W W
R ' i arg max

W W W W∀ ∈ −
= +

⋅ ⋅
 (7) 

− Mut3: In this case, two randomly selected regions are merged. 
− Mut4: A region is randomly chosen. Each of its constituting areas is then merged 

with its optimal region (see Mut2). So, as results of this operator, the number of re-
gions in the offspring is one less compared to its parent. 

− Mut5: This operator divides a region into two. The splitting process is as follows: 
1. A region iR  is randomly selected. This region must fulfil two constraints: 

(a) 
iR ,A 4W 2> β  and (b) ( )i iR ,A 4focus R ,AW W− > β  where 

( ) { } { }( )ii a R a ,A A, afocus R arg max W W∀ ∈= +  (that is, the region is large 

enough). 
2. An area belonging to iR  is randomly chosen. It is then assigned to the 

new region '
iR . 

3. Another area belonging to iR  is randomly chosen. It is then assigned to 
the new region ''

iR . 
4. The rest of the areas belonging to iR  are taken at random, being assigned 

to region '
iR  or ''

iR  which they have a greater interaction index with.  
− Mut6: This operator creates a new region from another one by removing from the 

latter a number of areas sufficiently large so as to form a valid market: 
1. Similar to Mut5. 
2. An area belonging to iR  is chosen at random, being assigned to the new 

region '
iR . 

3. If region '
iR  does not fulfil the size constraint (equation 5), it takes the 

area belonging to iR  with which it has a higher interaction index. This 
process is repeated until '

iR  is large enough.  
− Mut7: This operation removes from a region the areas that score lower in the inter-

action index when measured with regards the rest of the region. Such areas are then 
assigned to their optimal regions: 

1. Similar to Mut5. 
2. The area to remove is selected as: 

{ } { }

{ } { }

{ } { }

{ } { }

i i

i
i i

2 2
j ,R j R j , j

j R j ,A A,R j R j ,A A, j

W W
s arg min

W W W W
− −

∀ ∈ − −

= +
⋅ ⋅

 (8) 

3. If { }i 4R s ,AW − > β  ( iR  is large enough), the area s is assigned to its optimal 

region, and step 2 is repeated. If that condition is not fulfilled, mutation is 
finished. 
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− Mut8: An exchange of areas between regions is performed. One area is randomly 
chosen and it is assigned to its optimal region. One area of that optimal region is 
then transferred to the source region. 

− Mut9: This operator is similar to Mut2 in the sense that areas are assigned to their 
optimal regions. In this case, however, instead of a single area a group of them is 
transferred. Such a group is chosen so that the relationships among its component 
areas are high. The process is as follows: 

1. An area i is randomly selected. 
2. The k areas belonging to ( )R i  with which area i has more interaction are 

also selected. k is chosen at random. 
3. All the selected areas are assigned to the optimal region for area i. 

− Mut10: As, in some cases, there is a great interaction between regions, this operator 
tries to redistribute areas in such regions. The procedure is: 

1. A number k 2≥  of regions to mute is randomly chosen. 
2. A region iR  is selected at random. 
3. The k-1 regions that have a higher degree of interaction with iR  are se-

lected. 
4. These regions are then disintegrated into their constituting areas. 
5. k areas from this new group are selected at random. These areas act as 

seeds for the new regions. 
6. The rest of unassigned areas are individually taken at random and merged 

with their optimal region among those k new regions. 

4   Experimentation 

Our proposal has been implemented for the delineation of local labour markets in 
 the Region of Valencia, Spain, using data about travel-to-work derived from the 
Spanish Census of Population [12]. This data allow us to build a 541x541 matrix 
(541 is the number of municipalities constituting the Region), where each cell repre-
sents ijW . 

Parameters employed in the following examples are: size population = 100, off-
spring size = 123 with the following individuals from the application of the different 
operators of recombination and mutation (5 for each recombination operator, 30  
for mutations 5 and 6; and 6 for each one of the other mutation operator), iterations 
without changes in the best individual to stop the process = 1,000. Since one of  
the criteria stated in the introduction section of the paper is Detail, i.e. reaching  
the highest possible number of independent LLMs, division operators are over con-
sidered. 

The thresholds for the self-containment and minimum size conditions (equations 4 
to 6) are: β1 = 0.7, β2 = 0.75, β3 = 20,000 and β4 = 3,500; that is, the levels used in the 
British procedure for the delineation of Travel-to-Work Areas. This allows the com-
parison of our results with those from that procedure. Parameter γ  of “neighbour-
hood” is established to 5.  
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Fig. 1. Comparison between the delineation employing Coombes method (left) and our evolu-
tionary approach (right) 

Our algorithm has been executed 100 times. Results depicted in Table 1 and Figure 1 
are quite straightforward. The number of independent markets identified through the 
evolutive procedure is approximately 35 per cent larger compared to the results 
reached through the use of the British official method which has become the standard 
in the field. In this sense, this procedure performs clearly better according to one of 
the good practices criteria listed in Section 1, that of Detail. In territorial terms it is 
clear that the evolutive procedure manages to identify independent LLMs following a 
nested pattern in which LLMs identified in the TTWAs’ method are divided into 
LLMs which keep on meeting the statistical requisites which are the same (notably 
self-containment, criterion 5, and minimum size, criterion 6), but with little variation 
of the external boundaries of such markets. Also criteria 2 and 3 are fully met by our 
procedure. Regarding criterion (1), the procedure proposed here is clearly based on 
statistical properties of the areas considered, and it is not subject to subjectivism 
(which is the main concern in that criterion), although as in any other genetic algo-
rithm procedure, it is affected by a lack of determinism in the results that could at 
least potentially be relevant in a policymaking context. Assessing the degree of ac-
complishment of criterion (8) is difficult here due to space constraints, although it can 
be stated that the procedure proposed meets this criterion in a degree that is at least 
equal to that of the TTWAs procedure. Finally, and concerning criterion (4), the num-
ber of discontinuities is higher in our evolutionary approach (although the absolute 
number remains low considering that no information on geographical distance or 
contiguity between basic areas has been used in the procedure). It is important to 
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state, however, that these are raw results, and that the observed discontinuities can be 
solved in any case, as it was in the TTWAs case, through the application of a final 
calibration stage in which residual areas are assigned to LLMs they share boundaries 
with trough a decision rule based on an interaction measure. 

Table 1. Comparative results between Coombes method and our evolutionary proposal 

 Our proposal 
 

Coombes 
method Best 

individual Mean Standard 
deviation 

Number of labour markets 46 62 59.76 1.07 
Fitness function 129.18 191.03 182.43 3.29 
Non-contiguous regions 4 7 - - 

5   Conclusions and Current Works 

The degree of success in the delineation, implementation and monitoring of public 
policies in different contexts (Statistics, labour markets, housing markets, transporta-
tion, urban planning…) heavily depends on the adequateness of the geographical 
reference. Official methods for the delineation of functional areas which serve as a 
reference for these purposes have until now rely on procedures that very frequently 
were designed some decades ago and that can now be improved through the use of 
new procedures such evolutionary computation that allow to deal with complex data-
sets in a different way so as to reach better results. In this piece of work we model the 
regionalisation problem as one of optimisation which is then solved through a genetic 
algorithm based on operators and strategies that have been designed to meet the speci-
ficity of the problem. The need for exhaustively covering the territory and avoiding 
overlapping is one of the more characteristic features of the regionalisation problems. 
The experimental results show that, once the respect of statistical constraints such 
minimum size or minimum separation between functional regions is granted, the 
proposed method performs better and identifies a number of LLMs that is signifi-
cantly larger than that resulting from current official methods whilst it manages to 
meet all the criteria that has been included in the codes of good practices like such of 
Eurostat, the Statistical Office of the European Commission. 

The major concern in this policy making context is undoubtedly the fact that the 
use of our evolutionary approach does not guarantee that the results of the regionalisa-
tion exercise would remain unaltered in different trials. Despite giving place to worse 
results in the referred terms, traditional methods are consistent through different ap-
plications. Further research is needed on the way the convergence can be assured in a 
reasonable time and on the reduction of uncertainty. Different solutions are to be 
explored in immediate research: statistics extracted from different independent execu-
tions [14], [15], parallel evolutionary algorithms [16], application of other evolution-
ary proposals for clustering as the Grouping Genetic Algorithms [17] and multi-
objective optimization [18]. 
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Abstract. The choice of an adequate representation plays a major role in any 
kind of evolutionary design optimisation. A flexible and preferably adaptive 
description of the shape is advantageous in many aspects as it guarantees a wide 
variety of geometry changes while keeping a low number of parameters. In the 
past free form deformation methods which are well known from the field of 
computer graphics have already been combined successfully with evolutionary 
optimisation. In the present paper general free form deformation (FFD) 
techniques are compared to the so-called direct manipulation (DM) of free form 
deformations method which promises several advantages in a design 
optimisation of complex systems. A general optimisation framework which 
allows the combination of these representations with evolutionary algorithms is 
described in detail. Its applicability is illustrated in a turbine blade test scenario 
to analyze the effects of the representations in evolutionary design optimisation. 

1   Introduction 

A crucial step when applying Evolutionary Algorithms to design optimisation 
problems is the definition of a representation of the design to be optimised by a set of 
parameter. Since the representation is highly problem specific various representations 
have been proposed for different application areas. Splines probably represent the 
most commonly used method for shape descriptions. A set of control points is used to 
define a spline curve or a spline surface which represents the cross-section or the 
surface of a geometry. This representation has been successfully used predominantly 
for the optimisation of relatively simple structures like turbine blades [1], aircraft 
wings or heat exchangers [2]. A major drawback of spline representations is the fact, 
that a large number of parameters is required to represent very complex shapes, i.e., 
the complexity of the representation is directly related to the complexity of the design.  
Additionally, if computational fluid dynamics calculations are required to determine 
the quality of new shapes, new grids have to be calculated. While automatic grid 
generation is possible for simple shapes, it is difficult or sometimes even impossible 
for complex designs. For these cases, the generation of the computational grid is a 
difficult and time consuming manual process. In particular, in the context of 
evolutionary algorithms, manual grid generation does not seem to be feasible.  

An alternative representation that alleviates both problems (complex shapes and 
grid generation) is the free form deformation (FFD) method. In the FFD method 



 DMFFD in Evolutionary Design Optimisation 353 

deformations of an initial design are described instead of the geometry itself. Therefore, 
the number of parameters is independent of the complexity of the shape. It is solely 
determined by the required flexibility of the deformation. FFD techniques have been 
introduced in the field of computer graphics and computer animation for object 
manipulation [3]. They have been applied to shape optimisation of aerodynamic 
problems by Perry et al. in [5] and together with evolutionary algorithms by Menzel et 
al. in [6]. It has been shown that FFD methods realize a good trade-off between shape 
flexibility and a low number of parameter which in turn results in a low dimensional 
search space for the optimisation. Furthermore, it has been demonstrated that the shape 
deformations defined by the FFD method can equally well be applied to deform a grid 
for computational fluid dynamics calculations. This way it is possible to omit the 
manual grid generation even for complex geometries. In many cases, design 
optimisation of complex shapes only becomes feasible when FFD methods are used for 
the representation.  

An FFD system, which is described in Section 2 in more detail, is generally 
defined by a lattice of control points. A modification of the control point positions 
results in a deformation of the geometry inside the control volume. For the 
optimisation it is important to minimize the number of parameters. This is achieved 
by a proper initialisation of the control volume because the number and position of 
control points determines the shape flexibility.  

One important aspect is to maximize the influence of the control points on the shape 
by placing control points close to the sensitive regions of the geometry. For the search 
process it is advantageous to generate a set of control points with which geometrical 
variations can be realized without the need for correlated changes of control points. 
Furthermore, the transformation should allow changes that are sufficiently local.  

Therefore, this step of constructing an optimal control volume requires experience 
of the designer with the representation and more crucially with the problem at hand. 
Using an online adaptation of the grid of control points, which has been suggested in 
[6], can alleviate the problem of an optimal initial grid, however at the expense of an 
additional burden on the search process that is likely to result in additional evaluations 
and increased computing time.  

Whereas the first problem addresses the dimensionality and flexibility of the 
representation, the second problem emerges purely due to the position of the control 
points in the design space. The position determines the structure of the search space 
and influences the optimisation process.  

For both the dynamics of the search process and the design freedom, it would be 
desirable to directly specify shape variations instead of changing positions of control 
points in a grid that result in deformations of the “attached” shape as it is the case in 
standard FFD.  

Direct Manipulation of Free Form Deformation (DMFFD) allows this. DMFFD 
decouples the control point grid of the FFD from the design modifications. Instead of 
defining the parameter of the transformation function, a set of “handles” to the design – 
usually surface points – are defined. The effect is a well defined influence of parameter 
on the shape. Furthermore, the search dimension is independent of the control volume, 
keeping all other attributes of the underlying free form deformation.  

In this paper, we apply both methods, the standard free form deformation and the 
direct manipulation of Free Form Deformation, to a design optimization problem and 
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compare the results with respect to quality, stability and convergence time. The 
optimization of a 2D transonic gas turbine stator blade does not represent the complex 
shape problem for which the FFD methods are actually most suitable. However, it 
indicates the strong and weak points of both representations and serves as a kind of 
intermediate benchmark problem.  

The remainder of this paper is organized as follows. In Section 2, FFD and 
DMFFD are described in more detail. The combination of both representations with 
evolutionary computation is illustrated in the turbine blade test scenario in Section 3 
and the effects of the representations are discussed. We conclude in Section 4. 

2   Direct Manipulation of Free Form Deformations 

2.1   Free Form Deformation (FFD) 

The basic idea of the free form deformation is depicted in Fig. 1 a). The sphere 
represents the object which is the target of the optimisation. It is embedded in a lattice 
of control points (CP).  Firstly, the coordinates of the object have to be mapped to the 
coordinates in the spline parameter space, a procedure which is called ‘freezing’. If 
the object is a surface point cloud of the design or a mesh which originates from an 
aerodynamic computer simulation (as in our example in Section 3) each grid point has 
to be converted into spline parameter space to allow the deformations. For this 
calculation various methods have been proposed, e.g. Newton approximation or 
similar gradient based methods [4], [7]. After freezing the object can be modified by 
moving a control point to a new position. The new control point positions are the 
inputs for the spline equations and the updated geometry is calculated. Since 
everything in the control volume is deformed, a grid from computational fluid 
dynamics that is attached to the shape is also adapted. Hence, the deformation affects 
not only the shape of the design but at the same time the grid points of the 
computational mesh which is needed for the Computational Fluid Dynamics (CFD) 
evaluations of the proposed designs. The new shape and the corresponding CFD mesh 
are generated at the same time without the need for an automated or manual re-
meshing procedure. This feature significantly reduces the computational costs and 
allows a high degree of automation [5], [6], [8]. Thus, by applying FFD the grid point 
coordinates are changed but the grid structure is kept. 

As mentioned in the introduction the main disadvantage is the sensitivity of the 
FFD method to the initial placement of the control points. An inappropriate set-up 
increases the necessary size of the parameter set and therefore the dimensionality of 
the search space. One of the reasons is for example that the influence of a control 
point on an object decreases with the distance from the object. Even a small object 
variation requires a large modification of the control point if the initial distance 
between object and control point is large (this also violates the strong causality 
condition that is important in particular for Evolution Strategies). This in turn often 
modifies other areas of the design space which has to be compensated for by the 
movement of other control points. Hence, often correlated mutations of control points 
are necessary for a local change of the object geometry. 

 To reduce the influence of the initial positions of the control points direct 
manipulation is introduced as a representation for evolutionary optimisation which 
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Fig. 1. a) Free Form Deformation [5]. The design is embedded within a lattice of control points. 
The modification of control points affects the shape as well as everything else inside the control 
volume. – b) Direct Manipulation of Free Form Deformations. The object point is chosen 
directly on the surface and the required movements of the control points to realize the target 
movement of the object point are calculated e.g. by the least squares method. The dotted control 
volume is invisible to the designer as s/he works directly on the object points; the control 
volume can be chosen arbitrarily. 

allows to determine variations directly on the shape. Therefore local deformations of 
the object depend only on the so called object point.  

2.2   Direct Manipulation of Free Form Deformations 

Direct manipulation of free form deformations as an extension to the standard FFD 
has been introduced in [9]. Instead of moving control points (CP), whose influence on 
the shape is not always intuitive, the designer is encouraged to modify the shape 
directly by specifying so called object points (OP).  

Although the initial setup of the control volume is similar to FFD, the control volume 
becomes invisible to the user and necessary correlated modifications are calculated 
analytically. In a first step, a lattice of control points has to be constructed and the 
coordinates of the object and the CFD mesh have to be frozen. But the control volume 
can be arbitrary, i.e., the number and positions of control points do not need to have any 
logical relationship to the embedded object, besides the fact that the number of control 
points determines the degree of freedom for the modification. In the next step, the 
designer specifies object points, which define handles to the represented object that can 
be repositioned. The shape is modified by directly changing the positions of these object 
points. The control points are determined analytically so that the shape variations 
(induced by the object point variations) are realized by the deformations associated with 
the new control point positions. In other words, the control points are calculated in such 
a way that the object points meet the given new positions under the constraint of 
minimal movement of the control points in a least square sense. Of course the object 
variations must be realizable by the deformations from the calculated new control point 
positions, i.e., if the number of control points is too small, some variations given by new 
object point positions might not be representable by a deformation.   

In Fig. 1 b) an object point has been specified at the top of the sphere. The designer 
is able to move this object point upwards without any knowledge of the “underlying” 
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control volume which can be initialized arbitrarily. The direct manipulation algorithm 
calculates the corresponding positions of the control points to mimic the targeted 
object point movement. The solution is shown in Fig. 1 b).  

Direct manipulation of free form deformation has several advantages when 
combined with evolutionary optimization as compared to standard FFD. The 
construction of the control volume and the number and distribution of control points 
are not as important as in standard FFD. Furthermore, the number of optimisation 
parameters equals the number of object points.  

3   FFD and Direct Manipulation of FFD in Evolutionary  
Design Optimisation 

3.1   General Remarks on the Optimisation Set-Up 

For a comparison of both representations a design optimisation test scenario has been 
set up. Four optimisation runs have been executed, one based on the standard free 
form deformation method and three using the direct manipulation technique.  

All optimisations were based on an evolutionary strategy with covariance matrix 
adaptation (CMA-ES), an algorithm which combines fast convergence (few function 
evaluations) with high performance and small population sizes. This is especially 
significant for optimisations in which CFD calculations are required for fitness 
evaluation. There are mainly three features of the CMA-ES which distinguish it from 
standard evolutionary strategy algorithms. Firstly, the stochastic influence in the 
mutation step is reduced by introducing only one stochastic source which is used for 
modifying both, the object as well as the strategy parameters. Secondly, the so-called 
cumulative step-size adaptation is applied which extracts information from past 
generations to speed up and stabilize the adaptation of the strategy parameter. Thirdly, 
an adaptation of the full covariance matrix of the probability density vector takes 
place instead of independent variances for each single parameter. Therefore, 
correlated mutations can be realized which can significantly increase the convergence 
speed of the algorithm [1, 9, 10]. 

In all four optimisations the population size has been set to 32 individuals and an 
approximation model has been applied. In a pre-evaluation step all 32 individuals 
have been evaluated with a neural network and only the 16 most promising ones have 
been simulated with CFD to determine the individual fitness. The fitness values have 
also been used to train the neural network. From the 16 CFD results the best 
individual has been selected and considered as the parent for the next generation, so a 
(1,32(16))-strategy has been applied. 

The details for each run can be found in Table 1. The number of parameters refers 
to the dimension of the search space. Their distribution on the design is depicted in 
Figure 3. The number of control points refers to the control point coordinates which 
can be modified in the FFD control volume. This is different from the total number of 
control point coordinates because points at the upper, lower and left border have to be 
constant due to CFD mesh consistency. Additionally, control points on the right edge 
of the control volume can be modified only in y-direction in order to fix the x-length 
of the design. For run 1 to run 3 the same FFD control mesh is used which is shown in 
Figure 3 in the upper left part for run 1. 
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Table 1. Type and number of parameters 

Run Type 
Number of 
parameters 

Number of  
control points 

1 control points 10 10 

2 object points 5 10 
3 object points 13 10 

4 object points 13 36 

3.2   Turbine Blade Test Scenario 

In this section, the results of a study on a turbine blade optimisation are presented, for 
details of the aerodynamic application and its parameters the reader is referred to [1]. 

 

Fig. 2. The generation cycle in evolutionary design optimisation, see [6] 

In Figure 2, the general workflow of the design optimisation is depicted and is now 
explained in more detail for run1, i.e., the standard free form deformation technique. 
A control volume consisting of 4x4 control points has been set up in which the turbine 
blade is embedded, see Figure 3. For easier visualization the CFD mesh is not plotted. 
However, we should keep in mind that during the deformation step the blade 
geometry as well as the CFD mesh are modified which allows the omission of the 
costly re-meshing process. 

The control points CP1-CP4 can be freely moved in the x-y plane during the 
optimisation, while CP5 and CP6 are only allowed to move in vertical direction as 
stated above. After the encoding of these parameters (x and y coordinates of points 
CP1 to CP4 and the y-coordinate of CP5 and CP6) in the chromosome of the parent 
individual the control point positions are optimized. This includes the mutation of the 
control points, the deformation of the CFD grid based on the free form deformation 
algorithm and the execution of the CFD flow solver. As described in the previous 
section, the ES-CMA is used together with a neural network meta-model. 
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Fig. 3.  Number and distribution of optimisation parameters. run1: 10 parameters (P1-P4: x, y; 
P5, P6: y); run2: 5 parameters (P1, P2: x, y; P3: y); run3: 13 parameters (P1-P6: x, y; P7: y); run4: 
13 parameters (P1-P6: x, y; P7: y). The closed line marks the initial designs, the dashed lines the 
optimized ones. The control volume is only drawn for run1. The control volumes for run2 and 
run3 are the same as for run1. Run4 has been modified in such a way that two rows and 
columns of control points have been inserted corresponding to a simple knot insertion 
algorithms as explained in [7]. For run4 the modifications at the leading and trailing edge are 
shown in a higher resolution to illustrate the occurring deformations. Initial circular or ellipsoid 
arcs are not kept after deformation because they turn out to be inferior to other leading and 
trailing edge geometries.  

Run 2, 3 and 4 are identical besides that the direct manipulation of free form 
deformations is applied to modify the control points directly. The two major 
differences are the following:  

1. The chromosomes contain object point positions (Pi) instead of control point 
positions (CPi) as parameter sets. 

2. The control points are calculated based on the encoded object points with the 
method for direct manipulation. Here the object points given in Figure 3 are 
used in the three runs. Based on the calculated control points the deformations 
of the design and CFD grid are updated in the same way as in run 1. 

The results, i.e. the fitness progression, of this optimisation of all optimisation runs 
are summarized in Figure 4. 
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Fig. 4.  The progress of the fitness of the runs 1 - 4 

One major drawback of the direct manipulation method as presented in Section 2 is 
that the calculation of the control points is not unique in every case and constraints 
necessary for the deformation of the CFD grid are neglected. Especially negative 
volumes can emerge which can be described as loops in the design space. 

This constraint is usually fulfilled by keeping the order of control points during the 
deformation step. However, when using direct manipulation the effect can occur that 
a targeted movement of an object point can only be achieved if large control point 
modifications are applied. These modifications can result in a change of the order of 
control points with the effect of producing grid cells with negative volumes. Methods 
for repairing and improving the structure of control points are therefore topic of our 
current research. To guarantee valid CFD meshes in the present optimisations the 
order of control points is checked after every mutation step. If the order of the control 
points is changed the mutation is repeated until a valid individual is generated. 

3.3   Experimental Results 

Figure 4 summarizes the results of the optimisations. Base run 1 that uses the standard 
FFD representation resulted in a converged fitness of 0.62 which means a 37% gain 
compared to the fitness of the initial turbine blade of 0.98. 

According to Figure 3 three object points have been chosen for run 2. It resulted in 
a fitness of 0.7 but it needed less than half the number of generations and the 
optimization run is very stable. This is due to the reduced number of parameter which 
is only 5 (2 object points movable in x- and y-, 1 object point movable in y-direction) 
but it also shows that the flexibility of the design is limited by the choice of object 
points. This demonstrates that an optimisation using direct manipulation is limited by 
two factors. On the one hand a low number of object points restricts the flexibility of 
the design because these are the parameters which are optimized. On the other hand 
the number of control points limits the degree of realizable shape variations because 
the control points actually induce the targeted object point modifications through the 
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defined deformations. If the number of control points is too low the targeted object 
points movements cannot be achieved. 

 In run 3 the number of object points (OP) has been increased to 7, i.e. 13 
optimisation parameters (6 OP movable in x- and y-, 1 OP movable in y-direction) to 
improve the flexibility of the design. The fitness decreased to 0.5. This is an 
improvement compared to the optimisation run 1. This improvement is particularly 
interesting because the optimisation is based on the same control point grid as run 1. 
Even if the number of parameter for the optimisation is larger in run 3 the parameter 
for the deformations are identical because they are limited by the control point grid. 
Since the number and distribution of control points did not change between both runs 
the optimisation of run 1 must have converged to a local optimum. The structure of 
the search space seems to be changed by the direct manipulation in a way that the 
local maximum is circumvented in this optimisation run.  

As a consequence, for this optimisation it can be seen that the usage of object 
points has been more successful. The fitness decreased faster and also at an earlier 
generation which is particularly important when dealing with time consuming 
evaluation functions like CFD simulations.  

To analyze whether the performance could be even more increased by allowing 
more flexibility in the possible deformations two rows and columns of control points 
have been inserted into the control volume, resulting in 36 control points in run 4 
while the number of object points was kept at 7. The fitness improved due to the 
control point insertion only slightly to 0.45. This is also a promising observation 
because the number of optimisation parameters is still 13 and the course of the fitness 
is quite similar to the one of run 3. Hence, the increase of flexibility by control point 
insertion did not affect the convergence behaviour.  

4   Conclusions 

In this paper, the standard free form deformation technique as well as direct 
manipulation of free form deformation have been combined with evolutionary 
optimisation. Both representations provide a fair trade-off between a low number of 
parameter and shape flexibility. To compare the performance a test scenario has been 
set up: a two dimensional turbine blade optimisation.  The test scenario is a trade-off 
between a simple shape approximation benchmark problem and a truly complex shape 
optimization which is too computationally expensive for the comparison presented 
here. The expensive computational CFD simulations did not allow to perform several 
optimisations for averaging. By changing the representation and applying different 
numbers of object points the effect of the representation on the design optimisation 
has been studied.  

In summary, we have shown that in this optimisation the usage of the new direct 
manipulation with free form deformation method has been advantageous.  

If only 3 object points are chosen like in run 2 the convergence speed improved 
drastically and resulted still in a good performance index compared to the 
optimisation of the control points in run 1. This can be explained by the lower number 
of parameters in the optimisation. If the number of object points is increased like in 
run 3 and at the same time keeping the control points fixed, the fitness can be further 
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improved although the possible transformations are kept constant in all three 
experiments. Here obviously the re-structuring of the search space by the introduction 
of the direct manipulation methods is beneficial.  

Even an increase of control points in the control volume as it has been done in run 
4 did not slow down the optimisation. This is a very promising result since the 
influence of the number of control points did not affect the convergence speed but the 
number of object points did. As a consequence one could argue to choose a high 
number of control points in the optimisation to achieve a high flexibility of the 
transformation and less constraints for the modification due to restrictions in the 
transformation. This definitely decreases the effect of the control point position and 
reduced the necessary prior knowledge about the optimisation problem while setting 
up the control volume. 

Therefore, direct manipulation is a very promising representation because it 
provides the advantages of the standard free form deformation techniques while 
adding its own advantages as the arbitrary initialization of control volumes as well as 
the more direct impact of the object points on the geometry which improves the 
efficiency of the evolutionary algorithm. 
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Abstract. Undulator magnets shimming is a stage of the undulator pro-
duction cycle that has a major influence on the quality of a synchrotron
radiation. Despite the high complexity of the underlying decision mak-
ing process, shimming is traditionally performed in a semi-empirical way
using a high level expert knowledge. Such a labor intensive approach in-
troduces additional cost and delay in undulator production. The present
study introduces an automated decision making procedure for shimming
based on an appropriate formalization of this task. Our approach con-
sists in formulating the corresponding constrained optimization prob-
lem, which can be efficiently solved by an evolutionary algorithm using
3D magnetostatic methods and magnetic measurement for fitness cal-
culation. Such automation allows us to reduce the time and cost of the
undulator production and it leads to results of a quality level that is
hardly attainable empirically considering the high complexity of the op-
timization problem.

Introduction

Synchrotron Radiation (SR) is nowadays routinely used for complex experiments
in protein crystallography (for determination of the protein structure and drug
design), in photoelectron spectroscopy (for inorganic material microanalysis) and
many other sub-domains of physics, chemistry, biology and material science. Un-
dulators are periodic multi-pole magnet structures installed at SR facilities in
order to bring to the emitted radiation a number of particular features (such
as high spectral brightness, tunability of the photon energy or tunability of the
polarization state) needed by the SR users. Therefore, the undulator perfor-
mance strongly conditions the quality of the synchrotron beam delivered for the
scientific experiments.

Physically, an undulator is composed of a large number (from tens to hun-
dreds) of magnets, each of which can be characterized by its magnetic error
(the deviation of its magnetic characteristics from the ideal ones), inevitably re-
sulting from the magnets’ production technology. The impact of the individual
magnets’ imperfections on the performance of the whole undulator can be partly
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compensated during the assembly stage making a series of appropriate decisions
concerning the precise location of each of the available magnets in the undula-
tor structure. The so-called shimming procedure plays a very important part in
this scenario. It is applied after the undulator has been mounted and consists
of relatively small discrete valued horizontal or/and vertical displacements of
a limited number of magnets. The problem to be solved at this stage consists
of choosing the locations at which the magnets will be displaced and to define
the direction and the number of displacement steps for each chosen location so
as to improve undulator performance. Moreover, a constraint on the maximum
number of shimmed magnets is imposed by the technical complexity and loss of
precision associated with the shimming process.

The paper is organized as follows. Section 1 describes the application, intro-
ducing the criteria of undulator performance and the degrees of freedom available
to improve these criteria. Section 2 formulates the corresponding optimization
problem in terms of Evolutionary Computation and evaluates the efficiency of
different combinations of variation operators specifically tailored for this appli-
cation. Section 3 shows the first practical results obtained with our approach,
used for shimming of one of the undulators recently built at Soleil [10].

1 Shimming of Undulator Magnets

1.1 Undulator Performance

Undulator performance is evaluated, on one hand, by the quality of the emitted
radiation (i.e. from the SR users point of view), and, on the other hand, by the
amount of undesired perturbations inevitably introduced by an undulator to the
electron beam, which must remain as steady as possible in the storage ring (See
Fig. 1 (Left)).

The main characteristics of the magnet system are derived from transverse
components of the 3D magnetic field created by the undulator, Bx(x, y, z) and
By(x, y, z), where x, y and z are horizontal, vertical and longitudinal Cartesian
coordinates respectively (see Fig. 1 (Right)).

The high spectral flux and brightness of undulator radiation, which are of
a paramount importance for most user experiments, result from the construc-
tive interference of electromagnetic waves emitted by an electron at different
undulator periods. For maximum constructive interference to take place, the
electromagnetic waves must be emitted in the same phase at all the periods, i.e.
with minimal phase error from one period to another. Let us note Φ(z) the phase
of electromagnetic waves. The phase error can then be defined as follows

Err(Φ) ≡
Np∑
j=1

(ΔΦj −ΔΦ)2, (1)

where Φj = Φ(z0 + λuj) with period λu and arbitrary longitudinal position in
the first period z0, Np is the number of full periods and ΔΦj = Φj − Φj−1.
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Fig. 1. Left: Scheme of a typical SR facility Right: Example of the undulator struc-
ture: APPLE-II type undulator (the magnets with vertical and longitudinal directions
of the magnetization are shown by different tones)

Another feature conditioning the quality of the beam delivered for the user
experiments is the straightness of the electron trajectory in the undulator. Let
xe(z) and ye(z) be the transversal components of the electron trajectory. The re-
quirement of the straightness can be formalized as minimization of the deviations
of both components from their mean values:

Dev(xe) ≡
Np∑
j=1

(xej − xe)2, Dev(ye) ≡
Np∑
j=1

(yej − ye)
2, (2)

where xej = xe(z0+λuj). Note that these requirements on the electron trajectory
and on the electromagnetic phase are, in fact, the requirements on the undulator
magnetic field as xe, ye and Φ are given by the second integrals of the expressions
depending on Bx(0, 0, z) and By(0, 0, z) [4].

In order to minimize perturbations introduced by an undulator with respect
to the electron beam in the synchrotron ring, the undulator magnetic field must
satisfy several more requirements. These can be formulated through the first hor-
izontal and vertical field integrals taken in the direction of the electron trajectory
before the undulator (i.e. z axis) and considered as functions of the transverse
position:

Ix(x, y) =
∫ +∞
−∞ Bx(x, y, z)dz, Iy(x, y) =

∫ +∞
−∞ By(x, y, z)dz. (3)

Minimizing the integrals (3) within a given range of the horizontal position
in the median plane (y = 0), i.e. the sums

Sx(Ix) ≡
Nx−1∑
k=0

I2
x(x0 + kδx, 0), Sx(Iy) ≡

Nx−1∑
k=0

I2
y (x0 + kδx, 0), (4)

is very important for preserving the dynamical aperture of an electron beam
during many turns in the storage ring.



An Evolutionary Approach to Shimming Undulator Magnets 365

Finally, in order to prevent an undesired residual focusing introduced by the
undulator to the electron beam, the horizontal derivatives of the field integrals
on the electron beam axis (x = y = 0)

Δx(Ix) ≡ |∂Ix

∂x
(0, 0)|, Δx(Iy) ≡ |∂Iy

∂x
(0, 0)|, (5)

must be minimized. Note that if Sx(Ix) and Sx(Iy) (Eq. (4)), could be minimized
to a value approaching zero, there would be no point in minimizing Δx(Ix) and
Δx(Iy). In practice, however, this is generally not the case.

1.2 Shimming for Restoring Undulator Performance

The so-called permanent magnet materials have a series of important advantages,
which make them widely used in undulator production. However, because of their
intrinsically stochastic domain structure, the permanent magnets unavoidably
have some inhomogeneities of the remnant magnetization over their volumes and
fluctuations of the volume-averaged remnant magnetization from one block to
another. These effects cause the deviations of the magnetic characteristics from
their reference values, that perturbs the magnetic field in the undulator enough
to considerably degrade its performance.

The cumulated undesirable effect of individual magnet imperfections varies as
a function of positions of the different magnets in the undulator structure. This
effect can be partly reduced by an intelligent sorting of the available magnets (i.e.
deciding where to put each magnet as a function of its magnetic characteristics)
before and during the assembly stage. However, the efficiency in sorting is a priori
limited because of either a lack of precise knowledge of the individual magnetic
errors, or a lack of the accuracy of the mathematical model used to evaluate the
undulator performance as a function of different magnet permutations.

The procedure of shimming [1] is applied when the undulator is assembled and
different quantities defining its performance can be directly measured. The pro-
cedure consists of making small transverse displacements of the magnets. Doing
so introduces magnetic system variations, which can considerably change (and,
potentially, improve) the undulator performance defined as the minimization of
the quantities (1), (2), (4) and (5).

In practice, the displacement of a magnetic block consists of dismounting
and remounting it after inserting a shim (a piece of non-magnetic foil). The
thickness of a shim can only take discrete step values within a given range. The
perturbations of the magnetic characteristics resulting from the insertion of a
shim of a minimal (one step) thickness are called shim signatures, and they can
be calculated using magnetostatic calculation tools such as RADIA [2], used
in this study. As the magnet displacements are much smaller then the distance
between the magnets and the median plane of the undulator, the perturbation of
the magnetic characteristics, resulting from the insertion of a shim of thickness
n, is given by the corresponding shim signature multiplied by n. The calculation
of the system state after shimming is then achieved by adding the effect of the
perturbations to the initial (measured) characteristics’ values.
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2 Evolutionary Optimization for Magnets Shimming

2.1 Optimization Parameters and EA Representation

As follows from Section 1.2, the degrees of freedom for planning the shimming
procedure are thicknesses of vertical and horizontal shims for each of the magnets
composing the undulator. These thicknesses taking discrete values, an EA indi-
vidual can be represented as a vector of pairs of integer numbers, each of which
corresponds to the number of shim steps in horizontal and vertical directions
respectively. A mapping between such vectors (genotypes) and the undulator
structure (phenotype) allows us to assign to any shimming configuration a fit-
ness value corresponding to the undulator performance.

The actual representation used in this work is a little more complex than the
vector of pairs described above. Indeed, the magnets composing, for example,
the undulator HU80 (described in more details in Section 3) are divided into two
groups: magnets with vertical and longitudinal magnetization (see Fig. 1 (Right)
for illustration). The displacements of the magnets with vertical magnetization
tend to have stronger influence on the undulator performance, which we seek
to improve by shimming. In order to make use of this expert knowledge, the
vector-individual has been divided into two sub-vectors, corresponding one to
the vertically and the other to the longitudinally magnetized magnets. An im-
portance weight has then been assigned to each of the sub-vectors, allowing to
bias the evolutionary search at the initialization stage as well as when applying
the variation operators. (See Section 2.4 for more details.)

2.2 Optimization Criteria and EA Fitness

As we already mentioned in Section 1.2, since shimming is applied to an entirely
assembled undulator, such quantities as magnetic field transverse components
and their integrals can be directly measured before shimming. Having the shim
signatures and taking advantage of the linearity of our system (briefly explained
at the end of Section 1.2), we can calculate magnetic field and field integrals for
every possible shimming configuration. This enables calculation of the function

F ≡ wΦErr(Φ) + wxeDev(xe) + wyeDev(ye)+
wIxSx(Ix) + wIySx(Iy) + wδIxΔx(Ix) + wδIyΔx(Iy). (6)

which is a weighted sum of the undulator performance criteria defined by the
equations (1), (2), (4) and (5). The function F is used in this study as the fitness
function, i.e. the criterion for comparing the performance of different shimming
configurations.

We leave the aspect related to the multi-objective nature of the shimming
optimization out of the scope of the present work, concentrating especially on
designing the variation operators appropriate for our particular representation.
We will however briefly discuss this potentially very interesting and important
issue in Section 4.
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2.3 Limited Shims Number and EA Constraint Handling

As explained in Section 1.2, to shim a magnet, one must dismount it from the un-
dulator. The procedure of dismounting and remounting the magnets in practice
is time consuming and hard to perform without loss of precision of the magnet
position. Hence, a constraint on the number of shimmed magnets must be intro-
duced. To give an idea of a real shimming procedure, for the undulator described
in the Section 3, at most 30 of 332 magnets can be accepted for shimming. This
constraint actually limits the efficiency of the shimming procedure.

In the Evolutionary framework, two basic types of constraint handling meth-
ods can be distinguished: the methods modifying individual evaluation so as to
guide the search towards the feasible region (e.g. penalty based [7] constraint
handling) and the methods which consist in sampling the feasible space and us-
ing variation operators preserving feasibility of solutions(see for example, [9]).
Taking advantage of the fact that, in our case, it is easy to build feasible so-
lutions, we designed variation operators, which preserve the feasibility of EA
individuals.

2.4 Variation Operators

In addition to preserving individual feasibility, another issue has to be kept in
mind when designing variation operators for our application: the importance
weights assigned to the sub-vectors of the vector-individual corresponding to
the vertically and horizontally magnetized magnets. The use of the sub-vectors’
weights is clarified by the following initialization procedure. For each new individ-
ual, a number of non-zero positions ns is chosen randomly in the range (0, nmax

s ],
where nmax

s is a maximum number of shimmed magnets. To choose each of these
positions, we choose first in which sub-vector it will lie (i.e. if a vertically or a
longitudinally magnetized magnet will be shimmed). The roulette-wheel draws
one of two sub-vectors using their importance weights as proportional probabil-
ities. In the so chosen sub-vector, the non-zero position is drawn randomly as
well as the horizontal and vertical shim thicknesses.

GA-inspired Crossover and Mutation. Given that the constraint on the
number of shims was chosen to be controlled by the variation operators (i.e.
feasible parents may produce only feasible offspring), an individual should be
seen not only as a vector of pairs of integers but also as a set of zero (no shim) and
non-zero (shim) valued elements. Such a view immediately inspires the analogy
with the binary representation used by the traditional Genetic Algorithm [5].
The following crossover and mutation have, therefore, been designed by analogy
with 1-point binary crossover [6] and bit-flip mutation [5].

The crossover divides all the components of the vector-individual in two
groups in such a way that, in the phenotypic space, it corresponds to cutting
the undulator structure in two parts at a randomly chosen longitudinal position.
To not surpass the maximum number of shims after switching the parts, as in
the traditional one-point crossover, all the shims are preserved in one (randomly
chosen) of two parts, while the shims to be kept in the other part are randomly
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selected one by one until there are no shims anymore or the maximum num-
ber of shims is attained. One-point crossover has been used actually because for
more division points it is less easy to control the maximum shim number in the
offspring.

The one-bit-flip mutation is used with the changed “bit” drawn randomly
following exactly the same procedure as for the initialization described above.

“Small” Mutation. This operator has been designed to enable the exploration
in the very near neighborhood of the good solutions, which is particularly im-
portant at an advanced stage of the evolutionary search. It consists of mutating
the number of shim steps for one or many locations where this number is al-
ready non-zero. A new shim value is drawn following the binomial law, whose
mean is equal to the previous value. The experiments (which are not shown here
for space reasons) confirm that a binomial law is more efficient than uniform
sampling to refine the search at the end of the evolution.

2.5 Experimental Results

Problem Parameters. All the numerical results presented in this section and
in Section 3, were obtained for the HU80 undulator [10] built out of 332 per-
manent magnets: 164 vertically-magnetized and 168 longitudinally-magnetized.
The maximum shim sizes are 6 and 9 steps in horizontal and vertical directions
respectively. All the results shown or mentioned in this section were obtained
with maximum number of shims set to 15.

EA Scheme and Experimental Setup. Our evolutionary algorithm uses
tournament selection with diversity preserving low selection pressure (each in-
dividual encounters only one randomly chosen opponent), which is balanced by
a highly elitist replacement, merging 100 parents and 100 offspring to choose
the 100 best individuals for the next generation. Variation operators are com-
bined sequentially, i.e. they are applied to an individual one after another. The
crossover is applied with probability 0.6, the “small” mutation with probability
1, and the bit-flip mutation with probability 0.7 when combined with the “small”
mutation and with probability 1 when combined with the crossover only. The
curves in Figure 2 represent the best fitness values, averaged over 21 runs, at
each generation. The same set of 21 initial populations was used to test different
operator combinations.

Let us note that bit-flip mutation (called GA-mutation in the figure legends)
was introduced later than the crossover and “small” mutation. The efficiency of
this operator, especially when combined with “small” mutation, is clearly shown
in Figure 2 (Left). The number in brackets assigned to the “small” mutation
refers to the number of the mutated components. It is natural that, in absence
of the bit-flip mutation, mutating more components gives better results. But,
when combining all three operators, the smallest “small” mutation (1 mutated
component) appears to be the best choice (See Fig. 2 (Right)).
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Fig. 2. Comparison of different combinations of variation operators

We are keen to mention another positive effect of the one-bit-flip mutation
(which is not illustrated here for space reasons): it significantly and system-
atically improves the reproducibility of the quality of results from one run to
another. This aspect is indeed very important when evaluating the efficiency of
a stochastic optimization method.

The effect of different assignments of the importance weights to the vertically
and longitudinally magnetized blocks has also been studied. For the criteria
weights wΦ = wIy = 0.15, wxe = wye = 0.2, wIx = 0.26, wδIx = wδIy = 0.02
(see Eq. (6)), used to obtain all the results shown in this paper, the difference
is not spectacular but the tendency is neat: the higher the weight of a vertically
magnetized blocks, the better the optimization results. However, in Section 4 we
will explain why one should interpret this conclusion carefully.

3 Practical Results

The practical results of the evolutionary-based shimming of the HU80 undulator
recently assembled at Soleil are very satisfactory and were highly appraised by
the Soleil Machine division. Note that they were obtained when the study dedi-
cated to adapting an EA to this application (notably, tuning variation operators)
was still on-going. This means that there is a room for further improvement of
the shimming efficiency for the other undulators being currently built at Soleil.

As one can readily see from Figures 3 and 4, the shimming procedure resulted
in considerable reduction of the residual horizontal and vertical field integrals
within about 100mm range along the x axis and, at the same time, in improve-
ment of the “straightness” of the electron trajectory in the central part of the
undulator so as to match the ideal trajectory very closely. Let us note that the
variations of magnetic field integrals (Fig. 3) cannot be completely suppressed
by shimming. This is related to the fact that the shim signatures do not consti-
tute a full basis, i.e. a set of functions sufficient for an accurate approximation of
any other function by their linear combination. The correction of remaining non-
zero residual field integrals is generally done using a special technique applied,
if necessary, after shimming.
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Fig. 3. Measured horizontal and vertical magnetic field integrals as functions of the
horizontal position in the median plane of HU80

Fig. 4. Horizontal components of electron trajectories, calculated from the measured
on-axis vertical magnetic field

4 Discussion and Future Work

This paper presents the first experience of applying EAs to shimming undulator
magnets. The comparison of different combinations of EA variation operators
specifically designed for this application is also provided.

The efficiency of the proposed approach is supported by practical experience:
indeed, HU80 became the first of a whole series of undulators being assembled
at Soleil that are or will be shimmed using our method. Unfortunately, as we
are presenting here a recent industrial application, we do not have any reference
solution, which would allow for a quantitative comparative evaluation of the
obtained results. However, it is fairly unlikely for a semi-empirical approach to
ensure a sufficient exploration of a search space of size

(332
15

)
· 9 · 6 (the number

of all possible shimming configurations for the values given in the beginning of
the subsection 2.5) in a reasonably short period of time.

When implementing the idea of assigning a higher priority to the vertically
magnetized blocks, particular attention must be paid to the weights of the dif-
ferent performance criteria. Indeed, while most criteria are influenced especially
by displacements of vertically magnetized blocks, the phase is sensitive to dis-
placements of both magnet types. Hence, if the phase weight is relatively small,
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the optimization of the weighted sum (6) may suggest to completely remove
the longitudinally magnetized blocks from consideration, while, in fact, it can
undesirably limit phase improvement during optimization.

We recognize here a very important multi-objective aspect of shimming. There
exists a particular kind of EAs, referred to in the literature as Multi-Objective
Evolutionary Algorithms (MOEAs) [3]. These methods do not need user-defined
weights to be assigned to the different optimization criteria as they are designed
to find multiple trade-off solutions of multi-objective optimization problem in a
single run. Application of MOEAs to the problem of shimming is currently an
on-going project. One particular interest of this type of methods is that having a
well sampled trade-off surface, one can analyze the interactions between different
objectives, which allows for a deeper understanding of the physical phenomenon
at the origin of the problem.
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mission’s BIOXHIT Project (LHSG-CT-2003-503420).
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Abstract. We propose an evolutionary algorithm (EA) that applies
to the traveling salesman problem (TSP). The EA uses edge assembly
crossover (EAX), which is known to be efficient and effective for solving
TSPs. Recently, a fast implementation of EAX and an effective tech-
nique for preserving population diversity were proposed. This makes it
possible to compare the EA with EAX comparable to state-of-the-art
TSP heuristics based on Lin-Karnighan heuristics. We further improved
the performance of EAs with EAX, especially for large instances of more
than 10,000 cities. Our method can find optimal solutions for instances of
up to 24978 cities within a day using a single Itanium 2 1.3-GHz proces-
sor. Moreover, our EA found three new best tours for unsolved national
TSP instances in a reasonable computation time.

1 Introduction

The traveling salesman problems (TSPs) are widely cited NP-hard combinato-
rial optimization problems because they are so intuitive and easy to state. In
Johnson and McGeoch’s surveys [1][2], the most efficient approximation methods
for TSPs were based on Lin-Kernighan local searches (LKLS) [3]. The chained
Lin-Kernighan algorithm (CLK) [4] is a more sophisticated LKLS. Helsgaun [5]
proposed another type of efficient LKLS (LKH). The tour-merging method [12]
has been thought be a very powerful approximation method; the best tour is
searched for on a restricted graph constructed of the union of dozens of high-
quality solutions obtained using CKL or LKH.

Many evolutionary algorithms (EAs) have been applied to TSPs. Much effort
has been devoted to designing effective crossovers suitable for TSPs because the
performances of EAs are highly dependent on the design of crossovers. The edge
assembly crossover (EAX) proposed by Nagata and Kobayashi [6] is known to
be an effective crossover for TSPs.

However, EAs without LKLS have been found to be less effective than state-of-
the-art TSP heuristics based on LKLS. Therefore, hybrid algorithms composed of
EAX and CLK have been proposed [7]. On the other hand, Nagata [11] proposed
a fast implementation of EAX and an effective method of preserving population
diversity. This technique significantly improved the performance of EAs using
EAX and demonstrated that EAs without LKLS can perform as well as state-
of-the-art TSP heuristics based on LKLS.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 372–381, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we further improve EAX to apply EAs to large instances of more
than 10,000 cities because we found that the EAX used in [11] is not appropriate
for large instances. The remainder of this paper is organized as follows. In Section
2, we look at existing work related to EAX. Our improvement of EAX for large
instances is described in Section 3. In Section 4, we discuss our experiments and
results. Section 5 is the conclusion.

2 Previous Work

In this section, we will introduce work related to this paper. First, we will briefly
describe the algorithm of EAX [6] (See Ref. [6] or [11] for details). Then, some
strategies for using EAX effectively, proposed in [10] and [11], are also described.

2.1 Outline of EAX

The following and Fig. 1 is an outline of EAX.

Step 1: Denote a pair of parents as tour-A and tour-B, and define GAB as a
graph constructed by merging tour-A and tour-B.

Step 2: Divide the edges on GAB into AB-cycles, where an AB-cycle is defined
as a closed loop on GAB that can be generated by alternately tracing the
edges of tour-A and tour-B.

Step 3: Construct an E-set by selecting AB-cycles according to a given rule.
Step 4: Generate an intermediate solution by applying the E-set to tour-A, i.e.,

by removing tour-A’s edges in the E-set from tour-A and adding tour-B’s
edges in the E-set to it.

Step 5: Modify the intermediate solution to generate a valid tour by connect-
ing its sub-tours. Two sub-tours are connected by deleting one edge from
each sub-tour and adding two edges to connect them. Which sub-tours are
connected and which edges are deleted are determined heuristically.

The following are comments that are helpful in Section 3.

– The union of all AB-cycles generated in step (2) is equal to GAB .
– In practice, AB-cycles constructed of duplicated edges are neglected in step

(3) because they have no effect on step (4). These AB-cycles are called
ineffective AB-cycles. The other are called effective AB-cycles.

In step (3), the E-set can be constructed from any combination of AB-cycles.
The following two methods were proposed in previous reports [6][10].

EAX-Rand: The E-set is constructed by randomly selecting AB-cycles with
provability 0.5. The intermediate solution tends to equally include edges of
tour-A and tour-B.

EAX-1AB: The E-set is constructed from a single AB-cycle. The intermediate
solution tends to be similar to tour-A; i.e., children are generated by remov-
ing a small number of edges from tour-A and adding the same number of
edges to it.
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EA: tour-A

EB: tour-B

GAB

E-set Intermediate valid tour

Step 1

Step 5Step 4

Step 3

Step 2

edges of  tour-A, new edgesedges of  tour-B,

AB-cycle(Effective) (Ineffective)

Fig. 1. Outline of EAX

2.2 Some Strategies for EAX

In previous work [10,11], these two methods were bifurcated according to the
quality of the solutions in the population.

Stage I: EAX-1AB is used until no improvements in the shortest tour length
in the population are observed over a period of time.

Stage II: EAX-Rand is used after stage I is finished, i.e., when EAX-1AB can
no longer improve individuals in the population.

The reasons for using stage I are (i) the efficiency of the computational cost of
EAX-1AB and (ii) the capability of preserving the population diversity. When
EAX-1AB is used, changes of edges in the EAX algorithm are localized, and
calculation is sped up. An especially efficient implementation of EAX-1AB was
proposed by Nagata [11]. Moreover, EAX-1AB can prevent the population from
converging wastefully by eliminating changes of edges that do not shorten the
tour length [10].

Stage II is useful because EAX-Rand can produce wider varieties of children
than can EAX-1AB. Stage II can actually improve individuals in the population
even when EAX-1AB can no longer improve them [10,11].

3 Proposed Method

In this section, we propose a new EAX used in stage II instead of EAX-Rand.
First, we define some notation. The size of an E-set and the size of an AB-cycle

are defined as the number of tour-A edges included in the E-set and the AB-cycle,
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respectively. GainModi is an improvements of tour length from an intermediate
solution to a valid tour which is defined by GainModi =

∑
e∈Eremove

w(e) −∑
e∈Eadd

w(e), where Eadd and Eremove are sets of edges that are added and
removed, respectively, in step (5) of the EAX algorithm. w(e) is a weight of an
edge e.

3.1 Limitations of EAX-1AB and EAX-Rand

Let POP be a population that EAX-1AB can no longer improve. Such a pop-
ulation is usually highly refined. Therefore, each individual in POP is trapped
in a deep local optima. To further improve individuals in POP, intermediate
solutions should be formed so as to satisfy the following two conditions.

(C-I) Intermediate solutions should be formed by changing tour-A extensively.
In other words, the size of the E-set should be large to overcome deep
local optima.

(C-II) The number of sub-tours in an intermediate solution should be as small
as possible.

The reason for C-II is a limitation of step (5) of the EAX algorithm. If an
intermediate solution consists of k sub-tours, they must be connected into a valid
tour by k − 1 operations like 2-opt moves. 2-opt move is a transition from one
tour to another by exchanging two edges. Indeed, step (5) of the EAX algorithm
usually increases the tour length of a resulting valid tour (GainModi < 0) when
tour-A is highly refined because 2-opt moves are the most restricted method
of connecting two sub-tours. Thus, the number of sub-tours in an intermediate
solution should be restricted to increase GainModi.

However, C-I and C-II usually conflict because the number of sub-tours in an
intermediate solution tends to increase as the size of E-set increases. Considering
C-I and C-II, the drawbacks of EAX-1AB and EAX-Rand can be summarized
as the following three hypotheses. Typical examples of intermediate solutions for
each case are illustrated in Fig. 2. We will verify these hypotheses in Section 3.3.

(i) If an E-set is constructed from a single small-sized AB-cycle, C-I is not
satisfied.

(ii) If an E-set is constructed from a single large-sized AB-cycle, C-II is not
satisfied.

(iii) If an E-set is constructed by randomly selecting multiple AB-cycles (EAX-
Rand), C-II is not satisfied. However, this method can produce improved
tours from POP at least in principle because a wide variety of E-sets can
be constructed. However, the likelihood is very low.

3.2 EAX-Block

In this subsection, we propose a method of selecting AB-cycles for constructing
an E-set that can produce an intermediate solution satisfying C-I and C-II. We
call EAX using this method EAX-Block.
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( i ) ( iii )( ii )

tour-A tour-B AB-cycles

1

2
3

4 5

6
7

8 9

Intermediate solutions

U1

U4

U3

U5

U2

Fig. 2. Typical examples of intermediate solutions generated by E-sets constructed of
(i) a single small-sized AB-cycle (AB-cycle 9), (ii) a single large-sized AB-cycle (AB-
cycle 1), and (iii) randomly selected multiple AB-cycles (AB-cycle 1, 2, 3, 4). Tour-A,
tour-B and AB-cycles are also illustrated ( Ineffective AB-cycles are omitted).

EAX-Block:
1. Select a large-sized AB-cycle. Let it be a center AB-cycle. Note that the top

Nch largest-sized AB-cycles are selected as center ones when Nch children
are generated from a pair of parents.

2. Apply the center AB-cycle to tour-A and form an intermediate solution. Let
Ui (i = 1, . . . , k) be the i-th sub-tour, where k is the number of sub-tours.
Let U1 be the largest sub-tour, i.e., including the largest number of edges.

3. Select AB-cycles that satisfy the following conditions.
-(c1): They have connections to vertices in Ui (i = 2, . . . , k).
-(c2): Their sizes are smaller than that of the center AB-cycle.

4. Construct an E-set from the center AB-cycle and the AB-cycles selected in
step 3.

Fig. 2 and Fig. 3 illustrate an example of EAX-Block. In step (1), AB-cycle 1
illustrated in Fig. 2 is selected as a center AB-cycle. Therefore, an intermediate
solution (ii) in Fig. 2 is produced in step (2). In step (3) and (4), an E-set is
constructed of AB-cycles 1, 6, 7, 8 and 9 as shown in Fig. 3, where ineffective
AB-cycles satisfying (c1) are also included in the E-set for the sake of simplicity
of an explanation described below. A resulting intermediate solution produced
by the E-set is illustrated in Fig. 3.

Now, properties of EAX-Block are described. For the sake of simplicity, inef-
fective AB-cycles can be selected in step (3), and condition (c2) is not considered
here. First, we define the following terms.
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E-set Intermediate solutions

A-vertices

C-vertices

B-vertices

(effective) (ineffective)

Fig. 3. Typical example of an E-set and an intermediate solution generated by EAX-
Block. The E-set is constructed of AB-cycles 1, 6, 7, 8 and 9 illustrated in Fig. 2 and
ineffective AB-cycles adjacent to U2, . . . , U5.

A-vertex: A vertex that is connected to no tour-A (tour-B) edge in the E-set.
It is connected to two tour-A edges in intermediate solutions.

B-vertex: A vertex that is connected to two tour-A (tour-B) edges in the E-set.
It is connected to two tour-B edges in intermediate solutions.

C-vertex: A vertex that is connected to one tour-A (tour-B) edge in the E-
set. It is connected to one tour-A edge and one tour-B edge in intermediate
solutions.

All vertices in U2, . . . , Uk are B-vertices because of condition (c1) in step (3)
(Remember the comments mentioned in Section 2.1.). Vertices in U1 that are
geographically far from the other sub-tours tend to be A-vertices if the sizes of
AB-cycles selected in step (3) are small. Other vertices are C-vertices, which are
located between A-vertices and B-vertices. In Fig. 3, vertices in the intermediate
solution are divided into A-, B- and C-vertices. When the number of C-vertices
increase, the number of sub-tours tend to increase as shown in Fig. 2.

The advantage of EAX-Block over EAX-1AB and EAX-Rand is that inter-
mediate solutions can be generated by assembling a block of tour-A edges and a
block of tour-B edges. If the sizes of all AB-cycles selected in step (3) are small,
the number of C-vertices tends to be small. In this case, EAX-Block has an ideal
property and can satisfy the conditions (C-I) and (C-II).

3.3 Behaviors

Now, we demonstrate the behaviors of EAX-1AB, EAX-Rand, and EAX-Block.
The distribution frequency of sizes of AB-cycles that are obtained by applying

EAX to a pair of parents is shown in Fig. 4 (a). These data are averaged over 150
pairs of parents selected from POP by random sampling without replacement,
where POP was generated by stage I with EAX-1AB as described in Section 4.1.
The instance usa13509 [9] was used for these experiments.

On average, 124.6 AB-cycles are generated from a pair of parents1. As shown
in Fig. 4 (a), while most AB-cycles have sizes smaller than 10, relatively large
1 95% edges are removed as ineffectiveAB-cycles because individuals in POP are sim-

ilar to each other.
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Fig. 5. Behaviors of EAX-1AB, EAX-Rand, and EAX-Block. Note that scales of x-axes
are different.

AB-cycles having sizes of larger than 100 are usually contained in this example.
Figure 4 (b) shows the distribution frequency of the size of E-sets that were
obtained by applying EAX-Rand to the same population, where 100 E-sets are
generated form a pair of parents. Obviously, the sizes of the E-sets generated by
EAX-Rand are larger than those generated by EAX-1AB.

The behaviors of the three EAXs are shown in Fig. 5. The data are averaged
over each size of an E-set. Figure (a) shows the number of sub-tours in interme-
diate solutions generated by the three types of EAXs. As shown, the number of
sub-tours tends to increase as the size of the E-set increases. On the other hand,
Fig. (b) shows that GainModi tend to decrease as the size of the E-set increases.
We can see that the graphs in Figs. (a) and (b) are symmetric with respect to the
x-axis. Thus, the number of sub-tours and GainModi have a negative correlation.
Based on the condition (C-II), EAX-Block is the best method among the three
types of EAXs because the number of sub-tours (GainModi) of EAX-Block is the
smallest (largest) among them. Consequently, EAX-Block can improve tour-A
more frequently than can EAX-1AB and EAX-Rand, as shown in Fig. (c). Fig.
(c) shows the probabilities of obtaining improved individuals from tour-A using
E-sets constructed by the three types of EAXs.
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4 Experiments

4.1 Experimental Setting

We compared EAX-1AB, EAX-Rand, and EAX-Block on several TSP bench-
marks. Experiment setting is the same as the Nagata’s works [11] where the
edge entropy measure was used to maintain population diversity, and the fast
implementation of EAX was used. This experiments are implemented in C++
and executed using Itanium 2 1.3-GHz single processor with 126 GB of RAM.

Stage I: EAX-1AB was applied to TSP benchmarks using selection model I
[11], where the population size (Np) was set to 300, and an initial population
was generated by the 2-opt local search. The number of children generated
from a pair of parents (Nch) was set to 30. If the shortest tour length in the
population stagnated over 150 generations, then the run was terminated. Ten
trials were executed for each instance. The resulting population is denoted
as POPi (i = 1, . . . , 10) for each run.

Stage II: For (i = 1, . . . , 10), EAX-Rand or EAX-Block was applied to TSP
benchmarks using POPi as the initial population. Selection model I was
used. Although Np was necessarily 300, Nch was set to 100 in this case to
enhance the searches. The termination conditions were the stagnation of 100
generations for EAX-Rand or 50 for EAX-Block.

4.2 Results

In these experiments, eight large instances were chosen from TSPLIB [9] and
twelve large instances from the national TSPs [13]. The results of EAX-1AB,
EAX-Rand, and EAX-Block are listed in Table 1. As shown, EAX-Rand im-
proved the qualities of the solutions obtained by EAX-1AB with a few excep-
tions. Although EAX-Rand can usually find optimal (best known) solutions for
the instances with up to 10,000 cities, it fails larger instances. In contrast, EAX-
Block can find optimal (best known) solutions for instances of up to 24978 cities.
Moreover, the CPU times needed to terminate runs of EAX-Block were about
10 times faster than those of EAX-Rand.The reasons are that (i) EAX-Block
can improve populations more rapidly than EAX-Rand and that (ii) EAX-Block
can generate individuals faster than EAX-Rand.

In this experiment, EAX-Block found three new best solutions to the na-
tional TSPs benchmarks. This is the first improvement in several years. The new
best tours (tour lengths) are pa8079 (114855), ho14473 (177092), and bm33708
(959291).

We compare EAX-Block with other state-of-the-art TSP heuristic algorithms.
Our proposed approach is categorized as approximation methods for TSPs that
consume relatively large time but aim at finding very near-optimal solution. So,
we chose HeSEA [7] and tour-merging technique [12] that are categorized as
the same class. HeSEA is a hybrid algorithm composed of EAX and CLK [4].
Tour-merging method look for a best tour on a restricted graph consisting of the
union of set of tours obtained by LKH[5].
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Table 1. Comparisons of performances of EAs using three types of EAX. ”Opt.”
column indicates number of trials that reached optimal solutions in ten trials. ”Err.”
indicates average length by which best tour exceeded optimal tour in each trial. ”Gen.”
indicates average generation required to reach best individual in each trial. ”Time”
means average CPU time in seconds required for one trial. For unsolved instances, a
number of trials that reach best tour known today is listed in ”Opt.”, and ”–” is filled
in ”Err.”. If new best tour is found, ”Improve (number of these trials)” is filled in
”Opt.”.

EAX-1AB (Stage I) EAX-Rand (Stage II)EAX-Block (Stage II)

0.0000
0.0000
0.0000
0.0019
0.0033
0.0081
0.0047
0.0124

    fnl4461
      rl5915
     r11849
usa13509
 brd14051
    d15112
    d18512
 pla33810

Instances Gen. Time (sec)Opt.

  848
  319
1252 
2486
2729
3076
3496
5014

  1512 
    992
  7646
13249
15550
21244
25392
38424

  0
10
  0
  0
  0
  0
  0
  0

Err. (%)

0.0014
0.0000
0.0041
0.0126
0.0129
0.0181
0.0186
0.0182

  30
    0
  61
173
216
165
253
456

    185
    125
   2533
  7164  
10193
40060
14037
18930

10
10
  9
  0
  0
  0
  0
  0

    3
    0
  15
  43
  31
107
  77
  79

    42
    36
  298
  496
  712
1662
1526
1892

0.0000
0.0000
0.0000
0.0001
0.0000
0.0001
0.0000
0.0076

 10
 10
 10
   6
 10
   4
   8
   0

  pm8079
    ei8246
    ar9152
    ja9847
   kz9976
   fi10639
mo14185
 ho14473
   it16862
vm22775
sw24978
bm33708

Improve (5) 
0
0
0
0
0
0
0
0
0
0
0  

  800
1476
1226
1664
1700
1891
2379
1218
3094
3814
4522
6339

Improve (9)
9
9
3
9
5
9
Improve (10)
2
1
3
Improve (1)

    1
    1
    2
    6
  21
  34
  44
  57
109
  45
129
168

   
    --
    --
0.0057
   --
   --
   --
   --
0.0173
0.0089
0.0209
   --    

  
   --
   --
0.0017
   --
   --
   --
    
0.0007 
0.0007
0.0010
   

  1596
  4556
  7038
  4705
  5967
  6955
10481
  3365
14778
21346
36946
56305

  128
  439
  135
  275
  532
  808
1089
  359
  892
3457
2500
5094

Gen. Time (sec)Opt. Err. (%)Gen. Time (sec)Opt. Err. (%)

Improve (9)
5
9
3
1
0
0
Improve (7)
0
0
0
0

    6
  53
  10
  31
119
169
    0
  67
    0
    0
    0
    0

  
   --
   --
0.0028
   --
   --
   --
    
0.0173 
0.0089
0.0209   
   --

    830
  4511
    217
  1574
  5685
  9276
10756
  5445
19778
20686
26542
36087

Table 2 show the results. As compared with the results of HeSEA and Tour-
merging, EAX-Block could find optimal solutions in some large instances with
smaller CPU times even where other method could not find them.

5 Conclusion

We improved the edge assembly crossover (EAX) to apply EAs using EAX to
large TSP instances having more than 10,000 cities. Our results demonstrated
that EAX-Block is suitable for large TSP instances.

We observed that the following two conditions are needed to improve highly
refined near-optimal solutions using EAX for large instances. (C-I) The E-set
should be large enough to overcome deep local optima. (C-II) The number of
sub-tours in an intermediate solution should be as small as possible. We pro-
posed EAX-Block to satisfy these conditions. The key idea of EAX-Block is
assembling blocks of tour-A edges and blocks of tour-B edges to generate inter-
mediate solutions. We demonstrated that EAX-Block is better than EAX-1AB
and EAX-Rand in terms of the above conditions.

The experimental results show that the EA with EAX-Block can find optimal
solutions for large instances of up to 24978 cities in a reasonable CPU time.
Moreover, three new best tours were found for unsolved national TSP instances.
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Table 2. Performances of other state-of-the-art TSP heuristics. These Data are copied
from the original papers ( Data are not available in Blank cells). HeSEA and Tour-
merging were executed twenty and one trials for each instance, respectively. CPU time
of HeSEA and Tour-merging are based on Pentium IV 1.2-GHz and EV6 Compaq
Alpha 500-MHz processors, respectively.

HeSEA Tour-merging

    fnl4461
      rl5915
     r11849
usa13509
 brd14051
    d15112
    d18512
 pla33810

Instances Time (sec)Opt.

     2,349 
  2,773  

34,948

16/20
19/20
  
  0/20
 

Err. (%)

0.0005
0.0001

0.0074

    
       63,954
     646,483
     968,473
  1,676,314
   1976,174
  3,704,852
43,632,379

0.0000
0.0000
0.0001
0.0030
0.0000
0.0071
0.0998

 
 1/1
 1/1
 0/1
 0/1
 1/1   
 0/1
 0/0

Time (sec)Opt. Err. (%)
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Abstract. Functional brain imaging is a source of spatio-temporal data
mining problems. A new framework hybridizingmulti-objective and multi-
modal optimization is proposed to formalize these data mining problems,
and addressed through Evolutionary Computation (EC).

The merits of EC for spatio-temporal data mining are demonstrated
as the approach facilitates the modelling of the experts’ requirements,
and flexibly accommodates their changing goals.

1 Introduction

Functional brain imaging aims at understanding the mechanisms of cognitive
processes through non-invasive technologies such as magnetoencephalography
(MEG). These technologies measure the surface activity of the brain with a good
spatial and temporal resolution [8,15], generating massive amounts of data.

Finding “interesting” patterns in these data, e.g. assemblies of active neuronal
cells, can be viewed as a Machine Learning or a Data Mining problem. However,
contrasting with ML or DM applications [6], the appropriate search criteria are
not formally defined up to now; in practice the detection of active cell assemblies
is manually done.

Resuming an earlier work [17], this paper formalizes functional brain imaging
as a multi-objective multi-modal optimization (MoMOO) problem, and describes
the evolutionary algorithm called 4D-Miner devised to tackle this problem. In
this paper, the approach is extended to the search of discriminant patterns; ad-
ditional criteria are devised and accommodated in order to find patterns specif-
ically related to particular cognitive activities.

The paper is organized as follows. Section 2 introduces the background and no-
tations; it describes the targeted spatio-temporal patterns (STP) and formalizes
the MoMOO framework proposed. Section 3 describes the 4D-Miner algorithm
designed for finding STPs, hybridizing multi-objective [5] and multi-modal [12]
heuristics, and it reports on its experimental validation. Section 4 presents the
extension of 4D-Miner to a new goal, the search for discriminant STPs. Section 5
discusses the opportunities offered by Evolutionary Data Mining, and the paper
concludes with perspectives for further research.
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2 Background and Notations

This section introduces the notations and criteria for Data Mining in functional
brain imaging, assuming the reader’s familiarity with multi-objective optimiza-
tion [5]. Let N be the number of sensors and let T denote the number of
time steps. The i-th sensor is characterized by its position Mi on the skull
(Mi = (xi, yi, zi) ∈ IR3) and its activity Ci(t), 1 ≤ t ≤ T along the experiment.
Fig. 1 depicts a set of activity curves.

100 300 500 700

-200

-100

0

100

200

Fig. 1. Magneto-Encephalography Data (N = 151, T = 875)

A spatio-temporal pattern noted X = (I, i, w, r) is characterized from its
temporal interval I (I = [t1, t2] ⊂ [1, T ]) and a spatial region B(i, w, r). For
the sake of convenience, spatial regions are restricted to axis-parallel ellipsoids
centered on some sensor; region B(i, w, r) is the ellipsoid centered on the i-th
sensor, which includes all sensors j such that dw(Mi,Mj) is less than radius
r > 0, with

dw(Mi,Mj)2 = w1(xi− xj)2 +w2(yi− yj)2 +w3(zi− zj)2 w1, w2, w3 > 0

This paper focuses on the detection of assemblies of active neuronal cells,
informally viewed as large spatio-temporal regions with correlated sensor activ-
ities. Formally, let I = [t1, t2] be a time interval, and let C̄I

i denote the average
activity of the i-th sensor over I. The I-alignment σI(i, j) of sensors i and j over
I is defined as:

σI(i, j) =

∑t2
t=t1

Ci(t).Cj(t)√∑t2
t=t1

Ci(t)2 ×
√∑t2

t=t1
Cj(t)2

×
(

1−
|C̄I

i − C̄I
j |

|C̄I
i |

)
,

To every spatio-temporal pattern X = (I, i, w, r), are thus associated i) its du-
ration or length �(X) (= t2 − t1); ii) its area a(X) (the number of sensors in
B(i, w, r)); and iii) its alignment σ(X), defined as the average of σI(i, j) for j
ranging in B(i, w, r). An interesting candidate pattern is one with large length,
area and alignment.

Naturally, the sensor alignment tends to decrease as a longer time interval or
a larger spatial region are considered, everything else being equal; conversely,
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the alignment increases when the duration or the area decrease. It thus comes to
characterize the STP detection problem as a multi-objective optimization prob-
lem (MOO) [5], searching for large spatio-temporal regions X with correlated
sensor activities, i.e. patterns X simultaneously maximizing criteria �(X), a(X)
and σ(X). The best compromises among these criteria, referred to as Pareto
front, are the solutions of the problem.

Definition 1 (Pareto-domination).
Let c1, . . . , cK denote K criteria to be simultaneously maximized on Ω. X is said
to Pareto-dominate X ′ if X improves on X ′ with respect to all criteria, and the
improvement is strict for at least one criterion. The Pareto front includes all
solutions which are not Pareto-dominated.

However, the MOO setting fails to capture the true target patterns: The Pareto
front defined from the above three criteria could be characterized and it does
include a number of patterns; but all of these actually represent the same spatio-
temporal region up to some slight variations of the time interval and the spatial
region. This was found unsatisfactory as neuroscientists are actually interested
in all active areas of the brain; X might be worth even though its alignment,
duration and area are lower than that of X ′, provided that X and X ′ are situated
in different regions of the brain.

The above remark leads to extend multi-objective optimization goal in the
spirit of multi-modal optimization [12]. Formally, a new optimization framework
is defined, referred to as multi-modal multi-objective optimization (MoMOO).
MoMOO uses a relaxed inclusion relationship, noted p-inclusion, to relax the
Pareto domination relation.

Definition 2 (p-inclusion).
Let A and B be two subsets of a measurable set Ω, and let p be a positive real
number (p ∈ [0, 1]). A is p-included in B iff |A

⋂
B| > p×|A|, where |A| denotes

the measure of set A.

Definition 3 (multi-modal Pareto domination).
Let X and Y denote two spatio-temporal patterns with respective supports Sup(X)
and Sup(Y ) (Sup(X), Sup(Y ) ⊂ IRd).X p-mo-Pareto dominates Y iff the support
of Y is p-included in that of X, and X Pareto-dominates Y .

Finally, the interesting STPs are all spatio-temporal patterns which are not p-
mo-Pareto dominated.

It must be emphasized that MoMOO differs from MOO with diversity en-
forcing heuristics (see e.g., [3,11]): diversity-based heuristics in MOO aim at a
better sampling of the Pareto front defined from fixed objectives; MoMOO is
interested in a new Pareto front, including diversity as a new objective.

3 4D-Miner

This section describes the 4D-Miner algorithm designed for the detection of
stable spatio-temporal patterns, and reports on its experimental validation.
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3.1 Overview of 4D-Miner

Following [4], special care is devoted to the initialization step. In order to both
favor the generation of relevant STPs and exclude the extremities of the Pareto
front (patterns with insufficient alignment, or insignificant spatial or temporal
amplitudes), every initial pattern X = (i, w, I, r) is generated after a constrained
sampling mechanism:

– Center i is uniformly drawn in [1, N ];
– Vector w is set to (1, 1, 1) (dw is initialized to the Euclidean distance);
– Interval I = [t1, t2] is such that t1 is drawn with uniform distribution in

[1, T ]; the length t2 − t1 of Ij is drawn according to a Gaussian distribution
N (min	,min	/10), where min	 is a user-supplied length parameter.

– Radius r is deterministically computed from a user-supplied threshold minσ,
corresponding to the minimal I-alignment desired.

r = mink{dw(i, k) s.t. σI(i, k) > minσ)}
– Last, the spatial amplitude a(X) of individual X is required to be more than

a user-supplied threshold mina; otherwise, the individual is non admissible
and it does not undergo mutation or crossover.

The user-supplied min	, minσ and mina thus govern the proportion of admis-
sible individuals in the initial population. The computational complexity of the
initialization phase is O(P × N ×min	), where P is the population size, N is
the number of measure points and min	 is the average length of the intervals.

The variation operators go as follows. From parent X = (i, w, I, r), mutation
generates an offspring by one among the following operators: i) replacing center
i with another sensor in B(i, w, r); ii) mutating w and r using self-adaptive
Gaussian mutation; iii) incrementing or decrementing the bounds of interval I;
iv) generating a brand new individual (using the initialization operator).

The crossover operator is subjected to restricted mating (only sufficiently close
patterns are allowed to mate); it proceeds by i) swapping the centers or ii) the
ellipsoid coordinates of the two individuals, or iii) merging the time intervals.

A steady state evolutionary scheme is considered. In each step, a single admis-
sible parent individual is selected and it generates an offspring via mutation or
crossover; the parent is selected using a Pareto archive-based selection [5], where
the size of the Pareto archive is 10 times the population size. The offspring ei-
ther replaces a non-admissible individual, or an individual selected after inverse
Pareto archive-based selection.

3.2 Experimental Results

This subsection reports on the experiments done using 4D-Miner on real-world
datasets1, collected from subjects observing a moving ball. Each dataset involves
1 Due to space limitations, the reader is referred to [17] for an extensive validation

of 4D-Miner. The retrieval performances and scalability were assessed on artificial
datasets, varying the number T of time steps and the number N of sensors up
to 8,000 and 4,000 respectively; the corresponding computational runtime (over a
456Mo dataset) is 5 minutes on PC-Pentium IV.
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151 measure points and the number of time steps (milliseconds) is 875. As can be
noted from Fig. 1, the range of activities widely varies along time. The runtime
on the available data is less than 20 seconds on PC Pentium 2.4 GHz.

The parameters used in the experiments are as follows. The population size
is P = 200; the stop criterion is based on the number of fitness evaluations per
run, limited to 40,000. A few preliminary runs were used to adjust the operator
rates; the mutation and crossover rates are respectively set to .7 and .3. For
computational efficiency, the p-inclusion is computed as: X is p-included in Y if
the center i of X belongs to the spatial support of Y , and there is an overlap
between their time intervals. 4D-Miner is written in C++.

Time
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(a): �(X) = 8, a(X) = 8, σ(X) = .29 (b): �(X) = 20, a(X) = 9, σ(X) = .396

Fig. 2. Two stable spatio-temporal patterns (N = 151, T = 875)

Typical STPs found in the real datasets are shown in Fig. 2.(a) and (b),
displaying all activity curves belonging to the STP plus the time-window of the
pattern. Both patterns are considered relevant by the expert; note that the STP
on the right is Pareto dominated by the one of the left.

All experiments confirm the importance of the user-defined thresholds (min	,
mina, minσ), defining the minimum requirements on solution individuals. Rais-
ing the thresholds beyond certain values leads to poor final results as the opti-
mization problem becomes over constrained; lowering the thresholds leads to a
crowded Pareto archive, increasing the computational time and adversely affect-
ing the quality of the final solutions. Indeed, the coarse tuning of the parameters
can be achieved based on the desired proportion of admissible individuals in
the initial population. However, the fine-tuning of the parameters could not be
automatized up to now, and it still requires running 4D-Miner a few times. For
this reason, the control of the computational cost (through the population size
and number of generations) is of utmost importance.

4 Extension to Discriminant STPs

After some active brain areas have been identified, the next task in the functional
brain imaging agenda is to relate these areas to specific cognitive processes,
using contrasted experimental settings. In this section, the catch versus no-catch
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experiment is considered; the subject sees a ball, which s/he must respectively
catch (catch setting) or let go (no-catch setting). Cell assemblies that are found
active in the catch setting and inactive in the no-catch one, are conjectured to
relate to motor skills.

More generally, the mining task becomes to find STPs that behave differently
in a pair of (positive, negative) settings, referred to as discriminant STPs. The
notations are modified as follows. To the i-th sensor are attached its activities
in the positive and negative settings, respectively noted C+

i (t) and C−
i (t); its

positions are similarly noted M+
i and M−

i .
The fact that the sensor position differs depending on the setting entails that

the genotype of the sought patterns must be redesigned. An alternative would
have been to specify the 3D coordinates of a pattern instead of centering the
pattern on a sensor position. However, the spatial region of a pattern actually
corresponds to a set of sensors; in other words it is a discrete entity. The use of
a 3D (continuous) spatial genotype would thus require to redesign the spatial
mutation operator, in order to ensure effective mutations. However, calibrating
the continuous mutation operator and finding the right trade-off between inef-
fective and disruptive modifications of the pattern position proved to be trickier
than extending the genotype.

Formally, the STP genotype notedX(i, j, I, w, r) now refers to a pair of sensors
i, j, which are closest to each other across both settings2. The STP is assessed
from:

– its spatial amplitude a+(X) (resp. a−(X)) defined as the size of B+(i, w, r),
including all sensors k such that dw(M+

i ,M+
k ) < r (resp. B−(j, w, r), includ-

ing all sensors k such that dw(M−
j ,M−

k ) < r)).
– its spatio-temporal alignment σ+(X) (respectively σ−(X)), defined as the

activity alignment of the sensors in B+(i, w, r) (resp. in B−(j, w, r)), over
time interval I.

The next step regards the formalization of the goal. Although neuroscientists
have a clear idea of what a discriminant STP should look like, turning this idea
into a set of operational requirements is by no way easy. Several formalizations
were thus considered, modelling the search criteria in terms of new objectives
(e.g. maximizing the difference between σ+ and σ−) or in terms of constraints
(|σ+(X)− σ−(X)| > mindσ). The extension of the 4D-Miner system to accom-
modate the new objectives and constraints was straightforward.

The visual inspection of the results found along the various modellings led
the neuroscientists to introduce a new feature noted d(X), the difference of the
average activity in B+(i, w, r) and B−(j, w, r) over the time interval I. Finally,
the search goal was modelled as an additional constraint on the STPs, expressed
as |d(X)| > mind where mind is a user-supplied threshold.

Also, it was deemed neurophysiologically unlikely that a functional difference
could occur in the early brain signals; only differences occurring after the motor
program was completed by the subject, i.e. 200ms after the beginning of the
2 With j = arg min{dw(M+

i , M−
k ), k = 1..N}; i = arg min{dw(M+

k , M−
j ), k = 1..N}.
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experiment, are considered to be relevant. This requirement was expressed in a
straightforward way, through a new constraint on admissible STPs, and directly
at the initialization level (e.g., drawing t1 uniformly in [200, T ], section 3.1).

Figs. 3.(a) and 3.(b) show two discriminant patterns, that were found to
be satisfactory by the neuroscientists. Indeed, this assessment of the results
pertains to the field of data mining more than discriminant learning. It is worth
mentioning that the little amount of data available in this study, plus the known
variability of brain activity in the general case (between different persons and
for a same person at different moments, see e.g. [10]), does not permit to assess
discriminant patterns (e.g. by splitting the data into training and test datasets,
and evaluating the patterns extracted from the training set onto the test set).
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Fig. 3. Two discriminant stable spatio-temporal patterns. Sensors display a positive
(resp. negative) activity in the catch (resp. nocatch) case. (N = 151, T = 2500)

Overall, the extension of 4D-Miner to the search of discriminant STPs re-
quired i) a small modification of the genotype and ii) the modelling of two
additional constraints. An additional parameter was introduced, the minimum
difference mind on the activity level, which was tuned by a few preliminary runs.
Same parameters as in section 3.2 were used; the computational cost is less than
25 seconds on PC-Pentium.

5 State of the Art and Discussion

The presented approach is concerned with finding specific patterns in databases
describing spatial objects along time.

Many approaches have been developed in signal processing and computer
science to address such a goal, ranging from Fourier Transforms to Independent
Component Analysis [7] and mixtures of models [2]. These approaches aim at
particular pattern properties (e.g. independence, generativity) and/or focus on
particular data characteristics (e.g. periodicity).
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Functional brain imaging however does not fall within the range of such wide
spectrum methods, for two reasons. Firstly, the sought spatio-temporal patterns
are not periodic, and not independent. Secondly, and most importantly, it ap-
pears useless to build a general model of the spatio-temporal activity, while the
“interesting” activity actually corresponds to a minuscule fragment of the total
activity − the proverbial needle in the haystack.

In the field of spatio-temporal data mining (see [18,16] for comprehensive
surveys), typical applications such as remote sensing, environmental studies, or
medical imaging, involve complete algorithms, achieving an exhaustive search or
building a global model. The stress is put on the scalability of the approach.

Spatio-temporal machine learning mostly focuses on clustering, outlier detec-
tion, denoising, and trend analysis. For instance, [2] used EM algorithms for
non-parametric characterization of functional data (e.g. cyclone trajectories),
with special care regarding the invariance of the models with respect to tempo-
ral translations. The main limitation of such non-parametric models, including
Markov Random Fields, is their computational complexity; therefore the use
of randomized algorithms is attracting an increasing for sidestepped by using
randomized search for model estimates.

Many developments are targeted at efficient access primitives and/or complex
data structures (see, e.g., [19]); another line of research is based on visual and
interactive data mining (see, e.g., [9]), exploiting the unrivaled capacities of
human eyes for spotting regularities in 2D-data.

More generally, the presented approach can be discussed with respect to the
generative versus discriminative dilemma in Machine Learning. Although the
learning goal is most often one of discrimination, generative models often out-
perform discriminative approaches, particularly when considering low-level in-
formation, e.g. signals, images or videos (see e.g. [14]). The higher efficiency of
generative models is frequently explained as they enable the modelling and ex-
ploitation of domain knowledge in a powerful and convenient way, ultimately
reducing the search space by several orders of magnitude.

In summary, generative ML extracts faithful models of the phenomenon at
hand, taking advantage of whatever prior knowledge is available; these models
can be used for discriminative purposes, though discrimination is not among the
primary goals of generative ML. In opposition, discriminative ML focuses on the
most discriminant hypotheses in the whole search space; it does not consider the
relevance of a hypothesis with respect to the background knowledge per se.

To some extent, the presented approach combines generative and discrimi-
native ML. 4D-Miner was primarily devised with the extraction of interesting
patterns in mind. The core task was to model the prior knowledge through
relevance criteria, combining optimization objectives (describing the expert’s
preferences) and constraints (describing what is not interesting). The extraction
of discriminant patterns from the relevant ones was relatively straightforward,
based on the use of additional objectives and constraints. This suggests that ex-
tracting discriminant patterns from relevant ones is much easier than searching
discriminant patterns, and thereafter sorting them out to find the relevant ones.
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6 Conclusion and Perspectives

This paper has proposed a stochastic approach for mining stable spatio-temporal
patterns. Indeed, a very simple alternative would be to discretize the spatio-
temporal domain and compute the correlation of the signals in each cell of the
discretization grid. However, it is believed that the proposed approach presents
several advantages compared to the brute force, discretization-based, alternative.

Firstly, 4D-Miner is a fast and frugal algorithm; its good performances and
scalability have been successfully demonstrated on real-world problems and on
large-sized artificial datasets [17]. Secondly, data mining applications specifically
involve two key steps, exemplified in this paper: i) understanding the expert’s
goals and requirements; ii) tuning the parameters involved in the specifications.
With regard to both steps, the ability of Evolutionary Computation to work
under bounded resources is a very significant advantage. Evolutionary algorithms
intrinsically are any-time algorithms, allowing the user to check at a low cost
whether the process can deliver useful results, and more generally enabling her
to control the trade-off between the computational resources needed and the
quality of the results.

A main perspective for further research is to equip 4D-Miner with learning abil-
ities, facilitating the automatic acquisition of the constraints and modelling the
expert’s expectations. A first step would be to automatically adjust the thresholds
involved in the constraints, based on the expert’s feedback. Ultimately, the goal
is to design a truly user-centered mining system, combining advanced interactive
optimization [13], online learning [1] and visual data mining [9].

Acknowledgments. We heartily thank Sylvain Baillet, Cognitive Neurosciences
and Brain Imaging Lab., La Piti Salptrire and CNRS, who provided the data and
the interpretation of the results. The authors gratefully acknowledge the support
of the Pascal Network of Excellence (IST 2002506778).

References

1. N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-
line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–
2057, 2004.

2. D. Chudova, S. Gaffney, E. Mjolsness, and P. Smyth. Translation-invariant mix-
ture models for curve clustering. In Proc. of the Ninth Int. Conf. on Knowledge
Discovery and Data Mining, pages 79–88. ACM, 2003.

3. D. Corne, J. D. Knowles, and M. J. Oates. The Pareto envelope-based selection
algorithm for multi-objective optimisation. In Proc. of PPSN - VI, LNCS, pages
839–848. Springer Verlag, 2000.

4. J. Daida. Challenges with verification, repeatability, and meaningful comparison
in genetic programming: Gibson’s magic. In Proc. of GECCO 99, pages 1069–1076.
Morgan Kaufmann, 1999.

5. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley,
2001.



Functional Brain Imaging 391

6. T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2001.

7. A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley
New York, 2001.

8. M. Hmlinen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. Magne-
toencephalography: theory, instrumentation, and applications to noninvasive stud-
ies of the working human brain. Rev. Mod. Phys, 65:413–497, 1993.

9. D. A. Keim, J. Schneidewind, and M. Sips. Circleview: a new approach for vi-
sualizing time-related multidimensional data sets. In Proc. of Advanced Visual
Interfaces, pages 179–182. ACM Press, 2004.

10. T. Lal. Machine Learning Methods for Brain-Computer Interfaces. PhD thesis,
Max Plank Institute for Biological Cybernetics, 2005.

11. M. Laumanns, L. Thiele, K. Deb, and E. Zitsler. Combining convergence and
diversity in evolutionary multi-objective optimization. Evolutionary Computation,
10(3):263–282, 2002.

12. J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson. A species conserving ge-
netic algorithm for multimodal function optimization. Evolutionary Computation,
10(3):207–234, 2002.
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Abstract. This paper examines the application of neural networks as a con-
struction heuristic for the examination timetabling problem. Building on the 
heuristic ordering technique, where events are ordered by decreasing scheduling 
difficulty, the neural network allows a novel dynamic, multi-criteria approach 
to be developed. The difficulty of each event to be scheduled is assessed on 
several characteristics, removing the dependence of an ordering based on a sin-
gle heuristic. Furthermore, this technique allows the ordering to be reviewed 
and modified as each event is scheduled; a necessary step since the timetable 
and constraints are altered as events are placed. Our approach uses a Kohonen 
self organising neural network and is shown to have wide applicability. Results 
are presented for a range of examination timetabling problems using standard 
benchmark datasets. 

1   Introduction 

The examination timetabling problem is principally concerned with the scheduling of 
a number of events into a restricted number of time-periods, subject to a set of con-
straints [1]. Conflicting events which have students in common must not be scheduled 
into the same time-period. This essential condition is a hard constraint. Another such 
hard constraint is that seating capacity must not be exceeded in any time-period (the 
so called capacitated problem). A timetable satisfying all hard constraints with all 
events scheduled is a feasible solution. While there may be many feasible solutions to 
a given problem, the timetabler’s task is to find a good quality solution, satisfying as 
many desirable conditions as possible. These desirable conditions, or soft constraints, 
often vary between data sets but typically involve placing events such that each stu-
dent has a reasonable gap between any two exams. These conditions are rarely, if 
ever, completely satisfied, and often vary extensively between data sets. The degree to 
which the soft constraints are met - and hence the quality of the timetable - is meas-
ured by a cost function or penalty function. Therefore, the principal objective of the 
timetabler is to construct a timetable with an acceptably low, ideally optimum, pen-
alty function. 

Over the years various researchers have considered several methods of timetable 
construction. A detailed discussion of these techniques is given by Carter et al [2] and 
an excellent overview of recent research directions. [3].  
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Early approaches include techniques such as Graph Colouring and Constraint Pro-
gramming (see, for example [1,2,3]). Subsequently, metaheuristic approaches have 
been used to help improve the solution. Simulated annealing [4], tabu search [5], evo-
lutionary approaches [8,9] and other techniques such as great deluge [6] have all 
proved useful. In general metaheuristic approaches have performed well on bench-
mark problems though they are time consuming compared with graph colouring based 
approaches. Hybrid approaches involving combinations of heuristics and metaheuris-
tics such as genetic algorithms and hill climbing techniques [7, 10, 11] have produced 
good results on benchmark datasets. Other successful methods taken include multi-
criteria approaches [12], constraint based techniques [13], case based reasoning [14], 
and recently hyper-heuristics [15].  Recent papers note that, on the whole, methods 
used to tackle the examination problem tend to use problem specific information and 
heuristics. 

Construction of a timetable is often accomplished in two phases. An initial timeta-
ble is built using a construction heuristic; this initial timetable is then enhanced using 
an improvement heuristic [2]. Heuristic ordering is one approach to the construction 
phase. Events are ordered in decreasing order of perceived scheduling difficulty and 
then placed sequentially into available positions in the timetable within the conditions 
imposed by the hard constraints. If necessary, events are left unscheduled at this ini-
tial stage rather than violating the constraints with a high penalty being attributed to 
the incomplete timetable. Heuristic ordering may take either a static or a dynamic ap-
proach to construction. In the static approach a complete ordering is established at the 
start of the construction phase prior to scheduling and remains constant throughout 
the process. Events may be ordered using a single heuristic such as; largest degree, 
weighted degree, or exam size, all of which contribute to scheduling difficulty. In the 
dynamic approach, the order in which events are placed may change as the timetable 
is built. For example, if events are scheduled by the number of available slots remain-
ing in the timetable (saturated degree) the placement order will change as events are 
placed in the timetable. 

In recent years, improvement heuristics have received much more attention from 
researchers than the construction phase. As outlined above, a wide range of different 
techniques have been applied, such as simulated annealing, tabu-search, genetic algo-
rithms, great deluge algorithm, and hybridised methods. The research reported here 
focuses on the construction phase and seeks to improve the quality of the initial time-
table produced prior to the application of an improvement heuristic.  

The well-established heuristic ordering approach has proved very effective and of-
fers a firm foundation for further development. However, a feature of the approach is 
that the order in which events are scheduled is typically determined based on a single 
heuristic. However, recent work by Asmuni et al [16] has shown how fuzzy tech-
niques that incorporate characteristics from a number of established heuristic order-
ings can be used in establishing the initial order. Another approach explored in recent 
research has focused on heuristic adaptability, in which the scheduling order is 
adapted to suit the problem leading to an improvement in the quality of the initial 
timetable [17]. Heuristic adaptability also introduces a degree of generality to the sys-
tem since the solution, as it develops, adapts to the environment. Each time an event 
is scheduled, the timetabling environment has been altered. In essence, an available 
position has been removed from the timetable, resource availability is reduced and a 
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new and more difficult problem has been created. It is into this modified environment, 
a partially completed timetable, that the remaining events must be placed. As the 
timetable is generated, the scheduling order must be reviewed after every placement, 
and modified if necessary, to ensure that the most difficult exam is scheduled at each 
stage. In this paper we propose a novel, neural network based multi-criteria method-
ology for dynamically modifying scheduling order during the construction of an ini-
tial examination timetable.  

2   The Timetabling System 

In order to investigate the effectiveness of the neural network as a multi-criteria adap-
tive scheduling component the construction of a feasible timetable is viewed concep-
tually as a two stage process. Firstly, the neural network ranks all remaining exams by 
perceived difficulty and chooses the most difficult to be scheduled next. A placement 
component then places the chosen exam in the timetable. Following placement, the 
process repeats – the remaining exams are ranked by difficulty and the most difficult 
is placed in the timetable – until all exams have been placed or the chosen exam can-
not be placed. The quality of the final timetable is determined by a penalty function 
which measures the extent to which each student’s exams are spread across the avail-
able periods. Clearly, before the neural network can rank exams by difficulty it must 
be appropriately trained. Details of both network training and the penalty function 
used are given later. 

2.1   The Neural Network 

The system is based on a Kohonen self-organising neural network. As illustrated in 
figure 1, the network consists of two layers of processing elements or neurons; an in-
put layer and a mapping layer. Neurons (prototypes) in the mapping layer are spatially 
arranged as a 2-D grid of five neurons by eight. The network employs an unsuper-
vised learning algorithm in which it is not necessary to know in advance the 'correct' 
output for a given input. Once trained the organised network topology reflects the sta-
tistical regularities of the input data. Inputs (feature vectors) are projected onto the 
prototypes in the mapping layer such that the topology of the input space is preserved.  

During training the Kohonen layer undergoes a self-organising process in which a 
two-dimensional map is produced representing the higher dimensional input space. 
An essential feature of the map produced is that it preserves the topology of the input 
space in that inputs which are ‘close together’ in input space are mapped to points 
‘close together’ on the Kohonen layer. In effect, points on the Kohonen map represent 
prototypes, or cluster centres, for the feature vectors used during training. Thus, a fea-
ture vector input to the trained network will be represented by a single prototype on 
the mapping layer. 

The choice of inputs and the extent to which the data used to train the network is 
an accurate and adequate representation of the problem are crucial to the success  
of the network. The purpose of the network is to determine the difficulty of each 
event such that the most difficult exam can be scheduled at each point during the  
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construction phase. As such, it is important that the feature vectors that form the input 
to the network reflect those characteristics of the problem which contribute to sched-
uling difficulty. At any point during the construction of the timetable the concept of 
difficultly is highly dependent upon both the data set and the current state of the time-
table. An examination may be perceived as ‘easy’ or ‘difficult’ based on characteris-
tics such as, for example, the number of conflicts (degree), the number of students en-
rolled (exam size) or the number of available slots left (saturation degree). The input 
feature vector used in this work contains both static components, such as degree, 
weighted degree and exam size, and a dynamic component reporting the current state 
of the timetable. 

Fig. 1. Schematic of the Kohonen Network. Further information on the Kohonen network and 
neural networks in general may be found in Haykin [18] 

2.2   The Training Process 

Having defined the input feature vector it is necessary to establish a corpus of vectors 
which are representative of the particular timetabling problem and which may be used 
to train the network. In defining the training data it is essential that the corpus should 
capture the complexities of the scheduling problem. In this work the training data was 
generated by building a series of timetables using a random ordering heuristic. An 
event is chosen at random and an attempt made to schedule it using the placement 
system described above. Should placement succeed, the characteristics (of both the 
event and the current state of the timetable) are recorded and stored to the training 
corpus as a valid feature vector. Nothing is stored should placement fail. In this way a 
corpus of feature vectors is constructed containing examples of successful scheduling 
situations for the problem in hand. This approach allows each exam to be encountered 
in a variety of ordering positions; scheduled early, mid or late in the construction. The 
training corpus then contains a wide spread of possible scenarios that may arise dur-
ing the course of building the timetable. 
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The Kohonen network is trained using a competitive learning algorithm. As input 
data is presented to the network the neurons on the mapping layer compete amongst 
each other for activation, resulting in a winning neuron. The weights associated with 
this winning neuron are then adjusted as dictated by the learning algorithm to align 
more closely with the input [18]. Through this process the neurons on the mapping 
layer become tuned to particular input patterns. The mapping layer is initially ar-
ranged as a two dimensional lattice of neurons as shown in figure 1. As the neurons 
become tuned, and patterns are identified, they arrange topologically so that their po-
sition is representative of the input characteristics. 

As training progresses, a two-dimensional, topological preserving map of the input 
space is formed, made up of prototypes representing a range of inputs. The essence of 
the methodology then is to label each prototype represented in the Kohonen layer with 
a relative scheduling difficulty. Since the Kohonen network uses an unsupervised 
learning algorithm it is not necessary to know a priori how difficult it is to actually 
schedule the event represented by each of the feature vectors. However, it is a funda-
mental assumption in this work that feature vectors (events) that map to the same pro-
totype on the Kohonen mapping layer, and are therefore ‘close together’ in input 
space, will have a similar scheduling difficulty. 

Since all components in the feature vector are individually positively correlated 
with perceived difficulty it is possible to allocate a relative difficulty to each proto-
type based on a simple linear distance measure based on the normalised values of the 
prototype’s weighted inputs. Prototypes with the largest value represent the most dif-
ficulty exams to schedule; prototypes with the smallest value represent the easiest ex-
ams to place. This method presupposes that all features contribute equally to schedul-
ing difficulty. In reality, some features are more influential than others and some can 
exhibit non-linear relationships with scheduling difficulty. The relative importance of 
the features and their non-linear relationships must be accounted for by a pre-
processing stage prior to input to the network. 

2.3   Construction of a Timetable 

Construction of a timetable can begin once the network has been trained and the pro-
totypes labelled. Scheduling begins with an empty timetable. A feature vector is gen-
erated for each event to be placed and presented in turn to the trained network. The 
order of presentation is irrelevant. The network will map each input to one of the forty 
prototypes. Since each prototype is labelled with perceived relative difficulty, it is 
relatively straightforward to find all those events which are perceived to be most dif-
ficult at this stage. One of this group of events is chosen to be placed; at the moment 
the choice is random since each event in the group is assumed to be equally difficult. 
The chosen event is placed using the placement algorithm already described. 

When an event is successfully placed, the resulting change in the timetable can in-
crease the scheduling difficulty of events yet be timetabled. These changes are cap-
tured in the updated feature vectors which are again presented to the network as the 
first stage in choosing the next event to be scheduled. And so the process continues 
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with the scheduling difficulty of the remaining events changing and adapting as more 
events are scheduled until either a feasible solution is obtained or the selected event 
cannot be placed. 

3   Results 

The proposition to use a neural network as a critical component in a multi-criteria 
adaptive scheduling system is entirely new. In order to accurately evaluate the contri-
bution of the network to the overall scheduling task it is important that the experimen-
tal system is kept stable and simple. To that end, a two-phase iterative timetable con-
struction system was developed as outlined above. Determining the order in which 
exams should be placed in the timetable is the responsibility of the first phase. In the 
second phase a placement system schedules exams in the chosen order. In all of the 
results reported below, timetables are produced by a construction heuristic only; im-
provement heuristics have not been used. 

A relatively straightforward placement system is used in this work. When an exam 
is to be placed all remaining slots in the timetable which do not contravene a hard 
constraint are considered. The exam is placed in the slot which contributes least to the 
overall penalty. Should more than one timetable slot meet this criteria, the exam is 
placed randomly in one of these slots. Importantly, recursive backtracking is not used 
during timetable construction; once placed, an exam cannot be moved. This simplistic 
placement regime is necessary to ensure that the impact of the neural network compo-
nent is clearly visible and, in the context of proving the neural network based ap-
proach, can be evaluated without masking by an unnecessarily complex placement al-
gorithm. 

3.1   Establishing Feasibility of the Method 

The first experimental task was to verify that the neural network could act as a multi-
criteria adaptive component in a scheduling system. Carter’s collection of benchmark 
examination datasets was used for this purpose1. 

Each dataset was ordered by degree, weighted degree and exam size. These static 
orderings were passed to the placement system and exams scheduled in the estab-
lished order. To enable a range of possible timetables, exams were placed randomly in 
the timetable with the only proviso being that placement did not break a hard con-
straint. It is practically impossible to generate a feasible timetable using such a sim-
plistic placement mechanism. A number of runs were made for each ordering and the 
number of unplaced exams was recorded. 

An eight-by-five Kohonen network was then constructed and trained for each data-
set as described above. A number of timetables were constructed for each dataset. For 
each run, the number of unplaced exams was recorded. Again, the objective is not to 
construct a feasible timetable but to determine the contribution of the neural network. 

Results of the experiment are shown in table 1. 

                                                           
1 Benchmark datasets may be downloaded from ftp://ftp.mie.utoronto.ca/pub/carter/testprob 
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Table 1. Number of unplaced events in the construction of a timetable 

Data Set By 
Degree 

By 
Size 

By 
W.Degree 

Best Result Best Result 
using NN 

CAR-F-92 15 17 19 15 1 
CAR-S-91 22 21 15 15 5 
EAR-F-83 8 13 14 8 3 
HEC-S-92 3 8 6 3 0 
KFU-S-93 13 12 8 8 3 
LSE-F-91 7 5 7 5 0 
STA-F-83 31 31 30 30 22 
UTA-S-92 6 7 7 7 1 
UTE-S-92 9 7 11 5 0 
TRE-S-92 10 10 5 6 0 
YOR-F-83 15 28 26 15 10 

In all cases, use of the network component has reduced the number of unplaced 
events, sometimes significantly, when compared to the use of established event order-
ing heuristics based on a single criterion. Indeed, despite the highly restrictive place-
ment algorithm, use of the neural network to order events for placement generated 
feasible timetables for four of the datasets. It was not possible to produce a feasible 
timetable for any of the datasets using traditional ordering heuristics. 

3.2   Refining the Methodology 

Having established the feasibility of the neural network based methodology the task 
now is to tune the method so that high quality feasible timetables can be produced for 
all datasets. For this it is necessary to introduce a penalty function so that the quality 
of the final timetable can be determined and results compared with those of other re-
searchers.  

The penalty function is motivated by the goal of spreading out each student’s ex-
amination schedule. If two exams, i and j, scheduled for a particular student are t time 
slots apart, the weight is set to  

t
tw −= 52      where     { }5,4,3,2,1∈t  (1) 

The weight is multiplied by the number of students that sit for both of the sched-
uled exams. The average penalty per student is calculated by dividing the total penalty 
by total number of students T. The goal is to minimise the following formulation: 
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where N is the number of exams, sij is the number of students enrolled in both exam i 
and j, pi is the time slot where exam i is scheduled, subject to 1  |pj – pi|  5. 
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A number of refinements were made to the methodology. In particular, the network 
training regime was revised. Training data was originally generated using the method 
outline above in which events are chosen at random and a feature vector added to the 
training corpus if that event can be scheduled. This method takes no account of diffi-
culty during training and can result in feature vectors representing intrinsically easy 
events (e.g. small events with low degree) scheduled early in the process being added 
to the training corpus. Similarly, it is inevitable that the training data will contain fea-
ture vectors representing intrinsically difficult events (e.g. large events with high de-
gree) scheduled late in the process. Neither of these eventualities is likely to occur 
while the timetable is being constructed. Consequently, it can be argued that the net-
work should not be trained with such unlikely exemplars. 

New training data was generated for each of the datasets. In each case events were 
ordered by each of the established ordering heuristics before placement. A number of 
random orderings were retained in generating the training data. In addition, the 
placement system used was modified such that the chosen event was placed by least 
cost. For each dataset, a new trained network was developed and used in the construc-
tion of a timetable. The results are shown in table 2.  

Table 2. Best cost achieved for each dataset using the revised training method. The ease with 
which timetables can be generated and an indication of time taken is also shown. The work was 
carried out using a standard desktop PC with AMD Athlon (tm) XP 1800+ 1.54GHz processor 
and 256MB RAM. 

Data Set Proportion of 
feasible 

timetables 

Best 
Cost 

Average time 
to produce a

timetable(sec) 

Best 
Reported Re-
sults -see[16] 

CAR-F-92 0.002 6.2456 10.51 4.1 
CAR-S-91 0.008 7.2129 17.28 4.65 
EAR-F-83 0.0004 49.4436 2.03 29.3 
HEC-S-92 0.095 13.57 0.60 9.2 
KFU-S-93 0.008 19.9 3.17 13.5 
LSE-F-91 0.0504 14.9938 2.25 9.6 
STA-F-83 0.24275 159.2831 0.96 134.9 
UTA-S-92 0.04 4.489 14.04 3.2 
UTE-S-92 0.30436 31.25 1.31 24.4 
TRE-S-92 0.0584 10.7791 3.01 8.3 
YOR-F-83 0 1 unplaced 2.07 36.2 

With the modified training regime feasible timetables were constructed for all 
datasets with the exception of YOR-F-83. For some datasets generating a feasible 
timetable is relatively straightforward, for others it is problematic. For example, 30% 
of attempts to generate a timetable for the UTE-S-92 dataset result in a feasible solu-
tion. With the exception of the YOR-F-83 dataset, EAR-F-83 was found to be most 
difficult with only 0.04% of attempts resulting in a feasible timetable. 

The costs recorded for each dataset represent the value of the penalty function at 
the end of the construction phase only; improvement heuristics have not been used in 
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this work. As such, our results are not directly comparable with other published re-
sults for these datasets, invariably recorded after an improvement phase. Our primary 
motivation in this work is to prove the effectiveness of the neural network as a multi-
criteria, adaptive construction heuristic; not necessarily to obtain best results on these 
test datasets. With this proviso, best published results are also shown in table 2. 

3.3   Application to of the Methodology to Capacitated Data 

The datasets above do not contain constraints on the seating available in each period. 
Such uncapacitated data is useful for developing and proving the methodology but 
most real-world problems will have a limited set of rooms of varying capacities avail-
able. In reality, different institutions must satisfy a range of different constraints in 
generating an institution-wide timetable [19]. The neural network methodology has 
been applied to a rich dataset from the University of Nottingham – Nottingham 94. 
This dataset contains many constraints additional to those found in the benchmark 
datasets used above. Extra conditions include; specific period assignments, room as-
signments, timetabling events in a particular order, the requirement for some events to 
be placed in a room of their own and groups of events to be scheduled together in the 
same period/room. A neural network was trained, using the technique presented 
above, with all of these conditions treated as hard constraints. This presents a much 
more realistic, highly constrained scheduling problem than that posed by the bench-
mark datasets considered previously. Again, without the use of recursive backtracking 
or an improvement heuristic the neural network based system succeeded in construct-
ing valid timetables but only by contravening the desirable condition that conflicting 
events should be scheduled at least one period apart.  

It is important to note that the methodology used to order events for placement has 
not changed from that used with the benchmark datasets. The only component of the 
timetabling system which is, of necessity, tailored to the institution is the placement 
system; this component must be tuned such that all institution-specific hard con-
straints are respected when events are scheduled. This is a significant result. Taken 
with the results on the benchmark datasets it illustrates that the neural network meth-
odology has general applicability across a range of data and can be used successfully 
in real timetabling situations. In essence, the neural network provides a generalisation 
technique, designed to recognise patterns in the data that may be exploited in the gen-
eration of high quality timetables. This provides a high degree of generality resulting 
in a methodology which is largely independent of institution or dataset. 

4   Conclusions and Further Work 

The work presented here has shown the feasibility of using a neural network based 
methodology as a generally applicable, multi-criteria, adaptive, construction heuristic 
for the examination timetabling problem. Work is progressing on two fronts; firstly, 
to refine the method to improve both the proportion of feasible timetables produced 
and the quality of the final schedule and secondly, to evaluate the applicability of the 
methodology to related scheduling problems such as course timetabling for example. 
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Abstract. CDMA and WCDMA mobile phone networks depend on a network 
of antennae, each defining a geographic ‘cell’ that handles the transmissions to 
and from users’ handsets within that cell. These antennae have adjustable set-
tings whose values have a large effect on both quality of service (and conse-
quent subscriptions) and resource consumption. We consider the optimisation 
of these parameters, and describe experiments that compare a range of optimi-
sation algorithms with the methods currently used in the field for this purpose. 
The aim of the current project was to achieve faster (necessary) and better (if 
possible) results than the existing methods used by field engineers. We find that 
certain evolutionary algorithm configurations achieve both of these require-
ments on test problems arising from real data from a high-traffic urban envi-
ronment. To some extent the ideal algorithm depends on the size and load in the 
network being optimised, and this is the main topic of ongoing research.  

1   Introduction 

We report on a project aimed at improving the dynamic service delivery infrastructure 
of a mobile phone network provider, via exploring a small number of algorithms for 
optimising aspects of that infrastructure. We specifically address optimisation of in-
frastructural elements of a mobile telephone network based on Code Division Multi-
ple Access (CDMA) technology. A mobile telephone communications service pro-
vider needs to maintain a network of antennae, each defining a geographic ‘cell’ and 
responsible for providing transmission services for handsets within (or near) that cell. 
A cell’s extent must be such that subscribers may move from the coverage area of one 
cell to another with continuous service. That is, there should be an area of overlap 
between neighbouring cells. But too much overlap would lead to too much interfer-
ence, resulting in excessive powers and reduced capacity to support many subscribers. 
Each antenna will have at least one CDMA downlink radio carrier which is used to 
transmit signals to mobiles in that cell. There are many parameters associated with 
each carrier that are significant for adjusting the geographical relationship between 
cells; one of these is the ‘pilot power’. This is adjustable typically via a database in 
the central operations and maintenance centre, and relates directly to the strength of 
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signal received by users’ mobile devices when it is choosing its serving cell. We also 
consider the adjustment of other parameters, which we discuss later. 

A suite of tools has previously been developed for modelling and simulating the in-
teractions between cells given defined user loads and system parameters. Two optimi-
sation methods are in this suite, which, using the simulator to evaluate configurations, 
attempt to find good configurations of pilot powers for specific periods of the day. 
These are an iterative local/greedy search style algorithm (which we call ILS), and a 
simple evolutionary algorithm (IGA). Engineers in the field currently use ILS, since it 
works quickly (within a few hours on modest spec hardware), and gives acceptable 
results in that time. IGA is capable of producing better solutions, but currently the 
time taken is unacceptable to the field engineers.  

The remainder is set out as follows. In Sect. 2 we review some relevant related ma-
terial. Sect. 3 then further describes and details certain specifics of the optimisation 
problem we address and the test data. In Sect. 4 we describe algorithms and experi-
ments and present the results, and we end with a brief discussion in Sect. 5. 

2   Related Work 

There are several optimisation issues involved in CDMA mobile telephone networks, 
but they fall cleanly into three categories, being mainly concerned with issues such as 
the realtime scheduling of signals at a single base station, the initial design and plan-
ning (e.g. antenna placement) of a new network, or the continual optimisation and 
management of an established network (in response to subscriber growth, for exam-
ple). As an example of the first category, [1] considers the case of high data rate cus-
tomers using a network that also carries a large number of voice users; based on a 
mathematical model, they derive principles and an associated optimal downlink (from 
antenna to user) signal scheduling algorithm that minimises interference between data 
and voice users. Another example in the first category is [2], in which an evolutionary 
algorithm (EA) is proposed that works separately within each cell; it regularly sam-
ples user traffic and attributes at that cell, and the EA determines optimal bit rate and 
power setting for each mobile user, and transmits that information back to them. In 
tests this yielded significant quality of service improvement. 

Meanwhile, concerning initial design and planning, this is often solved by experi-
enced engineers using simulators with Monte Carlo methods to generate good initial 
parameterisations. However [3] considers together the location and pilot powers of 
base stations (antenna), in order to maximise network capacity, based on a mathe-
matical model that enables a mixed integer programming (MIP) formulation, solved 
via both MIP and adaptive simulated annealing [4]. They addressed small problems 
(fewer than 30 cells). [5] and [6] consider a similar problem, and address it with tabu 
search and evolutionary algorithms respectively, achieving (according to the model) 
close to optimal performance for some large networks; these both relate to initial 
network design, combined with initial or ‘typical’ power settings. In our work, the 
problem is to respond dynamically to existing demand in an already established  
network. 
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In practice the third category of continual ‘re’-optimisation of an existing network 
is traditionally done by teams of engineers performing drive tests around the network, 
with test mobiles and spectrum scanners for measuring received signal code power of 
the pilot channels. This identifies problems of poor coverage or interference, and 
attempts are made to fix them by intuitive tuning of system parameters in the region. 
There is relatively little published work to date in this category, perhaps owing to a 
relative perceived difficulty in the logistics of applying this optimisation. Given a 
revised collection of antenna adjustments for an urban network spanning (say) 100 
square miles, engineers need to visit each antenna and make adjustments; this effort is 
hard to justify unless the predicted benefit is quite significant, which is hard to guar-
antee since the models used contain many approximations. However, work on such a 
model [7] together with its use to derive optimisation heuristics, showed, in a major 
city-wide setting, that the resulting optimised pilot powers led to significant gains 
over the use of uniform pilot settings and traditional ‘ad hoc’ optimisation. As well as 
significant improvement in pilot interference, there was also gain in forward link 
coverage and capacity, allowing a substantial reduction in deployment efforts spent in 
optimising pilot powers. Our work builds on [7] in two main ways, by using a re-
cently developed model that considerably improves accuracy, and by exploring evolu-
tionary and similar algorithms for the optimisation process. Meanwhile, with the  
advent of remotely adjustable antennae it is becoming much simpler and cheaper to 
adjust the antenna downtilt, azimuth and beamwidth parameters. 

Finally, it should be noted that there is much, but considerably less closely related 
work in the general field of telecommunications. A sample covering the main applica-
tion areas (optimisation of various kinds of network design, and optimisation of rout-
ing through an established network) using evolutionary computation, includes [8—
17]. There are also specialised books and proceedings on this specific area [18—20].  

3   The CDMA Network Optimisation Problem 

In a CDMA network, there may be several hundred or more antennae in a reasonably 
large city. Each defines a ‘cell’, corresponding to the geographic region around it 
within which it is the preferred base station for users’ handsets in that area. The over-
all quality of service experienced by users depends on various attributes of these an-
tennae. Amongst these attributes is the ‘pilot power’, which is essentially the strength 
of a beacon signal provided by it for mobiles to use when choosing which cell to 
request a service from. Other adjustable attributes include those concerned with the 
directional nature of the signal, namely the antenna’s azimuth and downtilt. 

A healthy network will be tuned such that the areas of overlap are minimised with-
out compromising the coverage offered. It will also keep power and hence interfer-
ence to a minimum by ensuring that mobiles are served by the most optimum cell 
without allowing certain cells to carry disproportionately high traffic. The desire to 
minimise interference by keeping power under control leads to a complex optimisa-
tion problem in finding a balance between quality of service provision and cost, as 
power for one user is interference to another.  
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As indicated, ‘pilot power’ is one parameter available for adjustment. Another is 
the downtilt of the antenna; the larger this is, the less area an antenna’s signal will 
cover. Another parameter is ‘azimuth’, this being the antenna's angle from magnetic 
north, which is often set in relation to topological restraints.  

The specific deployed commercial network used in most of our tests, which we call 
N1, contains 207 cells, of which 59 cells have fixed pilot powers for operational  
reasons. The remaining 148 cells can have their pilot powers adjusted between 1.0 
watts and 3.0 watts in increments of 0.1 watts. Another deployed commercial network 
that appears in some of the tests, which we call N2, contains 97 cells, all of which can 
have their powers adjusted in the same way as with N1. 

The fitness function is an equally weighted sum of the following. 1: Mean traffic 
channel power per user; 2: Percentage of users who don't receive a sufficiently strong 
pilot signal; 3: Mean pilot pollution factor (number of non-dominant pilot signals 
received within a 5dB margin of the dominant); 4: Mean downlink traffic channel 
outage (users unable to get a usable signal for voice or data services); 5: Penalties 
associated with the Linear Power Amplifier driving the transmissions on an antenna 
of which more power than it can provide is demanded.  This is as a result of users' 
excessive requirements for a usable signal; 6: Penalty for users served by a cell other 
than that closest in terms of propagation loss. This arises from having non-uniform 
pilot powers across the network and takes account of uplink optimisation, which may 
conflict with downlink optimisation which is the focus of this paper. 

Naturally this can be treated via multiobjective algorithms [21—23], and such is 
the topic of ongoing related work, however, for this problem these tend to be substan-
tially slower to optimise a network to the extent that they are of little use currently in 
operational network optimisation. In the present work there is a need to stay close to 
the current practice of engineers who would use the system, who are familiar with, 
and require the speed, of the existing single-objective fitness function.    

4   Algorithms, Experiments and Results 

Algorithms: The in-house CDMA network model (developed by the third author) can 
with suitable accuracy estimate the fitness function described above. The present 
work was conducted specifically to see if the speed (in particular) and quality of re-
sults provided by the incumbent methods (ILS and IGA) could be improved by using 
alternative algorithms, yet under the constraint that these should be relatively parame-
ter-light and straightforward (implementable readily in this and other scenarios by 
non-expert practitioners). To this end we explored hillclimbing (HC), simulated an-
nealing (SA), particle swarm optimisation (PSO) and an alternative evolutionary algo-
rithm (SSGA). Each is briefly described below. 

ILS is relatively fast, but found less effective in terms of solution quality. We can 
broadly describe ILS as follows. It takes a parameter h, which refers to the number of 
cells that will be involved in a hotspot. For each group of h cells, where those groups 
are considered in a specific order based on network data, ILS estimates the quality of 
all configurations of available pilot power levels for cells in the hotspot (clearly this 
becomes infeasible for moderate h); the best such configuration is retained, and ILS 
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moves on to consider the next hotspot. This process is repeated for a given number of 
passes, where one pass involves considering all hotspots in the network in turn. 

IGA is a classical, generational genetic algorithm incorporating elitism [24]; it uses 
binary encoding, single point crossover, bitflip mutation and fitness proportionate 
selection.  Since the problem is one of minimisation, proportionate selection works 
with the reciprocal of the fitness. 

SSGA  is a steady state genetic algorithm [25], using real-number encoding, uniform 
crossover [26], Gaussian mutation and binary tournament selection. In some experi-
ments we also employ swap mutation (two randomly chosen genes are swapped). In 
one generation of SSGA, two parents are selected, and one child is generated by uni-
form crossover, and then mutation is applied to that child, and it is evaluated. If the 
child’s fitness is better or equal to that of the population’s current worst, then it enters 
the population overwriting a worst chromosome; otherwise, the child is discarded.   

PSO is a standard implementation of Particle Swarm Optimisation (PSO) [27], with 
parameters 1c and 2c both set at 1, and 1max =V . Some preliminary investigation of 

alternative parameters was done, but none improved significantly on these. 

HC is straightforward stochastic ‘hill climbing’. Maintaining a single chromosome 
(initially random), called the ‘current’, HC iterates the following process: the current 
is copied and mutated, producing a mutant. If the mutant is fitter than or equally as fit 
as the current, then the mutant becomes the new current solution; otherwise the mu-
tant is discarded. HC used the same mutation operators as the SSGA.    

SA was a simple implementation of simulated annealing [28, 29] with a linearly re-
ducing temperature schedule which was engineered to change the probability of ac-
cepting a worse solution from 0.3 at the beginning of the run to 0 at the end. Limited 
preliminary parametric investigation was done, confirming this as a valid choice. 

Encodings and Operators: In the cases of HC, PSO, SA and SSGA, a ‘pilots only’ 
chromosome comprises L real numbers where L is the number of antennae whose 
pilot powers are not pre-specified, each representing the pilot power of a specific 
antenna, and the value is constrained in [1, 3]. Let the value of gene i be vi; when gene 
i is interpreted, it indicates a setting of p for the pilot power associated with gene i, 
where p is the closest value to vi in the set {1.0, 1.1, 1.2, …, 3.0} (the available pilot 
power settings). In the case of IGA, the encoding is binary, where each power is en-
coded in an 8-bit string similarly interpreted in [1, 3]. With ILS, the encoding is im-
material (since there is no interaction with genetic operators). In the cases when we 
optimise each of pilots, tilts and azimuths (see Sect. 3), a chromosome is of length 3L, 
each group of three genes denoting pilot power, tilt and azimuth values respectively. 
Each is interpreted similarly as one of the permitted vales for the corresponding pa-
rameter. The possible pilot powers are as stated above, while tilts and azimuths each 
have 20 possible settings.  

As well as the Gaussian mutation operator described, the SSGA experiments and 
some of the HC and SA experiments also used a swap operator. This was tried after 
observing (in work otherwise not reported here) a high diversity in solutions from 
different runs (also observed in [7]). Ideal solutions tend to be characterised by a 
pattern in which low power antennae are compensated for by higher power antennae 
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nearby, which in turn suggests that swap mutation is a reasonable tool to explore this 
space. When it is used, it is in combination with the Gaussian mutation operator: a 
number k of swaps are done (where k = 0 defaults to Gaussian mutation), followed by 
application of the Gaussian mutation. In each SA, HC and SSGA case, preliminary 
experiments explored values of k from 0 to 3. In the results reported here, we use only 
the thus-found best k for each algorithm/problem combination. 

Parameters: Each of IGA, SSGA and PSO used a population size of 100. When-
ever Gaussian mutation was used, it employed a mean of 0 and a standard devia-
tion of 0.3, and was applied with a strength of 3/L (that is, mutation was applied  
to three randomly chosen genes). These values were arrived at on the basis of  
preliminary experiments. As was implicit before, crossover and mutation were 
always applied (i.e. crossover rate and mutation rate were both 1). 

Experiments and Results: The fitness function is computationally highly expensive, so 
our experiments were oriented towards examining the number of evaluations required to 
achieve acceptable solutions; this is why we are interested in convergence-over-time 
curves in the following. In every experiment, the ‘solution quality’ result indicates the 
best solution after 100,000 fitness evaluations. First, each algorithm was compared on 
problem N1, optimising only the pilot powers. Fig. 1 shows early convergence plots, 
while Table 1 summarises a statistical analysis of the results using 10,000-sample Ran-
domisation tests [29] based on 10 trial runs of each algorithm. (In many cases a single 
trial run of one algorithm consumed 24hrs elapsed time – we were unable to do further 
runs for the current publication). The same collection of algorithms, but omitting ILS, 
were compared on problem N2, also optimising only pilot powers. We omit the equiva-
lent of Fig 1 for space reasons, which was highly similar to the convergence curves for 
N1; however we provide a statistical summary in Table 2. Next we investigated optimis-
ing pilots, tilts and azimuths on the larger network N1, using only the more promising 
algorithms in the previous tests, while keeping IGA for baseline comparison. As before, 
the HC and SSGA results provided are for the configuration (number of swaps) that was 
best in preliminary tests. Fig. 2 shows convergence behaviour, and Table 3 summarises 
pairwise results statistically, while we recognize that this is not sufficient on which to 
base claims concerning multiple algorithm comparisons. 

Table 1. Summary of statistical comparison of SSGA, HC, IGA, ILS, PSO and SA on N1, pilot 
powers optimisation. Based on best of 10 runs of 100,000 evaluations for each algorithm. 

Comparison  Conclusions  
SSGA vs HC SSGA superior, p-value < .00001; HC superior at   short timescales 
SSGA vs  
 IGA 
 

p-value  = 0.116 at 100,000 evals,  p-value < 0.00001 at 50,000 evals;  
SSGA superior at short and medium timescales but superior with only 
low confidence at 100,000 evals point. 

IGA vs HC IGA superior with >97% confidence, p-value  = 0.023 
Others At 100,000 evals, each of HC, SSGA,IGA were superior to the various 

ILS versions, SA and PSO with p-value < .00001 
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Basic Observations: In the pilots-only/larger network case, SSGA (1-swap) and 
HC (0-swap) are superior to the others in terms of both finding good solutions 
quickly and final solution quality. Both ILS and IGA are outperformed signifi-
cantly. At around the 15,000 evaluations mark (beyond which ILS never im-
proves), both SSGA and HC outperform ILS and IGA, in time very acceptable to 
the field engineers. Relative performance was similar on the smaller network N2, 
except that the difference between HC and SSGA in early stages was less pro-
nounced. Again, SSGA provided better overall results and both outperformed ILS 
and IGA over long and short timescales. Interestingly, in both ‘pilots only’ cases, 
the better version of SSGA (hence the one reported here) was that involving 1 
swap before the Gaussian mutation, but the better version of HC was that with 
Gaussian mutation alone. 

Table 2. Summary of statistical comparison of  SSGA, HC, IGA,  on problem N2, (abbreviated 
to these for space reasons); pilot powers optimisation. Based on best from 10 runs of 100,000 
evaluations for each algorithm. 

Comparison  Conclusion p-value 
SSGA vs HC SSGA superior, >99% confidence  0.0016 
SSGA vs IGA SSGA is superior  < 0.00001 
HC vs IGA HC superior, >99% confidence  0.0014 

Table 3. Summary of statistical comparisons of SSGA, HC, IGA, on problem N1; pilot powers, 
tilts and azimuths optimisation. Based on best of 10 runs of 100,000 evaluations. 

Comparison  Conclusion p-value 
HC vs SSGA  Inconclusive  0.36 
HC vs IGA  HC is superior  < 0.00001 
SSGA vs IGA  SSGA is superior  < 0.00001 

Concerning the ‘pilots, tilts and azimuths’ problem on N1, it is notable that in very 
early stages the chromosomes are much less fit than in the corresponding stages of the 
‘pilot powers only’ runs. This arises because tilts and azimuths are randomly as-
signed in the initial population, rather than given a predetermined reasonable as-
signment in the pilots-only case. However, being able to adjust these extra parame-
ters clearly leads to benefits, with cost falling to around 27 in these experiments 
rather than 30.  Again, HC and SSGA both outperform the incumbent IGA. ILS 
results in this case were poor and are omitted for space reasons. Finally, it is nota-
ble that swap mutation was not useful in this case; both the SSGA and HC use 
Gaussian mutation alone. 

5   Concluding Discussion 

Mobile phone networks based on CDMA technology present a plethora of challenges 
for service provision and maintenance, and these in turn demand sophisticated  
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computational models, up-to-date optimisation approaches and much empirical investi-
gation to address. Also, in common with a pattern typical in the commercial world, new 
developments in engineering and technology yield even more opportunities and chal-
lenges. Hence, as adjustment of more attributes of base station antenna becomes more 
routine and easy, the challenge of optimising these parameters comes to the fore.  
 

 

Fig. 1. Early convergence behaviour on network N1, optimising pilot powers only. Each curve 
is mean of ten runs; upper plot shows first 30,000 evaluations of a 100,000 evaluation run, so 
that we can highlight behaviour early in the run; lower plot provides the results for ILS with 
different levels of k, contrasted with SSGA and HC, for approx. first 15000 evaluations. None 
of the ILS runs improved beyond the best level in this plot. 
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Fig. 2. Convergence behaviour of SSG, HC, and IGA on network N2 (97 adjustable antennae), 
optimising pilot powers, tilts and azimuths. Each curve is the mean of ten runs.  

We have explored the optimisation of pilot powers in CDMA networks, and also the 
problem of optimising each of pilots, tilts and azimuths. Our test data came from two 
established networks, and we were able to find improvements to the incumbent optimisa-
tion methods, that are able to find better solutions, and more quickly. On the basis of 
these results, an ongoing project will deploy the updated methods in the field at a selec-
tion of regions. However, this study has been necessarily limited by the computational 
expense of the fitness function (a single trial run of 100,000 evaluations on network N1 
typically takes 24 hrs on a modest spec workstation), and by the fact that it has been 
difficult so far to obtain additional network data beyond the two reported on here; mean-
while much more needs to be done to understand how suitably to choose the algorithm 
based on the (ideally) easily measurable details of the network under study and its user 
load. In our view it is more urgent, however, to find a way to significantly accelerate the 
speed of experiments on these problems. We are currently addressing this issue via using 
these CDMA optimisation problems as a case study/research vehicle for landscape state 
machines (LSMs) [30, 31]. The idea here is that data from previous runs are used to build 
an approximate landscape model, which can then be used for ultra-fast approximate 
performance evaluation via running algorithms on the model. Meanwhile the LSMs 
themselves may be visualised and so yield further insight into the relationships between 
problem and algorithm choice. 
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Abstract. Several diseases involve complex interplay between an infection and 
the body’s defences. Concerning AIDS, for example, this corresponds to devel-
opments in the immune system’s responses and the HIV virus’ counter-responses. 
Treatment for such diseases involves, at specific times, delivery of an agent that 
inhibits the infection. We hypothesise that: given a credible model of the com-
bined dynamics of infection and response, the timing and quantities involved in 
treatment can be valuably investigated using that model. In particular, we investi-
gate searching for optimised treatment plans with an evolutionary algorithm (EA). 
Our test case is a cellular automaton (CA) model of HIV dynamics, extended to 
incorporate HAART therapy (a favoured HIV treatment).An EA is wrapped 
around this model, and searches for treatments that maximally delay onset of 
AIDS, given certain constraints. We find that significant improvements over de-
fault HAART strategy are readily discovered in this way. 

1   Introduction 

Several viral and bacterial diseases are characterised in terms of the complex interplay 
over time between the infection and the body’s defences. E.g., with AIDS, three dis-
tinct phases have been observed, corresponding to developments in the immune sys-
tem’s responses to the attack, and the HIV virus’ counter-responses. Any treatment 
strategy will involve intervention at specific times, with the delivery of an agent that 
is believed to somehow inhibit the course of the infection. We hypothesise that: given 
a credible model of the combined dynamics of the infection and the body’s response, 
the timing and quantities involved in any treatment can be valuably investigated in 
terms of that model. In particular, we investigate the notion of searching for optimised 
treatment plans with an evolutionary algorithm (EA). Our test case is a cellular 
automaton (CA) model of the dynamics of HIV infection, which we extend to incor-
porate the modeling of treatment via HAART therapy (a currently favoured HIV 
treatment). A simple EA is wrapped around this extended model, and searches for 
treatment plans that maximise the time taken for AIDS to take hold, in the context of 
a constraints concerned with harmful effects of prolonged continuous therapy. We 
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fiind that, insofar as the models hint at reality, treatment plans that improve on default 
HAART strategies can be readily discovered by this method. 

The paper is set out as follows. In section 2 we set out relevant introductory mate-
rial on HIV/AIDS, mathematical and computational modeling thereof, HAART ther-
apy. Section 3 then details the models and algorithms employed, aimed at providing a 
replicable account of the HIV and HAART CA model, and the EA that searches using 
this model within the fitness function. Experiments and their results are described in 
section 4, and a concluding discussion appears in section 5. 

2   Background Material 

HIV, AIDS and HAART Therapy: The Human Immunodeficiency Virus (HIV) has 
been subject to intense research over the last two decades. Although major progress 
has been achieved in understanding different aspects of the virus-host interaction, the 
mechanisms by which HIV causes AIDS still remain unexplained. HIV can lie dor-
mant for years, invisible to the body’s surrounding immune defenses. 

The following is summarised from [1—5]. Infection begins when an HIV particle 
enters the body and enters a CD4+ T lymphocyte. Since these cells are key to the 
immune response, this is a central reason for HIV’s impact. A small number of cells 
harbour HIV in a stable, inactive form, so that HIV can lie dormant for years, invisi-
ble to the body’s immune defences. Once in the cytoplasm of a cell, HIV reverse 
transcriptase converts viral RNA into DNA. This stage is important to drug therapy 
development and modeling as seven of the antiviral drugs approved in the US for HIV 
treatment (AZT, ddC, etc.) function by interfering with this stage. The HIV DNA 
travels to the cell's nucleus and is spliced into the host's DNA. Once incorporated into 
the cell's genes, HIV DNA is now a ‘provirus’. The cell is now co-erced into manu-
facturing more virus particles; viral RNA and associated proteins are packaged and 
released from the lymphocyte surface, taking with them a swatch of lymphocyte 
membrane containing viral surface proteins. These proteins will then bind to the re-
ceptors on other immune cells facilitating continued infection. 

Broadly, the infection is characterized by three stages: In stage 1, lasting only a 
few weeks, there is an initial increase in the viral load followed by a sharp decrease. 
A large amount of HIV is in the peripheral blood and the immune system produces 
antibodies and cytotoxic lymphocytes. This stage is present in the left hand side of 
figure 1 which is plotted from clinical data. In stage 2, which can last 10 or more 
years, HIV level in peripheral blood drops very low but people remain infectious. 
HIV is not dormant during this stage, but is actually very active in the lymph nodes, 
wherein many T helper cells are infected and die and a large quantity of virus is pro-
duced. This stage is the mid-area of figure 1. Finally, in stage 3, the immune system 
starts to fail (see right end of figure 1). HIV becomes more prevalent and varied, lead-
ing to destruction of more T helper cells. The body fails to continually replace these. 
As the immune system continues to fail, mild symptoms develop. As the immune 
system deteriorates the symptoms worsen, resulting in the onset of AIDS. 
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Fig. 1. The graph of patient cell and viral measurements from [22]. Notice the change in hori-
zontal scale following the 10-weeks point. The first 10 weeks show the intial phase of infection 
following which the density of healthy cells (squares) recovers, but the HIV virus `incubates’ 
for several years until an acceleration in viral count that heralds the onset of AIDS. 

At present, there are fifteen drugs licensed for HIV treatment [6]. But, individual 
therapies each have their drawbacks, as, e.g., HIV develops specific resistance to it. 
Currently, theory and clinical trials indicate that maximal viral suppression is through 
highly active anti-retroviral therapy (HAART), which consists of triple therapy with 
two nucleoside analogues and a protease inhibitor [6]. We concentrate on HAART as 
the therapy to model since at this time it is the most effective at reducing the time for 
onset if AIDS. However, due to the development of drug resistance, evolution of viral 
strains, or poor patient compliance, it fails to effectively contain the virus long-term in 
the majority of patients. Recent research has investigated Structured Treatment Inter-
rupts [19, 20] in which treatment is interrupted by periods of several weeks. This, 
further discussed later, forms the basis of our experiments. 

Modelling HIV, AIDS and Potential Therapies: Several mathematical models of 
HIV infection have been proposed (e.g. [8-10]), but all fail to describe some impor-
tant aspects of the infection’s dynamics. Typically, models proposed so far have prob-
lems in maintaining biological plausibility while producing a qualitative match to the 
known dynamics of cell concentrations, the main difficulty being that characteristic 
dynamics occur at two quite distinct timescales (see figure 1, showing timescales over 
the first few weeks, and over several years, respectively). A recent example is [10], 
who integrate a CA approach with a graph percolation model, focusing on HIV's 
long-term dynamics and the distribution of incubation periods, but this does not ac-
count for the characteristic dynamics of the first few weeks of infection.  

However, the recent CA model reported by Dos Santos & Coutinho [11] clearly 
shows the different time scales of the infection and has a broad qualitative agreement 
to the density of healthy and infected cells observed in vivo. This sets it apart as a 
promising candidate for further research, although [12] notes that this qualitative 
agreement is quite parameter sensitive. Nevertheless, Dos Santos and Coutinho's 
approach is clearly of interest (as is also pointed out in [12]), and unique in capturing 
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the multi-timescale dynamics with apparently biologically plausible rules; we believe 
this model is sufficient as the basis of this study in terms of proving feasibility of our 
approach; meanwhile we are investigating improvements and alternatives [13].  

There have been several attempts to model drug therapy and continued progress 
has led to the development of various types of therapy. Multiple drug therapy is con-
sidered to increase long term survival moreso than single-drug therapy. The appear-
ance of virus resistance against HAART is apparently more delayed than with  
combined drug therapy [6], but long-term survival data with HAART is unknown. 
Mathematical models have difficulties with single treatment models and also have 
difficulties with unifying multiple therapies into one model [6]. This (as mentioned 
above) is again a difficulty in capturing the dynamics at different time scales. How-
ever, Sloot et al’s system [6] echoes the nature of dos Santos and Coutinho’s model 
and extends to model a variety of therapies; they show good qualitative agreement to 
clinical treatment data. We base our work on such a combined HIV/HAART model. 

Optimisation and Therapy Models: Finally, generalizing away from the HIV/AIDS 
context, we note that other work has considered the use optimisation methods to gen-
erate therapy plans in different contexts, our sample being [14—17]. In [14] and [16], 
the model under study predicts the effect (on both tumours and surrounding healthy 
tissue) of radiotherapy beams, and optimization is done to find ideal parameters for 
the radiotherapy. In [15] and [17], the module under consideration is a differential-
equation based treatment of accumulated toxicity over time of cancer chemotherapy, 
and advanced optimization methods are used to find ideal chemotherapy schedules. 

3   Models and Algorithms 

The CA / HAART Therapy Model: First we describe our implementation of the 
HIV Infection model [11]; this is how our model operates during periods when treat-
ment is off; further rules below, following [6], define how the model operates when 
simulated therapy is in operation. 

As [11], we use a 2D synchronous CA with a square lattice, and the Moore 
neighbourhood (a cell’s neighbourhood are its N, NE, E, SE, S, SW, W and NW 
neighbours). Cells can be in one of four states: healthy (H), infected-1 (I1), infected-2 
(I2), or dead (D). Initially, cells are mainly H, but a small random proportion HIVp  
are infected. We use 025.=HIVp , in common with [11]. ‘HAART off’ operation then 
continues according to the following four rules; one application of these rules to every 
grid cell results in simulating 1 week’s progress. Biological justification of these rules 
is in [11]; we provide brief notes on this point. 

Rule 1 - If an H cell has at least one I1 neighbour, or if has at least k I2 neighbours, 
then it becomes I1. Otherwise, it stays healthy. 

Rule 2 – An I1 cell becomes I2 after τ time steps (simulated weeks). (to operate this 
the CA maintains a counter associated with each I1 cell). 

Rule 3 - An I2 cell becomes D. 

Rule 4 – A D cell becomes:  H, with probability )1( Infecrepl pp − ; I1, with probability 

Infecrepl pp ; otherwise, it remains D 
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Rule 1 models spread of infection by contact prior to development of immune re-
sponse.  As [11], we use k = 4. An I2 cell represents one against which an immune 
response has finally been developed (note that each infected cell will harbour a differ-
ent HIV strain), which happens after roughly τ weeks; as [11], we use 4=τ . Rule 4 
simulates the replenishment of new healthy cells in the context of maintained infec-
tion. In common with [11] we use 99.0=replp  and 00001.0=Infecp . 

Now we turn to the integration of simulated HAART. The following rules, gleaned 
from [6], are designed to model the effects of HAART’s anti viral-replication activity. 
These rules become operative in the model when therapy is switched on, replacing the 
corresponding rules above. Note that in the case of HAART-Rule 1, it is convenient 
to write and implement it as one which updates its neighbours on the basis of its own 
state, rather than updating a cell on the basis of its neighbours’ states: 
HAART-Rule 1: Given an I1 cell, the following is done to its neighbours at the next 
time step: with prob. )(tpresponse  (where t is current week of infection), a randomly 
chosen N (7 ≥ N ≥ 0) of neighbouring H cells become I1; otherwise, all 8 become I1. 

HAART-Rule 3 -  An I2 cell becomes dead after 2 time steps. 

Meanwhile, rules 2 and 4 remain unchanged. HAART-Rule 1 models the inhibition  
of viral replication, with N representing the effectiveness of the HAART drugs. With-
out therapy, Rule 1 provides (implicitly) that all H neighbours of an I1 cell will be-
come infected at the next time step. On therapy, with probability )(tpresponse , this falls 
to N. The smaller N, the more efficient the therapy. Meanwhile, the larger )(tpresponse , 
the more effective is the therapy. This models the response function for the HAART 
drug therapy, and incorporates the fact that the therapy will not immediately influence 
all of the I1 cells, but will affect some of them at each time step [3]. We used a re-
sponse function based on the work in [6] but adapted to model the use of varied 
treatments and in line with current knowledge about the HAART mechanism. Also, 
given the increasingly high quality of the HAART drug, and observations that show 
relatively prolonged long-term survival for the highly inhibitive drugs [3], we use N = 
0. The model maintains the possibility for other values of N, which may become use-
ful in prolonged treatments involving different flavours of HAART. 

The change to rule 3 reflects the fact that, during HAART therapy, an I2 cell will 
take longer to die while viral propagation is inhibited. Finally, we note various pa-
rameters that have not yet been specified. We use a lattice size of 700700× - as noted  
later, this is a minimal size at which the basic HIV infection model yields quite re-
peatable results. Our CA boundary conditions are fixed – e.g. a cell at the right hand 
edge of the grid has no right hand neighbours. This is unlike the [11] case, but we feel 
it better models the physical conditions, in which the dynamics of infection occur in 
the relatively restricted space of the thymus. 

Structured Treatment Interruptions: Rather than prolonged, continual HAART, 
many believe that structured treatment interruptions (STIs - scheduled periods without 
treatment) may improve the immune system by increasing HIV’s sensitivity to antiret-
roviral drugs. Interruptions draw viral mutant selection pressure away from drug re-
sistance, thus breeding a more drug-susceptible virus [5]. 

Implementing STIs is straightforward in our model, and is done by switching be-
tween the normal ruleset while off treatment and the HAART ruleset during treat-
ment. STI based therapy is not the same as Intermittent Therapy, which has shorter 
cycles of switching on and off the antiviral drugs, such as ‘five days on two days off’ 
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and has in some research proved ineffective and lead quickly to drug resistance. 
Meanwhile, STI (with on/off periods measured in several weeks) has proven benefi-
cial in trials. By optimising STIs we can investigate vastly more possible treatments 
that can be done with clinical trials. 

Optimisation: We use a very simple evolutionary algorithm [18—21] (EA). With a 
population of 10 randomly generated solutions, it continues for v generations as fol-
lows: a parent is selected by binary tournament selection, and then subject to muta-
tion. If the mutant is fitter than (or equally as fit as) the current worst in the popula-
tion, then it replaces this worst.  This represents a first-choice method, in the context 
of having very limited opportunity to experiment with several different algorithms 
owing to the very time-complex nature of the evaluation function in this case. On the 
basis of the results we feel both that this algorithm design suffices for now, and that 
alternatives will be worth investigating in future when we come to understand the 
landscapes involved in this and related problems. 

4   Experiments and Results 

A number of experiments were done to investigate optimizing STI plans using a sim-
ple evolutionary algorithm. Each candidate solution (chromosome) specified a sched-
ule of treatment interruptions to start from the 300-week stage; this is the mean point 
at which the viral load is at a threshold that indicates HAART therapy should begin. 
The fitness function consisted of running the CA for 690 simulated weeks, using the 
chromosome to indicate when to simulate the therapy. Fitness itself is the week num-
ber at which the density of infected and healthy cells becomes equal (called the ‘set 
point’) and the healthy density does not recover past this point in later weeks. Such a 
point essentially heralds the onset of AIDS, while earlier weeks at which the  
‘set point’ may be reached do not develop into AIDS owing to the introduction of 
treatment. There are various ‘repeating-pattern’ STI schemes that have been investi-
gated in clinical trials, and limited simulations have found these tend to yield fitnesses 
between 400 and 500 in our model. 

It is worth noting the time complexity of the experiments. Given an N by N  CA 
grid, a single iteration involves 2N  cell updates, each of which involves several op-
erations. A run of a black-box search algorithm for v evaluations would therefore 
have a complexity of 2690vN cell updates. Ideally, to compensate for the fact that 
multiple runs of the CA do not have identical behaviour, it would make sense for a 
single evaluation to return the mean result from s > 1 simulations. But, initial tests and 
observations [11, 13] show that variation is also markedly reduced with grid size. 
Here we chose to raise N  to a level where variation became acceptably low (N = 
700), allowing us to set s=1. Each evaluation still involved 8103×> cell updates, and 
certain pragmatics and resource issues mean that we can only here report on (at most) 
50-evaluation runs. The main reason for high N, rather than s>1, is that lower N can 
lead to simulations that do not always follow the stages of infection, quickly settling 
down to an `all-healthy’ state. This would of course corrupt the evaluation of STI 
plans and the optimisation. 

Structured Treatment Experiments: We report here on three experiments, differing 
in terms of the space of possible structured treatment interrupts (STIs) that were  
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explored. Clinical studies show that there is a serious risk of constant HAART ther-
apy leading to drug resistant HIV strains emerging. These then dominate the viral 
strand population resulting in acceleration of the onset of AIDS. It is thought that 
STI, in which constant prolonged therapy is avoided, can harness this to the patient's 
advantage. When the virus population is no longer subject to selection pressure from 
the drugs (i.e during a therapy-free period), the population reverts to non-resistant 
forms. 

To broadly illustrate the issues, and modeling this for illustration via a binary 
string, where ‘1’ means 8 weeks of treatment and ‘0’ means 8 weeks without treat-
ment, the following shows a possible 48-week treatment plan: ‘110000’; We will 
assume that treatment starts at week 300 following initial infection. In this simple 
plan, which is actually the standard HAART therapy plan (repeated each 48 weeks 
following consultation and review), there is 16 weeks’  treatment followed by 32 
weeks off treatment. The alternative 48-week plan ‘110110’ potentially provides a 
dangerous level of treatment from the viewpoint of developing resistance, while a 
plan such as ‘000101’ perhaps starts dangerously late. Of particular interest is the 
effect of such patterns over a much longer period, and the potential use of treatments 
without a repeating pattern, but structured to interact with the dynamics of the infec-
tion in such a way as to indefinitely delay the onset of AIDS.  

We do not explicitly model the effect whereby resistant strains increase during 
treatment (and reduce in treatment-free periods), but we incorporate a bias against 
overly prolonged stretches of treatment by enforcing a limit on ‘treatment-weeks’ in 
each experiment. The problem we address is therefore to find optimised structured 
treatment interrupt (STI) plans under a maximal treatment-week constraint. 

Encodings and Operators: In expt. 1, an initial exploratory test, we evolved 10-bit 
binary chromosomes for 20 iterations (evaluations), where a ‘0’ stood for 8 weeks 
treatment, and a ‘1’ stood for 16 weeks off treatment. These were subject to a maxi-
mum of 6 stretches of treatment. Mutation was binary flip of a randomly chosen gene.  

In expt. 2, we used 20-bit binary chromosomes, where ‘0’ stood for 16 weeks of 
treatment and ‘1’ stood for 16 weeks without treatment, constrained to have precisely 
6 1s. (hence searching a space of STI plans each spanning 6 years and involving pre-
cisely 96 weeks’ treatment, which represents a clearly safe ‘density’ of  HAART 
therapy). The 16 weeks on and 16 weeks off stretches correspond with practice in 
some clinical trials [23]  In this case, mutation was a single swap of a randomly cho-
sen ‘1’ with a randomly chosen ‘0’. This experiment also ran for only 20 iterations. 

The third experiment was designed after prolonged consideration of data from re-
cent STI clinical trials. In short, the essential notion behind STI is that the off-
treatment periods ‘jump start’ the immune system to take active control over the  
virus. However this revived defence can only last for short periods of time, hence a 
recent leaning in trials towards 8 weeks ‘off’ periods [24]. Meanwhile, this and other 
summaries and reviews indicate that a 16-week or longer period on treatment may be 
relatively safe; after 2 years on continuous HAART treatment, 10% of patients de-
velop resistance (in which the HAART drugs no longer have any effect), and this 
increases to 20% after 4 years and 30% after 6 years of continuous treatment. For the 
third experiment, we therefore evolved chromosomes of length 20 where a ‘1’ repre-
sented 16 weeks of treatment, and a 0 represented 8 weeks off treatment. The number 
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of 1s was maintained at 12, using the swap operator, and contiguous periods on treat-
ment were limited to 80 weeks (5 1s). In this case we ran for 50 iterations. 

In all cases, the chromosome’s treatment plan is implemented from week 301 on-
wards, matching clinical practice in terms of the level of viral load at that point. 

 

Fig. 2. Effects of an optimal STI treatment from expt. 3. Infected cell counts do not start to 
approach the set point until  > week 690 (though came close around week 430).  

Results: Expt 1 results confirmed to us that optimization was feasible in this space, as 
we found that a short EA run could find the optimum discovered (later) by an exhaus-
tive search. We do not report further on this expt, and turn now to cases where ex-
haustive search was infeasible. In experiment 2, the best solution had a fitness of 578, 
and encoded the following STI plan: 

0000000011110000000000001111001111000000 

We omit the plot for space reasons, but report dynamics in which the treatment seems 
to exploit the dynamics that occur when infected and healthy-cell counts are close, 
resulting in a series of healthy periods interspersed with near-onset periods. 

Finally, in experiment 3, all solutions in the final population had fitness 690 (indi-
cating no onset of the set point throughout the simulation). We could not therefore 
‘ignore’ such cases as with experiment 1. Given that each of these solutions was from 
a random initial configuration, in a model of robust size, and involving slightly differ-
ent chromosomes (treatment plans); meanwhile, the initial population in this case 
tended to have fitnesses around 550, owing to the enforced high density of treatment, 
so overall we consider this result to be robust. An example optimal solution is as 
follows, with the treatment shown in figure 3. 

11111100011111111110001101111011 
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5   Concluding Discussion 

In this preliminary investigation we have found support for the possibility of  evolving 
STI plans that exploit the dynamics of infection and treatment as simulated in a model. 
The work reported so far has many limitations, but each has been or is being addressed in 
ongoing work. We have not yet evolved treatment plans that we are sure are robust (as 
would be evidenced, e.g., by several simulations per evaluation); although 700 by 700 
grids tend to be produce repeatable results in the HIV model, the parameter sensitivity of 
this particular model is known [12, 13], and we do not really know the sensitivity yet of 
the combined HIV/HAART model as a function of grid size. Longer runs would also be 
desirable, of individual simulations, but in particular of the EA, to provide greater oppor-
tunity to find interesting and high-quality results. 

Perhaps the most material limitation is the validity of the HIV/HAART model itself. 
The Dos Santos and Coutinho HIV infection model [11] is unique in providing a good 
qualitative agreement with real-data on cell counts, but has been criticised for its robust-
ness [12, 13]. The qualitative agreement, arising from simple and apparently biologically 
plausible rules, is a considerable achievement, and the lack of robustness to parameters is 
not in itself a denial of the model’s validity (real disease dynamics is not necessarily 
‘robust’ in this sense), but this is associated with questions about the way that the bio-
logical observation has been translated into rule probabilities and other attributes, E.g., in 
the model, an infected cell always dies after 5 weeks, rather than different cells varying in 
their survival time around a mean. 

However, we do not claim any great degree of validity for this model (and are devel-
oping others which seem more robust in related work [13]), but stress the promise of the 
overall approach, which consists of wrapping a complex disease/treatment dynamics 
model within an optimisation framework to yield high-quality suggested treatment plans 
for further consideration, and thus potentially narrowing down on novel strategies that 
may otherwise never have gone on to the stage of clinical trials. In ongoing work we are 
repeating and extending these experiments for longer runs, and including multiple simu-
lations per run, and also plan working with encodings finer-grained stretches of treat-
ment. On the modeling side, we are also considering the use of more robust 
HIV/treatment models that may arise from an approach investigated in [13]. We also plan 
to investigate this general approach for other diseases and associated treatments, espe-
cially where a robust model exists that reflects all the relevant dynamics with good quali-
tative accuracy, and (unlike the situation with HIV) allows us to computationally quickly 
simulate or calculate a treatment plan.  
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Abstract. We introduce a Bayesian Optimization algorithm (BOA) for
the automatic generation of test sequences (ATPG) for digital circuit. We
compare our approach, named BOATPG, to the two most known evo-
lutionary approaches to ATPG (GATTO and STRATEGATE) and the
currently most promising non-evolutionary approach to ATPG (namely,
SPECTRAL ATPG). We show that our simple approach can easily out-
perform GATTO and performs as good as a more complex evolutionary
approach like STRATEGATE. We also show that when BOATPG is
coupled with spectral approach for seeding the population of initial test
sequences, the resulting hybrid system, SBOATPG, performs better than
the plain BOATPG although the improvements over SPECTRAL ATPG
are limited.

1 Introduction

Modern integrated circuits are complex devices manufactured through compli-
cated fabrication processes. At any stage of the production process physical
defects can occur which impair the resulting devices. Accordingly, circuit testing
is one of the most expensive and most crucial steps of circuit production. It is
performed by applying several signals to the circuit inputs and verifying whether
the circuit works correctly. The area of test pattern generation deals with the
problem of finding all those input signals, those test patterns, which allow the
detection of all the possible faults in a given circuit. The tools for automatic
test pattern generation (ATPG) fall into two main categories: (i) deterministic
approaches [1] build test sequences by analyzing the structure of the circuit; (ii)
simulation based approaches analyze the effects of the application of the test
sequences to the circuit (gate and flip-flop values, and total amount of faults de-
tected) and they modify the test sequences in order to detect more faults. Some
simulation based test generators, such as GATTO [4] and STRATEGATE [8],
exploit genetic algorithms to drive the search of test sequences. Other simula-
tion based methods take a radically different viewpoint. For instance, Spectral
ATPG [5] views the circuit as a black-box system, and builds test sequences as
a set of waveforms (spectra) by filtering unwanted noise from them.

In this paper, we introduce a simulation based approach to ATPG based on
Bayesian optimization algorithms (BOA) [12]. Our approach is an extension of
Jiri Ocenasek’s AMBOA [11] for ATPG problems in which the simulation part

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 423–432, 2006.
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is performed using the HOPE fault simulator [9]. We compare our approach,
BOATPG, against (i) STRATEGATE [8], a state-of-the-art ATPG tool, (ii)
GATTO [4], a pure evolutionary approach to ATPG, and (iii) Spectral ATPG [5],
one of the most promising techniques in this area. We also introduce a hybrid
approach which couples BOATPG and Spectral ATPG [5], named SBOATPG,
which first applies Spectral ATPG to seed the initial population of BOATPG.
Experimental results for the three approaches demonstrate the effectiveness and
robustness of BOATPG compared to state-of-the-art test generators.

The paper is organized as follows. In Section 2 we briefly overview Automatic
Test Pattern Generation and the evolutionary techniques that have been intro-
duced in the literature to tackle these types of applications. In Section 3 we
describe the version of BOA we applied to ATPG and compare its performance
of the three state-of-the-art heuristic techniques for ATPG taken from the lit-
erature. In Section 4 we compare our version of BOA for ATPG, BOATPG,
to the two major evolutionary approaches for ATPG (GATTO and STRATE-
GATE) and to SPECTRAL. Finally, in Section 6, we draw some conclusions and
delineate future research directions.

2 Automatic Test Pattern Generation

Automatic Test Pattern Generation (ATPG) [1] is the process of generating a
set of test vectors for a circuit that are capable of inducing different behaviors
in good and in faulty circuits. Test vectors can be applied only to the circuit
primary inputs (the input pins) and faults can be observed only on the circuit
primary outputs (the output pins). The quality of a test sequence is measured
by the fault coverage, i.e., the percentage of faults detected by the sequence over
all possible faults. The application cost of a test sequence is measured by the
number of test vectors that must be applied to the circuit primary inputs to
obtain a given fault coverage. The computation time required to the application
of the test sequence grows with the number of test vectors. Accordingly, ATPG
algorithms aim at generating short test sequences (i.e., consisting of few test
vectors) with a high fault coverage (i.e., capable of detecting a high percentage
of faults). There are two types of ATPG algorithms: deterministic ones and
simulation based ones.

Deterministic Test Generators. This class of ATPG algorithms build test se-
quences by analyzing the circuit structure. Deterministic test generators involve
two steps [1]: fault activation and fault propagation. Fault activation of a line l
with respect to a binary value v consists of the application of input signals to
the primary inputs of the circuit capable of inducing on l the complement value
of v. Fault propagation consists of applying the input signals to the primary
inputs of the circuit capable of inducing on one or more primary output the
complement of the value obtained in the fault-free circuit. The intersection of
the test vector for fault activation and the test vector for fault propagation leads
to the test vector for the fault on line l. Algorithms of this class include the D
algorithm [15], the “9 value” algorithm [3], and HITEC [10]–the state-of-the-art
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deterministic test generator for sequential circuits. Deterministic test generators
require long computation time to generate a test sequence, mainly due to the
justification phase.

Simulation Based Test Generators do not take into account the circuit
structure, instead candidate test sequences are fault simulated ; as a result the
fault simulation returns the values of the flip-flops and the primary outputs
due to the application of the test sequence, along with the number of faults de-
tected by the sequence. The candidate test sequences are then modified according
to the results of the simulation. The whole process stops when some criterion
is met. GATTO [4] is a simulation-based test generator which uses a genetic
algorithm to produce fault-detecting sequences. In GATTO [4], an individual
is a test sequence of variable length that represents a series of input vectors
that must be applied to the circuit. One strong assumption in GATTO [4] (not
present in other approaches) is that the circuit starts from its reset state and
therefore it can be applied to circuits which include an input reset signal. To
each individual, to each sequence, an evaluation function is associated which
measures how close the sequence is to the detection of a fault based on two
heuristics: (i) the weighted number of gates with different values in the good
and faulty circuits, and on (ii) the weighted number of flip-flops with different
values in the good and in the faulty circuits. STRATEGATE [8] is one of the
state-of-the-art algorithms for ATPG. It is based on (i) finding the states of the
circuit (i.e., all the flip-flop values) capable of activating target faults, and on
(ii) finding the test sequences capable of driving the circuit from one state to
another (they are called state-transfer sequences). STRATEGATE use genetic
algorithms both to derive and manipulate dynamic state-transfer sequences and
in the overall test generation process. SPECTRAL ATPG [5] views the circuit
as a black-box system that has to be identified from its input-output signals.
The testing of sequential systems is mapped into the problem of constructing a
set of waveforms which, when applied at the primary inputs of the circuit, can
excite and propagate targeted faults in the circuit. The input waveforms have
specific spectral characteristics. To capture such spectral characteristics for a
given signal, a clean representation of the signal is desired: wider spectra lead
to more unpredictable/random signals. Accordingly, any embedded noise should
be filtered. Static test set compaction [14,7] reduces the size of the test set by re-
moving any unnecessary vectors while retaining the useful ones. In other words,
static compaction filters unwanted noise from the derived test sequence, leaving
a cleaner signal (narrower spectrum) to analyze. The spectral information ob-
tained offers a way to predict intelligent vectors based on the vectors generated
so far, see [14,7,6,5] for details.

Table 1 reports (a) the descriptions of the circuits from ISCAS89 [2] family,
a typical testbed for ATPG algorithms, and (b) the performance of the three
approaches (STRATEGATE [8], GATTO [4], and SPECTRAL [5]) on the IS-
CAS89 circuits. In Table 1a, Name identifies the circuit, PI and PO are the
number of primary inputs and primary outputs, FF is the number of flip-flops,
Gates is the number of gates in the circuit, Depth is the sequential depth of
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Table 1. Performance of STRATEGATE, SPECTRAL ATPG, and GATTO on the
circuits of the ISCAS89 family

Circuit PI PO FF Gates Depth Faults
s298 3 6 14 119 9 308
s344 9 11 15 160 20 342
s382 3 6 21 158 9 399
s444 3 6 21 181 11 474
s526 3 6 21 193 9 555
s641 35 24 19 379 74 446
s713 35 23 19 393 74 560
s820 18 19 5 289 10 816
s832 18 19 5 287 10 836

s1196 14 14 18 529 24 1214
s1238 14 14 18 508 22 1327
s1423 17 5 74 657 59 1515
s1488 8 19 6 653 17 1470
s1494 8 19 6 647 17 1490
s5378 35 49 179 2779 25 4601

Circuit STRATEGATE SPECTRAL GATTO
Name Level Faults Cov Vec Cov Vec Cov Vec
s298 9 308 86,04 194 - - 88,64 189
s344 20 324 96,20 86 - - 98,46 241
s382 9 399 91,23 1486 91,23 567 70,43 559
s386 11 384 - - - - 81,51 423
s444 11 474 89,45 1945 - - 61,18 409
s510 12 564 - - - - 99,82 626
s526 9 555 81,80 2642 - - 81,08 1618
s641 74 465 86,51 166 - - 87,10 598
s713 74 581 81,93 176 81,93 89 82,62 820
s820 10 850 95,76 590 - - 56,82 2012
s832 10 869 94,02 701 - - 53,51 471
s953 16 1079 - - - - 98,98 1284
s1196 24 1242 99,76 574 99,76 244 98,79 2509
s1238 22 1355 94,61 625 94,69 255 94,10 4205
s1423 59 1515 93,33 3943 93,47 927 90,50 2388
s1488 17 1486 97,17 593 97,17 384 97,11 1549
s1494 17 1506 96,48 540 96,48 388 94,29 1662
s5378 25 4603 79,06 11481 79,14 734 73,91 1586
s9234 58 6927 - - - - 5,85 198
s13207 59 9815 - - - - 20,15 147
s35932 29 39094 89,78 257 - - 89,36 1121
s38417 47 31180 - - - - 17,90 839

(a) (b)

the circuit in terms of flip-flops, Faults is the number of faults that can be in-
jected in the circuit. In Table 1b, column Name identifies the circuit and for
each algorithm considered, Cov is the percentage of fault coverage (our perfor-
mance) that the algorithm can identify using Vec test vectors. Note that the
data in Table 1 are taken from the literature [8,4,5] thus some values are miss-
ing (those corresponding to a “-” symbol) because not available. As the table
shows, GATTO performs better than STRATEGATE in some circuits (s298,
s344, s641, s713), but worse in others (s382, s444, s820, s832). SPECTRAL can
reach maximum fault coverages for all the circuits, with a limited number of
test vectors. In several cases, SPECTRAL outperforms STRATEGATE, which
is the state-of-the-art in the area of ATPG. Thus Spectral ATPG is currently
considered very promising.

3 BOA for Automatic Test Pattern Generation

BOA for Automatic Test Pattern Generation, BOATPG, has been implemented
as an extension of Jiri Ocenasek’s AMBOA code [11] and basically works as the
most typical BOA. Individuals are bitstrings of fixed length representing candi-
date test sequences. The population is randomly initialized. At each generation,
half the population is selected and model building is performed using decision
graphs [13]. The decision graphs obtained are then used to generate offsprings,
which replace half of the original population. Then the Bayesian network is de-
stroyed and the process starts again. The fitness takes into account the number
of faults detected by the test sequence and two heuristic parameters, flip-flop
observability and gate observability, which estimate the easiness of propagating
a flip-flop or gate value to a primary output. These heuristics are the same used
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in GATTO [4] and they have been implemented from the code of GATTO that is
publically available. Note however, that the fitness in BOATPG combines these
heuristics in a different way with respect to what done in GATTO. In BOATPG,
a test sequence has a high fitness if (i) it detects more faults and (ii) it propa-
gates the effects of not yet detected faults to crucial elements (such as flip-flops)
so as to improve the probability of its future detection. A detailed description
of the fitness function is available in [6]. To compute fitness we integrated the
HOPE [9] fault simulator into BOATPG to fault simulate test sequences; we also
modified the code of HOPE to allow the computation of flip-flop observability
and gate observability that our fitness function requires.

In addition, BOATPG includes a test sequence extension mechanism that
we designed for ATPG application. In BOATPG, test sequences are of fixed
length as needed by the Bayesian networks building. However, when the fitness
of individuals does not improve for a certain number of generations, the best
sequence in the population is appended to the final test set, and a new set of fixed
length sequences is optimized. Thus, in BOATPG each individual represents T
test vectors, i.e., T × PI bits, where PI is the number of primary inputs of
the circuit. If the best value of the fitness function remains unchanged for Sg

generations, a new population is generated by appending to the best individual
generated so fare other T test vectors. When Mg generations passed without an
improvement in the fitness function, the program terminates. The parameter T
represents the size of the step that the system is willing to undertake for exploring
longer sequences. To keep the approach simple, T is fixed from the beginning
and it is set to the initial number of test sequences in the initial individuals.

4 Experiments with BOATPG

We compared BOATPG with (i) the two most popular ATPG methods based
on genetic algorithms (GATTO [2] and STRATEGATE [8]) and one of the most
promising non evolutionary approaches to ATPG, SPECTRAL ATPG [5]. We
conducted two sets of experiments. In the first set of experiments, we applied
BOATPG to typical testbeds using very small populations containing at most
100 individuals. The parameters Sg and Mg have been set to 50 and 250 genera-
tions respectively, to ensure adequate exploration of the space of solutions before
extending test sequences, and to guarantee an adequate number of sequence ex-
tensions before termination. For each problem, we performed ten trials, i.e., we
run BOATPG ten times with different seeds. The second set of experiments has
been performed on the most hard-to-test circuits. In this case, we have used
populations of 1000 individuals. The parameters Sg and Mg have been increased
to 100 and 500 respectively, to increase the exploration of the solution space.

4.1 Comparison with GATTO

The fitness of BOATPG is based on the same heuristics used in GATTO [4].
this comparison can be actually viewed as a comparison between a probabilistic
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Table 2. BOATPG compared to GATTO. The best fault coverage is showed in bold.

Circuit GATTO BOATPG
Cov Vec Cov Cov Vec Vec

s298 88.64 189 88.64 88.64± 0.00 100 100.00± 0.00
s344 98.46 241 98.54 98.54±0.00 50 50.00±0.00
s382 70.43 559 91.73 86.19± 3.08 500 420.00±78.88
s444 61.18 409 89.66 74.77±10.04 300 245.00±36.89
s526 81.08 1618 81.80 75.59±7.42 770 623.00±61.29
s641 87.10 598 87.37 87.37±0.00 52 40.30±4.11
s713 82.62 820 82.62 82.62±0.00 48 40.80±6.20
s820 56.82 2012 95.29 91.18±3.46 400 306.00±80.58
s832 53.51 471 93.68 90.84±2.23 510 397.80±78.60
s1196 98.79 2509 99.76 99.76±0.00 480 384.00±65.86
s1238 94.10 4205 94.69 94.69±0.00 462 353.10±56.20
s1423 90.50 2388 96.77 95.25±0.85 468 385.20±53.80
s1488 97.11 1549 97.31 97.29±0.03 540 459.00±78.80
s1494 94.29 1662 96.61 96.54 ±0.08 420 331.80± 57.55
s5378 73.91 1586 80.01 78.61±0.64 576 340.20±100.56

model building approach and a plain genetic algorithm in the context of ATPG
applications. One strong assumption made in GATTO [4] is that the target
circuit has a reset signal that can be used to initialize all the flip-flop values to
zero. This means that in GATTO [4] test sequences are applied starting from a
known state since the circuit have been initially resetted. For this reason, in this
first comparison we have applied the same initialization scheme with BOATPG.

Table 2 compares the performance of GATTO as reported in [4] and the
performance of BOATPG. While in [4], the performance is simply measured as
the highest covering obtained (column Cov in Table 2) and the corresponding
number of test vectors (column Vec Table 2), for BOATPG we report the best
evolved solution and the corresponding vector size (columns Cov and Vec) but
also the average covering obtained in the ten runs (column Cov) and the average
test vector size (column Vec).

As can be noted, BOATPG outperforms GATTO on all the circuits. The
difference in the performances is more evident especially on some hard-to-test
circuits, such as s382, s444, s820, s832 and s1423. In those circuits in which the
fault coverages of GATTO and BOATPG are the same (such as s298 and s713),
BOATPG evolves solutions which require fewer test vectors, i.e., when BOATPG
does not improve the coverage produced by GATTO, it can still produce better
(more compact) solutions. A comparison of the execution time between GATTO
and BOATPG is infeasible. The statistics for GATTO reported in [4] were per-
formed on a different systems and from the publicly available code of GATTO
we were not able to duplicate the results in [4] mainly because the fault sim-
ulator used in [4] was not available to us. Nevertheless, we can certainly state
that GATTO should be generally much faster than BOATPG due to the major
model building phase required by the latter. On the other hand, in this type of
application execution time might not be a relevant issue since the designers are
generally willing to invest more computation time to obtain better sequences.
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4.2 Comparison with STRATEGATE and SPECTRAL ATPG

As discussed in the previous section, GATTO [4] assumes that flip-flops can be
initialized using a reset input signal so that the initial state of the circuit is
determined. This assumption simplifies the generation of test sequences but it is
generally infeasible. since most circuits do not provide such possibility. Accord-
ingly, most ATPG methods, like STRATEGATE and SPECTRAL ATPG, do
not make this assumption. To compare BOATPG against STRATEGATE and
SPECTRAL ATPG, BOATPG is applied without flip-flop initialization, thus
the performances for BOATPG reported in this section are different from those
reported in Table 2.

Table 3 compares the performances of (i) STRATEGATE, as reported in [8],
(ii) SPECTRAL ATPG, as reported in [5], and (iii) BOATPG. For each circuit
and for each algorithm, Table 3 reports the best coverage reached (column Cov)
and the corresponding number of test vectors found (column Vec); for BOATPG
also the averages are reported (columns Col and Vec). For some circuits the re-
sults of multiple BOATPG experiments are reported. All the experiments have
been performed using very small populations of 100 individuals, the rows in
Table 3 preceded by an asterisk to experiments with populations of 1000 indi-
viduals.

In many circuits, more precisely in 8 out of 17 circuits considered, BOATPG
performs as well as STRATEGATE and/or SPECTRAL ATPG while produc-
ing generally shorter and thus better test sequences than STRATEGATE. In
almost every circuit, the difference between the best and the average perfor-
mance of BOATPG is small, which suggests that the approach is rather robust.
Note that for the other approaches [4,8] such statistics is not available. It is
worth noting that in big circuits (e.g. s5378) and hard-to-test circuits (e.g.,
s820 and s832) the coverage obtained by BOATPG is just a little lower than
that obtained by the state-of-the-art STRATEGATE and SPECTRAL. In large
problems, the test sequences obtained by SPECTRAL ATPG are much shorter
than those evolved by BOATPG. This result was expected and it is basically due
to the static test set compaction algorithms used with SPECTRAL ATPG [5].
However, BOATPG test sequences are more compact than the ones obtained by
STRATEGATE, the state-of-the-art of evolutionary based ATPG. In s382, s444,
s526 and s1423, the performance of BOATPG is lower than that of STRATE-
GATE and SPECTRAL. Experiments with increased population size results in
little improvements. On the other hand, such low performances are probably due
to a difficult initialization phase of these circuits. In fact, when the presence of a
reset signal is assumed, BOATPG results for the same circuits are much higher
(see Table 2). This suggests that our fitness function may be not adequate to
guide the search of circuit initialization sequences, while it is effective to guide
the search of fault detecting sequences. Accordingly, we coupled BOATPG with
SPECTRAL that we used to seed the initial populations.

Also in this case, a comparison of the computation time required by the three
methods considered here is infeasible. A rough analysis of the data in [8], in [5],
and our execution of BOATPG (see [6] for details on BOATPG execution times)
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Table 3. BOATPG compared to STRATEGATE and SPECTRAL

Circuit STRATEGATE SPECTRAL BOATPG
Cov Vec Cov Vec Cov Cov Vec Vec

s298 86.04 194 - - 86.04 86.04±0.00 120 116.00± 12.65
s344 96.20 86 - - 96.20 96.20±0.00 80 52.00±19.32
s382 91.23 1486 91.23 567 87.22 74.56±10.89 350 189.00±104.61
s444 89.45 1945 - - 87.13 75.76±8.72 360 198.00±98.18

∗ s444 89.45 1945 - - 80.80 80.53±0.48 400 320.00±42.16
∗ s526 81.80 2642 - - 79.64 72.00±4.12 880 704.00±140.10
s526 81.80 2642 - - 79.64 72.18±2.63 900 700.00±94.28
s641 86.51 166 - - 86.51 86.51±0.00 54 54.00±0.00
s713 81.93 176 81.93 89 81.93 81.93±0.00 50 43.00±4.83
s820 95.76 590 - - 95.18 93.44±1.43 544 418.20±60.08
s832 94.02 701 - - 93.56 91.07±1.32 425 310.00±57.97
s1196 99.76 574 99.76 244 99.76 99.74±0.03 425 310.00±54.26
s1238 94.61 625 94.69 255 94.69 94.65±0.07 400 325.00±54.01
s1423 93.33 3943 93.47 927 92.08 91.52±0.47 550 390.00±79.23
s1488 97.17 593 97.17 384 97.17 97.11±0.09 400 335.00± 33.75
s1494 96.48 540 96.48 388 96.48 96.47±0.03 400 360.00± 31.62
s5378 79.06 11481 79.14 734 78.99 77.67±0.00 552.00 420.00±222.35

shows that SPECTRAL ATPG is an order of magnitude faster than STRATE-
GATE and BOATPG. Again, this was expected: STRATEGATE employs two
genetic algorithms, BOATPG performs complex probabilistic model building,
while SPECTRAL ATPG performs simple operations like matrix multiplica-
tions. Nonetheless, BOATPG execution times seem to be comparable to those
of STRATEGATE, which is the state-of-the-art in the field.

5 Coupling BOA with Spectral

The results discussed in the previous section suggest that the fitness definition
in BOATPG may be not adequate to guide the search of circuit initialization
sequences. Accordingly, we coupled coupled SPECTRAL ATPG and BOATPG:
SPECTRAL ATPG is used to generate candidate test sequences which are
then used to seed the population of BOATPG. This hybrid approach, named
SBOATPG, first applies SPECTRAL ATPG to extract candidate test sequences
that are then used to seed BOATPG populations and to supply interesting test
sequences to feed the extension mechanism. To implement these extensions, we
reimplemented SPECTRAL ATPG following the description in [5]. Unfortu-
nately, although we carefully followed the description in [5], we were not able to
fully duplicate the original results but it generally performs slightly worse than
what presented in [5].

Table 4 compares BOATPG, the original SPECTRAL ATPG, and SBOATPG
on the subset of the ISCAS89 testbed for which the performance of SPECTRAL
ATPG was available. As can be noted, SBOATPG performs better than the
plain BOATPG in all the circuits in which BOATPG reaches lower fault cov-
erages (such as s832 and s526). However, the improvement in fault detection
obtained by evolutionary phase of SBOATPG is limited with respect to the
fault coverages achieved by SPECTRAL alone. This suggests that the coupling
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Table 4. SBOATPG compared to BOATPG. The best fault coverage is showed in
bold.

Circuit BOATPG SPECTRAL SBOATPG
Cov Cov Vec Cov Cov Cov Vec Cov Cov Cov Vec Cov

s382 87.22 74.56 350 189.00 89.47 50.03 511 174.30 89.47 89.47 800 640.00
s382 87.22 74.56 350 189.00 89.47 31.55 607 83.37 90.48 89.37 1000 760.00
s444 87.13 75.76 360 198.00 84.60 18.61 265 39.20 87.76 87.34 800 640.00
s820 95.18 93.44 544 418.20 95.41 74.09 680 334.80 95.65 95.53 680 503.20
s832 93.56 91.07 425 310.00 93.91 81.74 1138 515.40 94.02 93.95 850 646.00
s1196 99.76 99.74 425 310.00 99.52 98.95 247 230.20 99.76 99.71 514 514.00
s1196 99.76 99.74 425 310.00 99.67 97.39 247 223.14 99.76 99.76 602 516.24

of spectral and Bayesian approaches may not provide interesting improvements
while being computationally expensive. On the other hand, we note that spectral
approach have high variances in both in the coverage and in the length of the
test sequences (in fact the difference between the average performance and the
best performance is usually large). In contrast, BOA based approaches seems
more robust in that the difference between best and average performances is
very small. Finally, the improvements obtained by BOATPG over the other evo-
lutionary approaches and the additional improvements obtained by SBOATPG
seem to suggest that BOA approaches may provide an interesting direction for
ATPG application.

6 Conclusions

We have presented a Bayesian Optimization algorithm for ATPG, named
BOATPG, and compared its performance with the two mostly known evolu-
tionary approach to ATPG and with SPECTRAL ATPG, a very promising non
evolutionary approach to ATPG. The initial results we discussed show that our
simple approach can easily outperform GATTO and performs as good as a more
complex evolutionary approach like STRATEGATE. When BOATPG is coupled
with an effective strategy to seed the population, the performance increases, al-
though the improvements with respect to plain SPECTRAL ATPG appear to be
limited. This work, which we consider rather preliminary, opens future research
directions. Among the others, the fitness function should be improved to better
deal with hard-to-initialize circuits. In addition, much larger populations and
other model building schemes should be tested to improve the model building
phase.
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Abstract. Parsing and Tagging are very important tasks in Natural
Language Processing. Parsing amounts to searching the correct combina-
tion of grammatical rules among those compatible with a given sentence.
Tagging amounts to labeling each word in a sentence with its lexical cat-
egory and, because many words belong to more than one lexical class, it
turns out to be a disambiguation task. Because parsing and tagging are
related tasks, its simultaneous resolution can improve the results of both
of them. This work aims developing a multiobjective genetic program
to perform simultaneously statistical parsing and tagging. It combines
the statistical data about grammar rules and about tag sequences to
guide the search of the best structure. Results show that any of the
implemented multiobjective optimization models improve on the results
obtained in the resolution of each problem separately.

1 Introduction

Parsing and tagging are very important tasks in Natural Language Processing.
They are usually a prior step to carry on many natural language processing
processes such as machine translation, information retrieval, speech recognition,
etc. Parsing amounts to searching the correct combination of grammatical rules
among those compatible with a given sentence. Tagging amounts to labeling each
word in a sentence with its lexical category (noun, verb, etc), disambiguating
those words which belong to more than one lexical class. Languages are ambigu-
ous and many words belong to more than one lexical class. Thus, disambiguation
methods are required to proceed with tagging. The research in automatic part-
of-speech tagging [1] and parsing [2] has increased a lot in the past few years,
probably due to the increasing availability of large annotated corpora.

Often, tagging is a prior step to parsing. Grammatical ambiguity is highly
reduced if lexical ambiguity has been eliminated. In fact, Dalrymple [5] has
shown that if a perfect tagger were available, we could obtain a reduction in
ambiguity of about 50%.

On the other hand, a perfect disambiguation of a lexical tagging requires
taking into account at least the parsing, but sometimes also discourse analysis

� Supported by project TIC2003-09481-C04.
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and world knowledge. Thus, the simultaneous resolution of tagging and parsing
can improve on the results of both of them.

This work aims at developing an evolutionary multiobjective optimization
algorithm to perform simultaneously statistical parsing and tagging. It combines
the statistical data about grammar rules and about sequences of lexical tags to
guide the search of the best structure. The work relies on previous works which
apply separately genetic programming to perform parsing [2] and an evolutionary
algorithm for solving tagging [1]. Because, even separately the results provided by
these evolutionary systems are comparable or even better than those obtained
with algorithms of exhaustive search, it is expected than the multiobjective
genetic program can improve on the results for both problems.

Parsing is essentially a Multi-Objective Optimization process: a search for the
most probable combination of grammar rules as well as for the most probable
combination of lexical categories for the words of the sentence. An evolutionary
multiobjective algorithm for this problem can take advantage of several evolu-
tionary multiobjective models which have appeared in the literature [6,4]. Some
of the simplest ones, usually known as aggregative functions, amounts to com-
bining the different objectives into a single function or linear fitness combination,
i.e., to adding all the objective functions together using different weighting coeffi-
cients for each of them, thus transforming the problem into a scalar optimization
one. Some alternative approaches are based on the concept of Pareto optimum1.
Solutions included in the Pareto optimal set are called nondominated. The ap-
proaches considered herein have been an aggregative function, and some Pareto-
optimum approaches: MOGA (Multi-Objective Genetic Algorithm, in which the
rank of an individual corresponds to the number of individuals in the popu-
lation by which it is dominated) [8], NSGA (Non-dominated Sorting Genetic
Algorithm, which considers several layers of classification of individuals) [11],
and NSGA-II (which improves NSGA with elitism and a crowded comparison
operator to keeps diversity without additional parameters) [7].

The rest of the paper proceeds as follows: Section 2 and 3 are respectively
devoted to state the two problems considered: parsing and tagging, presenting
the main elements of a genetic program to solve parsing and the objective func-
tion for tagging; Section 4 presents and discusses the experimental results, and
Section 5 draws the main conclusions of this work.

2 Evolutionary Statistical Parsing

To implement our evolutionary multiobjective algorithm for parsing and tagging
we have started from the genetic program for parsing, which produces the parse
tree for a sentence, which in its turn determines the tagging of the sentence.
The fitness function combines the probabilistic evaluation of the parse tree with

1 A solution x ∈ X is a Pareto optimum (minimum) if there is no better solution
y ∈ X for some objective: � ∃y ∈ X such that

fi(y) ≤ fi(x)(∀i = 1, · · · , k) and
fj(y) < fj(x) for some j.
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NP−PRD

just

RB     ADJP        NN
blubber

RB JJ
so much

VBN
been

VP

CC
and

NNS
peanuts

NNS
emerals

NP−SBJVB
have

Ind. 2

RB
just

Ind. 1

Ind. 3

NN
blubber

Ind. 4

Ind. 5

Fig. 1. Examples of individuals for the sentence To her peanuts and emeralds would
have been just so much blubber. RB stands for adverb, VB for verb (base form), NN
for noun (singular or mass), VBN for verb (past participle), NNS for noun (plural),
CC for coordinating conjunction, ADJP for adjective phrase, NP-PRD for predicate
noun phrase, VP for verb phrase, and NP-SBJ for subject noun phrase.

the context based evaluation of the tagging. This combination is performed in
different ways for the different models considered here.

A bottom-up parser starts with the sequence of lexical classes of the words and
its basic operation is to take a sequence of symbols that match the right-hand
side of the grammar rules. Stochastic grammars [3,2], whose rules are assigned
a probability, allow us evaluating the possible parses of a sentence, and thus
solving ambiguity by selecting the most probable one. The stochastic grammar
can be extracted from a linguistic corpus syntactically annotated (treebanks).

We have developed a probabilistic bottom-up parser based on genetic pro-
gramming which works with a population of partial parses, i.e., parses of sen-
tence segments.

2.1 Chromosome Representation

Individuals in our system are parses of segments of the sentence, that is, they are
trees obtained by applying the probabilistic context free grammar to a sequence
of words of the sentence. Each individual is assigned a syntactic category: the
left-hand side of the top-level rule of the parse. The probability of this rule is
also registered. Every tree is composed of a number of subtrees, each of them
corresponding to the required syntactic category of the right-hand side of the
rule. Figure 1 shows some individuals for the sentence To her peanuts and emer-
alds would have been just so much blubber, used as a running example, which has
been extracted from the Penn Treebank [9]. We can see that there are individ-
uals composed of a single word, such as 1, while others, such as 4, are a parse
tree obtained by applying different grammar rules. For the former, the category
is the chosen lexical category of the word (a word can belong to more than one
lexical class); e.g., the category of 1 is RB. For the latter, the category is the left
hand-side of the top level rule; e.g., the category of 4 is VP.

Initial Population. The first step to parse a sentence is to find the possible
lexical tags of each word. They are obtained, along with their frequencies, from
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RB JJ
so much

ADJP

RB JJ
so much

ADJP

NP−PRD

just blubber

RB NN

RB
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RB
just

Ind. 3

NN
blubber

Ind. 1

Ind. 1

Ind. 2 Ind. 4

NP−PRD RB ADJP NN

NP−PRD RB ADJP NN

? ?

Fig. 2. Example of application of the crossover operator. Individual 1, whose syntactic
category is RB, is randomly selected for crossover. The rule NP-PRD → RB ADJP
NN is selected among those rules whose right-hand side begins with RB. Finally, the
population is searched for individuals corresponding to the remaining syntactic cate-
gories of the rule, provided its sequence of words is appropriate to compose a segment
of the sentence.

a dictionary. Because parses are built in a bottom-up manner, the initial pop-
ulation is composed of individuals that are leave trees formed only by a lexical
category of the word. The system generates a different individual for each lexical
category of the word.

2.2 Genetic Operators

Chromosomes in the population of subsequent generations which did not appear
in the previous one are created by means of two genetic operators: crossover and
cut. The crossover operator combines a parse with other parses present in the
population to satisfy a grammar rule; cut creates a new parse by randomly se-
lecting a subtree from an individual of the population. A classic genetic operator
which has not been used in our algorithm is mutation. Because our system only
works with correct parses, mutation should substitute a subtree by another sub-
tree in the population which parses exactly the same sequence of words and has
the same syntactic symbol that the substituted one. But this effect is obtained
by the combination of crossover and cut.

Crossover. The crossover operator produces a new individual by combining
an individual selected from the population with an arbitrary number of other
ones. Notice that the crossover in this case does not necessarily acts on pairs of
individuals. The individuals to be crossed are randomly selected. This selection
does not consider the fitness of the individuals because some grammar rules may
require, to be completed, individuals of some particular syntactic category for
which there are no representatives with higher fitness.

Let us assume that the individual 1 of Figure 1 is selected. The syntactic
category (label of the root) of this individual is RB. The next step requires
selecting among the grammar rules those whose right-hand side begins with this
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syntactic category, i.e., RB. Some examples from the grammar used in this work
are (NP-PRD → RB ADJP NN), (ADJP → RP JJ), (ADVP → RB RB), etc.
Let us assume that we choose the first of these rules. Now, the crossover operator
searches in the population for individuals whose syntactic category matches the
remaining categories at the right-hand side of the rule, and whose sequence of
words is the continuation of the words of the previous individual (Figure 2). In
the example, we look for an individual of category ADJP and for another of
category NN. The sequence of words of the individual of category ADJP must
begin with the word so, the one following the words of individual 1. Accordingly,
the individual 2 of Figure 2 is a possible candidate (likewise, individuals 3 is also
chosen for the crossover). This process produces the individual 4 of Figure 2,
whose syntactic category is the left-hand side of the rule (NP-PRD), and which
is composed of the subtrees selected in the previous steps. This new individual
is added to the population. With this scheme, the crossover of one individual
may produce no descendant at all, or may produce more than one descendant.
In the latter case all descendants are added to the population. The process of
selection is in charge of reducing the population down to the specified size.

Crossover increases the mean size of the individuals every generation. Though
this is advantageous because at the end we are interested in providing as solution
individuals which cover the whole sentence, it may also induce some problems.
If the selection process removes small individuals which can only be combined in
later generations, the parses of these combinations will never be produced. This
situation is prevented by introducing the cut operator, as well as by applying
some constraints in the selection process, which reduces the size of the population
by erasing individuals according to their fitness but always ensuring that each of
their words is present in at least another individual. The cut operator produces
a new individual out of another one by cutting off a subtree of its parse tree at
random. The new individual is added to the population.

2.3 Objective Function for Parsing

The fitness function is basically a measure of the probability of the parse. It is
computed as the average probability of the grammar rules used to construct the
parse:

fpar =

∑
s∈T

prob(s)

nn(T )

where T is the tree to evaluate, s each of its nodes and nn(T ) is the number of
nodes. For the lexical category, the probability is the relative frequency of the
chosen tag.

3 Objective Function for Tagging

A tagging of the considered sentence is a sequence of tags assigned to the words
of the sentence. The model for tagging deals with disambiguation by assigning
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This the therapist may pursue in later questioning .
DT AT NN NNP VB RP RP VB .
QL MD VBP NNP RB NN

RB JJ JJ
NN JJR
FW
IN

Fig. 3. Tags for the words in a sentence extracted from the Penn corpus. Underlined
tags are the correct ones, according to the corpus. Tags correspond to the tag set
defined in the Penn corpus: DT stands for determiner/pronoun, AT for article, NN for
common noun, MD for modal auxiliary, VB for uninflected verb, IN for preposition,
JJR for comparative adjective, etc.

VPMD
would

VP

VB
have

NP−PRD

just

RB     ADJP        NN
blubber

RB JJ
much

VBN
been

VP

so

To her peanuts and emerals would have been just so much blubber .

PRP VB
RB JJTO NNS CC NNS MD VBN RB .NNPRP$ VBP
IN

Fig. 4. Example of construction of the tagging of a sentence out the partial parse

different probabilities to a given tag depending on which are the neighbouring
tags (context) on both sides of the word. Figure 3 shows an example of sentence
extracted from the Penn corpus. The word questioning can be disambiguated as a
common name (NN) if the preceding tag is disambiguated as an adjective (JJR).
But it might happen that the preceding word were ambiguous, so there may be
many dependencies which must be resolved simultaneously. The computation of
the fitness (ftag) of a tagging is based on the list of contexts (training table)
extracted from a training hand-tagged corpus. This table records the different
contexts of each tag, along with its number of occurrences, for every tag in the
training text.

The genetic parser works with partial parses of the sentences. Thus the tag-
ging obtained from an individual is a partial tagging of the whole sentence.
We complete the tagging by choosing tags for the remaining words, randomly
selected among the valid tags for the word (according to the dictionary), pro-
portionally to their probabilities. Figure 4 shows an example. The tags selected
to compose the tagging corresponding to the individual appear underlined. The
tag PRP for the word her is randomly selected among those of the word (PRP$,
possessive pronoun, and PRP, personal pronoun), while the tag VB (verb in base
form) selected for been is given by the parse tree. The ftag of an individual is a
measure of the total probability of its sequence of tags, according to the data
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from the training table. It is computed as the sum of the fitness of its genes,∑
i f(gi). The fitness of a gene g is defined as

f(g) = log P (T |LC,RC)

where P (T |LC,RC) is the probability that the tag of gene g is T , given that
its context is formed by the sequence of tags LC to the left and the sequence
RC to the right (the logarithm is taken in order to make fitness additive). This
probability is estimated from the training table as

P (T |LC, RC) ≈ occ(LC, T, RC)∑
T ′∈T occ(LC, T ′, RC)

where occ(LC, T,RC) is the number of occurrences of the list of tags LC, T,RC
in the training table, and T is the set of all possible tags of g.

4 Experimental Results

Once we have defined the two objective functions, we can apply the different
evolutionary multiobjective methods as for any pair of functions. In particular,
the application of an aggregative function to the fitness functions computed for
parsing and tagging is straightforward. We only have to take into account that
both functions should vary within a similar range of values.

Another consideration concerns NSGA, in which the computation of the shar-
ing function for each front requires the computation of the phenotypic distance
between two individuals. Because individuals in our system are partial parses,
corresponding in general to different segments of the sentence, they can not be
directly compared. Accordingly, a phenotypic distance is defined as the number
of words which are parsed in one of the individuals but not in the other.

The system, implemented on a PC in C++ language, has been applied to
sentences extracted from two linguistic corpora: the Penn Treebank [9] and the
Susanne corpus [10], both databases of English sentences manually annotated
with syntactic information. The probabilistic grammar for parsing has also been
obtained from the corpora. Each grammar rule is assigned a probability com-
puted as its relative frequency with respect to other rules with the same left-hand
side.

In order to evaluate the quality of the obtained parses we have used the most
common measures for parsing evaluation, defined assuming a bracket represen-
tation 2 of the parse tree: precision3 and recall4.

2 For example, the parse tree for individual 5 of Figure 1 corresponds to the bracket
expression NP-SBJ( NNS(peanuts), CC(and), NNS(emeralds)).

3 Given by the number of brackets in the parse to evaluate matching those of the
correct tree.

4 A coverage measure given by the number of brackets in the correct tree which also
appear in the parse.
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Table 1. Study (tagging accuracy, precision and recall) of the sharing parameter for
MOGA in Penn corpus (PS=450, IT=1500, %X=20, %C=20, TC=5) and in Susanne
corpus (PS=200, IT=500, %X=20, %C=10, TC=3)

Penn corpus Susanne corpus
Sharing Acc. Tag. Prec. Recall Acc. Tag. Prec. Recall

10% 99.61 90.50 90.08 99.61 98.04 96.56
20% 99.61 91.72 89.16 99.80 97.83 97.50
30% 99.61 92.40 90.38 99.61 99.74 98.46
40% 96.12 89.54 92.14 99.80 98.81 97.53

From the Susanne corpus, we have used a training text set of 470082 words,
and a test text of 520 words (17 sentences). From the Penn Treebank, we have
taken a set of training text of 16233 words, using a test text of 269 words (11
sentences).

4.1 Studying the Sharing Parameters

First of all, we have adjusted the parameters of the algorithms considered in this
paper. Table 1 shows the results obtained in both corpora for MOGA with different
values of the sharing parameter. This is defined as a percentage of the distance
between the best and worst values of the objective parsing. We can observe that
the best results on both corpora are obtained with a sharing value of 30%.

Table 2 shows the results obtained for NSGA with different values of the
sharing parameter. In this case, individuals of a same niche are those of the
same level which differ in a number of words below a threshold value. A sharing
distance of 3 words provides the best results in this case.

In the case of the aggregative function, we have also studied the use of different
weights for the contributions to the fitness of parsing and tagging. Table 3 shows
the results obtained in both corpora. In this case, the best results are obtained
by assigning the same weight to both objective functions.

A general observation is that the most significant results are obtained with
the Penn Treebank. This is due to the large sets of lexical and syntactic tags
used in the Susanne corpus, which lead to very specific grammar rules, for which
the results are very similar in all cases.

Table 2. Study (tagging accuracy, precision and recall) of the sharing parameter for
NSGA in Penn corpus (PS=450, IT=1500, %X=20, %C=20, TC=5) and in Susanne
corpus (PS=200, IT=500, %X=20, %C=10, TC=3)

Penn corpus Susanne corpus
Sharing Acc. Tag. Prec. Recall Acc. Tag. Prec. Recall

1 96.51 90.66 91.15 99.61 99.74 98.30
2 96.51 90.66 91.15 99.61 99.74 98.30
3 99.61 91.98 91.34 99.80 99.74 98.46
4 99.61 87.37 87.23 99.61 99.74 98.44
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Table 3. Study (tagging accuracy, precision and recall) of the coefficient for the ag-
gregative function in Penn corpus (PS=450, IT=1500, %X=20, %C=20, TC=5) and
in Susanne corpus (PS=200, IT=500, %X=20, %C=10, TC=3)

Penn corpus Susanne corpus
Coef. Acc. Tag. Prec. Recall Acc. Tag. Prec. Recall

1/2+1/2 99.61 89.90 87.93 100 98.45 97.79
1/3+2/3 99.61 87.91 89.80 99.80 98.16 97.54
2/3+1/3 100 87.92 87.10 99.61 97.97 97.05

Table 4. Comparison of the results (tagging accuracy, precision, recall and execution
time in seconds) obtained performing parsing separately and with different evolution-
ary multiobjective optimization algorithms. Chart p. stands for a classic chart parser
algorithm, and Wout tag. for parsing without tagging with a genetic programming algo-
rithm. The parameters of the algorithms in Penn corpus are population size (PS)=450,
iteration number (IT)=1500, crossover rate(%X)=20, cut rate(%C)=20) and in Su-
sanne corpus (PS=200, IT=500, %X=20, %C=10).

Penn corpus Susanne corpus
Algorithm Acc. Tag. Prec. Recall Time(s) Acc. Tag. Prec. Recall Time(s)
Chart p. 99.22 88.66 85.81 15.33 97.30 94.52 96.41 9.25
Wout tag. 96.51 87.88 90.59 20.37 99.61 83.44 81.82 10.93

AF 99.61 89.90 87.93 15.59 100 98.45 97.79 10.13
MOGA 99.61 92.40 90.38 20.93 100 99.74 98.46 14.24
NSGA 99.61 91.98 91.34 34.26 99.80 99.74 98.46 13.33

NSGA-II 100 91.56 90.85 43.91 99.61 99.23 99.23 14.31

4.2 Comparing the Models

In order to compare the evolutionary algorithm with a classic parser, we have
implemented a classic best-first chart parsing (BFCP) algorithm. Table 4 shows
the precision, recall, and tagging accuracy results obtained for each algorithm
(figures represent the best result with respect precision out of ten independent
runs). MOGA is run with a sharing parameter of 30%, NSGA with a sharing
distance of 3 words, and the aggregative function with a linear combination of
0.5 + 0.5. We can observe that the results of any evolutionary algorithm improve
on those of a classic chart parser. We can also observe that all methods provide
similar results, though it is MOGA which provides the best results in precision (in
particular for the Peen Treebank, for which there is larger differences for different
methods). This can be due to the fact that this model allows tuning the weight
of each objective function more precisely. MOGA distributes the population
over the Pareto-optimal region by a niching method based on objective function
values. The sharing distance for NSGA is defined as a function of the sentence
words, what can be too coarse for tuning the algorithm. Concerning NSGA-II,
the differences among the fitness value of each objective function for individuals
in the same level (used to evaluate the crowding distance) can be little significant
in some cases because individuals may parse different segments of the sentence.
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Execution times are similar for the different methods, being NSGA-II the one
which requires a larger time.

5 Conclusions

We have tested different evolutionary multiobjective optimization algorithms
for two related problems of natural language processing: parsing and tagging.
Parsing can be regarded as a multi-objective optimization process in nature,
since it amounts to searching the most probable combination of grammar rules
as well as the most probable combination of lexical categories for the words of
the sentence. The implementation of the tested models (aggregative function,
MOGA, NSGA and NSGA-II) has been adapted to our particular problems,
defining specific sharing parameters and distances, according to the structure of
our individuals.

A relevant result is the improvement achieved by any of the evolutionary
multiobjective models with respect to the resolution of each problem separately,
regardless of whether a classic exhaustive search method or an evolutionary
algorithm is applied to the isolated problems. The comparison of the applied
models has also revealed that MOGA performs better than the other methods.
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Abstract. Under mild conditions, the Pareto set of a continuous multi-objective
optimization problem exhibits certain regularity. We have recently advocated tak-
ing into consideration such regularity in designing multi-objective evolutionary
algorithms. Following our previous work on using Local Principal Component
Analysis for capturing the regularity, this paper presents a new approach for ac-
quiring and using the regularity of the Pareto set in evolutionary algorithms. The
approach is based on the Generative Topographic Mapping and can be regarded
as an Estimation of Distribution Algorithm. It builds models of the distribution
of promising solutions based on regularity patterns extracted from the previous
search, and samples new solutions from the models thus built. The proposed al-
gorithm has been compared with two other state-of-the-art algorithms, NSGA-II
and SPEA2 on a set of test problems.

1 Introduction

Multi-objective optimization problems (MOP) arise from many practical applications
where several objectives have to be optimized. In this paper, we consider the following
continuous MOP:

minimize F (x) = (f1(x), f2(x), . . . , fm(x))T (1)

subject to x ∈ X

where X ∈ Rn is the decision (variable) space, F : X → Rm consists of m continuous
objective functions and Rm is called the objective space. Very often, no point in X
minimizes all the objectives simultaneously. The best tradeoffs among these objectives
can be defined in terms of Pareto optimality.

Let u, v ∈ Rm, u is said to dominate v if and only if ui ≤ vi for every i ∈
{1, 2, . . . ,m} and uj < vj for at least one index j ∈ {1, 2, . . . ,m}. A point x∗ ∈ S is
Pareto optimal to (1) if there is no point x such that F (x) dominates F (x∗). F (x∗) is
then called a Pareto optimal (objective) vector. The set of all the Pareto optimal points
is called the Pareto set (PS) and the set of all the Pareto optimal objective vectors is the
Pareto front (PF).

A number of evolutionary algorithms (EA) for dealing with multi-objective opti-
mization problems , have been suggested over the past two decades [1,2]. These multi-
objective evolutionary algorithms (MOEA) work with a population of candidate solu-
tions and are able to produce a set of Pareto optimal vectors for approximating the PF.
Most of these algorithms can be regarded as extensions of EAs for scalar optimization

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 443–452, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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problems. Selection, crossover and mutation are major operators in EAs. Conventional
crossover and mutation operators can be used without any modification in MOEAs (al-
though these operators may not lead to satisfactory performances in MOEAs), while the
selection operators in scalar optimization EAs cannot be directly applied to MOPs. A
major research issue in the area of MOEAs is the so-called fitness assignment [3], which
assigns a relative fitness to each individual in a population for facilitating selection.

Estimation Distribution Algorithms (EDA) are a new class of EAs [4,5,6]. There
is no traditional crossover or mutation in EDAs. Instead they explicitly extract global
statistical information from the previous search and build a posterior probability dis-
tribution model of promising solutions, based on the extracted information. New trial
solutions are sampled from the model thus built. Several EDAs for continuous MOPs
have been proposed, among them are Mixture-based Iterated Density Estimation Evolu-
tionary Algorithms (MIEDA) [7], EDAs based on Bayesian networks [8] and Voronoi-
based Estimation of Distribution Algorithm (VEDA) [9].

Under mild conditions, the PS (or PF) of a continuous MOP is a piecewise contin-
uous (m − 1) dimensional manifold where m is the number of the objectives. This
property has been used in several mathematical programming methods for approximat-
ing the PF [10]. In fact, it has also been found that, for the most widely-used test
problems of continuous multi-objective optimization in the evolutionary computations,
their PS are (m − 1) dimensional linear or piecewise linear manifolds [11,12]. This
regularity has been ignored in most current MOEAs.

Recently, we suggested that such regularity should be used in MOEAs for improving
the algorithms’ performances. We have proposed three EDAs [13,14,15] which employ
Local Principal Component Analysis algorithms [16] for capturing and modeling the
regularity of the Pareto set in a continuous MOP. The experimental results are very
encouraging, the algorithms outperform NSGA-II [17] and SPEA2 [3] on several test
problems with high interactions among the decision variables. Bueche et al [18] also
attempted to use self-organizing mapping to learn the shape of the Pareto set of a MOP,
although they have not explicitly discussed their method in the context of the regularity.

The Generative Topographic Mapping (GTM) [19] is a tool for extracting regular-
ity from data. This paper continues our work on improving MOEAs by utilizing the
regularity. We propose to use GTM in EDAs for extracting the regularity of the PS of
(1). GTM can provide a probability model of promising solutions in terms of latent
variables. Such a model is very easy for sampling new trial solutions.

The remainder of this paper is organized as follows: Section 2 gives a brief intro-
duction to GTM. Section 3 presents the details of the model building and sampling
techniques. The framework of the proposed algorithm is given in Section 4. Section 5
compares our proposed algorithm with NSGA-II and SPEA2 on a set of test problems.
The final section provides concluding remarks.

2 The Generative Topographic Mapping

GTM can discover some underlying regularity of a set of unlabeled data in a high di-
mensional space. It considers a nonlinear transformation mapping from a latent-variable
space with lower dimensionality L to the data space:



Modelling the Population Distribution in Multi-objective Optimization by GTM 445

x = y(v,W ) = Wφ(v)

where x is a point in the data space, v is the latent variable. W is a parameter matrix
and φ(v) is a vector of prefixed basis functions.

GTM models the distribution of data x, for given value of W and v, to be a radially-
symmetric Gaussian centered on y(v,W ) with variance β−1:

p(x|v,W, β) = (
β

2π
)−n/2exp{−β

2
‖Wφ(v)− x‖2}

Therefore, x = Wφ(v) can be envisaged as a central L-D manifold of the data, as
illustrated in Fig. 1.

Fig. 1. Generative Topographic Mapping from 1-D latent space (left) to data space (right)

Given a number of points x1, x2, . . . , xN in the data space, GTM estimates the values
of W and β by maximizing the following log likelihood:

L(W,β) = ln
N∏

i=1

∫
p(xi|v,W, β)p(v)dv.

where p(v) is the distribution of v. In our experiments, we use the GTM code developed
by NCRG group at Aston University1. The details of GTM can be found in [19].

3 Model Building Based on GTM

3.1 Basic Idea

The population in a MOEA for (1) will hopefully approximate to the PS and be uni-
formly distributed around the PS as the search goes on. Therefore, we can envisage the
solutions in the population as independent observations of a random vector whose cen-
ter is an approximation of the PS of (1). Since the PS is a piecewise continuous (m−1)

1 The source codes are from http://www.ncrg.aston.ac.uk/GTM
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dimensional manifold, a promising solution x can be regarded as an observation of the
following n-D random vector:

ξ = ξ1 + ξ2 (2)

where ξ1 is uniformly distributed along a (m − 1) dimensional manifold Φ. ξ2 is a
random noise vector. Φ is called the central manifold of ξ in this paper. For simplicity,
we assume that ξ1 and ξ2 are independent of each other.

Under the above assumption, the modeling of promising solutions consists of two
tasks: the modeling of the central manifold Φ and noise ξ2.

3.2 Modeling and Sampling

Given a population, which is a data set in Rn, we apply the GTM with (m − 1) latent
variables to it (where m is the number of objectives) and obtain the values of W and β.
In GTM training procedure, we set the range of the latent variable v = (v1, . . . , vm−1)
as:

−1 ≤ vi ≤ 1 i = 1, 2, . . . ,m− 1.

Since the population often can not cover the whole PS thus the central manifold found
can only approximate part of the PS. To overcome this problem and explore more
ranges, in [13] , [14] and [15], the search range is extended along the center mani-
fold when we do sampling. In this paper, this idea is implemented by extending the
range of the latent variables by 20%.

Sampling a new point x from the model built by the GTM is quite straightforward.
We can do it in the following way:

Step 1: Uniformly and randomly select a v from [−1.1, 1.1]m−1. Set x1 = y(v,W ).
Step 2: Sample x2 from N(0, 1

β I).
Step 3: Set x = x1 + x2.

where m is the objective number, I is a n × n identity matrix and n is the variable
dimension.

4 Algorithm Framework

Our proposed modeling and sampling approach can be adopted as operators for produc-
ing new solutions in most current MOEAs. In this paper, we use the following algorithm
framework:

Step 0 Initialization: Randomly generate a population P of N solutions, N is the
population size.

Step 1 Reproduction:
Step 1.1 Modeling: Build a probability model based on statistical information ex-

tracted from P ;
Step 1.2 Sampling: Sample N new solutions from the model and store them in Q.
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Step 2 Selection: SelectN solutions fromP∪Q. Let these selected solutions to replace
all the solutions in P .

Step 3 Stopping Condition: If the stopping condition is met, stop; otherwise, go to
Step 1.

In our implementation, we use the selection scheme of NSGA-II in Step 2. We call our
algorithm the model-based evolutionary algorithm with GTM (MEA/GTM).

5 Experimental Results

We use five test problems shown in Table 1 in our simulation studies.

Table 1. Test problems

MOP n Constraints Objectives

FON2 [1] 30 x ∈ [−2, 2]n
f1(x) = 1 − exp(−∑n

i=1(xi − 1√
n
)2)

f2(x) = 1 − exp(−∑n
i=1(xi + 1√

n
)2)

OKA4 [20] 2 x ∈ [0, 8]n

f1(x) = 2 − 1
4 (x1 − x2 + 4)

+ 1
4

√
−x2

1 − x2
2 − 16 + 2x1x2 + 8x1 + 8x2

f2(x) = 1
4 (x1 − x2 + 4)
+ 1

4

√
−x2

1 − x2
2 − 16 + 2x1x2 + 8x1 + 8x2

x1 − 4
√

x1 − x2 + 4 ≤ 0
x1 + 4

√
x1 − x2 + 4 ≥ 0

ZDT1.2 [13] 30 x ∈ [0, 1]n
f1(x) = x1

f2(x) = g(x) × (1.0 −
√

f1(x)
g(x) )

g(x) = 1.0 + 9
n−1Σn

i=2(x
2
i − x1)2

ZDT2.2 [13] 30 x ∈ [0, 1]n
f1(x) =

√
x1

f2(x) = g(x) × (1.0 − ( f1(x)
g(x) )2)

g(x) = 1.0 + 9
n−1Σn

i=2(x
2
i − x1)2

DTLZ2.2 10 x ∈ [0, 1]n

f1(x) = cos(π
2 x1) cos(π

2 x2)(1 + g(x))
f2(x) = cos(π

2 x1) sin(π
2 x2)(1 + g(x))

f3(x) = sin(π
2 x1)(1 + g(x))

g(x) =
n∑

i=3
(x2

i − x1)2

ZDT1.2, ZDT2.2 and DTLZ2.22 are a respective modified version of ZDT1 [1],
ZDT2 [1] and DTLZ2 [21]. In their original versions, the Pareto set is parallel to a
coordinate axis which makes the problems easy to tackle.

We compared the performances of MEA/GTM, NSGA-II3 and SPEA24 on the test
problems in Table 1. The parameter setting of these algorithms are as follows: The

2 ZDT 1.2, ZDT 2.2 and DTLZ2.2 are provided by Hui Li.
3 The source codes are from http://www.iitk.ac.in/kangal/codes.shtml
4 The source codes are from http://www.tik.ee.ethz.ch/pisa
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population size for all the algorithms is set to 100 for 2-objective test instances and 200
for the 3-objective test instances. To have a fair comparison, the other parameters in
NSGA-II and SPEA2 are set as in the default setting in their source codes. In GTM,
the number of training steps is 15, the latent points number is 1 × 25 for 2-objective
test instances and 5 × 5 in case of 3 objective, the basis function number is 2 for 2-
objective problems and 2 × 2 in case of 3-objective and other parameters take their
default values in their source codes. All the algorithms stops after 200 generations. We
run each algorithm for each test instances 20 times.

To measure the performances of the algorithms, we use Υ [17] metric to measure the
convergence of a population to the PF , and Δ [17] metric to measure the diversity of a
population.

Υ [17] metric is defined as:

Υ (S, S∗) =
1
|S|

∑
x∈S

d(x, S∗), (3)

where
d(x, S∗) = min

y∈S∗
‖F (x)− F (y)‖2.

S is an obtained non-dominated set by an algorithm, S∗ is a set which is uniformly
distributed in Pareto Front.

Δ [17]5 metric is defined as:

Δ(S, S∗) =

m∑
i=1

d(ei, S) +
∑
x∈S

|d(x, S)− d̄|
m∑

i=1
d(ei, S) + |S|d̄

, (4)

where {e1, . . . , em} are m extreme solutions in S∗ and

d(x, S) = min
y∈S,y �=x

||F (x) − F (y)||2,

d̄ =
1
|S|

∑
y∈S

d(y, S).

It should be noticed that d(x, S) measures the distance between point x and its nearest
neighbor which is different from the original definition.

Table 2 gives the means and standard derivations of Υ and Δ on 20 runs at different
stages, generation 40, 80, 120, 160 and 200, of the algorithms for each problem. Fig.2
shows the distributions of nondominated solutions generated in 20 runs in the objective
space for each algorithm for each problem.

From the values of Δ in Table 2 it is clear that MEA/GTM outperforms NSGA-II
and SPEA2 in terms of the diversity of the nondominated solutions found. Fig.2 also
supports this claim. For all five test problems, MEA/GTM can cover the whole Pareto
Fronts, while NSGA-II can only cover the Pareto Fronts of OKA4 and DTLZ2.2 and

5 We notice this metric is only fit in the case of small m.
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Fig. 2. Pareto fronts produced by MEA/GTM, NSGA-II and SPEA2
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Table 2. Experimental results

Gen MEA/GTM NSGA-II SPEA2
Υ Δ Υ Δ Υ Δ

FON2
40 0.022 ± 0.002 0.500± 0.071 0.215± 0.027 0.849± 0.049 0.184± 0.025 0.769± 0.118
80 0.002± 0.000 0.160± 0.019 0.075± 0.007 0.748± 0.037 0.061± 0.009 0.726± 0.079

120 0.002± 0.000 0.154± 0.016 0.049± 0.003 0.690± 0.038 0.037± 0.005 0.750± 0.075
160 0.002± 0.000 0.151± 0.017 0.036± 0.003 0.629± 0.051 0.029± 0.003 0.786± 0.069
200 0.002± 0.000 0.156± 0.018 0.029± 0.002 0.514± 0.040 0.023± 0.003 0.798± 0.053

OKA4
40 0.086± 0.008 0.483± 0.069 0.035± 0.005 0.706± 0.110 0.038± 0.012 0.730± 0.263
80 0.065± 0.005 0.485± 0.055 0.020± 0.003 0.821± 0.104 0.025± 0.010 0.757± 0.286

120 0.055± 0.005 0.468± 0.044 0.016± 0.003 0.873± 0.108 0.018± 0.005 0.815± 0.274
160 0.049± 0.004 0.449± 0.048 0.014± 0.003 0.878± 0.125 0.015± 0.006 0.899± 0.322
200 0.045± 0.003 0.399± 0.057 0.012± 0.002 0.841± 0.149 0.017± 0.011 0.811± 0.318

ZDT1.2
40 0.013± 0.002 0.806± 0.053 0.024± 0.005 0.890± 0.043 0.012± 0.003 0.915± 0.025
80 0.008± 0.001 0.425± 0.085 0.011± 0.002 0.814± 0.022 0.005± 0.000 0.928± 0.013

120 0.006± 0.001 0.273± 0.042 0.009± 0.001 0.792± 0.020 0.005± 0.001 0.917± 0.010
160 0.004± 0.000 0.225± 0.023 0.008± 0.001 0.783± 0.028 0.005± 0.000 0.921± 0.013
200 0.004± 0.000 0.206± 0.018 0.007± 0.001 0.775± 0.019 0.005± 0.001 0.915± 0.013

ZDT2.2
40 0.047± 0.021 0.937± 0.112 0.024± 0.010 0.933± 0.017 0.019± 0.007 0.968± 0.038
80 0.013± 0.006 0.765± 0.168 0.009± 0.004 0.947± 0.018 0.004± 0.001 0.965± 0.012

120 0.009± 0.003 0.551± 0.242 0.006± 0.002 0.915± 0.030 0.003± 0.000 0.981± 0.016
160 0.007± 0.002 0.412± 0.213 0.005± 0.003 0.870± 0.020 0.002± 0.000 0.982± 0.014
200 0.006± 0.001 0.329± 0.207 0.005± 0.003 0.870± 0.031 0.002± 0.000 0.984± 0.012

DTLZ2.2
40 0.156± 0.031 0.491± 0.056 0.145± 0.036 0.647± 0.074 0.144± 0.113 0.950± 0.260
80 0.113± 0.024 0.473± 0.075 0.218± 0.292 0.602± 0.077 0.643± 0.393 0.798± 0.215

120 0.099± 0.021 0.448± 0.068 0.462± 0.640 0.576± 0.057 0.603± 0.384 0.832± 0.222
160 0.092± 0.019 0.433± 0.067 0.829± 0.725 0.563± 0.083 0.675± 0.506 0.814± 0.227
200 0.081± 0.012 0.427± 0.066 1.121± 0.499 0.532± 0.035 0.717± 0.441 0.875± 0.240

SPEA2 can not cover any of the Pareto Fronts. The reason may be: (1) MEA/GTM can
cover the whole Pareto Fronts by extension and (2) MEA/GTM uniformly samples new
solutions from the model.

In terms of Υ metric, MEA/GTM performances much better than NSGA-II and
SPEA2 on FON2 and DTLZ2.2. Υ values in MEA/GTM is slightly higher than in
SPEA2 on ZDT1.2 and ZDT2.2, it does not imply that MEA/GTM is worse. Since
NSGA-II and SPEA2, as shown in Fig.2, cannot cover the whole Pareto Front as MEA/
GTM does. Only on OKA4, MEA/GTM performs worse than NSGA-II and SPEA2.
From Fig.2, however, EA/GTM can also approximate the Pareto Front very well.

These algorithms have been run in a desktop computer (Pentium(R) 4 3.40GHz CPU,
1.00GB of RAM). The average run time (in seconds) are listed in Table 3. Although

Table 3. Average run time(in seconds)

Method FON2 OKA4 ZDT1.2 ZDT2.2 DTLZ2.2
NSGA-II 0.323 0.172 0.323 0.327 1.106
SPEA2 1.611 1.662 1.669 1.565 7.207

MEA/GTM 15.206 3.634 10.727 12.354 15.972
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MEA/GTM needs more time to optimize each test problem than NSGA-II and SPEA2,
it is still affordable especially when the fitness evaluation is much time consuming.

6 Conclusions

Incorporating problem-specific knowledge into evolutionary algorithms is a basic strat-
egy for enhancing their performances [22]. The Pareto set of a continuous MOP is
usually a piecewise continuous (m− 1)-D manifold. Most current MOEAs ignore this
regularity. Our recent work has showed that such regularity could be beneficial for mod-
eling the population distribution in estimation of distribution algorithms for continuous
multi-objective optimization. This paper demonstrated that GTM can be used for cap-
turing and modeling the regularity and proposed an estimation of distribution algo-
rithms with GTM for multi-objective optimization. The preliminary experiments show
that our proposed method outperforms NSGA-II and SPEA2.

Our previous work in [13], [14] and [15] and this paper are on the design of EDAs by
making the use of the regularity property. In the future, we plan to study how to incor-
porate such regularity and other properties of MOPs into other evolutionary algorithms.
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Abstract. Pattern classification seeks to minimize error of unknown
patterns, however, in many real world applications, type I (false posi-
tive) and type II (false negative) errors have to be dealt with separately,
which is a complex problem since an attempt to minimize one of them
usually makes the other grow. Actually, a type of error can be more
important than the other, and a trade-off that minimizes the most im-
portant error type must be reached. Despite the importance of type-II
errors, most pattern classification methods take into account only the
global classification error. In this paper we propose to optimize both
error types in classification by means of a multiobjective algorithm in
which each error type and the network size is an objective of the fitness
function. A modified version of the GProp method (optimization and
design of multilayer perceptrons) is used, to simultaneously optimize the
network size and the type I and II errors.

Keywords: multiobjective optimization, multiobjective evolutionary al-
gorithms,Paretooptimality,artificialneuralnetworksoptimization,gprop,
pattern classification.

1 Introduction

There are two types of errors that can be made when classifying patterns. The
first is the spurius detection of a non-existent effect (type I error or false positive),
the second, the non-detection of an existent effect (type II error or false negative).
For instance, if we conclude from a toxicity test that the tested substance is toxic
when it is in fact not, then we have committed a type I error. If we conclude that
a substance is not toxic when it in fact is, then we have committed a type II error
[14]. This exemplifies how these errors are different in the real world, and usually
have to be dealt with separately. Another example is bankruptcy prediction [5]:
false positives can lead to lawsuits, while false negatives will usually lead only
to loss of a customer. The most commonly used statistical measure, statistical
significance, is a measure of type I error (the absence of a significative effect does
not mean that the effect is inexistent). On the other hand, Neyman-Pearson’s
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test is based on the minimization of type II error after establishing a limit to
the type I error [31,6].

There are many examples of incorrect conclusions due to type II error [30,25],
and caution must be taken not to interpret ‘no evidence of effect’ as ‘evidence
of no effect’ [28]. Despite the importance of type II error in some real problems
(medical problems, judging a person to be sick or not [21], or forecasting business
failure [5]), most methods compute the global classification error, without paying
attention to its distinction in different types.

Most real optimization problems present several objective variables to be op-
timized at the same time. Solving those multiobjective problems where some
objectives enter in conflict is a complex task. In these cases, instead of searching
for a single solution, the method must obtain a set of solutions; later on, one
solution (or several) will be used to solve the problem.

Multiobjective optimization methods range from the weighted sum of the
objectives which, nowadays is usually not considered the best method available,
to techniques based on the Pareto front [11,12,22,33].

This paper continues the research presented in [26,27] where a comparison be-
tween statistical methods (logistic regression) and evolutionary artificial neural
networks (G-Prop) for the bankruptcy prediction was carried out. Discovering
when a company is going to fail is a problem traditionally approached heuristi-
cally, which requires a wide knowledge about that company, so that it only can
be carried out by means of accounting experts. The interest in pinpointing a
firm’s financial state of health runs from the management, who can thus count
on early warning signs to aid them in taking decisions to correct foreseeable
financial distress. This also applies to medical problems, such as the prediction
of cancer or diabetes.

G-Prop [7,9] was designed to optimize both the architecture of the multilayer
perceptron (MLP) and its classification ability.

In the present paper we propose to improve the type I and type II errors using
a multiobjective evolutionary algorithm (called MG-Prop) that optimizes both
errors and also the MLP architecture. Our target is to design small networks
that produce small type I and II errors. Approaching this problem as a mul-
tiobjective optimization task makes unnecesary weight the different objectives,
and the solutions based on Pareto optimality guarantee the diversity of the final
population.

As a mixture of predictors usually improves the results, our method uses the
final Pareto front to form an ensemble.

The multiobjective problem deals with three objectives: minimizing type I
and II errors, and the network size. To test the ability of the proposed method,
two real pattern classification problems have been used (bankruptcy prediction
and breast cancer).

The remainder of this paper is structured as follows: section 2 reviews the
literature on multiobjective optimization of artificial neural networks (ANN). In
section 3 it is detailled the proposed method. Section 4 describes the experiments
and the results obtained, followed by a brief conclusion in Section 5.
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2 Neural Network Optimization Using Multi-objective
Methods

Evolving neural networks [34,7,10] is an efficient way of searching the neural net
problem space. However, most of these methods either calculate a weighted sum
of the objectives (i.e. minimizing both the errors and the number of weights) or
assign some priority to one of the objectives [7,10].

On the other hand, ANNs act as a black box that give their prediction on
an input pattern. This might be a problem for the expert that uses an ANN-
based method, due to the difficulty to explain the way the method calculated its
output.

To face the problem of optimizing all the parameters and objectives related to
the ANN, some authors propose the use of multiobjective optimization methods,
such as the Pareto differential evolution (PDE), by Abbass [4]. This algorithm
is an adaptation of the original differential evolution introduced by Storn and
Price [32], and was also tested successfully for evolving neural networks (Memetic
Pareto Artificial Neural Network [1,3]).

Recently, Abbass casted the problem of simultaneous optimization of the net-
work architecture and the corresponding training error as a multiobjective op-
timization problem [3], obtaining that combining backpropagation (BP) with
an multiobjective evolutionary algorithm, a considerable reduction in the com-
putational cost can be achieved. In a latter research, Abbass [2] proposes two
multiobjective formulations to the formation of neuro ensembles: the first one
splits the training set into two non-overlapping stratified subsets and form an
objective to minimize the training error on each subset. The second formulation
adds random noise to the training set to form a second objective.

Jin et al. [17] presented a modified version of two multiobjective optimization
algorithms (Dynamic Weighted Aggregation and NSGA-II) to address the neural
network regularization problem from a multiobjective optimization point of view
(both the structure and parameters of the neural network are optimized).

In the last years, ANN research focus on neural network ensembles [23] because
they are a powerful tool to face complex problems. Using an ensemble (mixture
of predictors) usually results in an improvement in the prediction accuracy [16].
Many studies [18,19,20,29] focus on the construction of ensembles using artificial
neural networks.

Some authors establish the set of networks that form the ensemble by means
of evolutive [19,20], coevolutive [15], and multiobjective methods, as Abbass
proposes in [3] (using the Pareto front networks as the ensemble components).

Althogh most of these methods calculate only the global classification error,
we think that both type I and II errors should be taken into account.

3 MG-Prop: MultiObjective Evolution of MLP

In this paper, a multiobjective method designed to optimize both type I and II
errors and the network size is proposed. The objectives might confict, so if one
is improved, the other could get worse.
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This method is based on the multiobjective evolutionary algorithm SFGA
(Single Front Genetic Algorithm), developed by De Toro et al. and uses the elitist
scheme selection proposed in [13].The idea is to copy into the next population,
instead of the full elite set (non-dominated individuals) a reduced set, with
individuals distributed homogeneouslly among the search space.

However, this algorithm had to be adapted to our particular problem. After
some experimentation, we have found that, as the evolution advances, the num-
ber of non-dominated individuals-MLP increases considerably. Moreover, some
networks might commit no error at all classifying class A patterns (0%), but
fail on class B patterns (100%). That infeasible individuals are non-dominated,
however, they should be eliminated. The population of individuals selected to
mate and generate the next generation is formed by those in the Pareto front.
The designed algorithm is specified in the following pseudocode, which is an
adaptation of the previously published G-Prop algorithm [7,9]:

1. Generate a population of N individuals (Population)
2. Evaluate the N individuals: train them using the training set and obtain their fitness

(type I and type II errors) on the validation set and the network size.
3. Repeat for G generations:

(a) Copy Population into P0
(b) Remove Pareto dominated individuals from Population (obtaining P1)
(c) Remove infeasible individuals from P1 (obtaining P2)
(d) Prune P2 using clustering to limit the number of individuals
(e) Select S individuals from P2 and apply genetic operators to copies of them (ob-

taining Offspring)
(f) Evaluate the new individuals in Offspring
(g) Fill the Population using nondominated individuals (P2) and Offspring
(h) If N is greater than the number of individuals in Population, then use dominated

individuals in P0 to fill Population
4. Remove Pareto dominated and infeasible individuals from Population
5. Use nondominated individuals (MLPs) as an ensemble to classify the testing set and

to obtain the total, type I and type II errors.

On termination, it takes a set of not previously seen patterns, and it classifies
them obtaining both error types and the network size.

The networks on the Pareto set will be potentially good, however, as a single
MLP with good performance on the training set may not be the best network
in terms of generalization, we will use all individual-MLP in the Pareto front as
an ensemble to classify the test-patterns, as proposed in [2].

We have used three methods to obtain the ensemble classification: (a) the
predicted class is obtained as majority voting; (b) for each pattern, the class is
obtained taking into account the largest activation between all the outputs of
all the networks; (c) computing the average outputs for all networks. Thus, an
expert who has to decide if a person is ill (or a company is bankrupt) or not,
has more information available about that case than if a single ANN was used.

4 Experiments and Results

Following Prechelt’s advice [24], at least two real world problems should be used
to test an algorithm. In any case, the best way to test the algorithm ability as
well as its limitations is to use it to solve real world problems.
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Thus, we have tested our method on two real world classification problems:
the well known breast-cancer problem, and a bankruptcy benchmark problem
(see below for details).

4.1 Breast-Cancer Problem

The dataset comes from the UCI machine learning dataset Wisconsin breast
cancer database ( http://www.ics.uci.edu/˜mlearn/MLSummary.html ), which was
compiled from the University of Wisconsin Hospitals and Clinics in Madison
by Dr. William H. Wolberg [21]. Each sample has 10 attributes plus the class
attribute: sample code number, clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, mitoses, class (0 for benign, 1 for malignant).
The class distribution in the original set is as follows: 65.5% benign and 34.5%
malignant.

4.2 Bankruptcy Problem

The dataset comes from the Infotel database ( http://www.axesor.com ). The
sample of companies contains 450 non-financial firms taken from the Infotel
database, of which half are companies that have failed and the other half present
a good financial health. A further 76 firms, not included in the aforementioned
group, have been used as a validation sample for the models obtained. The
group of financial failures corresponds to those firms that had suspended pay-
ments or had declared legal bankruptcy, in accordance with Spanish Law, while
the healthy firms were randomly selected from among 150.000 companies. The
comparison was made using the same sample referring to the same time pe-
riod: 1998 and 1999. The dependent variable takes a value of 1 in the case of
legal failure, and of 0 in the case of a healthy firm. The independent variables
are quantitative ratios taken from financial statements, along with qualitative
information, and their description is included in Table 1.

4.3 Methodology

Experiments were set using 50 generations,a population size of 50 individuals,
and 500 training epochs in order to avoid too long a run.

The remaining parameters (population size, selection rate, operator appli-
cation rates, mutation probability, initial weights range, etc) where set using
statistical methods (see [10] for details).

Mean and standard deviation, shown in tables (see section 4.4), where ob-
tained after 30 runs in each method.

Statistical t-Student tests are used in order to evaluate the difference in means,
as these can be used even in the case of small samples. This method calculates
a value p that represents the error probability if the null hypothesis is accepted,
that is, the error probability assuming that there is no difference between the
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Table 1. Description of independent variables

VARIABLE DESCRIPTION

L: Liabilities Liabilities/Equity

DE: Debt Expiration Long-Term Liabilities/Current Liabilities

WC: Working Capital Working Capital/Total Assets

CashR: Cash Ratio Cash equivalent/Current Liabilities

AT: Acid Test (Cash equivalent+Marketable Securities+

Net receivables)/Current Liabilities

CR: Current Ratio Current Assets/Current Liabilities

DR: Debt Ratio Total Assets/Total Liabilites

DPA: Debt Paying Ability Operating Cash Flow/Total Liabilities

AT: Asset Turnover Net Sales/Average Total Assets

ST: Stock Turnover Cost of sales/Average Inventory

RT: Receivable Turnover Net Sales/Average Receivables

ROPA: Return on Operating Assets Operating Income/Average Operating Assets

OIM: Operating Income Margin Operating Income/Net Sales

ROA: Return on Assets Net Income/Average Total Assets

ROE: Return on Equity Net Income/Average Total Equity

DC: Debt Cost Interest Cost/Total Liabilities

IC: Interest Cost Interest Cost/Sales

LAG: Date The time lag in reporting annual accounts

L: Lawsuits (sums challenged)/(total liabilities)

I: Incidences Relative to auctions, impounds, etc.

levels of the observations in the population. Thus, t-Student statistical tests
were used to check the validity of the results obtained (average and standard
deviation), and to test whether differences among them were significant.

4.4 Results Obtained

Results on Breast Cancer are shown in table 2. As can be seen the multiobjective
method obtains results comparable to those obtained using G-Prop (priorizes
one objective). Although MG-Prop does not outperform G-Prop, slightly bet-
ter global classification error is achieved, and differences between type I and II
errors minimize (homogeneity between error types grows). On the other hand,
better results are obtained using the majority voting to obtain the ensemble
classification.

As far as the network size is concerned, as the ensemble is composed by several
MLPs, the total number of weights is higher than those obtained using G-Prop.
However, network size of individual MLPs is slightly smaller than those obtained
using G-Prop.

T-Student tests were used to verify the results. No significant differences were
found between global classification and type I errors for G-Prop and MG-Prop.
However, differences in type II error was significant to level of 99%. In any case,
Cancer is a problem such as G-Prop correctly classifies most of the patterns
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Table 2. Average results for the Breast Cancer problem. This table shows the global
error rate, the type I and II errors and size of networks. Results have been obtained
using G-Prop [8] and MG-Prop. Majority voting (V), average output (A) and largest
activation (B) have been used to obtain the ensemble classification. The network size is
expressed in terms of number of parameters of the net, that is, the number of weights
of the net. In the case of MG-Prop, an ensemble is obtained, thus both the number of
components of the ensemble and the average number of weights for each MLP in the
ensemble is reported.

Method Global error Type I error Type II error Network size
G-Prop [8] 1.2 ± 0.1 1.1 ± 0.1 1.3 ± 0.1 173 ± 22

(V) 1.2 ± 0.5 1.3 ± 0.9 0.7 ± 0.6 ensemble of
MG-Prop (A) 1.4 ± 0.4 1.9 ± 0.8 0.5 ± 0.5 15±1 MLPs of

(B) 1.6 ± 0.4 2.0 ± 0.9 0.7 ± 0.8 120 ± 44 weights

(small type I and II errors are committed), and that makes difficult to find
differences between models.

Table 3 shows the results obtained on the Bankruptcy problem using logistic
regresion, G-Prop and MG-Prop.

Table 3. Average results for the Bankruptcy problem using logistic regresion (logit),
G-Prop [26,27] and MG-Prop

Method Global error Type I error Type II error Network size
Logit [26,27] 15.92 17.24 14.48 -

G-Prop [26,27] 17.26 11.21 23.32 1042
(V) 12 ± 2 13 ± 2 12 ± 3 ensemble of

MG-Prop (A) 13 ± 2 13 ± 3 13 ± 2 16±1 MLPs of
(B) 15 ± 3 14 ± 3 16 ± 4 1120 ± 60 weights

Previous research [26,27] showed that the forecasting ability of multilayer
perceptrons is slightly lower than that of logistic regression, in type II and total
error, although better results are obtained in type I errors. In G-Prop, however,
the fitness measure used to evolve perceptrons only take into account the total
error, instead of using the type I and/or type II errors.

Results obtained using MG-Prop are slightly better than those obtained using
previous methods [26,27]. As in the previous problem, differences in type I and
II errors, as well as the global error decrease. As can be seen, better results are
obtained using the majority voting to obtain the ensemble classification.

As in previous problem, G-Prop finds just an MLP, while MG-Prop finds
an ensemble (several MLPs). Thus, total number of weights is much higher for
MG-Prop, although for individual MLPs, sizes are comparable.

After applying t-Student tests to verify the results, differences between meth-
ods in terms of errors obtained were significant when the confidence level was
99%.
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5 Conclusions and Work in Progress

In this paper we address the problem of optimizing the MLP classification ability
as a multiobjective optimization problem: the type I and type II errors, and the
network size are minimized. As a single MLP may not be the best network
in terms of generalization, we have used the MLPs in the Pareto front as an
ensemble to increase the generalization ability. The Pareto set defines the size
of the ensemble and ensures that the networks in the ensemble are different and
will contribute to optimize the objectives.

MG-Prop takes into account error types and obtains comparable (or even
better) results to GProp method (that priorizes some objectives), carrying out
the trade-off between objectives (optimizes the error types obtaining similar
network sizes).

The method has been tested on two real pattern classification problems, breast
cancer and bankruptcy, and has been found to be competitive to other methods
in the literature. Although results are not much better than those obtained using
other methods, slightly better global classification error is achieved and differ-
ences between type I and II errors minimize. In any case, the idea of optimizing
the type I and II errors and the network size as a multiobjective problem is
interesting and could be applied to improve other classification methods.

In the bankruptcy problem, the model has been obtained for one year before
the failure. As future work, it would be interesting to obtain it for two or more
years prior to the declaration of bankruptcy. On the other hand, Zhou et al. [35]
analyzed the relationship between the ensemble and its component neural net-
works, obtaining better results ensembling some of the neural networks instead
of all of them. Taking into account these results, it would be interesting to carry
out the selection of components using automatic methods, such as cooperative
models.

In general, majority voting seems to work better for this kind of problems.
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8. P. A. Castillo, J. González, J. J. Merelo, V. Rivas, G. Romero, and A. Prieto.
G-Prop-III: Global Optimization of Multilayer Perceptrons using an Evolutionary
Algorithm. In Congress on Evolutionary Computation,In Genetic and Evolutionary
Computation Conference, ISBN:1-55860-611-4, Volume I, pp. 942, Orlando, USA,
1999.

9. P. A. Castillo, J. J. Merelo, V. Rivas, G. Romero, and A. Prieto. G-Prop: Global
Optimization of Multilayer Perceptrons using GAs. Neurocomputing, Vol.35/1-4,
pp.149-163, 2000.

10. P.A. Castillo, J.J. Merelo, G. Romero, A. Prieto, and I. Rojas. Statistical Analysis
of the Parameters of a Neuro-Genetic Algorithm. in IEEE Transactions on Neural
Networks, vol.13, no.6, pp.1374-1394, ISSN:1045-9227, november, 2002.

11. C.A. Coello Coello, D.A. Van-Veldhuizen, and G.B. Lamont. Evolutionary algo-
rithms for solving multi-objective problems. Kluwer Academic Publishers, New
York, ISBN 0-3064-6762-3, 2002.

12. Carlos A. Coello Coello and Nareli Cruz Cortés. Solving Multiobjective Opti-
mization Problems using an Artificial Immune System. Genetic Programming and
Evolvable Machines, Vol. 6, No. 2, pp. 163–190, 2005.

13. F. de Toro, J. Ortega, J.Fernandez, and A.F Diaz. Parallel genetic algorithm for
multiobjective optimization. 10th Euromicro Workshop on Parallel, Distributed
and Network-based processing, IEEE Computer Society, pp. 384-391, 2002.

14. J.A. Freiman, T.C. Chalmers, and H. Smith. The importance of beta, the type II
error and sample size in the design and interpretation of the randomized control
trial. New England Journal of Medicine, 299:690-694, 1978.

15. N. Garcia-Pedrajas, C. Hervas-Martinez, and D. Ortiz-Boyer. Cooperative coevo-
lution of artificial neural network ensembles for pattern classification. IEEE Trans.
Evolutionary Computation 9(3): 271-302, 2005.

16. H. Ishibuchi and T. Yamamoto. Evolutionary multiobjective optimization for gen-
erating an ensemble of fuzzy rule-based classifiers. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO2003), Lecture Notes in Computer
Science (LNCS), pp.1077-1088, Chicago, IL, 2003.

17. Y. Jin, T. Okabe, and B. Sendhoff. Neural network regularization and ensembling
using multiobjective evolutionary algorithms. Congress on Evolutionary Compu-
tation, CEC2004. Vol.1, pp.1-8. ISBN:0-7803-8515-2, 2005.

18. A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active
learning. In G. Tesauro, D.S. Touretzky and T.K. Leen editors, Advances in Neural
Information Processing Systems, vol.7, pp.231-238. MIT Press, 1995.

19. Y. Liu and X. Yao. Ensemble leagning via negative correlation. Neural Networks,
12(10):1399-1404, 1999.



462 P.A. Castillo et al.

20. Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation
learning. IEEE Transactions on Evolutionary Computation, 4(4):380-387, 2000.

21. O. L. Mangasarian, R. Setiono, and W.H. Wolberg. Pattern recognition via linear
programming: Theory and application to medical diagnosis. Large-scale numerical
optimization, Thomas F. Coleman and Yuying Li, editors, SIAM Publications,
Philadelphia 1990, pp 22-30, 1990.

22. J. Olvander. Robustness considerations in multi-objective optimal design. Journal
of Engineering Design, Vol. 16, No. 5, pp. 511–523, 2005.

23. M.P. Perrone and L.N. Cooper. When networks disagree: Ensemble methods
for hybrid neural networks. Neural Networks for Speech and Image Processing,
R.J.Mammone, Ed., pp.126-142, 1993.

24. L. Prechelt. PROBEN1 — A set of benchmarks and benchmarking rules for neural
network training algorithms. Technical Report 21/94, Fakultät für Informatik,
Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994.

25. C. Rolf, T.G. Cooper, C.H. Yeung, and E. Nieschlag. Antioxidant treatment of
patients with asthenozoospermia or moderate oligoasthenozoospermia with high-
dose vitamin C and vitamin E: a randomized, placebo-controlled, double blind
study. Hum. Reprod., 14, 1028-1033, 1999.

26. I. Roman, J.M. de la Torre, P.A. Castillo, and J.J. Merelo. Sectorial bankruptcy
prediction analysis using artificial neural networks: The spanish companies case.
25th Annual Congress European Accounting Association. Pp. 237, Copenhagen,
April, 2002.

27. I. Roman, J.M. de la Torre, M.E. Gomez, P.A. Castillo, and J.J. Merelo.
Bankruptcy prediction adapted to firm characteristics. an empirical study. 26th
Annual Congress European Accounting Association. Congress Book. pp. A-108.
Sevilla, April, 2003.

28. J. Savulescu, I. Chalmers, and J. Blunt. Are research ethics committees behaving
unethically? some suggestions for improving performance and accountability. Br.
Med. J., 313, 1390-1393, 1996.

29. A.J.C. Sharkey. On combining artificial neural nets. Connection Science, 8:299-
313, 1996.

30. S.M Smith. Statistical scrotal effect. Nature, 368, 501-502, 1994.
31. Jonathan A.C. Sterne. Teaching hypothesis tests - time for significant change?

STATISTICS IN MEDICINE. 21:985-994 (DOI: 10.1002/sim.1129), 2002.
32. R. Storn and K. Price. Differential evolution: a simple and efficient adaptive scheme

for global optimization over continuous spaces. Technical Report TR-95-012, In-
ternational Computer Science Institute, Berkeley, 1995.

33. D.A. Van-Veldhuizen and G.B. Lamont. Multiobjective evolutionary algorithms:
analyzing the state-of-the-art. Evolutionary Computation 8(2): 125-147, 2000.

34. X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-
1447, 1999.

35. Z.H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be
better than all. Artificial Intelligence, vol.137, no.1-2, pp.239-253, 2002.



Multi-Objective Equivalent Random Search

Evan J. Hughes

Department of Aerospace, Power and Sensors,
Cranfield University, Shrivenham, Swindon,

Wiltshire, England. SN6 8LA
e.j.hughes@cranfield.ac.uk

Abstract. This paper introduces a new metric vector for assessing the perfor-
mance of different multi-objective algorithms, relative to the range of perfor-
mance expected from a random search. The metric requires an ensemble of
repeated trials to be performed, reducing the chance of overly favourable results.
The random search baseline for the function-under-test may be either analytic, or
created from a Monte-Carlo process: thus the metric is repeatable and accurate.

The metric allows both the median and worst performance of different algo-
rithms to be compared directly, and scales well with high-dimensional many-
objective problems. The metric quantifies and is sensitive to the distance of the
solutions to the Pareto set, the distribution of points across the set, and the re-
peatability of the trials. Both the Monte-Carlo and closed form analysis methods
will provide accurate analytic confidence intervals on the observed results.

1 Introduction

This paper details a new metric, Multi-Objective Equivalent Random Search (MOERS),
that quantifies the performance of an algorithm on an objective function relative to
the expected performance of a random search. The metric returns the size of the ran-
dom search that would be required to achieve results of the same quality. The metric
is calculated through a non-parametric statistical analysis of the best solutions found
by the optimiser over an ensemble of trials, reducing the chances of occasional overly
favourable results biasing the comparison.

The metric focusses on both the median and worst performance of the optimiser
under test. Often when we run an optimiser many times, we only remember the good
results. Some optimisation routines are capable of providing spectacular results with
moderate frequency, but typical results are poor. Other optimisers generate satisfactory
results every time, but rarely produce spectacular solutions. If optimisation is being used
in a design phase where many repeated runs are possible, then the first algorithm that
can produce occasional spectacular results may be preferred. However, in a situation
where the optimisation is time-critical, the reliable algorithm is a better choice.

Much research has been performed on different metrics for assessing optimiser per-
formance [7,6,5]. The true performance of a multi-objective optimiser cannot be sum-
marised with a single number, or with only a single trial run. For a given test function
and optimiser, the MOERS metric provides 10 key performance measures, 5 for the
median performance and 5 for the worst-case performance. Each of the 5 is comprised
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of 2 outer confidence intervals (indicate the distribution of points along the Pareto set),
2 inner confidence intervals (relate to the repeatability of the results) and the median
behaviour over the ensemble of trials (indicates the distance to the Pareto set).

In order to remove the effects of constraints, multi-modalities, discontinuous Pareto
sets etc., the optimiser results (i.e. the Pareto points) are normalised using the Cumu-
lative probability Density Function (CDF) of the objective surface.1 The CDF may be
calculated analytically from the objective functions and constraints, or generated using
a large Monte-Carlo random search (for problems without simple analytic solutions).
The metric may be calculated very quickly if an analytic solution to the CDF is used.

Section 2 summarises the Equivalent Random Search metric for single objective
problems, and section 3 expands the theory to encompass multi-objective problems.
Section 4 demonstrates the metric on a bi-objective function where the analytic CDF
has been calcuated, and also demonstrates that a true random search returns the correct
metric results. Finally section 6 concludes.

2 Equivalent Random Search Metric

2.1 Introduction

The Equivalent Random Search (ERS) metric assesses the performance of an algo-
rithm, relative to the expected performance of a random search on the same objective
function [4]. The metric gives a direct indication of how many points would be needed
in a random search to achieve the same solution quality. The metric can then be com-
pared to the actual number of objective evaluations used by the optimiser in order to
assess the effectiveness of the optimisation algorithm. For example, if 1000 objective
calculations were used by the optimisation process, but the ERS metric reported that
10,000 points would be needed by a random search to achieve equivalent results, then
the algorithm is performing well.

2.2 Objective Normalisation

To get a reliable assessment, the optimisation process is repeated M times and the best
optima results, Yi : i = 1 . . .M , gathered. Each of the M results are transformed via
the cumulative probability density function of the objective surface, D(Y ), to generate
the probability of obtaining an objective value better than the best value observed in
each of the M runs. This normalisation process allows even very rough, multi-modal
and deceptive functions to be used for evaluating the optimisers.

The function D(Y ) can be generated for any objective functions by performing a
large uniform-random sample of the objective surfaces. Further details on Monte-Carlo
CDF generation are given in [4]. It is also possible (but not always trivial) to obtain
an analytic solution for the CDF if the equations for the objective function are known.
This allows the ERS metric to be calculated quickly, but more importantly, will allow
functions that have a very low density of points at the Pareto surface to be analysed
without resorting to massive Monte-Carlo searches.

1 Each objective function provides a unique problem to the optimiser, but a set of optimisers
may be compared directly if the results are generated for a common multi-objective function.
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2.3 Metric Calculation

Once we have calculated the probability of a solution better than Y existing, D(Y ),
we can compare the result directly to a random search. For the random search, if we
generated a single random point, there would be a probability D(Y ) that the point
would be better than Y , and a probability 1 −D(Y ) that the point will be worse than
Y . If we generate N independent random points, then we will not find a better solution
than Y with a probability of (1−D(Y ))N . Therefore the probability of finding at least
one solution better than Y with an N point random search is given by:

D′(Y ) = 1− (1−D(Y ))N (1)

For example, if D(Y ) = 1/1000 and we generated N = 100 random points, the prob-
ability of at least one of the N solutions being better than Y is D′(Y ) =9.5%.

Importantly, the new cumulative density function, D′(Y ) in equation 1, describes
the probability that a random search of N points would find an optimum value better
than Y . If we repeated an N -point random search M times, D′(Y ) would describe
the distribution of the M results. Thus the median value of Y from our M searches
would be an approximation of the value of Y necessary to make D′(Y ) = 0.5. We can
exploit this property of D′(Y ) to create a metric that uses a simple random search as
its reference. As the reference can be described analytically, we can use the metric to
quantify the performance of any optimisation algorithm on any evaluation function.

The ERS metric is calculated by performingM independent runs of our optimisation
algorithm under test, and then exploiting (1) to calculate a value for N , given the ob-
served values for Y from our optimiser. By setting D′(Ymedian) = 0.5, where Ymedian

is chosen to be the median result from our M trials of the optimiser, we can calculate
the value for N to give us an equivalent size of random search that we would have to
perform to achieve the same median result.

Therefore we can re-arrange (1) (and taking logarithms) to give:

Nmedian =
log(0.5)

log(1−D(Ymedian))
(2)

Ultimately, the calculated value for Nmedian is only an estimate and is subject to
sampling error (median is calculated by ranking the M values for Y and finding the
central value). If we consider that the probability of the true value ofNmedian being less
than the estimate is 0.5, and the probability of the true value being greater is also 0.5, we
can describe the error in the estimate using a binomial distribution of the rank locations
with the two probabilities being p = 0.5 and q = 1 − 0.5. A binomial distribution
can be approximated by a normal distribution when Mp ≥ 5 and Mq ≥ 5. Thus a
minimum value of M = 10 trials will suffice. The variance is given by Mpq = M/4
and therefore the standard deviation by σ =

√
M/2. The 95% confidence limits of a

normal distribution are given by ±1.96σ. Therefore the the upper and lower bounds to
give 95% confidence intervals on the estimate of the median correspond to the values
of Y from the ranked data in indexes (M + 1)/2± 1.96

√
M/2.

We can also process other statistics such as the best and worst values of Y and
associate them to the best and worst values expected from a random search. In practice,
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the best value found is subject to very wide confidence bounds unless a very large
M is used (for example, to find the 99th percentile, p = 0.01, q = 0.99, ∴ M >
500). However although the estimate of the worst value of Y should also require a
large number of samples, in practice it is far better behaved, and also a far more useful
indicator of algorithm performance.

For the random search, the probability given by D′(Y )M is the probability that M
searches will all return values better than Y . Therefore the cumulative probability dis-
tribution in (3) is the distribution of probabilities that at least one worse value than Y
will be found in M trials. The distribution D′′(Y ) is therefore the distribution of the
worst optimisation results from M trials.

D′′(Y ) = 1−D′(Y )M (3)

Equation 4 shows equations (3) and (1) re-arranged to obtain a median estimate and the
95% confidence limits of the worst optimisation value.

Nworstupper =
log(1− M

√
0.025)

log(1−D(Yworst))

Nworstmedian
=

log(1− M
√

0.5)
log(1−D(Yworst))

Nworstlower
=

log(1− M
√

0.975)
log(1−D(Yworst))

(4)

The metric Nmedian in (2) is the size of the random search optimisation that must
be performed, that when repeated M times, will obtain a median optima Ymedian. This
metric is an indicator of typical algorithm performance (distance to the true global ob-
jective value) and a value of Nmedian larger than the actual number of function evalua-
tions used indicates an optimisation algorithm well suited to the test function.

The metric Nworst in (4) is the size of the random search optimisation that must be
performed, that when repeated M times, will obtain a worst optima of Yworst. If this
metric is larger than Nmedian, then the spread of the inferior solutions from the optimi-
sation process (i.e. variance of inferior solutions) is smaller than the spread that would
be obtained by a random search process. This is a desirable feature of optimisation al-
gorithms as it suggests that if only a single run of the optimiser can be performed, there
is confidence that a good solution will be identified. If Nworst is smaller than Nmedian,
the optimiser is prone to premature convergence on poor solutions (highly undesirable).

Any situations that give Nmedian lower than the actual number of evaluations used
indicate that a random search would have most likely provided better results than from
the optimiser.

3 Multi-Objective Equivalent Random Search

The extension to multi (and many) objective problems is straightforward. To assess the
quality of M non-dominated surfaces generated from the optimisation algorithm under
test, each objective vector in each non-dominated set can be combined using an aggre-
gation function to allow a set of single-objective metrics to be calculated. For assessing
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Pareto sets, the weighted min-max aggregation function in equation 5 is suitable, but
alternative metrics may be used if desired (e.g. for assessing objective surfaces).

The weighted min-max score of k objectives is calculated using equation 5,wherewi

is the weight of the ith objective, Oi. Weighted min-max is able to generate points on
both convex, concave and discontinuous Pareto sets.

Y =
k

max
i=1

(wiOi) (5)

As the weight vector is changed, the aggregated objective surface is modified and
the cumulative probability distribution is modified. If a large random search has been
performed of the objective space, then the results can be transformed by the aggregation
function and sorted to form a CDF. Although the vectors will not be truly independent,
one large random sampling of the objective space may be re-cycled for calculating the
CDFs for any weight vector set (equation 7 shows an example analytic CDF).

The multi-objective assessment is performed by first generating a set of H weight
vectors (typically H = 100 or more), giving Wj : j = 1 . . .H , that span the true
Pareto surface (or the non-dominated surface of the large random sampling). Each of
the vectors Wj corresponds to a full set of weights, Wj = [w1j w2j . . . wkj ].

For each of the j ∈ H weight vectors, all the n ∈ M non-dominated surfaces are
scanned in turn, aggregating usingWj . The best performing aggregated point from each
of the M non-dominated surfaces is gathered, Ynj , resulting in M best points for each
of the H test weight vectors.

Thus each of the sets of M non-dominated surfaces can be assessed using the sin-
gle objective theory. If we take the first weight vector W1 for example, we can take
the worst and median of the Yn1 : n ∈ M aggregated values, and process using the
CDF corresponding to the vector W1 with equations 2 and 4 and therefore obtain the
performance in the direction of the weight vector W1. The process can be repeated for
all of the H weight vectors, yielding vectors of results for Nmedian, Nworst and their
associated confidence intervals. Sorting the vectors Nmedian etc. will create CDFs of
the performance across the entire Pareto surface.

The median of the Nmedian vector can be used as a good indicator of general perfor-
mance, but for the most accurate representation, the overall 95% limits on the Nmedian

vector should also be reported (the ‘outer’ confidence interval), along with the analytic
95% confidence limits on the median of Nmedian (the ‘inner’ confidence interval). As
the Pareto surface is being analysed using an ensemble of aggregations, the ‘single ob-
jective’ problem that is being analysed is being changed as we scan the Pareto set with
the weight vectors. Thus it is likely that the optimiser under test may perform differently
on different regions of the Pareto set (typically the edges of the Pareto surface are differ-
ent to the central region) and a spread of ERS values that is wider than the analytic error
will be observed. The spread (especially the lower limit) can be very informative about
the reliability of the optimiser at identifying solutions. The ‘outer’ confidence limits
are calculated from this spread and relate closely to the distribution of solutions across
the Pareto set, as any gaps in coverage will result in a low ERS value for the lower
‘outer’ confidence limit. The multi-objective ESR metrics are be denoted by the quin-
tet of results: [N−

medianouter
N−

medianinner
Nmedian N+

medianinner
N+

medianouter
],

abbreviated to [N−−
M N−

M NM N+
M N++

M ].
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A similar set of results can be provided for the worst case performance too: [N−−
W

N−
W NW N+

W N++
W ]. The outcome is 10 numbers that summarise the equivalent

random search sizes that would be required to mimic the performance distribution of
the optimiser under test.

4 Example Analytic Density Function

The equation for the cumulative density function under the weighted min-max aggre-
gation function has been derived for a simple multi-objective test function. Equation 6
details the function, and the objective space is depicted pictorially in Fig. 1.

O1 = v
√
x

O2 = v
√
y

1 ≤ O1 +O2 0 ≤ x, y ≤ 1 (6)
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Fig. 1. Objective space and Cumulative Probability Density function for the “diagonal” function

In Fig. 1, the Pareto surface is simply a diagonal line across the objective space
which is defined by the constraint boundary of the feasible region O1 + O2 ≥ 1. To
calculate the cumulative density function D(Y ), the two objectives are combined using
equation 5 to form the metric Y . If the points in objective space that result in a constant
metric value of Y are plotted, an iso-objective contour results and a typical example is
shown in blue on Fig. 1. If the distribution of points in the objective space is uniform
(when v = 1), then D(Y ) is simply the ratio of the area of the superior feasible region
bounded by the iso-objective line defined by Y (region A in the figure), to the total area
of the objective space. If the distribution of the objectives is not uniform, then D(Y ) is
the area integral of the probability density of the objectives bounded by the constraints
and the iso-objective contour defined by Y .
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In the example shown in Fig. 1,D(Y ) will grow as a square-law relationship until the
iso-objective line reaches the boundary of region B, then will progress on a compound
law thereafter (e.g. as seen in region C). The resulting equation for D(Y ) is given in
equation 7, where w = max(w1, w2), min(w1, w2) = 1, w1 and w2 are the weights
applied to objective 1 and 2 respectively and v is a shape parameter that describes the
density of the Pareto set. An integer shape parameter in the range [2, 10] provides a
useful range of difficulty for the optimisation process.

D(Y ) =

⎧⎪⎨⎪⎩
Y 2v

wv − Y v(1−Y )v− v
v∑

r=0

(
v
r

) (−1)r

v+r

[(
Y
w

)v+r− (1−Y )v+r
]

Y <1,

Y v

wv − v
v∑

r=0

(
v
r

) (−1)r

v+r

(
Y
w

)v+r
Y ≥1.

(7)
Figure 1 shows the cumulative density function for equation 6 and w = 2, for v over

a range [1,10]. The ‘knee’ in the CDF when Y = 1 is visible clearly. At low values for
v, there are a large number of constrained solutions and the density of the solutions at
the Pareto surface is high. With a high density of solutions, the random search performs
well and the optimisers have difficulty improving on the random solutions. At high
values of v, there are very few constrained solutions, but the Pareto set density is low
and the random search is not so good. There is more scope for improvements by the
optimisation algorithms. A good general-purpose optimiser will perform satisfactorily
across a wide range of Pareto set densities.

5 Performance Trials of Optimisers

To illustrate the metric, two alternative optimisation strategies have been tested against
the objective function in equation 6 with a shape parameter of v = 5 to provide a Pareto
set with a reasonably low density. As a baseline, random search has been used to confirm
that the MOERS metric is truly relative to the analytic random search process. The
second optimiser is NSGA-II using software downloaded from the algorithm authors
website [1]. In order to allow independent verification, the Matlab software for the
MOERS metric used to generate the results in this section is available at [3].

Figure 2 shows the different metrics as assessed from NSGA-II [2] on the objective
function in equation 6 (with a shape parameter of v = 5) using 5000 actual objective
calculations, H = 200 weight vectors and M = 100 repeated trials. On the figure, the
horizontal solid line indicates log10(5000) = 3.7, the upper varying solid line is the
median equivalent random search size (NM ) and the lower varying solid line is the
worst-case equivalent random search size (NW ). The dashed lines indicate the upper
and lower bound of the analytic (inner) 95% confidence intervals (N+

M , N−
M and N+

W ,
N−

W ). The horizontal dashed lines indicate the locations of N++
M and N−−

M and N++
W

and N−−
W (outer confidence limits).

The corresponding equivalent random search metrics are shown in table 1. Table 2
shows the Log Search Ratio (LSR) which is the logarithm of the ratio of the ERS metric
over the actual number of evaluations used. A LSR of zero would indicate that the
optimiser is equivalent to a random search.
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Fig. 2. Multi objective equivalent random search metric for NSGA-II (left) and random search
(right) on test function equation 6

Table 1. Equivalent random search for NSGA-II with equation 6 and 5000 evaluations

Metric N−− N− N N+ N++

Nworst 36914 93682 140460 233808 1534218
Nmedian 78128 157795 217641 306711 217931129

log10(Nworst) 4.57 4.97 5.15 5.37 6.19
log10(Nmedian) 4.89 5.20 5.34 5.49 8.34

Table 2. Log Search Ratio for NSGA-II with equation 6 and 5000 evaluations

Metric LSR−− LSR− LSR LSR+ LSR++

LSRworst 0.87 1.27 1.45 1.67 2.49
LSRmedian 1.19 1.50 1.64 1.79 4.64

It is clear from Fig. 2 that there is a definite improvement over the analytic random
search with the optimisation algorithm as all metrics are above the horizontal solid line
(and therefore all LSR values are positive). The shallow slope of NM and NW on
the left of the graph indicates that there are no large gaps in the Pareto set in any of
the 100 trials. The NW and NM curves are near coincident for the worst 150 weight
vectors, indicating that the CDF of the spread of the optima is the same shape as would
be expected from a random search (a good feature). The results for NW in the right-
hand 50 weight vectors however are lower than the NM results and suggests that the
worst case results are spread much further than the NM equivalent random search
would provide. This indicates that the behaviour is becoming erratic over a few small
regions of the Pareto surface and the algorithm is converging to local solutions. The
good median performance shown on the right-hand-side is due to the random search
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not being good at finding the extremes of the Pareto set for the test problem. NSGA-II
however, obtains a good spread of results right across the Pareto set. Hence the best of
the H median ERS vectors are at the edges of the Pareto set, and the worst at the centre.
An ideal algorithm would have NW consistently higher than NM demonstrating a
very robust optimiser whose bad results are still very good. Overall the assessment is
that NSGA-II is performing well, a random search would need approximately 43 times
as many points (101.64) to achieve equivalent optima.

Table 3. Log Search Ratio for random search with equation 6 and 5000 evaluations

Metric LSR−− LSR− LSR LSR+ LSR++

LSRworst -0.16 -0.21 -0.03 0.19 0.16
LSRmedian -0.10 -0.11 0.01 0.15 0.12

Figure 2 and table 3 shows the results of performing a 5000 point random search on
equation 6. The search was repeated M = 100 times and is assessed over H = 200
weight vectors. The horizontal solid line shows the actual number of points used and it
is clear that the metrics all lie within the anticipated 95% confidence intervals predicted
from the median values of the ensemble of weight vectors. The random search test is
very useful as it confirms the correctness of the analytic equations.

The two optimisation processes have been tested further with 10 different maximum
number of evaluations in the range [800, 500000]. At each configuration M = 100
trials were performed in order to allow the MOERS metrics to be calculated with useful
confidence intervals. The MOERS results were converted to the Log Search Ratio so
that a direct comparison with the performance against the analytic random search can
be made as the algorithm computational allowance is increased.

Figure 3a shows a graph of [LSR−−
M LSR−

M LSRM LSR+
M LSR++

M ] for a range
of different search sizes with NSGA-II. It is clear that the performance relative to the
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Fig. 3. Plot of Log search ratio of NSGA-II and random search for different search sizes on
equation 6
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analytic random search improves as the number of evaluations allowed increases, but
eventually, the performance ‘saturates’. Different optimisers saturate at different levels
and the saturation is an indication of intrinsic optimisation capacity on the function
under test.

Figure 3b shows a graph of [LSR−−
M LSR−

M LSRM LSR+
M LSR++

M ] for a range
of different search sizes and the random search algorithm. It is clear that the Log Search
Ratio is a good approximation to zero, i.e. the actual number of points used matches
the analytic prediction that was based on the M = 100 non-dominated sets that were
analysed. It is also clear that LSR−−

M is very similar to LSR−
M , and LSR+

M is very
similar to LSR++

M , demonstrating that the analytic confidence intervals are accurate.

6 Conclusions

This paper has introduced a new metric for assessing the performance of multi-objective
optimisation algorithms. The metric uses an analytic random search as the reference,
allowing performance to be quantified. The metric requires multiple independent runs
of the optimiser and assesses both median and worst performance, and provides analytic
confidence intervals on the results. The metric is both repeatable and accurate.
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Abstract. A strategy for solving an optimisation problem with a large
number of objectives by transforming the original objective vector into
a two-objective vector during survival selection is presented. The trans-
formed objectives, referred to as preference objectives, consist of a win-
ning score and a vicinity index. The winning score, a maximisation cri-
terion, describes the difference of the number of superior and inferior
objectives between two solutions. The minimisation vicinity index de-
scribes the level of solution clustering around a search location, particu-
larly the best value of each individual objective, is used to encourage the
results to spread throughout the Pareto front. With this strategy, a new
multi-objective algorithm, the compressed-objective genetic algorithm
(COGA), is introduced. COGA is subsequently benchmarked against a
non-dominated sorting genetic algorithm II (NSGA-II) and an improved
strength Pareto genetic algorithm (SPEA-II) in six scalable DTLZ bench-
mark problems with three to six objectives. The results reveal that the
proposed strategy plays a crucial role in the generation of a superior so-
lution set compared to the other two techniques in terms of the solution
set coverage and the closeness to the true Pareto front. Furthermore, the
spacing of COGA solutions is very similar to that of SPEA-II solutions.
Overall, the functionality of the multi-objective evolutionary algorithm
(MOEA) with preference objectives is effectively demonstrated.

1 Introduction

Various techniques have been proposed for solving multi-objective problems.
Among these techniques, the genetic algorithm has been established as one of
the most widely used methods [1,2,3,4,5,6,7,8]. Due to the parallel search nature
of the algorithm, the approximation of multiple optimal solutions—the Pareto
optimal solutions, comprising of non-dominated individuals—can be effectively
executed. The performance of the algorithm always degrades as the search space
or problem size gets bigger. As an increase in the number of conflicting objectives
also significantly raises the difficulty level [9], the non-dominated solutions may
deviate from the true Pareto front and effects the coverage of the Pareto front
by the solutions.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 473–482, 2006.
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A number of strategies have been successfully integrated into genetic algo-
rithms to solve these problems, including a direct modification of selection pres-
sure [1,2,3] and elitism [4,5,6,7,8]. Although they have been proven to signifi-
cantly improve the search performance of genetic algorithms, virtually all re-
ported results deal with only few objectives. In reality, the possibility that a
candidate solution is not dominated always increases with objective numbers,
leading to an explosion in the total number of non-dominated solutions. This
difficulty stems from the way that a non-dominated solution is defined. During
a comparison between two candidate solutions, a solution x would not dominate
another solution y unless all objectives from x satisfy the domination condition.
In a problem with a large number of objectives, the chance that two solutions
cannot dominate one another is inevitably high. A genetic algorithm must be
able to pick out a well chosen solution set from a vast number of non-dominated
solutions in order to successfully approximate the Pareto front.

In order to properly approximate such Pareto fronts with a managable solution
number, a number of non-dominated solutions must be excluded from the search
target. This paper presents a new technique which assigns different preference
levels to non-dominated solutions. It is hypothesised that a set containing highly
preferred solutions would reflect a close approximation of the true Pareto front.
Two conflicting criteria will be used in the preference assignment. These criteria
will serve as the ‘preference objectives’ by which the survival decision for the non-
dominated solution will be made through a direct application of the standard
multi-objective domination concept to the preference objectives. This can be
viewed as a transformation from an m-objective problem to a two-objective
problem during the survival competition between two non-dominated solutions.
Since existing MOEAs are highly capable of solving two-objective problems, this
approach should be universally applicable to any of these algorithms.

In this paper, the impact of preference objectives and the newly proposed
compressed-objective genetic algorithm (COGA) will be demonstrated via scal-
able DTLZ problems [9]. As the objective numbers of these benchmarks are
expandable while the problem characteristic is maintained, the performance of
the proposed strategy with various objective numbers, ranging from three to six,
can be systematically evaluated. Meanwhile, the associated number of decision
variables is proportional to the objective numbers. Thus, the organisation of
this paper is as follows. In section 2, descriptions of the preference objectives
and their application to a multi-objective problem are given. COGA is discussed
in section 3. Next, the scalable multi-objective benchmark problems and perfor-
mance evaluation criteria are outlined in section 4, followed by the results and
discussions in section 5. Finally, the conclusions are drawn in section 6.

2 Preference Objectives

When two non-dominated solutions are competing for survival, the solution with
better ‘preference objectives’ has a higher chance of being selected. Here, two
conflicting preference objectives and their ranking are introduced.



Compressed-Objective Genetic Algorithm 475

2.1 Preference Objective Definitions

Winning Score. The winning score is calculated from the numbers of superior
and inferior objectives between a pair of two non-dominated solutions. Let supij

be the number of objectives in the solution i that is superior to the corresponding
objectives in the solution j while inf ij be the number of objectives in i that
is inferior to j. For a population containing N non-duplicated non-dominated
individuals, the winning score for the ith solution or WS i is given by

WS i =
N∑

j=1

wij where wij = supij − inf ij . (1)

Obviously, wji = −wij and wii = 0. With this assignment, non-dominated so-
lutions with high winning scores should be close to the true Pareto front but
they tend to cluster around the best values of individual objectives instead of
spreading throughout the Pareto front.

Vicinity Index. In order to retard the winning score bias towards best values
of individual objectives, the vicinity index is introduced. For simplicity, the ob-
jective vector is normalised such that the range of its element is between zero and
one. Let {ei1, ei2, . . . , eim} be the m-dimensional normalised objective vector of
a solution i, the vicinity index for i or VI i and the associated vicinity function
vij are defined as

VI i =
m∑

j=1

vij , (2)

vij =
(1− eij)

V j

with V j =
N∑

k=1

(1− ekj) ρkj

N
for minimising objective j ,

vij =
eij

V j

with V j =
N∑

k=1

ekjρkj

N
for maximising objective j . (3)

The divisor V j is included to ensure that each objective contributes equally to
VI i. In addition, the summation

∑
vkj from k = 1 to N is equal to N for any

objective j. The value of vij is high when a solution i is clustered around the
best value of an objective j; vij is reduced to zero when eij is farthest away
form the biased best value of j. Hence, VI i is a minimisation objective. The ρij

denotes the density of eij and is estimated over N solutions from the set that
contains e1j , e2j , . . . , eNj such that

ρij =
1
hj

N∑
k=1

K

(
eij − ekj

hj/N

)
=

N∑
k=1

K

(
eij − ekj

1/N

)
, (4)

where K is a Gaussian kernel with K(u) = e−0.5u2
/
√

2π and hj is the range of
the normalised objective which is equal to 1.0. The inclusion of solution density
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is important since the density of solutions in the vicinity of the winning score
bias towards best values of individual objective raises with increasing number
of objectives. The multiplication by ρij lessens this bias by further increasing
the vicinity index, resulting in lower ranking of clustered solutions and higher
possibility of solution truncation.

2.2 Rank Assignment by Preference Objectives

With the winning score, a maximisation objective, and the vicinity index, a
minimisation objective, a rank can be assigned to each non-dominated solution
based upon the preference level. A non-dominated solution x is preferable to
another non-dominated y if and only if one of the following conditions is satisfied.

a) The winning score of x is higher than that of y and the vicinity index of x
is less than that of y (WSx > WS y ∧ VI x < VI y).

b) The winning scores of x and y are equal and the vicinity index of x is less
than that of y (WSx = WSy ∧ VI x < VI y).

c) The winning score of x is higher than that of y and the vicinity indices of x
and y are equal (WSx > WSy ∧ VI x = VI y).

Similar to [3], the rank of the non-dominated solution of interest is assigned
by the number of non-dominated solutions that are more ‘preferable’ than the
individual of interest. The preference objectives and the resulting rank will be
used only during the selection and truncation processes in the search algorithm.

3 Compressed-Objective Genetic Algorithm (COGA)

3.1 Main Algorithm

1. Generate an initial population P0 and an empty archive A0. Initialise the
generation counter (t = 0).

2. Merge the population Pt and the archival individuals in At together. Then
select non-duplicated non-dominated individuals, obtained from objective
space, from the merged population and place them in the archive At+1.

3. If the number of selected non-duplicated non-dominated individuals is less
than or equal to the archive size, go to step 4. Otherwise, truncate the
individual set using the operator described in sub-section 3.2.

4. Calculate the rank of each archival individual according to sub-section 2.2.
5. Assign the fitness value to each individual i in the archive such that

fitnessi = |At+1|+
di√
m + 1

− ranki , (5)

where |At+1| denotes the number of archival individuals, m is the number of
objectives and di is the Euclidean distance between the individual i and its
nearest neighbour in normalised objective space. If i is an extreme solution
with extreme objective values, the value of di is infinite.
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6. Perform binary tournament selection with replacement on archival individ-
uals in order to fill the mating pool.

7. Apply crossover and mutation operation within the mating pool. Then place
the offspring in the population Pt+1 and increase the generation counter by
one (t← t+ 1).

8. Go back to step 2 until the termination condition is satisfied. Report the
final archival individuals as the output solution set.

Although the archive may not be fully filled at the beginning of the run, the
available number of non-dominated individuals tends to increase rapidly, espe-
cially in problems with large numbers of objectives as the chance that two indi-
viduals cannot dominate one another is heightened. Thus, a truncation operator
for maintaining individuals in the archive is introduced next.

3.2 Truncation Operator for the Archive

The truncation for the archive with size Q is based upon the preference level
and the spread of solutions in the objective space. It can be described as follows.

1. Calculate ranks of N archival individuals according to the preference level.
2. All E extreme solutions are placed in the archive. Set the numbers of se-

lected solutions L = E and remaining solutions R = N −E. Then, calculate
the Euclidean distance dRL

i between the individual i in R and its nearest
neighbour in L.

3. Select (Q − L) solutions with highest values of dRL
i from R. From this set,

the candidate with the highest rank is moved to the archive. If there is more
than one solution of the highest rank, the suitability is decided by the high
value of dRL

i .
4. Increase the counter for the number of selected solutions (L ← L + 1) and

decrease the counter for the number of remaining solutions (R ← R − 1).
Update the dRL

i for the remaining individual i.
5. Go back to step 3 until the number of selected individuals is equal to the

required archive size.

4 Scalable Benchmarks and Performance Evaluation

The proposed algorithm will be benchmarked against six test cases, DTLZ1–
DTLZ4, DTLZ6 and DTLZ7 [9]. They are scalable minimisation with n decision
variables and m objectives. The relationship between the number of decision
variables and the number of objectives is defined by n = m + k − 1, where the
value of k is set to ten in this paper, while the number of objectives is between
three and six. DTLZ1 has a linear Pareto front with multiple local fronts. DTLZ2
has a spherical Pareto front. DTLZ3 and DTLZ4 both have spherical Pareto
fronts but DTLZ3 contains multiple local fronts while the DTLZ4 solutions are
non-uniformly distributed in the search space. DTLZ6 has a curve Pareto front
and contains multiple local fronts. DTLZ7 has multiple discrete Pareto fronts.
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Table 1. Parameter setting for the algorithms in all problems

Parameter Setting and Value

Chromosome coding Real-value representation
Selection method Tournament selection
Crossover method SBX recombination with probability = 1 [11]
Mutation method Variable-wise polynomial mutation with probability

= 1/number of decision variables [11]
Population size 100
Archive size (COGA, SPEA-II) 100
Number of generations 600
Number of repeated runs 30

As the optimality of non-dominated solutions should be assessed by compar-
ing (a) among themselves, (b) with the solutions obtained from a different al-
gorithm and (c) with the true Pareto optimal solutions [10], three measurement
criteria are used: the solution set coverage (C), the average distance between
the non-dominated solutions to the true Pareto optimal solutions (M1) and the
neighbour-series spacing (Sns). The C is evaluated by comparing domination
or equality between two sets of solutions while the remaining two minimisation
criteria are calculated from objective vectors of the solutions. The C and M1
are taken from [10] while Sns is adapted from [11]. For the d0,1

i , d1,2
i , ..., dq−1,q

i

distance series between two individuals, d0,1
i denotes the distance between indi-

vidual i and its nearest neighbour; d1,2
i denotes the distance between the previ-

ously identified neighbouring solution and its nearest neighbour taken from the
solution set that excludes individual i; and so on. The Sns is defined by

Sns =

⎛⎝ N∑
i=1

1
q

q∑
j=1

|dj−1,j
i − d|

⎞⎠/
N when d =

(
N∑

i=1

d0,1
i

)/
N , (6)

where N is the number of non-duplicated non-dominated solutions and q is the
neighbouring series size, which is arbitrarily set to 10% of the population. In the
original spacing [11], the index is obtained from a pair-wise nearest neighbouring
distance, implying that a low index may not reflect a good solution distribution
since a lumped solution set can produce a low spacing value. Since Sns interests
in the pair-wise distances that expand outwards from the individual of interest,
it should provide a better distribution measurement.

5 Optimisation Results and Discussions

In this section, results of the specified DTLZ problems from COGA will be
benchmarked against those from NSGA-II [6] and SPEA-II [7]. The parameter
settings are given in Table 1. After all repeated runs, the final non-dominated
solutions are retrieved from either individuals in the last generations (NSGA-II)
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or the archive (SPEA-II and COGA). The performance indicators—M1, C and
Sns—are displayed in Table 2, Fig. 1 and Table 3, respectively.

From M1 in Table 2, COGA outperforms NSGA-II and SPEA-II in all prob-
lems. Performances of NSGA-II and SPEA-II are comparable when the number
of considered objectives is less than five. Once the number of objectives exceeds
four, the performance of NSGA-II is noticeably better than that of SPEA-II.

Moving onto the solution set coverage C in Fig. 1, the comparative values of
results from algorithms A and B can be obtained from the difference in their
coverage values C(A,B) − C(B,A), from which a higher values indicates bet-
ter results from A as compared against B. COGA is shown to be better than
NSGA-II and SPEA-II in DTLZ1, DTLZ3 and DTLZ6 problems with three and
four objectives. For problems with five and six objectives, the results reveal that
COGA is the most suitable technique. With the use of real-value chromosome,
the possibility of two algorithms to produce solutions with exactly the same
decision variable set is highly unlikely. This implies that the coverage index is
obtained mainly from solutions taken from the compared algorithm that domi-
nate solutions of interest. In other words, the low C indices from all algorithm
pairs in three- and four-objective DTLZ2, DTLZ4 and DTLZ7 problems, which
are problems with either spherical or discrete Pareto fronts, are caused by the
fact that the majority of solutions from all three algorithms do not dominate
each other. The solution sets obtained from COGA clearly dominate the so-

Table 2. Comparisons of average (Avg) and standard deviation (SD) values of M1.
The boldface indicates the best average values.

M1 Algorithm
3 Objectives 4 Objectives 5 Objectives 6 Objectives

Avg SD Avg SD Avg SD Avg SD

NSGA-II 0.534 0.588 298.2 111.8 834.1 60.20 1105 52.46
DTLZ1 SPEA-II 0.404 0.579 364.4 48.03 943.3 66.15 1224 40.56

COGA 0.033 0.044 35.52 25.89 346.6 65.82 568.9 65.72

NSGA-II 0.010 0.002 0.041 0.006 0.415 0.085 1.761 0.155
DTLZ2 SPEA-II 0.008 0.001 0.071 0.022 1.342 0.110 2.241 0.052

COGA 0.006 0.001 0.020 0.004 0.055 0.016 0.180 0.047

NSGA-II 0.401 0.584 352.8 71.60 920.5 38.59 1247 80.11
DTLZ3 SPEA-II 0.834 1.109 320.7 47.37 1035 77.25 1660 62.16

COGA 0.041 0.043 79.30 30.67 450.1 52.33 663.5 63.61

NSGA-II 0.009 0.002 0.045 0.019 0.936 0.191 1.847 0.092
DTLZ4 SPEA-II 0.009 0.002 0.113 0.024 1.547 0.081 2.248 0.064

COGA 0.005 0.001 0.017 0.003 0.125 0.048 0.566 0.108

NSGA-II 0.194 0.041 9.098 0.481 13.94 0.300 19.35 0.309
DTLZ6 SPEA-II 0.179 0.031 7.579 0.378 15.32 0.139 20.29 0.180

COGA 0.101 0.008 5.647 0.333 10.08 0.357 16.98 0.510

NSGA-II 0.016 0.003 0.100 0.010 0.243 0.044 0.451 0.087
DTLZ7 SPEA-II 0.016 0.003 0.106 0.011 0.367 0.052 0.946 0.136

COGA 0.011 0.002 0.060 0.007 0.139 0.033 0.237 0.034
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lution sets from NSGA-II and SPEA-II in three- and four-objective DTLZ1,
DTLZ3 and DTLZ6 problems, which contain multiple local Pareto fronts, in
order to achieve high C indices. Nonetheless, in all benchmarks with five and
six objectives, COGA is capable of producing solution sets that cover solution
sets generated by NSGA-II and SPEA-II, implying a significant deterioration in
their search capability once the number of objectives increases.

From the spacing measurement by the Sns index in Table 3, NSGA-II yields
the worst results in all problems. COGA and SPEA-II produce better solutions
but the performance of SPEA-II is marginally better than COGA, especially in
problems with high objective numbers. The reason for this SPEA-II superiority
is most likely to stem from the use of k-nearest neighbour technique during
solution pruning in which extreme solutions may be eliminated for problems with
three-or-more objectives. In contrast, the pruning technique in COGA always
maintains the existence of extreme solutions at hand; the build-up of extreme
solutions in close proximity can lead to the deterioration in the Sns values.

It should be noted that the vicinity index does not always in conflict with
the winning score; ranks solutions with a high values of winning score should
be high and solutions with the highest winning score is certain to be of the
highest rank. In COGA runs, it is possible that strong conflicts between the
two preference objectives may exist in a few solutions whose ranks may be

C(NSGA-II, COGA)

C(COGA, NSGA-II)

C(SPEA-II, COGA)

C(COGA, SPEA-II)

3 Objectives 4 Objectives 5 Objectives 6 Objectives

Fig. 1. Box plots of C(A, B which is covered by A). In each rectangle, the leftmost
plot refers to DTLZ1 while the rightmost to DTLZ7. The scale is 0 (no coverage) at
the bottom and 1 (total coverage) at the top. In each plot, the thick horizontal line
indicates the average values.
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Table 3. Comparisons of average (Avg) and standard deviation (SD) values of Sns.
The boldface indicates the best average values.

Sns Algorithm
3 Objectives 4 Objectives 5 Objectives 6 Objectives

Avg SD Avg SD Avg SD Avg SD

NSGA-II 0.0398 0.0081 0.0491 0.0076 0.0758 0.0098 0.0953 0.0094
DTLZ1 SPEA-II 0.0200 0.0072 0.0374 0.0051 0.0324 0.0038 0.0282 0.0036

COGA 0.0206 0.0036 0.0376 0.0061 0.0498 0.0061 0.0511 0.0073

NSGA-II 0.0528 0.0036 0.0776 0.0058 0.1002 0.0071 0.1225 0.0096
DTLZ2 SPEA-II 0.0184 0.0015 0.0263 0.0024 0.0365 0.0057 0.0321 0.0039

COGA 0.0251 0.0029 0.0370 0.0047 0.0404 0.0063 0.0517 0.0095

NSGA-II 0.0411 0.0088 0.0402 0.0037 0.0790 0.0077 0.1101 0.0071
DTLZ3 SPEA-II 0.0272 0.0091 0.0370 0.0065 0.0414 0.0065 0.0381 0.0043

COGA 0.0246 0.0036 0.0422 0.0046 0.0477 0.0049 0.0591 0.0058

NSGA-II 0.0511 0.0046 0.0748 0.0064 0.0926 0.0071 0.1107 0.0073
DTLZ4 SPEA-II 0.0182 0.0022 0.0268 0.0033 0.0351 0.0043 0.0333 0.0040

COGA 0.0242 0.0020 0.0328 0.0043 0.0369 0.0048 0.0421 0.0060

NSGA-II 0.0257 0.0025 0.0716 0.0054 0.1010 0.0060 0.1183 0.0068
DTLZ6 SPEA-II 0.0146 0.0023 0.0291 0.0036 0.0258 0.0030 0.0287 0.0028

COGA 0.0132 0.0016 0.0309 0.0041 0.0404 0.0045 0.0480 0.0053

NSGA-II 0.0410 0.0039 0.0828 0.0055 0.1158 0.0065 0.1262 0.0115
DTLZ7 SPEA-II 0.0205 0.0024 0.0379 0.0049 0.0407 0.0063 0.0492 0.0056

COGA 0.0224 0.0026 0.0486 0.0041 0.0465 0.0061 0.0527 0.0065

inappropriately assigned. Thus, the relationship between objectives, for instance
conflict, harmony and independence [12], should be further investigated. But
since most solutions do not involve such strong conflicting characteristics, their
ranks are considered acceptable. This reasoning concurs with the resulting solu-
tions in which COGA results is generally superior to the two other algorithms in
which all non-dominated solutions have the same rank. In addition, solutions in
some problems may bias towards certain sections of the Pareto front due to the
truncation based only on ranks. In such cases, the truncation in sub-section 3.2
already takes the spreads of solutions into consideration.

6 Conclusions

COGA is introduced in this paper. Basically, large number of objectives in a
problem can be transformed into two-objectives, a maximising winning score
and a minimising vicinity index, for selection and truncation. COGA is formu-
lated and benchmarked against NSGA-II [6] and SPEA-II [7] using six scalable
DTLZ problems with three to six objectives [9]. The results reveal that COGA
is superior to NSGA-II and SPEA-II in terms of the solution set coverage and
the average distance from the non-dominated solutions to the true Pareto front.
In addition, the spacing index of the solutions generated by COGA is very close
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to that from SPEA-II. These results clearly indicates the strong potential of
preference objective implementation into MOEAs.
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Abstract. This paper presents a new multi-objective evolutionary algo-
rithm which consists of a hybrid between a particle swarm optimization
approach and some concepts from rough sets theory. The main idea of the
approach is to combine the high convergence rate of the particle swarm
optimization algorithm with a local search approach based on rough sets
that is able to spread the nondominated solutions found, so that a good
distribution along the Pareto front is achieved. Our proposed approach
is able to converge in several test functions of 10 to 30 decision variables
with only 4,000 fitness function evaluations. This is a very low number
of evaluations if compared with today’s standards in the specialized lit-
erature. Our proposed approach was validated using nine standard test
functions commonly adopted in the specialized literature. Our results
were compared with respect to a multi-objective evolutionary algorithm
that is representative of the state-of-the-art in the area: the NSGA-II.

1 Introduction

In this paper, we propose a new multi-objective evolutionary algorithm (MOEA)
which consists of a hybrid between a particle swarm optimization (PSO) ap-
proach and rough sets theory. The main aim of this work is to design a MOEA
that can produce a reasonably good approximation of the true Pareto front of
a problem with a relatively low number of fitness function evaluations (no more
than 5000 fitness function evaluations). PSO is a bio-inspired metaheuristic that
was proposed by James Kennedy and Russell Eberhart in the mid-1990s [1], and
which is inspired on the choreography of a bird flock. In PSO, each solution is
represented by a particle. Particles group in “swarms” (there can be either one
swarm or several in one population) and the evolution of the swarm to the op-
timal solutions is achieved by a velocity equation. This equation is composed of
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three elements: a velocity inertia, a cognitive component and a social component.
Depending on the topology adopted (i.e., one swarm or multiple swarms), each
particle can be affected by either the best local and/or the best global particle
in its swarm. PSO has been found to be a very successful optimization approach
both in single-objective and in multi-objective problems [1,2]. However, so far,
the high convergence rate of PSO has not been properly exploited by researchers,
since most of the current multi-objective PSOs (MOPSOs) perform 20,000 fit-
ness function evaluations or more in test functions such as the ones adopted
in this paper. The main reason for this is that despite its high convergence
rate, PSO normally has difficulties to achieve a good distribution of solutions
with a low number of evaluations. That is why we adopted rough sets theory
(which can be useful at finding solutions within the neighborhood of a reference
set) in this paper in order to have a local optimizer whose computational cost
is low.

2 Particle Swarm Optimization

In the PSO algorithm, the particles (including the pbest) are randomly initial-
ized at the beginning of the search process. Next, the fittest particle from the
swarm is identified and assigned to the gbest solution (i.e., the global best, or
best particle found so far). After that, the swarm flies through the search space
(in k dimensions, in the general case). The flight function adopted by PSO is
determined by equation (1), which updates the position and fitness of the par-
ticle (see equation (2)). The new fitness is compared with respect to the parti-
cle’s pbest position. If it is better, then it replaces the pbest (i.e., the personal
best, or the best value that has been found for this particle so far). This proce-
dure is repeated for every particle in the swarm until the termination criteria is
reached.

vi,k = w · vi,k + c1 · U(0, 1)(pbesti,k − xi,k) + c2 · U(0, 1)(gbestk − xi,k); (1)

xi,k = xi,k + vi,k (2)

where c1 and c2 are constants that indicate the attraction from the pbest or gbest
position, respectively; w refers to the velocity inertia of the previous movement;
xi = (xi1, xi2, ..., xik) represents the i− th particle. U(0,1) denotes a uniformly
random number generated in the range (0,1).

There are plenty of proposals to extend PSO for dealing with multiple objec-
tives (see for example [2,3]). A survey of MOPSOs is beyond the scope of this
paper, but interested readers may refer to [4].

3 Rough Sets Theory

Rough sets theory is a new mathematical approach to imperfect knowledge that
was originally proposed by Pawlak [5]. The main idea of this approach is ex-
plained next. Let’s assume that we are given a set of objects S called the universe
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and an indiscernibility relation R ⊆ S × S, representing our lack of knowledge
about elements of S (in our case, R is simply an equivalence relation based on
a grid over the feasible set; this is, just a division of the feasible set in (hyper)-
rectangles). Let X be a subset of S. We want to characterize the set X with
respect to R. The way rough sets theory expresses vagueness is employing a
boundary region of the set X . If the boundary region of a set is empty it means
that the set is crisp; otherwise, the set is rough (inexact). A nonempty boundary
region of a set means that our knowledge about the set is not enough to define
the set precisely. Then, each element in S is classified as certainly inside X if it
belongs to the lower approximation or partially (probably) inside X if it belongs
to the upper approximation. The boundary is the difference of these two sets,
and the bigger the boundary the worse the knowledge we have of set X . On the
other hand, the more precise is the grid implicity used to define the indiscernibil-
ity relation R, the smaller the boundary regions are. But, the more precise is the
grid, the bigger the number of elements in S, and then, the more complex the
problem becomes. Our aim is to use rough sets to explore the neighborhood of a
set of reference solutions (the nondominated solutions found by our PSO-based
MOEA), so that we can spread such solutions along the Pareto front. For this
sake, it is required to design a grid and decide which elements of S (that we
will call atoms and will be just rectangular portions of decision variable space)
are inside the Pareto optimal set and which are not. Once we have the efficient
atoms, we will intensify the search over these atoms. Note however, that the
precision of the grid has an impact on both the computational cost (the more
precise the grid, the higher its cost) and on effectiveness (the less precise the
grid, the less knowledge we can obtain from it). Evidently, in our approach, we
will try to generate a grid that is not so computationally expensive but that
offers a reasonably good knowledge about the Pareto optimal set. Once this grid
is built, it becomes relatively straightforward to generate more points on the ef-
ficient atoms, as these atoms are built in decision variable space. Note however,
that the use of rough sets requires not only a set of nondominated solutions, but
also another one of dominated solutions that are close to being nondominated.
This second set is required in order to intensify the search. Thus, our MOEA
will be modified in order to keep this second set, which is not normally required
in evolutionary multiobjective optimization.

4 Pareto-adaptive ε-Dominance

Our approach also adopts a variant of ε-dominance [6] that we call paε-
dominance. The details of paε-dominance are omitted due to space constraints
(see [7] for further information), but its main difference with respect to the orig-
inal proposal is that in this case the hyper-grid generated adapts the sizes of
the boxes to certain geometrical characteristics of the Pareto front (e.g., almost
horizontal or vertical portions of the Pareto front) as to increase the number of
solutions retained in the grid. Thus, this scheme maintains the good properties
of ε-dominance but improves on its main weaknesses.
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5 Our Proposed Approach

Our proposed approach, called PSOMORSA (Particle Swarm Optimization for
Multiobjective Optimization with Rough Sets), is divided in two phases, and
each of them consumes a fixed number of fitness function evaluations. During
Phase I, our PSO-based MOEA is applied for 2000 fitness function evaluations.
During Phase II, a local search procedure based on rough sets theory is applied
for another 2000 fitness function evaluations, in order to improve the solutions
(i.e., spread them along the Pareto front) produced at the previous phase. Each
of these two phases is described next in more detail.

5.1 Phase I: Particle Swarm Optimization

Our proposed PSO-based approach adopts a very small population size (P = 5
particles). The leader is determined using a very simple criterion: the first N
particles (N is the number of objectives of the problem) are guided by the best
particle in each objective, considered separately. The remainder P −N particles
are adopted to build an approximation of the ideal vector. Then, we identify the
individual which is closest to this ideal vector and such individual becomes the
leader for the remainder P −N particles. The purpose of these selection criteria
is twofold: first, we aim to approximate the optimum for each separate objective,
by exploiting the high convergence rate of PSO in single-objective optimization.
The second purpose of our selection rules is to encourage convergence towards
the “knee” of the Pareto front (considering the bi-objective case). We found
that the use of rough sets can generate the entire Pareto front even if only
one nondominated solution is available in the Pareto front, and in disconnected
Pareto fronts it is required only one nondominated solution per each discontinuos
segment of the Pareto front.

Algorithm 1 shows the pseudocode of Phase I from our proposed approach.
First, we randomly generate 5 individuals. In the getLeaders() function, we iden-
tify the best particles in each objective and the closest particle to the ideal vec-
tor. Those particles (the leaders) are stored in the set L. Then the getLeader(x)
function returns the position of the leader from the set L. Then, we perform
the flight in order to obtain a new particle. If this solution is beyond the allow-
able bounds for a decision variable, then we adopt the BLX − α recombination
operator [8], and a new vector solution Z = (z1, z2, ..., zd) is generated, where
zi ∈ [cmin−Iα, cmax+Iα]; cmax = max(a, b), cmin = min(a, b), I = cmax−cmin,
α = 0.5, a = Lg (the leader of the particle) and b = pbest (i.e., the personal best
of the particle). Note that the use of a recombination operator is not a common
practice in PSO, and some people may consider our approach as a PSO-variant
because of that. PSO does not use a specific mutation operator (the variation
of the factors of the flight equation may compensate for that). However, it has
become common practice in MOPSOs to adopt some sort of mutation (or turbu-
lence) operator that improves the exploration capabilities of PSO [2,3]. The use
of a mutation operator is normally simpler (and easier) than varying the factors
of the flight equation and therefore its extended use. We adopted Parameter-
Based Mutation [9] in our approach with pm = 1/n. Our proposed approach
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Algorithm 1: Algorithm for the Phase I of our approach
begin1

Initialize Population (P) with randomly generated solutions;2
getLeaders();3
repeat4

for i = 1 to P do5
g = getLeader(i);6
for d = 1 to k do7

/* Lg,d is the leader of particle i */;8
vi,d = w · vi,d + c1 · U(0, 1)(pi,d − xi,d) + c2 · U(0, 1)(Lg,d − xi,d);9
xi,d = xi,d + vi,d;10

end11
if xi /∈ search space then12

xi = BLX − α(xi);13
end14
if U(0, 1) < pm then15

xi =Mutate(xi);16
end17
if xi is nondominated then18

for d = 1 to k do19
pi,d = xi,d;;20

end21
end22

end23
getLeaders();24
Add nondominated solutions into secondary population25

until MaxIter ;26
end27

also uses an external archive (also called secondary population). In order to in-
clude a solution into this external archive, it is compared with respect to each
member already contained in the archive using the paε-dominance grid [7]. And
a third population (called DS) stores the dominated points needed for Phase II.
Every removed point from the secondary population (also called ES) is included
into the third population. If this third population reaches a size of 100 points,
a paε-dominance grid will be created in order to ensure a good distribution of
dominated points.

5.2 Phase II: Local Search Using Rough Sets

The Rough Sets Phase departs from the two sets obtained from Phase I (ES,
which contains the nondominated solutions, and DS, which contains the domi-
nated solutions). The main loop of the second phase is the following:

1. From the set ES, we choose NumEff points previously unselected. If we
do not have enough unselected points, we choose the rest randomly from the
set ES.

2. We choose from the set DS, NumDom points previously unselected (com-
plete randomly as before).

3. Do a Rough Sets iteration, to approximate the boundary between the Pareto
front and the rest of the feasible set. This information is used to intensify
the search in the area where the nondominated points reside, while refusing
the finding of more points in the dominated area.
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The dominated and nondominated points are both stored in the set Items
and the rough sets iteration is the following:

1. Range Initialization: For each decision variable i, we compute and sort
(from the smallest to the highest) the different values contained in Items.
Then, we have the set Rangei, for each i. By combining all these sets we
produce a (non-uniform) grid in decision variable space.

2. Compute Atoms: We compute NumEff rectangular atoms centered in
the NumEff efficient points selected. To build a rectangular atom associ-
ated to a nondominated point xe ∈ Items we compute the following upper
and lower bounds for each decision variable i:
– Lower Bound i: Middle point between xe

i and the previous value in the set
Rangei.

– Upper Bound i: Middle point between xe
i and the following value in the set

Rangei.
In both cases, if there are no previous or subsequent values in Rangei, we
consider the absolute lower or upper bound of variable i. This setting allows
the method to explore closer to the feasible set boundaries.

3. Generate Offspring: Inside each atom we randomly generate Offspring
new points. Each of these points is sent to the set ES (we use the paε-
dominance grid for that sake) to check if it must be included as a new
nondominated point. If any point in ES is dominated by this new point, it
is sent to the set DS.

6 Analysis of Results

In order to validate our proposed approach, we compare results with respect
to the NSGA-II [9], which is a MOEA representative of the state-of-the-art in
the area. The first phase of our approach uses three parameters: population size
(P ), leaders number (N), mutation probability (Pm), plus the traditional PSO
parameters (w, c1, c2). On the other hand, the second phase uses three more pa-
rameters: number of points randomly generated inside each atom (Offspring),
number of atoms per generations (NumEff) and the number of dominated
points considered to generate the atoms (NumDom). Finally, the minimum
number of nondominated points needed to generate the paε-dominance grid is
set to 100 for all problems. Our approach was validated using 9 test problems: 5
problems from the ZDT set [10] and 4 from the DTLZ set [11]. The detailed de-
scription of these test functions was omitted due to space restrictions (see [10,11]
for further information). However, all of these test functions are unconstrained,
minimization and have between 10 and 30 decision variables. In all cases, the
parameters of our approach were set as follows: P = 5, N = k + 1 (k = number
of objective functions), Pm = 1/n (n = number of decision variables), w = 0.3,
c1 = 0.1, c2 = 1.4, Offspring = 1, NumEff = 2 and NumDom = 10. The
NSGA-II used the following parameters: crossover rate = 0.9, mutation rate =
1/n, ηc = 15, ηm = 20, population size = 100 and maximum number of gen-
erations = 40. The population size of the NSGA-II is the same as the size of
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PSOMORSA - ZDT1 PSOMORSA - ZDT2 PSOMORSA - ZDT3

NSGA-II - ZDT1 NSGA-II - ZDT2 NSGA-II - ZDT3

PSOMORSA - ZDT4 PSOMORSA - ZDT6 PSOMORSA -DTLZ1

NSGA-II - ZDT4 NSGA-II - ZDT6 NSGA-II - DTLZ1

Fig. 1. Pareto fronts generated by PSOMORSA and NSGA-II for ZDT’s and DTLZ1

the grid of our approach. In order to allow a fair comparison of results, both
approaches adopted real-numbers encoding and performed 4,000 fitness function
evaluations per run. Three performance measures were adopted in order to al-
low a quantitative assessment of our results: (1) Inverted Generational Distance
(IGD), which is a variation of a metric proposed by Van Veldhuizen [12] in
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Table 1. Comparison of results between our approach (called PSOMORSA) and the
NSGA-II for the nine test problems adopted

IGD S SC
Function PSOMORSA NSGA-II PSOMORSA NSGA-II PSOMORSA NSGA-II

Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ
ZDT1 0.0009 0.0005 0.0097 0.0019 0.4827 0.1306 0.5603 0.0483 0.0222 0.0312 0.9332 0.0355
ZDT2 0.0036 0.0057 0.0223 0.0064 0.6176 0.2199 0.7130 0.1114 0.0038 0.0127 0.8784 0.1645
ZDT3 0.0043 0.0014 0.0155 0.0020 0.7761 0.0656 0.7441 0.0456 0.0608 0.0656 0.9062 0.0555
ZDT4 0.1265 0.0371 0.4297 0.1304 0.9590 0.0424 0.9718 0.0412 0.0342 0.0557 0.3065 0.1560
ZDT6 0.0009 0.0003 0.0420 0.0041 0.7336 0.1271 0.8706 0.0817 0.0012 0.0066 0.9333 0.2034
DTLZ1 0.5157 0.1217 0.7318 0.2062 0.9983 0.0015 0.9972 0.0011 0.3208 0.1945 0.3142 0.1839
DTLZ2 0.0004 0.0001 0.0004 0.0000 0.5676 0.0747 0.3188 0.0440 0.1418 0.1485 0.1913 0.1131
DTLZ3 1.1681 0.3063 1.4228 0.2690 0.9990 0.0012 0.9986 0.0012 0.5220 0.2600 0.1545 0.1019
DTLZ4 0.0221 0.0038 0.0096 0.0025 0.7682 0.1055 0.6676 0.1250 0.8537 0.1626 0.0084 0.0272

PSOMORSA - DTLZ2 PSOMORSA - DTLZ3 PSOMORSA - DTLZ4

NSGA-II - DTLZ2 NSGA-II - DTLZ3 NSGA-II - DTLZ4

Fig. 2. Pareto fronts generated by PSOMORSA and NSGA-II for DTLZ2, DTLZ3 and
DTLZ4

which the true Pareto is used as a reference; Spread (S), proposed by Deb et
al. [13], which measures both progress towards the Pareto-optimal front and the
extent of spread; and (3) Two Set Coverage (SC), proposed by Zitzler et al.
[10], which performs a relative coverage comparison of two sets. For each test
problem, 30 independent runs were performed and the results reported in Table
1 correspond to the mean and standard deviation of the performance metrics
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(IGD, S and SC). We show in boldface the best mean values per test function.
It can be observed that in the ZDT’s test problems our approach produced the
best results with respect to both IGD and SC in all cases. Remarkably, our
approach also outperformed the NSGA-II with respect to the spread metric in
all but one case (ZDT3). In the DTLZ’s test problems, the NSGA-II outper-
formed our approach in one case with respect to IGD, in all cases with respect
to Spread and in 3 (out of 4) cases with respect to SC. Figures 1 and 2 show
the graphical results produced by the PSOMORSA and NSGA-II for all the test
problems adopted. The solutions displayed correspond to the median result with
respect to the IGD metric. The true Pareto front (obtained by enumeration) is
shown with a continuous line and the approximation produced by each algorithm
is shown with circles. In Figures 1 and 2, we can clearly see that in problems
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6, the NSGA-II is very far from the true
Pareto front, whereas our PSOMORSA is very close to the true Pareto front
after only 4,000 fitness function evaluations (except for ZDT4). Graphically, the
results are not entirely clear for the DTLZ test problems. However, if we pay
attention to the scale, it will be evident that, in most cases, our approach has
several points closer to the true Pareto front than the NSGA-II. Nevertheless,
due to the better spread of the NSGA-II, there are a few points that dominate
several of the solutions produced by our approach and therefore the superiority
of the NSGA-II with respect to the SC and S metrics. The poor performance
of our approach in the DTLZ’s test problems is caused in the PSO selection
process because we select one particle that helps to optimize the third objective
function and the ideal vector is optimized with two other particles, causing that
the convergence rate gets lower than expected in problems with three or more
objectives.

7 Conclusions and Future Work

We have introduced a new hybrid between a MOEA based on PSO and a lo-
cal search mechanism based on rough sets theory. This hybrid aims to combine
the high convergence rate of PSO with the good neighborhood exploration per-
formed by the rough sets algorithm. Our proposed approach produced results
that are competitive with respect to the NSGA-II in problems whose dimen-
sionality goes from 10 up to 30 decision variables, while performing only 4,000
fitness function evaluations. Although our results are still preliminary, they are
very encouraging, since they seem to indicate that our proposed approach could
be a viable alternative for solving real-world problems in which the cost of a
single fitness function evaluation is very high (e.g., in aeronautics). As part of
our future work, we intend to improve the performance of the PSO approach
adopted. Particularly, the selection of the appropriate leader is an issue that
deserves further study.

Acknowledgments. The third author acknowledges support from CONACyT
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Abstract. This paper proposes an idea of probabilistically using a scalarizing 
fitness function in evolutionary multiobjective optimization (EMO) algorithms. 
We introduce two probabilities to specify how often the scalarizing fitness func-
tion is used for parent selection and generation update in EMO algorithms. 
Through computational experiments on multiobjective 0/1 knapsack problems 
with two, three and four objectives, we show that the probabilistic use of the 
scalarizing fitness function improves the performance of EMO algorithms. In a 
special case, our idea can be viewed as the probabilistic use of an EMO scheme 
in single-objective evolutionary algorithms (SOEAs). From this point of view, 
we examine the effectiveness of our idea. Experimental results show that our 
idea improves not only the performance of EMO algorithms for multiobjective 
problems but also that of SOEAs for single-objective problems. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) is one of the most active research 
areas in the field of evolutionary computation. EMO algorithms have been success-
fully applied to various application areas [2]. Most EMO algorithms use Pareto rank-
ing to evaluate the fitness of each solution. Pareto ranking-based EMO algorithms, 
however, do not work well on many-objective problems (e.g., see [5], [6], [8], [12], 
[16]). This is because solutions rarely dominate other solutions in the presence of 
many objectives. Hughes [6] showed that multiple runs of single-objective evolution-
ary algorithms (SOEAs) outperformed a single run of EMO algorithms in their appli-
cations to many-objective problems. Similar results were also reported in [8], [12]. 
Whereas EMO algorithms do not work well on many-objective problems, usually 
they work very well on two-objective problems. In some cases, EMO algorithms can 
outperform SOEAs even when they are used to solve single-objective problems. It 
was reported in some studies [13], [18] that better results were obtained by transform-
ing single-objective problems into multi-objective ones. 

These experimental results suggest that SOEAs and EMO algorithms have their 
own advantages and disadvantages. In this paper, we hybridize them into a single 
algorithm in order to simultaneously utilize their advantages. More specifically, we 
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propose an idea of probabilistically using a scalarizing fitness function for parent 
selection and generation update in EMO algorithms. Following this idea, we imple-
ment a hybrid algorithm using NSGA-II [3] and a weighted sum fitness function. The 
weighted sum fitness function is probabilistically used for parent selection and gen-
eration update in NSGA-II. We introduce two probabilities to specify how often the 
weighted sum fitness function is used for parent selection and generation update. 

We use NSGA-II because it is one of the most frequently-used EMO algorithms in 
the literature. The use of the weighted sum fitness function is due to its simplicity. Of 
course, other scalarizing fitness functions can be used in our hybrid algorithm. A 
scalarizing fitness function-based EMO algorithm was proposed by Hughes [5] in a 
general form. The weighted sum fitness function was successfully used in multiobjec-
tive genetic local search (MOGLS) algorithms [7], [9], [10]. High performance of 
MOGLS of Jaszkiewicz [10] was reported [1], [11], [14]. The weighted sum fitness 
function was also used in a two-stage EMO algorithm of Mumford [14]. 

The main feature of our hybrid algorithm is the probabilistic use of the weighted 
sum fitness function. When the probability of its use is very low, our hybrid algorithm 
is almost the same as NSGA-II. The increase in the probability of its use intensifies 
the flavor of weighted sum-based algorithms. Another feature is the flexibility in the 
specification of the weight vector in the weighted sum fitness function. We can use a 
set of uniformly distributed weight vectors for multiobjective optimization as well as 
a single weight vector for single-objective optimization. In this paper, we first explain 
our hybrid algorithm in Section 2. Then we examine its performance as single-
objective and multiobjective algorithms in Section 3 and Section 4, respectively. 

2   Implementation of a Hybrid Algorithm 

In this section, we implement a hybrid algorithm by incorporating a weighted sum 
fitness function into NSGA-II [3]. We introduce two probabilities PPS and PGU, 
which specify how often the weighted sum fitness function is used for parent selection 
and generation update, respectively. 

Let us consider the following k-objective maximization problem:  

Maximize ))(...,),(()( 1 xxxf kff=  subject to Xx ∈ , (1) 

where f(x) is the k-dimensional objective vector, x is the decision vector, and X is the 
feasible region in the decision space. When the following relation holds between two 
feasible solutions x and y, x is said to be dominated by y (i.e., y is better than x): 

i∀ , )()( yx ii ff ≤   and   j∃ , )()( yx jj ff < . (2) 

When there is no feasible solution y in X that dominates x, x is referred to as a 
Pareto-optimal solution. Usually multiobjective optimization problems have a large 
number of Pareto-optimal solutions. The set of objective vectors corresponding to all 
Pareto-optimal solutions is referred to as Pareto front. 
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2.1   Description of NSGA-II as a General Evolutionary Algorithm 

NSGA-II of Deb et al. [3] is an elitist EMO algorithm with the (μ + λ)-ES generation 
update mechanism. The outline of NSGA-II can be written as follows: 

[NSGA-II] 
Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:           P’ = Parent Selection(P) 
Step 4:           P’’ = Genetic Operations(P’) 
Step 5:           P = Generation Update(P P’’) 
Step 6: End while 
Step 7: Return Non-dominated(P) 

In NSGA-II, each solution in the current population is evaluated using Pareto rank-
ing and a crowding measure in the following manner for parent selection in Step 3. 
First the best rank (i.e., Rank 1) is assigned to all the non-dominated solutions in the 
current population. Solutions with Rank 1 are tentatively removed from the current 
population. Next the second best rank (i.e., Rank 2) is assigned to all the non-
dominated solutions in the remaining population. Solutions with Rank 2 are tenta-
tively removed from the remaining population. In this manner, ranks are assigned to 
all solutions in the current population. Solutions with smaller rank values are viewed 
as being better than those with larger rank values. A crowding measure is used to 
compare solutions with the same rank. Roughly and informally speaking for two-
objective problems, the crowding measure of a solution is the Manhattan distance 
between its two adjacent solutions in the objective space (for details, see [2], [3]). 
When two solutions have the same rank, one solution with a larger value of the 
crowding measure is viewed as being better than the other with a smaller value.  

A prespecified number of pairs of parent solutions are selected from the current 
population by binary tournament selection to form a parent population P’ in Step 3. 
An offspring solution is generated from each pair of parent solutions by crossover and 
mutation to form an offspring population P’’ in Step 4. The current population and the 
offspring population are merged to form an enlarged population. Each solution in the 
enlarged population is evaluated by Pareto ranking and the crowding measure as in 
the parent selection phase. A prespecified number of the best solutions are chosen 
from the enlarged population as the next population P in Step 5. 

2.2   Weighted Sum Fitness Function 

The weighted sum fitness function of the k objectives in (1) is written as follows: 

)(...)()()( 2211 xxxx kk fwfwfwfitness ⋅++⋅+⋅= , (3) 

where wi is a non-negative weight value. 
One important issue is the specification of the weight vector w = (w1, w2, ..., wk). 

We examine the following three versions in our hybrid algorithm. 
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Version I: The weight vector is always specified as w = (1, 1, ..., 1). That is, we 
always use the following scalarizing fitness function:  

)(...)()()( 21 xxxx kffffitness +++= . (4) 

Version II: A different weight vector is randomly chosen from the (2k − 1) binary 
vectors excluding the zero vector (0, 0, ..., 0). For example, a weight vector is ran-
domly chosen from the three binary vectors (1, 1), (1, 0) and (0, 1) in the case of k = 2 
(i.e., two-objective problems). We have 7 and 15 non-zero binary vectors for three-
objective and four-objective problems, respectively. 

Version III: A different vector is randomly chosen from a set of non-negative in-
teger vectors satisfying the following relation: w1 + w2 +  ...  + wk = d where d is a 
prespecified integer. In this paper, d is specified as d = 4 (Other values should be 
examined in the future study). In the case of two-objective problems, a weight  
vector is randomly chosen from the five integer vectors (4, 0), (3, 1), (2, 2), (1, 3) and 
(0, 4). For three-objective problems, we have 15 integer vectors: (4, 0, 0), (3, 1, 0),  
(2, 2, 0), ..., (0, 1, 3), (0, 0, 4). For four-objective problems, we have 35 integer  
vectors: (4, 0, 0, 0), (3, 1, 0, 0), ..., (0, 0, 0, 4). The same idea of the weight vector 
specification was used in [12], [14], [15]. 

2.3   Hybrid Algorithm 

Our hybrid algorithm is the same as NSGA-II except for parent selection in Step 3 
and generation update in Step 5. When a pair of parent solutions are to be selected 
from the current population, the weighted sum fitness function and the NSGA-II fit-
ness evaluation mechanism are used with the probabilities PPS and (1− PPS), respec-
tively. When another pair of parent solutions are to be selected, the probabilistic 
choice between the two fitness evaluation schemes is performed again. As in NSGA-
II, we always use binary tournament selection independent of the chosen fitness 
evaluation scheme. It should be noted that we use a randomly chosen weight vector in 
Version II and Version III of our hybrid algorithm. 

As in the parent selection phase, we probabilistically use the weighted sum fitness 
function in the generation update phase. When one solution is to be chosen from the 
enlarged population and added to the next population, the weighted sum fitness func-
tion and the NSGA-II fitness evaluation mechanism are used with the probabilities 
PGU and (1− PGU), respectively. When another solution is to be chosen, the probabil-
istic choice between the two fitness evaluation schemes is performed again. 

One extreme case of our hybrid algorithm with PPS = PGU = 0.0 is exactly the same 
as the pure NSGA-II since the weighted sum fitness function is never used. Another 
extreme case with PPS = PGU = 1.0 is a weighted sum-based genetic algorithm with the 
(μ + λ)-ES generation update mechanism. In this case, Version I algorithm is a single-
objective genetic algorithm (SOGA) since the scalarizing fitness function in (4) is al-
ways used. Version II and Version III algorithms with PPS = PGU = 1.0 are EMO algo-
rithms, which are somewhat similar to VEGA of Schaffer [17]. 
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3   Single-Objective Optimization by Our Hybrid Algorithm 

In this section, we examine the performance of our hybrid algorithm as a single-
objective optimization algorithm for maximizing the sum of the k-objectives (i.e., the 
scalarizing fitness function in (4)). We use Version I of our hybrid algorithm where 
the scalarizing fitness function in (4) is used with the probabilities PPS and PGU for 
parent selection and generation update, respectively. As test problems, we use three 
500-item knapsack problems with two, three and four objectives in [19]. These test 
problems are denoted as 2-500, 3-500 and 4-500, respectively. Our hybrid algorithm 
is applied to each test problem using the following parameter specifications:  

Population size: 200 (i.e., μ = λ  = 200), 
Crossover probability: 0.8 (uniform crossover), 
Mutation probability: 0.002 (bit-flip mutation), 
Probability PPS: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
Probability PGU: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
Termination condition: 2000 generations. 

We examine the 1111×  combinations of the 11 values of PPS and PGU. Our hybrid 
algorithm with each combination of PPS and PGU is applied to each test problem 50 
times. Average results over 50 runs are summarized in Fig. 1 for the 2-500 problem. 
In this figure, the performance of the pure SOGA with PPS = PGU = 1.0 at the top-
right corner is improved by probabilistically using the NSGA-II fitness evaluation 
mechanism for generation update (i.e., by decreasing PGU from PGU = 1.0 to PGU < 
1.0). It is interesting to observe that even the pure NSGA-II with PPS = PGU = 0.0 at 
the bottom-left corner outperforms the pure SOGA with PPS = PGU = 1.0. This obser-
vation supports the idea of using EMO algorithms for single-objective optimization to 
escape from local optima [13], [18].  
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Fig. 1. Experimental results by Version I of our hybrid algorithm on the 2-500 problem 

In order to further examine the performance of the three algorithms (i.e., our hybrid 
algorithm and its two extreme cases: NSGA-II and SOGA), each algorithm is applied 
to the 2-500 knapsack problem 100 times. In our hybrid algorithm, PPS and PGU are 
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specified as PPS = 0.5 and PGU = 0.0. Fig. 2 shows the histograms of the obtained 100 
values of the scalarizing fitness function in (4) by each algorithm. From Fig. 2 (and 
also from Fig. 1), we can see that NSGA-II and our hybrid algorithm outperform 
SOGA even when they are evaluated as single-objective optimization algorithms for 
maximizing the sum of the two objectives of the 2-500 problem. 

The performance of SOGA is also improved by probabilistically using the NSGA-
II fitness evaluation mechanism for the knapsack problems with three and four objec-
tives (i.e., 3-500 and 4-500). Experimental results are shown in Fig. 3. The search 
ability of the pure SOGA with PPS = 1.0 and PGU = 1.0 at the top-right corner is im-
proved by using the NSGA-II fitness evaluation mechanism for generation update 
(i.e., by decreasing PGU). The pure NSGA-II with PPS = 0.0 and PGU = 0.0 at the 
bottom-left corner, however, cannot find good solutions with respect to the scalarizing 
fitness function. From the comparison between Fig. 1 and Fig. 3, we can see that the 
convergence ability of NSGA-II is degraded by increasing the number of objectives. 
This observation coincides with some studies on the performance of Pareto ranking-
based EMO algorithms for many-objective optimization [6], [8], [12], [16]. 
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Fig. 2. Histograms of the obtained 100 values of the scalarizing fitness function by each of 
NSGA-II, SOGA and our Version I hybrid algorithm with PPS = 0.5 and PGU = 0.0 
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                   (a) 3-500 knapsack problem.                                (b) 4-500 knapsack problem. 

Fig. 3. Experimental results of our Version I hybrid algorithm 
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4   Multi-objective Optimization by Our Hybrid Algorithm 

In this section, we examine the performance of our hybrid algorithm as a multi-
objective optimization algorithm. As in the previous section, we use the three 500-
item knapsack problems as test problems. Version II and Version III of our hybrid 
algorithm are applied to each test problem using the same parameter specifications as 
in the previous section. Each version of our hybrid algorithm is applied to each test 
problem 50 times using each of the 1111×  combinations of PPS and PGU. 

In each run of our hybrid algorithm (i.e., Version II and Version III), we calculate 
the hypervolume measure (e.g., see Deb [2]) after the 2000th generation. Average 
results over 50 runs are summarized in Figs. 4-6.  

The choice of a performance measure is very difficult. Whereas we only use the 
hypervolume (due to the page limitation), it is not necessarily the best choice [8]. We 
may need other performance measures in addition to the hypervolume. For example, 
Jaszkiewicz [12] proposed an idea of using achievement scalarizing functions. For the 
2-500 problem, we also show the 50% attainment surface [4] later. 
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(a) Version II with binary weight vectors.                 (b) Version III with integer weight vectors. 

Fig. 4. Average values of the hypervolume measure for the 2-500 knapsack problem 
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(a) Version II with binary weight vectors.                 (b) Version III with integer weight vectors. 

Fig. 5. Average values of the hypervolume measure for the 3-500 knapsack problem 
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(a) Version II with binary weight vectors.                 (b) Version III with integer weight vectors. 

Fig. 6. Average values of the hypervolume measure for the 4-500 knapsack problem 

In Figs. 4-6, the performance of the pure NSGA-II at the bottom-left corner with 
PPS = PGU = 0.0 is improved by probabilistically using the weighted sum fitness 
function for generation update (i.e., by increasing PGU from PGU = 0.0 to PGU > 0.0). 
Good results are also obtained when the weighted sum fitness function is used with 
high probabilities for both parent selection and generation update (i.e., around the top-
right corner). An interesting observation is that the use of the weighted sum fitness 
function only for parent selection (i.e., PPS > 0.0 and PGU = 0.0: experimental results 
along the bottom row) clearly degrades the performance of NSGA-II especially for 
the 2-500 problem in Fig. 4 and the 3-500 problem in Fig. 5. 

In all the six plots in Figs. 4-6, good results are obtained by the weighted sum-
based EMO algorithm at the top-right corner with PPS = PGU = 1.0. Its performance, 
however, can be further improved by appropriately specifying the two probabilities 
PPS and PGU. For example, better results are obtained in Fig. 6 around the top-left 
corner with a small value of PPS and a large value of PGU than the top-right corner 
with PPS = PGU = 1.0. For all the three test problems, better results are obtained from 
Version III with integer weight vectors than Version II with binary vectors. 

In Fig. 7, we show the 50% attainment surface [4] over 50 runs of our hybrid algo-
rithm on the 2-500 knapsack problem for some combinations of PPS and PGU includ-
ing the two extreme cases (i.e., the pure NSGA-II and the pure weighted sum-based 
EMO algorithm). We use our Version II hybrid algorithm in Fig. 7 with the three 
binary weight vectors (1, 1), (1, 0) and (0, 1). As a result, the 50% attainment surface 
has three peaks in the case of the pure weighted sum-based EMO algorithm as shown 
by the dotted line labeled as “Weighted sum” in Fig. 7. Whereas NSGA-II can find 
better solutions than the center peak of the pure weighted sum-based EMO algorithm, 
it cannot find extreme solutions around the other two peaks. Depending on the speci-
fications of the two probabilities PPS and PGU, our hybrid algorithm finds different 
solution sets. In Fig. 7 (a), the 50% attainment surface by our hybrid algorithm with 
PPS = 1.0 and PGU = 0.9 is similar to but clearly better than that of the pure weighted 
sum-based EMO algorithm. On the other hand, the 50% attainment surface by our 
hybrid algorithm with PPS = 0.5 and PGU = 0.5 in Fig. 7 (b) is similar to but has larger 
diversity than that of NSGA-II. 
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From Fig. 7, we can see that the probabilistic use of the weighted sum fitness func-
tion increases the diversity of obtained non-dominated solutions. Such an increase in 
the diversity leads to the improvement in the hypervolume measure for the 2-500 
problem in Fig. 4. Not only the diversity improvement but also the convergence im-
provement, however, contributes to the improvement in the hypervolume measure in 
Fig. 5 for the 3-500 problem and Fig. 6 for the 4-500 problem. Actually, the conver-
gence performance of NSGA-II is improved by the probabilistic use of the weighted 
sum fitness function in all the four combinations of the two versions (i.e., Version II 
and Version III) and the two test problems (i.e., 3-500 and 4-500). Such improvement 
has already been demonstrated for the case of our Version I hybrid algorithm in Fig. 3 
for the 3-500 and 4-500 problems. 
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                  (a) PPS = 1.0 and PGU = 0.9.                                  (b) PPS = 0.5 and PGU = 0.5. 

Fig. 7. 50% attainment surface over 50 runs by our Version II hybrid algorithm for the 2-500 
problem. Experimental results by the two extreme cases (i.e., the pure NSGA-II and the pure 
weighted sum-based EMO algorithm) are also shown for comparison. 

5   Conclusions 

In this paper, we proposed an idea of probabilistically using a scalarizing fitness func-
tion for parent selection and generation update in EMO algorithms. Following the 
proposed idea, we implemented a hybrid algorithm by incorporating the weighted 
sum fitness function into NSGA-II. When our hybrid algorithm was used for single-
objective optimization, it outperformed SOGA. That is, the probabilistic use of the 
NSGA-II fitness evaluation mechanism improved the performance of SOGA. On the 
other hand, when our hybrid algorithm was used for multiobjective optimization, it 
outperformed NSGA-II in terms of the hypervolume measure. That is, the probabilis-
tic use of the weighted sum fitness function improved the performance of NSGA-II. 
Future work includes the comparison of our hybrid algorithm with other approaches 
to many-objective optimization problems (e.g., [5], [6], [12], [14]). 
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Abstract. In this paper we propose a novel multi-objective evolutionary
algorithm that we call Potential Pareto Regions Evolutionary Algorithm
(PPREA). Unlike state-of-the-art algorithms, which use a fitness assign-
ment method based on Pareto ranking, the approach adopted in this
work is new. The fitness of an individual is equal to the least improve-
ment needed by that individual in order to reach non-dominance status.

This new algorithm is compared against the Nondominated Sorting
Genetic Algorithm (NSGA-II) on a set of test suite problems derived
from the works of researchers from MOEA community.

1 Introduction

Many specialised algorithms have been devised to tackle multi-objective prob-
lems. In recent years, a new wave of algorithms has emerged as the major ‘stake-
holder’ in this field of research. The most attractive feature of these algorithms
is their capability to search for a set of solutions in a single run by consider-
ing a population of potential solutions. These are Multi-Objective Evolutionary
Algorithms (MOEAs).

Recently, elitist-MOEAs (archive-based MOEAs) have dominated the field
of MOEAs. Essentially, they are the standard MOEAs supplied with an elitist
archive as proposed by (Zitzler and Thiele 1999; Knowles and Corne 1999). These
algorithms have proven to be successful in solving complex real world problems
(Burke et al 2006).

In this work a novel MOEA, called Potential Pareto Regions Evolutionary
Algorithm (PPREA), is formulated and developed. This algorithm is based on
the new approach of Potential Pareto Regions (PPRs) (Hallam 2005).

This paper is organised as follows. Section 2 briefly describes the related work.
NSGA-II being the most popular MOEA is briefly presented. Section 3 describes
and proposes the novel MOEA. Section 4 is an empirical study of the PPREA.
The latter is tested against NSGA-II on a set of suitably chosen test problems.
Lastly, concluding remarks are given in section 5.

2 Related Work

The literature is rich of successful MOEAs. Strength Pareto Evolutionary Al-
gorithm (SPEA2) of (Zitzler et al. 2001) and Nondominated Sorting Genetic
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Algorithm (NSGA-II) of (Deb et al. 2001) are the most widely used. In our com-
parative study, we choose NSGA-II as it is simple to implement. Therefore, this
algorithm is briefly explained in this section.

Following criticisms (see Knowles and Corne 1999 ; Zitzler and Thiele 1999),
a new improved NSGA, coined NSGA-II, has been designed and tested by (Deb
et al. 2001) specifically to address those criticisms.

The improvements brought to NSGA were mainly concerning three basic
points:

elitism NSGA-II implements an elitist strategy to improve convergence.
speed NSGA-II employs a fast nondominance sorting approach based on a bet-

ter book-keeping technique.
diversity NSGA-II uses a density preservation technique that is better than

the niching and fitness sharing technique.

3 Potential Pareto Regions Evolutionary Algorithm
(PPREA): A New MOEA

The theoretical foundation of the proposed algorithm is briefly described. Po-
tential Pareto Regions Evolutionary Algorithm (PPREA) is designed based on
a new fitness assignment scheme and a new diversity preservation technique.
These two are detailed in (Hallam 2005, Hallam et al. 2005).

3.1 Definitions and Key Concepts (Hallam 2005)

Definition 1. A PPR is hyper-area delimited by two immediate neighbouring
nondominated points of the archive.

These PPRs are dynamic regions in the objective space within which any gener-
ated vector solution is automatically nondominated with regard to all the current
solutions of the archive.

Let At be the archive of the current population and MaxArchiveSize its
maximum size.

Let zt = Gen(t) be a solution generated by the function Gen at iteration t.
Let PPRxy be a PPR delimited by two (neighbouring) nondominated solu-

tions x and y of At. For the proof of the following lemmas, one can refer to
(Hallam 2005).

Lemma 1. If there exist a PPR which contains zt, then zt is incomparable to
any point in the archive (zt ∈ PPRxy ⇒ ∀a ∈ At , zt ∼ a).

Then, constructing the chain of PPRs is done by determining the set of PPRs.
For this purpose, the zi, i = 1, |At| − 1 ∧ zi ∈ At are arranged in a way that
zi,k > zi+1,k for a given k. Without loss of generality we set k to 1.

Definition 2. SPPR is the set of the PPRs ordered according to ‘neighbourhood’
order. SPPR = {PPRzizi+1 | zi, zi+1 ∈ At ∧ zi,k > zi+1,k , i = 1..|At| − 1}
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After determining the set SPPR, the task is to find a closest PPR to each
point in the objective space. This is done thanks to the following lemma (de-
picted in Fig. 1). This also forms the basis of the fitness assignment scheme. Let
Dom(At, g) be the set of all points in the archive dominating g ( g �∈ At). Let
us define the set of those PPRs dominating a point b.

Definition 3. DomPPR(g) is the set of those PPRs whose at least one of their
end-points is in Dom(At, g). DomPPR(b) = {Rxy | x ∈ Dom(At, g) ∨ y ∈
Dom(At, g)}.

Lemma 2. a. The minimum distance of a point g to SPPR is the minimum
distance to one of the PPRs in DomPPR(g).
b. For every two consecutive points in Dom(At, g), the minimum distance from
the point g to their PPR is from the point to the upper right corner of that region.
c. If the Dom(At, g) is a singleton {d}, then the minimum two distances from the
point b to the two PPRs of d, (PPR−d and PPRd−), are respectively (g1 − d1)
and (g2 − d2).

3.2 PPREA: The Algorithm

MOEAs differ only in the fitness assignment scheme and the archive update
process. Sampling, crossover, mutation, and re-insertion are basically the same.
It has been shown in (Burke and Silva 2006) that the choice of a fitness evaluation
method does have an influence on the performance of a multi-objective optimiser.
On the other hand, diversity is as important as the fitness assignment scheme
not only for diversifying the solutions, but also on guiding the search process
(see Silva and Burke 2004).

Algorithm 1 PPREA: The algorithm - (Hallam 2005)
Input: N (Population size),

MaxArchiveSize, M (maximum number of generations)
Ouput: A (The archive )

Step 0: Initialisation
generate an initial Population Pop0, Set t = 0 and
create the empty archive (external set) At = ∅
Step 1: Fitness Assignment: Calculate the fitness values of all individuals in Popt

Step 2: At+1 = Archive Update(At)
Step 3: Termination.
if t > M or another stopping condition is met then

A = filterFront(At+1) and Stop.
end if
Step 4: Mating Selection (tournament selection)
Step 5: Qt+1 = V ariation(At+1): Produce offspring using Crossover and Mutation
Popt+1 = At+1 ∪ Qt+1, t = t + 1 and GO TO Step 1.
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Fig. 1. Illustration of Lemma 2

Fitness Assignment. Minimisation is adopted in PPREA . Individuals of the
archive are assigned negative values, while the remaining individuals are assigned
positive values. The nondominated extremums of the archive are assigned a
fitness value that is (in absolute value) twice the size of the largest PPR, whereas
the rest of the archive members are assigned values equal (in absolute value) to
the sum of the sizes of the two adjacent PPRs.

The dominated individuals are assigned fitness values equal to their respective
Euclidean distances to the nearest PPR as calculated in lemmas 2. This is called
the Expected Improvement which, besides being the cornerstone of the fitness
assignment scheme, is also used as the building block of a quality performance
indicator (Hallam 2005).

Archive Update. Whenever the size of the current Pareto front is less than
MaxArchiveSize, then the empty slots need to be populated with adequate
individuals from the rest of the population. These individuals should be fit and
not concentrated in one or few sub-spaces.

The rest of the population is re-arranged into a set of lists. Recall that non-
dominated individuals are sorted according to the first objective. Then each of
these individuals is assigned a list of those points that it dominates. These lists
are sorted in an ascending order according to the distances to the PPR of the
corresponding nondominated point (fitness of the dominated individuals). Then,
the filling process is a cyclic removal of the best individuals from each list. While
the archive is not full, we take from each list the first individual and insert it
into the archive. If the archive is still not full, we take the second individual from
each list and insert it into the archive, and so forth.

The other situation is when the size of the archive containing nondominated
individuals is greater thanMaxArchiveSize. The nondominated points in excess
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and found in the most crowded regions must be removed. Thus, the removal
process is iterative. First the smallest PPR is found. Thereafter, if one of the
individuals of this PPR is an extremum, then the other individual is removed;
otherwise, from the two individuals, we remove the one whose other adjacent
PPR is the smallest.

4 Numerical Testing and Analysis

The PPREA is tested and compared with NSGA-II – one of the most successful
MOEA in the literature. In other experimental comparative studies (Zitzler et
al. 2001), SPEA2 has been shown to be as effective as NSGA-II. We choose (for
the comparative study) NSGA-II as it is more efficient (fast in execution) and
simple to implement.

The test functions used in the experiments reported herein are excatly those
used by (Deb et al. 2001) when first they proposed NSGA-II. The popularity of
their algorithm has in fact started after it has excelled in outperforming other
MOEAs on these test problems. Due to space limit, the reader is referred to
(Deb et al. 2001) for a complete and detailed listing of these test suite functions.
Also, only the results of the ZDTs test functions are shown in this paper. Refer-
ence (Hallam 2005) contains an exhaustive emperical study of PPREA and its
comparison with NSGA-II.

Table 1. ZDT1’s Test Results (100, 250, 500, and 1000 generations)

Gen 100 250
MOEA PPREA NSGA-II PPREA NSGA-II

SizeFrontMOEA 124 78 544 350
ParetoSize 86 687

InsidePareto 11 75 520 167
OutsidePareto 113 3 137 186

PercentFromPareto 12.79 87.20 75.69 24.30
PercentFromFRONT 8.87 96.15 95.58 47.71

AvergaeEI 0.022 0.0009 0.06 0.002
StdvEI 0.012 0.001 0.034 0.015

AverageTimeExec 0.7 0.6 1.7 1.6
Generation 500 1000

MOEA PPREA NSGA-II PPREA NSGA-II
SizeFrontMOEA 938 964 910 908

ParetoSize 1847 1804
InsidePareto 909 938 904 900

OutsidePareto 148 215 154 223
PercentFromPareto 49.21 50.78 50.11 49.88

PercentFromFRONT 96.90 97.30 99.34 99.11
AvergaeEI 0.048 0.003 0.054 0.002

StdvEI 0.038 0.017 0.038 0.005
AverageTimeExec 3.4 3.3 7 6.8
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Fig. 2. Convergence Results for ZDT1, ZDT2 and ZDT3 Test Functions

Per algorithm and test function, the outcomes of ten runs were unified. A
front is filtered from the unified set. In order to get a glimpse on the pace of the
convergence, we used the following maximum number of generations (100, 250,
500, and 1000). Furthermore, each simulation run was carried out independently
of the test function using the following parameters:

– Size of the population and the archive is 100
– Individual representation Real
– Simulated Binary Crossover (SBX) with probability 0.9 and a Polynomial

Mutation probability 1/numberOfV ariables. The distribution indices for
the SBX and the mutation are set to 20 (ηm = ηc = 20).

Measuring the Performance. A Common Pareto Front (CPF) is filtered
from both algorithms: CPF = ND(PPREA ∪ NSGA − II). Two main perfor-
mance values are then computed. The percentage of a front in the common
archive (which is the error ratio), and the average of the cumulative Expected
Improvement (see Hallam 2005) of its residual set with regards to SPPR . Also,
the set of vector solutions of each MOEA that are in the CPF is also derived:
MOEAPareto = MOEA ∩ CPF . Let MOEA ∈ {PPREA,NSGA − II}

For each simulation run, the following results are reported:

– The sizes of the CPF and the two fronts returned by each MOEA.
– The number of vector solutions of each MOEA inside and outside the CPF.
– The % of each front covering the CPF: |MOEAP areto|

|CPF | .
– The % of each MOEA Pareto covering the front returned by the MOEA in

question: |MOEAP areto|
|MOEA| .
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Table 2. ZDT2’s Test Results (100, 250,
500, and 1000 generations) A = PPREA,
B= NSGA-II

Generation 100 250

MOEA A B A B
SizeMOEA 36 42 431 442
ParetoSize 41 679
In Pareto 36 5 365 314

Out Pareto 0 37 66 165
%Pareto 87.80 12.19 53.75 46.24

%FRONT 100 11.90 84.68 71.04
AvergaeEI 0 0.088 0.0008 0.063

StdvEI 0 0.038 0.001 0.121
AvgTimExe 0.7 0.6 1.8 1.5

Table 3. ZDT3’s Test Results (100, 250,
500, and 1000 generations)

Generation 100 250

MOEA A B A B
SizeMOEA 98 91 429 463
ParetoSize 101 677
In Pareto 97 4 379 298

Out Pareto 1 87 51 252
% Pareto 96.03 3.96 55.98 44.01
% Front 98.97 4.39 88.34 64.36

AvergaeEI 0.0002 0.015 0.0008 0.020
StdvEI 0 0.023 0.001 0.040

AvgTimExe 0.7 0.6 1.8 1.6

Table 4. ZDT4’s Test Results (100, 250,
500, and 1000 generations)

Generation 100 250

MOEA A B A B
SizeMOEA 94 98 283 403
ParetoSize 102 476
In Pareto 94 8 253 223

Out Pareto 0 90 30 270
% Pareto 92.15 7.84 53.15 46.84
% Front 100 8.16 89.39 55.33

AvergaeEI 0 0.10 0.002 0.045
StdvEI 0 0.038 0.001 0.065

AvgTimExe 0.6 0.4 1.6 1.3
Generation 500 1000

MOEA A B A B
SizeMOEA 654 514 759 603
ParetoSize 864 1129
In Pareto 616 248 690 439

Out Pareto 144 446 213 610
% Pareto 71.29 28.70 61.11 38.88
% Front 94.18 48.24 90.90 72.80

AvergaeEI 0.002 0.024 0.001 0.02
StdvEI 0.002 0.052 0.002 0.047

AvgTimExe 3.3 2.7 6.8 5.7

Table 5. ZDT6’s Test Results (100, 250,
500, and 1000 generations)

Generation 100 250

MOEA A B A B
SizeMOEA 97 104 669 721
ParetoSize 133 1140
In Pareto 83 50 616 524

Out Pareto 14 54 67 251
% Pareto 62.40 37.59 54.03 45.96
% Front 85.56 48.07 92.07 72.67

AvergaeEI 0.003 0.004 0.005 0.007
StdvEI 0.002 0.003 0.015 0.012

AvgTimExe 0.6 0.5 1.6 1.4
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– The average and standard deviation of the Expected Improvement (EI) of
each MOEA.

– The average Execution Time of each MOEA.

ZDT1’s Test Results. Referring to Table 1, NSGA-II is clearly outperforming
PPREA at Generation 100 test (early stage). However, PPREA clearly outper-
forms NSGA-II at Generation 250 test (see the top-left figure in Fig. 2).

ZDT2’s Test Results. Refer to Table 2, and the top-right figure in Fig. 2. At
Generation 100 test, PPREA is almost totally outperforming NSGA-II. Notice
also that the vector solutions of the front returned by PPREA are all in the

Fig. 3. Convergence Results for ZDT4 and ZDT6 Test Functions
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CPF. In Generation 250 and Generation 1000 tests, PPREA is also clearly out-
performing NSGA-II. In Generation 500 test, both algorithms seem to fairly
share the CPF.

ZDT3’s Test Results. One can see from Table 3 that PPREA is monopolising
the CPF in the Generation 100 test. Only 1 vector solution returned by PPREA
is outside the CPF (but still very close to it (AverageEI = 0.0002), compared
to 87 vector solutions returned by NSGA-II out of 91 being outside the CPF
(see the two bottom figures in Fig. 2). PPREA outperforms (to some extent)
NSGA-II in Generation 250 test. In the remaining simulation tests, PPREA
and NSGA-II fairly share the CPF. However, the vectors solutions returned by
PPREA and left behind the CPF are much closer on average to the CPF than
those of NSGA-II. See also the two bottom figures in Fig 2.

ZDT4’s Test Results. ZDT4 is known to be a difficult multi-modal test problem.
It has one true Pareto-optimal front and a huge number of local Pareto fronts
(219). PPREA is proving to be much more effective in solving this problem than
NSGA-II in that, it is clearly outperforming NSGA-II (see Table 4).

From the 1st four figures in Fig. 3, one can see that the fronts returned by
NSGA-II are clearly behind those returned by PPREA .

ZDT6’s Test Results. Referring to Table 5, one can notice that even though the
front returned by PPREA is smaller in size than that of NSGA-II, PPREA still
outperforms NSGA-II in terms of taking bigger shares from the CPF, and of
being the closest to the CPF as well. The last two figures in Fig. 3 shows some
snapshots of the two fronts returned by the two contending MOEAs.

5 Concluding Remarks

A novel MOEA called PPREA (Potential Pareto Regions Evolutionary Algo-
rithms) has been proposed based on a new fitness scheme and a new diversity
technique.

NSGA-II of (Deb et al. 2001) has gained a worldwide popularity among
MOEAs researchers. It is the most cited and the most used MOEA in the past
couple of years. The new MOEA proposed in this work is compared against
NSGA-II using the same test suite functions in which NSGA-II has excelled.

In some of the test results, PPREA clearly monopolised more of the Common
Pareto Front (CPF) than NSGA-II did. In other test results, both algorithms
equitably contributed to the CPF. However, the vector solutions returned by
PPREA and left behind are much closer to the CPF than are those returned by
NSGA-II. This result is anticipated since the very concept of PPREA is designed
around the Expected-Improvement selection scheme which tend to drive the
whole population towards the actual Pareto regions.
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Abstract. Recent research on evolutionary multiobjective optimization
has mainly focused on Pareto fronts. However, we state that proper be-
havior of the utilized algorithms in decision/search space is necessary for
obtaining good results if multimodal objective functions are concerned.
Therefore, it makes sense to observe the development of Pareto sets as
well. We do so on a simple, configurable problem, and detect interesting
interactions between induced changes to the Pareto set and the ability
of three optimization algorithms to keep track of Pareto fronts.

1 Introduction

In recent years, evolutionary multiobjective optimization (EMO) [1,2] has de-
veloped from a marginal into one of the most actively pursued areas within
evolutionary computation (EC). Many new algorithms and measures have been
suggested, and, with them, concepts like Pareto set and Pareto front have entered
the common EC vocabulary [3]. Increasing interest in multiobjective techniques
has even evoked new theoretical approaches that employ multiple objectives to
simplify an originally singleobjective problem [4]. However, most of the current
EMO research concentrates on processes observed in the objective space, which
consists of the possibly obtainable value combinations of the considered objec-
tive functions. Undoubtedly, approximating the Pareto front well is the final aim
of EMO algorithms (EMOAs), and the Pareto set distribution may be of minor
interest for estimating their performances. Nevertheless, for improving these al-
gorithms, as well as for attaining guidelines on which of the solutions contained
in the approximated Pareto set shall eventually be implemented in a real-world
situation, a well-founded understanding of Pareto set distributions is supposed
to be a major advantage.

Research on singleobjective algorithms largely focuses on population behavior
in the decision space, or simplified models thereof, e.g. using basins of attraction
as means of abstraction [5]. Especially for multimodal problems, numerous tech-
niques have been invented to prevent the populations from converging to a single
point too soon. Some of these, as crowding [6], are also applied in EMOAs. But
diversity maintenance is only sought in objective space, to ensure good coverage
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of the Pareto front. However, for at least one of the objective functions being
multimodal, it is clear that this coverage cannot normally be achieved when the
whole population is clustered around one local minimum of this function. We
thus conjecture that a) there are situations—and these are not uncommon—
where the Pareto set does not share the aspired nice properties of the received
Pareto front the user normally focusses the attention on, and b) that diver-
sity maintenance is not only needed in objective but also in decision space for
successfully treating multiobjective optimization problems (MOPs): The product
designer is mainly interested in a thorough covering of the Pareto front for maxi-
mum wide scope in selecting solutions according to the (conjectured) customers’
desires. This is the situation which contemporary EMOAs are designed for. But
the product engineer is mainly interested in a thorough covering of the Pareto
set since it is important to know if a certain design can be realized by differ-
ent parameters of the production process: Solutions may differ in sensitivity or
in shorter tooling times and the like. Evidently, contemporary EMOAs are not
geared toward product engineers yet.

These both sides of one medal (Pareto front in the objective space, Pareto set
in the decision space) and the conjunction between them has not been studied in
detail before. Only few theoretical results for special classes of search spaces and
multiobjective functions were presented before, cf. Ehrgott [7]. But the handled
cases are restricted in a way that no generalization can be foreseen. Some effort
has been made in the development of test functions not only with regard to
a nice behaving Pareto front, but also with aspired properties in the decision
space, cf. Okabe et al. [8]. Zhou et al. [9] propose a specialized EA to implicitly
handle and profit from regularities in the objective as well as in the decision
space. Such regularities stem from the test functions proposed by Okabe et al.
[8] and cannot be expected generally.

2 Aims and Methods

Our approach is constructive; on a minimalist bimodal bicriteria test problem, we
study structural changes of true Pareto set and Pareto front on a set of targeted
modifications. These are derived both analytically and empirically, the latter
employing grid-based and stochastic enumerators. Furthermore, we observe how
different EMOAs cope with the original problem and the changes. More detailed,
we try to answer the following questions:

– How do Pareto set distributions change when the problem is modified? Are
there unexpected outcomes?

– Are different EMOAs able to cover Pareto set and Pareto front well?
– Are there consistent similarities/dissimilarities in the behavior of different

EMOAs due to problem modifications that hint to distinct capabilities of
these?
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3 A Simple Test Problem: TWO-ON-ONE

To deepen the insight in behavior and structure of Pareto sets mapping onto
Pareto fronts, we define the plainest bimodal/unimodal test problem we could
think of. It consists of a polynomial function f1 of degree four with two optima,
and the sphere function f2, which is of degree two:

f = (f1, f2) : IR2 → IR2 : f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − cx1x2 + dx1 + 20,
f2(x1, x2) = (x1 − k)2 + (x2 − l)2

The level (niveau) of the optima of f1 can be adjusted smoothly via param-
eter d. With d positive, the optimum in the positive x1 domain is lifted up in
comparison to the optimum in the negative x1 domain. Consequently, the former
becomes a local optimum, while the latter remains a global optimum (asymmet-
ric optima). With parameter c = 0, both minimizers are located on the x1 axis,
but for increasing c, their connecting line is rotated counterclockwise, until its
gradient is nearly 1.

The function f2 is unimodal, the location of its minimizer determined by
parameters k and l. For k = l = 0 it is located in the origin, right between the
minimizers of the bimodal function f1. By variation of k and l the minimizer is
moved away from the connecting line of the minimizers of f1. Next to changing
the Pareto front, this also effects the Pareto set.

Table 1. Parameter setting for the five cases of TWO-ON-ONE, c was set to 10

Cases 1 2 3 4 5
Parameters d 0 0 0.25 0.25 0.25

k 0 1 0 1 0
l 0 0 0 0 1

In order to allow for a theoretical analysis of the problem, five parameter
settings have been fixed (Table 1, Figure 1). These result in different placements
of the minimizers in search space, two for the symmetric case (both optima of
f1 identical), three for the asymmetric case (optima distinct). While all these
settings are expected to lead to ordinary (generic) Pareto fronts, the Pareto sets
are expected to look more complex.

The coordinates of the minimizers of f1 can be determined analytically to

(x∗11,2
, x∗21,2

) =
(
±1

2

√
(
√

101 + 1),± 1
20

(
√

101− 1)
√

(
√

101 + 1)
)

.

In cases 1 and 2, both optima of f1 are on the same level, ensured by d = 0. In
1, the minimizer of the sphere function is located in the origin, where f1 has a
saddle point. In 2, the optimum is moved right on the x1 axis by one unit.

Cases 3 and 4 repeat the same configuration, with asymmetric optima of f1;
the global optimum resides in the negative x1 and x2 domain, and the local
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Fig. 1. Superposition of functions f1 and f2 (sphere) of TWO-ON-ONE for cases 1
to 5. The optima of f1 are symmetrical (equal fitness) in cases 1 + 2, asymmetrical in
3+4+5, with the right minimizer shifted slightly upwards and the left one downwards.

optimum in the positive domain. It is expected that the Pareto set now estab-
lishes a connection between the global optima of f1 and of f2. This is due to the
solutions in the global optimum of f1 being mapped to the extremal part of the
Pareto front. Consequently, solutions from the local optimum of f1 may be lost.

The same situation is expected for case 5, which is similar, except for a move-
ment of the minimizer of f2 towards the global minimizer of f2, whereas in case
4, it is brought nearer to the local minimizer.

4 Experimental Investigation of Pareto Sets

Our expectation is that for all symmetrical cases, the Pareto sets consist of two
curves, connecting either peak with the minimizer of the sphere function f2. For
the asymmetric cases, it seems reasonable that Pareto sets contain only points
on a curve between the global minimizers of f1 and f2. But this expectation
stems from thought experiments rather than empirical or analytical facts.

We employ two simple tools, a grid based and a stochastic enumerator, for
obtaining a first, rough impression of structure and location of the Pareto sets.
Either one samples points from a given interval and keeps a list of the Pareto-
optimal solutions found. Tried points are either taken from a pre-specified grid
or determined randomly. As we shall see, it sometimes makes sense to use both,
as the obtained results can subtly differ.

Experiment 1: Determine Pareto sets and fronts of TWO-ON-ONE.
Pre-experimental planning: First experiments were performed with a grid-
based enumerator only. They revealed an unexpectedly wide Pareto set (Fig. 2,
left). We thus additionally sampled by means of a stochastic enumerator.
Task: Find location of the Pareto sets, detect deviations from the expected.
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Setup: For each of the 5 cases specified in Table 1, we sample points in the
interval x1, x2 ∈ [−3, 3]. The grid-based enumeration consists of 300 × 300 =
90, 000 points each, the stochastic enumeration of 500, 000 points each. The
difference is intended as we hope for a better resolution with the latter method,
to shed light on the bar-shaped artifacts. All non-dominated points are archived.

Fig. 2. Pareto sets of case 1, obtained with grid and stochastic enumerator

Experimentation/Visualization: Figures 2 and 3 show the most interest-
ing of the obtained Pareto sets and fronts. All others largely comply with the
previously stated expectations and are omitted due to space limitations.
Observations: The figures clearly show that neither grid nor stochastic sam-
pling produces a clear-cut picture of the true Pareto sets. Roughly, case 1 yields
a smeared areal, propeller-like structure (Fig. 2) instead of the expected single
curve. However, the Pareto set appears narrower under stochastic enumeration.

For case 4 (sphere function f2 moved towards local optimum of f1), the Pareto
front splits into two parts at f1 ≈ 8, as visualized in Fig. 3. Accordingly, the
Pareto set breaks up into two distinct fragments. Note that no connection exists
between the location of the sphere and the global optimum of f1. At the left edge
of its right part, the grid-based approximated Pareto set reveals a strange curl
which is not visible in the stochastically approximated Pareto set. Pareto fronts
of cases 4 and 5 both contain pieces of very low point densities, at 17 < f1 < 19
in the former, and 15 < f1 < 17 in the latter case.
Discussion: We regard the obtained Pareto set approximations for case 1 as
rather misleading, and analytical investigation in §5 supports this view. However,
considering the amount of sampled points (90k and 500 k), and taking into account
that the latter (stochastically approximated) Pareto set is much tighter, one may
conclude even from our empirical data that the true Pareto set indeed is most likely
located on a curve and non-areal. The enumerators are probably misguided by the
huge difference in gradients of f1 and f2 in direction of the connecting line between
the two optima of f1 and orthogonal to it. Following from that, any EMOA will ex-
perience the same situation: Practically identical values of the objective functions
can have a large set of preimages and thus spread in search space.
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Fig. 3. Surprising Pareto sets and fronts for cases 4 and 5

Results obtained for case 4 show that contrary to our expectation, by far the
larger Pareto set portion resides in the range between the local optimum of f1
and the optimum of f2. Only where function values for f1 are better than may
be attained at the local optimum, points from the left fragment can enter the
Pareto set, resulting in a stepped Pareto front. The curl found near x1 = 1
seemingly corresponds to the low density part of the Pareto front which must
be located in proximity of the sphere center as values for f2 are near 0. The
stochastic Pareto set approximation is again tighter than the grid-based one,
leading to the conjecture that the true Pareto set is non-areal as in case 1.

Two more conclusions may be drawn from the case 4 results. Firstly, search
space distances between optima of separate objective functions play a major
role for the composition of Pareto sets, and secondly, it is necessary to keep the
population of EMOAs spread over several local optima of the treated objective
functions during an optimization run.

5 Analytical Derivation of Pareto Sets

The Pareto set for case 1 can be derived analytically but its analytic expression
is too complex and space-consuming to be presented here. Instead, we suggest
the linear approximation
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(
x1,

√
101− 1

10
x1

)
for x1 ∈

[
−1

2

√√
101 + 1,

1
2

√√
101 + 1

]
whose deviation from the true convex-concave curve is less than 0.045 for all x1
above. In any case, the Pareto set is a 1-dimensional connected set and not an
areal set of higher dimension as the output of the grid or stochastic enumerator
might suggest (see fig. 2).

As can be seen from the symmetry f(x1, x2) = f(−x1,−x2) the entire Pareto
front can be built solely by positive (or negative) points of the Pareto set. Thus,
it may happen that an EMOA approximating the Pareto front quite well with
regard to the S-metric has found only points in the decision space with, say,
positive components. As a consequence, a good value for the S-metric tells only
half the story.

The Pareto sets of the other cases are also amenable to an analytic solution
but the expressions are far away from being manageable easily. This observation
is quite counter-intuitive given the pretended simple expressions and structural
design of the objective functions.

6 Behavior of EMOAs on TWO-ON-ONE

Whereas Pareto sets and fronts of problem TWO-ON-ONE have been explored
in §4 and determined analytically in §5, we now turn to the behavior of different
EMOAs in a second experiment. Note that it is not intended to argue in favor
of or against any algorithm here, but rather to detect possible differences.

Algorithms. We invoke two standard techniques next to a new development
within the field. The Pisa framework1 is used to conduct the referred optimiza-
tion runs. Here, the TWO-ON-ONE problem has been implemented as a vari-
ator, which can be optimized with respect to different objectives and multiple
selectors. Among the set of available selectors, NSGA-II and SPEA2 are cho-
sen, because these appear to be the currently most well-known and commonly
used algorithms in the field [1,2]. Additionally, the more recent SMS-EMOA
[10,11] is tested within this framework. The SMS-EMOA was designed for fea-
turing a performance measure, namely the hypervolume or S-metric, as sec-
ondary ranking criterion in a NSGA-II like manner. The additional effort for
a third algorithm in the study seems to be justified, because the SMS-EMOA
was found to spread solutions more nicely over Pareto-fronts than the other
two algorithms. This aspired behavior is purchased by a runtime of O(μ logμ+
μ(d/2+1) log μ) of the SMS-EMOA, with μ denoting the population size and d the
number of objectives (cp. Beume [12]). In contrast, the runtime of NSGA-II and
SPEA2 is quadratic in the population size and polynomial in the number of
objectives.

1 PISA - Platform and Programming Language Independent Interface for Search Al-
gorithms, ETH Zurich, www.tik.ee.ethz.ch/pisa/
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Measures. To detect differences in algorithm behaviors on the most interesting
cases, we define two simple measures. For case 1, we measure if the resulting
population P is fairly distributed over the left and right wings of the Pareto set
by taking the fraction on the less crowded wing into account:

fair(P ) =
1
2
−min(|{individual ∈ P : x1 < 0}|, |{individual ∈ P : x1 ≥ 0}|)

|P | (1)

For case 4, we are interested in the fraction of points in proximity of the global
optimum of f1, corresponding to the search points in the left half of the search
space:

left(P ) =
|{individual ∈ P : x1 < 0}|

|P | (2)
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Fig. 4. Pareto front (left) and Pareto set (right) of a single SPEA2 run on case 1

Experiment 2: Search Space Behavior of EMOAs on function TWO-ON-ONE.
Pre-experimental planning: First runs indicated that results on cases 2, 3,
and 5 are comparable for all three algorithms. We thus focused on cases 1 and
4. For case 1 it was found that at least 50 runs are necessary to get a detailed
picture of differences in measure fair(P ), for case 4, 20 runs seemed sufficient.
Task: Detect differences in the obtained Pareto sets and fronts that may be
related to test problem properties. We employ bootstrap permutation tests with
49, 999 replicates and significance level 5% for the measured data.
Setup: The decision space was limited to f1, f2 ∈ [−50, 50], thereby enclosing
the region around the optima of f1 and f2, and a certain amount of space the
algorithms have to bypass to get there. All three algorithms, NSGA-II, SPEA2,
and SMS-EMOA, are run with a population size of 100 for 30, 000 evaluations,
otherwise utilizing default parametrizations. For case 1 and 4, 50 and 20 runs
are performed, respectively.
Experimentation/Visualization: Figure 4 depicts a typical outcome for case
1. More extreme population distributions with almost all individuals on one wing
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Fig. 5. Pareto sets of single NSGA-II (left) and SMS-EMOA (right) runs on case 4

of the Pareto set also happen. In figure 5, resulting Pareto sets for two different
algorithms are presented, again, typical runs are chosen.
Observations: Figure 4 demonstrates that for symmetric optima, the Pareto
front often contains large chunks of points originating from the proximity of dif-
ferent minimizers. Accordingly, the approximated Pareto sets show correspond-
ing clouds of points, unevenly distributed over the true Pareto set. For case 4,
Figure 5 shows that the algorithms are able to spread their populations over
both important parts of the Pareto set. However, the shape of the clouds near
the global minimizer of f1 is different: NSGA-II often forms lines of points in
that region, whereas the SMS-EMOA rather builds areal structures.
Discussion: For case 1, hypothesis testing reveals a slight difference (p-value
0.071) between NSGA-II and SMS-EMOA and a strong one (p-value 0.030) be-
tween NSGA-II and SPEA2. SMS-EMOA and SPEA2 may be considered behav-
ing relatively similar (p-value 0.427). NSGA-II covers both wings of the Pareto
set more evenly on average, its fair -measure is 0.110, compared to 0.149 and
0.152 for SPEA2 and SMS-EMOA, respectively.

All three algorithms cope surprisingly well with case 4. Here, hypothesis tests
hint to a similarity between SMS-EMOA and NSGA-II (p-value 0.468) and sharp
distinction between SPEA2 and SMS-EMOA, and SPEA2 and NSGA-II, both
p-values 0.001. As indicated by the histograms, NSGA-II and SMS-EMOA both
place more points near the global optimizer, their left -measures are 0.169 and
0.167, respectively. SPEA2 only puts 13.1% of its final population there. Unfor-
tunately, we are currently not able to explain what makes the algorithms behave
differently in this respect.

7 Summary and Outlook

The main message of the work presented here is our belief in the fact that a neat
covering of the Pareto front is not sufficient for meeting the needs of all clients
that may use EMOAs. Therefore, future versions of EMOAs should also take into
account a proper covering of the Pareto set. Evidently, contemporary EMOAs
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cannot deliver this kind of behavior. For this purpose we need an effective mea-
sure for assessing the quality of a solution set in decision space—similarly to the
S-metric in objective space.

To follow this avenue we have to deepen our understanding of EMOA behav-
ior in the decision space, which may be quite counter-intuitive as our seemingly
simple test problem has revealed. Obviously, EMOAs are easily confronted with
strangely shaped approximate Pareto sets as the ones obtained from our empir-
ical approaches to determine the true Pareto set. We attribute this behavior to
scaling issues between orthogonal gradients and discretized computer represen-
tation of real values, but this assessment can only be preliminary. The important
point is that EMOAs have no means of detecting ’real’ Pareto set shapes, they
have to cope with their inexact counterparts. These problems are currently not
reflected in algorithm design. Furthermore, we are convinced that a thorough
analysis of the interaction between Pareto front and Pareto set will eventually
lead to new insights, new search operators, and even better EMOAs.
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Abstract. In particle swarm optimization, a particle’s movement is usually gui-
ded by two solutions: the swarm’s global best and the particle’s personal best.
Selecting these guides in the case of multiple objectives is not straightforward.
In this paper, we investigate the influence of the personal best particles in Multi-
Objective Particle Swarm Optimization. We show that selecting a proper personal
guide has a significant impact on algorithm performance. We propose a new idea
of allowing each particle to memorize all non-dominated personal best particles it
has encountered. This means that if the updated personal best position be indiffer-
ent to the old one, we keep both in the personal archive. Also we propose several
strategies to select a personal best particle from the personal archive. These meth-
ods are empirically compared on some standard test problems.

1 Introduction

Particle swarm optimization (PSO) has established itself as an efficient optimization
algorithm in a variety of contexts, see e.g., [13]. PSO is a population based technique,
similar in some respects to evolutionary algorithms, except that potential solutions (par-
ticles) move, rather than evolve, through the search space. The rules, or particle dynam-
ics, which govern this movement, are inspired by models of swarming and flocking [8].

PSO consists of several candidate solutions called particles, each of which has a posi-
tion and a velocity, and experiences linear spring-like attractions towards two attractors:
(a) The best position attained by that particle so far (local guide), and (b) The best of
the particle attractors in a certain neighborhood (global guide), where best is in relation
to evaluation of an objective function at that position.

In recent years, more and more attempts have been made to extend PSO to multi-
objective problems, see e.g. [11,1]. These methods, called Multi-objective Particle Sw-
arm optimization methods (MOPSO), follow the same principals as the single objective
PSO, with the main differences being the selection of local and global guides. Finding
the global guide has been studied extensively as the first step in converting PSO in
MOPSO [11,14]. It has been shown that how to select the global guide has a great
impact on the obtained solutions, i.e. on their convergence and diversity. However, an
issue that has (at least to our knowledge) not been thoroughly investigated so far is the
choice of each particle’s personal best (local guide).

In this paper, we propose and compare several different strategies regarding the lo-
cal guide. Specifically, we propose to allow each particle to keep an archive of non-
dominated personal best solutions. Then, we propose and investigate several strategies

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 523–532, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to select the local guide from this archive. We show that this selection strategy has a
significant impact on the algorithm performance by applying it to several test problems.

The paper is structured as follows. In the following section, multi-objective problems
and and multi-objective particle swarm optimization are briefly introduced. In Section 2,
we propose several strategies in updating the personal best particle and introduce the
personal archive. Section 3 is dedicated to the experiments, the analysis and evaluations.
Finally, the paper concludes with a summary.

1.1 Multi-Objective Problem

Typically a Multi-Objective Problem (MOP) involves several objectives which have to
be optimized simultaneously, i.e. the objective function is multi-dimensional f : Rn →
Rm:

min
x∈S⊂Rn

fi(x) for i = 1 . . .m

We denote the image of S by Z ⊂ Rm and call it the objective space, the elements of Z
are called objective vectors. Since we are dealing with MOPs, there is not generally one
global optimum but a set of so-called Pareto optimal solutions. A decision vector x1 ∈
S is called Pareto-optimal if there is no other decision vector x2 ∈ S that dominates1

it. An objective vector is called Pareto-optimal if the corresponding decision vector is
Pareto-optimal. In the case that the two solutions x1 and x2 do not dominate each other,
we say that they are indifferent to each other.

1.2 Multi-Objective Particle Swarm Optimization (MOPSO)

In MOPSO, a set of N particles may be considered as a population Pt in generation
t. Each particle i has a position defined by xi = {x1

i ,x
2
i , · · · ,xn

i } and a velocity defined
by vi = {v1

i ,v
2
i , · · · ,vn

i } in the search space S. In generation t + 1, a new velocity and
position for each particle i is generated by updating the old ones as follows:

v j,t+1
i = wv j,t

i + c1R1(p j,t
i − x j,t

i )+ c2R2(p j,t
g − x j,t

i )

x j,t+1
i = x j,t

i + v j,t+1
i (1)

where j = 1, · · · ,n, w is called the inertia weight of the particle, c1 and c2 are two
positive constants, and R1 and R2 are random values in the range [0,1]. In Equation (1),
pt

g denotes the position of the global best particle and pt
i denotes the position of the

personal best of particle i. In single objective PSO, these are typically the best solution
found so far by any particle, and the best solution found so far by the particle i itself,
and they are updated in every iteration. In the case of multiple objectives, however, the
notion of ”best” is not so easily defined.

Thus, the main challenge in MOPSO is to pick suitable personal guide (pi) and global
guide (pg) to move the particles through the space. In general, a good MOPSO method

1 x1 is said to dominate x2 if x1 is not worse than x2 in all of the objectives and it is strictly better
than x2 in at least one objective.
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must obtain solutions with (a) a good convergence, and (b) a good diversity and spread
along the Pareto-optimal front. Most research so far in the area of MOPSO has con-
centrated on the selection of pg for each individual. The choice of pg aims at moving
the particles towards the Pareto-optimal front, but also has to ensure diversity along
the front. Usually, all non-dominated solutions found are stored in an external archive,
and pg is selected from this archive. Typical strategies include random selection [3],
selecting a solution that dominates many particles [1], or the sigma-method explained
in more detail below. A recent survey on MOPSO can be found in [14].

The issue of selecting local best has been mostly ignored in the literature so far. The
following section discusses this issue more thoroughly. For a more extensive treatment
of MOPSO and PSO techniques in general, the reader is referred to [2,5,6].

2 Selecting the Personal Best

In this section, we propose different strategies for updating the personal guide for each
particle in the population. In MOPSO, if the new position xi dominates the current
personal guide pi, clearly pi will be replaced by xi. In the case that pi dominates xi, pi

will be kept. However, it is not straightforward what to do if xi and pi are indifferent to
each other. The simplest and most natural strategies are certainly to keep only one value
for pi and update it as:

1. Oldest: pi is updated only if it is dominated by xi. If pi and xi are indifferent to each
other, nothing will happen and the oldest non-dominated position will be kept in
the memory. We expect this method to have a negative effect on particle diversity,
because the particle is attracted towards the first of the obtained non-dominated
positions.

2. Newest: pi is updated to xi except if it dominates xi, i.e. we always keep the newest
non-dominated position in the memory. In contrary to Oldest, the particle will not
be dragged back to previously explored regions. It is not influenced by a personal
guide as long as it keeps finding non-dominated solutions. Hence a better diversity
of solutions than with Oldest is expected.

However, one could easily make a more informed choice:

3. Sum: Keep the solution which is better regarding the sum of objective values. If
one solution is much better in one criterion, but only slightly worse in the other,
it is probably preferable over all. This concept is illustrated in Figure 1 (a) and
is expected to lead to faster convergence. A similar approach has been proposed
in [7].

Instead of selecting one solution as the personal best and discarding the other, an alter-
native approach would be to keep track of more than one personal best, and remember
all the non-dominated solutions visited in the past. Of course, then the question arises
as to which of the stored personal best particles should be used to update the particle’s
velocity. It must be noted that the personal archive must be updated in each generation,
i.e., it must be kept domination-free. Here, we propose the following ideas:
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Fig. 1. Illustration of some selection concepts in objective space: (a) Sum, (b) Global, (c) WSum,
and (d) Diversity

.

4. Random: The simplest strategy is to select a non-dominated pi from the personal
archive at random.

5. WSum: The Sum approach introduced above weights all of the criteria equally. For
WSum, in order to better maintain diversity, we will now assign a higher weight to
those criteria in which the particle is already relatively good. In particular, if f j(xi)
is the j-th fitness value of particle i, the weighted sum for the particle’s personal
best is calculated as

F = ∑
j

f j(xi)
∑k fk(xi)

f j(pi) (2)

The personal best with the smallest weighted sum is used for the update. This is
illustrated in Figure 1 (c) with two sets (A and B) of personal archives for two
different particles, denoted by xi. If xi is very close to one of the coordinate axis, it
means that the particle tends to go more in this direction, so we select the pi closest
to this axis. In the case that xi is somewhere in the middle of the objective space,
the selected personal archive member would be a good compromise between the
objectives. This method may help maintain a better spread of solutions.

6. Global: One might argue that the personal best should not be too far from the
global best assigned to the particle. To test this conjecture, in this strategy we use
the personal best which is closest in objective space to the assigned global best.
This method may increase the convergence rate. This helps the particle to faster
follow the global best particle, c.f. Figure 1 (b).
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7. Diversity: The personal guide can also be used to increase diversity. Here, we use
the personal best which has the largest minimal distance to any other particle, i.e.
which is most isolated from the other particles. This is illustrated in Figure 1 (d).
This method forces the particle to explore the regions which are far from the parti-
cles in the population.

8. All: Instead of using only one personal guide to influence the particle, we can also
extend Equation 1 and use a smaller force towards all of the particle’s personal
bests.

vi
j,t+1 = wvi

j,t + c1R1(
∑

Np
k=1(pk

j,t − xi
j,t)

Np
)+ c2R2(pi,g

j,t − xi
j,t) (3)

where Np is the number of particles in the personal archive. As [9] has shown, using
the location of several other solutions for update can indeed be helpful.

9. None: With this strategy, we test whether a personal best is at all beneficial in a
multi-objective setting by simply replacing the personal best by the global best (i.e.
the particle now experiences two forces to the global best).

Because some methods of the above methods are sensitive to the scaling of the objec-
tives, we test them with non-normalized (default) and normalized objective values. The
methods using normalized objectives are denoted by Sum-N, Global-N, Diversity-N
and WSum-N.

3 Empirical Results

In principle, our strategies to select the personal best can be combined with any of the
existing MOPSO approaches. In the following, we use the sigma-method which was
proposed in [11] and which has been shown to compare favorably to other methods.
The sigma method uses an archive of non-dominated solutions found. It operates on
normalized objective values, scaled to the unit square (or hypercube):

f ′i =
fi− f min

i

f max
i − f min

i

with f min
i , f max

i being the minimal and maximal value of objective i of any particle or
archive member. As global guide for each particle, it chooses the archive member which
is closest to the line connecting the particle’s current position to the origin. This idea is
illustrated in Figure 2 (a) for 2 dimensions. The sigma method also uses a turbulence
factor [10] which introduces diversity into the swarm by randomizing the coordinates of
a fraction of the particles within the area covered by the particles, i.e., within [xmin

i ,xmax
i ]

where xmin
i and xmax

i are the minimal and maximal coordinates for decision variable xi

over all particles in the population and the archive.
The MOPSO algorithm used the following parameter settings found reasonable based

on some preliminary runs: inertia weight w = 0.4, turbulence factor t f = 0.1, population
size 50, maximum archive size 100, and 300 generations. For more details about the
influence of the parameters, please refer to [10].
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(a) (b)

Fig. 2. Objective space: (a) Selecting the global best guide using sigma method. o and � denote
the population members and non-dominated solutions respectively. (b) Hyper-volume metric: the
number of dominated grid points (x) by the obtained non-dominated solutions o show the hyper-
volume value.

3.1 Test Functions

We used some standard test functions from the multi-objective optimization literature.
These test functions are two-objective optimization problems selected from [15,4,12]
and are shown in Table 1. These test functions have different properties that make them
more or less suitable. For ZDT1 and ZDT3, based on the method to generate these func-
tions, all Pareto-optimal solutions differ in only one variable, while all other variables
lie at the boundary of the search space (namely, xi = 0 for all i except i = 1). This makes
it relatively simple to explore the Pareto front once a single solution has been found, as
only one variable has to be varied. Furthermore, because all other variables are on the
boundary of the search space, it is very important how the optimizer handles boundaries.
In our case, we simply set a particle to the boundary if the boundary is exceeded, which
makes it particularly easy to find such solutions. Test functions OKA1 and OKA2 are
relatively difficult test function, although they only have 2 resp. 3 parameters [12]. Test
function FF doesn’t suffer from the above difficulties and is, in our opinion, the most
representative.

3.2 Evaluations

In order to achieve statistical significance, we run each method for 300 runs with differ-
ent initial seeds. The algorithms are evaluated based on the hyper-volume metric. Hyper-
volume is a measurement which takes into account the diversity as well as the conver-
gence of solutions [15]. Figure 2 (b) shows the way we calculate the hyper-volume. We
build a grid between a reference point (�) and the origin in the objective space. The
grid points dominated by the solutions (x) are counted as the hyper-volume. High val-
ues of hyper-volume show a high quality in terms of the diversity and convergence of
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Table 1. Test functions

Test Function Constraints
OKA1 x

′
1 = cos ( π

12 )x1− sin( π
12 )x2 n = 2

x
′
2 = sin( π

12 )x1 +cos ( π
12 )x2 x1 ∈ [6sin( π

12 ), 6sin( π
12 )+2cos ( π

12 )]
f1(x) = x

′
1 x2 ∈ [−2sin( π

12 ), 6cos ( π
12 )]

f2(x) =
√

2π−
√
|x′1|+2|x′2−3cos x

′
1−3| 1

3

OKA2 f1(x) = x1 x1 ∈ [−π, π]
f2(x) = 1− 1

4π2 (x1 +π)2+ x2,x3 ∈ [−5,5]
|x2−5cos(x1)|

1
3 + |x3−5sin(x1)| 1

3 n = 3
ZDT1 g(x2, · · · ,xn) = 1+9(∑n

i=2 xi)/(n−1) xi ∈ [0, 1]
h( f1,g) = 1−

√
f1/g n = 30

f1(x1) = x1 i = 1,2, . . . ,n
f2(x) = g(x2, · · · ,xn) ·h( f1,g)

ZDT3 g(x2, · · · ,xn) = 1+9(∑n
i=2 xi)/(n−1) xi ∈ [0, 1]

h( f1,g) = 1−
√

f1/g− ( f1/g)sin(10π f1) n = 30
f1(x1) = x1 i = 1,2, . . . ,n
f2(x) = g(x2, · · · ,xn) ·h( f1,g)+1

FF f1(x) = 1−exp(−∑i (xi− 1√
n
)2) n = 10

f2(x) = 1−exp(−∑i (xi + 1√
n
)2) xi ∈ [−4, 4]

the obtained solutions. This method depends on the number of grid lines. We select a
relatively high resolution (200×200).

3.3 Observations

Tables 2 shows the results obtained at the end of the run (iteration 300). It shows whether
one method is better than another based on a two-sided t-Test with significance level
95%. A ”+” sign means that the method in the row is significantly better than the method
in the column, a ”-” sign denotes the reverse, and if the difference is not significant, we
list a ”o”. The results are sorted from best to worst for each test problem.

The first observation from the obtained results is that the methods None (13), All
(4) and Sum (2) are generally among the worst methods. At least for None this is not
surprising, as it removes the good property of local searching and only incorporates the
global searching of MOPSO.

Comparing Global (7) to Global-N (8), WSum (11) to WSum-N (12), and Diver-
sity (9) to Diversity-N (10), we realize that normalization is not always helpful. For
instance, Diversity-N is consistently outperformed by Diversity, presumably because
we require to have access to the real distances in the objective space to generate diver-
sity. For Global, the normalized version is always better, and for WSum and Sum the
results are mixed. Diversity (9) delivers consistently good results and therefore is our
recommended method.

Among the other methods, methods Random (1) and Newest (5) are recorded as
simple methods in terms of implementation. However, Random outperforms Newest
in all cases, demonstrating the advantage of an archive.
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Table 2. Comparing the hyper-volume of different methods. ”+”, ”-”, and ”o” signs mean that the
method in the row is significantly better, worse, and indifferent than the method in the column

Mapping of methods to numbers:
1 Random 2 Sum 3 Sum-N 4 All 5 Newest 6 Oldest 7 Global
8 Global-N 9 Diversity 10 Diversity-N 11 WSumt 12 WSum-N 13 None

OKA1 9 6 1 8 10 5 11 3 4 12 2 7 13 OKA2 9 6 13 10 8 1 12 5 11 7 3 2 4
Diversity 9 o + + + + + + + + + + + + Diversity 9 o + + + + + + + + + + + +
Oldest 6 - o + + + + + + + + + + + Oldest 6 - o o o + + + + + + + + +
Random 1 - - o o + + + + + + + + + None 13 - o o o + + + + + + + + +
Global-N 8 - - o o + + + + + + + + + Diversity-N 10 - o o o + + + + + + + + +
Diversity-N 10 - - - - o + + + + + + + + Global-N 8 - - - - o o o o o o + + +
Newest 5 - - - - - o o + + + + + + Random 1 - - - - o o o o o o o + +
WSum 11 - - - - - o o + + + + + + WSum-N 12 - - - - o o o o o o o + +
Sum-N 3 - - - - - - - o + + + + + Newest 5 - - - - o o o o o o o + +
All 4 - - - - - - - - o o o + + WSum 11 - - - - o o o o o o o + +
WSum-N 12 - - - - - - - - o o o + + Global 7 - - - - o o o o o o o + +
Sum 2 - - - - - - - - o o o + + Sum-N 3 - - - - - o o o o o o o +
Global 7 - - - - - - - - - - - o + Sum 2 - - - - - - - - - - o o o
None 13 - - - - - - - - - - - - o All 4 - - - - - - - - - - - o o
ZDT1 12 9 1 5 8 11 10 13 6 7 2 4 3 ZDT3 11 9 12 1 8 10 2 5 6 13 7 4 3
WSum-N 12 o o + + + + + + + + + + + WSum 11 o o + + + + + + + + + + +
Diversity 9 o o + + + + + + + + + + + Diversity 9 o o + + + + + + + + + + +
Random 1 - - o o + + + + + + + + + WSum-N 12 - - o o + + + + + + + + +
Newest 5 - - o o o o + + + + + + + Random 1 - - o o o + + + + + + + +
Global-N 8 - - - o o o o + + + + + + Global-N 8 - - - o o o o o + + + + +
WSum 11 - - - o o o o + + + + + + Diversity-N 10 - - - - o o o o + + + + +
Diversity-N 10 - - - - o o o + + + + + + Sum 2 - - - - o o o o + + + + +
None 13 - - - - - - - o o + + + + Newest 5 - - - - o o o o + + + + +
Oldest 6 - - - - - - - o o o + + + Oldest 6 - - - - - - - - o o + + +
Global 7 - - - - - - - - o o + + + None 13 - - - - - - - - o o o + +
Sum 2 - - - - - - - - - - o o + Global 7 - - - - - - - - - o o + +
Sum-N 3 - - - - - - - - - - o o o Sum-N 3 - - - - - - - - - - - o o
All 4 - - - - - - - - - - - o o All 4 - - - - - - - - - - - o o
FF 12 3 2 9 8 1 5 10 6 11 4 7 13
WSum-N 12 o + + + + + + + + + + + +
Sum-N 3 - o + + + + + + + + + + +
Sum 2 - - o + + + + + + + + + +
Diversity 9 - - - o + + + + + + + + +
Global-N 8 - - - - o + + + + + + + +
Random 1 - - - - - o + + + + + + +
Newest 5 - - - - - - o + + + + + +
Diversity-N 10 - - - - - - - o o + + + +
Oldest 6 - - - - - - - o o + + + +
WSum 11 - - - - - - - - - o + + +
All 4 - - - - - - - - - - o + +
Global 7 - - - - - - - - - - - o +
None 13 - - - - - - - - - - - - o

For further analysis, we plot the hyper-volume values over the generations in Figure 3
for the different test functions. For reasons of clarity, not all methods are included in
every plot. We observe that the ranking of the different methods, and in particular, the
superiority of Diversity and WSum, is largely consistent throughout the run. For the
OKA1 and OKA2 test functions, Diversity highly outperforms the other methods. In
particular for OKA2, MOPSO seems to have a difficulty to find a well distributed set
of non-dominated solutions. Most methods have only between one and four different
non-dominated solutions in the archive at the end of the run, a clear lack of diversity.
So it is not surprising that the method designed to foster diversity (Diversity) works so
much better, finding an average of 7.28 different non-dominated solutions.
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Fig. 3. Hyper-volume of different methods for 300 generations (scaled axis)

For the FF test function, WSum works best. WSum converges very quickly in partic-
ular on the ZDT test functions, while WSum-N often converges slowly in the beginning,
but yielding good results at the end of the run.

4 Conclusion

We addressed the issue of how to select the personal best in a multi-objective setting.
To this end, we proposed to allow each particle to store all non-dominated solutions
encountered in a personal archive and proposed several methods to select the personal
best from this archive. We empirically compared these methods by applying them to
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different test problems. The results show that by keeping the personal archive we obtain
significantly better results than the traditional methods. In the future, we will investigate
the new methods on problems with a higher number of objectives. Also, we will study
the influence of a combination of the proposed methods, and the relationship between
the selection of the global guide and the personal guide in order to increase the spread
and convergence of the solutions.
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Abstract. Most of the available multiobjective evolutionary algorithms (MOEA)
for approximating the Pareto set have been designed for and tested on low di-
mensional problems (≤ 3 objectives). However, it is known that problems with a
high number of objectives cause additional difficulties in terms of the quality of
the Pareto set approximation and running time. Furthermore, the decision making
process becomes the harder the more objectives are involved. In this context, the
question arises whether all objectives are necessary to preserve the problem char-
acteristics. One may also ask under which conditions such an objective reduction
is feasible, and how a minimum set of objectives can be computed. In this pa-
per, we propose a general mathematical framework, suited to answer these three
questions, and corresponding algorithms, exact and heuristic ones. The heuristic
variants are geared towards direct integration into the evolutionary search pro-
cess. Moreover, extensive experiments for four well-known test problems show
that substantial dimensionality reductions are possible on the basis of the pro-
posed methodology.

1 Motivation

The field of multiobjective evolutionary algorithms (MOEA) has been rapidly growing
over the last decade, and most of the publications deal with two- or three-dimensional
problems [1]; however, studies addressing high-dimensional problems are rare [2,3].
The main reason is that problems with a high number of objectives cause additional
challenges wrt low-dimensional problems. Current algorithms, developed for problems
with a low number of objectives, have difficulties to find a good Pareto set approxi-
mation for higher dimensions [4]. Even with the availability of sufficient computing
resources, some methods are practically not useable for a high number of objectives;
for example, algorithms based on the hypervolume indicator [5] have running times ex-
ponential in the number of objectives [6,7]. Moreover, the decision maker’s choice of an
appropriate trade-off solution from a set of alternative solutions, generated by a MOEA,
becomes difficult or infeasible with many objectives. In this context, several questions
arise. On the one hand, one may ask whether it is possible to omit some of the objectives
while preserving the problem characteristics, under which conditions such an objective
reduction is feasible, and how a minimum set of objectives can be computed. On the
other hand, if one allows changes in the problem structure while omitting objectives,
one may ask how to quantify such structural changes and how to compute a minimum

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 533–542, 2006.
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set of objectives according to such a qualitative measure. These research topics have
gained only little attention in the literature so far. In some studies [8,9,10], the issue of
objective conflicts has been discussed; however, the issue under which conditions, in
general, objectives can be omitted and how a minimum objective subset can be com-
puted has not been addressed. Deb and Saxena [11] proposed a method for reducing the
number of objectives, based on principal component analysis. Roughly speaking, their
method aims at keeping those objectives that can explain most of the variance in the
objective space. However, it is not clear (i) how the objective reduction alters the domi-
nance structure and (ii) what the quality of a generated objective subset is (no minimum
guarantee).

In a previous work [12], we have tackled the above questions for the case that the
problem structure must not be changed. In particular, we have presented the minimum
objective subset problem (MOSS) which asks which objective functions are essential,
have introduced a general notion of conflicts between objective sets, and have proposed
an exact algorithm and a greedy heuristic for the NP hard MOSS problem. In practice,
though, one may be interested in “allowing errors”, i.e., slight changes of the dominance
structure, in order to obtain a smaller minimum set of objectives. This continuative study
addresses this issue. The key contributions are

– a generalized notion of conflicting objective sets extending [12],
– the introduction of a measure for variations of the dominance structure
– the definition of the problems δ-MOSS and k-EMOSS, as an extension of the MOSS

problem to the objective reduction with allowed problem structure variations,
– an exact algorithm, capable to solve both, the δ-MOSS and the k-EMOSS problem,

as well as heuristics for both problems,
– experimental results on four different high-dimensional problems, and
– a comparison between our approach and Deb and Saxena’s method [11].

As such, this paper provides a basis for online dimensionality reduction in evolutionary
multiobjective algorithms.

2 A Measure for Changes of the Dominance Structure

Without loss of generality, in this paper we consider a minimization problem with k ob-
jective functions fi : X → R, 1 ≤ i ≤ k, where the vector function f := (f1, . . . , fk)
maps each solution x ∈ X to an objective vector f(x) ∈ Rk. Furthermore, we assume
that the underlying dominance structure is given by the weak Pareto dominance relation
which is defined as follows: +F ′:= {(x,y) |x,y ∈ X ∧ ∀fi ∈ F ′ : fi(x) ≤ fi(y)},
where F ′ is a set of objectives with F ′ ⊆ F := {f1, . . . , fk}. For better readability,
we will sometimes only consider the objective functions’ indices, e.g., F ′ = {1, 2, 3}
instead of F ′ = {f1, f2, f3}. We say x weakly dominates y wrt the objective set F ′

(x +F ′ y) if (x,y) ∈+F ′ . Two solutions x,y are incomparable if neither weakly
dominates the other one. A solution x∗ ∈ X is called Pareto optimal if there is no other
x ∈ X that dominates x∗ wrt the set of all objectives. The set of all Pareto optimal
solutions is called Pareto (optimal) set, for which an approximation is sought.
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In [12] we have proposed a method that computes for a given solution set A ⊆ X
a minimum subset F ′ of objectives with F ′ ⊆ F := {f1, . . . , fk} such that the domi-
nance structure is preserved. In other words, for F ′ holds that x +F ′ y ⇐⇒ x +F y
for all x,y ∈ A. This is illustrated in the following example.

Example 1. Fig. 1 shows the parallel coordinates plot, cf. [9], of three solutions x1
(solid line), x2 (dashed) and x3 (dotted) that are pairwise incomparable.
At a closer inspection, the objective functions

f1 f2 f3 f4

5

4

3

2

1

values

objectives

Fig. 1. Parallel coordinates plot for
three solutions and four objectives

f1 and f3 indicate redundancy in the problem
formulation, as the corresponding relations +f1

and +f3 are the same: x3 +f1 x1 +f1 x2 as
well as x3 +f3 x1 +f3 x2. The approach of
[12], therefore, computes the set {f1, f2, f4} as
a minimum objective set which preserves the dom-
inance structure, i.e., x +{f1,f2,f4} y if and only
if x +F y, because all solutions are also pair-
wise incomparable wrt to {f1, f2, f4}. That there
is, for this example, no objective subset with less
than three objectives, preserving the dominance
structure, can be easily checked by hand.

In practice, one is often interested in a further objective reduction at the cost of slight
changes in the dominance structure. This poses the question how such a structural
change can be quantitatively measured and how one can compute a minimum objec-
tive set for a given threshold on the degree of change.

Example 2. Consider, once again, Fig. 1 and the objective subset F ′ := {f3,
f4}. We observe that by reducing the set of objectives to F ′, the dominances change: on
the one hand x1 +F ′ x2; on the other hand x1 �+F x2. In this sense, we make an error:
the objective values of x1 had to be smaller by an additive term of δ = 0.5, such that
x1 +F x2 would actually hold. This δ value can be used as a measure to quantify the
difference in the dominance structure induced by F ′ and F . By computing the δ values
for all solution pairs x,y, we can then determine the maximum error. The meaning of
the maximum δ value is that whenever we wrongly assume that x +F ′ y, we also know
that x is not worse than y in all objectives by an additive term of δ. ForF ′ := {f3, f4},
the maximum error is δ = 0.5; for F ′ := {f2, f4}, the maximum δ is 4.

In the following, we formalize the definition of error, according to the above example.
The background for that is provided by the (additive) ε-dominance relation1 [13] and a
generalization of the notion of conflicts between objective sets, defined in [12].

Definition 1. Let F1 and F2 two objective sets. We define F1 ,δ F2 :⇐⇒+F1⊆+δ
F2

.

Definition 2. Let F1 and F2 two objective sets. We call

– F1 δ-nonconflicting with F2 iff
(
F1 ,δ F2

)
∧
(
F2 ,δ F1

)
;

– F1 δ-conflicting with F2 iff ¬ (F1 δ-nonconflicting with F2).

1 �ε
F′ := {(x,y) |x,y ∈ X ∧ ∀i ∈ F ′ ⊆ F : fi(x) − ε ≤ fi(y)}.
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The above definition of δ-nonconflicting objective sets is useful for changing a problem
formulation by considering a different objective set. If a multiobjective optimization
problem uses the objective set F1 and one can prove that F1 is δ-nonconflicting with
another objective set F2, one can easily replace F1 with F2 and can be sure that in
the new formulation, for any x,y ∈ X , x either weakly dominates y wrt F2 or x ε-
dominates y wrt F2 if x weakly dominates y wrt F1 and ε = δ. In the special case
of an objective subset F ′ ⊆ F , δ-nonconflicting with all objectives F , the definition
fits the intuitive measure of error in Example 2. If an objective subset F ′ ⊂ F is δ-
nonconflicting with the set F of all objectives, x δ-dominates y, i.e., ∀i ∈ F : fi(x)−
δ ≤ fi(y), whenever x weakly dominates y wrt the reduced objective set F ′. We, then,
can omit all objectives in F \ F ′ without making a larger error than δ in the omitted
objectives.

Based on the above conflict definitions, we will now formalize the notion of δ-minimal
and δ-minimum objective sets including the corresponding notion for δ = 0 in [12] and,
furthermore, present a condition under which an objective reduction is possible.

Definition 3. Let F be a set of objectives and δ ∈ R. An objective set F ′ ⊆ F is
denoted as

– δ-minimal wrt F iff (i)F ′ is δ-nonconflicting withF , (ii)F ′ is δ′-conflicting withF
for all δ′ < δ, and (iii) there exists no F ′′ ⊂ F ′ that is δ-
nonconflicting with F ;

– δ-minimum wrt F iff (i) F ′ is δ-minimal wrt F , and (ii) there exists no F ′′ ⊂ F
with |F ′′| < |F ′| that is δ-minimal wrt F .

A δ-minimal objective set is a subset of the original objectives that cannot be further
reduced without changing the associated dominance structure with an error of at most
δ. A δ-minimum objective set is the smallest possible set of original objectives that
preserves the original dominance structure except for an error of δ. By definition, every
δ-minimum objective set is δ-minimal, but not all δ-minimal sets are at the same time
δ-minimum.

Definition 4. A set F of objectives is called δ-redundant if and only if there exists F ′ ⊂
F that is δ-minimal wrt F .

This definition of δ-redundancy represents a necessary and sufficient condition for the
omission of objectives while the obtained dominance relation preserve the most of the
initial dominance relation according to the definition of error in Example 2.

3 Identifying Minimum Objective Subsets

After the definition of an objective subset’s error regarding its dominance structure, we
present the two problems δ-MOSS and k-EMOSS, dealing with the two questions, men-
tioned in the introduction: On the one hand, the computation of an objective subset of
minimum size, yielding a (changed) dominance structure with given error, and, on the
other hand, the computation of an objective subset of given size with the minimum error.
Furthermore, we present an exact algorithm, capable of solving both the δ-MOSS and
the k-EMOSS problem, and afterwards approximation algorithms for each of the two
problems, that are fast and designed for the integration into the search process.
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3.1 The δ-MOSS and k-EMOSS Problems

Based on Sec. 2, the problem MINIMUM OBJECTIVE SUBSET (MOSS), proposed in
[12], can be characterized as follows. Given a multiobjective optimization problem, a
given instance consists of the set A of solutions, the generalized weak Pareto domi-
nance relation+F , and for all objective functions fi ∈ F the single relations+i, where⋂

1≤i≤k +i =+F . We then ask for a 0-minimum objective set F ′ ⊆ F wrt F . This
problem can easily be generalized to the following problem, when allowing an error δ.

Definition 5. Given a multiobjective optimization problem, the problem δ- MINIMUM
OBJECTIVE SUBSET (δ-MOSS) is defined as follows.

Instance: The objective vectors f(x1), . . . , f(xm) ∈ Rk of the solutions
x1, . . . ,xm ∈ A ⊆ X and a δ ∈ R.

Task: Compute a δ-minimum objective subset F ′ ⊆ F wrt F .

Note, that the limitation of the instances to the whole search space description is not
essential here. Since the objective values are only known for a small set of solutions in
practice, and not for the entire search space, Pareto set approximations, e.g., given by a
MOEA’s population, can also be the underlying setA of solutions. Note also, that the set
A and the relations +i, +F are only given implicitly in a δ-MOSS instance. Neverthe-
less, δ-MOSS is a generalization of MOSS and thereforeNP hard, cf. the accompanying
technical report [14]. As a variation of the δ-MOSS problem, we introduce the problem
of finding an objective subset of size ≤ k with minimum error according to F .

Definition 6. Given a multiobjective optimization problem, the problem MIN-
IMUM OBJECTIVE SUBSET OF SIZE k WITH MINIMUM ERROR (k-EMOSS) is de-
fined as follows.

Instance: The objective vectors f(x1), . . . , f(xm) ∈ Rk of the solutions
x1, . . . ,xm ∈ A ⊆ X and a k ∈ R.

Task: Compute an objective subset F ′ ⊆ F which has size |F ′| ≤ k and is
δ-nonconflicting with F with the minimal possible δ.

3.2 Algorithms

An Exact Algorithm. Algorithm 1, as a generalization of the exact algorithm for the
MOSS problem [12], solves both the δ-MOSS and the k-EMOSS problem exactly in ex-
ponential time. Thus, it can only solve small problem instances in reasonable time. The
basic idea is to consider all solution pairs (x,y) successively and store inSM all minimal
objective subsetsF ′ together with the minimal δ′ value such thatF ′ is δ′-nonconflicting
with the set F of all objectives when taking into account only the solution pairs in M ,
considered so far.

The algorithm uses a subfunction δmin(F1,F2), that computes the minimal δ error
for two solutions x,y ∈ X , such that F1 is δ-nonconflicting with F2 wrt x,y. Due to
space limitations, we cannot show here, how this minimal δ can be computed in time
O(k · m2) and refer to [14]. Furthermore, Algorithm 1 computes the union � of two
sets of objective subsets with simultaneous deletion of not δ′-minimal pairs (F ′, δ′):
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Algorithm 1. An exact algorithm for δ-MOSS and k-EMOSS.
1: Init:
2: M := ∅, SM := ∅
3: for all pairs x,y ∈ A, x �= y of solutions do
4: S{(x,y)} := ∅
5: for all objective pairs i, j ∈ F , not necessary i �= j do
6: compute δij := δmin({i} ∪ {j},F) wrt x,y
7: S{(x,y)} := S{(x,y)} � ({i} ∪ {j}, δij)
8: end for
9: SM∪{(x,y)} := SM � S{(x,y)}

10: M := M ∪ {(x,y)}
11: end for
12: Output for δ-MOSS: (smin, δmin) in SM with minimal size |smin| and δmin ≤ δ
13: Output for k-EMOSS: (s, δ) in SM with size |s| ≤ k and minimal δ

Algorithm 2. A greedy algorithm for δ-MOSS.
1: Init:
2: compute the relations �i for all 1 ≤ i ≤ k and �F
3: F ′ := ∅
4: R := A × A\ �F
5: while R �= ∅ do
6: i∗ = argmin

i∈F\F′
{|(R∩ �i) \

(�0
F′∪{i} ∩ �δ

F\(F′∪{i})

) |}
7: R := (R∩ �i∗) \ (�0

F′∪{i∗} ∩ �δ
F\(F′∪{i∗})

)
8: F ′ := F ′ ∪ {i∗}
9: end while

S1 � S2 := {(F1 ∪ F2, max{δ1, δ2}) | (F1, δ1) ∈ S1 ∧ (F2, δ2) ∈ S2

∧ �∃(F ′
1, δ

′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2 :

(F ′
1 ∪ F ′

2 ⊂ F1 ∪ F2 ∧ max{δ′
1, δ

′
2} ≤ max{δ1, δ2}

)
∧ �∃(F ′

1, δ
′
1) ∈ S1, (F ′

2, δ
′
2) ∈ S2 :

(F ′
1 ∪ F ′

2 ⊆ F1 ∪ F2 ∧ max{δ′
1, δ

′
2} < max{δ1, δ2}

)}
The correctness proof of Algorithm 1—as well as the proof of its running time ofO(m2 ·
k · 2k)—can also be found in [14]. Note, that the exact algorithm can be easily paral-
lelized, as the computation of the sets S{(x,y)} are independent for different pairs (x,y).
It also can be accelerated if line 9 of Algorithm 1 is tailored to either the δ-MOSS or the
k-EMOSS problem by including a pair (F ′, δ′) into SM∪{(x,y)} only if δ′ ≤ δ, and
|F ′| ≤ k respectively.

A Greedy Algorithm for δ-MOSS. Algorithm 2, as an approximation algorithm for
δ-MOSS, computes an objective subset F ′, δ-nonconflicting with the set F of all ob-
jectives in a greedy way. Starting with an empty set F ′, Algorithm 2 chooses in each
step the objective fi which yields the smallest set +F ′ ∩ +i without considering the
relationships in +0

F ′∪{i} ∩ +δ
F until F ′ is δ-nonconflicting with F . For the correctness

proof of Algorithm 2 and the proof of its running time of O(min{k3 ·m2, k2 ·m4}) we
once again refer to [14]. Note, that Algorithm 2 not necessarily yields a δ-minimal or
even δ-minimum objective set wrt F .
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Algorithm 3. A greedy algorithm for k-EMOSS.
1: Init:
2: F ′ := ∅
3: while |F ′| < k do
4: F ′ := F ′ ∪ argmin

i∈F\F′
{δmin (F ′ ∪ {i},F) wrt A}

5: end while

A Greedy Algorithm for k-EMOSS. Algorithm 3 is an approximation algorithm for
k-EMOSS. It supplies always an objective subset of size k but does not guarantee to find
the set with minimal δ. The greedy algorithm needs timeO(m2 ·k3) since at most k ≤ k
loops with k calls of the δmin subfunction are needed. One call of the δmin function needs
timeΘ(m2 ·k) and all other operations need timeO(1) each. Note, that Algorithm 3 can
be accelerated in a concrete implementation as the while loop can be aborted if either
|F ′| = k or δmin(F ′,F) = 0.

4 Experiments

In the following experiments, we apply the suggested algorithms to Pareto set approx-
imations, generated by a MOEA, in order to investigate (i) whether the proposed di-
mensionality reduction method yields noticeable smaller sets of objectives, (ii) how the
greedy algorithms perform, compared to the exact counterparts, and (iii) how our ap-
proach compares to the method proposed by Deb and Saxena. The experimental results
indicate that our method is not only useful to analyze the output of MOEAs but also
qualified for using it within an evolutionary algorithm. The Pareto set approximations,
used in the experiments, are generated with the IBEA algorithm [15] on a linux com-
puter (SunFireV60x with 3060 MHz). Due to space limitations, we refer to [14] for a
detailed description of the experimental setups.
Are All Objectives Necessary? This issue has been studied for 9 different 0-1-knap-
sack problem instances [16] and 3 instances for three different continuous test problems,
namely DTLZ2, DTLZ5, and DTLZ7 [4]. The Pareto set approximations, generated by
IBEA, contain up to 300 solutions for these problems. The results in Table 1 show for
all instances that an objective reduction is possible without changing the dominance
structure between the solutions, except for the 5-objective-instances and the knapsack
instances with 500 items. The results also show that, the more objectives an instance pos-
sesses, the more objectives are omissible. If we allow changes of the dominance struc-
ture within the dimensionality reduction, further objectives can be omitted. However,
the influence of a greater error on the resulting objective set size depends significantly
on the problems. For example, only small errors yield fundamentally smaller objective
sets for the DTLZ7 instances, while even a large error produces no further reduction
for all DTLZ2 and DTLZ5 instances. Similar results for the δ-MOSS problem apply for
another study, regarding the dominance structure on the whole search space for a small
knapsack instance, cf. Fig. 2. By examining the k-EMOSS problem for the 18 instances
in Table 1, we see similar results in a different manner. The smaller the chosen size of the
resulting objective sets, the larger the error in the corresponding dominance structure.
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Table 1. Sizes (for δ-MOSS) and relative errors (for k-EMOSS) of objective subsets for different
problems, computed with the greedy algorithms. For δ-MOSS, the δ value is chosen relatively to
the maximum spread of the IBEA population after 100 generations; in the case of k-EMOSS the
specified size k of the output subset is noted relatively to the problem’s number of objectives.

δ-MOSS k-EMOSS

0% 10% 20% 40% 30% 60% 90%

knapsack: 100 items, 5 objectives, 100 solutions 5 5 5 5 0.926 0.516 0.486
knapsack, 100 items, 15 objectives, 200 solutions 11 10 10 9 0.818 0.348 0.000
knapsack, 100 items, 25 objectives, 300 solutions 13 13 13 11 0.597 0.000 0.000
knapsack: 250 items, 5 objectives, 100 solutions 5 5 5 4 0.859 0.697 0.280
knapsack, 250 items, 15 objectives, 200 solutions 11 11 10 9 0.762 0.342 0.000
knapsack, 250 items, 25 objectives, 300 solutions 12 12 12 11 0.575 0.000 0.000
knapsack: 500 items, 5 objectives, 100 solutions 5 5 5 4 0.748 0.504 0.237
knapsack, 500 items, 15 objectives, 200 solutions 15 15 14 10 0.643 0.435 0.278
knapsack, 500 items, 25 objectives, 300 solutions 25 23 17 13 0.472 0.320 0.138
DTLZ2: 5 objectives, 100 solutions 5 5 5 5 0.991 0.970 0.920
DTLZ2: 15 objectives, 200 solutions 13 13 13 13 0.942 0.891 0.000
DTLZ2: 25 objectives, 300 solutions 18 18 18 18 0.832 0.782 0.000
DTLZ5: 5 objectives, 100 solutions 5 5 5 5 0.952 0.906 0.896
DTLZ5: 15 objectives, 200 solutions 11 11 11 11 0.860 0.803 0.000
DTLZ5: 25 objectives, 300 solutions 13 13 13 13 0.820 0.000 0.000
DTLZ7: 5 objectives, 100 solutions 5 5 1 1 0.135 0.134 0.132
DTLZ7: 15 objectives, 200 solutions 10 1 1 1 0.078 0.070 0.000
DTLZ7: 25 objectives, 300 solutions 11 1 1 1 0.050 0.000 0.000

Does the Exact Algorithm Outperform the Greedy One? Fig. 2 shows both the re-
sulting objective set sizes and the running times for the exact and the greedy algorithm
on the δ-MOSS problem for the 0-1-knapsack problem with four different numbers of
objectives and 7 items. The small number of items allows the examination of the whole
search space instead of a Pareto set approximation. For all four choices of the objective
set size and all allowed errors δ, the exact algorithm yields smaller objective subsets
than the greedy algorithm, while the running times, however, are considerably smaller
for the greedy algorithm. Note in this context, that Fig. 2 shows a log scale plot for the
running times. Also note, that the running time of the greedy algorithm decreases with
higher δ which is not self-evident but significant, e.g., in a Wilcoxon rank sum test. Al-
together, the results confirm the above observation, the more error is allowed, the more
objectives can be omitted. This effect strengthens with instances of higher dimension.
Is Our Method Comparable to the Dimensionality Reduction Method by Deb and
Saxena? Last, we compare our approach to the method of Deb and Saxena [11] on
k-EMOSS for a knapsack instance with 20 objectives. Table 2 shows the absolute and
relative2 δ errors for the objective subsets computed with the method of Deb and Saxena,
the exact and the greedy algorithm. With more objectives, the δ error gets smaller for
all methods. But since Deb and Saxena’s method is not especially developed for k-
EMOSS, the resulting objective sets causes larger errors in the dominance structure than
the corresponding sets computed with the greedy algorithm.

2 The relative error δrel is the absolute error δabs divided by the spread of the IBEA population,
where we define the maximal spread S of a population P as the maximal difference of the
solutions’ objective values: S = maxfi∈F maxx,y∈P {|fi(x) − fi(y)|}.
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Fig. 2. Analysis of the whole search space for the knapsack problem with 7 items and comparison
between the exact algorithm (solid lines) and the greedy algorithm (dashed lines). The sizes of the
computed objective subsets are shown in the left plot and the running times of the two algorithms
in the right one. Each data point is the average of five independent knapsack instances.

Table 2. Comparison between the approach of Deb and Saxena [11] with the exact and greedy
algorithm for k-EMOSS on a Pareto set approximation of a knapsack instance with 20 objectives.
Due to space limitations, we refer to [14] for details.

Deb and Saxena exact algorithm greedy algorithm

# obj δabs δrel δabs δrel δabs δrel

1 - - 552 0.9154 552 0.9154
2 603 1.0000 485 0.8043 508 0.8425
3 546 0.9055 447 0.7413 462 0.7662
4 546 0.9055 363 0.6020 418 0.6932
5 - - 289 0.4793 369 0.6119
6 - - 129 0.2139 356 0.5904
7 466 0.7728 0 0.0000 324 0.5373
8 466 0.7728 0 0.0000 287 0.4760
9 357 0.5920 0 0.0000 0 0.0000

≥11 0 0.0000 0 0.0000 0 0.0000

5 Conclusions

In this paper we covered the problem of objective reduction in multiobjective optimiza-
tion. We presented a necessary and sufficient condition for the possibility of an omission
of objectives with a small change in the dominance structure. Besides that, we defined a
measure of the dominance structure’s variation when omitting a certain objective set and
gave a general notion of conflicts between objective sets. We introduced the problem of
finding a minimum objective subset, maintaining the given dominance structure with a
given error and the problem of finding an objective subset with given size, changing the
dominance structure least. In addition, we proposed an exact algorithm and fast heuris-
tics for both problems. The capability of this objective reduction method was shown in
experiments for outcomes of an MOEA on four different test problems and in compar-
ison with a recently published dimensionality reduction approach.
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The presented approach is useful for reducing the number of objectives after a MOEA
run to simplify the decision maker’s process, and we are currently working on the ad-
equate integration of the presented dimensionality reduction method into an existing
MOEA to reduce the number of objectives adaptively during an EA run.
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Abstract. In this paper, we propose the use of a mathematical pro-
gramming technique called the ε-constraint method, hybridized with an
evolutionary single-objective optimizer: the cultured differential evolu-
tion. The ε-constraint method uses the cultured differential evolution to
produce one point of the Pareto front of a multiobjective optimization
problem at each iteration. This approach is able to solve difficult multi-
objective problems, relying on the efficiency of the single-objective opti-
mizer, and on the fact that none of the two approaches (the mathematical
programming technique or the evolutionary algorithm) are required to
generate the entire Pareto front at once. The proposed approach is vali-
dated using several difficult multiobjective test problems, and our results
are compared with respect to a multi-objective evolutionary algorithm
representative of the state-of-the-art in the area: the NSGA-II.

1 Introduction

Evolutionary multiobjective optimization consists of using evolutionary algo-
rithms to solve problems with two or more (often conflicting) objective func-
tions. This research area has become very popular in the last few years [1].
Concurrently, more challenging problems have been integrated into the most re-
cent benchmarks, some of which require a considerably high number of objective
function evaluations to be solved, or can even make current algorithms to fail in
their efforts to generate the true Pareto front [2].

The ε-constraint method is a mathematical programming technique, which
transforms a multiobjective optimization problem into several constrained single-
objective problems. This method has not been used too often in evolutionary
computation, due to the fact that it does not generates a set of nondominated
solutions in a single run, as most evolutionary algorithms do. Moreover, it has
been found that this method is relatively expensive when solving “easy” multiob-
jective problems, because of the several single-objective optimizations executed.

In this paper we propose the use of the ε-constraint method together with
an efficient evolutionary approach which solves constrained single-objective
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optimization problems. The optimizer consists of a differential evolution-based
cultural algorithm, which improves the optimization process by means of domain
information extracted during the evolutionary search.

The rest of the paper is organized as follows: in Section 2, the ε-constraint
method is presented in some detail. Section 3 briefly describes the cultured dif-
ferential evolution approach, which is the single-objective optimizer adopted in
this work. Section 4 describes our proposed approach. Section 5 contains our re-
sults, and a comparative study with respect to the NSGA-II. Finally, Section 6
provides our conclusions and some possible paths for future research.

2 The ε-Constraint Method

This is a multiobjective optimization technique, proposed by Haimes et al. [3], for
generating Pareto optimal solutions. It makes use of a single-objective optimizer
which handles constraints, to generate one point of the Pareto front at a time. For
transforming the multiobjective problem into several single-objective problems
with constraints it uses the following procedure (assuming minimization for all
the objective functions):

minimize fl(x)
subject to fj(x) ≤ εj for all j = 1, 2, . . . ,m, j �= l,

x ∈ S

where l ∈ {1, 2, . . . ,m} and S is the feasible region, which can be defined by
any equality and/or inequality constraint. The vector of upper bounds, ε =
(ε1, ε2, . . . , εm), defines the maximum value that each objective can have. In
order to obtain a subset of the Pareto optimal set (or even the entire set, in case
this set is finite), one must vary the vector of upper bounds along the Pareto front
for each objective, and make a new optimization process for each new vector.
The generation of different points of the Pareto front using different values of
the upper bound is illustrated in Figure 1.

For any nonlinear multiobjective optimization problem, the solution of an ε-
constraint problem yields a weakly Pareto optimal solution [3]. A true Pareto
optimal solution can be obtained either if the solution is unique, or if the opti-
mizations are done for all the objectives before reporting the solution [4]. How-
ever, to improve the speed of the generation of solutions, only one optimization
per point can be performed to obtain an approximation of the Pareto optimal
set.

To the best of our knowledge, the only attempt to hybridize the ε-constraint
method with an evolutionary algorithm is the approach called CMEA [5]. This
approach performs the intermediate optimizations using a standard evolutionary
algorithm. To reduce the computational cost of each independent optimization,
the final population of one optimization process is used as the initial popula-
tion for the next one; however, the authors noted the lack of diversity of the
approach and proposed a high mutation rate at the beginning of each process.
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Fig. 1. Generating different solutions with the ε-constraint method

The authors provide no further details about the mechanism adopted to handle
the constraints in the single-objective optimizer.

In [6], the authors proposed an extension of CMEA for three-objective prob-
lems. However, the algorithm does not seem able to find the extreme points of
the Pareto front itself, since they are provided a priori by the user. Regarding
the number of fitness function evaluations needed for CMEA to obtain good re-
sults, in [6], the authors mention that they perform 500,000 evaluations for the
three-objective knapsack problem.

3 Cultured Differential Evolution

The cultured differential evolution is a cultural algorithm [7] based on differential
evolution [8], designed to solve nonlinear constrained optimization problems. In
previous experiments [9], this algorithm exhibited a very good performance, ob-
taining competitive results when compared to other state-of-the-art evolutionary
optimization techniques, but requiring only a fraction of their fitness function
evaluations. This is because of the use of domain knowledge, extracted during
the evolutionary process, to efficiently guide the search. Next, we will briefly
describe this approach.

Cultural algorithms are made of two main components: The population space
consists of a set of possible solutions to the problem, and can be modeled using
any population based technique. The belief space is the information repository in
which the individuals can store their experiences for the other individuals to learn
them indirectly; it may be composed by several knowledge sources. Our proposed
approach uses differential evolution in the population space [8]. A pseudo-code
of our approach is shown in Algorithm 1.

In the initial steps of the algorithm, a population of popsize individuals, xj , j =
1, . . . , popsize, is created; each individual contains the n parameters of the prob-
lem, xj = (xj

1, . . . , x
j
n). An initial belief space is also created. For the offspring

generation, the variation operator of differential evolution is modified by the
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Algorithm 1. Pseudo-code of the cultured differential evolution
Generate initial population of size popsize
Initialize the belief space
repeat

for each individual j in the population do
Randomly select a knowledge source ks from the belief space
Generate a random integer irand ∈ (1, n)
for each parameter i do

xj′
i =

{
influence(ks) if rand(0, 1) < CR or i = irand

xj
i otherwise

end for
Replace xj with the child xj′, if xj′ is better

end for
Update the belief space

until the termination condition is achieved

influence() function of a knowledge source, but the parameters CR and F of the
standard differential evolution are also required. To determine if a child is better
than its parent, and, therefore, if it can replace it, we use the following rules: 1.
A feasible individual is better than an infeasible one. 2. If both are feasible, the
individual with the best objective function value is better. 3. Otherwise, the indi-
vidual with less amount of constraint violation is considered better. The amount
of constraint violation is measured using the expression: viol(x) =

∑C
c=1

gc(x)
gmaxc

where gc(x) with c = 1, . . . , C are the constraints of the problem, and gmaxc is
the largest violation found for the constraint gc(x) so far.

In our approach, the belief space is divided into 4 knowledge sources:

Situational Knowledge: consists of the best exemplar found along the evolu-
tionary process. Its infuence function modifies the direction of the variation
operator to follow the leader.

Normative Knowledge: contains the intervals for the decision variables where
good solutions have been found, to move new solutions towards them, through
the use of its influence function.

Topographical Knowledge: It consists of a set of cells, and the best individ-
ual found on each cell. The topographical knowledge has an ordered list of
the best cells, based on the fitness value of the best individual on each of
them. Its influence function moves newly generated individuals towards the
best cells.

History Knowledge: was originally proposed for dynamic objective functions
[10]. It records in a list, the location of the best individual found before each
environmental change. In our approach, instead of detecting changes of the
environment, we use it to escape from local optima.

At the beginning, all the knowledge sources have the same probability to be
applied, but during the evolutionary process, the probability of applying each
knowledge source is updated according to its success rate.
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4 Hybridizing the ε-Constraint Method with CDE

There are two main possibilities of how we can vary the ε values: one is to have
an approximation of the dimensions of the Pareto front, and then divide it into
a number of intervals depending of the number of solutions that we want as
outcome. The other, proposed by Laumanns et al. [11] is to execute an initial
optimization without constraints, and then use the result of this first step to
set the values for ε. If the Pareto front is discrete, this approach is particularly
suitable, because it can find the entire Pareto optimal set, as proved in [11].

As our proposed approach is designed to deal with real-valued problems, it
is most likely to have a continuous Pareto front, so we chose the first approach
(from the two previously mentioned) to obtain ε. The εj must vary from the
best to the worst value for the objective j, i.e. the search must move from the
ideal to the nadir objective vector. The estimation of the ideal objective vector
involves individual optimizations of one objective at a time. On the other hand,
the estimation of the nadir objective vector is a more difficult task [4]. Currently,
there are no efficient and reliable methods to estimate the nadir point, for an
arbitrary problem. Only for the two-objective case, there exists a simple method
that can provide a good estimation, which is called the payoff table. Due to this
limitation, the proposed approach is currently working only for two-objective
problems. However, there are very hard two-objective problems in the literature,
which are very difficult to solve efficiently by any of the current multi-objective
evolutionary algorithms (MOEAs). Some details about the estimation of the
dimensions of the Pareto front, in the proposed approach, are shown in the first
steps of Algorithm 2.

The single-objective optimizer, in which our method is based, is the cultured
differential evolution previously described. Let’s now assume that it is available
as the procedure cde(fl, ε, g), which performs the optimization process of the
ε-constraint method during g generations and returns the best point found. If
the procedure is called without any ε values (cde(fl, g)), the optimization is
performed removing the constraints of the form fj(x) ≤ εj . The pseudo-code of
the ε-constraint with CDE (ε-CCDE) is shown in Algorithm 2.

In Algorithm 2, the lower and upper bounds, lb and ub, are increased by
a tolerance t; this is done since the results of the cde procedure are only ap-
proximations, and it is possible to find a better point outside of them. We use
t = 0.05(ub− lb). The ε values are updated with a δ, which is dependent of the
number of points in the Pareto front desired by the user or the decision maker,
p. It is obtained as follows: δ = ub−lb

p This way, we aim that the final points
are equally spaced in their projection over the f2 axis. g is an input parame-
ter of the algorithm, but it is very important, because together with p and the
population size of the cde procedure, popsize, define the total number of fitness
function evaluations required for the approach. The number of fitness function
evaluations is approximately p · g · popsize.

Algorithm 2 shows f1 as the objective to be optimized, and f2 as the con-
straint. However, one can interchange the roles of the objectives if the problem
looks harder to solve in the original setting. In the experiments shown in this



548 R.L. Becerra and C.A. Coello-Coello

Algorithm 2. ε-Constraint with CDE.
P = ∅
ub = f2(cde(f1, 2g))
lb = f2(cde(f2, 2g))
ub = ub + t, lb = lb − t
ε = lb
while ε ≤ ub do

x = cde(f1, ε, g)
if x is nondominated with respect to P then

P = P − {y ∈ P | x � y}
P = P ∪ {x}

end if
ε = ε + δ

end while

paper, the original setting was always preserved, and f1 was always taken as
the objective to optimize, to allow a fair comparison. In order to improve the
performance of each optimization process, the algorithm shares a percentage of
the population, in the initial population of the next process. This helps because
the problems to be solved are very similar, and the only change is the upper
bound of the objective functions that are treated as constraints. When all the
population is shared, the loss of diversity leads to premature convergence. In
practice, we found that a small percentage (around 10%) of the population to
be shared is enough to improve convergence without losing diversity.

5 Comparison of Results

In order to validate the performance of the proposed approach, some test func-
tions have been taken from the specialized literature. One may think that the
several single-objective optimizations required may give rise to a prohibitively
high computational cost, which is unnecessary considering that a modern MOEA
may produce a similar approximation of the Pareto front at a much more af-
fordable computational cost. There are problems, however, where this is not the
case, and in which a modern MOEA cannot converge to the true Pareto front
even if we do not restrict the number of evaluations performed. It is precisely in
those cases for which we believe that our approach can be a viable alternative.

In order to validate our hypothesis we looked specifically for hard multiob-
jective problems within the existing benchmarks. Our search led us to the use
of DTLZ8 and DTLZ9 (from [12]), with 20 decision variables, as suggested by
their designers. The main difficulty of these two problems lies on the satisfaction
of their constraints. We also looked at a more recent benchmark proposed by
Huband et al. [2], where we found harder problems (WFG1, WFG2, WFG3 and
WFG9). Each of them has 24 variables. WFG1 is strongly biased toward small
values of the first 4 variables, WFG2 and WFG3 are non-separable, but WFG2
has also a disconnected Pareto front, and WFG9 is a deceptive problem.
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We decided to compare results with respect to the NSGA-II [13], since this is
an approach representative of the state-of-the-art in the area.

5.1 Experimental Setup

We ran both algorithms during 50,000 fitness function evaluations each (except
for two problems). We aimed to obtain a set of 50 points as a result of each
run, so we adapted the parameters according to that. For the ε-CCDE, the
parameters adopted were: p = 50, g = 48, with 10% of the population shared
between optimizations (this 10% is chosen at random). For the cde procedure we
used popsize = 20, F = 0.7, CR = 0.5. The population size of NSGA-II was set
to 52, and the number of generations to 962. The rest of the parameteres were
set as recommended by its authors: probability of crossover = 0.9, probability of
mutation = 0.0333, the value of the distribution index for crossover = 15, and
the value of the distribution index for mutation = 20.

Only for WFG1, the total number of fitness function evaluations was increased
to 250,000, because this is a really difficult problem. The parameters adopted
in this case were: g = 120 and popsize = 40. The number of generations of
the NSGA-II was changed in this case to 4808. Even with this large number of
iterations, the NSGA-II was not able to reach the true Pareto front. On the other
hand, for WFG2, the total number of fitness function evaluations was decreased
to 25,000, because this problem is less difficult than the others. The NSGA-II
ran in this case for 481 generations, and our approach adopted popsize = 10.

In Figure 2, we show the results of a single run for each test problem. Since
a visual comparison of the results may be inaccurate, we also used some perfor-
mance measures to allow a quantitative comparison of results.

5.2 Performance Measures

To assess the performance of the proposed approach, we adopted the two set
coverage (CS) metric [14], which is an indicator of how much a set covers (or
dominates) another one. A value of CS(X,Y ) = 1 means that all points in X
dominate or are equal to Y . If CS(X,Y ) = 0, there are no points in X that
dominate some point in Y . We executed our ε-CCDE 30 times per problem,
and then executed the NSGA-II 30 times with the same random seeds, and we
performed 30 one-to-one comparisons. The results are summarized in Table 1.

In all the problems in Table 1, the ε-CCDE obtained better average values.
However, the improvement is not always the same. In WFG1, all the points of ε-
CCDE always dominate the points produced by the NSGA-II, because the latter
cannot properly converge. On the other hand, in DTLZ8 and 9, both algorithms
could make most of their points to converge to the true Pareto front. But, as it
can be seen from the application of the next performance measure, the ε-CCDE
was able to generate points nearer to the ends of the true Pareto front.

Our second performance measure was the binary coverage (Qc) [15], which is
an indicator of the ability of an algorithm to obtain solutions near the extrema of
the Pareto front, measuring the largest possible angle between two vectors of the
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Fig. 2. Results produced by our ε-CCDE and the NSGA-II on the six test problems
adopted

Table 1. Mean and standard deviation of the CS measure (a larger value is better for
the first algorithm)

Test Problem CS(ε-CCDE, NSGA-II) CS(NSGA-II, ε-CCDE)
mean (std. dev.) mean (std. dev.)

DTLZ8 0.1415 (0.0521) 0.0185 (0.0184)
DTLZ9 0.1849 (0.0715) 0.1334 (0.0805)
WFG1 1.0000 (0.0000) 0.0000 (0.0000)
WFG2 0.8509 (0.1771) 0.0362 (0.0614)
WFG3 0.3987 (0.2691) 0.0908 (0.1368)
WFG9 0.6415 (0.3669) 0.0995 (0.2114)
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output of an algorithm. This is a second criterion when proper convergence has
been achieved. A value of Qc(X,Y ) > 0 means that X obtained points nearer
to the extrema of the Pareto front (it covers a larger angle). In Table 2, we show
the results (note that Qc(Y,X) = −Qc(X,Y )).

Table 2. Mean and standard deviation of the binary coverage measure (a larger value
is better for the first algorithm)

Test Problem Qc(ε-CCDE, NSGA-II)
mean (std. dev.)

DTLZ8 0.2496 (0.0536)
DTLZ9 0.1204 (0.1180)
WFG1 0.2112 (0.0634)
WFG2 0.0677 (0.2172)
WFG3 -0.0299 (0.0253)
WFG9 -0.0913 (0.1154)

This time, our approach obtained the largest values for DTLZ8, DTLZ9 and
WFG1. For WFG3 and WFG9, this metric indicates that the NSGA-II can cover
a larger portion of the Pareto front. However, it is important to keep in mind
that this is a secondary criterion, which becomes relevant only when convergence
has been achieved. In this case, and based on the two set coverage measure, our
ε-CCDE achieved a better convergence than the NSGA-II.

6 Conclusions and Future Work

In this paper, we explored the use of the ε-constraint method hybridized with
an efficient evolutionary single-objective optimizer, when solving hard multiob-
jective optimization problems. Our results show that the proposed approach can
solve problems that a highly competitive MOEA (the NSGA-II) cannot. Also,
there are some problems where the NSGA-II can converge properly, but it cannot
reach the ends of the true Pareto front, while our proposed approach obtained
a better spread of solutions in such cases. This approach may be recommended
when other algorithms cannot achieve a proper convergence, or when it is known
that the problem is deceptive or is strongly biased.

As part of our future work, we aim to extend our approach for m > 2 objec-
tives. This task requires that we implement a mechanism to estimate the ideal
and nadir objective vectors for more than 2 objectives.
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Abstract. Diversity maintenance of solutions is an essential part in
multi-objective optimization. Existing techniques are suboptimal either
in the sense of obtained distribution or execution time. This paper pro-
poses an effective and relatively fast method for pruning a set of non-
dominated solutions. The proposed method is based on a crowding esti-
mation technique using nearest neighbors of solutions in Euclidean sense,
and a technique for finding these nearest neighbors quickly. The method
is experimentally evaluated, and results indicate a good trade-off between
the obtained distribution and execution time. Distribution is good also in
many-objective problems, when number of objectives is more than two.

1 Introduction

Pruning a set of non-dominated solutions is a common and essential part of
multi-objective evolutionary algorithms (MOEAs) such as the strength Pareto
evolutionary algorithm (SPEA2) [1] and the elitist non-dominated sorting ge-
netic algorithm (NSGA-II) [2]. An idea is to prune a non-dominated set to have
a desired number of solutions in such a way that the remaining solutions have
as good diversity as possible, meaning that the spread of extreme solutions is
as high as possible, and the relative distance between solutions is as equal as
possible. The best way to obtain a good distribution would be using some clus-
tering algorithm. However, this is computationally expensive, since clustering
algorithms usually take time O

(
MN2

)
to prune a set of size N with M ob-

jectives [3]. The complexity makes clustering techniques inapplicable to large
population sizes, especially as pruning is usually done after each generation.
The pruning technique of SPEA2 is based on finding the kth nearest neighbor of
solutions, and has complexity of clustering because of a naive implementation.

In NSGA-II, the pruning of non-dominated solutions takes timeO (MN logN)
based on the crowding distance. The pruning method of NSGA-II provides good
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diversity in the case of two objectives, but when the number of objectives is
more than two, the obtained diversity declines drastically [4]. The reason for
the bad performance is the fact that the crowding distance fails to approximate
the crowding of the solutions when the number of the objectives is more than
two [5].

Pruning of non-dominated solutions can be seen as a multi-objective optimiza-
tion problem in itself: the method should provide as good diversity as possible
and be as fast as possible. It has been considered that these objectives are con-
flicting. However, this paper proposes a new algorithm with two different crowd-
ing estimation techniques for pruning non-dominated solutions in such a way
that the obtained diversity is good also in the case of more than two objectives,
and the consumed time is considerably less than in clustering.

2 Proposed Pruning Method

The basic idea of the proposed pruning method is to eliminate the most crowded
members of a non-dominated set one by one, and update the crowding informa-
tion of the remaining members after each removal. This idea is trivial but it
contains two problems: how to efficiently determine the crowding of members
and how to efficiently update the crowding information of remaining members
after removal. Straightforward approaches for these computations are in time
complexity class O(MN2), which makes them inapplicable to large population
sizes. Therefore two approaches for crowding estimation based on the nearest
neighbors of solution candidates are introduced, and then a technique for find-
ing these nearest neighbors quickly is introduced.

2.1 Crowding Estimation Based on Nearest Neighbors

2-NN. Probably the simplest crowding estimation technique is to measure the
distance between a solution and its nearest neighbor solution, and use this dis-
tance to estimate crowding. The solution having the smallest distance is con-
sidered as the most crowded. When the Euclidean (L2) distance metric is used
for distance calculations, there will always be two solutions having the same
smallest distance to the nearest neighbor due to the symmetry property of the
metric. Instead of selecting randomly one of the two solutions, the solutions can
be ordered according to the distance to the second nearest neighbor. The solu-
tion having smaller distance to second nearest neighbor is more crowded. If the
distance to the nearest and second nearest neighbors is marked with LNN1

2 and
LNN2

2 , respectively, then a distance vector d2−NN = [LNN1
2 , LNN2

2 ] is attached to
each solution. In the case of real-coded variables and continuous objective func-
tions, this provides a crowding measure, which usually establishes unambiguous
ordering of solutions having the same smallest distance to the nearest neighbor.

M-NN. A bit more developed idea is to use the k nearest neighbors for crowding
estimation in such a way that distances to the k nearest neighbors are multiplied
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together, and the solution having the smallest product is considered the most
crowded. The product of distances, which is here called the vicinity distance, is
a simple measure, but it already manages to contain information about vicinity
and location. The idea is extended in such a way that the number of nearest
neighbors for crowding estimation calculations is kept the same as the number
of objectives, i.e., k = M . More formally vicinity distance is defined dM−NN =∏M

i=1 L
NNi
2 , where LNNi

2 is distance to the ith nearest neighbor according to L2
distance metric.

2.2 Efficient k Nearest Neighbor Search

Finding the k nearest neighbors (k-NN) is a widely used operation in vector
quantization (VQ), and many efficient algorithms have been proposed during
the last three decades. The exact k-NN search technique used here is known as
the equal-average nearest neighbor search (ENNS) algorithm [6, 7], and it uses
the following theorem for the Euclidean (L2) distance measure to reduce the
amount of distance calculations:∣∣∣∣∣ 1

M

M∑
i=1

xi −
1
M

M∑
i=1

yi

∣∣∣∣∣ ≤ L2(x,y)√
M

⇔
(

M∑
i=1

xi −
M∑
i=1

yi

)2

≤ML2(x,y)2 . (1)

Thus, if the sums of elements of given vectors x and y are known, an upper bound
for the Euclidean distance between them can be calculated. It is more convenient
to use the squared Euclidean distance, since the actual distance values are not
needed for finding neighbors, and calculating the square root is an expensive
operation computationally. The geometrical interpretation of (1) is that vectors
x and y are projected to a central axis of a hypercube (a projection vector
starting from origin and going through point (1, 1, . . . , 1)) and then the difference
of projection values is at most equal to the Euclidean distance between vectors
divided by the square root of the number of elements in the vectors. It has been
proved that (1) holds also for any other projection vector p than the central axis
of a hypercube, and (1) transforms into form [8]:

(px − py)
2 ≤ L2(x,y)2 , where px =

p · x
|p| and py =

p · y
|p| . (2)

It is useful to select the projection axis to represent the direction in which the
vectors have the largest variance, and such axis can be obtained using, e.g.,
principal component analysis (PCA) [8]. However, data analysis is not necessarily
needed in the case of a set of non-dominated solutions, since there already exists
information on how the vectors/solutions are distributed. When all the objectives
are to be minimized (or maximized), there exists such kind of monotonicity
between objective values that when values of M−1 objectives increase, then the
objective value of the remaining objective decreases. Thus, there is a negative
correlation between objective values, and the projection axis can be chosen to
go through points (0, 0, . . . , 0, 1) and (1, 1, . . . , 1, 0) if the objective values have
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been normalized to the value range [0, 1]. The projection axis chosen in this way
in the case of two and three objectives has been illustrated in Fig. 1 for sets of
non-dominated solution points. Projections of the points are also illustrated.
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Fig. 1. Selected projection axis in the case of two and three objectives when k-NN
search based on (2) is used

The ENNS technique can be used to find the nearest neighbors for solutions in
such a way that first the projected values of the vectors are calculated, and these
values are sorted. Then, for each solution vector, the distance to the solution
having the nearest projected value is set as the best minimum distance found so
far. The distances to other neighbor solutions according to the projected value
are also calculated, and the minimum distance value is updated accordingly, as
long as there exist neighbors for which (2) holds. This technique can be extended
easily for finding the k nearest neighbors using k-th smallest distance instead of
the minimum distance to reject distant solutions with (2) [8].

Besides ENNS, a technique called partial distortion search (PDS) algorithm [9]
is used to speed up the execution further. It interrupts the distance calculation
if a partial sum of elements exceeds a known minimum distance value. This
technique adds one extra comparison but decreases the number of mathematical
calculations speeding up the execution.

2.3 The Proposed Algorithm

The proposed pruning algorithm is based on the crowding estimation and k-NN
search techniques presented above, and minimization of all objectives is assumed.
For efficient maintenance of crowding information of remaining solutions after
removal of the most crowded solution, a priority queue such as a heap [10, pp.
140–152] is used. The proposed algorithm is:

Pruning of non-dominated set
input: a non-dominated set F (objectives are minimized),

the size n of a desired pruned set
output: elements of a heap H
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1 find minimum (fmin
i ) and maximum (fmax

i ) values of each objective i of
the members of F and normalize members according to the formula
fi = (fi − fmin

i )/(fmax
i − fmin

i )
2 for each member of F , change Mth objective fM to value 1− fM and

calculate a sum of objective values, m
3 for each member of F , find nearest neighbors (cf. Sect. 2.2) and

calculate distance measure d (cf. Sect. 2.1) for crowding estimation
4 for members of F having a minimum or maximum objective value,

assign d = ∞
5 create an ascending heap H from the members of F
6 while |H| > n
7 remove an element (root node) with a minimum d value from H and

update H
8 for the neighbors of the removed element
9 calculate a new d value
10 replace old d value in H with the new one and update H

The first operation of the algorithm in line 1 is the normalization of objec-
tive values of the obtained non-dominated set. Different objectives might have
very different value ranges, and using unnormalized values would distort the ob-
tained distribution. The time complexity of the normalization is O(MN). The
normalization can lead to an infinite value if minimum and maximum values
for some objective are same. Then this objective can be discarded from calcu-
lations. The second line of the algorithm re-maps the M -th objective value fM

to value 1 − fM so that the original form (1) of ENNS can be used directly.
The complexity of the operations in line 2 is O(MN). Finding the M nearest
neighbors (in the case of M -NN crowding measure) for all the members of given
set in line 3 is known as the all-M -nearest-neighbor problem, and it can be done
in time O (MN logN) [11]. Line 4 takes time O(M) and makes sure that mem-
bers having extreme objective values are removed last. Creating a heap in line
5 takes time O (N logN). The while-loop in lines 6–10 is executed at most N
times (on average N/2 times). Removing a minimum element from the heap and
updating the heap to have correct structure in line 7 takes time O (logN). If
the M -NN crowding measure is used, each member of a non-dominated set has
on average M neighbors, whose crowding values are affected if the member is
removed (these neighbors can be found easily if neighborhood information is also
stored when the nearest neighbors have been searched in line 3). Therefore, the
for-loop in lines 8–10 is executed M times on average. The calculation of a new
crowding value in line 9 means finding the M nearest neighbors. This can be
done in time O(M logN) for a static set of vectors. Now, the set of vectors is
changing (reducing) and the actual time complexity depends on how the vectors
are distributed. Finally, replacing the crowding value to the heap, and updating
the heap to have the correct structure in line 10 takes time O (logN).

This analysis leads to a complexity class estimate O(M2N logN) for the whole
pruning algorithm. However, when the k-NN method presented earlier in this
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section is used in lines 3 and 9, the actual time complexity depends on how
members of the non-dominated set are distributed on the selected projection
axis. As the pruning method is used extensively, the most interesting thing is to
know the expected complexity in practice. This, as well as the performance of
the method according to the obtained diversity, is evaluated experimentally in
the following.

3 Experiments

The proposed pruning method with the two introduced crowding estimation
techniques was implemented in the Generalized Differential Evolution 3 (GDE3)
[12], which was then used to solve test problems. Also, pruning based on the
crowding distance as in NSGA-II was implemented in GDE3. GDE3 is an ex-
tension of Differential Evolution (DE) [13] for constrained multi-objective opti-
mization. Roughly speaking, the evolutionary part of the algorithm is DE and
the multi-objective part is from NSGA-II [2]. This combination has been shown
to give benefit over NSGA-II with rotated problems [14]. Furthermore, GDE3
has other improvements over NSGA-II, and an interested reader is advised to
see references [12, 5].

NSGA-II and SPEA2 were used for comparison1, and the diversity of the
obtained results was measured using spacing, maximum spread, and hypervol-
ume [15, pp. 327–333]. The spacing (S) measures the standard deviation of
distances from each vector to the nearest vector in the obtained non-dominated
set. A smaller value for S is better, and for an ideal distribution S = 0. The max-
imum spread (D) measures the length of the diagonal of a minimal hyperbox,
which encloses the obtained non-dominated set, and a larger value tells about
a larger spread between extreme solutions. The hypervolume (HV ) calculates
the volume of the objective space between the solutions and a reference (nadir)
point, and a larger value is better. The hypervolume measures both diversity
and convergence, but reflects more of convergence in its value.

Due to space limitations, only a small part of results are shown. The complete
set of results (including figures and more test problems) can be found in [16],
where also the code for the proposed pruning method is provided.

3.1 Bi-objective Problems

Bi-objective test problems, ZDT1, ZDT3, and ZDT6 [15, pp. 356–360] were solved
using population size 100 and 1000 generations. Tests were repeated 100 times
and mean & standard deviation values are reported in Table 1. According to the
spacing value, the proposed pruning method provides the best diversity, and the
M -NN crowding estimation technique is slightly better. Differences in the max-
imal spread and hypervolume values are minimal compared to the differences in
the spacing values. The proposed pruning method takes about two times longer to
1 Code for NSGA-II was obtained from the web site www.iitk.ac.in/kangal and for

SPEA2 from the web site www.tik.ee.ethz.ch/pisa.
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Table 1. Mean and standard deviation values of spacing (S), maximum spread (D),
hypervolume (HV ), and CPU times for ZDT test problems measured from 100 in-
dependent runs. GDE3 is implemented with pruning methods based on the crowding
distance (CD) and described crowding estimation techniques (2-NN & M -NN).

Problem Method S D HV Total time (s) Pruning time
(s)

ZDT1 NSGA-
II

6.9175e − 03 ±
5.6118e − 04

1.4146e + 00 ±
2.2506e − 03

3.6604e + 00 ±
2.3269e − 04

2.4076e + 00 ±
1.0456e − 02

1.5600e − 01 ±
3.8006e − 02

GDE3,
CD

6.4240e − 03 ±
5.5946e − 04

1.4113e + 00 ±
1.4634e − 03

3.6610e + 00 ±
1.2739e − 03

1.4877e + 00 ±
1.3246e − 02

1.0530e − 01 ±
3.1669e − 02

GDE3,
2-NN

2.8501e − 03 ±
2.8597e − 04

1.4114e + 00 ±
1.5524e − 03

3.6615e + 00 ±
1.7195e − 03

1.3560e + 00 ±
6.5134e − 03

2.3340e − 01 ±
3.6048e − 02

GDE3,
M-NN

2.6305e − 03 ±
2.8921e − 04

1.4115e + 00 ±
1.5376e − 03

3.6616e + 00 ±
1.1364e − 03

1.3570e + 00 ±
7.4536e − 03

2.3260e − 01 ±
4.1013e − 02

SPEA2 3.2063e − 03 ±
2.9122e − 04

1.4142e + 00 ±
7.2339e − 05

3.6619e + 00 ±
3.6100e − 05

1.1756e + 01 ±
7.0249e − 02

7.6469e + 00 ±
1.9474e − 01

ZDT3 NSGA-
II

4.9342e − 03 ±
4.5888e − 04

1.9676e + 00 ±
1.0790e − 03

4.8146e + 00 ±
1.3933e − 04

2.3584e + 00 ±
9.3980e − 03

1.5770e − 01 ±
3.7196e − 02

GDE3,
CD

4.3573e − 03 ±
4.1398e − 04

1.9639e + 00 ±
1.7943e − 03

4.8151e + 00 ±
1.0630e − 04

1.3838e + 00 ±
5.4643e − 03

8.5400e − 02 ±
2.9074e − 02

GDE3,
2-NN

1.7614e − 03 ±
1.9583e − 04

1.9600e + 00 ±
3.6983e − 02

4.8117e + 00 ±
3.6699e − 02

1.2235e + 00 ±
5.9246e − 03

1.6420e − 01 ±
4.5797e − 02

GDE3,
M-NN

1.6415e − 03 ±
1.6563e − 04

1.9639e + 00 ±
1.5796e − 03

4.8154e + 00 ±
2.5151e − 05

1.2194e + 00 ±
5.4717e − 03

1.6510e − 01 ±
4.3797e − 02

SPEA2 3.0892e − 03 ±
3.4177e − 04

1.9673e + 00 ±
1.0494e − 04

2.8151e + 00 ±
6.1957e − 05

1.1500e + 01 ±
7.2117e − 02

7.3613e + 00 ±
2.2574e − 01

ZDT6 NSGA-
II

8.3199e − 03 ±
6.6005e − 04

1.0463e + 00 ±
1.2942e − 04

2.9204e + 00 ±
2.8917e − 04

1.3882e + 00 ±
8.2118e − 03

1.4790e − 01 ±
3.3584e − 02

GDE3,
CD

6.6047e − 03 ±
6.5536e − 04

1.1648e + 00 ±
2.5260e − 02

3.0209e + 00 ±
1.3448e − 01

1.2147e + 00 ±
5.7753e − 03

9.6869e − 02 ±
3.4866e − 02

GDE3,
2-NN

2.7362e − 03 ±
3.0119e − 04

1.1656e + 00 ±
2.0350e − 02

3.0265e + 00 ±
1.0448e − 01

1.2347e + 00 ±
5.7656e − 03

2.3490e − 01 ±
3.5971e − 02

GDE3,
M-NN

2.6386e − 03 ±
2.8531e − 04

1.1632e + 00 ±
3.1709e − 02

3.0114e + 00 ±
1.8180e − 01

1.2309e + 00 ±
6.2109e − 03

2.3240e − 01 ±
3.6985e − 02

SPEA2 3.1010e − 03 ±
3.0937e − 04

1.1685e + 00 ±
3.6318e − 05

3.0412e + 00 ±
1.5286e − 04

1.1662e + 01 ±
5.7654e − 02

7.5451e + 00 ±
2.0404e − 01

execute than the pruning method based on the crowding distance. However, the
time needed for pruning is less than 20% from total CPU time needed2.

3.2 Tri-objective Problems

The proposed pruning method was also tested on a set of tri-objective test
problems, DTLZ1, DTLZ4, and DTLZ7 [4], using population size 300 and 1000
generations. Results after one run are shown in [16], and numerical results for
the problems from 100 repetition runs are shown in Table 2. The improvement
over the pruning method based on the crowding distance is clearly visible in [16],
and, visually, the proposed pruning method provides similar results compared to
SPEA2. Also the spacing metric in Table 2 indicates the same, this time the 2-
NN crowding estimation technique being slightly better in most cases compared
to M -NN. As in the case of bi-objective problems, the maximal spread and
hypervolume values have only small differences. The proposed pruning method
is now at worst about eight times slower than the pruning method based on the
crowding distance. The pruning time is intelligibly less for the 2-NN than for
the M -NN crowding estimation technique, and it is also less for DTLZ7, which
does not have continuous Pareto-front.
2 The total CPU time for the proposed pruning method is smaller compared to

GDE3 with the crowding distance because of overall speedups in the program code.
GDE3 uses a naive O(MN2) non-dominated sorting implementation instead of faster
O(N logM−1 N) implementation [3].
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Table 2. Mean and standard deviation values of spacing (S), maximum spread (D),
hypervolume (HV ), and CPU times for DTLZ test problems measured from 100 in-
dependent runs. GDE3 is implemented with pruning methods based on the crowding
distance (CD) and described crowding estimation techniques (2-NN & M -NN).

Problem Method S D HV Total time (s) Pruning time
(s)

DTLZ1 NSGA-
II

2.7301e − 02 ±
3.6882e − 03

8.0296e − 01 ±
4.8071e − 02

9.6937e − 01 ±
2.0890e − 03

9.3375e + 00 ±
6.6284e − 02

6.3347e − 01 ±
1.2919e − 01

GDE3,
CD

2.3927e − 02 ±
1.1410e − 03

9.0238e − 01 ±
1.7048e − 01

9.6748e − 01 ±
3.4917e − 02

1.3648e + 01 ±
1.1168e − 01

6.2460e − 01 ±
6.3444e − 02

GDE3,
2-NN

1.0591e − 02 ±
7.4208e − 04

8.8532e − 01 ±
1.2251e − 01

9.7272e − 01 ±
2.3476e − 02

1.6237e + 01 ±
1.0560e − 01

3.5605e + 00 ±
8.7404e − 02

GDE3,
M-NN

1.1260e − 02 ±
6.8360e − 04

9.1129e − 01 ±
1.9040e − 01

9.6780e − 01 ±
3.6437e − 02

1.7627e + 01 ±
1.6803e − 01

5.1749e + 00 ±
1.0265e − 01

SPEA2 8.7750e − 03 ±
2.0557e − 03

8.6981e − 01 ±
2.1762e − 02

9.7622e − 01 ±
3.9209e − 05

1.2211e + 02 ±
1.2821e − 01

7.6808e + 01 ±
1.7632e − 01

DTLZ4 NSGA-
II

3.1285e − 02 ±
1.5006e − 03

1.7385e + 00 ±
1.0485e − 02

7.3842e + 00 ±
1.5108e − 02

1.5752e + 01 ±
8.6729e − 02

7.7610e − 01 ±
6.4790e − 02

GDE3,
CD

2.8450e − 02 ±
1.2669e − 03

1.7321e + 00 ±
1.0347e − 06

7.4252e + 00 ±
2.9245e − 03

1.3813e + 01 ±
5.8934e − 02

6.4060e − 01 ±
6.9614e − 02

GDE3,
2-NN

1.4207e − 02 ±
1.6561e − 03

1.7289e + 00 ±
3.1785e − 02

7.4330e + 00 ±
1.0168e − 01

1.6918e + 01 ±
4.9857e + 00

4.1224e + 00 ±
4.9245e + 00

GDE3,
M-NN

1.5221e − 02 ±
1.1413e − 03

1.7321e + 00 ±
1.6773e − 07

7.4437e + 00 ±
2.2990e − 04

1.8109e + 01 ±
1.1213e − 01

5.1986e + 00 ±
1.7774e − 01

SPEA2 1.2543e − 02 ±
2.4636e − 03

1.7465e + 00 ±
7.0831e − 02

7.3918e + 00 ±
1.9807e − 01

1.3105e + 02 ±
1.0151e + 00

8.7409e + 01 ±
1.2951e + 00

DTLZ7 NSGA-
II

2.3073e − 02 ±
1.6451e − 03

3.5925e + 00 ±
4.8045e − 02

1.3493e + 01 ±
2.4877e − 02

1.4823e + 01 ±
1.4667e − 01

7.7070e − 01 ±
1.0215e − 01

GDE3,
CD

2.3658e − 02 ±
2.6283e − 03

3.6179e + 00 ±
7.8436e − 03

1.3545e + 01 ±
1.9480e − 02

1.2066e + 01 ±
2.2497e − 02

5.5920e − 01 ±
6.4834e − 02

GDE3,
2-NN

9.1687e − 03 ±
1.1766e − 03

3.6153e + 00 ±
3.0744e − 03

1.3586e + 01 ±
5.3207e − 03

1.2809e + 01 ±
2.9450e − 01

2.2352e + 00 ±
1.0391e − 01

GDE3,
M-NN

9.7859e − 03 ±
8.8586e − 04

3.6155e + 00 ±
2.6746e − 03

1.3588e + 01 ±
3.7791e − 03

1.3540e + 01 ±
3.3633e − 02

3.0734e + 00 ±
6.1664e − 02

SPEA2 1.5140e − 02 ±
8.2394e − 04

3.6067e + 00 ±
7.1954e − 03

1.3577e + 01 ±
1.1132e − 02

1.3342e + 02 ±
6.7649e − 02

8.8697e + 01 ±
1.0649e − 01

3.3 Measured Pruning Time Complexity

The time complexity of the proposed pruning method was verified experimentally
in the case of two and three objectives using ZDT1 and DTLZ1. The measured
pruning times for various population sizes are shown in Fig. 2.

In the bi-objective case (ZDT1), the proposed pruning method takes about
twice the time of the pruning method based on the crowding distance, and com-
plexity classes of the methods are same. Intelligibly, there is no notable difference
between the observed pruning times with the 2-NN and M -NN crowding esti-
mation techniques.

In the tri-objective case (DTLZ1), the execution time of the proposed pruning
method with the M -NN crowding estimation technique is at worst ten times more
than the time with the pruning method based on the crowding distance, and the
pruning time with the 2-NN crowding estimation technique is less than with
the M -NN crowding estimation technique. It seems that the proposed pruning
method scales well with the population size.

The difference between the measured pruning times in bi- and tri-objective
cases is larger than the estimated complexity class O(M2N logN) predicts. The
reason for this is probably the fact that the search of the nearest neighbors in
the case of two objectives is relatively easy because of the monotonic relation
between solutions in the objective space. On the other hand, the difference be-
tween the 2-NN and M -NN crowding estimation techniques in the tri-objective
case is relatively small, although the difference should be in proportion to M2.
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Fig. 2. Average and standard error of pruning times measured from 100 runs of solving
ZDT1 and DTLZ1 by GDE3 with pruning methods based on the crowding distance
(CD) and described crowding estimation techniques (2-NN & M -NN)

A probable reason for this is that there are constant calculations, which decrease
the proportional difference of measured times.

Estimation of the actual complexity class would require more problems with
different Pareto-fronts and a larger number of objectives. However, the measured
pruning times appear logarithmic and considerably smaller than that of the
pruning method in SPEA2 [5].

4 Conclusions

A pruning method with two different crowding estimation techniques for pruning
a set of non-dominated solutions has been proposed. The method is based on
crowding estimation using nearest neighbors of solutions and a fast technique
for finding the nearest neighbors.

According to the experimental results, the proposed pruning method pro-
vides a better distribution than the pruning method based on the crowding
distance. Especially in the case of tri-objective problems, the obtained diversity
is significantly better. The obtained distribution is observed to be similar to the
distribution obtained with SPEA2. The execution time needed for the proposed
pruning method is more than for the pruning method based on the crowding
distance but significantly less than for the pruning method in SPEA2.

Based on the results, the proposed method provides near optimal distribution,
which does not need improvement. The execution time might be still reduced
even thought it is currently reasonable. Evaluating the performance in the case
of more than three objectives, remain as future work.
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Abstract. In real-world optimisation problems, feasibility of solutions is
invariably an essential requirement. A natural way to deal with feasibility
is to cast it as an additional objective in a multi-objective optimisation
setting. In this paper, we consider two possible ways to do this, using a
multi-level scheme for ranking solutions. One strategy considers feasibil-
ity first, before considering objective values, while the other reverses this
ordering. The first strategy has been explored before, while the second
has not. Experiments show that the second strategy can be much more
successful on some difficult problems.

1 Introduction

Evolutionary algorithms have shown to be a powerful optimisation tool, solving
complex problems that are difficult to specify analytically, are highly non-linear,
possibly dynamic, have multiple competing objectives, and arbitrary constraints
on feasibility. Real-world problems often have these messy, difficult features.
In particular, optimisation in the real-world often involves trade-offs (e.g. costs
against quality), and an infeasible solution is clearly of no use in the real-world.

Especially in the case where the feasible region of the search space is not known
a priori, an effective search method must be able to traverse infeasible regions.
Researchers have realised that a natural way to do this with a multi-objective
algorithm is to assign an “infeasibility” value to a solution, and to treat it as an
additional objective. The idea is that in the early stages of the search, a “nearly
feasible” region containing good quality solutions is roughly identified, and then
further refinement eliminates infeasible solutions and sharpens the performance
in the other objectives.

In this paper, we investigate two ways to implement this idea by using a multi-
level ranking scheme for selection in a multi-objective evolutionary algorithm.
One variant ranks solutions primarily on the other objectives, and uses feasibility
to resolve ties between mutually non-dominating solutions. The other variant
ranks solutions primarily on feasibility, and breaks ties using the other objectives.
On the face of it, each approach would appear to have its benefits.

2 Constrained Multi-objective Optimisation

In its most general form, we consider a constrained multi-objective optimisation
problem of the form:

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 563–572, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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minimise fi(x), i = 1, ..., n,
subject to g(x) = 0,

where each fi : S → �, g : S → �+

That is, we seek to optimise multiple real-valued objectives fi over some
search space S, subject to feasibility constraints, expressed as a requirement
that a certain non-negative real-valued function g maps to zero. Informally, this
infeasibility function represents “how infeasible” a solution is. In a real-world
problem, it may be that neither fi nor g can be written down explicitly; for
example, they may be outcomes of a complex simulation. Other formulations of
constrained optimisation can readily be transformed into this formalism.

Many approaches have been used to tackle infeasibility in such problems, in-
cluding adding penalty terms into objectives, use of specially designed operators,
repair methods, co-evolutionary methods, and multi-objective methods [1,2]. In
this paper, we are interested in multi-objective methods that employ a ranking
scheme (usually based on Pareto dominance) to perform selection.

Perhaps the simplest way to modify ranks for constrained optimisation is to
consider constraint violations or the infeasibility function as additional objec-
tive(s), and to rank solutions using Pareto dominance. A recent example of this
approach is IS-PAES [5].

In Deb et al. [6], the authors propose ranking using constraint-domination:

1. all feasible solutions are better than all infeasible ones;
2. more feasible ones are better that less feasible ones; and
3. among feasible solutions, Pareto dominance determines ranking.

A number of variations of this idea have been proposed and explored. Jiménez
and Verdegay propose a similar scheme, except that feasible solutions are ranked
using a niched-Pareto GA [7]. Ray et al. [8] used a scheme involving non-
dominated sorting based on constraints alone, objectives alone, and both to-
gether. In Kimbrough et al. [9], the authors introduce an algorithm that uses
separate populations for feasible and infeasible solutions. Taking this a step fur-
ther, Venkatraman and Yen [10] separate the search into two phases — one to
determine the feasible region, and a second to optimise objectives. Another vari-
ation is to use randomness in the selection process to obtain a balance between
feasibility and objectives [11,12,13].

3 A Multi-level Ranking Approach

In this paper, we propose and test a generalisation of the ranking scheme first
introduced in our earlier application-based paper on ore-processing circuit de-
sign [14]. In that work, we presented a real-world optimisation problem — de-
signing an ore-processing circuit — subject to a number of feasibility conditions.
The problem of feasibility was successfully handled by modifying the ranking
mechanism used in the evolutionary algorithm. The feasibility conditions were
combined into a single feasibility (or “error”) function, which was considered as
an additional objective in the multi-objective optimisation problem. Evolution-
ary selection was based on rank, but rank was determined as follows:
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1. solutions are first ranked using Goldberg’s Pareto ranking (including the
additional error objective);

2. for solutions with the same rank, the most feasible one is better.

For solutions with the same rank and feasibility, the older solution is preferred.
Note that the most feasible solution is always assigned a rank of 0.

A significant difference between this scheme and constraint domination is
that infeasible solutions can be deemed better than feasible ones, and that less
feasible ones can be deemed better than more feasible ones. Priority is placed
on objective values. We call this rule the objective-first ranking rule.

It is natural then to consider its dual, the feasibility-first ranking rule:

1. solutions are first ranked using infeasibility function values;
2. solutions with the same infeasibility value are ranked against each other

using Pareto ranking.

This set of rules is essentially the same as Deb’s constraint domination [6].
Intuitively, feasibility-first ranking concentrates initially on approaching the

feasible region, and then on refining objective values as long as feasibility is
preserved. By contrast, objective-first ranking concentrates initially on objective
values. Later in the search, when the trade-off relationship is roughly determined,
attention is concentrated on feasibility, so long as objective value dominance is
preserved. By allowing infeasible solutions to remain in the population longer,
the objective-first ranking scheme allows the search more time to explore the in-
feasible regions of the search space — the hope being that good feasible solutions
may be seeded from the good infeasible solutions in these regions.

So which is actually the better strategy? We investigate this question in this
paper by testing each approach on a number of benchmark problems.

4 Experiments

In order to explore these different approaches, we implemented two rank-based
multi-objective evolutionary algorithms that differ only in the order in which
objectives and feasibility are considered in determining rank. We tested these
algorithms on a number of synthetic test problems from the literature as well as
the real-world problem described in our earlier work [14].

The multi-objective evolutionary algorithm we use is a hybrid of our ESP
algorithm [15] and NSGA-II [16]. For all the test problems, the following common
settings were used:

– Parent population size: 100
– Child population size: 100
– Number of generations: 500
– Recombination: uniform crossover, with probability 0.8
– Mutation probability: 0.5 for each parameter
– Mutation method: for real-valued parameters, NSGA-II’s polynomial mutation,

with distribution index = 50, constrained to a given range. See Huband et al. [14],
for details of the mutation method for the other parameters in the real-world
problem.
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The objectives-first ranking scheme is the same ranking scheme as in our
earlier work [14], with the addition of a diversity mechanism to ensure a fair
comparison with the feasibility-first scheme:

1. solutions are first ranked using Goldberg’s Pareto ranking;
2. for solutions with the same rank, the most feasible one is better;
3. for solutions with the same Pareto rank and feasibility, the one that best

promotes diversity is better.

As before, for solutions that are still tied, the older solution was preferred. For
diversity, we used Deb’s crowding measure, as is used in NSGA-II [16].

The feasibility-first ranking scheme is:

1. solutions are first ranked using infeasibility function values;
2. solutions with the same infeasibility value are ranked against each other

using Pareto ranking;
3. for solutions with the same Pareto rank and feasibility, the one that best

promotes diversity is better.

Again, Deb’s crowding measure is used as the diversity preservation mechanism.

4.1 Benchmark Problems

To test the differences between the feasibility-first and objectives-first ranking
schemes, we chose a number of commonly used benchmark problems from the
literature and conducted experiments using both schemes. For brevity and space
restrictions, in this paper, we report on selected example problems only.

The first problem, TNK, is due to Tanaka et al. [17]:

minimise f1(x) = x1

minimise f2(x) = x2

subject to c1(x) ≡ x2
1 + x2

2 − 1 − 0.1 cos(16 arctan(x1
x2

)) ≥ 0
and c2(x) ≡ (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0
where x1, x2 ∈ [0, π]

Defining:

e1(x) =
{−c1(x) if c1(x) < 0

0 otherwise and e2(x) =
{

c2(x) if c2(x) > 0
0 otherwise

we can combine the two constraints to give us the infeasibility function:

g(x) = e1(x) + e2(x).

The second problem, OSY, is from Osyczka and Kundu [18]:

minimise f1(x) = −(25(x1 − 2)2 +(x2 − 1)2 +(x3 − 1)2 +(x4 − 4)2 +(x5 − 1)2)
minimise f2(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

subject to c1(x) ≡ x1 + x2 − 2 ≥ 0
and c2(x) ≡ 6 − x1 + x2 ≥ 0
and c3(x) ≡ 2 − x2 + x1 ≥ 0
and c4(x) ≡ 2 − x1 + 3x2 ≥ 0
and c5(x) ≡ 4 − (x3 − 3)2 − x4 ≥ 0
and c6(x) ≡ (x5 − 3)2 + x6 − 4 ≥ 0
where x1, x2, x6 ∈ [0, 10], x3, x5 ∈ [1, 5], and x4 ∈ [0, 6]



Multi-level Ranking 567

In a similar fashion to the TNK problem above, we again combined the con-
straints together to obtain an infeasibility function that measures the amount
by which the constraints are violated.

Noting that both of the benchmark problems above admit solutions which
are simultaneously both globally Pareto optimal and feasible, we implemented
another problem that does not have this property. We call this problem REV:

minimise f1(x) = (x1 − 5)2 + x2
2

minimise f2(x) = (x1 + 5)2 + x2
2

subject to c1(x) ≡ x2 ≥ 10
where x1 and x2 ∈ [−20, 20]

4.2 The Comminution Circuit Design Problem

The real-world problem (RWP) we used in this investigation is the problem of
designing a comminution circuit to improve the performance of ore processing
plants in the mining industry. The term comminution describes a collection of
physical processes that can be applied to a stream of ore to reduce the sizes of
the particles in the stream — the purpose being to transform raw ore into a
more usable or more saleable product or to prepare it for further processing. A
comminution circuit consists of a collection of ore processing units (e.g. crushers
that crush particles and screens that separate particles depending on size) con-
nected together, similar to an electrical circuit. As billions of tons of material
is crushed annually, optimisation of crushing operations offers the potential for
enormous economic and environmental benefits [19]. We present an overview of
problem here — complete details are available in Huband et al. [14].

This problem involves the optimisation of a comminution circuit to trans-
form an ore stream generated from some primary crushing stage into a product
stockpile suitable for further processing. To reduce the demands of this later
processing, particles produced by the circuit need to be as small as possible.
This can be achieved by forcing crushers to produce small-sized particles, but
this reduces the capacity of the crushers, requiring a greater number of parallel
machines to handle the same load of ore particles as with coarser crushers. This
comes at a cost: the more parallel machines used in the comminution circuit, the
greater the overall financial cost (setup, operating, and maintenance costs) of the
circuit. Obviously, overall cost is to be minimised, so a compromise is needed
and hence the problem is multi-objective: minimise the size of the particles in
the resultant product stockpile, while minimising the total cost of the circuit.

Each of the ore processing units contained in the comminution circuit has
various attributes that can be adjusted that affect the performance and cost
of the unit. However, not all combinations of these design parameters produce
valid comminution circuits. For example, if too many particles or too large-sized
particles are re-directed to a crusher, the crusher may “overflow” or “jam”,
rendering the machine useless. Clearly these situations need to be avoided, and
hence the problem is constraint-based. Cast in these terms, the comminution
circuit design problem is the problem of finding feasible combinations of design
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control parameters that minimise both the size of the particles in the product
stockpile and overall financial cost of the circuit.

5 Results and Discussion

For each of the four test problems, we executed our algorithm 35 times with
each ranking scheme. To judge the quality of the non-dominated fronts found,
from these 35 runs, we calculated the average hypervolume achieved after 500
generations for each ranking scheme. Hypervolume is a measure of the amount of
objective space that is dominated by a set of solutions ( [20,21]). Supplementing
these, we show plots of 50% attainment surfaces after 500 generations for each
ranking scheme (the attainment surface is a kind of median solution extracted
from a set of fronts [22]). Lastly, as the two ranking schemes place different
emphasis on feasibility versus objectives, we show how many infeasible solutions
are present in each generation.

Fig. 1 plots these results for the benchmark problems defined above. In all
cases, the hypervolume and plots of 50% attainment surfaces include only the
feasible solutions from their respective population. Hypervolume calculations
were performed relative to a reference point determined for each test problem
(TNK: (1.3, 1.3), OSY: (0, 220), REV: (625, 625), and RWP: (13, 1.1)).

The first row of Fig. 1 plots the results for the TNK test problem. The average
hypervolumes achieved by the objectives-first ranking scheme was almost identi-
cal to that for the feasibility-first scheme. In the plot of the 50% attainment sur-
faces, the two variants are again almost indistinguisable — both variants have lo-
cated the Pareto optimal curve rather well. However, the third column shows that
the objectives-first scheme maintains infeasible solutions in the population longer
than the feasibility-first scheme. We see that there are no infeasible solutions in
the population after 10 generations in the feasibility-first scheme, whereas there
are still some infeasible solutions until about generation 170 in the objectives-first
case. Indeed, the average number of infeasible solutions actually rises after an ini-
tial drop (“local” optimisation finds other rank 0 solutions near the existing infea-
sible rank 0 solutions), before gradually declining over time. This is promising in
terms of delaying the convergence to the feasible region, potentially allowing more
chance to explore nearby high quality, but infeasible solutions.

Results for the OSY benchmark problem (the second row of Fig. 1) show
that the problem seems to be significantly more difficult than TNK. Examina-
tion of the results for this problem show the superiority of the objectives-first
ranking scheme over the feasibility-first scheme. The average hypervolume of
the objectives-first ranking scheme is 3% larger, and the 50% attainment surface
produced by the objectives-first scheme shows a greater coverage of the Pareto
optimal front than the feasibility-first scheme (the leftmost portion of the Pareto
front has mostly been missed by the feasibility-first variant). The plot of the av-
erage number of infeasible solutions shows a similar pattern to the one seen for
TNK, with the objectives-first scheme maintaining infeasible solutions in the
population much longer than the feasibility-first scheme.
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Fig. 1. A comparison of the different ranking schemes on each test problem

Recall that the REV problem is a problem where the globally Pareto opti-
mal front is not contained in the feasible region of the search space. As both
schemes preference feasible solutions — the feasibility-first scheme directly, the
objectives-first scheme preferences the more feasible solutions out of the equally
Pareto ranked (including feasibility as an objective) solutions — both ranking
schemes produce very similar results on this relatively simple problem. Indeed,
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the average hypervolume and 50% attainment surface plots are virtually in-
distinguishable. Note however that the number of infeasible solutions in the
objectives-first scheme remains high for some time; only towards the end of the
run does selection pressure drive out the infeasible solutions from the population.

The real-world problem is difficult. Each fitness evaluation is a complex sim-
ulation that tracks material as it passes through the comminution circuit, is
acted upon by the various processing units, and is possibly recycled, requiring
iterative mass-balancing calculations. Indeed, each run of the evolutionary algo-
rithm can take many hours to complete. For this reason, we have limited these
experiments to 15 runs of each algorithm, and 500 generations per run (a run
may require several thousand generations to reach convergence). Nevertheless,
the average hypervolume was 42.5% better for objectives-first, showing that the
rate of convergence is superior when we use the objectives-first ranking scheme.

The 50% attainment surface comparison plot (see also Fig. 2 for plots of
50% attainment surfaces versus generations) confirms this — we see that the
objectives-first variant is able to locate solutions with a normalised cost that is
significantly better than that found using the feasibility-first scheme. We con-
jecture that the feasibility-first scheme misses a portion of the search space due
to it prematurely discarding nearly-feasible solutions in regions that could have
seeded good feasible solutions with time. The average number of infeasible solu-
tions plot shows the effect of maintaining infeasible solutions in the population
longer is much more pronounced than in the simpler synthetic test problems.
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Fig. 2. The 50% attainment surfaces after 50, 100, and 500 generations for the different
ranking schemes on the real-world test problem

6 Conclusions and Future Work

Through this work, we have introduced a new ranking scheme for constrained
multi-objective evolutionary algorithms. Our new scheme places greater impor-
tance on objective values than existing approaches (capturing infeasibility as
just another objective — one to be minimised), thus allowing infeasible solutions
to remain in the search population longer, effectively allowing the evolutionary
search more of an opportunity to approach good solutions from infeasible regions
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of the search space. In this paper, we have presented a comparison of our new
technique with its more widely-used dual (feasibility-first). The initial experi-
ments reported in this paper support the hypothesis that our new approach is
indeed a successful strategy, especially on more difficult problems.

More analysis and experimentation is however needed. In order to focus as
much as possible on the ranking scheme, we have tested it within the context of
a single, fairly simple multi-objective evolutionary algorithm. It remains to be
seen whether the benefits will be great when used in other, more sophisticated
algorithms. Further experiments are needed on a larger range of test problems
with different levels of difficulty in terms of both the underlying problem, and the
extra complications introduced by feasibility conditions. Even further analysis
is needed to better understand in what circumstances it is better to maintain
infeasible solutions in the population. However, our results to this point suggest
a significant improvement is possible over existing methods for some problems.
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Abstract. This paper addresses the problem of identifying gene mod-
ules on the basis of different types of biological data such as gene expres-
sion and protein-protein interaction data. Given one or several genes of
interest, the aim is to find a group of genes—containing the prespecified
genes—that are maximally similar with respect to all data types and
sets under consideration. While existing studies follow an aggregation
approach to tackle the problem of data integration in module identifica-
tion, we here propose a multiobjective evolutionary method that provides
several advantages: (i) no overall similarity measure needs to be defined,
(ii) the interactions and conflicts between the data sets can be explored,
and (iii) arbitrary data types can be integrated. The usefulness of the
presented approach is demonstrated on different biological scenarios, also
in comparison to standard clustering.

1 Motivation

With the advent of different high-throughput measurement technologies it is pos-
sible to investigate biological mechanisms on a systems level. While each type
of measurements quantifies a different aspect of the cellular behavior such as
gene expression, protein-protein interactions or metabolic fluxes, most existing
computational analysis methods are designed for a single specific type of mea-
surements. However, many important biological questions cannot be addressed
by the analysis of just one type of measurements as they provide a limited view
of the biological system under investigation. In such cases, a combined analysis
of multiple data types is crucial to reveal the underlying mechanisms and ac-
cordingly a lot of research is currently devoted to this topic. Data integration
represents a major challenge as the relation between the different data types are
often complex.

In this work, we focus on a central part of the computational analysis of high-
throughput data, namely module identification, i. e., the identification of groups
of genes that share a similar biological function or regulation mechanism. Several
methods exist for the identification of modules on multiple types of biological
data. In [1], Hanisch et al. propose a co-clustering approach of biological net-
works and gene expression data in which a combined distance function is defined

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 573–582, 2006.
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which is used in hierarchical clustering. This approach works with arbitrary net-
works but was tested on a metabolic network. A different approach proposed
in [2] combines distances on the Gene Ontology graph with gene expression data
and applies a memetic algorithm for identifying high scoring clusters. A further
data type that has been used in a joint analysis is sequence data; the method
presented in [3] aggregates three types of distances, namely similarity of gene ex-
pression, operon membership, and intergenic distance, into one distance function
and applies hierarchical clustering. All these approaches aggregate the similari-
ties on the different data types into one similarity measure. This strategy has two
main drawbacks: i) it is often difficult to define a suitable aggregation function
as similarity relates to completely different properties in the different data types
such as distance on a protein-protein interaction graph and similarity of gene
expression patterns; ii) the resulting modules do not give information about the
relation of the data types, e. g., it is not possible to determine whether accepting
a slightly worse similarity on one data type could increase the similarity on the
other data types substantially.

In this paper, we present a multiobjective optimization approach to the prob-
lem of module identification based on multiple data types. In particular we pur-
sue the query gene concept as presented in citeOSMV2003b,IFBS2002a for single
data types; here a module containing a specified gene is sought. In this respect
our approach is designed for a different problem than the only multiobjective ap-
proach to module identification previously published which is targeted to parti-
tioning and does not deal with multiple data types citeHK2004a. The advantages
of the proposed approach over the aforementioned data integration methods are:

– The method does not require any aggregation function as each data type is
associated with a distinct objective function.

– It allows to explore the trade-offs between different data types.
– The framework is applicable to arbitrary data types and similarity measures.

The application of this framework to combinations of three different data types,
namely protein-protein interaction networks, metabolic pathways and gene ex-
pression data in Arabidopsis and yeast reveals that the amount of conflict between
two data types depends heavily on both the specific data types as well as the query
genes chosen. Thus, visualizing the trade-off provides additional insight compared
to aggregation strategies. Furthermore the proposed multiobjective method can
produce better results than multiple runs of a single objective optimizer and the
classical k-means algorithm on the considered data set.

2 Optimization Framework

2.1 Model

Given a small set of user defined query genes Q and a target size smin for the
resulting modules, the goal is to identify the best module containing the query
gene(s) with respect to the n data sets D1, ..., Dn. The quality of a module for a
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specific data set Di can be defined in multiple ways: a straight forward method is
to calculate the mean distance to the query genes. An alternative score is given
by the mean distance of the module genes to the module centroid. While the
former places the query genes in the “middle” of the module the latter allows
query genes to be placed on the “border” of a tight module. Note that in the
case of a single data set and correspondingly a single objective function (k = 1)
the former score provides a trivial way of identifying the optimal module by
sorting the genes according to their distance to the query genes. In contrast, in
the case of multiple data sets (k > 1) genes that are close on one data set will in
general not also be close on the other data set(s). This results in a multiobjective
optimization problem where the score on each data set represents one objective.

Formally, a module is defined as a subset of genes G ⊆ {1, . . . ,m}. Note that
the binary search space X = 21,...,m of all possible modules is exponential in
m, |X | = 2m. The optimization task consists of solving a minimization problem
over several objective functions subject to a size constraint smin,

argminG⊆{1,...,m} f =

⎛⎝ dist(G,D1)
. . .

dist(G,Dn)

⎞⎠
subject to |G| ≥ smin ∈ {2, 3, . . . ,m}

,

where dist(G,Dk) is the mean distance from all genes to the query gene(s) on
data set k.

2.2 Biological Data Types and Distance Measures

In general, arbitrary types of biological data can be used as long as it is possible
to define a useful measure of distance between genes based on them. In this work,
we analyze three different types of biological data: gene expression (GE), protein-
protein interaction (PPI) and metabolic pathway data. This section introduces
these data types and describes how distances are measured on these data.

Gene Expression Data. Gene expression reflects the current activity of genes.
The expression levels of all genes are measured under different conditions or at
different time points resulting in a m× n-matrix, E, where m is the number of
considered genes and n the number of experimental conditions. In general, genes
that exhibit highly similar expression patterns are thought to have a similar
biological function. The most common approach for calculating similarity of
expression is to define a distance function on the gene expression vectors, and a
variety of distance measures has been proposed. Here we apply a distance metric
based on ranking of the gene expression values which provided good results in
previous studies [4,5] and in preliminary comparisons to Euclidean distance and
Pearson correlation. Formally the distance measure is defined as

dist(G,Dk) =
1
|Q|

1
|G|

∑
q∈Q
g∈G

⎡⎣ 1
n

∑
0≤i≤n

(
r
(k)
gi − r

(k)
qi

)2

⎤⎦ (1)
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where Q is the set of query genes and r
(k)
ij is an element of the k-th row-wise

ranked expression matrix. Ranks are scaled to be in [0, 1].

Protein-Protein Interaction Data. Another widely used high-throughput
measurement technology provides information about pairwise physical interac-
tion of proteins. In general each protein can be associated to the gene that codes
for it. Correspondingly, the interactions between proteins can be regarded as
linking the corresponding genes. This yields a symmetrical interaction matrix
I ∈ Rm×m where m denotes the number of genes. In principal one could use a
distance measure for pairs of rows as in (1). However from a biological point of
view it is more informative to consider another distance metric similar to the
one used in [1]. I can be represented by a graph: there is one node per gene and
an edge if I is indicating an interaction. The straightforward measure for the
distance between two genes on the graph is the number of hops that lie between
them, or the maximum occurring distance if they are not connected. For the PPI
data, the distance function is defined as

dist(G,Dk) =
1
|Q|

1
|G|

∑
q∈Q
g∈G

S(g, q), (2)

S(g, q) =

{
σgq if g and q are connected

max
q∈Q,g∈G

σgq + 1 else ,

where σgq is the shortest path from g to q in the interaction graph.

Metabolic Pathway Maps. A second type of biological networks consists of
a map of metabolic pathways which for many organisms are well studied. By
linking enzymes that are active in neighboring reactions, this reaction network
can be transformed into a network of enzymes which in turn can be regarded as
a network of the corresponding genes. Similar arguments as for the PPI apply
here and accordingly the distance on the metabolic pathways can be defined like
in the case of PPI data.

3 Implementation of the Evolutionary Algorithm

In the following we will describe the architecture and implementation of a general
EA for this optimization problem. As we will see the representation and most of
the operators are generic while the initialization and the mutation operator are
more specific to the proposed optimization problem.

Each individual represents one module. For reasons of simplicity we use a
binary representation with a bit string of length m where a bit is set to 1 if the
corresponding gene is included in the module. We apply uniform crossover and
a repair mechanism that adds the closest gene (in the average over all data sets)
that is not yet in the module until the constraint is met.

For the initial population, it is desirable to have modules of different size.
A simple strategy, for example, which sets each bit to 1 with a probability of
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0.5 produces a set of modules containing different genes but all modules will
have similar sizes. Instead, we choose the size of the modules deterministically
such that the they are equally distributed between 2 and m genes. The genes
themselves are chosen randomly.

A standard mutation operator as independent bit mutation is not well suited
for this problem as only a small fraction of the bits are 1, e. g., 15 out of 22000
and thus many more genes are added to the module than removed. To prevent
this we apply a fair single bit mutation where a randomly chosen bit is flipped
from 1 to 0 and one randomly chosen bit is flipped from 0 to 1 thus leaving the
module size unchanged.

Fitness assignment and selection in this multiobjective scenario is handled by
an indicator-based selection method, namely IBEA, a recent method that com-
pared favorably to other state-of-the-art multiobjective evolutionary algorithms
[6]. We implemented this problem setting in PISA [7], an interface separating
the problem specific parts of an EA from the problem independent parts. All
algorithms have been implemented in C++ and are available on
www.tik.ee.ethz.ch/sop/mo_module/.

4 Results

Several extensive experiments have been carried out in order to evaluate the
performance of the proposed algorithm and the capabilities of the proposed
methodology in general by applying it to different biological data. As to the
first aspect, we have investigated whether a local search strategy improves the
overall performance and how the multiobjective approach compares to a scalar-
ization approach with multiple independent runs. Concerning the second aspect
we studied the characteristics of the trade-off fronts resulting from different data
type combinations, and in addition compared the outcomes with the ones of a
classical clustering algorithm, namely k-means.

4.1 Experimental Setup

For the simulation runs we have used three different combinations of data types:
two diverse time course gene expression data sets on Arabidopsis provided by
the ATGenExpress consortium (containing 6 and 11 time points and 22746 genes
each), the first of these gene expression data sets in combination with a manually
curated metabolic pathway map [8] (986 genes) and a yeast gene expression data
set [9] (3665 genes) in combination with PPI data [10].

Figure 1 (left) summarizes the parameter settings we used for this study. All
simulations were run on one Intel Xeon 3.06 GHz CPU with 2 GB RAM.

4.2 Performance of the Proposed Algorithm

Local Search. We addressed the question whether the incorporation of a local
search heuristic could improve the performance of the EA. The local search
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Parameter Value
min # genes smin 15
use local search false
mutation rate pm 0.1
mutation type fair single bit
crossover rate pc 0.1
tournament size 2
population size 100
# generations 100
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Fig. 1. (left) Default parameter settings for this study. (right) A run with the local
search enabled (♦) or disabled (·), respectively. The two bold dots (•) indicate the
extreme values.

proceeds in two steps: first it reduces the size of the module until the minimum
number of genes constraint is reached. Then it adds those genes which are closest
to the query gene(s) based on the average distance over all objectives and do
not increase the mean dissimilarity value of the module at the same time. For a
minimum number of genes constraint of 15, this is typically zero to three genes.
The effect of the local search is clearly visible in Figure 1 (right): obviously, a
preferred search direction is introduced by averaging over the different objectives.
This inhibits the EA in settling individuals in the lower f2 region. This behavior
is reflected in a much faster convergence for the optimization runs with local
search than without local search. Since we do not want to impose such strong
preference for a specific direction, we consider such a local search inappropriate
for this type of problem.

Comparison to Chebyshev Scalarization. For the purpose of validation
of the multiobjective approach we set up several single-objective runs that fol-
low the idea of a Chebyshev scalarization. To generate an approximation of the
Pareto set, the single-objective optimizer was run subsequently for 21 weight
combinations (5% steps) that were uniformly distributed over the range of all
possible weight combinations. The results of these runs were combined into a sin-
gle non-dominated front. For both the single- and multiobjective runs the num-
ber of generations was held constant, i. e., the run time of the single-objective
approach was accordingly longer1. The input data for this evaluation was the
GE/PPI pairing. The simulation was run for 5 randomly chosen query genes (one
query gene per run) and 10 different random number generator seeds were used
for each query gene. Figure 2 shows the result for two different query genes.
On the left, the two algorithms produced comparable fronts. In contrast, the
right plot shows a rare case for a query gene where both algorithms encounter
1 The multiobjective EA took about 16 sec to complete where the single-objective EA

needed about 18 times longer (289 sec).
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Fig. 2. (left) Scalarization vs. multiobjective optimization. Box plot of ε-indicator val-
ues. (middle and right) Scalarization versus multiobjective optimization. Representa-
tive fronts for two selected query genes. Results of one multiobjective run and a series
of single objective runs with different weights. The two diamonds indicate theoretically
possible extreme values.

problems in advancing towards low f2 values. This problem is alleviated when
the number of generations is increased. The outcomes for the other query genes
are somewhere in between these extrema. We would expect the Chebyshev ap-
proach to find nearly as many non-dominated points as there are weight combi-
nations, namely 21. This is obviously not the case and we find the multiobjective
EA yielding many intermediate points of the Pareto set approximation that the
single-objective algorithm did not find. In order to do a statistical assessment, we
use the ε-indicator to compare the quality of the fronts, cf. [6]. Roughly speak-
ing, this measure calculates a reference front by collecting all non-dominated
solutions from both fronts and then determines the distance by which each front
needs to be shifted such that no solution from this front is dominated by the
reference front anymore. Based on the Kruskal-Wallis test, the ε values for the
multiobjective approach are significantly lower than those of the Chebyshev ap-
proach for all query genes with a p-value of 10−6 or less. This provides evidence
for a superiority of the multiobjective approach over the single-objective algo-
rithm with respect to the ε-indicator, cf. Figure 2 (left). The high variance in
the single-objective case results from the above mentioned difficulties to advance
into the lower f2 region which mainly appeared in the single-objective approach.
The outlier in the multiple objective case corresponds to the run of Figure 2
(right).

4.3 Application to Different Biological Scenarios

Exploring the Trade-Offs. For all of the three pairings of input data (GE/GE,
GE/PPI, GE/metabolic) we quantify the trade-offs and show that they widely
vary for the different data by comparing them against each other. All runs in
this section comply with the default configuration of Figure 2 (left) and each
simulation was run for a single query gene. Five query genes were randomly
chosen for this analysis and ten runs with different seeds were performed for
each query gene, leading to a total of 50 runs.
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Fig. 3. Comparing the trade-off of GE/GE (left) vs. GE/PPI data (right). The plots
show in how many of the non-dominated modules each gene is contained, e. g. in the
left case, Gene number 10 occurs in about 90% of all modules that the algorithm found.

a) GE vs. GE data (Arabidopsis). For this pairing we found only little trade-off;
the front closest to the origin in Figure 4 corresponds to this case. In none
of the runs we encountered more conflict than indicated by this plot. The
absence of conflict is also reflected in the diversity of the modules: Figure 3
(left) shows that more than half of all genes occur in 90% of the modules.

b) GE vs. PPI data (Yeast). In the case of a GE/PPI pairing we found a much
stronger trade-off between the two objectives, compared to the preceding
case. Figure 4 again depicts the resulting front (the middle one). This can
be clearly verified from Figure 3 (right) that reveals a much larger diversity
among the modules: less than 10% of the genes occur in 90% of the modules.

c) GE vs. metabolic data (Arabidopsis). Between these two data types we ob-
served the largest trade-off, as shown in Figure 4 (left).

Figure 4 (right) shows the statistical distribution of the hyper-volume in-
dicator [11] for each of the three fronts on the left and 10 different random
generator seeds 2. Again, this clearly documents that we find the most con-
flict in GE/metabolic data pairs as the plot on the left would imply. These
differences demonstrate clearly the advantage of the multiobjective approach
compared to an aggregation based method where only one point on the front
is generated.

Comparison to k-means. We substantiate the usefulness of an evolutionary
approach compared to a standard clustering method by comparing the proposed
algorithm to the well-known k-means algorithm.

For a test data set we selected the GE/PPI pairing and proceed in four steps:
first, we ran k-means only on the GE data. Second, we selected randomly a query
gene. For the cluster that contains the query gene we calculated both objective
values, on the GE and PPI data and received the k-means “front”, consisting
of only one point. Third we used the same query gene as input to the EA and
2 The objective values are scaled to [1, 2] and the reference point is (2.1, 2.1).
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Fig. 4. (left) Comparing representative fronts of the different data type combinations
for one query gene. (right) Related boxplot for the hyper-volume indicator for five
query genes and ten seeds each.

set the minimum number of genes to the size of the k-means cluster. Finally
we compared the front produced by the EA to the one point resulting from
the k-means algorithm and repeated this procedure 50 times, varying seeds and
query genes. Note that the ε value indicates whether at least one EA module
dominates the k-means cluster, i. e., it is better in both objectives.

Using the two-sided Wilcoxon signed rank test we showed that the EA per-
forms significantly better in this respect than k-means with a p-value of 1.1·10−9.
Thus, k-means is not able to produce results that compare well to the evolution-
ary approach, not even when comparing on the GE objective only.

5 Conclusion

Several approaches exist for co-clustering of multiple biological data types [1,2,3].
All these approaches are based on an aggregation function that combines dis-
tance measures on the different data types into one distance measure, thereby
fixing the relative importance of the different data types and obscuring poten-
tial conflict between the data types. In order to overcome these shortcomings,
we have presented a flexible framework for module identification that is based
on multiobjective optimization which does not need any aggregation function to
be defined and additionally makes potential conflicts between data types visi-
ble. The second main difference is that our approach provides a way to guide
the search by specifying one or a few query genes which are contained in the
resulting modules.

The effectiveness of the suggested approach was demonstrated on gene ex-
pression, protein-protein interaction and metabolic pathway data sets from Ara-
bidopsis and yeast. Comparisons to a scalarization approach and to the k-means
algorithm clearly show the advantage of the multiobjective optimization. The
simulation results also revealed that the amount of conflict between two data



582 M. Calonder, S. Bleuler, and E. Zitzler

types varies largely depending on the data sets and the specific query genes.
This demonstrates that by defining a single aggregation function important in-
formation about the resulting modules may be missed.

Interesting future steps in this line of work include additional comparisons
to existing algorithms such as [1] and [12] and more elaborated measures of
similarity on biological graphs. Weighted edges that represent the probability or
strength of an interaction can be easily included in order to adapt the method
to specific biological problems.
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Abstract. Although a number of multiobjective evolutionary algorithms
have been proposed over the last two decades, not much effort has been
made to deal with variable linkages in multiobjective optimization. Re-
cently, we have suggested a general framework of multiobjective evolu-
tionary algorithms based on decomposition (MOEA/D) [1]. MOEA/D de-
composes a MOP into a number of scalar optimization subproblems by a
conventional decomposition method. The optimal solution to each of these
problems is a Pareto optimal solution to the MOP under consideration. An
appropriate decomposition could make these individual Pareto solutions
evenly distribute along the Pareto optimal front. MOEA/D aims at solv-
ing these scalar optimization subproblems simultaneously. In this paper,
we propose, under the framework of MOEA/D, a multiobjective differen-
tial evolution based decomposition (MODE/D) for tackling variable link-
ages. Our experimental results show that MODE/D outperforms several
other MOEAs on several test problems with variable linkages.

1 Introduction

In many real-world applications, there are several objectives to be optimized.
Often, these objectives conflict with each other. There is no single solution that
can optimize all objectives at the same time. Pareto optimal solutions are op-
timal trade-offs among the objectives. Over the past two decades, a number
of multiobjective evolutionary algorithms (MOEAs) have been proposed [2][3].
MOEAs are able to find a set of representative Pareto optimal solutions in a
single run.

Like their counterparts for scalar optimization, most MOEAs employ a selec-
tion operator to direct their search into promising areas in the decision space.
Since Pareto domination is not a complete ordering, conventional selection oper-
ators, which were originally developed for scalar optimization, cannot be directly
applied to multiobjective optimization. Furthermore, the task of most MOEAs
is to produce a set of solutions which are uniformly distributed in the Pareto
front. A selection operator in MOEAs should not encourage the search to con-
verge to a single point. Therefore, it is not a trivial job to assign a relative fitness
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value to each individual solution for reflecting its utility in selection in MOEAs.
Fitness assignment has been subject to much research over the last two decades
[2]. Some techniques such as fitness sharing and crowding have been frequently
used within fitness assignment for maintaining the diversity of search [4][5].

Most existing MOEAs treat the MOP under consideration as a whole. They
use Pareto domination for ranking solutions during their search. Their selection
operators are often very complicated and time-consuming, and it is hard to bal-
ance the diversity and convergence. Note that a Pareto optimal solution for a
MOP, under mild condition, could be an optimal solution of a scalar optimiza-
tion problem in which the objective is an aggregation of all the fi’s. Therefore,
approximation of the Pareto front of a MOP can be decomposed into a number of
scalar objective optimization subproblems. In [1], we proposed a general multiob-
jective evolutionary algorithm based on decomposition (MOEA/D). MOEA/D
explicitly decomposes a MOP into N scalar optimization subproblems. Each
scalar optimization subproblem has its best solution found so far in the current
population. Each subproblem is optimized in MOEA/D by using information
from its neighboring subproblems. It has been proved that MOEA/D has a
lower complexity than NSGA-II, the most popular MOEA, at each generation.

Although variable linkages exist in many applications, not much effort has
been devoted to how to deal with variable linkages in MOEAs. As shown in [6],
recombination operators play a key role in tackling variable linkages. In this pa-
per, under the framework of MOEA/D, we design a multiobjective differential
evolution based on decomposition (MODE/D) for continuous MOPs with vari-
able linkages. MODE/D maintains a population which contains the best solution
found so far to each of the subproblems. The DE operator is used for generat-
ing new trail solutions. We define a neighborhood relationship among all the
subproblems such that neighboring subproblems have similar optimal solutions.
Consequently we obtain a neighborhood relationship among all the individual
solutions in the current population. The DE recombination operator is restricted
to neighboring solutions since otherwise it may generate poor solutions for MOPs
with variable linkages.

The remainder of this paper is organized as follows. Section II introduces basic
definitions in MOPs. The proposed algorithm is then described in Section III.
Section IV presents multiobjective test problems with variable linkages. Exper-
imental results are given in Section V. The final section concludes the paper.

2 Multiobjective Optimization

We consider a multiobjective optimization problem of the form:

minimize F (x) = (f1(x), f2(x), . . . , fm(x))T (1)
s.t. x ∈ X

where x = (x1, . . . , xn) is called decision vector, X ⊂ Rn is the decision space,
fi : Rn → R, i = 1, . . . ,m (m ≥ 2) are objective functions. F (x) is the objective
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vector. The objective space Y consists of the set of all objective vectors. The
optimal solutions of (1) can be defined in terms of Pareto optimality [7].

Let a = (a1, . . . , am)T , b = (b1, . . . , bm)T ∈ Rm be two vectors, a is said to
dominate b, denoted by a ≺ b, if ai ≤ bi for all i = 1, . . . , n, and a �= b. A point
x� ∈ X is called (globally) Pareto optimal if there is no x ∈ X such that F (x) ≺
F (x�). The set of all Pareto optimal points, denoted by PS, is called the Pareto
set. The set of all Pareto objective vectors, PF = {y ∈ Rm|y = F (x), x ∈ PS},
is called the Pareto front [7].

3 Algorithm

MODE/D is an MOEA/D which uses DE operator to generate new solutions.
In our implementation of MODE/D in this paper, the weighted Tchebycheff
approach is used to decompose the MOP (1). In this approach, the scalar opti-
mization problem is in the form

gte(x|λ, z∗) = max
i∈{1,...,m}

λi |f∗
i − fi(x)| (2)

where λ = (λ1, . . . , λm) is the scalar weight vector,

m∑
i=1

λi = 1

and λi ≥ 0 for all i = 1, . . . ,m. z∗ = {f∗
1 , . . . , f

∗
m} is the ideal point, i.e.,

f∗
i = min{fi(x)|x ∈ X}

for each i = 1, 2, . . . ,m.
Under some mild conditions, for each Pareto optimal solution x∗ there exists

a weight vector λ such that x∗ is the optimal solution of (2), and each optimal
solution of (2) is a Pareto optimal solution of (1).

MODE/D first selects N evenly distributed weight vectors λ1, λ2, . . . , λN .
Then the MOP (1) is decomposed into N optimization subproblems, where the
objective in j-th subproblem is gte(x|λj , z∗). MODE/D aims at minimizing these
subproblems in a single run. Note that gte is continuous of λ, the optimal solution
of gte(x|λi, z∗) should be close to that of gte(x|λj , z∗) if λi and λj are close to
each other. Therefore, any information about these gte’s with weight vectors
close to λi should be helpful for optimizing gte(x|λi, z∗).

At each iteration, MODE/D maintains:

– a population of N points x1, . . . , xN ∈ X , where xi is the current solution
to the i-th subproblem;

– a population of objective vectors FV 1, . . . , FV N , where FV i is the F -value
of xi, i.e., FV i = F (xi);

– a temporary reference point z = (z1, . . . , zm)T , where zi is the smallest value
found so far for objective fi;
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MODE/D works as follows:

Input:
– MOP (1);
– a stopping criterion;
– N : the number of the subproblems considered in MOEA/D;
– an uniform spread of N weight vectors: λ1, . . . , λN ;
– K : the number of the weight vectors in the neighborhood of each weight

vector;
Output: x1, . . . , xN and FV 1, . . . , FV N .

Step 1 Initialization
Step 1.1 For each i = 1, . . . , N , set B(i) = {i1, . . . , iK} where λi1 , . . . , λiK

are the K closet weight vectors to λi.
Step 1.2 Randomly generate an initial population x1, . . . , xN . Set FV i =
F (xi);
Step 1.3 For each j = 1, . . . ,m, zj = mini∈{1,...,N} fj(xi).

Step 2 Reproduction Randomly choose a solution xr and then randomly se-
lect three indexes a, b, c from B(r). A new solution y = (y1, . . . , yn)T is
generated in the following way.
For each i = 1, . . . , n

yi =
{
xa

i +R · (xb
i − xc

i ) if rand < CR
xr

i , otherwise (3)

where R and CR are two control parameters.
Step 3 Update of Reference Point z: For each j = 1, . . . ,m, if fj(y) < zj ,

then set zj = fj(y).
Step 4 Update of Neighboring Solutions: For each j∈B(r), if gte(y|λj , z)≤

gte(xj |λj , z), then set xj = y and FV
j

= F (y).
Step 5 Stopping Criteria If stopping criteria are satisfied, then stop and

output x1, . . . , xN and FV 1, . . . , FV N . Otherwise go to Step 2.

In step 1, the neighborhood B(i) is defined as the set of the indexes of K
nearest weight vectors to λi. The initial population consists of N solutions ran-
domly chosen from the decision space. The ideal point z∗ = (f∗

1 , . . . , f
∗
m) in (2) is

replaced with a reference point z = (z1, . . . , zm). In step 2, four neighboring so-
lutions xr, xa, xb, xb undergo the DE operator for producing a new trail solution
y. The reference vector z is updated by y in step 3. In step 4, the neighboring
solutions of xr are replaced by y if they are worse than y with respect to its
associated gte.

4 Multiobjective Test Problems with Variable Linkage

Various features of MOPs might cause difficulties for MOEAs, such as non-
convexity, multi-modality, discontinuity, and non-uniformality. Deb et al [8][9]
constructed a number of test problems using the following model:
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Minimize F (x) = {f1(x1), f2(x)} (4)
s.t. f2(x) = g(x2, . . . , xn)h(f1(x1), g(x2, . . . , xn))

where f1 : R→ R, g : Rn−1 → R, and h : Rn → R are three real functions. The
main features of test problems of (4) can be controlled by setting f1, g, and h
with specific properties.

As Deb et al noticed [6], several widely-used test instances induced from the
above models don’t not have variable linkages. More precisely, the PS s of these
test instances are linear and parallel to coordinate axes. Therefore, it is relatively
easy for MOEAs to find PS.

Recently, some researchers have studied the multiobjective test problems with
variable linkages [6] [10][11]. In this paper, two OKA test instances [10] are used.

– OKA-1

f1(x) = x1

f2(x) = π − x1 + |x2 − 5 cos (x1)| (5)

where x1 ∈ [−π, π] and x2 ∈ [−5, 5]. The PS of OKA-1 is {(x1, x2)|x2 =
5 cos (x1), x1 ∈ [−π, π])} and the PF is {(f1, f2)|f2 = π − f1, f1 ∈ [−π, π])}

– OKA-2

f1(x) = η(x1)
f2(x) = π − η(x1) + |x2 − 5 cos (x1)| (6)

η(x1) =

{
x

1
3
1 if x1 ≥ 0

−x
1
3
1 if x1 < 0

where x1 ∈ [−π3, π3] and x2 ∈ [−5, 5]. The PS of OKA-1 is {(x1, x2)|x2 =
5 cos (x1), x1 ∈ [−π, π])} and the PF is {(f1, f2)|f2 = π − f1, f1 ∈ [−π, π])}

Inspired by the construction of OKA test instances, we propose the following
two variants of ZDT1 and ZDT2:

– ZDT1-L

f1(x) = x1

g(x) = 1 +
1

n− 1

n∑
i=2

|x1 − sin(0.5xiπ))|

h(x) = 1−
√
f1/g

where x ∈ [0, 1]n. The PS of ZDT1-L is {x|x1 = sin(0.5xiπ), i = 2, . . . , n}.
– ZDT2-L

f1(x) = x1

g(x) = 1 +
1

n− 1

n∑
i=2

|x1 − sin(0.5xiπ)|

h(x) = 1− (f1/g)2

where x ∈ [0, 1]n. The PS of ZDT2-L is {x|x1 = sin(0.5xiπ), i = 2, . . . , n}.
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There are nonlinear variable linkages in ZDT1-L and ZDT2-L. Obviously, the
PF s of ZDT1-L and ZDT2-L are the same as those of ZDT1 and ZDT2 in the
objective space.

In [6], Deb et al proposed using linear or nonlinear variable transformation to
construct test instances with variable linkages. Their approach is more compli-
cated than ours.

5 Experimental Results

5.1 Performance Metrics

In MOEAs, various performance metrics can be used to measure convergence
and diversity [12]. In our experiments, we use set coverage (C-metric) and gen-
erational distance (D-metric) to assess the performance of the algorithms.

Let A and B be two approximations to the PF of a MOP, C(A,B) is defined as
the percentage of the solutions in B that are dominated by at least one solution
in A, i.e.,

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}|

|B|
C(A,B) is not necessarily equal to 1 − C(B,A). C(A,B) = 1 means that all
solutions in B are dominated by some solutions in A, while C(A,B) = 0 implies
that no solution in B is dominated by a solution in A.

Veldhuizen proposed a distance-based metric, called generational distance, as
follows.

Dp(A,P ∗) =
1
|A|

⎛⎝ |A|∑
i=1

di(ai, P
∗)p

⎞⎠1/p

(7)

where P ∗ is the reference set of representative Pareto optimal solutions and
di(ai, P

∗) = minr∈P ∗
{√∑m

k=1(fk(ai)− fk(r))2
}
. D1 represents the average

distance from A to P ∗ when p = 1. D1 only measures the closeness between
A and P ∗.

We also can calculate the average Euclidean distance from P ∗ to A, denoted
by D2 = D1(P ∗, A).

In our experiments, uniformly distribution points in PF are selected to form
the reference set P ∗.

5.2 Experimental Settings

We compared MODE/D with NSGA-II/SBX [11], NSGA-II/DE [13], and GDE3
[14] in our experiments.

The population size is set to be 100 for all the algorithms. In NSGA-II/SBX,
The distribution index used in SBX and polynomial mutation is set to be 20,
the mutation rate is set to be 1.0/n, where n is the number of decision variables.
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The DE operator is the same in NSGA-II/DE, GDE3 and MODE/D. R is set
to be 0.5 and CR is 0.95. The size K of neighborhood in MODE/D is set to be
20 for all test instances.

For OKA-1 and OKA-2, all algorithms are run for 25,000 function evaluations.
For ZDT1-L and ZDT2-L, n is set to be 10. We allow all the algorithms 50,000
function evaluations. All algorithms were implemented in C++. Each algorithm
has been independently run for 20 times for each test instance on PC (Pentium
(R) 2.4GHZ, 1.00 GB of RAM).

5.3 Results

Table 1 and 2 show the best, mean, and standard deviation of the D-metric
values between the obtained solutions and reference set P ∗. In terms of the best
and mean of D1-metric values in Table 1, MODE/D outperforms other three
algorithms on OKA-1, OKA-2 and ZDT1-L. It is also evident that both GDE3
and NSGA-II/SBX can find a set of solutions with zero distance to the reference
set. This is because GDE3 and NSGA-II/SBX reach the PF. Table 2 shows the
best, mean and standard deviation of the D2-metric values from the reference
set to the obtained solutions. In terms of this metric, MODE/D performs better
than other three algorithms on all test problems. This also suggests that the
diversity of the solutions found by MODE/D is better than those in other three
algorithms.

Table 1. D1-metric values of four algorithms

D1-metric MODE/D GDE3 NSGA-II/DE NSGA-II/SBX
Test Problems best mean std best mean std best mean std best mean std

OKA-1 0.0051 0.0058 0.0004 0.0138 0.0166 0.0034 0.0195 0.0263 0.0052 0.0185 0.0581 0.0877
OKA-2 0.0090 0.0128 0.0034 0.0141 0.0175 0.0019 0.0177 0.0358 0.0202 0.0162 0.0355 0.0272
ZDT1-L 0.0028 0.0036 0.0007 0.0083 0.0099 0.0010 0.0072 0.0090 0.0009 0.0093 0.0118 0.0024
ZDT2-L 0.0033 0.0050 0.0009 0 0.0049 0.0100 0.0114 0.0161 0.0056 0 0.0669 0.1292

Table 2. D2-metric values of four algorithms

D2-metric MODE/D GDE3 NSGA-II/DE NSGA-II/SBX
Test Problems best mean std best mean std best mean std best mean std

OKA-1 0.0229 0.0231 0.0002 0.0283 0.0298 0.0009 0.0373 0.0421 0.0021 0.1070 0.1959 0.0976
OKA-2 0.0262 0.0295 0.0017 0.0299 0.0335 0.0022 0.0429 0.0520 0.0069 0.1019 0.1734 0.0363
ZDT1-L 0.0054 0.0195 0.0124 0.0099 0.0116 0.0009 0.0099 0.0113 0.0011 0.2769 0.7322 0.1353
ZDT2-L 0.0065 0.0178 0.0156 0.0331 0.5005 0.2241 0.0166 0.0243 0.0053 0.1034 0.3090 0.2054

Figure 1 illustrates the distributions of the nondominated solutions in the
run with the lowest D-metric value. It is clear from Figure 1 that MODE/D
performs better than other algorithms in terms of maintaining diversity. Intu-
itionally, NSGA-II/SBX is outperformed by other three DE-based MOEAs in
both convergence and diversity for all test instances.

The box plot of C-metric values between the MOEAs considered is visualized
in Figure 2. As we can see, MODE/D performs slightly better than GDE3 on
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Fig. 1. Plots of the nondominated solutions in the run with the lowest D-values found
by NSGA-II/SBX, NSGA-II/DE, GDE3, and MODE/D

OKA-1 and OKA-2. For ZDT1-L and ZDT2-L, MODE/D outperforms the other
three MOEAs. In terms of C-metric, NSGA-II/SBX is outperformed by the other
three DE-based MOEAs. Therefore, a reproduction operator plays a key role in
MOEAs for dealing with variable linkages.

6 Conclusions

In this paper, we proposed a multiobjective differential evolution approach based
on decomposition (MODE/D) for MOPs with linkage. MODE/D is a MOEA/D
with a DE operator. The experimental results show that, overall, MODE/D
clearly outperforms NSGA-II/SBX, NSGA-II/DE, and GDE3. Our results sug-
gest that MOEA/D is a promising method for solving MOPs. It is also clear
that one needs to consider reproduction operators for tackling variable linkages
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MODE/D 

GDE3 

NSGA−II/DE 
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Fig. 2. The box plots of C-metric of MODE/D, GDE3, NSGA-II/DE, and NSGA-
II/SBX. Four box plots from left to right in each chart relate to OKA-1, OKA-2,
ZDT1-L, and ZDT-L, respectively.

in MOPs. Future work includes study of the effect of parameters and schemes
for adaptively adjusting weight vectors in MODE/D.
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Abstract. An approach to image enhancement through artificial neural 
network’s (ANN) processing is proposed. The structure and weights of ANN 
are tuned with use of evolutionary concept. Each image is processed in pixel-
by-pixel manner using pixels’ local characteristics that are calculated 
approximately to increase the processing speed but preserving satisfactory 
calculations’ error. The two-step procedure for image enhancement is proposed: 
(1) local level processing using ANN; (2) global level autoleveling algorithm. 
The results for the proposed two-step image enhancement procedure are 
presented and compared with that of some alternative approaches. 

1   Introduction 

The images enhancement problem is very challenging due to high calculations’ 
complexity, problem of image quality evaluation and the others. The ultimate goal: 
creation of the universal algorithm or approach to images enhancement, – seems 
unreachable because of great variety of practical domains involving different 
demands to the image quality. The latter consideration in fact gives a chance for 
researchers to invent new methods of images enhancement to attack this problem. 

By now many approaches to images enhancement have been proposed [1, 2]. Some 
of them are quite simple (e.g. contrast stretching or gamma correction [1]) while 
others are rather sophisticated (e.g. Multi-Scale Retinex (MSR) algorithm [3] 
adopting model of human vision). 

In general the problem of per-pixel image processing can be presented as the 
following transform function (or its parameters) search problem: 

),,(* ITI =  (1) 

where *I  and I  – pixel’s intensity after and before the processing respectively;  – 
vector of features that define specific local/global characteristics for each pixel on the 
image under processing. 

In this paper we introduce new method for images enhancement through 
approximation of transform function T given its general behavior. The function is 
approximated with use of ANN which is trained evolutionary (neuroevolutionary 
approach) to process images in pixel-by-pixel manner. 
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The paper is organized as follows. In the Section 2 the developed evolutionary 
algorithm for ANN design and training is described briefly. The idea of the 
introduced images enhancement method is presented in the Section 3. Simplified 
formulae for local characteristics calculations are given in the Section 4. The 5th 
section contains experimental settings specifications and some results of images 
processing. Conclusion is given in the Section 6. 

2   Brief Description of the Neuroevolutionary Algorithm 

Developed neuroevolutionary (NE) algorithm NEvA [4] implements simultaneous 
design and training of ANNs through evolution of networks’ structures along with the 
connections’ weights. In this paper only a brief description is presented but interested 
reader can refer to [4]. 

Each ANN is genetically encoded as the list of its connections. The weight of each 
connection is presented with 19-bit integer mapped over the range [-26,2144; 
+26,2143] with the step of 0,0001. Truncation selection is used for parental 
subpopulation formation. Original crossover and mutation operators, which respect 
structures of the ANNs undergoing recombination and mutation, are used. Nodes with 

sigmoid activation functions: ( ) 1)exp(1 −−−= aSo , where S is a weighted sum of 

input signals, a – constant parameter, are considered. 
The population size adapts to the properties of evolution during the algorithm run 

using simple resizing strategy. The strategy arises from the experimental observation 
[5] that if the average fitness is increasing (the fitness maximization task is 
considered) than the population size is worth decreasing and vice versa, in case of the 
average fitness’s stabilization or decrease the population should be expanded. This 
resizing mechanism is also remarkable because it is in a good agreement with 
biological evidence that dynamics of genotypic diversity behaves in converse way 
with respect to evolution speed for population of simple organisms [6, 7]. 

3   Image Enhancement Through Neural Processing 

We will use local-adaptive approach to images enhancement. The notion of the 
approach under consideration is that each pixel is processed independently according 
to the set of local and global image characteristics (e.g. local and global mean 
intensity). In this paper we adopt pixel-by-pixel brightness processing with use of 
ANN paradigm. 

In contrast to well-known approaches where the entire image is mapped onto the 
ANN’s input for processing (e.g. Fukushima’s neocognitron [8], Hopfiled’s nets [9] 
and Kohonen’s maps [10]) we train ANN that processes only one pixel at a time. 
Thus the requirements to the operating memory size necessary to store the 
information about ANN are weaken and, moreover, we are free to process images of 
arbitrary dimensions. It’s worth noting that it is still possible to joint single pixel 



 Digital Images Enhancement with Use of Evolving Neural Networks 595 

processing ANNs into 2D arrays of ANNs so this approach is flexible enough for 
implementation on parallel processing structures. 

We consider general transformation presented in the eq. (1) in the following way: 

( ),,),,(),( ),(),(
*

yxyx mDyxLTyxL =  (2) 

where ),(* yxL  and ),( yxL  – processed and initial brightness of ),( yx  pixel 

respectively; ),( yxm  and ),( yxD  – respectively mean brightness and brightness 

deviation in local neighborhood of ),( yx  pixel. Thus the ANN approximating T 

function should have three input nodes and one output node. 
Since visual quality of image is very hard to evaluate because of subjective nature 

of human’s perception there is always some uncertainty in information for image 
processing caused by observer. Besides, different images should be processed in 
different ways with respect to the context information. So chosen local parameters 
(brightness and its local statistics) tend to be misleading and noisy and these obstacles 
drive to the conclusion that the trained ANN should “know” how to process images in 
some abstract, general case. To satisfy these speculations we train ANNs to 
approximate the function that is slightly different from the T function (2). Specifically 
we train ANN to perform the following transformation: 

( ),,,),( ),(),(
* G

yxyx mDmTyxL =  (3) 

where Gm  is the global mean brightness calculated for the entire image. Thus we are 

trying to train ANN to deal with averaged parameters values instead of specific ones. 
For the processing of the color image we, firstly, transform image in the grey-scale 

representation, then the image is processed and after that the color information is 
restored as follows: 

),,(
),(

),(*
),(* yxZ

yxL

yxL
yxZ ii =  (4) 

where ),(* yxZi  and ),( yxZi  – restored after processing and initial ith color 

component of ),( yx  pixel respectively. The primary motivation is to preserve the 

ratio of different color components in order to avoid color distortion after processing. 
According to the eq. (2) ANN processes pixels with use of local statistics so it 

seems reasonable to apply the global level image enhancement technique for more 
efficient and competitive image post-processing. The well-known autoleveling 
algorithm, implemented in many image processing software packages, was chosen to 
perform the global level enhancement thanks to its efficiency and processing speed. 
Thus we introduce the two-step image enhancement procedure: 

1. Local level processing using evolutionary trained ANN. 
2. Global level processing using autoleveling algorithm. 
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3.1   ANN Functioning Evaluation 

During the training we evaluate each ANN with respect to the visual quality of the 
processed images. The formalization of the image quality is approximate and inspired 
by the [11]. We modified the formula from [11] in the following way: 
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where N and M – are width and height of the image respectively, li – the portion of the 
processed pixels with the ith brightness level. The value of f function is considered as 
the error of the correspondent ANN and the goal of evolutionary design and training 
of ANNs is to minimize value of the function f . 

The first summand in (5) is necessary to maximize the number of pixels on the 
edges thus making the processed image more detailed. The more pixels are present on 
the edges separating the different brightness areas, the more contrast the processed 
image is. The second summand in (5) prevents processed images from degradation to 
binary images, where only pixels of black and white colors are present, although the 
intensity of the edge pixels is maximized. 

From the formula (5) it can be seen that quality of the processed image considers 
two factors that are of rather general nature: 

1. Total number of pixels on the edges μ . 
2. Total number of different brightness levels. 

The evaluation of the ANN functioning is calculated for the output signals 
sequence of the length N*M. The formula (5) presents rather rough evaluation of the 
image quality because it considers only contrast property and brightness distribution 
(histogram) of the processed image. Nevertheless it will be shown further that such an 
evaluation is competent enough for evolutionary training of ANN for images 
processing. 

It is also possible to train ANN using several images. In this case the evaluation for 
each ANN is calculated as the average evaluation of each processed image. After the 
training procedure is finished the resulting ANN can be applied for processing of the 
images that were not included in the training set of images. Thus the “classic” 
methodology of ANN’s training and use is preserved. This feature allows to save 
processing time due to absence of necessity to retrain the ANN for each new image. 

4   Approximate Calculation of the Local Statistics 

According to the introduced approach, use of trained ANN considers use of local 
mean and deviation (2) so the time to image processing depends dramatically on the 
speed of calculation of statistics for certain neighborhood. It is clear that the more the 



 Digital Images Enhancement with Use of Evolving Neural Networks 597 

neighborhood size, the more computational power is required because more pixels are 
considered during calculations. 

In what follows we introduce the way to obtain approximate formulae for local 
mean and deviation for the rectangular neighborhood on the arbitrary 2D map. 

Given the brightness distribution }..1,..1|{ NjMilL ij === , where ijl  is the 

brightness of the pixel located on the intersection of the ith row and the jth column, we 
will assume that L defines joint distribution for the 2D random quantity (X, Y) where 
X and Y posses values from the ranges [1; N] and [1; M] respectively. Thus we have 
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i j
ij

ij
xy

l

l
jip ),( , (7) 

where ),( jipxy  is the joint frequency distribution in the point with rectangular 

coordinates (j ; i). Then the distributions for random quantities X and Y are calculated 
as follows: 
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We assume that neighborhood for each pixel has a rectangular shape and is limited 
by points (j1 ; i1) and (j2 ; i2) where i2 ≥ i1 and j2 ≥ j1. Using the notion of conditional 
probability and supposing that brightness distributions corresponding to the 
neighboring rows are correlated (i.e. the case of rather smooth brightness distribution 
on the image is considered) we have: 
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(10) 

where yλ is some row number within the range [i1 ; i2] and λy is treated as the 
proportionality coefficient.  After some algebra we obtain: 
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Using the same assumptions it is easy to calculate approximately the 1st and the 2nd 
starting moments and then obtain approximate formulae for local mean ),(

~
yxm  and 

deviation ),(

~
yxD : 



598 Y. Tsoy and V. Spitsyn 

=+−
=

2

1

),(
)1(

~

12

2

),(

j

jj
xy

y
yx jyp

jj
m λ

λ
, (12) 

( )−
+−

=
=

2

1

),(
12

2

),(
~),(),(

1

~ j

jj
yxxyyxy

y
yx mjypjyp

jj
D λλ β

λ
, 

)()1(

)(

2
12

2
2

1

λ

β
ypii

ip

y

i

ii
y

y +−
= = . 

(13) 
 
 
 

(14) 

Note that coefficients yλ  and yβ  in (10) and (14) respectively are presented as the 

division of some averaged value on the some particular value.  So assuming rather 
small neighborhood size we can make the following substitution 1=yλ  and 1=yβ  

which leads to the further simplification of formulae (12) and (13): 
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Thus it is possible to calculate approximately local mean and deviation for 2D 
rectangular region via analysis of an arbitrary row within the neighborhood using 
assumptions about correlation of distributions in consequent rows and considering 
rather small neighborhood size. Note that the analogical formulae can be deduced for 
the arbitrary column inside the local region. 

In order to avoid loss of information caused by calculation of local statistics for 2D 
region using 1D array, which corresponds to arbitrary row or column of pixels, we 
will use the following formulae: 
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where ];[ 21 jjx ∈κ . 

To summarize the result presented in this section we note that the computational 

complexity required for calculation of local statistics is simplified from )( 2nΟ  to 

)(nΟ . Our additional experiments showed that given the set of synthetic and real 

images the peak signal-to-noise ratio for approximate formulae (17) and (18) lies 
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within the range of 20..30 dB, which is quite satisfactory taking into consideration 
speculations from the Section 3 that it is not obligatory to deal with exact statistics 
due to subjective nature of perception and wide variety of images. The speedup of 
calculations using the approximate formulae is up to about 20 times for the 65x65 
neighborhood. 

5   Experiments 

5.1   Experimental Settings 

Following the notion of the local-adaptive image processing we will train ANNs to 
approximate the transformation (2). In order to avoid possible processing bias and to 
reduce uncertainty, ANNs deal with transformation (3) during the training, where 

statistics ),( yxm  and ),( yxD  are calculated exactly for the smallest possible 

neighborhood 3x3. 
To calculate number of edge pixels necessary for evaluation (5) of ANN 

processing we use fast variant of Sobel’s edge detector described in [12]. Since the 
evaluation (5) is inexact there is no need to minimize it until 0 is reached. It was noted 
that quite satisfactory results are obtained when the objective function is within the 
approximate range [1,4; 1,9]. We use f = 1,5 as a stop criterion. 

Evolution time for population of ANNs is limited with 25 generations. Initial 
population size is 50 organisms and adapts during the run of the NEvA algorithm 
which is briefly described in the Section 2. 

Two images depicted in the figure 1 are used for training. Images’ dimensions are 
small to increase the training speed and are equal to 128x128 pixels (fig. 1a) and 
128x160 pixels (fig. 1b). 

 
a) 

 
b) 

Fig. 1. Images used for training. Black frames are added advisedly to ease the perception and 
not present on the original images. 

After the training is finished the best network is picked up to perform processing of 
the test images that were not introduced during the training. Neighborhood size for 
the test processing is 5x5 and local statistics are calculated approximately using 
formulae (17) and (18). 
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5.2   Results 

The training process took about 80 seconds on Pentium IV – 3 GHz CPU. Resulting 
example network is presented on the fig. 2.  

Some examples of image processing using ANN on the fig. 2 are shown on the  
fig. 3-4. Processing of each image took approximately 1 sec. Note that another trained 
ANN, which is different from the network on the fig. 2, is likely to give another 
results of images’ enhancement and, possibly, different processing time. 

 

Fig. 2. Sample resulting network obtained in result of evolutionary training using images sh-
own on the fig. 1 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. Comparison of the two-step ANN+autoleveling processing (b) with standalone autole-
veling (c) and MSR processing (d). Original image (a) is taken from [3]. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 4. Comparison of the two-step ANN+autoleveling processing (b) with standalone autoleve-
ling (c) and MSR processing (d). Original image (a) is taken from [3]. 

Comparison with standalone autoleveling algorithm and processing using MSR 
algorithm was made. In most cases the results of the proposed two-step 
ANN+autoleveling approach had subjectively better or equal quality than the results of 
processing with autoleveling algorithm only. When compared to MSR processing the 
introduced two-step procedure allowed to obtain comparable results with slight 
superiority of the MSR algorithm. Nevertheless, the processing using two-step procedure 
seems to be faster because MSR uses Fourier transformation and each pixel is processed 
with respect to 3 neighborhoods with radiuses equal to 15, 80 and 250 pixels1 [13]. 

                                                           
1 There are no results for image processing time for the MSR algorithm in the literature but 

Fourier transformation together with multi-scale processing is to be computationally 
expensive. 
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6   Conclusion 

Since there are no exact guidelines how to approximate transformation (1), use of 
ANN seems promising due to their universal approximation properties. In this paper it 
is shown that use of evolving neural networks with rather rough evaluation of their 
quality is an efficient way to obtain a neuro-solution for fast and effective image 
processing. To make calculations faster approximate formulae (17) and (18) for local 
statistics are introduced. 

First results of experiments show competence and efficiency of the proposed two-
step processing procedure: (1) local level processing with use of ANN; (2) global 
level processing using autoleveling algorithm. The further research is aimed to the 
improvement of the ANNs evaluation and extension of possible domains of 
application of the neural image processing. 
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Abstract. Modularity has been recognised as one of the crucial aspects
of natural complex systems. Since these are results of evolution, it has
been argued that modular systems must have selective advantages over
their monolithic counterparts. Simulation results with artificial neuro-
evolutionary complex systems, however, are indecisive in this regard. It
has been shown that advantages of modularity, if judged on a static task,
in these systems are very much dependent on various factors involved in
the training of these systems. We present a couple of dynamic environ-
ments and argue that environments like these might be partly responsi-
ble for the evolution of modular systems. These environments allow for a
better, more direct use of structural information present within modular
systems hence limit the influence of other factors. We support these ar-
guments with the help of a co-evolutionary model and a fitness measure
based on system performance in these dynamic environments.

1 Introduction

There are modular systems all around us in nature. The most cited example is
the human brain, which is modular on several levels [1]. Macroscopically, we can
observe specialised areas for certain tasks, like for visual (V1-V2-V4-ITL (infe-
rior temporal lobe)) or auditory processing. On a mesoscopic level the structural
re-occurring element is the column, and even on the microscopic level neurons
can be grouped into structurally distinct classes, e.g. pyramidal neurons. This
structural organisation is a results of evolution by natural selection. Often de-
bated are the reasons for evolution of these modular systems. Models that try to
explain the evolution of modularity can be divided into two categories [2]. Mod-
els in the first category have direct relationship between modularity and selective
advantage. In this category some of the reasons presented for the evolution of
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modularity are evolvability, phenotypic robustness against environmental per-
turbations, ease of learning etc. The other category includes model that do not
assume a direct relationship but explain modularity as a side effect of dynamics
of evolution.

This paper is concerned with models that relate the selective advantage of
modularity with the effectiveness of learning in individuals. Hence these models
deal with interaction between genetic modularity and learning. It has been ar-
gued [3] that during their lifetimes individuals need to learn more than one tasks
simultaneously and having a modular structure helps in avoiding conflicting mes-
sages from these tasks. In Artificial Neural Network (ANN) literature this has
been shown with the help of modular neural networks (MNNs) - as they out-
perform fully-connected structures. The classic example being the “what” and
“where” vision tasks. Attempts have also been made to illustrate that this ad-
vantage of MNNs can lead to their evolution, using neuro-evolutionary methods.
In [3] it was shown that modularity can be evolved on the basis of this advantage.
In this work an ANN’s architecture was genetically determined and evolved by
mutation and selection, while its fitness was dependent on how well it performs
on these “what” and “where” vision tasks, after training with backpropagation.
This modular (non) interference based advantage, however, is not universal and
depends on various factors involved in the training of the network. In [4] it was
shown that this advantage depends crucially on the choice of cost function used
for training and a proper choice can lead to superior non-modular structures.
Our earlier experiments show that this also depends on the choice of mode of
training (batch or incremental) and learning algorithm [5]. These results indi-
cate that (a) it is possible to deal with modular interference with non-modular
structures and (b) either the tasks and simulations considered are too simplistic
to extract the benefits of modularity in complex systems or, simply, learning
efficacy is not the reason behind the evolution of modularity.

For this work we take a different approach and consider a couple of dynamic
environments, unlike the static environments considered in these models. We
show that because of the nature of tasks in these environments the structural in-
formation within a MNN can be exploited more directly (Sect. 2) and hence limits
the effect of other parameters. We then use a co-evolutionary model (Sect. 3)
to show that modularity can be evolved in conditions earlier shown to be unap-
preciative towards the evolution of modularity. We discuss various experiments
and results in Sect. 4 and finally conclude in Sect. 5. We would like to empha-
size at this point that the aim of this work is not to design optimal systems for
these dynamic environments, but to use these environments to contribute to the
understanding of evolution of modularity in nature.

2 Dynamic Environments

Here we consider two different kinds of environments. In the first one an individual
is not just expected to learn a given task but is also expected, afterwards, to adapt
to a related task, which shares some of its characteristics with the original task.
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In the other scenario an individual is expected to learn more and more complex task
incrementally.While adapting to a related task the individual is expected to learn a
function of form g(f1, f2) and then adapt to g′(f1, f2) and while adapting to a more
complex task a function is expected to learn g(f1, f2, f3) after learning g(f1, f2).
Let us assume a MNN with matching topology, after learning the first function in
phase-one, is required to adapt to the second function (Fig. 1) in phase-two. For
incrementally complex tasks, individuals are allowed to grow. In this section we
look at how modular and non-modular systems adapt in these environments. As
examples of these we consider boolean functions (see Sect. 2.1 and 2.2). The goal
here is not to solve these simple boolean problems, but to use these to gain a deeper
understanding of when modularity is useful.
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Fig. 1. A modular neural network adapting from g(f1, f2) (center) to a related task
g′(f1, f2) (left) or to a more complex task g′(f1, f2, f3) (right). Shaded modules are to
be labelled as “new.”

In Fig. 1, modules f1 and f2 specialize in corresponding sub-functions during
phase-one. To utilise the structural information present in the MNN we must be
able to use these two modules in phase-two. However, when we try to learn the
next function the modules very quickly lose their specialization1 and the advan-
tage is lost. When we change the function the corresponding error derivatives
are large initially, which results in big changes in parameters of the networks in
all the modules, hence we loose the specialization. One of the solutions to this
problem is to fix the parameters in the two modules and keep them fixed during
the training in phase-two. A less restrictive approach is where we do not fix these
parameters but try to control the changes in their magnitude at the beginning of
phase-two. If we prevent big changes in these parameters at the beginning, that
will give the combination module a chance to adapt to the already specialised
modules. Also, in absence of definite information about the relationship between
the two functions the second approach is desirable because if they are not related
then using the second approach the network can still learn the second function,
which might not be possible using the first.

Modified-IRPROP Algorithm: To implement the second approach we need a
parameter, associated with each of the weight parameters, controlling the
1 This is similar to the problem of catastrophic forgetting [6] in neural networks which

refers to the complete and sudden loss of a network’s knowledge, of what it has learnt
earlier, in the process of learning a new set of patterns.
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Fig. 2. Typical changes in the absolute values of step-sizes associated with parameters
in various modules during adaptation to a related task

magnitude of changes in these weight parameters. In Improved Resilient Back-
propagation (IRPROP) [7]) we already have such a parameter called step-size.
During training with IRPROP the absolute value of this parameter decreases over
time and at later stages of training we have very small values of step-sizes in the
network. At the beginning of phase-two of learning the modules that we want to
preserve are labelled as “re-used” and others as a “new” modules. We then use
step-sizes at the end of phase-one to initialise the step-sizes for the subsequent
learning phase for all parameters in “re-used” modules, while “new” modules get
their step-sizes initialised normally. This, we argue, is a very natural way of han-
dling learning in modular systems, whereby old modules keep their old characteris-
tics (step-size in this case) while the new modules start with new ones. Using this
scheme of initialisation, step-sizes corresponding to the two differently labelled
modules exhibit typical behaviours, shown in Fig. 2. In phase-two, step-sizes as-
sociated with “new” module start from a high (constant) value, while step-sizes
associated with “re-used” module start at very low values, increase first then fi-
nally start decreasing again. This indicates some adjustments in “re-used” mod-
ules, but not the undesirable catastrophic changes discussed earlier. To illustrate
this effect let us now consider an example of each of these tasks.

2.1 Adaptability Towards Related Tasks

To understand the role of modularity in an ANN in such a dynamic environment
let us consider an example. For XOR-OR problem after learning the Composite
XOR function ((a⊕ b)⊕ (c⊕ d)) in phase-one a network has to adapt to Com-
posite OR function ((a⊕ b)+(c⊕ d)) in phase-two. Here a, b, c and d are boolean
variables and + and ⊕ represent OR and XOR functions, respectively. The two
boolean functions share common sub-functions and the combination functions
OR (g) and XOR (g′) are different.

Now for this problem let us compare a fully-connected and a modular structure
using the modified-IRPROP, the normal IRPROP and incremental steepest-
descent algorithms. In addition we also use cross entropy and mean-squared error
functions for these comparisons. Fully-connected structure is an RBF network
and the modular network is a combination of three smaller RBF networks, each
representing one module in Fig. 1. Number of hidden units are chosen so as to
make the number of free parameters the same in both networks. For all these
experiments, phase-two training starts with the weight parameters learnt after
phase-one and both phases consist of 100 epochs. Table 1 lists cross entropy or
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Table 1. Comparison of adaptability towards related tasks: Cross entropy (CE) or
normalised root-mean-squared errors (NRMSE) on training set at the end of phase-
two, averaged over 30 runs, for the two structures trained using different learning
algorithms. Bold entries in a column represent the significantly better (paired t-test,
significance level α = 0.05) result in that column.

Algorithm → steepest descent IRPROP modified-IRPROP
Error Function → NRMSE NRMSE CE NRMSE CE

Structure ↓
fully-connected 0.48 0.19 0.06 0.19 0.06

modular 0.31 0.24 0.04 0.07 0.02

normalised root-mean-squared errors (depending on the error function used) on
training set at the end of phase-two, averaged over 30 runs, for the two structures
trained using different learning algorithms. Training set errors are used as there
are only 16 possible data points for the problem. Modular structure adapts much
better than a fully-connected structure if we use incremental steepest descent
learning algorithm. With IRPROP both structures adapt equally well. With
modified-IRPROP, however, modular structure is much better because we are
able to use the modular specialisations in the second task.

2.2 Adaptability Towards Incrementally Complex Tasks

To compare the adaptability of a fully-connected structure and a modular struc-
ture to tasks which incrementally become more and more complex2, let us con-
sider the following three-stage example. In stage-one, the task is to learn f1,
in stage-two the task is to learn g(f1, f2) and finally in stage-three the task is
to learn g(f1, f2, f3), where f1 = a⊕ b, f2 = c⊕ d, f3 = e⊕ f and the com-
bination function g is OR. Again a, b, c, d, e and f are boolean variables and
⊕ represents XOR. For stage one and two all possible data points (4 and 16,
respectively) are used for training and for stage three 50 out of total 64 are used
for training and the rest for testing. For stage one there is no modularity in the
problem hence we start with two fully-connected RBF networks. In stage-two
one of these networks is grown in a modular way, whereby the new inputs go
into a separate module, and the other is grown by simply adding more hidden
units in the network. These two structures are again grown in a similar fash-
ion in stage-three. In any of these stages the total number of parameters in the
two structures is kept same. Figure 3 shows the learning curves for these two
structures with mean-squared error function. For stages one and two training
error is plotted while for stage three test error is plotted. From these we can see
that the modular structure is able to use the structural information within and
performs better than a fully-connected structure. This difference in performance

2 This is similar to the idea of lifelong learning [8] in robot control tasks, whereby
an agent is expected to reduce the difficulty of learning i-th control task by using
already acquired knowledge from other tasks.
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Fig. 3. Average NRMSE of 30 independent runs at different epochs, for the modified-
IRPROP learning of modular and IRPROP learning of fully-connected structure

increases with increase in the number of sub-tasks within the overall task. This
is observed irrespective of the error function used for training.

3 Evolution of Modularity

Here we consider the two dynamic environments again but the second one is made
more realistic by making an individual learn incrementally complex task, not in
its lifetime but, after every few generations. Previously we observed that making
better use of structural information present in a MNN helps it adapt better in
these environments. Our aim here is to illustrate how this better adaptability can
lead to the evolution of modularity. For this purpose we use an extension of our
co-evolutionary modules and modular neural networks (CoMMoN) model [9,5].
CoMMoN has a module population or ModPop and a MNN population or SysPop
co-evolving together (Fig. 4). ModPop consists of RBF networks and SysPop
consists of MNNs which are made up of one or more modules from ModPop.
If an MNN has more than one module, it uses a Combining-module (another
RBF network) to combine the outputs of these modules. Evolution at ModPop
level searches for good building blocks and at SysPop level it searches for good
combinations of these. Within this general co-evolutionary framework, both the
structure and parameterisation of MNNs is evolved.

Modules differ from each other in terms of the input connections they have
out of all possible inputs for the problem (AllInps). Initially they are assigned
these inputs randomly. Centers and widths of hidden units in a module are
initialised using K-Means Clustering on the training data points, considering
only the inputs which are connected to the module. Weights and bias values are
initialised randomly using uniform distribution. In SysPop, first each MNN is
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Fig. 4. Steady-state CoMMoN Model : Generation t to generation t + 1

assigned a random number of modules between 1 and 4 uniformly. If there are
more than one modules then a Combining-module is added and initialised in a
fashion similar to the initialisation of modules in ModPop, only the inputs to
this module are obtained as the outputs of other modules in the MNN. After
initialisation, each MNN is trained using modified-IRPROP and one of the two
error functions (cross entropy or mean-squared error) and its fitness is evaluated
using the same error function. These fitnesses are then used to evaluate fitness
of modules in ModPop (Sect. 3.1). In each generation a module from ModPop is
chosen using proportionate selection. It is then mutated by changing its input
positions (each input position is flipped with probability pm = 1/AllInps) and
its parameters are reinitialised to obtain ModChild. This ModChild replaces the
worst individual in ModPop. A couple of individuals for SysPop are then chosen
with replacement, using proportionate selection. The first individual is mutated
using a mutation sequence (Sect. 3.2) and, if the offspring is fitter than the
second worst individual in SysPop, it replaces that individual. This mutation is
used to make the best use of innovation at the module level. The second system
is mutated by swapping the module most similar (based on hamming distance
between input connections) to ModChild in this individual with ModChild and
replaces the worst individual in SysPop.

3.1 Fitness Assignment

In the first dynamic environment, where individuals (MNNs) need to adapt to
a related task, fitness of a MNN is derived from both tasks. We calculate the
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mean-squared errors (or cross entropy) at the end of each phase of training and
sum the inverse of the two values to evaluate an individual. In the second task
mean-squared error (or cross entropy) for the current task is used. Fitness for
modules in ModPop is derived from various MNNs in SysPop. We use the sum
of fitnesses of best few MNNs (25% of all MNNs in SysPop) in which a module
participates to evaluate its fitness.

3.2 Mutation Sequence

To encourage simpler structures against more complex structures, the following
sequence of mutations (similar to the one used in EPNet [10]) is applied on
MNNs in sysPop. A particular type of mutation is used only when the preceding
type could not produce an offspring which, after partial training, was better
than the second worst individual in SysPop. The steps involved, in that order,
are (a) deletion : a module from the MNN or a node from Combining-module is
deleted with equal probability, (b) swap: a module in the MNN is swapped with
another module from ModPop, (c) addition: either a randomly chosen module
from ModPop is added to the MNN or a new node is added to the Combining-
module, with equal probability.

4 Simulation Results and Discussion

To observe the evolution of modularity we use a structural modularity index or
SMI. It indicates how far a given structure is from the modular solution. If the
current task has three sub-tasks, for each module in the network this index is
defined as: SMImod = 1

N (n1 − n2 − n3), where n1, n2 and n3 are the number of
inputs corresponding to the three sub-tasks, n1 ≥ n2 ≥ n3 and N is the total
number of inputs in the problem. If there are only two sub-tasks then n3 is always
zero. The SMI of the MNN is calculated by summing mmods corresponding to
all sub-tasks. If a structure has more than one module for a sub-task then only
one is taken into consideration while calculating SMI and this module is the one
that (structurally) matches the corresponding sub-task best. Figure 5 illustrates
SMI calculations for two MNNs. A structure that matches the problem topology
has an SMI value of 1.0 and a fully-connected structure has an SMI value of 0.0.

Various parameters used in experiments for both environments are listed in
Table 2. In the first instance where we use adaptability towards related tasks
(example from Sect. 2.1) as the fitness measure the best MNN in SysPop in all
20 runs (10 each using cross entropy and mean-squared error) at the end of 1000
generations always have an SMI value of 1.0. Although, four runs produce MNNs
with an extra module.

To test the adaptability towards incrementally complex tasks the co-evolution-
ary model is given 1000, 2000 and 3000 generations to adapt to a task in the
three stages (Sect. 2.2), respectively. In each stage the collective inputs (all six)
are provided and only the target values are changed in between stages. Hence in
stage-one (between generation 0 and 999) the task requires feature selection, in
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Table 2. Parameter values used for experimentation

Partial training per generation 20 epochs
ModPop size 120
SysPop size 30
Maximum modules per MNN 4
Maximum hidden units in Combining-network 8
Hidden units in modules 5

a b c d e f a b c d e f

Sub−task
Module
SMImod
SMI

1 3
1 / 3 1 / 6 1 / 3

2

5 / 6

1 2 or 3 4
1 / 3 1 / 3 1 / 3

1

!( a XOR b ) !( c XOR d ) !( e XOR f ) !( a XOR b ) !( c XOR d ) !( e XOR f )

11 2 2 33 4Modules

Fig. 5. Errors in connections between modules and inputs in two of the solutions ob-
tained using adaptability towards incrementally complex problem (stage-three) along-
side corresponding SMI values. Structure on the left has an extra module and the one
on the right has an extra connection.

stage-two onwards both feature selection and decomposition is required. We use
cross entropy in 10 runs and mean-squared error in the other 10 runs as error
functions for training and fitness values for evolution. Irrespective of the error
function used we obtain modular solutions at the end of both second and third
stages. Although the resulting solutions do not match the problem topology ex-
actly. Average SMI values for the best solutions at the end of stage-three for cross
entropy and mean-squared error runs are 0.83 and 0.88. Also, t-test (α = 0.05)
on the two sets of values reveals that the two are not significantly different from
each other. A couple of deviations from the exact problem-topology matching
structure observed in these results are shown in Fig. 5. Both sets of results in-
dicate that selective advantage based on individuals’ ability to adapt in these
two environments can results in evolution of modularity. This is observed using
both mean-squared error and cross entropy error functions, which indicates the
limited influence of the choice of error functions used.

5 Conclusions

Examples of dynamic environments are presented in which the structural
information built in a MNN can be better exploited. This is done using the
modified-IRPROP algorithm and it results in better adaptability of MNNs than
fully-connected structures, independent of various factors involved in training.
Error function and training algorithm (which have been shown to be crucial in
learning a static task) are both shown to have limited influence in these envi-
ronments. Also, with the help of a co-evolutionary model we have shown that
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in these dynamic environments a selective advantage based on these improved
adaptabilities can result in the evolution of modularity, irrespective of these
factors.

Previous studies have not been able to show a clear cut advantage of having
modularity in neural networks. We argue that the advantage of modularity in
neural networks is much more visible in dynamic environments like the ones
considered here. Even with such simple dynamic tasks we have been able to show
how adaptability benefits from modularity in neural networks. Another, even
broader, implication of this work is the partial explanation for the abundance of
modularity in natural complex systems. It is argued that dynamic environments
like these might be partly responsible for such an abundance.
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Abstract. Evolutionary car racing (ECR) is extended to the case of two
cars racing on the same track. A sensor representation is devised, and
various methods of evolving car controllers for competitive racing are
explored. ECR can be combined with co-evolution in a wide variety of
ways, and one aspect which is explored here is the relative-absolute fit-
ness continuum. Systematical behavioural differences are found along this
continuum; further, a tendency to specialization and the reactive nature
of the controller architecture are found to limit evolutionary progress.

1 Introduction

Evolutionary car racing (ECR) is about using evolutionary algorithms to create
and tune controllers, sensors or other parameters for racing cars, in simulation
or physical reality. Only a few attempts to evolve controllers or aspects of con-
trollers have so far been made, all quite recently [1][2][3][4]; see [5] for a complete
review. Our own work has focused on investigating various controller architec-
tures and sensor representations, and finding ways of developing neurocontrollers
with general driving skills that can proficiently race a variety of tracks, as well
as specialized controllers that perform very well on particular tracks. We have
also argued that car racing is a promising environment for evolving complex and
relatively general intelligence, as the task of navigating a basic track is relatively
simple to learn, but gradually can be made more and more complex almost
without limits, requiring path planning, anticipation, opponent modelling, etc.

All published research on ECR so far has dealt with the case of a solo-racing,
or one car on a track a time. This paper addresses the more complex case of
two cars competing against each other on the same track at the same time, and
includes the possibility of car-car collisions. We will explore different methods of
evolving neurocontrollers and sensor setups for successfully competing against
another car, and we hope that our results will be useful both for game developers
looking to automatically create racing game AI, and computational intelligence
researchers seeking to use games and game-like environments to evolve ever more
general and complex intelligence.

1.1 Co-evolution

In our previous research, a controller’s fitness was defined as the progress a con-
trolled car had made around a track within a pre-specified time, and so depended

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 613–622, 2006.
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only on the controller itself and a few small random factors. Competing against
another controller fundamentally changes the problem, so that fitness becomes
dependent on the behaviour of both the assessed controller and its competitor.
Evolution with such fitness functions is commonly called co-evolution, and has
been used in evolutionary computation both to improve evolvability and to study
evolutionary dynamics [6][7].

ECR allows the application and exploration of several uncommon forms of
co-evolution. According to Dawkins and Krebs, biological co-evolution can be
either intraspecific or interspecific and either symmetric or asymmetric [8]; in
evolutionary computation terms, the co-evolution can be either between two
populations, or individuals in one population, and between contestants using the
same or different fitness functions. ECR allows all these types of co-evolution,
which is interesting since most competitive co-evolutionary robotics experiments
we know of build on predator-prey scenarios, and thus fall in the asymmetric
interspecific category [9][10][11].

A second way in which ECR allows uncommon modes of co-evolution is
through the existence of a well defined solo fitness function: any controller can
be tested both for absolute solo fitness, which means the distance covered when
racing without competition, absolute competitive fitness, which is the same thing
when having to take the behaviour of another car into account (including the
possibility of collisions), and relative fitness, which is defined as how far in front
of or behind the competitor a controlled car finishes. Further, absolute competi-
tive fitness and relative fitness can be blended seamlessly. We believe that these
characteristics make ECR ideal for exploring co-evolution.

1.2 Scope of This Paper

The first set of questions we will try to answer concern the extension of the car
racing model and evolutionary approach to two cars: how well will controllers
evolved for solo racing do with competition? Will it be possible to co-evolve
controllers that do better? Is our controller architecture and sensor setup appro-
priate for this? Will we be able to evolve human-competitive drivers, and if not,
what are the problems with our method?

The second set of questions address co-evolution. Will there be a difference
in fitness, and in behaviour, if we evolve for absolute, relative or mixed absolute
and relative fitness? What sort of difference will be observed? For example, will
controllers evolved for relative fitness turn out to drive more aggressively? Will
there be a difference in sensor setups?

2 Methods

2.1 Simulation Environment

The experiments reported in this article were done in a slightly updated version
of the simulator used in [5]. The 2-dimensional simulator is intended to, quali-
tatively if not quantitatively, model a standard radio-controlled (R/C) toy car



Arms Races and Car Races 615

(approximately 17 centimeters long) in an arena with dimensions approximately
3*2 meters, where the track is delimited by solid walls. The simulation has the
dimensions 400*300 pixels, and the car measures 20*10 pixels.

A track consists of a set of walls, a chain of waypoints, and a set of starting
positions and directions. Cars are added to a track in one of the starting posi-
tions, with corresponding starting direction, both the position and angle being
subject to random alterations. The waypoints are used for fitness calculations.

The dynamics of the car are based on a reasonably accurate mechanical model,
taking into account the small size of the car and bad grip on the surface, but
is not based on any actual measurements [12][13]. While the dynamics of the
car itself are fairly straightforward, the collision handling has been subject to
much tuning and exception-handling in order to get a behaviour that feels right
for the human player and cannot easily be exploited in an unintended way by
the evolutionary algorithm. A collision between two cars is basically handled
as a fully elastic collision, but the orientations of the cars are also disturbed,
depending on which parts of the cars collided.

2.2 Sensors

The car experiences its environment through four types of sensors: the speed
sensor, the waypoint sensor, a number of wall sensors, and a number of car
sensors. The speed sensor is simply the speed of the car. The waypoint sensor
gives the difference between the car’s current orientation and the angle to the
next waypoint (but not the distance to the waypoint). When pointing straight
to a waypoint, this sensor thus outputs 0, when the waypoint is to the left of
the car it outputs a positive value, and vice versa.

The wall sensors are modelled on “range-finders” similar to sonars or IR sen-
sors, where each sensor has an angle (relative to the orientation of the car) and a
range, between 0 and 200 pixels. The output of the wall sensor is zero if no wall
is encountered along a line with the specified angle and range from the centre
of the car, otherwise it is a fraction of one, depending on how close to the car
the sensed wall is. The car sensors work exactly like the wall sensors, with the
crucial difference that the output depends on whether and how far along the line
another car is detected. A small amount of noise is applied to all sensor readings,
as it is to starting positions and orientations.

2.3 Controller Architecture

The controllers in the experiments below are based on neural networks. More
precisely, we are using multilayer perceptrons with three neuronal layers (two
adaptive layers) and tanh activation functions. A network has at least three
inputs: one fixed input with the value 1, one speed input in the approximate
range [0..3], and one input from the waypoint sensor, in the range [-Π ..Π ]. In
addition to this, it has eight inputs from wall and car sensors, in the range [0..1].
All networks have two outputs, which are interpreted as driving commands for
the car. Both the neural network and sensor configuration of a controller are
directly encoded together in the genome as an array of real numbers.
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2.4 Co-evolutionary Algorithm

For the co-evolutionary algorithm, a modified (μ+ λ) evolutionary strategy with
μ = 50 and λ = 50 without self-adaptation) was used. (This algorithm is based
on the EAs used in [3] and [5]. It is possible that the addition of crossover and/or
self-adaptation could make evolution more efficient, but we chose to leave these
out for the sake of conceptual simplicity and minimizing the number of parameters
to tune.) The difference between the co-evolutionary algorithm used here and a
standard evolutionary strategy is in the fitness calculation. There are two types
of primitive fitness defined: absolute and relative fitness. The absolute fitness of a
controller C is calculated as the number of waypoints it has passed, divided by the
number of waypoints in the track, plus an intermediate term representing how far
it is on its way to the next waypoint. An absolute fitness of 1.0 thus means having
completed one full track within the alloted time. In the evolutionary experiments
reported below, each car was allowed 700 time-steps (enough to do two to three
laps on most tracks in the test set). Relative fitness is defined as the difference in
absolute fitness between C and the car it is competing against. Both the absolute
and relative fitness values for a given controller was calculated as the mean of three
trials of the controller on each of the tracks.

When the primitive fitnesses of all the controllers have been calculated, they
are normalized, so that they are all in the range [-1..1]. The final fitness value of
each controller is then calculated by blending the two primitive fitness values:
fitness = p∗absfit+(1−p)∗relfit where p is the proportion of absolute fitness,
a constant set at the beginning of the evolutionary run. It could be argued that
only evolution with completely relative fitness constitutes co-evolution.

There are three mutation operators: Gaussian mutation of all neural connec-
tion weights, Gaussian mutation of all sensor parameters (angles and lengths), or
sensor type mutation. Each time the mutation method of a controller is called,
numbers drawn from a Gaussian distribution with a standard deviation of 0.1
are added to both neural connection weights and sensor parameters. With a
probability of 0.4, a sensor type mutation is also performed, meaning that one
of the sensors has its type changed from car to wall or wall to car.

At the start of an evolutionary run, all controllers have four wall sensors and
four car sensors, pointing in random directions and with random ranges, and the
neural connection weights are initialized to small random values.

2.5 Competition Tracks

In order for the competitions to be more challenging, and to prevent the con-
trollers from adopting strategies that would only work on a single track, three
different tracks were used to evaluate every trial (see figure 1). While we have
previously shown [5] that controllers can be evolved that proficiently race a di-
verse collection of tracks, this seems to require a lengthy process of incremental
evolution if the tracks are both clockwise and counter-clockwise. But if all the
tracks have the same direction, like the three tracks chosen for the present exper-
iments, it is possible to evolve a good controller for these tracks using standard
evolution.
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Fig. 1. The three tracks used in the experiments, including waypoints. Each track also
shows a sample car with evolved sensors (discussed in section 3.2).

3 Experiments

3.1 Giving Solo-Evolved Controllers Some Competition

10 separate solo-evolutionary runs were made according to the setup described in
the Methods section above. Each evolutionary run lasted for 200 generations. (The
mean fitness was zero at generation 0 of every evolutionary or co-evolutionary run
in this paper; fitness growth graphs have been omitted to conserve space.)

On average, the best individual of the last generation of each of the evolution-
ary runs had fitness 2.49 (with standard deviation σ = 0.23), and used 5.7 (σ =
0.67) wall sensors and 2.3 (σ=0.67) car sensors. The best run resulted in a best
controller with fitness 2.67, and the best controller of the worst run had fitness
1.89. Most of the evolved sensor setups consisted in a relatively even spread of
medium-range wall sensors pointing forward and diagonally forward, and the
few car sensors pointing backward.

One of these controllers, with fitness 2.61 (0.13), was selected for further
testing. When put in a competition with another car controlled by a copy of the
same controller, average fitness dropped to 1.23 (0.6). Behavioural analysis shows
that the two cars collide repeatedly at the beginning of almost every trial, as
they don’t have any method of detecting and reacting to each other’s presence.
Depending on starting conditions, the outcome of the competitions vary, but
usually one or both of the cars is either driven to collide with the wall, or spun
around so that it starts driving the track the wrong way. A car that starts
going the wrong way is usually, but not always, unable to turn around and start
driving in the correct direction again; a car that crashes into the wall usually
gets stuck. This is because of the controller design rather the game mechanics,
as it is perfectly possible for a human player to back away from the wall and
continue driving in the right direction. In many trials, however, one of the cars
managed to escape the collisions in the right direction and proceeded to make
its way smoothly around the track.

From this experiment, it can be seen that the problem of racing two cars
concurrently is sufficiently different from the problem of solo-racing that the
performance of a solo-evolved controller is catastrophically compromised when
tested in competition conditions.
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3.2 Co-evolving Controllers: The Absolute-Relative Fitness
Continuum

50 evolutionary runs were made, each consisting of 200 generations. They were
divided into five groups, depending on the absolute/relative fitness mix used by
the selection operator of the co-evolutionary algorithm: ten evolutionary runs
were performed with absolute fitness proportions 0.0, 0.25, 0.5, 0.75 and 1.0
respectively. These were then tested in the following manner: the best individuals
from the last generation of each run were first tested for 50 trials on all three
tracks without competitors, and the results averaged for each group. Then, all
five controllers in each group were tested for 50 trials each in competition against
each controller of the group. Finally, the number of wall and car sensors were
averaged in each group. See table 1 for results.

Table 1. The results of co-evolving controllers with various proportions of absolute
fitness. All numbers are the mean of testing the best controller of ten evolutionary runs
for 50 trials. Standard deviations in parentheses.

Proportionabsolute 0.0 0.25 0.5 0.75 1.0
Absolute fitness solo 1.99 (0.31) 2.09 (0.33) 2.11 (0.35) 2.32 (0.23) 2.23 (0.23)
Absolute fitness duo 0.99 (0.53) 0.95 (0.44) 1.56 (0.45) 1.44 (0.44) 1.59 (0.45)
Relative fitness duo 0 (0.75) 0 (0.57) 0 (0.53) 0 (0.55) 0 (0.47)
Wall/car sensors 5.8 / 2.2 5.6 / 2.4 5.2 / 2.8 4.2 / 3.8 6.4 / 1.6

Analysis. It is clear that, when driving without competitors, the co-evolved con-
trollers on average have lower absolute fitness than the solo-evolved controllers.
Behavioural inspection suggests that the co-evolved controllers drive more care-
fully, seldom accelerating to top speeds, and take corners more conservatively. A
similar but smaller difference in absolute solo-fitness seems to exist between the
groups of co-evolved controllers, with controllers evolved more for absolute fit-
ness performing better than controllers evolved more for relative fitness. The con-
trollers within a group perform similarly, and the lower fitness comes from driving
slower around the track rather than crashing into walls or losing direction.

The difference between controllers co-evolved with different fitness mixes be-
comes clearer when we measure performance in competition with other controllers
from the same group, where controllers evolved mostly for absolute fitness gen-
erally get about half a lap farther than those evolved mostly for relative fitness.
Behavioural analysis confirms that this is because the cars more often collide at
the start of a trial, often forcing one or both of the cars to crash against the wall
or spin around and lose track of which direction it is going. Often, the controllers
evolved with low (0 or 0.25) proportions of absolute fitness actively look for trou-
ble by trying to collide. (See figure 2).

There seems to be little consistency in evolved sensor setups, samples of which
can be seen in figure 1 (wall sensors are blue; car sensors are pink; each car is
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travelling forwards in direction of the waypoints). We found one controller in the
group evolved purely for relative fitness that had only wall sensors and no car
sensors, and another one in the group evolved for purely absolute fitness! There
is no obvious tendency towards fewer or more car sensors at either end of the
fitness mix, and the data is too scarce to prove any more subtle tendency. When
looking at all 50 controllers together, every controller has at least three wall
sensors, and there is always at least one pointing mostly forward. On average,
the cars have twice as many wall sensors as car sensors, and when car sensors
are present, there seems to be at least one pointing mostly backward; overall,
more car sensors point backward than forward.

Fig. 2. Traces of the first 100 or so time-steps of three runs that included early colli-
sions. From left to right: red car pushes blue car to collide with a wall; red car fools
blue car to turn around and drive the track backwards; red and blue car collide several
times along the course of half a lap, until they force each other into a corner and both
get stuck. Note that some trials see both cars completing 700 time-steps driving in the
right direction without getting stuck.

Fitness mix groups versus each other. In order to find out how the con-
trollers evolved with various fitness mixtures performed against each other, we
tested all the five controller groups against each other. The slightly surprising re-
sults was that the groups performed on average equally well against each other,
though with considerable intra-group variation. The absolute fitnesses of the
controllers in these encounters were quite low, on average 0.96, which suggest
that all controllers are quite ill prepared to race against controllers from another
fitness mix group.

3.3 Co-evolved Versus Solo-Evolved Controllers

The 50 controllers co-evolved with various fitness mixes in the section above
were now tested against the 10 solo-evolved controllers from section 3.1. For
each group, the ten co-evolved controllers competed for 10 trials with each of
the 10 solo-evolved controllers. See table 2 for results.

Analysis. Observe that there is a small (mostly) but consistent fitness advan-
tage for the solo-evolved controllers over the co-evolved ones. (Both co-evolved
and solo-evolved controllers performed significantly worse in these competitions
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Table 2. Co-evolved versus solo-evolved controllers

Proportionabsolute 0.0 0.25 0.5 0.75 1.0
Co-evolved 1.41 (0.52) 0.99 (0.44) 1.32 (0.58) 1.23 (0.65) 1.41 (0.45)
Solo-evolved 1.68 (0.56) 1.95 (0.62) 1.74 (0.57) 1.38 (0.65) 1.51 (0.63)

than when tested in solo racing conditions.) The cause of this fitness difference
is not completely obvious after looking at a large number of these competitions,
but it appears that the solo-evolved controllers (which gain higher fitness than
the co-evolved ones in solo trials) simply outrun the co-evolved controllers in
many cases, and so avoid many of the collisions, and further corroborate the
hypothesis that the controllers tend to be very specialized to compete against
controllers similar to themselves. This could be seen either as a shortcoming of
the evolutionary algorithm, or as the desired state of things; it could be argued
that the co-evolved controllers should have strategies general enough to take on
any opponent, or that a their more careful driving style should always make
them slower than a solo-evolved controller.

3.4 Evolution with a Static Target

To investigate whether the tendency to specialization in co-evolved controllers
could be used to create controllers that could out-compete the solo-evolved con-
trollers from section 3.1, we modified a copy of the co-evolutionary algorithm
to work with a static target. In this configuration, each controller is evaluated
by racing three races against randomly selected controllers out of the ten solo-
evolved controllers. It should be noted that this is not co-evolution at all, as the
target controllers do not evolve. The car controlled by the target controller could
instead be seen as an interactive feature of the environment.

The experiments we run with this configuration failed to generate any con-
trollers with better fitness than the target controller. This was despite attempts
at evolving from scratch, starting from a general controller, or starting from a
clone of the target controller, and using various mixtures of absolute and rela-
tive fitness. Our interpretation of this is that the solo-evolved controller drives
the tracks as fast as can be done given its sensing and processing limitations,
and that the same limitations hinder the co-evolved controllers from doing any
better.

3.5 Human-Competitiveness of Evolved Controllers

A random selection of controllers were tested by competing with a car controlled
by one of the authors via the keyboard. It was found that the solo-evolved
controllers were generally good contenders, driving at about the same skill level
or slightly better than the author, as long as collisions were avoided. However, it
was found to be quite easy to learn how to collide with the computer controlled
car in such a way that it got stuck on a wall, and then continue to win the race.
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Most of the co-evolved controllers were pretty simple to beat by just accelerating
hard at the beginning of a race and keep driving, as their slower driving wouldn’t
allow them to catch up.

4 Conclusion

Our main positive finding concerns the effects of changing the type of fitness
function. A very clear effect was that controllers evolved more for relative fit-
ness acted more aggressively, but covered less distance both when running solo
and when competing with other controllers from the same population, than
controllers evolved more for absolute fitness. We could not find any systematic
difference between the sensor setups evolved with the various fitness mixtures,
but observed a general tendency to point car sensors backwards rather than for-
ward, and the opposite tendency for wall sensors - it seems to be more important
to watch your back than to know whats happening in front of you.

A finding that is relevant to the overarching quest to scale up ECR and
evolutionary robotics in general is that competitive ECR is a much more complex
problem than solo ECR. This can be seen both from the drastic degradation of
fitness when solo-evolved controllers are put in competitive environments, and
from our great difficulty in evolving controllers that can reliably outperform
the solo-evolved ones. It can also be seen from the total inability of all evolved
controllers to backtrack upon a frontal collision with a wall, and the relatively
poor ability of most evolved controllers to find the correct direction after having
been spun around. This points to the need for more complex sensors and neural
networks.

However we set up the evolutionary runs, they seem to suffer from over-
specialization, where the controllers in a population only learn to race each other.
This result is in broad agreement with what has been found in co-evolutionary
predator-prey experiments[9][10]. So even though ECR allows us to explore a
larger space of variants of competitive co-evolution, it seems that we at present
are stuck with the same basic obstacles to evolving generally good competitive
behaviour.

4.1 Future Research

One obvious extension of the controller architecture would be to add state to
the presently stateless controller; this could be done by adding recurrent connec-
tions to the network. The controller could also be given the ability to grow or
“complexify” itself as needed during the evolutionary run[11]. This could also be
the case for the sensors; we believe that either more sensors of the present kind
or some alternate sensor representation will be needed to give the controller the
information needed to compete well.

The evolutionary algorithm could be enhanced with the addition of a “hall of
fame”, where the controllers of a generation compete not only against each other
but also against the best controllers of previous generations[7][9][10]. It would
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be interesting to use evolutionary multi-objective optimization to evolve fronts
of pareto-optimal tradeoffs between relative and absolute fitness.
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Abstract. The major contribution of this paper is a novel security
framework, which is inspired by the principles of Artificial Immune Sys-
tems (AIS), for Nature inspired routing protocols in general and for Bee-
Hive in particular. We have designed an empirical validation framework
to demonstrate that the new framework provides the same security level
as BeeHiveGuard, a digital signature based cryptography framework. But
the processing and communication costs of the new framework are sig-
nificantly smaller as compared to BeeHiveGuard.

1 Introduction

Nature inspired routing protocols are becoming an active area of research because
agents in such algorithms enable a node to take decentralized routing decisions
without any knowledge of global network topology. The algorithms can also
adapt to changes in the network, or traffic patterns. AntNet [1], BeeHive [11] and
Distributed Genetic Algorithm (DGA) [5] are well known Nature inspired routing
algorithms. However, the impact of the malicious nodes, which manipulate the
identity of the agents and their routing information, on the behavior of routing
algorithms has received little attention in the community. In our earlier work
[12], we have shown that the malicious nodes can significantly alter the routing
behavior of BeeHive and a preliminary work by Zhong and Evans [13] has shown
similar shortcomings in AntNet.

In [12], we proposed a digital signature based cryptography solution, Bee-
HiveGuard. The important conclusion of the work is that a classic cryptography
based security framework is inappropriate for securing Nature inspired routing
protocols because of its exceptionally large processing and control (portion of
the bandwidth occupied by the agents) overheads.

The other relevant corollary of the work is: Nature inspired routing protocols
could not be deployed in real world routers without designing and developing
a simple, efficient and scalable security framework for them that must have ac-
ceptable processing and control overheads. The major contribution of the current
paper is that it proposes a simple, efficient and scalable security framework on
the basis of principles of AIS. The results of our extensive experiments show
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that BeeHiveAIS is able to successfully counter the attacks of malicious nodes
and provides the same security level as provided by BeeHiveGuard, but with
significantly smaller processing and control overheads.

The rest of the paper is organized as follows. In Section 2 we provide a brief
description of those features of AIS that proved helpful in designing and devel-
oping our new security framework, BeeHiveAIS, which is described in Section
3. In Section 4, we first introduce our verification methodology for BeeHiveAIS
and then discuss the results of extensive experiments. Finally, we conclude the
paper with an outlook to our future research.

2 Artificial Immune Systems (AISs)

AISs [2,3] are inspired by the principles of human immune system. The features
of AIS that are particularly relevant to providing security in routing protocols
are: self-identity, anomaly detection and learning. The self-identity enables an
AIS to understand normal behavior of the agents in a routing protocol and to
generate corresponding self-antigens. The AIS then generates a repository of
antibodies, which can detect an anomalous behavior due to malicious agents
(non-self antigens). The antigens and antibodies must be in a shape space for-
mat [6,7] to facilitate the definition of affinity between them, which is often
a mathematical distance function. The negative selection algorithm [4] takes a
randomly chosen set of antibodies and adds only those to the repository of ef-
fective antibodies whose affinity with the self-antigens is not above a certain
threshold value. This generation process for the antibodies is known as thymus
model [2,3], which enables an AIS to do anomaly detection through self/non-self
differentiation.

The security framework based on AIS provides a number of benefits: small
processing overhead due to a simple anomaly detection algorithm, no significant
increase in control overhead because the agents need not carry any signatures,
and finally the size of the database required to store antibodies is reasonably
small. These benefits of AIS make it perfectly suitable for securing agent-based
adaptive routing protocols in an efficient manner in real time.

3 BeeHiveAIS

We comprehensively analyzed the normal behavior of the BeeHive algorithm to
design our AIS security framework for it. We concluded that if all routers in the
network are operational then the flooding pattern of the bee agents is stable. If
a router can learn this then it can detect any tampering of the agent identity.
A second important observation was that the propagation delay in most of the
cases was significantly higher than the queuing delay. As a result, the goodness
of a neighbor for reaching a certain destination varied, most of the time, within
a small window from its average goodness value. If a router can estimate this
window then it can counter tampering of routing information (propagation and
queuing delays). Another important observation was that reducing the update
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frequency of routing tables below a certain value does not enhance the perfor-
mance of the algorithm. Last but not least a deterioration in the goodness of
a neighbor for a certain destination without a deterioration in the goodness of
other neighbors is a strong hint for an attack by a malicious node (under a
high traffic load the goodness of all neighbors for reaching a certain destination
are expected to deteriorate). This systematic study of BeeHive proved useful in
designing a simple, efficient and scalable security framework, BeeHiveAIS.

3.1 AIS Model

The security framework, BeeHiveAIS, consists of three distinct phases: initializa-
tion, learning and protection. During initialization phase, the AIS model learns
the normal flooding pattern of the bee agents, which is eventually responsible
for the creation of foraging zones and foraging regions [9,11], which are orga-
nizational units (subdivisions) of the network topology. This phase lasts about
30 seconds. Then starts the learning phase, in which data traffic is injected into
the network and the AIS assumes that no malicious nodes are present in the
network. The major objective is to learn the normal behavior of the BeeHive al-
gorithm in order to build a repository of the self-antigens, from which a database
of the antibodies to counter different types of threats is generated. This phase
lasts 50 seconds after the data traffic has been injected into the network. Finally,
the protection phase starts in which the AIS detects the security threats of the
malicious nodes and then counters them through the antibodies.

The block level diagrams of the important functions in learning and protection
phases are shown in Figures 1 and 2 respectively. The important AIS concepts
utilized in BeeHiveAIS are cataloged in Table 1. The purpose of type 1 self-
antigens is to reduce the probability of tampering the agent specific data by a
malicious node. This is achieved through self-antigens that consist of tuples like
”source address, neighbor, hops”. The antibodies are randomly generated and
if their affinity, measured by Hamming distance, with the self-antigens is above
a threshold value then they are discarded (negative selection). These antibod-
ies/antigens are in a symbolic shape space with the elements of above-mentioned
tuples as genes. The random generation of antibodies serves our purpose because
in shape space an antibody generator has limited possibilities. Currently, if an
antigen is matched to an antibody during the protection phase then the bee agent
that triggered the match is dropped.

The type 2 self-antigens reduce the probability of manipulating the propaga-
tion and queuing delays by a malicious node. The antibodies/antigens of type 2
are in a real valued shape space and their affinity is measured by the Manhat-
tan distance [2,3]. These self-antigens consist of average goodness values, which
are gathered for a certain destination through a certain neighbor over a sliding
window of the delays of five subsequent bee agents. In addition, the self-antigens
also contain a flag which determines whether the change in goodness value is due
to the presence of a malicious node or due to the change in traffic patterns. As
a result, upper and lower threshold goodness values are assigned to a neighbor
for reaching a destination. The creation process for the antibodies is similar to
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Table 1. Mapping of concepts from AIS to BeeHiveAIS

AIS BeeHiveAIS
Self Cells Well-behaving nodes

Nonself Cells Misbehaving nodes

Self-Antigens
type 1 Correct incoming direction and region of a bee agent
type 2 Correct propagation and queuing delays tendencies

Antigens
type 1 Incorrect incoming direction and region of a bee agent
type 2 Incorrect propagation and queuing delays tendencies

Antibody
type 1 Pattern that can detect antigens of type 1
type 2 Pattern that can detect antigens of type 2

Avoid flooding

Learning

Gathering Self-

Antigens type 1

BeeHive Operations

Gathering Self-

Antigens type 2

BeeHive

BeeHiveAIS

Information Access

Goodness

information

Incoming Bee Agents Outgoing Bee Agents

Thymus 

(Detector and self 

data base)

Bee Agent Flow

Fig. 1. BeeHiveAIS - Learning Phase

Avoid flooding

Mechanism

Recognition 

Antigens type 1

BeeHive Operations

Recognition 

Antigens type 2

Goodness

Restoration

BeeHive

BeeHiveAIS Goodness

Information 

Bee Agent Flow

Information Access

Thymus 

(Detector and 

self data base)

Incoming Bee Agents Outgoing Bee Agents

Fig. 2. BeeHiveAIS - Protection Phase

the one explained for type 1. A bee agent is dropped if an antibody matches an
antigen: the reported goodness value of a neighbor is either above or below the
upper or lower learned threshold values respectively. In this case the goodness
value of the neighbor is set to the average goodness value. Our analysis show
that in NttNet, the Japanese Internet Backbone (see Figure 3), 936 bytes are
needed to store type 1 antibodies and 3130 bytes are needed to store type 2
antibodies. This sums to 4006 or 4 Kbytes which is acceptable [8].
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Finally, an auxiliary feature has been added into AIS, which limits the update
frequency of the routing tables to a certain value. If a bee agent arrives before the
expected time then it is dropped to counter the Denial of Service (DoS) attack,
which can result due to substantial reduction in the bee launching interval.

4 Experiments and Results

We selected NttNet, shown in Figure 3, to empirically validate correctness of our
security framework. The experiments demonstrate that the presence of malicious
nodes, launching a number of different attacks, can significantly alter the routing
behavior of BeeHive protocol. We extended the performance evaluation frame-
work proposed in [10] in order to calculate the relevant performance and cost
values of the algorithms [9]. Our verification principle is: BeeHiveAIS must pro-
vide the same security level as BeeHiveGuard does, but with significantly smaller
processing and control overheads. Moreover, the relevant performance values of
the secure algorithm must be within an acceptable difference of BeeHive (without
any attack).

We equipped each node with a traffic scope that measures routing affinity,
which is the ratio of the packets routed through the node to the total number of
packets generated in the network. The traffic scope generates the traffic chart,
showing the routing affinity of a node for a selected algorithm (see Figure 4).
Due to cyclic paths this ratio can exceed a value of 1. If a malicious node can-
not significantly increase its routing affinity by launching different attacks, then
we can safely conclude that the security framework did achieve its objective.
The important symbols used in this paper are cataloged in Table 2 and their
definitions and significance are explained in [9,10].

Table 2. Symbols used in this paper

BHive BeeHive (without any attack) BHive(a) BeeHive (under attack)
BHG(a) BeeHiveGuard (under attack) BHAIS(a) BeeHiveAIS(under attack)

Tav Average throughput (Mbits/sec) pd Packet delivery ratio (%)

MSIA
Mean of session inter-arrival times

MPIA
Mean of packet inter-arrival times

(sec) (sec)
Rent Routing table entries Ro Control overhead
Sc Session completion ratio (%) So Suboptimal overhead
td Average packet delay (msec) To Total overhead

t90d
90th percentile of packet delays

hex
Average extra hop count per

(msec) data packet
Sd Average session delay (msec) Aa Average agent processing cycles

S90d 90th percentile of session delays (msec)
Ploop

Percentage of packets that
Jd Average jitter value (msec) followed a cyclic path

The network traffic is session oriented with MSIA=2.6 sec and MPIA=0.005
sec, session size=2130000 bits. MSIA and MPIA are taken from negative expo-
nential distributions. The reported results are an average of the values obtained
from 10 independent runs, each lasting for 1000 seconds. The detailed statistical
analysis of the results is presented in [8]. We report, in this paper, four relevant
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types of security threats that malicious nodes can launch in a network: imper-
sonating, tampering of routing information, a combined super attack and DoS
attack.

Impersonating. In this scenario, Node 35 transferred data to Node 55. Node 25,
which does not lie on a desirable route from Node 35 to Node 55, impersonated
the Node 55 (Node 25 launched bee agents by faking the source address of Node
55). As a result, Node 25 is expected to significantly disrupt the routing behavior
of BeeHive. Figure 4 and Table 3 confirm this hypothesis. The attacker node,
Node 25, is able to significantly enhance its routing affinity by attracting a large
numbers of packets towards itself even though it does not lie on the route (note
that the packets from Node 35 can reach Node 55 either through the path ”34-
40-52-53-56-55” or through the path ”34-40-52-54-55”). As a result, 60% data
packets are dropped due to looping in cyclic paths (see Table 3).

Table 3. NttNet - Data from Node 35 to Node 55 - Attacker: Node 25 (”35-55-25”)

Algorithm pd Ploop Sc Ro Aa td t90d Sd S90d Jd Tav hex So To Rent

(1)BHive 99.9 0 99.8 0.167 30683 0.027 0.028 2.62 2.77 0.004 0.844 0.443 0.038 0.206 65.9
(2)BHive(a) 41.4 29.9 9.51 0.232 25009 2.29 5.49 2.62 2.77 0.904 0.336 26.5 0.918 1.149 69.4
(3)BHG(a) 99.9 2.11 99.7 4.15 8801801 0.031 0.036 2.63 2.77 0.006 0.82 2.52 0.213 4.36 73.3

(4)BHAIS(a) 99.9 0 99.7 0.197 52433 0.027 0.028 2.62 2.77 0.004 0.812 0.443 0.037 0.234 65.8
(3)-(1) in % - - - 2385 28586 - - - - - - - 461 -
(4)-(1) in % - - - 18 71 - - - - - - - 2.6 -

One can easily conclude from Figure 4 and Table 3 that BeeHiveAIS and Bee-
HiveGuard are able to successfully counter the attack of Node 25. The additional
processing and control overheads of BeeHiveGuard are 28586% and 2385% re-
spectively as compared to BeeHive. It is important to note that the increase in
processing and control overheads of BeeHiveAIS are only 71% and 18% respec-
tively as compared to BeeHive. This is certainly attributable to the AIS utilized
by BeeHiveAIS, which requires no additional information to be transmitted in
the bee agents for correct functionality of its simple anomaly detection model.
In BeeHiveGuard about 2% data packets enter cyclic paths. But this is due to
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Fig. 4. NttNet - Data from Node 35 to Node 55 - Attacker: Node 25 (”35-55-25”)

the fact that extremely large size bee agents, carrying digital signatures, in Bee-
HiveGuard altered their reachability pattern. As a result, data packets can reach
Node 55 also through Node 43. Note that the performance values of BeeHiveAIS
are comparable to BeeHive (without any attack).

Tampering of routing information. In this attack, a malicious node tries to
manipulate the routing information, propagation and queuing delays, carried by
the bee agents. As a result, a node can artificially alter the goodness of different
nodes to its benefits. In this scenario, Node 55 transferred data to Node 48 and
Node 54 manipulated the routing information to enhance its routing affinity.

Table 4. NttNet - Data from Node 55 to Node 48 - Attacker: Node 54 (”55-48-54”)

Algorithm pd Ploop Sc Ro Aa td t90d Sd S90d Jd Tav hex So To Rent

(1)BHive 99.9 0 99.8 0.167 30487 0.018 0.024 2.61 2.76 0.005 0.799 0.533 0.043 0.212 66.1
(2)BHive(a) 99.9 0.001 99.8 0.167 29933 0.019 0.027 2.62 2.76 0.006 0.803 0.763 0.063 0.231 66.1
(3)BHG(a) 99.9 0.006 99.6 3.5 8850628 0.018 0.025 2.62 2.76 0.005 0.826 0.573 0.048 3.55 70.2

(4)BHAIS(a) 99.9 0 99.6 0.167 53144 0.018 0.024 2.61 2.76 0.005 0.801 0.534 0.043 0.211 65.6
(3)-(1) in (%) - - - 1996 28931 - - - - - - - 12 -
(4)-(1) in (%) - - - 0 74 - - - - - - - 0 -

It is evident from Figure 5 that in BeeHive Node 54 is successful in its attack
because it is able to enhance its routing affinity by 40%, and as a consequence,
decreasing the routing affinity of Node 56 from 60% to less than 20%. One can
easily conclude from Figure 5 and Table 4 that BeeHiveAIS and BeeHiveG-
uard are able to successfully neutralize the impact of this attack. However, the
processing and control overheads of BeeHiveAIS are significantly smaller than
BeeHiveGuard. The reasons for this substantial difference are already described
in the impersonating attack. The performance values of BeeHiveAIS are approx-
imately the same as of BeeHive (without any attack).
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A combined super attack. The motivation behind this experiment was to
study the impact of a combined super attack collectively launched by a number
of nodes (Nodes 21,24,40 and 43), each node selecting a different type of the
attack, in the network. Node 40 and 43 simply set the delay values of each bee
agent passing through them to zero. In this attack all nodes acted as a source
or destination node of a traffic session.

Table 5. NttNet - Normal traffic - 4 Nodes Attack (”all-all-4”)

Algorithm pd Ploop Sc Ro Aa td t90d Sd S90d Jd Tav hex So To Rent

(1)BHive 99.6 3.35 93.2 0.293 31972 0.121 0.426 2.74 3.1 0.026 46.5 1.83 8.77 9.06 78.4
(2)BHive(a) 97.8 7.15 80.2 0.472 36152 0.238 0.831 2.84 3.43 0.06 45.7 2.58 12.1 12.6 84
(3)BHG(a) 98.7 5.7 83.7 7.87 9118316 0.204 0.731 2.81 3.38 0.041 46.2 2.03 9.66 17.5 80.2

(4)BHAIS(a) 99.2 4.45 88.5 0.333 65302 0.162 0.551 2.77 3.18 0.034 46.5 1.91 9.18 9.51 77.3
(3)-(1) in (%) - - - 2586 28420 - - - - - - - 10 -
(4)-(1) in (%) - - - 14 104 - - - - - - - 4.68 -

One can see in Figure 6 that in BeeHive the nodes, which launched the attack,
are able to significantly enhance their routing affinity. The impact of the attacks
of Node 43 and Node 21 is more as compared to the other two nodes. It is also
important to note that BeeHiveAIS and BeeHiveGuard are able to successfully
counter the attacks in Node 24, Node 40 and Node 43. However, their counter-
measures are not completely successful in Node 21. It is worth mentioning that
Node 21 occupies a pivotal position in NttNet, hence it is not easy to counter
all side effects caused by tampering of its routing information. Nevertheless Bee-
HiveAIS provides the same security level as provided by BeeHiveGuard but at
significantly smaller processing and control overheads (see Table 5). Again the
performance values of BeeHiveAIS are closest to BeeHive (without any attack)
and are significantly better as compared to BeeHiveGuard (under attack).
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Fig. 6. NttNet - Normal traffic - 4 Nodes Attack (”all-all-4”)

DoS attack. This attack can be launched by substantially reducing the bee
launching interval of the bee agents in order to saturate the priority queues. As
a result, a router is always busy processing the bee agents (due to their higher
priority) and never gets the chance to do its actual task of packet switching.
This attack was launched by 19 nodes in the network. In this scenario all nodes
acted as a source or destination node of a traffic session.

Table 6. NttNet - Normal traffic - 19 Nodes launch DoS Attack (”all-all-19”)

Algorithm pd Ploop Sc Ro Aa qav td t90d Sd S90d Jd Tav hex So To

(1)BHive 99.6 3.35 93.2 0.293 31972 0.012 0.121 0.426 2.74 3.1 0.026 46.5 1.83 8.77 9.06
(2)BHive(a) 67.5 1.73 39.8 34.6 22379 0.296 1.56 4.84 2.88 3.85 0.183 31.3 1.55 5.01 39.6
(3)BHAIS(a) 99.2 2.87 87.6 6.69 46570 0.021 0.193 0.629 2.8 3.24 0.04 46 1.74 8.25 14.9
(3)-(1) in (%) - - - 2183 46 - - - - - - - - 5.93

One can conclude from Table 6 that this attack has the strongest impact on
the performance values of BeeHive. However, BeeHiveAIS is able to successfully
counter the attack and its performance values are approximately same as of
BeeHive (without any attack). The difference in control overhead stems from the
fact that a neighbor node of the malicious node in BeeHiveAIS has to still process
a significantly higher number of bee agents before dropping them. BeeHiveGuard
simply crashed in this scenario.

5 Conclusion

We proposed a new AIS based security framework, BeeHiveAIS, which provides
the same security level as that of a classic digital signature based cryptography
framework. We designed and developed an empirical validation framework for
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the secure routing algorithms. The results of our extensive experiments show that
BeeHiveAIS is able to successfully counter a number of serious attacks launched
by malicious nodes. But its processing and control overheads are approximately
200 and 20 times respectively smaller than BeeHiveGuard. BeeHiveAIS needs
only 4 KBytes of memory, in NttNet, to store a repository of antibodies. Our
future efforts are focused to evaluate its scalability on large topologies.
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Abstract. Kwok and Smith [1] recently proposed a new kind of opti-
mization dynamics using self-organizing neural networks (SONN) driven
by softmax weight renormalization. Such dynamics is capable of power-
ful intermittent search for high-quality solutions in difficult assignment
optimization problems. However, the search is sensitive to temperature
setting in the softmax renormalization step of the SONN algorithm. It
has been hypothesized that the optimal temperature setting corresponds
to symmetry breaking bifurcation of equilibria of the renormalization
step, when viewed as an autonomous dynamical system called iterative
softmax (ISM). We rigorously analyze equilibria of ISM by determining
their number, position and stability types. Moreover, we offer analytical
approximations to the critical symmetry breaking bifurcation tempera-
tures that are in good agreement with those found by numerical investi-
gations. So far the critical temperatures have been determined only via
numerical simulations. On a set of N-queens problems for a wide range
of problem sizes N , the analytically determined critical temperatures
predict the optimal working temperatures for SONN intermittent search
very well.

1 Introduction

Since the pioneering work of Hopfield [2], adaptation of neural computation tech-
niques to solving difficult combinatorial optimization problems has proved useful
in numerous application domains [3]. In particular, a self-organizing neural net-
work (SONN) was proposed as a general methodology for solving 0-1 assignment
problems in [4]. The methodology has been successfully applied in a wide variety
of applications, from assembly line sequencing to frequency assignment in mobile
communications (see e.g. [5]).

Searching for 0-1 solutions in general assignment optimization problems can
be made more effective when performed in a continuous domain, with values in
the interval (0, 1) representing partial (soft) assignments. Typically the softmax
function is employed to ensure that elements within a set of positive parameters
sum up to one. When endowed with a physics-based Boltzmann distribution
interpretation, the softmax function contains a free parameter (temperature, or
inverse temperature). As the system cools down, the assignments become more
and more crisp.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 633–640, 2006.
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Recently, interesting observations have been made regarding the appropri-
ate values of the temperature parameter when solving assignment problems
with SONN endowed with softmax renormalization of the weight parameters
[1]. There is a critical temperature T∗ at which SONN is capable of powerful
intermittent search through a multitude of high quality solutions represented as
meta-stable states of the SONN dynamics. It has been suggested that the criti-
cal temperature may be closely related to the symmetry breaking bifurcation of
equilibria in the autonomous softmax dynamics [6]. Kwok and Smith numerically
studied global dynamical properties of SONN in the intermittent search mode
and argued that such models display characteristics of systems at the edge-of
chaos [7].

In this contribution we attempt to shed more light on the phenomenon of
critical temperatures and intermittent search in SONN. In particular, since the
critical temperature is closely related to bifurcations of equilibria in autonomous
iterative softmax systems (ISM), we rigorously analyze the number, position and
stability types of fixed points of ISM. Moreover, we offer analytical approxima-
tions to the critical temperature, as a function of ISM dimensionality. So far,
critical temperatures have been determined only via numerical simulations. Due
to space limitations, we cannot prove fully all the statements presented in this
study. Detailed proofs can be found in [8].

2 SONN with Softmax Weight Renormalization

Consider a finite set of elements j ∈ J = {1, 2, ..., N} that need to be assigned
to elements i ∈ I = {1, 2, ...,M}, so that a global cost (potential) Q(A) of an
assignment A : J → I is minimized. Partial cost of assigning j ∈ J to i ∈ I
is denoted by V (i, j). The ”strength” of assigning j to i is represented by the
”assignment weight” wi,j ∈ (0, 1). The SONN consists of the following steps:

1. Initialize assignment weights wi,j , j ∈ J , i ∈ I, to random values around
0.5.

2. Choose at random an input item jc ∈ J and calculate partial costs V (i, jc),
i ∈ I, of all possible assignments of jc.

3. The ”winner” element i(jc) ∈ I is the one that minimizes V (i, jc), i.e. i(jc) =
argmini∈I V (i, jc).
The ”neighborhood” BL(i(jc)) of size L of the element i(jc) consist of L
elements i �= i(jc) that yield the smallest partial costs V (i, jc).

4. Assignment weights of nodes i ∈ BL(i(jc)) get strengthened, those outside
BL(i(jc)) are left unchanged:

wi,jc ← wi,jc + η(i)(1 − wi,jc), i ∈ BL(i(jc)),

where

η(i) = exp
{
− |V (i(jc), jc)− V (i, jc)|
|V (k(jc), jc)− V (i, jc)|

}
,

and k(jc) = argmaxi∈I V (i, jc).
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5. Weights wi = (wi,1, wi,2, ..., wi,N )T for each element i ∈ I are normalized
using softmax

wi,j ←
exp(wi,j

T )∑N
k=1 exp(wi,k

T )
.

6. Repeat from step 2 until all elements j ∈ J have been selected (one epoch).

Even though the soft assignments wi,j evolve in continuous space, when
needed, a 0-1 assignment solution can be produced by imposing A(j) = i if
and only if j = argmaxk∈J wi,k.

A frequently studied (NP-hard) assignment optimization problem in case of
SOP is the N -queen problem: place N queens onto an N ×N chessboard with-
out attacking each other. In this case J = {1, 2, ..., N} and I = {1, 2, ..., N}
index the columns and rows, respectively, of the chessboard. Partial cost V (i, j)
evaluates the diagonal and column contributions1 to the global cost Q of placing
a queen on column j of row i (see [1] for more details).

Kwok and Smith [1] argue that step 5 of the SONN algorithm is crucial
for intermittent search by SONN for globally optimal assignment solutions. In
particular, they note that temperatures at which symmetry breaking bifurcation
of equilibria of the renormalization procedure in step 5 occurs correspond to
temperatures at which optimal (both in terms of quality and quantity of found
solutions) intermittent search takes place.

3 Iterative Softmax

Denote the (N − 1)-dimensional simplex in RN by SN−1, i.e.

SN−1 = {w = (w1, w2, ..., wN )T ∈ RN | wi ≥ 0, i = 1, 2, ..., N, and
N∑

i=1

wi = 1}.

Given a parameter T > 0 (the ”temperature”), the softmax maps SN−1 into
its interior

w �→ F(w;T ) = (F1(w;T ), F2(w;T ), ..., FN (w;T ))T , (1)

where

Fi(w;T ) =
exp(wi

T )
Z(w;T )

, and Z(w;T ) =
N∑

k=1

exp(
wk

T
). (2)

The softmax map F induces on SN−1 a discrete time dynamics

w(t + 1) = F(w(t);T ), (3)

sometimes referred to as Iterative Softmax (ISM). Unless stated otherwise, we
study systems for N ≥ 2.
1 In the sense of directions on the chessboard.
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4 Fixed Points of Iterative Softmax

Recall that w is a fixed point (equilibrium) of the ISM dynamics driven by
F, if w = F(w). It is easy to see that the maximum entropy point w =
(N−1, N−1, ..., N−1)T ∈ SN−1 is a fixed point of ISM (3) for temperature setting
T . In addition, there is a strong structure in the fixed points of ISM - coordinates
of any fixed point of ISM can take on only two distinct values.

Theorem 1. Except for the maximum entropy fixed point w = (N−1, ..., N−1)T ,
for all the other fixed points w = (w1, w2, ..., wN )T of ISM (3) it holds: wi ∈
{γ1(w;T ), γ2(w;T )}, i = 1, 2, ..., N , where γ1(w;T ) > N−1 and γ2(w;T ) <
N−1.

We will often write the larger of the two fixed-point coordinates as γ1(w;T ) =
αN−1, α ∈ (1, N).

Theorem 2. Fix α ∈ (1, N) and write γ1 = αN−1. Let �min be the smallest
natural number greater than (α−1)/γ1. Then, for � ∈ {�min, �min +1, ..., N−1},
at temperature

Te(γ1;N, �) = (α − 1)
[
−� · ln

(
1− α− 1

�γ1

)]−1

, (4)

there exist
(
N
�

)
distinct fixed points of ISM (3), with (N − �) coordinates having

value γ1 and � coordinates equal to

γ2 =
1− γ1(N − �)

�
. (5)

5 Fixed Point Stability in Iterative Softmax

Theorem 3. Consider a fixed point w ∈ SN−1 of ISM (3) with one of its coor-
dinates equal to N−1 ≤ γ1 < 1. Define

Ts(γ1) =
{
Ts,2(γ1) = γ1, if γ1 ∈ [N−1, 1/2)
Ts,1(γ1) = 2γ1(1− γ1), if γ1 ∈ [1/2, 1). (6)

Then, if T > Ts(γ1), the fixed point w is stable.

Theorem 4. Consider a fixed point w ∈ SN−1 of ISM (3) with one of its coor-
dinates equal to N−1 ≤ γ1 < 1. Let N − � be the number of coordinates of value
γ1. Then if

T ≤ Tu(γ1;N, �) = γ1 (2−Nγ1)
N − �

N�
+

1
N
− 1
N�

, (7)

w is not stable.
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An illustrative summary of the previous results for equilibria w �= w is pro-
vided in figure 1. The ISM has N = 17 units. Coordinates of such fixed points
can only take on two possible values, the larger of which we denote by γ1. The
number of coordinates with value γ1 is denoted by N1. Temperatures Ts(γ1) (6)
above which equilibria with larger coordinate equal to γ1 are guaranteed to be
stable are shown with solid bold line. For N1 = N − � ∈ {1, 2, 3, 4}, we show
the temperatures Tu(γ1;N, �) (7) bellow which equilibria with larger coordinate
equal to γ1 are guaranteed to be unstable with solid normal lines. Temperatures
Te(γ1;N, �) (4) at which equilibria with the given number N1 of coordinates of
value γ1 exist (dashed lines) are also marked according to stability type of the
corresponding fixed points. The stability types were determined by eignanalysis
of Jacobians of the ISM map F at the fixed points. Stable and unstable equilibria
existing at temperature Te(γ1;N, �) are shown as stars and circles, respectively.
All the unstable equilibria are of saddle type. Horizontal dashed line shows a
numerically determined temperature by Kwok and Smith [1] at which attrac-
tive equilibria of 17-dimensional ISM lose stability and the maximum entropy
point w remains the only stable stable fixed point. Position where Ts(γ1) crosses
Te(γ1;N, �) for N1 = 1 is marked by bold circle. Note that no equilibrium with
more than one coordinate greater than N−1 is stable.
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Fig. 1. Stability types for equilibria w �= w of ISM with N = 17 units as a function of
the larger coordinate γ1 and temperature T . For a more detailed explanation, see the
text.

6 Critical Temperatures for Intermittent Search in
SONN

It has been hypothesized that ISM provides an underlying driving force behind
intermittent search in SONN with softmax weight renormalization [6,1]. Kwok
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and Smith [1] argue that the critical temperature at which the intermittent search
takes place corresponds to the ”bifurcation point” of the autonomous ISM dy-
namics when the existing equilibria lose stability and only the maximum entropy
point w survives as the sole stable equilibrium. The authors numerically deter-
mined such bifurcation points for several ISM dimensionalitiesN . It was reported
that bifurcation temperatures decreased with increasing N . Based on our anal-
ysis, the bifurcation points correspond to the case when equilibria near vertexes
of the simplex SN−1 (equilibria with only one coordinate of large value γ1) lose
stability. We will call such fixed points one-hot equilibria. Based on the bound
Ts(γ1) (6) and temperatures Te(γ1;N,N − 1) (4) at which equilibria of ISM ex-
ist, such a bifurcation point can be approximated by a bold circle in figure 1.

We present an analytical approximation to the critical temperature T∗(N) at
which the bifurcation occurs by expanding Te(γ1;N,N − 1) (4) around γ0

1 as
a second-order polynomial T (2)

N−1(γ1). Based on figure 1 (and similar figures for
other ISM dimensionalities N), a good choice for γ0

1 is e.g. γ0
1 = 0.9. Approxi-

mation to the critical temperature is then obtained by solving

T
(2)
N−1(γ1) = Ts(γ1)

for γ1 = α/N , and then plugging the result γ(2)
1 back to bound (6), i.e. calculating

Ts(γ
(2)
1 ).

We have
Te(γ1;N,N − 1) =

Nγ1 − 1

(N − 1) ln
(

(N−1)γ1
1−γ1

) , (8)

T ′
e(γ1;N,N − 1) =

N

(N − 1) ln
(

(N−1)γ1
1−γ1

) − Nγ1 − 1

(N − 1)γ1(1− γ1) ln2
(

(N−1)γ1
1−γ1

)
(9)

and

T ′′
e (γ1;N,N − 1) =

Nγ2
1 − 2γ1 + 1− 2 ln−1

(
(N−1)γ1

1−γ1

)
(N − 1)γ2

1(1− γ1)2 ln2
(

(N−1)γ1
1−γ1

) . (10)

By solving
Aγ2

1 +Bγ1 + C = 0, (11)

where
A =

1
2
T ′′

e (γ0
1 ;N,N − 1) + 2,

B = T ′
e(γ

0
1 ;N,N − 1)− γ0

1 T ′′
e (γ0

1 ;N,N − 1)− 2,

C = Te(γ0
1 ;N,N − 1)− γ0

1 T ′
e(γ

0
1 ;N,N − 1) +

1
2
(γ0

1)2 T ′′
e (γ0

1 ;N,N − 1)

and retaining a solution γ
(2)
1 that is compatible with the requirement that w ∈

SN−1, we obtain an analytical approximation T (2)
∗ (N) to the critical temperature

T∗(N):
T

(2)
∗ (N) = 2γ(2)

1 (1 − γ
(2)
1 ). (12)
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A cheaper approximation to T
(1)
∗ (N) to T∗(N) can be obtained by first-order

expansions of both Ts(γ1) and Te(γ1;N,N − 1).
To illustrate the approximations T (1)

∗ (N) and T
(2)
∗ (N) of the critical temper-

ature TB = T∗(N), numerically found bifurcation temperatures for ISM systems
with dimensions between 8 and 30 are shown in figure 2 as circles. The approx-
imations based on quadratic and linear expansions, T (2)

∗ (N) and T
(1)
∗ (N), are

plotted with bold solid and dashed lines, respectively. Also shown are the tem-
peratures 1/N above which the maximum entropy equilibrium w is stable. At
bifurcation temperature, w is already stable and equilibria at vertexes of sim-
plex SN−1 lose stability. The analytical solutions T (2)

∗ (N) and T
(1)
∗ (N) appear

to approximate the bifurcation temperatures well.
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Fig. 2. Analytical approximations of the bifurcation temperature TB = T∗(N) for in-
creasing ISM dimensionalities N . The approximations based on quadratic and linear
expansions, T

(2)
∗ (N) and T

(1)
∗ (N), are plotted with bold solid and dashed lines, re-

spectively. Numerically found bifurcation temperatures are shown as circles. The best
performing temperatures for intermittent search in the N-queens problems are shown
as stars.

We also numerically determined optimal temperature settings for intermittent
search by SONN in the N -queens problems. Following [1], the SONN parame-
ter β was set to β = 0.82. The optimal neighborhood size increased with the
problem size N from L = 2 (for N = 8), through L = 3 (N = 10, 13), L = 4
(N = 15, 17, 20), to L = 5 (N = 25, 30)3. Based on our extensive experimenta-
tion, the best performing temperatures for intermittent search in the N -queens

2 Our experiments confirmed finding by Kwok and Smith that the choice of β is in
general not sensitive to N .

3 The increase of optimal neighborhood size L with increasing problem dimension N
is in accordance with findings in [1].
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problems are shown as stars. Clearly, as suggested by Kwok and Smith, there is
a marked correspondence between the bifurcation temperatures of ISM equilib-
ria and the best performing temperatures in intermittent search by SONN. The
analytically obtained approximations critical temperatures predict the optimal
working temperatures for SONN intermittent search very well. So far the critical
temperatures have been determined only via extensive numerical simulations.

7 Conclusions

Self-organizing neural networks driven by softmax weight renormalization are
capable of powerful intermittent search for high-quality solutions in difficult
assignment optimization problems [1]. We have rigorously analyzed equilibria of
the underlying renormalization process and derive analytical approximations to
their critical bifurcation temperatures necessary for optimal SONN performance.
The approximations are in good agreement with the temperature values found
by numerical investigations.

References

1. Kwok, T., Smith, K.: Optimization via intermittency with a self-organizing neural
network. Neural Computation 17 (2005) 2454–2481

2. Hopfield, J.: Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Science USA 79 (1982)
2554–2558

3. Smith, K.: Neural networks for combinatorial optimization: a review of more than
a decade of research. INFORMS Journal on Computing 11 (1999) 15–34

4. Smith, K.: Solving the generalized quadratic assignment problem using a self-
organizing process. In: Proceedings of the IEEE Int. Conf. on Neural Networks.
Volume 4. (1995) 1876–1879

5. Smith, K., Palaniswami, M., Krishnamoorthy, M.: Neural techniques for combi-
natorial optimization with applications. IEEE Transactions on Neural Networks 9
(1998) 1301–1318

6. Kwok, T., Smith, K.: Performance-enhancing bifurcations in a self-organising
neural network. In: Computational Methods in Neural Modeling: Proceedings of
the 7th International Work-Conference on Artificial and Natural Neural Networks
(IWANN’2003). Volume Lecture Notes in Computer Science, vol. 2686., Singapore,
Springer-Verlag, Berlin (2003) 390–397

7. Langton, C.: Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D 42 (1990) 12–37
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Abstract. Biologically realistic computer simulation of vertebrates is a
challenging problem with exciting applications in computer graphics and
robotics. Once the mechanics of locomotion are available it is interesting
to mediate this locomotion with higher level behavior such as target
tracking. One recent approach simulates a relatively simple vertebrate,
the lamprey, using recurrent neural networks to model the central pattern
generator of the spine and a physical model for the body. Target tracking
behavior has also been implemented for such a model. However, previous
approaches suffer from deficiencies where particular orientations of the
body to the target cause the central pattern generator to shutdown. This
paper describes an approach to making target tracking more robust.

1 Introduction

Increasingly, digital media professionals are incorporating biologically realistic
representations of artificial animals into films and computer games. Whilst rep-
resentations of bodies, fur and skin have become increasingly realistic, it is chal-
lenging to model life–like movement and life–like behaviors such as tracking of
targets. Vertebrate locomotion is a complex process that is difficult to imitate
in simulated environments. Arms, legs, and spinal columns have many degrees
of freedom that must be controlled in a co–ordinated way for stable locomotion
to occur. However, life–like locomotion on its own is only the first step towards
generating biologically realistic behavior. Other higher actions, beginning with
target tracking and foraging, must be simulated on top of the locomotion to
produce life–like behavior. Many of these types of behavior have been explored
previously in the robotics and Artificial Life domains (eg. [1]), but usually with
simple models of locomotion. The form of locomotion affects the higher level
behavior. For example, swimming in a simulated fish involves movement of the
head from side to side. Consequently, the inputs from simple models of eyes
tracking an object in the environment change as the simulated animal’s head
moves. Target tracking must take this into account for robust behavior.

This paper examines target tracking behavior that has been implemented with
specific inputs to a complex simulated fish spinal cord. Two previous approaches
to tracking are described. However, these approaches suffer in that they do not
sufficiently take into account head movements of the simulated animal and, con-
sequently, are not robust in all situations. We describe a modification that makes
the tracking more robust to movements of the target.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 641–650, 2006.
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Digital characters in computer graphics are often composed of a skin (col-
lection of surfaces) associated with a skeletal configuration or “armature” at
various places. As the armature moves, the skin deforms with the resulting ef-
fect showing the character moving. Computation of movement of bones is often
done with inverse kinematics [2]. Sequences of poses are compiled by an ani-
mator and replayed (with interpolation of the in between movement) to show
the character performing actions. This gives precise control, allowing movements
and deformations that are not physically possible in the real world. However, if
the aim is life–like movement, these techniques may be tedious to apply.

A complementary approach is to model the anatomy of the animal in greater
detail. The challenge is that detailed actual physiology of animals, at the neu-
ral level, is mostly unknown and very complex. One successful approach has
been to start with simpler animals, for which knowledge of the neural pathways
is available. The animal is modelled as a body and a spine consisting of con-
nected oscillating clusters of recurrent neural networks. A (greatly) simplified
model of simulated brain and eyes transmits impulses through the spine to mo-
toneurons, which control tension in muscles along the body. The tension in the
muscles subsequently applies forces to joints, which together with forces from an
environment determine the position of the body. A system of differential equa-
tions represents the configuration of the spine and body. These are numerically
integrated to determine the movement of body segments for particular neural
and environmental inputs over time. Once locomotion from a simulated spine
has been attained, target tracking can be implemented by modulating inputs
to the spine from the eyes and simplified brain to produce locomotion towards
targets.

One simple vertebrate that has been well studied is the lamprey, which is a
jawless eel–shaped fish. It is primitive in an evolutionary sense with its major dis-
tinguishing feature being a large rounded sucker surrounding the mouth [3]. The
spinal cord is a continuous column of neurons made up of around 100 clusters.
Each cluster projects motoneurons to the surrounding muscles [4]. Lampreys
swim by propagating a wave along the body from head to tail by phased mus-
cular contraction. In the normal case, the wavelength of this travelling wave is
constant and approximately corresponds to the length of the body; its frequency
determines the speed of swimming. The lamprey has been studied over several
decades (see [5] for a clear introduction and other papers in the same volume
e.g. [6] for more details). A variety of simulations has been implemented and our
model is based on one of these with minor modifications (see Section 2). Target
tracking behavior appears to have been added to these previous simulations al-
most as an afterthought, mainly to illustrate the locomotion behavior. This is
understandable given the significant amount of effort required just to build and
simulate the model of locomotion. However, it is a shame because modulating
biologically realistic locomotion systems with target tracking signals adds sub-
tle and interesting complexities that must be addressed to maintain robustness
and stability of the behavior. Section 3 reviews previous approaches to target
tracking for lamprey models and section 4 describes our more robust approach.
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2 Model

Ijspeert [4] groups neural models of the lamprey into three classes: biophysi-
cal, connectionist and mathematical. Biophysical models investigate the detailed
low–level neurobiology (on the order on dozens of cells). Connectionist models
are less realistic and are interested in connections between neurons. Mathemat-
ical models are more abstract and view the controller as a chain of oscillators
with a focus on the couplings between them. Connectionist models are similar
to dynamical recurrent neural networks and compute the mean firing rate of
neurons. Our work takes the continuous time leaky integrator models used in [7]
and [4] as a starting point. In contrast to these models, the neural and physical
aspects of our simulation are combined into a single model, rather than two sep-
arate but interacting models. This gives significant improvements in simulation
speed [8]. The rest of this section describes in detail the complex neural and
physical model and where our model differs from [7] and [4]. Detailed knowledge
is required to appreciate the effect of modulating inputs for target tracking and
to allow replication of our work.

2.1 Neural Model

Biologically the lamprey spinal cord is a continuous column of neurons without
clear boundaries but it can be considered as roughly 100 discrete but intercon-
nected oscillators (or segmental networks). The combined assembly is known
as a central pattern generator (CPG). The main types of neuron involved are:
motoneurons (MN) projecting to muscles, excitatory interneurons (EIN) pro-
jecting to ipsilateral neurons (ie. those on the same side of the segment), lateral
inhibitory interneurons (LIN) projecting to ipsilateral neurons, contralateral in-
hibitory interneurons (CIN) projecting to contralateral neurons (ie. the other
side of the segment) and excitatory brain stem (BS) neurons that project from
the brain. The controller consists of 100 segmental networks. Each model neu-
ron represents a population of functionally similar neurons. Actual connections
between segments are not well known, so Ekeberg in [7] chooses a simplified,
symmetric coupling (except for connections from the CINs which are longer tail-
ward). Parameters for both inter– and intrasegmental connections and extents
are given in Table 1 and most of the connections for one segment are shown
in Fig. 1. In order to limit output from neurons and to compensate neurons in
segments near ends of the body (and have fewer intersegmental inputs), synap-
tic weights are scaled by dividing by the number of input segments. Ekeberg [7]
also suggested supplying extra excitation to the first few segments of the spinal
column in order to help generate a phase–lagged oscillation down the spine.
However, we found in simulations [8] that this is not necessary and reduced the
speed of the lamprey swimming. Accordingly, extra excitation was not applied in
our model. As mentioned in [4], if the excitation levels for each side of the lam-
prey neural model are set independently and differently, the lamprey turns. This
observation forms the basis for an approach to modulating the lamprey neural
assembly with outputs from simple eyes to result in target tracking behavior.
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Table 1. Neural connection configuration. From [4] with additions from [7] and
separately–controllable left– and right–side excitation. Negative weights indicate in-
hibitory connections. Extents of connections to neighbor segments are given in brackets
(headward and tailward, respectively).

To ↓ From: EINL CINL LINL EINR CINR LINR BSL BSR

EINL 0.4 [2, 2] - - - -2 [1, 10] - 2 0
CINL 3 [2, 2] - -1 [5, 5] - -2 [1, 10] - 7 0
LINL 13 [5, 5] - - - -1 [1, 10] - 5 0
MNL 1 [5, 5] - - - -2 [5, 5] - 5 0
EINR - -2 [1, 10] - 0.4 [2, 2] - - 0 2
CINR - -2 [1, 10] - 3 [2, 2] - -1 [5, 5] 0 7
LINR - -1 [1, 10] - 13 [5, 5] - - 0 5
MNR - -2 [5, 5] - 1 [5, 5] - - 0 5

EINMN LIN CIN CIN LIN EIN MN

Fig. 1. Schematic of neural connections for one segment. Filled arrows are inhibitory.

Each neuron is modeled as a leaky integrator with a saturating transfer func-
tion. Let u be the mean firing frequency of the population of neurons, ξ+ and ξ−
the delayed ‘reactions’ to excitatory and inhibitory input and ϑ the frequency
adaptation (decrease in firing rate over time given a constant input) observed in
some real neurons. Let w be the synaptic weights of excitatory and inhibitory
presynaptic neuron groups ψ+ and ψ−, τD the time constant of dendritic sums,
τA the time constant of frequency adaptation, μ a frequency adaptation con-
stant, Θ the threshold and Γ the gain. It is not possible to directly measure
values of these parameters, so values (Table 2) are hand–tuned to produce out-
put matching physiological observations. The neuron is modeled as

ξ̇+ =
1
τD

⎛⎝∑
i∈ψ+

uiwi − ξ+

⎞⎠
ξ̇− =

1
τD

⎛⎝∑
i∈ψ−

uiwi − ξ−

⎞⎠
ϑ̇ =

1
τA

(u− ϑ)

u = 1− e(Θ−ξ+)Γ − ξ− − μϑ if positive
0, otherwise. (1)
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Table 2. Neuron parameters. From [7]. Symbols are explained in the text.

Neuron type Θ Γ τD μ τA

EIN -0.2 1.8 30ms 0.3 400 ms
CIN 0.5 1.0 20ms 0.3 200 ms
LIN 8.0 0.5 50ms 0.0 -
MN 0.1 0.3 20ms 0.0 -

2.2 Physical Model

As with the neural model, the physical lamprey body is modeled similarly to
[7] and [4]. It is represented by ten links with nine joints between them each
with one degree of freedom. Ten neural segments act on one body segment or
link. Each link is modeled as a right elliptic cylinder with the major axes of the
ellipses aligned vertically. All links have length l of 30mm, height 30mm with
the width starting at a maximum of 20mm at the head and decreasing towards
the tail. Muscles appear on both sides of the body, attached to the centers of
each segment. Muscles are modeled with a spring–and–damper arrangement,
where the force exerted by the muscle is set using the spring constant. Local
body curvature varies linearly with muscle length. The body and the neural
network are linked by having motoneuron excitation drive the muscular spring
constants. The body is represented in our model in two dimensions as rectangles
with joints at the midpoints of their sides. The position of a link i is described
by (xi, yi, ϕi), where xi and yi are the co–ordinates of the rectangle centre and
ϕi is the angle of a line through the centre and the joint with respect to the
x–axis (see Fig. 2). Constraint forces are used to keep body links together. The
physical parameter values for the links are the same as those in [4].

yi

xi

Tail

Head

y

x

ϕi

Fig. 2. Co–ordinates describing the position of a link. From [7].

Movement of the body results from the interaction of three forces: torques T
generated by the muscles, forces Wi from the water and constraint forces Fi and
Fi−1 that keep the body links together. These forces determine the acceleration
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of the links according to Newton’s law of motion. Change in position for links
i ∈ {1, . . . , N} is determined by numerical integration of the equations of motion.

miẍi = Wi,x + Fi,x − Fi−1,x

miÿi = Wi,y + Fi,y − Fi−1,y

Iiϕ̈i = Ti − Ti−1 − (Fi−1,x + Fi,x)
li
2

sinϕi

+ (Fi−1,y + Fi,y)
li
2

cosϕi (2)

As described above, muscles are modeled as springs directly connected to
sides of links. Force exerted by each spring on its associated joint is determined
not only by the local curvature of the body but also linearly by the output of
the motoneurons in the associated segments. Let ML and MR be the left and
right motoneuron activity and assign parameters α (=3Nmm), β (=0.3Nmm),
γ (=10) and δ (=30Nmm ms). As in [7] the torque is defined as

Ti = α (ML −MR) + β (ML +MR + γ) (ϕi+1 − ϕi) + δ (ϕ̇i+1 − ϕ̇i) .

Speed of motion through water in our case is sufficiently high that we only
account for inertial water force which is proportional to the square of the speed:

W = ρv2A

2
C

where ρ is the fluid density, v object speed, A area parallel to movement and
C drag coefficient. The abbreviation λ = ρA

2 C is made in [7], together with the
simplification W = W⊥ +W‖ = v2

⊥λ⊥ + v2
‖λ‖ and values of λ⊥ and λ‖ for links.

Body segments are constrained such that for adjacent segments, joints for the
facing sides must be in the same position (ie., the links stay joined together).
The joint position is expressed in terms of xi, yi and ϕi for i ∈ {1, . . . , n−1}, so

xi +
li
2

cosϕi = xi+1 −
li+1

2
cosϕi+1

yi +
li
2

sinϕi = yi+1 −
li+1

2
sinϕi+1 (3)

Equations (2) and (3) form a differential–algebraic equation (DE) system [7]
typical of non–minimal coordinate systems that can be numerically integrated.

The models described above were implemented in C++ and rendered graph-
ically in Python using PyOpenGL [9]. For details of the implementation and
approaches to increasing simulation speed, together with typical model behavior
see [8]. A 10 s simulation takes 620 s to run on an AMD 1800 CPU. After a start
up period the steady state swimming speed and characteristics observed in our
model are similar to those observed by [4].

3 Approaches Towards Target Tracking

Even a simple, hard–coded oscillator can generate appropriate neural outputs
for straight–line swimming. However, for applications such as target tracking,
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the pattern generator must be able to accept and respond to changing conditions
in the environment while still emitting a stable oscillation pattern. It must have
inputs that cause it to change its outputs in relevant ways, and be able to accept a
wide range of varying inputs without the oscillation collapsing and a subsequent
stop of locomotion. In summary, the CPG must be robust to changes in the
environment whilst producing reasonable behavior.

Ijspeert describes two different approaches to making the lamprey swim to-
wards a target [4,10]: (i) simple bearing–based tracking and (ii) exponentiated
bearing–based tracking. Both approaches build on the observation that the lam-
prey can be made to turn by supplying different levels of excitation to the left
and right halves of each segment (see Figure 3). Two notional “retinas” supply
excitation that varies according to the relative bearing of the target. Neither
case considers the distance to the target.

Fig. 3. Circling behavior with BSL = 0.1 and BSR = 0.8. Gridlines 100 mm apart.

3.1 Simple Bearing–Based Tracking

In this arrangement [4], retina output varies linearly with bearing to the target.
The lamprey is considered to have a “dead zone” in that it does not respond
to targets bearing more than 150◦ from the head axis. Any bearing more acute
than this is linearly transformed into an excitation between 0 and 1 for the side
of the body on which the target lies, and no excitation on the opposite side.

This model of vision is somewhat effective, but suffers from two major weak-
nesses. The most obvious is the dead zone: if the target is located out of the



648 M. Beauregard and P.J. Kennedy

field of view, brainstem excitation drops to 0 resulting in a shutdown of the pat-
tern generators. Even if the randomly moving target eventually reappears, the
lamprey may not be able to restart its swimming. The spinal cord needs specific
startup conditions or phased oscillation will not occur.

More subtle is the effect of linearly mapping the bearing to excitation. As the
bearing to the target approaches 0◦, so does the excitation from the brainstem.
The more the lamprey turns to face the target, the less excitation is supplied,
often resulting in shutdown. The case illustrated in [4] is a favorable one where
the target crosses the lamprey’s field of view repeatedly, so that the lamprey
spends very little time unexcited. However, not all random movements of the
target will be so fortunate.

3.2 Exponentiated Bearing–Based Tracking

A more complicated tracking system for a salamander simulation is developed in
[10]. Here, the retinas are considered to have axes offset from the head’s major
axis. (The offset is not given but would be about ±30◦.) Excitation again ranges
between 0 and 1 but is calculated as R = e−αΔφ2

where α = 0.0005 and Δφ
is the angle between the axis and the target. In effect, excitation is 67% for a
target directly ahead of the lamprey, marginal (10%) at 90◦ away and nil at
150◦. Retina output depends only on the bearing of the target from the major
axis of the head, with an angular offset.

Observations of experiments with this tracking arrangement demonstrate that
it performs far better than the linear mapping. The CPG receives levels of excita-
tion sufficient to sustain pattern generation for almost the full range of bearings
within the “dead zone” seen in linear mapping, and in particular a target directly
in front of the lamprey causes enough excitation for effective pursuit. However
the problem of the lamprey becoming becalmed when it reaches orientations
where the target is in the dead zone remains.

4 Bearing-Based Tracking with Foraging

The previous section relates two methods of implementing tracking behavior to
modulate the inputs to a lamprey simulation. However, these approaches suffer
from the problem that the lamprey can become becalmed in some situations.

Our solution to the becalming problem is to apply a foraging algorithm when
the target disappears from the field of view. This is implemented by sending the
lamprey into a fast circling action when the target disappears from view. One
input to the spine (arbitrarily the right–side) is set to 0.8 and the other to 0.1
until the target is recovered. These values result in a fast, tight circling motion
without being so excessively high as to swamp the CPG. In combination with
the exponentiated tracking arrangement the lamprey becomes able to effectively
track targets exhibiting a wide variety of random behaviour: straight, circling or
weaving motion, and holding stationary or almost stationary (Figure 4).
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Fig. 4. Target-tracking behavior. Gridlines are 100 mm apart.

4.1 Observations

Although exhaustive tests have not been conducted, in general the CPG with-
stands the constantly–changing brainstem inputs remarkably well. It should be
noted that apart from the variation in input caused by the random movements of
the target, the lamprey’s head moves from side to side during normal swimming,
causing a 6Hz oscillation in the brainstem activation. That the CPG generally
continues to function even when subjected to an oscillatory signal of the same
frequency but not the same phase is testament to its stability.

This resistance is not perfect. In runs with a fixed target the lamprey will
from time to time cease forward motion and propagate waves in place, or even
briefly move in reverse. These effects are short–lived, with the pause lasting
around 700ms before being overcome by the natural phase delay of the CPG.
In runs with a randomly moving target this effect is much rarer, though still in
evidence. The random component in excitation levels that results from the ran-
dom motion makes the particular confluence of oscillations described above less
likely to occur. Random target motion also reduces the likelihood of triggering
the permanent becalming conditions described with the previous approaches.

Finally, it should be noted that the arrangement of two sensors tied to two
physical systems is distinctly reminiscent of Braitenberg’s famous vehicles [11].
The lamprey exhibits the source–seeking, aggressive behaviour of Vehicle 2b,
despite being wired as a Vehicle 2a. This is of course because increased activity
on a given side of the lamprey propels it towards that direction, while increased
activity in the motor of a Braitenberg vehicle propels it away.
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5 Conclusion

Simulation of lifelike locomotion has applications to computer graphics and
robotics. Once locomotion is achieved it is interesting to simulate higher level
behavior such as target tracking. Previous approaches to target tracking in neu-
ral simulations of a lamprey suffer from deficiencies where the lamprey loses
neural input and is becalmed in some configurations. We present an approach
to overcoming this problem based on an underlying foraging behavior and show
simulation results. There are several opportunities for farther work, including
identification of quantitative measures of the behavior despite the long simula-
tion times involved. We are interested in determining whether other patterns
of foraging than tight circling, such as slow random movements, also solve the
problem. Also, we plan to explore other higher level behaviors and apply similar
models to other skeletal configurations and armatures within computer graphics
animation packages.
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Abstract. This paper describes and analyzes a series of experiments to develop 
a general evolutionary behavior acquisition technique for humanoid robots. The 
robot’s behavior is defined by joint controllers evolved concurrently. Each joint 
controller consists of a series of primitive actions defined by a chromosome. By 
using genetic algorithms with specifically designed genetic operators and novel 
representations, complex behaviors are evolved from the primitive actions de-
fined. Representations are specifically tailored to be useful in trajectory genera-
tion for humanoid robots. The effectiveness of the method is demonstrated by 
two experiments: a handstand and a limbo dance behavioral tasks (leaning the 
body backwards so as to pass under a fixed height bar). 

1   Introduction 

The recent remarkable progression of robotics research makes highly precise and 
advanced robots available today. Despite the availability of sophisticated robots, ac-
quisition of behavioral tasks remains as a big hurdle in the field. Currently, several 
approaches are prominent in evolutionary behavior acquisition. [1], [2], [3] investi-
gate appropriate neural network architectures using genetic algorithms for the adjust-
ment of network parameters. Authors of these papers try to evolve behavioral tasks 
mainly based on navigation in a constructed environment for the wheeled robot 
Khepera. Although the results from these experiments are promising in terms of con-
ceptual findings, there exist very few applications of the neuro-evolutionary tech-
niques for more complex and high mobility robots such as humanoid robots. Another 
approach in evolutionary behavior acquisition is evolutionary gait optimization under-
taken by the authors [4], [5]. These experiments involve optimization of a readily 
available controller for a previously specified behavior, such as quadruple walking. 
Main drawback here is the assumption that a hand designed controller is readily avail-
able. In this paper, we take a slightly different approach than the techniques discussed 
above. Rather than optimizing a hand designed controller or trying to evolve primitive 
behaviors conceptualized with neural networks, we consider the behavior acquisition 
task as a combinatorial optimization task where the task at hand is decomposable into 
primitive actions, and the goal is to find the optimum sequence (behavioral sequence) 
of those primitive actions which constitute the desired complex behavior. In this re-
gard, evolving feedback controllers is beyond the scope and aim of this paper. Before 
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delving into details of the devised GA architecture we would like to discuss the diffi-
culties and restrictions regarding the humanoid robots.  

2   Peculiarities of Humanoid Robots 

Balancing requirements for biped humanoid robots are governed by complex equations 
and are mostly specific to the generated motion patterns. One general approach in 
controlling the balance of a walking biped humanoid robot is Zero Moment Point 
(ZMP) [7]. ZMP computation requires the precise knowledge of robot dynamics, cen-
ter of mass location and inertia of each link involved in the motion pattern. Another 
approach which requires relatively limited knowledge of robot dynamics is Inverted 
Pendulum Model (IPM). However, IPM is inapplicable in cases where the foot must be 
placed in specified locations during the phase of a motion (Fig.1a.) In order to resolve 
this issue, hybrid approaches, combining ZMP and IPM methods are also proposed [8]. 
The main difficulties with these approaches are the need for the precise knowledge of 
robot dynamics which is not available all the time, and the customization or in some 
cases redesign of the dynamics models for each individual motion. Moreover, ZMP 
based approaches are not directly applicable in situations where the robot’s feet have 
no contact with the ground as demonstrated in the handstand task (Fig. 1b) or in case of 
interacting with a third object such as kicking a ball (Fig. 1c). 

 

(a)                (b)        (c)  

Fig. 1. Typical examples where traditional methods fall short. (a) Walking on specified loca-
tions (b) Handstand task (c) Ball kicking.  

There exist also motion generation techniques based on Interactive Evolutionary 
Computation (IEC) for people who have no specialized knowledge of humanoid ro-
bots [9]. However, IEC methods suffer from the subjective evaluation criteria in-
curred by the human factor involved and still require the developer to account for the 
inverse kinematics equations governing the balancing issues between the key frames 
of a motion [10]. Addressing these issues, we devise a general learning scheme based 
on genetic algorithms which requires only minimum knowledge of humanoid robot 
dynamics and the balancing requirements of a particular motion pattern. With the 
proper selection of a primitive action, the genetic algorithm implicitly accounts for the 
balancing requirements and the acquisition of desired behavior, where traditional 
methods would require custom balancing methods based on ZMP and/or IMP along 
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with complicated forward and inverse kinematics computation. The proposed method 
has the following advantages over the traditional methods. 

− Alleviates the need for ZMP, IMP based balancing methods 
− Does not require inverse and forward kinematics calculations 
− Does not require a precise knowledge of the robot dynamics and joint interactions 
− Originality and creativity in behaviors achieved through evolutionary process  

In the upcoming section we present our approach for finding an effective and com-
pact representation to be used in the evolutionary algorithm for the humanoid robot 
joint controllers. 

3   GA Architecture 

3.1   Problem Representation 

The representation of a joint controller makes use of two significant trajectory path 
characteristics. Trajectory paths are continuous and mostly sinusoidal in nature. Con-
sidering these two properties, a joint controller is represented as a sequence of allele 
pairs denoting the transition point and type of motions in terms of primitive actions. 
In physical terms, transition points correspond to places where the derivation of a 
trajectory curve changes, i.e. the point where the direction of a motion alternates or 
stops. When composed of primitive actions, a transition point is defined as a change 
in the primitive action type belonging to a behavioral sequence. For example, for the 
chromosome in Fig. 2, gene locations 3rd, 6th, 9th positions represent the transition 
points for a 10 unit time motion of a particular trajectory.  

(0,1) (3,0) (6,1) (9,0)  

Fig. 2. A chromosome using absolute timings for transition points in joint trajectories, and a 
binary field to denote the type of transition 

Based on this definition, transition points of primitive actions in the behavioral se-
quence and the type of transition (positive, negative or still) is represented as a gene 
in the form of an allele pair (t , pi). This defines a set of primitive actions starting from 
time t  bounded by the next gene pair’s transition time field t +1 in the chromosome. 
Parameter pi denotes the type of transition based on the previous pi-1 value except for 
the initial p0. The first transition type value p0 exceptionally defines the type of the 
first primitive action, regardless of the previous transition type value. Since a binary 
field is used for the transition type field, each joint involved in a behavior must initi-
ate a rotation either with a positive or negative slope, i.e. initially no joint is allowed 
to stay still. The main advantage of this representation is the fact that using absolute 
timings for transition points alleviates the need to keep the genes in sorted order.  So 
the order of genes is irrelevant of their interpretation and the representation is not 
susceptible to fixed locus assumption [12]. Another advantage is the relatively easy 
handling of boundary conditions for the primitive action timings. As the transition 
timing is bounded by the experiment time, there is no processing necessary to adjust 
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the transition points. Finally, restricting the problem representation to only sinusoidal 
nature motions effectively reduces the search space explored by the evolutionary 
algorithm. 

3.2   Mutation Operator 

The mutation operator is the customized version of the single point mutation which is 
applicable to allele pair locations. With a given probability pmut , a specific transition 
point is perturbed with discrete values ranging from a negative lower bound to a posi-
tive upper bound. The pseudo code given below describes this variation process for 
the transition time field of a gene. N denotes the maximum value the transition time 
field can take. As for boundary conditions, each chromosome is thought to be circu-
lar. A modulus operation is applied after the perturbation of the gene location contain-
ing the transition point which removes the edge effects. 

Pseudocode for range mutation operator. 

Range_mut( offspring, pmut, lower, upper ) 
  L = length( offspring ) 
  for( i = 0 to L do ) 
    prob = random( 0, 1 ) 
    if( prob > pmut  )  
      var = random_int( lower, upper ) 
      offspring[i].time =  
        ( offspring[i].time + var + N ) mod N  
    endif 
  done 

3.3   Postprocessing of a Chromosome 

Since chromosomes accommodate absolute timings for trajectory transition points, 
the very first gene defining the rotation of a joint for the initial time step may disap-
pear through the evolution process due to the genetic operations applied. Similarly, 
duplicate genes can occur inside a chromosome due to the same reason. The strategy 
employed for ensuring the existence of the initial gene is to find the gene with a mini-
mum transition time field inside the chromosome and reset the field to zero. To elimi-
nate the duplicate genes, simply repeat the genetic operation causing duplicates until 
we get distinct transition time fields for each allele pair inside the chromosome.  

3.4   Fitness Evaluation 

Scoring of individuals is done using these components as shown in eq.(1) and (2). In 
eq.(1), waist, chest and ankle altitudes are simply summed up to evaluate the fitness of 
individuals for the handstand behavior. Following this calculation, individuals having a 
waist altitude greater than their ankle altitudes are given a penalty proportional to the 
waist altitude gained. This penalty is used to eliminate the individuals trying to gain 
fitness by only raising their chest and waist altitudes in the early generations. 
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Table 1. Components of the fitness evaluation for the handstand task 

Variable Name Value 
waist_alt Waist Altitude(cm) 
chest_alt Chest Altitude(cm) 
ankle_alt Ankle Altitude(cm)  

Fitness = waist_alt + chest_alt + ankle_alt . (1) 

Fitness =  Fitness - waist_alt. (if waist_alt > ankle_alt ) . (2) 
 

For the limbo dance behavior, components used in the fitness evaluations are listed in 
Table 2. First of all, a target point in the three dimensional space is chosen just behind 
the humanoid robot specified by the coordinates target_x, target_y and target_z. The 
Euclidian distance between this target point and the center of the arm ankle segment of 
the humanoid robot is calculated as given in eq.(3). Accommodating this calculated 
distance and a constant k1, a minimization procedure of the Euclidian distance between 
the robots arm and the target point is undertaken in eq.(4). Constant k2 in eq.(4) is used 
such that, k2 > elapsed * k3, to separate fall situations from the stable ones. 

Table 2. Components of the fitness evaluation for the limbo dance task 

Variable Name Expression 
arm_pos_x X coordinate of arm ankle 
arm_pos_y Y coordinate of arm ankle 
arm_pos_z Z coordinate of arm ankle 
target_x X coordinate of target position 
target_y Y coordinate of target position 
target_z Z coordinate of target position 
elapsed Elapsed simulation time  

Euclid_dist = Distance( arm_pos, target ) . (3) 

Fitness = ( k1 – Euclid_dist ) + k2 . (4) 

Fitness = elapsed * k3 ( if  fall ) . (5) 
 

4   Experiments and Results 

We performed two experiments in order to show the applicability and generality of 
our approach. The first behavior attempted is a handstand behavior and the second is 
limbo dance behavior.  

4.1   Robot Simulation Environment  

We use the simulation environment available from Open Architecture Humanoid 
Robotics Platform (OpenHRP) which consists of a simulator and motion control  
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library of humanoid robots [13]. Humanoid robot HOAP-1 manufactured by Fujitsu 
Automaton Limited is used for the experiments. HOAP-1 has 20 degrees of freedom 
(DOF). Robot is about 6kgs in weight and 48cms in height.  

4.2   Handstand Behavior 

The main goal in the handstand task is to properly raise the legs while balancing the 
whole body on the hands and optionally the forehead. Joints evolved for this behavior 
are waist, arm and knees. Main parameters and experiment settings are shown in Ta-
ble 3. Since the trajectories are long and require less precision, the primitive action is 
allowed to have a coarse granularity. A chromosome is designed for each degree of 
freedom for all joint types as given in Fig.1. However, instead of designing a pair of 
chromosomes for symmetrical joints, one joint is represented by a single chromosome 
and the symmetrical reflection is taken for the symmetric joint on the other side of the 
body. This effectively reduces the required number of chromosomes by half. 

Table 3. Genetic algorithm parameters and experiment settings for the handstand task 

Parameter Value 
Population size 100 
Generation size 50 
Chromosome Length 30 
Selection Roulette wheel 
Range mutation probability 0.1 
Crossover probability 0.9 
Primitive action 0.27radian/s (open loop) 

 

Fig. 3. Significant moments from the handstand behavior experiment of the best individual 
evolved. Initial position and screenshots from the 4th, 8th, 12th, 16th, 20th seconds are displayed. 

The acquired handstand behavior can be said to have several human like properties. 
First of all, the robot wide opens its arms to properly balance itself starting from the 
middle top frame in Fig. 3. Next, in the down left frame, again using the arm joint, the 



 Evolutionary Behavior Acquisition for Humanoid Robots 657 

robot attains more height by closing the arm joints. Lastly, the robot bends its knees 
while raising its legs, possibly not to fall, and then finally stretches its knees to attain 
more altitude, in the down right frame. 

4.3   Limbo Dance Posture 

The main objective of the dance is to lower the upper body along with hips and knees 
to walk under a fixed height horizontal bar. For the humanoid robot, the task is sim-
plified to achieving the necessary posture to pass under the bar.  

 

(a) Simulation 

 

Fig. 4. Simulation and real experiment results for the limbo dance task 

For the limbo dance behavior, a counter intuitive and an unpredictable result arose. 
One would expect the humanoid robot to initially bend its upper body backwards to 
achieve the necessary limbo posture. However, as can be seen in top middle frame in 
Fig. 4, the robot initially bends its body forward, evidently to compensate for the 
improper balancing caused by the rotation of knee joints. This behavior may as well 
be attributed to the fact that the battery pack attached to the back of the humanoid 
robot forbids an initial backward lean and initially mandates a forward lean to shift 
the center of mass forward in order to keep the balance in the following steps of this 
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behavioral sequence. Despite this unexpected constraint, the humanoid robot success-
fully learns the complex behavior governing the interactions among the knee, ankle 
and waist joints, using this exceptional balancing strategy to achieve the necessary 
limbo posture in a stable manner. 

5   Discussion 

Empirical results regarding the handstand and limbo dance behavior suggest that both 
the evolutionary architecture and in particular the problem representation look prom-
ising as a possible solution to address problems in complex behavior acquisition for 
humanoid robots. Experiments showed that the method is applicable to different be-
havior acquisition tasks with minor changes. Moreover, the behaviors acquired by the 
humanoid robot surprisingly bears resemblance to human designed controllers and at 
some points surpasses the ideas and the predictions existent in a hand designed pro-
gram. This became especially apparent in the limbo dance behavior when the robot 
unexpectedly started with a forward body lean to keep its balance although the objec-
tive of the behavior is to attain a backward lean. 

 
(a)           (b) 

 
(c)           (d) 

Fig. 5. Best fitness values for (a) handstand task and (b) limbo dance task. Fall rates for (c) 
limbo dance task and (d) handstand task. 
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Comparative results are also provided with a next ascent hill climbing algorithm in 
Fig. 5. Solutions obtained with the hill climbing algorithm tend to have low fall rates 
when compared to the genetic algorithm used as shown in Fig. 5c and 5d. However, 
results in Fig. 5a show that next ascent hill climbing method is incompetent for the 
handstand task and the solutions improve only up to 3rd  generation, finally ending up 
with a stable but premature posture. As for the limbo dance task, hill climbing algo-
rithm shows better performance until the 20th generation with a low fall rate. How-
ever, after this point the genetic algorithm generates better solutions than the hill 
climbing algorithm, with the best individual having 5cm higher fitness value as shown 
in Fig. 5b.  

6   Conclusion and Future Research 

In this paper we presented a general approach in evolutionary behavior acquisition for 
high mobility robots. The empirical results show clearly that evolutionary algorithms 
with problem specific representations possess the potential of achieving more than a 
satisfactory level of success in high level behavior acquisition tasks for humanoid 
robots. The experiments have also demonstrated that genetic algorithms can be used 
to evolve complex behaviors without the need for understanding the detailed dynam-
ics and physics of the humanoid robot and the desired behavior. Another significant 
result is the observed creativity and the originality in the behaviors which are compa-
rable to human designed controllers. For future work, we are planning to include the 
action granularity and dynamics parameters of the joints into the learning process to 
evolve more complex behaviors. Furthermore, we would like to conduct experiments 
for planning tasks such as [14] using the behaviors learned here as primitives and 
transferring the simulation results on the real robot for the handstand task as well. 
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Abstract. Despite the many features that the behaviour of the stan-
dard particle swarm algorithm shares with grouping behaviour in animals
(e.g. social attraction and communication between individuals), this bi-
ologically inspired technique has been mainly used in classical optimi-
sation problems (i.e. finding the optimal value in a fitness landscape).
We present here a novel application for particle swarms: the simulation
of group-foraging in animals. Animals looking for food sources are mod-
elled as particles in a swarm moving over an abstract food landscape. The
particles are guided to the food by a smell (or aura), which surrounds it
and whose intensity is proportional to the amount of food available. The
results show that this new extended version of the algorithm produces
qualitatively realistic behaviour. For example, the simulation shows the
emergence of group-foraging behaviour among particles.

1 Introduction

The particle swarm optimisation (PSO) algorithm is a function optimisation tool
based on the simulation of a simplified social model, the particle swarm [4]. The
algorithm uses a population (swarm) of candidate solutions (particles) that fly
over the fitness landscape looking for optima. In the original version, the particles
are driven by two forces which attract them to the best location encountered
both by any other member of the swarm and by themselves.

Despite its socio-biological background, the field of applications for PSOs has
mainly been the optimisation of nonlinear functions. In [3], we introduced a
new way to use PSOs for the simulation of ecological processes, so far largely
restricted to the field of individual-based modelling in ecology (for a review,
see [2]). In particular, we looked at a classical problem in behavioural ecology:
the group-foraging problem. With this paper, we extend our previous work by in-
troducing more realistic features for the food sources. In particular, food sources
are surrounded by an aura, which can be interpreted as the smell the food re-
leases, and which attracts the particles to the source. Our objective is not only
to study the emergence of grouping behaviour among particles, but also to un-
derstand which is the most successful design and the best parameter settings for

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 661–670, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the particle swarm algorithm to allow this emergence. Our research is part of a
multidisciplinary project called XPS1. One of the goals of XPS is to extend the
particle swarm algorithm with strategies from biology. Modelling group-foraging
is just a first step towards the simulation of more general and complex group-
behaviour in animals. We necessarily have to start simulating simple behaviours,
but we intend to progressively add complexity, and eventually obtain a model
as complete as possible of animal social behaviour.

The paper is structured as follows. In section 2 we give a brief introduction
to the field of behavioural ecology and the problem of group-foraging. Section 3
describes our approach to the problem: the Food Particle Swarm (FPS) algo-
rithm. In section 4 we summarise the settings for the experiments and present
and discuss the results of our simulations. We conclude in section 5.

2 Behavioural Ecology and the Group-Foraging Problem

Behavioural ecology is the branch of evolutionary biology which studies the eco-
logical and evolutionary basis for animal behaviour, i.e. what are the “historical”
reasons for certain animal behaviour and what is the role an animal’s behaviour
plays in allowing it to adapt to its environment. Among the more complex and
intriguing animal behaviours, group-living is certainly one of the most studied,
being such a widespread phenomenon in the animal kingdom [5]. Two general
requirements for grouping behaviour are: (1) individuals have to be close to each
other in space and time (e.g. the elective group size concept developed by Pitcher
(see [5]) requires that the animals are close enough to each other in order to al-
low a continuous exchange of information), and (2) animals must show social
attraction (i.e. they have to “actively” seek to be close to each other, instead
of simply meeting at a certain point because of the attraction to environmental
conditions at that point).

Animals show grouping behaviour for different reasons. One of these is for-
aging (i.e. in behavioural ecology, all those interactions that occur between a
predator and its prey, being it animal or plant) [5]. Some of the most likely hy-
potheses for group-foraging behaviour are: (1) aggregations find more food (e.g.
bigger preys, larger patches) more quickly than individuals do, and so animals
in a group feed more effectively; (2) animals in bigger groups can allocate more
time to feed and less to look for predators [7]; (3) by observing the behaviour of
other members of a group, animals can gain useful information (e.g. individuals
use information on the position of others to obtain food from sources that are
otherwise difficult to find) [5].

Foraging efficiency is usually a matter of trade-off between competing prior-
ities, e.g. energy gained versus energy spent, energy gained versus risk of pre-
dation, energy gained versus losses to rivals, etc.[6]. Theoretical models predict
that, while joining a group will not increase an individual’s ability to find food,
the time spent to obtain food is reduced. The trade-off for the reduction in
1 XPS stands for eXtended Particle Swarm. Details of the project can be found at

http://xps-swarm.essex.ac.uk.
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searching time is that a smaller share of food will be available, the only excep-
tion being when the resource is so abundant that consumption by one individual
does not decrease the availability for others. Animals that perform better at
increasing the benefits of foraging and decreasing its costs will propagate their
genes more effectively than those whose foraging behaviour is less effective [1].

3 The Food Particle Swarm (FPS) Algorithm

As mentioned above, group-foraging is a fairly complex behaviour, and modelling
it is a difficult task. Therefore, in this work we focus on an abstraction of the
group-foraging problem, where: we do not take the presence of predators into
account; food sources are surrounded by an aura attracting the animals to them;
animals can neither reproduce nor die; animals can communicate with each other;
they can “smell” food, and this is the only way that they can detect the presence
of a food source (e.g. they cannot see the food).

A group of animals looking for food is modelled with a swarm of particles
“flying” over a 2D landscape scattered with sources of food. Each source is rep-
resented as a circular patch. The intensity of the aura surrounding the patches is
proportional to the amount of food available and is an exponentially decreasing
function of the distance from the source, while its spread is proportional to the
size of the patch. Therefore, the larger the amount of food and the closer the
patch, the “taller” the aura. Also, the bigger the patch, the wider the aura. Food
patches are distributed at random on the landscape. To reflect different condi-
tions that may happen in nature, we will consider four configurations (Figure 1):

1. a single small source but with a large amount of food, whose tall aura covers
a small portion of the landscape;

2. a single large source but with a small amount of food, whose short aura
covers most of the landscape;

3. a small number of medium sources covering a restricted portion of the land-
scape;

4. a large number of small sources, sparsely scattered on the landscape.

The particles move over the food landscape according to the rules of the
extended version of the particle swarm algorithm introduced in [3]. The equa-
tions controlling acceleration, velocity, and position of the particles are as in the
standard PSO (equations (1)-(3)), but with an extra control which allows the
particles to stop on the patch. Namely:

fi = φ1R1(xsi − xi) + φ2R2(xpi − xi); (1)

vi(t) =

⎧⎨⎩0 if food is on patch
Random if food is just finished
k((ωvi(t− 1)) + Δtfi) otherwise

(2)

xi(t) = xi(t− 1) + Δtvi(t). (3)
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Fig. 1. Food patch distribution classes and aura intensity

where: φ1 and φ2 are the social interaction and the individual learning rate
respectively; R1 and R2 are two random variables uniformly distributed in [0, 1];
xi, xsi , and xpi are the current position of the particle, the best position found
by the swarm, and the best position found by the particle respectively; k and ω
are the constriction coefficient and the inertia weight respectively; Δt is a factor
to decrease the step the particles take when they move to obtain “smoother”
trajectories for the particles (i.e. a more refined search).

Particles are attracted to the food by its aura. They follow the gradient until
they reach the surface of the patch, where they stop and start feeding. The food
eaten by the particles increases their fitness. Unlike in nature, the fitness of our
abstract animals is also increased when they approach food patches, i.e. the
intensity of the aura contributes to the fitness. The first situation mirrors the
biological nature of the problem, while the latter is inspired by the optimisation
nature of the algorithm (where patches of food can be consider optima to be
found). Formally:

fiti(t) =

{
fiti(t− 1) + FE if particle is on patch
FA ∗ e−(dis−F S

2 ) otherwise
(4)

where: FE is the amount of food eaten by the particle; FA is the amount of food
available on the patch; dis is the distance between the particle and the surface
of the patch; FS is the size of the patch.
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Fig. 2. Trajectories in FPS on different landscapes (200 iterations, Δt = 0.25)

The first particle that reaches a patch and starts eating will have the highest
fitness, and therefore will become the best of the swarm. Other particles will then
be attracted to the same patch not only by its aura, but also by the presence of
the particle already feeding on it. When the food available is entirely consumed,
the particles leave the patch with random velocity and start foraging again. While
feeding, the amount of food available on the patch decreases, and so does its aura.
Eventually, there will no longer be any food left on the patch, and the aura will
be completely dissolved. If a particle is at the intersection of two or more auras,
it will follow the one with highest intensity. If the particles are too far from any
patch, or if the food is no longer available, the effect of the aura is considered
irrelevant and their fitness is set to zero. This causes xsi to be equal to xpi and,
as a consequence, the particles start oscillating close to these positions.

4 Results

The goal of this research is to produce a model of abstract animals and their
foraging environment through which to observe the emergence of group-foraging
behaviour. In terms of simulation, this means that the particles have to both
gather together on the food sources (i.e. form clusters when feeding), and eat
as much food as they can find (i.e. achieve a high fitness). Different foraging
abilities and swarm sizes have been tested to investigate which settings produce
a more “natural” behaviour, with various patch distributions2 to observe how
these behaviours change (Figure 2). Table 1 summarises both the algorithm and
the landscape parameters.

All the parameters except Δt are related to the nature of the group-foraging
problem. Δt is instead an algorithmic “artifact” which needs to be small for the
continuous force equation to be discretised effectively (e.g. the default step of

2 The four alternative patch distributions reflect the qualitative patterns explained in
section 3.
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Table 1. Independently varied parameter settings

Parameter Value

Number of iterations 200, 500
Number of particles (N) 10, 30
Δt 0.1, 0.25, 0.5, 1.0

Number of food patches (F ) 1, 1, 3, 10
Patch size & food amount F = 1: size 1, food 100

F = 1: size 3, food 10
F = 3: size from 2 to 3, food from 9 to 10
F = 10: size 1, food 5
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Fig. 3. Fitness in FPS and SPS on different landscapes (200 iterations, Δt = 0.25);
means over 100 independent runs

the standard particle swarm algorithm (Δt = 1) makes the particles move with
excessively large jumps which can cause them to miss the food patches).

Since the initial position of the particles on the landscape could influence
the behaviour of the simulation, we repeated the experiments 100 times with
different random number generator seeds. For completeness, we have run some
comparative tests with the standard version of the particle swarm algorithm
(SPS) on this newly defined landscape. We also report here some of the most
significant results obtained in [3], to show how the introduction of the concept of
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Fig. 4. Amount of food eaten in FPS and SPS on different landscapes (200 iterations,
Δt = 0.25); means over 100 independent runs
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Fig. 5. Clustering in FPS and SPS on different landscapes (200 iterations, Δt = 0.25,
threshold = 0.5, 1.0, 1.5); means over 100 independent runs
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Fig. 6. Amount of food eaten in FPS and SPS (500 iterations)
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Fig. 7. Clustering in FPS and SPS (Δt = 0.25, threshold = 0.5, 1.0, 1.5)
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aura has improved the behaviour of the model. Given the large number of com-
binations of parameters we used in the experiments, it is impossible to present
all the results obtained in the limited space available. We consider here only
the more significant ones, run with 10 particles, 3 patches, and Δt = 0.25 and
1.0. We have checked differences between the FPS and the SPS versions, in both
types of landscape (i.e. with or without aura), with respect to number of patches
visited (i.e. the ability of the particles to find food), fitness value (i.e. the amount
of food eaten by each particle), and clustering (i.e. the ability of the particles to
gather together). The clustering technique uses the following definition.

Definition 1. Two particles p1 and p2 are in the same cluster if there exists an
ordered set of particles {p(0,1), p(0,2), · · · , p(0,n)}, with p(0,1) = p1 and p(0,n) = p2,
such that d

(
p(0,k), p(0,k+1)

)
≤ r, where r is the cluster threshold.

The results highlight that the introduction of the aura is beneficial both in terms
of amount of food eaten (Figures 3 and 4) and of number of clusters (Figure 5).

The results confirm that, in FPS, there are a larger number of particles that
are able to visit more patches, and therefore to eat a greater quantity of food
(Figure 6). From the figures it is also evident how, with a larger value for Δt,
particles in the SPS model succeed in finding all the patches, but they require
more time than the particles moving according to the FPS algorithm. The ex-
periments reveal that particles in the SPS model cluster more than they do in
the FPS simulation. Our hypothesis is that this is due to the “stop-eat-restart”
behaviour of particles in the FPS model: the random re-initialisation of velocities
can cause trajectories to be directed differently, resulting in a lesser ability to
aggregate. This phenomenon tends in any case to decrease with time (Figure 7).
On average, despite the fact that particles in the SPS algorithm show a better
grouping behaviour (for smaller iterations), the ones in the FPS model are able
to find a greater number of patches and eat a larger quantity of food.

5 Conclusion

The standard particle swarm algorithm shares features like social attraction
and communication between individuals with group-foraging in animals. It is
therefore surprising that its main field of application has only been function
optimisation. By using the particle swarm algorithm as a simulation tool, we
want to change this and take advantage of this biologically inspired technique.

We have shown how it is possible to obtain a version of the particle swarm
model well suited for the foraging problem by modifying the standard algorithm.
Here the landscape is no longer static (food can be eaten), and the fitness is
now related both to the proximity to food (the optimisation problem of finding
food) and internal energy (the biological problem of eating enough). From the
experiments, we have seen that these changes extend the standard particle swarm
model into one which produces qualitatively realistic behaviour.

This work is part of an initial investigation, whose final goal is the simulation
of more complex group behaviour in animals. With [3], we introduced a sim-
ulation for a simple abstraction of the group-foraging problem. In this paper,
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we have further extended this study by refining the definition of the landscape,
through the introduction of the concept of an aura surrounding the patches
of food. Future investigations will focus on introducing other realistic features
for the food sources (e.g. allowing the patches to deteriorate and regenerate,
ephemeral patches) and for the particles (e.g. allowing them to reproduce and
die). In fact, as stated in [8], “it is possible that many of the different collective
patterns are generated by small variations in the rules followed by individual
group members”.
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Abstract. The evolution of artificial neural networks (ANNs) is often
used to tackle difficult control problems. There are different approaches
to the encoding of neural networks in artificial genomes. Analog Genetic
Encoding (AGE) is a new implicit method derived from the observation
of biological genetic regulatory networks. This paper shows how AGE can
be used to simultaneously evolve the topology and the weights of ANNs
for complex control systems. AGE is applied to a standard benchmark
problem and we show that its performance is equivalent or superior to
some of the most powerful algorithms for neuroevolution in the literature.

1 Introduction

The use of artificial neural networks (ANNs) in control systems is a widely
covered research topic. The complexity of control tasks often makes it difficult to
design ANNs manually. Therefore, it is a common approach to use evolutionary
algorithms for this kind of problem. Not only the synaptic weights, but also
the structure of the network can be subject to neuroevolution. Thus one of
the challenges is to find an appropriate genotype-phenotype mapping for both
the topology and the weights. In the literature we find different methods to
accomplish this. The most straightforward approach is direct encoding (e.g. used
by [1,2,3,4]) where the genome is composed of a list of genes, each representing
either a neuron or a link between two neurons. Genomes of this type can be
decoded very easily, but their length grows rapidly with increasing complexity
of the network. Another popular approach is developmental encoding, as shown
in [5,6,7,8,9], which is based on the use of a genome that directs a developmental
process leading to the construction of the network. This allows a more compact
representation of complex networks, but the developmental process, linking the
genome to the developed network, typically makes it difficult to find suitable
genetic operators. Somewhat different is the implicit encoding. Derived from the
observation of biological genetic regulatory networks (GRNs) (see [10] for more
details), implicit encoding is a very interesting approach, which is quite popular
as a representation for GRNs [11] but is not very commonly used on ANNs.

Analog Genetic Encoding (AGE) [10,12] is an implicit method, which - so far -
has only been applied to very simple problems of neuroevolution. The goal of this
paper is to show that it is possible to solve more complex problems using AGE
and that it outperforms other established methods. The double pole balancing
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Fig. 1. AGE provides a solution to the encoding of networks in digital genomes. The
genome contains genes encoding the devices that form the network.

without velocity information, which has been used as a standard problem in
various publications (e.g. [13,14,15]), has been selected as benchmark. The results
allow a direct comparison to the above-mentioned methods, thus showing the
high performance of AGE, quantitatively and qualitatively.

2 Analog Genetic Encoding (AGE)

2.1 The Challenge

The evolution of an artificial neural network requires the encoding of the network
in a genome. In the general case, an arbitrary network of hidden neurons, con-
nected to a given number of fixed input and output neurons has to be evolved.
The analog genetic encoding as presented in [10,12] provides a very plausible
approach to this problem. The basic idea of AGE is to define a genetic repre-
sentation that allows the interpretation illustrated in Figure 1.

2.2 Device Representation

The genome is constituted by a sequence of characters from a finite genetic
alphabet. Here, the 26 characters of the ASCII uppercase alphabet are used
(see [10] for justification). The experimenter defines the kind of devices that
can appear in the network. (Here a single type of dynamic neuron is used.) For
each device type, a specific device token has to be defined. Each device token
signals the start of a gene, that is a fragment of the genome which encodes an
instance of the corresponding neuron. Furthermore, a terminal token is defined,
whose role is to delimit the sequence of characters that must be associated with a
terminal of the corresponding device. These are the so-called terminal sequences.
A neuron is hence encoded by a device token, followed by a number of terminal
sequences, each delimited by a terminal token1.
1 Tokens are typically short sequences of letters. The tokens used in the experiment

can be found in Figure 2 (hidden neurons) and Figure 3 (input and output neurons).
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Fig. 2. Neurons can be represented as symbolic devices with two associated terminal
sequences: one for the output terminal and one for the input terminal. The device ex-
traction process obtains them from the genome by assigning the sequences of characters
between the device token (“NE”) and the terminal tokens (“TE”) to the respective ter-
minal. The terminal sequences of the different neurons are then used to determine the
synaptic weights of the network. The interaction map I(s1, s2) assigns a weight to a
pair of sequences, so that we can for example calculate w11 = I(s11, s12). The entire
weight matrix can be calculated by doing this for all pairs of terminal sequences in the
network.

2.3 Device Extraction

Given a list of device tokens and a terminal token, a list of devices can be decoded
from a genome by simply extracting the devices one by one. To this end, the
genome is scanned in search of device tokens and if one is found, the fragment of
genome following the token is scanned for the necessary terminal tokens. Then
the sequences of characters between the device token and the terminal token
(or between two terminal tokens respectively) are assigned to the corresponding
terminal of the neuron. If a device token in the genome is not followed by the
required number of terminal sequences, the gene is considered invalid and the
decoding continues with the next device token in the genome.

2.4 Device Connection

To determine the synaptic weights between the neurons, a so-called interaction
map I(s1, s2) = N(L(s1, s2)) is needed. This function assigns a synaptic weight
value to any given pair of terminal sequences. The inner function L(s1, s2) is
called sequence interaction map and returns a distinct interaction score i for
each pair of terminal sequences s1 and s2. For these experiments, the value of
the sequence interaction map corresponds to the value of the local alignment
score2 between the two sequences s1 and s2 (see [16]). The parameters of the
2 The local alignment score is a function which operates on pairs of sequences of

arbitrary length and has some very desirable properties from an evolutionary point
of view, which are more extensively discussed in [10,16].
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local alignment function (the circulant substitution matrix and the indels vector)
used here are:

A B C D E F G ... U V W X Y Z
A 5 2 1 0 -1 -2 -5 ... -5 -2 -1 0 1 2
B 2 5 2 1 0 -1 -2 ... -5 -5 -2 -1 0 1
...

and
A ... Z

- -3 ... -3

The network-specific interaction map N(i) transforms the (integer) sequence
interaction values to the (floating point) values of the synaptic weight between
the terminals. Here a logarithmic quantization N : [1, 37] −→ [0.001, 1000]
was used, mapping interaction scores from imin = 1 to imax = 37 to weights in
an interval from wminP = 0.001 to wmax = 1000. Interaction scores lower than
imin lead to a weight wmin = 0, scores above imax lead to a weight of wmax.

We can calculate the whole weight matrix of the network by applying the
interaction map to all pairs of input and output terminals. Since no inhibitory
neurons are used, the two outputs of a neuron provide a positive and negative
output of its state. If there are n neurons, the entries wij of the weight matrix
W are accordingly defined as

wij = N(L(isinput , jsoutput+ ))−N(L((isinput , jsoutput−))

for i = [1, n] and j = [1, n].

2.5 External Connections

Based on the same principle, it is very easy to incorporate the connections to the
external input and output neurons. For each type of signal a separate, external
neuron type with a distinct token is defined (see Figure 3). The connection
weights from the external neurons to the hidden neurons can be calculated using
the same method as above.

2.6 Genetic Operators

Artificial (and natural) evolution relies on the reorganization of the genome.
Contrary to other methods, the AGE genome is very robust to such operations,
since it is of variable length and there is no special protection needed to keep the
genome decodable. There is actually no distinction between tokens, coding and
non-coding regions of the genome. In the experiments, the following operators
where used:

– Character deletion, insertion, and substitution. A character is removed, in-
serted or substituted in the genome.

– Fragment deletion, transposition and duplication. Two points of the genome
are chosen and the intervening fragment is deleted, transferred or copied to
another point of the genome.
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Fig. 3. The external input and output neurons are encoded as separate devices (exactly
like the hidden neurons in Figure 2). For each sensor input, the motor output and a
bias input, a device type with an associated token is used to decode the respective
neurons from the genome. The tokens used for the external inputs are “AA”, “AB”,
“PA” and “BB”, the token for the output is “OA”.

FX

m1

l1

θ1

θ2

l 2

m2

mCar

x

Fig. 4. The double pole balancing problem (DPNV). Two poles mounted on a car have
to be balanced, using measurements of the pole angles and the position of the car.

– Device insertion. The descriptor of a device (e.g. a hidden neuron) is inserted
in the genome. The terminal sequences are randomly generated.

– Homologous Crossover. Fragments of the genome are recombined using ho-
mologous crossover (see [10] for more details).

– Genome duplication. The whole genome is duplicated.
– Generation of an initial population. The initial population is created by

generating individuals with a random genome and inserting a given number
of different neurons with random terminal sequences.

3 Double Pole Balancing as a Benchmark Test

In order to compare the different approaches in neuroevolution on a practical rather
than a purely theoretical level, a benchmark test is needed. The double pole
balancing problem without velocity information (DPNV) is quite challenging
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compared to the fairly simple single pole balancing problems3, while it is still
easy to understand and simple enough to be simulated without huge computa-
tional efforts. Stanley and Miikkulainen [15] compare the results of the only
neuroevolution methods which have reportedly solved the DPNV problem by
evolving topology and weights of neural networks: Gruaus Cellular Encoding (CE,
[13]), Gomez and Miikkulainens Enforced Sub Populations (ESP, [14]), and Stan-
ley and Miikkulainens Augmenting Topologies (NEAT, [15])4.

3.1 The Controlled System

The double pole balancing setup (see Figure 4), consists of a car with mass
mCar = 1[kg] and one degree of freedom x, on which two poles of different lengths
l1 = 1[m] and l2 = 0.1[m] are mounted. The poles have the masses m1 = 1[kg]
and m2 = 0.1[kg]. Based on the measured values of the joint angles θ1 and θ2 and
the position of the car x, the controller is required to balance both of the poles
by applying a force Fx (with a maximal magnitude of Fmax = 10[N ]). Assuming
rigid body dynamics and neglecting friction, the system can be described by the
equations of motion as in [18]. The numerical simulation of the system is based
on a 4th-order Runge-Kutta integration of these equations with a time step of
Δt = 0.01s.

3.2 Fitness Assignment

In their original publication, Gruau, Whitley and Pyeatt [13] suggest the fol-
lowing approach for the assessment of candidate solutions. In order to avoid
demanding calculations for every fitness evaluation, they split the definition of
the fitness value from the decision to judge a solution successful by applying a
simple fitness function to every individual in the population and an extensive
test series on the best individual of the population. Although it saves a lot of
computation time, this is very questionable, since it is not a priori clear that
individuals with a high fitness will perform well in the extensive test. But since
the benchmark data collected by [14] and [15] relies on this measure, the same
approach is used here.

The Fitness Function. In order to assign a fitness value to an individual, a
numerical simulation is carried out over a maximum of 1000 timesteps, starting
from given initial conditions (θ1(0) = 0.0785, θ̇1(0) = θ2(0) = θ̇2(0) = x(0) =
ẋ(0) = 0). For each timestep the position of the car and the pole angles are
observed and the simulation continues only as long as they stay in a given range:
3 They can typically be solved in a few generations with simple evolutionary algorithms,

or with random search in the parameter space.
4 In [17] Igel shows that it is possible to outperform these methods by using an evolution

strategy (CMA-ES) to optimize the weights of a fixed topology ANN. But since in
general evolution of both weights and topology is needed, his results are not really
comparable to those presented here.



Neuroevolution with Analog Genetic Encoding 677

− θMax
1 ≤ θ1 ≤ θMax

1 (1)
−θMax

2 ≤ θ2 ≤ θMax
2 (2)

−xMax ≤ x ≤ xMax (3)

where θMax
1 = θMax

2 = 36◦ and xMax = 2.4[m]. The fitness value F is defined as

F = 0.1f1 + 0.9f2 with (4)

f1 =
t

1000
(5)

f2 =

{
0 if t < 100,

0.75∑ t
i=t−100(|xi|+|ẋi|+|θi

1|+|θ̇i
1|) otherwise. (6)

where t is the number of time steps the system remains inside the boundaries
(1), (2) and (3).

The Generalization Score. The best individual (i.e. the one with the highest
fitness value F ) of every generation is tested for its ability to balance the system
for a longer time period. If a potential solution passes this test by keeping the
system balanced for 100’000 timesteps, the so called generalization score (GS)
of this particular individual is calculated. This score measures the potential of
a controller to balance the system starting from different initial conditions. It
is calculated with a series of experiments, running over 1000 timesteps, starting
from 625 different initial conditions. The initial conditions are chosen by assign-
ing each value of the set Ω = [0.05 0.25 0.75 0.95] to each of the states x, ẋ, θ1
and θ̇1, scaled to the range of the variables (as specified in the following section).
The short pole angle θ2 and its angular velocity θ̇2 are set to zero. The GS is
then defined as the number of successful runs from the 625 initial conditions and
an individual is defined as a solution if it reaches a generalization score of 200
or more.

3.3 The Artificial Neural Network

Neuron Model. The neurons used here are simple continuous time recurrent
neurons as in [19]. The time constant is set to τ = 0.001[s]. The resulting network
state equation

τ ẏ = −y + Wσ (y + θ) + I (7)

where σ(x) =
1

1 + e−x
(8)

is integrated with a separate embedded Runge-Kutta-Fehlberg (4,5) method.
For this benchmark problem, the bias vector θ is set to zero and an external
input with the constant output of 1.0 is connected to the network. To match
the conditions of the original experiment [13], the input neurons are fed with
scaled measurement values (θ1neur = θ1

0.52 , θ2neur = θ2
0.52 and xneur = x

4.8 ). The
outputs of the motor output neuron ranging from −1 to 1 are scaled to forces
from −Fmax to Fmax.
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3.4 Genetic Algorithm

The genetic algorithm used in the experiment is a standard generational GA
with the AGE specific genetic operators as explained above and tournament
selection. The mating pool size is 30 and there is an elite of size 1, thus the
total population size is 31. The tournament size is set to 2. The probability
of homologous recombination is 0.1 with 5 characters required to be similar
for recombination to take place. The probabilities of nucleotide substitution,
insertion and deletion are set to 0.001, the probabilities of fragment duplication,
insertion and deletion to 0.01. Random devices are inserted with a probability
of 0.01 with terminals of length 20.

In order to improve the performance of the algorithm, the GA is restarted
whenever it gets stuck (i.e. when no improvement in the fitness of the best indi-
vidual is observed after 15 generations). This choice was inspired by experiments
with NEAT reported in [20], where subpopulations, which do not improve within
15 generations are removed. To avoid bootstrapping problems, the GA is initial-
ized with a large initial population of 1000 individuals, each with a random
genome of 500 to 800 characters. Each individual in the initial population gets a
complete set of input, output and bias neurons plus one or two hidden neurons
with randomly generated terminal sequences.

4 Results

Table 1 shows the results of AGE compared to the other methods, which have
reportedly solved the DPNV so far. Both the number of fitness evaluations and
the generalization score are about equal or better than the results obtained by
NEAT. The average number of function evaluations needed by AGE is smaller
than the best results previously reported in the literature. It seems that AGE is
able to produce better solutions in a smaller number of generations. The example
solution in Figure 5 (which obtained a GS of 525) shows that simple structures can
obtain relatively high generalization scores. Initialized with only one or two hidden
neurons, AGE tends to exploit these small structures and finds elegant solutions.

An odd property of the DPNV benchmark with the split fitness is that high
fitness scores do not automatically lead to good generalization properties. In the

x

1

1θ

θ2

FX

N2

N1

Fig. 5. An example neural network, found by AGE. Despite its simple structure, it
generalizes really well (with a GS of 525).
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Table 1. The results of the double pole balancing with no velocity information
(DPNV). CE is cellular encoding [13], ESP is enforced subpopulations [14], NEAT
is augmenting topologies [15]. All results are averaged over 20 evolutionary runs. AGE
has to be restarted about 10 times on average to obtain a solution.

Method Evaluations Standard Deviation Generalization
CE 840000 n.a. 300
ESP 169466 n.a. 289
NEAT 33184 21790 286
AGE 25065 19499 317

experiment, some populations with relatively high fitness of the best individ-
ual got stuck without producing a solution which could pass the long run test,
whereas other populations with relatively low fitness could produce good solu-
tions very quickly. The fact that the fitness function and the generalization test
do not correlate well indicates that a better fitness function should be chosen
for future benchmark experiments.

5 Conclusion

The results obtained in the standard benchmark double pole balancing problem
with no velocity information show that it is possible to use analog genetic encod-
ing to evolve neural networks for a difficult control task. They also indicate that
AGE outperforms the best algorithms existing in the literature for the evolution
of ANN topology and weights, producing compact, high quality solutions within
a small number of fitness evaluations.
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his collaboration on the implementation of AGE and a lot of inspiring discus-
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the anonymous reviewers for their helpful remarks.

References

1. Maniezzo V.: Genetic evolution of the topology and weight distribution of neural
networks. IEEE Transactions on Neural Networks, vol. 5, no. 1 (1994) 39–53

2. Pujol J., Poli R.: Evolving the topology and the weights of neural networks using
a dual representation. Applied Intelligence, vol. 8, no. 1 (1998) 73–84

3. Kobayashi K., Ohbayashi M.: A new indirect encoding method with variable length
gene code to optimize neural network structures. Proceedings of the International
Joint Conference on Neural Networks, vol. 6(1999) 4409–4412

4. Stanley K., Miikkulainen R.: Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, vol. 10, no. 2 (2002) 99–127
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Abstract. Linear Linkage Encoding (LLE) is a representational scheme
proposed for Genetic Algorithms (GA). LLE is convenient to be used for
grouping problems and it doesn’t suffer from the redundancy problem
that exists in classical encoding schemes. Any number of groups can
be represented in a fixed length chromosome in this scheme. However,
the length of the chromosome in LLE is determined by the number of
elements to be grouped just like the other encoding schemes. This disad-
vantage becomes dominant when LLE is applied on large datasets and
the encoding turns out to be an infeasible model. In this paper a two-
level approach is proposed for LLE in order to overcome the problem. In
this method, the large dataset is divided into a group of subsets. In the
first phase of the process, the data in the subsets are grouped using LLE.
Then these groups are used to obtain the final partitioning of the data
in the second phase. The approach is tested on the clustering problem.
Two considerably large datasets have been chosen for the experiments.
It is not possible to obtain a satisfactory convergence with the straight-
forward application of LLE on these datasets. The method proposed can
cluster the datasets with low error rates.

1 Introduction

Researchers have been interested in applying Genetic Algorithms (GA) to group-
ing problems [1]. The chromosomes in GA are encoded strings. The representa-
tion of different number of groups in this linear structure is the most important
issue related to the subject. Linear Linkage Encoding (LLE) is a newly pro-
posed encoding scheme for GA and is quite convenient to be used for grouping
problems [2,3]. In this paper, a two-level grouping process is proposed for LLE.

LLE uses links to determine the groups in a partition and has been applied
to the clustering problem in [2,3]. LLE is clearly a better encoding scheme com-
pared to the two previously used representations, Group Number Encoding(NE)
and Permutation with Separators[4]. Both of these classical representations have
the effect of numbering the groups in a partition. Hence, it is possible to have

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 681–690, 2006.
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more than one chromosome representing the same partitioning. This is a fac-
tor decreasing the efficiency of GA. LLE does not suffer from the redundancy
that exists in these representation models. What is more, these classical encoding
schemes can only be used for the k-grouping problem where the number of groups
should be known beforehand. LLE can encode any number of groups in a fixed
length chromosome and can be used for the general grouping problem. LLE has
clearly a better performance compared to the other two encoding schemes [2,3].

All of the three representations mentioned above reserve a gene in the chro-
mosome for each element in the dataset to be grouped. Hence, the length of the
chromosomes used in the GA search is equal to the number of elements to be
grouped. The performance of GA rapidly decreases with increasing chromosome
length. When a large dataset is used, no convergence can be achieved even if
LLE is used as the encoding scheme.

This paper proposes a two-level approach so that GA using LLE can be ap-
plicable to large datasets, too. The method used divides a given dataset into a
group of subsets randomly. In the first phase of the process, the standard ap-
proach is used to partition each subset. In the second phase, the groups obtained
from the subsets are used to form the final partitioning of data. This approach
has been tested on Dermatology [5] and Breast Cancer[6] data. The number of
instances and the dimensions of the datasets are considerably large compared to
the datasets previously used with LLE. It has been observed that the straightfor-
ward application of LLE is infeasible on both datasets. When the new approach
is used, it becomes possible to partition both datasets with high accuracy.

A grouping problem can be defined as the task of partitioning a set of items
into a collection of mutually disjoint subsets [1]. Bin packing, graph coloring and
data clustering are some examples to grouping problems. The new approach pro-
posed in this paper is tested on the clustering problem. Clustering is a grouping
problem which is considered as one of the most challenging problems in unsu-
pervised learning. Various approaches has been proposed to solve the problem.
An efficient method is the hierarchical clustering where a tree hierarchy is built
from the elements to be clustered. In this structure, sibling nodes partition the
cluster denoted by their common parent [7,8].

A different approach used in the area is to search for the solution by dividing
initial dataset into subsets. Checking all possible partitions would be an expo-
nential algorithm. A heuristic or an optimization method is needed to find the
best partitioning. GA has been used by the researchers to search for the optimal
grouping of data [9,10,11]. K-medoids [8,12] and K-means [13] are two other well
known examples of this framework.

As mentioned above, the classical representations used for applying GA on the
problem, have disadvantages. A proper encoding scheme is proposed in [2]. The
details of the classical and this new encoding scheme can be found in the next
section. Then, in section 3, the newly proposed approach is presented. Section 4
includes the experimental results obtained on the datasets. Lastly, in section 5,
the conclusions and future work is provided.
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2 Encoding Schemes

In Group Number Encoding [4], each gene of a chromosome is reserved for an
object and the value of the gene denotes the cluster that contains the object.
Permutation with Separators encoding [4] uses certain integers to denote the
boundaries of the groups. This time, the gene values refer to the objects to be
grouped. For instance, the gene values before the first separator will denote the
object ids of the first group in the partition.

Let O = {a, b, c, d, e, f} be the set of objects to be grouped. The chromosome
[2, 1, 3, 2, 1, 2] will denote the partition {(b, e), (a, d, f), (c)} according to number
encoding. The value 2 in the first gene denotes that object a is in the second
group. b will be in the first group due to the value 1 in the next gene and so
on. The chromosome [2, 5,−1, 1, 4, 6,−1, 3] is a chromosome of permutation with
separators encoding. Here, −1 is used to denote group boundaries. The chromo-
some represents the same partitioning of data. The values of 2 and 5 denote
that objects b and e are in the first group and the objects after the separator
are in the second group and so on. It is easy to construct different chromosomes
which represent the same partitioning of data. For instance, [3, 2, 1, 3, 2, 3] =⇒
{(c), (b, e), (a, d, f)} and [3,−1, 2, 5,−1, 1, 4, 6] =⇒ {(c), (b, e), (a, d, f)} are such
examples where only the ordering of the groups are different. The drawbacks
of this traditional encoding are presented in [1], and it is pointed out in [14]
that this encoding is against the minimal redundancy principles set for encoding
scheme design.

2.1 Linear Linkage Encoding (LLE) Scheme

The idea used in LLE is to represent each cluster as a linked-list of objects.
Again a different gene is reserved for each object [2]. The value of each gene is
interpreted as a link from an object to another object of the same cluster. Two
objects are considered to be in the same group, if either object can be reached
from the other one using one or more links.

a b c d e f

4 6 65 53

a b c d e f

Fig. 1. An Example Chromosome in LLE and the linked list structure it represents

In figure 1 an example chromosome and the link structure it preserves is
given. The chromosome represents the partitioning {(b, e), (a, d, f), (c)}. Note
that any number of groups can be represented in a fixed length chromosome in
this encoding scheme.
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i) ii)

iii)

a b c d e fa b c d e f

a b c d e f

Fig. 2. Redundancy in LLE Scheme

In fact, redundancy exists with the initial definition provided above. For ex-
ample in figure 2, all of the examples represent the partition {(b, e), (a, d, f), (c)}

The redundancy can be prevented by adding the following two constraints to
the definition of LLE.

– No backward links are allowed.
– No two genes in the chromosome have the same value except one of them is an

ending node.

The two constraints remove the initial redundancy totally. Thus, one to one
mapping between the chromosomes in LLE and the possible partitioning schemes
is achieved, reducing the search space considerably [2].

2.2 Multi Objective GA for LLE Clustering

LLE can encode any number of groups in a fixed length chromosome. The en-
coding has been tested on the clustering problem in this work and in [2,3] using
a multi-objective GA. The Total Within Cluster Variation (TWCV) has been
widely used as the fitness measure when GA is applied to a clustering problem.
TWCV is a measure of variation in clusters of a given partition[2]. A good par-
titioning of data would have a small TWCV value. Let X = {X1,X2, ...,Xn}
be the set of objects to be clustered, where each object has d attributes; Xi =
(xi1, xi2, ...xid). If K clusters exist in the optimal partitioning of the data, the
clustering problem is defined as finding out a mapping

μ
′
K : X !→ 1, 2, ..., K (1)

where TWCV in μ
′
K is minimal. TWCV is defined as the summation of the total

variation in the clusters. TWCV of a partitioning μK is defined as

V (μK) =
K∑

k=1

n∑
i=1

wik

d∑
j=1

(xij − ckj)2 (2)

where xij is the jth property of the ith object and ckj is the jth property of the
kth cluster center. wik is a control term which has the value one if object i is in
cluster k and zero otherwise [15]. The cluster center attributes are defined to be
the average attribute values of the objects in that cluster, hence



A Two-Level Clustering Method Using Linear Linkage Encoding 685

ckj =
∑n

i=1 wik.xij∑n
i=1 wik

(3)

In the general clustering problem, the optimal number of clusters is unknown.
The search is carried out on all possible number of clusters in a parallel fashion.
It is more probable for TWCV to decrease as the number of clusters increases.
[2]. Hence, GA using TWCV as the sole fitness measure would tend to find
partitions containing larger number of clusters. Therefore, a second objective is
needed to balance the bias introduced by TWCV.

The second fitness value is set as the number of clusters in a partition. Hence,
the multi-objective GA used in this study tries to decrease both TWCV and the
number of clusters in a partition at the same time. The Niched Pareto Genetic
Algorithm presented in [16] is used to minimize these two objectives for the
problem. Hence, at the end of the search a Pareto optimal set is obtained which
consists of the minimal TWCV values found for all possible number of clusters
that can exist in the partitioning of data.

3 Using LLE on Large Datasets

Application of GA to the grouping problem has a basic drawback which exists
in all of the three encoding schemes presented here. In these representations, a
different gene is reserved for each element of the dataset. Hence, the length of
the chromosomes used in GA search is equal to the size of the dataset to be
grouped and the performance of GA decreases dramatically on large datasets.

LLE has been compared with the classical encoding schemes on the cluster-
ing problem in [2,3]. Iris and Ruspini datasets are used in the experiments.
The results clearly denote that LLE has a superior performance, as expected.
However, the datasets have only 150 and 75 instances, respectively. These are
relatively small sizes compared to many other clustering datasets.

In this study, two large medical datasets have been chosen to test the perfor-
mance of LLE. These are Dermatology and Breast Cancer Datasets [5]. These
datasets are quite large compared to the datasets used in [2,3]. Hence, the GA
search has to be carried out on larger chromosomes. It has been observed that
the straightforward application of GA cannot obtain any convergence in a prac-
tical amount of time on these datasets. The GA run turns into an infeasible
search method even if LLE is used as the encoding scheme.

The method proposed to overcome the problem divides a given dataset into a
number of disjoint subsets, randomly. The clustering of each subset is achieved
using LLE. Hence, a separate GA run is used for each subset. In the second phase
of the process, a meta level clustering is carried out to combine the clusters
formed in the first phase and to obtain the final partitioning of data. More
formally, the set of objects defined as X in the previous section is divided into
s disjoint subsets where for each subset; Si ⊆ X and |Si| = n

s , 1 ≤ i ≤ s. The
subset length is also the length of the chromosomes that will be used in each GA
search. Note that, at the end of each GA run, a Pareto front will be obtained
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for a subset. The Pareto front includes the best groupings found for all possible
number of clusters. Let the size of subsets be l, then l different mappings will
be the output of each GA run (∀q∃μ′

q : 1 ≤ q ≤ l, μ
′
q : Si �→ 1, 2, ..., q). Now an

element in the Pareto front of each subset has to be chosen in order to form the
set of elements that will be clustered in the second phase of the algorithm. The
Pareto fronts obtained are plotted and the elbow criterion is used to determine
the optimal number of clusters in the data. Here, the same number of clusters
can be chosen for all subsets, because the subsets are formed randomly from the
initial dataset and the optimal partitioning of them would have the same number
of clusters. Hence, the optimal partitioning or a partitioning where the number
of clusters is larger than the optimum, can be chosen for the second phase.
However, there is a trade off in this decision. If the size of the clusters used
are small, then the accuracy will be better. On the other side, if the number of
clusters in the chosen partitioning is too large, then the total number of elements
to be clustered in the second phase will increase.

Let’s assume that the partitioning chosen for each subset has c clusters. These
clusters will form the elements to be grouped in the second phase of the process.
Since, s different subsets are used, the total number of elements to be clustered
in the second phase will be c ∗ s. This is at the same time the chromosome size
of the second phase.

The objects subject to clustering are the elements of the initial dataset in the
first phase of the process. The attributes of the elements are used to calculate
the TWCV of the clusters formed. A cluster in the second phase is a combination
of the clusters from the first phase. The average attribute values of the center
points in these clusters are used in order to determine the variation of the the
meta clusters in the second phase.

A multi objective GA is used in the second phase, too. Hence, the search will
combine different number of clusters of the first phase in different groups and a
new Pareto optimal set will be obtained this time for the whole set. This new
Pareto front can be considered as the output of the algorithm. The algorithm
presented above can be summarized as follows. Let size of the dataset to be
clustered be n.

i Divide the dataset into s disjoint subsets randomly, yielding subsets with size n/s.
ii For each subset, run the multi-objective GA.
iii Determine a fixed element in the Pareto front and extract the partitions represented

by this element for each subset.
iv Apply the multi-objective GA on the set of clusters obtained in the first level.

4 Experimental Results

Dermatology dataset contains the clinical features of erythemato-squamous dis-
eases and consists of 366 instances. 34 different clinical features are recorded for
each instance. The instances belong to 6 different types of erythemato-squamous
disease. The diagnosis of the disease is a real problem in Dermatology. The fea-
ture values alter minimally for instances having different disease types [5].
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Breast Cancer dataset consists of 699 instances obtained from University of
Wisconsin Hospitals. The data has 10 different clinical features and contains two
classes. Each class denotes the presence of either Benign or Malignant tumor.
The determination of these breast tumors is a complex problem for oncologists.

The instances in both datasets are labeled according to their class ids. There-
fore, the datasets are suitable to be used with supervised (classification) tech-
niques. The best observed accuracy when a classification technique is used is re-
ported as 96.9% for the Dermatology dataset and 97% for the Breast Cancer[17].
It is a more difficult problem to cluster the datasets in an unsupervised manner,
since no training phase is used in this approach. To the author’s knowledge,
no significant success is obtained by a clustering method on the Dermatology
Dataset. The best accuracy observed with a clustering method is reported as
96.63% for the Breast Cancer data in [18].

Table 1. Genetic parameters used for the experiments on Dermatology and Breast
Cancer datasets

Parameter Dermatology Breast Cancer
Number of Experiments 30 30
Number of Generations 5000 3000
population size 250 200
Nitch Radius 5 5
Crossover Rate 0.8 0.8
Mutation Rate 0.01 0.01
Number of subsets 3 7
Number of clusters used for the
second phase

10 4

In table 1, the genetic parameters used for the experiments are given. Almost
the same parameters are used for both datasets. The size of the population
and the number of generations are larger for the dermatology dataset. Note
that Dermatology dataset is divided into three subsets in the first phase of the
process. On the other side, seven subsets are used for Breast Cancer data. Hence,
a subset size around 100 instances is achieved for both datasets.

As mentioned above, the optimal number of clusters is six for the Dermatology
dataset. In table 2, the best partitioning that contains six clusters, is given. The
class ids of the instances are shown in the table. The erroneous instances are the
ones which have a different class id from the majority of the cluster elements.
For instance, clusters 1, 3, 4 and 5 have gathered the instances of the same id
perfectly. All of the erroneous instances belong to the second and the last clusters.
The number of misplaced elements is 28 among 366 instances. This corresponds
to a clustering accuracy of 92.4%.

There are two clusters in the optimal partitioning of Breast Cancer data.
The number of instances is quite large in this dataset. Hence the actual clusters
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Table 2. Clusters Found for Dermatology Dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
6.0 6.0 6.0 6.0
6.0 6.0 6.0 6.0
6.0 6.0 6.0 6.0
6.0 6.0 6.0 6.0
6.0 6.0 6.0 6.0

2.0 2.0 2.0 2.0
2.0 2.0 4.0 2.0
2.0 2.0 4.0 2.0
2.0 2.0 2.0 2.0
4.0 2.0 2.0 2.0
4.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0
2.0 2.0 2.0 2.0
2.0 2.0 4.0 2.0
2.0 2.0 2.0 2.0
2.0 2.0 2.0 4.0
4.0 4.0

3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0
3.0 3.0 3.0 3.0 3.0 3.0

5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0 5.0 5.0 5.0
5.0 5.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

4.0 4.0 4.0 4.0 4.0
2.0 4.0 4.0 1.0 4.0
4.0 4.0 4.0 4.0 4.0
4.0 4.0 4.0 4.0 4.0
4.0 4.0 4.0 4.0 4.0
4.0 4.0 4.0 2.0 4.0
4.0 2.0 4.0 4.0 4.0
2.0 2.0 2.0 4.0 2.0
2.0 2.0 2.0 4.0 2.0
4.0 2.0 4.0 2.0 4.0
4.0 2.0 2.0 2.0 4.0
2.0 2.0 4.0 4.0 2.0
4.0

found are not presented here. The number of misplaced instances in the best
partitioning found for this set is 21. The success rate is 97% which is exactly the
best rate reported by the supervised techniques.
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Fig. 3. Average best TWCVs in the Pareto front of the first phase for Breast Cancer
data. Number of runs is 30

Note that a Pareto front is generated in both phases of the method. It is
important to analyze if the TWCV values point out the optimal number of
clusters according to elbow criterion. In figure 3, average best TWCVs in the
Pareto front of the first phase are presented for Breast Cancer Dataset. In the
figure, the increase in TWCV value is quite steady until the partition where the
number of clusters is two. There is a big leap, between one and two clusters.
This clearly points out that the optimal partitioning of data has two clusters.

The same analysis is presented in figure 4 for the dermatology dataset. Here,
the sharp increase in TWCV starts between 5 and 4 clusters, denoting that
5 might be the optimal number of clusters for the data. However, there are 6
classes in the original dataset. This is due to the fact that the classes labeled as
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Fig. 4. Average best TWCVs in the Pareto front of the first phase for Dermatology
data. Number of runs is 30

2 and 4 in the data are too close to each other. TWCV value doesn’t increase
much even if these two classes are combined into the same cluster. Note that all
of the erroneous examples belong to these classes in table 2.

5 Conclusion

In this paper, a two-level approach is proposed to overcome the difficulty of using
GA in grouping large datasets. The method is applied to the clustering problem
and two large datasets have been chosen for experimentation. The results are
promising and are even competitive with the results of supervised techniques.
The future work will include testing the method on other well known datasets.
On the other side, more efficient genetic operators suitable to be used with LLE
might be developed in order to increase the performance further.
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Abstract. Swarm Intelligence is the emergent collective intelligence of
groups of simple agents acting almost independently. Algorithms follow-
ing this paradigm have many desirable properties: flexibility, decentral-
ized control, robustness, and fault tolerance. This paper presents a novel
agent coordination model inspired by the way ants collectively transport
large preys. In our model a swarm of agents, each having a different
destination to reach, moves with no centralized control in the direction
indicated by the majority of agents keeping its initial shape. The model
is used to build an algorithm for the problems of image alignment and
image matching. The novelty of the approach and its effectiveness are
discussed.

1 Introduction

Swarm Intelligence (SI) is the property of a system where the behaviour of sim-
ple quasi-independent agents, interacting locally with their environment, cause
intelligent global behaviour to emerge. Since intelligent behaviour should emerge
from collaboration rather than from individual abilities, each agent is designed
to be very simple. The agents should have a limited knowledge of the environ-
ment, which they should be able to modify only locally, and should be designed
according to the reactive paradigm [1].

A feature distinguishing Swarm Intelligence from classical multi-agent systems
is the concept of stigmergy. While in classical multi-agent systems, the agents
communicate directly between each other, in the SI paradigm the agents commu-
nicate by modifying a shared environment. The alterations of the environment,
amplified through a feedback process, may lead the system to self-organize. The
state reached by the system should correspond to an optimal solution of the
problem. A system with such characteristics is non-linear. The next state of the
system does not depend solely on the current state of every agent. The predic-
tion must be based also on the relationships among the various agents. Such
complexity makes difficult for an agent to determine the action leading to the
desired macroscopic behaviour.

Despite some interesting works [2,3,4], there is a lack of general theories
and programming methodologies in the SI field. The difficulties have induced
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researchers to look for inspiration at biological phenomena. Ant Colony Op-
timization (ACO) and Particle Swarm Optimization (PSO) are optimization
techniques inspired to coordination mechanisms used by, respectively, ants gath-
ering for food [5] and birds flocking [6]. Other examples of biologically-inspired
algorithms can be found in [7,8,9,10].

This paper presents a new agent coordination model named Democratic Collec-
tive Transportation (DCT). The model is inspired by ants collectively transport-
ing large preys to the nest. In fact, some species of ants are able to transport a
heavy prey by coordinating their forces through the prey itself. In our new model,
the constraint that all agents try and move the prey toward the same destination
(the nest) is removed: each agent has a desired destination. The group moves the
prey toward the direction chosen by the majority of agents with no centralized
control. Based on the introduced model, an algorithm for the Image Alignment
problem has been devised. It is a population-based optimization algorithm but,
unlike ACO and PSO, only one solution, obtained through a self-organizing mech-
anism, is generated at each iteration.

The paper is organized as follows. Section 2 describes the biological model.
Section 3 presents the new model. Section 4 describes an algorithm for image
alignment based on the presented coordination model and discusses its results.
Section 5 presents some concluding remarks.

2 Collective Prey Retrieval

In order to overcome the limits imposed by their small size and limited capabil-
ities, many species of ants have evolved by developing collaborative strategies.
The carriage of a large prey into the nest is an example of such process. Some
species of ants have specialized workers able to cut the prey into small pieces
that a single ant can carry, while other species are able to collectively transport
large preys. Experimental results show that the latter strategy, called collective
transportation, is the most efficient one [5]. The species with the most interesting
strategies are Pheidole crassinoda, Myrmica rubra and Myrmica lugubris. They
exhibit the same behavioural patterns in solitary and group transport [11]. An
high level description of collective prey retrieval is summarized below:

1. When an ant finds a prey, it tries to carry it.
2. If the ant does not succeed in moving the prey, it tries to drag it in various

directions (realignment behavior).
3. If the prey does not move, the ant grasps the prey differently, then tries and

drag it in various directions.
4. If the prey still does not move, the ant starts recruiting nest mates. First,

it releases a secretion in the air in order to attract nearby ants (short range
recruitment). If the number of recruited ants is not enough to move the
prey, the ant goes back to the nest leaving a pheromone trail on the ground.
Such trail will lead other ants to the prey (long range recruitment). The
recruitment phase stops as soon as the group is able to move the prey.
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Resistance to traction represents a positive feedback mechanism. As specified at
point 4, recruitment stops when resistance to traction ends and the prey starts
moving.

While moving toward the nest, coordination among the ants occurs through
the prey itself. The change of the force applied by a single ant modifies the
stimuli perceived by the other ants (which react accordingly). Such coordination
strategy is an example of stigmergy.

3 A New Coordination Mechanism Based on Collective
Prey Retrieval

The new coordination model introduced in this paper is an extension of the
last phase of the collective prey retrieval strategy: the coordination of forces
during the transportation of the object to the nest. It introduces two significant
differences with respect to the model described in section 2:

– in collective prey retrieval, each ant tries and carry the prey to the same
destination (the nest). In our model each agent has its own destination for
the prey. The group must move in the direction indicated by the majority
of its agents.

– In section 2 the prey is considered a rigid body. A force applied to a rigid
body is perceived instantaneously by all the carrying ants. The inclusion of
a similar propagation mechanism in a model would lead to an unacceptable
level of complexity: either the agents or the preys should be equipped with
a broadcasting mechanism. In the democratic transportation model, the ap-
plication of a force by an agent is immediately notified to its neighbouring
agents only and is perceived by all the other agents after some instants. Such
delayed propagation roughly corresponds to considering the prey as a non-
rigid body. We show how such modification still allows the coordination of
the agents, while keeping simple both the prey and the agent models.

3.1 Model Description

In order to obtain the democratic collective transportation model described in
section 3, the biological model (section 2) is to be modified as follows:

1. each agent constantly applies a force on the prey toward his preferred desti-
nation Vp.

2. The intensity of the applied force is inversely proportional to the angle be-
tween Vp and the direction Vg chosen by the majority of the agents.

3. The direction Vg of the majority of the ants is estimated by each agent by
simply looking at the movements of the prey in the previous time steps.

In the following we outline the functions needed for a formal description of the
democratic collective transportation model.
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p denotes a generic agent of the system. The agents are grouped in a set P .
p(t) is the position of agent p at time t. Each p has 0 initial velocity and moves
according to Fn and Fp.

Fn propagates the individual forces applied to the item being transported to
neighbouring agents. Fn is obtained constraining each agent to keep the initial
distance from its neighbours at every time step:

Fn(p) = c ·
∑
q∈P

(
q(t)− p(t)
‖q(t)− p(t)‖

)
· (‖q(t)− p(t)‖ − ‖q(0)− p(0)‖) · δ(p, q) , (1)

with 0 ≤ c ≤ 1. The first factor of eq. (1) is the versor from agent p to agent q.
The second factor is the gap between the current and the initial distance between
p and q. Function δ indicates whether p and q are to be considered neighbours:
δ(p, q) = 1 if q ∈ neigh(p) and 0 otherwise. Function neigh(p) determines the
initial disposition of the agents. The function neigh, used in our work, is defined
as:

neigh(p) =
{
q ∈ P : 0 < ‖p(0)− q(0)‖2 ≤

√
2
}

. (2)

Fp controls the velocity of the agents p moving in their preferred directions.
Fp can be expressed as:

Fp(p(t)) =

⎧⎨⎩
0 if Fp(p(t− 1)) + Vp ·A < 0
MaxFp if Fp(p(t− 1)) + Vp ·A > MaxFp

Fp(p(t− 1)) + Vp ·A otherwise
. (3)

At time t = 0, Fp(p(0)) = 0. The term A in equation 3 represents the increment
in modulus of Fp at time t:

A = λ(Vp · V̂g(p)) . (4)

It is worth noting that Fp and Vp have the same orientation and the same
direction. Since Vp and V̂g(p) are versors, the parameter λ represents the max-
imum value of A. The increment of the modulus of Fp is inversely proportional
to the angle between the direction chosen by the agent, i.e. the versor Vp, and
the direction chosen by the majority of agents, i.e. the versor Vg.

In order to obtain the exact value of Vg, we should know the state of each
agent in any iteration, but such assumption violates SI principles. An estimate
V̂g of Vg can be obtained by using local information only, namely comparing the
current position of an agent to its position at time t− k:

V̂g(p) =
p(t)− p(t− k)
‖p(t)− p(t− k)‖ . (5)

In order for eq. (5) to be consistent for every t, it is assumed that p(−1) =
p(−2) = . . . = p(−k) = 0. In the first k iterations each p receives a positive
feedback from the system.

The position of agent p at time t is expressed as follows:

p(t) = p(t− 1) + Fn (p(t)) + Fp (p(t)) . (6)
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In order to ease the description, we will identify agents with the points of the
transported item.

3.2 Model Validation

The democratic collective transportation model has been validated through a
series of simulations. In order to prove the correctness of the model, we show that,
in such model, each agent, after some iterations, starts following the direction
chosen by the majority of the agents, independently by its initial direction.

The simulation is divided into two stages. At the beginning of the first stage,
all the agents are still. The versors Vp are randomly selected and each agent
starts moving. During the first N

2 iterations, where N is the total number of
iterations of the simulation, the Vps remain unchanged. At iteration number
N
2 + 1, when the agents are moving along the direction of the majority of them,
their Vps are reselected. In this case, it is more difficult for a moving agent to
modify its parameters and start following the majority.

The main issue for the model concerns the estimates of the majority direction
V̂g made by the agents. In order to verify such estimates, we used the following
error measure:

E =
∑
∀p∈P

(
1− V̂g(p) · Vg

)
. (7)

Figure 1 shows the results of a single simulation. In that case the simulation was
run for N = 80 iterations with a population of 900 agents and parameters set as
follows: c = 0.49, λ = 0.06, k = 3, MaxFp = 0.24.

As the bottom right box of figure 1 shows, the sum of the errors rapidly
decreases to 0 (the peak at iteration 40 is caused by the second selection of
the preferred destinations). The slope of E depends on the percentage of agents
willing to move in the direction of the majority. The slope of E does not depend
on the number of agents: we ran simulations with up to 10000 agents obtaining
similar results.

4 An Algorithm for Image Alignment and Matching

In this section we propose an algorithm for Image Alignment based on the demo-
cratic collective transportation model.

Image alignment is defined as the problem of finding an optimal spatial align-
ment of two images of the same scene/object taken in different conditions. For
example, two images of the same object taken at different times or from different
points of view or with different modalities [12]. Image alignment is the problem of
finding an optimal transformation ω minimizing dissimilarities between an input
image Iinput and a target image Itarget. The degree of dissimilarity is measured
by a cost function f :

ωmin = argminω∈Ω {f(ω(Iinput), Itarget)} . (8)
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Fig. 1. A simulation of the democratic collective transportation model. From left to
right, top to bottom: initial positions of the agents, qualitative idea of the direction
chosen by the majority of the agents (from iteration one to 40: South-East, from it-
eration 41 to 80: North-East), final positions of the agents, plot of the error rate E,
representing the error made by the agents in guessing the direction of the majority.

In some cases the differences between the two images should not be corrected since
they might contain relevant information. For example, the diagnosis obtained by
some image-based medical examinations relies on the differences between two im-
ages acquired at different times. Any registration algorithm should correct all the
differences caused by misalignment and should preserve all the other ones. A de-
tailed description of the image alignment problem and an overview of classical and
new approaches can be found in [13,12].

As eq. (8) suggests, image alignment can be seen as an optimization problem,
where Ω is a family of functions differing only for a set of parameters. Classical
optimization techniques as well as popular swarm intelligence methods, such as
Particle Swarm Optimization [14] and Ant Colony Optimization [15], have been
applied to the image alignment problem. Such methods require a global cost
function (or error function) to drive the system toward an optimal choice for the
parameters of ω. The algorithm we propose does not use a global cost function:
each agent has its local cost function.
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4.1 Description of the Algorithm

Before describing in full details the algorithm, we will sketch its relationship
with the introduced model:

1. Iinput, the image to be registered, is considered the object that has to be
moved.

2. Pixels of Iinput are considered as points (and therefore agents) moving in
a bi-dimensional space. Each agent has 8 neighbours corresponding to the
neighbourhood of the pixel in Iinput.

3. An application of a force on the object to be transported causes the pixel in
Iinput to move.

4. Each agent p has a set Dest(p) of possible destinations, corresponding to the
coordinates of the points in Itarget that are similar, according to eq. (10), to
p.

5. Each agent selects a point q in Dest(p) and tries to move toward q.

The functions of the model are modified as follows:

p is a generic agent of the system. Pixels of Itarget are grouped in a set O.
At t = 0 the agents form a grid of points. A function Color maps the agents
to the gray values of the corresponding pixels in Iinput.

Fp modifies Iinput in order to make it as similar as possible to Itarget. The idea
is to let regions of Iinput with a high gradient be attracted by corresponding
regions of Itarget. The only difference with the democratic transportation
model concerns the Vp definition. Each p ∈ P has an associated set of pixels
Dest(p), composed by the pixels of Itarget which are similar to p according
to eq. (10):

Dest(p) = {q ∈ O|sim(p, q) ≥ dsim} , (9)

where dsim is the similarity threshold. The similarity function used is:

sim(p, q) = |Color(p)− Color(q)| + ‖∇p−∇q‖2 , (10)

where ∇p is the gradient of the image I at coordinates (px, py). Each p
tries to reach a position corresponding to an element of Dest(p) stored in
CurrentDestination(p). CurrentDestination(p) is modified every g itera-
tions according to probability density ρ defined as:

ρ(p, q) =

⎛⎝(1 + ‖p(t)− q‖) ·
∑

o∈Dest(p)

1
1 + ‖p(t)− o‖

⎞⎠−1

. (11)

By reselecting CurrentDestination(p) every g iterations, the system ex-
plores more solutions. Since in the selection process closest destinations are
preferred, when a good solution has been found each agent tends, with high
probability, to go back to the same point.
Vp is the versor with direction from p to its current destination:

Vp =
CurrentDestination(p)− p(t)
‖CurrentDestination(p)− p(t)‖ .
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The dynamic of the algorithm pushes the majority of Iinput pixels in the di-
rection of their current preferred destination. With high probability Iinput will
move to a position “satisfying” the majority of the agents. In this paper we hy-
pothesize that this position is the one with the highest probability to correctly
align the image.

4.2 Results and Discussion

The algorithm has been tested on Magnetic Resonance images of the human
brain. We ran several test using different images and different degree of noise.
In each case the target image was obtained by 1) removing the background in
the original image, 2) translating the filtered image to South-East and 3) by
adding noise. The typical results of such experimentations are shown in fig. 2,
which contains the output of three tests on 116 x 137 images. In the first row a
45% salt & pepper noise was added to Iinput. In the second row a 16% speckle
noise was added. In the last row a 16% speckle noise and a 35% salt & pepper
noise were added. The last image in each row represents the final result of the
algorithm. In every case the swarm needed few seconds on an AMD 1800+, with
1 GB of RAM, to compute the correct registration. The algorithm still finds the
correct transformation on larger images, even if it takes longer. The results show
that the algorithm corrects the differences caused by the translation.

In fig. 3 the results of a different experimentation are shown. In this case the
goal was to locate a small image in a larger one. In this case also the algorithm
is able to correctly locate the input image.

The algorithm described in this paper is different from classical population
based optimization techniques such as genetic algorithms (GA), ACO, and PSO.
In GA, ACO, and PSO at each iteration every agent proposes a complete solution
to the problem. The best solutions are then selected and influence the creation
of the solutions in subsequent iterations. Such approaches require a global cost
function able to evaluate how good each proposed solution is. In the approach
described in this paper, only one solution is generated at every iteration. There
is no need of a global cost function: each agent uses a local cost function which is
much simpler than common global cost functions. The system is able to discard
the contribution of those agents whose cost function would lead to a poor solu-
tion and to promote those agents whose cost function would increase the quality
of the solution.

5 Conclusions and Future Work

In this paper we presented a new agent coordination model based on the col-
lective prey retrieval strategy of some species of ants. In the model a swarm of
agents, each having a different destination to reach, is able, with no centralized
control, to move in the direction indicated by the majority of the agents keeping,
at the same time, the initial shape of the swarm.

From this coordination model an algorithm for Image Alignment and Match-
ing in which simple agents collaborate to move an input image toward a target
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Fig. 2. Example of the execution of the algorithm. For every row, from left to right:
Iinput, Itarget, differences between Iinput and Itarget, the output of the algorithm (the
aligned image), the difference between Itarget and the output of the algorithm.

Fig. 3. Example of application of our algorithm to the Image Matching problem. In
this case the goal is to find the location of the patch Iinput in Itarget. From left to
right: Iinput, Itarget, the output of the algorithm, the differences between Itarget and
the estimated location of Iinput in Itarget. The black box means that the algorithm was
able to correctly locate the patch over Itarget.

one has been devised. According to the current results, the algorithm is tolerant
to noise, but we need to further investigate its dynamic behaviour by using a
larger set of test images.

The algorithm is able to correct translations only, but the results obtained so
far induce us to further investigate the capabilities of our approach. The short-
term goal is to extend the algorithm in order to match rotated images and to
compare its performance against standard approaches. The long-term goal is to
introduce new interactions that should enable the image alignment with elastic
deformations and other types of noise.
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Abstract. The iterated prisoner’s dilemma (IPD) has been used as a model for 
investigating cooperation in nature. Here, we present an analysis of the evolu-
tion of reciprocal cooperation in a dynamically simulated environment in which 
individual agents are free to move in space, interacting with their nearest 
neighbors in fixed-length IPD games.  Agents aim to avoid those against whom 
they score poorly, and to seek out those against whom they score highly.  Indi-
viduals are modeled using finite state machines, allowing us to extend previous 
work on kin group markers.  Though they have no direct effect on an individ-
ual’s strategy, such markers do lead to the emergence of coherent, mutually-
cooperating sub-populations. 

1   Introduction 

The IPD was first popularized as an effective model for cooperative strategies over 20 
years ago[1].  Initial studies focused on a simple 2-player iterated game in which 
individuals were allowed either to cooperate or defect on each turn.  Axelrod’s fa-
mous open tournament ([2][3]) showed that the most successful individual when 
competing  against varied opponents tends to be one that remains cooperative until the 
opponent defects, at which point it punishes and then forgives. E.g. ‘tit-for-tat’, which 
always does in each round exactly what the opponent did in the previous round.  Most 
importantly, Axelrod showed that cooperative strategies could be successful in certain 
scenarios, depending on the nature of the opponents. 

IPD remains a highly studied topic, with modern hardware allowing far more com-
plex simulations involving a larger number of interacting individuals, with increas-
ingly complex interactions.  It has also been extended to cover further avenues of 
research: 

 Adding a spatial component in order to investigate the effect of physical prox-
imity on cooperation. [4][5][6][7] 

 Increasing the number of players per game above 2, to the generalized N-player 
game [8][9][10][11]. 

 Adding noise, giving the possibility of miscommunication [12][13][14]. 
 Increasing the number of response levels to include intermediate possibilities, as 

well as allowing a continuous spectrum of cooperation [15][16][17]. 
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This paper focuses on further extending the concept of spatial dynamics applied to 
the IPD game: a field that has so far only been studied simplistically.  We embed a 
population of agents within a continuous, 3D environment, allowing individuals to 
interact stochastically with their physical neighbors. In addition, we incorporate the 
research on ethnic marking of McElreath et al. [18], which allows individuals to learn 
different strategies for dealing with different subgroups of opponents based on an 
externally visible ‘tag’. 

The goal of this work is to demonstrate a new simulation mechanism, which can 
provide a more accurate conformity to real-world situations.  We have designed an 
environment which allows individual agents to behave more realistically, each aiming 
to maximize its own personal fitness by clustering with its most beneficial neighbors, 
and avoiding those that are harmful to it. 

We introduce two techniques used to extend the investigation of the IPD.  The first, 
to the best of our knowledge, has never been applied to this problem. The second is 
very rarely applied but we believe that it is extremely well suited. 

1.1   Force-Based Clustering and Visualization 

The technology of force-based clustering and visualization (FBC) has been used for 
some time to address the visualization of large and opaque datasets in an intuitive, 
interactive manner.  Though it is literally a ‘nature-inspired’ technique, it was inspired 
by physics rather than biology; in this case the interaction of physical forces between 
mutually attractive bodies.  A real-world analogy is clusters of stars, which have been 
modeled in astrophysics for many years using N-body codes.  The technique is an 
unsupervised dimension reduction algorithm, directing the emergence of structure and 
substructure based on arbitrary measures of mutual affinity and without requiring the 
original data to possess particular statistical properties. 

In this application to the IPD, we use a population of single points within a 3D 
space, each point representing a single evolutionary agent.  These agents are linked to 
every other agent by means of a continuous simulated force with a strength related to 
the degree of affinity of those two individuals.  The details of this force calculation 
are laid out in section 2.1. 

1.2   Finite-State Machines 

A finite-state machine is a class of control system for a simple decision-making proc-
ess, acting in a deterministic manner based on certain inputs from its environment and 
a hidden internal state.  This state can be thought of as analogous to an emotion, in the 
sense that it influences the way in which this individual interacts with its peers, even 
given identical (external) inputs, yet it is not externally visible. 

A machine is precisely described by its current state, and a transition vector detail-
ing tuples of (target state, action) for every (current state, environmental input)  
combination.  In this case, there are exactly four possible inputs for each state, corre-
sponding to the last result in the IPD game. Those states correspond to “mutual coop-
eration”, “mutual defection” and “one player cooperates and one defects,” the last 
occurring in two symmetrical ways.  
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The genome for a finite-state machine is therefore comprised of three components.  
Firstly, the state transition vector detailing which action to take in every possible 
situation. Secondly, the initial state for the individual, and thirdly the action to take on 
the first move before any environmental input is obtained. 

We also introduce the concept of kin tags, which are stored as a single integer 
within the genome.  The effect of kin tags is to set the initial state in which an indi-
vidual’s opponent commences each interaction. When competing against an opponent 
with a tag of ‘x’, an individual starts off in internal state ‘x’.  Because of this, the 
number of internal states is constrained to be greater than or equal to the total number 
of different kin groups in the initial population. Initial kin tags are evenly distributed. 

2   Experiment Design 

The experiments were designed to explore a subset of the parameter space of the 
proposed simulation environment.  The simulated framework consists of two separate, 
parallel components: the dynamical simulation based on force-based clustering, and 
the evolutionary simulation that runs in parallel and uses a nearest-neighbor interac-
tion fitness measure. 

2.1   Dynamical Framework 

The dynamical framework uses the force-based clustering method as explained above.  
This simulation runs continuously, allowing individuals to cluster closely with those 
opponents with whom they perform most successfully in the IPD games.  In order to 
do this, a matrix is stored detailing the ‘affinity’ of each individual for every other.  
This is calculated once at the beginning of the simulation, and is then updated when-
ever a new individual is introduced in the evolutionary component of the simulation. 

 
Affinity is given by the following formula: 
 

Affinity (P1, P2)  = Score of P1 vs. P2 in fixed-length IPD .                       (1) 
 
Affinity is converted linearly into a scalar force by considering a standard Hooke’s 

law spring model in which the force in a spring is related to the degree to which it is 
extended or compressed relative to its ‘natural’ length.  In an equivalent sense, we 
convert Affinity (1) to a force between two individuals by the following relation: 

 
Force(P1,P2) = - k * ( D - S * (M – Affinity(P1,P2) ) ) .                       (2) 

 
Where k is a force scale factor, D is the Euclidean distance between the two individu-
als, S is a distance scale factor and M is the maximum score that any individual could 
obtain in a game.  In the standard game, M is equal to the Traitor’s payoff (conven-
tionally 5 points) multiplied by the number of games.  Thus an individual scoring 
maximally against another will attempt to get as close as possible to that other indi-
vidual as the force reduces to –kD.  The opponent to that individual, having scored 
zero points, will attempt to stay at an equilibrium distance of S*M units. 
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Note that Affinity(A,B), and hence Force(A,B), is not symmetrical.  If individual A 
scores well against individual B, then it will attempt to remain close to that same 
individual.  However, in this case B may have scored poorly, so B will attempt to 
remain further away from A in order to avoid future interactions with A.  Because of 
this, A will ‘chase’ B rather like in a predator-prey interaction. 

The time complexity of FBC scales proportionally to the square of the number of 
points in the simulation, N, so we are constrained to relatively small population sizes 
of a few hundred for such an experiment with a reasonable generation count. 

2.2   Evolutionary Framework 

The evolutionary framework is totally separate from the dynamical framework, and 
follows a standard evolutionary algorithm design with a population of N=500 and 
elitism of N-1.  The evolutionary update happens in parallel to the dynamical update, 
with a fixed rate. 

In each evolutionary update, three steps are performed as in a standard evolution-
ary algorithm.  Firstly every individual is assessed to calculate its fitness. Secondly, 
the weakest individual is killed off. Thirdly, a new individual is inserted into the 
population based on the crossover of two parents, selected biased by high fitness. 

Fitness Evaluation 

Fitness evaluation occurs in a geographical niche, with each individual playing a fixed 
number of fixed-round IPD games against selected neighbors.  These neighbors are 
selected using a distance-based tournament selection.  That is to say, in order to assess 
the fitness of individual P, a group of Q individuals is chosen from the rest of the popu-
lation.  From that group, the one which is physically closest to P is selected, and plays a 
fixed-round IPD game against P.  This process is repeated a fixed number of times (we 
used Q=6 and 10 iterations for all the simulations in this paper) and the total scores are 
summed.  This overall total score is assigned as the individual’s fitness. 

It is important to note the distinction between the fitness measure and the affinity 
matrix. The affinity is calculated between every pair of individuals and remains the 
same as long as those two individuals do not change.  The fitness is recalculated each 
round, is unique for each individual, and is based on this stochastic neighborhood 
competition measure. 

Selection and Crossover 

After the fitness of every individual has been calculated then the weakest individual 
(or a randomly selected weakest individual, in the case of a tie) is selected and re-
moved from the population.  This individual is then replaced by a single offspring 
created by a continuous random crossover between two parents selected by n=2 tour-
nament selection from the entire population, based on fitness. Mutation is applied to 
every offspring, uniformly replacing a single, randomly selected state transition. 

We chose to use N-1 elitism, replacing only one individual each generation, in or-
der to retain the dynamic stability of the simulation.  If too many discrete changes are 
made at one time then the simulation becomes highly unstable, and must be given 
time to settle back down to equilibrium.  A further study would investigate the use of 
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tournament selection in order to select this worst individual, rather than the determi-
nistic ‘worst score’ method.  There is also room to vary the tournament size for 
neighbor selection. We leave these options for future work. 

There is a potential interaction between the dynamical timescale of the clustering 
algorithm and the timescale for a generation update within the evolutionary code.  
The ideal scenario would be to allow the dynamical algorithm time to settle to a 
steady state between updates, though in practice this would make simulations prohibi-
tively slow, and such a steady state does not always exist, once predator-prey chases 
are considered. In this initial work, we have not comprehensively investigated this 
interplay. We appreciate that the configuration of these two timescales may well af-
fect the number of generations within which an outcome is achieved. However, our 
preliminary qualitative investigations suggest that any reasonable variation in these 
two timescales does not affect the outcome of the simulation in essence. 

3   Results 

We present brief results for four separate selected experiments run using the dynami-
cal-evolutionary framework.  These highlight real differences in the way the system 
of co-evolving agents reacts to variations in the simulation parameters detailed above, 
and are the result of approximately 5.6 trillion individual games of IPD. 

3.1   Evolution of Cooperation 

The evolution of cooperation within a dynamical evolutionary framework was quali-
tatively assessed during the course of the simulations.  Figure 1 shows the results of a 
control run, consisting of 3000 generations with 3 kin groups and 4 internal states.  
No communication errors were considered. 
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Fig. 1. Frequency of each kin group over the course of 3000 generations in one example simu-
lation. Groups 2 & 3 dominate the population at generation 3000, mutually cooperating. 
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Qualitatively, the different kin groups could be visualized on screen using our 3D 
visualization package as the evolution proceeded.  We found that the kin groups be-
gan to cluster together after a few hundred generations.  This clustering became 
clearer as the sub-groups began to diverge and cooperate with themselves.  Most 
simulations ended up with one or more groups dominating the environment and coop-
erating with all other survivors. 

We also found other intriguing situations where a component of one kin group 
acted as a predator on one of the others.  In such cases, two or three surviving groups 
existed in a stable, mutually-cooperating mix.  However, a minority of one of the 
surviving groups would exist by cooperating with all groups except one, against 
which it would act as a predator (i.e. occasionally defect).  Because this predatory 
subpopulation had the same kin tag as one of the cooperative populations, the other 
individuals never evolved a hostility towards them.  If the predators had been identi-
fied by a separate marker then their ‘prey’ would have evolved a hostility towards 
them and hence the predators would have died out. This mimicry seems to be a re-
markably successful adaptation and mirrors that found in nature, e.g. with camou-
flaged predators, cuckoos laying eggs in the nests of other birds, and carnivorous 
plants trapping feeding insects. 

Genomic diversity remained high throughout the simulations.  This is because cer-
tain states and transitions are never used.  So the genome has freedom in those loci to 
change to any other value without affecting the phenotype (behavior).  The genotypic 
diversity was calculated as the variance within a kin group of any genome locus from 
the group-average.  The range of each locus was 8 points in total and the average 
diversity at the end of a control simulation was 5.91±0.44, which means that the aver-
age gene in an average individual was still sqrt(5.91) = 2.43 points away from the 
mean.  This shows that almost all loci were essentially still random even after the 
simulation had settled down to mutual cooperation.  Further work should investigate 
how this may correspond to the existence of ‘junk DNA’ in animals. 
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Fig. 2. Variation of ‘niceness’ over time, with kin (upper line) and non-kin for the same simula-
tion as in figure 1 
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Figure 2 shows how Kin (K) and Non-Kin (NK) niceness varies with genera-
tion.  K-niceness is defined as number of individuals in the simulation who will 
always cooperate with members with the same kin tag as long as that opponent 
also cooperates.  NK niceness is defined identically, except applied to individuals 
with different tags.  Note that, in order to avoid discontinuities, it is possible for an 
individual to be classed as nasty even if it only defects against a kin group that has 
gone extinct. 

3.2   Variation of Kin Groups 

Varying the number of kin groups provided a remarkably clean relationship with the 
K- and NK- niceness measures.  When there are more kin groups, it takes longer to 
learn reciprocal altruism.  In this simulation, the number of states is set equal to the 
number of groups.  Re-running this test with a fixed number of states (7) and varying 
the number of groups reduced the overall levels of ‘niceness’, but retained the general 
form of the relationship.  These results are shown in figure 3. 
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Fig. 3. Variation of Kin (K) and Non-Kin (NK) niceness as a function of generation and the 
number of kin groups. State complexity = kin group count. 

3.3   Variation of State Complexity 

When keeping the number of kin groups constant at three, we varied the state 
complexity of all individuals within the population, changing the number of inter-
nal states between three and seven.  Figure 4 shows the effect this has on the ex-
tinction rate of kin groups.  It is evident that a more complex state machine implies 
that individuals are more likely to cooperate with non-kin rather than force them to 
extinction.  The main reason for this is simply that coherent ‘nasty’ (first-to-
defect) strategies are more difficult to evolve than ‘nice’ ones.  With mutually 
cooperating individuals, only the ‘cooperate’ state transitions need be correct.  
However, with ‘nasty’ individuals, the state transitions followed in any one game 
tend to be far more complex, and all these transitions need to be optimized in order 
to gain a reasonable score. 
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Fig. 4. Frequency of simulations in which all 3 kin groups survive, as a function of generation 
and state complexity (labeled on the right-hand side) 

3.4   Introduction of Errors 

Investigating the introduction of errors into the assessment of group identification and 
action communication has already been shown to affect the degree of cooperation that 
arises in the IPD [12][13][14].  Here we introduced noise in two areas. Firstly, in the 
communication of the action that an individual performs (‘cooperate’ or ‘defect’). 
Secondly, in the identification of an opponent’s kin tag.  Figure 5 shows that in-
creased error rates lead to a greater degree of cooperation between kin groups.  
Clearly, the more likely it is that an opponent’s identity may have been incorrectly 
ascertained, the wiser it is to cooperate with that individual, in case it is kin. 
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Fig. 5. The effect of errors in the number of surviving kin groups.  Here are plotted the number 
of simulations (out of the maximum of 50) in which all three kin groups survive for 3000 gen-
erations, versus the logarithm of the level of error introduced.  On the left is the result of an 
error in kin identification, and on the right is an error in communication of an individual action. 
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4   Conclusions 

We have introduced a novel method for investigating the IPD within a dynamical 
evolutionary framework.  Our conclusions are as follows: 

 
(1) We confirm the prediction made by McElreath [18] that individuals prefer to 

cooperate with, and remain near, their own kin compared with others. 
(2) Increasing state complexity or kin diversity increases the degree of inter-

group cooperation and leads to less frequent extinctions. 
(3) Semi-stable predatory niches with mimicry do exist within this environment. 
(4) The introduction of errors increases the degree of inter-group cooperation. 

 
For further extensions to this project, we would like to investigate the following: 
 

(1) Introducing more realistic (harsh) payoff matrices for predatory individuals. 
(2) Investigating the effect of tournament size on localized cooperation. 
(3) Introducing kin tags that vary with some phenotypic (behavioral) features. 
(4) Investigating how ‘niceness’ varies as a function of proximity to individuals 

with different kin tags. 
(5) Varying the crossover mechanism to account for the fact that crossover of 

individuals with different kin tags will create an unbalanced offspring. 
(6) Modeling incomplete knowledge in affinity matrix, by assuming cooperation 

until proven otherwise by direct interaction. 
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Abstract. This paper expands Mosaic World, an artificial life model, in order to 
directly test theories on the emergence of multicellular life. Five experiments 
are conducted and demonstrate that both the presence of predation and acciden-
tal aggregation are sufficient conditions for the transition to multicellularity. In 
addition, it is shown that division of labour is a major benefit for aggregation, 
and evolves even if aggregates ‘pay’ for abilities they do not use. Analysis of 
evolved results shows multiple parallels to natural systems, such as differentia-
tion in constituent members of an aggregate, and life-like, complex ecosystems. 

1   Introduction 

Explaining the transition from single cells to multicellular organisms is one of the key 
challenges faced by evolutionary theory. A multicellular organism is comprised of 
more than one cell that are in physical contact; these cells are specialised (or differen-
tiated) to perform specialised tasks - and their activities are coordinated, at least with 
regards to some key functions. Multicellular life, which is believed to have independ-
ently arisen multiple times in the different kingdoms [3], is evident even in the most 
ancient fossils dating some 3.5 billion years [18]. Multicellularity can be achieved in 
two ways: through aggregation and through cell division accompanied by adhesion.  

Although it is accepted that for this transition to repeatedly take place it must offer 
some advantages, no one knows for certain the conditions that led to the original 
emergence of multicellularity, nor how it emerged. One view is that the transition to 
multicellularity occurred by accident, caused by a mutation that prevented offspring 
cells from separating [3], and that at first there were no advantages. In this scenario, 
the benefits came later, thus causing the selection of the organism. Another theory 
suggests that predation pressure was one of the causes leading to the emergence of 
multicellularity, as multicellular organisms would be more resistant to phagotrophy 
(ingestion of whole prey) [19]. This theory was tested by exposing a unicellular or-
ganism, Chlorela vylgas, to a predator. Within few generations the multicellular ver-
sion of the organism, a rare mutant, evolved and was nearly immune to predation [5]. 

The possible advantages associated with multicellularity are numerous. One is the 
enhanced efficiency of dividing labour between cells [11]. This can provide advan-
tages in feeding (e.g. efficient feeding through cooperation) and dispersion (e.g. a 
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larger fruiting body improves spore dispersion) [3]. The larger size may improve 
protection from environmental disturbances [1] and enable greater storage capacity of 
inorganic nutrients [9]. It also enables a greater division of labour – more cell types 
that offer greater specialisation [4]. Perhaps, most importantly, sheer size itself can be 
advantageous with regards to predation: the prey may be too large for the predators to 
eat and organisms may be able to move faster so could better catch prey or escape 
predation (e.g., in water environments [2]).  

 

Fig. 1. (A) A screenshot of Mosaic World. (B) A close-up of Mosaic World. 

It is important to emphasise that a group of individual cells (i.e. a colony) is not a 
multicellular organism. The first necessary step for this transition is that the individual 
cells stop competing and start cooperating; in other words, the individual cells start 
sacrificing their fitness for the fitness of the group [12]. Only then can cell differentia-
tion begin and the organism becomes multicellular [10]. It is crucial that functions 
that limit internal conflict emerge [13]. According to some, successful complex multi-
cellular organisms must be comprised of genetically identical members [20]. 

It is difficult to study events such as the emergence of multicellularity for obvious 
practical reasons. This is where artificial life models can greatly help. Indeed, several 
researchers have modelled aspects of the emergence of multicellular life: for example, 
Rothermich and Miller investigated the emergence of multicellularity by modelling 
cells using Cartesian genetic programming [15]. Bull used versions of the abstract 
NKC model to examine the conditions under which multicellularity is likely to occur 
[7]. Furusawa and Kaneko studied the origin of multicellularity using artificial chem-
istry [8]. Bryden modelled the macrocyst stage in slime mould in order to understand 
why an organism might decide to aggregate [6].  

In this paper, we expand Mosaic World, a multi-agent system [16] [17]. Although 
originally created to understand the principles that underlie colour vision, its exten-
sive model of evolutionary agents in a complex environment lends itself perfectly to 
gaining insights into the emergence of multicellularity. Specifically, we wish to ex-
plore the factors that may have provided an advantage for multicellular life when it 
first appeared in nature. Mosaic World is inhabited by a population of agents that 
sense their environment, consume food, reproduce and die. In this study, we have 
expanded their capabilities to include aggregation: they can now literally become 
multicellular organisms – reproduce as one, and divide tasks among members. 
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2   System 

Mosaic World comprises a 2D grid of ‘coloured’ surfaces and is modelled after key 
characteristics of natural scenes. Its environment is inhabited by a population of vir-
tual agents, ‘critters’, that try to survive. Survival requires consuming positive re-
sources, and avoiding negative ones. Critters must also keep from falling from the 
world. There is no explicit fitness function in this model: by reproducing both sexu-
ally and asexually, the critters themselves maintain their population. Critters are in-
stantiated with a given amount of health, and die if it drops below zero. If all critters 
die, a new population is generated where 80% are random critters and the rest are 
mutated clones of critters that showed general promising survival skills earlier in the 
run. By evolving the genome of the critter that determines all critter aspects and be-
haviour, the critter population becomes increasingly better at survival (for a more 
thorough discussion of Mosaic World and its critters see [16]) 

Critters can sense their environment through specialised sensors (called receptors), 
and must learn to generate behaviour accordingly. All critters are created with the 
ability to perform several actions, but must also learn how (and when) to perform 
them: moving, turning, sexual and asexual reproduction, resource consumption and 
predation. Each of these behaviours costs energy, so a critter must learn to balance its 
energy gain with its energy consumption. Additionally, every critter has a metabolism 
which determines the rate of energy it loses over time. The metabolic rate is deter-
mined according to the actions the critter has the capacity of performing. This at-
tempts to model the notion that in nature, different types of cells have different energy 
costs (e.g. [14]) – although the costs used do not capture the mechanisms of biology 
in detail, the model does – in our view – present the critters with the same fundamen-
tal ecological challenges that is faced in the evolution of natural systems. 

Even though at first all critters are created with the capacity to perform all actions 
except predation, by losing some of these capabilities (through evolution), the critters 
can decrease their metabolic rate – however, even a critter with no capacity to do 
anything still loses energy at a slow rate. Critters that lose the capacity to perform a 
certain action cannot perform it. The basic metabolic rate for a critter is 10 units per 
time step, reproduction adds 30 units, consumption adds 30 units, moving/turning 
adds 30 units, and predation adds 30 units. E.g. a critter that can only reproduce and 
move, but not eat, loses 70 energy units per time step, which is 70% of the rate of a 
critter that can also eat. There are two ways of gaining energy. The first is by consum-
ing surfaces – a surface’s value is determined from its colour (using a value function, 
see [16]). The second is by hunting for prey. However, an organism must be larger 
than its prey, and so, a standard critter cannot be anything other than an herbivore, 
and has no use for the capacity of predation. 

Every critter has a brain, which is comprised of a control module (a gating net-
work), and up to 8 secondary modules. The control module receives stimuli and de-
termines which of the modules to activate at any given time step. Previously we have 
shown that this mechanism facilitates modular specialisation and increases critter 
performance [17]. Each of the modules is a modified 3D feed-forward neural net-
work, and is comprised of multiple 2D layers. The visual layer, which corresponds to 
a standard input layer, contains receptors (input units with novel additions) which 
receive stimuli from the environment. Each of the secondary modules has three extra 
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receptors: a health monitor which receives the percentage of the critter’s remaining 
health, an aggregate monitor which indicates whether the critter is a part of an aggre-
gate, and if it is, the aggregate’s size, and a neighbour indicator, which receives a 
positive signal if another critter is on the same surface as this critter. The hidden layer 
contains standard hidden units. The output layer contains output units, which deter-
mine the critter’s behaviour: turning, speed of movement, reproduction (sexually or 
asexually), resource consumption, predation, join or split from an aggregate.  

In terms of evolution, every aspect of the critter brain is evolvable: weight values, 
module topology (number of hidden units, connectivity, etc) and other attributes (e.g. 
critter colour), as well as the actual number of modules (for a full description, see 
[16]). In addition, the critter can evolve (or devolve) its capacity to perform all ac-
tions: the capacity to consume surfaces, the capacity to move/turn, the capacity to 
prey, and the capacity to reproduce; as mentioned, this affects its metabolic rate.  

Crossover takes place during sexual reproduction. Several modules (randomly de-
termined) are cloned from one parent, and the rest are cloned from the other. The 
control module is recombined by ‘slicing’ all layers of the modules of both parents at 
a random point, cloning a part from each and combining these to form the brain of the 
offspring. In addition, the resulting brain is mutated at this point. 

Mutation takes place during both sexual and asexual reproduction. The last active 
secondary module (as determined by the control module) and the control module are 
subject to several types of mutations; (i) Mutation operators that change receptor 
attributes. (ii) Mutation operators that change module topology (iii) Mutation opera-
tors that change the weight values. Additionally, the brain has its set of mutations 
(add module, delete module, duplicate module), a mutation that changes the critter‘s 
colour and a mutation that change the critter’s behavioural capacities (6% per action). 

2.1   Aggregation in Mosaic World 

In order to investigate the emergence of multicellularity, mechanisms for critter ag-
gregation have been added. An aggregate can comprise up to 25 adjacent critters in 
any form within a 5x5 square, and is subject to all the costs and limitations that crit-
ters incur. Two goals were aimed for: first, the usage of neural networks and sensors 
within critters is intended as a functionally equivalent model of gene regulatory net-
works and cellular receptors. Also, by making the aggregation methods optional, we 
enable evolution to discover the utility (or not) of aggregation - there is no bias to-
wards multicellularity or differentiation and no requirement for critters to aggregate. 

Aggregates can use all abilities of their constituent members: if no members have 
the capacity to perform certain actions, the aggregate cannot perform them. Decisions 
for reproduction, preying on critters/smaller aggregates, and splitting are determined 
‘democratically’; an aggregate performs these only if at least half its members wish 
to. Members that have lost the capacity to perform an action do not participate in this 
decision process. When critters form an aggregate, their genomes merge (see fig. 2). 
The aggregate genome is the combined genomes of its members, with an additional 
gene indicating the member’s position in the aggregate. The genome defines all the 
traits of the aggregate, and by definition, of its comprising critters.  

Aggregates pool the energy of their constituent members; an aggregate’s current 
and maximum health levels are the combined total of its members’ current and  



 Investigating the Emergence of Multicellularity 715 

maximum health levels. Similarly, an aggregate’s metabolism is the combined meta-
bolic rates of its members. Aggregates enjoy the combined sensing capabilities of all 
their comprising members: every individual critter senses the environment, and can 
affect the behaviour of the aggregate. In addition, every member that has the capacity 
to consume can still decide whether to consume a surface or not, although it is still 
subject to the same limitations faced by critters (i.e. it cannot consume while moving, 
which depends on other members of the aggregate as well). The energy gained (or 
lost) is added to the aggregate’s energy pool. 

 

Fig. 2. Sample aggregate (size 2) genome; most genes for critters are not shown (see [16]) 

An aggregate’s movement is determined by its members, and is effectively their 
combined movements. Since aggregate members can turn inside an aggregate, an 
aggregate’s overall movement depends on its members’ individual orientations. Con-
sequentially, the movement of an aggregate is difficult to coordinate. The movement 
and turning energy costs are identical to those of an ordinary critter – this models 
multicellular organisms using flagellates for swimming [2]. An aggregate does not 
fall from the world as long as its central member is still on it.  

Aggregates can prey on critters and smaller aggregates. An aggregate must be lar-
ger than its prey to consume it, and must physically overlap at least 75% of it. Preying 
may not kill the target: only some of its energy is transferred to the aggregate (80% of 
full capacity). Preying also incurs an energy cost that depends on an aggregate’s size.  

Aggregates can only reproduce asexually. To reproduce, an aggregate must not 
move for a given number of time-steps and must also transfer a percentage (20%) of 
its maximum health to its offspring. All reproduction attempts incur an energy cost 
relative to the aggregate’s size regardless of their success. When an aggregate repro-
duces, all its members are cloned and mutated (similarly to standard sexual reproduc-
tion). The members’ spatial position is also copied, thus, cloning the aggregate’s 
shape as well. There are three types of mutations, which may affect the metabolic rate 
of the offspring. The clone element mutation causes one of the offspring’s members 
(randomly determined) to be cloned twice at a given probability (4%). The new mem-
ber is attached randomly to an existing member. The delete element mutation (4%) 
causes an offspring’s member (randomly selected) not to be copied. The picked mem-
ber must not be the only connection between two parts of the aggregate (it cannot split 
the aggregate in two). The shift element mutation (4%) causes an offspring’s member 
(randomly picked) to change position (altering the aggregate’s shape).  

There are two ways for critters to form an aggregate; each is used in different ex-
periments. Aggregation by choice enables critters to aggregate with other willing 
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critters and aggregates that are in immediate contact with it. A critter may be in ‘join’ 
mode, where it adheres to any willing organism it is in contact with, ‘neutral’ mode 
where it does not initiate aggregation, but adheres to any other organism that attempts 
to adhere to it, and ‘split’ mode where it never aggregates. Accidental aggregation 
causes a percentage (4%) of every reproduction to result in a small (size 2) aggregate – 
this models an offspring that does not separate from its parents during reproduction. 
In this setting, aggregates cannot split or grow during their lifetime. 

Aggregates cannot increase their size by joining other organisms; however, a critter 
attempting to join an aggregate succeeds and adds its energy to the aggregate (with a 
corresponding increase in its metabolic rate). Aggregates can also decide to split – 
this causes the aggregate to split to its individual members. When an aggregate splits, 
every critter receives the appropriate part of the full genome. 

3   Experiments 

Five experiments were run with the aims of: (i) obtaining data that will directly test 
existing theories for the emergence of multicellularity in nature; (ii) examining 
whether evolved aggregates share characteristics common to natural multicellular 
systems (i.e. differentiation); and (iii) analysing the evolved ecosystems and discern-
ing whether there is any consistent correspondence between the structure of the ag-
gregate and its ecosystem. In each experiment, the environmental conditions are set to 
emulate conditions suggested to have affected the emergence of multicellularity. The 
data collected measures the percentage of runs in which aggregation occurred. Addi-
tionally, a representative aggregate is taken from all runs (where applicable) and its 
genome analysed; this data, together with the population statistics is used to character-
ise the type of ecosystem that was evolved. Behavioural analysis of aggregates is 
done by presenting the selected aggregates 500 random surfaces at two levels of con-
sumption ('full' and 'eaten') while recording their actions; this enables characterising 
the behaviour of members of the aggregate and understanding the task they perform.  

All experiments require a random population of evolving individual critters to be 
placed in a test world, and end after 400,000 time steps. Once finished, the critter 
population is stored and analysed. Each experiment is repeated at least 10 times. 

Hypothesis 1: predation is sufficient to cause the emergence of multicellularity.  
Three experiments examine the hypothesis and attempt to discern what aspect influ-
ences multicellularity: the ability to prey or the presence of predators. In all runs, the 
aggregation mode is ‘aggregation by choice’.  
Experiment 1: ‘predation’ is disabled - aggregates must be herbivores. 
Experiment 2: conditions identical to exp. 1, however, every 1000 time steps, 7 sterile 
predators are placed in the population. These predators cannot reproduce, split, or 
consume surfaces, and die unless they can catch prey. Furthermore, they are very 
small (size 2), and so can only eat critters but not other aggregates.  
Experiment 3: ‘predation’ is enabled - evolved aggregates may prey on organisms. 

Hypothesis 2: accidental aggregation is a sufficient condition to cause the emer-
gence of multicellularity. 
Experiment 4: the aggregation mode is set to ‘accidental aggregation’. ‘Predation’  
is disabled so it would not affect aggregation. This experiment explores whether  
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statistics alone - random occurrence of aggregation - is enough to initiate multicellu-
larity without any guiding selection pressure. 

Hypothesis 3: member differentiation is important to multicellular organisms. 
Experiment 5: the ability of aggregates to evolve the capacities for different behav-
iours is turned off – in other words, the aggregates’ differentiation is disabled – they 
are always capable of performing all actions. A secondary effect of this condition is 
that evolved aggregates have multiple redundancies of all behavioural capacities, 
consequentially, a very high metabolic rate. The aggregation mode is set to ‘aggrega-
tion by choice’, and ‘predation’ is enabled (to encourage multicellularity).  

4   Results 

Table 1 shows the percentage of runs that evolved aggregates for every experiment. 
As the data shows, preventing evolution of predators when critters ‘choose’ to aggre-
gate results in no aggregates evolving (exp. 1). However, the presence of predators is 
enough to encourage some aggregate formation (exp. 2). When predators can be 
evolved, aggregates form very frequently (exp. 3). Furthermore, accidental aggrega-
tion is sufficient to cause aggregation quite frequently even when predators cannot 
evolve. Last, although differentiation is disabled, multicellularity still occurred ac-
cording to exp. 5, albeit less than when differentiation is enabled (exp. 3). 

Table 1. Percentage of runs that evolved aggregates for every experiment 

# Experiment % with  Aggregates 
1 Aggregation by choice, predation disabled 0.00% 
2 Aggregation by choice, predation disabled, sterile predators present 30.00% 
3 Aggregation by choice, predation enabled 76.92% 
4 Accidental aggregation, predation disabled 60.00% 
5 Aggregation by choice, predation enabled, differentiation disabled 60.00% 

During the analysis of the representative aggregates and ecosystems, it became ap-
parent that there are recurring patterns. Three types of aggregates and four types of 
ecosystems that repeatedly emerged are summarised in fig. 3 with details of a run that 
exemplified them. Since the number of shapes and structures the aggregates evolved 
was large, 4 aggregates were picked for close analysis (fig. 3). Aggregates A,B,C 
were picked from exp. 1. Aggregate D was picked from exp. 5 (no differentiation).  

Aggregate A: Critters in aggregation: 6. Classification: relatively unoptimised carni-
vore. Metabolic rate: 270 units. Critter tasks: critters (C2)(C4) Splitting. (C3) Eating, 
reproducing, moving/turning, splitting, preying. (C5) Eating, reproducing, preying. 
(C1)(C6) No task (‘fat cell’). 
Aggregate B: Critters in aggregation: 6. Classification: optimised herbivore. Meta-
bolic rate: 210. Critter tasks: critters (C3) Eating, moving/turning. (C5) Eating, split-
ting. (C6) Eating, reproducing, splitting. (C1)(C2)(C4) No task. 
Aggregate C: Critters in aggregation: 3. Classification: ‘coral’ carnivore with com-
plete division of labour. Metabolic rate: 90. Critter tasks: critters (C1) Reproducing. 
(C3) Preying. (C2) No task 
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Aggregate D: Critters in aggregation: 9. Classification: carnivore. Metabolic rate: 
1170. According to genome, members can do all tasks. However, the behavioural test 
revealed that although every member can perform all tasks, effectively each only 
performs some tasks: critters (C1) Eating, preying, reproducing, turning. (C2)(C6) 
Eating, preying, reproducing. (C5) Eating, preying, reproducing, moving, turning, 
splitting. (C3)(C4)(C7)(C8)(C9) Eating, preying. 

Fig. 3. Types of aggregates and ecosystems that were repeatedly evolved during experiments 

 

Fig. 4. Four representative aggregates. Note: every member has an orientation (the white line). 

Table 2. Average size of aggregate per type of ecosystem (classified using fig. 3) 

Type of Ecosystem Ave. Size of Aggregate 
Herbivorous Aggregates 2.22 
Coexistence: Herbivorous Aggregates and Critters 3.04 
Predator/Prey 5.64 
Predator/Prey (‘Corals’) 2.06 

Table 2 shows the average size of aggregates per type of ecosystem (using the defi-
nitions of fig. 3). It seems that the type of ecosystem greatly affects the size of the 
aggregate: carnivores are significantly larger than herbivores and ‘coral’ carnivores. 
In addition, herbivorous aggregates that coexist with critters are larger than herbivo-
rous aggregates that dominate their ecosystem. 

Types of aggregates: 
Herbivore: an aggregate that consumes surfaces and cannot prey. 
Carnivore: an aggregate that can only prey and cannot consume surfaces. 
‘Coral’ Carnivore: a carnivore that cannot move and only eats prey that moves into its area.  
 

Types of ecosystems: 
Herbivorous Aggregates: this ecosystem is dominated by herbivorous aggregates - there are 
few or no unaggregated critters. E.g. exp. 1, run 5: total of 248 herbivorous aggregates, 16 crit-
ters. 
Coexistence - Herbivorous Aggregates and Critters: this ecosystem contains stable amounts 
of herbivorous aggregates and unaggregated critters. E.g. exp. 4, run 4: total of 20 herbivorous 
aggregates, 227 critters. 
Predator/Prey: this ecosystem contains stable amounts of carnivorous aggregates and unaggre-
gated critters. E.g. exp 1, run 11: total of 45 carnivorous aggregates, 158 critters. 
Predator (‘Corals’)/Prey: this ecosystem contains stable amounts of ‘coral’ carnivorous aggre-
gates and unaggregated critters. E.g. exp 1, run 2: 280 ‘coral’ carnivorous aggregates, 149 critters. 
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5   Discussion 

Our results suggest several conclusions. First, it is clear that in our system, when there 
is no threat of predators and aggregation is ‘by choice’, there is not enough selection 
pressure for critters to form aggregates – individual critters are more adequate as they 
need less energy and can more easily reproduce. However, the threat of predation is 
enough to cause critter aggregation, primarily in order to gain protection from preda-
tion, but also to obtain a new energy source: prey. In addition, leaving aggregation to 
random chance by enabling accidental aggregation is sufficient to induce multicellu-
larity: although at first aggregates are inefficient in comparison to critters, eventually 
evolution learns to exploit the benefits multicellularity offers. Last, in runs where the 
aggregates could not differentiate, the percentage of multicellularity was somewhat 
lower, supporting the notion that differentiation is important. More so, of particular 
interest is the fact that evolution found a way to implicitly differentiate: although the 
aggregate‘s members had the capacity to perform all behaviours, and the aggregate 
‘paid’ the metabolic rate cost for these capabilities, most members still chose not to 
perform certain tasks (e.g., aggregate D in fig. 4). This result clearly supports the idea 
that differentiation is a major benefit for aggregation. 

Even from only viewing the 4 representative aggregates, it is possible to state that 
many shapes and specialisations were evolved, ranging from complete redundancy to 
a complete division of labour. A common pattern was to evolve several ‘eater’ mem-
bers (as each member eats independently), a single ‘mover’ member (to minimise 
coordination issues), and several prey/reproduce/split members (allows several critters 
to affect the overall behaviour of the aggregate - e.g. fig. 4, A, B). Also, members 
without any capabilities were often evolved and were apparently used as ‘fat cells’; 
their only purpose was to grant the aggregate a larger maximum health capacity. 

Of particular relevance is that there was a consistency in the different types of 
evolved ecosystems. Furthermore, different types of aggregates appear to require 
different structures (indicated by the consistency in average size). This is unsurpris-
ing: herbivores eat often while carnivores have to catch their prey so are not likely to 
eat as frequently, thus, require larger energy storage. Another explanation is the pre-
dation ability: larger predators can eat more types of organisms, and are harder to eat. 
The emergence of ‘coral’ carnivores was intriguing: in these ecosystems, there were 
enough critters that ‘corals’ would rarely starve and had no need to move. As ‘corals’ 
reproduced in the vicinity of their parent, reef-like structures consistently emerged. 

Our system has investigated perhaps the earliest, most primitive form of multicel-
lularity using the notions of aggregation for growth and fission for reproduction. This 
can be seen as analogous to the hypothesised symbiosis that resulted in mitochondria 
becoming incorporated into modern cells [11]. Multicellular organisms comprising 
more complex cells are capable of developmental growth via mitosis and differentia-
tion, and reproduction via a specialised gamete cell, resulting in all cells sharing iden-
tical genes and thus all genes benefiting from the collaboration. This work can be seen 
as the first evolutionary step towards this ultimate form of multicellularity. 
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6   Conclusions 

The results of our experiments support the theories examined in the paper: both the 
presence of predation and accidental aggregation are sufficient to initiate the transi-
tion to multicellularity. The model also shows that differentiation is indeed a major 
benefit for aggregates and it will evolve even if aggregates obtain it by not using ca-
pabilities they had ‘paid for’ with an expensive metabolism. Last, our evolved results 
shared many parallels with natural systems, from the emergence of a division of la-
bour within an aggregate, to the life-like dynamics of the evolved ecosystems. 
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Abstract. In this paper, we present a new parallel self-organizing technique for
three dimensional shape reconstruction for mobile robotics. The method is based
on adaptive input data decomposition, parallel shape reconstruction in decom-
posed clusters using Kohonen Self-Organizing Map, which creates mesh repre-
sentation of the input data. Afterwards, the sub-maps are joined together and
the final mesh is re-optimized. Our method overcomes a problem of fitting one
mesh to complex non-continuous shapes like building interiors. The method al-
lows to process unordered data collected by mobile robots. The method is easily
paralelizable and gives promising results.

1 Introduction

The problem of surface reconstruction appears in many applications of mobile robotics
as well as in geometric model acquisition in computer graphics and computer vision.
Our objective is to build environment models from the real measured data of building
interiors. The data has been collected using mobile robot equipped with laser range-
finder. The data set is a set of unorganized points.

There exist a lot of methods for the 3D reconstruction, see e.g. [1,2]. The problem
of the reconstruction can be expressed as a procedure of learning the topology from the
data set and reduction of the data set cardinality. Artificial neural networks are com-
monly used for solution of this task. We already implemented and tested Neural Gas al-
gorithm for reconstruction of two dimensional environmental map [3]. Nice application
of the Kohonen Self-Organizing Map (SOM) [4] can be found in [5], where a top-down
approach (improving already known topology of the data using SOM networks) in re-
construction instead of bottom-up (building connection among nearest points) is used.
The Kohonen SOM is a suitable approach to learning the topology. The SOM network
itself is usually a two-dimensional mesh, which self-organizes to cover the data during
the learning phase. The surface data are two-dimensional, thus a usage of SOM is a good
approach. Another approach based on Kohonen SOM can be found in recent work [6].
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The main problem of the presented solutions is that a single SOM is normally used
for the reconstruction. The topology of the SOM is normally a rectangular mesh, which
stretches during the learning phase. In most applications usage of a rectangular mesh is
a correct approach but usage of such mesh for representation of a complex surface in
three dimensions does not give precise results.

Imagine that you let the SOM network to reconstruct the human body surface. The
resulting shape will be a strange clothing which will not perfectly fit the body and it
will not be easy to wear it. Our approach is similar to a work of a tailor which has to
sew a perfect fit dress from a stretch fabric. The input space (a human body) is divided
to several parts (legs, trunk, arms etc.) and the tailor cuts the correct shapes from the
two-dimensional fabric. The parts are sewn together and the dress is ready. The stretch
material allows some deformations to fit the body when used. Our algorithm works
similarly.

This paper is organized as follows. Section 2 describes how the data sets were ob-
tained. Section 3 describes proposed reconstruction algorithm. Section 4 shows exper-
imental results. Section 5 contains a discussion of the results. Section 6 concludes the
work and section 7 mentions several improvements that will be made in near future.

2 Data Acquisition

All experimental data has been gathered using the G2 mobile robot developed in the
Gerstner laboratory, see figure 1. The G2 robot is non-holonomic differential drive robot
for indoor usage able to reach the maximal velocity about 0.5 m/s. The robot motion is
established by two stepper motors.

2.1 Orthogonally Mounted Range-Finders

The former approach of data gathering uses the G2 mobile robot with two orthogonally
mounted SICK LMS 200 laser range-finders as can be seen in figure 1.

The first laser range-finger has been mounted horizontally, while the second laser
range-finder has been mounted in vertical position pointing up perpendicularly to the
horizontal measurement half-plane of the first laser. The horizontal laser measures data
in parallel half-plane to the floor in order to ensure proper 2D localization of the robot in
space. The data obtained from the horizontal laser as well as the robot trajectory during
acquisition of experimental data are shown in figure 2.

The knowledge of the current position of the mobile robot allows registration of the
spatial data from the vertical laser. The measured data from the vertical laser describes
depth of surrounding environment while the robot moves. This configuration in fact
replaces expensive 3D scanners for spatial point retrieval.

2.2 Data Registration

Knowledge of the correct position of the robot (the place from where the data has been
measured) is the essential condition for future data processing. The localization issues
are one of the central topic in mobile robotics, an overview can be found e.g. in [7]
or [8].
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Fig. 1. Hardware setup of the G2 mobile robot

Our solution of the localization problem is based on modified scan matching tech-
nique utilizing the ICP (Iterative Closest Point) algorithm [9,10,11]. The modification
is targeted on improvements of outlier point rejection and on combination of the scan
matching technique with a global point based map of the environment. The usage of
the simultaneously built map increases precision and reliability of the scan matching
technique during a localization process.

Two different approaches to the registration of 3D data has been used, since we have
two sensor setup of the robot. The first setup employs a 2D version of ICP localization
algorithm that processes only laser scans incoming from the horizontal range-finder
while the robot is continuously traversed through the environment and gathers data
from the vertical laser range-finder. It means that registration of the vertical spatial scan
is just determined by the proper localization of the whole mobile robot using horizontal
range-finder. The precision of localization is approx. 5cm.

The second sensor setup with the sweeping laser assumes the stop-and-go style of
mobile robot movements since a complete 3D scan has to be measured from one posi-
tion. The current raw 3D scan position is estimated using a robot odometry. The final
fine alignment of the 3D scans in 6DOF ensures the 3D version of ICP algorithm,
where a kD-tree approach was used for searching for corresponding pair points. The
calculation of a transformation for 3D rotation and translation minimizing the mutual
scan misalignments is realized by a quaternion approach. All computation details can
be found in [12]. With a knowledge of the sensor position a set of the 3D laser scan
can be merged together in order to obtain a huge 3D point cloud of spatial points that
describes a shape of a surrounding environment.
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Fig. 2. Data collected from the horizontal laser and trajectory of the robot

3 Algorithm for 3D Reconstruction

We designed a hybrid algorithm that embeds either non-topological clustering tech-
niques like Neural Gas and K-Means algorithms for initial data preprocessing and
topological clustering algorithm – Kohonen SOM for building of wired model of the
data. The main idea behind is that several SOMs are executed in parallel and process
clustered input data. We introduce a joining phase, which combines the SOM output to-
gether into large SOM, which is partly re-optimized. Thus, the algorithm has following
four phases:

1. initial clustering,
2. building of sub-maps,
3. joining phase,
4. re-optimization.

3.1 Initial Clustering

The basic idea is to divide the input data into subsets to ease usage of SOM algorithm for
the subsets. We used algorithms, which preserve the distribution of the data in the input
space. This approach has two advantages. First, as mentioned in introductory part of this
paper, the data needs to be clustered to allow proper approximation of the data by two-
dimensional mesh. Second, such clustering rapidly reduces the real time complexity
of the method. It allows the second phase to run in parallel. The complexity of SOM
algorithm rapidly grows with the map size due adaptation of neighboring neurons in the
map. Sequential execution of SOMs with the same sum of neurons is even faster than
execution of one big SOM.
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The clustering has another property exploited by the method. The SOMs in the sec-
ond phase are put only in the parts of the input space where the data exists. If one starts
to approximate the whole input space with one big SOM, the SOM neurons will ap-
pear in the space where no data are present. Such approach does not allow to process
two isolated objects in the scene like boxes and obstacles, which appear in the robot
workspace. Our approach eliminates this drawback.

We used Neural Gas (NG) [13] and K-Means [14] algorithms. The unsupervised
clustering algorithm splits data into clusters. Afterwards, in the second sub-map build-
ing phase, the individual SOMs are used for topological approximation of the data in
the clusters separately.

First, we employed the Neural Gas (NG) algorithm for data clustering. The complex-
ity of the NG is O(n ∗ d ∗m ∗ k ∗ log(k)) where n is the cardinality of the data set, d
is a dimension of the input data (3), m is number of iterations over the data set and k
is required number of clusters (number of neurons in NG). The NG algorithm requires
the neurons to be sorted after each presentation of the input vector, which is expressed
by k ∗ log(k).

The most crucial element is the number of iterations. NG algorithm requires about
40000 iterations to get proper clustering. Our data sets have typically more than 100
thousands of data vector, which makes the NG algorithm unusable due it’s big time
complexity.

The K-Means (KM) algorithm has complexity O(n ∗ d ∗ m ∗ k) but it requires to
be m much less than in the case of the NG. Practically, the NG algorithm takes several
hours but the KM ends in few minutes (measured on 2 GHz Opteron processor).

There is virtually no difference between clusters obtained with NG and KM algo-
rithm. Thus we use computationally optimal K-Means in following experiments.

3.2 Building of Sub-maps

After the initial clusters are created, the SOM is built from data subsets. We use well
known iterative Kohonen SOM algorithm described in [4].

The neurons in the SOM are organized in either rectangular or hexagonal map. We
use the rectangular mesh. Two distances are defined within the algorithm. The first one,
the Euclidean distance, is measured between weights of the neuron (vector stored in
the neuron) and an input vector. The second distance is measured in the SOM map.
Closest neighbors have the distance defined to be one, distance of other neurons is
defined by the shortest path between the neurons in the map. In the learning phase, so
called Best Matching Unit (BMU) is selected among all neurons. It is a neuron with
closest Euclidean distance to the input vector. The neuron weights are updated to be
closer to the input vector. Weights of the neurons in the neighborhood are updated as
well. Closest neurons are updated more than far neurons. The amount of learning is
expressed by a function of distance in the map.

This property makes the SOM to be suitable for our approach. The SOM algorithm
places a mesh in three dimensional data in order to bet best coverage of the input data.
In contradiction to first phase of the algorithm, the clustering, we need the network to
be topological.
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The advantage is that the sub-maps can be created in parallel. The clustering algo-
rithms in the first phase creates clusters with approximately similar cardinality. Thus
the SOM algorithms in the second phase take relatively same computational time. We
do not have to solve other parallelization issues like load balancing etc. Only the initial
distribution of the load is needed.

3.3 Joining Phase

In the joining phase, all the SOMs created in the previous phase are merged together. We
use a simple nearest neighbor algorithm where for each neuron in the SOM boundary
a candidate in other SOM boundaries is searched. If the candidate has an Euclidean
distance lower than a specified threshold, the connection between the two neurons is
built. The threshold is a mean distance to closest neighbors of the candidates in their
SOM maps (d̄) multiplied by a constant (θ) as depicted in figure 3.

Fig. 3. Joining phase. The map boundaries alre depicted with solid line. Two connections are
built for neuron a to neurons b and c, whose distance to neuron a is lower than the threshold (d̄θ).
Dashed lines express connections between other neurons constructed by the same algorithm.

The connections obtained in the joining phase are exploited in the last re-optimization
phase. The joining phase creates large SOM from the particular SOMs. The added con-
nections are taken as normal connections in the standard SOM algorithm. The resulting
SOM has not a planar topology.

3.4 Re-optimization

It the last phase the final SOM is re-optimized. The key point is that the final SOM is
not a planar structure. It has a desired structure corresponding to the data distribution
in the input space. Our implementation of the SOM allows us to work with such SOM
maps which are not strictly rectangular. The neighborhood neurons are stored in list
of neighbors. The joining phase processes these lists and adds neurons from the joined
SOMs.
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The SOM algorithm used in this phase contains a little modification. It is not neces-
sary to re-optimize the whole map. If so, the problems with the time complexity will
arise again. Thus we re-optimize only that neurons, which are close to boundaries of the
joined sub-maps. The neurons that will not be re-optimized as well as the corresponding
data are removed from the calculation before the re-optimization starts. This speeds up
the algorithm.

The final SOM algorithm optimizes joins of the maps. It precises the joining, makes
approximation of edges to be sharper and better fit the input data.

4 Experimental Results

As the experimental data set we used a set of points measured in the first floor of our
building. Figure 2 shows the trajectory of the robot and the data collected from the
horizontal laser in purpose of better understanding to reconstructed three-dimensional
model shown in figure 4. All phases of the algorithm were performed on the data. The
data contained approximately 126 thousands of points, in the first phase 100 clusters
were created, the sub-maps contained 10x5 neurons. The algorithm run takes about 2
hours on the 2 GHz Opteron processor for the complete data set when executed se-
quentially. Physical parallelization of the second phase would save at least one hour of
computational time. Other parameters were setup the same in all experiments. All SOM
maps iterated 10000 times over all input data, the initial learning rate was setup to 0.5

Fig. 4. Final algorithm result – the reconstructed three-dimensional interior from the vertical laser
data. The rooms with a lower ceiling on the right-hand side are toilets. The L-shape corridor is
on the left-hand side. The front wall of the corridor contain low density of input points as can be
seen also in the horizontally scanned data.
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Fig. 5. Reconstruction from the data sampled to two isolated cube shapes. Our algorithm arranged
6 sub-maps to each cube.

Fig. 6. Reconstruction from the data sampled to two isolated cube shapes using a single SOM
map. It can be seen, that the cubes were not isolated. Even if the neurons are placed to the data
clouds the connections between map still exist and disrupt the final reconstruction. Reconstruction
of at least two objects in the scene fails using a single connected structure.

and diminished to 0.005 linearly during the learning. The neighborhood was initially
setup to the longest path in the map and diminished to 1. The joining parameter θ was
experimentally setup to 1.8.

The algorithm works also if the data do not consist of continuous shapes. We created
an artificial data set with two artificially generated cubes, each consisting of 726 points.
We used 12 clusters and SOM sub-maps of 10x5 neurons. We can see that each cube
was easily encapsulated into 6 sub-maps joined together and re-optimized. The result is
shown in figure 5.

Figure 6 shows the reconstruction using a single SOM consisting of same amount of
neurons as in previous example. The SOM had 20x30 neurons. Single SOM could not
split itself into two parts. Usage of one SOM for complex data reconstruction could not
be satisfactory. The computational complexity of such large mesh caused the algorithm
to run approximately 30 minutes in comparison to 6 minutes of run of our algorithm
including re-optimization of the final map.

5 Discussion

The clustering and decomposition of the input space to clusters using K-Means and
reconstruction in clusters using Self-Organizing Map seems to be promising combina-
tion of algorithms for the problem of three-dimensional shape reconstruction. As can
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be seen in figures 4 and 5, there are still some holes in the joined maps. This is caused
because the optimal join of the neighboring sub-maps is not straightforward. The grids
of the maps can be mutually rotated and a search for the correct join is also an optimiza-
tion problem. Our method provides a wired model. If we want to obtain a solid model a
triangulation has to be performed. A triangulation of the sub-maps is easy, each rectan-
gle is split into two triangles. Triangulation of the joins is not that obvious. Currently,
the joins are exploited as a logical connections between SOMs. Such joins allows the
final map to be more complex than a planar rectangular mesh only. The triangulation of
stripes between the maps requires embedding of another algorithm for triangulation of
stripes.

We currently use a nearest neighbor algorithm to produce the joins between sub-maps.
The algorithm is simple and produces joins that are used in the final re-optimization
phase. The threshold for joining the neighbors on the map borders was experimentally
found to be 1.8 times an average Euclidean distance between joined neurons and their
neighbors. If the constant is lower than 1.8 the sub-maps are not enough joined. If the
constant is higher, the map contains crossed joins, the final SOM algorithm deforms the
joined parts of the sub-maps and the further triangulation would not be easy.

The final re-optimization precises the final mesh. The time complexity of the final
phase is reduced by a selection of the input data and neurons that are on the sub-maps’
boundaries.

6 Conclusion

In this paper we introduced a combination of self-organizing techniques that gives sat-
isfactory results in the task of reconstruction of shapes from the unordered data sets.
The algorithm was tested on data obtained from a laser range-finder sensor mounted
on a mobile robot. It was shown that a usage of only one algorithm, either Neural Gas
or Self-Organizing Map, does not lead to good results for reconstruction of complex
and non-continuous shapes. The idea of the initial decomposition, building of separate
sub-maps using topological Kohonen Self-Organizing Map, joining and re-optimization
gives nice and stable results. The method reduces the complexity of the data and pro-
duces a wired model of the environment where the robot is situated. The algorithm
allows to create model of more than one isolated objects found in the input data. The
second phase of the algorithm can be effectively parallelized. The reconstruction can
be built using collaboratively scanning robots, since the algorithm allows processing of
unorganized data sets.

7 Future Work

Future research will focus on improvements of the current algorithm. The K-Means
clustering algorithm will be replaced with an algorithm which preserves the flat clusters
so the clusters will represent the walls found in the data sets. A usage of triangular shape
SOM map is expected instead of the rectangular topology. The batch version of SOM
training algorithm can rapidly diminish the computational time as well. The map itself
will create the triangulation needed for solid displaying of the reconstructed shape.
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Finally, an optimizing algorithm for generation of joins will be embedded instead of
simple and computationally inexpensive nearest neighbor joining algorithm.
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Abstract. January1 is a group of interacting stateless model checkers
designed for bug hunting in large transition graphs that represent the
behavior of a program or protocol. January is based upon both individ-
ual and social insect behaviors, as such, dynamic solutions emerge from
agents functioning with incomplete data. Each agent functions on a pro-
cessor located on a network of workstations (NOW). The agents’ search
pattern is a semi-random walk based on the behavior of the grey field
slug (Agriolimax reticulatus), the house fly (Musca domestica), and the
black ant (Lassius niger). January requires significantly less memory to
detect bugs than the usual parallel approach to model checking. In some
cases, January finds bugs using 1% of the memory needed by the usual
algorithm to find a bug. January also requires less communication which
saves time and bandwidth.

1 Introduction

The main contribution of this paper is a cooperative parallel algorithm based on
insect behavior for use in error discovery, or bug hunting, in the context of model
checking. The algorithm is based on both individual and social insect behaviors.

Model checking is the problem of verifying that property X is satisfied, or
modeled, by a transition system M . A key feature of model checking is that
both X and M are defined using a formal, i.e. mathematically precise, language
(for a thorough introduction to model checking see [3]). The transition system
typically describes a circuit, program or protocol under test and the property
defines some desirable property of M . For example, in a wireless protocol the
transition system might describe the protocol behavior at the transaction level
and the property might require that a repeated request is eventually granted. In
this case, an error would occur when a device can be ignored indefinitely.

While model checking can be used to produce a proof that the M models X ,
model checking is most valuable in practice when it can be used to inexpensively
locate errors that are too expensive to find using other testing methods. The
process of using a model checker to find errors rather than proofs of correctness
is often called semi-formal verification, bug hunting or error discovery.

1 Named after January Cooley, a contemporary artist famous for painting insects.
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Model checking can be divided into explicit and symbolic methods. Explicit
methods involve the creation of a directed graph which contains explicit rep-
resentations of transition system states. Symbolic methods result in a boolean
characteristic function, encoded as a binary decision diagram (BDD), which de-
scribes the reachable states implicitly. Explicit methods are better suited for
transition systems with asynchronous interleaving semantics (like protocols and
programs) while symbolic methods are better suited for transition systems with
true concurrency (like circuits). In this paper, we focus on the problem of ex-
plicit model checking for systems with asynchronous interleaving semantics and
address error discovery rather than proofs of correctness.

The problem of locating an error in a transition graph using explicit model
checking algorithms can be reduced to the problem of traversing a large, irreg-
ular, directed graph while looking for target vertexes in the graph. In this for-
mulation of the problem, graph vertices are often refereed to as states, meaning
“states of the transition system encoded by the transition graph.” The transition
graph is generated on-the-fly during the search process and a predicate is used to
determine if a newly generated state is one of the targets. A hash table is used
during the search and analysis process to avoid duplicate work and to detect
termination. The size of the hash table is the limiting factor in the application
of explicit model checking to large problems.

The objective of parallel explicit model checking is to increase the amount
of memory available for the hash table by aggregating the memory resources of
several processing nodes. The first parallel explicit model checking algorithm,
and indeed the one from which most others were derived, was created by Stern
and Dill [8]. This algorithm, which we will call the Dill algorithm, uses a hash
function to partition the state graph into n pieces, where n is the number of
processing nodes. The objective of this algorithm is to partition duplicate state
detection by partitioning the states between nodes. A state must then be sent
across the network every time a parent and child state do not hash to the same
node. Since states can have multiple parents, more states can be sent through
the network than actually exist in the model. This process allows the use of
more memory than might be available on a single node, but is limited by net-
work throughput and terminates ungracefully when memory is exhausted on one
processing node.

Randomized model checking uses random walk methods to explore the model.
Randomized model checking has been found to locate bugs quickly with low
memory and communication demands [7, 11, 9]. Randomized model checking is
effective because it generates many low-quality (in terms of the probability of
finding errors) states quickly rather than a few high-quality states slowly. While
random walk is useful for some problems, it can over-visit certain areas of the
state graph while under-visiting others. The novelty of the January algorithm
is that it improves on prior randomized algorithms by using seach strategies
adapted from slug and fly behavior to increase the probability that the entire
graph is visited.
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Fig. 1. Gray states show straight paths through two different transition graphs. For
this example, “to go straight” means to pick the middle branch.

In this paper, we present a parallel algorithm that avoids the overhead of a
partitioned hash table as used by the Dill algorithm but replaces randomized
behavior with significantly more effective behavior based on both individual and
group insect behavior. The rationale for including insect behavior is that, relative
to their perceptual abilities, insects solve relatively difficult search problems
when locating food. Similarly our search agents have a limited perception of the
space they are searching.

The January algorithm is an improvement of our previous error discovery al-
gorithm based on social honeybee behavior [6]. The January algorithm builds
on the bee-based error discovery algoirhtm by improving individual search be-
havior. The January algorithm also employs a group cooperation scheme based
on negative reinforcement through pheremonal communication in ant colonies.
The group cooperation scheme appeared ill-suited for this application. However,
future work involving the standard ant colony optimization (ACO) may improve
reported error lengths.

2 Biological Foundations

The January algorithm is an amalgamation of three insect behaviors: negative
reinforcement in the grey field slug (Agriolimax reticulatus), positive reinforce-
ment in the house fly (Musca domestica), and pheromonal communication in
black ant colonies (Lassius niger). Negative reinforcement helps a search agent
avoid searching in the same area for too long. Positive reinforcement helps the
agent spend more time in areas that have received little search attention and
pheromonal communication helps agents avoid over-visiting an area by marking
paths that have been extensively searched by another agent.

Search behaviors in animals are often described in terms of the turning rate
or the relative straightness of the path. To relate animal behavior to explicit
model checking, we first define what it means to go straight while traversing a
transition graph and describe how to control turning rate during graph traversal.

In graph traversal, we define straight to mean that the same branch is selected
repeatably. If all possible branches are numbered 1 to n, then a straight path
always selects the kth branch, where 1 ≤ k ≤ n. Turning involves a different
choice of branch i at each step, where 1 ≤ i ≤ n. Figure 1 contains two examples
of straight paths created by consistently choosing the second branch. States in
the straight path are colored gray.
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The relative straightness of the path is controlled with a normal distribution.
A normal distribution was selected because it can be described and manipulated
using just the mean and variance. The mean corresponds to the index of the
straight branch in the graph. The variance corresponds to the turning rate.
Large variances coincide with a higher turning rate and small variances lead to
a relatively straight path.

2.1 Negative Reinforcement

When the grey field slug (Agriolimax reticulatus) repeatedly recrosses its own
slime trail, that area is deemed less desirable for further searching. When this
occurs, the slug decreases its turning rate so that further travel takes the slug
to a new foraging site [2]. This behavior is useful in state generation because
it causes agents to seek out areas that have not been previously explored while
storing only the recent trail of visited states rather than the entire set of all
previously visited states.

To implement this behavior, we simulate the slime trail using states in an
individual agent’s search trace and use those states to detect recrossing. The
search trace is the sequence of states that lead to the agent’s current state.
Recrossing is detected by encountering a state that already exists in the trace.

2.2 Positive Reinforcement

When the house fly (Musca domestica) encounters small amounts of sugar, the
sugar triggers a more thorough search behavior [12]. The more thorough search
increases the probability that an individual fly will locate more sugar in close
proximity. In state generation, this behavior is adapted to concentrate the search
in places that are either more likely to lead to an error.

In our search encountering “sugar” is simulated by a user-defined triggering
function which recognizes changes in a key variable toward a predefined value.
Most often, the trigger function is related to the predicate used to determine if
a given state is an error state.

A more thorough search is conducted by performing a breadth first search
(BFS) for a short time. All states explored during BFS remain in the trace of
active states that led to the current state. Keeping the trace of states visited
during BFS increases the probability that one of those states will be expanded
after backtracking. The January algorithm backtracks periodically to avoid be-
coming caught in a strongly connected component.2 The agent backtracks out
of areas when it repeatedly encounters states with a large number of revisits.
When the agent backtracks, it will remove the k most recent entries of the stack.
The k + 1th most recent state will become the start of a new guided depth-first
search.

The new search can occur at any point because the algorithm can backtrack
to any point. However, a new search is more likely to start from states left by
2 A search trapped in a strongly connected component would be similar to an insect

trapped in a sink basin with vertical walls.
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the BFS, simply because the BFS leaves a large amount of states in the trace.
These leads to more searching in the exciting parts of the state space.

2.3 Pheromonal Communication

The third behavior in January is loosely based on the group interactions of
the black ant (Lassius niger). Ants ¡¡¡¡¡¡¡ biological-foundations.tex communicate
with pheromones and have many types of pheromones that allow a broad spec-
trum of communication [10]. January simulates a discouragement pheromone.
During search, the agents selectively place a discouragement marker. When other
agents see this marker, they avoid that area and search elsewhere. It should be
noted that January does not use ant colony optimization (ACO) [4]. ACO is
based upon an excitatory pheromone and has been used successfully in several
optimization problems.

January differs from ACO by using a discouraging pheromone. The agents use
messages to mark spaces they have thoroughly searched. If agent i explores state
s several times, it warns other agents about state s by sending them a message.
Other agents will know the first time they visit state s that it is well-covered.
This inhibits the ant from searching in the same areas. Agents encountering the
pheromone switch to a straighter search pattern (as described in 2.1) to find an
unsearched area.

3 The January Algorithm

Figure 2 contains pseudocode for the January algorithm.
The state s taken from the top of the search stack (line 4) is either a new

undiscovered state or a revisitation of a known state. If state s is already in
the trace (line 7), then the state is being revisited and the variance is decreased
(line 8). This is negative reinforcement based on revisitation, as described pre-
viously. The lower variance causes the agent to move straighter and leave the
current area.

Alternatively, if the state is new, the agent will evaluate the state to see if
it is exciting (line 12). Positive reinforcement occurs if the state is “exciting”
relative to states seen recently. The positive reinforcement causes the search to
become a BFS (line 14) for a short time, putting states onto the stack for future
exploration. Also, the variance of the normal distribution is increased (line 13).

Each revisited state could cause a backtrack. Backtracking occurs when the
variance is sufficiently small (line 15). This is an indirect way of measuring the
number of states that have been revisited recently. Backtracking is performed
by popping states off the stack. The number of states popped will at a minimum
be the number of revisits on the state triggering the backtrack (line 16).

Revisited states may be broadcast to other agents. The agent broadcasts the
state to other agents based on the agent’s threshold and the number of times
the state has been revisited (line 9). The threshold is based on the states pre-
viously broadcast and received. Broadcasting a state with a larger number of
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1 boolean January
2 mean=random() % numrules;
3 while ∼stack.empty()
4 s=stack.top();
5 if CheckInvariants(s) then
6 return true; // found an error
7 if revisit(s) then //negative reinforcement
8 variance=variance*shrinkingFactor; //less turning
9 if s.numRevists > broadcastThredhold then
10 broadcast(s);
11 broadcastThreshold=s.numRevisits;
12 else if exciting(s) then // positive reinforcement
13 variance=variance*increaseFactor; // more turning
14 if findError(BFS(s)) then return true; //found error in BFS
15 if variance < backTrackThreshold then
16 backtrackAtLeast(s.numRevisits);
17 variance=INITIALVARIANCE;
18 mean=random() % numrules;
19 rand=random();
20 choice=round(Normal(mean,variance,rand));
21 s=generateChild(s,choice);
22 mean=choice;
23 if ∼stack.full() then stack.push(s) else backtrack();
24 while states to receive
25 RecieveState (state*r)
26 addRevistsTo(r);
27 if r.numRevisits < broadcastThreshold then
28 broadcastThreshold–;
29 return false;

Fig. 2. Pseudocode for the January algorithm

revisits than were recently broadcast raises the threshold (line 11). This keeps
the network traffic down, and causes only the most important information to be
broadcast.

4 Results

The January algorithm has been implemented as an extension of the Hopper
model checker [5], parallelized using MPI [1] and tested on a cluster of Linux
workstations. This section describes the experimental methods and results. Re-
sults are given for a collection of large and small model checking problems. In
this context, “large” means requires more than 2 GB of memory to store the
reachable states of the transition graph. Each test was repeated ten times and
the average time is reported.
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Table 1. Memory threshold ratio of the January and Dill algorithms on 16 models
that each contain at least one bug. A ratio less than 1.0 indicates that the January
algorithm required less memory than the Dill algorithm.

Model Memory Ratio
2-peterson 0.03

bullsandcows 0.01
down <0.01
lin 0.31

mutex2 0.28
queens4 <0.01

rubikcube 2x2 0.04
sets 0.03

Model Memory Ratio
sort5 0.13
td 0.03

adash1211e 0.50
adash1212e 0.13

atomixe 0.03
dense-deep8 <0.03

jordan2 <0.03
10-peterson <0.03

Results for three algorithms are included. The January algorithm is the algo-
rithm described in the previous section. The UnCoop algorithm is the January
algorithm, but with no communication between nodes. Comparing January with
UnCoop allows us to determine the cost and benefits of the cooperation scheme
in January. The Dill algorithm is a parallel model checking algorithm that uses
a partitioned hash table to store all of the reachable states. The Dill algorithm
is the standard parallel explicit model checking algorithm.

Because the order of message reception affects the search order in the Dill
algorithm, some of the ten tests using the Dill algorithm may detect an error
while others terminated due to exceeding memory allocation. Data for these
problems are referred to as “Dill-Partial” in our graphs.

The tests were performed on a IBM Linux Cluster in the Fulton Supercom-
puting Center at Brigham Young University. The cluster contains 256 2.4 GHz
Intel Zeon processors and an optical Myrinet interconnect.

In summary, January consistently finds errors in transition graphs when the
amount of memory available is insufficient for the Dill algorithm to find the same
error. The January algorithm also sends fewer messages between nodes than the
Dill algorithm. However, when the amount of memory is sufficient for the Dill
algorithm to find errors, the Dill algorithm consistently finds errors more quickly.

4.1 Memory Threshold

We define the memory threshold for a specific problem and algorithm as the
minimal amount of memory, measured in bytes, required by that algorithm to
find an error in the given problem. We measure memory use for all three al-
gorithms as the size of the table of visited states plus the size of the queue of
states waited to be expanded. In all cases the threshold for January is less than
the threshold for Dill on the same model. Table 1 shows the ratio of memory
thresholds as the ratio the memory threshold for January compared to that of
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Dill. While there is not widespread agreement on the composition of a good test
suite for the anlaysis of bug discover tools, the problems listed in Table 1 are
part of a benchmark suite we have created for the analysis of explicit model
checking algorithms3.

January always requires less memory to find the error than Dill’s algorithm.
January never requires more than half the memory of Dill. In many cases, such
as the down and queens4 models, the ratio is quite small, with January requiring
less than 1% of the memory of Dill. The savings in memory is the most clear
advantage of January.

4.2 Comparison on a Large Problem

Larger models are more challenging for the Dill algorithm. More memory is
required and more messages are passed. They are also more interesting problems
to solve. Figure 3 shows January and Dill on the atomixe model with 1 to
32 processing nodes. The atomixe problem is a large problem with 2,966,400
states.

The atomixe model provides a good example of January’s lower memory re-
quirements. Atomixe is a model of a one player game. The goal is to rearrange
atoms into a target molecule. The “error” in this problem is a winning position
in the atomix game. Every node added to the system increases the memory avail-
able to Dill’s algorithm. It is not until the 32 node test that the Dill algorithm
had enough memory to detect the error. January performs well even when only
provided with one node.

Also, the Dill algorithm with 32 nodes used large amounts of communication.
Although Dill finished soon after January, Dill sent more than 35 times the
number of messages. January uses less communication as well as less memory.

In the atomixe problem, cooperation was an advantage, that is, the uncooper-
ative implementation of January is slower than the cooperative version. UnCoop
takes longer to finish and explores significantly more states in the process. In
the lower graph, messages reported to be sent by UnCoop refers to the number
of times that UnCoop would have sent a message, but did not.

All models listed in table 1 went through the same analysis as atomixe but
for brevity are not presented here. On these models Dill finishes with the fastest
time when it finishes at all. Also, when it finishes, Dill has the fewest number of
states explored, but the largest number of messages sent.

Only 3 of the 16 models show an advantage for cooperation. On 11 of 16
models tested cooperation seemed to have no effect at all. On a two models
cooperation actually impeded the search in terms of time and efficiency. Based
on this evidence we conclude that our form of cooperation does not affect out-
comes on most models. Although any given state generated by January is less
likely to be an error state than a state generated by Dill’s algorithm, the state
generation speed of January is sufficiently faster to find errors in less time in
general.

3 The suite is available at http://vv.cs.byu.edu/emc benchmarks/murphi/.
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Fig. 3. Comparison of the cooperating January, uncooperating January and Dill’s al-
gorithm on the atomixe problem. On this problem, cooperation in January is advanta-
geous and Dill’s algorithm terminates only when given 32 processing nodes. Note that
there is only a single data point, rather than a line, for Dill’s algorithm.
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5 Conclusions

The January algorithm locates errors using less memory and network bandwidth
than the Dill algorithm. In many cases, the January algorithm can locate an error
when the Dill algorithm fails using only a fraction of the resources required by
the Dill algorithm. However, when the Dill algorithm has enough memory to
store enough of the graph to find an error, the Dill algorithm finds the error
is much less time (albeit using more network bandwidth). In all instances, the
threshold of memory required for the Dill algorithm to discover the goal is higher
than the threshold for January. This statement is true even for the models in
which Dill did well. When the amount of memory allowed was lowered, Dill’s
algorithm prematurely terminated at an amount of memory that January still
performed well at.

Our ant-based cooperation scheme appeared to have little or no effect on the
efficiency of error discovery compared to seach without cooperation. However,
future work may determine that a variant of ACO allows the discovery of shorter
error traces with little additional effort.
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Abstract. We present two key components of a principled method for construct-
ing modular, heterogeneous swarms. First, we generalize a well-known technique
for representing swarm behaviors to extend the power of multiagent systems by
specializing agents and their interactions. Second, a novel graph-based method
is introduced for designing swarm-based behaviors for multiagent teams. This
method includes engineer-provided knowledge through explicit design decisions
pertaining to specialization, heterogeneity, and modularity. We show the repre-
sentational power of our generalized representation can be used to evolve a solu-
tion to a challenging multiagent resource protection problem. We also construct
a modular design by hand, resulting in a scalable and intuitive heterogeneous
solution for the resource protection problem.

1 Introduction

Natural examples of emergent complexity from collections of simple components have
led to the development of a number of methods that provide swarm intelligence —
collective capabilities from simple autonomous agents [1]. Application of swarm meth-
ods to discrete and real-valued optimization problems include ant colony optimization
[2] and particle swarm optimization [3] respectively, while other swarm methods have
been applied to the area of collective robotics [4]. Designing swarms in simple situa-
tions is primarily a matter of replicating agents with the same behaviors, but more chal-
lenging problems require varying degrees of heterogeneity, where agents may share
key behaviors and may also be capable of specialization. However, few swarm methods
address issues of heterogeneity and modularity.

Historically, problems in Artificial Intelligence have been approached using meth-
ods that involve representing and incorporating domain knowledge. Unfortunately, such
methods are difficult to implement, due to the amount of human engineering required.
This is especially true for multiagent problems, where the number of interactions be-
tween agents becomes prohibitive. In response, swarm-based solutions to multiagent
problems have been knowledge-poor. This raises other issues, especially with respect
to scalability and intuition. What is missing is a principled and practical method for
finding a middle ground: incorporating some human knowledge into the system, while
providing as much representational flexibility as possible.
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We present a method for designing swarm-based behaviors for multiagent teams that
achieves this objective. While our method is general, this paper will focus on one par-
ticular swarm control paradigm, physicomimetics. Specifically, we will illustrate how
physicomimetics can be generalized to include heterogeneity explicitly as part of the
swarm design process, and will introduce a graph-based method to design heteroge-
neous, modular swarms. Our method allows engineers to embed knowledge about the
domain into the system to constrain agent interactions for improved scalability, as well
as to maintain intuition about the system’s operation.

The paper first presents background information on physicomimetics, then describes
our generalizations to this framework. An example of how this can be used to de-
velop heterogeneous solutions is given. We follow by describing our graph-based design
method and use it to construct a heterogeneous, modular solution by hand. The result is
a very scalable solution that was intuitively designed and easily understood. We finish
by discussing how our work relates to other swarm engineering methods, then provide
some concluding remarks, including intended future endeavors.

2 Physicomimetics

Physicomimetics provides a framework for the control of multiple agents [5]. Agents
are treated as point-mass (m) particles. Each particle has a position, x, and velocity, v.
We use a discrete time simulation, with time-step Δt. At each time step, the particle is
repositioned based on the velocity and the size of the step, Δx = vΔt. The change in
velocity of the particles is determined by the artificial forces operating on the particles,
Δv = FΔt/m, where F is the aggregate force on the particle as a result of interactions
with other particles and the environment. Each particle also has a coefficient of friction,
cf ∈ [0, 1]. Velocity in the next step becomes (v +Δv)cf , stabilizing the system [6,7].

There are two constraints: the magnitude of the force cannot exceed Fmax and the
magnitude of the velocity cannot exceed Vmax. These restrict acceleration and velocity
of particles in the model. Also, since there is an emphasis on local interactions, there
are further restrictions on the range of effect particles have on other particles.

The simplicity of this framework creates a number of benefits. First, a variety of force
laws can be employed to different effect. Moreover, the parameters of the above model,
coupled with the force law parameters, provide engineers with mechanisms to adjust the
behaviors of agents. Finally, since physicomimetics is based on physics, practical anal-
yses are possible using traditional physics techniques such as force balance equations,
conservation of energy and potential energy [6,8].

A slight variation of the well-known Newtonian force law will be used in this paper.
The range of effect of the force is C, while R is the desired range of separation between
agents. The gravitational constant is G, and there are two parameterized exponents: one
for distance, d, and one for mass, a. The distance between two particles i and j is rij .
The magnitude of the force between particles i and j is computed as follows.

Fij =

⎧⎪⎪⎨⎪⎪⎩
−G (mimj)a

rd
ij

if rij ∈ [0, R)

G
(mimj)a

rd
ij

if rij ∈ [R,C]

0 otherwise

(1)
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This force law repels particles closer than R and attracts particles past that distance
but within the range of effect. The gradient of the force can be controlled using d,
and a can raise or lower the importance of mass on the force. In total, there are two
parameters associated with each particle (m and cf ) and five parameters associated with
their interactions (G, C, R, a, and d). Distance variable rij is an observed phenomenon.

3 Generalizing Physicomimetics

3.1 Differentiating Particle Types and Their Interactions

In heterogeneous multiagent systems, different types of agents will have different be-
havioral profiles. When heterogeneity is necessary, the first step is to explicitly consider
different particle types during the swarm design process — each type having its own
mass and coefficient of friction. Differentiating particle types provides some degree of
specialized behaviors. For example, we can generate a variety of ring formations of ar-
bitrary radii by creating two different particle types: one with a relatively small mass
and one with a relatively large mass. However, only a limited subset of ring behaviors
are possible when all particles are homogeneous.

In addition to differentiating particles, interactive forces between the types of par-
ticles can vary. When heterogeneity is important, the second step a swarm engineer
should consider is specializing the different interactions between those types. With the
combination of different types of interactions and different particle types, a wide range
of complex heterogeneous behaviors are now possible. Moreover, by controlling how
many particle types there are, and how many agents there are of each particle type,
engineers can explicitly control the level of heterogeneity in cooperative teams.

In the simplest cases, the same force law is imposed for all interactions, but the
parameters differ. For example, Spears et al. [6] showed that, while one can generate
hexagonal lattice formations using traditional Newtonian physics, to produce square
lattices one must differentiate particles1 and vary the parameters of their interactions.

Force interactions between different particle types may also be asymmetric. That is,
particle type A may affect particle type B differently than B affects A. This idea was
leveraged by the online evolutionary learning system applied by [9,10] to an obstacle
avoidance problem. In this case, particles representing agents reacted to each other dif-
ferently than those representing the goal or the obstacles, yet the particles representing
the goal and obstacles remained fixed.

More generally, the underlying force law itself can vary for different interactions.
There is a physical metaphor for this — particles in the natural world affect one another
via a variety of forces and one often dominates. An example of where this might be
useful is the game capture the flag. Those agents retrieving the opponent flag might
be better off using a force law that takes advantage of fluid-like effects for movement
and obstacle avoidance, while those protecting the home flag may be better off using
something more appropriate for strong structural formations [10].

1 In the referenced work, they used the artificial label “spin” to differentiate particles.
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3.2 An Example Problem

To begin exploring the advantages and limitations of our generalized physicomimetic
framework, we introduce a simple resource protection problem. A centrally-located, im-
mobile resource is encircled by a defense perimeter. Nine protector agents are deployed
from the vicinity of the resource. Two slightly faster intruder agents appear in random
locations just outside the perimeter and begin attack runs at the resource, attempting
to avoid protectors during the run. If an intruder is destroyed, hits the resource, or is
chased out of the perimeter, it is removed from the simulation, and a new intruder will
begin a new run from just outside the perimeter after a short random waiting period.

Fig. 1. Example resource protection problem. Castle marks resource to be protected, outer circle
marks defense perimeter, gray and white circles with dots indicate protectors (two types), and the
triangles indicate intruders (one type).

The problem is multiobjective. Ultimately, we want to reduce the extent of incursions
into the defense perimeter, but also we want to avoid damage to the resource. Thus
we define two objectives: the average per-step incursion distance of intruders into the
perimeter and the ratio of resource hits taken over the total number of intruder runs at
the resource. While these two objectives overlap a great deal, they are not the same —
particularly when there are multiple intruders as is the case here.

As a result of its multiobjective nature, the resource protection problem is a good one
for exploring questions about heterogeneity. By changing aspects of the problem, such
as the relative importance of the two objectives, the number of intruders, or the types
of possible intruder behaviors, we can begin to address questions about how heteroge-
neous teams of protectors can help, and what level of heterogeneity is useful in what
circumstances. Specifically, we will consider solutions that allow for two different types
of protectors (6 of one and 3 of the other) defending against a single type of intruder.
The intuition here is to allow the system to deal with each objective separately bypro-
viding it with different protective mechanisms for each objective. For example, it might
be useful to have one set of protectors on the frontier chasing away intruders as soon
as they enter the perimeter, while also having a few protectors back by the resource to
prevent last-minute strikes.
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3.3 Optimizing a General Physicomimetic Solution

Solutions to the resource protection problem can be represented using generalized physi-
comimetics; intruders and protectors use this model in all cases in this paper. Addition-
ally, since their behaviors will be significantly influenced by the resource itself, it is also
useful to model this as a separate particle type.

If we allow all possible instantiations, the parameter space is quite large, but we can
reduce it somewhat. Since the central resource does not move, we need not worry about
its coefficient of friction or interactions from other types of particles. Additionally, we
limit the intruders to a single pre-defined strategy and focus on optimizing a solution
for the protectors. Still, protector behaviors require eight interactions (one from each of
the four types affecting each of the two protector types) and a total of 46 parameters (8
interactions with 5 parameters each + 4 for the mass of each type + 2 for the cf of the
protectors). If we were to add another protector type, there would be 6 more interactions
and 32 more parameters. Indeed, the number of parameters scales quadratically with the
number of particle types.

In spite of these simplifications, the size and complexity of the parameter space make
it intractable for us to solve this by hand. Instead, we turned to evolutionary computation
to help learn the parameters for the problem. Evolution was performed with a simple
ES(2 + 10). The physicomimetic parameters were encoded as real values in the range
[0.0, 1.0] and mapped to the ranges shown in Table 1. An adaptive Gaussian mutation
was used, where σ ∈ [0.005, 0.2], initialized at 0.2. The ES optimized two equally
weighted measures: the average incursion distance of intruders into a defense perimeter
of radius 150, scaled to the range [0.0, 1.0], and the hit ratio of the intruders on the
resource. These measures were evaluated using five discrete-time, 350×350 continuous
space simulations of the problem run for 1000 steps each. This time is sufficient to allow
approximately 20 intruder attack runs per simulation. The simulation was implemented
with MASON, a multiagent simulation library [11].

Table 1. Legal physicomimetic parameter ranges for resource protector agents

Cuv Ruv Guv duv auv mu cfu

[0, 350] [0, C] [0, 2400] [−5, 5] [0, 5] [0.1, 50.0] [0, 1]

We performed 10 independent evolutionary runs, each for 100 generations, and tested
the final best parameter set for an additional 100 simulations. The resulting average
scaled incursion distance measure and 95% confidence interval for this solution was
0.120 ± 0.0016, and it allowed 4 hits on the resource over the 100 simulations. As
hoped, the ES took advantage of the generalized physicomimetic framework byevolving
a heterogeneous solution in which 6 protectors formed an outer ring to block incoming
intruders as far away from the resource as possible, while 3 protectors formed a tight
cluster around the resource to block any intruders making it through the outer defense.
However, the inner ring of defenders was too close to the resource to be physically
plausible. The majority of the other evolutionary runs produced physically implausible
solutions as well. Furthermore, all the evolved solutions had an unnatural jitter that
would not be acceptable if deployed.
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A more carefully considered EA might have produced more natural and physically
plausible solutions in this case. Additionally, it is clear that some kind of representa-
tional constraints are necessary if one wishes to increase the level of heterogeneity: the
parameter space scales quadratically as the number of particle types increases. Such
considerations are attempts to implicitly add domain knowledge into the algorithm.
We detail an approach that addresses the scale-up problem while allowing the engineer
more control over the final solution by explicitly incorporating domain knowledge in the
design process. Our approach is meant to complement the learning algorithm, though
for our example problem it is sufficient to allow us to develop solutions by hand.

4 Engineering Physicomimetic Solutions Using Directed Graphs

Our goal is to systematically design formation-oriented, collaborative multiagent teams
capable of true heterogeneity and modularity. While generalized physicomimetics is
capable of representing such solutions, it isn’t clear how to design them.

It isn’t a trivial problem. The parameter space of generalized physicomimetics, in
which any level of heterogeneity of team members is possible, is very large. Every agent
could be represented by a different particle type. Hence, due to pair-wise interactions,
the parameter space can grow quadratically with the number of types. Moreover, since
there can be strong non-linear influences between these parameters, designing solutions
will become increasingly intractable as the level of heterogeneity increases. Finally,
with this system it is unclear how to share successful partial solutions.

We provide a principled and practical method of engineering solutions using general-
ized physicomimetics by noticing two key facts: We do not always need every possible
interaction, and we can often reuse an interaction’s parameters. Reasoning about the
types of interactions is necessary for designing successful heterogeneous, swarm-based
multiagent solutions. Digraphs are natural and useful tools for this type of reasoning.

4.1 A Graph-Based Force Interaction Model

Let each type of particle be a node in a digraph and each interaction be a directed edge
in that graph. An edge is associated with a force law as follows: for two particle types,
u and v, a directed edge (u, v,Fuv) denotes an interaction where particles of type u
impart a force on particles of type v according to the force law defined by Fuv. Fig. 2
illustrates a graph for a two-agent example.

These digraphs can have isolated nodes and cycles. Omitted edges imply there is no
direct interaction between the particle types represented by those nodes in the graph.

i pFii Fpp

Fip

Fpi

Fig. 2. An example force interaction digraph. There are two particle types, (i) and (p), and there
are separate force laws between every possible pair of particle types.
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4.2 Modularity Via Condensed Subgraphs

In swarm engineering, the concept of modularity is particularly important. Here, we ad-
dress two different views of modularity: modularity of design and behavioral modules.

When designing something complex, engineers often decompose systems, build com-
ponents separately, and then combine them. We employ a similar idea for constructing
complex multiagent simulations. Using our graph-based approach, we break the graph
into relevant subgraphs, and then consider them in conjunction with one another. It is
helpful to categorize agents by developing subgraphs that profile how agents of a group
interact with other agents in the system. This constitutes modular design.

In addition to modular design, there may be times when modularizing behaviors
(sharing subsets of behaviors) in a heterogeneous multiagent team is important. One
way to introduce modularity to generalized physicomimetics is to allow particles to
share force laws and parameters. We do this by allowing the engineer to condense a
subgraph by consolidating particle types into a single node.

Some simple notational elements can be added to the digraph to aid with these sorts
of design issues. This is illustrated in the next section.

4.3 A Simple Graph-Based Solution

Our generalized physicomimetic solution to the resource protection problem was versa-
tile, but yielded a large parameter space that was quadratic with respect to the number of
protector types. Careful analysis, however, reveals obvious ways that engineer-guided
knowledge can limit the space in order to craft a solution to the problem by hand.

We begin our design by considering the agent types: an arbitrary number of protector
types (p1, p2, . . .), one intruder type (i), and a resource type (r). Next we consider the
types of interactions that we believe will be necessary. Since intruders cannot distin-
guish types of protectors, we can condense some of the intruder behaviors. Moreover, if
we consider each protector type as nearly independent, we need provide only limited in-
teractions between types of protectors — just enough to avoid hitting one another. Both
of these pieces of knowledge lead to fairly obvious reductions in the model.

We designed the interactions using three subgraphs (see Figure 3), profiling protec-
tors (all types) separately from intruders (one type). The first subgraph represents a
module of behaviors for the intruder, while the second two represent two modules of
behaviors for the protector types. The notation p∗ in a node means all protector types
are represented by that node. Links connecting such nodes represent identical force laws
between the nodes. Additionally, rather than drawing many subgraphs for each type of
protector, we abbreviate the design using the pj notational convenience. Our designso-
lution for the interactions can be seen below. We omit the F labels in the graph since
they are implied by the existence of the edge and identified by the nodes they connect.

Notice that we must resolve a notational conflict. The middle subgraph shows a spe-
cific edge between a particle protector type and itself, while the third subgraph shows
a general edge between any two protector types. A specific edge has precedence over a
general one, so the way to read the graph is as follows. Every interaction between dif-
ferent protector types is identical, except for the interaction of the protector type with
itself — that is specified explicitly and is different for each type.
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i

r

p∗Intruder Profile

i

pj

r

p∗

Protector Profile

Fig. 3. Force interaction models for the resource protection problem. The graph on the left repre-
sents all the interactions affecting the intruders. Note this does not depend on the protector type.
The two on the right represent those affecting the protector types. Each type of protector can react
to its own type and to intruders in a different way, but they react identically to all other protectors.

We have designed our subgraphs in such a way as to capture both senses of mod-
ularity. The first and third subgraphs condense reactions toward any kind of protector,
creating reusable modules. The second subgraph provides a design-level modularity. By
using this visualization, we can compute the number of required parameters for the pro-
tector profile. Each interaction requires five parameters (G, C, R, a, and d). If there are
P protector types, then 3P+1 edges (interactions) must be defined, requiring 5(3P+1)
parameters. Each protector type requires two more parameters (m and cf ), resulting in
2P additional parameters. Hence, for P protector types, 17P + 5 parameters must be
optimized. This means there will be a constant number of new parameters (17) with the
addition of each protector type: a linear scaling of parameters.

With the above interaction design, it was easy to construct a solution to the resource
protection problem by hand. Beginning with the first protector type, we adjusted the
parameters such that these agents form a large ring around the resource. They attempt
to maintain formation, but will chase off or destroy intruders that come close to them.
The rest of the ring will redistribute if a protector is pulled away in pursuit of an in-
truder. Next we designed the second protector type to stay close to the resource, but
aggressively pursue intruders that are moderately far from them. These protectors are
pulled back to the resource if they get too far away, but are given a fair amount of lat-
itude to pursue enemies that are in close quarters. In this case, combining these two
behaviors was trivial — we merely sought to keep them out of the way of one another.
The combined behaviors are smooth, easily understood, and physically plausible.

The parameter values for the above solution are shown below. We ran this model of
100 independent simulations; the resulting average scaled incursion distance and confi-
dence interval was 0.199± 0.004. Of the 100 trials, 94 of them resulted in runs where no
intruder ever struck the resource. The remaining six admitted just a single strike each.

Table 2. Model parameters for hand-coded solution to the resource protection problem

i → p1 r → p1 p1 → p1 i → p2 r → p2 p1 → p2 p∗ → p∗
C 80 350 250 150 350 300 20
R 5 100 110 5 15 200 20
G 2400 600 1200 2400 0.05 1200 1200
d 2 2 1.5 2 -0.5 2 2
a 0 1 1 0 0 1 1

i p1 p2 r
m 1.0 1.0 1.0 60.0
cf 0.15 0.15 0.15 -
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5 Related Swarm Engineering Work

Swarm engineering, the process of designing, building, and validating swarm behaviors,
has sparked much interest of late. In a recent survey of case studies applying conven-
tional engineering approaches for dependability to swarm design, Winfield et al. [12]
point out the need for better tools for swarm engineering.

In response to such needs, Kazadi [13] developed a formalism of swarm intelli-
gence and described an approach to engineering the behavior of swarms according to
that formalism. Chang [14] describes this approach as a middle-meeting method that
combines both top-down macroscopic with bottom-up microscopic swarm design tech-
niques. While the method provides guidance to the swarm designer in decomposing the
swarm engineering problem, low-level behaviors must still be created by the designer.

In work contemporaneous with the initial development of physicomimetics, Reif and
Wang [15] develop a method called social potential fields as a way to program large
teams of robots. Like generalized physicomimetics, their method models the agents as
particles, provides for multiple types of agents, and generates behaviors through inter-
actions of forces between agents. Reif and Wang propose a hierarchical methodology
for determining the set of potential force laws, laying out a step-by-step procedure for
developing system behaviors with different levels of interactions.

Both Kazadi and Reif and Wang proffer methodologies for designing interactions
between agents. However, both methods largely leave it to the designer to determine
how to discover or create behaviors that achieve the global goal (Kazadi) or required
behaviors (Reif and Wang). Our work complements these approaches to force law de-
sign by presenting an intuitive graph-based means for designing such behaviors while
incorporating some human knowledge into the design process.

6 Conclusions and Future Work

This paper presented two key components of a principled method for constructing
swarms in a modular way, capable of both shared and specialized behaviors using physi-
comimitics. We responded to the growing need to find a middle ground between open-
ended, knowledge-poor representations and brittle, knowledge-rich representations by
illustrating how some engineer-guided knowledge can be incorporated into a multia-
gent system. Our intent is to provide one view on how to practically develop complex
swarm-based solutions in a principled way.

First, we clarified how physicomimetics can be generalized to extend the power of
multiagent systems by specializing particles and their interactions. We advocate making
such choices explicitly a part of the design process in constructing swarm-based sys-
tems. This gives one control over the ability of the system to produce specialized, coor-
dinated behaviors. We illustrated these points using a challenging multiagent resource
protection problem. The representational power of the generalized physicomimetic so-
lution is more than sufficient to solve the problem; however, the scale of the parameter
space necessitated heuristic optimization. This resulted in specialized squads of agents
that effectively protected a central resource from intrusion, but sacrificed predictability
and physical plausibility.
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Second, we presented a graph-based method for designing interaction models in
physicomimetic systems. This method allows engineers to construct graphs that clearly
define what interactions are possible. By using our technique for condensed subgraphs,
engineers can think more modularly about the design process and produce reusable
behavioral modules, giving the engineer the ability to directly control the scalability
of the system. We illustrated this method by hand designing a heterogeneous, modu-
lar solution to the aforementioned resource protection problem. Our solution is easy to
understand, physically plausible, and performs quite well on the task.

Our next step is to apply our method to design swarm-based solutions to well-known
multiagent problems, such as the art gallery problem, multi-asset surveillance, and prob-
lems from the search and rescue domain. We are also interested in combining our graph-
based design method with heuristic optimization methods, designing the force interac-
tion models by hand and eliciting the model parameters algorithmically.
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Abstract. Developmental Genetic Programming (DGP) algorithms have been 
introduced where the search space for a problem is divided into genotypes and 
corresponding phenotypes that are connected by a mapping (or “genetic code”).  
Current implementations of this concept involve evolution of the mappings in 
addition to the traditional evolution of genotypes.  We introduce the latest ver-
sion of Probabilistic Adaptive Mapping DGP (PAM DGP), a robust and highly 
customizable algorithm that overcomes performance problems identified for the 
latest competing adaptive mapping algorithm.  PAM DGP is then shown to out-
perform the competing algorithm on two non-trivial regression benchmarks.  

1   Introduction 

Traditionally in genetic programming, direct evaluation of the genotype is sufficient 
to define the corresponding phenotype.  Broadly speaking, developmental genetic 
programming (DGP) can refer to any methodology that explicitly sets out to separate 
the genotype space from the phenotype (or solution) space.  In the literature, the term 
has been used to encompass systems such as the one presented in this work that in-
serts a mapping (encoding) to establish a relationship between the two spaces.  The 
term also describes systems that involve considerably more constructs between the 
two spaces, such as proteins and embryos.  This research concerns itself with the issue 
of mappings, or biological codes, to relate the genotype and phenotype spaces in the 
spirit of Banzhaf and Keller [1-4].  This separation enables a DGP to investigate all 
areas of a genotype (search) space without being constrained by demands on the va-
lidity of the phenotype.  The mappings utilized in initial research efforts were fixed 
[1], [2], but the benefit and potential for evolving the mappings themselves has since 
been recognized.  The first implementation to explore this possibility was described 
by Keller and Banzhaf [3], while an alternate type of adaptable mapping and an asso-
ciated algorithm were later introduced by Margetts and Jones [5]–[7].  With the use of 
evolved mappings, a DGP must evolve both a set of genotypes and a set of mappings 
that apply to them.  For this additional effort, the DGP is provided with the ability to 
adapt its mappings so that the function set for a solution is tailored to its unique  
problem space, and it is given the capability to freely explore the genotype search 
space.  To do so, adaptive mappings provide the basis for determining what bit string 
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combinations and lengths in the genotype correspond to the function set, or even if a 
member of the function set should be represented at all. 

Section 2 of this work examines the original evolved mapping structure and algo-
rithm [3] and the adaptive DGP algorithm and mapping mechanism [5]–[7].  Section 
3 defines the latest version of the Probabilistic Adaptive Mapping DGP (PAM DGP) 
algorithm based on significant performance enhancing modifications since [8].  Sec-
tions 4 and 5 describe two regression benchmark problems and the performance of 
PAM DGP and the current standard adaptive mapping algorithm on those problems.  
Conclusion and Future Work follow in Section 6. 

2   Previous DGP Mapping Structures and Algorithms 

Mappings between genotypes and phenotypes are denoted global when all geno-
types are mapped onto phenotypes using the same encoding [3].  Genetic codes are 
evolvable when they are individual, meaning that each individual is a pairing of its 
own genetic code with its own genotype.  Redundant encodings of members of the 
function and terminal set are used to allow the search to emphasize certain symbols 
and disregard others that are of little or no use in the problem solution.  That is, 
symbols having a larger number of encodings, or possessing more prevalent ones, 
are expected to be more important and to be reflected in phenotypes more often.  
Upon initialization, each genotype is coupled with a randomly generated genetic 
code, or codon-symbol mapping.  The mapping was traditionally symbiotically 
mated with the genotype individual throughout the tournament, and it was mutated, 
reproduced, or selected along with the genotype that carried it [3], [4].  Mappings 
were thus static. 

Mapping schemes to improve the symbol emphasis component of DGP search 
were examined by Margetts and Jones in [5], [6].  In [5], [7], they introduce an alter-
native encoding scheme where binary strings of dynamically determined length are 
used.  The adaptive mapping representations themselves and the associated algorithm 
of Margetts and Jones is hereafter denoted the Adaptive Mapping DGP.  In their im-
plementation, each mapping has its own assignment of binary sequences to symbols 
based on Huffman encoding.  This ensures that the most frequent bit sequences corre-
spond to the most frequent symbols, with shorter bit sequences allocated to more 
frequent symbols and vice versa.  Given n separate symbols in the phenotype, each 
individual in the population of mappings consists of binary strings composed of n 
sections.  Each section is a number of bits b representing a frequency.  Each section of 
b binary bits is converted to a real valued frequency in the interval [0, 1] using a nor-
malized function (called countingOnes) that sums all the ones in a given binary string 
[6].  (The countingOnes function was chosen on the basis that it resulted in a more 
refined search during the later exploitation phase of search.)  For each symbol in the 
function set, its associated frequency and the entire genotype binary string are passed 
to Huffman’s algorithm to determine the particular sequence of bits in the genotype 
(codon) that expresses it.  The mapping process is shown below in Figure 1. 
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Fig. 1. Mapping representation using Huffman’s encoding in Adaptive Mapping DGP 

The Adaptive Mapping DGP algorithm uses two populations: a population of map-
pings and a population of genotypes.  The populations co-evolve so that a search is 
conducted for both a genotype and a corresponding mapping simultaneously.  In order 
to evaluate a particular genotype, the member of the mapping population with the 
current highest fitness is selected to produce the phenotype for fitness evaluation.  To 
evaluate a mapping individual, the current best member of the genotype population is 
used.  Mappings are thus dynamically assigned to genotypes.  Members of each popu-
lation are initialized by being evaluated with random members of the other.  A steady 
state tournament is used with members of each population evaluated alternately. 

We recently demonstrated that the Adaptive Mapping DGP methodology was 
shown (empirically) to cause itself to regularly disrupt the progress it makes toward a 
solution [8].  The two populations were shown to end up struggling to match their 
search to each other’s best individual while at the same time causing the best individ-
ual in each other’s population to change, thus always losing search context.  We pro-
pose a new DGP algorithm called “Probabilistic Adaptive Mapping DGP” (PAM 
DGP) that both avoids the context change of the Adaptive Mapping DGP algorithm 
and explores more of the possible genotype and mapping combinations.  An initial 
version of PAM DGP was presented in [8].  Considerable performance enhancements 
are presented here, including better protection of high fitness contexts (genotype-
phenotype pairings) to prevent context loss and a procedure for introduction of noise 
to probabilistic selection to avoid local optima in the search space.  The improved 
algorithm consistently outperforms Adaptive Mapping DGP on the MAX problem 
(whereas the previous attempt only outperformed on particular constraints) and has 
solved a considerably more difficult regression problem (Two Boxes).  All results in 
this work compare the refined version of PAM DGP, as presented below, to the Adap-
tive Mapping DGP of Margetts and Jones [5]-[7].   

3   Probabilistic Adaptive Mapping DGP (PAM DGP) 

PAM DGP evolves one population of genotypes and one population of mappings, a 
feature common to previous statically [3], [4], and dynamically mapped [5]–[7] DGP 
algorithms.  The individuals in the PAM DGP mapping population employ adaptive 
mappings using Huffman encoding as described above.  PAM DGP uses a probability 
table to define the genotype-mapping relationship between the two populations.  Each 
individual in the genotype population is allotted a corresponding point on the x axis of 
the table, and each individual in the adaptive mapping population is allotted a corre-
sponding point on the y axis.  The table is initialized so that each column, one corre-
sponding to each genotype point on the x axis, sums to unity.  All blocks in each  
column are thus initialized to the same probability. 
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For each round of the tournament, a member of the genotype population and a 
member of the mapping population are selected using the probability table.  Roulette 
wheel selection chooses a position in the table, with four separate genotype individu-
als selected in each tournament round.  The genotypes are ranked by fitness after 
being interpreted in the context of the mapping they are associated with by the index 
on the table.  The tournament is steady state, so the best 2 genotype individuals (the 
parents) are left untouched while the last two genotype individuals become children.  
The children become copies of the parents and are subjected to mutation and cross-
over with associated likelihood probability thresholds.  The mappings associated with 
the ranked genotypes receive the ranking of their connected genotypes during compe-
tition in a tournament round.  The mappings associated with the top two genotype 
parents are ranked as the top two mappings and kept as the parent mappings, while 
the mappings associated with the last two ranked genotype children become copies of 
the mapping parents and are subject to mutation and crossover.  Since there is only a 
guarantee during selection that separate genotypes will be selected, some mapping 
individuals may appear more than once in the ranked list for a tournament round.  A 
mapping appearing twice or more in the ranking list may (and will likely) have a 
different fitness each time, in virtue of being associated with a different genotype at 
each placement in the ranked list.   

When crossover occurs, it is explicitly protected against being applied to a single 
mapping individual.  The algorithm also features elitism in that it protects the geno-
type individual and the mapping that produces the current highest fitness.  Note that 
unless both members of that pairing are explicitly protected, either member of the 
pairing can be selected as a child by being coupled with an alternate member of the 
other population during roulette wheel selection on the probability table.  The position 
on the table associated with the two winning genotype-mapping combinations is up-
dated according to (1), while the losing combinations are updated according to (2) 

 
P(g,m)new = P(g,m)old+α(1− P(g,m)old)                                   (1) 

)),((),(),( oldoldnew mgPmgPmgP α−=                                   (2) 

 
where g is the genotype index, m is the mapping index, α is the learning rate (or how 
much emphasis is placed on current values as opposed to previous search), and P(g,m) 
is the probability in location [g, m] of the table.  Equations (1) and (2) ensure that all 
columns in the probability table sum to unity after being updated. 

Roulette wheel selection for the probability table operates by adding the probabili-
ties across the rows associated with mapping individuals.  Allowing the roulette wheel 
to travel across rows, instead of the genotype-associated columns, gives a more direct 
influence to the mapping population in the algorithm i.e., the wheel must pass through 
all probabilities associated with each mapping before moving onto the next mapping 
in the table.  This balances the fact that ranking of genotypes otherwise guides the 
search and determines mapping selection during a tournament round.   

After a period of search depending on the learning rate, it was discovered that the 
probability table can prematurely converge on particular genotype-mapping pairings 
while other locations in the table have no (or practically no) probability associated to 
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them.  In order to allow the algorithm to continue to explore all genotype-mapping 
combinations and the underlying binary sequences they make available to the search 
space, noise is introduced.  This is accomplished by examining each (genotype-
associated) column when it is updated to see if any location in that column has ex-
ceeded a user-defined threshold n.  If it has, each member of the column has a uni-
form probability P(1 – n) of having a standard Gaussian probability adjustment in the 
interval [0, 1] added to its current value.  (In rarer cases where the Gaussian value is 
outside the interval [0, 1], it is simply re-chosen until it falls in the interval.)  The 
values in the column are then re-normalized so that they sum to unity.  Summary of 
the algorithm and pseudocode are given below in Figures 2 and 3, respectively. 

 

Fig. 2. Example of execution for the PAM DGP algorithm 

Initialize size P mapping & genotype populations 
Initialize each value in P x P probTable = 1/P 
while (tournamentNotDone && solutionNotFound) 
   Use probTable mapping rows for roulette selection    
   Rank selectedGenotype & associatedMapping pairings  
   Verify or set current bestGenotype & bestMapping 
   Apply update to probTable according to Eq. (1) & (2) 
   if (element of winning genotype column > threshold) 
      for (each column element)  
         Add Gaussian noise value to element 
      Normalize column contents to unity 
   for 2 loserGenotypes & 2 loserMappings 
      if (respective mutation thresholds are met) 
         if (loserIndividual  bestIndividual)  
            mutate(loserIndividual = copy of parent) 
      if (respective xover threshold is met) 
         if (both loserIndividuals  bestIndividual)  
            xover(loserIndividuals = copy of parents) 

Fig. 3. Pseudocode for the PAM DGP algorithm 
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4   Maximum Output Problem 

The Maximum Output (MAX) problem, as described in [5], [7], is to create a pro-
gram that returns the largest value possible within a specified program size limit.  
An ideal solution to the problem is a program that repeatedly duplicates a large 
number and multiplies it by itself, effectively squaring the number repeatedly as 
many times as possible.  As in the work describing the Adaptive Mapping DGP [5], 
[7], the MAX problem is implemented in PAM DGP with a linear (bit string) stack-
based version of GP.  Each individual is a stack-based machine composed of a gen-
eral-purpose stack and an output register.  A program that changes the state of the 
machine is a list of instructions from the function set in Table 1 below.  When an 
instruction in the program is processed sequentially, the required arguments are 
taken from the stack, they are presented to the function, and the return value (if any) 
is pushed back onto the stack.  If there are insufficient arguments on the stack, the 
function does nothing. 

In PAM DGP, the dimensions of the probability table are the respective population 
sizes.  Parameterization of the algorithm thus involves considering a trade-off be-
tween the amount of initial genotype and mapping material you want available for the 
search and the sparseness of the probability table.  The smallest population under 
which the tournament can still be conducted was found to work best for the MAX 
problem.  PAM DGP thus uses a population of 8 (4 genotypes and 4 mappings).  A 
tournament is stopped when the maximum round limit of 1250 is reached or the suc-
cess criterion is met.  The MAX problem was considered solved when an individual 
generated the double value of “Infinity” by the Java 2 RE, build 1.5.0_05, on a 1.25 
GHz PowerPC G4 running Mac OS X Version 10.4.4.  Algorithm parameters are 
summarized in Table 1 for both DGP algorithms. 

The number of solutions out of 50 independent trials is given below in Table 2.  
Restricting the standard adaptive DGP to a population of 8 to match PAM DGP hin-
dered its performance, so its population was increased to 50 (25 individuals in each 
 

Table 1. Maximum Output parameterization of Adaptive Mapping and PAM DGP 

Tournament Style Steady State, 4 individuals for each round 
Maximum Rounds 1250 (5000 individuals processed) 
Experiments 50 independent runs 
Function Set +, *, const, dup, pop, stack3Register, register2Stack 
Genotype structure Stack-based with register; 50, 100, 150, 200, 250 bits 
Mapping structure Adaptive, 70 bits (10 bits per function set member) 
Geno., map mutation Point mutation, threshold = 0.01 
Geno., map crossover Equal-sized blocks, threshold = 0.9 
Population size 4 or 25 individuals in each population 
Fitness Output register content after evaluation. 
Objective Generate largest number possible. 
Termination Infinity (success) or maximum rounds. 
Learning rate 0.1                (only applicable to PAM DGP) 
Noise threshold 0.95              (only applicable to PAM DGP) 
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Table 2. Number of Maximum Output solutions in 50 independent experiments 

Bits PAM DGP, Pop. 8 Adaptive, Pop. 8 Adaptive, Pop. 50 
50 0 0 0 

100 10 0 1 
150 38 0 6 
200 47 9 22 
250 48 21 28 

population). On equal basis of respective optimal population sizes, PAM DGP dra-
matically outperforms the standard (Table 2).   

The mean best fitness for each tournament round over all 50 experiments is plotted 
below in Figure 4 for both algorithms using their respective optimal populations.  
(250 bits represents a trend similar to 200 and was omitted for brevity.)  Fitness 
measure for any experiment not yet achieving success at a round is used to determine 
the mean (infinity cannot be plotted).  PAM DGP (solid line) outperforms the stan-
dard adaptive mapping algorithm consistently throughout all tournament rounds.  The 
algorithm is also more robust, as far fewer fitness spikes are present. 

 

Fig. 4. Mean best MAX problem fitness per round over 50 independent runs for PAM DGP, 
population 8, and Adaptive Mapping algorithm, population 50 
 

The operator content of the solutions as a percentage of total operators is shown in 
Table 3 along with p-values.  There is no significant difference at the 0.95 or 0.99 
confidence intervals for 5 out of 7 operators, where PAM DGP used less constants 
and more multiplication.  Since the best solutions only require repeated duplica-
tion/multiplication following initial presence of a constant, the difference in symbols 
would only give PAM DGP more ideal solutions. 
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Table 3. Mean operators as percentage of total solution over 50 trials for 200 bit, Population 8 
MAX Problem for PAM DGP and Adaptive Mapping with associated p-values 

 CONST POP DUP S2R R2S PLUS TIMES 
PAM DGP 0.0292 0.0314 0.232 0.166 0.121 0.203 0.218 
Adaptive 0.0471 0.0371 0.241 0.166 0.115 0.205 0.189 
p-value 0.000249 0.275 0.575 0.986 0.591 0.882 0.00771 

5   Two Boxes Problem 

The Two Boxes problem is to relate six independent variables (L0, W0, H0, L1, W1, 
and H1) through the equation for the difference in volume of two boxes (L0W0H0 - 
L1W1H1) [9].  Ten fitness cases are created using uniform sampling of integers over 
the interval [1, …, 10].  Fitness is measured as the summed absolute error over all 
fitness cases, where in each case an absolute error  0.01 counts as a hit.  The success 
criterion is to produce 10 hits.  Each instruction in a genotype’s bit sequence is parsed 
by processing the number of bits associated with a function, followed by a single bit 
determining whether to load a value from the fitness cases or from a register, with the 
next two bits determining one of four registers as the target and the last two bits speci-
fying a register as the source.  Emphasis of functional operators is achieved by map-
pings varying bit lengths and combinations used to start each instruction. 

The parameterization is modified to better suit a considerably harder regression 
problem, with the salient differences being a separation of genotype/mapping cross-
over rates and mutation type and rates.  An increased mutation rate was used in the 
genotypes to allow exploration against the backdrop of more persistent (due to low 
operator rates) mappings.  Point mutation is used in the mappings to ensure a number 
of frequencies per operator are explored; whereas an instruction-level mutation opera-
tor that performs XOR on the instruction with a randomly generated bit mask (the 
instruction chosen with uniform probability) is used for the genotype mutation opera-
tor.  Both algorithms perform best with a population of 50 individuals (25 genotypes 
and 25 mappings) in this problem, benefiting from the additional genetic material 
with which to perform a search.  The alternative settings for this problem demonstrate 
the high customizability of PAM DGP and provide an example of its performance on 
a hard problem using a larger population (and larger probability table) than the MAX 
problem.  Parameterizations specific to the Two Boxes problem are shown in Table 4 
(Table 1 details the common parameters). 

Neither algorithm provided a solution with a population of 8, with only PAM DGP 
providing one solution during 50 trials with a population of 50.  Mean best fitness 
produced in each trial is shown below in Figure 5.  For both starting populations, 
PAM DGP outperforms the adaptive mapping algorithm, producing lower cumulative 
errors.  Overall fitness performance of PAM DGP is also not affected by raising popu-
lation size to handle harder problems with more obscure solutions, such as the Two 
Boxes problem.  This conclusion is supported at the 99% confidence interval.  (PAM 
DGP performance is not statistically different for either population size.) 
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Table 4. Two Boxes parameterization of Adaptive Mapping and PAM DGP 

Maximum Rounds 50 000 
Function Set +, *, %, /   (protected against underflow/overflow) 
Terminal Set L0, W0, H0, L1, W1, H1 
Genotype structure Instruction sequence with 4 registers; 320 bits 
Mapping structure Adaptive, 40 bits (10 bits per function set member) 
Genotype mutation XOR instruction-level mutation, threshold = 0.5 
Mapping mutation Point mutation, threshold = 0.1 
Genotype crossover Equal-sized blocks, threshold = 0.9 
Mapping crossover Equal-sized blocks, threshold = 0.1 
Fitness Cases 10 sets of 6 integers in [1, …, 10], output value 
Fitness Summed absolute error. 
Objective Fit equation to L0W0H0 - L1W1H1 
Hits Number of fitness cases with absolute error  0.01 
Termination 10 hits (success) or maximum rounds. 
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Fig. 5. Mean best fitness achieved (after maximum rounds or a solution) for PAM DGP and 
Adaptive Mapping algorithm for 50 trials.  Error bars reflect t-distribution. 

The operator content of the solutions as a percentage of total operators is shown in 
Table 5 below along with p-values for population 50.  There is no significant differ-
ence at the 0.95 or 0.99 confidence intervals for all operators, indicating that both 
algorithms were equal in their ability to choose useful function set symbols and that 
overall the algorithms chose similar solution content. 

Table 5. Mean operators as percentage of total solution over 50 trials for the Two Boxes 
Problem, population 50, for PAM DGP and Adaptive Mapping with associated p-values 

 MULT SUB ADD DIVIDE 
PAM DGP 0.285 0.285 0.204 0.258 
Adaptive 0.303 0.250 0.213 0.234 
p-value 0.482 0.161 0.637 0.262 
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6   Conclusion and Future Work 

This paper presents the latest version of a new developmental GP algorithm, PAM 
DGP, which outperforms the previous Adaptive Mapping DGP algorithm on a num-
ber of metrics for two non-trivial regression problems.  PAM DGP is specifically 
designed not to suffer from sporadic fitness gains and losses due to changes in con-
text, and it considers more context combinations of genotypes and mappings during 
its search than the Adaptive Mapping algorithm.  PAM DGP was also shown to select 
just as beneficial, if not more efficient, function set choices than the Adaptive Map-
ping algorithm.  Moreover, this is the first time that regression problems as difficult as 
the Two Boxes problem have been considered using an adaptive DGP paradigm.  
Future work will examine alternative mapping structures in the PAM DGP framework 
and performance on other benchmark and real world problems. 

Acknowledgements. The authors gratefully acknowledge the support of a NSERC 
PGS-B and Honorary Izaak Walton Killam scholarship (Garnett Wilson), and the CFI 
New Opportunities and NSERC research grants (Dr. M. Heywood). 

References 

1. Banzhaf, W.: Genotype-Phenotype Mapping and Neutral Variation. In Davidor, Y., Schwe-
fel, H.-P., Manner, R., eds.: Proceedings of Parallel Problem Solving from Nature III. 
Springer-Verlag (1994) 322–332 

2. Keller, R., Banzhaf, W.: Genetic Programming using Genotype-Phenotype Mapping from 
Linear Genomes in Linear Phenotypes. In Koza, J., et al., eds.: Genetic Programming 1996: 
Proceedings of the First Annual Conference. MIT Press (1996) 116-122 

3. Keller, R., Banzhaf, W.: The Evolution of Genetic Code in Genetic Programming. In 
Banzhaf, W., et al., eds.: Proceedings of the Genetic and Evolutionary Computation Confer-
ence—GECCO 1999. Morgan Kaufman (1999) 1077-1082 

4. Keller, R., Banzhaf, W.: Evolution of Genetic Code on a Hard Problem. In Spector, L., et 
al., eds: Proceedings of the Genetic and Evolutionary Computation Conference—GECCO 
2001. Morgan Kaufman (2001) 50-56. 

5. Margetts, S.: Adaptive Genotype to Phenotype Mappings for Evolutionary Algorithms. Ph. 
D. thesis, Cardiff University, Wales, Great Britain, 2001 

6. Margetts, S., Jones, A.: Phlegmatic Mappings for Functional Optimisation with Genetic 
Programming.  In Whitley, L., et al., eds.: Proceedings of the Genetic and Evolutionary 
Computation Conference—GECCO 2000. Morgan Kaufman (2000) 82-89 

7. Margetts, S., Jones, A.: An Adaptive Mapping for Developmental Genetic Programming.  In 
Miller, J., et al., eds.: Proceedings of the Fourth European Conference on Genetic Program-
ming—EuroGP 2001. Springer-Verlag (2001) 97-107 

8. Wilson, G., Heywood, M.: Probabilistic (Genotype) Adaptive Mapping Combinations for 
Developmental Genetic Programming. In Proceedings of the IEEE Congress on Evolution-
ary Computation—CEC 2006. IEEE Press (2006) (upcoming) 

9. Koza, J.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, 
Cambridge (1994) 



A Distance-Based Information Preservation Tree
Crossover for the Maximum Parsimony Problem
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Abstract. The Maximum Parsimony problem aims at reconstructing a phyloge-
netic tree from DNA sequences while minimizing the number of evolutionary
changes. Known to be NP-complete, the MP problem has many applications.
This paper introduces a Distance-based Information Preservation (DiBIP) Tree
Crossover. Contrary to previous crossover operators, DiBIP uses a distance mea-
sure to characterize the semantic information of a phylogenetic tree and ensures
the preservation of distance related properties between parents and offspring. The
performance of DiBIP is assessed with a mimetic algorithm on a set of 28 bench-
mark instances from the literature. Comparisons with 3 state-of-the-art algorithms
show very competitive results of the proposed approach with improvement of
some previously best results found.

1 Introduction

Phylogeny can be defined as the reconstruction of the evolutionary history of a set
of species identified by sequences of molecular or morphological characters [5]. The
evolutionary relationships between species are represented by a tree whose leaves are
labeled by the given species. Hillis et al. in [11] identify many applications of phy-
logeny like genetic evolution, taxonomy and classification, or virus detection. The gen-
eral problem of inferring the most probable phylogenetic tree according to a given cri-
terion is computationally hard.

In the past much work has been devoted to the problem of phylogeny reconstruc-
tion following 3 main approaches. Distance methods rely on a matrix of distances ob-
served between species and have polynomial-time algorithms. But they are known to
lack sometimes robustness.

Probabilistic methods are based on an evolution model of characters. The Maxi-
mum Likelihood (ML) provides a general framework that consists in inferring the most
probable phylogeny that maximizes the likelihood of observed species. Although ML
is popular for phylogenetic inference because it is considered as a robust method, it is
more computationally expensive than other methods.

Cladistic methods are based on a matrix of given characters. The most well-known
method of this class relies on the Maximum Parsimony (MP) criterion. Such a method
aims at building a binary tree that minimizes a cost function which corresponds to the
number of evolutionary changes. The cost of a tree can be computed in polynomial
time. However the problem of searching for an optimal tree is NP-complete [7]. Given

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 761–770, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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this fact, various heuristic algorithms have been proposed, including local search [10,8],
evolutionary algorithms [14,3,15], GRASP [16] and supertrees [1].

In this paper, we are interested in solving effectively the MP problem. For this pur-
pose, we propose a new crossover scheme, called Distance-Based Information Preserva-
tion (DiBIP) Tree Crossover. DiBIP is fundamentally different from existing crossover
operators. It ensures the transmission of useful information from parents to offspring.
Benchmarking results are reported and compared with some best known and perform-
ing algorithms for the MP problem.

2 The Maximum Parsimony Problem

Given a multiple alignment of a set S of n sequences of length k characters, the aim
of the Maximum Parsimony problem is to find a phylogenetic tree that minimizes the
number of changes (mutations) between sequences. Each leaf of the tree is associated
to one of the n species and the cost (number of mutations) of the overall tree can be
estimated by building sequences of parsimony from the leaves to the root of the tree.
More precisely we have the following definitions:

Definition 1 (Sequence of parsimony). Given 2 sequences S1 and S2 of length k such
that S1 =< x1, · · · , xk >, S2 =< y1, · · · , yk > with ∀i ∈ {1..k}, xi, yi belong to the
power set P(Σ), where Σ is the set of possible characters, the sequence of parsimony
of S1 and S2, noted F (S1, S2) =< z1, · · · , zk > is obtained by (see Fitch [6]):

∀i, 1 ≤ i ≤ k, zi =
{
xi ∪ yi, if xi ∩ yi = ∅
xi ∩ yi, otherwise

The cost of the sequence of parsimony is defined by:

φ(F (S1, S2)) =
k∑

i=1

ci where ci =
{

1, if xi ∩ yi = ∅
0, otherwise

Definition 2 (Binary Tree of Parsimony). Let S be a set of n aligned sequences of
length k where each character of the sequence is expressed over a given alphabet Σ.
Let T = (V,E) be a binary tree, where V = {v1, . . . , vr} is the set of nodes and
E ⊆ {(u, v)/u, v ∈ V } is the set of edges. T is called a binary tree of parsimony of S
if there exist r = 2× n− 1 nodes partitioned in 2 subsets:

– a set of internal nodes I composed of n− 1 nodes each having 2 descendants and
being labeled by a (hypothetical) sequence of parsimony of the 2 descendants,

– a set of leaves L composed of n nodes with no descendant, bijectively labeled by
the sequences of S.

Definition 3 (Cost of a Tree of Parsimony). Let T be a binary tree of parsimony of a
set of sequences S. The cost (or score) of T , φ(T ) is equal to

∑
φ(Sw), ∀w ∈ I .

Definition 4 (Maximum Parsimony Problem). Given a set S of n sequences of length
k, expressed over an alphabet Σ, find the most parsimonious tree T of S such that the
score of parsimony of T is minimum.

For a set of sequences S, there are
∏|S|

i=3(2i − 3) possible parsimony trees. The MP
problem is thus a highly combinatorial search problem.
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3 Crossover Operators for MP and Trees

The literature describes several evolutionary algorithms for phylogenetic reconstruc-
tion: for instance [13,12] for the ML problem, [14,2,3,15] for the MP problem and [4]
for distance-based phylogenetic approaches. Notice that conventional subtree crossover
operators used in tree-based genetic programming are not directly applicable here.

Tree crossover operators designed for inferring phylogenetic trees often follow the
subtree cutting-and-regrafting strategy. Generally, given 2 parents trees, a subtree is
first selected from one parent (donor parent). Then the leaves of this subtree are deleted
from the other parent (receiver parent), leading to an intermediate tree. The final child
tree is obtained by reconnecting the subtree from the donor parent to a merge point of
the intermediate tree. Obviously, exchanging the donor and receiver parents can lead
to a second child. Fig. 1 shows an example with fourteen species, where the subtree
(B, (L,N)) is taken from parent 1 and reinserted in parent 2 between the root and the
subtree ((F, J),M) after deleting the 3 leaves (B,L and N) from parent 2.

With such a crossover strategy, only partial information is transmitted from parents
to offspring. For instance, in the above example, a subtree with 3 leaves (out of four-
teen) of the donor tree is passed on to the child. In one sense, only a small portion
of information of the donor is transmitted while a large portion of information related
to the eleven other species of the donor tree is lost during the crossover operation. In
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Fig. 1. Example of commonly used crossover
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the next section, we introduce a Distance-Based Information Preservation crossover
scheme, which ensures a global combination and transmission of information during
crossover operations.

4 Distance-Based Information Preservation (DiBIP) Crossover

4.1 General Scheme

Our Distance-Based Information Preservation (DiBIP) crossover scheme aims to pre-
serve representative properties of parents in terms of distance between species. The
general approach can be summarized as a three-steps procedure: 1) calculate a distance
matrix for each parent tree, 2) combine the matrices of the 2 parents to get a third matrix,
3) create a child tree from the previous third matrix.

In order to give a formal description of the DiBIP crossover scheme, we first intro-
duce some notations.

– T1 and T2 represent 2 trees used for the crossover operation;
– δT is a distance metric to measure the distance of each pair of species of a tree T ;
– Δ : T → D is a tree-to-distance operator to obtain a distance matrix from a tree;
– ⊕ : D × D → D is a matrix operator to combine 2 distance matrices to produce a

new distance matrix;
– Λ : D → T is a distance-to-tree operator to construct a tree from a given distance

matrix.

Given these notations, the general DiBIP crossover scheme can be described with
the procedure shown in Algorithm 1.

Algorithm 1 The general DiBIP crossover scheme
Input: T1, T2, δT , Δ, ⊕, Λ
Output: A child tree T ∗

1. Apply the tree-to-distance operator Δ to each parent tree Ti (i=1,2) to obtain the corre-
sponding distance matrix Di = Δ(Ti) (i=1,2);

2. Apply the matrix operator ⊕ to D1 and D2 to obtain D∗: D∗ = D1 ⊕ D2;
3. Apply the distance-to-tree operator Λ to D∗ to obtain a child tree: T ∗ = Λ(D∗).

This general scheme gives rise to several comments. First, the distance measure
should be ideally correlated to the evolutionary changes between species. For instance,
2 species separated in the tree by a small number of evolutionary changes should have
a smaller distance than 2 species separated by a large number of changes. A minimal
requirement for the distance measure would make the measure topology dependent. In
this sense, the length of the elementary path between 2 species is such a possible ex-
ample. On the other hand, the conventional Hamming distance is not applicable here
because this metric is totally independent of tree topologies.

Second, since we want to preserve representative properties of the parents during the
crossover operation, a valid matrix operator⊕ should meet some specific requirements
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meaningful to the MP problem and help to transmit good properties shared by both
parents to the child. For instance, if a pair of species (a,b) is closer than another pair
(c,d) in both parents, then this distance property should be conserved by the crossover
process and transmitted to the resulting child. More generally, let (a,b) and (c,d) be 2
pairs of species,D1 andD2 the distance matrix of 2 trees T1 andT2, and � ∈ {<,=, >}
a relation, then the following condition, called relation preservation property, should be
verified:

(D1(a, b) � D1(c, d)) ∧ (D2(a, b) � D2(c, d)) ⇒ (D∗(a, b) � D∗(c, d))

For example, let us consider the operation ⊕ such that for a pair of species (i,j),
(D1⊕D2)(i, j) = α.min{D1(i, j), D2(i, j)}+(1−α).max{D1(i, j), D2(i, j)}with
α ∈ [0, 1]. It is easy to verify that this defines indeed a valid ⊕ operator. Moreover, this
definition offers in fact many possibilities and seems particularly relevant to the MP
problem. For instance, the arithmetic average (α = 0.5) and the max operator max
(α = 0) are 2 special cases. At last, let us mention that the arithmetic addition + is
another simple valid ⊕ operator.

Finally, one may notice thatΛ is notΔ−1 and the distance matrixΔ(T ∗) is in general
different from D∗.

To summarize, the proposed DiBIP crossover scheme is fundamentally different
from conventional tree crossover operators. From this scheme, one can derive a con-
crete DiBIP crossover operator by defining a distance metric δT and instantiating the
following 3 operators: Δ, ⊕ and Λ.

4.2 Application of the DiBIP Crossover to the MP Problem

In order to show how the above DiBIP crossover scheme is applied to the MP problem,
we devise a concrete DiBIP operator by making the following choices. The distance
measure δT between 2 species i and j is defined by the length of the elementary path
between the respective ascendants of i and j, minus 1 if the path contains the root of the
tree T . Since the position of the root has no effect on the parsimony score, this element
must not affect the distance matrix. Fig. 2 shows a tree and the resulting distance matrix
according to δT .

As to the matrix operator ⊕, we simply used the addition + such that D(i, j) =
D1(i, j) + D2(i, j). Notice that this operator satisfies the relation preservation prop-
erty mentioned in the previous section. Finally, the distance-to-tree operator Λ is a
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non-deterministic variant of the well-known UPGMA method [17]. Fig. 3 shows an
application of this crossover operator. One notices that the closeness of species in both
parents is conserved in the child. This observation applies equally to distant species.

4.3 Complexity of the DiBIP Crossover Operator

For a given tree T ,Δ(T ) can be done in Θ(n2 log2(n)) time with n being the number of
the leaves (species). This calculation is performed only once for each inferred tree even
if the same tree can be used several times by the crossover operation. This is simply
done by recording the corresponding distance matrix. The matrix addition using + as
well as the distance-to-tree operation with UPGMA have time complexity of Θ(n2).
Consequently, the crossover operator has a total time complexity of Θ(n2 log2(n)).
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D1 = Δ(T1) D2 = Δ(T2)
A B C D E F G H I J K L M N

A - B
B 6 - C
C 5 3 - D
D 1 5 4 - E
E 5 5 4 4 - F
F 5 5 4 4 2 - G
G 5 3 0 4 4 4 - H
H 5 5 4 4 0 2 4 - I
I 0 6 5 1 5 5 5 5 - J
J 5 1 2 4 4 4 2 4 5 - K
K 2 4 3 1 3 3 3 3 2 3 - L
L 7 1 4 6 6 6 4 6 7 2 5 - M
M 5 5 4 4 2 0 4 2 5 4 3 6 - N
N 7 1 4 6 6 6 4 6 7 2 5 0 6 -

A B C D E F G H I J K L M N
A - B
B 8 - C
C 4 6 - D
D 1 7 3 - E
E 0 8 4 1 - F
F 9 1 7 8 9 - G
G 4 6 0 3 4 7 - H
H 2 6 2 1 2 7 2 - I
I 6 4 4 5 6 5 4 4 - J
J 7 1 5 6 7 2 5 5 3 - K
K 4 4 2 3 4 5 2 2 2 3 - L
L 9 1 7 8 9 0 7 7 5 2 5 - M
M 6 2 4 5 6 3 4 4 2 1 2 3 - N
N 6 4 4 5 6 5 4 4 0 3 2 5 2 -

D∗ = D1 ⊕ D2 Child : T ∗ = Λ(D∗)

A B C D E F G H I J K L M N
A - B
B 14 - C
C 9 9 - D
D 2 12 7 - E
E 5 13 8 5 - F
F 14 6 11 12 11 - G
G 9 9 0 7 8 11 - H
H 7 11 6 5 2 9 6 - I
I 6 10 9 6 11 10 9 9 - J
J 12 2 7 10 11 6 7 9 8 - K
K 6 8 5 4 7 8 5 5 4 6 - L
L 16 2 11 14 15 6 11 13 12 4 10 - M
M 11 7 8 9 8 3 8 6 7 5 5 9 - N
N 13 5 8 11 12 11 8 10 7 5 7 5 8 -
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Fig. 3. Application of the DiBIP Tree Crossover
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5 A Hybrid Genetic Local Search Algorithm for the MP Problem

5.1 General Procedure

HYDRA (for HYbrid Distance Recombination Algorithm) is a mimetic algorithm that
combines a genetic algorithm using the DiBIP crossover operator and a local search
algorithm called DPN (Descent with Progressive Neighborhood) [9]. The HYDRA al-
gorithm (see Algorithm 2) starts by randomly generating an initial population where
each individual is an inferred phylogenetic tree (GeneratePopulation). Then, the algo-
rithm enters an iterative process. At each step 2 individuals (parents) are chosen in the
population (ChooseParents) and recombined (DiBIP crossover) to obtain a new indi-
vidual (child). The DPN local search algorithm is applied to improve the child during l
iterations. The improved child is finally added to the population under insertion condi-
tions. This process is repeated until the stop condition is met, usually when a maximum
number of iterations Maxiter has been reached or when the computation time exceeds
a maximum duration Maxtime.

Algorithm 2 Hybrid genetic local search algorithm (HYDRA) for the MP problem
Input: A : an alignment of sequences, N : the size of the GA population, l : the number of
local search iterations
Output: The most parsimonious tree found

P = GeneratePopulation(A,N )
While not StopCondition() do

(T1, T2) = ChooseParents(P )
T = DiBIP(T1, T2)
T = DPN(T ,l)
P = Replace(P ,T )

return the best tree found

The function ChooseParents operates with a tournament selection strategy. Two
groups of 20% of the individuals are constituted. Two individuals that represent the best
individuals of each group are selected for the crossover operation. The Replace function
inserts the child tree T into the population P and removes from P the older individual
(insertion condition). Notice that other selection strategies and insertion conditions may
be defined.

5.2 Local Search: Descent with Progressive Neighborhood

The DPN procedure used in HYDRA for local improvement is a basic descent algorithm
using a Progressive Neighborhood [9]. DPN considers a large size neighborhood at the
beginning of the search which progressively shrinks when the search goes on. The basic
neighborhood used in DPN is the well-known SPR (Subtree Pruning and Regrafting)
neighborhood which cuts a subtree and reinserts it elsewhere. To control gradually the
size of the neighborhood, DPN introduces a parameter dmax which fixes the maximum
allowed distance between the root of the detached subtree and the position where it
is reconnected. In practice, dmax is set to a maximum value at the beginning of the
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search in order to allow any SPR move. Then this value is progressively reduced until it
becomes equal to 1 which corresponds to the much smaller neighborhood NNI (Nearest
Neighbor Interchange).

6 Experimentations

6.1 Competing Algorithms and Benchmarks

In this section, we compare the mimetic HYDRA algorithm based on the DiBIP
crossover operator with 3 highly effective MP algorithms: an evolutionary algorithm
[15], the GRASP+VND [16] method and the software TNT [10]. GRASP+VND is a
combined application of 2 well-known metaheuristics GRASP and VND to the MP
problem. TNT (Tree analysis using New Technology) is probably the fastest and one of
the most effective parsimony analysis program. TNT uses many search strategies such
as tree recombinations, local search and supertrees.

The benchmark instances used here come from [15] and [16] and represent 28 in-
stances: 8 obtained from real data and 20 randomly generated instances (TST 01 to 20).
For these instances, the best results found in the literature are reported in [15,16].

6.2 Computational Results

HYDRA uses a population of size N = 30, a maximum of 50,000 iterations for each
DPN run and ends after 300 seconds. The algorithm is coded in C++ and compiled with
gcc using the optimization flag -O3. It is run sequentially onto a cluster of 10 nodes,
each having a Xeon 2 GHz BiProcessor with 1 Gb of RAM. Like in [15], the HYDRA
algorithm is run 10 times for each instance.

Results are printed on Tables 1 and 2, where φb, φm and CO respectively represent
the best score obtained, the average score and the average number of crossover opera-
tions over 10 runs. For random instances, diff is the improvement of the score obtained
in comparison to the best known scores. The reported results of [15,16] are taken from
these 2 papers while the results of TNT are obtained by us using the default parameters.

Table 1. Results on real instances

Instance Hydra [15] [16] TNT
Name n k φb φm CO φb φm φb φb

GRIS 47 93 172 172.0 4012 172 172.0 172 172
ANGI 49 59 216 216.0 1658 216 216.0 216 217
TENU 56 179 682 682.0 812 682 682.0 682 682
ETHE 58 86 372 372.0 2392 372 372.4 372 373
ROPA 75 82 325 326.2 1519 325 325.8 325 327
GOLO 77 97 496 496.0 2068 496 496.2 496 501
SCHU 113 146 759 759.0 669 759 759.2 759 761
CARP 117 110 548 548.9 815 548 548.6 548 550

Average computation time (s) 300 1000 33789 < 1
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Table 2. Results on random instances

Instance Hydra [15] [16] TNT
Name n k φb φm CO φb φm φb φb diff
TST01 45 61 545 547.1 2548 549 549.6 551 554 -4
TST02 47 151 1354 1358.7 775 1358 1363.6 1364 1380 -4
TST03 49 111 834 837.3 1012 838 840.6 845 849 -4
TST04 50 97 590 591.2 1064 592 595.0 598 603 -2
TST05 52 75 789 792.6 1458 790 794.0 797 805 -1
TST06 54 65 597 599.3 1491 603 605.4 609 612 -6
TST07 56 143 1271 1275.5 548 1276 1280,6 1291 1300 -5
TST08 57 119 853 857.2 666 863 867.4 870 889 -11
TST09 59 93 1146 1149.5 906 1150 1154.2 1152 1167 -4
TST10 60 71 721 723.7 1168 725 728.6 733.0 740 -4
TST11 62 63 544 546.2 1237 544 546,8 553 564 0
TST12 64 147 1218 1224.1 408 1229 1233.0 1243 1250 -11
TST13 65 113 1523 1526.4 660 1526 1530.6 1532 1538 -3
TST14 67 99 1167 1171.7 683 1174 1177,4 1177 1194 -7
TST15 69 77 757 760.1 792 765 766.4 774 783 -8
TST16 70 69 532 535.5 865 545 547.6 551 552 -13
TST17 71 159 2460 2467.1 360 2468 2470.8 2468 2485 -8
TST18 73 117 1529 1533.8 473 1542 1548.2 1554 1571 -13
TST19 74 95 1019 1021.6 601 1028 1033.0 1036 1037 -9
TST20 75 79 665 668.5 720 676 678.8 682 693 -11
Average computation time (s) 300 1000 1982 < 1

From Tables 1 and 2, one observes that for the 8 real instances HYDRA consistently
obtains the previously best results reported in [15,16] but with much shorter compu-
tation time. Also observe the robustness of HYDRA which, for 6 of 8 instances, has
found the best score for each run. The effectiveness of HYDRA is better observed on
the set of random instances. Indeed, for 19 instances out of 20, the previously published
best scores are improved.

Let us mention that when the number of runs is increased to 100, HYDRA obtains
still better results for 11 of the 20 random instances (up to 5 units). HYDRA is also
compared with its local search component DPN alone, showing clearly better results on
the tested instances (not shown here).

7 Conclusion

In this paper, we have introduced the Distance-Based Information Preservation (DiBIP)
crossover, a new crossover scheme for inferring phylogenetic trees. The key idea is to
use a distance matrix to characterize each inferred tree. Consequently, 2 trees can be
easily combined by an operation on 2 distance matrices. Contrary to existing crossover
mechanisms, the DiBIP crossover scheme offers a simple and natural way to ensure a
global information combination and transmission during the cross-overing operation.

The practical usefulness of the DiBIP crossover scheme for the Maximum Parsimony
problem is assessed within a mimetic algorithm. Comparisons with 3 state-of-the-art
algorithms on a set of 28 (real and randomly generated) benchmark instances show
very competitive results of our approach. Indeed, for the real instances, the best known
score are systematically found rapidly and consistently. The most remarkable results
concern the random instances for which we can improve 19 (out of 20) best scores
known today within 5 minutes of CPU time.
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Abstract. In this paper, we present a different look on splicing systems,
namely as problem solvers. After defining the concept of accepting spli-
cing system we discuss how these systems can be used as problem solvers.
Then we construct an accepting splicing system able to uniformly solve
SAT in time O(m + n) for a formula of length m over n variables. We
also propose a uniform solution based on accepting splicing systems to
HPP that runs in time O(n), where n is the number of vertices of the
instance of HPP.

1 Introduction

A rather vividly investigated model of molecular computation based on the cut-
ting and recombination of DNA strands induced by restriction enzymes is the
splicing system. One of the basic mechanism by which genetic material is merged
is recombination. DNA sequences are recombined under the effect of enzymatic
activities. Formalizing this process as a string rewriting operation, it can be used
to define computing systems. In 1987, T. Head introduced the splicing operation
as a language theoretical approach of the recombinant behavior of DNA under
the influence of restriction enzymes and ligases [5]. Roughly speaking, the main
idea of the splicing operation is that two sequences are cut at specific sites, and
the first substring of one sequence is pasted to the second segment of the other
and vice versa. A new model of computation - called splicing system or H system
- based on the splicing operation has been considered. Most research in this area
has been focused on defining different types of splicing systems and investigating
their computational power from a language generating point of view. Many vari-
ants of H systems have been invented and investigated (regulated H systems, dis-
tributed H systems, H systems with multisets, etc.) Under certain circumstances,
H systems are computationally complete and universal (see [10] for an overview).
This result suggests the possibility to consider H systems as theoretical models
of programmable universal DNA computers based on the splicing operation.

Recently, a few new approaches to splicing have emerged. We briefly discuss
two of them. First, two slightly different types of splicing systems have been
introduced in [4] and [7]. Their common feature is that they do not differ from
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basic splicing systems in terms of elements. Rather, the difference lies in the
definition of the way the splicing rules are applied and the way the generated
language is defined. Both new definitions are in fact generalizations of the usual
definition, in the sense that we obtain a definition equivalent to the usual one by
imposing certain restrictions on the splicing system. Both types of systems have
been shown to be computationally complete. Second, several works like [1], and
the references therein, address two fundamental questions concerning splicing
systems: recognition, which asks for an algorithm able to decide whether or not
a given regular language is a splicing language, and synthesis, which asks for
an effective procedure to construct a splicing system able to generate a given
splicing language.

An important result in splicing theory is the so-called Regularity Preserving
Lemma proved first in [2], as a consequence of a more general result, and then in
[11] by a direct argument. It states that H systems with a regular initial language
and a finite set of rules generate only regular languages. To obtain computational
completeness, a regular (thus infinite) set of rules is needed, as shown in [9]. In this
paper, we present a different look on splicing systems, namely as problem solvers.
We define the concept of problem solving H system starting from the another con-
cept introduced here, namely accepting splicing system. It is rather strange that
though the theory of splicing systems is mature and well developed, an accepting
model based on the splicing operation has not considered so far, in spite of the
fact that in practice we deal more with accepting processes than with generating
ones. We are not interested here by the computational power and complexity of
these accepting devices, but we propose efficient solutions - working in linear time
- to two well-known NP-complete problems. Both solutions are based on accepting
splicing systems with a finite initial language and a regular set of rules.

2 Basic Definitions and Notation

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any finite sequence of symbols from an alphabet V is called a word
over V . The set of all words over V is denoted by V ∗ and the empty word is
denoted by ε. The length of a word x is denoted by |x| while alph(x) denotes
the minimal alphabet W such that x ∈W ∗.

A splicing rule over V is a string u1#u2$u3#u4, with u1, u2, u3, u4 ∈ V ∗, and
$,# special symbols not in V .

For a splicing rule r = u1#u2$u3#u4 and a pair of words x, y ∈ V ∗, we write

σr(x, y) = {w ∈ V ∗} ∪ {z ∈ V ∗} if x = x1u1u2x2, y = y1u3u4y2,
z = x1u1u4y2, w = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗. This definition is extended to a set of splicing rules
R and a language L by

σR(L) =
⋃
r∈R

⋃
w1,w2∈L

σr(w1, w2).
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A splicing system or H system is a construct

H = (V,A,R),

where V is an alphabet, A ⊆ V ∗ is the initial language, and R is a set of splicing
rules over V . For a splicing language H = (V,A,R) we set

σ0
R(A) = A,

σi+1
R (A) = σi

R(A) ∪ σR(σi
R(A)), i ≥ 0,

σ∗
R(A) =

⋃
i≥0

σi
R(A).

When the set of splicing rules is clear, we omit the subscript. Then, the language
generated by H is defined as L(H) = σ∗

R(A). Adding a terminal alphabet T we
get an extended splicing system H = (V, T,A,R), which generates the language
T ∗ ∩ σ∗

R(A).
For H systems with a finite set of rules and a finite initial language, i.e. A

and R are both finite sets, it is shown in [11] that they generate only regular
languages. When one allows the set of splicing rules to be described by regular
expressions, we obtain computationally complete systems [9].

The framework for studying time complexity for (generating) splicing systems
has been introduced in [8]. The time complexity T ime(Γ,w) of a word w with
respect to an extended splicing system Γ = (V, T,A,R) is the minimal i such that
w ∈ σi

R(A). Relating the time complexity of a word to its length, we can define
complexity classes for H systems. We say that for a function T (n), H(T (n)) is
the set of all languages L for which there exists an extended splicing system Γ
such that for all w ∈ L(Γ ) it holds that T ime(Γ,w) ≤ T (|x|).

We now introduce the definitions and terminology for accepting splicing sys-
tems. An accepting splicing system is a quadruple

Γ = (V,A,R, Y ES),

where Y ES ∈ V and HΓ =(V,A,R) is a splicing system. Let Γ = (V,A,R, Y ES)
be an accepting splicing system; we say that Γ halts on a word w ∈ V ∗ if one of
the following conditions holds:

(i) Y ES ∈ σk
R(A ∪ {w}) for some integer k,

(ii) σk
R(A∪{w}) = σk+1

R (A∪{w}) and Y ES /∈ σk
R(A∪{w}) for some integer k.

In both cases we say that Γ halts on w in k steps. We say that Γ decides the
language L iff Γ halts on every word w ∈ L such that condition (i) is satisfied.

Let Γ = (V,A,R, Y ES) be a splicing system that halts on every word in V ∗;
for a word w ∈ V ∗ we set

T ime(Γ,w) = min{k | Γ halts on w in k steps}
T imeΓ (n) = max{T ime(Γ,w) | |w| = n}.
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We say that Γ decides L in time T (n) if Γ decides L and T imeΓ (n) ≤ T (n) for
all n ≥ 1.

We now propose a way of using accepting splicing systems as problem solvers.
A possible correspondence between decision problems and languages can be done
via an encoding function which transforms an instance of a given decision prob-
lem into a word, see, e.g., [3]. We say that a decision problem P is solved in time
O(f(n)) by accepting splicing systems if there exists a family H of accepting H
systems such that the following conditions are satisfied:

1. The encoding function of any instance p of P having size n can be computed
by a deterministic Turing machine in time O(f(n)).

2. For each instance p of size n of the problem one can effectively construct,
in time O(f(n)), an accepting splicing system Γ (p) ∈ H which decides, again
in time O(f(n)), the word encoding the given instance. This means that the
word is decided if and only if the solution to the given instance of the problem
is “YES”. This effective construction is called an O(f(n)) time solution to the
considered problem.

If an accepting splicing system Γ (n) decides the language of words encoding
all instances of the same size n, then the construction of H is called a uniform
solution. Intuitively, a solution is uniform if for problem size n, we can construct
a unique H system solving all instances of size n taking the (reasonable) encoding
of instance as “input”.

3 A Linear Time Uniform Solution to SAT

In this section we illustrate the use of accepting splicing systems as problem
solvers by showing that accepting H systems with regular sets of rules and finite
initial languages can uniformly solve SAT in linear time.

A Boolean expression is an expression composed of variables, parentheses and
the operators .̄, ∧ and ∨. The variables can take values 0 (false) and 1 (true).
An expression is satisfiable if there is some assignment of variables such that the
expression is true. The satisfiability problem, commonly denoted as SAT, is to
determine, given a Boolean expression, whether it is satisfiable. SAT is a well
known NP-complete problem (see e.g. [6] for more details). A Boolean expression
is said to be in conjunctive normal form (CNF) if it is of the form E1∧E2∧...Ek,
where each Ei, called a clause, is of the form αi1 ∨ αi2 ∨ ... ∨ αiri , where each
αij is a literal, that is either x or x̄, for some variable x. Here, we assume that
all boolean formulas are in CNF.

Theorem 1. SAT can be uniformly solved in linear time by splicing systems
with regular sets of rules.

Proof. For all formulas over n variables, we construct an accepting splicing sys-
tem Γ = (V,A,R, Y ES), where

V ={x1, x2, . . . , xn}∪{x̄1, x̄2, . . . , x̄n}∪{〈〈0, 〈〈1, 〉〉, X,W, Y ES,∨,∧,⊥, (, ),1} ∪
{[xi = b] | 1 ≤ i ≤ n, b ∈ {0, 1}}

A ={X#[xi = b]〉〉 | 1 ≤ i ≤ n, b ∈ {0, 1}} ∪ {〈〈0⊥, 〈〈1⊥,1 ⊥,WY ES},
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and the set of splicing rules is defined as follows:

(1) {)#〉〉$X#[x1 = a]〉〉 | a ∈ {0, 1}} ∪
{[xi = a]#〉〉$X#[xi+1 = b]〉〉 | 1 ≤ i ≤ n− 1, a, b ∈ {0, 1}},

(2) {〈〈0(#z$〈〈0# ⊥| z ∈ {x1, x2, . . . , xn} ∪ {x̄1, x̄2, . . . , x̄n}} ∪
{〈〈0xi#α$〈〈1# ⊥| α ∈ V ∗[xi = 1]V ∗, 1 ≤ i ≤ n} ∪
{〈〈0x̄i#α$〈〈1# ⊥| α ∈ V ∗[xi = 0]V ∗, 1 ≤ i ≤ n} ∪
{〈〈0xi#α$〈〈0# ⊥| α ∈ V ∗[xi = 0]V ∗, 1 ≤ i ≤ n} ∪
{〈〈0x̄i#α$〈〈0# ⊥| α ∈ V ∗[xi = 1]V ∗, 1 ≤ i ≤ n} ∪
{〈〈1Y#Z$〈〈1# ⊥| Y, Z ∈ {xi | 1 ≤ i ≤ n} ∪ {x̄i | 1 ≤ i ≤ n} ∪ {∨}} ∪
{〈〈1Y#)$〈〈0# ⊥| Y ∈ {xi | 1 ≤ i ≤ n} ∪ {x̄i | 1 ≤ i ≤ n}} ∪
{〈〈0∨#($〈〈0# ⊥},

(3) {〈〈0#)$1# ⊥},
(4) {ε#〈〈0[x1 = b]$W#Y ES | b ∈ {0, 1}}.

Clearly, given n the splicing system Γ can be constructed in O(n) time. Now,
given an instance of SAT over n variables, that is a formula φ = C1∧C2∧· · ·∧Cm

for some m ≥ 1, we define the word encoding this instance as 〈〈0φ〉〉.
We discuss how the splicing system Γ works on w = 〈〈0φ〉〉, where φ is a word

over the alphabet {x1, x2, . . . , xn}∪{x̄1, x̄2, . . . , x̄n}∪{∨,∧, (, )}. First we assume
that φ is satisfiable, that is there exists an assignment of variable that satisfies
each clause. Let xi = bi, bi ∈ {0, 1}, 1 ≤ i ≤ n, be such an assignment. By
using the splicing rules in the set (1) the word w is transformed into 〈〈0φ[x1 =
b1][x2 = b2] . . . [xn = bn]〉〉. This process takes n splicing steps. Then, the rules of
(2) remove the current leftmost symbol of the formula φ at every step. Since each
clause is a disjunction, for each 1 ≤ k ≤ m, there exists 1 ≤ ik ≤ n such that
xik

= bik
satisfies the clause Ck. Moreover, we assume that xik

is the leftmost
variable appearing in Ck that satisfies Ck. When xik

is the current leftmost
symbol of the formula, a rule of type 〈〈0xi#α$〈〈1# ⊥ applies, removing 〈〈0xik

and replacing it by 〈〈1, which we interpret as a marker that the current clause
is satisfied. The process resumes with 〈〈0 for every clause. Therefore, after |φ|
splicing steps, Γ generates the word 〈〈0[x1 = b1][x2 = b2] . . . [xn = bn]〉〉. In the
next splicing step, by using the rule ε#〈〈0[x1 = b1]$W#Y ES in the set (4), one
gets Y ES.

On the other hand, it is easy to note that if Γ decides a word 〈〈0φ〉〉 (if this
happens, then it happens in O(n + |φ|) time), then the rule in the singleton (3)
can never be used in the computation of Γ on the word 〈〈0φ〉〉. It follows that every
clause is satisfiable, therefore φ is satisfiable. From these explanations it follows
that Γ decides every word 〈〈0φ〉〉 in linear time if and only if φ is satisfiable.

Now, to conclude the proof, let us argue that Γ halts on every word 〈〈0φ〉〉
where φ is not satisfiable. Then for every possible assignment, there is a clause
that is not satisfied by the assignment. Let Csi be the first clause of φ which is
not satisfied by the assignment 1 ≤ i ≤ 2n. When reaching the closing bracket
of Csi , rule (3) applies, introducing the symbol 1, after which no rule can be
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applied. In the worst case, Csi = Cm so that σk
R(A∪{〈〈0φ〉〉}) = σk+1

R (A∪{〈〈0φ〉〉})
for k ≤ n + |φ|. ��

4 A Linear Time Uniform Solution to HPP

The Hamiltonian path problem (HPP) is to decide whether or not a given di-
rected graph has a Hamiltonian path. A Hamiltonian path in a directed graph
is a path which contains all vertices exactly once. It is known that HPP is an
NP -complete problem.

Theorem 2. HPP can be uniformly solved in linear time by splicing systems
with regular sets of rules.

Proof. Let us consider a directed graph G = (X,E), with X = {x1, x2, . . . , xn}
for which we are looking for a Hamiltonian path starting with x1. We construct
the accepting splicing system Γ = (V,A,R, Y ES) with

V = {x1, x2, . . . , xn} ∪ {[1], [2], . . . , [n]} ∪ {(, ), Y,<, Y ES,>},
A = {Y x1[1], Y ES <} ∪ {Y xi[j] | 2 ≤ i, j ≤ n},

and the set R defined as follows:

(1) {)# > $Y #x1[1]} ∪ {αxt[j]# > $Y #xk[j + 1] | 1 ≤ t �= k ≤ n,

1 ≤ j ≤ n− 1, α ∈ V ∗(xt, xk)V ∗ \ V ∗xkV
∗},

(2) {Y ES# < $[n] > #ε}.

The instance G = (X,E) of HPP is encoded into the word

w = (x1, x
(1)
i1

)(x1, x
(1)
i2

) . . . (x1, x
(1)
iki

)(x2, x
(2)
i1

)(x2, x
(2)
i2

) . . . (x2, x
(2)
iki

) . . .

(xn, x
(n)
i1

)(xn, x
(n)
i2

) . . . (xn, x
(n)
iki

) >,

over V ∗, where (xj , x
(j)
i1

), (xj , x
(j)
i2

), . . . , (xj , x
(j)
iki

) are all edges going out from the
node xj , for some 1 ≤ j ≤ n.

Clearly, given n the splicing system Γ can be constructed in O(n) time. The
rules of (1) extend w, constructing a path starting in x1 and appending an edge
at each step, provided w contains an edge from the current node xi to some
node xj , j �= i. It is easy to note that if there exists a Hamiltonian path in G,
say x1, xs2 , xs3 , . . . , xsn , then the word

wx1[1]xs2 [2]xs3 [3] . . . xsn [n] >

is generated by Γ in n splicing steps, hence Y ES is obtained in the next splicing
step. On the other hand, the only possibility to get Y ES is to apply the splicing
rule (2) to a pair of words formed by the axiom Y ES < and a word of the form
wx1[1]xs2 [2]xs3 [3] . . . xsn [n] >. By the form of the splicing rules in the set (1),
the word wx1[1]xs2 [2]xs3 [3] . . . xsn [n] > is obtained only if x1, xs2 , xs3 , . . . , xsn is
a Hamiltonian path in G.
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If G has no Hamiltonian path, then Γ halts on w after at most n splicing
steps without generating Y ES, which concludes the proof. ��

5 Conclusions and Further Research

In this paper, we introduced the concept of accepting splicing systems and pro-
posed a way of using these devices as problem solvers. We showed how two
NP-complete problems can be uniformly solved with accepting H systems in lin-
ear time. Further research might be aimed at investigating whether using other
types of accepting H systems we can get similar results, for it looks like the reg-
ular rules are a very powerful tool, and it does not seem obvious to get the same
kind of efficiency without them. However, since such a system with infinitely
many rules is hard to imagine from a biochemical point of view, it would be
interesting to use types of accepting H systems which are better motivated bio-
chemically. For instance, one could consider systems as introduced in [7]. These
are finite systems, which differ from usual systems by the fact that strings can
disappear by applying a rule to them.
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Abstract. The effects of neutrality on evolutionary search have been
considered in a number of interesting studies, the results of which, how-
ever, have been contradictory. We believe that this confusion is due to
several reasons. In this paper, we shed some light on neutrality by ad-
dressing these problems. That is, we use the simplest possible definition
of neutrality, we consider one of the simplest possible algorithms, we
apply it to two problems (a unimodal landscape and a deceptive land-
scape), which we analyse using fitness distance correlation, performance
statistics and, critically, tracking the full evolutionary path of individuals
within their family tree.

1 Introduction

Natural selection is a powerful theory which can explain the existence of adap-
tation in nature. However, it is unlikely that natural selection is the only force
that directs evolution. Indeed, at molecular scale there is support for the idea
that most evolutive variations are neutral [10]. This Neutral theory does not
affirm that during evolution the genes are not making something useful, rather
it suggests that different forms of the same gene are indistinguishable in their
effects. The theory argues that mutations occurring during evolution are neither
advantageous nor disadvantageous to the survival and reproduction of individu-
als, but that such random genetic drift should be considered in the study of the
evolutionary process.

Some EC researchers have found neutrality to be beneficial for the evolution-
ary process while others have found it either useless or worse. We believe there
are various reasons of these contradictory results and, by addressing them, we
can start clarifying the effects of neutrality. The aims of this study are: (a) to
understand how population flows in the search space are affected by the pres-
ence of neutrality in the evolutionary process, and (b) to identify under what
circumstances neutrality may improve performance.

The paper is organised as follows. In the next section, we review previous
work on neutrality. In Section 3 we describe our approach. In Section 4 the
fitness distance correlation is computed for landscapes with neutrality. Section 5
provides details on the experimental setup used. In Sections 6 and 7 we present
and discuss the results of experiments with unimodal and deceptive landscape
problems and draw some conclusions.
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2 Previous Work

Harvey and Thompson studied some effects of neutral networks in an evolvable
hardware problem [7]. They defined the concept of potentially useful junk that
refers to loci in a genotype that are functionless within the current context, but
which may become functional with different values elsewhere in the genotype.
They argued that with neutrality it is possible to reach a global optimum without
worrying about premature convergence.

Banzhaf [2] proposed an approach where a genotype-phenotype mapping was
used in the context of constrained optimisation problems. He argued that, very
often, constraining the solution space leads to local optima which are difficult
to escape from with traditional methods. He used high variability of neutral
variants to escape from local optima on saddle surfaces.

Barnett [3] proposed a variant of NK landscapes which he called NKp land-
scapes. The idea was to introduce a parameter, p, which could vary the degree
of neutrality present in the landscape and study the effects of neutrality in the
evolutionary process. He claimed that with the presence of neutral networks with
certain properties, it is possible to avoid to get stuck in local optima.

Shipman et al. [12] explored the benefits of neutrality in the context of a
mapping based on an abstraction of genetic regulatory networks — a random
boolean network. The mapping used in their experiments provided a very large
degree of neutrality. They concluded that neutral drift allowed the discovery of
many more phenotypes than would be the case with a direct encoding without
redundancy. In [13] they proposed four different redundant mappings to study
how neutrality influences the search. They found that redundancy was useful in
three of their mappings and concluded that some kind of neutrality is crucial.

Smith et al. [14] analysed how evolvability was affected by the presence of
neutral networks. For this purpose they used a system with an extremely com-
plex genotype-to-fitness mapping. They concluded that the existence of neutral
networks in the search space does not necessarily provide advantages because the
population does not evolve any faster with neutrality. In [15] the same authors
looked at the dynamics of the population rather than just the fitness, and argued
that neutrality did not perform a useful role in an evolutionary robotic task.

Yu and Miller [18] showed that neutrality improves the evolutionary search
process for a Boolean benchmark problem. They used Miller’s Cartesian GP
to measure explicit neutrality in the evolutionary process. They argued that
mutation on active genes is adaptive because it exploits accumulated beneficial
mutations, while mutation on inactive genes has a neutral effect on a genotype’s
fitness, yet it provides exploratory power by maintaining genetic diversity. Fur-
thermore, in [19] they showed that neutrality was helpful and that there is a
relationship between neutral mutations and success rate in a Boolean function
induction problem. However, Collins [5] claimed that the conclusion that, in this
problem, neutrality is beneficial is flawed. In [20] Yu and Miller also investigated
neutrality using the simple OneMax problem. They used a theoretical approach
and showed that neutrality is advantageous because it provides a buffer to absorb
destructive mutations.
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Igel and Toussaint [8] claimed that neutrality is necessary for self-adaptation
and classified self-adaptation to classical and generalized self-adaptation. Both
definitions are inspired from the genotype-phenotype mapping. They argued
that neutrality could have benefit when the mapping is done in such a way that
desirable phenotypes are represented more often than other ones.

3 Approach

We believe that the confusion regarding neutrality has several sources:(a) many
studies have based their conclusions on performance statistics (e.g., on whether
or not a system with neutrality could solve a particular problem faster than a
system without neutrality) rather than a deep analysis of population dynamics,
(b) studies often consider problems, representations and search algorithms that
are relatively complex and, so, results represent the composition of multiple
effects (e.g., bloat or spurious attractors in genetic programming), (c) there is
not a single definition of neutrality and different studies have added neutrality
to problems in radically different ways, and, (d) the features of a problem’s
landscape change when neutrality is artificially added, but rarely an effort has
been made to understand exactly how.

In this paper, we shed some light on neutrality by addressing these problems.
Firstly, we use the simplest possible definition of neutrality: a neutral network
of constant fitness, identically distributed in the whole search space. Neutrality
is “plugged into” the original non-redundant representation by adding an extra
bit to the representation: when the bit is 1 the individual is on the neutral
network (and, so, its fitness has a pre-fixed constant value), when the bit is 0,
the fitness of the individual is determined by the coding bits as usual. Secondly,
we consider one of the simplest possible algorithms (a mutation-only, binary
genetic algorithm). Thirdly, we analyse population flows from and to the neutral
network and the basins of attraction of the optima. Fourthly, we compare the
percentage of success to find the optimum solution and the difficulty of the
problem using fitness distance correlation. Finally, we use two problems with
significantly different landscape features: a unimodal landscape (OneMax) where
we expect neutrality to always be detrimental and a deceptive landscape (a trap
function with different degrees of difficulty), where there are conditions where
neutrality is more helpful than others.

In the presence of the form of neutrality discussed previously, the landscape
is therefore divided into two areas of identical size: the neutral layer and the
normal layer. However, we still only have one global optimum. So, the addition
of neutrality comes at a cost since we are expanding the size of the search space
without correspondingly expanding the solution space. Thus, we should expect to
see benefits of neutrality (e.g., improved performance) only when neutrality mod-
ifies the search bias of an algorithm-problem pair in such a way to make it much
more likely to (eventually) sample the global optimum. If this does not happen,
or worse, if the original search bias is modified in such a way to make it harder to
reach the global optimum, then we can be certain that neutrality will not help.
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Neutrality is often reported to help in multimodal landscapes. So, in the
case of our multimodal deceptive problem, should we expect a uniform neutral
network to increase performance? And what sort of population dynamics should
we expect? For analysis purposes, we further divide the normal and neutral
layers into two regions depending on which of the two basins of attraction a
string belongs to. We will term the resulting four areas “global neutral”, “local
neutral”, “global normal” and “local normal”.

Let us now consider whether a uniform neutral network could provide a per-
formance improvement in the case of a trap landscape. We must first consider
whether or not the neutral layer acts as an attractor or a repellent and for what
proportion of the local and global areas. If, for example, the neutral layer has a
very low fitness, then it should become harder for individuals to use it as a “tunnel”
between the large basin of attraction of the local optimum and the narrow basin
of attraction of the global optimum. In this case, the neutral layers would provide
no advantage and, given that it doubles the search space, we should see a marked
decrease in performance. If, instead, the neutral layers had a relatively high fit-
ness, we should expect to see more individuals moving towards it. This means that
there could be a flow of individuals from one basis of attraction to the other. This,
however, would not in itself provide a performance improvement w.r.t. the case
where no neutrality is used, because the flow is bidirectional and, so, individu-
als already in the global area may end up performing a random walk which leads
them outside it. In addition, because the search space is still twice as big as the
original while the solution spaces has still size 1, in order to beat the performance
of the no-neutrality case, neutrality would need to provide a very significant “im-
provement” in search bias. These considerations have motivated our analysis and
experiments. These are described in more detail in the following sections.

4 Fitness Distance Correlation

The fitness distance correlation (fdc) [9] measures the hardness of a landscape ac-
cording to the correlation between the distance from the optimum and the fitness
of solutions. The definition of fdc is quite simple: given a set F = {f1, f2, ..., fn}
of fitness values of n individuals and the corresponding set D = {d1, d2, ..., dn}
of distances to the nearest optimum, we compute the correlation coefficient r,
as:

r =
CFD

σFσD
,

where:

CFD =
1
n

n∑
i=1

(fi − f)(di − d)

is the covariance of F and D, and σF , σD, f and d are the standard deviations
and means of F and D, respectively.

According to [9] a problem can be classified in one of three classes, depending
of the value of r: (1) misleading (r ≥ 0.15), in which fitness tends to increase
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with the distance from the global optimum, (2) difficult (−0.15 < r < 0.15),
for which there is no correlation between fitness and distance, and (3) easy
(r ≤ −0.15), in which fitness increases as the global optimum approaches.

There are some known weakness in the fdc as a measure of problem hard-
ness [1,11]. However, it is fair to say that the method has been generally very
successful [9,4,17,16]. The distance used in the calculations is, for binary search
spaces, the Hamming distance.

In this work we will use fdc to evaluate problem difficulty with and with-
out neutrality. Since we only consider problems where the fitness function is a
function of unitation, we can rewrite CFD in a more useful form.

For a search space of binary strings of length l, if we sample the whole search
space in order to compute CFD, we have:

CFDf =
1
2l

l∑
u=0

(
l

u

)
(f(u)− ff )(u − uf )

where:

ff =
∑l

u=0

(
l
u

)
f(u)

2l

uf =
l

2
where u represent the unitation class of strings.

As mentioned in the previous section, the form of neutrality we consider here
is one where an extra bit is added to the representation. When the bit is set we
say that an individual is in the neutral layer and its fitness is the constant value
flayer. So, when neutrality is present the size of the landscape is 2l+1. Now CFD

is given by:

CFDneu =
1

2l+1

l∑
u=0

(
l

u

)[
(f(u)−fneu)(u−uneu)+(flayer−fneu)(u+1−uneu)

]
where:

fneu =

∑ l
u=0 ( l

u)f(u)
2l + flayer

2

uneu =
l + 1

2
These calculations indicate that the introduction of neutrality does not nec-

essarily imply a reduction of fdc. So, whether or not a problem is easier with
neutrality depends on landscapes features and on flayer.

5 Experimental Setup

We have used two problems to analyse neutrality. The first one is the OneMax
problem which consist in maximizing the number of ones of a bitstring. Seen as
a function of unitation the problem is represented by f(u) = u.



How Neutrality Affects Evolutionary Search 783

Table 1. Parameters

Parameter Value
Length of the genome 10, 14 (+1 for neutrality)
Population Size 80
Generations 100
Mutation Rate (per bit) 0.02
Independent Runs 1,000

The second problem is a trap function, which is a deceptive function of uni-
tation [6]. For this example, we have used the function:

f(X) =
{ a

z (z − u(X)) if u(X) ≤ z,
b

k−z (u(X)− z) otherwise

where a is the deceptive optimum, b is the global optimum, and z is the slope-
change location. Basically the idea is that there are two optima, a and b, and by
varying the parameters k and z, we can make the problem easier or harder.

For the OneMax problem we have used chromosomes of length l = 10 while
for the trap function we have used chromosomes of length l = 14, k = 14,
z = {8, 9, 10, 11, 12, 13}, a = 39, b = 40, and sample size 4,000 to calculate fdc.

The experiments were conducted using a GA with fitness proportionate se-
lection and bit-flip mutation. Runs were stopped when the maximum number of
generations was reached. The parameters used are given in Table 1.

6 Results and Analysis

6.1 Performance Comparison

In this section, we describe empirical evidence which corroborates the discussion
presented above. Let’s start by analysing the results for the OneMax problem.
In Table 2 we show the fdc, the number of generations required to reach the
optimum solution and the percentage of success in finding the optimum. As
expected the problem is more difficult in the presence of neutrality. However,
the degree of difficulty varies flayer. fdc is a good heuristic measure of difficulty
as one can see by comparing the fdc against the percentages of successes for
different values on the neutral layer. In the case considered here (l = 10) the
maximum achievable fitness is 10, and so a neutral layer with fitness 9 turns
the search into a set of parallel random walks. It is not surprising then that,
performance decreases so much with neutrality.

Now, let’s consider the second problem - the trap problem. In this problem,
the length of the genome is 14. As shown in Table 3, the bigger the value of
the slope-change location z the harder the problem. When the neutral layer is
present, regardless the value of flayer, the number of generations required to
reach the global optimum is bigger than when it is not present. This is easy
to explain if we consider that the search space without neutrality is of size 2l
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Table 2. Statistical information on the OneMax problem

flayer fdc Avg. % of
Generations Success

Not present -1 8.07 100
6 -0.4922 10.68 100
7 -0.3010 12.72 100
8 -0.1604 21.73 94.7
9 -0.0650 35.02 34.2

Table 3. Statistical information on the trap problem

Value fdc Avr. Generations % of Success
of No neutral flayer flayer No neutral flayer flayer No neutral flayer flayer

z layer 30 38 layer 30 38 layer 30 38
8 0.42 0.35 0.33 10.81 40.25 29.60 38.7 19.8 1.7
9 0.74 0.45 0.40 8.65 31.26 24.50 17.5 12.1 1.3
10 0.90 0.51 0.45 6.83 12.45 22.60 7.7 1.3 1.9
11 0.96 0.55 0.45 3.85 16.75 17.20 1.7 1.1 1.2
12 0.99 0.57 0.48 0.25 6.20 7.55 0.2 0.7 0.7
13 0.99 0.59 0.49 - 7.90 24.30 0 0.6 0.9

whereas with the presence of it is 2l+1. When 8 ≤ z ≤ 11, the percentage of
runs that reached the optimum solution is bigger when neutrality is not present.
However, the opposite happens when 12 ≤ z ≤ 13. Moreover, when neutrality is
not present the solution is either found after few generations or is not found at
all. This does not hold when neutrality is present, as can be seen in Table 3. This
means that there are complex dynamics going on between layers and regions of
the landscapes, and that only by understanding these one can understand the
effects of neutrality. We investigate them in the next section.

6.2 Family Tree

In a particular generation each individual can be in one of four areas: normal
layer close to the global value, normal layer close to the local value, neutral layer
close to the global value and neutral layer close to the local value. However,
so far we have not studied where an individual in a specific layer came from.
Fortunately, in a mutation based genetic algorithm each individual has only
one parent. This makes it possible to track the origin of a sample point, and,
in fact, the full evolutionary path of an individual within its family tree. This
has allowed us to collect detailed statistics of population flows from one layer
and region to another. To perform a full analysis we need to look at 24 = 16
different parent/offspring transitions: a parent could be in any of four areas and
his offspring could be in any of the same four areas.
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Fig. 1. Number of transitions to the normal global area (top left), normal local area
(top right), neutral global area (bottom left) and neutral local area (bottom right),
when the fitness of the neutral layer is 38

In Figure 1 we show the result of the analysis of family trees for the trap
function using flayer = 38, l = 14 and z = 13. In all plots we can observe that the
majority of offspring in an area came from parents already in that area. These
are not the only sources, however, as shown in Figure 1 where can see that
a small proportion of individuals in the neutral layer near the global optimum
actually comes from neutral local area, indicating the presence of tunnelling.

7 Conclusions

There is considerable controversy on whether or not neutrality helps or hinders
evolutionary search. In this paper we have highlighted some possible reasons
for this situation. A particularly serious problem is that many studies are only
based on performance statistics, rather than more in-depth investigations, and
there is considerable variability in the problems, algorithms and representations
used for benchmarking purposes. Also, there is neither a single definition of
neutrality nor a unified approach to add neutrality to a representation. In this
paper, we have made an effort to address these problems. We used fdc to assess if
a problem gets easier or harder in the presence of neutrality. We complemented
this with statistical information (e.g. average number of generations required to
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solve a problem). We also recorded parent-offspring flows from and to the neutral
network and the basins of attraction of the optima.

We argue that neutrality may be beneficial in some cases, but when it comes
at the cost of an increased size of the search space without a corresponding
expansion of the solution space, then any benefits it may bring via search bias,
tunnelling ability, etc. may be insufficient to compensate for the additional search
effort required by a reduced density of solutions. It is clear that the modifica-
tions in the original search bias of an algorithm produced by the addition of
neutrality (at least of the form we have discussed here) are not always bene-
ficial. We brought, for instance, the example of a unimodal landscape, where,
as confirmed also experimentally, it is very hard to imagine any advantages in
adding neutrality. Neutrality-induced bias, may, however, be very beneficial (so
much so to fully overcome the inefficiencies due to an extended search space) in
certain circumstances, like, for example, when the population is initialised in the
wrong part of the search space. This is particularly common when dealing with
infinitely large search spaces (e.g., the space of variable length strings and the
space of computer programs), where it is impossible to initialise the population
uniformly at random across the whole search space. This may be a further rea-
son why certain studies have reported significant benefits when using neutrality
(albeit of forms very different from the one used here).

We have shown that it is very difficult to infer the effects (or benefits) of
neutrality without getting under the bonnet and looking at the population flows
induced by the presence of neutrality. For example, as we have shown, in exactly
the same conditions, a neutral network of low fitness changes the behaviour of
a genetic algorithm in very different ways than a high-fitness neutral network.
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Abstract. This paper describes a class of random additively decompos-
able problems (rADPs) with and without interactions between the sub-
problems. The paper then tests the hierarchical Bayesian optimization
algorithm (hBOA) and other evolutionary algorithms on a large number
of random instances of the proposed class of problems. The results show
that hBOA can scalably solve rADPs and that it significantly outper-
forms all other methods included in the comparison. Furthermore, the
results provide a number of interesting insights into both the difficulty
of a broad class of decomposable problems as well as the sensitivity of
various evolutionary algorithms to different sources of problem difficulty.
rADPs can be used to test other optimization algorithms.

1 Introduction

There are three important approaches to testing optimization algorithms:

(1) Testing on the boundary of the design envelope using artificial test problems.
For example, concatenated traps [1,2] represent a class of artificial test prob-
lems that can be used to test whether the optimization algorithm can auto-
matically decompose the problem and exploit the discovered decomposition
effectively.

(2) Testing on classes of random problems. For example, to test algorithms for
solving maximum satisfiability (MAXSAT) problems, large sets of random
formulas in conjunctive normal form can be generated and analyzed [3].

(3) Testing on real-world problems or their approximations. For example, the
problem of designing military antennas can be considered for testing [4].

The primary purpose of this paper is to introduce a class of random addi-
tively decomposable problems (rADPs), which can be used to test optimization
algorithms that address nearly decomposable problems. There are three main
goals in the design of the proposed class of problems:
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(1) Scalability. It should be straightforward to control problem size and difficulty
in order to test scalability.

(2) Known optimum. It should be possible to efficiently discover the global op-
timum of any problem instance so that it can be verified whether the global
optimum was found.

(3) Easy generation of random instances. It should be possible to generate a
large number of instances of the proposed class of problems.

The paper then applies several genetic and evolutionary algorithms to a large
number of random rADP instances. Specifically, we consider the hierarchical
Bayesian optimization algorithm (hBOA), genetic algorithms (GAs) with stan-
dard variation and mutation operators, the univariate marginal distribution al-
gorithm (UMDA), and the stochastic hill climber (HC). The results show that
hBOA significantly outperforms other algorithms included in the comparison.
Furthermore, the results provide a number of interesting insights into both the
difficulty of decomposable problems as well as the sensitivity of various evo-
lutionary algorithms to different sources of problem difficulty in decomposable
problems.

The paper starts by introducing the class of rADPs in section 2. Section 3
presents and discusses experimental results. Finally, section 4 summarizes and
concludes the paper.

2 Random Additively Decomposable Problems (rADPs)

This section describes the class of random additively decomposable problems
(rADPs) of bounded difficulty with and without overlap. Candidate solutions
are represented by binary strings of fixed length, but the proposed class of prob-
lems can be generalized to fixed-length strings over any finite alphabet in a
straightforward manner. The goal is to maximize the objective function (fitness
function).

The section first presents the general form of additively decomposable prob-
lems (ADPs). Then, the section discusses ADPs of bounded order with and
without interactions between subproblems. Finally, the section describes how to
generate random instances of the proposed class of decomposable problems.

2.1 Additively Decomposable Problems (ADPs)

The fitness function for an n-bit ADP can be written as the sum of subfunctions
defined over subsets of string positions:

f(X1, X2, . . . , Xn) =
m∑

i=1

fi(Si),

where n is the number of bits in a candidate solution, Xi is the variable corre-
sponding to the ith bit of a candidate solution, m is the number of subproblems
or subfunctions, fi is the ith subproblem, and Si ⊂ {X1, . . . , Xn} is the subset
of variables (string positions) corresponding to the ith subproblem.
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Clearly, any fitness function can be written in the above form because any
problem can be trivially decomposed into one subproblem containing all vari-
ables. The difficulty of ADPs depends on the order of subproblems, the sub-
problems themselves, and their interaction through string positions contained
in multiple subproblems. It is important to note that many difficult problems,
including NP-complete problems, can be defined using subproblems of relatively
short order that interact in a complex structure, while many easy problems may
contain interactions of high order. For example, the problem of finding ground
states of Ising spin glasses can be additively decomposed into subproblems of
order 2, but the problem is NP-complete as a result of complex interactions be-
tween the different subproblems that lead to strong frustration effects [5,6]. On
the other hand, if we consider a simple onemax problem (maximize the sum of
bits) and reinforce the global optimum by adding 1 to its fitness, any decom-
position of the problem must use a subproblem that contains all variables, but
for most algorithms the problem is still as easy as the original onemax or even
easier.

The remainder of this section defines the proposed class of rADPs, shows how
to generate random instances of the described class of problems, and outlines an
efficient method to solve these problem instances.

2.2 Defining ADPs with Overlap

Here we describe a class of ADPs where the overlap is relatively simple and
the optimum can be verified using an efficient procedure based on dynamic
programming. The order of all subproblems is fixed to a constant k and the
amount of overlap is specified by a parameter o ∈ {0, 1, . . . , k−1} called overlap.

The first subproblem is defined in the first k string positions. The second
subproblem is defined in the last o positions of the first subproblem and the next
(k − o) positions. All the remaining subproblems are assigned string positions
analogically, always defining the next subproblem in the last o positions of the
previous subproblem and the next (k−o) positions. For example, for k = 3, o = 1,
and m = 3 subproblems, the first subproblem is defined in positions (1, 2, 3), the
second subproblem is defined in positions (3, 4, 5), and the third subproblem is
defined in positions (5, 6, 7). Note that each string position is contained in one or
two subproblems and that for m subproblems with overlap o, the overall number
of bits is n = k + (m − 1)(k − o). Separable problems of order k are a special
case of decomposable problems of order k with no overlap, that is, o = 0. Other
approaches that control overlap in ADPs can be found in references [7,8,9].

To ensure that the subproblems are not always located in consequent string
positions, the string can be reordered according to a randomly generated per-
mutation. See Fig. 1 to visualize the aforementioned class of decomposable prob-
lems.

Assuming that the problem is decomposable according to the above defini-
tion and that we know the subsets S1 to Sm and the subfunctions f1 to fm, it
is possible to solve any problem instance using a deterministic algorithm based
on dynamic programming in O(2kn) fitness evaluations. The algorithm iterates
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(a) Tight linkage. (b) Loose linkage.

Fig. 1. Examples of ADPs with 4 subproblems of 4 bits each and 1-bit overlap. Each
string position (bit) is displayed as a rectangle and the string positions corresponding
to one subproblem are filled with the same color. The string positions that are located
in more subproblems are split along the diagonal.

through all subproblems, starting with one of the two subproblems that overlap
with only one other subproblem via o string positions. Each next iteration con-
siders one of the unprocessed subproblems that interacts with the last processed
subproblem via o string positions. For example, consider the aforementioned
problem with n = 7, k = 3, and o = 1, where the subproblems are defined
in the following subsets of positions: (1, 2, 3) for subproblem f1, (3, 4, 5) for f2,
and (5, 6, 7) for f3. The dynamic programming algorithm could consider the
subproblems in either of the following permutations: (f1, f2, f3) or (f3, f2, f1).

The dynamic programming algorithm starts by creating a matrix G = (gi,j)
of size (m− 1)× 2o, where gi,j for i ∈ {1, 2, . . . ,m− 1} and j ∈ {0, 1, . . . , 2o− 1}
encodes the maximum fitness contribution of the first i subproblems according to
the considered permutation of subproblems under the assumption that the o bits
that overlap with the next subproblem (that is, with the (i+ 1)th subproblem)
are equal to j using integer representation for these o bits. For example, for the
above example problem of n = 7 bits and permutation (f1, f2, f3), g2,0 represents
the best fitness contribution of f1 and f2 (ignoring f3) under the assumption
that the 5th bit is 0; analogically, g2,1 represents the best fitness contribution of
f1 and f2 under the assumption that the 5th bit is 1.

The algorithm starts by considering all 2k instances of the k bits in the first
subproblem, and records the best found fitness for each combination of values
of the o bits that overlap with the second subproblem; the resulting values are
stored in the first row of G (elements g1,j for j ∈ {0, . . . , 2o − 1}). Then, the
algorithm goes through all the remaining subproblems except for the last one,
starting in the second subproblem, and ending in the (m − 1)th subproblem.
For ith subproblem, all 2k instances of the k bits in this subproblem are ex-
amined. For each instance, the algorithm first looks at the column j′ of G that
corresponds to the o bits of ith subproblem that overlap with the previous sub-
problem. Then, the algorithm computes the fitness contribution of the first i
subproblems assuming that the first (i − 1) subproblems are set optimally and
the ith subproblem is set to the considered instance of k bits; this fitness con-
tribution is computed as the sum of gi−1,j′ and the fitness contribution of the
considered instance of the ith subproblem. The values in the ith row of G are
then computed from the fitness contributions computed as described above.

In the last step, all 2k instances of the last subproblem are considered and
their fitness contributions are computed analogically to other subproblems, using
the (m − 1)th row of G and the fitness contributions of the mth subproblem.
The maximum of these values is the best fitness value we can obtain. The values
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that lead to the optimum fitness can be found by examining all choices made
when choosing the best combination of bits in each subproblem.

2.3 Generating Random Problems

To generate random instances of the class of ADPs defined above, the user
must specify the number m of subproblems, the order k of decomposition, and
the overlap o. After specifying m, k, and o, for each subproblem fi, the 2k

values that specify fi are generated randomly; overall, there are 2km values to
generate. Finally, the permutation of string positions is generated to eliminate
the assumption of tight linkage.

In this work, we generate all 2k values of each subfunction from a uniform
distribution over interval [0, 1). The permutation is also generated from a uniform
distribution so that each permutation has the same probability. Of course, other
distributions can be considered for both the subfunctions and the permutations;
for example, the 2k values for each subfunction can be distributed according
to a Gaussian distribution and the permutations can be biased to enforce loose
linkage.

3 Experiments

This section presents and discusses experimental results.

3.1 Test Problems

We performed experiments on a number of instances of rADPs with and without
overlap that were generated as described above. All problems were solved using
the presented deterministic algorithm so that we could ensure that all algorithms
would find the actual global optimum. However, the compared algorithms were
not provided any information about the global optimum, the locations of the
subproblems, the order of decomposition, or the overlap.

All problems tested in this paper have the same order of subproblems, k = 4.
Three values of the overlap parameter were considered, specifically, o = 0, o = 1,
and o = 2. To examine scalability of the compared algorithms, problems of
various sizes n were examined for every value of o; the number of subproblems
can be computed from n and o as m = (n− o)/(k− o). For each combination of
values of k, o, and n, 1000 random problem instances were generated and tested.

3.2 Compared Algorithms

The paper considers genetic algorithms (GA) with standard crossover oper-
ators, the univariate marginal distribution algorithm (UMDA) [10], stochas-
tic hill climbing (HC), and the hierarchical Bayesian optimization algorithm
(hBOA) [11].

In GA, bit-flip mutation and either two-point or uniform crossover opera-
tor were used. hBOA and UMDA are estimation of distribution algorithms
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(EDAs) [12,10,13,14] where standard variation operators are replaced by building
and sampling a probabilistic model of promising solutions; hBOA uses Bayesian
networks with local structures to model candidate solutions, whereas UMDA
uses a simple univariate model based on single-bit probabilities. In stochastic
hill climbing, bit-flip mutation is used as the perturbation operator. In GA,
UMDA and hBOA, restricted tournament replacement is used to ensure effec-
tive diversity maintenance.

Performance of all algorithms is expressed in terms of the number of evalu-
ations until the global optimum has been found because in difficult real-world
problems, fitness evaluation is usually the primary source of computational com-
plexity. Furthermore, in all compared algorithms, the computational overhead
excluding evaluations can be upper bounded by a low-order polynomial of the
number of evaluations [15].

For hBOA, UMDA and GA, for every problem instance the minimum popu-
lation size to ensure convergence to the optimum in 10 out of 10 independent
runs is found using the bisection method [15]. The upper bound on the number
of generations for hBOA, UMDA and GA is set according to the existing the-
ory [16]; specifically, the number of generations for hBOA is upper bounded by
n whereas it is upper bounded by 5n for all other algorithms. In GA, the prob-
ability of applying two-point and uniform crossover is set to pc = 0.6, whereas
the probability of flipping each bit in mutation is set to pm = 1/n.

In HC, the only parameter set by the user is the probability of flipping each
bit in bit-flip mutation. Here we set the mutation rate to the optimum mutation
rate for order-k separable problems provided in [17] as pm = k/n. The HC is ran
10 times and each run is terminated when the global optimum is found.

3.3 Results

Fig. 2 compares the performance of hBOA, GA, UMDA, and HC on random
problems with o = 0 and o = 2. Fig. 3 visualizes the effects of the overlap
parameter o on the performance of hBOA, GA, and HC. We omit the results for
UMDA because UMDA could solve only smallest problem instances. Fig. 4 shows
how the performance of the two best methods (hBOA and GA with uniform
crossover) varies across the class of random decomposable problems by showing
not only the results for the entire set of 1000 random problems, but also those
for the most difficult 50%, 25%, 12.5%, 6.25%, and 3.125% problem instances
(the difficulty is measured by the number of evaluations until convergence).

3.4 Discussion

The results indicate a low-order polynomial growth of the number of function
evaluations required by hBOA to solve random instances of the proposed class
of problems for any value of o; specifically, the number of evaluations can be
approximately upper bounded by O(n1.85) for o = 0, O(n1.92) for o = 1, and
O(n2.02) for o = 2. The low-order polynomial performance can be observed even
if one considers only the most difficult problem instances.
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(a) hBOA vs. UMDA and GA for o = 0
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(c) hBOA vs. UMDA and GA for o = 2
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Fig. 2. Comparison on random decomposable problems

On the other hand, the results indicate that GA with standard crossover and
mutation operators requires exponential time because it is not capable of com-
bining promising solutions effectively as argued in [18,19] for deceptive problems;
the reason for this behavior is that standard recombination operators can effec-
tively combine only short-order, tight schemata [20,21] and this may often be
insufficient if the short-order, tight schemata do not lead to the optimum. The
performance of hBOA, GA and UMDA gets slightly worse with overlap although
all algorithms perform similarly for different values of overlap.

Mutation by itself is also inefficient and its performance is much worse than
the performance of hBOA even on separable problems where there is no overlap.
Overlap further affects mutation, making this operator work much less efficiently
even with the overlap of only o = 1; the effects of overlap are much stronger for
HC than for the recombination-based methods hBOA, GA and UMDA.

4 Summary and Conclusions

This paper presented a class of random additively decomposable problems
(rADPs) with and without overlap. The proposed class of problems differs from
other comparable problem classes in several important ways. First of all, unlike in
concatenated traps, onemax, and many other artificial decomposable test prob-
lems, here each subproblem of a specific problem instance is expected to be unique
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Fig. 3. The effects of overlap on the performance of hBOA, GA, and HC

and both the difficulty of subproblems as well as the signal-to-noise ratio are ex-
pected to vary fromone subproblem to another. Second, unlike in Ising spin glasses,
MAXSAT and many other difficult problems, all problem instances are relatively
easy to solve given all problem-specific knowledge or effective variation operators
that can automatically identify and exploit problem decomposition. Despite that,
the generated problems are still difficult enough to make many standard, ineffec-
tive variation operators fail. It is also important that in the proposed class of prob-
lems, problem difficulty and the order of interactions between subproblems can
be controlled in a straightforward manner. Since it is widely believed that many
real-world problems are nearly decomposable and the proposed class of problems
covers many potential problems of this form, the proposed class of random prob-
lems can be used to provide valuable information about the performance of various
optimization algorithms in many real-world problems and to design automated
methods for setting algorithm-specific parameters in a robust manner.

The paper applied a number of evolutionary algorithms to random instances
of the proposed class of problems. Specifically, the paper considered the hierar-
chical BOA (hBOA), the genetic algorithm (GA) with standard crossover and
mutation operators, the univariate marginal distribution algorithm (UMDA),
and the hill climbing (HC) with bit-flip mutation. The results showed that the
best performance is achieved with hBOA, which can solve all variants of random
decomposable problems with only O(n2.02) function evaluations or faster. GA,
UMDA and HC perform much worse than hBOA, usually requiring a number of
evaluations that appears to grow exponentially fast. The results also provided
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Fig. 4. hBOA on most difficult 100%, 50%, 25%, 12.5%, 6.25%, and 3.125% instances

insight into the sensitivity of recombination and mutation operators to overlap
in decomposable problems; specifically, recombination-based methods appear to
be much less sensitive to overlap than the methods based on local search oper-
ators. Although deception is not enforced for any subproblem, linkage learning
remains important. Finally, the difficulty of random decomposable problems does
not seem to vary much within the same setting of n, k, and o.

The source code of the proposed problem generator and other related functions
in ANSI C is provided online atMEDAL web page, http://medal.cs.umsl.edu/.
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Abstract. Binary Decision Diagrams (BDDs) have become the data
structure of choice for representing discrete functions in some design and
verification applications: They are compact and efficient to manipulate
with strong theoretical underpinnings. However, and despite many ap-
pealing characteristics, BDDs are not a representation commonly consid-
ered for evolutionary computation (EC). The inherent difficulties associ-
ated with evolving graphs combined with the variable ordering problem
poses a significant challenge which is yet to be overcome. This work ad-
dresses this challenge and presents a new approach to evolving BDDs
that exhibits good variable orderings as an emergent property.

1 Introduction

The variable ordering problem is prominent in all BDD1 applications, not just
EC. If a good variable ordering can be found the BDD representation of a func-
tion will often be simple and efficient to manipulate [3]. However, the variable or-
dering problem is NP-complete in both optimal and approximate solutions [2,13].
Furthermore, Krause [9] has argued theoretically that synthesising even an ap-
proximating function in the BDD representation is hard, and further suggested
that the variable ordering must be optimised during the synthesis procedure.

The EA presented here optimises the variable ordering alongside function. It is
elegant in its construction and can exhibit near optimal orderings as an emergent
property. Most of the previous approaches to evolving BDDs have employed only
a static variable ordering and have therefore been limited to functions for which
a good variable ordering is known in advance [15,12,6,14,4]. For most practical
applications, however, good variable orderings cannot be known in advance so the
variable ordering must be optimised along with functional fitness. Only Droste
[7] has addressed this previously with a distributed hybrid approach, combining
his earlier BDD-based GP with existing heuristics for variable reordering.

The important aspects of BDDs are reviewed in section 2, and the algorithm
for evolving them introduced in section 3. The relationship between evolvability
and variable ordering is then investigated, and it is shown in section 4 that
better variable orderings are associated with greater evolvability. That result is
then used in section 5 to account for the emergence of good variable orderings
demonstrated therein.
1 The term BDD is used here as the generic sense; there are many variants.
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2 Binary Decision Diagrams

BDDs [1,10] are similar in principle to the more familiar decision tree, and can be
considered a generalisation of binary decision trees. A BDD is a rooted directed
acyclic graph representing a function of the form f(V ) : Bn −→ B. Each non-
terminal is labelled with a Boolean variable v ∈ V and has a then child and an
else child, reflecting the fact that each non-terminal represents an if-then-else
operation on v. Terminals are labelled from B. Given an assignment of values for
V , the output is determined by traversing the BDD from the root to a terminal
following the child indicated by each vertice’s variable label value.

An ordered BDD (OBDD) [3] imposes a total ordering on the appearance of
non-terminal labels along any path with π, the variable ordering. Thus, π =
[v1, v2, . . . , vn], an ordered list of variables, and i < j must hold for each vi

followed by vj along any path. It is not necessary that all v ∈ π appear in a
path. In this paper the notation [v1, v2, . . . , vn]-OBDD is used to specify the
ordering associated associate with an OBDD, or simply π-OBDD to emphasise
the significance of the ordering without specifying it.

Redundancy in an OBDD can be removed in two ways:

1. Remove redundant tests. A nonterminal α that has both outgoing edges
pointing to the same vertex β is redundant. Redirect all α’s incoming edges
to β.

2. Remove duplicate vertices. If nonterminals α and β have identical sub-
structure and variable label, then β can be removed with its incoming edges
redirected to α.

A reduced OBDD (ROBDD) is an OBDD that cannot have its complexity re-
duced further by the reductions described above. Bryant [3] has shown ROBDDs
to be canonical forms ; meaning that each function has a unique ROBDD repre-
sentation for any given π, allowing easy equivalence and satisfiability checking.

It is OBDDs and ROBDDs that are of most practical use. In section 5, the
space of all OBDDs for all π are taken as the genotype space. The redundancy
of having many OBDD equivalent representations has been found to enhance
the search [4,5] through the neutrality concept [8]. In section 4, subspaces of
genotype space, restricted by categories of π, will also be used.

The variable ordering, π, can have a dramatic impact on the complexity of
resulting π-ROBDD: In this paper, the complexity of an π-(R)OBDD is the
number of nonterminals it contains. For example, figure 1 shows the effect of
reversing π for the 6-bit multiplexer problem. For the n-bit multiplexer, the
complexity of ROBDD is known to grow linearly for the best π and exponentially
for the worst. Furthermore, as n increases, the fraction of π leading to ROBDDs
exponential in complexity is said to converge to 1 [7]. While some functions are
insensitive to the π in this respect, many are expected to have similar properties
to the multiplexer. Thus, for applications employing ROBDDs, the problem of
finding a good π is of crucial significance.
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0 1 0 1

Fig. 1. The influence of variable ordering on ROBDD complexity. The two ROB-
DDs represent the 6-bit multiplexer function. The ROBDD on the left has order-
ing [0, 1, 2, 3, 4, 5] (control bits = 0,1), the one on right has the reverse ordering,
[5, 4, 3, 2, 1, 0].

All heuristic approaches to dynamic variable ordering are built on the pro-
cedure for swapping adjacent variables without affecting function; see [11] for
an efficient implementation method. Variable swapping has complexity propor-
tional to the number of nodes associated with the two adjacent variables, so can
generally be done in reasonable time.

3 Evolving BDDS Using Implicit Neutrality

The EA for evolving BDDs is now introduced. It is derived and extended from
that introduced in the paper entitled Evolving Binary Decision Diagrams using
Implicit Neutrality [4]. The highly significant extension introduced here is that
of dynamic variable ordering. From hereon this EA will be referred to by the
acronym EBDDIN after the title of the paper that introduced it and in recogni-
tion of the underlying principle evident in the approach. This principle is that of
exploiting the neutrality implicit in the OBDD representation, and is thus differ-
entiated from methods typically employed for introducing neutrality through the
absence of any explicit mapping from one representation to another. Exploiting
this implicit neutrality offers considerable inherent benefits within the context
of OBDDs [4,5].

The following atomic mutations are defined, five explicitly neutral and one
functionally modifying. The neutral atomic mutations are derived from estab-
lished OBDD theory; the functionally modifying atomic mutation is a natural
and intuitive one for any graph-based representation.

Definition 1. Let N1 be the neutral mutation of removing a redundant test.

Definition 2. Let N1′ be the neutral mutation of inserting a redundant test,
the inverse of N1.

Definition 3. Let N2 be the neutral mutation of removing a redundant non-
terminal (merging two equivalent non-terminals).
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initialise

select parent(s)

choose mutation

attempt mutation

offspring
adapted?

evaluate
offspring

copy fitness
value from

parent

terminate?

inject offspring
into population

noyes

repeat bound-1
times or while

not mutated

no

yes

repeat for each
offspring

Fig. 2. Algorithm flowchart. The bound (mutation bound) parameter is an integer
specifying the number of attempts at choosing and applying an atomic mutation. If
the selected vertex (or vertices) is not amenable to the chosen mutation operation,
the mutation attempt is deemed a failure. If all ‘bound’ mutation attempts are either
failures or are neutral, the fitness value can be copied over from the parent.

Definition 4. Let N2′ be the neutral mutation of inserting a redundant non-
terminal, the inverse of N2 (splitting).

Definition 5. Let N3 be the neutral mutation of swapping adjacent variables
while maintaining overall function.

Definition 6. Let A1 be the ‘potentially’ adaptive (or functionally modifying)
mutation of changing one of the children of a non-terminal, to another vertex,
potentially orphaning a sub-graph.

The general structure of the breeding algorithm is depicted in figure 2. The choice
of selection scheme is somewhat arbitrary: Tournament selection and both (μ+λ)
and (μ, λ) ES schemes have all been found to work well in practice. The atomic
mutations are applied to randomly selected vertices or variables in a way that re-
spects the requirement of total variable ordering demanded for all paths through
an OBDD. The mutations are atomic in the sense that they are each considered
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minimal changes. More severe changes are achieved by stringing together atomic
mutations, the maximum number of which is specified by the bound parameter.2

In practice, about one quarter of all mutation attempts fail, so the actual number
of atomic changes between parent and offspring genotype lies somewhere between
1 and the bound inclusive when clones are prohibited.

There are many BDD packages available but they are typically restricted
to working with OBDDs in their reduced form only, and not amenable to the
methods described herein. For this reason the author’s own experimental OBDD
implementation package was employed for all experiments described in this pa-
per. However, only implementation independent performance measures are used
in the evaluation of these experiments.

4 Evolvability and Variable Ordering

The aim of this section is to establish the relationship between evolvability and
the ROBDD complexities induced by π. The complexity of ROBDD induced
by a given π for a given problem is referred to in this paper as the Implied
Solution Complexity (ISC) of π, or of an π-(R)OBDD. For example, the ISC
of π = [0, 1, 2, 3, 4, 5] for the 6-bit multiplexer problem (6-mux) is 7; this is the
number of nonterminals in the [0, 1, 2, 3, 4, 5]-ROBDD solution to 6-mux (see
figure 1): The reverse ordering has an ISC of 29. Similarly, any [0, 1, 2, 3, 4, 5]-
(R)OBDD has an ISC of 7 for 6-mux, regardless of its actual fitness for 6-mux.

So, the objective here is to investigate how differing π, categorised by their ISC
values, influence evolvability. To achieve this, the algorithm is run without dy-
namic variable ordering (i.e., no N3 mutations) for selected ISC categories. The
Average Evaluations to a Solution (AES) performance measure is then taken as
an indication of the degree of evolvability associated with each ISC category. The
actual π under each ISC category are generated randomly. The results are plotted
in figure 3. As can be seen clearly, for all problems tested, the trend associated with
increasing ISC is increasing AES (poorer evolvability). Furthermore, the trend of
increasing AES is greater than linear in ISC, and appears to be approaching ex-
ponential. What is concluded from these results is that better π, that is, π having
lower ISC values, are associated with much greater evolvability.

Knowing that evolvability is associated with low ISC values, however, appears
of little use if there is no prior knowledge about which π have low ISC values.
For functions such as the multiplexer and adder, optimal π are well-known so a
good π can be fixed in advance of running the EA. However, in general, it is not
possible to tell in advance which π have low ISC.

5 Emergence and Variable Ordering

In this section it is argued that good π are an emergent property of the extended
EBDDIN with dynamic variable ordering. What is meant by ‘emergence’ in this
2 In [4] the bound parameter was referred to as rate, but is changed here due to potential

ambiguity with per-gene mutation that is specified with a probability.
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Fig. 3. Evolvability comparison of variable orderings for selected problems. Variable
orderings are categorised by their ISC value and sample categories selected to span the
entire range for each problem. 100 runs are perfomed for each ISC category. All four
graphs exhibit the trend of rapidly increasing AES against increasing ISC value.
* In (d) no AES value could be obtained for 509 due to to the extremely poor evolv-
ability of this category.

respect is that there is no explicitly introduced incentive in EBDDIN for inducing
individuals with below average ISC value. That is, there is no aspect of the fitness
function, secondary size-related fitness objective, or mutation-related incentive
that explicitly encourages propagation of π with low ISC. Indeed, only the N3
mutation, the swapping of adjacent variables, can influence ISC directly, and
the location point for N3 in the genotype is always chosen randomly by variable.
Good π arise solely as the logical consequence of being associated with subspaces
of genotype space that are more evolvable. That is, individuals possessing π with
lower ISC values propagate more readily due to the fact that they are more likely
to produce fitter offspring.

The problems investigated here are the 11-mux (11 inputs, 1 output), 20-mux
(20 inputs, 1 ouput) and the 4-bit adder with carry out (8 inputs, 5 outputs). The
fitness functions employed on both problems are negated counts of erroneous out-
put bits, so maximum fitness = 0. Optimal ISC is 15, 32 and 29 respectively, and
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Fig. 4. The emergence of good π. The population mean (μ) ISC and fitness values
are plotted. The population is initialised to random OBDDs having worst π. (a) The
main figure shows ISC values for five independent runs on 11-mux. Inset: the single run
that undergoes temporary ISC relapse is shown below fitness as an indication of the
correlation between ISC and fitness. Within 1000 generations all runs pass expected
ISC, E, and stabilise near the optimal of 15. (b) Two runs are shown for 20-mux with
fitness alongside ISC. Both runs approach optimal ISC, and remain fairly stable there,
while fitness remains in the very early stages of optimisation.

worst ISC is 509, 131,069 and 105 respectively; expected ISC, E, established by
frequency sampling, is approximately 49, 564, 72 respectively. A (10, 16) ES is em-
ployed for the mux-n problems, and a (15, 50) ES for the adder, so no parents are
carried to subsequent generations; no clones are bred either.3 A mutation bound
of 1, the minimal, is used for all experiments, as this has been found likely to be
the most favourable [5]. The populations are initialised to worst π for mux-n, and
randomly for the adder. The results are shown in figures 4 and 5: Note that the
vertical scales for ISC are inverted so that correlation with fitness is more easily
interpreted, and ISC may be plotted only within the range of primary interest. An
interpretation of the results is presented in the remainder of this section.

For both mux problems (figure 4), expected ISC is exceeded, and near optimal
ISC reached, early on in each run. It is near the optimal where ISC appears most
stable. However, there are periods where ISC undergoes temporary relapse, but
is soon recovered. In the inset of figure 4(a) this can be seen in more detail,
a correlation between ISC and fitness apparent. An increase in ISC appears to
be followed by a drop in fitness or slowing in fitness increase, while a drop in
ISC appears to be followed by an increase in fitness or rate of increase. While a
drop in ISC is accounted for by inherent selection for evolvability, the converse,
an increase in ISC (drop in evolvability), can only be the result of random
genetic drift, where mutants with high fitness but high ISC (low evolvability)
saturate the population temporarily; this behaviour is not unexpected in a small
population. In addition, for 20-mux, it can be seen that the near optimal ISC is
3 These parameters are not optimised.
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Fig. 5. 10 runs on the 4-bit adder problem are shown with population initialised to ran-
dom π. The top inset shows the a single run as ISC below fitness, and a less prominent
correlation than for 11-mux. The bottom inset shows the average of all runs. ISC ex-
ceeds the expected and stabilises within 1000 generations, but the gain is, respectively,
more modest than for 11-mux.

reached long before fitness is optimised, the population genotype appearing to
forge itself into one most evolvable for the fitness function.

The results for the adder also exhibit the emergence of π with better than
expected ISC (figure 5). The population is this time initialised to random π
rather than worst. While better than expected ISC is reached in around 500
generations, ISC appears to remain erratic within a wide range of values whose
average is a long way off the optimal of 29, but better than the expected of
72. One run (top inset) does approach the optimal ISC early on, but this is
quickly lost and never recovered like it was in for 11-mux. However, in contrast
to the single run shown for 11-mux, optimal fitness is maintained during this
loss evolvability: This is perhaps accountable, in part, to the larger population
which counters the loss of parents in subsequent populations.

The apparent difference in the emergence of low ISC π between mux and the
adder problem is now discussed. The terrain of ISC values under the N3 muta-
tion is likely to be significant here. Both mux and adder problems are known to
have many local optima under direct ISC optimisation using N3. However, the
fact that the objective of the fitness function used here is optimised function, not
optimised ISC, allows genetic drift to move the search away from the trappings
of what would otherwise be ISC local optima. To give an indication of the com-
parative ISC terrain, optimal ISC were perturbed for 11-mux and the 4-bit adder,
and the corresponding increases in ISC recorded. The results are shown in Table
1. 11-mux is clearly much more robust to perturbations than 4-bit adder, which
suggests a much smoother ISC terrain for the former. The range of ISC values is
15-509 and 29-105 respectively, which enhances confidence in this conclusion. The
frequences of ISC values may also be a factor. Thus, for the adder, the population
appears to become ISC-localised due to rugged ISC terrain, which is difficult to
navigate under the present scheme. A wider range of range of operators for vari-
able reordering may help smooth the ISC terrain, but this has not been tested.
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Table 1. ISC robustness to N3 perturbations. The column headers indicate the number
of successive perturbations applied to a π with optimal ISC. The values below reflect
the corresponding increase in ISC for the two problems, averaged of 1000.

# perturbations 1 5 10 15
11-mux 0.0960 0.4860 1.0350 1.4980

4-bit adder 3.0960 11.3100 17.9850 22.7310

6 Conclusion

The extended EBDDIN with dynamic variable ordering offers a straightforward
approach to BDD synthesis where good variable orderings are not known in
advance. Near optimal variable orderings can emerge due to the fact that they
induce a greater capacity to evolve under this approach: This readily observ-
able property demonstrates the evolution of evolvability, a property which is
of significant interest to the EC community. Applications for the synthesis of
BDDs representing both fully and incompletely specified functions are expected
to benefit, as is the study of evolvability and its emergence.

More work needs to be done before EBDDIN, and BDDs in general, find
favour within the EC community. However, in this and previous work, some of
the potential has begun to be uncovered.
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Abstract. This paper presents studies on the life history evolution
of plants carried out by experimenting with a multi-agent platform of
generic virtual plants. The conducted simulations address the trade-off
between resource allocation to vegetative and reproductive structures.
The trade-off is pointed out by evolutionary runs selecting for one of the
two traits. It is further shown that the introduction of an age at maturity
is an effective measure to enhance both life history traits. A third series
of experiments highlights that competition in plant communities has an
impact on the trade-off. Depending on the competitive pressure, plants
evolve more investment of resources into growth than into reproduction.
The results corroborate some hypotheses of life history theory.

1 Introduction

Life history is a term that refers to the pattern of survival, growth and reproduc-
tion exhibited by an organism [1]. One major challenge of life history theory is to
study the variation in traits such as growth rate, age and size at maturity, repro-
ductive effort, number and size of offspring and life span observed in nature, and
to explain them as evolutionary adaptations to environmental conditions [20]. A
fundamental component of the theory is the concept of trade-offs. Its framework
is expressed in the “principle of allocation” which states that resources can only
be allocated to one life history function and that investment in one activity is at
the expense of the others [2]. As an example related to this paper, reproductive
allocation reduces survival and growth rate and therefore is likely to decrease
future reproduction. Understanding trade-offs is a key point in life history theory
which, according to the evolutionary ecologists Stephen Stearns, like “no other
field brings you closer to the underlying simplicities that unite and explain the
diversity of living things and complexities of their life cycles.” [20]. However,
Stearns recently stated that “we have a lot of evidence that trade-offs exist; we
have very little understanding of the mechanisms that cause them” [21].

Hypotheses relating to evolution are often difficult to verify due to its slow
pace. This is why, for validation and analysis, mathematical models have been
formulated [17]. Yet the computational power of modern computers offers the
possibility to conceive individual based models and test evolutionary hypotheses
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by simulating corresponding processes in silico [14]. For plants and their com-
munities, there exists a large number of computer models, but they are most
often specifically adapted to represent given plant species or plant community
scenarios and not intended for evolutionary dynamics. This paper introduces a
model of generic virtual plants designed for the study of plant evolution. The
conducted experiments address the life history trade-off between resource allo-
cation to vegetative and reproductive structures, and reveal age at maturity and
competition to be two influential elements.

The next section gives an overview of the state of the art in the modeling of
plants. In section three the virtual plant model and its simulation platform are
presented. The conducted experiments are described and discussed in section
four. Section five concludes the paper with reflections on the approach.

2 State of the Art

The origins of the computer modeling of plants can be traced back to the 1960s,
when Ulam simulated the development of branching patterns using cellular au-
tomata [24]. Since then a huge amount of work has been devoted to this research
field. As study objectives can differ from one plant model to another, there exists
a variety of approaches. According to the traditional classification suggested by
Kurth [10], physiological and morphological models can be distinguished.

Physiological models, also called process-based models, reflect metabolic ac-
tivities inside a plant. Their architectural structure remains low detailed, as the
individual plant is merely decomposed into a fixed number of compartments
such as root, stem and crown, exchanging substances in terms of mass variables.
The attention is primarily turned to carbon balance, due to its importance for
plant growth, by modeling photosynthesis, carbon allocation and respiration.
However other influential substances such as soil nutrients can equally be taken
into account. Because of their manageable architecture and their small number
of parameters, physiological models are convenient for plant representations on
a rather coarse scale [11].

Morphological models describe plant architecture by making use of its mod-
ular structure. They consider the plant as a composition of repeated modules
like leaf, fruit or fine root which dynamically appear and disappear during the
plant development according to a number of growth rules. Probably the most
widely used representation of plant morphology is the L-system formalism [16].
L-systems are formal grammars with the possibility of recursive applications in
a parallel rewriting process. Starting from an initial axiom ω , a set of rules P
is iteratively applied in order to form a string of characters from an alphabet
A. The string represents the plant, whereas each character represents an ele-
mentary module. Positional information of the modules can be integrated by
using a bracketed notation. The translation of the string into a geometric struc-
ture is achieved by graphical interpretation using turtle geometry [16]. Figure 1
illustrates a sample L-system and the resulting plant after several iterations.
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Fig. 1. Example of an L-system

Morphological and physiological processes of plant development are profoundly
interwoven [12], and in the last decade many models emerged as the coupling
of both aspects. They typically depict a 3D description of the plant where the
organs interact with local environmental conditions and with one another ac-
cording to the plant topology. Because of their complete picture of plant devel-
opment, these models are also termed “virtual plants” [18]. Plant communities
can be represented as a number of virtual plants which develop concurrently in
a multi-agent approach [5]. Interaction results from the modifications that each
individual contributes to the physical environment. In particular, the available
resources become an object of competition between neighboring plants.

3 The Plant Model

The following section presents a model for the study of evolutionary dynamics in
plant communities. Based on a simple concept of generic virtual plants, it is able
to carry out simulations of evolving plant communities while emphasizing the
most important morphological and physiological aspects of a single plant. Thus
individual responses to resource disposition and other environmental constraints
can be observed.

3.1 The Environment

The physical environment is a continuous 3D space composed of the soil and the
sky, homogeneously divided into a number of voxels each of which holds local
environmental information. Light and minerals are resources of prime impor-
tance for the growth of natural plants [25]. The sky voxels provide light which
is captured by the leaves in order to produce carbon via photosynthesis. If an
object is situated aboveground, it casts shadows. In such case, the light intensity
of all sky voxels following the angle of incidence is decreased. Soil voxels contain
minerals which are assimilated by the fine roots. Diffusion, a passive movement
from regions of high concentration to regions of low concentration, leads to min-
eral balance between neighboring voxels. All the assimilated minerals of a virtual
plant are eventually redeposited in the soil so that their total amount within the
environment is constant. The minerals of dead roots are put in the corresponding
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soil voxels and those of the aerial compartment in a mold layer which gradually
penetrates the upmost soil layer.

3.2 The Virtual Plant

A virtual plant is divided into an aboveground and belowground component
called shoot and root respectively. Their morphologies are each expressed by an
L-system whose alphabet is detailed in figure 2. The geometric shape of the plant
modules is based on sphyls (cylinders with spherical ends). In the scope of this
paper, only deterministic context free L-systems, also called D0L-systems [16],
are applied. The predecessor character of the first rule is A, of the second rule B
and so on. The shoot and root morphologies of a virtual plant seedling both start
with the single non-terminal character A. A small amount of initially available
biomass allows the young plant to develop its first modules, but subsequently it
has to rely on the acquisition of resources.

The physiological processes of a plant are based on a two-substrate version
of the transport-resistance model [22]. Shoot and root hold separate substrate
pools for carbon and minerals. Photosynthesis charges the shoot carbon pool,
and root assimilation supplies the root mineral pool. Growth occurs through
the conversion of carbon and minerals into biomass, deducting a certain loss to
litter. The exchange between the carbon and mineral pools is represented as a
function of substrate concentration difference divided by a resistance. Thornley
suggested that all physiological models of plant development should start with
this irreducible framework [23].

Produced biomass is distributed to the apexes and, in the shoot, reproductive
modules according to a sink strength. Once an apex reaches the required cost for
the production of a successor string, the appropriate production rule is applied.
When a reproductive module attains a specified biomass, a seed is dispersed in
the neighborhood of the plant. After a limited span of life the plant dies and its
resources are restored to the environment.

Fig. 2. The L-system alphabet
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Fig. 3. Sample shoot and root genotypes of a bush

3.3 The Genotype

The development of the virtual plants is ruled by a set of “genetic informa-
tion” recorded in a genotype. It contains the variables of the transport-resistance
model such as growth and litter rates or resource assimilation and inhibition,
as well as twelve additional real-valued physiological parameters like age limit,
duration of bloom and seed biomass. Moreover, it specifies the parameters and
production rules of the root and shoot L-systems. Figure 3 displays a portion
of this genotype for a simple bush. Depending on the object of the study, some
of its elements may be fixed and others subjected to evolution. For the pur-
pose of investigating the allocation to reproductive and vegetative structures,
the evolving elements in the genotype are limited to the L-system production
rules. Evolution may affect the trade-off between the two life history traits by
insertion and deletion of reproductive (f) and vegetative modules (l, b, A,B, ...)
in the production rules of the shoot L-system. All other parameters are prede-
fined and fixed in order not to obscure the results by too large a genetic search
space. Mutations are introduced by several genetic operators each of which is
associated with a probability. They are chosen such that any set of production
rules can be constructed by evolution. The three operators

– Delete rule (a rule of the L-system is deleted)
– Insert rule (an empty rule is appended)
– Duplicate rule (a rule is duplicated and appended)

modify the number of rules. Five other operators act on the successor strings.
Only minor changes, i.e. character by character, are possible between successive
generations. For example, if the production A→ blfA is selected to be mutated,
some of the possible mutations are

– Delete character (a character is deleted): A→ blf
– Insert character (a character is inserted): A→ b&lfA
– Permute character (two adjacent characters are switched): A→ bflA
– Duplicate character (a character is duplicated): A→ blffA
– Mutate character (a character is replaced by a new one): A→ b[A]fA
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4 Results

The model of section three has been implemented as a simulation platform. It is
developed in C++ and uses the OGRE library [15] for graphical representations.
This section presents the results of three different sets of experiments, aiming at
the identification of evolutionary mechanisms in the life history trade-off between
allocation to reproductive and vegetative structures.

4.1 Experimental Setup

In every experiment, virtual plants are evolved by a typical evolutionary algo-
rithm [9]. A run starts with an initial population of genotypes with the minimal
production rules A→ l and A→ r. In the phase of development the genotypes
are translated into a population of phenotypes. To do so, a seed of each geno-
type is placed in a sufficiently large environment and grown for a fixed amount of
time. Selection then chooses a proportion of individuals by measuring the pheno-
types in terms of a predefined notion of fitness. The selected individuals survive
and give birth to the next generation of mutated genotypes. In the literature,
there exist various selection methods for evolutionary algorithms. The tourna-
ment selection applied here is inspired by competition in nature and arranges
“tournaments” to compare the fitness between a few randomly chosen individ-
uals [6]. The best performing individual of every tournament is retained. This
approach additionally offers the advantage to easily adjust selection pressure by
changing the tournament size.

The probability of each genetic operator is defined as 0.1. This value may be
overrated compared to natural evolution, but has been chosen to accelerate the
process. The populations are typically composed of 40 plants grown for 30 time
units. Survival ratio is set to 1

4 and tournament size to 10 individuals. This setup
was determined experimentally and turned out to produce conclusive results in
a reasonable amount of time. A run over 500 generations would take about two
hours on a modern PC.

4.2 Revealing the Trade-Off

The first experiment is intended to point out the trade-off between allocation
to reproductive and vegetative structures. A straightforward method to show
an evolutionary trade-off is the comparison between breedings with selection for
one of the two considered traits. Therefore, two series of evolutionary runs were
conducted. In the first twenty runs, the virtual plants were selected for reproduc-
tive output, defined as the overall produced seed biomass during their lifetime
[19]. In the second twenty runs, the individuals were bred for their amount of
vegetative biomass at the end of the simulation.

The performance of the evolved plants with respect to both life history traits
is shown in figure 4. Depending on the course of evolution, the runs result in
different local fitness maxima. The plants selected for seed biomass only grow to
a fraction of size of those selected for vegetative biomass. Reproduction is not
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Fig. 4. Selection for reproductive and veg-
etative structure

Fig. 5. Evolution with and without age
at maturity (the indicated numbers corre-
spond to the evolved parameter values)

completely exclusive of growth because fertility depends on resource acquisition,
which is again correlated with plant size. In contrast, plants evolved for growth do
not produce any reproductive output because seeds are disadvantageous resource
sinks. Besides indicating the trade-off, the simulation notably highlights the
advantage of computer models to accelerate evolutionary experiments which
would simply take too long, if performed in nature.

4.3 Reproductive Maturity

A closer look at the genotypes evolved for seed biomass reveals that the shoot
L-system of well performing individuals is arranged such that reproductive mod-
ules do not appear in all production rules, but develop only via the application
of several preceding rules. By this means, the plant starts reproduction with
a certain delay. Early investment into reproductive structure leads to the ex-
haustion of resources and incurs a cost in growth and therefore future fecundity.
Therefore, natural plants most often possess a threshold size which has to be
attained before reproduction is possible. Just as observed in the simulation, this
can be due simply to the requirement to produce the necessary structures [4].

The result of the first experiment suggests that a preliminary growth period
without any allocation to seed biomass may enhance the final reproductive out-
put. Age and size at maturity are considered as key parameters in the life history
of most organisms [20]. The second series of experiments goes further and in-
vestigates if and to what extent a physiologically controlled age at maturity can
influence the trade-off. To model this life history trait, an additional, real-valued
genetic parameter has been introduced into the genotype and subjected to evolu-
tion. With this parameter, the allocation of biomass into reproductive modules is
only activated when the plant attains the indicated age. A new series of twenty
runs selecting for reproductive output was conducted. Figure 5 compares the
performance of the previous plants to those featuring an age at maturity. It can
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Fig. 6. Competitive pressure influencing
the trade-off

Fig. 7. Evolved morphologies of isolated
and competing plants

be observed that the new parameter allows to evolve significantly better values
with respect to both life history traits. Moreover, well growing plants defer their
age at maturity in order to make the most out of the exponential character of
their juvenile growth period. It can be concluded that the introduction of an
age at maturity is an effective measure to enhance both considered traits. Many
natural plants indeed start reproduction only after a period of juvenile stage [3].

4.4 Competition

Thanks to their isolated breeding, the plants of the previous experiments did
not encounter any interference from neighboring individuals. Consequently, evo-
lution optimized resource allocation without considerations of competitiveness.
However, except for some colonizing species, natural plants rarely encounter such
open environments but grow in crowded communities where resources are more
limiting. A third series of experiments therefore addressed the impact of compe-
tition on the studied allocation trade-off. This time, the plants of a population
were not grown individually but simultaneously, randomly placed in an environ-
ment with limited space and resources. Afterwards, the reproductive output of
all individuals was determined and the ten best performing plants were kept to
produce a new population of genotypes.

Figure 6 compares the isolated breeding with evolutionary runs at two de-
grees of competition. Light competition occurs in an environment which con-
fronts the plants with few interferences from neighbors. Severe competition is
induced by quartering the size of the terrain. Due to the limitation of resources,
the competing plants generally develop less vegetative and reproductive struc-
tures. Moreover, they decrease their reproductive effort, defined as the propor-
tion of the total resource budget devoted to reproductive processes [8]. Depend-
ing on the competitive pressure, the plants need to invest more resources into
growth. Figure 7 illustrates this conclusion by opposing the best performing spec-
imen evolved in isolation to a group of competing individuals. Light becomes a
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particularly limiting factor, so that the plants need to adopt high and tall shapes
stretching out to the sky in the effort to outcompete their neighbors. This re-
sult agrees with Harper’s hypothesis that, as individual success is based on the
capture of resources, competing plants need to sacrifice fecundity in order to
develop competitive ability [7].

5 Conclusion

Trade-offs play a central role in life history theory [20]. To contribute to the un-
derstanding of the evolutionary mechanisms involved, three series of experiments
have been presented in this paper. They addressed the trade-off in plants be-
tween resource allocation to reproductive and vegetative structures, conducted
with a multi-agent platform of generic virtual plants. The plants, growing in a
3D environment, are based upon the fusion between a two-substrate transport-
resistance model and an L-system formalism.

The trade-off was pointed out by evolutionary runs selecting for one of the two
life history traits. The introduction of a physiological parameter representing an
age at maturity was shown to be an effective measure to enhance both traits.
A third series of experiments highlighted that competition in plant communities
has an impact on the trade-off. Depending on the competitive pressure, plants
evolved more allocation into growth than into reproduction, sacrificing fecundity
in order to gain access to the available resources. These simulations showed
that age at maturity and competition are two influential elements in the life
history evolution of plants and revealed some of their implications. The results
are obtained without intentional parametric bias and demonstrate the emergence
of life-like traits in artificial systems.

Combining process-based with structural models, virtual plants allow to rep-
resent plant development with respect to physiological as well as morphological
aspects and notably to embrace the interrelations between them. This may yield
new insights on the evolution of life history traits which are intrinsically tied to
both aspects. Moreover, virtual plants complement the mathematical approaches
with the possibility of producing a number of results for the same general type
of computation, by adding a stochastic component, which may be relevant for
inherently statistical hypotheses of evolutionary biology. Even if biological hy-
potheses cannot be actually proved by computer modeling, they can be partially
confirmed or, in the opposite case, suggested to be modified or rejected [14].

As a major extension, the model will be enriched with abiotic parameters
such as water, temperature and gravity. By this means, further experiments may
address questions which need to consider more environmental factors influencing
the evolution of plants.
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Abstract. The design of non-cryptographic hash functions by means of
evolutionary computation is a relatively new and unexplored problem. In
this paper, we use the Genetic Programming paradigm to evolve collision
free and fast hash functions. For achieving robustness against collision
we use a fitness function based on a non-linearity concept, producing
evolved hashes with a good degree of Avalanche Effect. The other main
issue, efficiency, is assured by using only very fast operators (both in
hardware and software) and by limiting the number of nodes. Using this
approach, we have created a new hash function, which we call gp-hash,
that is able to outperform a set of five human-generated, widely-used
hash functions.

1 Introduction

1.1 Definitions

Hash functions take a message as input and produce an output referred to as a
hash. More precisely, a hash function h maps bitstrings of arbitrary finite length
to strings of fixed length. For a domain D and range R with h : D → R and
|D| > |R| the function is many-to-one, implying that the existence of collisions
(pairs of different inputs with identical outputs) is unavoidable. In the following,
the term hash function will refer to non cryptographic hash functions for table
and database lookup, mostly used with hash tables [9], not to be confused with
the related but quite different cryptographic hash functions usually found in
computer security for digital signature and integrity checking. In any case, hash
functions should be very efficient (fast) and relatively collision-free (that is, even
if we know collisions should exist, finding them should be nontrivial).

1.2 A Fitness Function for Hashes

A good way for assuring the quality of a hash function could be to measure the
randomness of the hash values produced. There are a number of tests that can be
used for this purpose, such as entropy, serial correlation coefficient, average, etc.

One could use any combination of these test as a fitness function for generating
highly-random hash functions. However, the common problem to this approach

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 818–827, 2006.
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is that the hash functions obtained need not to pass any other tests than those
that form part of the fitness function. Thus, the functions may produce nearly
optimal values for all the tests included in the fitness function but quickly fail
other, not related, previously unseen tests, even very simple ones.

In this work, however, we propose a completely different approach: instead
of measuring output randomness, we measure input/output non-linearity. This
change is quite important, because randomness has not a clear definition: it
depends on the observer, the tests used, etc. There are multiple definitions for
the concept which not satisfy all authors and which, more importantly, make it
very difficult, if not impossible, to obtain an undisputed and efficient measure.
However, some aspects of non-linearity can be measured by means of a property
called Avalanche Effect. In this work, we use this property in the fitness function
of a Genetic Programming algorithm for evolving hashes. In this way, we find
hash functions that have a very non-linear behavior. Here we show that this
generated hash functions can be faster and perform better than other well-known
widespread-used hash functions such as FNV Hash [1].

This idea of using evolutionary techniques for generating non-cryptographic
hash functions is relatively new: there is only a few works in this topic [7,4,3],
and none of them uses a similar approach to ours.

This paper is organized as follows: Section 2 introduces the previously men-
tioned Avalanche Effect and a stricter variant of it. Section 3 describes our
approach and some implementation issues. Section 4 reports the experiments
carried out, and the obtained results. Finally, Section 5 draws the main conclu-
sions of the paper.

2 The Avalanche Effect

Nonlinearity can be measured in a number of ways or, what is equivalent, has not
a complete unique and satisfactory definition. Fortunately, this is of no concern to
us as we do not pretend to measure non-linearity but a very specific mathematical
property named avalanche effect because it tries to reflect, to some extend, the
intuitive idea of high-nonlinearity: a very small difference in the input producing
a high change in the output, thus an avalanche of changes.

Mathematically, F : 2m → 2n has the avalanche effect if it holds that

∀x, y|H(x, y) = 1, Average

(
H
(
F (x), F (y)

))
=

n

2

So if F is to have the avalanche effect, the Hamming distance between the
outputs of a random input vector and one generated by randomly flipping one
of the bits should be, on average, n/2 . That is, a minimum input change (one
single bit) produces a maximum output change (half of the bits) on average.

This definition also tries to abstract the more general concept of output in-
dependence from the input (and thus our proposal and its applicability to the
generation of good hash functions). Although it is clear that this independence
is impossible to achieve (a given input vector always produces the same output)
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the ideal F will resemble a perfect random function where inputs and outputs
are statistically unrelated. Any such F would have perfect avalanche effect, so it
is natural to try to obtain such functions by optimizing the amount of avalanche.
In fact, we will use an even more demanding property that has been called the
Strict Avalanche Criterion [5] which, in particular, implies the Avalanche Effect,
and that could be mathematically described as:

∀x, y|H(x, y) = 1, H
(
F (x), F (y)

)
≈ B

(
1
2
, n

)
It is interesting to note that this implies the avalanche effect, because the

average of a Binomial distribution with parameters 1/2 and n is n/2, and that
the amount of proximity of a given distribution to a certain distribution (in this
case a B(1/2, n)) could be easily measured by means of a chi-square goodness-
of-fit test. That is exactly the procedure we will follow.

3 Implementation Issues

We have used the lilgp genetic programming library [2] as the base for our
system. Lil-gp provides the core of a GP toolkit so the user only needs to adjust
the parameters to fit his particular problem. In this section we detail the changes
needed in order to configure our system.

3.1 Function Set

Firstly, we need to define the set of functions: This is critical for our problem, as
they are the building blocks of the functions we would obtain. Being efficiency
one of the paramount objectives of our approach, it is natural to restrict the set
of functions to include only very efficient operations, both easy to implement in
hardware and software. Another, but minor, objective was to produce portable
algorithms; so the inclusion of the basic binary operations such as vrotd (right
rotation),vroti (left rotation),xor (addition mod 2), or (bitwise or),not (bitwise
not), and and (bitwise and) are an obvious first step. Other operators as the sum
(sum mod 232) are necessary in order to avoid linearity, being itself quite efficient.

The inclusion of the mult (multiplication mod 232) operator was not so easy to
decide, because, depending on the particular implementations, the multiplication
of two 32 bit values could cost up to fifty times more than an xor or an and
operation (although this could happen in certain architectures, its nearly a worst
case: 14 times [6] seems to be a more common value), so it is relatively inefficient,
at least when compared with the rest of the operators used. In fact, we did
not include it at first, but after extensively experimentation, we conclude that
its inclusion was beneficial because, apart from improving non-linearity it at
least doubled and sometimes tripled the amount of avalanche we were trying to
maximize. That’s the reason why we finally introduced it in the function set.

Similarly, after many experiments, we concluded that the functions vroti and
vrotd were absolutely interchangeable and that using them at the same time
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was not necessary nor useful, so we arbitrarily decided to remove vroti and
left vrotd. Anyway, with vrotd we have a similar problem than with mult:
compared to other operators, in some architectures vrotd is very inefficient so
we tried to eliminate this operator and include the� (regular right shift) instead.
But the problem is that � was not able of producing as much non-linearity as
vrotd and the efficiency gains of the obtained hash functions were not as good
as for ignoring the loss of Avalanche Effect.

3.2 Terminal Set

The set of terminals in our case is easy to establish. Firstly, it is mandatory for
the hash function to operate with the previous generated hash value. Thus, one
of the terminals of the GP system will represent the previous calculated hash
value. It will be called hval. In our approach, the length of the output v is fixed
to 32 bits, so hval will be a 32 bits unsigned integer value.

The bitlength of the input (the m value), however, is not that easy to set.
Initially, we tried different approaches which did not generated good results,
specially in terms of efficiency, so we finally set the input length to 32 bits. In
this case, input-related terminals were reduced to a single 32-bit unsigned long
value, a0. Some experiments confirmed that, as expected, the best obtained
128-to-32-bits hashes were never able to outperform the best 32-to-32 hashes.
The later were more efficient, and they usually reached a much higher level of
Avalanche Effect.

Finally, we included Ephemeral Random Constants (ERC’s) [10] for complet-
ing the terminal set. In our problem, ERC’s are 32-bits random-values that can
be included in the hash function as constants to operate with. The idea behind
this operator was to provide a constant value that, independently from the in-
put, could be used by the operators of the function to increase non-linearity, and
idea suggested by [12].

3.3 Fitness Function

The fitness of every individual is calculated as follows: First, we use the Mersenne
Twister generator [11] to generate two 32-bit random values. Those values are
assigned to hval and a01. As we already know, each individual represents a
candidate hash function, so we run the hash function being evaluated with the
randomly generated values of a0 and hval. The hash value produced (we call
it hash1) is stored. Then, we randomly flip one single bit of one of the two in-
put values, a0 or hval, and we run again the hash function, obtaining a new
hash value (hash2). Now, we compute the Hamming distance between hash1
and hash2. This process is repeated a number of times (8192 was experimen-
tally proved to be enough) and each time a Hamming distance among 0 and 32
is obtained and stored. For a perfect Avalanche Effect, the distribution of this

1 This stands for the 32-to-32-bits hashing. For other input sizes, we only need to use
additional a* input values.
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Hamming distances should adjust to the theoretical Bernoulli probability distri-
bution B(1/2, 32). Therefore, fitness of each individual is calculated by adding
two factors: first the measure of how close to 16 (16/32 = 1/2) is the mean
of the calculated Hamming distances; and second, the chi-square (χ2) statistic
that measures the distance of the observed distribution of the Hamming dis-
tances from the theoretical Bernoulli probability distribution B(1/2, 32). Thus,
we try to minimize the following fitness expression:

Fitness = (16−mean)2 + χ2
c

where χ2
c is a corrected value of χ2, which is calculated as follows:

χ2
c = χ2 ∗ 10−8

where

χ2 =
h=32∑
h=0

(Oh − Eh)2

Eh
2

and
Ek = 8192 ∗ Pr

(
B(1/2, 32) = k

)
We should note that we are computing the value of the χ2 statistic without

the commonly used restriction of adding up only the values when Ek > 5.0, for
amplifying the effect of a bad output distribution, thus, the sensibility of our
measure.

It was necessary to correct the χ2 statistic because its values were much bigger
than the values of the expression (16−mean)2. Without this correction, the mean
measure was negligible and the fitness was guided only by the χ2.

3.4 Tree Size Limitations

When using genetic programming approaches, it is necessary to put some limits
to the depth and to the number of nodes the resulting trees could have. We
tried various approaches here, both limiting the depth and not limiting the
number of nodes and vice versa. The best results where consistently obtained
using this latter option, so we fixed the number of maximum nodes to 25 and
did not put a limit (other that the number of nodes itself) to the tree depth.
This is also a very important step for assuring the efficiency of the resulting
algorithm.

4 Experimentation and Results

The experimentation carried out was extensive. In the GP system part, we tried
with many different configurations of the terminal and function sets, the fitness
function and the GP parameters, as mentioned in Section 3. Even so, in this
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Section we will only show the experiments that produced the most interesting re-
sults, in order to save space and do not distract the reader from the important re-
sults.

Experiments were carried out in two phases. In the first stage, we use GP to
evolve individuals (GP will try to find an individual that minimizes the fitness
function described in previous sections). For each configuration and set of pa-
rameters described in Section 3 we executed ten GP runs. Using the information
provided by the best individuals of each configuration, we selected the parame-
ters that produced better results. This set of parameters is shown in Table 1.

Table 1. Experimentally-found best GP parameters

Parameter Value
G (Max.Gen.) 2000
M (Pop.Size) 100
Max nodes 25

and or not vrotd
Terminal and Function set xor sum mult

a0 hval ERC

Using these parameters, we obtained a large set of candidate individuals.
Among them, we selected the best one and called it gp-hash. This individual
is the best hash function our GP system was able to produce. A description of
gp-hash can be seen in Figure 1, and its pseudocode in C in Figure 2.

(mult 0x6CF575C5
(vrotd (vrotd (vrotd (vrotd (vrotd

(vrotd (vrotd (vrotd (vrotd (vrotd
(vrotd (vrotd (vrotd (vrotd (vrotd
(vrotd (vrotd (vrotd (mult 0x6CF575C5

(sum hval a0)))))))))))))))))))))

Fig. 1. Individual of the generated gp-hash function

The second stage starts at this point: We have generated a hash function by
means of optimizing the Avalanche Effect, restricting its size and using only the
most efficient operators, believing that in this way we would obtain a very fast
and relatively collision free hash function. In this stage, we want to check if we
have really achieved our objective. In order to do so, we decided to compare gp-
hash with a set of 5 human-generated non cryptographic hash functions: CRC32,
oneAtATimeHash, alphaNumHash, FNVHash [1] and BobJenkinsHash [8]. All
of them are state-of-the-art, widely-used hash functions, but within this group
FNVHash is well-known to be specially fast and collision free. This justifies
its wide adoption in dozens of applications, from NFS implementations (e.g.,
FreeBSD 4.3, IRIX, Linux (NFS v4)) to Domain Name Servers, not forgetting
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magic_number = 0x6CF575C5
AUX = magic_number * (hval + a0)
rotate_18_positions_right (AUX)
hash = magic_number * AUX
return hash

Fig. 2. C pseudocode of the generated gp-hash function

high performance EMail servers, text based referenced resources for video games
on the PS2, Gamecube and XBOX, etc.

As the two most important features of a non-cryptographic hash function are
its speed and its collision robustness, these will be the two variables that we
will test. The former describes how fast the function can hash variable-length
bitstrings, and the later is the capability of generating a large amount of hashes
while producing as few collisions as possible. So we carried out two different tests:
one to compare the speed of the six hash functions, and another one to compare
their collision robustness. Both tests were ran in an AMD Athlon XP2000+ with
256 Mb of RAM and a Gentoo Linux Operating System.

4.1 Speed Test

The speed test was designed as follows: All the hash functions are coded in
C (none is optimized) and inserted into a speed benchmark. Each run of this
benchmark is divided in 32 phases, which we call ”executions”. In every exe-
cution, each function must hash 106 random-generated strings. The time took
for every function is stored. This process is repeated ten times, and after that,
the average time for each function is calculated and stored. Then the execution
ends. In the first execution, the length of the random-generated strings is 32
bits. In the second one, this size is multiplied by 2, in the third is multiplied
by 3, and so on. Finally, in execution 32, the string size is 32 ∗ 32 = 1024. This
way, when all the executions ends, we have the average time that each hash
function needed to hash 106 strings of a length varying from 32 to 1024 bits. A
summary of these results can be seen in Table 2. Values of the table are average
time (in seconds). The headers of the columns are the string size (in bits) of the
experiment. Figure 3 shows the graphical representation of the results. It is clear
from the results of this experiment that gp-hash is faster than the other hash
functions, for every string length.

4.2 Collision Test

With the collision test we wanted to know how many hashes (in average) a
function can produce before generating the first collision. Furthermore, we also
wanted to know how the number of collisions growths when the number of hashes
growths. Thus, we created a battery of ten different tests. For each hash function,
each test is divided in ten executions. In each execution we store the number of
hashes before producing the first collision, and finally we calculate the average
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Table 2. Summarized results of the speed test

32 64 128 256 512 1024
CRC32 0.039 0.068 0.127 0.229 0.435 0.847

oneAtATime 0.059 0.1 0.195 0.367 0.708 1.399
alphaNum 0.033 0.06 0.094 0.222 0.427 0.831
FNVHash 0.039 0.072 0.143 0.267 0.517 1.017
gp-hash 0.032 0.05 0.088 0.175 0.357 0.703

BobJenkins 0.09 0.087 0.164 0.23 0.439 0.82

Fig. 3. Results of the speed test

of the ten executions. The second test is similar, but when a first collision is
produced, we continue producing hashes and storing values. When a second
collision is produced, we store the number of hashes generated. In the third test,
we store the number of hashes needed for generate three collisions, and so on.

Results of the complete battery of tests can be seen in Table 3. The chart
in Figure 4 shows the way in which the number of collisions growths when the
number of hashes also growths. The behavior of all hash functions is almost
linear, and it can be seen that gp-hash and the other functions have very similar
collision-per-hash rates, except oneAtATimeHash which produces significantly
worse ratios.

5 Conclusions and Future Work

The results obtained by gp-hash in both the speed and collision tests show that
this automatically-generated hash function is faster that all the other functions
tested when used in the standard AMDXP 2000+ architecture, while its colli-
sion rate is absolutely competitive or even slightly better that the rest of the
human-designed hash functions, except for one of them (oneAtATimeHash)
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Table 3. Summarized results of the collision tests

Hash function Test 1 Test 2 Test 4 Test 6 Test 8 Test 10
hline CRC32 323648.38 541053.83 1033888.5 1445630.91 2033342.26 2583637.81

oneAtATimeHash 71380.66 132346.52 272675.61 407190.86 547254.59 659462.41
alphaNumHash 247355.25 523988.1 1040997.09 1587157.6 2079883.36 2657898.19

FNVHash 239840.3 578113.04 1049437.85 1559196.5 2165332.38 2590886.49
gp-hash 273480.69 584374.64 1028586.79 1522586.03 2054192.25 2670056.92

BobJenkins 276244.12 554777.21 935246.5 1582715.73 2015192.26 2600531.72

Fig. 4. Results of the collisions test

which performs significantly worse than the rest. So, we can conclude that our
proposed system is able to produce competitive hash functions that can outper-
form other well-known, expert-designed and commonly used hash functions.

Gp-hash, the hash function produced in our experiments and proposed here
as an alternative, is slightly faster than FNV Hash (a widespread-used, very fast
hash function with many important real-life applications) and adjusts better to
the optimal probability distribution B(1/2, 32), or, which is the same, is more
non-linear than FNV.

It is important to remark that gp-hash was designed in an automatic way. Ex-
cept for the fitness function, gp-hash was generated using no information about
the objective, the usage or even the nature of a hash function. Nevertheless, the
other hash functions used in the experiments were generated by practiced hu-
mans, with years of experience and a vast knowledge about the topic. Even so,
gp-hash is faster than the rest and able of generating approximately the same
number of collisions per hash than the others, in fact winning (the only with
FNV who repeats this honor) twice at Table 3. So we have generated an artifi-
cial algorithm which can compete on equal terms with those produced by human
experts or even beat them.
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Abstract. To design crossover operators with high search ability in real-
coded Genetic Algorithms, it will be efficient to utilize both information
regarding the parent distribution and the landscape of the objective func-
tion. Here, we propose a new offspring generation method using Delaunay
triangulation. The proposed method can concentrate offspring in regions
with a satisfactory evaluation value, inheriting the parent distribution.
Through numerical examples, the proposed method was shown to be ca-
pable of deriving the optimum with a smaller population size and lower
number of evaluations than Simplex Crossover, which uses only informa-
tion of the parent distribution.

1 Introduction

Genetic Algorithms (GAs) are optimization methods that simulate the hered-
ity and evolution of living organisms. Real-Coded GA (RCGA), which uses real
number vector representation of chromosomes, is utilized for global optimiza-
tion of nonlinear functions. In RCGAs, offspring can be generated by dealing
directly with the parent distribution in design space. Various crossover oper-
ators have been proposed in RCGAs some of which have also been shown to
have efficient search ability[1,2,3,4,5]. A well-known set of guidelines for design
of these crossover operators is the functional specialization hypothesis[6]. In this
hypothesis, it is important that a crossover operator generates offspring with the
same distribution as the parents. Then, a generation alternation model changes
the distribution and evolves the population. Based on this hypothesis, it is com-
monly believed that crossover operators with high search ability can be designed
easily in RCGAs. In addition, the offspring generation that correctly inherits
the parent distribution is an important design guideline in Probabilistic Model-
Building GA (PMBGA)[7,8].

On the other hand, some of offspring generation methods with higher search
ability in real-coded PMBGAs estimate the parent distribution using the joint
normal kernels distribution or the histogram distribution[9,10,11]. These meth-
ods implicitly construct the probabilistic model similar to the landscape of the

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 828–838, 2006.
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objective function. Therefore, in RCGAs as in real-coded PMBGAs, crossover
operators with higher search ability can be designed by utilizing not only the
parent distribution but also the landscape of the objective function. In Simplex
Crossover (SPX)[4,5], which is one of the crossover operators for RCGAs, off-
spring generation range is first defined from the parent distribution. Then, large
numbers of offspring are generated uniformly within the defined range. In the
offspring generation of SPX, it is possible that the search ability will be increased
by concentrating offspring in regions with a satisfactory evaluation value within
the defined region.

From these backgrounds, in this paper, to concentrate offspring in regions with
a satisfactory evaluation value, we propose a new offspring generation method
using the Delaunay triangulation. The next section first presents an outline of
the Delaunay triangulation. Then, we discuss the details of SPX, which forms
the foundation of the proposed method. Finally, we describe the proposed off-
spring generation method in detail. In the numerical examples in this paper, the
effectiveness of the proposed method is discussed by comparison with the search
ability of SPX.

2 Voronoi Diagram and Delaunay Triangulation

2.1 Voronoi Diagram

The Voronoi diagram[12] decides how to divide the space between the region of
each point and its boundary as in Equation 1, when a point set P ={p1,p2,p3, ...,
pm} is given in an n-dimensional space. In Equation 1, d(pi,pj) expresses the
distance function between pi and pj . Generally, the Euclid distance is used as
the distance function.

V (pi) = {p|p ∈ Rn, d(p,pi) < d(p,pj), j �= i} (1)

Fig. 1 shows an example of the Voronoi diagram with 8 points in a 2-dimensional
space. Each point that generates the Voronoi diagram is called a Voronoi genera-
tor, and each region divided by Voronoi generators is known as a Voronoi region.
The region V (pi) that includes the point pi shows that, at any arbitrary location
in the regions, the point pi is the closest point in the point set.

2.2 Delaunay Triangulation

The Delaunay triangulation can be created by connecting neighboring Voronoi
generators in a Voronoi diagram. Fig. 2 shows an example of the Delaunay
triangulation created from the Voronoi diagram shown in Fig. 1. Each triangle
that consists of (n+ 1) Voronoi generators in an n-dimensional space is called a
Delaunay triangle. One of the typical applications that can create the Voronoi
diagram and the Delaunay triangulation is Qhull[13,14]. In this study, Qhull was
used for creating the Delaunay triangulation.
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Fig. 1. Voronoi diagram Fig. 2. Delaunay triangulation

3 Simplex Crossover

Simplex Crossover (SPX) is a typical crossover based on the functional special-
ization hypothesis. In an n-dimensional design space, SPX generates offspring
as follows:

1. Select (n+ 1) parents P 0,P 1, . . . ,P n from the population by random sam-
pling.

2. Calculate their center of mass G as

G =
1

n+ 1

n∑
i=0

P i (2)

3. Calculate xk and Ck, respectively, as

xk = G + ε(P k −G) (k = 0, . . . , n) (3)

Ck =

{
0 (k = 0)
rk−1 − xk + Ck−1 (k = 1, . . . , n)

(4)

rk = (u(0, 1))
1

k+1 (k = 0, . . . , n− 1) (5)

where ε is the expansion rate, a control parameter of SPX and u(0, 1) is
uniform random number ∈ [0,1].

4. Generate offspring C as
C = xn + Cn (6)

Fig. 3 shows the offspring generation range in SPX. Generally, SPX generates
large numbers of offspring, which are distributed uniformly on the gray range
in Fig. 3. Then, a generation alternation model chooses a few better offspring
and substitutes them into the population. ε is the expansion rate and a positive
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Fig. 3. Offspring generation range in SPX

parameter of SPX. The expansion rate has a marked effect on the search of SPX.
However, SPX also recommends the value εspx =

√
n + 2, which is based on the

functional specialization hypothesis[5].

4 Offspring Generation Method Using Delaunay
Triangulation

SPX and other crossover operators based on the functional specialization hy-
pothesis generate offspring with the same distribution as the parents. On the
other hand, crossover operators with higher search ability can be designed by
utilizing not only the parent distribution but also the landscape of the objec-
tive function. Therefore, in this paper, a new offspring generation method using
the Delaunay triangulation is proposed. The proposed method enables the gen-
eration and concentration of offspring in regions with a satisfactory evaluation
value, inheriting the parent distribution.

4.1 Procedure of Offspring Generation Using Delaunay
Triangulation

Fig. 4 shows an overview of the proposed method. In an n-dimensional design
space, the proposed method generates Noff offspring from (n + 1) parents as
follows:

1. Select (n+ 1) parents P 0,P 1, . . . ,P n from the population by random sam-
pling.

2. Using SPX, first (Noff ×Rspx) offspring are generated.
3. Repeat the following items Ndelaunay times.
4. Create the Delaunay triangulation from the offspring coordinates.
5. Evaluate offspring and calculate the evaluation value of each Delaunay trian-

gle. In this item, offspring evaluated in the past should not be re-evaluated.
The evaluation value of a triangle is the summation of the evaluation value
of the offspring, which form its triangle.

6. Select (Noff × (1−Rspx)/Ndelaunay) Delaunay triangles in decreasing order
of evaluation value of triangles and generate offspring on the center of mass
of each triangle.
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Fig. 4. Offspring generation procedure in the proposed method

The important parameters of the proposed method are the expansion rate ε
of SPX that defines the offspring generation range, the Rspx that determines the
number of first offspring generated by SPX, and theNdelaunay that determines the
number of iterations of offspring generation using the Delaunay triangulation. The
number of evaluations for each generation alternation in the proposed method is
Noff , which is the same number in the offspring generation of the original SPX.

4.2 Offspring Distributions

Fig. 5 shows the offspring distributions when 500 offspring (Noff = 500) are
generated from 3 parents (n + 1) in 2-dimensional design space (n = 2) of 3
test functions. The expansion rate ε is 1.0. Then, offspring are generated within
the 3 parents. In addition, Rspx is defined as 0.5 and Ndelaunay is also defined
as 2. Therefore, the first 250 offspring (Noff × Rspx) are generated by SPX
and the last 250 offspring are generated by 2 Delaunay triangulations. Each
triangulation generates 125 offspring (Noff×(1−Rspx)/Ndelaunay). The number
of generators that is the same as the number of generated offspring is 250 in the
first triangulation and 375 in the second triangulation.

As shown in Fig. 5, the distributions of all offspring are different according
to the landscape of each objective function. However, the distributions of the
first 250 offspring generated by SPX are uniform and the same regardless of the
landscape of each objective function. On the other hand, the last 250 offspring
generated by the Delaunay triangulations are concentrated in regions with a
satisfactory evaluation value. In particular, the last 125 offspring generated by
the second Delaunay triangulation are concentrated more in regions with better
evaluation value. Therefore, Ndelaunay can control the concentration level of
offspring.
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Fig. 5. Distributions of offspring generated by the proposed method

5 Numerical Examples

As described in Subsection 4.1, the three parameters, ε, Rspx, and Ndelaunay ,
have marked effects on offspring generation in the proposed method. In these
parameters, the expansion rate ε that is used for generating offspring in SPX
is the most important because it defines the offspring generation range. As ex-
plained in Section 3, SPX recommends the value εspx =

√
n+ 2, which is based

on the functional specialization hypothesis. However, εspx designates that off-
spring are generated using a uniform distribution. Therefore, εspx is not effective
in the proposed method. In the numerical examples described in this paper, we
first discuss the most appropriate expansion rate, ε, in the proposed method.
Then, the effectiveness of the proposed method is clarified through comparison
of its search ability with that of SPX.

5.1 Target Problems

In these numerical examples, Sphere, Rosenbrock, Ill-Scaled Rosenbrock, and
Ridge functions shown in Equation 7-10 are used as single-peak test functions.
Of these functions, the Rosenbrock, Ill-Scaled Rosenbrock, and Ridge functions
have correlations among design variables. The Ill-Scaled Rosenbrock function
also has a non-uniform scale on the coordinate system. On the other hand,
Rastrigin, Griewank, and Schwefel functions shown in Equation 11-13 are used
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as multi-peak test functions. In addition, the Rotated Rastrigin function, which is
obtained by rotating each coordinate axis of the Rastrigin function by (π/3), and
the Rastrigin-2.0 function, which is obtained by translating each coordinate axis
with 2.0, are also used. Of these functions, the Rotated Rastrigin and Griewank
functions have correlations among design variables. In the Schwefel function,
local optima exist separately on the edge of the design space. Therefore, to
maintain the diversity of the population, a larger population size is generally
required as compared with other functions. In all functions, the region with an
evaluation value of less than 1.0× 10−6 is considered optimal.

FSphere(x) =
∑n

i=1

(
xi

)2 (−5.12 ≤ xi ≤ 5.12) (7)
FRosenbrock(x) =

∑n
i=2

(
100(x1 − x2

i )
2 + (1 − xi)2

)
(−2.048 ≤ xi ≤ 2.048) (8)

FIll−Scaled−Rosenbrock(x) =∑n
i=2

(
100(x1 − (ixi)2)2 + (1 − ixi)2

)
(−2.048/i ≤ xi ≤ 2.048/i) (9)

FRidge(x) =
∑n

i=1

(∑i
j=1 xj

)2 (−64 ≤ xi ≤ 64) (10)
FRastrigin(x) = 10n +

∑n
i=1

(
x2

i − 10 cos(2πxi)
)

(−5.12 ≤ xi ≤ 5.12) (11)

FGriewank(x) = 1 +
∑n

i=1
x2

i
4000 −∏n

i=1

(
cos

(
xi√

i

))
(−512 ≤ xi ≤ 512) (12)

FSchwefel(x) = 418.9828873n +
∑n

i=1 xi sin
(√|xi|

)
(−512 ≤ xi ≤ 512) (13)

5.2 Experimental Methodology

The generation alternation model in these numerical examples is the Minimal
Generation Gap (MGG)[15]. The MGG model has desirable convergence prop-
erties for maintaining the diversity of the population, and shows better perfor-
mance than other conventional models. However, MGG was designed with the
number of parents set to 2. Therefore, we extended MGG as follows:

1. In an n-dimensional design space, select (n+1) parents from the population
by random sampling.

2. Generate Noff offspring by applying the proposed method or SPX.
3. Select 2 parents from the (n + 1) parents by random sampling without re-

placement.
4. Substitute the best individual and another randomly selected individual with

rank-based roulette-wheel selection among the 2 parents selected in Item 3
and the offspring into the population.

No mutation method is applied. The initial population is generated randomly
within the domain of definition with a uniform distribution. However, no explicit
treatment of the domain of definition is considered during the GA search in all
test functions except the Schwefel function, in which there are better regions than
optimum outside the domain of definition. Therefore, in the offspring generation
using SPX in the Schwefel function, when an offspring is generated outside the
domain of definition, it is re-generated until it is located inside the domain of
definition.
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5.3 Discussion of the Expansion Rate

In this example, we discuss the appropriate expansion rate in the proposed
method. Experimental conditions are defined as follows:

– Number of dimensions (n): 2, 4, 6, 8
– Population size:
n× 10 ( all single-peak functions and the Schwefel function ),
n× 25 ( all multi-peak functions except the Schwefel function )

– Number of offspring (Noff ): n× 10
– Number of trials: 20. Maximum number of evaluations: 2.0× 106

– Parameters of the proposed method: Rspx = 0.5, Ndelaunay = 2

Tables 1 and 2 show the number of times that the optimum was achieved in the
proposed method when the expansion rate ε is defined as εspx×1.0 to εspx×2.5.
The εspx =

√
n+ 2 is the recommended value of SPX. Table 1 shows that the

proposed method whose ε is defined as greater than εspx × 2.0 can perform an
effective search in single-peak functions. In addition, the proposed method can
derive the optimum regardless of the correlations among design variables and
the scale of the coordinate system. Table 2 also shows that the proposed method
whose ε is defined as greater than εspx × 2.0 can perform effective searches in
multi-peak functions. However, in the higher-dimensional Schwefel function and
the 4-dimensional Griewank function, the proposed method whose ε is defined as
εspx × 2.5 cannot derive the optimum, because the population cannot converge
on the optimum or a certain local optimum. Therefore, the most appropriate
expansion rate is εspx × 2.0 in the proposed method.

Table 1. Number of times that the optimum was achieved (single-peak functions)

Expansion Rate εspx × 1.0 εspx × 1.5 εspx × 2.0 εspx × 2.5
Number of Dimensions 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Sphere 20 20 19 18 20 20 20 20 20 20 20 20 20 20 20 20
Rosenbrock 11 0 0 0 20 20 20 3 20 20 20 20 20 20 20 20
Ill-Scaled Rosenbrock 13 1 0 0 20 20 20 4 20 20 20 20 20 20 20 20
Ridge 20 20 16 1 20 20 20 20 20 20 20 20 20 20 20 20

Table 2. Number of times that the optimum was achieved (multi-peak functions)

Expansion Rate εspx × 1.0 εspx × 1.5 εspx × 2.0 εspx × 2.5
Number of Dimensions 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Rastrigin 20 19 18 19 20 20 20 19 20 20 20 20 20 20 20 20
Rotated Rastrigin 20 19 18 19 20 20 20 20 20 20 20 20 20 20 20 20
Rastrigin-2.0 20 6 1 0 20 20 14 16 20 20 20 20 20 20 20 20
Griewank 17 7 8 5 20 16 17 19 20 19 20 20 20 0 20 20
Schwefel 5 2 0 0 15 5 2 2 19 15 18 17 18 19 3 0
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5.4 Comparison of the Searching Abilities Between the Offspring
Generation Method Using Delaunay Triangulation and SPX

Through the comparison of searching abilities between the proposed method
and SPX, we discuss the effectiveness of the proposed method. The number of
dimensions (n) is 8 and other experimental conditions are same as the previous
ones. However, to derive the same number of times that the optimum is achieved
with the proposed method in SPX, the population size of SPX is defined as 120
(n × 15) in single-peak functions, 200 (n × 25) in multi-peak functions except
the Schwefel function and 880 (n × 110) in the Schwefel function. These sizes
are larger than the population sizes of the proposed method. With regard to the
expansion rate, εspx =

√
n+ 2 is applied in SPX and εspx × 2 is applied in the

proposed method. In this example, the average number of evaluations when the
optimum is achieved is compared.

Fig. 6. Average number of evaluations when the optimum was achieved in the proposed
method and SPX

Fig. 6 shows the average number of evaluations when the optimum was achieved
in both methods. The number of times that the optimum was achieved in both
methods was 17 in the Schwefel function and 20 in other functions. As shown
in Fig. 6, in all test functions, the proposed method can derive the optimum
with a lower number of evaluations than SPX. Especially, with the exception of
the Schwefel function, the proposed method requires only about the one-third
or one-quarter number of evaluations in multi-peak functions.

These results indicated that the proposed method has the following features.
First, the proposed method can derive the optimum with a smaller population
size than SPX. This feature is due to concentration of offspring in regions with
a satisfactory evaluation value in the proposed method. In addition, as the pro-
posed method requires a smaller population size than SPX, the optimum can be
derived with a lower number of evaluations by converging the population earlier
than SPX, combining local optima in the design space.



Offspring Generation Method Using Delaunay Triangulation 837

6 Conclusions and Future Work

The crossover operators based on the functional specialization hypothesis gen-
erally use only the information of the parent distribution and generate offspring
with the same distribution as the parents. On the other hand, we feel that
crossover operators with better search ability can be designed by utilizing not
only the parent distribution but also the landscape of the objective function.
Therefore, we proposed a new offspring generation method using the Delaunay
triangulation. In the proposed method, the Delaunay triangulation is used with
SPX. Then, the proposed method enables offspring to be concentrated in regions
with a satisfactory evaluation value, inheriting the parent distribution. Compar-
ison of search ability between the proposed method and SPX indicated that the
proposed method can derive the optimum with smaller population size and lower
number of evaluations than SPX.

In future work, we will apply the proposed method to higher-dimensional
functions. As Qhull uses a large amount of memory, the proposed method can-
not create the Delaunay triangulation with about 100 generators in more than
10-dimensional design space. Therefore, some processes that remove unneeded
generators before the Delaunay triangulation creation will be added to the pro-
posed method.
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Abstract. This paper analyses the properties of four alternative repre-
sentation/operator combinations suitable for data clustering algorithms
that keep the number of clusters variable. These representations are inves-
tigated in the context of their performance when used in a multiobjective
evolutionary clustering algorithm (MOCK), which we have described pre-
viously. To shed light on the resulting performance differences observed,
we consider the relative size of the search space and heuristic bias inher-
ent to each representation, as well as its locality and heritability under the
associated variation operators. We find that the representation that per-
forms worst when a random initialization is employed, is nevertheless the
best overall performer given the heuristic initialization normally used in
MOCK. This suggests there are strong interaction effects between initial-
ization, representation and operators in this problem.

1 Introduction

Data clustering [7] is an unsupervised classification problem in which a set of
data items is partitioned into a number of disjoint subsets or ‘clusters’, based
on proximity information. The number of clusters, k, inherent to the data is
usually unknown a priori, so clustering algorithms that investigate solutions
with different numbers of clusters may be preferred to algorithms requiring a
fixed value of k to be specified by the user. In this work, we consider alterna-
tive combinations of representations and variation operators that are suitable
for exploring solutions with a variable number of clusters. We analyse the differ-
ent choices within a multiobjective clustering evolutionary algorithm, MOCK,
described previously [6], and attempt to understand the performance differences
observed in terms of key properties of the representations and operators.

The effects of representations and operators on evolutionary search are a
perennial topic in the literature, though few firm rules or conclusions of prac-
tical significance exist. Important factors, nonetheless, are thought to be: the
size of the search space induced by a representation; whether phenotype space
is entirely covered and/or reachable; whether the mapping from genotype to
phenotype is injective, or ‘degenerate’ [11]1; whether particular (groups of) phe-
notypes are over-represented [11,12,13]; and the ‘heritability’ and ‘locality’ of
1 Meaning that several genotypes may map to the same phenotype.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 839–849, 2006.
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the representation under crossover and mutation, respectively [12]. We consider
each of these aspects in the analysis of the alternative representations studied
here, and reflect on how much they tell us about performance.

The organization of the paper is as follows. Section 2 briefly recalls the prin-
ciples behind the multiobjective clustering algorithm, MOCK, and the require-
ments it imposes on possible representations and operators. We also briefly revisit
other work that considers representations for evolutionary data clustering. Sec-
tion 3 provides the details of the representations and operators that are studied
and the parameter setting used. Section 4 presents both theoretical and empirical
findings of the study, and Section 5 concludes.

2 Previous Work

Basic principles of MOCK. In our previous work, we have described a mul-
tiobjective evolutionary algorithm (MOEA) for clustering, called MOCK (for
Multiobjective clustering with automatic k-determination, [6]). MOCK is based
on the elitist multiobjective evolutionary algorithm, PESA-II, described in detail
in [2]. It minimizes two clustering objectives, overall deviation and connectivity:
overall deviation is computed as the overall sum of the distances between each
data item and its corresponding cluster centre,

Dev(C ) =
∑

Ck∈C

∑
i∈Ck

δ(i, μk),

where C is the set of all clusters, μk is the centroid of cluster Ck and δ(., .)
is the chosen distance function (here, the Euclidean distance); quite differently,
connectivity evaluates the degree to which neighbouring data-points have been
placed in the same cluster and is computed as,

Conn(C ) =
N∑

i=1

⎛⎝ L∑
j=1

xi,nnij

⎞⎠ , where xr,s =
{ 1

j if �Ck : r ∈ Ck ∧ s ∈ Ck

0 otherwise,

and where nnij is the jth nearest neighbour of datum i, N is the size of the
clustered data set, and L is a parameter determining the number of neighbours
that contribute to the connectivity measure.

When these two objectives are minimized, an approximate Pareto front is ob-
tained with solutions arranged along the front by the number of clusters, k. (This
arrangement occurs because the objectives have opposite biases with respect to
the number of clusters [6]). The shape of the Pareto front gives important clues
as to which is the actual ‘best solution’ and MOCK uses an automatic heuristic
strategy to select the best solution, hence determining or estimating k automati-
cally. Using this strategy, MOCK seems to provide solutions of a more consistently
high quality compared to some other clustering algorithms, when a range of data
sets is considered [6]. However, the final solution returned by MOCK’s selection
strategy depends crucially on obtaining a good overall Pareto front, and one that
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covers a range of values of k. This means that any representation used must facili-
tate finding solutions over a wide range of different numbers of clusters. Moreover,
the representation must encourage effective exploration of the search space for an-
other reason: although overall deviation is a relatively easy objective to minimize,
connectivity (like most objectives capturing spatial separation or local connected-
ness [6]) provides relatively poor guidance in some areas of the search space.

MOCK’s representation, operators and initialization. The representa-
tion employed in MOCK in [6] is the locus-based adjacency scheme proposed
in [10]. In this graph-based representation, each individual g consists of N genes
g1, . . . , gN , where N is the size of the clustered data set, and each gene gi can
take allele values j in the range {1, . . . , N}. A value of j assigned to the ith
gene, is then interpreted as a link between data items i and j: in the resulting
clustering solution they will be in the same cluster. The decoding of this repre-
sentation requires the identification of all connected components, and all items
belonging to the same connected component are assigned to one cluster. This
decoding step can be done in linear time.

MOCK’s initialization is based on (i) minimum spanning trees (MSTs) and (ii)
the k-means algorithm [9]. For a given data set, the complete MST is computed
using Prim’s algorithm. Individuals corresponding to different clustering solutions
are then obtained by breaking up the MST, using either a measure of ‘interesting-
ness’ of individual links or the partitionings prescribed by the k-means solutions.
This has the effect of generating solutions with a range of cluster numbers that
already provide a good and well-spread approximation to the Pareto front [6].

MOCK’s variation operators are uniform crossover and a mutation operator
that allows data items to be linked to one of their L nearest neighbours only.
Hence, ∀i, gi ∈ {nni1, . . . , nniL}, where nnil denotes the lth nearest neighbour
of data item i.

Alternative representations. For single-objective clustering tasks, a variety
of different EA representations for clustering solutions have been explored in
the literature (see [1]), ranging from a straightforward representation (with the
ith gene coding for the cluster membership of the ith data item), to more com-
plex representations, such as matrix-based or permutation-based representations.
Falkenauer’s grouping GA [3] also provides a general template for the implemen-
tation of evolutionary algorithms for grouping problems, although an application
of the approach to straightforward data clustering has not been demonstrated,
to our knowledge, previously, and under Falkenauer’s template, this would re-
quire the design of several clustering-specific operators. Much previous work has
also explored the use of existing clustering heuristics (most notably the k-means
algorithm) as the cluster generator in a hybrid coding scheme (see [8]). This
restricts the search space ‘seen’ by the evolutionary algorithm to the set of local
optima that can be identified by the clustering heuristic used, and is therefore
unsuitable for the use in multiobjective clustering where trade-off solutions (not
identifiable by existing single-objective clustering heuristics) are to be found.
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3 Representations/Operators Studied

The four different combinations of representations/operators investigated in this
paper are as follows.

Baseline: A straightforward clustering representation, with one gene for every
data item and its allele value specifying the cluster membership. An upper
limit on the maximum number of clusters is imposed. Uniform crossover and
a standard mutation operator (random change of cluster membership for a
single data item) are used.

VIENNA: Representation identical to theBaseline representation.No crossover,
but the mutation operator introduced in [5] is used. When a gene undergoes
mutation to a different allele value (i.e. cluster), a number g of other genes are
simultaneously ‘moved’ with it into the same target cluster (and the genotype
is updated accordingly). The particular data items that undergo this move are
the g nearest neighbours to the data item coded for by the initially mutated
gene. The integer g itself is chosen, independently at each mutation event, uni-
formly at random in 0, . . . , N/2.

Falkenauer: Following the principles in [3], the genome of every individual
consists of two sections, the first being identical to the above Baseline rep-
resentation, and the second being a list of the groups (i.e. the set of allele
values making up the first part). Two-point crossover operates directly on
the second section, and the first section is updated, subsequently. We have
developed a crossover operator that uses heuristic information to repair the
first section: all unassigned data items are assigned the cluster membership
of their nearest data items. We have also designed three mutation operators
for the splitting, merging and the exchange of data items between groups,
respectively. The splitting mutation operates on a randomly selected group:
two items from this ‘parent’ cluster are randomly selected and used as ‘seeds’
for the two ‘daughter’ clusters. All remaining data items are then assigned
to the cluster whose seed they are closer to. The merging mutation sim-
ply joins two randomly selected clusters. The swapping mutation swaps the
cluster membership of two randomly selected data items.

MOCK: MOCK’s standard representation and operators (see Section 2).

These different representations and operators are ‘plugged’ into our existing mul-
tiobjective clustering algorithm, that is, the optimization algorithm (PESA-II)
and the objectives used remain constant throughout the experiments. MOCK’s
heuristic initialization scheme is also used for all representations/operators, but
we additionally conduct experiments with random initialization in order to assess
the impact of this initialization scheme. Here, the random initialization schemes
used for the different representations vary slightly, as we aim to use the initial-
ization that intuitively seems the most ‘natural’ for each of the representations
used. For the adjacency-based representation, a random initialization is obtained
by linking each data item to one of its randomly selected L nearest neighbours
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Table 1. Parameter settings for the four algorithms. In those representations using
crossover, a crossover probability of 0.7 is used. The mutations in the Baseline representa-
tion and VIENNA, and Falkenauer’s swapping mutation are applied with a probability of
1
N

, where N is data set size. For MOCK, the biased mutation probability pm = 1
N

+( l
N

)2

introduced in [6] is used. The merge and split mutations in Falkenauer’s representation
are applied to a given individual with a probability of 0.2 each.

Parameter setting
Number of generations 1000
External population size 1000
Internal population size 10
Resolution of hypergrid per dimension 10
#(Initial solutions) 100
Objective functions Overall deviation and

connectivity (L = 10)

of the data set. For the other three representations we first (randomly) deter-
mine the number of clusters, and then (randomly) assign cluster numbers to the
individual data items.

Apart from representation-specific variations, the parameter settings are kept
constant throughout the experiments and are summarized in Table 1.

4 Analysis

4.1 Empirical Performance Analysis

The data sets used in our empirical performance analysis have been previously
described in [6] and are obtained using a generator for Gaussian clusters. For
eight different combinations of cluster number and dimension, 10 different in-
stances are generated, giving 80 data sets in all. In our experiments, these groups
of 10 instances are referred to as xd-yc, where x is the dimensionality and y is
the number of clusters in the data set.

In order to assess the algorithms’ performance at solving the clustering task,
two different measures are employed. Firstly, the quality of the best solution
present in the Pareto front is analyzed. Here, the quality of a clustering solution
is established using an external validation technique (which compares to the
known correct partitioning), the Adjusted Rand Index (see [6]). It returns values
in the interval [∼0, 1] and is to be maximized.

Secondly, the quality of the Pareto fronts obtained is assessed using the hy-
pervolume indicator (a.k.a. the S measure [15]), a standard measure from the
literature. This indicator assesses the size of the region dominated by a sample
set of points, and is to be maximized. Here, the Pareto front of all runs com-
bined is normalized to lie in (0,1),(1,0); this normalization is then applied to each
Pareto front. To compute each hypervolume, the point (2,2) is used to bound the
dominated region, and the hypervolumes are divided by 4.0 to normalize them
to a maximum value of 1.0.
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Fig. 1. Illustration of the differences between the approximation sets returned by the
four algorithms on one of the 10d-40c data sets. (Left) With heuristic initialization.
(Right) With random initialization. Results are for the first run of each algorithm.

Table 2. Mean values of the Adjusted Rand Index (wrt the known correct partitioning)
of the best solution in the approximation sets identified by the four MOEAs, and the
hypervolume of the entire approximation sets. Bold font indicates the statistically best
performer (and ties) under a paired Wilcoxon test (overall α = 0.05).

Adjusted Rand Index Hypervolume Indicator
Data set MOCK Falkenauer VIENNA Baseline MOCK Falkenauer VIENNA Baseline
2d-4c 0.988905 0.98401 0.965744 0.853658 0.98123 0.972678 0.963554 0.953729
2d-10c 0.948349 0.91774 0.858553 0.800329 0.985935 0.97792 0.959744 0.949203
2d-20c 0.949477 0.935117 0.877584 0.862006 0.989509 0.982987 0.968587 0.96579
2d-40c 0.875799 0.81649 0.775303 0.771587 0.987412 0.976384 0.954132 0.949916
10d-4c 0.995852 0.996396 0.96457 0.898749 0.968248 0.95513 0.941786 0.933688
10d-10c 0.969794 0.955316 0.893811 0.859238 0.978902 0.970791 0.949533 0.94131
10d-20c 0.997959 0.997976 0.970049 0.961713 0.983116 0.978429 0.96757 0.966485
10d-40c 0.99129 0.983576 0.943561 0.937465 0.997303 0.988787 0.971748 0.968548

Table 2 summarizes the performance of the four algorithms under these two
different measures. The results indicate clear performance differences between
the algorithms. MOCK emerges as the strongest overall performer. In terms of
the Adjusted Rand Index, it is closely followed by Falkenauer’s representation,
however, the results of the hypervolume reveal a significantly better convergence
of MOCK towards the Pareto front. Both MOCK and Falkenauer’s represen-
tation outperform VIENNA and the Baseline method. Figure 1 provides some
representative examples of the approximation sets obtained by the four algo-
rithms on a complex data set, and contrasts these results with the performance
of the algorithms when random initialization is used. With the latter, all four
algorithms perform very poorly, with MOCK suddenly being one of the worst
performers. These results suggest that MOCK’s good performance derives from a
synergy between its initialization, representation and operators. This also seems
apparent from the results obtained when comparing crossover innovation during
a run of each MOEA, with the same for random solutions (see Section 4.4).
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4.2 Size of the Search Space

In its original formulation, the size of the search space of the adjacency-based
representation is bounded by NN . However, the introduction of the nearest-
neighbour mutation reduces the upper bound of the size of the search space seen
by mutation to LN , where, in our case, L = 10.

The Baseline representation and VIENNA result in a search space of (kmax)N

each, where kmax is the upper limit on the number of clusters, which, in this
work, has been set to kmax = 50. For Falkenauer’s representation, the search
space is of size (kmax)N × kmax!.

4.3 Heuristic Bias

A representation is said to be biased if it leads to an over-representation of
certain phenotypes: hence, when sampling the search space without any selection
pressure, these phenotypes will have a larger probability of being generated [12].
Here, the presence of a bias is analyzed with respect to two different phenotypic
properties: (i) the number of clusters of the solution; and (ii) the clustering
quality of the solution.

In the Baseline representation and VIENNA, every phenotype is encoded by(
kmax

k

)
×k! different genotypes. Furthermore, the number of phenotypes S(N, k)

with a fixed number k of clusters is given by the Stirling number of the second
kind. Consequently, the number of genotypes coding for a clustering solution
with a fixed number of clusters k is given by

RBaseline(N, k) =
(
kmax

k

)
×

k∑
i=1

(−1)k−i

(
k

i

)
iN .

For very small data sets (n = 1, . . . , 9), the resulting distributions are illustrated
in Figure 2 (right). The bias of Falkenauer’s representation is closely related and
is given as

RFalkenauer(N, k) = RBaseline(N, k)× k!.

Hence, all three of these representations have a strong bias towards large numbers
of clusters. On the other hand, it is clear that the adjacency-based representation
suffers from a strong bias towards small numbers of clusters. In particular, for a
data set of size N , the number of different genotypes coding for solutions with
a fixed number of clusters k corresponds to the integer sequence A060281 [14]
and is computed as [4],

RMOCK(N, k) =
N−1∑

i=k−1

(
N − 1

i

)
NN−1−i[zk−1](z + 1) . . . (z + i),

where [zk−1] is a coefficient operator, and means that only the coefficients of the
terms with the specified powers of z contribute to the sum. For very small data
sets (n = 1, . . . , 9), the resulting distributions are illustrated in Figure 2 (left).
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Fig. 2. Number of genotypes coding for a clustering solution for a fixed number of clus-
ters for N = 1, . . . , 9 data items. (Left) Adjacency-based representation. Note that, for
increasing N , the maximum of the curve moves from k = 1 to k = 2, and this slow shift-
ing to the right can be observed to continue for growing N . (Right) Baseline/VIENNA
representation.

These calculations are confirmed by random sampling of the search space
with neither selection pressure nor the use of specialized heuristic operators (re-
sults not shown). Figure 3, illustrates the selection pressure implicitly introduced
through the use of specialized operators for clustering. The most striking results
are MOCK’s convergence to high numbers of clusters (caused by the nearest
neighbour restriction in the mutation operator), the quick loss of diversity in
Falkenauer’s and the Baseline method (caused by the use of crossover) and the
continuing exploration behaviour exhibited by VIENNA (due to the use of a
large-scale mutation operator with strong heuristic bias).

4.4 Locality and Heritability

An analysis of locality and heritability of the operators can help to further
understand the performance differences observed between the algorithms. This
analysis only requires the definition of a distance in phenotype space [12], which
is easily defined for the clustering task. A binary version of the Adjusted Rand
Index is used to compare the similarity of two given clustering solutions. Note
that, due to the use of a similarity (rather than a distance) measure, the following
definitions are slightly different from those introduced in [12].

In order to assess heritability under crossover, crossover innovation CI is
defined as the phenotypic similarity between an offspring and its phenotypically
closer parent:

CI = max(sP (xc, xp1), sP (xc, xp2)),

where xp1 and xp2 are the phenotypes of the two parents and xc is the phenotype
of the offspring, and sP (, ) is the similarity measure chosen.

Accordingly, the locality of the mutation operator is defined as the mutation
innovation MI, which is the phenotypic similarity between solution x and its
mutant:

MI = sP (x, xm).
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Fig. 3. Evolution of the number of clusters and the Adjusted Rand Index during a
typical run of the MOEAs without selection pressure on one of the 2d-4c data sets

Figure 4 compares the distributions of crossover innovation and mutation in-
novation throughout the runs of the four MOEAs, and for randomly generated
solutions. These plots illustrate that the reasons for the quick convergence of Falke-
nauer’s representation in the absence of explicit selection pressure lie in the
crossover operator’s poor performance as a variation operator (it frequently cre-
ates identical copies of one parent). In contrast to this, MOCK’s crossover
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Fig. 4. (Top left) Crossover innovation in a normal run of the algorithms on a 2d-4c
data set. (Top right) Crossover innovation for randomy generated solutions. (Bottom
left) Mutation innovation in a normal run of the algorithm on a 2d-4c data set. (Bottom
right) Mutation innovation for randomly generated solutions.

operator generates a large number of potentially interesting solutions (in the range
[0.4, 0.9]),which maybe the reason for its superior performance. Importantly, how-
ever, it fails to do so when random initialization is used, underlining once again that
this representation relies crucially on the use of a powerful initialization scheme.

5 Conclusion

In this paper, four alternative representation/operator combinations for data-
clustering with variable-k, have been investigated. We have focused on their use in
the multiobjective clustering algorithm, MOCK, where it is necessary to be able to
represent both compact clusters and locally-connected clusters equally well, and
represent these for a large range of values of k. The analysis has revealed that,
in this context, the simple adjacency-based representation, when combined with
uniform crossover and nearest-neighbour mutation, performs very well, but only
if a specialized initialization scheme is used. The more complicated scheme follow-
ing Falkenauer is good if random initialization is used. Some of these results were
reflected in the crossover innovation plots. The effects of the different representa-
tions’ heuristic biases in phenotype space were also apparent under random selec-
tion, but these were overcome by the effects of standard selection and especially
the use of the heuristic nearest-neighbour mutation.
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Abstract. Pseudorandom number generation is a key component of
many Computer Science algorithms, including mathematical modeling,
stochastic processes, Monte Carlo simulations, and most cryptographic
primitives and protocols. To date, multiple approaches that use Evolu-
tionary Computation (EC) techniques have been proposed for designing
useful Pseudorandom Number Generators (PRNGs) for certain
non-cryptographic applications. However, none of the proposals have
been secure nor efficient enough to be of interest for the much more
demanding crypto world. In this work, we present a general scheme,
which uses Genetic Programming (GP), for the automatic design of
crypto-quality PRNGs by evolving highly nonlinear and extremely ef-
ficient functions. A new PRNG named Lamar and obtained using this
scheme is proposed, whose C code and preliminary security analysis are
provided.

1 Introduction

There are two types of random number generators: True Random Number Gen-
erators (TRNGs), also known as Random Number Generators (RNGs), that
get their randomness from natural sources; and Pseudorandom Number Gener-
ators (PRNGs), based on deterministic algorithms that expand short keys into
sequences of seemingly random bits.

Hardware implementations of TRNGs, like the chaotic system proposed in
[32], are generally costly and slow, so their use is limited to only a few cases like
the generation of seeds for PRNGs in cryptographic applications. That is why
there is a constant need for powerful and efficient PRNGs, to be implemented
in hardware and software.

Designing new, better, and more efficient PRNGs is an important open prob-
lem in Computer Science and, in particular, in computer security and cryptog-
raphy. Apart from that, they play a major role in areas such as mathematical
modeling, stochastic processes, and Monte Carlo simulation.

Unfortunately, it is not possible to prove randomness, because there is no
efficient and deterministic definition of this rather abstract idea. Some basic
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concepts that help in detecting evidence against the randomness hypothesis can
be consulted in [11]. In 2001, the National Institute of Standards and Technology
(NIST) proposed a comprehensive suite of randomness tests for the evaluation of
PRNGs used in cryptographic applications [25]. One of the most stringent sets of
randomness tests is Diehard [14], developed in 1996 by Marsaglia who, in 2002,
extended and improved it by including the new tests presented in [15]. On the
other hand, ENT [30] is a relatively light but very quick battery of tests. Never-
theless, none of these tests suites ensure, when successfully passed, that a given
generator is useful for all kinds of applications. Systematically passing the NIST
and Diehard batteries of tests provides, however, evidence in favor of a good
degree of output randomness, probably adequate to make the algorithm suitable
even for the most demanding application a PRNG can have: cryptography.

Multiple techniques based on EC (being Cellular Automata, CA, the most
successful approach due to its output complexity and parallel nature) have been
proposed for designing useful PRNGs for certain non-cryptographic applications.
Nevertheless, the results typically do not pass a battery of very demanding sta-
tistical tests or, in the few cases when they do, it is at a high computational
cost, resulting in very slow and completely worthless schemes for real-world
high-throughput applications.

In this work, we present a general GP scheme for the automatic design of
crypto-quality PRNGs by evolving highly nonlinear and extremely efficient func-
tions. As an example, we propose Lamar, a new PRNG obtained using this
approach, whose C code and preliminary security analysis are provided.

2 State of the Art

Many EC paradigms have been used for designing non-cryptographic PRNGs:
Genetic Algorithms, GAs [6]; GP [5,12]; CA [31]; Cellular Programming [28], etc.
However, none of the proposals were secure nor efficient enough to be of interest
for the much more demanding crypto applications. With a different approach,
some works [3,18] study the behavior of EC algorithms to measure the quality
of PRNGs and, although this is a quite interesting research line, it is still wide
open and waiting for mature results.

Randomness is not the only requirement for crypto-quality PRNGs, but just
one more in a long list of very demanding properties. That is why very few works
have used EC for developing cryptographic primitives. In [22], GAs are applied to
generate boolean functions with excellent cryptographic properties, particularly
a high degree of nonlinearity. A key-exchange protocol developed by means of
neural networks was presented in [10]. We should also mention [27], where a new
block cipher relying on a reversible CA was proposed. CAs have also been used
in the design of stream ciphers [21] and hash functions [8,20]. Nevertheless, many
of the previous schemes have been broken [2]. Despite these discouraging results,
a steady flow of new EC-based cryptographic primitives (especially PRNGs and
symmetric ciphers) exists, although they are looked upon suspiciously by the
vast majority of the crypto community.
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3 Avalanche Effect

Nonlinearity, as randomness, has not a complete, unique, and satisfactory def-
inition. Fortunately, we will just try to measure a very specific mathematical
property named the Avalanche Effect. This property reflects, to some extent, the
intuitive idea of high nonlinearity: a very small difference in the input produces
an avalanche of changes in the output, hence its name. Formally, let H(x, y) be
the Hamming distance between x and y. It is said that F : {0, 1}m → {0, 1}n

has the Avalanche Effect property when:

∀x, y|H(x, y) = 1, Average

(
H(F (x), F (y))

)
=

n

2

That is, a minimum random input change (one single bit) produces a maxi-
mum output change (half of the bits), on average. This definition also tries to
reflect the general concept of independence between input and output (a good
reason for being the base for our proposal, and an intuitive explanation for its
applicability to the generation of PRNGs). An ideal F will resemble a perfect
random function and will have a perfect Avalanche Effect. So, it seems natural
to look for such functions by optimizing the amount of Avalanche Effect.

We will use, in fact, an even more demanding property: the Strict Avalanche
Criterion [4], which can be mathematically described as:

∀x, y|H(x, y) = 1, H(F (x), F (y)) ∼ B

(
n,

1
2

)
That is, the Hamming distances, after changing one single input bit, follow a

Binomial distribution with parameters n and 1/2. It is interesting to note that
this property implies the Avalanche Effect, because the mean of such a random
variable is n/2.

4 Experimentation Issues

We have used the lil-gp library [1] for our experimentation. Next, we describe
the parameters the user has to adjust in order to define a particular problem.

4.1 Function Set

As functions are the building blocks of the individuals we will obtain, the cor-
rect definition of this set is critical to our problem. We decided to include only
very efficient operations, easy to implement both in hardware and software and
common in other implementations of PRNGs and stream ciphers. Hence, the
inclusion of basic operations such as vrotd (one-bit right rotation), vroti (one-
bit left rotation), xor (addition mod 2), and (bitwise and), or (bitwise or), and
not (bitwise not) is an obvious choice. The sum (sum mod 232) operator is also
useful, in order to avoid linearity.
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We did not include mult (multiplication mod 232) at first because, depending
on the implementation, the multiplication of two 32-bit values can be up to fifty
times costlier than an and operation [7]. After extensive experimentation, we
concluded that its inclusion was beneficial. Furthermore, there are some widely-
used cryptographic primitives that use multiplication, like RC6 [24].

In some architectures, vrotd and vroti are also quite inefficient. We tried
to solve this by including � (one-bit right shift) and � (one-bit left shift) too.
These four operators were also implemented in a binary form (vrotdk, vrotik,
rotdk, and rotik, respectively), where the argument k represents the number
of positions that the first argument must be moved.

Although some operators were never used in any of the best individuals found
(for example, the not and the and operators never showed up), when we included
all of them in the function set, the results were notably better. That is why we
decided to let the evolution discard the useless ones.

4.2 Terminal Set

The terminals will be eight 32-bit unsigned integers (a0, a1, a2, a3, a4, a5, a6,
a7) for representing a 256-bit input. We also included Ephemeral Random Con-
stants (ERCs), which are constant values (in our problem, 32-bit random values)
that the GP system uses to generate better individuals. The idea behind this is
providing a constant value, independently of the input.

4.3 Fitness Function

We wanted the PRNG to be efficient, complex, and robust because our objective
is including it in the scheme of a stream cipher. To achieve this, we used:

Fitness = 109/χ2 (1)

where χ2 is the χ2 goodness-of-fit test statistic that measures the proximity of the
computed Hamming distances distribution to the sought theoretical B(n, 1/2).
It was necessary to amplify the fitness function (multiplying by 109) because the
initial values of the χ2 statistic were extremely high, making the fitness negligible
at the beginning of the evolution process.

Summarizing, the fitness of each individual is computed as follows: we use the
Mersenne Twister generator [17] to randomly generate the tuple (a0, a1, a2, a3,
a4, a5, a6, a7). The output O0 corresponding to this input is stored. Then, we
randomly flip one single bit of this 256-bit input and obtain its output O1. Now,
we store the Hamming distance between these two output values, H(O0, O1).
This process is repeated a number of times (214 = 16384 was experimentally
proved to be enough) and, each time, a Hamming distance between 0 and 32
is obtained. Therefore, the fitness of each individual is computed by using the
χ2 goodness-of-fit test statistic that measures the distance between the observed
distribution of the Hamming distances and their theoretical distribution under
perfect Strict Avalanche Criterion hypothesis (B(32, 1/2)). Thus, our GP system
tries to minimize this statistic in order to maximize Fitness (1).
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4.4 Tree Size Limitations

When using GP, the depth and/or the number of nodes of the individuals should
be limited. We tried both limiting the depth and not limiting the number of
nodes, and vice versa. The best results were obtained by using the latter option,
that is, we allowed the PRNG to use up to 100 nodes for trying to ensure a high
degree of Avalanche Effect and robustness, while keeping a relatively small size,
compatible with efficiency.

4.5 Results

We ran 20 experiments with different seeds for generating the initial population
(seedi = (π ∗ 100000)i (mod 1000000)), a population size of 150 individuals, a
crossover probability of 0.8, a reproduction probability of 0.2, and an ending
condition of reaching 250 generations. These parameters were experimentally
found to be adequate for our purposes.

Next, we show the tree corresponding to the best individual found over these
experiments. This PRNG has an Avalanche Effect of 15.9631 (randomly flipping
one input bit, the 32-bit output changes in 15.9631 bits on average, being 16.00
the optimal value) and presents a χ2 goodness-of-fit test statistic of 12.6614 for
a χ2 probability distribution with 32 degrees of freedom; it means that, with
probability 0.999112, the computed Hamming distances come from a Binomial
distribution B(32, 1/2).

=== BEST-OF-RUN ===
generation: 153

nodes: 100
depth: 27
hits: 159631

TOP INDIVIDUAL: -- #1 --
hits: 159631

raw fitness: 6237837.6345
standardized fitness: 6237837.6345

adjusted fitness: 6237837.6345
TREE:
(sum (sum a5 (xor a6 a1)) (sum (vrotd 928a463)
(mult (sum a5 (mult (sum a7 (sum a5 (mult
(xor a3 (xor (vrotdk (xor (xor (rotdk (xor (xor
(rotdk (sum a5 (mult (xor (rotdk (sum a3 (mult
(xor (xor a6 a2) (xor (vroti (xor a6 a1)) a4))
928a463)) (vrotd 928a463)) (roti a1)) 928a463))
928a463) a1) (mult a3 a6)) 928a463) a1) (mult a3
(roti a1))) 928a463) (sum (rotd (vroti (xor (xor
(rotdk (sum a5 (mult (xor (rotdk (sum a5 (mult
(xor a0 (xor (xor a3 a1) a7)) 928a463)) (vrotd
928a463)) a0) 928a463)) (vrotd 928a463)) a0) a2)))
(xor a6 a2)))) 928a463))) 928a463)) 928a463)))

5 Security Analysis

In this section, the results of testing the statistical and cryptographic properties
of Lamar are presented.
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5.1 Statistical Properties

We have performed a preliminary security analysis of our PRNG, consisting in
examining the statistical properties of its output over a low-entropy input. In
our case, we have set the 256-bit input to a simple incremental counter starting
at zero (an

i = i+ 8 ∗ (n− 1)).
Following this scheme, we have generated a file of 250MB to be analyzed with

three batteries of statistical tests: ENT, Diehard, and NIST. The results obtained
with ENT and Diehard are presented in Tables 1 and 2, respectively. In the latter,
when several p-values were produced in the same test, we summarized them by
a Kolmogorov-Smirnov p-value (marked with *), being necessary it to be greater
than 0.05 to be considered successful. Lamar also passed the very demanding –
because it is oriented to cryptographic applications– NIST statistical battery. We
have computed 100 p-values for every test in the statistical suite; the proportion
of successful ones is presented in Table 3. If this proportion is lower than 0.96, it
is considered that the whole test failed. From these results, we can conclude that
the output successfully passed all the randomness tests, even with the output
being obtained from an extremely low-entropy input.

Table 1. Results obtained with ENT

Test Result

Entropy 7.999999 bits/byte

Compression Rate 0%

χ2 Statistic 258.29 (50%)

Arithmetic Mean 127.4984

Monte Carlo π Estimation 3.141524737 (0.00%)

Serial Correlation Coefficient -0.000060

5.2 PRNG Quality Evaluation

To compare how Lamar performs against several different PRNGs, we used John-
son’s scoring scheme [9]: we initialized (a0, a1, a2, a3, a4, a5, a6, a7) with 32
different random 256-bit values obtained from http://randomnumber.org, got
32 different 10MB files, and then assigned scores based on the results of the
Diehard tests. The terminal updating during this process was made in a feed-
back manner, that is:

an+1
i = an

i+1 ∀i = 0, ..., 6

an+1
7 = On

(a0,a1,a2,a3,a4,a5,a6,a7)

The PRNGs we have compared to ours are of several different kinds: Linear
Congruential Generators (rand [11], rand1k [19], pm [23]), Multiply with Carry
Generators (mother [13]), Additive and Substractive Generators (add [11], sub
[23]), Compound Generators (shsub [11], shpm [23], shlec [23]), Feedback Shift
Register Generators (tgfsr [16], fsr [26]), and Tausworthe Generators (tauss [29]).
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Table 2. Test results obtained with the Diehard suite

Test p-value Test p-value

Birthday Spacings 0.909* Count the 1s in a Stream of Bytes 0.894001

GCD 0.816* Count the 1s in Specific Bytes 0.857*

Overlapping Permutations 0.976* Parking Lot Test 0.476150

Ranks of 31×31 and 32×32 Matrices 0.964* Minimum Distance Test 0.789136

Ranks of 6×8 Matrices 0.354932 Random Spheres Test 0.676330

Monkey Tests on 20-bit Words 0.759* The Squeeze Test 0.756284

Monkey Test OPSO 0.236* Overlapping Sums Test 0.245735

Monkey Test OQSO 0.613* Runs Up and Down Test 0.379

Monkey Test DNA 0.793* The Craps Test 0.985*

Overall p-value 0.360260

Table 3. Proportion results obtained with the NIST suite

Test Proportion Test Proportion

Frequency 1.0000 Random-excursions 1.0000, 0.9718
Block-frequency 1.0000 0.9859, 0.9859
Cumulative-sums 1.0000, 1.0000 1.0000, 1.0000
Runs 1.0000 1.0000, 1.0000

Longest-run 0.9900 Random-excursions-variant 1.0000, 1.0000, 1.0000
Rank 0.9900 1.0000, 1.0000, 0.9718
FFT 0.9700 0.9859, 0.9859, 1.0000
Overlapping-templates 1.0000 1.0000, 1.0000, 1.0000
Universal 0.9900 0.9859, 0.9718, 0.9859
Apen 0.9900 0.9859, 0.9859, 0.9718

Linear-complexity 1.0000 Serial 0.9900, 0.9900

Each of the Diehard tests produces one or more p-values. We categorize them
as good, suspect or rejected. We classify a p-value as rejected if p ≥ 0.998, and
as suspect if 0.95 ≤ p < 0.998; all other p-values are considered to be good. We
assign two points for every rejection, one point for every suspect classification,
and no points for the rest. Finally, we add up these points to produce a global
Diehard score for each PRNG, and compute the average over the 32 evaluations:
low scores indicate good PRNG quality. The information relating to the different
PRNGs was taken from [18,19].

The results are presented in Table 4, where the behavior of a random variable
X following the distribution of the scores (X = 0 with probability 0.95, X = 1
with probability 0.048, and X = 2 with probability 0.002) is also included. We
note that Lamar is outstandingly better than the rest of the analyzed PRNGs:
the lowest scores correspond to shsub (17.125) and fsr (17.90625), significantly
greater than Lamar’s (11.78125). On the other hand, the average scores increase
up to 50.59375 (pm), 66.53125 (rand), and even 291.78125 (rand1k). As these
are non-cryptographic PRNGs, this behavior could have been foreseen.

To measure the proximity between Lamar and the true random variable X ,
a χ2 test has been computed, which is also shown in Table 4. As a result, we
can affirm the behavior of Lamar can not be distinguised from that of a random
variable at a significance level of α = 0.99.
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Table 4. PRNG Diehard Scores

PRNG Total Score Mean
rand 2129 66.53125
rand1k 9337 291.78125
pm 1619 50.59375
mother 602 18.8125
add 577 18.03125
sub 655 20.46875
shsub 548 17.125
shpm 799 24.96875
shlec 751 23.46875
fsr 573 17.90625
tgfsr 584 18.25
tauss 935 29.21875

Lamar 377 11.78125 χ2 Test p-value

Random Variable 371.072 11.596 0.021

6 Conclusions and Future Work

In this work, we have proved that the GP paradigm can be successfully applied
to the design of competitive PRNGs. The most relevant aspect of our scheme
is the selection of the fitness function, where nonlinearity and efficiency are the
paramount objectives. We have opted to use the Strict Avalanche Criterion as
the key property of the explored mathematical functions, and used only very
efficient operators to construct them.

The proposed PRNG has successfully passed several batteries of very demand-
ing statistical tests, which were not part of the fitness function; being this, by
itself, quite an interesting result. Although passing these tests does not ensure
a certain security level, it guarantees, to some extent, that neither trivial weak-
nesses nor implementation bugs exist. Moreover, Lamar has been compared to
several PRNGs by measuring their statistical quality from Diehard results, and
we have proved ours is the best and that there is no evidence to ensure Lamar
is different from a random variable.

Future work will use Lamar as the building block of a stream cipher. For this, a
deeper security analysis is needed, particularly against basic cryptanalytic attacks.
Wehave tried to incorporate robustness inLamarby construction, even though fur-
ther testing is required. Additionally, speed tests should be performed to measure
the exact efficiency of the proposed generator. In particular, it could be interesting
to compare the efficiency of Lamar, which is expected to be good by design, with
the current state-of-the-art stream ciphers, including RC4 and all its variants.
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Appendix: C Source Code

Finally, a C implementation of the Lamar PRNG is included, where unsigned
long variables represent unsigned integers of 32 bits.

unsigned long lamar (unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3,
unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7)

{ unsigned long nonce, aux1, aux2, aux3;

aux1 = ((vroti(a6 ^ a1) ^ a2 ^ a4 ^ a6) * 0x928a463) + a3;
aux2 = rotdk(aux1, vrotd(0x928a463)) ^ (a1<<1);
aux1 = (0x928a463 * aux2) + a5;
aux2 = rotdk(aux1, 0x928a463) ^ a1 ^ (a3 * a6);
aux1 = rotdk(aux2, 0x928a463) ^ a1 ^ ((a1<<1) * a3);
aux2 = ((a0 ^ a1 ^ a3 ^ a7) * 0x928a463) + a5;
aux3 = ((rotdk(aux2, vrotd(0x928a463)) ^ a0) * 0x928a463) + a5;
aux2 = rotdk(aux3, vrotd(0x928a463)) ^ a0 ^ a2;
aux3 = (a2 ^ a6) + (vroti(aux2)>>1);
aux2 = vrotdk(aux1,0x928a463) ^ a3 ^ aux3;
aux1 = ((aux2 * 0x928a463) + a5 + a7) * 0x928a463;
aux2 = (a6 ^ a1) + a5 + vrotd(0x928a463);
nonce = ((aux1 + a5) * 0x928a463) + aux2;
return(nonce); }
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Abstract. The bin-packing problem is a well known NP-Hard optimisa-
tion problem, and, over the years, many heuristics have been developed
to generate good quality solutions. This paper outlines a genetic pro-
gramming system which evolves a heuristic that decides whether to put
a piece in a bin when presented with the sum of the pieces already in the
bin and the size of the piece that is about to be packed. This heuristic
operates in a fixed framework that iterates through the open bins, ap-
plying the heuristic to each one, before deciding which bin to use. The
best evolved programs emulate the functionality of the human designed
‘first-fit’ heuristic. Thus, the contribution of this paper is to demonstrate
that genetic programming can be employed to automatically evolve bin
packing heuristics which are the same as high quality heuristics which
have been designed by humans.

1 Introduction

The aim of this work is to explore how a genetic programming system might
evolve good heuristics that can pack bins. The goal is to automatically generate
good heuristics which can operate over a range of instances and, perhaps more
importantly, do not require human intervention or parameter tuning. The aim
is therefore to show that a genetic programming system is capable of generating
heuristics which have the functionality of human-designed heuristics. In this
work we use a basic genetic programming system which does not incorporate
any of the more advanced techniques such as re-usable code, loops, or memory,
all of which are explained in [1] and [2] for the interested reader.

1.1 Genetic Programming

Genetic programming [3] evolves a population of computer programs which are
represented as tree structures. After each program (or individual) has been exe-
cuted, its performance is assessed and a fitness rating is given to it. The genetic
operators of crossover and reproduction are applied to individuals in the popu-
lation in proportion to their relative fitness.
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1.2 Hyper-heuristics

One of the aims of a hyper-heuristic [4,5] is to “raise the level of generality
at which optimisation systems can operate” [5]. To this end, hyper-heuristics
are heuristics which choose “between a set of low-level heuristics, using some
learning mechanism” [6].

Of course, the No Free Lunch theorem [7,8] shows that all search algorithms
have the same average performance on all problems defined on a given finite
search space. However, it is important to recognise that this theorem is not
saying that it is not possible to build search methodologies which are more
general than is possible today. Indeed, research into hyper-heuristics is motivated
by the assertion that in many real world problem solving environments, there are
users who are interested in “good-enough soon-enough cheap-enough” solutions
to their optimisation problems [5].

Some examples of hyper-heuristic methods are briefly explained here. Two
hyper-heuristic methods have been tested on the one-dimensional bin-packing
problem, a learning classifier system [9] and a genetic algorithm [10]. In [11], an
ant algorithm hyper-heuristic chooses a sequence of low-level heuristics for the
project presentation scheduling problem. A tabu search hyper-heuristic is applied
in [12] to a nurse scheduling problem and a university course timetabling prob-
lem. A choice function has also been employed as a hyper-heuristic, to rank the
low-level heuristics and choose the best [13]. A multi-objective hyper-heuristic
is applied to space allocation and timetabling in [14]. A graph based hyper-
heuristic is used for timetabling in [15]. Case based heuristic selection is applied
on a timetabling problem in [16]. Finally, in [17], a simulated annealing hyper-
heuristic is used to determine shipper sizes.

1.3 Using Genetic Programming as a Hyper-heuristic

This paper invesigates the role of genetic programming as a hyper-heuristic. The
genetic programming system chooses between a set of low level building blocks
to construct a heuristic which performs well in the environment given to it. In
this case the building blocks are the function and terminal set shown in table 2,
and the environment is the data set given to the system.

In previous work (e.g. [12]), hyper-heuristics have had their low-level heuristics
given to them by the human programmer, and so the number and quality of
heuristics that the hyper-heuristic has available is limited to those which a human
can provide. The aim of this research is to show that even more of the decision
process can be automated. For example, the human programmer would normally
choose the low-level heuristics, from the space of all heuristics. This paper aims
to show that by using a genetic programming system as a hyper-heuristic, any
heuristic can be chosen from the space of all heuristics that can be constructed
with the function and terminal set. The human programmer therefore need only
supply the potential components of a heuristic.
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2 The Bin Packing Problem

The one-dimensional bin-packing problem involves a set of integer-size pieces
L, which must be packed into bins of a certain capacity C, using the minimum
number of bins possible. In other words, the set of integers must be divided into
the smallest number of subsets so that the sum of the sizes of the pieces in a
subset does not exceed C [18].

2.1 The Problem

Twenty instances of the bin packing problem are used in this research, taken
from benchmark data studied by Falkenauer in [19] and now maintained by
Beasley in the OR-Library of Brunel University [20]. In each instance, there are
120 pieces, all uniformly distributed in (20, 100). These pieces are packed into
bins of capacity 150 for every instance.

In this paper, the ‘on-line’ bin packing problem is studied. That is, we do
not know in advance how many pieces there are or the size of those pieces. Our
system must simply pack the pieces into the bins in the order they arrive, and the
pieces cannot be moved once they have been placed in a bin [21]. This situation
is likely to arise in the real world. For example when items come off a production
line and are placed into containers, or packages of different sizes are packed into
trucks at a depot, and only a certain number of trucks can be at the depot at
any one time [21].

2.2 Existing Heuristics

The bin packing problem is known to be NP-Hard [22] so heuristics are commonly
used to generate solutions that are of high enough quality for practical purposes,
as a polynomial-time exact algorithm is unlikely to be found for the general
case [21]. A number of examples of heuristics used in the online bin packing
problem are described below:
Best Fit [23]: Puts the piece in the fullest bin that has room for it. Opens a new
bin if the piece does not fit in any existing bin
Worst Fit [21]: Puts the piece in the emptiest bin that has room for it. Opens a
new bin if the piece does not fit in any existing bin.
Almost Worst Fit [21]: Puts the piece in the second emptiest bin if that bin has
room for it. Opens a new bin if the piece does not fit in any open bin.
Next Fit [24]: Puts the piece in the right-most bin and opens a new bin if there
is not enough room for it.
First Fit [24]: Puts the piece in the left-most bin that has room for it and opens
a new bin if it does not fit in any open bin.

3 The Genetic Programming Hyper-heuristic

3.1 Evolving the Choice of Bin

Our system evolves a control program that decides whether to put a given piece
into a given bin. An individual in the population is assessed by rating the result
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created when the algorithm in Fig. 1 is run, where L = the list of all the pieces,
and A = the array of bins. Note that when making the choice of whether to
put the current piece in the current bin, each individual in the population is not
constrained by whether it is legal to do so. For example, putting every piece in
the first bin is permitted. However, this will lead to an illegal solution with a
high penalty. For this reason, when the best-of-run individual produces a legal
solution, it is because the system will have evolved an understanding of the rules,
not because of artificial constraints imposed by humans.

For each piece p in L
For each bin i in A
output = evaluate(p, fullness of i, capacity of i)
If (output > 0)

place piece p in bin i
break

End If
End For

End For

Fig. 1. Pseudo code showing the overall program structure

Initialisation Parameters. Table 1 shows the parameters of the run. No opti-
mality is claimed for these parameters. They were chosen from a range of possible
initialisation parameters, after a series of experiments, because they result in a
good solution in reasonable time. The population size of 1000 was chosen be-
cause it gives a good range of solutions in the initial population, and it allows
for reasonable run times. The maximum depth of the initial trees is a relatively
low value because the maximum depth obtainable during the run is not limited.
The ‘Grow’ method of initialising the trees [25] is used here because it creates
an initial population of diverse structures. Using 50 as the maximum number of
generations is a standard parameter used in [3], where generation 0 is the initial
random population.

Fitness measure. The fitness measure is shown in equation 1, where:
B = Number of bins used, n = Number of pieces,
Sk = Size of piece k, and C = Bin capacity

Fitness = B −
∑n

k=1 Sk

C
(1)

This means that a fitness of zero is the perfect result, because the pieces are
packed into the smallest number of bins possible. A fitness of 1000 is assigned to
any illegal solution (an arbitrarily high number compared to the range of fitness
values that a legal solution can have).

Genetic Operators. At the end of each generation, the reproduction operator
is used on 10% of the individuals, and the crossover operator is used on 90% of
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Table 1. Initialisation parameters of each genetic programming run

Population size 1000
Maximum depth of initial trees 4
Method of initialising the trees Grow
Maximum generations 50

the individuals. These are standard parameters taken from [3]. In the crossover
operator, any node in the tree can be selected with equal probability to be
the crossover point. ‘Fitness proportional selection’ is used [3] (also known as
‘roulette wheel selection’). Each individual is selected for the genetic operators
with probability proportional to its normalised fitness. Reselection is permitted,
so the original individuals involved in the genetic operations are put back in the
population and can be used if selected again.

Function and Terminal Set. In the diagrams below, the functions and termi-
nals are represented by symbols. The symbols are shown in table 2 along with an
explanation of their function within the program. ‘S’, ‘F’ and ‘C’ are parameters
given to the individuals in the population before they are evaluated.

Table 2. The functions and terminals used in the experiments and descriptions of the
values they return

Symbol Arguments Description
+ 2 Add
- 2 Subtract
* 2 Multiply
% 2 Protected divide function. Division by zero will return 1
< 2 Tests if the first argument is less than or equal to the

second argument. Returns 1 if true, -1 if false
A 1 Returns the absolute value of the argument
F 0 Returns the sum of the pieces already in the bin
C 0 Returns the bin capacity
S 0 Returns the size of the current piece

4 Results

4.1 Evolved Small Trees

Figs. 2-5 show four best-of-run individuals (referred to as trees A-D) from four
different runs, which illustrate that very simple programs can be found by the
genetic programming system, and that the system is versatile enough to produce
many different ways of expressing the same heuristic, including some ways that
would perhaps not be thought of immediately by a human programmer given
the same task. They all result in a legal solution because a piece is never put in
a bin when it is larger than the space left in the bin.
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Fig. 2. Tree A Fig. 3. Tree B Fig. 4. Tree C Fig. 5. Tree D

All four individuals perform much the same function. However, trees C and D
are slightly different to A and B. Trees A and B both return a negative number
if the piece size is greater than the space left in the bin, and a positive number
if not. Therefore, they implement the first-fit heuristic. Trees C and D perform
the same way, apart from the case when the piece size is the same as the space
left in the bin. Zero is returned in this case, which means the greater-than-zero
condition, shown in the pseudo code (Fig. 1), is not met and the piece is not
placed in the bin. So C and D are individuals that do not implement the first-fit
heuristic, but their functionality is highly similar.

The question can be asked why trees C and D were the best-of-run individuals
in their run when it seems easy for the system to produce trees which copy the
functionality of trees A and B. The answer to this question is that if a tree like C
or D is found first in its run then it is stored as the best-of-run individual so far.
Trees like A and B were produced in the run but with the data sets used here
they did not produce a solution which used less bins, so tree C or D remained
as the best individual in the run so far.

The reason a better result is not gained by using trees A and B is because
the bin capacity is large and the piece sizes are such that it is uncommon for a
bin to be filled exactly, so the fact that the piece will not be put in the bin if
it exactly fills the bin barely affects the assignment of pieces to bins. Therefore
the solutions produced by both heuristics are almost the same, and they receive
the same fitness.

This plateau in the search space also means that code-bloat [26] was not
an issue in the runs which produced Figs. 2-5. They were found in the early
generations when the average tree size was small, they were stored as the best
so far, and then were not surpassed by individuals found in later generations.
Code-bloat does exist in our genetic programming system, but the average and
maximum complexity of the trees only increases in later generations. Therefore,
if a first-fit heuristic is found early in the run, it is more likely to be a simple
and easy to understand tree than if it is found in a later generation.

4.2 More Complex Trees

In this section, we present two more examples of trees created during different
runs which are more complex than the four individuals presented in section 4.1.
These individuals are of interest because they are quite far removed from any
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Fig. 6. Tree Structure 1 Fig. 7. Tree Structure 2

program that a human programmer would create for the same task. Both are
best-of-run individuals.

Tree Structure 1. Fig. 6 has the same functionality as the first-fit heuristic.
The tree works this way because F is always less than or equal to C. So 1 will
always be returned by the left branch. In general, if the following equation is
satisfied, then this means that the piece fits in the bin,

(F + (S − C)) <= 0

The right hand branch will return 0 or less if this is the case, therefore the result
returned by the whole tree will be 1 or greater and the piece will be put in the
bin.

Tree Structure 2. Fig. 7 shows a tree which also implements the first-fit
heuristic. In Fig. 7, the tree’s right hand branch (from the first subtract node
downwards) can be simplified to:

(C − F )− S

This branch will therefore return 0 or greater if the piece fits or else it will return
a negative number. Since C is always a positive integer number, C divided by
a positive number returns a positive number, and so the piece is placed in the
bin in such a case. On the other hand, C divided by a negative number returns
a negative number and so if a negative number is returned by the right hand
branch then the piece is not placed in the bin.

The most interesting feature of Fig. 7, however, is the way that the ‘protected
divide’ node at the top fixes the problem that Figs. 4 and 5 have. Recall that in
those trees, when the piece fits exactly, 0 is returned, and therefore the ‘greater-
than-zero’ condition of Fig. 1 is not satisfied and the piece is not placed in the
bin. The protected divide function at the root of Fig. 7 means that when the
piece fits exactly, 1 is returned as it is a division by zero. So the problems in
Figs. 4 and 5 have been solved in Fig. 7.

This functionality was not the reason why the protected divide function was
defined in this way. The reason was to represent the closure of the function set,
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as explained in [3]. This is, therefore, an example of how the evolutionary process
can use combinations of functions and terminals in ways not originally envisaged
by the human programmer that supplied them.

4.3 Comparison with First-Fit and Other Heuristics Found

Over the 20 benchmark binpacking instances, our best evolved heuristic matches
the performance of the first-fit heuristic (a well known human designed heuristic).
This paper concentrates on reporting the best of the heuristics found. However, a
worse heuristic was found in approximately 3 percent of the runs. For example,
a heuristic with 17 nodes was found which puts a piece in a bin if its size is
greater than the fullness multiplied by 2. Another heuristic with 17 nodes was
found which never fills a bin higher than 148.

5 Conclusions and Future Work

It has been shown that a heuristic invented by a human, namely the first fit
heuristic, can also be evolved by genetic programming. We evolved the heuris-
tic without any human input except for the specification of the building-block
nodes that it manipulates to make the tree structures of each individual in the
population.

The selection pressure exerted by the fitness-proportional selection progres-
sively eliminated those individuals that produced illegal solutions and used more
individuals that produced legal solutions to construct the next generation. In this
way the average fitness of the population improved over successive generations
and better individuals were more likely to be created by the crossover genetic
operator.

One potential area of future work is to increase the range of functions and
terminals available to the genetic programming system. This will concentrate on
expanding the potential complexity of evolved programs. Specifically, work will
concentrate on expanding two new aspects of the system. Firstly, each individual
must be given the array of bins as input, not just the piece size, bin fullness, and
bin capacity. Secondly, automatically defined loops and automatically defined
storage have to be included, which are explained in [2].

Plateaus in the search space are common when using the fitness function
in this paper. We will investigate the use of other fitness functions which can
differentiate between two solutions where the number of bins used is the same.
An example is given in [27], where, if the number of bins used in both situations
is equal, a solution with some full bins and some almost empty bins is considered
superior to a solution where all bins are packed to a constant level.

We will test the genetic programming system over more binpacking bench-
mark instances to investigate if different heuristics are evolved under different
conditions.

We will also investigate the effects of code-bloat as the population size is
reduced from 1000. The average complexity of the population increases with
the generation number, and we predict that as the population size is decreased,
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the best-of-run individuals will be larger and harder to understand because the
system will need more generations to find the same standard of program.
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Abstract. Understanding how neutrality works in EC systems has
drawn increasing attention. However, some researchers have found neu-
trality to be beneficial for the evolutionary process while others have
found it either useless or worse. We believe there are various reasons for
these contradictory results: (a) many studies have based their conclu-
sions using crossover and mutation as main operators rather than using
only mutation (Kimura’s studies were done analysing only mutations)
and, (b) studies often consider problems and representation with larger
complexity. The aim of this paper is to analyse how neutral mutations
tend to behave in GP and establish how important they are. For this
purpose we introduce an approach which has two advantages: (a) it al-
lows us to specify neutrality and, (b) this makes possible to understand
how neutrality affects the evolutionary search process.

1 Introduction

In late 1960s, Motoo Kimura observed that mutations were present more often
than previously thought. Evolutionary Computation (EC) systems are mostly
inspired from the theories of genetic inheritance and natural selection. However,
Neutral theory [8] has interested some researchers who want to understand it
so that they can incorporate it in their EC systems to solve complex problems.
This theory suggests that a mutation from a gene to another is neutral if this
modification does not affect the phenotype.

Kimura’s theory seems to contradict the Darwinian theory but this is not
right. The Darwinian theory judges genes by their phenotypic expression whereas
Kimura’s theory argues that mutations occurring during evolution are neither
advantageous nor disadvantageous to the survival and reproduction of individu-
als. Such random genetic drift should be considered into the study of the evolu-
tionary process which is an issue neglected by the EC community.

Some researchers have made effort to understand how neutrality works in EC
systems in order to add elements to the evolutionary process to evolve complex
problem solutions. In Genetic Programming (GP) [9], neutrality if often iden-
tified with redundancy and introns. Both have being widely studied in the EC
community [1,10,12,13,14].
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Functional redundancy refers to the fact that many different individuals, at
the phenotype level, represent the same function. For instance the following two
genotypes represent the XOR function:

(nor (and (not (not a )) b) (not (or a b)))
(nor ((nand (nand a b) (or a b)) (not (or a b))))

Introns refers to code that is part of an individual but that semantically does
not affect the program’s behaviour. A good example of an intron could be found
in a typical individual generated for the artificial ant problem [6]. Suppose that
in the root node there is an IF instruction, which means that either the left or
right subtree will not be executed, so, any change in the subtree which is not
executed will have no effect on the behaviour of such individual.

The problem with functional redundancy and introns is that both emerge and
vary during the evolutionary process and for this reason it is very difficult to
measure and study the effects of neutrality.

The aim of this paper is to analyse how neutral mutations behave in GP and
establish how important they are. For this reason, we introduce a new approach
to study the effects of neutrality. This method has two advantages: (a) it al-
lows us to specify neutrality, (b) this makes possible to understand how explicit
neutrality1 affects the evolutionary search process.

The paper is organized as follows. In Section 2, previous work on neutrality is
presented. Section 3, the approach used to carry out our research is described.
Section 4 provides details on the experimental setup used and results are pre-
sented. In Section 5 conclusions are drawn.

2 Previous Work

As we will see in the next paragraphs, neutrality theory has been explored in
Genetic Algorithms. However, neutrality could be easier to find in GP due to its
representations.

Harvey and Thompson [5] studied some effects of neutral networks in an evolv-
able hardware problem. In their work, they defined the concept of potentially
useful junk that refers to loci in a genotype that are functionless within the
current context, but with different values elsewhere in the genotype they may
become functional. Harvey and Thompson argued that it is possible to reach
a global optimum without worrying about premature convergence if one uses
neutrality in the evolutionary process.

Banzhaf [2] proposed an approach where a genotype-phenotype mapping was
used in the context of constrained optimisation problems. Banzhaf argued that,
very often, constraining the solution space leads to local optima which are diffi-
cult to escape from with traditional methods. He used high variability of neutral
variants to escape from local optima on saddle surfaces. Keller and Banzhaf
extended this work in [7].
1 Term coined by Yu and Miller [19], which means that neutrality can be added to

the evolutionary process.
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Shipman et al. [15] explored the benefits of neutrality in the context of a map-
ping based on an abstraction of a genetic regulatory network — a random Boolean
network. The mapping used in their experiments provided a very large degree of
neutrality. From the experimental results they concluded that neutral drift al-
lowed the discovery of many more phenotypes than would be the case with a di-
rect encoding without redundancy. In [16] they proposed four different redundant
mappings to study their effect in the evolutionary process and see how neutrality
influences the search. They argued that redundancy was useful in three of their
mappings. They concluded that some kind of redundancy (neutrality) is crucial.

Smith et al. [17] analysed the effects of the presence of neutral networks on
the evolutionary process. They observed how evolvability was affected by the
presence of such neutral networks. For this purpose they used a system with an
extremely complex genotype-to-fitness mapping. They concluded that the ex-
istence of neutral networks in the search space, which allows the evolutionary
process to escape from local optima, does not necessarily provide any advan-
tage. This is because the population does not evolve any faster due to inherent
neutrality. In [18] they focused their research on looking at the dynamics of the
population rather than looking at just the fitness, and argued that neutrality
did not perform a useful role in an evolutionary robotic task.

Yu and Miller [19] showed that neutrality improves the evolutionary search
process for a Boolean benchmark problem. They used Miller’s Cartesian GP [11]
to measure explicit neutrality in the evolutionary process. They have explained
that mutation on a genotype that has part of its genes active and others inactive
may produce different effects: mutation on active genes is adaptive because it
exploits accumulated beneficial mutations, while mutation on inactive genes has
a neutral effect on a genotype’s fitness, yet it provides exploratory power by
maintaining genetic diversity. Yu and Miller extended this work in [20] show-
ing that neutrality was helpful and that there is a relationship between neutral
mutations and success rate in a Boolean function induction problem. However,
Collins [4] claimed that the conclusion that, in this problem, neutrality is bene-
ficial is flawed.

Yu and Miller [21] also investigated neutrality using the simple OneMax prob-
lem. They attempted a theoretical approach in this work. With their experi-
ments, they showed that neutrality is advantageous because it provides a buffer
to absorb destructive mutations.

Chow [3] proposed a method that uses individuals which contains multiple
chromosomes instead of a single chromosome. The idea of his approach was to
apply genetic operators which do not maintain a one-to-one mapping between
a genotypic bit and a phenotypic bit. Chow tested his approach in well known
deceptive problems with good results.

As it can be seen from the brief summaries provided above, some researchers
have found neutrality to be beneficial to evolutionary process while others have
found it either useless or worse. We believe there are various reasons of why
contradictory results on neutrality have been reported. In the next section we
will describe in detail the proposed approach.
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3 Graph-GP Representation

We believe that contradictory results regarding neutrality have several reasons:

– many studies have based their conclusions using crossover and mutation as
main operators rather that using only mutation,

– studies often consider problems, representations and search algorithms that
are relatively complex and so results represent the composition of multiple
effects (e.g., bloat or spurious attractors in GP).

In this paper, we make an effort to clarify these problems. That is,

– We use the traditional representation as suggested by Koza, with the differ-
ence to allow explicit neutrality,

– We analyse performance with and without the presence of neutrality, using
only the mutation operator.

The inspiration of using GP to study some effects of neutrality in the evolu-
tionary process comes from many facets of their properties.

Programs are represented in GP as parse tree, rather than as lines of code.
For instance, the expression AND(a AND (b OR b), a OR a) could be expressed
as shown in Figure 1(a). The set of internal nodes used in GP parse trees is
called function set, F = {f1, · · · , fNF }. The function set could include almost
any kind of programming construct: arithmetic operators, Boolean functions,
looping instructions, etc. The set of terminal nodes is called terminal set T =
{t1, · · · , tNT }. This set can include variables, constants, random constants, etc.

For our experiments, F = {AND,OR,NOT }, while T = {a, b, c, · · · } repre-
senting input wires. Moreover, we have added an extra element in the function
set, p. This p symbol works as follows: (a) Once an individual has been created
as usual, we use a probability to replace a function with a p symbol which is a
function of arity 2, which means that only functions of arity 2 can be replaced by
p symbol. However, this is not a restriction because p can be defined of any arity,
(b) If an individual contains this p symbol, this will point to code somewhere in
the program, so when p is executed, the subtree rooted at that node is ignored,
(c) If p symbol points to a function symbol, the p symbol effectively represents
the sub-tree rooted at that function, and, (d) If p symbol points to a terminal
symbol, the p symbol simply represents that node.

As can be seen, when p symbol is executed, the subtree rooted at that node
is ignored, and so plays the role of inactive code2. When the mutation is applied
in the inactive code, the individual will change at the genotype level but it will
not change at the phenotype level. Figure 1(b) illustrates the concept.

The mutation operator is applied as usual on a per node basis. The only
difference is that when a mutation is applied to the p symbol, we reassign the
position to which it is pointing to. The fitness function that we used for circuit
design is the raw fitness, where we assign the fitness to the individual according
to the number of correct output bits.
2 However, it is worth pointing out that this inactive code can be activated if p point

to this code.
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Active Function Active Terminal Inactive Function Inactive Terminal Flow

(a)

AND

OR

(b)

AND

ORa

b b

a a

Fig. 1. (a) Parse-tree representation, and, (b) Graph-GP representation created with
our approach

Table 1. Summary of Parameters

Parameter Value
Depth 6, 7, 8, 9, 10

Population Size 200
Generations 400

Mutation Rate per node 0.02, 0.03, 0.04, 0.05, 0.06
P Rate per node 0.00, 0.01, 0.02, 0.03, 0.04

4 Experiments

4.1 Experimental Setup

In this section we use the 6-bit Multiplexer Boolean function to evaluate the
proposed approach. To obtain meaningful and conclusive results, we performed
20 independent runs for each of different mutation rates and different p rates. We
will show the results and analyse them in the following section. Moreover, runs
were stopped when the maximum number of generations was reached. The pa-
rameters we have used are shown in Table 1 (these parameters were defined after
a series of preliminary experiments). Initialization of the population was made
with the full method. Crossover operator was not used in any of our experiments.

4.2 Results and Analysis

Due to space limitations we will focus our attention on results generated with
depth 8. However, it is worth pointing out that results with depths 6, 7, 9 and
10 are very similar to those found with depth 8.

From Figure 2 we can see the success rates found by our approach with
different p and mutation rate values. The highest success rate found was 100%
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Table 2. Results found with our approach in the 6-bit Multiplexer. P and Mutation
rate values are shown in the first and second column, respectively. Average of Fitness,
Standard Deviation (σ) and Median are shown in the third, fourth and fifth column,
respectively. Finally, Feasible Circuits (Success Rate) and Average of Generations (this
refers to the average number of generations that are necessary to reach the feasible zone)
are shown in the last two columns.

% P % Mutation Avr. of Fit. Standard Deviation Median F. Circuits Avr. of Gen.
0.01 0.02 64 0 64 100% 80.6
0.01 0.03 63.6 1.23 64 90% 155.66
0.01 0.04 62.65 2.98 64 70% 138.62
0.01 0.05 62.4 1.7 62.5 55% 146.65
0.01 0.06 62.25 1.37 62 30% 203.5
0.02 0.02 63.15 1.76 64 75% 91.46
0.02 0.03 62.5 2.42 64 65% 136.66
0.02 0.04 62.4 2.01 63 50% 141.5
0.02 0.05 60.95 3.24 61 35% 163.71
0.02 0.06 60.35 3.5 60 35% 243.14
0.03 0.02 63.5 2.86 64 85% 122.7
0.03 0.03 63.6 1.05 64 85% 109.64
0.03 0.04 62.3 2 62.5 45% 179.5
0.03 0.05 62 2.68 63 50% 237.5
0.03 0.06 60.7 3.51 61.5 30% 157.56
0.04 0.02 61.5 4.05 64 65% 109.65
0.04 0.03 61.3 4.17 64 60% 117
0.04 0.04 62.4 3.27 64 65% 132.45
0.04 0.05 61.9 2.95 63 45% 220.54
0.04 0.06 60.2 3.29 60 30% 164

with p = 0.01 and mutation rate = 0.02. Keeping constant this p value and
increasing the mutation rate values, the success rate tends to decrease.

Similar behaviour can be observed with different p rate values. Therefore, we
can conclude that regardless the value of p is, the higher the mutation rate is,
the lower the success rate will be.

At this point, one question arises: what happen if we do not allow the presence
of the p element in our individuals? To answer this question we need to take a
look to Figure 2. In no case the system was able to reach a success rate of 100%
in the absence of the p symbol. Moreover, the performance of the GP system
without the presence of p is poor comparing when it is present. Actually, the
performance of the GP system when p is not present in the individuals is, the
worst for all mutation rates, except when mutation rate is 0.03.

Table 2 shows additional details on our results. The last column reports the
average number of generations that are necessary to reach the feasible region3.

3 The feasible region is the area of the search space containing circuits that match all
the outputs of the problem’s truth table.
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Fig. 2. Success rate results. P refers to the p rates used in our experiments.

We can see that the lower the value of p is, the smaller the number of generations
that are required to solve the problem.

The experimental results also show how the individuals in the population
tends to behave in the presence of p in their structures. Figure 3 summarizes such
a behaviour on 4 different p rates. The highest success rates were found when
mutation rates were set with the lowest value (0.02), regardless of the p rates.

At the beginning of the evolutionary process, the number of individuals af-
fected by neutral mutations is high but it tend to decrease after few generations.
In other words, individuals with p elements in their structures tend to disappear
at the beginning of the process. We think this happened because at the begin-
ning of the evolutionary process the solution needs to be protected by allowing
the presence of p in their structures. However, further analysis need to be done
to know why this happen.

Around generation 50 - 60 it is when the number of individuals affected by
neutral mutations becomes stable. As can be observed in all plots in Figure 3,
the best performance is achieved when the number of individuals affected by
neutral mutations is in the range of 90 - 100 (notice that this range is close to
half of the population). On the other hand, the worst performance was found
when the number of individuals affected by neutral mutations is below 80.

From this analysis, it is clear that the presence of p in the individuals can
make the solution avoid get stuck in local optimum. However, a balance between
p rate and mutation rate is needed in order to improve the exploration of the
search space.
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Fig. 3. Number of individuals affected by neutral mutations. p = 0.01 (a), p = 0.02
(b), p = 0.03 (c), p = 0.04 (d).

5 Conclusions

In late 1960s, Motoo Kimura observed that mutations were present more often
than previously thought. He explained this phenomenon with the concept of
Neutrality which established that the majority of mutations that are present
during the evolutionary process do not have impact at the phenotype level. This
paper makes an analysis of some effects of neutrality in GP. Moreover, we have
shown that neutrality is an important research area to be considered in the
evolutionary process. With the approach described in this paper, we have been
able to analyse some effects of neutrality.

From results found for the benchmark Boolean problem, we conclude that: (a)
Neutral Mutations help to the evolutionary process to reach feasible regions, (b)
Regardless the value of p, with higher mutation rates the success rates are low,
(c) Neutral Mutations do not allow to get stuck in local optima, and (d) With
low probability of p and low probability of mutation, the evolutionary process
tends to behave in a consistent way and shows better overall performance.
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Further work need to be done about the effects of p symbol in tree’s structures.
The amount of neutrality and the mutation rate present in the evolutionary
process play an important role during the evolutionary process. In the future we
will investigate the reasons behind the fine balance between these two elements
that is required to aid evolution. We also would like to know why the presence
of p in individuals’ structure tends to decrease in the evolutionary process and
with the use of family trees we can be able to clarify this point. In a mutation
based algorithm each individual has only one parent. This makes it possible to
track the origin of a sample point, and, in fact, the full evolutionary path of an
individual within its family tree.
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Abstract. Huge color class redundancy makes the graph coloring prob-
lem (GCP) very challenging for genetic algorithms (GAs), and designing
effective crossover operators is notoriously difficult. Thus, despite the pre-
dominance of population based methods, crossover plays a minor role in
many state-of-the-art approaches to solving the GCP. Two main encod-
ing methods have been adopted for heuristic and GA methods: direct
encoding, and order based encoding. Although more success has been
achieved with direct approaches, algorithms using an order based repre-
sentation have one powerful advantage: every chromosome decodes as a
feasible solution. This paper introduces some new order based crossover
variations and demonstrates that they are much more effective on the
GCP than other order based crossovers taken from the literature.

1 Introduction

The graph coloring problem (GCP) is a well studied combinatorial optimization
problem. It involves finding a minimum set of colors for the vertices of a given
graph, so that no two adjacent vertices have the same color. Interest in the GCP
is broadly based and the field is highly competitive. In 1993 the GCP was the sub-
ject of a Discrete Mathematics and Theoretical Computer Science (DIMACS) im-
plementation challenge, [13], in which the best algorithms of the day were pitted
against each other on a collection of large and very difficult benchmark instances.
Since 1993 enthusiasm for the GCP has not diminished, and new approaches
continue to be developed. As an archetypal set partitioning problem, the GCP
provides a useful testbed for techniques applicable more widely to real world
problems such as timetabling [2] and frequency assignment [18] and many others.

The GCP is NP-hard, thus heuristic and metaheuristic methods are appro-
priate techniques for solving the problem. Two main encoding methods can be
identified: direct encoding, and order based encoding. With direct encoding arbi-
trary colors are assigned and heuristics used to recolor the vertices in an attempt
to improve the solution. On the other hand, order based approaches organize ver-
tices as permutation lists, and rely on a greedy decoder to assign the colors in a
methodical way. Although algorithms using a direct approach have enjoyed more
success recently, order based techniques have one powerful advantage: every per-
mutation decodes as a feasible solution. Direct approaches work to minimize and
eventually eliminate conflicts but do not guarantee legal solutions.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 880–889, 2006.
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The main contribution of the present paper is to introduce two new and
effective order based crossover/local search combinations: Merge Independent
Sets (MIS) and Permutation One Point (POP). The success of the new operators
is demonstrated by comparing their performance on DIMACS benchmarks with
that of well known order based crossovers for the GCP taken from the literature.

2 Summary of Related Work

As mentioned above, the most successful current approaches to solving the GCP
use a direct representation with conflict minimization as the goal: i.e., given k
colors, a coloring is sought which minimizes the number of adjacent vertices bear-
ing the same color. Most commonly, a genetic (or population based) algorithm
(GA) is used in combination with some form of local search. However, because
graph coloring is essentially a set partitioning problem with arbitrary color labels
assigned to the individual sets, crossover has proven a huge challenge. Indeed,
several population based approaches do not incorporate crossover at all, [11,16].
For others, crossover plays only a limited role, [3,9]. Exceptional among recent
conflict minimization techniques is the hybrid coloring algorithm of Galinier and
Hao [10]. In this case a novel crossover operator, which attempts to propagate
complete color classes from parents to offspring, makes a significant contribu-
tion to the success of the approach. Furthermore, competitive results have been
reported on large DIMACS benchmarks.

Although rather less successful than direct encoding methods, order based
techniques for the GCP have a very long history. These methods rely on a simple
greedy algorithm to transform a permutation of vertices into a legal coloring, and
it is thus the role of good ordering (or reordering) heuristics to present the greedy
algorithm with a suitable permutation that it can transform into a high quality
solution. The simplest and fastest such techniques generate an ordering in one go,
usually by ensuring that the more heavily constrained vertices are placed before
those that are less constrained [15,19]. A somewhat more sophisticated technique,
known as DSatur, [6] operates by first assigning colors to heavily constrained
vertices with colors already assigned to adjacent vertices. Unfortunately, despite
their attractiveness in terms of speed and simplicity, none of the above mentioned
simple ordering techniques produces very good results on large benchmarks.

Rather more successful than “one go” ordering heuristics based on vertex
degree, are the iterative reordering heuristics of Culberson and Luo, [5]. These
methods do not need to rely on vertex degrees or saturation. Instead, beginning
with an arbitrary permutation and greedy allocation of colors, Culberson and
Luo’s heuristics operate by grouping and rearranging color classes along the
permutation list. Of particular significance is a rare property possessed by each
of Culberson and Luo’s reordering heuristics for the GCP: it is impossible to
get a worse coloring by rearranging the color classes, and it is possible that a
better coloring (using fewer colors) may result. Capitalizing on this property,
the authors applied a random mix of various reordering heuristics repeatedly to
individual problems, and watched the solutions gradually improve. They called
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their algorithm iterated greedy. Disappointingly, however, in spite of its elegance,
the iterated greedy technique achieves only moderate success on large graph
benchmarks, and may need to run a very long time.

We now move on to consider order based GAs for the GCP. In one of the earliest
and best known studies of this type Davis developed new order based crossover and
mutation operators especially for the GCP, [14]. HoweverDavis’ work predates the
DIMAC challenge and he used a very specialized type of graph (with weighted
edges) to test his algorithms. Realizing difficulties in designing effective crossover
operators for the GCP, Eiben et al, [7] developed an order based evolutionary al-
gorithm with mutation only. Once more, though, the approach was tested only on
a very specialized type of graph coloring problem: the three color problem. More
recently, Anderson and Ashlock [1] have introduced a crossover called “merging
crossover” (MOX) which shows some promise for the GCP, although, once again,
the authors did not present results for literature benchmarks.

Finally, a technique known as the grouping genetic algorithm (GGA) is wor-
thy of a mention. This algorithm was originally developed for the bin packing
problem, but later adapted by Eiben et al [7], and probably more successfully
by Erben [8], for graph coloring. Like the hybrid algorithm of Galinier and Hao,
the GGA relies on a special crossover to propagate complete color classes, wher-
ever possible. The algorithm differs from that of Galinier and Hao, however, in
its representation. Although the colors for the vertices are recorded in a direct
manner, the chromosomes are augmented with a grouping part, and it is only
this latter part that takes part in exchanges. Some good results on some noto-
riously difficult GGPs have been reported by Erben in [8], though not for the
DIMACS benchmarks. The present author is heavily indebted to many of the
above mentioned researchers for their insight, and many of their ideas have been
incorporated into the present work.

3 The GA Framework

A simple steady-state GA is used as a framework for our comparative study,
which concentrates only on crossover operations. There are few parameters to
set using this approach: no global fitness function is used and crossover occurs
at 100 % with no mutation. At the start of the procedure a population of N
random permutations is generated. If the GCP instance has n vertices, then
each chromosome will consist of a permuted list of the integers {1, 2, 3, . . .n}.
Once the initial population is created, the individual members have to be eval-
uated, according to the performance measure described later. Within the main
generation loop, each member of the population is selected in turn and paired in
crossover with a second individual selected (uniformly) at random. The perfor-
mance measure of the resulting single offspring is then compared with that of its
weaker parent. If the new offspring is better than its weaker parent it replaces
it in the population, otherwise it dies. The GA is run for a fixed number of
generations, where a generation is defined as N trials of crossover, one led by
each member of the population in turn.



New Order-Based Crossovers for the Graph Coloring Problem 883

The number of colors (chromatic number) is probably not the best measure of
progress to use, given that many colorings will produce identical values. We will
adopt the progress measure used by Culberson and Luo [5]:

∑n
1 ci + nc. In this

equation the coloring sum (i.e.,
∑n

1 ci, where c is the color assigned to vertex i)
is added to the term nc, where n is the number of vertices and c the number of
colors. The main idea is to encourage large color classes to grow even larger at
the expense of the smaller classes, in the hope that eventually some classes will
lose their remaining vertices and disappear altogether. We shall see later that
the two operations taken from Culberson and Luo, [5], sort independent sets
followed by largest first, ensure that the color sets are presented in a favorable
sequence for minimizing the coloring sum. The term nc is added to ensure that
improved colorings are always reflected in the measure of progress.

3.1 The Representation and Greedy Decoder

Chromosomes consist of permutations of the n vertices, and the greedy decoder
colors each vertex in sequence, using the first available color from an ordered set
(i.e., each color is identified by an integer label, 0, 1, 2, 3, . . .). Figure 1 a) and 1 b)
illustrate this process using a small graph with 12 vertices and 14 edges, Figure 1
b) giving a typical random permutation of the vertices from Figure 1 a) and also
the resulting greedy coloring. Note: an efficient version of the greedy algorithm
has been implemented using linked lists to keep track of vertices already assigned
to color classes, as advised in [5]. The remaining parts of Figure 1 illustrate the
stages of the optional local search procedure described below.

3.2 The Local Search

The local search uses Culberson and Luo’s [5] “largest first” and “sort indepen-
dent set” heuristics. Its purpose in the present study is twofold: firstly to reduce
the value of the performance measure, and secondly to improve the correlation
of the chromosomes in the population. Figure 1 c) shows the permutation list
sorted in non-descending sequence of color label, and 1 d) gives the chromosome
following the application of the “largest first” heuristic: i.e., the list is rearranged
in non-ascending sequence of color class size. Following the advice given in [5],
the sequence of color classes of identical size is reversed. Note that the applica-
tion of “largest first” will normally reduce the value of the performance measure.
In Figure 1 f) vertices are randomly “shuffled” within (but not between) inde-
pendent sets. Finally, the greedy algorithm is applied to the new arrangement in
f) and the result is shown in 1 g). Interestingly, vertices 4 and 1 are reassigned
lower color labels, further reducing the magnitude of the performance measure.
In the present study the local search loop is iterated 5 times.

3.3 The Crossover Operators Used for the Comparative Study

A genetic algorithm with order based chromosomes requires a crossover tech-
nique that preserves building blocks [12] appropriate for the GCP. Of particular
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Fig. 1. Various operations by Culberson and Luo, [5], used in the local search procedure
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relevance for the greedy decoder, is that some items precede others in the per-
mutation list. Historically the operators cycle crossover (CX) [17] and uniform
order based crossover (UOBX) [14] seem worthy of consideration. CX is good at
preserving absolute positions of vertices, and every vertex in the offspring list
will occur in exactly the same position in one or other of its parents. CX has
proven effective in the related frequency assignment problem [18]. UOBX was
developed by Davis with the GCP in mind and is good at preserving relative
positions and orderings.

Fig. 2. POP Crossover

Some variations of the well known order crossover (OX) [17] are also tried
here. The basic idea is taken from the simple one point crossover of the “stan-
dard” bit string GA, which simply selects two parents and a cut point. The first
portion of parent 1 up to the cut point becomes the first portion of offspring 2,
in the normal way. However, the remainder of offspring 2 is obtained by copying
the vertices absent from the first portion of the offspring in the same sequence
as they occur in parent 2 (see Figure 2). The same idea was used in [4], although
the crossover was not given a specific name. We will call this crossover permuta-
tion order based crossover (POP). Further, we will identify two variants, POP1
and POP2, which differ slightly in the way the cut point is selected: for POP1
it is chosen at random and can appear anywhere in the list, but for POP2 the
cut point is restricted to a boundary between two color classes. Of course the
application of POP2 is dependent on having previously grouped the vertices into
their color classes.

Merging crossover (MOX) was presented by Anderson and Ashlock, [1]. Ini-
tially two n element parents are randomly merged into a single 2n element list.
The first occurrence of each value in the merged list gives the ordering of ele-
ments in the first child, and the second occurrence in the second child. MOX is
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Fig. 3. MOX Crossover by Anderson and Ashlock, [1], used as a basis for the new MIS
crossover

illustrated in Figure 3. Anderson and Ashlock point out the following property
of MOX: if and element, a precedes another element b in both parents, then it
follows that a will precede b in both children.

Merging independent sets (MIS) is a new crossover, adapted from MOX. It
requires that the color sets are first grouped together in both of the parents,
as illustrated in Figure 1 c). MIS then proceeds in the same way as MOX, but
whole color sets are copied from the parents to the merged list in one go, rather
than individual vertices. The merged list is split in exactly the same way as for
MOX, with the first occurrence of each vertex appearing in the first offspring
and the second occurrence in the second offspring. The idea of MIS is to better
preserve the parents’ color classes than MOX.

4 Results

Three sets of experiments were conducted to assess the viability of the vari-
ous crossover operators for the GCP on the two benchmarks, DSJC500.5 and
le450 15c. The first set of experiments used a basic order based approach with-
out sorting the independent sets or applying the local search. Only CX, UOBX,
MOX and POP1 could be compared here, because the other operators rely on
sorted color classes. Local search did not form part of the second set of exper-
iments either, although individual vertices were sorted into their color classes
(as shown in Figure 1 c) to make it possible to test all the crossovers in our
study. Finally, the third set of experiments included the full (5 iterations of)
local search. Table 1 displays the results for all the crossovers, showing the best
(i.e., lowest) value for the performance measure averaged over 10 replicate runs
in each case. For all the runs a population of 250 was used and the GA run for
200 generations. Clearly the best results are obtained when local search is used
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Table 1. Mean value for the performance measure over 10 replicate runs

Experiment Instance CX UOBX MOX POP1 POP2 MIS
No sort DSJC500.5 49090 48994 49171 48120 - -

and no LS le450 15c 17370 17322 17513 17184 - -
Sorting DSJC500.5 49115 49350 49182 47718 47351 48258

and no LS le450 15c 18060 18075 18072 17588 17615 17939
Sorting DSJC500.5 43484 45453 41158 39217 39294 37851
and LS le450 15c 17399 17517 17513 16370 16615 17001
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Fig. 4. Comparing order based crossovers with sorting of independent sets and local
search. Typical best colorings obtained are 52 for DSJC500.5 and 26 for le450 15.c.

with MIS a clear winner on DSJC500.5 and POP1 on le450 15c. Figure 4 shows
the best-so-far curves for the third set of experiments.

To complete the study, a final set of experiments were performed to indicate
the potential of the new techniques on seven large DIMACS benchmarks. That
MIS and POP1 perform well compared to the other order based crossover op-
erators has already been established, but the results could surely be improved
with longer runs and the introduction of a mutation operator. Table 2 shows the
results obtained from ten replicate runs of a genetic simulated annealing algo-
rithm (GSA) each for 5,000 generations with a population size of 300. The GSA
is based on the simple GA described earlier, but a single mutation follows each
crossover operation, and the resulting offspring replaces a parent according the
standard simulated annealing formula. The chosen mutation consists of a simple
inversion operation between two random cut points. MIS crossover is used for
the DSJC instances and POP for the remainder. A GSA was chosen because it
produced slightly more promising results than the other GA techniques tried so
far by the author, although run times are long. However, this represents “work in
progress” and there is much more to be done. In Table 2 results produced by the
GSA are compared with those generated using a version of the algorithm with
the crossover removed, but with mutation and local search intact. Results for
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Table 2. Comparison of the GSA with Other Approaches

Instance Order Based GSA Mutation GSA Iterated Greedy DSat Best
Time Min Mean Max Min Mean Max Min Mean Max known

DSJC250.5 1618 29 29.5 30 31 31.2 32 29 29.5 30 37 28
DSJC500.5 6473 50 50.1 51 55 55.9 56 52 52.6 53 65 48
DSJC1000.5 25777 86 87.2 89 100 100.4 101 95 96.4 98 115 83
le450 15c 4007 15 15.1 16 25 25 25 23 23.5 24 23 15
le450 25c 4563 29 29.9 30 30 30 30 29 29 29 29 26
flat300 28 2081 32 32.2 33 35 35 35 32 33.1 34 42 31
flat1000 76 27204 91 92 93 99 99.6 100 95 95.6 96 114 83

iterated greedy and DSatur are also included for comparison. Runs of iterated
greedy are replicated ten times, and the run times adjusted to match those of
the GSA. Clearly, the GSA with crossover outperforms the mutation only ver-
sion, reinforcing the valuable contribution made by the new crossover operators.
The GSA also performs better than iterated greedy or DSatur on most of the
instances. The final column in Table 2 gives the results reported by Galinier and
Hao, and these are better than those produced by the GSA with the exception
of le450 15c, where the results are matched.

5 Conclusions

The paper has presented two new order based crossover/heuristic combinations:
Merge Independent Sets (MIS) and Permutation One Point (POP) for the GCP,
and demonstrated their success in a simple genetic algorithm, comparing their
performance with other crossovers on DIMACS benchmarks. The new crossovers
appear to owe much of their success to an ability to respect color set boundaries,
and this is made possible by utilizing some reordering heuristics taken from
Culberson and Luo, [5]. In the experiments MIS seemed to work better than POP
on problems where color classes vary in size, and POP proved more successful
on the “flat” problems (le450 15c, le450 25c, flat300 28, and flat1000 76), which
are specially formulated so that color class sizes are identical in the optimum
solution. More extensive experiments showed that a genetic simulated annealing
algorithm (GSA) worked much better with the new crossovers included than it
did if they were excluded. The experiments also showed that the GSA is generally
more effective than Culberson and Luo’s iterated greedy algorithm, the source
of the reordering heuristics used for MIS and POP. Thus, we have clear evidence
that the crossovers provide much “added value” over and above mutation and
local search. Current work is focussed on improving the results for the GCP, and
also on adapting the techniques for other set partitioning problems, principally
bin packing and timetabling. Choosing the most suitable performance measure
(or fitness function) for an application is crucial, and preliminary experiments
indicate that the function used by Erben [8] may work better on the GCP than
the one developed by Culberson and Luo, especially if used in conjunction with
a modified color class reordering heuristic instead of “largest first”.
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4. C. Croitoru, H. Luchian, O. Gheorghieş, and A. Apetrei. A new genetic graph col-
oring heuristic. In Proceedings of the Computational Symposium on Graph Coloring
and its Generalizations, pages 63–74, 2002.

5. J. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy.
In Johnson and Trick [13], pages 499–520.

6. D.Brélaz. New methods to color the vertices of graphs. Communications of the
ACM, 24(4):251–256, 1979.

7. A. Eiben, J. V. der Hauw, and J. V. Hemert. Graph coloring with adaptive evolu-
tionary algorithms. Journal of Heuristics, 4:25–46, 1998.

8. W. Erben. A grouping genetic algorithm for graph colouring and exam timetabling.
In PATAT 2000, volume 2079 of Lecture Notes in Computer Science, pages 132–
156. Springer, 2001.

9. C. Fleurent and J. A. Ferland. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, 63:437–461, 1996.

10. P. Galinier and J. K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.
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Abstract. The error threshold of replication is an important notion of
the quasispecies evolution model; it is a critical mutation rate (error
rate) beyond which structures obtained by an evolutionary process are
destroyed more frequently than selection can reproduce them. With mu-
tation rates above this critical value, an error catastrophe occurs and the
genomic information is irretrievably lost. Recombination has been found
to reduce the magnitude of the error threshold in evolving viral quasis-
pecies. Here, through a simulation model based on genetic algorithms, we
incorporate assortative mating and explore its effect on the magnitude of
error thresholds. We found, consistently on four fitness landscapes, and
across a range of evolutionary parameter values, that assortative mat-
ing overcomes the shift toward lower error threshold magnitudes induced
by recombination, on the other hand, dissortative mating drastically re-
duces the error threshold magnitude. These results have implications to
both natural and artificial evolution: First, they support the hypothesis
that assortative mating by itself may overcome some of the evolutionary
disadvantages of sex in nature. Second, they suggest a critical interaction
between mutation rates and mating strategies in evolutionary algorithms.

1 Introduction

Quasispecies theory was derived by Eigen and Schuster [3,5], to describe the
dynamics of molecular evolution under the influence of mutation and selection.
The theory was originally developed for studying pre-biotic evolution, but in
a wider sense it describes any population of reproducing organisms. The error
threshold of replication is an important notion of the quasispecies model; it is
a critical mutation rate (error rate) beyond which structures obtained by an
evolutionary process are destroyed more frequently than selection can reproduce
them. With mutation rates above this critical value, an error catastrophe occurs
and the genomic information is irretrievably lost [14,21]. Therefore, studying the
factors that alter this threshold has important implications in the study of evo-
lution. The quasispecies model, as stated originally, considered infinite asexual
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populations (i.e no recombination) on a single peak (needle in a haystack) land-
scape. Later on, Nowak and Schuster [14] extended the calculations of the error
threshold on this landscape to finite populations. Finite populations lose grip on
the solitary spike of superior fitness more easily because of the added hazard of
natural fluctuations. Another extension by Boerlijst et al. [1] included recombi-
nation; the authors studied two abstract simple landscapes: the isolated peak and
a plateau landscape (see section 2) and found that recombination shifted error
thresholds toward lower values, and made the transition sharper (for an explana-
tion to this phenomenon, see section 3.1). Thus, recombination is advantageous
only if the landscape is correlated and if the mutation rate is sufficiently small.
Results obtained using infinite population models cannot be expected to auto-
matically apply to the more realistic case of finite populations. To investigate
this latter case, Ochoa and Harvey [16], reproduced the experiments in [1] but
used a genetic algorithm (GA) [7] – and hence finite populations – instead of the
quasispecies model as the underlying model of evolution. The empirical results
mirrored qualitatively those produced by, Boerlijst et al. for infinite populations.
Notably, error thresholds for finite populations were, in all scenarios, lower than
for the infinite case. The work by Wright et al. [25,26] used the Vose [24] dynam-
ical system model to show that a simple GA can exhibit bi-stability on a single
peak and double peak fitness landscapes. They also found that recombination
creates catastrophic errorthresholds transitions as mutation was increased, and
confirmed that recombination decreased the mutation rate at which the error
threshold occurred.

The work of Bonhoeffer and Stadler [2] described an empirical approach for
locating thresholds on complex landscapes (see section 2.2). In [15] this method
is borrowed and adapted. Instead of the quasispecies model a GA is used as the
underlying model of evolution, thus a method for estimating error thresholds
in GAs is devised. In addition , consensus sequence plots (see section 2.2) are
suggested as tools for visualising the structure of fitness landscapes. A later
contribution [19] confirmed the existence of the error threshold feature on a wider
selection of complex landscapes including real-world domains, the study also
considered the effect of modifying the most prominent evolutionary parameters
on the magnitude of error thresholds.

The recombinating model by Boerlijst et al. considered random mating. In na-
ture, however, mating is rarely random, and mate selection may be as important
in guiding evolution as natural selection [10]. Theoretical studies of mate selec-
tion using agent-based simulations [20,9] suggest that some mating strategies
confer higher fitness on individuals, and produce higher evolutionary stability
than random mating. Assortative mating is a form of non-random mating com-
mon in nature, where individuals of similar phenotype mate more (or less) often
than expected by chance. It is positive if similar organism mate more often, and
negative (or dissortative) if dissimilar organisms mate more often.

In this paper we incorporate non-random mating through a GA-based simu-
lation model, and study the effects of assortative mating on the magnitude of
the error threshold. We argue that this study is relevant to both natural and
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artificial evolution. In evolutionary biology models,the mating strategy modelled
has been shown to be fundamental in determining whether sexual reproduction
emerges and is maintained in the simulated populations [8]. In evolutionary com-
putation, the notion of error threshold has been related to the idea of having an
“optimal” mutation rate, since this threshold is intuitively related to the idea of
an optimal balance between exploitation and exploration [17,19]

2 Methods

We studied four fitness landscapes. First, the two simple landscapes proposed
by Boerlijst et al. [1]: a single peak and a plateau landscape. The single peak
landscape has much neutrality (almost all flat), but a correlation measure of the
whole landscape indicates it is highly uncorrelated; the plateau is still simple,
with much neutrality but slightly more correlated. Second, two families of more
correlated and complex landscapes: Royal Staircase functions [23], andNK land-
scapes [11]. A description of these landscapes, along with the particular instances
selected, is given below:

Single peak landscape: In this scenario, only one sequence F has an increased
fitness. This single bit string has fitness RF = 5, whereas all other sequences
have fitness Ri = 3.5.

Plateau landscape: Here, the single peak landscape is modified so that the
fitness of sequences close by the fittest string F is increased to RH1 = 4.8,
and RH2 = 4.6, where H1 is the set of all sequences with a Hamming distance
of 1 from the fittest string F , and H2 the set of all sequences with a Hamming
distance of 2 from F .

Royal Staircase: The Royal Staircase family of functions was proposed for
analysing epochal evolutionary search, it is a simple class of functions that
allows neutrality to be modelled and tuned. Genotypes are specified by bi-
nary strings of length L = MB, where M is the number of blocks and B the
number of bits per block. Any completely set block (with all bits set to 1)
contributes a fitness component, but blocks that are only partially set (with
one or more bits at zero) contribute no fitness. Royal Staircase functions are
always unimodal, but we can increase the landscape neutrality by enlarging
the size of the blocks. Modifying the number of blocks also alters the overall
shape and ruggedness of the landscape. The selected instance (M = 3, B =
14) corresponds to a rugged, neutral, unimodal landscape.

NK landscape: The NK family of landscapes is a problem-independent model
for constructing multimodal landscapes that can gradually be tuned from
smooth to rugged. In the model, N refers to the number of genes in the
genotype (i.e. the string length) and K to the number of genes that influ-
ence a particular gene. By increasing the value of K from 0 to N − 1, NK
landscapes can be tuned from smooth to rugged. The selected NK landscape
instance (N = 24, K = 10) corresponds to a multimodal rugged landscape.

The default experiment setting used a generational GA with fitness propor-
tional selection and a population of size 100. The genetic operations were uniform
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crossover [22] and the standard bit mutation. The GA was run in four modes:
(a) using mutation only (Asexual), (b) using both mutation and recombination
with random mating (Random Mating), (c) implementing assortative mating
(Assortative Mating), and (d) implementing dissortative mating (Dissortative
Mating). Assortative mating was implemented as follows: when selecting two in-
dividuals for a crossover, the first parent was selected as usual (based on fitness).
For choosing the second parent, two potential partners were selected using the
GA fitness-based selection method. Thereafter, the similarity between the two
potential partners and the first parent was computed. For negative assortative
(dissortative) mating, the genotype with less similarity was chosen. For positive
assortative mating, the genotype closer to the first parent was selected as the
second parent. We used Hamming distance as the similarity measure. Although
in nature assortative mating is based on phenotypes, here we select a similarity
measure based on genotypes given the simplicity of the model and landscapes as
compared to nature. Furthermore, the phenotypic traits of organisms in nature
are an expression of their genotypes.

2.1 Estimating Error Thresholds on Simple Landscapes

On the single peak and plateau landscape, we studied the steady state structure
of the population, using the GA model described above, for a range of muta-
tion rates. The structure of the population is characterised by the proportion
of each error (or Hamming distance) class. We used the evolutionary parame-
ters explored in [1]: string length of 15 and recombination rate of r = 0.5. In
both landscapes there is a single optimum, F , we set it as the string of all 0s
(000000000000000) with no loss of generality. Any other bit string is referred to
as a ‘mutant’, and belongs to one of the Hamming distance classes Hi, where
i is the Hamming distance to F . In the simulations, the initial population was
generated differently for each landscape. For the single peak landscape, around
50% of the population was set on the peak and the rest was randomly generated.
For the plateau landscape, 25% was set on the peak, 25% in the H1 compart-
ment, 25% in the H2 compartment, and the rest was randomly generated. The
per bit mutation rate p was varied from p = 0.000 up to p = 0.05, with a step
size of 0.001. The number of generations per GA run was 1000. This value was
empirically selected; the distribution of sequences was fairly stable by this point
in all cases. Each experiment was run 50 times and the results were averaged.

2.2 Estimating Error Thresholds on Complex Landscapes

Bonhoeffer and Stadler (1993) studied the evolution of quasispecies on two corre-
lated fitness landscapes (the Sherrington Kirkpatrick spin glass and the GraphBi-
partitioning landscape), and described an empirical approach for locating thresh-
olds on complex landscapes. The approach is to calculate and plot theconsensus
sequence at equilibrium for a range of mutation rates.The consensus sequence
in a population is defined as the sequence of predominant symbols (bits) in each
position; it is plotted as follows: if the majority of individuals has a ‘1’ or ‘0’ in
a position i the field is plotted white or black, respectively. The field is plotted
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Gray if the position is undecided. The equilibrium state is reached when the pro-
portion of different sequences in the population is stationary. This happens when
evolution is simulated for a large enough number of generations. In practise, it
is considered that the equilibrium is reached when several parameters of the
population (e.g. the maximal and average fitness) reach equilibrium. According
to Bonhoeffer and Stadler (1993) the error threshold may be approached from
below or above with both methods producing similar results. For approaching
the error threshold from above, the simulation starts with a random population.
Then the population is allowed to reach equilibrium at a constant predefined
maximum for the mutation rate. Afterwards, the mutation rate is decreased by
a fixed small step and the computation continues with the current population.
This process is repeated until the mutation rate is 0.0. Therefore, the consensus
sequence in the population is calculated and plotted at the end of each simu-
lation cycle for each mutation step. The error threshold is characterised by the
loss of the consensus sequence, i.e. the genetic information of the population.
Beyond the error threshold the consensus sequence is no longer constant in time
(see Figure 2).

Previous studies [18], confirmed that: (i) error thresholds approached from
below and above produce similar results, (ii) the error threshold magnitude is
independent of the particular initial population; and (iii) the error threshold is
similar for different instances of an NK landscape with fixed N and K. Hence,
the approach followed here is to approach error thresholds from above using
a fixed random seed for generating the initial population in all cases; and for
the NK landscape, selecting a single landscape instance. For the experiments
reported here, the recombination rate was set to 1.0 when recombination is used.
Mutation rates per locus ranged from from 0.05 to 0.0 with a step of 0.001. For
each mutation rate the simulation lasted 10,000 generations, this number was
found empirically to equilibrate the population maximal and average fitness.

2.3 Varying Evolutionary Parameters

In order to explore the robustness of the results, the most relevant evolutionary
parameters were varied from the default setting described above, on two selected
landscapes: the single peak and NK landscapes. In particular, we explored the
effect of modifying the population size, chromosome length, and, on the single
peak landscape, the relative fitness (or fitness difference) between the peak and
the rest.

3 Results

Figure 1 show the steady state distribution of sequences on the plateau land-
scapes, for a range of mutation rates, and the four reproductive strategies. Sim-
ilar plots (not reported here) were also produced for the single peak landscape.
Sequences are classified in error classes: all sequences of i errors from the master
are members of class i. The master sequence F (thick line) and error classes
H1 and H2 are highlighted in the plots. The error threshold can be identified
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visually as the mutation rate just before the error classes become distributed
as for a completely random population (i.e. the lines become parallel). Similar
plots are commonly used to visualise error thresholds in quasispecies studies
(see for instance [13], pp. 48). Assortative mating, on both the single peak and
plateau landscapes, increases considerably the error threshold as compared to
both random mating and no recombination. Moreover, assortative mating is ad-
vantageous for the population, because it increases the abundance of F , and
makes the population more stable as the error threshold moves to higher values.
Notice that on the plateau landscape (Figure 1) the proportion of the mas-
ter sequence F for assortative mating is greater than twice the corresponding
proportion for random mating, and about three times that proportion for the
asexual population.
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Fig. 1. Distribution of sequences for a range of mutation rates on the plateau land-
scape and the four reproductive strategies. Sequences are classified in error classes: all
sequences of i errors from the master are members of class i. The master sequence F
(thick line), error classes H1 and H2 are highlighted in the plots, and the other light
lines correspond to the remaining error classes. The Y axis shows population fractions,
and the X axis shows mutation rates (per bit). Error thresholds can be identified vi-
sually as the mutation rate just before the error classes become distributed as for a
random population (the lines become flat).

Figure 2 shows the consensus sequence plots on the NK landscape. Simi-
lar plots were produced for the Royal Staircase Landscape. The plots show a
clear error threshold; there is a distinguishable transition between an “ordered”
(selection-dominated) regime, and a “disordered” (mutation-dominated) one.
There is a stable consensus sequence for mutation rates below the error thresh-
old. On the NK landscape (Figure 2), the consensus sequence in each case is
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Fig. 2. Consensus sequence plots on the NK land scape and the four reproductive
strategies. The horizontal axis shows the consensus bit for each locus, the vertical axis
shows per bit mutation rates. The error threshold is characterised by the loss of the
consensus sequence (one local optima for the NK Landscape).

Table 1. Approximate error thresholds on the four landscapes studied

Single Peak Plateau Royal Staircase NK
Asexual 0.017 0.030 0.018 0.018
Random Mating 0.010 0.018 0.004 0.015
Assortative Mating 0.032 0.045 0.024 0.040

different and corresponds to one of the many NK landscape’s local optima;
whereas on the Royal Staircase, the consensus sequence is always the single op-
timum in the landscape (the string of all 1s). Clearly assortative mating produces
the highest error threshold, whereas asexual reproduction produces the lowest.

Table 1 summarises the approximate error thresholds values on the four land-
scapes studied, and the default evolutionary parameters. Results for dissortative
mating were not included as they were generally null or close to zero. Addi-
tionally, tables 2 and 3, report the approximate error thresholds after altering
the population size and chromosome length, respectively, on the single peak and
NK landscapes. Results suggest that assortative mating increases considerably
the error threshold as compared to random mating, these findings were found to
be robust across a range of evolutionary parameter values. Error thresholds with
assortative mating are even higher than for the populations without recombina-
tion. Figure 3, shows approximate error thresholds on the single peak landscape
for a range of fitness difference values (between the peak and the rest), again as-
sortative mating increases error threshold values as compared to random mating,
the increase surpasses the error threshold of the asexual population for small and
moderate fitness differences. For large fitness differences the asexual population
has the higher error threshold. This is consistent with other authors observation
that recombination may be advantageous for evolving populations, the critical
requirement being that the locations of local optimal carry mutual information
about where other good optima are located [1,11]. Finally, assortative mating
was implemented selecting a mate from a pool of only two potential candidates,
if the size of this pool is increased, empirical results confirmed that the effects
on the error threshold are augmented (i.e. the error threshold is even higher).
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Table 2. Approximate error thresholds on the Single Peak and NK landscapes for a
range of population sizes

Single Peak NK
50 100 200 500 50 100 200 500

Asexual 0.013 0.017 0.019 0.021 0.013 0.018 0.020 0.028
Random Mating 0.009 0.010 0.011 0.011 0.012 0.015 0.015 0.016
Assortative Mating 0.028 0.032 0.034 0.035 0.031 0.040 0.052 0.059

Table 3. Approximate error thresholds on the Single Peak and NK landscapes for a
range of chromosome lengths

Single Peak NK
10 15 30 60 16 20 24 28

Asexual 0.031 0.017 0.015 0.008 0.028 0.024 0.018 0.012
Random Mating 0.017 0.010 0.004 0.002 0.023 0.018 0.015 0.011
Assortative Mating 0.047 0.032 0.018 0.014 0.063 0.049 0.040 0.030
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Fig. 3. Approximate error thresholds on the Single Peak landscape for several values of
the fitness difference between the peak and the rest. The Y axis shows error thresholds,
and the X axis shows fitness difference values.

3.1 Discussion

We explored the effect of including assortative mating on the magnitude of er-
ror thresholds on four different landscapes. Additionally, the robustness of the
results was tested on a range of values of the most significant evolutionary pa-
rameters. Remarkably in all scenarios, recombination shifted the error thresh-
old to lower mutation rates and it made the transition sharper. Near the error
threshold, without recombination, the fittest sequence only makes up a small
percentage of the total population [4]. Under such conditions, recombination
acts as a diverging operator, driving the population beyond the error threshold.
In this scenario assortative mating may be helpful for the evolving population by
counteracting this diverging effect. Experiments including mate selection showed
that assortative mating considerably increases the error threshold value, even be-
yond the corresponding value for asexual reproduction on correlated landscapes.
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Moreover,assortative mating increases the abundance of the master sequence,
and makes the population more stable in the presence of higher mutation rates.

As Kauffman [11] suggests, recombination appears to be a powerful strategy
on a wide range of rugged fitness landscapes. The critical requirement appears to
be that local optima carry mutual information about the location of other good
or better optima. Thus, although our results suggest that assortative mating
increases the value of sex as an evolutionary strategy, sex even with assorta-
tive mating may be sub-optimal under extreme conditions. Caution must be
also taken when setting evolutionary parameters, as there seems to be a strong
interection between mating strategies and mutation rate.

Regarding the implications to natural evolution, our results suggest that re-
combination with random mating reduces the population stability and abun-
dance of the fittest individuals; and thus may hinder the average fitness of the
whole population. However, assortative mating eliminates this negative effect of
sex on evolutionary stability and is even capable of improving it over the asex-
ual dynamics on correlated landscapes. This supports the conclusion by Jaffe [9]
that assortative mating by itself may overcome some of the evolutionary disad-
vantages of sex, thus casting a new light on the dilemma posed by Fisher [6] of
why sex exists.
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Abstract. In this paper we seek an answer to the following question:
Is it possible and rewarding to self-adapt parameters regarding selection
and population size in an evolutionary algorithm? The motivation comes
from the observation that the majority of the existing EC literature is
concerned with (self-)adaptation of variation operators, while there are
indications that (self-)adapting selection operators or the population size
can be equally or even more rewarding. We approach the question in an
empirical manner. We design and execute experiments for comparing
the performance increase of a benchmark EA when augmented with self-
adaptive control of parameters concerning selection and population size
in isolation and in combination. With the necessary caveats regarding
the test suite and the particular mechanisms used we observe that self-
adapting selection yields the highest benefit (up to 30-40%) in terms of
speed.

1 Introduction

Calibrating parameters of evolutionary algorithms (EAs) is a long-standing
grand challenge in evolutionary computing (EC). In the early years of the field
it was often claimed that Genetic Algorithms (GAs) are not very sensitive to the
actual choice of their parameters. Later on this view has changed and the EC
community now acknowledges that the right choice of parameter values is essen-
tial for good EA performance [8]. This emphasizes the importance of parameter
tuning, where much experimental work is devoted to finding good values for the
parameters before the “real” runs and then running the algorithm using these
values, which remain fixed during the run. This approach is widely practiced, but
it suffers from two very important deficiencies. First, the parameter-performance
landscape of any given EA on any given problem instance is highly non-linear
with complex interactions among the dimensions (parameters). Therefore, find-
ing high altitude points, i.e., well performing combinations of parameters, is hard.
Systematic, exhaustive search is infeasible and there are no proven optimization
algorithms for such problems. Second, things are even more complex, because
the parameter-performance landscape is not static. It changes over time, since
the best value of a parameter depends on the given stage of the search process.
In other words, finding (near-)optimal parameter settings is a dynamic optimiza-
tion problem. This implies that the practice of using constant parameters that
do not change during a run is inevitably suboptimal.

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 900–909, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Is Self-adaptation of Selection Pressure and Population Size Possible? 901

Such considerations have directed the attention to mechanisms that would
modify the parameter values of an EA on-the-fly. Efforts in this direction are
mainly driven by two purposes: the promise of a parameter-free EA and per-
formance improvement. Over the last two decades there have been numerous
studies on this subject [8,10]. The related methods – commonly captured by the
umbrella term parameter control as opposed to parameter tuning – can further
be divided into one of the following three categories. Deterministic parameter
control takes place when the value of a strategy parameter is altered by some
deterministic rule modifying the strategy parameter in a fixed, predetermined
(i.e., user-specified) way without using any feedback from the search. Usually,
a time-dependent schedule is used. Adaptive parameter control works by some
form of feedback from the search that serves as input to a heuristic mechanism
used to determine the change to the strategy parameter. The important point
to note is that the heuristic updating mechanism is externally supplied, rather
than being part of the “standard” evolutionary cycle. In the case of self-adaptive
parameter control the parameters are encoded into the chromosomes and un-
dergo variation with the rest of the chomosome. The better values of these
encoded parameters lead to better individuals, which in turn are more likely
to survive and produce offspring and hence propagate these better parameter
values.

To keep our present investigation feasible we do not want to study on-the-fly
adjustment of all parameters with all parameter control mechanisms. The choice
about which combinations to consider is made by the following observations.
Of the three options self-adaptation is of particular interest for two reasons.
First, it fits the evolutionary framework very smoothly in the sense that the
changes to the parameters are evolutionary changes, rather than heuristic ones
(deterministic or adaptive control). Second, self-adaptation has a very strong
reputation, i.e., overwhelming evidence of being capable of adequate parameter
control as shown within Evolution Strategies [3,17]. This makes us choose for a
self-adaptive approach. As for the parameters to be controlled it can be noted
that the traditional mainstream of research concentrated on the control of the
variation operators, mutation and recombination.

However, there is recent evidence, or at least strong indication, that “tweak-
ing” other EA components can be more rewarding; see for instance [4] showing
the relative advantage of controlling the population size, instead of other param-
eters. This makes us disregard variation parameters and concentrate on param-
eters for selection and population sizing. The literature on varying population
size is rather diverse concerning technical solutions as well as the conclusions re-
garding how to manage population sizes successfully [2,9,12,14,6,13,16,18]. The
picture regarding the control of selection pressure during a run is more coherent;
most researchers agree that the selection pressure should be increasing as the evo-
lutionary process goes on, perhaps a legacy of Boltzmann selection, [1,20,7,15,11].
In the present investigation we will introduce as little as possible bias towards
increasing or decreasing the parameter values.
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2 Self-adapting Selection Pressure and Population Size

Note that our choice for investigating self-adaptive selection and population siz-
ing implies an interesting challenge. Namely, the parameters regarding selection
and population issues (e.g., tournament size or population size) are of global
nature. They concern the whole population and cannot be naturally interpreted
on local level, i.e., they cannot be defined at the level of individuals like mutation
step size in evolution strategies. Self-adaptive population and selection parame-
ters seem to be a contradictory idea. The way we address this challenge is based
on making global parameters being derived from local (individual level) param-
eters via an aggregation mechanism. In this way, the value of a global parameter
is determined collectively by the individuals in the population. Technically, our
solution is threefold:

1. We assign an extra parameter p ∈ [pmin, pmax] to each individual repre-
senting the individuals “vote” in the collective decision regarding the given
global parameter P .

2. We specify an aggregation mechanism calculating the value of P from the p
values in the population.

3. We postulate that the extra parameter p is part of the individual’s chromo-
somes, i.e., an extra gene, and specify mechanisms to mutate these genes.1

The aggregation mechanism is rather straightforward. Roughly speaking, the
global parameter P will be the sum of the local votes of all individuals pi calcu-
lated as follows:

P = �
N∑

i=1

pi� (1)

where pi ∈ [pmin, pmax], � � denotes the ceiling function, and N is the (actual)
population size.

Finding an appropriate way to mutate such parameters needs some care. A
straightforward option would be the standard self-adaptation mechanism of σ
values from Evolution Strategies. However, those σ values are not bounded, while
in our case p ∈ [pmin, pmax] must hold. We found a solution in the self-adaptive
mechanism for mutation rates in GAs as described by Bäck and Schütz [5]. This
mechanism is introduced for p ∈ (0, 1) and it works as follows:

p′ =
(

1 +
1− p

p
· e−γ·N(0,1)

)−1

(2)

where p is the parameter in question and γ is the learning rate which allows for
control of the adaptation speed. This mechanism has some desirable properties:

1 Note that hereby the parameters in question will be subject to evolution: variation
happens through the given mutation mechanisms, while selection is “inherited for
free” from the selection upon the hosting individuals.
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1. Changing p ∈ (0, 1) yields a p′ ∈ (0, 1).
2. Small changes are more likely than large ones.
3. The expected change of p by repeatedly changing it equals zero (which is

desirable, because natural selection should be the only force bringing a di-
rection in the evolution process).

4. Modifying by a factor c occurs with the same probability as a modification
by 1/c.

3 Experimental Setup

The test suite2 for testing GAs is obtained through the Multi-modal Problem
Generator of Spears [19]. We generate landscapes of 1, 2, 5, 10, 25, 50, 100, 250,
500 and 1000 binary peaks whose heights are linearly distributed and where the
lowest peak is 0.5. The chromosome of each individual consists of 100 binary
genes, i.e., 〈x1, . . . , x100〉 and 1 or 2 self-adaptive parameters p (representing the
self-adaptation of selection and/or population size).

We use a simple GA, SGA, as benchmark and define 4 self-adaptive GA vari-
ants. GASAM is a GA with self-adaptive mutation used as a second benchmark;
GASAP and GASAT are the GAs where only one parameter is self-adapted; in
GASAPT two parameters are self-adapted simultaneously.

The setup of the SGA is as follows. The model we use is a steady-state
GA. Every individual is a 100-bitstring. The recombination operator is uniform
crossover; the recombination probability is 0.5. The mutation operator is bit-
flip; the mutation probability is 0.01. The parent selection is 2-tournament and
survival selection is delete-worst-two. The population size is 100. Initialization
is random. The termination criterion is f(x) = 1 or 10,000 evaluations.

GASAMworks on individuals with chromosome 〈x1, . . . , x100, p〉, where p is the
self-adaptive mutation parameter. The algorithm works the same as SGA on
the bit-part of the chromosome (bitflip), but uses equation 2 for mutation of p.

GASAP works on individuals with chromosome 〈x1, . . . , x100, p1〉, where p1 is
the self-adaptive population size parameter. GASAP is different from SGA in
that it uses the self-adaptive mechanism from equations 1 and 2 to determine
the population size. In this particular case, p is scaled to (0,2) enabling the
population to grow as well as shrink. For maintaining enough diversity a
lower bound for the population size is enforced.

GASAT works on individuals with chromosome 〈x1, . . . , x100, p2〉, where p2
is the self-adaptive tournament size parameter. GASAT is different from
SGA in that it uses the self-adaptive mechanism from equations 1 and 2
to determine the tournament size. For maintaining enough diversity a lower
bound for the tournament size is enforced.

GASAPT works on individuals with chromosome 〈x1, . . . , x100, p1, p2〉, where
p1 is the self-adaptive population size parameter and p2 is the self-adaptive
tournament size parameter. GASAPT is a combination of GASAP and
GASAT as described above.

2 The test suite can be obtained from the web-page of the authors.
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In all self-adaptive GAs we use γ = 0.22 according to the recommendation in
[5]. The code of the problem instance generator, the particular instances, and
all algorithm variants can be obtained from the authors’ web-sites.

After 100 runs of each GA, the Success Rate (SR), the Average number of
Evaluations to a Solution (AES) and its standard deviation (SDAES), and the
Mean Best Fitness (MBF) and its standard deviation (SDMBF) are calculated3.
The ranking of these measures in forming a judgment about competing EAs is,
of course, essential. To this end, it is important that SR and MBF are strongly
depend on the maximum number of fitness evaluations M in the termination
criterion. In particular, experiments with a lower M typically result in a lower
SR and MBF. For AES this link is less strong. It could happen that for a lower
M the number of successful runs decreases, but if a run is successful it is of the
same length as in the experiments with a higher M . In other words, for a lower
M AES could remain the same, while SR and MBF are decreasing. As for us,
the speed of an EA that counts most: a faster EA (i.e., an EA with lower AES)
is more likely to deliver good performance even for lower values of M .

4 Experimental Results and Analysis

4.1 Experiments with the Self-adaptive Scheme

The results of the experiments with the benchmarks GAs and the self-adaptive
variants are summarized in Tables 1 and 2 (right hand side, Max=10000 evalu-
ations). Table 1 exhibits the results of the two benchmark EAs, the simple GA
(SGA) and the GA with the original self-adaptive mutation GA (GASAM) from
[5]. Further to these detailed Tables we offer a graphical representation of the
outcomes in Figure 1 (left). Comparing the algorithms it occurs that the differ-
ences in terms of SR and MBF are not very big. The curves are crossing and
lay rather close to each other. (Note the scale on the y-axis of the MBF graphs
in Figure 1.) The AES results are much more discriminating between the GAs.
With one exception, the curves are not crossing, implying a consistent ranking
based on speed. Also the differences are significant: depending on the problem
instance, the best GA outruns the worst one by a factor 1.5 to 3.

Based on the available data we can conclude that the GA with self-adaptive
tournament size (GASAT) is the fastest, but the SGA is a close second. Some-
what surprisingly, the GA with self-adaptive mutation rate (GASAM) becoms
very slow for the more rugged landscapes and diplays the worst performance
in terms of AES. We have performed t-tests with 5% significance level to vali-
date the differences. These tests confirmed that the differences were statistically
significant.

4.2 Additional Experiments with an Alternative Scheme

In addition to the above tests with the self-adaptive GAs we have performed
experiments with a modified scheme as well. The reason is that we do have
3 For reasons of space, the standard deviation results were omitted. The results are

used in the t-tests mentioned later in the paper.
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some intuition about the direction of change regarding the parameters. In case of
tournament size, if a new individual is better than its parents then it should try to
increase selection pressure, assuming that stronger selection will be advantageous
for him, giving a reproductive advantage over less fit individuals. In the opposite
case, if it is less fit than its parents, then it should try to lower the selection
pressure. In case of the population size, this logic might not be applicable, but
we do try the idea for both cases. Formally, we keep the aggregation mechanism
from equation 1 and use the following rule. If 〈x, p〉 is an individual, where x is
the bitstring and p is the parameter value, to be mutated (either obtained by
crossover or just to be reproduced solely by mutation), then first we create x′

from x by the regular bitflips, then apply

p′ =
{
p+Δp if f(x′) ≥ f(x)
p−Δp otherwise

(3)

where

Δp =

∣∣∣∣∣p−
(

1 +
1− p

p
e−γN(0,1)

)−1
∣∣∣∣∣ (4)

with γ = 0.22.
This mechanism differs from “pure” self-adaptation because of the heuristic

rule specifying the direction of the change. However, it could be argued that
this mechanism is not a clean adaptive scheme (because the initial p values
are inherited), nor a clean self-adaptive scheme (because the final p values are
influenced by a user defined heuristic), but some hybrid form. In any case, the
parameter values represented in a given population undergo regular evolutionary
selection because good/bad values survive/disappear depending on the fitness
of the hosting individual. For this reason we perceive and name this mechanism
hybrid self-adaptive (HSA).

We perform extra experiments to see how this alternative usage of the Bäck
and Schütz formula effects the performance of the algorithms. Implementing this
idea for both the tournament size and the population size yields three new vari-
ants GAHSAT, GAHSAP and GAHSAPT with the obvious naming convention.
Their results are given in Table 3 (right hand side, Max=10000 evaluations) and
Figure 1 (right). They show that the hybrid self-adaptive scheme yields a bet-
ter control of the tournament size than the pure self-adaptive one, in the sense
that the new algorithm GAHSAT outruns GASAT, the winner of the first se-
ries of experiments, regarding AES. (Here again we confirmed with a t-test that
the differences are significant.) For controlling the population size the effects
are exactly the opposite (GASAP beats GAHSAP) and the same holds for the
combined algorithm (GASAPT beats GAHSAPT).

At the moment we do not have an explanation for these differences. Never-
theless it is interesting to look at the development of tournament size during a
successful run of GASAT or GAHSAT (not shown here because of the lack of
space). Such curves show that the selection pressure is growing for quite some
time and starts dropping after a while. Intuitively, this is sound, for in the be-
ginning many offspring outperform their parents leading to an increase in their
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Fig. 1. SR, AES and MBF (from top to bottom) for self-adaptive algorithms (left) and
hybrid self-adaptive algorithms (right) with max 10,000 fitness evaluations

“votes” for the global K. Later on, it becomes increasingly more seldom to pro-
duce children better than their parents, which in turn leads to decreasingK. This
is also in line with the common view in EC that advocates increasing selection
pressure, like in Boltzmann mechanisms. From this perspective we can interpret
our results as a confirmation of this common view: the pure self-adaptive variant
of the formula from [5] is unbiased w.r.t. the direction of the change and yet it
results in increasing increasing tournament size. Last by not least, the overall
winner of this contest among 8 GAs is GAHSAT.

The experiments with Max=10000 fitness evaluations give us one comparison.
However, as our deliberation about the performance measures indicates such out-
comes depend on the used maximum. To obtain a second assessment of our GAs
we have repeated all experiments with Max=1500. These results are given in the
left-hand sides of the tables. They show that the hybrid self-adaptive mechanism
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Table 1. Experimental results of benchmark algorithms in terms of SR, AES and MBF
with Max=1500 and Max=10000 fitness evaluations

Max=1500 Evaluations Max=10000 Evaluations
SGA GASAM SGA GASAM

Peaks SR AES MBF SR AES MBF SR AES MBF SR AES MBF
1 64 1353 0.9959 21 1405 0.9653 100 1478 1.0 100 1816 1.0
2 59 1361 0.9954 19 1398 0.9712 100 1454 1.0 100 1859 1.0
5 57 1376 0.9953 19 1421 0.9656 100 1488 1.0 100 2014 1.0
10 50 1370 0.9889 9 1375 0.9452 93 1529 0.9961 98 1982 0.9993
25 19 1422 0.9776 1 1166 0.9070 62 1674 0.9885 78 2251 0.9939
50 7 1391 0.9650 0 0 0.8677 37 1668 0.9876 44 2417 0.9894
100 3 1351 0.9590 0 0 0.8449 22 1822 0.9853 25 2606 0.9879
250 0 0 0.9432 0 0 0.7923 11 1923 0.9847 20 2757 0.9892
500 0 0 0.9265 0 0 0.7670 6 2089 0.9865 6 4079 0.9887
1000 0 0 0.9152 0 0 0.7565 5 2358 0.9891 4 4305 0.9865

Table 2. Experimental results of self-adaptive algorithms in terms of SR, AES and
MBF with Max=1500 and Max=10000 fitness evaluations

Max=1500 Evaluations Max=10000 Evaluations
GASAP GASAT GASAPT GASAP GASAT GASAPT

Peaks SR AES MBF SR AES MBF SR AES MBF SR AES MBF SR AES MBF SR AES MBF
1 20 1364 0.9806 82 1252 0.9974 41 1322 0.9853 100 1893 1.0 100 1312 1.0 100 1787 1.0
2 27 1428 0.9804 77 1257 0.9974 48 1349 0.9872 100 1925 1.0 100 1350 1.0 100 1703 1.0
5 19 1411 0.9782 73 1244 0.9962 38 1273 0.9842 100 1966 1.0 100 1351 1.0 100 1710 1.0
10 6 1447 0.9672 59 1258 0.9887 31 1300 0.9757 93 2060 0.996 92 1433 0.996 92 1872 0.995
25 6 1416 0.9546 30 1262 0.9817 10 1394 0.9587 62 2125 0.989 62 1485 0.990 64 1915 0.990
50 1 1282 0.9452 13 1279 0.9751 6 1329 0.9519 41 2098 0.987 46 1557 0.990 32 1960 0.985
100 0 0 0.9317 7 1397 0.9687 1 1267 0.9426 26 2341 0.987 21 1669 0.985 16 2563 0.985
250 0 0 0.9279 1 1463 0.9644 0 0 0.9385 10 2554 0.985 16 1635 0.987 10 2307 0.986
500 0 0 0.9131 1 1451 0.9551 0 0 0.9312 10 2846 0.986 3 1918 0.983 8 2410 0.986
1000 0 0 0.9058 0 0 0.9520 0 0 0.9192 3 2908 0.986 1 1675 0.984 7 2685 0.985

Table 3. Experimental results of hybrid self-adaptive algorithms in terms of SR, AES
and MBF with Max=1500 and Max=10000 fitness evaluations

Max=1500 Evaluations Max=10000 Evaluations
GAHSAP GAHSAT GAHSAPT GAHSAP GAHSAT GAHSAPT

Peaks SR AES MBF SR AES MBF SR AES MBF SR AES MBF SR AES MBF SR AES MBF
1 0 0 0.9273 96 925 0.9996 0 0 0.9508 100 4665 1.0 100 989 1.0 100 3250 1.0
2 0 0 0.9276 97 960 0.9997 0 0 0.9487 100 4453 1.0 100 969 1.0 100 3233 1.0
5 0 0 0.9222 91 982 0.9991 0 0 0.9512 100 4654 1.0 100 1007 1.0 100 3346 1.0
10 0 0 0.9200 82 1026 0.9940 0 0 0.9377 96 4998 0.998 89 1075 0.994 97 3343 0.998
25 0 0 0.9007 55 1065 0.9865 0 0 0.9200 61 5160 0.998 63 1134 0.988 60 3889 0.988
50 0 0 0.8989 37 1146 0.9849 0 0 0.9153 34 5233 0.986 45 1194 0.989 36 3612 0.985
100 0 0 0.8886 26 1152 0.9859 0 0 0.9062 21 4794 0.985 14 1263 0.985 22 3976 0.985
250 0 0 0.8789 11 1161 0.9832 0 0 0.8983 9 6211 0.985 12 1217 0.985 10 3834 0.986
500 0 0 0.8733 3 1437 0.9810 0 0 0.8864 3 4524 0.986 7 1541 0.988 6 5381 0.986
1000 0 0 0.8674 2 1140 0.9785 0 0 0.8768 5 6080 0.985 4 1503 0.986 4 3927 0.984

is disastrous for GAs where the population size is being modified, while the pure
self-adaptive is not. Apparently, the logic that applies to tournament size does
not apply to population size. Furthermore, we can see that the margin by which
GAHSAT wins from the other becomes bigger than it was for Max=10000. This
gives extra support to prefer this algorithm.
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5 Conclusions

This investigation provided an answer to our original research question: Is self-
adaptation of selection pressure and population size possible and rewarding in an
evolutionary algorithm? The answer is double positive. First, we illustrated that
it is possible to regulate global parameters (here: tournament size and population
size) via aggregating locally specified values. Second, we showed that this can
be very rewarding in terms of algorithm performance: the hybrid variant of
self-adapting tournament size resulted in a superior GA and the regular self-
adaptation variant became second best. Currently we are running additional
experiments with constant selection pressure at various levels (tournament size
= 2,4,8,16) and with increasing selection pressure (Boltzmann selection) for a
broader comparison and more insights in the workings of GA(H)SAT.

Our work also “unearthes” the formula of Bäck and Schütz from [5]. This
formula is interesting for its general applicability to mutate bounded parameters
and the desirable properties as given in Section 2. The present investigation can
also be considered as an assessment of the usefulness of this formula. Without
much application specific adjustment we applied it to two parameters and ob-
served that it can greatly improve algorithm performance (e.g., for tournament
size). Meanwhile, we also established that it can be harmful (e.g., for population
size). Future work is devoted to analyzing why the observed effects occur.

Considering the present investigation from the perspective of the challenge of
freeing EAs from (some of) their parameters, our results constitute new evidence
that self-adaptation of other than variation operators deserves more attention.
We certainly hope that the results and the newly generated questions in this
paper will inspire more work in this direction.
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3. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.
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Abstract. This paper presents a particle swarm optimizer to solve con-
strained optimization problems. The proposed approach adopts a simple
method to handle constraints of any type (linear, nonlinear, equality and
inequality), and it also presents a novel mechanism to update the velocity
and position of each particle. The approach is validated using standard
test functions reported in the specialized literature and it’s compared
with respect to algorithms representative of the state-of-the-art in the
area. Our results indicate that the proposed scheme is a promising alter-
native to solve constrained optimization problems using particle swarm
optimization.

1 Introduction

Constraints are usually adopted in any sort of real-world optimization problems
(e.g., in engineering, in cutting and packing problems, in VLSI design, etc.).
The unconstrained nature of evolutionary algorithms (EA) makes it necessary
to design schemes to incorporate the constraints of a problem into the fitness
function [2]. Despite the popularity of penalty functions, they have certain limi-
tations from which the main one has to do with the difficulties to define accurate
penalty factors that allow an EA an efficient exploration of the search space (par-
ticularly when dealing with problems in which the global optimum lies on the
boundary between the feasible and the infeasible regions).

Constrained optimization problems have been extensively studied in Mathe-
matical Programming. However, despite the existence of a considerable number
of deterministic optimization algorithms, there is no single approach that can
guarantee convergence for the general nonlinear programming problem, which is
the one of interest to us [8].

In the last few years, several metaheuristics have been adopted for numerical
optimization. One of such metaheuristics which has become increasingly popular
is particle swarm optimization (PSO) [6]. PSO is based on the metaphor of
how some species share information and then use it for moving to those places
where the food is located. The population is a set of individuals named particles

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 910–919, 2006.
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which represent possible solutions within a multidimensional search space. The
particles are characterized by a position, a velocity of exploration and a record of
their past behavior. All of these are constantly updated in an iterative process.
In this paper, we adopt PSO for solving constrained optimization problems.

The remainder of the paper is organized as follows. Section 2 provides the
statement of the problem of our interest. In Section 3, we present a brief literature
review. Section 4 describes our proposed approach. The experimental setup and
the analysis of our results are presented in Section 5. Finally, our conclusions
and some possible paths for future research are presented in Section 6.

2 Statement of the Problem

The problem of interest to us is the general nonlinear programming problem
which is defined as the problem of finding x which optimizes the objective func-
tion:

f(x) with x = (x1, x2, . . . , xD) ∈ F ⊆ S ⊆ IRD . (1)

where f(x) is subject to:

gi(x) ≤ 0 i = 1, 2, . . . , n . (2)

he(x) = 0 e = 1, 2, . . . , m . (3)

xd ∈ [ld, ud] with d ∈ [1..D]. ld and ud are the lower and upper bounds imposed
on the decision variables. The gi and he functions are defined on S (search space),
and correspond to the inequality and equality constraint functions, respectively.
A constraint delimits the search space splitting it into a feasible and an infeasible
region. S is a D-dimensional rectangle defined by the lower and upper bounds of
each variable xd. All x satisfying all inequality and equality constraint functions
determine the feasible solution space F .

3 Literature Review

Despite the popularity of PSO as a numerical optimizer, there is relatively little
work regarding its use in constrained optimization problems. Next, we will review
the most representative research within this area.

Zhang et al. [11] presented a PSO algorithm with a periodic mode of han-
dling constraints. This technique makes periodic copies of the search space when
the algorithm starts the run. In that way, it avoids the disorganization that
may arise when the mutation operator is applied to those particles lying on the
boundary between the feasible and infeasible regions. The authors tested their
algorithm with a low number of evaluations (28,000 and 140,000) in eight test
functions. They performed 100 runs for each test function and compared the per-
formance of their approach with respect to the results provided by conventional
constraint-handling methods (i.e., penalty functions). However, no comparisons
are provided with respect to state-of-the-art constraint-handling techniques.
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Toscano Pulido and Coello Coello [10] added to a basic PSO a simple mecha-
nism for tackling constraints based on how close are the particles from the feasible
region. A turbulence operator was incorporated to improve the exploration of the
search space. This operator changes the flight of particles to different zones. The
algorithm was tested with a relatively large population size and a low number of
iterations as to perform 340,000 evaluations of the objective function. Thirteen
benchmark constrained functions from [9] were used to show the performance of
this PSO. The authors concluded that their results were highly competitive.

Parsopoulos et al. [7] proposed a Unified Particle Swarm Optimization ver-
sion and adapted it to handle constraints. They included a penalty function
technique which uses the number of constraints that are violated and the degree
of violation. The algorithm preserves the feasibility of the best solutions. They
tested their version with four constrained engineering optimization problems
with promising results.

4 Our Proposed Approach

In this section, we present our proposal of a Constrained Particle Swarm Opti-
mizer (called CPSO). In CPSO, each particle consists of a n-dimensional real
number vector (where n refers to the number of decision variables of the problem
to be solved). Each dimension of a particle corresponds to a decision variable
of the problem. The particles are evaluated using a fitness function which has
some constraints. There are a several constraint-handling approaches that tend
to add information about the distance from each individual to the feasible re-
gion into the fitness function in order to guide the search. One of the simplest
methods (which was implemented in our algorithm) prefers to choose a feasible
individual over an infeasible one. When the algorithm evaluates infeasible parti-
cles, it prefers the infeasible individuals that are closer to the feasible region. To
determine the infeasibility degree, CPSO saves the largest violation obtained for
each constraint. Then, when a particle is detected to be infeasible, the algorithm
adds the amount of violation that corresponds to that particle (normalized with
respect to the largest violation recorded so far). This approach was used in the
PSO strategy to choose the best values: gbest, lbest and the best value reached
by each particle. Thus, the equations to update velocity and position use the
“best” feasible solution, or the infeasible solution which is closest to the feasible
region (if there are feasible particles in the swarm).

Most constraint-handling techniques used in evolutionary algorithms tend to
deal only with inequality constraints because equalities are very difficult to han-
dle. To transform an equality constraint into an inequality we use:

|he(x)| − ε ≤ 0 . (4)

where ε is the tolerance allowed. By adopting this transformation, our CPSO
only deals with inequality constraints.

As in the basic PSO, our algorithm records the best position found so far for
each particle (gbest approach) or in the neighborhood (lbest approach) if a neigh-
borhood topology is implemented. These values are used to update the velocity
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and position of the particles. It is known that the gbest approach works well in
many problems, but tends to converge to a local optimum in some cases [1]. For
those cases, the lbest approach works better because it records the best value
reached by a smaller group of particles, instead of considering the entire swarm.

We empirically found that a combination of the two approaches worked well
in our CPSO. With gbest, the algorithm explores better and with lbest, we avoid
stagnation. Thus, we modified the equation for computing the velocity (used to
update the position of a particle) in the following way:

vid = w(vid + c1r1(pid − partid) + c2r2(pld − partid) + c3r3(pgd − partid)) (5)

partid = partid + vid (6)

where vid is the velocity of the particle i at the dimension d, w is the inertia
factor [3] whose goal is to balance global exploration and local exploitation, c1
is the personal learning factor, and c2, c3 are the social learning factors, r1, r2
and r3 are three random numbers within the range [0..1], pid is the best position
reached by the particle i, pld is the best position reached by any particle in the
neighborhood, pgd is the best position reached by any particle in the swarm and
partid is the value of the particle i at the dimension d.

To compute the pld value, we used a circle topology [4], in which each particle
is connected to k neighbors. The neighbors are determined by the position of
the particles in the structure. Figure 1 illustrates this concept.

1       2       3       4       5       6       ...Particle:

       Best particle within the neighborhood
Neighborhood (size: 4)

Fig. 1. Circle topology

It is well known that it is important to maintain the population’s diversity
to avoid stagnation (i.e., convergence to a local optimum). In order to meet
this goal, we adopted a dynamic mutation operator, which was applied to each
particle with a probability pm. This probability uses the total number of cycles
and the current cycle number in the following equation:

pm = max pm− max pm−min pm

max cycle
∗ current cycle (7)

where max pm and min pm are the maximum and minimum values that pm
can take, max cycle is the number of cycles that the algorithm will iterate, and
the current cycle is the current cycle in the iterative process.

We empirically found that for some difficult functions, our CPSO could not
find good values. The reason was its diversification of solutions which kept the
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approach from converging. In order to overcome this problem, we changed the
common update equation (eq. (6)) of particles for the update equation presented
by Kennedy [5] in the so-called Gaussian Bare Bones PSO. In that algorithm,
the new position of each particle is randomly chosen from a Gaussian distribution
with the mean selected as the average between the best position recorded for
the particle and the best in its neighborhood. The standard deviation is the
difference between these two values. Then, the position was updated using the
following equation:

parti = N

(
pi + pl

2
, |pi − pl|

)
(8)

where pi is the position of the particle to be updated, N is the Gaussian random
generator, pi and pl are the best position reached by the particle parti and the
best position reached by any particle in the neighborhood of parti. CPSO used
this equation to update particles with a certain probability (a 50% probability
was adopted to select between equation (6) and equation (8)). We choose those
probabilities (〈0.5, 0.5〉) because we determined it was the best combination to be
used to select between equations (6) and equation (8) for updating the particles.
We performed a series of previous experiments (which are shown in Table 1)
using the 3 functions in which CPSO had more difficulties to obtain good values:
functions 2, 6 and 13. The notation 〈r, s〉 means that we selected equations (6)
with a probability r and equation (8) with a probability s. Figure 2 shows the
pseudo-code of our CPSO.

Table 1. Best Values obtained with CPSO, performing 340,000 evaluations with dif-
ferent probabilities of selection for the updating equations

Function Best Known Value 〈0.1, 0.9〉 〈0.5, 0.5〉 〈0.9, 0.1〉
2 -0.803619 0.801825 -0.801388 -0.757889
6 -6961.814 -6962.046 -6961.825 -6827.984
13 0.053950 0.157094 0.054237 0.316460

5 Parameter Settings and Analysis of Results

The CPSO algorithm was tested using the thirteen constrained test functions
adopted in [9]. We performed 30 independent runs for each function. Our results
are compared with respect to the PSO-based approach which currently is the
most competitive reported in the specialized literature for constrained optimiza-
tion (i.e., the approach by Toscano Pulido and Coello Coello [10]). Additionally,
we also compared our results with respect to Stochastic Ranking [9], which is a
constraint-handling technique representative of the state-of-the-art in the area.
Stochastic Ranking was validated performing 350,000 objective function evalu-
ations per run. However, the approach from [10] performed 340,000 objective
function evaluations per run. Thus, in order to allow a fair comparison, we per-
formed experiments with only 340,000 objective function evaluations. The pa-
rameters of our approach are the following: swarm size = 10 particles, pm min =
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0. CPSO:
1. Swarm Initialization
2. FOR i=1 TO number of particles DO
3. FOR j=1 TO number of dimensions DO
4. Initialize partij

5. Initialize velij
7. END
8. END
9. Evaluate fitness
10. Record pbest
11. Record gbest
12. Swarm flights through the search space
13. DO
14. FOR i=1 TO number of particles DO
15. Search the best leader in the

neighborhood of parti

and record in lbesti

16. IF flip(0.5)
17. FOR j=1 TO number of dimensions DO
18. Update velij
19. Update partij using eq. (6)
20. END
21. ELSE
22. gaussian update using eq. (8)
23. END
24. END
25. Keeping particles
26. Update pm
27. Mutate every particle depending on pm
28. Evaluate fitness(parti)
29. Record pbest
30. Record gbest
31. WHILE(current cycle < max cycle)

Fig. 2. Pseudo-code of our proposed CPSO

0.1, pm max = 0.4, neighborhood size = 4, the inertia factor w was set randomly
with a value within the range [0.8,0.9], and learning factors c1, c2, and c3 were
randomly chosen within the range [1.8,1.9]. The parameter settings such as the
probability of mutation, neighborhood size, inertia and learning factors were
empirically derived after numerous experiments. As we stated in Section 3, we
transformed the equality constraints into inequality constrains, using ε = 0.0001.
This tolerance causes that the algorithm identifies as feasible some constraints
which are being slightly violated. That is the reason why some results reported
in the present work are better than the reference solutions previously reported.

Table 2 displays the results obtained with 3 different algorithms: our version
of CPSO with 340,000 evaluations, the algorithm presented by Toscano Pulido
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Table 2. Best results obtained by our CPSO, PSOTos (with 340,000 objective function
evaluations), and SR (with 350,000 objective function evaluations)

Function Type Best Known Value CPSO PSOTos SR

1 Min -15.000 -15.000 -15.000 -15.000
2 Max -0.803619 -0.801388 -0.803432 -0.803515
3 Max 1.000 1.000 1.004 1.000
4 Min -30665.539 -30665.659 -30665.500 -30665.539
5 Min 5126.498 5126.497 5126.640 5126.497
6 Min -6961.814 -6961.825 -6961.810 -6961.814
7 Min 24.306 24.400 24.351 24.307
8 Max 0.095825 0.095825 0.095825 0.095825
9 Min 680.630 680.636 680.638 680.630
10 Min 7049.3307 7052,8523 7057.5900 7054.316
11 Min 0.750 0.749 0.749 0.750
12 Max 1.000 1.000 1.000 1.000
13 Min 0.053950 0.054237 0.068665 0.053957

Table 3. Best, Mean and Worst Values Obtained with CPSO, performing 340,000
objective function evaluations

Function Best Mean Worst
1 -15.000 -15.0001 -134.2191
2 -0.801388 0.7653 0.0917
3 1.000 1.0000 1.0000
4 -30665.659 -30665.6564 -25555.6267
5 5126.497 5327.9569 2300.5443
6 -6961.825 -6859.0759 64827.5545
7 24.400 31.4854 4063.5252
8 0.095825 0.0958 -0.0006
9 680.636 682.3973 18484.7591
10 7052,8523 8533.6999 13123.4656
11 0.749 0.7505 0.4466
12 1.000 1.000 9386
13 0.054237 1.4139 0.9675

and Coello Coello [10] (PSOTos) and Stochastic Ranking (SR) [9]. The best
result found for each function is marked with italics.

Comparing our best results with respect to PSOTos (Table 2), our approach
was able to improve its best results in five test functions: 3, 5, 9, 10 and 13 (it
is worth remarking that functions 10 and 13 are among the most difficult from
the benchmark considered). PSOTos outperforms CPSO in test functions 2 and
7. Additionally, in functions 4 and 6, our CPSO did not reach the optimum
values while PSOTos obtained values lower than the best reported values due to
rounding errors on the constraints. Comparing our CPSO with respect to SR,
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Table 4. Best, Mean and Worst Values Obtained with PSOTos, performing 340,000
objective function evaluations

Function Best Mean Worst
1 -15.000 -15.0000 -15.0000
2 -0.803432 0.790406 0.750393
3 1.004 1.0038 1.0024
4 -30665.500 -30665.5000 -30665.5000
5 5126.640 5461.0813 6104.7500
6 -6961.810 -6961.8100 -6961.8100
7 24.351 25.3557 27.3168
8 0.095825 0.0958 0.0958
9 680.636 680.8523 680.5530
10 7057.5900 7560.0478 8104.3100
11 0.749 0.7501 0.7528
12 1.000 1.0000 1.0000
13 0.068665 1.7164 13.6695

Table 5. Best, Mean and Worst Values Obtained with SR, performing 350,000 evalu-
ations

Function Best Mean Worst
1 -15.000 -15.0000 -15.0000
2 -0.803515 0.781975 0.726288
3 1.000 1.0000 1.0000
4 -30665.500 -30665.5000 -30665.5000
5 5126.539 5128.8810 5142.4720
6 -6961.814 -6875.9400 -6350.2620
7 24.307 24.3740 24.6420
8 0.095825 0.0958 0.0958
9 680.630 680.6560 680.7630
10 7054.3160 7559.1920 8835.6550
11 0.750 0.7500 0.7500
12 1.000 1.0000 1.0000
13 0.053957 0.0570 0.2169

we can observe that CPSO obtained better values for function 10, equal values
for five test functions (1, 3, 5, 8, 12) and SR found slightly better results for the
rest of the problems (2, 4, 6, 7, 9, 11 y 13). However, it is important to note that
both PSO algorithms obtained their results with a lower computational cost
(measured in terms of the number of evaluations of the objective functions),
since they performed 340,000 objective function evaluations, whereas Stochastic
Ranking performed 350,000 objective function evaluations.

The mean and worst values obtained by PSOTos and SR (Tables 4 and 5)
are both better that those of CPSO (Table 3). We believe that this fact is
due to the mechanism implemented to maintain the swarm’s diversity. However,
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this mechanism provided a trade-off that we considered acceptable, since the
best values found remained competitive despite the larger variability of results
obtained. Note that in Table 3 some mean values (functions 2, 4, 5, 11 and 13)
do not fall within the best and the worst values. This is because the worst values
reached by CPSO are not feasible while the best values are feasible. We believe
the same occurs with PSOTos and SR (Tables 4 and 5) in some cases.

6 Conclusions and Future Work

We have introduced a new proposal to solve constrained optimization problems
using particle swarm optimization. Our approach uses simple selection rules for
handling the constraints of a problem, and adopts both the local and the global
best models to update the particles of the swarm. Our best results are very
competitive in most cases, even with respect to Stochastic Ranking (which is
the best constraint-handling technique known to date) although they present
a high variability in some cases. Additionally, in several cases our approach
outperformed a previous PSO-based constraint-handling scheme.

As part of our future work, we aim to study alternative schemes to maintain
diversity. Another goal is to improve the robustness of our approach, so that the
variability of results significantly decreases, without degrading the quality of the
best solutions currently found.

Acknowledgements. The third author acknowledges support from CONACyT
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Abstract. In this paper we analyze a new method for an adaptive variation of 
Evolutionary Algorithms (EAs) population size: the Self-Regulated Population 
size EA (SRP-EA).  An empirical evaluation of the method is provided by 
comparing the new proposal with the CHC algorithm and other well known 
EAs with varying population. A fitness landscape generator was chosen to test 
and compare the algorithms: the Spear’s multimodal function generator. The 
performance of the algorithms was measured in terms of success rate, quality of 
the solutions and evaluations needed to attain them over a wide range of 
problem instances. We will show that SRP-EA performs well on these tests and 
appears to overcome some recurrent drawbacks of traditional EAs which lead 
them to local optima premature convergence. Also, unlike other methods, SRP-
EA seems to self-regulate its population size according to the state of the 
search.  

1   Introduction 

Although varying the population size of EAs during the run seems to be a rather 
natural and rewarding approach when implementing this type of algorithms, that 
particular parameter has not been widely studied as far as variation is concerned. 
Unlike other operators’ parameters - like mutation rate for instance -, population size, 
with few exceptions, remained away from major efforts in finding parameter control 
methods. GAVaPS [1] (see next section) introduced some interesting concepts that 
gave rise to an optimist expectation about the performance of EAs with varying 
population size. But some aspects of the algorithm, namely population size self-
regulation, could not be reproduced in other tests [5] [7]. The authors of GAVaPS 
suggested that the algorithm could adapt its population size according to the state of 
the search, balancing exploration and exploitation by increasing the population size 
on a first stage and then reducing the number of chromosomes on later stages. But, in 
further studies, a different behavior was observed. In [7], the authors noted that 
GAVaPS, when applied to a Royal Road problem, either grew its population size up 
to several thousand individuals or decreased it until extinction. These features were 
observed with different parameter values, that is, no combination of parameters was 
found to improve the stability of the population. In [5], GAVaPS also evolved into 
large populations when applied to Spears’ multimodal problems, giving rise to a poor 
performance when compared to other EAs. Despite these disappointing general results 
of GAVaPS, some other studies indicate that varying the population size of EAs may 
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increase their performance on some problems (see [5], for instance). Also, although 
GAVaPS did not attain the expected impact, some of its concepts are very interesting 
and worth further exploring. With these issues in mind, we intended to develop a 
decentralized variation process that may lead to a self-regulated behavior of the 
population size, at least within a small subset of the parameters values, thus exploring 
more conveniently the search space and making use of the resources in a more 
rational way. The proposed process relies on the genetic diversity of the population 
during the run. Our results indicate that this may be a promising path to follow when 
developing EAs with varying population size. 

2   Previous Research 

According to Eiben and al. [4] parameter control mechanisms of EAs may be divided 
into three categories: 

• Deterministic methods: parameter values are changed by some deterministic rule. 
• Adaptive methods: values vary during the EA run depending on its behavior.  
• Self-Adaptive methods: the values are codified within the chromosome and 

evolve together with the problem solutions. 

In this paper we focus our attention on the variation of the population size of EAs 
during the run. Some techniques described below fall into the adaptive methods 
categories, while others, like RVPS [3] and PRoFIGA [5] are deterministic methods. 
Our proposal may also be classified as an adaptive method. However, the variation 
process in SRP-EA may also be viewed as a result of a varying crossover rate, which 
is indirectly controlled by the genetic diversity of the population.      

The Genetic Algorithm with Varying Population Size (GAVaPS) [1] does not have 
an explicit selection mechanism. As in natural systems, population size is defined by 
the birth and death of individuals occurring at each iteration. A parameter called 
lifetime is introduced. It defines the number of generations in which each individual is 
allowed to remain alive, that is, a part of the population and the evolutionary process. 
After its creation, the chromosome is assigned to a specific lifetime, according to its 
fitness. Three lifetime calculation methods are proposed. The algorithm proceeds in a 
generational manner, at each time step increasing each individual’s age. When an 
individual’s age exceeds its lifetime, the chromosome is removed from the 
population. Since fittest individuals remain in the population for more generations, 
thus having a higher probability to be engaged in a reproduction process and generate 
offspring, GAVaPS’ chromosomes have equal probability to be selected to reproduce, 
independently of their fitness value. This concept of lifetime/age provides the 
algorithm with the necessary selection pressure, which reduces the need for selection 
strategies: GAVaPS randomly pairs the chromosomes for crossover operations. The 
intensity of the pressure is controlled by two parameters, minLT and maxLT, that 
define, respectively, the minimum and maximum lifetime allowed for each 
chromosome. Higher difference between the two values leads to a more selective 
algorithm. However, this process may have a serious drawback since increasing the 
maxLT parameter will result in larger populations and, as stated above, an 
increasingly high population size is a characteristic of GAVaPS. The algorithm also 
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introduces another parameter: reproduction rate ( ). Its value defines the number of 
new chromosomes created in each generation t, depending on the size of the current 
population.  

The Adaptive Population size Genetic Algorithm (APGA) [2] is very similar to 
GAVaPS. The only difference resides in reproduction rate, which in APGA has a 
fixed value of two individuals. This technique follows the reproduction strategy of the 
Steady-State GA and prevents the population from growing out of control has it often 
happens with GAVaPS. On the other hand, such a low reproduction rate results in 
populations with few individuals unless a high value for maxLT is used. But, even in 
the last case, the population size is very stable and apparently does not react to the 
evolution process and different search stages (see section 4). However, the algorithm 
performs well on some problems and clearly outperformed GAVaPS when applied to 
the Spears’ multimodal problems [5]. Besides a low reproduction rate, APGA also 
uses an elitist strategy by keeping unchanged the age of the best individual.  

The Population Resizing on Fitness Improvement GA (PRoFIGA) was proposed in 
[5] by Eiben, Marchiori and Valkó. The variation process of PRoFIGA is based on the 
improvement of the best fitness in the population. The process intends to balance 
exploration and exploitation by growing the population in earlier and exploratory 
stages and gradually decrease it in later stages of the search. When the population gets 
trapped in local optima, the process is supposed to generate another growing phase of 
the population, thus increasing diversity and escaping the local optima. The authors 
present a heuristic for size variation during the run that increases or decreases the 
population size according to whether or not the best fitness of the population has been 
improved and, if the later case is observed, for how long it has remained unchanged.  

In the Random Variation of Population Size GA (RVPS) [3] the population size is 
randomly changed during the run. The authors concluded that in some cases the 
performance of RVPS is equivalent to the standard GA. So, when there are no hints 
about the optimal population size for some problem, it may be appropriate to 
randomly set and vary the population size of the GA. 

Like PRoFIGA and RVPS, the Saw-Tooth Genetic Algorithm [8] is an example of 
a deterministic method used in the variation of the population size. In this algorithm 
the population size varies according to a predefined function with a saw-tooth shape. 
The authors concluded that the Saw-Tooth GA performed well on some particular test 
functions. However, besides a variable population size, the Saw-Tooth GA also uses a 
reinitialization mechanism to introduce genetic diversity in the population. 

3   Our Proposal 

The SRP-EA combines features of CHC [6] and GAVaPS and introduces a dynamic 
reproduction rate which is indirectly controlled by the genetic diversity of the 
population. CHC, which stands for Cross generational elitist selection, 
Heterogeneous Recombination and Cataclysmic Mutation, is a variation of the 
standard GA. It uses no mutation in the classical sense of the concept, but instead it 
goes through a process of macro-mutation when the best fitness of the population 
doesn’t change after a certain number of generations. The genetic diversity is assured 
by a highly disruptive crossover operator (HUX) and a reproduction restriction which 
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assures that selected pairs of chromosomes won’t generate offspring unless their 
Hamming Distance is above a certain threshold. Then, each generation, p/2 pairs of 
chromosomes are randomly selected from the population with size p. All pairs are 
submitted to the reproduction process. First, their Hamming Distance is computed. If 
the value is found to be above the threshold then the chromosomes generate two 
children with the HUX operator. When the process is concluded, the newly generated 
population of p’ offspring replaces the worst p’ chromosomes in the main population, 
therefore maintaining the size of the population. The threshold is usually set in the 
beginning of the runs to ¼ of the chromosome length, and decremented when no 
offspring is generated. When the algorithm gets stuck in local optima, a cataclysmic 
mutation is applied by replacing the entire population, except the best chromosome, 
with mutated copies of that individual. Usually, the mutation rate at this point is set  
to 0.35.  

SRP-EA adapts the Hamming Distance restriction of CHC. Remember that the 
process leads to a changing reproduction rate meaning that in each generation the 
number of offspring is not necessarily the same. The difference is that in SRP-EA the 
new chromosomes do not replace the parents’ population. Instead, offspring are added 
to the population, therefore increasing its size, while other individuals are removed 
via an age/lifetime process similar to the one found in GAVaPS and APGA. The 
process conduces to a variation in the size of the population and works as follows 
(SRP-EA pseudo-code is given in figure 1). First SRP-EA assigns a lifetime to each 
chromosome created (the three lifetime computation strategies of GAVaPS were 
adopted). Then, in each generation, the age (initially set to 0) of each chromosome is 
incremented. The chance of survival decreases with the age of the chromosome - the 
survival probability is set to (lifetime-age)/maxLT and when the age of a chromosome 
reaches its lifetime, the probability of survival reaches zero. There is a difference 
between the SRP-EA and GAVaPS, since in GAVaPS the individuals remain in the 
population during its lifetime, while in SRP-EA an individual may die before the age 
reaches its limit.  

The create new individuals procedure increases the population size by generating 
offspring with a restriction based on the Hamming Distance between the parents. 
When two parents are selected and their Hamming Distance is above the threshold, 
the children are generated. If the Hamming Distance is below or equal to the threshold 
then the parents do not cross and the attempt is classified as failure. After the p/2 
mating attempts are concluded (where p is the size of the population), all newborn 
children are introduced in the population and the threshold is set to a new value 
according to the heuristic described in figure 1 (the process repeats until at least one 
mating attempt succeeds). Also, in the kill older individuals procedure, the threshold 
is increased by a predefined amount (Inc) if the number of newborn is higher than 
number of individuals that died in the present generation. This strategy, along with 
proper set of the Dec and Inc parameters, creates a self-regulated population, which 
increases in the beginning of the search, decreases with convergence, and sometimes 
reacts to local optima convergence. Notice that this emergent behavior is similar to 
the one that PRoFIGA intends to simulate by means of a set of deterministic rules. 
However, the correct way to set the parameter values necessary to attain the desired 
population behavior and consequent algorithm performance is still unclear, although 
the tests described in the next section have brought some light into the subject. 
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Procedure SRP-EA 
     initialize and evaluate population                /*compute fitness and lifetime */ 
     while (not termination condition) { 
           increase the age of each individual by 1 
           create new individuals               
           kill older individuals 
           evaluate new individuals 
           set lifetime of new individuals }    /*Using any kind of strategy*/ 
      
Procedure create new individuals 
     do { 
            mating_events = population_size/2 
            for (i = 1 to mating_events)  do{ 
                select two individuals         /*Any method may be used here*/ 
                if (hamming distance > threshold)  crossover and mutate     /*Successful mating*/         
            } 
            if (failed matings> successful matings)   threshold = threshold-Dec 
            else                                                           threshold = threshold+Inc 
      } while (successful matings = 0) 
 
Procedure kill older individuals 
          for all individuals except the best do { 
                survival probability = (lifetime-age)/maxLT 
                if (random [0, 1] > survival probability)   kill individual   } 
           if (newborn > dead)    threshold = threshold+Inc 

Fig. 1. SRP-EA pseudo-code 

4   Test Bed Set and Results 

To test the efficiency of the proposed method, a Genetic Algorithm with the 
reproduction procedure described above was tested on several Spears’ multimodal 
problems [9]. In [5], the authors chose that function generator to study different EAs 
with varying population size.  

For that reason, the Spears’ problem may be a good benchmark to test the SRP-EA. 
Also, the generator creates problems with different sizes and degrees of multimodality 
making it a good tool to test some of the algorithms’ characteristics. In the 
experiences described below we tried to follow the procedures described in [5]. 

Table 1. Algorithms’ setup 

Chromosome length L 100 
Initial population size N 25, 50, 100, 200 
Mutation rate pm (in APGA and SRP-EA) 0.0025, 0.005, 0.01, 0.02 
Crossover rate pc (in APGA) 0.9 
Selection Random and 4-size tournament 
Maximum number of evaluations in each run 10000 
Initial threshold (in CHC and SRP-EA) L/4 
Inc, Dec (in SRP-EA) Inc = Dec = 3 
minLT (in APGA and SRP-EA) 1 
maxLT (in APGA and SRP-EA) 7, 11, 20 
Lifetime calculation (in APGA and SRP-EA) Bilinear (see [1] for details) 
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The SRP-EA was tested and compared with the CHC and the APGA. In [5] the 
authors compared the APGA with a Simple Genetic Algorithm (SGA) and other 
algorithms with varying population size, like GAVaPS and PRoFIGA, and concluded 
that APGA outperformed those methods through a wide range of Spears’ problem 
instances. For that reason we simplified our analysis and eliminated the results attained 
with other EAs from the figures below. Furthermore, we are mainly interested in 
adaptive control methods of the population size, so deterministic methods like the ones 
used in RVPS and PRoFIGA somehow fall off this paper’s subject. 

We ran the algorithms on 10 different types of landscapes, with the number of 
peaks (NP) ranging through 1, 2, 5, 10, 25, 50, 100, 250, 500 and 1000. The 
distribution of the peaks is linear and the lowest peak height was set to 0.5. Global 
optimum fitness is 1 in all instances of the problem. All configurations of the EAs 
created and evaluated no more than 10000 chromosomes in each run. The results were 
averaged over 100 runs. The initial population size (fixed in CHC) ranged through 25, 
50, 100 and 200. Four different mutation rates were tested. The crossover rate of 
APGA was set to 0.9, following the test setups in [5], and a two point crossover 
operator was used, except in CHC where we used the HUX operator associated with 
the method. The value of minLT was set to 1 in APGA and SRP-EA, while maxLT 
varied through 7, 11 and 20. All algorithms use elitism. Table 1 resumes the setup. 

Before we proceed to a more accurate study some general remarks must be stated.  

• The APGA results shown in [5] were properly reproduced in our tests. Also, the 
configuration used by the authors revealed to be appropriate and, in general, other 
configurations didn’t increase significantly the performance. 

• While the tests with APGA and CHC revealed no clear improvement when using 
tournament instead of random selection, SRP-EA seems to perform better with a 
tournament selection strategy.  

• As expected, CHC performed better with small populations (the algorithm is 
known to be more able to deal with problems that require small populations). 

• Neither APGA nor SRP-EA had significant changes in the performance over the 
range of maxLT values. 

• The values of Inc and Dec parameters were not achieved by means of an 
exhaustive search and optimization. However, a general inspection revealed that 
values between 1% and 10% of the chromosome length may lead to good results. 
Also, results indicate that setting Inc = Dec appears to be an adequate strategy. 

The performance of the algorithms was analyzed under three criteria: the success 
rate of the algorithm (SR%), that is, the percentage of runs in which the global 
optimum is achieved; the average number of evaluations (AE) necessary to reach 
global optimum (considering successful runs); and the average of the best 
chromosome’s fitness (AF) found in each run. Since one of the hypotheses about 
SRP-EA is its ability to balance exploration and exploitation by adapting the size of 
the population to the state of the search, therefore increasing the probability to reach 
optimum, we will focus our attention on the SR% criteria.  

Figure 2 illustrates some of the above observations. The graphics depict the 
success rates achieved by some configurations of CHC and APGA compared with 
two configurations of SRP-EA which differ in the mutation rate. Success  rates  of  the 
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Fig. 2. CHC, APGA and SRP-EA success rates. SRP-EA parameters: N = 100, pm= 0.005 
(SRP-EA1), pm = 0.0025 (SRP-EA2), maxLT = 11, size 4 tournament; APGA: N = 100, pc = 0.9 
and maxLT = 11. 

algorithms are shown over the problem dimension range (number of peaks – NP). The 
graphics suggest that SRP-EA is more able to reach global optimum than APGA and 
CHC. Also, pm = 0.0025 seems to favor SRP-EA performance in Spears’ landscapes 
with higher number of peaks, while pm = 0.005 works well on medium range problem 
dimension. Notice also, that CHC with a population of 200 individuals clearly fails in 
finding the optimal solutions and the same happens for APGA with pm = 0.02.  

When comparing the algorithms in terms of the best chromosome’s fitness (AF), 
the results show that SRP-EA also attains, in general, higher values (see figure 3). 
However, the performance of SRP-EA pays a price in terms of number of evaluations 
to reach optima (AE). In figure 3 it is clear that SRP-EA performance comes with an 
increase in the number of evaluations. These results are not surprising since the 
population size variation process inherent to SRP-EA conduces to a large exploratory 
stage in the beginning of the search which increases the probability to reach global 
optimum but creates a large amount of new individuals, with obvious effects in the 
number of evaluations necessary to reach that optimum. 

Choosing, for each NP, the best results of the algorithms over the complete space 
of parameter values of table 1 we obtain the curves represented in figure 4a. These 
results clearly illustrate the SRP-EA potential and its ability to find the global optima 
of Spears’ landscapes.  

One last test was conducted to examine the real influence of population variation in 
SRP-EA. As stated above, the population size variation of SRP-EA relies on a repro-
duction restriction that in nature is called assortative mating and tends to preserve 
genetic diversity. In some problems, that may be sufficient to increase convergence 
rate to  global  optimum.  To  try  to  quantify  and  distinguish  the  effects  of  genetic 
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Fig. 3. Fitness of the best individual found and evaluations needed to reach the optima (results 
averaged over 100 runs) in CHC2, APGA2 and SRP-EA1 

diversity maintenance and population size variation in SRP-EA, we created the 
Varying Assortative Mating EA (VAMEA), in which the procedure kill older 
individuals is replaced by a delete worst generational replacement as in CHC: like 
SRP-EA, p’ individuals are created from p/2 mating attempts (where p is the size of 
the population); then, the p’ worst elements of the population are replaced by the 
offspring. This way, we remove the influence of the variation of population size and 
isolate the effects of the assortative mating found in the SRP-EA reproduction 
process. VAMEA was tested through the parameters’ values range of table 1. Results 
are shown in figure 4b, where the curves represent the best results found for each NP 
(covering the complete set of parameter values shown in table 1). The differences 
found in the curves shape illustrate the role of the population variation mechanism. 
Although the assortative mating improves the success rates of the other genetic 
algorithms (as we can see by comparing the VAMEA curve in figure 4b with CHC 
and APGA curves in figure 4a), those rates experience even further improvement 
when the population variation process is introduced.  

Although we tested SRP-EA with random selection of parents, following GAVaPS 
and APGA method, best results were achieved with tournament selection. APGA, on 
the other hand, didn’t improve its results when changing the selection method. This 
outcome is not surprising for two reasons: 1) the way the chromosomes are eliminated 
from the population is different in SRP-EA, so the same maxLT value in SRP-EA and 
APGA conduces to a lower selection pressure in the first algorithm; 2) to amplify 
selection pressure in the algorithms, one must raise maxLT value; however, in SRP-
EA, the increase in maxLT may lead to an excessive population growth and the 
consequent effort in terms of function evaluations (the population of APGA, with its 
“Steady-State like” reproduction, is almost immune to demographic explosion, even 
with large values of maxLT).  

Before we conclude this section, a brief analysis of the population growth of the 
algorithms is required. Due to its fixed and low reproduction rate, the variation in the 
population size of APGA is very predictable and consists of small oscillations around 
an average value. Besides that, the population size seems to evolve without any 
feedback from the state of the search. Every APGA run over every instance of the 
problem showed the same behavior. The population size of SRP-EA evolves in a 
quite diverse manner. As we can see in figure 5, which represents the population 
growth and the evolution of the best fitness in two independent successful runs  of  the  
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Fig. 4. Best success rates thorough the complete parameter space 

algorithm on a NP=100 landscape, the population size clearly oscillates, sometimes 
even in severe way. There is a consistent demographic explosion in the beginning of 
the search which is quickly appeased. Then, the population stagnates in lower values 
but experience from time to time sudden increases in its size. Inspecting closely the 
curves below it can be seen that the sudden demographic growth is usually associated 
with stabilized or slowly growing phases of the best fitness value. 
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Fig. 5. Population growth and best fitness of SRP-EA in two independent runs. N = 100, pm = 
0.005 and maxLT =11. NP = 100. 

5   Conclusions and Future Work 

The results illustrated SRP-EA superior ability to find the global optima of Spears’ 
landscapes when compared to CHC and APGA. That ability comes not only from the 
reproduction restriction based on the Hamming Distance between parents (which 
contributes with genetic diversity maintenance) but also from the population size 
variation itself. The dynamics of the population size seem to reflect the state of the 
search and the evolution of the quality of the solutions, in opposition to a more stable 
growth curve observed in APGA runs. 

An in-depth analysis of the new parameters is needed in order to establish some 
rules that might reduce the complexity of the algorithm and also optimize its 
performance. Other distance criteria must also be inspected in order to reflect more 
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properly the distribution of the population in the search space, avoiding overcrowded 
areas which do not contribute to maintain the genetic diversity, and redirecting the 
search to unexplored areas in an adaptive and non centralized manner. Finally, the 
application of SRP-EA to dynamic problems with on-line moving optima may be a 
proper field to evaluate the algorithm’ potentialities and test its adaptive 
characteristics. Some preliminary tests already indicated that SRP-EA may be a useful 
tool to deal with dynamic problems. 
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Abstract. An evolutionary algorithm (EA) usually initializes its popu-
lation with random genotypes, which represent random solutions to the
target problem instance. If the problem is one of constrained optimiza-
tion, an initial population whose genotypes all represent empty solutions
might allow the EA to grow valid solutions as much as search for them
and thereby identify good solutions more quickly. This is the case in a
genetic algorithm (GA) for the longest common subsequence problem,
which seeks the length of a longest subsequence common to each of a
set of given strings. The GA encodes sequences as binary strings that
indicate subsequences of the shortest or first given string. In tests on
a variety of problem instances, the GA always identifies an optimum
subsequence, but on most instances, the GA reaches an optimum more
quickly when its initial population encodes empty sequences than when
its initial genotypes represent random sequences.

Keywords: Longest common subsequence, genetic algorithm, initially
empty solutions.

1 Introduction

The longest common subsequence problem seeks the length of a longest string
that is a subsequence of each of a set of given strings. A recent genetic al-
gorithm (GA) for this problem [1], which Sect. 3 below summarizes, encodes
candidate sequences as binary strings that indicate subsequences of the short-
est or first given string. This GA initializes its population conventionally with
random genotypes: each position in each genotype is assigned 0 or 1 with equal
probability. In repeated trials on a variety of three-string problem instances with
up to 6400 characters, the GA always found an optimum solution.

As Sect. 4 describes, however, the developments of subsequence length and
fitness as the GA moved toward those optima suggest that the GA could achieve
the same results more quickly if it started from scratch; that is, if all the geno-
types in its initial population consisted entirely of 0s and thus represented empty
sequences.

Section 5 explores this possibility. On a range of test instances over an alpha-
bet of four characters, it compares the GA’s performance with an initial popula-
tion of random genotypes and with an initial population whose all-0 genotypes
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represent empty sequences. On almost all of the test instances, the conjecture
is confirmed. The GA continues to identify optimum solutions, but it requires
significantly fewer generations to do so when the solutions its initial population
represents are empty.

We begin by describing the longest common subsequence problem in detail.

2 The Problem

Deleting zero or more characters from a string S yields a subsequence of S. For
example, if S = “CTTAGGCAA”, then S itself, “TTGGAA”, “AGCA”, and
the empty string are subsequences of S. The characters in a subsequence need
not be contiguous in the original string, but the subsequence preserves their
order. Given an alphabet Σ and a set of K ≥ 2 strings S1, S2, . . . , SK over Σ,
the Longest Common Subsequence (LCS) problem seeks the length of a longest
subsequence found in all the strings.

For example, a longest common subsequence of the strings

S1 = C G T G G T A A T C A C
S2 = A G C A G T G T A T C C
S3 = C G G G C T A T G C C G,

as indicated by the bold characters, is C G G T A T C C, with length eight.
Note that a longest common subsequence need not be unique, either in the
positions it occupies in the several strings or in its particular characters.

The decision version of the LCS problem fixes a positive integer � and asks if
there is a string w over Σ that is a subsequence of each string Si and has length
at least �. Maier [2] showed that this problem is NP-complete for alphabets of
any size |Σ| ≥ 2. Polynomial-time algorithms exist for the decision problem if the
target length � or the number of strings is fixed, though these algorithms’ times
grow quickly as the strings’ length or number grows. A dynamic programming
algorithm for the optimization version of the problem is due to Irving and Fraser
[3]. This algorithm requires time that is O(nK), where n is the length of the
strings and K is the number of strings.

The LCS problem finds applications in areas such as DNA sequence matching
[4] (which inspires the test instances of Sect. 5), search engines, molecule iden-
tification [5], data mining [6], file difference listing [7], plagiarism detection [8],
author identification [9], text matching in specialized domains [10], syntactic rule
identification [11], and comparing the performance of algorithms by measuring
the similarity of their several solutions [12]. Researchers have described a variety
of heuristic approaches to the problem [13, pp.145–184] [14].

3 The Genetic Algorithm

Hinkemeyer and Julstrom [1] recently described a genetic algorithm for the
longest common subsequence problem. For an LCS instance of K strings S1,
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S2, . . . , SK , the GA encodes candidate sequences as binary strings as long as
the shortest string (or the first string, if all of the strings’ lengths are the same)
S1: c[i] = 1 indicates that S1[i] is in the subsequence; c[i] = 0 indicates that
it is not. Figure 1 illustrates this mechanism.

S1 = C G T G G T A A T C A C
S2 = A G C A G T G T A T C C
S3 = C G G G C T A T G C C G,

c[i] = 1 0 0 1 1 1 0 1 1 1 0 1

Fig. 1. A genotype in the genetic algorithm and the subsequence that it represents.
c[i] = 1 indicates that S1[i] is in the subsequence, c[i] = 0 that it is not, where
S1[·] is the shortest (or first) of the target instance’s strings.

The GA seeks to maximize genotypes’ fitness. Its fitness function rewards
longer sequences; strongly rewards a genotype for each given string in which its
subsequence appears; rewards a genotype whose subsequence is as long as S1;
and very strongly penalizes a genotype whose subsequence is not found in all
the given strings. A genotype’s fitness cannot be positive unless the sequence it
represents occurs in all the given strings.

The following sketch summarizes the fitness function. In it, v is a local variable
in which c[·]’s fitness f(c[·]) is developed, � is the length of the subsequence
c[·] represents (that is, the number of 1s in c[·]), m is the number of strings
that the subsequence matches, S1 is the shortest or first string, and K is the
number of strings in the instance.

v ← � + 30×m
if � = |S1|

v ← v + 50
if m = K

v ← 3000× v
else

v ← −1000× v × (K −m)
end if
f(c[·]) ← v

The GA’s initial population consists of random genotypes: each symbol is 0 or
1 with equal probability. The GA chooses genotypes to be parents in tournaments
without replacement, and each offspring genotype is generated by either one-
point crossover or position-by-position mutation, never both. The GA is elitist;
it preserves the best genotypes in the current generation unchanged into the
next. If the population’s best genotype has not improved for a specified number
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of generations, some of the population’s members are replaced with new random
genotypes.

In the tests of [1] and below, the GA’s population contained 100 genotypes,
and the size of its selection tournaments was two. The probability that crossover
generated each offspring was 50%, the probability of mutation therefore the
same. Within mutation, the probability that each entry would be reversed was
1/�, where � was the genotype length. The number of elite genotypes was one,
and the non-elite members were randomly re-initialized if no improvement in
the fittest genotype occurred for 100 generations. The GA ran until it found an
optimum solution, which was always known.

In comparisons on a variety of three-string LCS instances with the dynamic
programming algorithm of Irving and Fraser [3], the GA in general found op-
timum solutions almost as quickly on smaller instances (100 ≤ n ≤ 400) and
much more quickly on larger instances (800 ≤ n ≤ 6400).

4 Starting from Scratch

The GA’s fitness function encourages it to identify subsequences that match all
the given strings and are as long as possible. It satisfied these two requirements in
that order. The GA generated shorter and shorter sequences until one occurred
in all the given strings, then found longer common subsequences until one was
as long as possible.
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Fig. 2. Development of the length and fitness of the most fit subsequence in the GA’s
population on a set of three binary strings of length n = 6400 with LCS length 0.9n =
5760 [1]

Figure 2 illustrates this behavior in a run of the GA on an instance with three
binary strings of length n = 6400 and longest common subsequence length =
0.9n = 5760. The graph plots both the length and the fitness of the most fit
genotype in the GA’s population, through the algorithm’s run. Fitness increases
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monotonically, as it must under elitism, but the length of the fittest sequence
initially drops, and the sequence’s fitness is negative. For about 6000 genera-
tions, the fittest sequence does not match all the instance’s strings, and it gets
shorter as the GA searches for a subsequence that occurs in all the instance’s
strings. Once such a subsequence is found, both length and fitness of the fittest
subsequence increase, indicating that the GA is identifying longer and longer
common subsequences.

In a typical run of the GA, the length of the sequence that the population’s
fittest genotype represents does not drop all the way to zero, but it does shrink
to a small fraction of n. This suggests that the GA could achieve essentially
the same results more quickly by starting with a population of genotypes that
represent empty sequences; that is, at the “knee” of the two curves in Fig. 2.
This would allow the GA to proceed to a good solution without processing the
generations before the knee. Thus we propose a version of the GA whose initial
population is entirely seeded with genotypes that represent empty sequences.

The resulting mechanism resembles genetic programming (GP) [15] [16], which
evolves trees that represent programs from an initial population of relatively
simple trees, and even more, the application of GP to the evolution of analog
circuits [17] [18] [19, Sect.V]. In the latter, representations of more elaborate,
more fit circuits evolve from an initial population of small, simple precursors.

The next section reports that the GA does reach optimum solutions faster
when its initial population represents empty sequences, and that the speed-up
is sometimes greater than Fig. 2 suggests.

5 Comparisons

Two versions of the GA, one with an initial population of random genotypes and
a second with an initial population of all-zero genotypes that represent empty
sequences, were compared on 24 instances of the LCS problem, each of three
strings over an alphabet of four characters, as in DNA strings. These instances
have lengths n = 200, 400, 800, 1600, 3200, and 6400, with maximum common
subsequence lengths equal to 10%, 50%, 90%, and 100% of n.

When the LCS length is equal to n, it suffices to set the genotypes to all 1s
and be done. The two versions of the GA were applied to these instances only
to compare their performances.

One instance was generated for each combination of n and LCS length, in
such a way that the lengths of their longest common subsequences are known. In
particular, S1 was chosen and a subsequence of it was specified. This subsequence
then appeared in the other strings, whose remaining positions were filled in such
a way that no longer subsequence was common to all the strings.

The GA was implemented in Java and executed on an AMD 3400+ processor
with one Gbyte of memory running at 2.2 GHz under Windows XP. Both versions
were run 30 independent times on each test instance; Table 1 summarizes the
results of these trials. For each instance, the table lists n and the instance’s LCS
length as a fraction of n. For each version of the GA on each instance, it lists
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Table 1. The trials of the GA, with random initial genotypes and with zeroed initial
genotypes representing empty sequences on 24 LCS instances with “DNA” strings;
|Σ| = 4. For each instance, the table lists the length n of its strings, the known length
of a longest common subsequence as a percentage of n, the shortest and mean times
in seconds that both versions of the GA required to find the longest length, and the
standard deviations of those times.

Instance Randomly init’ed. GA time (s) Zeroed GA time (s)
n % best mean stdev best mean stdev
200 10% 1.047 1.298 0.139 0.219 0.286 0.054

50% 2.016 2.345 0.206 1.297 1.545 0.128
90% 1.297 1.942 0.306 1.359 1.568 0.099

100% 0.844 1.028 0.106 1.468 1.676 0.119
400 10% 4.579 5.162 0.361 0.937 1.130 0.104

50% 12.109 12.294 0.144 5.687 6.293 0.483
90% 7.000 9.264 0.869 5.891 6.494 0.306

100% 3.953 4.625 0.410 6.047 6.526 0.318
800 10% 19.875 21.779 1.193 3.765 4.395 0.280

50% 37.625 41.700 2.284 22.547 25.643 1.769
90% 35.157 39.507 2.159 24.172 26.355 1.280

100% 16.516 18.897 1.273 1.126 26.427 1.126
1600 10% 83.610 92.017 5.633 16.156 17.481 0.564

50% 164.765 180.656 10.059 93.156 107.344 8.845
90% 148.890 166.621 10.371 99.859 109.563 4.792

100% 72.781 78.786 4.346 101.859 110.758 4.772
3200 10% 347.609 382.175 23.236 67.219 71.439 2.054

50% 687.438 736.156 32.872 390.438 442.359 27.655
90% 645.781 703.531 28.021 422.250 472.437 28.918

100% 288.547 323.813 18.164 426.000 459.509 21.396
6400 10% 1433.047 1566.138 68.087 269.000 282.212 5.827

50% 2938.422 3208.825 157.626 1708.719 1869.030 103.683
90% 2788.547 2983.347 137.954 1726.875 1833.085 54.564

100% 1231.718 1392.686 92.700 1796.063 1878.862 71.007

the best and mean times in seconds that the algorithm required to identify a
longest common subsequence and the standard deviations of these times.

The results confirm our conjecture. On the instances whose longest common
subsequences are shorter than the given strings themselves, the zeroed GA iden-
tifies optimum sequences consistently and significantly more quickly than does
the GA with an initial population of random genotypes. In particular, when the
LCS length is 0.1n, the zeroed GA takes, on average, only about 20% as long
as does the randomly initialized GA. When the LCS length is 0.5n, this average
rises to about 60%, and for 0.9n, to just less than 70%. Moreover, these propor-
tions are relatively constant across the problem sizes. When the LCS length is
0.1n, they range from about 18% to about 22%; for 0.5n, from about 51% to
about 66%; and for 0.9n, from about 61% to about 81%. The zeroed GA does
appear to begin its development and search at about the knees of the two curves
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in Fig. 3. On this problem, it is more efficient for the GA to grow candidate
solutions from empty sequences than to begin with larger sequences which it
must prune before it can develop longer common subsequences.

On the instances whose longest common subsequences have length 1.0n, the
zeroed GA loses its advantage. It reaches optimum solutions in about half again
(144%) the time that the randomly initialized GA requires. In these instances,
which as noted need not be addressed by heuristics like the two version of the
GA, the problem becomes an ornate version of the ONE-MAX problem. All the
strings are identical, the longest subsequence is S1 (= S2 = S3) itself, the geno-
type that represents it is entirely 1s, and a genotype with more 1s is always more
fit than a genotype with fewer 1s, regardless of their positions in the genotypes.
The randomly initialized GA starts with a population whose genotypes have, on
average, (n/2) 1s while the zeroed GA begins with genotypes that have no 1s.
The latter algorithm simply has farther to go than does the former to fill at least
one genotype with 1s.

Notwithstanding this exceptional case, the results indicate the usefulness of a ge-
netic algorithm starting from scratch—that is, with a population whose genotypes
represent empty sequences—when it is applied to realistic instances of the longest
common subsequence problem. They also raise the larger question of this device’s
possible application in EAs for other problems of constrained optimization.

The two versions of the GA differ only in how they initialize their populations.
The zeroed GA might perform even better with initially large probabilities asso-
ciated with mutation, which are gradually reduced as the algorithm runs. Such a
strategy might encourage earlier development of longer common subsequences.

6 Conclusion

A genetic algorithm for the longest common subsequence problem encodes can-
didate sequences as binary strings that indicate subsequences of the shortest
or first string in the target instance. This GA was effective on a variety of
test instances, always finding an optimum subsequence, but its behavior in that
search—shortening candidate sequences almost to empty, then growing longer
and longer common subsequences—suggested that an initial population of geno-
types that represent empty sequences would reduce the time the GA requires to
find optimum subsequences.

Tests on a range of LCS instances with three strings over an alphabet of
four symbols confirm this conjecture. On the instances whose longest common
subsequences were shorter than the given strings, starting the GA with a popu-
lation that encoded empty sequences shortened the time it required to identify
an optimum subsequence by, on average, 30 to 80%, depending on the LCS’s
length, over starting with a population of random genotypes. Only when all of
the strings were identical, and the LCS then equal to each of them, was this
ranking reversed. In this case, the problem collapses to ONE-MAX, and when
the GA begins with a randomly initialized population, it is closer to a genotype
of 1s than when it begins with a population whose genotypes are all 0s.
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These results suggest that this strategy—starting from scratch—might be gen-
erally useful in evolutionary algorithms for problems of constrained optimization.
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Abstract. We employ local meta-models to enhance the efficiency of
evolution strategies in the optimization of computationally expensive
problems. The method involves the combination of second order local
regression meta-models with the Covariance Matrix Adaptation Evolu-
tion Strategy. Experiments on benchmark problems demonstrate that
the proposed meta-models have the potential to reliably account for the
ranking of the offspring population resulting in significant computational
savings. The results show that the use of local meta-models significantly
increases the efficiency of already competitive evolution strategies.

1 Introduction

The optimization of a large number of engineering processes, ranging from multi-
disciplinary design to manufacturing, can only be formulated as black-box prob-
lems. The fitness function in this context is usually computationally expensive
and may involve noise and multiple optima. Evolutionary Algorithms (EAs)
have been shown to cope successfully with noise and multimodality, and there
is an ongoing effort to further extend their efficiency for expensive problems
by incorporating local or global meta-models of the fitness function [1]. The
use of meta-models based on global function approximation, even for moderate
dimension, is hindered by the inhomogeneity of the data collected during the
optimization. Several methods have been proposed to overcome this difficulty
ranging from restricting the training data to the closest, most recently evaluated
points [2] to sophisticated sequential update techniques [3,4]. Alternatively, lo-
cal meta-models have been developed ranging from simple nearest neighborhood
regression to local quadratic models [5,6,7].

Meta-models have been shown to improve the efficiency of EAs in many cases,
but a number of open questions remain, including the choice of the meta-model
complexity with regard to the underlying EA, as well as the balance between the
use of the meta-model and the true objective. In this paper we address these open
problems by investigating the use of local meta-models of varying complexity in
conjunction with Covariance Matrix Adaptation (CMA-ES) [8,9,10]. The CMA-
ES employs rank based selection, relaxing for the meta-model the requirement

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 939–948, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



940 S. Kern, N. Hansen, and P. Koumoutsakos

of approximating the objective function. We propose a local meta-model CMA-
ES (lmm-CMA) and investigate its performance on benchmark problems. We
find that the lmm-CMA enhances significantly the performance of the standard
CMA-ES.

The paper is organized as follows: In Sect. 2 we address model quality mea-
sures and the control of data points used as meta model support. Section 3 gives
an introduction to Locally Weighted Regression as a class of meta models for
EAs. In Sect. 4, the choice of complexity of the local model is investigated. In
Sect. 5 we propose the lmm-CMA and determine the optimal bandwidth of the
local model. In Sect. 6 the performance of the proposed lmm-CMA is examined
on well known test-functions and compared to previous results. A summary and
conclusions are presented in Sect. 7.

2 Meta-model Quality and Controlled Model Assistance

In meta-modeling the definition of optimal prediction needs to be consistent with
the operators of the optimization algorithm [11]. Optimal prediction is usually
associated with a minimum error in the quantitative approximation of the ob-
jective function by the meta-model. For rank-based EAs maintaining the fitness
based ranking of the population is sufficient and therefore more appropriate.

Measuring meta-model quality. In this paper we use meta-model quality mea-
sures in order to: (i) investigate the optimal complexity of the local models to
be learned, and (ii) control the adaptive use of the local models in the EA. In
both cases we are interested in the deviation of the offspring ranking predicted
by the meta-model f̂ from the true ranking determined by the fitness function
f in each generation g.

When the true fitness function values yi = f(xi) are known for the complete
population of size λ, we propose a quality measure adopted from sorting that
counts pair inversions in the approximate ranking. For an approximate rank-
ing F̂ = 〈ŷ1, . . . , ŷλ〉, with ŷi ≤ ŷj, 1 ≤ i < j ≤ λ, the normalized pair inversion
count ρinv is defined as

ρinv(F̂ ) =
4

λ(λ− 1)

∣∣{(i, j)|1 ≤ i < j ≤ λ and f(xr(i)) > f(xr(j))}
∣∣ , (1)

where r(i) is the index mapping function determined by the model based ranking,
i.e. ŷi = f̂(xr(i)). The normalization factor λ(λ − 1)/4 is the expected pair
inversion count for a randomly ranked population which can be easily proven
by induction; it holds 0 ≤ ρinv ≤ 2. If not all individuals in one generation are
evaluated, the measure (1) cannot be applied since the correct ranking of the
population is only partially known.

Meta-model assisted ranking procedure. An elegant way to control model quality
without knowing the correct ranking of the complete population is the approx-
imate ranking procedure [7]: In every generation, the offspring are successively
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1 approximate: build f̂(xk), k = 1, . . . , λ based on evaluations in training set S
2 rank : based on f̂ generate rankingμ

0 of the μ best individuals
4 evaluate: ninit best individuals based on f̂ , add to S
5 for i := 1 to (λ − ninit)/nb do
6 approximate: build f̂(xk), k = 1, . . . , λ based on S
7 rank : based on f̂ generate rankingμ

i of the μ best individuals
8 if (rankingμ

i−1 == rankingμ
i ) then (ranking of μ best remains unchanged)

10 break (exit for loop)
11 else (ranking of μ best individuals changed)
12 evaluate: nb next best unevaluated points based on f̂ , add to S
13 fi
14 od
15 if (i > 2) then ninit = min(ninit + nb, λ − nb)
16 elseif (i < 2) then ninit = max(nb, ninit − nb)

Fig. 1. Approximate ranking procedure that is executed in every generation to de-
termine the fraction of points evaluated on the fitness function. The procedure is not
called until sufficiently many evaluations are stored in the training set S to build the
model; initialization of ninit = λ.

evaluated and added to the training set of the fitness function model until the
(deterministic) model based selection of the parents remains unchanged in two
consecutive iteration cycles. This results in an adaptive control mechanism de-
termining the number of evaluated individuals in every generation. The CMA-ES
uses the ranked μ = λ/2 best offspring to update its Gaussian mutation distri-
bution [9]. We adapt the approximate ranking procedure to the requirements of
CMA-ES: the predicted ranking in the μ first positions should not change for
the meta-model iteration to stop. For large population sizes λ, often required to
solve multimodal functions [9], the amount of information added in one itera-
tion may result in insignificant changes even of a meta-model with bad ranking
predictions. To overcome this deficiency we suggest to evaluate a batch of indi-
viduals in every meta-model iteration. We use a batch size nb proportional to λ
and choose nb = max(1, "λ/10#). The total cost of the meta model loop can be
further reduced by introducing an adaptive parameter to specify the number of
initial evaluations, ninit, performed before the model iteration loop is entered.
The resulting meta-model assisted ranking procedure is outlined in Fig. 1.

3 Locally Weighted Regression

Locally weighted regression (LWR) [12] attempts to fit the training data (here:
past evaluations of the fitness function stored in a database) only in a region
around the location of the query. The local models are built consecutively as
queries need to be answered and therefore are intrinsically designed for growing
training data sets as they occur in the course of an optimization. In the following
we give a brief introduction to LWR following the notation in [12].



942 S. Kern, N. Hansen, and P. Koumoutsakos

For every offspring to be predicted an individual model is built. Given a set
of points (xj , yj), j = 1, . . . ,m, the training criterion C is minimized w.r.t. the
parameters β of the local mode f̂ at query point q and can be written as

C(q) =
m∑

j=1

[
(f̂(xj ,β)− yj)2K

(
d(xj , q)

h

)]
, (2)

where K(.) is the kernel weighting function, d(xj , q) the distance between data
point xj and q, and h is the (local) bandwidth. We consider f̂ linear in β, i.e.
f̂(x,β) = x̃T β (cf. Table 1), and thus we can directly weight the training points
and minimize (2) by solving the normal equations(

(WX̃)T WX̃
)

β = (WX̃)T Wy, (3)

where X̃ = (x̃1, . . . , x̃m)T , y = (y1, . . . , ym)T , and W = diag(
√
K(d(xi, q)/h)).

For a given model structure, K, d, and h remain to be chosen determining the
locality and smoothness of the model.

For the calculation of d(xj , q) we propose to utilize the metric of the search
distribution of the EA. Evolution strategies as the CMA-ES adapt a multivari-
ate Gaussian mutation distribution N (m,C) to the (local) topography of the
function, and the covariance matrix C naturally defines a metric that can be
exploited in the calculation of d as fully weighted Euclidean distance

d(xj , q) =
√

(xj − q)T C−1(xj − q). (4)

Experiments using different kernel functions K showed insignificant variation
in prediction performance. We use a bi-quadratic kernel function defined as

K(ζ) =
{

(1− ζ2)2 if ζ < 1
0 otherwise (5)

for the remainder of this paper. Because the density of the data points collected
in the course of an optimization run changes considerably, an adaptive choice
of the bandwidth h is essential. We use a nearest neighbor bandwidth selection,
where h is set to the distance of the kth nearest neighbor data point to q and
thus the volume increases and decreases in size according to the density of nearby
data. In this way changes in scale of the distance function d are canceled by the
choice of h, giving a scale invariant distribution of the weights to the data. The
optimal choice of k is addressed in Sect. 5.

4 Choice of Model Complexity

A meta model can speed up the convergence of an EA if it is capable to provide
information about the fitness function not yet incorporated in the search dis-
tribution. The choice of a suitable complexity for the local model involves two
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Table 1. Locally polynomial models tested in the LWR framework

f̂x = βT
x x̃x, x̃x, βx dim

f̂wmean x̃w = 1 βw =
∑m

j=1 wjfj , 1
f̂linear x̃l = (x1, . . . , xn, 1)T βl: minimize (2), n + 1
f̂dquad x̃d = (x2

1, . . . , x
2
n, x1, . . . , xn, 1)T βd: minimize (2), 2n + 1

f̂quad x̃q = (x2
1, . . . , x

2
n, βq : minimize (2), n(n+3)

2 + 1
x1x2, . . . , xn−1xn, x1, . . . , xn, 1)T

Table 2. Test-functions and coordinate-wise initialization intervals

Name Function Init
Sphere fSphere(x) =

∑n
i=1 x2

i [−3, 7]n

Noisy Sphere fNoisySphere(x) = fSphere(x) (1 + εN (0, 1)) [−3, 7]n

Schwefel fSchwefel(x) =
∑n

i=1

(∑i
j=1 xj

)2
[−10, 10]n

Ellipsoid fEllipse(x) =
∑n

i=1

(
100

i−1
n−1 yi

)2
[−3, 7]n

Rosenbrock fRosenbrock(x) =
∑n−1

i=1

(
100 · (x2

i − xi+1)2 + (xi − 1)2
)

[−5, 5]n

Ackley fAckley(x) = 20 − 20 · exp
(
−0.2

√
1
n

∑n
i=1 x2

i

)
[1, 30]n

+e − exp
( 1

n

∑n
i=1 cos(2πxi)

)
Rastrigin fRastrigin(x) = 10n +

∑n
i=1

(
y2

i − 10 cos(2πyi)
)

[1, 5]n

questions: (i) How good is the ranking prediction of a model, and (ii) how is the
performance of the baseline optimization algorithm influenced by perturbations
of the ranking introduced by erroneous models?

We investigate the performance loss for the CMA-ES caused by erroneous
offspring rankings by running the strategy with artificially introduced ranking
perturbations of given pair inversion count ρinv (1). The performance loss is
computed as ratio between the number of function evaluations needed to reach
the function value of fstop = 10−10 with the erroneous and the correct ranking.
A rank perturbation of fixed ρinv can be produced by uniformly sampling swaps
of neighbors in the ranking and only conducting a swap if it increases ρinv.
This procedure is repeated until the target ρinv is reached. Figure 2a shows the
expected performance loss of the CMA-ES on fSphere, fEllipse, and fRosenbrock
(see Table 2) for dimension n = 5 and 10 versus the pair inversion count ρinv.
The data was obtained by averaging 20 runs with a uniformly random starting
point from the interval given in Table 2. The performance loss shows only minor
dependency on the function and the dimensionality.

We measured the quality of ranking predictions of constant, linear, and qua-
dratic (with and without cross terms) local models as given in Table 1. The train-
ing data was obtained from independent runs of the CMA-ES. All four models
where tested on 20 data sets for each of the three test-functions using fractions of
1, 1/2, 1/4 and 1/8 of the evaluated points, randomly chosen in every generation.
The bandwidth parameter k was varied as 1, 2, and 4 times the number of free
parameters of the model. Figure 2b gives the result for f̂quad on fRosenbrock in
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Fig. 2. (a) Mean performance loss of the CMA-ES with perturbed offspring ranking
on fSphere (�), fEllipse (×), and fRosenbrock (©) for n = 5 (solid lines), and n =
10 (dashed lines). (b) Normalized pairwise inversion count of the predicted ranking
versus evaluation fraction for f̂quad on fRosenbrock in 10D and bandwidth parameter
k = [1, 2, 4] × n(n+3)+2

2 (bottom to top).

10D, showing the loss in rank prediction quality as less function evaluations
are used.

Combining the data of Fig. 2a & b, the speedup potential of a meta-model
can be estimated1 for a given evaluation fraction. Figure 3 depicts the speedup
potential of the four investigated local models on fSphere, fEllipse, and fRosenbrock

with the optimal bandwidth parameter k. For none of the three functions f̂wmean
or f̂linear a speedup factor of more than 1.5 is predicted; in 10D the results
even predict a negative speedup for all three test-functions. f̂dquad shows perfect
speedup on fSphere, however already for randomly oriented misscaled convex
quadratic functions the expected speedup does not exceed a factor of 2 in 10D.
Only the full quadratic model f̂quad is capable to predict reliable rankings to
enhance convergence of CMA-ES on the non-quadratic fRosenbrock. The speedup
potential is between 2 and 3 at an evaluation rate of about 1/3 to 1/4.

5 The lmm-CMA

The investigations in the previous section revealed that only full quadratic lo-
cal models have the potential to significantly improve the convergence speed
of the CMA-ES. We therefore enhance CMA-ES with a local quadratic meta-
model using the adapted approximate ranking procedure presented in Fig. 1. The
algorithm is referred to as lmm-CMA.

To complete lmm-CMA the optimal bandwidth for the locally weighted qua-
dratic regression remains to be chosen. We investigate the influence of k for the k-
th nearest neighbor bandwidth selection on the number of function evaluations of
lmm-CMA to reach fstop = 10−10 on the non-quadratic fRosenbrock for dimension
n = 2, 4, 8, and 16. The parameter k is varied according to k = αkmin with α =

1 Making the (optimistic) assumption that the use of the surrogate does not change
the optimization path.
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Fig. 4. Average number of function evaluations to reach fstop of the lmm-CMA
on fRosenbrock for varying bandwidth parameter k = α · (n(n + 3)/2 + 1) and n =
2 (×), 4 (+), 8 (©), and 16 (�). The points on the y-axis show the performance of the
original CMA-ES. The optimal performance of lmm-CMA is observed for α = 2.

2i/2, i = 0, . . . , 6, where kmin = n(n+3)
2 +1 is the number of free parameters of the

local quadratic model. Every data point is obtained by averaging 20 independent
runs of lmm-CMA. The results in Fig. 4 show a unique minimum for α = 2
independent of dimension. Therefore, we set k = n(n+3)+2 for all experiments
conducted in the following.

6 Performance of the lmm-CMA

The proposed lmm-CMA is investigated on a set of uni- and multimodal test-
functions summarized in Table 2. The performance is assessed by averaging the
number of function evaluations needed to reach fstop = 10−10 from 20 inde-
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Table 3. Average number of function evaluations and standard deviations to reach fstop

of lmm-CMA versus CMA-ES, GPOP [2], and fminunc. For the multimodal functions,
the numbers are divided by the probability to find the global optimum given in brackets.
fminunc diverges on fNoisySphere (†) and has a vanishing probability to converge to the
global optimum on fAckley and fRastrigin for the given initialization region.

Function n λ ε lmm-CMA CMA-ES GPOP fminunc

fSchwefel(x) 2 6 81 ±5 391 ±42 40 24 ±5

4 8 145 ±7 861 ±53 110 96 ±7

8 10 282 ±11 2035 ±93 440 428 ±22

16 12 626 ±17 5263 ±115 6000 1684 ±37

fRosenbrock(x) 2 6 263 ±87 (1.0) 799 ±119 (1.0) 180 119 ±38 (1.0)

4 8 674 ±103 (1.0) 1973 ±291 (.95) 700 344 ±52 (.85)

8 10 2494 ±511 (.90) 6329 ±747 (.85) 2500 1057 ±119 (.95)

16 12 7299 ±1154 (1.0) 16388 ±1414 (.95) 14000 3628 ±226 (.90)

fNoisySphere(x) 2 6 0.35 184 ±24 372 ±39 - †
4 8 0.25 503 ±56 855 ±93 - †
8 10 0.18 1179 ±103 1645 ±84 - †

16 12 0.13 2700 ±112 3073 ±94 - †
fAckley(x) 2 5 308 ±33 (.95) 728 ±51 (.95) - ∞ (0.0)

5 7 1095 ±81 (1.0) 1767 ±74 (1.0) - ∞ (0.0)

10 10 3029 ±106 (1.0) 3637 ±110 (1.0) - ∞ (0.0)

20 10 8150 ±196 (1.0) 6155 ±409 (1.0) - ∞ (0.0)

fRastrigin(x) 2 50 1360 ±264 (.85) 1982 ±325 (.85) - ∞ (0.0)

5 140 7320 ±1205 (.85) 8486 ±1160 (.85) - ∞ (0.0)

10 500 29250 ±2769 (1.0) 40152 ±5409 (.95) - ∞ (0.0)

pendent runs, randomly initialized in the given intervals. For the underlying
CMA-ES we use the standard parameter settings given in [9] except for the pop-
ulation size λ: for the multimodal functions we choose the optimal λ from [9,
Fig. 2]. In Table 3 the results are compared to the standard CMA-ES without
meta-model support, the Gaussian Process Optimization Procedure (GPOP)2

[2], and MATLAB’s fminunc3. fminunc implements the BFGS Quasi-Newton
method with a mixed quadratic and cubic line search procedure. In the present
context of black-box optimization, gradients are estimated via finite difference
approximation.

On the convex quadratic fSchwefel, lmm-CMA improves CMA-ES by a factor
of 5-8, and on fRosenbrock the speedup is 2-3. Compared to fminunc, lmm-CMA
is at most a factor of two slower (on fRosenbrock), but on fSchwefel it performs
even better for n ≥ 8. The results of GPOP on fSchwefel and fRosenbrock are
competitive for n ≤ 4. However, for larger n the Gaussian Process Regression
model gets less reliable and the performance deteriorates. Note that for small n

2 In GPOP the optimal size of the training data set depends on the problem and the
problem dimension. For the comparison we take the best data presented in [2].

3 We set ’LargeScale’=’off’, ’TolFun’=1e-10, ’TolX’=1e-15, and ’MaxFunEvals’=1e6.
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Fig. 5. Evolution of the evaluation fraction and the iteration loop count in the course of
typical runs of lmm-CMA plotted aside the convergence of the fitness f on fRosenbrock,
n = 10, (a), and fRastrigin, n = 5, (b)

the performance gain of lmm-CMA is limited by the nb evaluations performed
in every generation (nb = 1 for λ ≤ 10) and it generally scales well in n.

On fNoisySphere with fitness proportional Gaussian noise fminunc fails to con-
verge due to the finite difference gradient estimation. In contrast, lmm-CMA
and CMA-ES are able to cope with the noise levels as given in Table 3. The
lmm-CMA shows a small advantage that vanishes with increasing dimension.

On the multimodal functions fAckley and fRastrigin lmm-CMA is advantageous
in small dimensions (n ≤ 10), but the improvement compared to pure CMA-
ES decays with increasing n. This might be an effect of suboptimal bandwidth
selection of the local model for multimodal problems. Nevertheless, the results
on fRastrigin indicate that the adapted approximate ranking procedure works
robustly with large populations.

Figure 5 exemplifies the evolution of the evaluation fraction and the iteration
loop count in the course of typical runs of lmm-CMA. On fRosenbrock the evalua-
tion fraction varies throughout the whole search in the process of building local
approximations of the non-quadratic function. The average evaluation fraction
of ∼ 1

3 matches the predictions of Sect. 4 well. An interesting behavior can be
observed on fRastrigin: In the initial (global) search phase, the local meta-models
are not able to predict reliable rankings and thus are not used. However, as soon
as the strategy finds the attraction region of the global optimum, the meta-model
predictions get reliable and the local convergence is considerably accelerated.

7 Summary and Conclusion

The objective of this work was to enhance the performance of CMA-ES in the
optimization of expensive fitness functions by incorporating local meta-models.
We investigated the necessary model complexity using training data obtained
from the CMA-ES. As a result, only full quadratic local models seem to have
the potential to achieve a significant speed up. We demonstrate that locally
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weighted polynomial regression can preserve the ranking of the objective function
enhancing significantly the performance of an already highly competitive ES on
a number of benchmark problems.

The resulting lmm-CMA outperforms the standard CMA-ES on unimodal test
functions by a factor between 2 and 8 scaling well with increasing dimension n.
On noisy and multimodal functions, the speedup does not exceed a factor of
3 and vanishes with increasing dimension. Nevertheless, the meta-model does
not jeopardize the performance even when the function cannot be modeled ef-
fectively. Therefore its main drawback remains the computational complexity of
n6 for building the meta-model and we hope to reduce the computational cost
to n4 in future implementations. Finally, we expect to be able to improve the
performance in particular on multimodal and noisy functions by implementing
a more sophisticated choice of the model bandwidth.
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Abstract. We implement a cellular genetic algorithm with two neighborhood 
structures following the concept of structured demes: One is for interaction 
among individuals and the other is for mating. The effect of using these two 
neighborhood structures on the search ability of cellular genetic algorithms is 
examined through computational experiments on function optimization prob-
lems. Experimental results show that good results are obtained from the combi-
nation of a small interaction neighborhood and a large mating neighborhood. 
This relation in the size of the two neighborhood structures coincides with 
many cases of biological evolution in nature such as plants and territorial ani-
mals. It is also shown that the search ability of cellular genetic algorithms is de-
teriorated by the opposite combination of the two neighborhood structures. 

1   Introduction 

Cellular algorithms are one of the most popular models of spatially structured evolu-
tionary algorithms [2], [3]. Since early studies in the late 1980s [6], [12] and the early 
1990s [16], [17], cellular algorithms have been an active research area in the field of 
evolutionary computation (i.e., see [1]-[3], [5]). In cellular algorithms, each individual 
is spatially fixed in a cell of a lattice (typically a two-dimensional grid-world). A new 
offspring in a cell is generated from individuals in its neighboring cells. The main 
feature of cellular algorithms is the use of local selection based on a neighborhood 
structure. It was shown in the literature [7], [13], [14] that the size of the neighbor-
hood structure has a large effect on the behavior of cellular algorithms. 

A single neighborhood structure has been usually used in cellular algorithms in the 
literature. There are, however, many cases where biological evolution is based on two 
different neighborhood structures. For example, most plants have two neighborhood 
structures. Neighboring plants fight with each other for water and sunlight in an inter-
action neighborhood, which is much smaller than a mating neighborhood where they 
can disperse their pollen. Another example is territorial animals. The interaction 
neighborhood (i.e., territory) of a territorial animal is much smaller than its mating 
neighborhood. Evolution of altruism in the two neighborhood structures was actively 
studied under the name of structured demes in the late 1970s [4], [15], [18], [19]. 
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The effect of the two neighborhood structures on the evolution of cooperative be-
havior was examined in spatial Iterated Prisoner’s Dilemma (IPD) games [8]-[11]. In 
[9]-[11], an individual in each cell played against only its neighbors in the interaction 
neighborhood. A new individual in each cell was generated from its neighbors in the 
mating neighborhood. It was shown under random pairing that cooperative behavior 
was evolved only when the interaction neighborhood was very small and the mating 
neighborhood was small. 

In this paper, we examine the effect of using the two neighborhood structures on 
the search ability of cellular genetic algorithms through computational experiments on 
function optimization problems. In Section 2, we implement a cellular genetic algo-
rithm following the concept of structured demes. In our cellular genetic algorithm, a 
rank is assigned to each individual according to the ranking of its fitness among its 
neighbors in the interaction neighborhood. The selection of parents for generating a 
new individual in each cell is performed in the mating neighborhood. In Section 3, we 
examine the effect of using the two neighborhood structures through computational 
experiments using two-dimensional grid-worlds of various sizes. Experimental results 
show that good results are obtained when the mating neighborhood is larger than the 
interaction neighborhood. Finally we conclude this paper in Section 4. 

2   Cellular Genetic Algorithms with Two Neighborhood Structures 

In this section, we implement a cellular genetic algorithm with two neighborhood 
structures following the concept of structured demes [4], [15], [18], [19]. Our cellular 
genetic algorithm is similar to the spatial IPD model in [8]-[11]. 

2.1   Two-Dimensional Grid World with Two Neighborhood Structures  

We use a two-dimensional grid-world where a single individual is spatially fixed in 
each cell. Thus the number of cells is the same as the number of individuals as in 
other studies on cellular genetic algorithms. We assume the torus structure of the two-
dimensional grid-world. In computational experiments, we examine three specifica-
tions of the size of the two-dimensional grid-world: 1111× , 2121×  and 3131× . 

As we have already explained, we use two neighborhood structures in our cellular 
genetic algorithm. One is for interaction among individuals. This neighborhood struc-
ture determines the neighbors against which each individual competes. We denote the 
interaction neighborhood of the ith cell as NCompete(i) in order to clearly show that the 
individual in the ith cell competes against its neighbors in NCompete(i). The other 
neighborhood structure is for mating. This neighborhood structure determines the 
neighbors from which an offspring is generated for each cell. We denote the mating 
neighborhood of the ith cell as NSelect(i) in order to clearly show that parents are se-
lected from the neighbors in NSelect(i) to generate an offspring for the ith cell.  

We show three neighborhood structures in Fig. 1. In each plot, open circles show 
the neighbors of the closed circle individual. In computational experiments, we exam-
ine five specifications of the neighborhood size for each of the interaction and mating 
neighborhood structures: 5, 9, 25, 49 and the unstructured case. The neighborhood 
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                    (a) 5 neighbors              (b) 9 neighbors                  (c) 25 neighbors 

Fig. 1. Three neighborhood structures. In each plot, open circles show the neighbors of the 
closed circle individual. The number of the neighbors includes the closed circle individual. 

with 49 neighbors is defined by the 77 ×  square as in Fig. 1 (b) and Fig. 1 (c). All 
individuals are included in the neighborhood in the unstructured case. A neighbor-
hood structure with three neighbors is not used in this paper due to its single-
dimensional property (see [9], [11] for the use of such a neighborhood structure).  

2.2   Competition in the Interaction Neighborhood 

In our cellular genetic algorithm, each individual competes against its neighbors in the 
interaction neighborhood. We assign a rank to each individual according to the rank-
ing of its fitness among its neighbors in the interaction neighborhood. 

Let us assume that our task is to find an optimal or near optimal solution of the 
minimization problem with the objective function f(x). We denote the individual in 
the ith cell by xi. In order to assign a rank to xi, we sort the objective values of its 
neighbors (including xi itself) in NCompete(i) in ascending order. When multiple 
neighbors have the same objective value, we tentatively use random tiebreak to give 
them tentative rankings. Then a rank is assigned to xi according to the ranking of its 
objective value. If xi has the best objective value, rank 1 is assigned. If xi has the 
second best objective value, rank 2 is assigned. When multiple neighbors including xi 
have the same objective value, the average value of their rankings is assigned to xi. 
For example, when four neighbors including xi have the second best objective value, 
rank 3.5 is assigned to xi because their rankings are 2nd, 3rd, 4th, and 5th. In this 
manner, a rank is assigned to each individual according to the ranking of its objective 
value among its neighbors in the interaction neighborhood. 

It should be noted that we do not have to sort all neighbors in NCompete(i). The sort-
ing of all neighbors in the above-mentioned procedure is just for the simplicity of 
explanation. We only need the ranking of the objective value of xi and the number of 
its neighbors with the same objective value as xi in NCompete(i). 

We handle all individuals with rank 1 as elites, which survive in their current cells 
to the next generation with no modifications. Such an elite is the best individual 
among its neighbors in the interaction neighborhood. If we use a small interaction 
neighborhood such as Fig. 1 (a) with five neighbors, the total number of elites is 
large. The number of elites decreases as the size of the interaction neighborhood  
increases. 
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2.3   Selection in the Mating Neighborhood 

When the individual in the ith cell is an elite, it survives in the same cell. That is, the 
next generation has the same individual in the ith cell as the current generation. When 
the individual in the ith cell is not an elite, a new individual for the ith cell is gener-
ated from its neighbors in the mating neighborhood NSelect(i). The standard binary 
tournament selection procedure is applied to the neighbors in NSelect(i) to choose a 
pair of parents. A new individual for the ith cell is generated by crossover and muta-
tion from the selected pair of parents. The point of our local selection scheme is that 
each individual is not evaluated by its raw objective value but its rank. 

In computational experiments, we examine two versions of our local selection 
scheme. In the first version (Version I), two parents are selected from the neighbors as 
we have just explained. In the second version (Version II), the current individual in 
each cell is always used as one parent. Its mate is selected from its neighbors by the 
binary tournament selection procedure based on their ranks. 

2.4  Cellular Genetic Algorithm 

The outline of our cellular genetic algorithm can be written as follows: 

Step 1: Randomly generate an initial population. A single individual is located in each 
cell of the two-dimensional grid-world. 

Step 2: Assign a rank to each individual according to the ranking of its objective value 
among its neighbors in the interaction neighborhood. Individuals with rank 1 
are handled as elite individuals. 

Step 3: Replace the non-elite individual in each cell with an offspring generated by 
selection, crossover and mutation from its neighbors in the mating neighbor-
hood. Elite individuals stay in their current cells with no modifications. 

Step 4: Return to Step 2 if the prespecified stopping condition is not satisfied. 

In computational experiments, the total number of generations is used as the stopping 
condition. The execution of our cellular genetic algorithm on each test problem is 
terminated at the 500th generation. 

3   Computational Experiments 

In this section, we examine the effect of using the two neighborhood structures on the 
search ability of our cellular genetic algorithm through computational experiments. 

3.1   Conditions of Computational Experiments 

As test problems, we use the following five minimization problems. The number of 
decision variables (i.e., n) is always specified as 10 in all the five test problems. That 
is, our test problems are 10-dimensional minimization problems. 
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F2 (Rastrigin Function): 
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F5 (Rosenbrock Function): 
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Using a gray code, each decision variable xj is coded as a binary string of length 
10 (F1, F2, F3 and F4) or 12 (F5). We examine three specifications of the grid-
world: 1111× , 2121×  and 3131× . In each grid-world, we examine five specifica-
tions of the neighborhood structure: 5, 9, 25 neighbors in Fig. 1, 49 neighbors in the 

77 ×  square, and the unstructured case. These five specifications are used for inter-
action and mating. That is, we examine 25 combinations of the two neighborhood 
structures.  

Our cellular genetic algorithm is applied to each test problem using the following 
parameter specifications: 

Population size: 121 ( 1111× ), 441 ( 2121× ), 961 ( 3131× ), 
Crossover probability (One-point crossover): 1.00, 
Mutation probability (Bit-flip mutation): 0.05, 
Termination condition: 500 generations. 

3.2   Experimental Results: Version I 

In this subsection, we report experimental results using our Version I algorithm where 
two parents are selected from the mating neighborhood to generate an offspring for 
each cell by crossover and mutation. In the next subsection, we report experimental 
results by our Version II algorithm where the current individual in each cell is used as 
one parent and its mate is selected from the mating neighborhood. 

We examine the 25 combinations of the two neighborhood structures for the three 
grid-worlds. That is, we examine 75 different settings. Using each setting, we apply 
our Version I algorithm to each test problem 100 times. In each run, we record the 
best (i.e., smallest) objective value over all the examined individuals. Then the aver-
age of the best objective values is calculated over 100 runs.  
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Experimental results are shown in Figs. 2-6. In each figure, the left, center and 
right plots are results with the 1111× , 2121×  and 3131×  grid-worlds, respec-
tively. In each plot, 121, 441 and 961 denotes the unstructured case (i.e., the total 
number of cells). The diagonal five bars from the bottom-left to the top-right cor-
ner of each plot correspond to the cases where the two neighborhood structures are 
the same (e.g., |NCompete(i)| = |NSelect(i)| = 5 at the bottom-left corner). On the 
other hand, the other 20 off-diagonal bars correspond to the cases with two differ-
ent neighborhood structures. In Figs. 2-5, we can observe the improvement in the 
search ability of our cellular genetic algorithm by the use of a small interaction 
neighborhood NCompete(i) and a large mating neighborhood NSelect(i). On the con-
trary, the search ability of our cellular genetic algorithm is degraded by the oppo-
site combination: a large interaction neighborhood NCompete(i) and a small mating 
neighborhood NSelect(i). In Fig. 6, the effect of using the two neighborhood struc-
tures is not clear. The search ability is somewhat degraded around the bottom-right 
corner in Fig. 6 (especially Fig. 6 (c)). 
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Fig. 2. Experimental results by our Version I algorithm on F1 (Sphere Function) 
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Fig. 3. Experimental results by our Version I algorithm on F2 (Rastrigin Function) 
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Fig. 4. Experimental results by our Version I algorithm on F3 (Schwefel Function) 
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Fig. 5. Experimental results by our Version I algorithm on F4 (Griewangk Function) 
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Fig. 6. Experimental results by our Version I algorithm on F5 (Rosenbrock Function) 

3.3   Experimental Results: Version II 

In this subsection, we report experimental results using our Version II algorithm. In 
the same manner as Figs. 2-6, average results over 100 runs are shown in Figs. 7-11. 
From the comparison between Figs. 2-6 and Figs. 7-11, we can see that our Version II 
algorithm is inferior to our Version I algorithm (the scale of the vertical axis is not the 
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same between the corresponding figures, e.g., see Fig. 2 and Fig. 7). Nevertheless, we 
can obtain almost the same observation from Figs. 7-11 as Figs. 2-6. That is, the 
search ability of our cellular genetic algorithm is improved around the bottom-right 
corner in Figs. 7-11 by the use of a small interaction neighborhood NCompete(i) and a 
large mating neighborhood NSelect(i), and degraded by the opposite combination: a 
large interaction neighborhood and a small mating neighborhood.  
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Fig. 7. Experimental results by our Version II algorithm on F1 (Sphere Function) 
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Fig. 8. Experimental results by our Version II algorithm on F2 (Rastrigin Function) 
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Fig. 9. Experimental results by our Version II algorithm on F3 (Schwefel Function) 
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Fig. 10. Experimental results by our Version II algorithm on F4 (Griewangk Function) 

0

10

20

30

40

50

f5 (x)

NSelect (i) N C
om

pe
te

(i)

5
9

49
25

121

5 9
4925

121

0

10

20

30

40

50

f5 (x)

NSelect (i) N C
om

pe
te

(i)

5
9

49
25

441

5 9
4925

441
 

0

10

20

30

40

50

f5 (x)

NSelect (i) N C
om

pe
te

(i)

5
9

49
25

961

5 9
4925

961
 

        (a) 1111×  grid-world             (b) 2121×  grid-world               (c) 3131×  grid-world 

Fig. 11. Experimental results by our Version II algorithm on F5 (Rosenbrock Function) 

4   Conclusions 

In this paper, we examined the effect of using two neighborhood structures on the 
search ability of cellular genetic algorithms: One is for interaction among individuals 
and the other is for mating. We first implemented a cellular genetic algorithm with the 
two neighborhood structures following the concept of structured demes. Then we 
examined the effect of the two neighborhood structures through computational ex-
periments on function optimization problems. Experimental results showed that the 
search ability of our cellular genetic algorithm was improved by using a small interac-
tion neighborhood and a large mating neighborhood. Such a combination of the two 
neighborhood structures coincides with many cases in nature such as plants and terri-
torial animals. It was also shown that the opposite combination degraded the search 
ability of our cellular genetic algorithm. In our current implementation, the number of 
elite individuals depends on the size of the interaction neighborhood. In future work, 
we will compare different specifications of the neighborhood size under the same 
condition with respect to the number of elite individuals. 

This work was partially supported by Japan Society for the Promotion of Science 
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (17300075). 
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Abstract. A good performance of traditional genetic algorithm is de-
termined by its ability to identify building blocks and grow them to
larger ones. To attain this objective a properly arranged chromosome is
needed to ensure that building blocks will survive the application of re-
combination operators. The proposed algorithm periodically rearranges
the order of genes in the chromosome while the actual information about
the inter-gene dependencies is calculated on-line through the run. Stan-
dard 2-point crossover, operating on the adapted chromosomal structure,
is used to generate new solutions. Experimental results show that this
algorithm is able to solve separable problems with strong intra building
block dependencies among genes as well as the hierarchical problems.

1 Introduction

Standard selecto-recombinative genetic algorithms (GAs) work with fixed-length
chromosomes with the gene order fixed during the whole evolution. A population
of such chromosomes is evolved—they are recombined in order to generate the
new ones. Through the evolutionary process, various high quality partial solu-
tions called building blocks are generated that are needed to obtain the optimum
solution. GA has to be able to identify essential building blocks and grow them
to larger ones. Tightly linked building blocks have relatively high probability of
surviving through successive generation, while building blocks with weak linkage
are very likely to be disrupted by crossover operations. Thus, it is crucial that
the genes belonging to the same building block are spatially grouped close to
each other in order to maximize the efficiency of mixing the building blocks by
recombination operators.

Many approaches have been proposed to deal with the linkage problem and
to ensure appropriate building block mixing. They can be classified into the
following categories:

– Linkage identification/learning techniques such as the messy GAs [1], linkage
identification by non-monotonicity detection [6], linkage learning GA [2],
dependency structure matrix driven GA [12], adaptive linkage model [5].

– Estimation of distribution algorithms also called probabilistic model build-
ing techniques include the bivariate marginal distribution algorithm [7], ex-
tended compact GA [3], Bayesian optimization algorithm [8].
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A selecto-recombinative GA with continuous chromosome reconfiguration
(CoCR), described in this paper, is based on an idea that given a chromosome
structure that enables tight linkage of building blocks of the given problem,
standard recombination operators can be used to efficiently grow the building
blocks when recombining parental individuals. In order to attain this, CoCR up-
dates pair-wise gene dependencies periodically during the evolutionary process
and rearranges the chromosomal structure every generation according to the ac-
tual linkage information. The chromosome structure is generated by a heuristic
procedure so that it reflects the most significant gene dependencies. Standard
2-point crossover, operating on the adapted chromosomal structure, is used to
generate new solutions.

The rest of this paper is organized as follows. The next section describes the
proposed algorithm. Section 3 and 4 describe the test problems and experimental
setup used for our experiments. Then the results of experiments are presented
and discussed. The work is summarized and possible future extensions are given
in the last section.

2 CoCR Algorithm

An outline of CoCR algorithm is in Fig. 1. CoCR starts with a randomly gener-
ated order of genes in the chromosome. Then, the algorithm iterates in the main
loop (1) generating subsequent populations of candidate solutions using a di-
versity preservation variant of selecto-recombinative GA while (2) continuously
adapting the chromosome structure on the fly.

The pair-wise gene statistics are accumulated in stats every generation. All
chromosomes of the processed population contribute to stats, no selection of high
quality solutions is applied. The stats are accumulated for one epoch, consisting
of recalculation step number of generations, and then the gene dependencies are
recalculated and stored in table links table. links table is a table of size [n×m],
where for each gene i ∈ {0, n− 1} there is an ordered list of up to m genes that
have the strongest epistasis with gene i. Each lists of the most epistatic genes
is ordered in a descendant manner with respect to the strength of the epistasis.
After the links table has been updated the stats are erased.

The chromosome structure is reconfigured every generation using the actual
gene dependencies in links table. The gene order is calculated using the same gene
dependencies information for each generation within one epoch. However, the
actual linkage of genes in the chromosome might change slightly generation by
generation since the heuristic procedure for the chromosome structure construc-
tion involves a stochastic component. This is an important aspect that makes
the approach resistant against imperfectly identified epistasis among genes.

2.1 Identification of Pair-Wise Gene Dependencies

CoCR uses the Pearson’s chi-square test for discovering the pair-wise gene depen-
dencies in the same way as it was used in the BMDA [7]. It estimates the depen-
dencies from the collected set of N chromosomes. For each gene i we define the
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1 init(population)
2 init(chromosome structure)
3 generations = 0
4 erase(stats)
5 repeat

6 population ← selecto-recombinative GA(population)
7 generations = generations + 1
8 accumulate pairwise stats(population,stats)

9 if(generations mod recalculation step = 0)

10 links table ← recalculate links table(stats)
11 erase(stats)
12 chromosome structure ← construct chromosome(links table)
13 until(CoCR termination condition is met)

Fig. 1. An outline of CoCR algorithm

univariate marginal frequency pi(xi) as the frequency of chromosomes that have
ith gene set to xi, where xi ∈ {0, 1}. For any two positions i �= j ∈ {0, . . . , n−1}
and any possible values xi, xj ∈ {0, 1} we define the bivariate marginal frequency
pi,j(xi, xj) as the frequency of chromosomes that have genes i and j set to xi and
xj , respectively. Then, for each pair of genes i and j, the Pearson’s chi-square
statistics can be defined by

X2
i,j =

∑
xi,xj

(Npi,j(xi, xj)−Npi(xi)pj(xj))2

Npi(xi)pj(xj)
,

where Npi(xi)pj(xj) and Npi,j(xi, xj) is the expected and the observed fre-
quency of the pair of values (xi, xj) on the positions i and j, respectively. If
positions i and j are not independent for 95%, i.e. X2

i,j ≥ 3.84, then the value
X2

i,j is recorded for both genes i and j and the strongest gene dependencies
are retained in links table for each gene. Note, that there may be some genes in
links table that have the list of the most related genes shorter than m if there
were less than m dependencies identified for these genes.

2.2 Generation of the Chromosome Structure

The chromosome structure is constructed by means of a simple greedy algorithm
(see Fig. 2) utilizing the information about the most significant epistases among
genes (stored in links table). The algorithm works in two steps - first the linkage
groups are constructed, then the linkage groups are merged together to form the
whole chromosome. It starts with a set of elementary linkage groups, where each
gene represents one single group. Then it grows the linkage groups in the main
loop (lines 3-11 in Fig. 2) using in turn the strongest links (i.e. the first column of
links table), then the second strongest links, etc., until all columns of links table
have been used or all the genes have been grouped in a single linkage group. In
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1 init(linkage groups)
2 i = 0
3 do

4 unused ← {0,1,...,n − 1}
5 do

6 gene = select random(unused)

7 linkage groups ← link(gene,links table[gene, i])
8 remove gene from unused

9 while(unused �= {})
10 i = i + 1
11 while(i < m) and (card(linkage groups)>1)

12 chromosome structure ← merge(linkage groups)

13 return(chromosome structure)

Fig. 2. An outline of construct chromosome procedure

each i-th iteration of the main loop all links from the i-th column of links table
are used to grow the respective linkage groups. Note, that when processing ith
column of links table the links are picked from the list of unused links in a
random order. Thus, each time the procedure is called different linkage groups
can be generated, see Table 3.

A link between genes i and j is incorporated into the linkage groups so that
the two linkage groups already assigned to i and j, respectively, are merged
together. For example, let us assume that a link between genes 3 and 7 is to be
added to the linkage groups, given the actual linkage groups assigned to gene 3
and 7 are LG3 =(2–4–7–1) and LG7 =(5–3–9), respectively. Merging LG3 and
LG7 will yield a new linkage group LG3 = LG7 =(2–4–7–1–5–3–9).

After the linkage groups have been established they are merged together, again
in a random order.

2.3 Genetic Algorithm with Allelic Diversity Preservation

It is crucial for proper functioning of the algorithm of identification of pair-wise
dependencies to supply it with a diverse collection of chromosomes. Since the
collection consists of the population contents collected over multiple generations
the selecto-recombinative GA must be designed so that it can preserve the allelic
diversity of the population at every generation.

In this work the genetic algorithm with limited convergence (GALCO) in-
troduced by Kubalik et al. [4] is used to attain this goal. GALCO is based on
the idea that the population is explicitly prevented from becoming homogenous
by simply imposing limits on its convergence. This is done by specifying the
maximum difference between the frequency of ones and zeros at any position
of the chromosome calculated over the whole population. A steady-state evolu-
tionary model and a special replacement operator are used to keep the desired
distribution of ones and zeros during the whole run. An important point is that
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GALCO is a type of a simple selecto-recombinative GA that uses the standard
recombination operators and no explicit mutation operator.

3 Test Problems

There are four test problems, each of them composed of different fundamental
building blocks of variable size.

DF3. This is a representative of deceptive problems, i.e. problems that are
intentionally designed to make a GA converge towards local deceptive optimum.
The problem is composed of 25 copies of a 4-bit fully deceptive function DF3
taken from [11]. DF3 has a global optimum in the string 1111 with fitness 30
and a deceptive attractor 0000 with low fitness 10, which is surrounded, in the
search space, by four strings of just one 1 with fitness values 28, 27, 26, and 25.
The whole 100-bit long chromosome has the global optimum of value 750.

DF3-intrl. This problem is an extension of the previous problem such that the
whole chromosome is split into 12-bit blocks, where each of the blocks contributes
to the fitness by the value

∑
DF3(bj , bj+1, b(j+2)mod12, b(j+3)mod12), where j ∈

{0, 2, 4, 6, 8, 10}. In the optimal case, when all bits of the block are set to 1, the
contribution of the block is 6 × 30 = 180. Here, a problem composed of eight
blocks was used with the global optimum of value 1440.

H-IFF. A hierarchical-if-and-only-if function proposed in [10] is the represen-
tative of hierarchically decomposable problems. The hierarchical block structure
of the function is a balanced binary tree. Leaf nodes, corresponding to single
genes, contribute to the fitness by 1. Each inner node is interpreted as 1 if and
only if its children are both 1’s, and as 0 iff they are both 0’s - in such cases
the inner node contributes to the fitness by a positive value 2height(x), where
height(x) is the distance from the node x to its antecedent leaves. Otherwise
the node is interpreted as null and its contribution is 0. The function has two
global optima - one consists of all 1’s and the other one has all 0’s. We have used
128-bit problem with global optima of value 1024.

H-TRAP. The structure of this problem is similar to the structure of H-IFF
with the difference that each inner node has three children and the contribution
of each building block at every level is given as 3height(x) × ftrap(u), see [9].
ftrap(u) is a trap function returning 1.0 if all its three children nodes interpret
as 1, fmin if the three children nodes interpret as 0, fmin/2 if one out of the three
children interpret as 1, and 0.0 if two children interpret as 1. We set fmin = 1.01
at lower levels, and fmin = 0.9 at the top most level. Leaf nodes (0-th level
nodes) do not contribute any value. The problem with 81 bits with the global
optimum of the value 324.0 was used.

4 Experimental Setup

For each problem, 20 runs have been executed, from which the following statistics
were calculated:
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– MeanBest. Mean best-of-run value calculated over the 20 independent runs.
– StDev. Standard deviation of the best-of-run values.
– #Success. A number of runs, in which the optimum solution was found.
– WhenFound. The average number of fitness evaluations needed to get the

optimum solution.

Graphs showing (1) the evolution of the building block compactness and (2)
the evolution of the best-so-far solution are generated to demonstrate the co-
evolution of the chromosome structure and the quality of solution through the
evolutionary process. Both the best-so-far fitness and the building block com-
pactness show median values out of the 20 values in each generation.

The building block compactness is calculated as the average defining length
of fundamental building blocks under the given chromosome structure with re-
spect to the ringed representation implied by the 2-point crossover. For DF3 and
DF3-intrl problem it shows an average defining length of 25 4-bit and 8 12-bit
deceptive building blocks, respectively. In case of H-IFF problem, building blocks
of 16 adjacent genes are considered. In case of H-TRAP problem, building blocks
of 27 adjacent genes are considered. Four algorithms were compared:

– CoCR-GALCO. GALCO is used as the selecto-recombinative GA. The max-
imal diversity of the evolved population is forced by setting the conver-
gence limit to 1. This means that the number of ones is within the interval
(PopSize/2− 1,PopSize/2+ 1) at every position in the chromosome in any
stage of the run.

– CoCR-SGA. CoCR using a standard genetic algorithm with bit flipping mu-
tation applied to 1 bit per chromosome.

– GALCO-tight and GALCO-loose. GALCO operating on the chromosome of
ideally organized genes (the most compact building blocks) and randomly
chosen gene order, respectively. The gene order is static through the whole
evolutionary process.

All algorithms used the same configuration: population size 500, 2-point crossover
applied with a probability 1.0, tournament selection (n=4). Both variants of
CoCR algorithm used recalculation step 10 generations.

5 Experimental Results

Table 1 compares the observed performance characteristics of the algorithms. Re-
sults of CoCR algorithms are achieved with the number of columns of links table
set to 2. This means, that for each gene i a list of up to two genes with the
strongest epistasis with gene i (i.e. links table with m = 2) is considered in the
process of building the chromosome structure. The results show that the per-
formance of CoCR-GALCO lies between GALCO-loose and GALCO-tight and
outperforms CoCR-SGA on all test problems. This is in agreement with our
expectations. An interesting observation is that CoCR-GALCO perfectly solves
DF3-intrl problem composed of high-order building blocks and scores even on
the hierarchical problems.
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Table 1. Comparisons on DF3, DF3-intrl, H-IFF, and H-TRAP

CoCR-GALCO CoCR-SGA GALCO-tight GALCO-loose

D
F
3

#Success 20 0 20 0
WhenFound 122658 - 115444 -
MeanBest 750.0 728.8 750.0 708.9
StDev 0.0 4.6 0 4.7

D
F
3-

in
tr

l #Success 20 0 20 1
WhenFound 108754 - 53881 498698
MeanBest 1440.0 1305.0 1440.0 1392.4
StDev 0.0 13.7 0.0 28.6

H
-I

F
F

#Success 3 0 20 0
WhenFound 115211 - 42564 -
MeanBest 876.8 625.8 1024.0 626.8
StDev 71.5 54.6 0.0 58.1

H
-T

R
A

P #Success 10 0 20 0
WhenFound 85152 - 26968 -
MeanBest 293.6 197.6 324.0 199.6
StDev 31.2 19.3 0.0 11.7

Fig. 3 also illustrates the inability of CoCR-SGA to evolve the proper chromo-
some structure with tight linkage. This is because SGA, using simple bit flipping
mutation, is not able to maintain sufficiently high population diversity in com-
parison to GALCO. The less diverse the population is, i.e. the fewer unique
chromosomes contribute to stats, the less information CoCR has for identifica-
tion of the pair-wise gene dependencies used to derive the proper chromosome
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Fig. 3. Mean convergence characteristics observed for different algorithms
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Table 2. Results achieved for different sizes of links table

links buffer 1 2 4 8

D
F
3

#Success 20 20 20 20
WhenFound 141531 122658 122667 118522
MeanBest 750.0 750.0 750.0 750.0
StDev 0.0 0.0 0.0 0.0

D
F
3-

in
tr

l #Success 9 20 20 20
WhenFound 292447 108754 82501 85452
MeanBest 1427.5 1440.0 1440.0 1440.0
StDev 12.9 0.0 0.0 0.0

H
-I

F
F

#Success 0 3 15 19
WhenFound - 115211 83714 61420
MeanBest 763.2 876.8 992.0 1017.6
StDev 52.9 71.5 56.9 28.6

H
-T

R
A

P #Success 7 12 20 20
WhenFound 105779 82303 42879 40234
MeanBest 299.8 312.4 324.0 324.0
StDev 21.3 18.7 0.0 0.0

structure. This is also the reason why the BB compactness eventually increases
for CoCR-GALCO, as observed in Fig. 3 and Fig. 4. This happens when the
optimal solution has already been found. As GALCO still tries to keep the pop-
ulation maximally diverse, it gets saturated with half-to-half the copies of the
optimum and copies of the string that is a binary complement to the optimum.
From such a two-valued set of strings any valid information about gene depen-
dencies can not be obtained and the generated chromosome structure becomes
partially randomized.
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Table 3. Chromosome structure evolution. An excerpt of one run when solving 32-bit
H-IFF problem. Population size was 200. The optimal solution was found after 3264
fitness evaluations. G stands for the generation, BBC is the average BB compactness
of given chromosome structure.

G BBC chromosome structure

1 26.0 10 21 7 25 15 4 24 27 30 16 12 18 20 26 22 9 2 19 23 17 11 8 31 29 0 1 3 6 13 5 28 14

2 27.0 1 20 14 25 17 21 7 0 22 3 5 6 28 9 27 13 12 31 4 26 11 15 10 8 29 16 19 24 2 18 23 30

3 26.5 1 14 16 25 7 4 26 20 22 30 5 21 24 12 27 31 19 10 2 15 11 8 17 29 0 9 3 6 18 28 23 13

4 28.0 21 1 7 23 2 30 3 27 25 4 12 31 22 29 13 28 8 10 15 24 9 17 11 26 5 20 19 6 16 18 0 14

5 25.0 13 7 23 3 4 8 10 0 25 12 27 11 17 29 9 28 30 6 1 24 31 22 20 26 19 21 5 18 16 15 2 14

16 9.0 26 27 25 24 21 20 23 22 3 2 0 1 4 5 6 7 8 9 10 11 13 12 14 15 16 18 17 19 29 28 30 31

17 7.0 4 5 6 7 3 2 0 1 19 18 17 16 22 23 20 21 26 27 25 24 31 30 29 28 11 10 8 9 12 13 14 15

18 9.0 3 2 0 1 28 29 30 31 7 6 5 4 11 10 8 9 13 12 14 15 19 17 16 18 21 20 22 23 26 27 25 24

19 7.0 23 22 20 21 25 24 26 27 31 30 28 29 10 11 9 8 15 14 12 13 4 5 6 7 1 0 2 3 19 18 17 16

20 9.0 28 29 30 31 12 13 15 14 7 6 5 4 0 1 2 3 10 11 8 9 18 19 17 16 23 22 21 20 26 27 25 24

Results in Table 2 and graphs in Fig. 4 show how the size m of links table
influences the performance of CoCR-GALCO. The general observation is that
as the size m increases the better results in shorter time are achieved so that
even the hierarchical problems are almost perfectly solved with m = 8. In other
words, the more of the linkage information the construction algorithm can use
the better results can be expected.

Table 3 illustrates the evolution of the chromosome structure for the 32-bit
H-IFF problem. It shows that despite the last 5 generations were generated using
the same linkage information stored in links table they differ each other. This
is due to the stochastic nature of the algorithm for generating the chromosome
structure. Intuitively, such a variability may make the algorithm more robust
when solving problems with complicated epistatic structure where the genes can
not be arranged in a linear chromosome so that tight linkage of all strongly
dependent genes are satisfied. In such cases, different chromosomes that neglect
different dependencies can be generated each time.

6 Conclusions

The proposed CoCR algorithm identifies the pair-wise gene dependencies that
are used to generate the proper chromosome structure on which standard recom-
bination operators work. The chromosome structure changes every generation
and the actual information about the inter-gene dependencies is calculated on-
line through the run. The algorithm for construction of the chromosome structure
uses a list of the most related genes to each gene. Thus, the generated chromo-
some can capture a structure of the problem with higher-order fundamental
building blocks that can be efficiently processed then. Moreover, the chromo-
some reconfiguration that takes place every generation makes the algorithm
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more resistant against partial errors in the gene order. This was documented
on problems with 12-bit building blocks as well as on hierarchical problems.

The results of the experiments suggest that this approach could be used for
solving problems, where the epistatic structure is too complicated so that it is
hard to find just one optimal arrangement of genes in the chromosome. The ex-
periments presented in this paper illustrated the performance of the proposed al-
gorithm on problems with uniformly scaled subfunctions. Future research should
investigate applicability of this approach to problems with exponentially scaled
subfunctions as well.
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Abstract. Human genetics is undergoing an information explosion.  The avail-
ability of chip-based technology facilitates the measurement of thousands of 
DNA sequence variation from across the human genome.  The challenge is to 
sift through these high-dimensional datasets to identify combinations of inter-
acting DNA sequence variations that are predictive of common diseases.  The 
goal of this paper was to develop and evaluate a genetic programming (GP) ap-
proach for attribute selection and modeling that uses expert knowledge such as 
Tuned ReliefF (TuRF) scores during selection to ensure trees with good build-
ing blocks are recombined and reproduced.  We show here that using expert 
knowledge to select trees performs as well as a multiobjective fitness function 
but requires only a tenth of the population size.  This study demonstrates that 
GP may be a useful computational discovery tool in this domain. 

1   Introduction 

Genetic programming (GP) is an automated computational discovery tool that is in-
spired by Darwinian evolution and natural selection [1-7].  Genetic programming and 
its many variations have been applied successfully to a wide range of different prob-
lems including data mining and knowledge discovery [e.g. 8].  Despite the many 
successes, there are a large number of challenges that GP practitioners and theorists 
must address before this general computational discovery tool becomes a standard in 
the modern problem solver’s toolbox.  Yu et al. [9] list 22 such challenges.  Several of 
these are addressed by the present study.  First, is GP useful for the analysis of large 
and high-dimensional datasets?  Second, what is the best way to use pre-processing?  
Finally, what is the best way to incorporate domain-specific knowledge?  The goal of 
this paper is to explore the feasibility of using GP for genome-wide genetic analysis 
in the domain of human genetics. 

1.1   The Problem Domain: Human Genetics 

Biological and biomedical sciences are undergoing an information explosion and an 
understanding implosion.  This is especially true in the domain of human genetics 
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where it is now technically and economically feasible to measure thousands of DNA 
sequence variations from across the human genome.  For the purposes of this paper 
we will focus exclusively on the single nucleotide polymorphism or SNP which is a 
single nucleotide or point in the DNA sequence that differs among people.  It is an-
ticipated that at least one SNP occurs approximately every 100 nucleotides across the 
3*109 nucleotide human genome.  An important goal in human genetics is to deter-
mine which of the many thousands of SNPs are useful for predicting who is at risk for 
common diseases.  This ‘genome-wide’ approach is expected to revolutionize the 
genetic analysis of common human diseases.  

The charge for computer science and bioinformatics is to develop algorithms for 
the detection and characterization of those SNPs that are predictive of human health 
and disease.  Success in this genome-wide endeavor will be difficult due to nonlinear-
ity in the genotype-to-phenotype mapping relationship that is due, in part, to epistasis 
or nonadditive gene-gene interactions. The implication of epistasis from a data mining 
point of view is that SNPs need to be considered jointly in learning algorithms rather 
than individually. The challenge of modeling attribute interactions has been previ-
ously described [10].  Due to the combinatorial magnitude of this problem, intelligent 
feature selection strategies are needed. 

1.2   Concept Difficulty 

Combining the difficulty of modeling nonlinear attribute interactions with the chal-
lenge of attribute selection yields for this domain what Goldberg [11] calls a needle-
in-a-haystack problem.  That is, there may be a particular combination of SNPs that 
together with the right nonlinear function are a significant predictor of disease suscep-
tibility.  However, individually they may not look any different than thousands of 
other SNPs that are not involved in the disease process and are thus noisy.  Under 
these models, the learning algorithm is truly looking for a genetic needle in a genomic 
haystack.  A recent report from the International HapMap Consortium [12] suggests 
that approximately 300,000 carefully selected SNPs may be necessary to capture all 
of the relevant variation across the Caucasian human genome.  Assuming this is true 
(it is probably a lower bound), we would need to scan 4.5 * 1010 pairwise combina-
tions of SNPs to find a genetic needle.  The number of higher order combinations is 
astronomical.  Is GP suitable for a problem like this?  At face value the answer is no.  
There is no reason to expect that a GP or any other wrapper method would perform 
better than a random attribute selector because there are no building blocks for this 
problem when accuracy is used as the fitness measure.  The fitness of any given clas-
sifier would look no better than any other with just one of the two correct SNPs in the 
model.  Indeed, we have observed this in our preliminary work [13,14]. 

The goal of the present study was to develop and evaluate a GP approach to ge-
netic analysis in the context of genome-wide data.  Given the concept difficulty, we 
are generally interested in using expert knowledge to facilitate the generation and 
exploitation of good building blocks.  We specifically address whether pre-processed 
expert knowledge is useful for selecting trees for recombination and reproduction. 
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Fig. 1. Example GP trees for solutions (A). Example of a more complex tree that will be con-
sidered in future studies (B). 

2   Genetic Programming Methods 

Figure 1A illustrates an example GP tree for this problem.  We have intentionally kept 
the initial solution representation simple with one function in the root node and two 
children to evaluate the best GP parameterization.  More complex trees (e.g. Figure 
1B) will be explored once we understand when and how the GP works with the sim-
pler trees.  We have selected the multifactor dimensionality reduction or MDR ap-
proach as an attribute constructor for the function set because it is able to capture 
interaction information (see Section 3).  Each tree has two leaves or terminals consist-
ing of attributes.  The terminal set consists of 1000 attributes. 

The fitness function used in this study was accuracy estimated using a naïve Bayes 
classifier.  Each tree is resolved as a constructed attribute using the MDR function in 
the root node.  It is this single constructed attribute with two levels that is assessed 
using the classifier.  The classification accuracy of a tree is its fitness. 

The goal of this study was to use expert knowledge to ensure good building blocks 
are exploited by the GP through selection.  Here, we used pre-processed attribute 
quality from the Tuned ReliefF (TuRF) algorithm as our expert knowledge (see Sec-
tion 4).  The default selection method used a simple binary tournament.  We modified 
this selection operator by first selecting the top 1% or 5% of trees according their 
maximum TuRF score.  Each possible pair of these selected trees was recombined and 
the children passed on to the next population.  For example, with a population size of 
500 either 5 or 25 trees were selected.  There are 5 choose 2 (10) and 25 choose 2 
(300) possible recombination events.  Thus, the new population consisted of either 10 
or 300 recombined trees generated from those with the maximum TuRF scores.  The 
remaining 490 or 200 individuals in the population were generated using the standard 
binary tournament operator.  This new selection operator ensures that the best trees 
are selected and recombined as measured by pre-processed expert knowledge.  Gen-
erating the remaining trees by binary tournament ensure that functional attributes not 
assigned a high quality by TuRF still have a chance of being evaluated. 

For this study, we used a population size of 500 and ran the GP for 10 generations.  
We used a crossover probability of 0.9 and a mutation probability of 0.  Since each 
tree has exactly two attributes, an initial population size of 500 trees will include 
1,000 total attributes.  Each initial population was generated such that each of the 
1,000 attributes (i.e. terminals) was represented once and only once across the 500 
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trees.  This ensures that all building blocks are represented.  However, it is important 
to note that the probability of any one tree receiving both functional attributes (i.e. the 
solution) is 0.001 * 0.001 or 10-6.  Thus, it is unlikely that any one tree in the initial 
population will be the correct solution.  The size of the search space is approximately 
500,000 or 1000 choose 2.  With a population size of 500 and 10 generations the GP 
is exploring a maximum of 1% of the search space.  The GP was implemented in C++ 
using GAlib (http://lancet.mit.edu/ga/).  The crossover operator was modified to en-
sure binary trees of depth one. 

3   Multifactor Dimensionality Reduction (MDR) for Attribute  
     Construction 

Multifactor dimensionality reduction (MDR) was developed as a nonparametric and 
genetic model-free data mining strategy for identifying combination of SNPs that are 
predictive of a discrete clinical endpoint [15-17].  The MDR method has been suc-
cessfully applied to detecting gene-gene interactions for a variety of common human 
diseases including, for example, adverse drug reactions [18].  At the heart of the MDR 
approach is an attribute construction algorithm that creates a new attribute by pooling 
genotypes from multiple SNPs.  Constructive induction using the MDR kernel is 
accomplished in the following way.  Given a threshold T, a multilocus genotype com-
bination is considered high-risk if the ratio of cases (subjects with disease) to controls 
(healthy subjects) exceeds T, else it is considered low-risk.  Genotype combinations 
considered to be high-risk are labeled G1 while those considered low-risk are labeled 
G0.  This process constructs a new one-dimensional attribute with levels G0 and G1.  It 
is this new single variable that is returned by the MDR function in the GP function 
set.  The MDR method is described in more detail by Moore et al. [17]. Open-source 
software in Java and C are freely available from www.epistasis.org. 

4   Expert Knowledge from Tuned ReliefF (TuRF) 

Our goal was to provide an external measure of attribute quality that could be used as 
expert knowledge by the GP.  Here, this external measure used was statistical but 
could just as easily be biological, for example.  There are many different statistical 
and computational methods for determining the quality of attributes.  Our goal was to 
identify a method that is capable of identifying attributes that predict class primarily 
through dependencies or interactions with other attributes.  Kira and Rendell [19] 
developed an algorithm called Relief that is capable of detecting attribute dependen-
cies.  Relief estimates the quality of attributes through a type of nearest neighbor 
algorithm that selects neighbors (instances) from the same class and from the different 
class based on the vector of values across attributes.  Weights (W) or quality estimates 
for each attribute (A) are estimated based on whether the nearest neighbor (nearest 
hit, H) of a randomly selected instance (R) from the same class and the nearest 
neighbor from the other class (nearest miss, M) have the same or different values.  
This process of adjusting weights is repeated for m instances.  The algorithm pro-
duces weights for each attribute ranging from -1 (worst) to +1 (best).  Kononenko 
[20] improved upon Relief by choosing n nearest neighbors instead of just one.  This 
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new ReliefF algorithm has been shown to be more robust to noisy attributes [21] and 
is widely used in data mining applications.   

We have developed a modified ReliefF algorithm for the domain of human genet-
ics called Tuned ReliefF (TuRF).  We have previously shown that TuRF is signifi-
cantly better than ReliefF in this domain [22].  The TuRF algorithm systematically 
removes attributes that have low quality estimates so that the ReliefF values if the 
remaining attributes can be re-estimated.  We applied TuRF as described by Moore 
and White [22] to each dataset. 

5   Data Simulation and Analysis 

The goal of the simulation study is to generate artificial datasets with high concept 
difficulty to evaluate the power of GP in the domain of human genetics.  We first 
developed 30 different penetrance functions (i.e. genetic models) that define a prob-
abilistic relationship between genotype and phenotype where susceptibility to disease 
is dependent on genotypes from two SNPs in the absence of any independent effects.  
The 30 penetrance functions include groups of five with heritabilities of 0.025, 0.05, 
0.1, 0.2, 0.3, or 0.4. These heritabilities range from a very small to a large genetic 
effect size.  Each functional SNP had two alleles with frequencies of 0.4 and 0.6.  
Table 1 summarizes the penetrance values to three significant digits for one of the 30 
models.  The values in parentheses are the genotype frequencies.  Each of the 30 
models was used to generate 100 replicate datasets with a sample size of 1600.  Each 
dataset consisted of an equal number of case (disease) and control (no disease) sub-
jects.  Each pair of functional SNPs was combined within a genome-wide set of 998 
randomly generated SNPs for a total of 1000 attributes.  A total of 3,000 datasets were 
generated and analyzed. 

Table 1. Penetrance values for an example epistasis model 

 AA (0.25) Aa (0.50) aa (0.25) 

BB (0.25) 0.137 0.484 0.187 

Bb (0.50) 0.482 0.166 0.365 

bb (0.25) 0.193 0.361 0.430 

For each set of 100 datasets we counted the number of times the correct two func-
tional attributes were selected as the best model by the GP.  This count, expressed as a 
percentage, is an estimate of the power of the method.  That is, how often does GP 
find the right answer that we know is there? 

6   Experimental Results 

Figure 2 summarizes the average power for each method and each heritability level.  
Each bar in the barplots represents the power averaged over the five different models 
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Fig. 2. Summary of the power of Random Search (R) and different GP strategies using random 
initialization with accuracy for fitness (GP1), random initialization with accuracy and TuRF for 
fitness (GP2), random initialization with TuRF weighted twice that of accuracy in the fitness 
function (GP3), systematic initialization with TuRF for selection (1%) and accuracy for fitness 
(GP4), and systematic initialization with TuRF for selection (5%) and accuracy for fitness 
(GP5) 

for each of the heritabilities.  Here, power represents the number of times out of 100 
replicates the GP found the right two attributes (SNPs).  The first bar (labeled R) 
represents the average power for a random search that evaluated 5,000 randomly 
generated trees. The next three bars represent 1) the power observed by Moore and 
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White [14] for GP using randomly initialized trees and accuracy as a fitness function 
(GP1), 2) the power observed by Moore and White [14] for GP using randomly ini-
tialized trees and a multiobjective fitness function weighting accuracy and TuRF 
score equally (GP2), and 3) the power observed by Moore and White [14] for GP 
using randomly initialized trees and a multiobjective fitness function weighting TuRF 
twice as much as accuracy.  These previously published results used a GP with a 
population size of 5,000 evolved for 10 generations.  These results clearly demon-
strate the value of utilizing TuRF as expert knowledge in the fitness function. 

How does using TuRF for selection compare with using TuRF as part of the fitness 
function?  The last two bars represent the results from the present study.  The bar 
labeled GP4 summarizes the average power of our modified selection method that 
selects 1% of the best trees as measured by TuRF for systematic recombination.  The 
bar labeled GP5 summarizes the average power of our modified selection method that 
selects 5% of the best trees as measured by TuRF for systematic recombination.  For 
the lower heritabilities GP5 had higher power than GP4.  Interestingly, GP5 had ap-
proximately the same power as GP2 and GP3 that used TuRF in the fitness function.  
This is important because the results from the TuRF-based selection methods used a 
population size of 500 while the previous results were generated using a population 
size of 5,000 with the same number of generations.  Thus, using expert knowledge for 
selection had the same power as using it for fitness but required 1/10 the population 
size (i.e. number of evaluations).  This is a significant improvement in performance. 

7   Discussion and Conclusion 

There are several important conclusions from this study.  First, expert knowledge 
provides the building blocks that are necessary to find the genetic needle in the ge-
nomic haystack.  Second, using expert knowledge to guide selection may be prefer-
able to using it in a fitness function in this domain. 

Stochastic search algorithms such as GP are appealing for the genome-wide ge-
netic analysis problem because the search space is astronomical and the fitness land-
scape is rugged, perhaps even resembling a needle in a haystack.  Enumerative ap-
proaches aren’t computationally feasible and hill-climbers will get lost in the local 
structure of the fitness landscape.  Is a stochastic approach like GP useful for this type 
of problem?  Is it better than a simple random search?  Based on the results of our 
previous work [13,14] and the results of the present study, we would argue that GP is 
useful for the analysis of complex genetic datasets only when building blocks are 
present.  When building blocks are not present or are poorly defined a GP may not 
perform any better than a random search.  This is consistent with our previous ex-
periments in this domain [13,14].  This is also consistent with the idea of a competent 
genetic algorithm (cGA) reviewed by Goldberg [11].  Goldberg argues that under-
standing and exploiting building blocks (schemata) is essential to the success of GAs 
and by extension to GP [23].  There are two important issues here.  The first issue is 
to make sure the building blocks needed to construct good solutions are present.  The 
second is to make sure the good building blocks are used and exploited during evolu-
tion.  We used a systematic approach to ensure all attributes (i.e. the raw materials) 
are present in the initial population.  We then used pre-processing of the quality of the 
attributes to establish building blocks that otherwise don’t exist. 
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There are multiple different sources of information that could be used as expert 
knowledge in a GP.  In this study, we used a statistical measure of attribute quality.  
However, future work needs to explore ways to include domain specific knowledge in 
the GP.  There are a number of different public databases available to geneticists that 
could be mined for expert knowledge.  For example, the PubMed database 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) from the U.S. National 
Library of Medicine holds over 16 million citations from life science journal articles.  
There are a number of computational algorithms and tools available now for extract-
ing information such as the co-occurrence of keywords from abstracts from the Pub-
Med database [24].  If two genes co-occur frequently in journal abstracts then one 
could infer that there is a functional relationship.  This type of information could be 
used to guide a GP search for combinations of SNPs that predict disease. 

The availability of domain-specific expert knowledge raises the question of the 
best way to use it in a GP.  This is a topic that has received some attention in recent 
years.  Jin [25] covers the use of expert knowledge in population initialization, re-
combination, mutation, selection, reproduction, multi-objective fitness functions, and 
human-computer interaction, for example.  We focused in this study exclusively on 
sensible (i.e. systematic) initialization and selection. 

This study presents preliminary evidence suggesting that GP might be useful for 
the genome-wide genetic analysis of common human diseases that have a complex 
genetic architecture.  These results raise numerous questions, some of which have 
been discussed here.  It will be important to extend this study to higher-order genetic 
models.  How well does GP do when faced with finding three, four, or more SNPs 
that interact in a nonlinear manner to predict disease susceptibility?  How does ex-
tending the function set to additional attribute construction functions impact perform-
ance?  How does extending the attribute set impact performance?  Is using GP better 
than available or similar filter approaches?  To what extent can GP theory help formu-
late an optimal GP approach to this problem?  Does GP outperform other evolutionary 
or non-evolutionary search methods?  This paper provides a starting point to begin 
addressing some of these questions. 
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Abstract. We investigate the effect of restricting the mutation operator
in evolutionary algorithms with respect to the runtime behavior. For
the Eulerian cycle problem; we present runtime bounds on evolutionary
algorithms with a restricted operator that are much smaller than the
best upper bounds for the general case. It turns out that a plateau that
both algorithms have to cope with is left faster by the new algorithm. In
addition, we present a lower bound for the unrestricted algorithm which
shows that the restricted operator speeds up computation by at least a
linear factor.

1 Introduction

Evolutionary algorithms (EAs) are randomized search heuristics, that have
shown to be very successful in solving problems from combinatorial optimization
as well as producing good solutions in real world applications. Especially in the
case of real world applications often little is known about the structure of the
problem and a standard evolutionary approach achieves good results.

In the case of combinatorial optimization problems frequently much more
is known about the structure of a considered problem. Hence, EAs that are
designed for the particular problem achieve better results than a standard evo-
lutionary approach. Raidl et al. [9] have recently shown that NP-hard spanning
tree problems can be solved much easier by using a mutation operator that
chooses edges with a small weight much more often for inclusion in a mutation
step than heavier edges. They have shown that minimum spanning trees can be
computed by an evolutionary algorithm within a runtime bound that is of the
same magnitude as the best deterministic algorithms such as Kruskal and Prim
for the mentioned problem. This result also shows that a sophisticated muta-
tion operator can speed up computations drastically compared with a standard
evolutionary approach analyzed by Neumann and Wegener [8].

In this paper, we consider a restricted mutation operator for the Eulerian
cycle problem and examine the effect of the restriction on the runtime of the
algorithms. The analysis of EAs with respect to their runtime behavior has be-
come very popular in recent years. Starting with results on the optimization of
pseudo boolean objective functions a lot of results have been obtained by now.
First results consider the behavior of this class of randomized search heuristics

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 978–987, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Speeding Up EAs Through Restricted Mutation Operators 979

on special functions that explain the behavior of evolutionary algorithms in dif-
ferent situations. One important issue is to analyze how evolutionary algorithms
can cope with plateaus. Plateaus are regions in a search space where all search
points have the same fitness. If such a plateau is large the search process fre-
quently becomes difficult. Note that the number of different fitness values is
often polynomial bounded in the input size whereas the number of search points
is exponential. Then a pigeon hole argument implies that many search points
have the same fitness. Plateaus have been for the first time examined by Jansen
and Wegener [3] with respect to their impact on the runtime of an EA. They
have investigated the effect of the structure of a plateau with respect to the
runtime behavior of a simple evolutionary algorithm.

Since 2002 a lot of results concerning the runtime behavior of EAs on combi-
natorial optimization problems have been obtained. There are results on some of
the best-known polynomial solvable problems such as sorting and shortest path
(Scharnow, Tinnefeld, and Wegener [10]), maximum matchings (Giel and We-
gener [1]), and minimum spanning trees (Neumann and Wegener [8]). In the case
of NP-hard problems the first results have been achieved for the multi-objective
minimum spanning tree problem (Neumann [6]) and a scheduling problem on
two identical machines (Witt [11]).

For the Eulerian Cycle problem Neumann [7] has shown that a simple EA
produces a Eulerian cycle of a Eulerian graph in expected number of O(m5)
steps if a jump operator is used for mutation. In contrast to this the expected
optimization time gets exponential if the mutation operator is changed to ex-
change operations. This is one of the first results on the runtime behavior of
evolutionary algorithms that deal with the important representation of permu-
tations. This kind of representation is important for many important NP-hard
combinatorial optimization problems such as the traveling salesman problem
(see e.g. Michalewicz and Fogel [5] for different evolutionary approaches to solve
this problem) or a wide class of scheduling problems (see e.g. Mattfeld and Bier-
wirth [4]). The analysis of Neumann [7] shows that jumps lead for his model to
a plateau of constant fitness that can be left in a polynomial number of steps.
Whereas in the case of exchange operations this plateau changes to local optima
with a large inferior neighborhood.

The aim of this paper is to show that a restricted jump operator can speed
up computations of an evolutionary algorithms. EAs often do steps that only
waste time. This is the price a general search heuristic usually pays in contrast
to a specialized algorithm. Restricting the mutation operator to the considered
problem can shorten the time until a desired step occurs. In addition such a
restriction can change the behavior of an EA on a plateau. We will show that a
restricted version of the jump operator leads to an EA that computes a Eulerian
cycle of an Eulerian graph in an expected number of O(m3) steps. In addition
we present an example graph which shows that our analysis is tight.

After having motivated our work, we introduce the model of the Eulerian cycle
that will be analyzed in Section 2. In Section 3 we introduce restricted version of
simple evolutionary algorithms that will be analyzed with respect to their runtime
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behavior. To show the advantages of these restriction we give lower bounds on the
corresponding more general algorithms in Section 4 and present a runtime analysis
of the restricted algorithms in Section 5. We finish with some conclusions.

2 Preliminaries

The Eulerian cycle problem can be seen as the first problem in graph theory. Pro-
posed by Euler in 1736 as the famous Seven Bridges problem, its generalization
can be described as follows and is known as the Eulerian cycle problem.

Given an undirected connected graph G = (V,E) on n vertices and m edges,
compute a cycle such that every edge is used exactly once. Euler proved that
such a tour exists if and only if the degree of each vertex is even. Graphs that
contain a Eulerian cycle are called Eulerian. In the remainder of this paper we
assume that all graphs are Eulerian.

For every n ∈ N let us define [n] := {k ∈ N : 1 ≤ k ≤ n}. We define the search
space

Sm := {π : [m] → E | π is a bijection}.
Sm contains all permutations of the edges of G. Thus, a search point π ∈ Sm cor-
responds to an order of the edges of G. Looking at the edges π(1), π(2), . . . , π(m)
we can determine a longest path p = π(1)π(2) . . . π(l) for an appropriate l ≤ m
such that it holds π(i) ∩ π(i + 1) �= ∅ for all i ∈ [l − 1] and π(l) ∩ π(l + 1) = ∅.
If l = m the permutation π corresponds to a Eulerian tour. We formalize this in
the following fitness function. For convenience we set π(m + 1) = ∅ and choose
π(0) as a fixed one-element subset of π(1) \ π(2). Define:

path(π) := 1 + max{k ∈ [m] | ∀i ∈ [k] : π(i) ⊆ π(i − 1) ∪ π(i + 1)}.

In the rest of this paper the path π(1)π(2) . . . π(path(π)) will be named by p.
The fitness function describes the processing order to use the edges for a tour
starting with the edge on position 1. Another advantage of this fitness function
is that it can be easily evaluated. If the resulting path is short most of the edges
in the permutation do not have to be considered.

For the Eulerian cycle problem algorithms have been designed that compute
a Eulerian cycle in linear time. To analyze randomized search heuristics we use
the knowledge that has been put into these algorithms. The following algorithm
proposed by Hierholzer [2] computes an Eulerian cycle of a given Eulerian graph
G and contains ideas which will be later used in the analysis of our algorithms.

Algorithm 1 (Eulerian Cycle)
1. Find a cycle C in G
2. Delete the edges of C from G
3. If G is not empty go to step 1.
4. Construct the Eulerian cycle from the cycles produced in step 1.

Neumann [7] has shown that simple randomized search heuristics are able to
compute a Eulerian cycle of a Eulerian graph in expected polynomial time if a
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mutation operator is used that uses jump operators. The expected optimization
change drastically, i.e. from polynomial to exponential, if one chooses exchange
operations instead of jumps.

3 Randomized Local Search and the (1+1) EA

Randomized local search (RLS) and the (1+1) EA are perhaps the simplest ran-
domized search heuristics that can be considered. They work on a population of
size 1 and only use mutation to produce one single new individual in each gener-
ation. We consider variants of RLS and the (1+1) EA that are similar to the ones
discussed by Neumann [7] for the Eulerian cycle problem. The difference is that
the algorithms considered here work with a more restricted mutation operator.
EAs often waste time by doing many steps that are not accepted. Our aim is
to show that such a restriction of the mutation operator can speed up compu-
tations and to show how the structure of a combinatorial optimization problem
can change from the EAs point of view because of such a restriction. The algo-
rithms considered use a restricted jump operator for mutation. Jump operators
have also been discussed by Scharnow, Tinnefeld, and Wegener [10] for the sort-
ing problem. In the case of restricted jumps a jump operation jump(i) executed
on a permutation π produces a new permutation π′ by putting the element on
position i at position 1 and shifting the remaining elements to the right. This
restricted operator differs from the general jump operator that chooses two po-
sitions i and j in the permutation and puts the element at position i at position
j while shifting the elements between into the appropriate direction. For RLS in
one mutation step exactly one jump operation is executed. The executed jump
is chosen according to the uniform distribution. We can describe the restricted
version of RLS as follows.

Algorithm 2 (Randomized Local Search (restricted) (RLSr))
1. Choose π ∈ Sm uniformly at random.
2. Choose i ∈ [m] uniformly at random and define π′ by jumping the element

at position i to position 1 and shifting the elements between position 1 and
position i one position to the right.

3. Replace π by π′ if path(π′) ≥ path(π).
4. Repeat Steps 2 and 3 forever.

Evolutionary algorithms use a mutation operator where more than one op-
eration is possible in a mutation step. The (1+1) EA using the encoding of
permutations is adopted from the well-known (1+1) ES (evolution strategy)
and differs from RLS by the chosen mutation operator.

Algorithm 3 (Mutation operator of (1+1) EAr)
2’) Define π′ in the following way. Choose s according to a Poisson distribu-

tion with parameter λ = 1 and perform sequentially s + 1 restricted jump
operations to produce π′ from π.
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C ′

vk

C

Fig. 1. Instance Gm: Two cycles of length m/2 sharing one vertex

In applications, we need a stopping criterion. For theoretical investigations it
is a common use to investigate the number of fitness evaluations until an optimal
solution has been achieved. This is called the runtime of the algorithm. Often the
expectation of this value is considered which is called the expected optimization
time of the considered algorithms.

The algorithms introduced here will be compared with variants called RLS
and (1+1) EA that use the general jump operator. RLS and (1+1) EA have
already been analyzed with respect to their runtime behavior on the Eulerian
cycle problem. We will compare the results obtained for these algorithms with
our results on the restricted versions.

4 A Lower Bound for RLS and the (1+1) EA

We consider RLS and the (1+1) EA with the general mutation operator in this
section. Neumann [7] has proven that both algorithms need in expectation at
most O(m5) steps until they compute a Eulerian cycle of a Eulerian graph. We
now show that both algorithms need at least Ω(m4) steps to find a Eulerian
cycle.

Without loss of generality, let m be a multiple of 8. Consider the example
graph Gm given in Figure 1, which consists of two cycles of length m/2 that are
share exactly one vertex vk.

Theorem 1. The expected optimization time of RLS and the (1+1) EA on the
graph Gm is lower bounded by Ω(m4).

Proof. Let us consider the situation for RLS where |p| ≥ 3 for the first time.
With probability 1− o(1) all edges of p belong to only one of the two cycles of
Gm. W. l. o. g. we may assume that p is contained in C. The first possibility that
an edge of the other cycle C′ can be integrated in the path p is given if vk is
the first vertex of p. Before one of the edges of C′ adjacent to vk is integrated
in p, p cannot contain any other edge of C′. But with probability 1/3 (under
the condition that the first small path is contained in C), the two edges of C
adjacent to vk are integrated in p before one of the two edges of C′ adjacent with
vk is contained in p. If this is the case, there is a moment where the current path
p is the cycle C. The expected time until C has been produced is upper bound
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by O(m3) as the path has to be lengthened at most m/2 times and the expected
waiting time for such a mutation step is O(m2). Thus, with probability 1/3−o(1)
there is a moment where p is one of the two cycles (w. l. o. g. C), and until that
moment no edge of C′ was contained in p. Let us denote the first vertex of the
path p as x0 and the other vertices of C clockwise as x1, x2, . . . , xm

2 −1. We do
this modulo m/2, in particular, by the vertex xm

2
we mean the vertex x0. Let

d ∈ {0, 1, . . . , m
2 − 1} be chosen such that xd = vk. By the symmetry of C and

since the cycle C′ can be ignored until this moment, with probability at least a
half, d ∈ {m

8 ,
m
8 +1, . . . , 3m

8 } and thus, the distance (measured in the number of
edges) of x0 to vk is at least m/8. But for the next improvement of RLS vk has
to be the first vertex of p. Therefore, we are interested in the expected number
of accepted steps until the first vertex of p is xd = vk.

Claim. The expected number of accepted steps until xd is the first vertex of the
path p is d(m

2 − d).

Proof. Let tk be the expected number of accepted steps until the first vertex of
p is xk for the first time (after p has become the cycle C) for all 0 ≤ k ≤ m

2 − 1.
Clearly, t0 = 0. Because of the symmetry of C, tk is also the expected number of
accepted steps until the first vertex is x0 for the first time, starting at the vertex
xk. Then, in the first step the first vertex of p changes from xk to the adjacent
vertices xk−1 or xk+1 each with probability 1/2. Thus,

tk = 1 + 1
2 tk−1 + 1

2 tk+1

holds for all 0 ≤ k ≤ m
2 − 1. Note, that the vertices are named modulo m/2 and

therefore tm
2

= t0 = 0. This is a linear system of equations with t0, t1, . . . , tm
2 −1

as variables. It is easy to see that this is a regular linear system of equations.
Thus, it has a unique solution. One verifies that tk = k(m

2 − k) for all 0 ≤ k ≤
m
2 − 1 solves this linear system of equations. This proves the claim. �

Since with probability at least a half d ∈ {m
8 ,

m
8 + 1, . . . , 3m

8 }, the expected
number of accepted steps until xd = vk is the first vertex in the path p is at least
of order Ω(m2).

The (1+1) EA has the possibility of moving the start vertex of the path more
than one position in one step. Let k, � ∈ N. Denote by pk� the probability that
the (1 + 1) EA moves the start vertex exactly k steps to the right (or left)
conditional on that we perform � jump operations. If k + � < n/2, this can only
be achieved if each of the edges initially on position n/2−k+1 to n/2 is jumped
to the front (not necessarily the first position). In particular, these edges have to
be among the (randomly with repition chosen) 2� edges that describe the � jump
operators. Hence, if � = o(m), we have pk� ≤ (1+ o(1))

(
m

2�−k

)(
m
2�

)−1 = 1/O(mk),
where we use the fact that things are only better if the 2� edges are all different.

Now let �0 = K logm for some sufficiently large constant K. Then the prob-
ability that the EA tries to perform more than �0 jump operations is less than
exp(−�0) = 1/O(mK). Let us compute the probability pt that the EA moves the
start vertex by at least t to the right/left:
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pt =
∞∑
�=t

1
e(�+ 1)!)

∞∑
k=t

pk� ≤ 1/O(mK) +
�0∑

�=t

(e(�+ 1)!)−1
�0∑

k=t

pk� ≤ 1/O(mt).

In particular, taking t = 5, we see that within Θ(m4) rounds, with probability
1−o(1) the EA in each round moves the starting vertex of the cycle by less than 5.
The only difference between RLS and the (1+1) EA is that the (1+1) EA can
operate up to a factor of four faster.

Thus, RLS and the (1+1) EA need in expectation at least Ω(m2) accepted
mutation steps. Moreover, the expected waiting time of RLS and the (1+1) EA
until such a mutation is accepted is Ω(m2). Hence, both algorithms need Ω(m4)
steps to produce an optimal solution for the example graph Gm. �

5 Analysis of the Restricted Operator

The analysis in the previous section has shown that there are situations where
RLS and the (1+1) EA need an expected number of Ω(m4) steps to reach an
improvement. We will investigate the corresponding algorithms RLSr and the
(1+1) EAr that work with the restricted mutation operator and show that in
each situation an improvement is found in an expected number of O(m2) steps.
One reason for this improvement is that the plateau that has to be coped with
changes its structure such that an inprovement is easier to obtain. On the other
hand the expected waiting time for an accepted offspring can be reduced by a
factor of m using the restricted mutation operator. This leads to an expected
optimization time for RLSr and the (1+1) EAr which is upper bound by O(m3).
Additionally, we show that there are graphs for which RLSr and the (1+1) EAr

need in expectation a runtime of the same magnitude with probability close to 1.

Theorem 2. The expected time until RLSr and the (1+1) EAr have computed
a Eulerian cycle is bounded by O(m3).

Proof. We distinguish two cases. In the first case the current path is not a cycle.
Then there exists at least one edge that can jump to position 1 and lengthen
the path. In the case that p represents a cycle C which is not a Eulerian cycle,
the complement GC of C in G is a subgraph whose components are all Eulerian.
Let d′(v) denote the degree of v in GC for every vertex v that is in the cycle C
and in the subgraph GC For all vertices that are in the cycle C but not in the
subgraph GC we set d′(v) := 0. Since G is Eulerian, GC has at least one vertex
in common with C. Thus, there is at least one vertex v in C with d′(v) ≥ 2. Let l
be the length of the path p and let ei(p), 1 ≤ i ≤ l, denote the ith edge of p. We
call v1(p) := e1(p) \ e2(p) the starting point of the path p. If d′(v1(p)) = 0, the
only accepted jump is jump(l). But after at most l−1 such jumps d′(v1(p)) ≥ 2.
In such a situation there are d′(v1(p)) + 1 accepted jumps. Besides jump(l),
all d′(v1(p)) edges of GC containing v1(p) can jump to the first position of p
(shifting all the edges of p by one). Consequently, the probability that the path
is lengthened is d′(v1(p))

d′(v1(p))+1 ≥
2
3 . Hence, the expected number of jumps until the
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. . .
v0

v1

v2

v3

v4

v5

v6

v3(m/4−1)+1

v3m/4v3(m/4−1)

v3(m/4−1)+2

Fig. 2. Example graph G′

path is improved is at most 3
2 l ≤ 3

2m. Since in average at least every mth jump
is accepted, this implies an expected time for an improvement of O(m2). The
number of improvements is at most m− 1, which completes the proof. �

To prove a matching lower bound, we consider the graph G′ (see Figure 2) con-
sisting of m/4 cycles Ci, 0 ≤ i ≤ m/4− 1 of length 4. Ci consists of the vertices
v3i, v3i+1, v3i+2, v3(i+1) and the edges {v3i, v3i+1}, {v3i, v3i+2}, {v3i+1, v3(i+1)}
and {v3i+2, v3(i+1)}. The number of vertices in G′ is 3m/4 + 1. Note that cycle
Ci, 0 ≤ i ≤ m/4− 2, and Ci+1 intersect in v3(i+1).

Theorem 3. With probability 1 − o(1), RLSr and the (1+1) EAr need Ω(m3)
steps to find a Eulerian cycle in G′.

Proof. We call the vertices v3i, 1 ≤ i ≤ m/4− 1, turning points of the graph G′.
As in the proof of Theorem 2, we call v1(p) := e1(p) \ e2(p) the starting point of
the path p, where e1 denotes the first and e2 the second edge of the path p. At
the beginning of RLSr the path p consists of only a few edges. More precisely,
the probability that the length of the path is shorter than for example m/20 is
clearly 1− e−Ω(m). We now show the following claim.

Claim. Let the current path p1 at a certain time t1 in RLSr be not a cycle. And
let t2 > t1 be the first time such that the current path p2 is a cycle. Then

|{0 ≤ i ≤ m/4− 1 : Ci ∩ p1 = ∅ �= Ci ∩ p2}| ≤
m

40
(1)

with probability 1− e−Ω(m).

Proof. Assume that (1) does not hold. Then at least m/40 times between t1 and
t2 the starting point v1(p) was a turning point. In each of this situations the
probability that the next edge that jumps at the first position of the path p is
in the same cycle Ci as the edge that was in the first position of p before this
jump is 1/3. And with probability 2/3 this two edges are in different cycles Ci

and Ci+1. Since the path p is not closed until the time t2, only up to two times
between t1 and t2 the starting point v1(p) was a turning point and these two
edges were in the same cycle. But at least m/40 times the starting point v1(p)
was a turning point and those two edges were in different cycles. The probability
for this is e−Ω(m) which proves the claim. �
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With probability 1−e−Ω(m) the path p at the beginning of RLSr is shorter than
m/20. That means, it contains edges of at most m/40 cycles. Using the claim, we
get the following: when the path p is a cycle for the first time, it contains edges
of at most m/40 + m/40 = m/20 cycles with probability 1 − e−Ω(m). Thus,
the length of p is bounded by m/5 at this time with probability 1 − e−Ω(m).
Another consequence of the claim is the following: Let l1 be the length of the
current path p at a certain time when p is a cycle. And let l2 be the length of
the current path p at the first time when the current path is a cycle again after
p was not a cycle for a while. Then l2 − l1 ≤ m/10 with probability 1− e−Ω(m),
since only edges from at most m/40 cycles Ci can jump into p (with probability
1− e−Ω(m)).

Therefore with probability 1−e−Ω(m) there exists a moment when the current
path p is a cycle of length at least m/3 and at most m/3+m/10 ≤ m/2. Hence,
there are at least m/8 cycles left that have to be integrated. Each time when
the starting point v1(p) is a turning point and only one edge e of the four
edges adjacent to v1(p) is contained in p we have the following situation: the
probability that the next edge that jumps at the first position of p is in the
same cycle Ci as the edge e is 1/3. Thus, this will occur in average in 1/3 of the
m/8 times. Using Chernoff bounds, with probability 1 − e−Ω(m) this happens
at least m/30 times. After such an event, at least m/6 edges have to jump to
the first position of the path p until the starting point v1(p) of p is a turning
point, such that only one of the four edges adjacent to v1(p) is contained in
p. Therefore, with probability 1 − e−Ω(m), at least (m/6)(m/30) = m2/180
edges have to jump at the first position of the path p until the Eulerian cycle
is found by RLSr. Since the maximal degree of G′ is 4, in average at most
3/m of all jumps is accepted. Thus, using the Chernoff bounds once more, the
number of jumps until RLSr has found a Eulerian cycle is Ω(m3) with probability
1− e−Ω(m).

In contrast to RLSr more than one jump operation per mutation is possi-
ble in the mutation operator of the (1+1) EAr. The probability that a jump
is accepted is at most 3/m in the example graph G′, since the maximum de-
gree of G′ is 4. Thus, with probability 1 − o(1) there is no accepted muta-
tion with more than three jumps within O(m3) steps. Therefore, none of the
circles can be integrated in one mutation with probability 1 − o(1). Hence,
the only difference between RLSr and the (1+1) EAr is that (1+1) EAr is
up to a factor of 3 faster than RLSr. This shows the claim also for the
(1+1) EAr. �

6 Conclusions

In the case of combinatorial optimization problems often a lot is known about
the structure of a given problem. This knowledge can lead to more sophisticated
evolutionary algorithms. For the Eulerian cycle problem we considered a simple
evolutionary algorithms that work with a restricted mutation operator. We have
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proven a bound of Θ(m3) for the expected runtime of these restricted algorithms.
This beats the up to now best upper bound on the more general versions of these
algorithms by a factor m2. We have also obtained a lower bound of Ω(m4) for the
unrestricted algorithm. This strengthens our claim that restricting the mutation
operator can help to come up with faster evolutionary algorithms in some cases.
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Comparing the Niches of CMA-ES, CHC and Pattern
Search Using Diverse Benchmarks
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Abstract. This paper explores two questions: 1) On a relatively difficult and
varied set of test problems, can we observe differences in evolutionary search
algorithm performance related to problem features? 2) How do the evolutionary
algorithms compare to Pattern Search algorithms, a more traditional optimization
tool popular in the larger scientific community? The results suggest there are con-
sistent differences in algorithm performance that can be related back to problem
features. Some new ideas for the construction of benchmark problems are also
introduced.

1 Introduction

There are two common complaints about the evaluation of evolutionary search algo-
rithms: 1) test suites are too simple and 2) not enough comparisons include traditional
optimization algorithms used in the larger scientific community. In this paper we com-
pare Generalized Pattern Search and Mesh Adaptive Direct Search against CMA-ES,
CHC and Local Search. The comparisons are not meant as a competition; and the re-
sults suggest that no one method is the best across all problems. However, the results
do suggest that differences in performance that can be related to problem features.

We also attempt to use a more challenging set of test problems, including new ver-
sions of Griewangk and a synthetic version of the “static correction problem” from
geophysics. This problem is nonlinear, multimodal, scalable and it has the nice prop-
erty that one can visualize the solution. All test functions can be downloaded at:
http://www.cs.colostate.edu/ genitor/functions.html

For most benchmark problems we include a rotated and shifted version of the prob-
lem: this ensures the problems are no longer separable and that the global optimum is
not located at some fortuitous location in the search space. All of our problems have
bound constraints on the input domain; thus, an algorithm that is invariant under rota-
tion (e.g. CMA) will not produce the same results in expectation on the rotated version.
One of the surprising results of this paper is how much a simple rotation of the search
space can change algorithm performance.

Pattern Search Methods
The typical pattern search algorithm resembles local search. At every iteration k, the
current solution xk is compared to a finite set of points either on a next-descent or best-
descent basis. The points are taken such that they belong to a mesh grid constructed

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 988–997, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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from a matrix of directions D and a step size Δm
k . Audet and Dennis [1] define the

mesh at iteration k to be:

Mk =
⋃

x∈Sk

{x + Δm
k Dz : z ∈ NnD}

where Sk is the set of points that have been evaluated on prior to iteration k.
The directions are specified by the nD columns of D and are chosen arbitrarily with

the requirement that D spans Rn, where n is the problem dimensionality. Δm
k denotes

the granularity of the mesh; its value is increased after an improving move, and de-
creased otherwise.

Each iteration is a two steps process. The first optional SEARCH step evaluates a
finite number of points anywhere on the mesh. The second step, referred to as LOCAL
POLL, evaluates the objective function on several mesh points that lie in proximity to
the current iterate xk

We will use two forms of pattern search: Generalized Pattern Search (GPS) and
Mesh Adaptive Direct Search (MADS). GPS and MADS differ in their notion of
“proximity.” GPS enforces evaluation of points that conform to xk +Δm

k Dy, where y ∈
NnD and ‖y‖∞ = 1. MADS relaxes this by allowing ‖y‖∞ �= 0 to be bound by some
Δp

k ≥ Δm
k (for details see [10] [1]). We used the NOMAD package implementation of

GPS and MADS and report results for the five standard NOMAD direction sets that we
label as: gps2n, gpsn+1, mads2n, madsn+1 and unifN=1. All NOMAD parameters
were kept at their default values.

The first n directions of gps2n and gpsn+1 are positive unit vectors along each
dimension axis. Random nonnegative linear combinations (bound by the constraints
above) of these make up the first n directions of mads2n and madsn+1. The second
half of the directions in gps2n and mads2n is defined to be a symmetric reflection of the
corresponding first half: dn+i = −di for i = 1, 2, ...,n. The sets gpsn+1 and madsn+1
are constructed to form an n-dimensional simplex. Therefore, the (n + 1)st direction is
taken to be dn+1 = −

∑n
i=1 di.

Typically, a pattern search algorithm is terminated when the step size falls below a
certain threshold. A restart mechanism was added so that search would continue until
some maximum number of function evaluations is reached.

CHC

CHC is a genetic algorithm that represents individuals as finite bit strings. CHC uses
half uniform crossover (HUX), where exactly half of the non-matching bits are ex-
changed. CHC also uses incest prevention [2] such that parents are not allowed to re-
combine unless they are sufficiently different. Newly created offspring must compete
with the parent population for survival via truncation selection. No mutation is used to
alter one generation to the next. Instead, after CHC fails to find any offspring that im-
prove on any of the parents, a restart mechanism called cataclysmic mutation replaces
the entire population by repeatedly randomizing 35% of the bits of the best individ-
ual. CHC has proven to be very effective on both difficult benchmarks and real world
applications.
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Local Search
Local search is included for a baseline comparison. Local search as used here is a Gray
coded steepest ascent bit climber; an L-bit neighborhood is defined by flipping each bit
of the the current best solution. All neighborhood points are evaluated before accepting
the best move. Local search restarts when no improving move is found.

CMA-ES
An evolution strategy is an iterative process where μ parents produce λ offspring based
on distributions around the parents. Evolution Strategy with Covariance Matrix Adap-
tation, or CMA-ES [4], uses a covariance matrix to explicitly rotate and scale the mu-
tation distribution that functions as strategy parameters. Hansen and Ostermeier define
the reproduction phase from generation g to generation g + 1 as:

x
(g+1)
k = 〈x〉(g)

μ + σ(g)B(g)D(g)z
(g+1)
k

where z
(g+1)
k are randomly generated from an N(0, I) distribution. This creates a set

of base points that are rotated and scaled by the eigenvectors (B(g)) and the square root
of the eigenvalues (D(g)) of the covariance matrix C. The base points are translated to
center around 〈x〉(g)

μ , the mean of the μ best parents.
CMA-ES also uses the evolutionary path of improving moves to update the covari-

ance matrix. The evolution path updates after each generation using a weighted sum
of the current path, p

(g)
c , and a vector that points from the mean of the μ best points

in generation g to the mean of the μ best points in generation g + 1. When a larger
population (λ) is used, the best μ individuals may help describe the topology around
the mean of the current generation. CMA-ES calculates the covariance of the steps that
lead to μ best individuals.

Z(g+1) =
1
μ

∑
B(g)D(g)z

(g+1)
i (B(g)D(g)z

(g+1)
i )T

Assuming Z(g+1) is the covariance of the steps that lead to the μ individuals, and P(g+1)

is the covariance of the evolution path, the new covariance matrix, C(g+1), is:

(1− ccov)C(g) + ccov

(
αcovP(g+1) + (1− αcov)Z(g+1)

)
where ccov and αcov are constants that weigh the importance of each input.

We used an initial step size for σ of 25% of each function domain, which is consistent
with other research involving multimodal test functions [3] [4].

2 The Test Functions

Both Salomon [9] and Whitley et al. [11] noted about 10 years ago that most functions
used to evaluate evolutionary algorithms are separable [11] and can easily be solved
to optimality by independently searching each dimension of the search space. Whitley
et al. proposed new test functions. Salomon created new nonseparable problems by
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Table 1. The test functions used in this paper. Functions F2 and F8F2 use [−2.048, 2.047] as the
domain. All other functions use [−512, 511] as the domain.

Name Function

F2 f(x, y) = 100(x2 − y)2 + (1 − x)2

Rana f(x, y) = xsin(
√

A)cos(
√

B)+(y+1)cos(
√

A)sin(
√

B); A = |y+1−x|, B = |x+y+1|

F101 f(x, y) = −xsin( |x − (y + 47)|) − (y + 47)sin( |(y + 47) + x/2|)

F8F2 f(x, y) = 1 + N
i=1

F2(x,y)2

4000 − N
i=1 cos(F2(x, y)/ (i))

Schwefel f(xi| i=1,N ) = N
i=1 −xi sin |xi|

G1 f(xi| i=1,N ) = N
i=1

x2
i

4000N − −log N
i=1(cos(xi) + 0.1) + 1.0

G2 f(xi| i=1,N ) = N
i=1

x2
i

4000N − −1.5N/4 N
i=1 cos(xi/N + i) + 1.0

1/4

rotating the existing test functions. This rotation make the problems nonlinear and also
breaks symmetry in the search space that can make problems much easier to opimize.

Table 1 lists our test functions. Rosenbrock’s “banana function” (F2) is well known.
Schwefel’s function is separable. F101 is designed to be similar to Schwefel’s function
but nonseparable. Rana is nonseparable (see Figure 1). F8F2 is a nonseparable com-
posite function that passes the result from F2 to Griewangk’s function [11]; this adds
numerous local optima to F2 (see Figure 1). We also rotated each of these function
22.5 degrees in all dimensions. Each rotated function was also translated by 5% of the
domain to further reduce symmetry.

We also bounded the domain after rotation; this means an algorithm such as CMA-ES
does not produce the same results for the rotated and unrotated problem. Our experience
is that real work optimization problems typically have constraints on the values that the
domain parameter can assume: for example, in many science and engineering domains,
parameter values below a specific value or larger than a specific value maybe not be
physically plausible or may not be measurable. We also scaled each function by five
percent to pull more local optima into the bounded search space. We used the following
expansion method to convert each 2-D function (denoted F2D) into 20 dimensional
functions.

f(x) =
n−1∑
i=1

F2D(xi,xi+1)

Included in the test functions are two new versions of Griewangk’s function. The
original Griewangk function is as follows [11]:

f(xi| i=1,N ) = 1 +
N∑

i=1

x2
i

4000
−

N∏
i=1

(cos(xi/
√

i))

The global optimum is at the origin. The search space is bowl shaped while local op-
tima are created over the bowl through the oscillation of a cosine function. However,
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g1, 20−D g2, 20−D

Fig. 1. The two rightmost figures are diagonal slices of G1 and G2. The 3rd figure is a clipped
view of the local optima in F8F2. The leftmost figure is Rana’s function.

the range of a cosine function is [−1, 1] and as the number of dimensions increase, mul-
tiplication of the cosines destroys the local optima. Thus, higher dimensional versions
of this problem become smooth with a strong global optimum. [11].

We used two modifications of the original Griewangk function denoted G1 and G2
that include a scaling factor that is added to the summation term to stabilize the function
range across dimensions. In addition, the output from a cosine function is translated
and/or scaled to offset the effect of multiplication. For G1 and G2 the global optimum
does not have a consistent value as the number of dimensions is varied. The new forms
of Griewangk are given in table 1. G1 is characterized by taking a logarithm of the
product term. Figure 1 shows slices of G1 and G2 at 20-D. The optima are now rather
wide with thin barriers separating one from another. On G2 the search space also loses
its symmetry due to a phase shift.

Synthetic Static Corrections for Seismic Surveys
Seismic reflection surveys are used to construct subsurface images of geologic strata.
A seismic signal contains information about the location of geological strata below the
surface of the earth. However, differences in the materials at the earth’s surface affect
the arrival time of seismic signals: loose materials slow down signal arrival, packed ma-
terials speed up signal arrivals. The optimization problem is to find a static correction
to the arrival time of each signal such that it correctly aligns signals to reveal subsurface
geology. Misalignment of signals can result in numerous local optima (because the sub-
surface strata are misaligned); conventional optimization methods can easily be trapped
in local optima. The images are also distorted by signal noise [7].

We introduce a synthetic static correction problem as a test function. The synthetic
problem consists of a base matrix, which defines the structure of the simulated geologic
strata. The base matrix M has i rows and j columns, where i indexes the ith strata and
j indexes the jth signal. Entry M(i, j) stores the depth of strata i as observed in signal
j. (We can assume depth=time.) For example, consider the following 3x5 base matrix:

⎛⎝−100 −100 −100 −100 −100
−375 −350 −300 −275 −250
−450 −525 −550 −525 −450

⎞⎠
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Fig. 2. The synthetic static corrections problem. In the leftmost figure, signals are indicated by
column slices of the figure, and the known and proposed arrival times are shown across the top
of the figure. If the solution is locally optima, moving any signal up or down (i.e., adjusting its
arrival time in the Domain) will result in a poorer alignment of Strata. The rightmost figure shows
there are many locally optimal alignments in a 2-D slice of the search space.

To simulate near surface variation of the earth we add a nonuniform profile, denoted
p, to the problem. The profile has length equal to the problem dimension. Element pj

in the profile is added to each element of column j of matrix M : this effectively shifts
signal j by pj units and creates a new matrix M. The optimization problem is to search
for and retrieve vector p given the shifted matrix M. Finding p will undo the shifts and
restore the original matrix M and thereby align the geological strata.

Our simplified version of static corection assumes that the strata in M are struc-
tured and well behaved, while the shifts in matrix M are not regular. Fitness is usually
calculated by computing the cross-correlation (e.g. the dot product) between all pairs
of shifted signals. In the current experiments, we use simplified signals, such that the
vector is 0 except when near the location of a strata. Within a distance of delta of the
strata, the vector is 1. Figure 2 illustrates the simplied signals. When the total depth
(length of the vectors) is greater than the number of signals (denoted by N ), evalua-
tion time is greater than O(N3). In our simplified model the dot-product is the same
as overlap and we do not actually have to construct signals, which allows for evalua-
tion in O(N2) time. If one wishes to model ambient noise the full evaluation must be
used.

Figure 2 shows a 20 dimensional problem, including the profile vector (upper left:
Domain), and the deviation of the current solution from the profile (lower left: Strata).
The signals are shown as offset column slices. Figure 2 also shows a slice of first two
dimensions of a 20 dimensional problem with a delta of +/−50 units (rightmost). Real
static correction problems generally have 100’s of variables.

This problem has several nice features: it is scalable, it can be made noisy, and more
complex geology and signals can be used to make the problem more difficult; yet, it is
easy to visualize misalignments in the solution.
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Fig. 3. The midline in the gray box is the median, while the gray box represents 25 percent of
the sample above and below the median. The bars outside the gray box generally represent the
max and min values, except when there are outliers, which are shown as small circles. The y-axis
represents the value of the evaluation function.

3 Empirical Tests and Results

All test functions are 20 dimensional. Local search and CHC were run using 10-bits
and 20-bits of precision. CHC used a population size of 50. We ran CMA-ES with
rank-μ-updates and a population size of 200 and 500 [3]. We distinguish each algo-
rithm based on its parameters; CHC-10, CHC-20, LS-10, LS-20, CMA-200, CMA-
500. The Pattern Search algorithms are MADS-2n, MADS(n+1), GPS-2n, GPS(n+1)
and Unif(n+1). Each algorithm was run for 50 trials; restarts ensured that each trial ran
for exactly 100,000 evaluations. The results are presented in Figures 3, 4 and 5.

Rotating the functions generally reduced observed differences in algorithm perfor-
mance. Most rotated problems are harder, except for Rosenbrock’s F2 which becomes
easier because the rotation aligns the “banana” with the search space coordinates.

CHC and Local Search, which use a bit representation, are very sensitive to the
alignment of the search space. There exists versions of CHC that use a real valued rep-
resentation that might yield better performance under rotation [5]. Nevertheless, CHC is
highly competitive on F8F2 and F101 and Schwefel even after the functions are rotated.
Salomon [9] found the Breeder Genetic Algorithm [8] performed poorly after rotation
and he concluded from this that recombination was of limited value as a search opera-
tor: our results suggest this conclusion is too sweeping. The real problem seems to be
that the Breeder Genetic Algorithm overly exploits separability.

Differences in Problem Structure. In another paper we have defined a dispersion
metric that automatically identifies those functions where the local optima are globally
clustered near one another [6]. Such functions includes the variants of Griewangk (G1
and G2) and the rotated and unrotated Rosenbrock’s function. The Static Corrections
problem used here also has globally clustered local optima; other variants of the Static
Corrections problem need to be tested. CMA-ES does well on those problems where
the best local optima are clustered together in a single ”funnel.”

The Pattern Search methods performed poorly on the functions with globally clus-
tered local optima where CMA did well; however, GPS(2n) and MADS(N+1) did well
on the rotated versions of Rana, Schwefel, F101 and F8F2. CHC performed best on the
unrotated functions. This suggests that the Pattern Search algorithms are biased toward
exploration at the expense of exploiting localstructure.
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Fig. 4. The midline in the gray box is the median, while the gray box represents 25 percent above
and below the median. The bars outside the gray box generally represent the max and min values,
except when there are outliers, which are shown as small circles. The y-axis represents the value
of the evaluation function.
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Fig. 5. The midline in the gray box is the median, while the gray box represents 25 percent above
and below the median. The bars outside the gray box generally represent the max and min values,
except when there are outliers, which are shown as small circles. The y-axis represents the value
of the evaluation function.
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4 Conclusions

No single algorithm dominates the others, and that different algorithms have better per-
formance on different types of problems. Yet these kinds of differences are rarely re-
ported in the literature. Perhaps the main significance of these results is that the commu-
nity still has not been able to develop a clear understanding of how different algorithms
exploit different types of problem features.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0117209, by the Air Force Office of Scientific Re-
search, USAF, under grant number F49620-03-1-0233 and Sandia National Labs.

References

[1] C. Audet and J.E. Dennis Jr. Mesh adaptive direct search algorithms for constrained opti-
mization. SIAM Journal on Optimization, 17(1):188–217, 2006.

[2] L. J. Eshelman. The CHC adaptive search algorithm. In Foundations of Genetic Algorithms,
pages 265–283. Morgan Kaufmann, 1991.

[3] N. Hansen and S. Kern. Evaluating the cma evolution strategy on multimodal test functions.
In PPSN. Springer, 2004.

[4] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

[5] J.D. Schaffer and L. Eshelman. Real-Coded Genetic Algorithms and Interval Schemata. In
Foundations of Genetic Algorithms 2. Morgan Kaufmann, 1993.

[6] M. Lunacek and D. Whitley. The dispersion metric and cma algorithm. In GECCO. ACM
Press, 2006.

[7] K. Mathias, D. Whitley, T. Kusuma, and C. Stork. An Empirical Evaluation of Genetic
Algorithms on Noisy Objective Functions. In Genetic Algorithms for Pattern Recognition,
pages 65–86. CRC Press, 1996.

[8] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive Models for the Breeder Genetic
Algorithm. Evolutionary Computation, 1(1):25–49, 1993.

[9] R. Salomon. Re-evaluating genetic algorithm performance under coordinate rotation of
benchmark functions. BioSystems, 39:263–278, 1996.

[10] A. Torczon. On the convergence of pattern search algorthims. SIAM Journal on Optimiza-
tion, 7(1):1–25, 1997.

[11] D. Whitley, S. B. Rana, J. Dzubera, and K. E. Mathias. Evaluating evolutionary algorithms.
Artificial Intelligence, 85(1-2):245–276, 1996.



Model Complexity vs. Performance in the
Bayesian Optimization Algorithm

Elon S. Correa1 and Jonathan L. Shapiro2

1 Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF,
United Kingdom
esc4@kent.ac.uk

2 School of Computer Science, University of Manchester, Manchester, M13 9PL,
United Kingdom
jls@cs.man.ac.uk

Abstract. The Bayesian Optimization Algorithm (BOA)uses aBayesian
network to estimate the probability distribution of promising solutions to a
given optimization problem. This distribution is then used to generate new
candidate solutions. The objective is to improve the population of candi-
date solutions by learning and sampling from good solutions. A Bayesian
network (BN) is a graphical representation of a probability distribution
over a set of variables of a given problem domain. The number of topolog-
ical states that a BN can create depends on a parameter called maximum
allowed indegree. We show that the value of the maximum allowed inde-
gree given to the Bayesian network used by the BOA strongly affects the
performance of this algorithm. Furthermore, there is a limited set of values
for this parameter for which the performance of the BOA is maximized.

1 Introduction

The Bayesian Optimization Algorithm (BOA) [13,14] is a search procedure based
on statistical information. It uses a Bayesian network to estimate the probability
distribution of promising solutions to a given optimization problem. This dis-
tribution is then used to generate new candidate solutions. The objective is to
improve the population of candidate solutions by learning and sampling from
good solutions.

A Bayesian network (BN) is a graphical representation of a probability distri-
bution over a set of variables of a given problem domain [9,11]. This graphical
representation is a directed acyclic graph in which nodes represent the variables
of the problem and arcs represent conditional probabilistic dependencies among
the nodes. The network structure encodes probabilistic dependencies among do-
main variables and a joint probability distribution quantifies the strength of
these dependencies.

Perhaps the most challenging task in dealing with Bayesian networks is learn-
ing their structures. Learning the structure of a BN is an NP-hard problem [3,4].
Many algorithms developed to this end use a scoring metric and a search pro-
cedure. The scoring metric evaluates the goodness-of-fit of a structure to the
data. The search procedure generates alternative structures and selects the best
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one based on the scoring metric. To reduce the search space of networks, only
candidate networks in which each node has at most k inward arcs (parents) are
considered - k is a parameter determined by the user. We shall refer to this pa-
rameter as the “maximum allowed indegree” (the maximum number of parents
that a variable can have) of the Bayesian network.

The number of topological states that a Bayesian network can create depends
on its maximum allowed indegree k. We define the complexity of a Bayesian
network as the number of topological states that it can create. The more topo-
logical states the Bayesian network can create the more complex it is. Thus, the
complexity of the model of the BOA can be measured by the maximum allowed
indegree of its Bayesian network. The larger this maximum allowed indegree
value is the more complex the model used by the BOA is as well. Statistically
speaking, model complexity is an inherent characteristic of the model that en-
ables it to fit a wide range of probability distributions.

We show that the value of the maximum allowed indegree given to the Bayesian
network used by the BOAstrongly affects the performance of this algorithm.There
is a limited set of values for the parameter that controls the complexity of the model
in the BOA (i.e., for the maximum allowed indegree of the BN) for which the per-
formance of this algorithm is maximized. For values of the parameter outside of this
set, the BOA loses performance in terms of the quality of the solutions returned
by the algorithm. Empirical experiments suggest that the numbers on this set are
in a sequence of consecutive numbers.

The paper is organized as follows. Section 2 briefly describes the BOA. Sec-
tions 3 presents the test problems used in this work. Section 4 reports compu-
tational results. Section 5 discusses future work and presents conclusions.

2 The Bayesian Optimization Algorithm

The Bayesian Optimization Algorithm [14] works as follows: (1) randomly gener-
ate a population of candidate solutions for the problem being solved; (2) evaluate
these solutions and select the best ones; (3) use this set of selected solutions to
build a Bayesian network; (4) use this Bayesian network to sample new solutions;

Generate initial

population of

solutions
Evaluate solutions Stop?

Show best solution

found

Select the best

solutions

Build a Bayesian network

for the selected solutions

Use this Bayesian

network to sample

new solutions

Yes

No

Fig. 1. BOA’s working process
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(5) repeat steps 2, 3 and 4 until a given stopping criterion is met. Fig. 1 depicts
the working process of the BOA.

By choosing the maximum allowed indegree value for the Bayesian network
that the BOA uses, one determines the complexity of BOA’s probabilistic model.

3 Test Problems

The test problems used to evaluate the performance of the BOA are the following.

3.1 The 1D Spin-Glass Problem

The 1D spin-glass problem can be written as:

f1DSpinGlass(X) =
�−1∑
i=1

wi,i+1(xi −
1
2
)(xi+1 −

1
2
), (1)

where the weights wi,i+1 are uniformly distributed in the interval [-10, 10], � is
the length of the string and xi ∈ {0, 1} [1]. X = {x1, x2, ..., x�} is a random
binary string and represents a candidate solution to the problem. The objective
is to find the binary string X that maximizes f1DSpinGlass(X).

3.2 The Satisfiability Problem

The satisfiability (SAT) was one of the first problems shown to be NP-hard
[5]. The problem is to determine, for a formula of the propositional calculus, if
there is an assignment of truth values to its variables for which that formula
evaluates to true [7,8]. It can be defined as follows: given a set of m clauses
{C1, C2, ..., Cm} on � Boolean variables v = (v1, v2, ..., v�) with vi ∈ {0, 1},
and a Boolean formula in conjunctive normal form, determine an assignment of
truth values to v so that the Boolean formula evaluates to true. Corresponding
to each variable vi are two literals, vi and its logical negation ¬vi.

A clause Ci is a set of literals in disjunction in which all variables must be
different from each other. In the Max-3-SAT problem, every clause Ci has exactly
three literals. For example: C1 = (¬v3 ∨ v1 ∨ v7), for i = 1 and � ≥ 7. Note that
C1 = (¬v3 ∨ v1 ∨ v7) represents only one of the possible combination of the
variables for a generic clause C1. The objective is to determine an assignment
to v that maximizes the number of satisfied clauses in:

f(v) = C1 ∧C2 ∧ ... ∧ Cm. (2)

A clause is satisfied when its truth value is true. A well-known feature of SAT
problems is phase transition [15]. The phase transition area for SAT problems is
known as the hardest area for determining whether a SAT problem is satisfiable.
Experimental studies have shown that, for randomly generated 3-SAT problems,
this phase transition area occurs when the ratio between the number of clauses
and the number of variables of the problem is roughly 4.25 [10]. All the instances
of 3-SAT problems used in this work are in the phase transition area. Therefore,
they are hard 3-SAT instances to optimize.
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3.3 Concatenated Functions

A concatenated function is the sum of n, n > 1, more elementary functions fk

of k variables. It can be expressed as:

fkConcatenated(X) =
n∑

i=1

fk(si), (3)

where every si is a non-overlapping subset of X containing exactly k variables.
For instance, given f3(x1, x2, x3) the sum of two f3 functions would result in:

f3Concatenated(x1, x2, x3, x4, x5, x6) =

n=2︷ ︸︸ ︷
f3(x1, x2, x3︸ ︷︷ ︸

s1

) + f3(x4, x5, x6︸ ︷︷ ︸
s2

) . (4)

Trap Function of Order 5: The fitness of a trap function of order 5 is given
by the equation:

ftrap5(u) =
{

4− u, if u < 5,
5, otherwise. (5)

where u is the number of ones on a five digits binary string [12, p. 17]. For our
tests we use a concatenation of several blocks of the trap function of order 5.
The fitness value of this function is given by the sum of the fitness value of each
of the 5-bit blocks that compose the function.

4 Computational Results

Results reported here are averaged over 100 or 200 independent runs performed
for every combination of maximum allowed indegree value, population size and
problem size. We use the K2 metric to evaluate the goodness-of-fit of the Bayesian
network to the data. The value of the K2 scoring metric is given by the formula:

K2(X |par(X)) =
q∏

j=1

(r − 1)!
(N ′

j + r − 1)!

r∏
i=1

Nij !, (6)

where the variable X is a child node on the graph and par(X) is the set of its par-
ents. r represents the number of possible values that X can take and q represents
the number of distinct instantiations of its parent nodes (par(X)). N

′
j represents

the number of cases in which variable X is instantiated to its ith value and its
parents are instantiated to their jth value combination (N

′
j =

∑r
i=1 Nij) [2]. For

the K2 metric see also [6]. At every generation the BN starts as an empty graph.
It is then constructed from scratch to fit the distribution of a set of solutions
selected through a truncation selection method. In truncation selection solu-
tions are sorted by their fitness value. A percentage of the solutions with the
best fitness value is then selected. Perhaps better performance could be achieved
through other selection methods. Determining best performance, however, is not
the purpose of our experiments. It is to investigate the effect of the complexity
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of the model in the performance of the BOA. The percentage of solutions se-
lected is always 50%. At each generation the number of new solutions generated
is equal to 50% of the population size. After generating new solutions, an elitist
replacement scheme is used. At every generation, the worst 50% of the solutions
in the current population is replaced by the new ones.

4.1 Experiments on the Trap Function of Order 5

Here the maximum allowed indegree set to the BOA varies from 0 to 18. Problems
of size 50, 100 and 150 were tested for the following population sizes 4000, 8000
and 16000 respectively. Fig. 2 shows the percentage of blocks solved in the best
solution found at each run for the concatenated trap function of order 5.

This percentage goes from 0%, for the maximum allowed indegree of 0, to
100%, for the maximum allowed indegree of 4, and then falls back to 0%, for the
maximum allowed indegree of 15.

The shape of the curves in Fig. 2 suggests that there is a limited set of values
for the parameter that controls the complexity of the model in the BOA for
which its performance is maximized. For values of the parameter outside of this
set, the algorithm loses performance in terms of the quality of the solutions
returned by the algorithm. This behavior holds true for other functions as well.
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Fig. 2. The BOA applied to the concatenated trap function of order 5. Maximum
allowed indegree versus the percentage of blocks solved in the best solution found at
each run. The results are averaged over 200 independent runs.

4.2 MAX-3-SAT Problem

This experiment uses an instance of the Max-3-SAT problem with 50 variables
and 218 clauses, all satisfiable. This instance of the problem was randomly gener-
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Fig. 3. The BOA applied to a Max-3-SAT problem of size 50. Maximum allowed in-
degree versus the average value, over 100 independent runs, of the best fitness found.
The stopping criterion used was the convergence of all individuals in the population to
a unique fitness value.

ated and is in the “phase transition”. Fig. 3 plots the maximum allowed indegree
versus the average value of the best fitness found at each run for the Max-3-SAT
problem. The results are averaged over 100 independent runs. Three different
population sizes were used, 1000, 2000 and 3000. The maximum allowed inde-
gree varies from 0 to 25.

Again, the results indicate that when the complexity of the probabilistic model
of the BOA is too high, the quality of the best solutions found by the algorithm
decreases. The more complex the model is the more likely it is to detect spu-
rious correlations on the data. Consequently, the diversity of the new solutions
generated through this model also decreases as shown in Fig. 4.

Fig. 4 shows the averagenumber of new unique configurations of the solutions to
the problem generated per run. This number is computed as follows: at each gen-
eration, we count and record the number of strings whose configuration is present
in the current population but was not present in the antecedent population. At the
end of the run these numbers are summed up and the result is divided by the num-
ber of generations performed on that run. The curves in Fig. 4 represent the sum of
the values obtained at the end of each run divided by the number of runs. The re-
sults suggest that the more complex the model is, the less diversity the population
of solutions generated by the BOA tends to have. The diversity from one popula-
tion to another goes to almost zero when the maximum allowed indegree is equal
to 25. There seems to be a tradeoff between identifying enough correlations inside
the partial solutions of the problem and not identifying an excessive number of cor-
relations outside the partial solutions of the problem (spurious correlations). The
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Fig. 4. The BOA applied to a Max-3-SAT problem of size 50. Maximum allowed in-
degree versus the average of the number of new unique configurations per generation.
The results are averaged over 100 independent runs.

model has to be complex enough to identify some of the correlations inside the par-
tial solutions of the problem. But if the model is too complex, an excessive number
of spurious correlationsmay be detected. And when it happens, the diversity in the
population of solutions generated by this model falls. Specifying exactly how much
complexity the model should have is out of the scope of this work. It seems to de-
pend not only on the structure of the optimization problem being solved, but also
on the size of the data set used to construct the BN. A similar behavior is observed
for the 1D spin-glass problem as shown next.

4.3 Experiments on the 1D Spin-Glass Problem

We randomly generated an instance of the 1D spin-glass problem with size 50.
The maximum fitness value for this problem is equal to 64.34. Three different
population sizes were tested, 1000, 2000 and 3000. The maximum allowed inde-
gree varies from 0 to 25.

Fig. 5 shows more evidence that when the probabilistic model used by an EDA
overfits the complexity that the structure of the problem requires, the algorithm
loses performance. For this problem a maximum allowed indegree value of 1
was sufficient for the BOA to find the optimum to the problem in 100% of the
trials for all population sizes tested. This happens because the 1D spin-glass
problem has a chain-like structure. Such a structure can easily be encoded by
a Bayesian network with maximum allowed indegree 1. When the maximum
allowed indegree is greater than 10 the quality of the solutions returned by the
BOA decreases for all cases tested.
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Fig. 5. The BOA applied to a 1D spin-glass problem of size 50. Maximum allowed
indegree versus the average value, over 100 independent runs, of the best fitness found.
The stopping criterion used was the convergence of all individuals in the population to
a unique fitness value.
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Fig. 6. The BOA applied to a 1D spin-glass problem of size 50. Maximum allowed
indegree versus the average, over 100 independent runs, of the number of new unique
configurations per generation in a full run of the algorithm.
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Again, the average number of new unique configurations of solutions vanishes
when the complexity of the model increases. Fig. 6 shows the average number of
new unique configurations of the solutions, per run, to this problem. The results
indicate that the exploration of the search space diminishes as the complexity
of the Bayesian network increases.

Comparing the curves for the population size of 4000 from Figs. 5 and 6 we
observe a certain pattern. That is, the average value of the best solution found
and the average value of new unique configurations in the population have a
downfall on the maximum allowed indegree value of 10. As the only parameter
that varies along the plotting of those curves is the maximum allowed indegree
value of the BN, what causes the downfall on the quality of the solutions and
on the diversity in the population is the increase in the complexity of the BN.
The more correlations the Bayesian network encodes the more similar to the
solutions used to construct the BN the new sampled solutions will be. As a
result, the exploration of the search space is not as good as it could be with a
simpler BN.

5 Future Work and Conclusions

The BOA performs better when it identifies enough correlations inside the partial
solutions of the problem without identifying an excessive number of spurious
correlations. The higher the maximum allowed indegree of its Bayesian network
is the more spurious correlations the BOA tends to identify. When the number of
spurious correlations detected is too high, it negatively affects the performance
of the algorithm. Therefore, a distinction between the complexity of the model
and the complexity that the structure of the problem requires should be made.
There is a relationship between the complexity that the model in the BOA can
reach and BOA’s performance.

Every study will have limitations, these have to be addressed. Our empirical
experiments did not investigate problems that have partial solutions of different
sizes. For instance, some partial solutions of the problem have size 6 while others
have size 10, etc. The experiments suggest that the size of the partial solutions
of the problem may work as an indication for the complexity necessary for the
model. But how to predict this complexity when partial solutions of the problem
have different sizes? This is a topic for future research. The analysis of how other
scoring metrics, such as the Minimal Description Length, used to measure the
goodness-of-fit of the Bayesian network to the data affect the performance of
the BOA is also a topic for future investigation. Though other scoring metrics
are likely to behave differently, the maximum allowed indegree of the Bayesian
network will always be critical for the performance of the BOA.

The Bayesian Optimization Algorithm has improved and has been extended
to the so called hierarchical BOA (hBOA). For further research it would be
interesting to know how the results presented in this paper affect the performance
of this improved version of the algorithm.
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Abstract. Support Vector Machines (SVMs) are well-established Ma-
chine Learning (ML) algorithms. They rely on the fact that i) linear
learning can be formalized as a well-posed optimization problem; ii) non-
linear learning can be brought into linear learning thanks to the kernel
trick and the mapping of the initial search space onto a high dimensional
feature space. The kernel is designed by the ML expert and it governs the
efficiency of the SVM approach. In this paper, a new approach for the au-
tomatic design of kernels by Genetic Programming, called the Evolution-
ary Kernel Machine (EKM), is presented. EKM combines a well-founded
fitness function inspired from the margin criterion, and a co-evolution
framework ensuring the computational scalability of the approach. Em-
pirical validation on standard ML benchmark demonstrates that EKM is
competitive using state-of-the-art SVMs with tuned hyper-parameters.

1 Introduction

Kernel methods, including the so-called Support Vector Machines (SVMs), are
well-established learning approaches with both strong theoretical foundations
and successful practical applications [1]. SVMs rely on two main advances in
statistical learning. First, the linear supervised machine learning task is set as
a well-posed (quadratic) optimization problem. Second, the above setting is ex-
tended to non-linear learning via the kernel trick : given a (manually designed)
change of representation Φ mapping the initial space onto the so-called feature
space, linear hypotheses are characterized in terms of the scalar product in the
feature space, or kernel. These hypotheses correspond to non-linear hypotheses
in the initial space. Although many specific kernels have been proposed in the
literature, designing a kernel well suited for an application domain or a dataset
so far remains an art more than a science.

This paper proposes a system, the Evolutionary Kernel Machine (EKM), for
the automatic design of data-specific kernels. EKM applies Genetic Programming
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(GP) [2] to construct symmetric functions (kernels), and optimizes a fitness
function inspired from the margin criterion [3]. Kernels are assessed within a
Nearest Neighbor classification process [4,5]. In order to cope with computational
complexity, a cooperative co-evolution governs the prototype subset selection
and the GP kernel design, while the fitness case subset selection undergoes a
competitive co-evolution.

The paper is organized as follows. Section 2 introduces the formal background
and notations on kernel methods. Sections 3 and 4 respectively describe the
GP representation and the fitness function proposed for the EKM. Scalability
issues are addressed in the co-evolutionary framework introduced in Section 5.
Results on benchmark problems are given in Section 6. Finally, related works
are discussed in Section 7 before concluding the paper in Section 8.

2 Formal Background and Notations

Supervised machine learning takes as input a dataset E = {(xi, yi), i = 1 . . .n,
xi ∈ X, yi ∈ Y }, made of n examples; xi and yi respectively stand for the
description and the label of the i-th example. The goal is to construct a hypoth-
esis h(x) mapping X onto Y with minimal generalization error. Only vectorial
domains (X = IRd) are considered throughout this paper; further, only binary
classification problems (Y = {1,−1}) are considered in the rest of this section.

Due to space limitations, the reader is referred to [6] for a comprehensive
presentation of SVMs. In the simplest (linear separable) case, the hyper-plane
h(x) maximizing the geometrical margin (distance to the closest examples) is
constructed. The label associated to example x is the sign of h(x), with:

h(x) =
∑

i

αi < x,xi > + b

where < x,xi > denotes the scalar product of x and xi. Let Φ denotes a mapping
from the instance space X onto the feature space and let the kernel K(x,x′) be
defined as:

K : X ×X �→ IR; K(x,x′) =< Φ(x), Φ(x′) >

Under some conditions (the kernel trick), non-linear classifiers on X are con-
structed as in the linear case, and characterized as h(x) =

∑
i αiK(x,xi) + b.

Besides SVMs, the kernel trick can be used to revisit all learning methods
involving a distance measure. In the paper, the kernel nearest neighbor (Kernel-
NN) algorithm [5], which revisits the k-nearest neighbors (k-NN) [4], is consid-
ered. Given a distance (or dissimilarity) function d(x,x′) defined on the instance
space X , given a set of labelled examples E = {(x1, y1), . . . , (xn, yn)} and an in-
stance x to be classified, the k-NN algorithm: i) determines the k examples
closest to x according to d(x,x′); ii) outputs the majority class of these k ex-
amples. Kernel-NN proceeds as k-NN, where distance dK(x,x′) is defined after
the kernel K(x,x′) (more on this in Section 4).
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Standard kernels on X = IRd include Gaussian and polynomial kernels1. It
must be noted that the addition, multiplication and compositions of kernels are
kernels, and therefore the standard SVM machinery can find the optimal value
of hyper-parameters (e.g. σ, c or k) among a finite set. Quite the opposite, the
functional (symbolic) optimization of K(x,x′) cannot be tackled to our best
knowledge except by Genetic Programming.

3 Genetic Programming of Kernels

The Evolutionary Kernel Machine applies GP to determine symmetric functions
K(x,x′) on IRd × IRd best suited to the dataset at hand. As shown in Table 1,
the main difference compared to standard symbolic regression is that terminals
are symmetric expressions of x and x′ (e.g. xi + x′

i, or xix
′
j + xjx

′
i), enforcing

the symmetry of the kernels (K(x,x′) = K(x′,x)).
The initialization of GP individuals is done using a ramped half and half pro-

cedure [2]. The selection probability of terminals Ai, Mi, Ii and Si (respectively
Ci,j) is divided by 1/d (resp. 2/d(d + 1)), where d is the dimension of the initial
instance space (X = IRd).

Indeed the kernel functions built after Table 1 might not satisfy Mercer’s con-
dition (K(x,x) ≤ 0 �⇒ x = 0) required for SVM optimization [6]. However these
kernels will be assessed along a Kernel-NN classification rule [5]; therefore the
fact that they are not necessarily positive is not a limitation. Quite the con-
trary, EKM kernels can achieve feature selection; typically, terminals associated
to non-informative features should disappear along evolution. The use of EKM
for feature selection will be examined in a future work.

4 Fitness Measure

Every kernel K(x,x′) is assessed after the Kernel-NN classification rule, using
the dissimilarity dK defined as

dK(x,x′)2 = K(x,x) + K(x′,x′)− 2K(x,x′)

Given a prototype set Ep = {(x1, y1), . . . , (x�, y�)} and a training example e =
(x, y), let us assuming that Ep is ordered by increasing dissimilarity to
x (dK(x,xi) ≤ dK(x,xi+1)). Let p(e) denotes the minimum rank over all proto-
type examples in the same class as e (p(e) = min{i, yi = y, i = 1 . . . �}); let n(e)
denotes the minimum rank over all other prototype examples (not belonging to
the same class as e, n(e) = min{i, yi �= y, i = 1 . . . �}).

As noted by [3], the quality of the Kernel-NN classification of e can be assessed
from δK(e) = n(e)−p(e). The higher δK(e), the more confident the classification
of e is, e.g. with respect to perturbations of Ep or dK; δK(e) measures the margin
of e with respect to Kernel-NN.

1 Respectively K(x,x′) = exp
(
− ‖x−x′‖2

σ

)
and K(x,x′) = (< x,x′ > + c)k.
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Table 1. GP primitives involved in the kernel functions K(x,x′), x,x′ ∈ IRd

Name # args. Description
ADD2 2 Addition of two values, fADD2(a1, a2) = a1 + a2.
ADD3 3 Addition of three values, fADD3(a1, a2, a3) = a1 + a2 + a3.
ADD4 4 Addition of four values, fADD4(a1, a2, a3, a4) = a1 +a2 +a3 +

a4.
SUB 2 Subtraction, fSUB(a1, a2) = a1 − a2.

MUL2 2 Multiplication of two values, fMUL2(a1, a2) = a1a2.
MUL3 3 Multiplication of three values, fMUL3(a1, a2, a3) = a1a2a3.
MUL4 4 Multiplication of four values, fMUL4(a1, a2, a3, a4) =

a1a2a3a4.

DIV 2 Protected division, fDIV(a1, a2) =
{

1 |a2| < 0.001
a1/a2 otherwise .

MAX 2 Maximum value, fMAX(a1, a2) = max(a1, a2).
MIN 2 Minimum value, fMIN(a1, a2) = min(a1, a2).
EXP 1 Exponential value, fEXP(a) = exp(a).

POW2 1 Square power, fPOW2(a) = a2.
Ai, i = 1 . . . d 0 Add the ith components, xi + x′

i.
Mi, i = 1 . . . d 0 Multiply the ith components, xix

′
i.

Si, i = 1 . . . d 0 Maximum between the ith components, max(xi, x
′
i).

Ii, i = 1 . . . d 0 Minimum between the ith components, min(xi, x
′
i).

Ci,j , i = 1 . . . d
j = 1 . . . i

0 Crossed multiplication-addition between the ith and jth com-
ponents, (xix

′
j + xjx

′
i).

DOT 0 Scalar product of x and x′, < x,x′ >.
EUC 0 Euclidean distance of x and x′, ‖x − x′‖.

E 0 Ephemeral random constants, generated uniformly in [−1, 1].

Accordingly, given a prototype set Ep = {(x1, y1), . . . , (x�, y�)} and a fit-
ness case subset Es = {(x′

1, y
′
1), . . . , (x

′
m, y′

m)}, the fitness function associated
to K(x,x′) is defined as

F(K) =
1
m

m∑
i=1

δK(x′
i, y

′
i)− �

The computation of F has linear complexity in the number � of prototypes and
in the number m of fitness cases. In a standard setting, Ep and Es both coincide
with the whole training set E (� = m = n). However the quadratic complexity
of the fitness computation with respect to the number n of training examples is
incompatible with the scalability of the approach.

5 Tractability Through Co-evolution

EKM scalability is obtained along two directions, by i) reducing the number � of
prototypes used for classification, and ii) reducing the size m of the fitness case
subset considered during each generation.
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Parameters:
p : GP kernels population size;
� : Size of the prototype subset individuals;
m : Size of the fitness case subset individuals;
λp : Number of offsprings in the prototype species;
λs : Number of offsprings in the fitness case species;
ρp : Fraction of prototype subset individuals replaced by mutation;
ρs : Fraction of the fitness case subset individual replaced by mutation.

1. E0
p : initial prototype subset, stratified uniform sample of size � from E ;

2. E0
s : initial fitness case subset, stratified uniform sample of size m from E ;

3. GP0: initial population of GP kernels, {h0
i , i = 1 . . . p};

4. Loop, for t = 1 . . . T :
(a) Apply selection and variation operators to the GPt−1 kernel population, con-

structing GP t = {ht
i, i = 1 . . . p};

(b) Compute the fitness F(ht
i), i = 1 . . . p with prototype subset Et−1

s and fitness
case subset Et−1

s ; let ht,∗ denote the best one;
(c) Generate λp offsprings of Et−1

p , by replacing a fraction ρp of the prototypes
(uniform stratified sampling); assess these offsprings after ht,∗ and Et−1

s ; set
Et

p to the best offspring;
(d) Generate λs offsprings of Et−1

s , by replacing a fraction ρs of the fitness case
(uniform stratified sampling); assess these offsprings after ht,∗ and Et

p; set Et
s

to the best offspring.
5. Output h∗∗, selected among ht,∗, t = 0 . . . T as the one minimizing the 1-NN error

rate on the whole training set E using the associated Et
p prototype subset.

Fig. 1. The Evolutionary Kernel Machine: a co-evolution framework

More precisely, a co-evolutionary framework involving three species is con-
sidered, as detailed in Figure 1. The first species includes the GP kernels. The
second species includes the prototype subset (fixed-size subsets of the training
set), subject to a cooperative co-evolution [7] with the GP kernels. The third
species includes the fitness case subset (fixed-size subsets of the training set),
subject to a competitive host-parasite co-evolution [8] with the GP kernels.

The prototype species is evolved to find good prototypes such that they max-
imize the fitness of the GP kernels. The fitness case species is evolved to find
hard and challenging examples, such that they minimize the kernel fitness. Of
course there is a danger that the fitness case subset ultimately capture the noisy
examples, as observed in the boosting framework [9] (see Section 6.2).

Both prototype and selection species are initialized using a stratified uniform
sampling with no replacement (the class distribution in the sample is the same
as in the whole dataset and all examples are distinct). Both species are evolved
using a (1, λ) evolution strategy; in each generation, λ offsprings are generated
using a uniform stratified replacement of a given fraction of the parent subset,
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Table 2. UCI data sets used for the experimentations

Data # of # of
set Size features classes Application domain
bcw 683 9 2 Wisconcin’s breast cancer, 65% benign and 35% malignant.
bld 345 6 2 BUPA liver disorders, 58% with disorders and 42% without

disorder.
bos 508 13 3 Boston housing, 34 % with median value v < 18.77 K$,

33 % with v ∈]18.77, 23.74], and 33 % with v > 23.74.
cmc 1473 9 3 Contraceptive method choice, 43% not using contraception,

35 % using short-term contraception, and 23 % using long-
term contraception.

ion 351 34 2 Ionosphere radar signal, 36 % without structure detected
and 64 % with a structure detected.

pid 768 8 2 Pima indians diabetes, 65% tested negative and 35% tested
positive for diabetes.

and assessed after the best kernel in the current kernel population. The parent
subset is replaced by the best offspring. In each generation, the kernels are
assessed after the current prototype and fitness case individuals.

6 Experimental Validation

This section reports on the experimental validation of EKM, on a standard set of
benchmark problems [10], detailed in Table 2. The system is implemented using
the Open BEAGLE framework2 for evolutionary computation [11].

6.1 Experimental Setting

The parameters used in EKM are reported in Table 3. The average evolution
time for one run is less than one hour (AMD Athlon 2800+).

On each problem, EKM has been evaluated along the standard 10-fold cross
validation methodology. The whole data set is partitioned into 10 (stratified)
subsets; the training set is made of all subsets but one; the best hypothesis
learned from this training set is evaluated on the remaining subset, or test set.
The accuracy is averaged over the 10 folds (as the test set ranges over the 10
subsets of the whole dataset); for each fold, EKM is launched 10 times; the 5 best
hypotheses (after their accuracy on the training set) are assessed on the test set;
the reported accuracy is the average over the 10 folds of these 5 best hypotheses
on the test set. In total, EKM is launched 100 times on each problem.

EKM is compared to state of the art algorithms, including k-nearest neighbor
and SVMs with Gaussian kernels, similarly assessed using 10-fold cross vali-
dation. For k-NN, the underlying distance is the Euclidean one, and scaling
normalization option has been considered; the k parameter has been varied in
2 http://beagle.gel.ulaval.ca
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Table 3. Tableau of the evolutions parameters

Parameter Description and parameter values
GP kernel functions evolution parameters

Primitives See Table 1.
GP population size One population of p = 1000 individuals

Stop criterion Evolution ends after T = 100 generations.
Replacement strategy Genetic operations applied following generational scheme.

Selection Lexicographic parsimony pressure tournaments selection with
7 participants.

Crossover Classical subtree crossover [2] (prob. 0.7).
Standard mutation Crossover with a random individual (prob. 0.1).

Swap node mutation Exchange a primitive with another of the same arity (prob.
0.1).

Shrink mutation Replace a branch with one of its children and remove the
branch mutated and the other children subtrees (if any) (prob.
0.1).
Prototype subset selection parameters

Prototype subset size � = 50 examples in a prototype subset.
Number of offsprings λp = 4 offsprings per generation.

Mutation rate ρp = 25 % of the prototype examples replaced in each muta-
tion.

Fitness case subset selection parameters
Fitness case subset size m = 100 examples in a fitness case subset.
Number of offsprings λs = 2 offsprings per generation.

Mutation rate ρs = 50% of the selection examples replaced in each mutation.

{1, 3, 5}; the best setting has been kept. For Gaussian SVMs, the Torch3 imple-
mentation has been used [12]; the error cost (parameter C) has been varied in
{10i, i = −3 . . .4}, the σ parameter is set to 10, and the best setting has been
similarly retained.

6.2 Results

Table 4 shows the results obtained by EKM compared with k-NN and Gaussian
SVM, together with the optimal parameters for the latter algorithms. The size
of the best GP kernel (last column) shows that no bloat occurred, thanks to
the lexicographic parsimony pressure. Each algorithm is shown to be the best
performing on the half or more of the tested datasets, with frequent ties according
to a paired Student’s t-test.

Typically, the problems where Gaussian SVMs perform well are those where
the optimal C value for cost error is high, suggesting that the noise level in these
datasets is high too. Indeed, the fitness case subset selection embedded in EKM
might favor the selection of noisy examples, as those are more challenging to GP
kernels. A more progressive selection mechanism, taking into account all kernels
in the GP population to better filter out noisy examples and outliers, will be
considered in further research.
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Table 4. Comparative 10-fold results of k-NN, Gaussian SVM and EKM on the UCI
data sets, with optimal settings (k and scaling for k-NN, C for SVM). The reported test
error is averaged over the 10 folds. For each fold tested with the EKM, the 5 solutions
out of 10 runs with best training error are assessed on the test set, and their error is
averaged. Test error rates in bold denotes the statistically best results according to
a 95% two-tails paired Student’s t-test. “Average rank” column gives the test error
ranking obtained for EKM compared to k-NN and SVM averaged over the 10 folds.

k-NN SVM EKM
Data Best conf. Train Test Best Train Test Train Best-half Mean Average
set k Scaling error error C error error error test error size rank
bcw 5 No 0.027 0.025 1 0.030 0.028 0.020 0.030 167 2.1
bld 5 No 0.336 0.353 1 0.329 0.325 0.299 0.309 158 1.5
bos 1 Yes 0.248 0.235 0.001 0.224 0.308 0.253 0.281 116 1.8
cmc 5 No 0.491 0.486 10 0.273 0.433 0.479 0.487 129 2.4
ion 1 Yes 0.134 0.134 100 0.070 0.071 0.078 0.095 156 1.9
pid 5 Yes 0.265 0.255 0.001 0.315 0.307 0.237 0.252 145 1.45

The k-NN outperforms SVM and EKM on the bos problem, where the noise
level appears to be very low. Indeed, the optimal value for the number k of
nearest neighbors is k = 1, while the optimal cost error is 10−3, suggesting that
the error rate is also low. Still, the fact that the error rate is close to 23% might
be explained as the target concept is complex and/or many examples lie close
to its frontier. On bcw, the differences between the three algorithms are not
statistically different and the test error rate is about 2%, suggesting that the
problem is rather easy.

EKM is found to outperform the other algorithms on bld, demonstrating that
Kernel-based dissimilarity can improve on Euclidean distance with and without
rescaling. Last, EKM behaves like k-NN on the pid problems. Further, it must
be noted that EKM classifies the test examples using a 50-examples prototype
set, whereas k-NN uses the whole training set (above 300 examples in the bld
problem and 690 in the pid problem).

As the well-known No Free Lunch theorem applies to Machine Learning too,
no learning method is expected to be universally competent. Rather, the above
experimental validation demonstrates that the GP-evolved kernels can improve
on standard kernels in some cases.

7 Related Works

The most relevant work to EKM is the Genetic Kernel Support Vector Machine
(GK-SVM) [13]. GK-SVM similarly uses GP within an SVM-based approach,
with two main differences compared to EKM. On one hand, GK-SVM focuses
on feature construction, using GP to optimize mapping Φ (instead of the kernel).
On the other hand, the fitness function used in GK-SVM suffers from a quadratic
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complexity in the number of training examples. Accordingly, all datasets but
one considered in the experimentations are small (less than 200 examples). On
a larger dataset, the authors acknowledge that their approach does not improve
on a standard SVM with well chosen parameters. Another related work similarly
uses GP for feature construction, in order to classify time series [14]. The set
of features (GP trees) is further evolved using a GA, where the fitness function
is based on the accuracy of an SVM classifier. Most other works related to
evolutionary optimization within SVMs (see [15]) actually focus on parametric
optimization, e.g. achieving features selection or tuning some parameters.

Another related work is proposed by Weinberger et al. [16], optimizing a Ma-
halanobis distance based on the k-NN margin criterion inspired from [3] and
also used in EKM. However, restricted to linear changes of representation, the
optimization problem is tackled by semi-definite programming in [16]. Lastly,
EKM is also inspired by the Dynamic Subset Selection first proposed by Gath-
ercole and Ross [17] and further developed by [18] to address scalability issues
in EC-based Machine Learning.

8 Conclusion

The Evolutionary Kernel Machine proposed in this paper aims to improve kernel-
based nearest neighbor classification [5], combining two original aspects. First,
EKM implicitly addresses the feature construction problem by designing a new
representation of the application domain better suited to the dataset at hand.
However, in contrast with [13,14], EKM takes advantage of the kernel trick, us-
ing GP to optimize the kernel function. Secondly, EKM proposes a co-evolution
framework to ensure the scalability of the approach and control the computa-
tional complexity of the fitness computation. The empirical validation demon-
strates that this new approach is competitive with well-founded learning algo-
rithms such as SVM and k-NN using tuned hyper-parameters.

A limitation of the approach, also observed in the well-known boosting algo-
rithm [9], is that the competitive co-evolution of kernels and examples tends to
favor noisy validation examples. A perspective for further research is to exploit
the evolution archive, to estimate the probability for an example to be noisy and
achieve a sensitivity analysis. Another perspective is to incorporate ensemble
learning, typically bagging and boosting, within EKM. Indeed the diversity of
the solutions constructed along population-based optimization enables ensemble
learning almost for free.
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11. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:
Principles and case-study. Int. J. on Artif. Intell. Tools 15(2) (2006) 173–194
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Abstract. Geometric crossover is a representation-independent defini-
tion of crossover based on the distance of the search space interpreted as
a metric space. It generalizes the traditional crossover for binary strings
and other important recombination operators for the most frequently
used representations. Using a distance tailored to the problem at hand,
the abstract definition of crossover can be used to design new problem
specific crossovers that embed problem knowledge in the search. In this
paper, we introduce the important notion of product geometric crossover
that allows to build new geometric crossovers combining pre-existing geo-
metric crossovers in a simple way.

1 Introduction

Geometric crossover and geometric mutation are representation-independent
search operators that generalize many pre-existing search operators for the ma-
jor representations used in evolutionary algorithms, such as binary strings [4],
real vectors [4], permutations [6], syntactic trees [5] and sequences [7]. They are
defined in geometric terms using the notions of line segment and ball. These
notions and the corresponding genetic operators are well-defined once a notion
of distance in the search space is defined. Defining search operators as functions
of the search space is opposite to the standard way [3] in which the search space
is seen as a function of the search operators employed. This viewpoint greatly
simplifies the relationship between search operators and fitness landscape and
has allowed us to give simple rules-of-thumb to build crossover operators that
are likely to perform well.

Theoretical results of metric spaces can naturally lead to interesting results
for geometric crossover. In particular, in this paper we focus on the notion of
metric transformation. A metric transformation is an operator that constructs
new metric spaces from pre-existing metric spaces: it takes one or more metric
spaces as input and outputs a new metric space. The notion of metric transfor-
mation becomes extremely interesting when considered together with distances
firmly rooted in the syntactic structure of the underlaying solution representa-
tion (e.g., edit distances). In these cases it gives rise to a simple and natural
interpretation in terms of syntactic transformations.

In this paper we extend the geometric framework introducing the important
notion of cartesian product of geometric crossover, that allows to build new

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 1018–1027, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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geometric crossovers combining preexisting geometric crossovers in a very simple
way. The metric transformation considered is a simple product of metric spaces
and the corresponding induced crossover transformation is the product geometric
crossover. This may sound very abstract and impractical. However, it actually
is not. Indeed, we put the ideas reported in this paper to the test in [8].

The paper is organised as follows. In section 2 we present the geometric frame-
work. In section 3, we extend it with the notion of geometricity-preserving trans-
formation and focus on the notion of product geometric crossover. In section 4,
we outline future investigations. In section 5, we draw some conclusions.

2 Geometric Framework

2.1 Geometric Preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [4] and [5]. The following definitions are taken from [2].

The terms distance and metric denote any real valued function that conforms
to the axioms of identity, symmetry and triangular inequality. A simple con-
nected graph is naturally associated to a metric space via its path metric: the
distance between two nodes in the graph is the length of a shortest path between
the nodes.

In a metric space (S, d) a line segment (or closed interval) is the set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called extremes
of the segment. Metric segment generalises the familiar notions of segment in
the Euclidean space to any metric space through distance redefinition. Notice
that a metric segment does not coincide to a shortest path connecting its ex-
tremes (geodesic) as in an Euclidean space. In general, there may be more than
one geodesic connecting two extremes; the metric segment is the union of all
geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape.

2.2 Geometric Crossover Definition

The following definitions are representation-independent therefore applicable to
any representation.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
is a geometric crossover where all z laying between parents x and y have the same
probability of being the offspring:
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fUX(z|x, y) =
δ(z ∈ [x; y])
|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been
derived in [4] where we also showed that traditional crossover is geometric under
Hamming distance.

In previous work we have also studied various crossovers for permutations, re-
vealing that PMX, a well-known crossover for permutations, is geometric under
swap distance. Also, we found that Cycle crossover, another traditional crossover
for permutations, is geometric under swap distance and under Hamming distance.

2.3 Formal Evolutionary Algorithm and Problem Knowledge

Geometric operators are defined as functions of the distance associated to the
search space. However, the search space does not come with the problem itself.
The problem consists only of a fitness function to optimize, that defines what
a solution is and how to evaluate it, but it does not give any structure on the
solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice.

A fitness landscape is the fitness function plus a structure over the solution
space. So, for each problem, there is one fitness function but as many fitness
landscapes as the number of possible different structures over the solution set.
In principle, the designer could choose the structure to assign to the solution
set completely independently from the problem at hand. However, because the
search operators are defined over such a structure, doing so would make them
decoupled from the problem at hand, hence turning the search into something
very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. For example, one can study the objective function of the problem
and select a neighborhood structure that couples the distance between solutions
and their fitness values. Once this is done problem knowledge can be exploited
by search operators to perform better than random search, even if the search
operators are problem-independent (as is the case of geometric crossover and
mutation). Indeed, the fitness landscape is a knowledge interface between the
problem at hand and a formal, problem-independent search algorithm.

Under which conditions is a landscape well-searchable by geometric operators?
As a rule of thumb, geometric mutation and geometric crossover work well on
landscapes where the closer pairs of solutions, the more correlated their fitness
values. Of course this is no surprise: the importance of landscape smoothness has
been advocated in many different context and has been confirmed in uncountable
empirical studies with many neighborhood search meta-heuristics [9]. We operate
according to the following rule-of-thumbs:
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Rule-of-thumb 1 : if we have a good distance for the problem at hand than we
have good geometric mutation and good geometric crossover
Rule-of-thumb 2 : a good distance for the problem at hand is a distance that
makes the landscape “smooth”

3 Product Geometric Crossover

We first introduce the general notion of geometricity-preserving transformations.
Then we consider a specific geometricity-preserving transformation associated
with the product metric. We introduce product metrics for vector spaces, that
are metric preserving transformations, and stress how they can be seen as natural
generalization of simple metrics for vector spaces. We then introduce the notion
of interval space that naturally bridges the metric and representation aspects of
geometric crossover, and recall a few results form interval spaces theory. We use
these results to prove our main result of this paper on the product of geometric
crossovers. We then give a number of examples of applications. In section 4,
we will discuss how to further generalize this theorem to a general structural
composition of geometric crossovers.

3.1 Geometricity-Preserving Transformations

In previous work we have proven that a number of important pre-existing re-
combination operators for the most frequently used representations are geometric
crossovers. We have also applied the abstract definition of geometric crossover to
distances firmly rooted in a specific solution representation and designed brand-
new crossovers. An appealing way to build new geometric crossovers is starting
from recombination operators that are known to be geometric and derive new
geometric crossovers by geometricity-preserving transformations/combinations
that when applied to geometric crossovers, return geometric crossovers.

The definition of geometric crossover is based on the notion of metric. There-
fore, a natural starting point to seek geometricity-preserving transformations is
to consider transformations of the underlying metrics that are known to return
metric spaces and study how the geometric crossover associated to the trans-
formed metric space relates with the geometric crossover associated with the
original metric space.

There are a number of metric space transformations [2] [10] that are po-
tentially of interest for geometric crossover: sub-metric spaces, product spaces,
quotient metric space, gluing metric space, combinatorial transformation, non-
negative combinations of metric spaces, Hausdorf transformation, Concave trans-
formation, and Biotope transform.

Geometric crossover is well-defined once a metric space is defined. Let us
consider the geometric crossover X associated to the original metric space M ,
and the geometric crossover X ′ associated to the transformed metric space
M ′ = mt(M) where mt is the metric transformation. The functional relationship
among metric spaces and geometric crossovers can be nicely expressed through
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a commutative diagram (Fig. 1). gx means application of the formal definition
of geometric crossover and gt means induced geometricity-preserving crossover
transformation associated to the metric transformation mt. This diagram be-
comes remarkably interesting when the metric transformation mt is associated
to an induced geometricity-preserving crossover transformation gt that has a
simple interpretation in terms of syntactic manipulation. This indeed allows one
to get new geometric crossovers starting from recombination operators that are
known to be geometric by simple geometricity-preserving syntax manipulation.

Fig. 1. Commutative diagram linking metric and crossover transformations

We study those metric-preserving transformations which induced geometricity-
preserving transformations have a simple and natural interpretation on the so-
lution representation.

3.2 N-Dimensional Real Spaces and Product Metric Spaces

Metric spaces on R2. Let S = R2, and x = (x′,x′′), y = (y′, y′′). The following
are metric spaces on S:

d1(x, y) = |x′ − y′|+ |x′′ − y′′| (Manhattan space)

d2(x, y) =
√
|x′ − y′|2 + |x′′ − y′′|2 (Euclidean space)

d∞(x, y) = Max{|x′ − y′|+ |x′′ − y′′|} (Chessboard space)

These may be proved to be metrics [10]. These definitions may be extended
to n-dimensional real spaces.
Product metric spaces. Given two metric spaces M ′ = (S′, d′) and M ′′ = (S′′, d′′),
we may define several metrics on S′ × S′′. For example, if x = (x′,x′′) and
y = (y′, y′′) are in S′ × S′′, let

d1(x, y) = d′(x′, y′) + d′′(x′′, y′′) (Manhattan product)

d2(x, y) =
√

d′(x′, y′)2 + d′′(x′′, y′′)2 (Euclidean product)
d∞(x, y) = Max{d′(x′, y′) + d′′(x′′, y′′)} (Chessboard product)

These may be proved to be metrics [10]. These definitions may be extended
to the product of any finite number of metric spaces.

It is interesting to notice that product spaces can be considered as general-
ization of n-dimensional real spaces, where the absolute value metric at each
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dimension is replaced by a generic metric. This is important because the gener-
alization involves two different types of objects: a simple metric for a structured
space and a structural metric transformation of generic metric spaces. More on
this in the section 4.

3.3 Product Interval Spaces

Metric spaces can be associated to geometric interval spaces. The latter are a
more natural setting for geometric crossover than the former. We review the
notion of interval space and present results that draw a parallel between met-
ric spaces and interval spaces. Then we use them to prove specific results for
geometric crossover.
Interval space and Geometric interval space. Let X be a set and let I : X×X →
2X be a function with the following properties:

– Extensive Law : a, b ∈ I(a, b)
– Symmetry Law : I(a, b) = I(b, a)

Then I is called an interval operator on X, and I(a, b) is the interval between a
and b. The resulting pair (X, I) is called an interval space.
An interval operator I on a set X is geometric provided the following hold.

– Idempotent Law : ∀b ∈ X : I(b, b) = {b}
– Monotone Law : if a, b, c ∈ X and c ∈ I(a, b), then I(a, c) ⊆ I(a, b)
– Inversion Law : if a, b ∈ X and c, d ∈ I(a, b), then c ∈ I(a, d) implies d ∈

I(c, b)

A set with a geometric interval operator is called a geometric interval space.
Interval space associated to a metric space. The geodesic operator [•, •]d that
associates extremes of a metric segment to all the points that constitute it is a
geometric interval operator [1].
Product segment. Let us define the product segment as [a, b]d×d′ = {(x1,x2)|x1 ∈
[a1, b1]d,x2 ∈ [a2, b2]d′} where a = (a1, a2), b = (b1, b2)
Product segment theorem: The product segment corresponds to the segment of
the Manhattan product space: [(a1, a2), (b1, b2)]d×d′ = [(a1, a2), (b1, b2)]ρ where
ρ((a1, a2), (b1, b2)) = d(a1, b1) + d′(a2, b2) [1]
This result may be extended to the product segment of any finite number of
metric spaces.

Interval spaces connect very naturally with the notion of geometric crossover.
There is a wealth of results for geometric interval spaces that can easily be
transferred to geometric crossover.

3.4 Product Geometric Crossover

A product geometric crossover of the geometric crossovers Xi based on the metric
spaces (Si, di) is a recombination operator defined over the cartesian product set∏

i Si that applies the geometric crossover Xi to the projection Si.
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Example. Let us consider two geometric crossovers X1 : S1 × S1 → S1 and X2 :
S2 × S2 → S2. A product geometric crossover of X1 and X2 is a recombination
operator X3 : (S1,S2)× (S1,S2) → (S1,S2) that applies the geometric crossover
X1 to elements in the first position and crossover X2 to elements in the second
position.

From the results in the previous section we have the following

Theorem 1. Any product geometric crossover is a geometric crossover under
the distance given by the sum of the distances of the compounding crossovers.

Proof. This follows immediately from the definition of geometric crossover and
the product segment theorem.

The geometric crossovers in each projection of the product geometric crossover
do not need to be independent for the product crossover to be geometric. This is
because casting any form of dependency between geometric crossovers in different
projections results in a reduction of the pool of offspring allowed to be created
by the product geometric crossover. From the definition of geometric crossover,
such a restriction does not affect its geometricity.

The theorem above is useful because it allows one to build new geometric
crossovers combining crossovers that are known to be geometric. In particular,
this applies to crossovers for mixed representations. Examples of application of
product geometric crossovers include:

– Multi-crossover: same representation same crossover n times
– Hybrid crossover: same representation different crossover for each projection
– Hybrid representation crossover: different representation for each projection

(and different crossover)
– Dependent crossover: different projections represent a single entity and they

are mutually constrained. This occurs very often in real-world problems. E.g.
for neural networks one projection could be a variable-size graph representing
the structural part, while a second projection could be a variable-length
sequence of reals representing the weights. Clearly recombination of the first
projection imposes constraints on the recombination of the second projection
to obtain a feasible offspring.

3.5 Simplification and Generalization of Geometricity of Traditional
Crossover

Definition 4. (Discrete metric space) Let A be any non-empty set and

d(x, y) =
{

1, x �= y
0, x = y

∀x, y ∈ A

This is a metric and is called the discrete metric of A.

The discrete metric space is the path metric of a fully-connected graph with A
as node set. The interval operator associated with the discrete metric space is:
∀a, b ∈ A : [a, b] = {a, b} (all segments are edges).
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We call the geometric crossover associated to the discrete metric, the discrete
metric geometric crossover (DM-GX). Clearly, the only possible offspring of
DM-GX are the parents.

Definition 5. (Hamming metric space) Let us consider a set An whose elements
are all vectors of length n over some alphabet A of size |A|. The Hamming
distance between two vectors is the number of coordinates where they differ. The
Hamming space is denoted by H(n, |A|).

Discrete metrics and Hamming space are linked as follows: the product metric
of n discrete metric spaces of the alphabet A is the Hamming space H(n, |A|).

Theorem 2. Any traditional mask-based crossover for discrete vectors taking
values on the alphabet A is geometric under Hamming distance.

Proof. This follows from the fact that any traditional mask-based crossover is
the product crossover of n DM-GX, one for each projection.

When the alphabet A is a set of integers, beside the discrete metric we can
consider also the absolute value of their difference (ABD) for each projection as
a metric to be used as a basis for a product crossover. It is easy to see that the
geometric crossover associated to ABD produces integers between the parents
integers as extremes. The product geometric crossover is in this case a blend-
type crossover (in contrast with the discrete metric that gives rise to a discrete
recombination-type crossover).

3.6 Product Geometric Crossover and the Sudoku Puzzle

In [8] we have designed new geometric crossovers for the Sudoku puzzle that
deal in a natural way with its constraints. We have demonstrated the usage of
the notion of product geometric crossover to straightforwardly derive (i) new
geometric crossovers for the entire grid obtained by employing simple geometric
crossovers for each row and (ii) the distance functions associated with them.
This has allowed us to analyze the geometric fitness landscape associated to the
new geometric crossovers and tell a priori, by the way the fitness landscape is
constructed, that the new crossovers are very well-suited to the Sudoku puzzle
hence likely to perform well. Crossover operators associated with the row-swap
distance are the best and produce consistently (near) optimal Sudoku grids, as
predicted.

4 Future Investigations

Structural composition of geometric crossovers: The previous results
could be generalized in a very interesting way, extending the geometric frame-
work to complex representations. In the following we discuss this.

Basic representations such as vectors, permutations, sequences, trees, graphs
and sets, to mention only the most common, can all be seen as structures con-
taining generic objects. These objects do not need to be necessarily numbers or
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atomic symbols from a given alphabet. Such objects can well be structures them-
selves, so we can consider derived structures obtained by structural composition,
such for example sets of trees. The composition can be repeated recursively with
different types of representations thus obtaining a wealth of derived representa-
tions, potentially suited to any problem conceivable.

Given geometric crossovers XA and XB for the structure A and B associated
to the metric spaces MA and MB , what is the derived geometric crossover for
the derived structure A ◦B? What is the derived metric space associated to the
derived geometric crossover and the derived structure?

With the product geometric crossover, we have seen that when the structure
is a vector, the structural composition with any other representations is con-
nected to a natural derived geometric crossover consisting of a simple geometric
crossover for each position in the vector, and associated to a derived metric that
is simply the sum of the metric for each position.

In the case of vectors, we have a number of possible structural compositions
(a number of metric product operators) but only one notion of metric product
that has a natural interpretation on the representation, making it the only one
actually useful. In the case of other structures, there could be more than one
(or even no) structural composition that has a natural interpretation on the
representation. Furthermore, in the case of structures other than vectors, we
do not have standard metric transformations such as the metric product that
naturally suit them. So, where can we start our generalization from?

There seems to be a way suggested by the case of vectors: we have seen that
simple metrics on the vector space (structured objects) can be easily general-
ized to structural metric transformations of generic metric spaces retaining the
overall structure of the original object (vector of metric spaces). We could do
the same to generalize metrics for other type of structures to structural metric
transformations. The starting point is noticing that distances for structured rep-
resentations are naturally expressed as some aggregating function of marginal
contributions due to the difference in the structural subcomponents. The way
of measuring the difference between two components is normally a very simple
notion of metric, discrete metric for difference between symbols, or just absolute
value for numeric components. In the case of vectors, the aggregating function
is a simple sum, and the distance between components is the absolute value. So,
the way to pass from metric distance to metric transformation is to replace the
simple component-metric with generic metrics, exactly how it was done for the
case of vectors.

This seems to be a general and very promising starting point to extend sim-
ple metrics on any type of structured object to structural metric transformations
naturally associated with its shape. In future work, we will explore these metric
transformations and study their induced geometricity-preserving transformations
to reveal the effect on the representation of the derived geometric crossovers.

Other metric transformations: Most of the metric transformations listed in
the introduction have corresponding syntactic crossover transformations, that
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can be used for other purposes than actually constructing new geometric cross-
overs. Indeed, we are currently using some of these transformations to attack the
following important open issue regarding geometric crossover. Given a geometric
crossover, there is in general more than one distance for which the crossover is
geometric (for example, cycle crossover is geometric under Hamming distance
and swap distance). The question is: is there a distance that can be said to be
the best distance to consider for a specific geometric crossover? If so, what is
this distance? The answer relies heavily on the notion of metric transformation.

5 Conclusions

In this paper we have extended the geometric framework introducing the no-
tion of product crossover. This is a very general result that allows one to build
new geometric crossovers customized to problems with mixed representations by
combining pre-existing geometric crossovers in a straightforward way. We have
presented this notion in the more general setting of metric transformations and
discussed promising future investigations. Using the product geometric crossover
theorem, we have also shown that traditional crossovers for symbolic vectors and
blend crossovers for integer and real vectors are geometric crossover.
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Abstract. For most combinatorial optimization problems the computa-
tional complexity of evaluating a single solution is much higher than the
cost of evaluating an incremental change made by a local search operator.
To benefit from this computational gain crossover can be implemented as
a path–following algorithm. As a result crossover becomes more similar
to path relinking. In this paper we compare the search bias of crossover
and path relinking for permutation problems where the absolute position
of the elements is decisive. Calculations show that uniform permutation
crossover (UPX) can reach many more permutations from a given parent
couple than path relinking. UPX is therefore more exploratory than ran-
dom path relinking, which is itself more exploratory than greedy path
relinking. It is important for users to understand the differences in search
bias of the operators so they can choose the exploration operator which
they deem most fit for their problem. We conclude with a small experi-
ment on an instance of the quadratic assignment problem.

1 Introduction

Genetic local search (GLS) (a.k.a. memetic algorithms) are among the best per-
forming search algorithms for several combinatorial optimization problems such
as graph coloring [5], bin packing [3], and quadratic assignment problems [8].
GLS algorithms belong to the class of metaheuristics. Metaheuristics are search
techniques that – following a problem independent strategy – try to improve the
effectiveness of local search algorithms. Their success depends on whether this
strategy - or search bias - coincides with the structure of the fitness landscape of
the problem instance. GLS algorithms act on a population of local optima that
are generated by a local search algorithm. GLS’s search is biased in two ways:

1. The search is focused on the set of best local optima encountered during
the optimization process. This bias is implemented by an elitist selection
method.

2. The search is also biased by the type of recombination operator applied to
generate new starting solutions for the local search.

In this paper we will discuss the latter type of search bias for permutation prob-
lems where the absolute position of the elements in the permutation are decisive.
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More particularly, we will analyze the differences and similarities between uni-
form permutation crossover, random path relinking, and greedy path relinking.
We apply these three exploration techniques to an instance of the quadratic as-
signment problem and measure how much they improve upon simple multi-start
local search.

The paper is organized as follows. In the next section we define some concepts
in permutation problems. Section 3 discusses the crossover and path relinking
operators. In Section 4 we compare the exploration operators experimentally on
an instance of the quadratic assignment problem. Finally, Section 5 concludes
this report.

2 Permutation Problems

To formalize our discussion we need to define the following concepts.

Definition 1. A permutation P of length n is a random ordering of the set
of integers {1, . . . , n}. P (i) with i ∈ {1, . . . , n} denotes the integer located at
position i in the permutation P .

Definition 2. The distance d(Pk, Pl) between two permutations Pk and Pl of
length n is equal to the number of positions where the two permutations have
different integer elements:

d(Pk, Pl) =
n∑

i=1

(1− δPk(i)Pl(i))

where δ(i, j) is the Kronecker delta function:

δij =
{

0 for i �= j
1 for i = j

Definition 3. A cycle between two permutations Pk and Pl is defined as a subset
of the integer elements that can be exchanged between the two permutations such
that two (new) valid permutations are obtained.

Example 1. The two permutations Pk and Pl

Pk: 1 2 3 4 5 6 7 8 9
Pl: 2 7 1 5 9 4 8 3 6

have two cycles: {1,2,3,7,8} and {4,5,6,9}. Exchanging one or both of the cycles
results in two valid permutations. For instance, exchanging the cycle {4,5,6,9}
leads to:

P ′
k: 1 2 3 5 9 4 7 8 6

P ′
l : 2 7 1 4 5 6 8 3 9
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Strictly speaking any individual element that occupies the same position in both
permutations represents a separate cycle. However we will focus on the elements
that are not shared by the two permutations and only talk about cycles if the
subset of integers has at least two elements.

Definition 4. The cycle distance c(Pk, Pl) between two permutations Pk and Pl

is equal to the number of cycles of size 2 or more between Pk and Pl.

Definition 5. A path PkPl between two permutations Pk and Pl is a sequence
of permutations Pi starting at Pk and ending at Pl where each permutation Pi

on the path is obtained by swapping two elements from the previous permutation
Pi−1 such that the distance to the goal permutation Pl is reduced:

PkPl = {Pk, P1, P2, . . . , Pi−1, Pi, . . . , Pl} | d(Pi−1, Pl) > d(Pi, Pl)

We call the number of permutations in a path PkPl the path length |PkPl|.
Obviously, it takes |PkPl| − 1 swaps to traverse a path of length |PkPl|.
Proposition 1. The path length |PkPl| of a path between two permutations Pk

and Pl that are a distance d(Pk, Pl) and a cycle distance c(Pk, Pl) apart from
each other is equal to d(Pk, Pl)− c(Pk, Pl) + 1.

Proof. To reduce the distance between a permutation and the goal permutation
at least one of the two swapped elements must be swapped to the location where
the element is located in the goal permutation. By the definition of a cycle this
means that swaps will only occur between elements of the same cycle. Therefore
the cycles remain independent of each other during the path creation. Only
when the 2 swapped elements form a cycle of size 2 both elements will be moved
simultaneously to their location in the goal permutation. As a result it will take
di − 1 swaps to reorder a cycle of size di to the goal cycle. Note that the sum of
the sizes di of the c(Pk, Pl) cycles equals the distance d(Pk, Pl). The path length
|PkPl| is one plus the total number of swaps needed to move from Pk to Pl or:

|PkPl| = 1 +
c(PkPl)∑

i=1

(di − 1) = 1 + d(Pk, Pl)− c(Pk, Pl) ��

Local search requires a neighborhood to be defined for a given solution. We
generate the neighborhood by swapping two elements of the permutation.

Definition 6. The swap neighborhood N(P ) of a permutation P is the set of
all permutations P ′ that are a distance d(P, P ′) = 2 from P :

N(P ) = {P ′ | ∃i, j ∈ {1, . . . , n}(i �= j) and ∀k �= i �= j ∈ {1. . . . , n} :

P ′(k) = P (k) and P ′(i) = P (j) and P ′(j) = P (i)

Obviously, the size of the neighborhood is

|N(P )| =
(

n

2

)
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3 Exploration Operators

It is often claimed that a disadvantage of crossover is that the generated child
has to be evaluated from scratch. For most combinatorial optimization prob-
lems the computational cost of evaluating a solution is typically an order O(n)
larger than incrementally updating the cost function after the application of a
single local search step. However this disadvantage is only an implementation
problem not a structural problem. It is straightforward to implement crossover
as a path–following algorithm relinking one (or two) parent(s) with the gener-
ated child. The solutions encountered on the path are of course also available
to the search process. When applying this path implementation, crossover be-
comes more similar to path relinking. It is important however to recognize their
different exploration behavior. Therefore we need to compute the number of per-
mutations that can be generated from a parent couple by the crossover and path
relinking.

3.1 Uniform Permutation Crossover

The standard uniform crossover (UX) operator randomly exchanges the elements
of two solutions. UX cannot be used for permutation problems since nearly
all offspring would not be valid permutations. The principle of UX is that it
preserves the common elements of the parents and generates a random sample
in the subspace where the two parents disagree. This principle can easily be
applied to permutation problems. We call the uniform permutation crossover
(UPX) the operator that preserves the common elements of two permutations
and generates a random permutation with the remaining elements. For instance,
crossing two permutations P1 and P2

P1: 1 2 3 4 5 6 7 8 9
P2: 2 7 1 4 5 6 8 3 9

might result in the offspring:

P ′: 7 3 2 4 5 6 8 1 9

Call Oupx(Pk, Pl) the set of permutations that can be generated from the
permutations Pk and Pl by applying uniform permutation crossover. Obviously,
the number of permutations - different from the parents - that can be generated
equals:

|Oupx(Pk, Pl)| = d(Pk, Pl)!− 2 (1)

3.2 Random Path Relinking

Path relinking for combinatorial optimization problems generate new solutions
by generating a path between two local optima. One optimum plays the role
of initiating solution while the other represents the guiding solution. Starting
from the initiating solution a series of local steps are taken each decreasing the
distance with the guiding solution.
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For our permutation problems the local steps are implemented by selecting
an element that has a different position in the guiding solution. The selected
element is then swapped with the element on that position thereby reducing
the distance between the permutation on the path and the guiding solution. For
instance if P1 is the initiating solution and P2 the guiding solution a possible
path could be:

P1: 1 2 3 4 5 6 7 8 9
↓ : 3 2 1 4 5 6 7 8 9
↓ : 3 2 1 4 5 6 8 7 9
↓ : 2 3 1 4 5 6 8 7 9
P2: 2 7 1 4 5 6 8 3 9

In random path relinking (RPR) the elements to be swapped are chosen ran-
domly from the set of possible elements. It is important to note that the elements
swapped will always belong to the same cycle. If a cycle i has length di(Pk, Pl)
then we need di(Pk, Pl)−1 swaps to reorder all elements in the cycle as specified
by the guiding permutation. For each cycle the number of different paths that
can be traveled equals di(Pk, Pl)(di(Pk, Pl)− 1)(di(Pk, Pl)− 2) . . . 3 = di(Pk,Pl)!

2 .
The number of different permutations that can be generated equals

|Orpr(Pk, Pl)| =
(

di(Pk, Pl)
1

)
+
(

di(Pk, Pl)
2

)
+ . . . +

(
di(Pk, Pl)

di(Pk, Pl)− 2

)

=
di(Pk,Pl)−2∑

j=1

(
di(Pk, Pl)

j

)
applying the binomial theorem gives us:

|Orpr(Pk, Pl)| = 2di(Pk,Pl) − di(Pk, Pl)− 2 (2)

3.3 Greedy Path Relinking

Random path relinking simply selects the next element to position correctly
at random. Greedy path relinking (GPR) also considers the effect on the cost
function and generates the path in a steepest descent direction. GPR explores all
possible single steps from the current permutation to the guiding permutation
and selects the swap that causes the largest decrease of the cost function. If we
ignore possible random tie breaking, GPR will generate a unique path from the
initiating and the guiding solutions.

For each cycle i the number of permutations on the path between permuta-
tions Pk and Pl equals di(Pk, Pl) + (di(Pk, Pl)− 1) + . . . + 3 or

|Ogpr(Pk, Pl)| =
1
2
di(Pk, Pl)(di(Pk, Pl) + 1)− 3 (3)

In figure 1 we have plotted the number of permutations that can be reached
by the UPX, RPR, and GPR operators as a function of the length of the cycles.
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Fig. 1. Number of reachable permutations as a function of the size of 1 cycle for UX,
RPR, and GPR

To obtain the total number of reachable permutations the values for each cycle
needs to be added together. Clearly, the number of permutations that can be
generated by the three operators varies significantly from each other (note the
log scale). The number of permutations that can be explored by UPX is vastly
larger than the number of permutations available to the path relinking operators.

4 Quadratic Assignment Problem

4.1 QAP

As shown in the previous section, uniform permutation crossover, random path
relinking, and greedy path relinking occupy an outspokenly different position
on the exploration/exploitation trade-off scale. To illustrate what effect this
might have on a given problem we have run the three operators on an instance
of the quadratic assignment problem (QAP). The QAP is a notoriously hard
combinatorial optimization problem and is relevant for a number of real world
problems [2].

Formally, we are given two n× n matrices A and B. An intuitively clear way
to think about the QAP is to consider a set of n facilities that has to be placed
at a set of n locations. The elements of the first matrix A(i, j) then represent
the distance between location i and location j, while the elements of the second
matrix B(i, j) represent the flow of material between facility i and facility j.
The permutation P (P (i) ∈ {1, . . . , n}) denotes the assignment of facilities to
locations: P (k) = m means that facility k is located at location m. The cost
function C(P ) that needs to be minimized is specified as:

C(P ) =
n∑

i=1

n∑
j=1

A(i, j)B(P (i), P (j)) (4)
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When both matrices A and B are symmetric and have a null diagonal the effect
of swapping two elements can be calculated incrementally [11]. This incremental
cost evaluation only takes O(n) time and is given by:

ΔC(Pk, Pl) = C(Pk)− C(Pl)

= 2
n∑

i=1,i�=k,l

(A(k, i)−A(l, i))(B(P (k), P (i)) −B(P (l), P (i)))

4.2 QAP Instance

Many QAP instances found in benchmarks have rather uncorrelated fitness land-
scapes which makes them uninteresting for investigating the effect of different
exploration/exploitation trade-off biases [8]. In fact when there is no structural
correlation between local optima no metaheuristic algorithm will improve upon a
simple multi-start local search approach. Here we performed experimental tests
on a QAP problem instance proposed by Merz and Freisleben [8]. The instance
is constructed in such a way that it shows a high correlation and a correlation
length close to n/2. The distance matrix A of each instance is generated by ran-
domly picking n points in the unit square: [0 . . . 1]× [0 . . .1]. The distance A(i, j)
is then defined as 100 times the Euclidean distance between the points i and j.
For the matrix B another set of n random points is created in the unit square.
The flow B(i, j) is now defined as 100 times the Euclidean distance between the
points i and j if this distance is lower than a threshold Dmax. If the distance is
larger than the threshold the matrix entry B(i, j) is set to zero. Note that both
the matrices A and B in this class of QAP instances are symmetric and have
zero diagonal so we can apply the incremental cost evaluation equation. Note also
that the matrix entries obey the triangle inequality, a property usually present
in real-world QAP problems but often lacking in randomly generated benchmark
problems.

4.3 Experiment

We compare the performance of UPX, RPR, and GPR when embedded in a
steady-state genetic local search algorithm using family competition. The popu-
lation consists of local optima obtained by running the best-improvement local
search algorithm with the 2-swap neighborhood. Two parents are randomly se-
lected and a single offspring is generated by applying the exploration operator
(either UPX, RPR, or GPR) and the local search algorithm. If the child has a
lower cost than any of its two parents it replaces the worst parent. The offspring
is created by constructing a path from one parent to the other in case of path
relinking, or from one parent to the permutation created by UPX. If there ex-
ists a permutation P ′ on the path whose cost is lower than the cost of the two
parents then the local search is started from that permutation. If there is no
such permutation the local search will be started from a permutation randomly
selected on the path.
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ExplorePath(Pk, Pl)
1 −−→

PkPl ← ConstructPath(Pk, Pl)
2 if ∃j : C(−−→PkPl(j)) < MIN(C(Pk), C(Pl))
3 then Pn ← LocalSearch(−−→PkPl(j))
4 else r ← Random(2, D(Pk, Pl)− 2)
5 Pn ← LocalSearch(−−→PkPl(r))
6 return Pn

The experiment is run on 5 QAP problem instances of size n = 50 and thresh-
old Dmax = 0.5. The population size is N = 50. Each algorithm is allowed to
call 1000 times the best-improvement 2-swap local search algorithm.

The multi-start local search (MLS) generates 1000 independent local optima.
In the table we have also shown how many times the solution with minimal
cost has been generated out of 1000 trials. For instance for the QAP instance
pmd50(1) the solution with cost 1199982.1 has been generated 8 times.

pmd50(1) pmd50(2) pmd50(3) pmd50(4) pmd50(5)
MLS
min 1199982.1 (8) 1118525.1 (1) 976220.75 (1) 1032839.2 (2) 1105732.5 (1)
mean 1253089.7 1153414.6 1022104.3 1074863.2 1148721.5
std 39682.2 28167.8 21319.3 25837.3 31932.1

UPX
min 1199982.1 (10) 1118231.6 (4) 925761.3 (7) 1002052.5 (2) 1028371.3 (2)
mean 1199982.1 1128492.8 989726.4 1040764.5 1113962.4
std 0 9285.6 52197.3 23498.2 73401.3

RPR
min 1199982.1 (10) 1118231.6 (6) 925761.3 (8) 1001836.2 (1) 1028371.3 (3)
mean 1199982.1 11254272.2 975382.4 1034374.5 1078462.4
std 0 7571.3 43672.1 19875.3 52668.3

GPR
min 1199982.1 (10) 1118231.6 (8) 925761.3 (10) 1001836.2 (3) 1035827.4 (7)
mean 1199982.1 1122322.8 925761.3 1030352.6 1067834.4
std 0 5150.4 0 156821.2 29851.8

The three exploration operators UPX, RPR, and GPR are run for 10 in-
dependent runs (each calling the local search method 1000 times). The number
between parentheses after the minimal cost values shows the number of runs that
reached this value. It is clear from the table that UPX, RPR, and GPR improve
upon multi-start local search. This is as expected since the local optima of these
QAP instances have a correlated structure. For most instances the GPR reaches
the minimal cost permutation more often and has a lower standard deviation.
However for the instance pmd50(5) UPX and RPR found a better assignment
than GPR. Apparently, for this problem instance the greedy nature of GPR is
misled and the more exploratory operators UPX and RPR are able to find lower
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cost solutions. Even from this small experimental test it is clear that none of
the three search methods is consistently better than the others. Of course, this
limited set of experiments does not give us enough data to draw any firm conclu-
sions. In future work we intend to set up a full experimental study to highlight
the similarities and differences between the path–following implementation of
crossover and path relinking.

5 Conclusion

We have discussed the use of uniform permutation crossover, random path re-
linking, and greedy path relinking for permutation problems where the absolute
position of the elements is decisive. By implementing UPX as a path–following
algorithm crossover can also benefit from efficient incremental cost evaluations.
As a result crossover becomes more similar to path relinking and we have calcu-
lated the number of permutations that can be reached by crossover versus ran-
dom and greedy path relinking. These calculations showed that UPX is a more
exploratory operator than random path relinking which is itself more exploratory
than greedy path relinking. Performing more exploration and less exploitation
(or vice versa) changes the search bias of the metaheuristic. It is important for
users to realize the differences in search bias of the operators so they can choose
the exploration operator which they deem most fit for their problem.
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Abstract. This paper extends a geometric framework for interpreting
crossover and mutation [5] to the case of sets and related representations.
We show that a deep geometric duality exists between the set represen-
tation and the vector representation. This duality reveals the equivalence
of geometric crossovers for these representations.

1 Introduction

Sets, multisets and partitions are natural representations for many important
combinatorial optimization problems such as grouping problems, graph coloring
and so on. The set representation for evolutionary algorithms was theoretically
studied by Radcliffe [9] within his forma analysis framework.

Geometric crossover and geometric mutation are representation-independent
search operators that generalize many pre-existing search operators for the major
representations used in evolutionary algorithms, such as binary strings [5], real
vectors [5], permutations [7], syntactic trees [6] and sequences [8]. They are
defined in geometric terms using the notions of line segment and ball. These
notions and the corresponding genetic operators are well-defined once a notion
of distance in the search space is defined. Defining search operators as functions
of the search space is opposite to the standard way [3] in which the search space
is seen as a function of the search operators employed. This viewpoint greatly
simplifies the relationship between search operators and fitness landscape and
has allowed us to give simple rules-of-thumb to build crossover operators that
are likely to perform well.

In this paper we use the geometric framework [5] to study and design crossover
operators for the set representation and related representations such as multi-
sets and partitions for the fixed-size and variable-size variants. We also show an
illuminating isometric duality between the spaces associated to the set represen-
tation and the vector representation that enables us to prove the equivalence of
geometric crossovers for these representations.

The paper is organised as follows. In section 2 we present the geometric frame-
work. In section 3, we extend it to sets, multisets and partitions of variable-size.
In section 4, we consider the fixed-size case. In section 5, we illustrate the duality
between sets and vectors. In section 6, we draw some conclusions.
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2 Geometric Framework

2.1 Geometric Preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [5] and [6]. The following definitions are taken from [2].

The terms distance and metric denote any real valued function that conforms
to the axioms of identity, symmetry and triangular inequality. A simple con-
nected graph is naturally associated to a metric space via its path metric: the
distance between two nodes in the graph is the length of a shortest path between
the nodes.

In a metric space (S, d) a line segment (or closed interval) is the set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called extremes
of the segment. Metric segment generalises the familiar notion of segment in
the Euclidean space to any metric space through distance redefinition. Notice
that a metric segment does not coincide with the shortest path connecting its
extremes (geodesic) as in an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is the union of
all geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape.

2.2 Geometric Crossover Definition

The following definitions are representation-independent and, therefore, applica-
ble to any representation.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
is a geometric crossover where all z laying between parents x and y have the same
probability of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])
|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been
derived in [5] where we also showed that traditional crossover is geometric under
Hamming distance. In previous work we have also studied various crossovers for
permutations, revealing that PMX, a well-known crossover for permutations, is
geometric under swap distance. Also, we found that Cycle crossover, another
traditional crossover for permutations, is geometric under swap distance and
under Hamming distance.
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3 Geometric Crossover for Variable-Size Sets, Multi-sets
and Partitions

We consider problems where solutions are naturally represented as sets of objects
taken from a reference set (universal set). We also consider the simple extension
to multi-sets, sets that are allowed to contain repetitions of the same object. A
set can be seen also as a bipartition of the universal set (objects in the set and
remaining objects in the universal set). A natural extension of the notion of set
in this sense is to consider generic multi-partitions of the universal set. We will
study this case too.

There is a further aspect of the set representation that has a major impact
on the associated geometric crossovers: the search being restricted to fixed-size
sets versus the variable-size case. In this section, we study sets, multi-sets and
partitions for the easier variable-size case. In section 4, we consider the fixed-size
case.

3.1 Distances and Crossover for Sets

Let U be the universal set and A, B ⊆ U . The symmetric distance between sets
is d(A, B) = |AΔB| where AΔB = A ∪ B \ A ∩ B is the symmetric difference
between sets. The symmetric distance is a metric [2]. When A = B, d(A,B)=0;
when A ∩ B = ∅, A and B are at maximum distance and d(A, B) = |A| + |B|.
The ins/del edit distance between A and B is the minimum number of elements
that need to be deleted or inserted for A to be transformed into B (and vice
versa).

Theorem 1. The symmetric distance is the same as the ins/del edit distance.

Proof. The edit distance corresponds to the symmetric distance because the
minimum number of elements that need to be deleted from A are |A \B| and of
those that need to be added are |B\A|. It is easy to see that d(A, B) = |AΔB| =
|A \B|+ |B \A|.
Corollary: since any edit distance is a metric [1], theorem 1 proves also that
the symmetric distance is a metric.

Theorem 2. Given two parent sets A and B any recombination operator OP
that returns offspring O such as A ∩ B ⊆ O ⊆ A ∪ B is geometric crossover
under symmetric distance.

Proof. Proving geometricity under symmetric distance is equivalent to proving
geometricity under ins/del edit distance. Any intermediate set C on the minimal
ins/del move path to transform A into B is between A and B (in the segment
[A, B]) under ins/del edit distance (see Fig. 1). Every O such that A ∩ B ⊆
O ⊆ A ∪ B belongs to such a path because: A can be transformed into B by
inserting in A the elements O \A, removing from A the elements A\O and then
by inserting in B the elements B \O, and removing from B the elements O \B.
So d(A, O) = |O \A|+ |A \O| and d(B, O) = |O \B|+ |B \O|
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Fig. 1. Venn diagram linking offspring set and parent sets

Example. Let U = {a, b, c, d} be the universal set and A = {a, b} and B = {b, c}
two parent sets such that A, B ⊆ U . The symmetric distance between A and B is
dΔ(A, B) = |A\B|+|B\A| = 1+1 = 2. Let GXΔ be a geometric crossover under
symmetric distance. Any offspring O of A and B, O = GXΔ(A, B), respects the
condition A ∩B ⊆ O ⊆ A ∪B. So, in our example we have: {b} ⊆ O ⊆ {a, b, c}.
These are the sets: {b}, {a, b}, {b, c}, {a, b, c}. It is easy to verify that every O is in
the segment between A and B under dΔ. For example if we consider O = {a, b, c}
we have dΔ(A, O) + dΔ(O, B) = (0 + 1) + (1 + 0) = 2 = dΔ(A, B).

3.2 Distances and Crossover for Multi-sets

A multi-set (sometimes also called a bag) differs from a set in that each member
has a multiplicity, which is a natural number indicating how many times it
occurs in the multi-set. A multi-set can be formally defined as a pair (A, m)
where A is some set and m : A → N is a function from A to the set of natural
numbers N. The set A is called the underlying set of elements. The size of the
multi-set (A, m) is the sum of all multiplicities for each element of A: |(A, m)| =∑

a∈A m(a). A submultiset (B, n) of a multiset (A, m) is a subset B ⊆ A and a
function n : B → N such that ∀b ∈ B : n(b) ≤ m(b). The usual operations of
union and intersection for sets can easily be generalized to multisets. Suppose
(A, m) and (B, n) are multisets. The union can be defined as (A ∪B, f) where
f(x) = max{m(x), n(x)}. The intersection can be defined as (A ∩ B, f) where
f(x) = min{m(x), n(x)}.

Hence we can define the symmetric difference between multisets as (AΔB, f)
where f(x) = max{m(x), n(x)} −min{m(x), n(x)} = |m(x) − n(x)|. The sym-
metric distance for multisets becomes d((A, m), (B, n)) = |(A, m)Δ(B, n)| =∑

x∈AΔB |m(x) − n(x)|. The symmetric distance between multisets can be seen
as a simple generalization of the ins/del edit distance for sets in which the edit
move becomes the insertion or deletion of a single occurrence of an element.

The geometricity theorem for sets under symmetric distance can be extended
to the case of multisets. Given two parent multisets (A, m) and (B, n) any re-
combination operator OP that returns offspring (O, f) such as (A, m)∩(B, n) ⊆
(O, f) ⊆ (A, m) ∪ (B, n) is geometric crossover under symmetric distance.

Example. Let U = {a, b, c, d} be the universal set, A = {a, b} and B = {b, c}
be two sets such as A, B ⊆ U . Let us consider the parent multiset MA =
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{a, a, b} = (A, m) where m(a) = 2 and m(b) = 1 and the parent multiset
MB = {b, b, c, c} = (B, n) where n(b) = 2 and n(c) = 2. Their sizes are |MA| = 3
and |MB| = 4. Their union is MA ∪MB = (A, m) ∪ (B, n) = (A ∪ B, f) where
f = max(m, n). In our example we have MA∪MB = {a, a, b, b, c, c}. Their inter-
section is MA ∩ MB = (A, m) ∩ (B, n) = (A ∩ B, f) where f = min(m, n).
In our example we have MA ∩ MB = {b}. Their symmetric difference is
MAΔMB = (AΔB, f) where f = max(m, n) − min(m, n). In our example
we have MAΔMB = {a, a, b, c, c}. The symmetric distance between MA and
MB is, therefore, dΔ(MA, MB) = |MAΔMB| = 5. Let GXΔ be a geometric
crossover under symmetric distance for multisets. Any offspring MO of MA and
MB, MO = GXΔ(MA, MB), respects the condition MA∩MB ⊆ MO ⊆ MA∪MB.
So, in our example we have: {b} ⊆ MO ⊆ {a, a, b, b, c, c}. Thus, any multiset
MO = (O, f) such as 0 ≤ f(a) ≤ 2, 1 ≤ f(b) ≤ 2, 0 ≤ f(c) ≤ 2 is a possible
offspring of MA and MB.

3.3 Distances and Crossover for Partitions

In this paper we restrict our focus on partitioning problems with labeled parti-
tions and a fixed number of partitions. In this section we consider the case where
the same partition may have different size in different solutions. In section 4 we
will consider the case in which all solutions are required to have the same size
for the same partition.

A partition of a set X is a division of X into non-overlapping subsets that
cover all of X . When the set X is partitioned into n subsets we say that they
form a n-partition of X . A n-partition generalizes the notion of set A seen as
partitioning the universal set U in two subsets A and A (bipartition).

The symmetric distance between two n-partitions A = {A1, . . . , An} and
B = {B1, . . . , Bn} of a set X is a simple generalization of the symmetric distance
for sets: d(A,B) =

∑
|AiΔBi|.

The edit distance between two n-partitions is a natural generalization of
the ins/del edit distance for sets. We define the edit distance between two n-
partitions as the minimum number of edit moves to transform one partition into
the other where the edit move considered is moving one element from one subset
to another. This edit move transforms a partition of X into another partition
of X for which the conditions of full coverage of X and mutual exclusivity of
subsets are respected. This edit distance is a generalization of the ins/del edit
distance for sets in that when one considers a set A as a bipartition of the uni-
versal set U into A and A, inserting or deleting one element from A implies
respectively deleting or inserting the same element in A. So, this is equivalent
of moving one element from A to A. The symmetric distance between partitions
does not equal their ins/del edit distance (although these distances are related).

Example. Let X = {a, b, c, d} be the universal set (the set to be parti-
tioned), and be A = ({a, b}, {c, d}) and B = ({b, c, d}, {a}) two ordered (or
labeled) bipartitions of X . Since we consider ordered partitions, ({a, b}, {c, d}) �=
({c, d}, {a, b}). The edit distance between A and B is the minimum number of
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elements that need to be transferred from one subset to another to transform
A into B (or viceversa). In our case, in order to transform A into B, we need
to transfer c and d from the second subset to the first subset and transfer a
from the first subset to the second for a total of 3 edit moves. So the edit dis-
tance ed(A,B) = 3. The geometric crossover under edit distance requires the
offspring partition O = (O1, . . . , On) to satisfy ∀i : Ai ∩ Bi ⊆ Oi ⊆ Ai ∪ Bi.
Notice that the sets Oi needs to form a partition of X hence need to be chosen
so as to be non-overlapping and covering X completely (so their choices cannot
be made independently). In our example we have {b} ⊆ O1 ⊆ {a, b, c, d} and
∅ ⊆ O2 ⊆ {a, c, d}. Considered independently, O1 can be any subset of X in-
cluding b (8 possible subsets) and O2 can be any subset of {a, c, d} (8 possible
subsets). However since O1 and O2 need to form a partition of X , we have only
8 choices (and not 82) which are O = (O1, O1) where {b} ⊆ O1 ⊆ {a, b, c, d}.

4 Geometric Crossover for Fixed-Size Sets, Multi-sets
and Partitions

Substitution Edit Distance. Let U be the universal set and Xn the set of all
subsets of U of size n, Xn = {A : A ⊆ U, |A| = n}, and let A, B ∈ Xn.

The edit distance between sets under element substitution move between A
and B is the minimum number of elements of A that need to be substituted
with an element in U \ A to be transformed into B (or vice versa). Since this
distance is an edit distance it is a metric.

For any two sets of the same size, their ins/del edit distance is twice their
substitution edit distance because every substitution is equivalent to one deletion
and one insertion operation and there are no shorter ways to transform one set
into another of the same size using deletions and insertions. The substitution edit
distance is well-defined only for sets of the same size because sets of different
size cannot be transformed into each other by substitutions only.

Geometric Crossover Under Substitution Edit Distance. Given two par-
ent sets A, B ∈ Xn any recombination operator OP that returns offspring O ∈ Xn

such that A ∩ B ⊆ O ⊆ A ∪ B is geometric crossover under substitution edit
distance. So, this geometric crossover is a geometric crossover under ins/del edit
distance restricted to sets of size n.
Proof: If we restrict the image set of a geometric crossover from X to S ⊆ X
we obtain a new geometric crossover that for any two parents a, b ∈ S returns
offspring in [a, b]∩S. So, restricting the geometric crossover associated to ins/del
edit distance from the set 2U to the set Xn ⊆ 2U , we obtain a new geometric
crossover based on the ins/del distance that returns offspring of the same size of
the parents.

This restricted crossover is also geometric crossover under substitution edit
distance because given A, B ∈ Xn, O ∈ [A, B] under ins/del edit distance iff
O ∈ [A, B] under substitution edit distance because ins/del edit distance is
twice of substitution edit distance and proportional metrics have the same metric
intervals.
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Example. Let U = {a, b, c, d} be the universal set and A = {a, b} and B = {b, c}
two parent sets such as A, B ⊆ U . The substitution edit distance between A and
B is dsub(A, B) = 1: A can be transformed into B by substituting a single
element in A, the element b with c. Their ins/del edit distance, which equals
their symmetric distance, is dΔ(A, B) = 2 · dsub(A, B) = 2.

Any offspring O of A and B by geometric crossover under ins/del edit distance
GXΔ, O = GXΔ(A, B), respects the condition A ∩ B ⊆ O ⊆ A ∪ B. These are
the sets: {b}, {a, b}, {b, c}, {a, b, c}. The offspring obtained by geometric crossover
under substitution edit distance are those that have the same parent size, size
2 in this case: {a, b}, {b, c}. They are in the segment between parents A and B
under substitution edit distance (in this case the only offspring are the parents
themselves).

5 Geometric Duality of Sets and Vectors

In this section we show that the same metric spaces considered in section 3
and 4, arising from the set and related representations, arise from the vector
representation and permutations with repetitions. In other words, set spaces
and vector spaces are isometric. This enables us to show that the geometric
crossovers considered in section 3 and 4 for sets, multi-sets and partitions all
have equivalent dual geometric crossovers based on vectors in the variable-size
case and on permutations with repetitions in the fixed-size case (see Table 1).

5.1 Dual Equivalence of Geometric Crossovers for Sets and Vectors

Geometric crossovers based on isometric spaces are equivalent. The space of sets
endowed with the symmetric distance is isometric to the space of vectors endowed
with Hamming distance. Hence, symmetric crossover for sets is equivalent to
the traditional crossover for vectors. In the following, we prove the duality and
illustrate it with an example.

Definition 4. (Indicator function) The indicator function of a subset A of a

set U is a function IA : U → {0, 1} defined as IA(x) =
{

1 if x ∈ A,
0 if x /∈ A.

Definition 5. (Isometry) Let X and Y be metric spaces with metrics dX and
dY . A map f : X → Y is called distance preserving if for any x, y ∈ X one has
dY (f(x), f(y)) = dX(x, y). A distance preserving map is automatically injective.
A global isometry is a bijective distance preserving map. Two metric spaces X
and Y are called isometric if there is a global isometry from X to Y .

Let U be the universal set, dΔ the symmetric distance between sets and M =
(2U , dΔ) the metric space based on the set of all subsets of U together with the
symmetric distance.

Let IA be the indicator function of A ⊆ U where U = {x1, · · · , xn} and VA

be the vector (IA(x1), · · · , IA(xn)). The map V : A → VA mapping a set A and
its indicator values vector VA is bijective.
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Table 1. Crossovers dual equivalence

PRIMAL DUAL
Representation: Sets - variable size Binary vectors
Map: Indication function
Distance: Ins/del edit distance Hamming distance
Crossover: Inter/union crossover Traditional crossover
Representation: Sets - fixed size Binary permutations with repetitions
Map: Indication function
Distance: Substitution edit distance Permutation swap edit distance
Crossover: Inter/union crossover Sorting crossover by swap

restricted to fixed size
Representation: Multisets - variable size Integer vectors
Map: Multiplicity function
Distance: Ins/del edit distance Absolute value distance
Crossover: Inter/union crossover Integer blending crossover
Representation: Multisets - fixed size Integer distributions
Map: Multiplicity function
Distance: Substitution edit distance Absolute value distance
Crossover: Inter/union crossover Integer blending crossover

restricted to fixed size restricted to constant sum
Representation: Partitions - variable structure Multary vectors
Map: Partition label function
Distance: Partition move edit distance Hamming distance
Crossover: Partitionwise inter/union crossover Traditional crossover

restricted to mutual exclusion
restricted to complete covering

Representation: Partitions - fixed structure Permutations with repetitions
Map: Partition label function
Distance: Partition swap edit distance Permutation swap edit distance
Crossover: Partitionwise inter/union crossover Sorting crossover by swaps

restricted to mutual exclusion
restricted to complete covering
restricted to same structure

Representation: n-partitions of set size n Permutations
Map: Partition label function
Distance: Partition swap edit distance Permutation swap edit distance
Crossover: Partitionwise inter/union crossover Sorting crossover by swaps,

restricted to mutual exclusion PMX, Cycle crossover
restricted to complete covering
restricted to single element subsets

Let M ′ = ({0, 1}n, dH) be the metric space of the binary vectors of size n
endowed with the Hamming distance dH .

Theorem 3. The metric spaces M = (2U , dΔ) and M ′ = ({0, 1}n, dH) are
isometric.

Proof. It is sufficient to prove that the the map V : A → VA is a dis-
tance preserving map. It is immediate to see that for any A, B ⊆ U we have
dΔ(A, B) = dH(VA, VB). To transform A into B with the minimum number of
ins/del operations, the elements that need to be inserted into A are those xi
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for which VA(i) = 0 and VB(i) = 1 and the elements that need to be deleted
from A are those xj for which VA(j) = 1 and VB(j) = 0. These are the only
positions in which VA and VB differ. Since V is bijective, the opposite implica-
tion, VA, VB ∈ {0, 1}n : dΔ(V −1(VA), V −1(VB)) = dH(VA, VB), is also true. This
completes the proof.

Example. Let A = {a, b} and B = {b, c, d}. Their offspring O obtained by
geometric crossover under symmetric distance are {b} ⊆ O ⊆ {a, b, c, d}. Dually,
for the set A the vector of the values of the indicator function is VA = (1, 1, 0, 0)
and for B is VB = (0, 1, 1, 1). The set of their offspring under traditional crossover
is the schema (∗, 1, ∗, ∗). For the duality, these offspring vectors correspond to
the offspring sets above via their indicator functions as it is easy to verify.

5.2 Interesting Uses of the Duality

Thanks to these results we can use the two representations interchangeably. In
particular, we can use the most convenient representation, knowing that the
search done in one space is equivalent to the search in the other. For example,
it is more convenient to work with partitions of both variable structure or fixed
structure in their dual spaces based on permutations with repetitions because
the constraints of mutual exclusion, full covering and structure preserving are
much easier to deal with in operators defined on this space. We have exploited
this property in previous work on the graph partitioning problem [4]. On the
other hand, it may be more convenient to work with sets of small size (small
compared to the size of the universal set) rather than on their dual vectors of
fixed size (all the same size of the universal set).

6 Conclusions

We have considered three related representations – sets, multisets and partitions
– in their variable size and fixed size variants.

For the variable size case we have considered the ins/del edit distance, that
for sets corresponds to the symmetric distance, and its extensions to the case of
multi-sets and partitions, for which it becomes the move edit distance.

We have shown that the geometric crossovers associated to the ins/del edit
distance for sets is a crossover that requires offspring to be supersets of the
intersection of the two parent sets and subsets of their union. The geometric
crossovers associated to the ins/del distance for multisets and partitions are
simple extensions of the inter/union crossover for sets.

For the fixed size case we have considered the substitution edit distance, that
is equivalent to the ins/del edit distance when restricted to set of fixed size.
Therefore, geometric crossover under substitution edit distance is a restricted
version of the inter/union crossover where all offspring are required to have
fixed size. The geometric crossover associated to multisets and partitions for the
fixed size case are analogous to the restricted inter/union crossover for sets.
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We have proved a duality between geometric crossover for sets, multisets and
partitions on the one hand, and binary strings, integer vectors, and permutations
with repetitions on the other. Interestingly, this allows the interchangeable use of
representations and operators, being equivalent in terms of search, but exploiting
their differences in terms of expressing constraints.
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Abstract. Surrogate ranking in evolutionary computation using ordinal regres-
sion is introduced. The fitness of individual points is indirectly estimated by
modeling their rank. The aim is to reduce the number of costly fitness evaluations
needed for evolution. The ordinal regression, or preference learning, implements
a kernel-defined feature space and an optimization technique by which the margin
between rank boundaries is maximized. The technique is illustrated on some clas-
sical numerical optimization functions using an evolution strategy. The benefits of
surrogate ranking, compared to surrogates that model the fitness function directly,
are discussed.

1 Introduction

Evolutionary computation is a biologically inspired iterative process where a popula-
tion of search points is produced generation after generation. Through parent points
a typical evolutionary algorithm will generate a number of new candidate points by
reproduction, recombination and mutation. The best of these points will replace some if
not all parent points through a selection process. The selection process generally uses an
objective function similar to that used in classical methods of search and optimization.
In this case the function is referred to as the fitness function. However, unlike classical
optimization techniques, the method for selecting the best candidates in evolutionary
computation requires only the rank (or partial rank) of the candidates1. Alternatively
the selection process may be the result of co-evolution where individual points compete
for reproduction. In this case there is no explicit fitness function defined, but rather an
indirect method of evaluating whether one point is preferable to another.

The current approach in fitness approximation for evolutionary computation involves
building surrogate fitness models directly using regression. For a recent review of the
state-of-the-art see [1,2,3]. The fitness model is based on a set of evaluated points
called the training set. The surrogate model is used to predict the fitness of candidate
search points. Commonly a fraction of points are selected and evaluated within each
generation (or over some number of generations [4]), added to the training set, and
used for updating the surrogate. The goal is to reduce the number of costly true fitness
evaluations while retaining a sufficiently accurate surrogate during evolution. Direct
models of the fitness function are only possible when a fitness function can be defined.
Current methods are therefore unsuitable for co-evolution and interactive evolution.
For example, co-evolution has been used to evolve game playing strategies, where

1 The exception is fitness proportionate selection which is rarely used in practice.
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two or more strategies compete by playing a number of games against each other. In
interactive evolution a human user may be used to rank candidate points. The approach
presented here, based on ordinal regression, is applicable to the cases where no explicit
or computable fitness function is available.

In evolutionary computation the surrogate approach should be considered as a pref-
erence learning task, where a candidate point xi is said to be preferred over xj if
xi has a higher fitness than xj . The training set for the surrogate model is therefore
composed of pairs of points (xi,xj)k and a corresponding label tk ∈ [1,−1], taking
the value +1 (or −1) when xi has a higher fitness than xj (or vice versa). The direct
fitness approximation approach does not make full use of the flexibility inherent in
the ordering requirement. In classical optimization regression is necessary when the
method of search is gradient based, see for example [5]. Evolutionary optimization is
a stochastic and direct search method where only the full or partial ordering of the
search points is needed. For this reason an ordinal regression offers sufficiently detailed
surrogates for evolutionary computation.

The technique presented for ordinal regression is kernel based. This implies that
the technique can be readily applied to different data types as long as a kernel can
be defined. For example, the search points may be represented by a tree or variable
length strings. Section 2 describes the method of ordinal regression using kernel-defined
features. The technique is illustrated and tested in section 3 using various kernels to fit
Rosenbrock’s function. In section 4 a strategy for updating the surrogate during search
is discussed and its effectiveness illustrated using the CMA-ES [6] on some numerical
optimization functions. This is followed by a discussion and conclusion.

2 Ordinal Regression

The preference learning task of ordinal regression presented here is a variation of the
work presented in [7,8]. The modification relates to how the point pairs are selected and
the fact that a 2−norm soft margin support vector machine (SVM) is used2. The training
pairs are selected to reflect the fact that a full ranking surrogate model is required for
the work presented here. It is also possible to select the pair by random sampling as is
done in [7].

The ranking problem is specified by a set S = {(xi, yi)}�
i=1 ⊂ X × Y of point/rank

pairs, where Y = {r1, . . . , r�} is the outcome space with ordered ranks r1 > r2, >
. . . > r�. Now consider the model space H = {h(·) : X �→ Y } of mappings from
points to ranks. Each such function h induces an ordering 3 on the points by the
following rule:

xi 3 xj ⇔ h(xi) > h(xj) (1)

where the symbol 3 denotes “is preferred to”. In ordinal regression the task is to
obtain function h∗ that can for a given pair (xi, yi) and (xj , yj) distinguish between
two different outcomes: yi > yj and yj > yi. The task is therefore transformed into

2 Initial experiments using the 1−norm soft margin SVM were not entirely satisfactory. This was
found to be due to the quadratic programming solver used in the experiments (the PR LOQO
optimizer by A. Smola).
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the problem of predicting the relative ordering of all possible pairs of examples [7,8].
However, it is sufficient to consider only all possible pairs of adjacent ranks, see also
[9] for yet an alternative formulation. The training set, composed of pairs, is then as
follows:

S′ =
{
(x(1)

k ,x(2)
k ), tk = sign(y(1)

k − y
(2)
k )

}�′

k=1

where (y(1)
k = ri)∧(y(2)

k = ri+1) (and vice versa (y(1)
k = ri+1)∧(y(2)

k = ri)) resulting
in �′ = 2(�−1) possible adjacently ranked training pairs. The rank difference is denoted
by tk ∈ [−1, 1].

In order to generalize the technique to different point data types and model spaces an
implicit kernel-defined feature space with corresponding feature mapping φ is applied.
Consider the feature vector φ(x) = [φ1(x), . . . , φm(x)]T ∈ Rm where m is the number
of features. Then the surrogate considered may be defined by a linear function in the
kernel-defined feature space:

h(x) =
m∑

i=1

wiφi(x) =
〈
w · φ(x)

〉
. (2)

The aim is now to find a function h that encounters as few training errors as possible
on S′. Applying the method of large margin rank boundaries of ordinal regression
described in [7], the optimal w∗ is determined by solving the following task:

min
w

1
2

〈
w ·w

〉
+ C

2

�′∑
k=1

ξ2
k (3)

subject to tk
〈
w · (φ(x(1)

k )− φ(x(2)
k )

〉
≥ 1− ξk and ξk ≥ 0, k = 1, . . . , �′. The degree

of constraint violation is given by the margin slack variable ξk and when greater than 1
the corresponding pair are incorrectly ranked. Note that

h(xi)− h(xj) =
〈
w · (φ(xi)− φ(xj))

〉
(4)

and that minimizing
〈
w · w

〉
maximizes the margin between rank boundaries, in our

case the distance between adjacently ranked pair h(x(1)) and h(x(2)).
In terms of the training data, the optimal w∗ can be expressed as:

w∗ =
�′∑

k=1

α∗tk
(
φ(x(1)

k )− φ(x(2)
k )

)
(5)

and the function h may be reconstructed as follows:

h(x) =
〈
w∗ · φ(x)

〉
=

�′∑
k=1

α∗tk
(〈

φ(x(1)
k ) · φ(x)

〉
−
〈
φ(x(2)

k ) · φ(x)
〉)

=
�′∑

k=1

α∗tk
(
κ(x(1)

k ,x)− κ(x(2)
k ,x)

)
(6)
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where κ(x, z) =
〈
φ(x) · φ(z)

〉
is the chosen kernel and α∗

k are the Lagrangian multi-
pliers for the constraints that can be determined by solving the dual quadratic program-
ming problem:

max
α

�′∑
k=1

αk − 1
2

�′∑
i=1

�′∑
j=1

αiαjtitj
(
K(x(1)

i ,x(2)
i ,x(1)

j ,x(2)
j ) + 1

C δij

)
(7)

subject to
∑�′

k=1 αktk = 0 and 0 ≤ αk, k = 1, . . . , �′, where K(x(1)
i ,x(2)

i ,x(1)
j ,x(2)

j )

= κ(x(1)
i ,x(1)

j ) − κ(x(1)
i ,x(2)

j ) − κ(x(2)
i ,x(1)

j ) + κ(x(2)
i ,x(2)

j ), where δij is the Kro-
necker δ defined to be 1 if i = j and 0 otherwise [10].

The following section illustrates the technique on a simple problem using common
kernels. It is also discussed how the accuracy of the surrogate is evaluated.

3 Model Selection

Model selection in surrogate ranking involves choosing a kernel and it parameters.
Furthermore, the regulation parameter C in (3) controlling the balance between model
complexity and training errors must be chosen appropriately. A suitable kernel choice
is problem specific. For example, consider Rosenbrock’s function

f(x) =
n∑

i=2

100(xi − x2
i−1)

2 + (1− xi−1)2 (8)

whose optimal point is located at x = (1, . . . , 1). Rosenbrock’s function is a fourth
order polynomial and so the polynomial kernel

κ(xi,xj) = (1 +
〈
xi · xj

〉
)d (9)

of order d = 4 may seem appropriate. Quadratic approximations are also commonly
used in local optimization and so a polynomial kernel with d = 2 could also be
an interesting alternative. However, perhaps the most commonly used kernel in the
literature is the Gaussian kernel,

κ(xi,xj) = exp
(
− γ‖xi − xj‖2). (10)

When applying kernel methods it is also important to scale the points x first. A standard
method of doing so is to scale the training set such that all points are in some range,
typically [−1, 1]. That is, scaled x̃ is

x̃i = 2(xi − xi)/(xi − xi)− 1 i = 1, . . . , n (11)

where xi, xi are the maximum and minimum values of variable i in set S. Scaling makes
it easier to fix C and kernel parameters during evolution. This is especially important
as the evolutionary search zooms in on a particular region of the search space.

Let n = 2 and S =
{
xi, yi

}�

i=1 be the � training points sampled using a stan-
dard normal distribution centered about the origin for Rosenbrock’s function. Using
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Fig. 1. Contour plots of the true function (dotted lines) versus surrogate (solid lines) for the three
different kernels. The � = 10 (top) and � = 60 (bottom) training points are depicted as dots.

� = 10, 20, . . . , 60 randomly sampled training points the surrogate model h is estimated
by ordinal regression. The h contour plots for the extreme cases � = 10 and � = 60
and the three different kernels are depicted in Fig. 1. The contours of f(x) are given by
the dotted lines in each case. The sampled training points are depicted by dots. In the
case of a 4th order polynomial and RBF kernel the training accuracy is 100% for the
2(� − 1) adjacently ranked point pairs, when C = 1E6. However, regardless of how
high C is set for the 2nd order polynomial kernel a training accuracy of around 50% is
consistently observed. This can be used as an indicator that the current kernel-defined
features are not powerful enough to describe the ranking. On the other hand the RBF
and 4th order polynomial kernel may overfit the training data. An example of this can be
seen in Fig. 1 (top) when � = 10. However, as the number of training samples increase
the chance of overfitting decreases as seen in Fig. 1 (bottom).

When the training accuracy is 100% one way of evaluating the accuracy of the
surrogate is through cross validation. The quality of the surrogate is measured as the
rank correlation between the surrogate ranking and the true ranking on test data. Here
Kendall’s τ is used for this purpose. Kendall’s τ is computed using the relative ordering
of the ranks of all �(� − 1)/2 possible pairs. A pair is said to be concordant if the
relative ranks of h(xi) and h(xj) is the same for f(xi) and f(xj), otherwise they
are discordant. Kendall’s τ is the normalized difference in the number of concordant
and discordant pairs. Two rankings are the same when τ = 1, completely reversed if
τ = −1, and uncorrelated for τ ≈ 0.
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Table 1. Kendall’s τ for surrogate ranking versus true ranking of 1000 testing points generated
around point x = [0, 0] and x = [1, 1] in Rosenbrock’s function for various kernels κ and number
of training points �

κ � = 10 20 30 40 50 60 10 20 30 40 50 60
x = [0, 0] x = [1, 1]

Polynomial, d = 2 0.67 0.66 0.67 0.65 0.63 0.60 0.77 0.94 0.93 0.91 0.93 0.93
Training accuracy % 56 58 59 59 47 49 100 100 90 69 69 71
Polynomial, d = 4 0.59 0.88 0.90 0.98 0.97 0.98 0.64 0.83 0.90 0.93 0.97 0.98

Training accuracy % 100 100 100 100 100 100 100 100 100 100 100 100
RBF, γ = 1 0.65 0.85 0.90 0.91 0.93 0.96 0.73 0.84 0.91 0.92 0.94 0.97

Training accuracy % 100 100 100 100 100 100 100 100 100 100 100 100

For our experiment the testing data is created in the same manner as the training
data. The testing points are 1000 in total and Kendall’s τ computed based on surrogates
built using � = 10, 20, . . . , 60 training points. Kendall’s τ for this study is presented in
Table 1 (left) for the all three kernels along with the training accuracy. As anticipated
the model accuracy increases with � and the 4th order polynomial kernel appears most
suitable.

As the search zooms in on a local minima one may expect that different kernels
may be suitable. The experiment is therefore re-run, this time the training and testing
samples are sampled centered at the global minima from a Gaussian distribution with
variance 0.12. In this case the 2nd order polynomial kernel performs much better, even
though the training accuracy is not 100% for higher values of �, as shown in Table 1
(right). Using Kendall’s τ to evaluate the surrogate ranking of test points forms the basis
of our model improvement method presented in the following section.

4 Model Improvement

During evolution different regions of the space are sampled and as a consequence the
surrogate ranking model may be insufficiently accurate for new regions of the search
space. It is therefore of paramount importance to validate the surrogate during evolution.
The accuracy can be validated by generating test points in the new region similarly to
the test points used in the previous section. In particular one is interested in validating
the accuracy of the ranking of potential parent points during evolution as they are critical
for success [11].

The proposed model validation and improvement strategy is as follows:

1. Estimate the ranking of a population of points of unknown fitness using the current
surrogate. Let the point with the highest ranking be a test point, xt. Rank this test
point with respect to the points in the training set using the current surrogate.

2. Evaluate the test point using the true fitness function and evaluate its true rank
among the training points. In the case where no explicit fitness function can be
defined, the test point is evaluated by comparing it with selected points in the
training set.
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3. Compare the rankings by computing the rank correlation τk for the ranking in 1
and 2.

4. Add this new point to the training set.
5. If τk is equal to 1 the model is said to be sufficiently accurate. This is a simple cross-

validation on a single test point. Creating more test points would be too costly, but
plausible.

6. If τk < 1 the model is not sufficiently accurate. In this case update the surrogate
using the new training set. Repeated the steps above until τ = 1 or all points of
unknown fitness have been evaluated.

The frequency by which the model is validated may be at each generation or every
K > 1 generations. In this work the model is validated at every generation.

Initially at least two known points, � = 2, must be in the training set for the ordinal
regression to work. However, with time the size of the training set grows without limit.
In evolutionary computing one is interested in the accurate ranking of points generated
in the neighborhood of parent points. If the training set is to have a limited size � then it
would be reasonable to delete the oldest training points from the set first. These deleted
points are likely to be representatives of a region of the search space which is no longer
of interest.

If the training accuracy is not 100% then clearly τk < 1. In this case additional
training points will be forced for evaluation. It may be necessary to increase the value of
C in order to improve training accuracy or alternatively to select another kernel during
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Fig. 3. The 2nd order polynomial kernel versus the original CMA-ES using � = λ and � = 2λ
for different dimensions n of the sphere model

search. Decreasing the size of the training data set will also result in 100% training
accuracy but at the cost of overfitting.

The surrogate ranking validation and improvement strategy using ordinal regression
is now tested using the CMA-ES [6]. The CMA-ES is a very efficient numerical op-
timization technique but we still expect to reduce the number of function evaluations
needed for search. The average fitness for 100 independent runs versus the number
of function evaluations are compared to the original CMA-ES for various dimensions
n = 2, 5, 10 and 20. The parameter setting for the (μI , λ) CMA-ES is as recommended
in [6] with population size λ = 4 + "3 ln(n)# and the number of parents selected
μ = λ/4. The stopping criteria used are 1000n function evaluation or a fitness less
than 10−10. The initial mean search point is generated from a uniform distribution
between 0 and 1. Unless otherwise specified � = λ and the training set is only pruned
to size � subsequent to the validation and improvement procedure above. During model
improvement the data scaling is based on the current training set and new points to be
ranked. In all runs presented a 100% training accuracy is achieved by setting C = 1E6.

The first experimental results are presented for the infamous sphere model, f(x) =∑n
i=1 x2

i . The average fitness versus the number of function evaluations is presented in
Fig. 2. As one may expect for a quadratic function, the 2nd order polynomial performs
best. However, as the dimensions increase the performance edge achieved by surro-
gate ranking, over the original CMA-ES, is lost. The reason for this is that a greater
number of training samples are needed at higher dimensions. To illustrate this trend
the experiment is repeated with � = 2λ using only the 2nd order polynomial kernel.
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Fig. 4. Mean fitness values versus number of function evaluation for three different kernels and
the original CMA-ES for different dimensions n of Rosenbrock’s function

A comparison for the different problem dimensions with the original CMA-ES and the
case when � = λ is shown in Fig. 3. The performance is improved in all cases when
� = 2λ as expected.

The first experiment is now repeated but this time using Rosenbrock’s function for
different dimensions. The traditional CMA-ES will get stuck in local minima for this
problem in around 4 out of 100 experiments. The polynomial kernels again have a
performance edge over the original CMA-ES, however, the RBF kernel is more likely
to get stuck in the local minima. Overfitting is more of a problem in this case and the
simple model (2nd order polynomial kernel) is best at higher dimensions. Clearly the
choice of kernel and number of training pairs will influence search performance.

5 Discussion and Conclusion

When building surrogates in evolutionary computation one is interested in the quality
of ranking of points only. For this reason the training accuracy and cross validation is
a more meaningful measure of quality for the surrogate model. This is in contrast to
regression, where the fitness function is modeled directly and the quality estimated in
terms of measures such a the least square error.

The technique used to control the number of true fitness evaluations is based on a
single test point. The ranking of this test point using the current surrogate is compared
with its true ranking in order to determine the quality of the surrogate. This is a simple
form of cross-validation. An alternative approach could be to rank all test points along
with the training points using the surrogate model. Then update the surrogate ranking
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model using the single evaluated test point of highest rank. This would then be followed
by the re-ranking of training and testing points using the updated surrogate and com-
paring it with the previous estimate by computing Kendall’s τ . This style of heuristic
control was applied in [11] with good success. Its aim is to observe a change in ranking
between successive updates of the surrogate. In this case it may also be sufficient for τ
to be close to 1 or at least the best new candidate points (potential parent points) should
be ranked consistently.

A generic framework for surrogate ranking using ordinal regression in evolutionary
computation has been presented. To the best of our knowledge this is the first time such
a framework has been put forward. The formulation does not need an explicitly defined
fitness function, making it suitable for co-evolution and interactive evolution. Choosing
a kernel-defined function h also opens up the possibility of using surrogates for other
point data types. The only condition is that a kernel can be defined. For example, in
genetic programming a tree kernel may potentially be used. In evolutionary art, kernels
typically used in pattern recognition may be useful.

The approach reduces the number of fitness evaluation needed, without a loss in
performance, as long as an appropriate kernel is selected and a sufficient size of training
data is available. The studies presented are exploratory in nature and clearly the ap-
proach must be evaluated on a greater range of evolutionary tasks. These investigations
are currently underway.
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Kubaĺık, Jǐŕı 959
Kukkonen, Saku 553
Kulich, Miroslav 721

La Poutré, Han 312
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Sebag, Michèle 382, 1008
Sendhoff, Bernhard 352, 443, 603
Shapiro, Jonathan L. 92, 998
Shimosaka, Hisashi 828
Shir, Ofer M. 142
Smits, Guido 322
Sofge, Donald A. 741
Sokolov, Artem 988

Soto, Marta 242
Spears, William M. 741
Spitsyn, Vladimir 593
Starita, Antonina 691
Storch, Tobias 52

Tagawa, Kiyoharu 292
Tan, Ying 112
Teytaud, Olivier 21, 32
Thierens, Dirk 1028
Timm, Constantin 623
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