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Abstract. This paper introduces a new theory needed for the purpose
of conflict detection for graph transformation with negative application
conditions (NACs). Main results are the formulation of a conflict no-
tion for graph transformation with NACs and a conflict characterization
derived from it. A critical pair definition is introduced and complete-
ness of the set of all critical pairs is shown. This means that for each
conflict, occuring in a graph transformation system with NACs, there
exists a critical pair expressing the same conflict in a minimal context.
Moreover a necessary and sufficient condition is presented for parallel
independence of graph transformation systems with NACs. In order to
facilitate the implementation of the critical pair construction for a graph
transformation system with NACs a correct construction is formulated.
Finally, it is discussed how to continue with the development of conflict
detection and analysis techniques in the near future.

1 Introduction

Several applications using graph transformation need or already use negative
application conditions (NACs) to express that certain structures at a given time
are forbidden, e.g., [1,2,3,4,5]. In order to allow conflict detection and analysis
for these applications, the theory already worked out for graph transformation
systems (gts) without NACs should be generalized to gts with NACs. The no-
tion of critical pairs is central in this theory, allowing for conflict detection and
analysis. It was developed at first in the area of term rewriting systems (e.g.,
[6]) and, later, introduced in the area of graph transformation for hypergraph
rewriting [7,8] and then for all kinds of transformation systems fitting into the
framework of adhesive high-level replacement categories [9].

This paper now generalizes the critical pair notion and some first important
related results to gts with NACs. We tailored the theory presented in this paper
for gts with NACs and not on other kind of constraints or application conditions,
since NACs are already widely used in practice. It would be subject of future
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work to develop also a critical pair theory for graph transformation with other
kind of constraints as presented in [9]. Subject of future work as well and more
directly related to the subject of this paper is the formulation of a critical pair
lemma which gives a sufficient condition for local confluence of a gts with NACs.

The structure of this paper is as follows. In the first paragraph we repeat the
necessary definitions for graph transformation in the double pushout approach
[10] with NACs. Then we explain carefully what new types of conflicts can occur
because of the NACs by means of a new conflict characterization. This conflict
characterization leads in the next paragraph to a critical pair definition for gts
with NACs. A critical pair describes a conflict in a minimal context. Since now
there occur new types of conflicts we also distinguish other types of critical
pairs. Afterwards we show completeness for this critical pair definition i.e. each
conflict is expressed at least by one critical pair. Moreover we demonstrate,
that if there are no critical pairs at all in the graph transformation system
with NACs then this system is locally confluent or, more exactly, each pair of
direct transformations is parallel independent. In the conclusion and outlook we
explain how to continue with the development of critical pair theory to enable
manageable conflict detection and analysis techniques for gts with NACs.

2 Graph Transformation with NACs

Definition 1 (graph and graph morphism). A graph G = (GE , GV , s, t)
consists of a set GE of edges, a set GV of vertices and two mappings s, t :
GE → GV , assigning to each edge e ∈ GE a source q = s(e) ∈ GV and target
z = t(e) ∈ GV . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,E , Gi,V , si, ti), (i = 1, 2) is a pair f = (fE : GE,1 → GE,2, fV : GV,1 → GV,2)
of mappings, such that fV ◦s1 = s2◦fE and fV ◦t1 = t2◦fE. A graph morphism f :
G1 → G2 is injective (resp.surjective) if fV and fE are injective (resp. surjective)
mappings. Two graph morphisms m1 : L1 → G and m2 : L2 → G are jointly
surjective if m1,V (L1,V )∪m2,V (L2,V ) = GV and m1,E(L1,E)∪m2,E(L2,E) = GE.
A pair of jointly surjective morphisms (m1, m2) is also called an overlapping of
L1 and L2. The category having graphs as objects and graph morphisms as arrows
is called Graph.

Definition 2 (rule). A graph transformation rule p : L
l← K

r→ R consists of a
rule name p and a pair of injective graph morphisms l : K → L and r : K → R.
The graphs L, K and R are called the left-hand side (lhs), the interface, and the
right-hand side (rhs) of p, respectively.

Definition 3 (match). Given a rule p : L
l← K

r→ R and a graph G, one can
try to apply p to G if there is an occurence of L in G i.e. a graph morphism,
called match m : L → G.

A negative application condition or NAC as introduced in [11] forbids a certain
graph structure to be present before or after applying the rule.
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Definition 4 (negative application condition)
Let M be the set of all injective graph morphisms.

– A negative application condition or NAC(n) on L is a graph morphism
n : L → N . A graph morphism g : L → G satisfies NAC(n) on L i.e.
g |= NAC(n) if and only if � q : N → G ∈ M such that q ◦ n = g.

L

g

��

n �� N

q
X

��G

– A NAC(n) on L (resp. R) for a rule p : L
l← K

r→ R is called left (resp.
right) NAC on p. NACp,L (resp. NACp,R) is a set of left (resp. right) NACs
on p. NACp = (NACp,L, NACp,R), consisting of a set of left and a set of
right NACs on p is called a set of NACs on p.

Definition 5 (graph transformation with NACs)

– A graph transformation system with NACs is a set of rules where each rule
p : L

l← K
r→ R has a set NACp = (NACp,L, NACp,R) of NACs on p.

– A direct graph transformation G
p,g⇒ H via a rule p : L

l← K
r→ R with

NACp = (NACp,L, NACp,R) and a match g : L → G consists of the double
pushout [10] (DPO)

L

g

��

K
r ��

��

l�� R

h

��
G D ���� H

where g satisfies each NAC in NACp,L, written g |= NACp,L, and h : R → H
satisfies each NAC in NACp,R, written h |= NACp,R. Since pushouts in
Graph always exist, the DPO can be constructed if the pushout complement
of K → L → G exists. If so, we say that, the match m satisfies the gluing
condition of rule p. A graph transformation, denoted as G0

∗⇒ Gn is a
sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of direct graph transformations.

In the example in Fig. 1 a pair of direct transformations via the rules p1 : L1 ←
K1 → R1, p2 : L2 ← K2 → R2 and matches m1 resp. m2 is depicted. The match
m1 fullfills the negative application condition NAC(n1) since there is no ingoing
edge into node 1 in graph G. The morphism e2 ◦ m2 though doesn’t fullfill the
negative application condition NAC(n1) since now there is an edge from node
7 to node 1 in graph H2.
Remark: From now on we consider only gts with rules having an empty set of
right NACs. This is without loss of generality, because each right NAC can be
translated into an equivalent left NAC as explained in [9], where Theorem 7.17
can be specialized to NACs.
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Fig. 1. forbid-produce/delete-use-conflict

3 Conflicts for Graph Transformation with NACs

Confluence conflicts in term rewriting or graph transformation can typically
occur when two rules are applied to the same term or graph in such a way
that the corresponding redexes (i.e. for graph transformation the images of the
corresponding matches) overlap. In particular, the conflict appears when one of
the rules can delete part of the redex of the other rule. We call these conflicts
delete-use (or use-delete) conflicts. As a consequence, this kind of conflicts are
detected by computing the critical pairs of the given system, i.e., such delete-
use or use-delete conflicts induced by the overlappings between any two rules.
However, when dealing with graph transformation with NACs some new forms
of conflict may be present. For instance, an otherwise harmless overlapping (e.g.,
if no deletion happens) may cause a conflict as the following example shows (for
simplicity, in the examples below we will display the rules just in terms of their
left and right-hand sides, leaving the context implicit). Suppose that we have
two rules p1 and p2 with exactly the same left-hand side:

p1 : • �� • �� • �� •��

p2 : • �� • ��
• ����

•

It should be clear that if we apply the rule p1 to a given graph, then we can
apply afterwards the rule p2 at the same redex. And, conversely, if we apply p1
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we can apply afterwards p2 at the same redex. However, suppose that the rule
p2 has a left NAC which coincides with the right-hand side of the rule p1. That
is, suppose that the NAC of rule p2 is defined by the inclusion:

NAC(p2) : • �� • �� • �� •��

then, obviously, after applying the rule p1 we would be unable to apply the
rule p2 at the same location because the associated NAC would forbid it. The
problem here is that the application of the first rule produces some additional
structure that is forbidden by the NAC of the second rule. For this reason we call
these new kind of conflicts produce-forbid (or forbid-produce) conflicts. Actually,
these new conflicts may arise even when the possible application of two rules do
not overlap. For instance suppose that p1 and p2 are the rules below:

p1 : • �� • •

p2 : • ��
•
��

and suppose that the rule p2 includes the left NAC:

NAC(p2) : • �� • • •

meaning that the rule p2 cannot be applied to a graph including at least three
nodes. Now, suppose that we have a graph G including just two nodes a and b.
Obviously, we can apply rule p1 to G at node a and rule p2 at node b without
any overlapping. However, if we first apply rule p1 this causes the creation of a
new node that would now forbid the application of rule p2 at node b.

In what follows, we will first look at the concept of parallel independence
of two direct transformations with NACs, which expresses the condition to be
fulfilled in order to apply two different rules to the same graph in any order with
the same result. This is proven in Theorem 1, the Local Church-Rosser Theorem
with NACs. Afterwards we will provide the conflict notion for gts with NACs
and a characterization of the conflicts as described above.

Definition 6 (parallel independence). Two direct transformations G
(p1,m1)=⇒

H1 with NACp1 and G
(p2,m2)=⇒ H2 with NACp2 are parallel independent if

∃h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

and

∃h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2)
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as in the following diagram:

N1 N2

R1

��

K1 ����

��

L1

n1

		

h12




m1

���
��

��
��

� L2

n2

		

h21

��
m2

��
��

��
��

K2�� ��

��

R2

��
H1 D1

d1

��
e1

�� G D2
d2

��
e2

�� H2

Theorem 1 (Local Church-Rosser Theorem with NACs). If a pair of
direct transformations H1

p1⇐ G
p2⇒ H2 with NACs is parallel independent, then

there are two direct transformations H1
p2⇒ H and H2

p1⇒ H with NACs s.t.
H1 p2

��
������

G

p1 ����� ���

p2 ��
�����

� H

H2
p1

����� ���

Proof. Because of the Local Church-Rosser Theorem for rules without NACs all
necessary pushouts in H1

p2⇒ H and H2
p1⇒ H can be constructed and moreover

the matches e2 ◦ h1 and e1 ◦ h2 satisfy the NACs of rule p1 resp. p2 by the
definition of parallel independence for graph transformation with NACs.

The following lemma describes that, if a match for the potential second trans-
formation exists, it is unique. Moreover this lemma will allow an elegant conflict
characterization in Lemma 2.

Lemma 1 (unique match). Given two direct transformations G
(p1,m1)=⇒ H1

with NACp1 and G
(p2,m2)=⇒ H2 with NACp2 , then the following holds:

– if ∃h12 : L1 → D2 s.t. d2 ◦ h12 = m1 then h12 is unique
– if ∃h21 : L2 → D1 s.t. d1 ◦ h21 = m2 then h21 is unique.

Proof. Since each rule consists of two injective morphisms and pushouts are
closed under injective morphisms, d1 and d2 are injective morphisms as well. If
there would exist h′

12 : L1 → D2 : d2 ◦h′
12 = m1 then because of d2 injective and

d2 ◦ h′
12 = d2 ◦ h12 = m1 it follows that h′

12 = h12. Analogously one can prove
that h21 is unique.

Definition 7 (conflict). Two direct transformations G
(p1,m1)⇒ H1 with NACp1

and G
(p2,m2)⇒ H2 with NACp2 are in conflict if they are not parallel independent

i.e. if

�h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

or
�h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2 ).
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The following lemma characterizes this conflict notion for graph transformation
with NACs s.t. the difference with the conflict notion for graph transformation
without NACs becomes more clear. As described in the introduction of this
section new types of conflicts can occur and the lemma in fact characterizes four
different types of conflicts that can occur partly simultaneously.

Two direct transformations G
(p1,m1)⇒ H1 and G

(p2,m2)⇒ H2 are in delete-use-
conflict (resp.use-delete-conflict) if rule p1 (resp. p2) deletes part of the graph
G, which is used by rule p2 (resp.p1) in the second (resp. first) direct transfor-
mation. This kind of conflict occurs also in gts without NACs [12]. In contrast
a produce-forbid-conflict (resp. forbid-produce-conflict) occurs only in gts with
NACs. Namely, if rule p1 (resp.p2) produces a graph structure which is forbidden
by the NAC of rule p2 (resp. p1).

Lemma 2 (conflict characterizaton). Two direct transformations G
(p1,m1)⇒

H1 with NACp1 and G
(p2,m2)⇒ H2 with NACp2 are in conflict if and only if:

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 (use-delete-conflict)
or

(b) there exists a unique h12 : L1 → D2 : d2◦h12 = m1, but e2◦h12 
|= NACp1

(forbid-produce-conflict)
or

2. (a) �h21 : L2 → D1 : d1 ◦ h21 = m2 (delete-use-conflict)
or

(b) there exists a unique h21 : L2 → D1 : d1◦h21 = m2, but e1◦h21 
|= NACp2

(produce-forbid-conflict).

Proof. G
(p1,m1)⇒ H1 with NACp1 and G

(p2,m2)⇒ H2 with NACp2 are in conflict
if

�h12 : L1 → D2 s.t. (d2 ◦ h12 = m1 and e2 ◦ h12 |= NACp1)

or
�h21 : L2 → D1 s.t. (d1 ◦ h21 = m2 and e1 ◦ h21 |= NACp2)

We consider at first the first line of this disjunction. Let A(h12) := d2◦h12 = m1,
B(h12) := e2 ◦ h12 |= NACp1 , P (h12) := (A(h12) ∧ B(h12)) and M12 be the set
of all morphisms from L1 to D2. Then the first line is equivalent to

�h12 ∈ M12 : (A(h12) ∧ B(h12)) ≡ �h12 ∈ M12 : P (h12)

This is equivalent to

∀h12 ∈ M12 : ¬P (h12) ≡ (M12 = ∅) ∨ (M12 
= ∅ ∧ ∀h12 ∈ M12 : ¬P (h12))

Moreover P ≡ A ∧ B ≡ A ∧ (A ⇒ B) and thus ¬P ≡ ¬(A ∧ B) ≡ ¬(A ∧ (A ⇒
B)) ≡ ¬A ∨ ¬(A ⇒ B) ≡ ¬A ∨ ¬(¬A ∨ B) ≡ ¬A ∨ (A ∧ ¬B). This implies that
(M12 = ∅) ∨ (M12 
= ∅ ∧ ∀h12 ∈ M12 : ¬P (h12)) ≡

(M12 = ∅) ∨ (M12 
= ∅ ∧ ∀h12 ∈ M12 : ¬A(h12) ∨ (A(h12) ∧ ¬B(h12)))



68 L. Lambers, H. Ehrig, and F. Orejas

Because of Lemma 1 and because the disjunction holding for each morphism in
M12 is an exclusive one this is equivalent to

(M12 =∅)∨(M12 
=∅∧∀h12 ∈ M12 : ¬A(h12))∨(∃!h12 ∈ M12 : (A(h12)∧¬B(h12)))

Now (M12 = ∅) ∨ (M12 
= ∅ ∧ ∀h12 ∈ M12 : ¬A(h12)) ≡ ∀h12 ∈ M12 : ¬A(h12) ≡
�h12 ∈ M12 : A(h12). This implies finally that �h12 : L1 → D2 s.t. (d2 ◦ h12 =
m1 and e2 ◦ h12 |= NACp1) is equivalent to

(�h12 ∈ M12 : d2◦h12 = m1)∨(∃!h12 ∈ M12 : (d2◦h12 = m1∧e2◦h12 
|= NACp1))

is equivalent to

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 (use-delete-conflict)
or

(b) there exists a unique h12 : L1 → D2 : d2◦h12 = m1, but e2◦h12 
|= NACp1

(forbid-produce-conflict)

Analogously we can proceed for the second part of the disjunction.

Note that a use-delete-conflict (resp. delete-use-conflict) cannot occur simultane-
ously to a forbid-produce-conflict (resp. produce-forbid-conflict), since (1.a) ⇒
¬(1.b) (resp. (2.a) ⇒ ¬(2.b)). The following types of conflicts can occur si-
multaneously though: use-delete/delete-use-, use-delete/produce-forbid-, forbid-
produce/delete-use-, forbid-produce/produce-forbid-conflict. In the example in
Fig. 1 a pair of direct transformations in forbid-produce/delete-use-conflict is
shown. In this case the first rule forbids an additional edge pointing to node
(1,3) which is added by the second rule and the first rule deletes the edge (1,3)-
(2,4) which is used by the second rule. Note that the labels express how nodes
and edges are mapped to each other.

4 Critical Pairs for Graph Transformation with NACs

Now that we have a detailed conflict characterization we can look at a conflict in
a minimal context i.e. a critical pair. Basically we exclude from the conflict all the
graph parts that in no way can be responsible for the occurence of the conflict.
In the case of a delete-use-conflict this would be the graph context which is not
reached by any of the matches of the lhs’s of the rules. This is because these
graph parts can not be used nor deleted by any of the rules anyway. Therefore
we consider only jointly surjective matches or overlappings of the lhs’s of both
rules in part (1a) and (2a) of the following critical pair definition. In the case of
a produce-forbid-conflict we can leave out the graph parts which are not affected
by any negative application condition of one rule and reached by a match of the
rhs of the other rule. This is because these graph parts are not forbidden by
a NAC of one rule and can not have been produced by the other rule anyway.
Therefore we only consider overlappings or jointly surjective mappings of the
NAC of one rule with the rhs of the other rule in part (1b) and (2b) of the
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following critical pair definition. Thus in fact in the example in Fig. 1 we obtain
the critical pair by ignoring all unlabelled graph nodes. Remember that in the
following critical pair definition M is the set of all injective graph morphisms as
defined in Def. 4.

Definition 8 (critical pair). A critical pair is a pair of direct transformations

K
(p1,m1)⇒ P1 with NACp1 and K

(p2,m2)⇒ P2 with NACp2 such that:

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 and (m1, m2) jointly surjective
(use-delete-conflict)
or

(b) there exists a h12 : L1 → D2 s.t. d2 ◦ h12 = m1, but for one of the NACs
n1 : L1 → N1 of p1 there exists a morphism q12 : N1 → P2 ∈ M s.t.
q12◦n1 = e2◦h12 and (q12, h2) jointly surjective (forbid-produce-conflict)

or
2. (a) �h21 : L2 → D1 : d1 ◦ h21 = m2 and (m1, m2) jointly surjective

(delete-use-conflict)
or

(b) there exists a h21 : L2 → D1 s.t. d1 ◦ h21 = m2, but for one of the NACs
n2 : L2 → N2 of p2 there exists a morphism q21 : N2 → P1 ∈ M s.t.
q21◦n2 = e1◦h21 and (q21, h1) jointly surjective (produce-forbid-conflict)

N1
q12

��

N2
q21

��

R1

h1

��

K1
l1 ��r1��

��

L1

h12





n1

		

m1
���

��
��

��
� L2

h21

��

n2

		

m2
		

		
		

		
K2

��

l2�� r2 �� R2

h2

��
P1 D1

d1

��
e1

�� K D2
d2

��
e2

�� P2

Remarks to related work: Note that the definition in this paper for paral-
lel independence and conflict as well as the Local Church Rosser Theorem for
graph transformation with NACs coincide with their equivalents as introduced
in [11]. Moreover, if the gts doesn’t hold any NAC, then the definition of parallel
independence, conflict and critical pair as given in this paper correspond to the
respective definition in the context of graph transformation without NACs [9].
Leadoff ideas to capture the critical pair notion for graph transformation with
NACs were described in [13] and coincide with the formalization in this paper.
Furthermore in [5] so-called critical conflict pairs for single pushout graph trans-
formation with NACs are defined. The correspondence between this notion and
the critical pair notion as introduced in this paper should be investigated in
more detail.

Now we prove that Definition 8 of critical pairs leads to completeness. This
means, that each occuring conflict in the graph transformation system with
NACs can be expressed by a critical pair i.e. the same kind of conflict but in a
minimal context. Therefore at first we need the following definition and lemma.
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Definition 9 (extension diagram). An extension diagram is a diagram (1),

G0

(1)

∗t ��

k0

��

Gn

kn

��
G′

0
∗t′
�� G′

n

where, k0 : G0 → G′
0 is a morphism, called extension morphism, and t :

G0
∗⇒ Gn and t′ : G′

0
∗⇒ G′

n are transformations via the same productions
(p0, · · · , pn−1) and matches (m0, · · · , mn−1) and (k0 ◦ m0, · · · , kn−1 ◦ mn−1) re-
spectively, defined by the following DPO diagrams :

pi : Li

mi

��

Ki

ji

��

ri

��
li

�� Ri

ni

��
Gi

ki

��

Di

di

��

gi

��
fi

�� Gi+1

ki+1

��
G′

i D′
i

g′
i

��
f ′

i

�� G′
i+1

Remark: Since t and t′ are transformations for a gts with NACs, the matches
(m0, · · · , mn−1) and (k0 ◦ m0, · · · , kn−1 ◦ mn−1) have to satisfy the NACs of the
rules (p0, · · · , pn−1).

Lemma 3 (induced direct transformation). Given a direct transformation
G

p⇒ H with NACs via the rule p : L
l← K

r→ R and match m : L → G and
given an object K ′ with two morphisms L

mlk→ K ′ mkg→ G s.t. m = mkg ◦mlk, with
mkg ∈ M , then there exists a direct transformation, the so called induced direct
transformation K ′ p⇒ P via the same rule p and the match mlk, satisfying the
NACs of p as in the following diagram :

N

L

n

		

(1)

m

��

mlk

��

K
k′

��

k

��
(2)

��

l�� r �� R

h′



h

��
K ′

(3)mkg

��

D

(4)f

��

d
��

e
�� P

o

��
G D′

d′
��

e′
�� H

Proof. Given G
p⇒ H with NAC n as shown above. Since d′ ∈ M we can take

pullback (3) of mkg and d′. Since mkg ◦ mlk ◦ l = m ◦ l = d′ ◦ k′ then there
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exists a morphism k : K → D with k′ = f ◦ k and d ◦ k = mlk ◦ l because
of the pullback property of (3). Because of the pushout-pullback-decomposition
lemma [9], l ∈ M and mkg ∈ M diagrams (1) and (3) are both pushouts.
Now we can construct pushout (2) of D ← K → R because of r ∈ M . Since
e′ ◦ f ◦k = e′ ◦k′ = h′ ◦ r there exists a morphism o : P → H with o◦h = h′ and
o ◦ e = e′ ◦ f because of the pushout-property of (2). Because of the pushout-
decomposition property also diagram (4) is a pushout.

It remains to show that mlk satisfies the NACs of p. Suppose that mlk doesn’t
fullfill some NAC(n) of p, then there exists a morphism q : N → K ′ ∈ M s.t.
q ◦ n = mlk, but this implies mkg ◦ q ◦ n = mkg ◦ mlk = m with mkg ◦ q ∈ M and
this is a contradiction.

Theorem 2 (completeness of critical pairs). For each pair of direct trans-

formations H1
(p1,m′

1)⇐ G
(p2,m′

2)⇒ H2 in conflict there is a critical pair with exten-
sion diagrams (1) and (2) and m ∈ M .

P1

��
(1)

K�� ��

(2)m

��

P2

��
H1 G�� �� H2

Proof. According to Lemma 2 the following reasons are responsible for a pair of

direct transformations G
(p1,m′

1)⇒ H1 with NACp1 and G
(p2,m′

2)⇒ H2 with NACp2

to be in conflict :

1. (a) �h′
12 : L1 → D′

2 : d′2 ◦ h′
12 = m′

1 (use-delete-conflict)
or

(b) there exists a unique h′
12 : L1 → D′

2 : d′2◦h′
12 = m′

1, but e′2◦h′
12 
|= NACp1

(forbid-produce-conflict)
or

2. (a) �h′
21 : L2 → D1 : d′1 ◦ h′

21 = m′
2 (delete-use-conflict)

or
(b) there exists a unique h′

21 : L2 → D1 : d′1◦h′
21 = m′

2, but e′1◦h′
21 
|= NACp2

(produce-forbid-conflict)

It is possible, that (1.b) and (2.b) are both false. In this case, (1.a) or (2.a) have
to be true which corresponds to the usual use-delete-conflict (resp. delete-use-
conflict) and in [9] it is described how to embed a critical pair into this pair of
direct transformations. In the other case (1.b) or (2.b) are true. Let at first (1.b)
be true. This means that there exists a unique h′

12 : L1 → D′
2 : d′2 ◦ h′

12 = m′
1,

but e′2 ◦ h′
12 
|= NACp1 . Thus for one of the NACs n1 : L1 → N1 of p1 there

exists a morphism q′12 : N1 → H2 ∈ M such that q′12 ◦ n1 = e′2 ◦ h′
12. For each

pair of graph morphisms with the same codomain, there exists an E − M pair
factorization [9] with E the set of all jointly surjective morphisms and M the
set of injective graph morphisms as defined in Def. 4. Thus for q′12 : N1 → H2
and h′

2 : R2 → H2 we obtain an object P2 and morphisms h2 : R2 → P2,
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q12 : N1 → P2 and o2 : P2 → H2 with (h2, q12) jointly surjective and o2 ∈ M
such that o2 ◦ h2 = h′

2 and o2 ◦ q12 = q′12. Because of Lemma 3 pushouts (5)
- (8) can be constructed, if we consider the fact that also H2 ⇒ G is a direct
transformation via the inverse rule of p2. Since o2 ∈ M and (7) and (8) are
pushouts also f2 ∈ M and m ∈ M . Because of the same argumentation as in
Lemma 3, since m′

2 fullfills all the NACs of p2 also m2 fullfills them. Now we
have the first half K ⇒ P2 of the critical pair under construction.

We still have to check if this critical pair is in forbid-produce-conflict. Since
(8) is a pullback and o2 ◦ q12 ◦ n1 = q′12 ◦ n1 = e′2 ◦ h′

12 there exists a morphism
h12 : L1 → D2, with e2 ◦ h12 = q12 ◦ n1 and f2 ◦ h12 = h′

12. Because q′12 =
o2 ◦ q12 ∈ M and o2 ∈ M we have q12 ∈ M . This means, that e2 ◦ h12 doesn’t
fullfill the NAC n1 : L1 → N1.

Now we can start constructing the second half of the critical pair. Let m1
be the morphism d2 ◦ h12, then the following holds m ◦ m1 = m ◦ d2 ◦ h12 =
d′2 ◦ f2 ◦ h12 = d′2 ◦ h′

12 = m′
1.

Because of Lemma 3 and m ∈ M pushouts (1) - (4) can be constructed and
m1 satisfies the NACs of p1. Thus finally we obtain a critical pair according to
Def. 8 of type (1.b) because we have h12 with d2 ◦ h12 = m1. Moreover there is
q12 ∈ M with (q12, h2) jointly surjective and e2 ◦ h12 = q12 ◦ n1.

N1
q12

��

q′
12

��

N2

R1

(1)h1

��
h′
1

��

K1

(2)

l1 ��r1��

��

L1 h12





h′
12

��

m′
1

��

n1

		

m1
��

L2

(5)

m′
2

��

n2

		

m2


K2

(6)
��

l2�� r2 �� R2

h′
2

��

h2

��
P1

(3)o1

��

D1

(4)f1

��

d1

��
e1

�� K

(7)
m��

D2

(8)f2

��

d2

��
e2

�� P2

o2

��
H1 D′

1
d′
1

��
e′
1

�� G D′
2

d′
2

��
e′
2

�� H2

We can proceed analogously for the case of (2.b) being true leading to a critical
pair of type (2.b) according to Def. 8.

In the example in Fig. 1 the critical pair, obtained by ignoring all unlabelled
nodes, can be embedded into the forbid-produce-delete-use-conflict depicted in
this figure in a bigger context (i.e. two extra nodes).

Fact 3 (necessary and sufficient condition for parallel independence). Each
pair of direct transformations H1 ⇐ G ⇒ H2 in a gts with NACs is parallel
independent if and only if there are no critical pairs for this gts with NACs. A
gts with NACs is locally confluent if there are no critical pairs for this gts with
NACs.

Proof. – Given a gts with NACs with an empty set of critical pairs and let
H1 ⇐ G ⇒ H2 be a pair of non parallel independent direct graph trans-
formations for this gts with NACs. This is a contradiction, since then there
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would exist a critical pair which can be embedded into this pair of direct
transformations as in Theorem 2.

– Given a gts with NACs with only parallel independent pairs of direct trans-
formations H1 ⇐ G ⇒ H2. Then the set of critical pairs has to be empty,
otherwise a critical pair would be a pair of non parallel independent direct
transformations.

– If each pair of direct transformations H1 ⇐ G ⇒ H2 in a gts with NACs
is parallel independent then each pair is also locally confluent and in conse-
quence this gts with NACs is locally confluent.

5 Conflict Detection for Graph Transformation with
NACs

5.1 Construction of Critical Pairs

Critical pairs allow for static conflict detection. Each conflict, occuring at some
moment in the graph transformation, is represented by a critical pair. Thus it is
possible to foresee each conflict by computing the set of all critical pairs before
running the gts as implemented in the graph transformation tool AGG [14]. Each
pair of rules of the gts induces a set of critical pairs. Computing this set for each
pair of rules delivers us in the end the complete set of critical pairs for a gts. Here
a straightforward construction is given to compute the set of critical pairs for a
given pair of rules of the gts with NACs. Note that there exists already a more
efficient construction for critical pairs in delete-use- or use-delete-conflict in step
1 described in [12]. For lack of space we only refer to it here and give instead the
straightforward construction. Moreover we think that, using similar techniques,
we could provide also a more efficient construction for the produce-forbid and
forbid-produce critical pairs, but this is current work.

N1
q12

��

N2
q21

��

R1

(1)h1

��

K1

(2)

l1 ��r1��

��

L1

h12





n1

		

m1
���

��
��

��
� L2

(3)h21

��

n2

		

m2
		

		
		

		
K2

(4)
��

l2�� r2 �� R2

h2

��
P1 D1

d1

��
e1

�� K D2
d2

��
e2

�� P2

Given a pair of rules (p1 : L1 ← K1 → R1, p2 : L2 ← K2 → R2) with NACs:

1. Consider any jointly surjective pair (m1 : L1 → K, m2 : L2 → K).
(a) Check gluing condition for (l1, m1) and (l2, m2). If it is satisfied then

construct PO-complements D1,D2 in (2),(3) and PO’s P1,P2 in (1) and
(4).

(b) Check if the pair of direct transformations P1 ⇐ K ⇒ P2 is in delete-use
or use-delete-conflict, leading to critical pair P1 ⇐ K ⇒ P2.
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2. Consider for each NAC n1 : L1 → N1 of p1 any jointly surjective pair of
morphisms (h2 : R2 → P2, q12 : N1 → P2) with q12 injective.
(a) Check gluing condition for (h2, r2). If it is satisfied, then construct PO-

complement D2 in (4).
(b) Construct PO K in (3) and abort, if m2 
|= NACp2 .
(c) Check existence of h12 : L1 → D2 s.t. e2 ◦ h12 = q12 ◦ n1 (e2 injective

implies uniqueness of h12). If not existent, then abort.
(d) Define m1 = d2 ◦ h12 : L1 → K and abort if m1 
|= NACp1 .
(e) Check gluing condition for (m1, l1). If it is satisfied, then construct PO-

complement D1 in (2).
(f) Construct P1 as PO in (1) leading to critical pair P1 ⇐ K ⇒ P2.

3. Consider for each NAC n2 : L2 → N2 of p2 any jointly surjective pair of
morphisms (h1 : R1 → P1, q21 : N2 → P1) with q21 injective and continue
analog to step 2.

5.2 Correctness of This Construction

The construction in the last paragraph is derived quite straightforwardly from
Definition 8 and we are able to show that in fact it yields all critical pairs of a
pair of rules of the gts with NACs.

Theorem 4. The critical pair construction in paragraph 5.1 yields the set of all
critical pairs for a pair of rules (p1, p2) of a gts with NACs.

Proof. – At first we prove that the pair of direct transformations constructed
in steps 1,2 and 3 is really a critical pair. Step 1: Since the matches (m1, m2)
of P1 ⇐ K ⇒ P2 are jointly surjective and this pair is in delete-use- or use-
delete-conflict this is a critical pair. Step 2: Since there exists a morphism
h12 : L1 → D2 with m1 = d2 ◦ h12 and an injective morphism q12 : N1 → P2
with e2 ◦ h12 = q12 ◦ n1 and (h2, q12) jointly surjective, this is a critical pair
in forbid-produce-conflict. Step 3: Analog to Step 2.

– Secondly we prove that each critical pair is constructed by step 1, 2 or
3. Looking at Definition 8 there are three different types of critical pairs.
Given a critical pair P1 ⇐ K ⇒ P2 of type 1a or 2a it is constructed by
step 1. This is because the matches (m1, m2) are jointly surjective, (l1, m1)
and (l2, m2) satisfy the gluing condition, because (2) and (3) are pushouts,
(1) and (4) are also pushouts, pushouts are unique up to isomorphy and
P1 ⇐ K ⇒ P2 are in delete-use- or use-delete-conflict. Given a critical pair
P1 ⇐ K ⇒ P2 of type (1b) it is constructed by step 2. This is because
(h2, q12) are jointly surjective, the gluing condition for (h2, r2) is satisfied
because (4) is a pushout, (3) is a pushout, m2 |= NACp2 , h12 : L1 → D2
exists s.t. e2 ◦h12 = q12 ◦n1, m1 |= NACp1 , the gluing condition for (m1, l1)
holds since (2) is a pushout, (1) is a pushout and pushouts are unique up to
ismorphy. Given a critical pair P1 ⇐ K ⇒ P2 of type (2b) it is constructed
by step 3 analogously to a critical pair of type (1b).



Conflict Detection for Graph Transformation with NACs 75

6 Conclusion and Outlook

We presented the first foundations for a critical pair theory for gts with NACs
which in the end should lead to good conflict detection and analysis algorithms
for all kinds of systems described with means of gts with NACs. Main results in
this paper are a conflict notion and conflict characterization for gts with NACs.
The definition of a critical pair for gts with NACs for which we could prove
completeness. We provided a straightforward and correct construction of the set
of all critical pairs.

The theory presented in this paper can be generalized to adhesive HLR sys-
tems [9] with NACs. It is subject of future work to reformulate in detail all
results and proofs mentioned in this paper on this more abstract level. Note
that we tuned most reasonings in this paper already for this generalization such
that it will be a relatively straightforward step. Once formulated the theory for
adhesive HLR systems with NACs it is possible to instantiate it in particular
for typed attributed graph transformation systems with NACs. This more gen-
eral kind of graph transformation technique is most significant for modeling and
metamodeling in software engineering and visual languages.

The theory of critical pairs consists of an other important part not mentioned
yet in this paper. In gts without NACs the critical pair lemma holds. It gives
a sufficient condition for the gts to be confluent. This is the case if all critical
pairs are strictly confluent [9]. Thus, the critical pair lemma enables us to infer
confluence behaviour of the whole graph transformation system by investigating
the confluence behaviour of the set of all critical pairs. A similar result should
be obtained for gts with NACs. This is work in progress and we are confident to
be on the right path to complete it with the critical pair definition presented in
this paper.

Moreover the results in this paper build a necessary theoretical foundation
to continue with investigations on how to design conflict detection and analysis
for typed, attributed gts with NACs as manageable as possible. For gts without
NACs in [12] a rule analysis was proposed in order to obtain a more efficient
conflict detection as the straightforward one. In [15] this efficiency investigation
was continued by designing the so-called essential critical pairs. They build a
subset of all critical pairs and represent each conflict not only in a minimal
context, but also in a unique way. It should be possible to formulate also for
critical pairs with NACs such a subset of essential critical pairs, by analyzing
the rules and defining the exact conflict reason for each conflict. Finally future
work is not only concerned with optimizations for conflict detection, but also for
conflict analysis or finding a manageable way to investigate the resolvability of
each conflict.
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