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Abstract. Graph rewriting is a powerful technique that requires graph
pattern matching, which is an NP-complete problem. We present Gr-

Gen, a generative programming system for graph rewriting, which ap-
plies heuristic optimizations. According to Varró’s benchmark it is at
least one order of magnitude faster than any other tool known to us.

Our graph rewriting tool implements the well-founded single-pushout
approach. We define the notion of search plans to represent different
matching strategies and equip these search plans with a cost model,
taking the present host graph into account. The task of selecting a good
search plan is then viewed as an optimization problem.

For the ease of use, GrGen features an expressive specification lan-
guage and generates program code with a convenient interface.

1 Introduction

Over the last 30 years graph rewriting theory has become mature. The constant
rise of applications requires tools that are all theoretically sound, fast and easy
to use. Currently available tools meet these requirements only partially, with
varying emphases. Our tool GrGen, which is presented in this paper, fulfills
these requirements [1].

1.1 Graph Rewriting

The concept of graph rewriting, as implemented by GrGen, follows the single-
pushout (SPO) approach which is a form of rule based graph transformation
(see section 2.4). At a basic level a rewrite rule consists of a pattern graph, a
replacement graph and an instruction on what to delete, preserve or insert during
rewriting. In order to apply a graph rewrite rule to a host graph we have to find
an instance of the pattern graph in the host graph. Finding such a match is
called subgraph matching.

1.2 Our Contributions

For pattern graphs of potentially unbounded size subgraph matching is an NP-
complete problem (see Garey and Johnson, problem GT48 [2]). Hence, the ques-
tion of performance is essential for the practical relevance of graph rewriting.
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The multi-purpose graph rewrite generator GrGen allows high-speed graph
rewriting. The main features and concepts of GrGen are:

1. An expressive graph concept.
GrGen uses an extension of labeled directed multigraphs, namely attributed
typed directed multigraphs. The type system features multiple inheritance on
node and edge types (see section 2.1).

2. Separation of meta model and rewrite rules
A meta model defines the allowed node and edge types as well as the at-
tributes associated with each type. To restrict the set of well-formed graphs,
the user can give so called connection assertions. Meta model and rewrite
rules can be specified separately. This enables the developer to utilize differ-
ent rule sets together with the same meta model description (see section 3.1).

3. A notion of rewriting close to theory.
GrGen implements an extension of the SPO approach to graph rewriting.
The differences consist in the use of the extended graph concept, some re-
strictions regarding the allowed matches and the ability of graph rewrite
rules to request the re-labeling (i.e. retyping) of nodes (see section 2.4).

4. Additional matching conditions and attribute computations.
The set of valid matches can be restricted beyond graph patterns by the
assignment of attribute conditions, type constraints and negative application
conditions (NACs) to every rule. Additionally, attribute computations can
be associated with each rule (see section 3).

5. Optimization of the matching process.
Subgraph matching is an NP-complete problem. To deal with this challenge
in practice, the system is able to optimize the matching process at run time
using knowledge about the current host graph (see section 2.2 and 2.3).

6. Convenient user interface.
GrGen features an expressive and concise specification for meta models,
rewrite rules, and rule application strategies (see section 3). The generated
code can be invoked through an interface, which is easy to use.

We compare GrGen with the most prominent tools, namely PROGRES [3],
AGG [4], Fujaba [5], and an approach presented by Varró [6]. Regarding a
benchmark also introduced by Varró [7], our graph rewrite engine outperforms
all of these tools by at least one order of magnitude (see section 5). While being
the fastest graph rewriting system we know, we will show that GrGen is still
one of the most expressive ones (see section 4).

2 Fundamental Problems and Their Solutions

Thinking of graph rewriting raises three major questions:

1. What is a graph?
2. How is an occurrence of a pattern graph found?
3. What does rewriting mean in detail?
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Fig. 1. Named pattern graph L and host graph H together with a match m

2.1 Graphs

The first question concerns two main aspects: which graph concept to use (dis-
cussed in this section) and which abilities to specify a meta model we give to
the user (see section 3).

GrGen features attributed typed directed multigraphs. These are directed
graphs with typed nodes and edges, where between two nodes more than one
edge of the same type and direction is permitted. According to its type, each
node or edge has a defined set of attributes associated with it. Moreover, the
type system features multiple inheritance on node and edge types. A meta model
defines the allowed node and edge types as well as the attributes associated with
each type. Furthermore it allows to restrict the set of well-formed graphs by so
called connection assertions. For an example specification see section 3.1.

Throughout this paper graphs are depicted as follows: Nodes are either dis-
played by rectangles or ellipses. Rectangles are used in pattern graphs, ellipses
are used in host graphs. The directed edges are displayed by arrows. Figure 1
shows a pattern graph L and a host graph H . The types of the nodes and edges
are represented by node and edge labels with a preceding colon. In case a node
or edge is given a name, it is written before the colon.

2.2 Finding a Match

We define a match as a graph homomorphism between the pattern graph L and
the host graph H . A graph homomorphism is a pair of maps m = (mV , mE),
where mV assigns the nodes of L to nodes of H and mE the edges of L to edges
of H . In figure 1 the nodes and edges mapped to each other are connected by
dashed lines.

Subgraph matching is known to be NP-complete [2]. So, we propose a heuris-
tically optimizing approach to subgraph matching. Moreover, the optimization
is done dynamically at runtime depending on the present host graph (see also
section 2.3). The tightest upper bound for the runtime of subgraph matching
known to us is O(|L||H ||L|), where | · | denotes the sum of the numbers of nodes
and edges of a graph. If we consider only fixed size patterns, subgraph matching
can be regarded to as polynomial (possibly with a high polynomial degree). This
seems to be good news, because we do not have to deal with an exponential run-
time. But a runtime of, e.g. O(|H |10), is still not feasible even for small constant
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factors, especially for host graphs H with hundreds or thousands of nodes and
edges. Assuming that many application domains provide sparse graphs and a
rich type system, we expect that our optimizing approach to subgraph matching
leads to acceptable runtimes.

To enable the optimization of the matching process, we perform the subgraph
matching according to a so called search plan. A search plan is a sequence of
primitive search operations. Each such operation represents the matching of a
single node or edge of the pattern graph to an appropriate node or edge of the
host graph. The whole search plan describes the stepwise construction of all (or
one) possible matches between L and H . We call a partly constructed match a
candidate. The runtimes caused by different search plans depend on the present
host graph and can vary significantly. Therefore the key idea for finding a match
fast is to create a preferably good search plan taking the structure of the present
host graph into account. The necessary information is taken from an analysis
of the host graph performed at runtime. GrGen also provides default search
plans. They are statically created according to optional user hints.

Consider a search plan P = 〈s0, . . . , sq〉, i.e., a sequence of primitive search
operations si. We allow two kinds of search operations: At first there are lookup
operations. They are denoted by si = lkp(xi), where xi is a node or edge of
the pattern graph. At second there are extension operations si = ext(vi, ei),
where vi is a pattern node and ei is a pattern edge. A lookup operation lkp(xi)
represents the expansion of a candidate by any node or edge of the host graph,
which is suitable for the given xi. If xi is a pattern node, an appropriate host
graph node must have the same type as xi or a subtype thereof (we call this
an admissible type). If xi is a pattern edge, the incident nodes must also have
admissible types (note that GrGen supports no lookup operations for edges,
yet). An extension operation ext(vi, ei) represents the expansion of a candidate
by an edge ei coming from an already matched node vi. Of course an appropriate
host graph edge and the node at its other end must also have admissible types.

The matching of a node can happen explicitly by the execution of a node
lookup lkp(v) or implicitly by the matching of an edge incident to that node.
An edge e can also be matched in two different ways (both explicitly): by an
edge lookup lkp(e) or by an extension ext(v, e). E.g. consider two possible search
plans for the pattern graph L shown in figure 2.

P0 = 〈lkp(v1), ext(v1, e1), lkp(v3), ext(v2, e2)〉
P1 = 〈lkp(e1), lkp(v3), ext(v3, e2)〉

On the execution of a primitive search operation more than one appropriate
node or edge may be found. In this case a candidate is replaced by several new
candidates, one for every possible node or edge. However, it is not necessary
to materialize all candidates at the same time. If a candidate can be expanded
by more than one host graph element, we process only one of these. The other
alternatives are treated by backtracking.
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Fig. 2. Operation ext(v1, e1) causes an intense needless splitting of candidates

2.3 Generating Good Search Plans

The runtime of different search plans can vary significantly for a given host
graph. For the generation of preferably good search plans, we use an approach
originally presented by Batz [8]. It extends a technique invented by Dörr [9] with
a cost model that directs a heuristic optimization.

The execution of an operation si can cause the splitting of a candidate into
several new candidates. If this is the case for a significant ratio of the operations
of a search plan, this leads to an exponential growth of the set of candidates. So,
if splitting operations could be avoided by a search plan, less runtime would be
needed. If the execution of a search plan causes no splitting at all, linear runtime
for sparse host graphs H is achieved, that is O(|L|).

Consider e.g. the pattern graph L and the host graph H shown in figure 2. In
H a single node of type A is connected to a number of nodes of type B (let’s say
20), each by an edge of type a. Now let us assume that the search plan

P2 = 〈lkp(v1), ext(v1, e1), ext(v2, e2)〉

is executed. The first operation lkp(v1) leads to the creation of one new candi-
date. Now the node of type A is incident to 20 outgoing edges of type a, each
leading to a node of type B, so in the worst case the candidate splits into 20 new
ones. In contrast the execution of the search plan

P3 = 〈lkp(v3), ext(v3, e2), ext(v2, e1)〉

requires no splitting at all. In case of the extension operation for edge e1, the
crucial point is that P3 follows e1 in the opposite direction as P2 does. That is
where Dörr’s approach applies to: The direction an edge is followed can determine
whether a candidate splits or not. In contrast to extension operations, for lookup
operations the splitting depends on the number of present elements having an
admissible type.
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However, for extension operations, splitting cannot always be avoided. In the
following we refer to equally typed edges of equal direction which connect equally
typed nodes as isomorphic. If there are isomorphic edges present on both nodes
incident to an edge, splitting occurs inevitably. In such a situation it only remains
to choose the direction with less splitting. Moreover, we are looking for search
plans which cause a low overall amount of splitting. Therefore, we extend Dörr’s
technique by a cost model to direct the optimization of search plans.

For this purpose we assign a cost to every operation which might possibly
occur in a search plan: An operation ext(v, e) gets assigned the average number of
splittings for a candidate. A lkp(x) gets assigned the number of present elements
of admissible type. Having done this, we compute the costs of a possible search
plan P = 〈s0, . . . , sq〉 by the formula

CP := c0 + c0c1 + c0c1c2 + · · · + c0c1c2 · · · cq

where ci is the cost of the operation si.
Essentially the formula estimates the number of host graph elements matched

while executing P . If operation s0 is executed, up to c0 host graph elements will
be matched. This also means that up to c0 new candidates will be created. If
operation s1 is performed, for all these candidates on average c1 further elements
will be matched. Overall this results in an average amount of up to c0c1 matched
elements and newly created candidates. Continuing this, one gets the above
formula. However, if a candidate fails to complete, no further candidates will
be created from it. So, except for constant factors, the above formula yields an
overestimation of the average number of elements processed while executing P .1

We do not know an efficient algorithm yielding a search plan P with minimal
costs CP . So, we use the following heuristic method: In the first step, we minimize
the most significant term occurring in the above formula, namely c0c1c2 · · · cq.
This is done by choosing a possibly cheap selection from the set of all possible
search operations for L. In the second step, we compute an order for the selected
operations, such that the cheap operations appear preferably early and the ex-
pensive operations as late as possible. This exploits the fact, that a splitting
has more impact on CP , the earlier the according operation occurs in P . The
costs of the possible operations are derived from an analysis of H , which can be
performed in time O(|H |). A detailed description of this heuristics is given in a
technical report [10].

2.4 Meaning of Rewriting

In the literature the meaning of rewriting is treated thoroughly [11,12,3]. Despite
this fact it is not a computationally complex problem at all. The approaches differ
substantial in understandability and readability of specifications as well as their
expressiveness. Also, their degree of theoretical foundation is quite different. We
have chosen the well-known SPO approach.

1 This is due to the assumption, that every node of H has O(1) edges.
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Fig. 3. The principle setting of SPO-based graph rewriting

A SPO rewrite rule p : L
r−→ R consists of a pattern graph L, a replacement

graph R and a partial graph homomorphism r between L and R. An application
of a rule p to a host graph H is called a direct derivation (see figure 3). It
requires a partial graph homomorphism m from L to H called a match (GrGen

demands total matches). The direct derivation leads to a result graph H ′, see
figure 3. For each node or edge x in L there exists a corresponding node or
edge in H , namely m(x). Note that m does not need to be injective. The partial
preservation morphism r determines what happens to m(x): It maps all items
from L to R, which are to remain in H during the application of the rule. The
images under m of all items in L which have no image under r are to be deleted.
The others are retained. Items in R which have no pre-image under r are added
to H ′. Note that in general ρ is neither surjective nor total. It is partial, because
nodes from H may be deleted to get H ′. The homomorphism ρ can be non-
surjective, because new nodes may be introduced in H ′—these nodes are not in
the image of ρ but in the image of μ.

The SPO approach is not constructive in a way that it directly gives an
algorithm (as sketched above) for obtaining the result graph H ′. It rather char-
acterizes H ′ in the set of all graphs using a pushout construction in the cat-
egory of graphs and partial graph homomorphisms. For conciseness we omit
the category theoretical foundations of the SPO approach (for an introduction
see [11]). Except for partial matching GrGen implements the SPO approach to
the full extent, but provides additional features not covered by SPO (see also
section 3.2). These are: Attribute conditions, type constraints, NACs, node type
changes and attribute recalculation. Attribute conditions, type constraints and
NACs restrict the set of admissible matches. Retyping and attribute evaluations
are performed after the SPO rewrite is done. A formalization of such exten-
sions based on category theory for the DPO approach is presented by Ehrig
et al. [13].

3 The Tool

In this section, we present the most important features of GrGen along with
its input language which enables the user to define a meta model for graphs, a
set of graph rewrite rules as well as a sequence of rule applications.

The structure of the generated graph rewriters (we call them graph engines)
yielded by GrGen arises from the separation of four concerns: defining the type
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Listing 1.1. A meta model

1 a1 : int;
2 a2 : int;
3 }
4 node class NodeTypeB extends NodeTypeA {
5 a3 :int;
6 }
7 node class NodeTypeC extends NodeTypeA, NodeTypeB;
8

9 edge class EdgeTypeA
10 connect NodeTypeA [0:1] -> NodeTypeA [0:1],
11 NodeTypeA [*] -> NodeTypeB [1:5];
12

13 edge class EdgeTypeB extends EdgeTypeA
14 connect NodeTypeB [4:*] -> NodeTypeA [1] {
15 a1 : string;
16 }

of graph elements, storing the graph data, finding the match, and performing
the rewrite. This gives us the freedom to easily change certain aspects of the
implementation. The GrGen(SP) graph engine uses our search plan approach
to subgraph matching sketched in section 2.2 and 2.3 (for a technical description
see Batz and Szalkowski [8,10,14]). GrGen(PSQL) is a graph engine variant
that uses a Postgres database for storing and matching graphs [15,16].

3.1 Meta Model

The key features of GrGen’s meta model are exemplarily shown in listing 1.1.

Types. Nodes and edges can have types (classes). The syntax is similar to
common programming languages (keywords node class and edge class).

Attributes. Nodes and edges can possess attributes. The set of attributes as-
signed to a node or edge is determined by its type. The attributes itself are
typed, too.

Inheritance. Types (classes) can be composed by multiple inheritance. This
eases the way of specifying patterns and improves the expressiveness of
graphs. Node and Edge are the built-in root types of node and edge types,
respectively. Moreover, inheritance eases the specification of attributes, be-
cause subtypes inherit the attributes of their super types.

Connection Assertions. To specify that certain edge types should only con-
nect specific nodes, we included connection assertions (keyword connect).
Using these, the system is optionally able to check whether a host graph is
well-formed or not. For example, line 12 of listing 1.1 specifies, that nodes of
type NodeTypeA can have arbitrary outgoing edges of type EdgeTypeA. Fur-
thermore these edges must connect to a node of type NodeTypeB, whereas
one to five such edges may be incoming at a single NodeTypeB node.
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Listing 1.2. A rewrite rule specification

1 rule SomeRule {
2 pattern {
3 node (n1 ~ n2) : NodeTypeA;
4 n1 --> n2;
5 n3 : NodeTypeB;
6 negative {
7 n3 -e1:EdgeTypeA-> n1;
8 if { n3.a1 == 42 * n2.a1; }
9 }

10 negative {
11 node n4 : Node \ NodeTypeB;
12 n3 -e1:EdgeTypeB-> n4;
13 }
14 }
15 replace {
16 n5 : NodeTypeC<n1>;
17 n3 -e1:EdgeTypeB-> n5;
18 }
19 eval {
20 n5.a3 = n3.a1 * n1.a2;
21 }
22 }

3.2 Graph Rewrite Rules

For example, consider the graph rewrite rule SomeRule (see listing 1.2). The
keyword pattern marks the beginning of the pattern graph consisting of a node
named n3 of type NodeTypeB as well as two nodes named n1 and n2 of type
NodeTypeA. We denote the preservation morphism r implicitly by using named
nodes and edges: Identical names in pattern and replacement graph (keyword
replace) indicate that this nodes or edges are mapped to each other by r. Anony-
mous edges are denoted by an arrow (-->). Additionally, we can specify named
edges of certain types by annotating the arrows (-EdgeName:EdgeType->). The
semantics of the example rule is sketched in the following.

Isomorphic/Homomorphic Matching. The tilde operator (~) between the
nodes n1 and n2 specifies that these nodes may be matched homomorphically.
In contrast to the default isomorphic matching of morphism m the nodes n1
and n2 may be mapped to the same node in the host graph.

Negative Application Conditions (NACs). With negative application con-
ditions (keyword negative) we can specify graph patterns which forbid the
application of a rule if any of them is present in the host graph (cf. [4]).

Attribute Conditions. The Java-like attribute conditions (keyword if) in the
pattern part allows for further restriction of the applicability of a rule.

Type Constraints. In general set theoretical operations on types are allowed.
By writing n4 : Node \ NodeTypeB we declare a node that is a subtype of
Node but not of NodeTypeB.
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Replace Part. Because node instances n1 and n3 (declared in the pattern part)
are used in the replace part (denoting the replacement graph), these nodes
are kept. The anonymous edge instance between n1 and n2 only occurs in
the pattern and therefore gets deleted. The edge e1 is only declared in the
replace part, thus it has to be created. Note that edge e1 from the replace
part and the negative parts are all different, because of their scopes.

Retyping. Node n5 is a retyped node stemming from node n1. This enables us
to keep all edges and all attributes stemming from common super types of
a node while changing its type.

Eval Part. If a rule is applied, then the attributes of matched and inserted
nodes and edges may be recalculated.

3.3 Rule Application

To control the application of rules, we define the set R of regular graph rewrite
sequences (RGS), where P is a set of rewrite rules:

p ∈ P ⇒ p ∈ R p ∈ P ⇒ [p] ∈ R
R1, R2 ∈ R ⇒ R1R2 ∈ R R ∈ R ⇒ (R) ∈ R

R ∈ R ⇒ R∗ ∈ R R ∈ R, n ∈ N ⇒ R{n} ∈ R

The syntax of RGSs is largely borrowed from regular expressions, but its se-
mantics are only related. The main difference is: Determined and undetermined
iteration expressions R{n} and R∗ cause an execution of R until no rule contained
in R can be applied (or the iteration count exceeds n, respectively).2 A subse-
quence R2 of a sequence R1R2 is executed even if R1 is not applicable. A single
rule application can fail or succeed. In the case of failure nothing happens, ex-
cept that we carry on with the next step. Please observe that the execution of
an RGS does not involve backtracking in any kind. [p] denotes the simultane-
ous application of all matches of rule p. For the [·] operator GrGen (or a user
supplied application) can sort out overlapping matches or rewrites to maintain
desired semantic properties.

E.g. we can express Varró’s STS mutex benchmark of size 1000 by the follow-
ing RGS:

newRule{998} mountRule requestRule{1000}
(takeRule releaseRule giveRule){1000}

4 Related Work

Over three decades, graph rewrite theory has evolved well. Amongst others, there
are two major schools: Firstly, the algebraic rewriting school, which considers
graphs as algebraic objects and defines rewriting via mappings. Algebraic rewrit-
ing itself has a rich variety of approaches: There is the single-pushout approach
(SPO, see section 1.1 and 2.4), the double-pushout approach (DPO) and the
2 The semantics of the RGS is declared operational, starting at the innermost nesting:

The execution of (R∗)∗ is always well-defined, but maybe non-terminating.
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Table 1. Features of graph rewriting tools

Tool Semantics Storage Matching Mode Language
PROGRES programmed GRAS planned LS int.&comp. C/C
AGG SPO&NAC memory CSP interpreted Java
Fujaba programmed memory LS compiled Java/Java
VarróDB SPO&NAC RDBMS SQL interpreted Java
GrGen(PSQL) SPO&NAC RDBMS SQL compiled Java/C
GrGen(SP) SPO&NAC memory planned LS compiled Java/C

pullback approach. These approaches are all based on category theory and differ
mostly in the fashion of defining the rewrite rules and the behavior when deleting
nodes. Regarding the latter, SPO is more powerful then DPO.3 Secondly, there
is the programmed approach. It defines rules and rewrites in a more operational
style. Its semantics is more complex and hard to define, which on the other hand
eases the integration of special application driven needs to the tool. For example,
consider the formal definition of a part of PROGRES [17].

In table 1 the most prominent graph rewriting tools are compared. For this
purpose we consider five key properties, which give a coarse-grained insight in
the theory and implementation of each tool.

Semantics. How is the rewriting described theoretically and how powerful is a
single rewriting step? SPO refers to single-pushout approach (see section 1.1
and 2.4). If the tool uses negative application conditions to enhance its ex-
pressiveness then we write NAC. By programmed we mean that semantics
is rather defined through an operational sequence than a theory.

Storage. The storage property describes how the graph is stored and whether
it is persistent: In-memory storage is not necessary persistent. RDBMS and
GRAS are both database backed graph storages where the first stands for of
the shelf relational database system, the latter is a special graph database
implementation.

Matching. The tools vary significantly in the handling of the matching prob-
lem. Some transform the matching problem into another well understood
and tool supported domain, like constraint satisfaction (CSP) or relational
algebra (SQL). Others perform a local search (LS) on the graph structure
to find the matchings. This search process can be driven by chance or be
planned ahead.

Mode. Does the tool generate code in a conventional programming language,
which has to be compiled to perform the matching? Or are the graph rewrite
rules just interpreted by the tool, hence no code is generated.

Language. This refers to the implementation languages. For example, GrGen

is implemented in Java and generates matchers implemented in C. For tools
with interpreted matching there is only one entry.

3 SPO can delete nodes without specifying its whole context whereas DPO cannot.
Moreover, SPO in conjunction with NACs can simulate the dangling edge conditions
of DPO.
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Table 2. Runtime for several of the Varró benchmarks (in milliseconds)

Benchmark → STS ALAP ALAP simult. LTS
Tool ↓ 10 100 1000 10 100 1000 10 100 1000 1000,1
PROGRES 12 946 459,000 21 1,267 610,600 8 471 2,361 942,100
AGG 330 8,300 6,881,000 270 8,027 13,654,000 – – – > 107

Fujaba 40 305 4,927 32 203 2,821 20 69 344 3,875
VarróDB 4,697 19,825 593,500 893 14,088 596,800 153 537 3,130 593,200
GrGen(PSQL) 30 760 27,715 24 1,180 406,000 – – – 96,486
GrGen(SP) < 1 8 79 < 1 5 64 < 1 < 1 5 99

One of the first graph rewrite tools is PROGRES and it is still amongst the
most expressive ones [3]. As described by Zündorf [18], its matching algorithm
is based on planned local search. A more contemporary tool is AGG, which
also has the desirable property to rely closely on the theoretical foundations of
the SPO approach [4]. The matching of AGG is done by reducing the problem
to a constraint satisfaction problem [19]. To call Fujaba a graph rewrite tool
is a kind of an understatement [5]. Fujaba is a tool for software visualization
and two-way transformation based on UML. Some of its functionality relies on
graph transformations. These parts can be utilized to perform general graph
rewriting. The graph rewriting rules are programmed story diagrams in the sense
of extended UML use case diagrams. Varró describes a technique for performing
graph rewriting based on relational algebra [6]. Up to now, this tool is not
accessible, but we have some example runs available [20].

The Optimix system proposed by Uwe Assmann has a limited expressiveness
[21]. It would be impossible to perform the benchmarks of our choice without
significant simplifications. Therefore it is not included in our closer examination.
But nevertheless Optimix is interesting; because of its limitations it is possible
to get some strong theoretical results, such as confluence and guaranteed termi-
nation. In general, this is not possible for the other tools mentioned above.

Dörr developed an idea for matching certain graphs in linear time [9]. His
technique fails for graphs which contain edges that cause inevitably splitting
of candidates. To our knowledge no actual tool was built using this approach.
By defining a cost model, we extended this approach to all graphs, but had
to sacrifice the linear runtime guarantee (see section 2.3). Independently Varro
et al. proposed a quite similar method [22] which is not implemented, yet.

5 Performance

The benchmark uses various sizes of graphs and patterns as well as long and
short transformation sequences. The example used as a benchmark by Varró was
originally proposed to serve as distributed mutual exclusion algorithm. Varró has
changed the algorithm slightly for benchmarking.

Our own measurements (for AGG and GrGen) were carried out on an AMD
Athlon XP 3000+ with 1GB main memory. Measurements by Varró (for PRO-

GRES, Fujaba and VarróDB) were performed on a Intel Pentium 4 at 1.5 GHz
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Fig. 4. Runtime of STS mutex benchmark (multiplicity optimizations off, parameter
passing off, simultaneous execution off; for parameter details see [7])

with 768 MB main memory [20]. To reuse his results we multiplied Varró’s fig-
ures by 0.68 which is the speed difference of both processors according to the
SPEC organization [23].

Figure 4 shows the runtime of two GrGen instances compared with the most
prominent tools, namely AGG [4], Fujaba [5], PROGRES [3] and an approach
presented by Varró [6], which we call VarróDB. GrGen(SP) uses our most ad-
vanced graph engine, whereas GrGen(PSQL) is based on a Postgres database for
storing and matching graphs (see section 3). Further benchmark results, shown
in table 2, support the overall impression. The other benchmarks proposed by
Varró show analogous results and are omitted here (see [1]).

The memory usage of GrGen(SP) for the largest mutex benchmark was below
1.6 MByte. In any benchmark we conducted GrGen(SP) outperformed the next
fastest tool at least by a factor of 40. Regarding the STS mutex benchmark
GrGen(SP) achieves even linear runtime in terms of benchmark size, i.e., the
average runtime for a single rewrite rule is constant regardless the host graph size.
This implies, that we have reached the speedup limit for the Varró benchmark;
better tools can only lower the constant factor. The spread between GrGen(SP)
and the slowest tool is more than 6 orders of magnitude.

6 Conclusion

Graph rewriting has complex theoretical and practical aspects. We meet the com-
putational challenge of finding a match with a heuristically optimizing approach
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based on search plans. The definition of the rewrite semantics closely follows the
well-established SPO approach and provides some extensions.

We still have to answer the most important question: Can the user actually
put the power of the theory to work? Therefore, let us consider what users might
expect from GrGen. The user wants to: define elements of a domain as graph
elements, get expressive and concise rewrite specifications, get the results fast
without excessive memory consumption, and easily integrate the graph rewriting
into his applications.

GrGen meets all those needs: In the meta model attributes and types can
be defined both for nodes and edges. It is possible to check graphs against given
connection assertions, but graphs not conforming to these assertions can also
be processed. The specification language is expressive and concise. The type hi-
erarchy defined by the meta model helps to express graph rewrite rules easily.
GrGen supports different rule application strategies: interactive application,
regular graph rewrite sequences (RGS), and a low level selection by user sup-
plied program code. An interactive environment for stepwise execution of graph
rewrite rules and graph inspections is also provided. The performance of a rule
application, especially of the potentially expensive pattern matching, is at least
one order of magnitude faster than of any other tested system. The memory
consumption of our search plan based graph engine is low, too. 10 million graph
elements can be handled in 1 GB main memory. In other words: On average
about 100 bytes were consumed per node or edge (without attributes assigned)
including all administration overhead. The integration effort of the dynamically
linked graph engines produced by GrGen is small.

Thus, tool supported graph rewriting can be done both, fast and easy to
use, based on the well established theoretical foundations of SPO built into the
declarative graph rewrite language of GrGen.
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