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2 Institut für Informatik und Interaktive Systeme, Universität Duisburg-Essen

Abstract. The paper presents a case study on the synthesis of labelled
transition systems (ltss) for process calculi, choosing as testbed Milner’s
Calculus of Communicating System (ccs). The proposal is based on a
graphical encoding: each ccs process is mapped into a graph equipped
with suitable interfaces, such that the denotation is fully abstract with
respect to the usual structural congruence.

Graphs with interfaces are amenable to the synthesis mechanism based
on borrowed contexts (bcs), proposed by Ehrig and König (which are
an instance of relative pushouts, originally introduced by Milner and
Leifer). The bc mechanism allows the effective construction of an lts

that has graphs with interfaces as both states and labels, and such that
the associated bisimilarity is automatically a congruence.

Our paper focuses on the analysis of the lts distilled by exploiting the
encoding of ccs processes: besides offering some technical contributions
towards the simplification of the bc mechanism, the key result of our
work is the proof that the bisimilarity on processes obtained via bcs
coincides with the standard strong bisimilarity for ccs.

1 Introduction

The dynamics of a computational device is often defined by a reduction system
(rs): a set, representing the space of possible states of the device; and a relation
among these states, representing the possible evolutions of the device. This is e.g.
the case of the paradigmatic functional language, the λ-calculus: the β-reduction
rule (λx.M)N ⇒ M [N/x] models the application of a functional process λx.M
to the actual argument N , and the reduction relation is then obtained by freely
instantiating and contextualising the rule.

While rss have the advantage of conveying the semantics with relatively few
compact rules, their main drawback is poor compositionality, in the sense that
the dynamic behaviour of arbitrary standalone terms can be interpreted only by
inserting them in the appropriate context, where a reduction may take place. In
fact, simply using the reduction relation for defining equivalences between com-
ponents fails to obtain a compositional framework, and in order to recover a suit-
able congruence it is often necessary to verify the behaviour of single components
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under any viable execution context. This is the road leading from contextual
equivalences for the λ-calculus to barbed and dynamic equivalences for the π-
calculus. In these approaches, though, proofs of equivalence are often tedious
and involuted, and they are left to the ingenuity of the researcher.

A standard way out of the impasse, reducing the complexity of such analy-
ses, is to express the behaviour of a computational device by a labelled transition
system (lts). Should the label associated to a component evolution faithfully ex-
press how that component might interact with the whole of the system, it would
be possible to analyse in vitro the behaviour of a single component, without
considering all contexts. Thus, a “well-behaved” lts represents a fundamental
step towards a compositional semantics of the computational device. It is not
always straightforward, though, to identify the right “label” that should be dis-
tilled, starting from a previously defined rs. Indeed, after Milner’s proposal of
an alternative semantics for the π-calculus [17] based on reactive rules modulo
a structural congruence on processes, inspired by the cham paradigm [4], an
ongoing stream of research has been investigating the relationship between the
lts semantics for process calculi and their more abstract rs semantics.

Early attempts by Sewell [22] devised a strategy for obtaining an lts from
an rs by adding contexts as labels on transitions. The technique was refined
by Leifer and Milner [15] who introduced relative pushouts (rpos) in order to
capture the notion of minimal context activating a reduction. The generality of
this proposal (and its bicategorical formulation due to Sassone and Sobocinski
[20]) allows it to be applied to a large class of formalisms. More importantly, such
attempts share the basic property of synthesising a congruent bisimulation equiv-
alence, thus ensuring that the resulting lts semantics is compositional. However,
for the time being there are few case studies which either involve rich calculi,
or succeed in making comparisons with standard behavioural equivalences. To
tackle a fully-fledged case study is the main aim of this paper.

Our starting point for the synthesis of an lts are the graphical techniques
proposed for modelling the reduction semantics of nominal calculi in [10,12]: pro-
cesses are encoded in graphs with interfaces, an instance of cospan categories [11],
and process reduction is simulated by double-pushout (dpo) rewriting [1]. Since
the category of cospans over graphs admits rpos [21], its choice as the domain
of the encoding for nominal calculi ensures that the synthesis of an lts can be
performed, and that a compositional observational equivalence is obtained.

The key technical point is the use of the borrowed context (bc) technique [8]
as a tool to equip graph transformation in the dpo style with an lts seman-
tics. Graphs with interfaces are amenable to the synthesis mechanism based
on bcs (which are in turn an instance of rpos): this allows the construction
of an lts that has graphs with interfaces as both states and labels, and such
that the associated bisimilarity is automatically a congruence. Exploiting the
bc technique, also large case studies may be taken into account: until now the
difficulties in the presentation of the ltss obtained via the use of rpos forced to
restrict the analysis to simple case studies, relying either on standard (ground)
term rewriting [15], or on extremely simplified variants of process calculi [20]:
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more elaborated proposals using bigraphs [18,14] result in infinitely branching
ltss, banning recursive processes or failing to capture standard bisimilarity.

Summing up, the aim of our work is straightforward: to present a fully-fledged
case study on the synthesis of ltss for process calculi, choosing as testbed Mil-
ner’s Calculus of Communicating System (ccs). More precisely, the paper fo-
cuses on the analysis of the lts obtained by exploiting the bc technique and the
encoding of ccs (recursive) processes into unstructured graphs, along the lines of
the methodology sketched above. Besides offering some technical contributions
towards the simplification of the bc synthesis mechanism, the key result is the
proof that the bisimilarity on (recursive) processes obtained via bcs coincides
with the standard strong bisimilarity for ccs. We believe that our work may
offer novel insights on the synthesis of ltss, as well as offering further evidence
of the adequacy of graph-based formalisms for system design and verification.

The extended version of the paper [5] contains additional examples, categorical
notations and detailed proofs.

2 Two Operational Semantics for CCS

This section introduces ccs [16] and two alternative operational semantics: the
classical lts semantics and the reduction semantics.

Definition 1 (processes). Let N be a set of names, ranged over by a, b, c, . . .;
τ �∈ N an invisible name; Δ = {a, a | a ∈ N} � {τ} a set of prefixes, ranged
over by δ; and finally, X a set of agent variables, ranged over by x, y, . . .. An
open process P is a term generated by the (mutually recursive) syntax

P ::= M, (νa)P, P1 | P2, recx.P M ::= 0, δ.P, M1 + M2, δ.x

A process is a term such that each occurrence of an agent variable x is in the
scope of a recx-operator. We let P, Q, R, . . . range over the set P of processes,
and M, N, O . . . range over the set S of summations.
The standard definition for the set of free names of a process P , denoted by
fn(P ), is assumed. Similarly for α-conversion with respect to the restriction
operators (νa)P : the name a is bound in P , and it can be freely α-converted.

The classical observational semantics, bisimilarity, is given over an inductively
defined labelled transition system (lts). We spell out the lts, and denote by
∼CCS the standard strong bisimilarity, without formally introducing it.

Definition 2 (labelled transition system). The transition relation for pro-
cesses is the relation LCCS ⊆ P × Δ × P inductively generated by the set of
axioms and inference rules below (where P

δ−→ Q means that 〈P, δ, Q〉 ∈ LCCS).

δ.P
δ−→ P

P
a−→ Q, R

a−→ S

P | R
τ−→ Q | S

P
δ−→ Q

(νa)P δ−→ (νa)Q
a �∈ fn(δ)

P
δ−→ Q

P | R
δ−→ Q | R

P
δ−→ Q

P + R
δ−→ Q

P [recx.P /x] δ−→ Q

recx.P
δ−→ Q
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As usual, we avoided presenting the symmetric counterparts of those three infer-
ence rules involving the parallel and sum operators; moreover, the substitution
operator is supposed not to capture any name, possibly through α-conversion.

The behavior of a process P can also be described as a relation over abstract
processes, obtained by closing a set of basic rules under structural congruence.

Definition 3 (structural congruence). The structural congruence for pro-
cesses is the relation ≡ ⊆ P × P, closed under process construction and α-
conversion, inductively generated by the set of axioms below.

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P

M + N = N + M M + (N + O) = (M + N) + O M + 0 = M

(νa)(νb)P = (νb)(νa)P (νa)(P | Q) = P | (νa)Q for a �∈ fn(P ) (νa)0 = 0

(νa)(M + δ.P ) = M + δ.(νa)P for a �∈ fn(M + δ.0) recx.P = P [recx.P /x]

Definition 4 (reduction semantics). The reduction relation for processes is
the relation RCCS ⊆ P×P, closed under the structural congruence ≡, inductively
generated by the set of axioms and inference rules below (where P → Q means
that 〈P, Q〉 ∈ RCCS).

a.P + M | a.Q + N → P | Q τ.P + M → P

P → Q

(νa)P → (νa)Q
P → Q

P | R → Q | R

There is a main difference with respect to the standard reduction semantics for
ccs, namely, the axiom schema concerning the distributivity of the restriction
operators with respect to the prefix operators, even if they have been already
considered in the literature, see e.g. [9]. These equalities do not change sub-
stantially the reduction semantics, and they indeed hold in all the observational
equivalences we are aware of. In particular, two congruent processes are also
strongly bisimilar. Most importantly, they allow a simplified presentation of the
graphical encoding: we refer the reader to [12] for a more articulate analysis.

The lts semantics specifies how a system, seen as a single component, may
interact with the environment, and it allows the definition of an observational
equivalence by means of bisimilarity. On the other hand, the rs semantics speci-
fies how a system, seen as the whole, evolves. The latter is usually more natural,
but it does not take in account the interactions, and consequently, does not pro-
vide any “good” notion of behavioral equivalence. The main aim of the theory
of reactive systems proposed by Milner in [15] is to systematically derive an lts

from an rs semantics. In this paper, exploiting a graphical encoding of processes,
we derive an lts from a graph rewriting semantics. More precisely, in the next
sections we introduce a graphical encoding of CCS processes which preserves the
reduction semantics. The encoding is then used to distill an lts with pairs of
graph morphisms as labels: the main result of the paper states that the resulting
bisimilarity coincides with the standard strong bisimilarity.
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3 Graphs and Their Extension with Interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension
with interfaces, referring to [6] for a more detailed introduction.

Definition 5 (graphs). A (hyper-)graph is a four-tuple 〈V, E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions. An (hyper-)graph morphism is a pair of functions 〈fV , fE〉 preserving
the source and target functions.

The corresponding category is denoted by Graph. However, we often consider
typed graphs [7], i.e., graphs labelled over a structure that is itself a graph.

Definition 6 (typed graphs). Let T be a graph. A typed graph G over T is
a graph |G|, together with a graph morphism tG : |G| → T . A morphism between
T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent
with the typing, i.e., such that tG1 = tG2 ◦ f .

The category of graphs typed over T is denoted T -Graph: it coincides with the
slice category Graph ↓ T . In the following, a chosen type graph T is assumed.

In order to inductively define the encoding for processes, we need to provide
operations over typed graphs. The first step is to equip them with suitable
“handles” for interacting with an environment.

Definition 7 (graphs with interfaces). Let J, K be typed graphs. A graph
with input interface J and output interface K is a triple G = 〈j, G, k〉, for G a
typed graph and j : J → G, k : K → G the input and output morphisms.

Let G and H be graphs with the same interfaces. An interface graph morphism
f : G ⇒ H is a typed graph morphism f : G → H between the underlying graphs
that preserves the input and output interface morphisms.

We let J
j−→ G

k← K denote a graph with interfaces J and K.1 If the interfaces
J , K are discrete, i.e., they contain only nodes, we simply represent them by
sets. Moreover, if K is the empty set, we often denote a graph with interfaces
simply as a graph morphism J → G. In order to define our encoding processes,
we introduce two binary operators on graphs with discrete interfaces.

Definition 8 (two composition operators). Let G = I
j−→ G

k← K and

G
′ = K

j′

−→ G′ k′
← J be graphs with discrete interfaces. Then, their sequential

composition is the graph with discrete interfaces G ◦ G′ = I
j′′

−→ G′′ k′′
← J , for G′′

the disjoint union G � G′, modulo the equivalence on nodes induced by k(x) =
j′(x) for all x ∈ NG′ , and j′′, k′′ the uniquely induced arrows.

1 With an abuse of notation, we sometimes refer to the image of the input and output
morphisms as inputs and outputs, respectively. More importantly, in the following
we often refer implicitly to a graph with interfaces as the representative of its iso-
morphism class, still using the same symbols to denote it and its components.
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Let G = J
j−→ G

k← K and H = J ′
j′

−→ H
k′
← K ′ be graphs with discrete

interfaces. Then, their parallel composition is the graph with discrete interfaces

G ⊗ H = (J ∪ J ′)
j′′

−→ V
k′′
← (K ∪ K ′), for V the disjoint union G � H, modulo

the equivalence on nodes induced by j(x) = j′(x) for all x ∈ NJ ∩ NJ′ and
k(y) = k′(y) for all y ∈ NK ∩ NK′ , and j′′, k′′ the uniquely induced arrows.

Intuitively, the sequential composition G ◦ G′ is obtained by taking the disjoint
union of the graphs underlying G and G′, and gluing the outputs of G with
the corresponding inputs of G

′. Similarly, the parallel composition G ⊗ H is
obtained by taking the disjoint union of the graphs underlying G and H, and
gluing the inputs (outputs) of G with the corresponding inputs (outputs) of H.
Note that the two operations are defined on “concrete” graphs, even if the result
is independent of the choice of the representatives, up-to isomorphism.

A graph expression is a term over the syntax containing all graphs with dis-
crete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all the occurrences of those operators
are defined for the interfaces of their arguments, according to Definition 8; its
interfaces are computed inductively from the interfaces of the graphs occurring
in it, and its value is the graph obtained by evaluating all operators in it.

4 From Processes to Graphs with Interfaces

This section presents our graphical encoding for ccs processes. After presenting
a suitable type graph, shown in Fig. 1, the composition operators previously
defined are exploited. This corresponds to a variant of the usual construction
of the tree for a term of an algebra: names are interpreted as variables, so that
they are mapped to leaves of the graph and can be safely shared.

go τ

��
• ��

��

c �� �

��

��
op

��

�� ◦

Fig. 1. The type graph TCCS (for op ∈ {rcv, snd})

Intuitively, a graph having as root a node of type • (�) corresponds to a
process (to a summation, respectively), while each node of type ◦ basically rep-
resents a name. Note that the edge op stands for a concise representation of
two operators, namely snd and rcv, simulating the two prefixes. There is no
operator for simulating either parallel composition or non-deterministic choice.
Instead, the operator c is a syntactical device for “coercing” the occurrence of
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a summation inside a process context (a standard device from algebraic spec-
ifications). Finally, the operator go is another syntactical device for detecting
the “entry” point of the computation, thus avoiding to perform any reduction
below the outermost prefix operators: it is later needed for modeling the rs

semantics.
The second step is the characterization of a class of graphs, such that all

processes can be encoded into an expression containing only those graphs as
constants, and parallel and sequential composition as binary operators. Let p, s �∈
N : our choice of graphs as constants is depicted in Fig. 2, for all a ∈ N .

• p��

s �� � �� op

��

�� ◦ a��

s �� � �� τ �� • p��

p �� • p��

a �� ◦ a��

p �� • �� c �� � s��

p �� •

a �� ◦

s �� �

◦ a��

go

p �� •

��

Fig. 2. Graphs opa (for op ∈ {rcv, snd}) and τ ; idp, ida, and c; 0p, 0a, and 0s; νa and
go (from left to right and top to bottom)

Finally, let us denote idΓ and 0Γ as a shorthand for
⊗

a∈Γ ida and
⊗

a∈Γ 0a,
respectively, for a finite set of names Γ ⊆ N (since the ordering is immate-
rial). The encoding of processes into graphs with interfaces, mapping each finite
process into a graph expression, is presented below.

Definition 9 (encoding for finite processes). Let P be a finite process, and
let Γ be a set of names, such that fn(P ) ⊆ Γ . The (mutually recursive) encodings
�P �p

Γ and �M�s
Γ , mapping a process P into a graph with interfaces, are defined

by structural induction according to the rules below.

�M�p
Γ =

�
0p ⊗ 0Γ if fn(M) = ∅
(c ⊗ idΓ ) ◦ �M�s

Γ otherwise

�(νa)P �p
Γ =

�
�P �p

Γ if a �∈ fn(P )
(idp ⊗ νb ⊗ idΓ ) ◦ �P{b/a}�p

{b}�Γ for b �∈ Γ otherwise
�P | Q�p

Γ = �P �p
Γ ⊗ �Q�p

Γ �M + N�s
Γ = �M�s

Γ ⊗ �N�s
Γ

�0�s
Γ = 0s ⊗ 0Γ �τ.P �s

Γ = (τ ⊗ idΓ ) ◦ �P �p
Γ

�a.P �s
Γ = (rcva ⊗ idΓ ) ◦ �P �p

Γ �a.P �s
Γ = (snda ⊗ idΓ ) ◦ �P �p

Γ

Note the conditional rule for the mapping of �M�p
Γ . This is required by the

use of 0 as the neutral element for both the parallel and the non-deterministic
operator: in fact, the syntactical requirement fn(M) = ∅ coincides with the
semantical constraint M ≡ 0.

The mapping is well-defined, since the resulting graph expression is well-
formed; moreover, the encoding �P �p

Γ is a graph with interfaces ({p} ∪ Γ, ∅).
Our encoding is sound and complete (even if not surjective), as stated by the
proposition below (adapted from [10]).
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Proposition 1. Let P , Q be finite processes, and let Γ be a set of names, such
that fn(P ) ∪ fn(Q) ⊆ Γ . Then, P ≡ Q if and only if �P �p

Γ = �Q�p
Γ .

Note in particular how the lack of restriction operators is dealt with simply by
manipulating the interfaces, even if the price to pay is the presence of “floating”
axioms for prefixes, as shown by Fig. 3.

p �� • �� c �� � �� rcv ��

��

• �� c �� � �� snd ��

		

•

a �� ◦ ◦

Fig. 3. Encoding for both �(νb)a.b.0�p
{a} and �a.(νb)b.0�p

{a}

4.1 Tackling Recursive Processes

In order to show how recursive processes can be encoded as suitable infinite
graphs, the first step is to consider a complete partial order on graphs.

Definition 10 (graph order). Let G, H be graphs with interfaces (J, K).
Then, G �J,K H if there exists a mono f : G ⇒ H.

Thus, we consider the standard subgraph relationship, partitioned over inter-
faces. These partial orders are complete with respect to ω-chains, and it is note-
worthy that the encoding �0�p

Γ is the bottom of the order for those graphs with
interfaces ({p} ∪ Γ, ∅).

Definition 11. Let P [x] be an open process, such that the single agent variable
x may occur free in P . Let C = {�Pi�

p
Γ | i ∈ IlN} be a chain where P0 = P [0/x]

and Pi+1 = P [Pi/x]. Then, �recx.P �p
Γ denotes the least upper bound of C.

In other terms, each open process P [x] defines an ω-chain on the graphs with
interfaces ({p} ∪ Γ, ∅), and �recx.P �p

Γ is the least upper bound of this chain,
computed as the least fixed point starting from the bottom element, i.e., �0�p

Γ .
Of course, two recursive expressions may be mapped to isomorphic graphs

with interfaces, even if they are not structurally congruent, nor can be unfolded
to the same expression. Nevertheless, the extended encoding is clearly still sound.

5 On Graphs with Interfaces and Borrowed Contexts

This section introduces the double-pushout (dpo) approach to the rewriting of
graphs with interfaces and its extension with borrowed contexts (bcs).

Definition 12 (graph production). A T -typed graph production is a span
L

l←− I
r−→ R with l mono in T -Graph. A typed graph transformation system

(gts) G is a tuple 〈T, P, π〉 where T is the type graph, P is a set of production
names and π is a function mapping each name to a T -typed production.
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Definition 13 (derivation of graphs with interfaces)
Let J → G and J → H be two graphs with interfaces. Given
a production p : L

l←− I
r−→ R, a match of p in G is a

morphism m : L → G. A direct derivation from J → G to
J → H via p and m is a diagram as depicted in the right,
where (1) and (2) are pushouts and the bottom triangles com-
mute. In this case we write J → G =⇒ J → H.

L
m




(1)

I
r ����l��




(2)

R





G C ������ H

J

������� k

�� �������

The morphism k : J → C such that the left triangle commutes is unique, when-
ever it exists. If such a morphism does not exists, then the rewriting step is not
feasible. Moreover, note that the canonical dpo derivations can be seen as a
special instance of these, obtained considering as interface J the empty graph.

In these derivations, the left-hand side L of a production must occur com-
pletely in G. On the contrary, in a borrowed context (bc) derivation the graph L
might occur partially in G, since the latter may interact with the environment
through J in order to exactly match L. Those bcs are the “smallest” extra con-
texts needed to obtain the image of L in G. The mechanism was introduced in
[8] in order to derive an lts from direct derivations, using bcs as labels. The
following definition is lifted from [2], extending the original one by including also
morphisms that are not necessarily mono. Note that the labels derived in this
way correspond to the labels derived via relative pushouts in a suitable category.

Definition 14 (rewriting with borrowed contexts). Given a production
p : L

l←− I
r−→ R, a graph with interfaces J → G and a mono d : D � L, we

say that J → G reduces to K → H with transition label J � F ← K via p and
d if there are graphs G+, C and additional morphisms such that the diagram
below commutes and the squares are either pushouts (PO) or pullbacks (PB). In
this case we write J → G

J�F←K−−−−−→ K → H, which is also called rewriting step
with borrowed context.

D
PO









�� �� L
PO









I
PO

�� ��








R






G
PO

�� �� G+

PB

C�� �� H

J

��

�� �� F

��

K

��

��

��

Consider the diagram above. The upper left-hand square merges the left-hand
side L and the graph G to be rewritten according to a partial match G � D �
L. The resulting graph G+ contains a total match of L and can be rewritten
as in the standard dpo approach, producing the two remaining squares in the
upper row. The pushout in the lower row gives us the borrowed (or minimal)
context F which is missing in order to obtain a total match of L, along with a
morphism J � F indicating how F should be pasted to G. Finally, we need an
interface for the resulting graph H , which can be obtained by “intersecting” the
borrowed context F and the graph C via a pullback.

Note that two pushout complements that are needed in Definition 14, namely
C and F , may not exist. In this case, the rewriting step is not feasible.
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6 From Process Reductions to Graph Rewrites

Following [10], this section introduces the rewriting system RCCS , showing how
it simulates the reduction semantics for processes: it is quite simple, since it con-
tains just two rules, depicted in the upper right corner of Fig. 4 (the remaining
graphs in this figure are explained later). The first rule models a τ -transition,
whereas the second models synchronisation. Note that, in order to disable re-
duction inside prefixes, we enrich our encoding, attaching an edge go on the root
of each process. So, let �P �g

Γ = �P �p
Γ ⊗go. Moreover, for any graph G with inter-

faces ({p} ∪ Γ, ∅), let reach(G) be the graph with the same interfaces reachable
from the image of the roots {p} ∪ Γ .

It seems noteworthy that two rules suffice for recasting the reduction semantics
of the calculus. First of all, the structural rules are taken care of by the fact that
graph morphisms allow for embedding a graph into a larger one, thus simulating
the closure of reduction by context. Second, no distinct instance of the rules
is needed, since graph isomorphism takes care of the closure with respect to
structural congruence, as well as of the renaming of the free name.

Proposition 2 (reductions vs. rewrites). Let P be a processes, and let Γ
be a set of actions such that fn(P ) ⊆ Γ . If P → Q, then RCCS entails a
direct derivation �P �g

Γ =⇒ G via an injective match, such that reach(G) =
�Q�g

Γ . Viceversa, if RCCS entails a direct derivation �P �g
Γ =⇒ G via an injective

match, then there exists a process Q such that P → Q and reach(G) = �Q�g
Γ .

The correspondence holds since the go operator forces the match to be applied
only on top, thus forbidding the occurrence of a reduction inside the outermost
prefixes. The condition on reachability is needed since, during the reduction,
some process components may be discarded, in correspondence of the solving
of non-deterministic choices. The restriction to injective matches is necessary in
order to ensure that the two edges labeled by c can never be merged together.
Intuitively, allowing their coalescing would correspond to the synchronization of
two summations, i.e., as allowing a reduction a.P + a.Q → P | Q.

7 The Synthesised Transition System

This section contains the main results of our paper. Its aim is to apply the bc

synthesis mechanism to RCCS , and then to analyse the resulting lts. Proving
along the way a few general results on the technique, we show that the lts

is finitely branching (when quotiented up to isomorphism) and equivalent to a
succinct →C whose transitions have a direct interpretation as process transitions.
The main theorem of the section states that →C induces on (the encoding of)
processes the standard strong bisimilarity.

7.1 Reducing the Borrowing

In order to know all the possible transitions originating from a graph with in-
terfaces J → G, all the subgraphs D’s of Ls and Lτ and all the mono mappings
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FRCV � JRCV � RCV � RCV ∩ Is → Rs
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����
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◦

•1

◦

go ◦

•1
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��

c �� �s2
�� snd ��

�����
•3

◦
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�s2

•3
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•1

3

��

�s2
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FSND � JSND � SND � SND ∩ Is → Rs

Fig. 4. Productions synch: Ls � Is → Rs and τ : Lτ � Iτ → Rτ (upper right area).
The table illustrates the derivation rules for the concise lts (0 is the empty graph).

into G should be analysed. To shorten this long and tedious procedure, we show
here two pruning techniques for restricting the space of possible D’s.

First, note that those items of a left-hand side L that are not in D have to
be pasted to G through J . Thus, consider a node n of D corresponding to n′ in
L such that n′ is the source or the target of some edge e that does not occur in
D. Since the edge e is in L but not in D, it must be added to G through J , and
thus n must be also in J . A node such as n is called a boundary node.

Let us now consider SND—as shown in Fig. 4— as a subgraph of Ls. Its root
is a boundary node since it has an ingoing edge that occurs in Ls but not in
SND . Also the name in SND is a boundary node, since in Ls there is an ingoing
edge that does not occur in SND. Hence this node must be mapped to a node
occurring in the interface J of G.

The notion of boundary nodes is formally captured by the categorical notion
of initial pushout (as recalled in [5]). Since our category has initial pushouts, the
previous discussion is formalized by the proposition below.

Proposition 3. Let p : L
l←− I

r−→ R be a production and d : D � L a mono
such that diagram (i) in Fig. 5 is the initial pushout of d. If a graph J → G can
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perform a bc rewriting step via p and d then there exist a mono D � G and a
morphism JD → J such that diagram (ii) in Fig. 5 commutes.

This proposition allows to heavily prune the space of all possible D’s. As far
as our case study is concerned, we can exclude all those D’s having among
boundary nodes a summation node (depicted by �) since these never appear in
the interface J of a graph resulting from the encoding of some process. For the
same reason, we can exclude all those D’s having among their boundary nodes a
continuation process node (any of those two nodes depicted by • that are not the
root) observing that the only process node in the interface J is the root node.

A further pruning—partially based on proof techniques presented in [8]—is
performed by excluding all those D’s which generate a bc transition that is not
relevant for the bisimilarity. In general terms, we may always exclude all the
D’s that contain only nodes, since those D’s can be embedded in every graph
(with the same interface) generating the same transitions. Concerning our case
study, those transitions generated by a D having the root node without the edge
labeled go are also not relevant. In fact, a graph can perform a bc transition
using such a D if and only if it can perform a transition using the same D with
a go edge outgoing from the root. Note indeed that the resulting states of these
two transitions only differ for the number of go edges attached to the root: the
state resulting after the first transition has two go’s, the state resulting after the
second transition only one. These states are bisimilar, since the number of go’s
does not change the behavior.

The previous remarks are summed up by the following lemma.

Lemma 1. Bisimilarity on the lts synthesized by bcs coincides with bisimi-
larity on the lts obtained by considering as partial matches D the graphs Ls,
SND and RCV (shown in Fig. 4) as subgraphs of Ls, and only the graph Lτ as
subgraph of Lτ .

7.2 Strong Bisimilarity vs. bc Bisimilarity

Exploiting the remarks of the previous section, we first introduce a concise lts

containing only those bc transitions that are needed to establish the borrowed
bisimilarity. Then, we use this concise lts to prove our main theorem on the
correspondence between the borrowed and the ccs bisimilarity.

Proposition 4. Let p : L � I → R be a production of RCCS; d : D � L a
mono such that in Fig. 5, diagram (i) is the initial pushout of d and diagram (iii)
is a pullback; and J � G a graph with interfaces. Then J � G

J�F←K−−−−−→ K → H
via p and d if and only if there exists a mono D � G, a graph V and a morphism
JD → J such that the central square of diagram (iv) in Fig. 5 commutes and F
and H are constructed as illustrated there.

The proposition above is a key step in the definition of a concise lts. In fact,
it tells us how to construct the label F and the resulting state H , just starting
from a set of minimal rules of the form R ← D ∩ I � D � JD � FD. Given
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Fig. 5. Diagrams used in the propositions of Section 7

a mono D � G, the resulting state H can be computed in a dpo step, i.e., all
the items of G matched by D and not in D ∩ I are removed and replaced by
R. This transition is possible only if there exists a morphism JD � J such that
the central diagram commutes. In this case, the resulting label F is computed
as the pushout between the minimal label JD � FD and JD � J .

We thus now define a concise transition system, starting from the set of rules,
of the form R ← D∩I � D � JD � FD, that are depicted in Fig. 4. The main
difference with respect to the standard transition system is that the interface J
of a graph is never enlarged by a transition, but always remains the same.

Definition 15 (concise transition system). Let the graph D be either SND,
RCV , Ls or Lτ ; and let JD, FD, D ∩ I and R be the graphs defined according
to Fig. 4. Then, J � G

J�F←J−−−→C J → H if and only if a diagram as the one
illustrated in Fig. 5 (iv) can be constructed, where the morphism J → H is
uniquely induced by H ← V � G � J .

Note that the pushout complement of D ∩ I � D � G always exists because
for each D as in Fig. 4 all the nodes of D ∩ I are in D, and thus we have a
transition for each D � G and for each JD → J such that the central diagram
commutes. Moreover, the morphism J � V always exists (since J is discrete
and V contains all nodes of G) and it is unique (since V � G is mono).

More precisely, consider either SND or RCV as D: the existence of a morphism
JD → J means that the name used in the synchronisation must occur in the
interface. Whenever either Ls or Lτ is D, JD is the empty graph 0 and thus a
morphism always exists. In these two latter cases the label of the transition is
always the span of identities on J and the resulting state is exactly the state
obtained from a dpo direct derivation.

The difference between → and →C can be explained via an analogy to the

CCS-like transition a.0 + b.0
−|b̄.P+M−−−−−→ P . The concise lts forgets about P and

M , and the transition represented in →C is a.0+ b.0
−|b̄.0−−→R 0. This operation is

performed without changing the resulting bisimilarity, as stated below.

Proposition 5. Let ∼ be the bc bisimilarity, and let ∼C be the bisimilarity
defined on →C . Then ∼C and ∼ coincide for all those graphs with discrete
interfaces belonging to the image of our encoding.

The previous proposition allows a simpler proof of the correspondence between
strong bisimilarity for ccs and the one resulting from the bc construction.
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Theorem 1. Let P , Q be processes, and let Γ be a set of names, such that
fn(P ) ∪ fn(Q) ⊆ Γ . Then �P �g

Γ ∼ �Q�g
Γ if and only if P ∼CCS Q.

Proof. Here we give just a brief sketch of the proof. First of all, note that the set
of inference rules below define the same lts of Definition 2, for A ⊆ N a finite
set of names, Q, R and S processes, and M and N summations.

P ≡ (νA)((τ.Q + M) | R)

P
τ−→ (νA)(Q | R)

P ≡ (νA)((ā.Q + M) | (a.R + N) | S)

P
τ−→ (νA)(Q | R | S)

P ≡ (νA)((a.Q + M) | R) a /∈ A

P
a−→ (νA)(Q | R)

P ≡ (νA)((ā.Q + M) | R) a /∈ A

P
ā−→ (νA)(Q | R)

The correspondence between the concise lts →C and the standard lts of ccs

seems then evident, since each of those inference rules above exactly corresponds
to a rule R ← D ∩ I � D � JD � FD in Fig. 4.

For instance the third rule above corresponds to the third row D = RCV in
Fig. 4. Indeed, P ≡ (νA)((a.Q+M) | R) if and only if RCV can be embedded in
G where J � G is �P �g

Γ . The condition a /∈ A is satisfied if and only if a occurs
in the interface J , i.e., if and only if there exists a morphism JRCV → J such
that everything commutes. If such a condition is satisfied a transition in →C is
performed with label J � F � J where J � F is (part of) the pushout between
JRCV � J and JRCV � FRCV . Since the latter morphism is fixed, J � F
depends only JRCV � J , i.e., it depends only on the name of J corresponding
to the unique name of JRCV , that here we have called a. Then, for each graph
with interface J such that RCV occurs inside, and such that the unique name of
RCV occurs in J with name a, a transition is performed with a label depending
only on a. Roughly, this label can be thought of as a context corresponding to
�− | ā.0�g

Γ with J = {p} ∪ Γ . The resulting state (νA)(Q | R) does not exactly
correspond to the state resulting from →C , since the latter contains those graphs
that represent discarded choices. However, these summations are not connected
anymore to the reachable graph, and thus they do not influence in any way the
behavior of the resulting graph.

The second rule corresponds to the second row D = Ls. In fact, P ≡
(νA)((ā.Q + M) | (a.R + N) | S) if and only if Ls can be embedded into G
where J � G is �P �g

Γ . There are no other conditions on this rule and this is
exactly expressed by the fact that JLs is 0. The τ -label exactly corresponds to
the label of →C given by the span of identities on J .

8 Conclusions and Further Work

Our paper presents a case study in the synthesis of ltss for process calculi. A
sound and complete graphical encoding for processes is exploited in order to
apply the bc mechanism for automatically deriving an lts: states are graphs
with interfaces, labels are cospans of graph morphisms, and two (encodings of)
processes are strongly bisimilar in the distilled lts if and only if they are also
strongly bisimilar according to the standard lts.
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We consider our case study to be relevant for the reasons outlined below.
Technically, its importance lies in the pruning techniques that have been de-

veloped in order to cut to a manageable size the borrowed lts: they exploit
abstract categorical definitions, such as initial pushouts, yet resulting in a sim-
plified lts with the same bisimulation relation (see Proposition 3).

Methodologically, its relevance is due to its focussing on a fully-fledged case
study, including also possibly recursive processes: most examples in the literature
restrain themselves to the finite fragment of a calculus, as it happens for the
encoding of ccs processes into bigraphs by Milner in [18].

In order to further illustrate the advantages (and the possibilities for future
developments) of our approach, let us consider the latter proposal, similar in
aim to our work. It is noteworthy that the encoding into graphs with interfaces
allows the use of two rewriting rules only: intuitively, these rules are non-ground
since they can be both contextualized and instantiated. This feature results in
synthetising a finitely branching (also for possibly recursive processes) lts: this
seems one of the key advantages of the borrowed context technique with respect
to the bigraphical approach, where reaction rules must be ground, hence infinite
in number and inducing an infinitely branching lts already for finite processes.

This non-groundness supports our hope to use the bc mechanism for distilling
a set of inference rules, instead of characterizing directly the set of possible
labelled transitions. This should be obtained by extending Proposition 4 and
offering an explicit construction of the interface K for the target state of a
transition: its construction was irrelevant for our purposes here, since the reuse
of the interface J of the starting state does not change the bisimilarity. A related
composition result is already presented in [3].

Finally, we consider promising the combined use of a graphical encoding (into
graphs with interfaces) and of the bc techniques, and we plan to test its expres-
siveness by capturing also nominal calculi. We feel confident that our approach
could be safely extended to those calculi whose distinct feature is name fu-
sion [19], while it might fail for calculi where a more flexible notion of name
scoping is needed, as suggested by preliminary results on the π-calculus in [13].
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